
University of Southern Queensland

Faculty of Engineering & Surveying

Software Radio Architectures – Part 2

A dissertation submitted by

Daniel Warne

in fulfilment of the requirements of

ENG4111/2 Research Project

towards the degree of

Bachelor of Engineering (Electrical and Electronic) and Business

Submitted: October, 2004

Abstract

Radio modulation simulation programs using Binary Phase Shift Keying (BPSK),

Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM),

and Minimum Shift Keying (MSK) were developed in this Research Project. All pro-

grams were written using Matlab 6.5. The success of these programs is attributed to

embedding them in a Linear Predictive Speech Coder (LPC10) which only requires 11

parameters (10 coefficients and pitch delay) to be modulated as opposed to a whole

block of quantized voice samples.

Coherent demodulation is effectively achieved for BPSK by employing a squaring loop

which locks onto to a signal that is twice that of the carrier frequency and scales it

down. The program works effectively to recover carrier frequencies within an appro-

priate range. The squaring loop program implements the vital components of filtering,

squaring, phase detection, and numerically controlled oscillation in Matlab code.

Also included in this dissertation is an introduction to the EZ-KIT Lite Digital Signal

Processor (DSP) package developed by Analog Instruments. An investigation of this

DSP environment takes steps towards realizing a software radio which executes in real

time.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Daniel Warne

0011022020

Signature

Date

Acknowledgments

Software Radio involves a broad range of engineering topics and it was hard to stay

focused on only a few. I would like thank my supervisor Dr John Leis for keeping me

directed on the key project areas. I would also like to thank John for his technical

guidance on project topics and LATEX2ε which was used to typeset this dissertation.

John and USQ also should be thanked for providing suitable resources such as a DSP

board and pertaining software.

Thankyou to Matt Bigg for taking digital photos for this dissertation. Thankyou to my

father Ken Warne for providing printing resources to print the final copy. Furthermore

both my parents Ken and Jan Warne are greatly appreciated for their support and

encouragement throughout the year.

Finally I acknowledge my wife Katie for her support, encouragement, and understand-

ing throughout the duration of this Research Project.

Daniel Warne

University of Southern Queensland

October 2004

Contents

Abstract i

Acknowledgments iv

List of Figures xi

List of Tables xv

Chapter 1 Introduction 1

1.1 Objectives . 1

1.2 Software Radio Driving Forces and Limitations 2

1.2.1 Signal Digitization . 2

1.2.2 Integrated Circuit Developments 3

1.2.3 DSP Processing Power . 3

1.2.4 PersonalJava and the JavaCard 3

1.2.5 Smartcard Technology . 3

1.2.6 Software Download . 4

CONTENTS vi

1.3 The Future of Software Radio . 4

1.3.1 Handset Architectures . 4

1.3.2 Software Download . 5

1.3.3 Network Reconfigurability . 5

1.3.4 Soft Antennas and Soft Base Stations 5

1.3.5 Adaptive Spectrum Management 6

1.4 Dissertation Overview . 6

Chapter 2 Software Radio Design, Standards, and Commercial Future 7

2.1 Chapter Overview . 7

2.2 Defining Software Radio . 7

2.3 Software Radio Design . 9

2.3.1 Front End Design . 11

2.3.2 Baseband Design . 13

2.4 Software Radio Standards and Commercial Future 15

2.5 Chapter Summary . 16

Chapter 3 Digital Communication Systems 18

3.1 Chapter Overview . 18

3.2 Digital Signals . 18

3.3 Digital Communication Systems . 21

CONTENTS vii

3.4 Speech Coding . 25

3.4.1 Waveform Codecs . 27

3.4.2 Source Codecs . 28

3.4.3 Hybrid Codecs . 28

3.4.4 The Linear Predictive Coder (LPC) 29

3.5 Chapter Summary . 31

Chapter 4 Digital Modulation Techniques 32

4.1 Chapter Overview . 32

4.2 Phase Shift Keying . 33

4.2.1 Binary Phase Shift Keying . 34

4.2.2 Quadrature Phase Shift Keying 37

4.3 Quadrature Amplitude Modulation . 44

4.4 Minimum Shift Keying . 50

4.5 Chapter Summary . 58

Chapter 5 Software Phase Locked Loops 59

5.1 Chapter Overview . 59

5.2 Phase Locked Loop Fundamentals . 60

5.3 Software Implementations . 63

5.3.1 Phase Detector . 64

CONTENTS viii

5.3.2 Digital Filter . 70

5.3.3 Numerically Controlled Oscillator (NCO) 72

5.3.4 The Complete System . 77

5.4 SPLLs and Receiver Considerations . 77

5.5 Chapter Summary . 84

Chapter 6 Real Time Implementation 85

6.1 Chapter Overview . 85

6.2 The SHARC EZ-KIT Lite Package . 86

6.3 Example of a Software Radio . 89

6.4 Chapter Summary . 91

Chapter 7 Conclusions and Further Work 92

7.1 Achievement of Objectives . 92

7.2 Further Work . 94

References 95

Appendix A Project Specification 98

Appendix B Semester 1 Agenda 101

Appendix C Semester 2 Agenda 103

Appendix D Matlab Code 105

CONTENTS ix

D.1 LPC10p.m . 105

D.2 BPSKdemo.m . 109

D.3 QPSKmodulatordemo.m . 110

D.4 Freqplot.m . 112

D.5 QPSKdemodulatordemo.m . 114

D.6 QPSKsim.m . 116

D.7 QAMmodulatordemo.m . 122

D.8 QAMdemodulatordemo.m . 125

D.9 QAMsim.m . 127

D.10 MSKmodulatordemo.m . 134

D.11 MSKsim.m . 137

D.12 FIRcoeffPD.m . 143

D.13 DigitalFilter.m . 145

D.14 LPFcoeff.m . 146

D.15 NCO.m . 148

D.16 PLL.m . 150

D.17 SquaringLoop.m . 152

D.18 BPFcoeff.m . 154

D.19 LPFcoeffSL.m . 156

D.20 SNCO.m . 158

CONTENTS x

D.21 CoherentBPSKsim.m . 160

List of Figures

2.1 The evolution from SDR to SR to AI-SR (Adapted from: Tuttlebee 2002b, p.11). 9

2.2 Conceptual block diagram of software defined radio (SDR) (Adapted from:

Tuttlebee 2002b, p.13). 10

2.3 Conceptual block diagram of software radio (SR) (Adapted from: Tuttlebee

2002b, p.14). 10

2.4 Direct conversion receiver architecture. 12

2.5 Direct conversion transmitter architecture. 13

2.6 The market opportunity for software defined radio 16

2.7 The commercial value for software defined radio (Adapted from Massey, 2003). 17

3.1 Plot of the words “sample frequency” sampled at 22050 Hz. 19

3.2 A conceptual diagram of a analog-to-digital converter (Adapted from: Leis

2002, p.42). 20

3.3 A conceptual diagram of a digital-to-analog converter (Adapted from: Leis

2002, p.43). 20

3.4 A visualization of 3-bit quantization. 21

LIST OF FIGURES xii

3.5 Conceptual Digital Communication Pathway (Adapted from: Wilson 1996 p.4). 23

3.6 Performance of Speech Codec Groups (Adapted from: Woodard, 2004). 27

4.1 Graphical representation of digital data (top) and carrier frequency (bottom)

as used in BPSK modulation scheme. 34

4.2 Graphical depiction of the BPSK wave. 35

4.3 Conceptual block diagram of BPSK demodulator. 36

4.4 QPSK signal phasor representation. 37

4.5 QPSK Modulator (Adapted from: Ball, 2004). 38

4.6 QPSK modulation waveforms at different stages in the modulation process. . . 39

4.7 Frequency plot of the QPSK signal as depicted in Figure 4.6. 40

4.8 QPSK Demodulator (Adapted from: Xiong, 2000). 41

4.9 QPSK demodulation waveforms at different stages in the demodulation process. 42

4.10 QAM modulator (Adapted from: Xiong, 2000). 45

4.11 QAM modulation waveforms at different stages in the modulation process. . . 46

4.12 QAM modulation waveforms at different stages in the modulation process. . . 47

4.13 QAM constellation diagram. 47

4.14 Coherent QAM demodulator (Adapted from: Xiong, 2000). 48

4.15 QAM demodulation waveforms at different stages in the demodulation process. 49

4.16 MSK waveforms for I channel. 51

4.17 MSK waveforms for Q channel. 52

LIST OF FIGURES xiii

4.18 MSK signal. 53

4.19 MSK modulator (Adapted from: Xiong, 2000). 54

4.20 MSK demodulator (Adapted from: Xiong, 2000). 55

4.21 MSK demodulation low pass filtering. 56

4.22 Typical I channel output from second product modulator for MSK demodulation. 57

5.1 A Simple Phase Locked Loop. 60

5.2 Block diagram of PLL with transfer functions (Adapted from: Kroupa, 2003). 61

5.3 Block diagram of PLL with transfer function in feedback path (Adapted from:

Kroupa, 2003). 62

5.4 Block diagram depicting the operations to be performed by an SPLL (Adapted

from: Best, 2003). 64

5.5 Positive zero crossing phase detector (Adapted from: Lindsey and Chie, 2002). 65

5.6 “Nyquist rate” phase detector (Adapted from: Kroupa, 2003). 66

5.7 ”Nyquist rate” phase detector waveforms. 67

5.8 Mirrored pass band of 20 to 200 samples or 20 Hz to 2000 Hz. 69

5.9 Filter coefficients (top) and delayed filter coefficients (bottom). 69

5.10 Frequency content in a typical QPSK signal. 70

5.11 Frequency content in a filtered version of the QPSK signal in Figure 5.11. . . . 71

5.12 7th order filter made from cascading stages (Adapted from: Parsons, 2003). . . 71

5.13 Coefficients for low pass digital FIR filter. 72

LIST OF FIGURES xiv

5.14 Signal with 50Hz and a 1050Hz components applied to low pass digital filter. . 73

5.15 Signal with 400Hz and a 1400Hz components applied to low pass digital filter. 73

5.16 Block diagram of a divide-by-N counter NCO (Adapted from: Best, 2003). . . 74

5.17 Waveform-synthesizer NCO (Adapted from: Best, 2003). 75

5.18 Plots depicting the input and output waveforms of NCO.m 76

5.19 Frequency content in a typical BPSK signal. 79

5.20 Squaring Loop (Adapted from: Best, 2003). 79

5.21 Frequency content in a squared BPSK signal. 81

5.22 Band Pass Filter Coefficients for Squaring Loop. 81

5.23 Frequency content in multiplier output. 82

5.24 Result of the recovered carrier being multiplied with the BPSK waveform. . . 84

6.1 Analog Devices SHARC DSP Board. 87

6.2 EZ-KIT Lite Simulator. 88

6.3 Data Memory (DM) and Program Memory (PM) segments. 89

6.4 EZ-KIT Lite Host indicating suitable communications with board. 90

List of Tables

2.1 Radio-Frequency Spectrum Usage. 11

3.1 Bit Allocation for the 2.4kbps LPC10. 31

4.1 Digital modulation schemes (Adapted from Xiong 2000). 33

4.2 QPSKsim.m processing time for different block sizes. 43

4.3 QAMsim.m processing time for different block sizes using female voice file. . . 50

4.4 MSKsim.m processing time for different block sizes using female voice file. . . 58

6.1 Specifications for the multimode SDR receiver. 90

Chapter 1

Introduction

A major problem that affects wireless communications is incompatibility. As people

move from place to place they often find that their mobile devices don’t communi-

cate with local users. This problem is compounded through the emergence of different

technologies such as CDMA, GSM, and Wideband CDMA. As well as this, radio com-

munication systems used by military and allied armed forces are often incompatible

(Ortiz 2003). A relatively new technology, software radio, can solve many of these

problems. A single software radio system can work with multiple wireless technologies

through software stored in host memory.

‘Software defined radio reflects the convergence of two dynamically developing techno-

logical forces of the 1990’s - digital radio and software technology’ (Tuttlebee 2002a).

Software radio can replace radio and network hardware and nullify the need to be con-

stantly upgrading hardware. A software defined radio system can download a required

modulation technique rather than having it hardwired into a device.

1.1 Objectives

This research project continues on from Software Radio Architectures – Part 1 and

aims to research architectures and specific algorithms for software radio. Included into

the software design will be essential elements such as phase locked loop, low-pass and

1.2 Software Radio Driving Forces and Limitations 2

band-pass filters, speech coders, and other data processing components.

These aims are to be realized through completion of the following specific objectives:

• Research information about software radio components – both in sending and

receiving radio waves, and investigate initial standards and commercial interest

for this emerging technology.

• Investigate digital modulation and demodulation methods and implement specific

techniques using Matlab 6.5.

• Investigate and implement coherent demodulation by utilizing phase locked loop

(PLL) concepts.

• Describe how a software radio system which executes in real time would be im-

plemented.

1.2 Software Radio Driving Forces and Limitations

Software radio is a culmination of different technologies. The advances and limitations

of these technologies guide the future of software radio. Some important technologies,

as outlined by Tuttlebee (2002a), are shown below.

1.2.1 Signal Digitization

The growth of wireless markets in the 1990’s has led to an increased development of A/D

conversion. Subsequently this leads to increased accuracy, linearity, sampling rates,

resolution, and cost. A/D performance and sampling rates are in constant competition

because a superior performance in one can be to the detriment of the other.

1.2 Software Radio Driving Forces and Limitations 3

1.2.2 Integrated Circuit Developments

The physical size of IC’s continues to shrink and complexity still doubles every 1 to

2 years. Memory size and access speed is also increasing. As well as this private

investment continues to climb and this capital is ultimately the main driving force

behind further advances.

The standard voltage currently needed for mobile phones is 3V. However programmable

DSP’s at 1V operation have been realized in experimental demonstrations using a

fraction of the power of 3V supplied mobile phones.

1.2.3 DSP Processing Power

New architectural concepts and increasingly customized hardware engines are being

developed for DSP’s. Examples of these changes include equalization, multi-channel

demodulation and correlation, and power efficient implementation.

In 1999 the DSP engine could process at 200 MIPS and it had a power consumption of

0.5W. Since this time an increase in the commercial need for DSP improvements has

led to an acceleration in DSP development.

1.2.4 PersonalJava and the JavaCard

Java programs can now run on any processing platform due to the virtual machine

concept. Once a program is running, new software components can be imported, this is

termed enhancement on-the-fly. Since the finalization of the PersonalJava and Javacard

specifications, Java is playing a significant role in the evolution of software.

1.2.5 Smartcard Technology

Smartcard technology has previously been constrained due to the suitable size of robust

ICs, however silicon sizes continue to shrink and processing and memory capability

1.3 The Future of Software Radio 4

within the chip footprint increase. Javacard specifications lead to further flexibility of

enhancement for card processing.

Smartcard applications are growing fast, examples include e-cash, pay-per-view, and

mobile phone SIM cards. There are future implications for all kinds of personal smart-

card services.

1.2.6 Software Download

Software download has expanded with the internet. Impulse purchasing, easy access,

try-before-buy, and on-line upgrades, are becoming more common. Even though dial-

up downloading can be slow and frustrating downloadable software is still widely and

increasingly accepted. Updateable modems using software download are already in use,

and in Europe wireless download is deployed using digital television networks.

1.3 The Future of Software Radio

Software radio is still in its infancy and its level of usefulness is not yet realized. Some

key areas that highlight the impact and scope of software radio are outlined by, Tut-

tlebee (2002a), and they are as follows:

1.3.1 Handset Architectures

Handset architectures can be described by three phases. Phase 1 involves channel

coding, source coding, and control functionality in software. Current digital mobile

phones are using this architecture. Phase 2 adds baseband modem processing to the

software portion and therefore new modulation schemes can be utilized. Phase 3 has

quite a different architecture from the previous two phases and the IF signal processing

is executed in software also. This architecture allows a single terminal to change to

multiple radio standards. However processing power for phase 3 exceeds that provided

from an average DSP.

1.3 The Future of Software Radio 5

1.3.2 Software Download

Software radio download can be described through three different options:

Static Download: A handset can support different standards and is reconfigured in a

static manner to meet each standard. For example by using a smart card.

Pseudo-dynamic Download: Uses ‘over the air’ download to re-programme itself to suit

various protocols and more flexibility is provided for the network operator.

Dynamic Reconfiguration: Over the air download is used as well as the added ability

to download whilst in call. Bandwidth can be supplied on demand for advanced, timer,

varying, multimedia service.

1.3.3 Network Reconfigurability

It is unclear how a change from today’s second generation (2G) systems, such as GSM

and CDMA, to third generation (3G) systems will occur. Ultimately the change will

be driven by commercial interest and suppliers. Similar to advances in P.C operating

systems, backwards compatibility will have to be incorporated into the new network

so CDMA and GSM can slowly be phased out. Once a software platform has been

established on-going upgrade costs will be largely reduced.

1.3.4 Soft Antennas and Soft Base Stations

Soft antennas will not be possible for 3G systems using a 2G approach. Digital receiver

architectures will be required. Base stations will have to adapt to accommodate digital

receivers but the cost-benefit ratio is not yet feasible.

A basic software base station is relatively similar to a handset architecture, with the

advantage of no constraints on size, power consumption, and portability. Base-stations

can be implemented with today’s technology and the their growth will parallel soft

antenna growth.

1.4 Dissertation Overview 6

1.3.5 Adaptive Spectrum Management

Adaptive Spectrum Management allows the electromagnetic spectrum to be used ap-

propriately and it is already in use at a simple level. A system can identify and use

a frequency slot that is free from interference. Priority schemes could also be created,

where emergency or defence services can always have priority use of the spectrum.

1.4 Dissertation Overview

This dissertation is organized as follows:

Chapter 2 describes the software radio components required for sending and receiving

radio waves and also investigates emerging standards and commercial interest for

software radio.

Chapter 3 investigates digital signals, digital communication systems, and speech

coding.

Chapter 4 explores and develops digital modulation algorithms with a particular

focus on Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying

(QPSK), Quadrature Amplitude Modulation (QAM), and Minimum Shift Key-

ing (MSK) .

Chapter 5 is about software phase locked loops. A standard software phase locked

loop and a squaring loop are developed.

Chapter 6 outlines the EZ-KIT Lite digital signal processor (DSP) package and in-

vestigates a multimode software defined radio receiver.

Chapter 7 concludes the technical content covered in this dissertation and discusses

areas of further work.

Chapter 2

Software Radio Design,

Standards, and Commercial

Future

2.1 Chapter Overview

The intention of this chapter is to define software radio (SR) and examine the compo-

nents that are needed in a software radio design. The diagrams included need only be

understood on a basic conceptual or visual level - they merely define the building blocks.

Software radio is explored from both a front perspective and a baseband perspective.

This chapter also includes a discussion on emerging standards for software radio in-

cluding an introduction to the SDR Forum organization. The future of software radio

is also explored in terms of commercial interest.

2.2 Defining Software Radio

‘Software Radio’ is a broad term that describes many ideas and technologies. It is

therefore appropriate to break this term into smaller areas, each with its own unique

2.2 Defining Software Radio 8

attributes.

‘Software based radio’ (SBR), refers to a system that uses software techniques on digi-

tized or sampled radio signals. The focus is on a shift from hardware implementation to

software implementation. Progressing on from this a more detailed definition is found

under the title ‘software defined radio’ (SDR), where the receiving sampling occurs at

some stage downstream from the antenna, normally after wideband filtering, low noise

amplification, and down conversion to a lower frequency. The process is approximately

reversed for transmitting. As more components are implemented in software, that is the

A/D conversion occurs earlier in the system, the term ‘software radio’ (SR) becomes

more appropriate.

At a more advanced level ‘Adaptive Intelligent - Software Radio’ (AI-SR) emerges.

AI-SR can, without human intervention, adapt to a particular environment to achieve

optimal performance and efficiency. For this to occur an AI-SR system requires artificial

intelligence, a high level of computational power to process adaptive algorithms in real

time, and real time data such as RF bands available, interface protocols, user needs,

applications, and propagation environment.

In defining software radio a distinction between multiband, and multimode is necessary.

‘Multiband is the capability of handsets or base stations to operate in multiple frequency

bands of the spectrum. Multimode refers to the capability of a handset or base station

to operate in multiple modes (e.g. multiple air interface standards, multiple modulation

techniques, or multiple access methods)’ (Tuttlebee 2002b).

Furthermore there are also three different environments where software radio can be

used, namely Commercial wireless (e.g. mobile phones, personal communications ser-

vices (PCS) etc.), Civil government (e.g. public safety, local, state, and national com-

munications, etc), and the Military. In this dissertation different architectures for these

different environments are not explored, but the general design components for all ar-

chitectures are similar.

Figure 2.1 shown on page 9 depicts the evolution from SDR to SR to AI-SR. Over time

the number of system components performed in software is increasing. It is interesting

2.3 Software Radio Design 9

Adaptive
Intelligent
Software

Radio

Software
Defined
 Radio

 Software
 Radio

Increasing number of software areas

Advances in signal processing
technology (e.g. DSP chips,
memory, A/D’s, D/A’s etc.)

2000 2003 2006 2010 ????

Timeline of technology progression.

Figure 2.1: The evolution from SDR to SR to AI-SR (Adapted from: Tuttlebee 2002b,
p.11).

to note, according to prediction, that AI-SR will not be fully established until some

time after 2010.

2.3 Software Radio Design

All electronic systems have to possess an analog front end as the real world is analog.

As software defined radio develops the number of analog components in the design

decreases. The front end in an SDR system is essentially all components used to

transmit and receive, process, and down convert RF. The back end or baseband section

is the signal processing functionality. The distinction between the RF section and the

baseband section is shown in Figure 2.2 on page 10 for SDR and Figure 2.3 for SR.

Changes to these models include extra analogue components such as multiple RF pro-

cessing components to allow modulation of different frequencies. Table 2.1 depicts the

radio-frequency spectrum usage. Currently ‘pure’ SR with A/D conversion at the an-

2.3 Software Radio Design 10

 T/R
Switch

RF
Processing

Down
Conversion

RF Section

IF
Processing

A/D D/A

Software
Defined

Processing
Engine

I/O

Man-
Machine
Interface

Software Control

Baseband Section

Figure 2.2: Conceptual block diagram of software defined radio (SDR) (Adapted from:
Tuttlebee 2002b, p.13).

T\R
Switch

Low Noise
Amplifier
and Anti-
aliasing

Filter

A/D

Wideband RF
Front End
Processing

Engine

Software
Defined

Processing
Engine

D/A I/O

RF Section IF and Baseband
Modulation

Software Control Processing Engine

Man-
Machine
Interface

Figure 2.3: Conceptual block diagram of software radio (SR) (Adapted from: Tuttlebee
2002b, p.14).

2.3 Software Radio Design 11

Frequency Designation Abbreviation
30-300 Hz Extremely low frequency ELF
300-3000 Hz Voice frequency VF
3-30 kHz Very low frequency VLF
30-300 kHz Low frequency LF
300 kHz-3 MHz Medium frequency MF
3-30 MHz High frequency HF
30-300 MHz Very high frequency VHF
300 MHz-3 GHz Ultra high frequency UHF
3-30 GHz Super high frequency SHF
30-300 GHz Extra high frequency EHF

Table 2.1: Radio-Frequency Spectrum Usage.

tenna does not deal with gigahertz frequencies, but due to continuing technological

advances this may occur in the near future.

2.3.1 Front End Design

As previously mentioned the front design involves receiving, transmitting, and down

converting RF. This obviously includes essential components such as low noise ampli-

fiers (LNA) and filters. A received signal, that is initially a very low power RF signal,

is down-converted to a complex in-phase and quadrature (I/Q) baseband signal. A

direct conversion receiver design contains an LNA which results in reasonable gain and

the signal is then filtered in a preselected filter, and then down-converted in a com-

plex mixer. Most of the signal gain is from a high gain baseband amplifier. A direct

conversion architecture is shown in Figure 2.4. The advantages of this design are: low

complexity, integrated circuit implementation, simple filtering, and easier image signal

suppression. A problem with this design is that a local oscillator is required that pro-

duces two output signals that are accurate in amplitude and phase quadrature. This

leads to a need to have balanced mixers that can operate over a wide frequency band.

Other disadvantages include: local oscillator leakage through the LNA and mixer will

be propagated from the antenna back into the recevier, and the potential for signal

instability as most of the signal gain happens in one frequency band.

A multiple conversion superheterodyne architecture addresses some of the direct con-

2.3 Software Radio Design 12

Gain 80dB

BPF Phase
Shift

ADC

ADC

DSP

audio,
digital
video

Gain 80dB

LNA
Gain 20dB

Synthesiser (frequency equal to the
centre frequency of desired channel)

Figure 2.4: Direct conversion receiver architecture.

version problems. The output from a multiple conversion design is two channels that

can be further processed. Included in this design are additional filters and amplifiers,

and a numerically controlled local oscillator. Advantages of this design include: good

selectivity (due to preselect and channel filters), gain distribution over several ampli-

fiers, and the conversion from real to complex signal is done at only one fixed frequency.

Some important disadvantages of this design are: high complexity, several local oscil-

lator signals may be required, and the fact that specialized IF filters are required. The

three functions that filters are required to perform in any superheterodyne receiver are:

• Band limit the signal to the frequency of interest. This is often known as ‘chan-

nelization’.

• Separate the desired signal from the image signal.

• Prevent nearby but out-of-band ‘blocker’ signals. A blocker signal is a nearby (in

frequency), large and unwanted signal.

A transmitter design is similar to a receiver design in reverse, and the advantages

and disadvantages basically the same. A direct conversion transmitter is shown in

Figure 2.5. Included is a high power amplifier (HPA) that is needed to prepare the

signal for air propagation.

2.3 Software Radio Design 13

phase
shift

Sum

DAC

DAC

Filter

HPA

DSP

Q

I

IQ Modulator

Figure 2.5: Direct conversion transmitter architecture.

2.3.2 Baseband Design

As already stated baseband design is the signal processing functionality. Transmit-

ting involves digitally transforming raw data streams into the correct format ready for

transmission over a known wireless channel. Receiving is obtaining information from

the front end and carefully analyzing it, in order to extract the information that was

intended for reception. This requires synchronization, demodulation, channel equaliza-

tion, channel decoding, and multiple access channel extraction.

Software in the context of SR can be referred to as ‘the instructions which control

what a communication system does’. Furthermore, software for SR is complex and is

considered to be two-level. Level 1 is software required to define computation and level

2 is software required to control the mode of operation of the computation within the

communication system. As outlined by Tuttleebee, (2002b), there are three areas that

depict the future of baseband software development:

• Baseband component technologies

– dynamic capability - how flexible are different processing devices?

– processing capability - how powerful are different processing devices?

– physical constraints - what are their physical limitations?

• Design tools and methods

– standardized tools and methods - global compatibility and coherence.

2.3 Software Radio Design 14

– specification tools and methods - transferral of design information.

– mixed mode capability - mixed component technologies imply the need for

mixed tool environments.

– tool processing requirements - can a highly complex system be simulated?

– compliance to design procedures - design flows for different technologies and

combinations.

– algorithm processing requirements - to provide enhanced automated design de-

cisions.

– automated hardware selection for algorithms - also for automated design deci-

sions.

– system simulation and emulation - testing methods at different levels.

• System maintenance

– object oriented system control - control of low level processing resource by

higher layer distributed control.

– configuration and reconfiguration mechanisms - controlling the physical pro-

cessing resources.

– initial set up and configuration - how is a system initialized?

– automatic intelligent decisions - higher capability requires more complex deci-

sions.

– capability classification - knowledge of the processing system is required for

in-system decision making.

– resource allocation - efficiently allocating functions to processing resources.

– configuration update procedures - methods of securely controlling and updating

dynamically distributed systems.

Silicon technology provides great capabilities, and computer advances in processors and

RAM have been pivotal in the running of more complex software routines. However

for SR to be fully utilized by service providers and clients at the baseband level there

needs to be substantial development in all three software areas outlined above.

2.4 Software Radio Standards and Commercial Future 15

2.4 Software Radio Standards and Commercial Future

The commercial future of SR and emerging standards are parallel progressions; as

the software radio commercial base broadens, standards will also develop. There are

many different over-the-air broadcasting standards already realized such as GSM, and

CDMA for mobile wireless telecommunications, digital audio broadcasting (DAB) and

DVB-T for terrestrial broadcasting systems, and DVB-S for satellite broadcasting. SR

however may use a variety of standards, depending on available bandwidth and user

applications.

For SR to fulfill its full potential, open standards are needed to allow various client’s

software to function on different hardware platforms and different networks. One orga-

nization (the SDR Forum) has commenced work in this area. The SDR Forum does not

aim to replace existing standardization bodies but rather provide them with new input.

One area that the SDR Forum is working on is software download and the creation of

a framework for suitable software and hardware components (SDR-Forum 2002).

Notices of inquiry can also provide insight into the development of standards. In March,

2000, a Notice of Inquiry (NOI) (FCC Notice of Inquiry 2000) was issued by the Federal

Communications Commission (FCC), due to input from the SDR Forum’s Regulatory

Committee. As a result of an encouraging response to the NOI the FCC developed

an initial Notice of Proposed Rules Making (NPRM) on SDR in December 2000 (FCC

Notice of Proposed Rules Making 2000). Some key points detailed in this NPRM are:

• Changes in radio functionality in SDR equipment (frequency, power, modulation

type) would be authorized under a new class of permissive changes, Class III.

• SDR equipment would be authorized to use ‘electronic labelling’, in order to pro-

vide a method to relabel equipment in the field following any changes to previously

approved devices.

• This streamlining of the equipment approval process would remove key potential

regulatory hurdles to the further development and deployment of SDR equipment

and systems.

2.5 Chapter Summary 16

SDR radio is developing uniquely in different countries and although the technologies

origins can be linked back to the US Military, Europe and Japan have been major con-

tributors as well. Each of these regions have their own accompanying standards and

commercial driving forces. Figure 2.6 shows the market opportunity for software de-

fined radio compared to generation technologies for mobile communications such as 2G

(second generation). Figure 2.7 shows the expected commercial value for software de-

fined radio by application (Massey 2003). According to this figure, commercial interest

is expected to reach 31 billion USD by 2008 for handsets and base stations combined.

There are many web sites, such as Pioneer Consulting (Massey 2003), that contain

information about the commercial interest in software radio. However the majority of

these web sites are primarily concerned with selling a range of communication products

rather than displaying useful information.

Very high bit rate (> 2Mb/s)
multimedia enhancements

1970 1980 1990 2000 2010 2020

1G

2G

3G

Time

Capability
Enhancements
by Generation

Mobile telephone
Analog cellular technology
Macro cells

Greatly enhanced data communications services
Narrowband and wideband multimedia services
Higher spectrum for wideband applications
Macro, micro & pico cells

Software Defined Radio Opportunity

Beyond 3G

Digital voice, messaging & data
services
Fixed wireless loop, wireless LAN
services
Digital cellular & PCS
Macro, micro & pico cells

Figure 2.6: The market opportunity for software defined radio

2.5 Chapter Summary

The content covered in this chapter allows one to realize that software radio is still in its

infancy. Although design models were depicted in this chapter, an ideal software radio

2.5 Chapter Summary 17

0

5000

10000

15000

20000

25000

30000

35000

R
ev

en
u

e
(M

ill
io

n
s

U
S

D
)

Handsets
Base Stations

2002 2008

Figure 2.7: The commercial value for software defined radio (Adapted from Massey,
2003).

architecture is not presently realized. Further advances in hardware and accompanying

software programs are needed to bring software radio to full expectations.

It is interesting to note the work already done by the SDR Forum and other bodies in

the area of standards. Software radio standards and commercial interest are two areas

that are expected to rapidly expand in the near future.

Chapter 3

Digital Communication Systems

3.1 Chapter Overview

This chapter explores important concepts that need to be understood for software radio

design. A brief explanation of digital signals is provided that explains analog to digital

conversion (ADC), digital to analog conversion (DAC), and quantization levels.

The examination of digital communication system components comprises a large por-

tion of this chapter with the area of speech coding being described in reasonable detail.

3.2 Digital Signals

Understanding digital signal theory is vital in order to implement digital modulation

techniques. Some digital signal concepts relevant to software radio are outlined in the

following pages. These somewhat simple concepts are crucial to understanding and

implementing a real time digital system.

A digital signal can be defined as an analog signal that has been sampled at a partic-

ular sample frequency (Fs). Software radio is primarily concerned with audio signals.

Common audio sampling frequencies include 8000 Hz for telephone audio, 44.1 kHz for

3.2 Digital Signals 19

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (seconds)

S
ou

nd
 V

al
ue

Figure 3.1: Plot of the words “sample frequency” sampled at 22050 Hz.

high standard CD audio, and 11025 Hz or 22050 Hz for personal computer systems.

Figure 3.1 depicts a speech waveform sampled at 22050 Hz.

The processing of a signal begins with analog to digital conversion. The signal is

then processed, and in the case of software radio modulated, and then converted back

into analog form by a digital-to-analog converter (DAC). Figure 3.2 shows a simplified

model of an analog to digital converter (ADC) . A conversion is commenced with a

start conversion (SC) signal and when complete an end of conversion (EoC) pulse is

used. Between each individual conversion a zero-order hold is employed which keeps the

output at a level equal to the current conversion for the duration of the sample period

(1/Fs). The number of output levels that can be represented depends on the particular

ADC used. In Figure 3.2 there are 2N levels employed. Digital-to-analog conversion is

simpler than analog-to-digital conversion because the process is almost instantaneous.

A simplified conceptual diagram of an DAC in shown in figure 3.3 (Leis 2002a).

Amplitude quantization is a key area when discussing digital signals. Amplitude quan-

tization is representing an original signal in terms of a certain number of binary levels.

Figure 3.4 shows a sine wave quantized with 3 bits (8 amplitude levels) and the result-

ing error. It is interesting to note that the error is greater at the peaks of the sine wave.

3.2 Digital Signals 20

ADC
analog voltage

input

data output

BN-1 B3 B2 B1 B0 SC EOC

Figure 3.2: A conceptual diagram of a analog-to-digital converter (Adapted from: Leis
2002, p.42).

DAC
analog voltage

output

data input

BN-1 B3 B2 B1 B0

Figure 3.3: A conceptual diagram of a digital-to-analog converter (Adapted from: Leis
2002, p.43).

3.3 Digital Communication Systems 21

Sine wave (original and 3−bit quantized) and the resulting error.

Figure 3.4: A visualization of 3-bit quantization.

The number of quantization levels to utilize depends largely on the particular applica-

tion. Figure 3.4 is good example of quantizing with not enough levels and substantially

changing the form of the signal.

3.3 Digital Communication Systems

Similarly to digital signals a brief investigation of digital communication systems will

greatly aid the implementation of digital modulation techniques. This section isolates

the fundamental building blocks of a digital communication system.

Digital communication is the process of exchanging information by the use of finite sets

of signals. In terms of software radio communication, audio information is exchanged

by binary quantization levels. This information is then modulated onto electromagnetic

waveforms which propagate through air.

3.3 Digital Communication Systems 22

In Chapter 1 the technological aspects that have allowed software radio to emerge were

listed. In addition and in comparison to these aspects the major factors that have

led to increasing popularity of digital telecommunications as a whole are shown below

(Wilson 1996):

1. The use of digital transmission supports the electronic addressing and routing

of messages in a multiuser system, for example in distributed electronic mail

networks.

2. Different forms of information can be accommodated by a digital transmission.

For example many channels of audio are multiplexed into a single bit stream.

This provides increased flexibility, or multimedia capability.

3. Digital messages are more easily encrypted than analog waveforms.

4. Digital messages may be accurately and rapidly stored and retrieved electron-

ically.

5. In progressing through a transmission system with multiple stages, the digital

message may be reconstituted at each stage.

In this section a digital communication system will be in terms of single-source/single

destination. A conceptual digital communication pathway is depicted in Figure 3.5

on page 23. The always present parts of the digital communication pathway are the

source, the channel, and the user. These areas have been represented by shaded boxes

in Figure 3.5.

The source can be directly digital such as an input from an alphanumeric keypad or a

sequence of real valued samples in either case it is denoted Wn. A electrical waveform

such as a speech signal produced by a microphone is denoted W (t).

A channel can be broadly understood as a physical mechanism that accepts an input

signal, S(t), as shown in Figure 3.5 and produces an output signal R(t). R(t) is an

imperfect reconstruction of S(t).

3.3 Digital Communication Systems 23

Channel

Signal
Distortion

Amplitude/Phase
ChangesNoise

N(t)

Modulator Demodulator

S(t)
R(t)=Sd(t) + N(t)

Channel
Encoder

Channel
Decoder

{Xn} {Yn}

Encryptor Decryptor

Source
Encoder

Source
Decoder

Message
Source

Message
Destination

Distortion
Computerw(t),wn wd(t),wdn

{Udn}

{Un}

D
om

ai
n

of
 B

oo
k

Synchronization

Figure 3.5: Conceptual Digital Communication Pathway (Adapted from: Wilson 1996
p.4).

3.3 Digital Communication Systems 24

The corruption of the signal S(t) is typically of two forms:

1. The addition of noise either from electronic equipment in the system; or from

external sources such as interfering signals, atmospheric noise, or cosmic noise.

2. Channel distortions due to the physical channel limitations such as bandwidth

limitations, or communication equipment such as amplifiers or filters.

A very practical definition of a channel was stated by J.L Kelly: ‘The channel is that

part of the transmission system that we cannot change, or don’t wish to change.’

The only important point to note about the user or destination of the system is perfor-

mance measuring. In analog systems performance might be measured in terms of mean

square error between source and destination waveforms whereas in a digital system it

may be symbol error probability or message error probability.

In designing a communication system one of two approaches is generally used:

1. The channel is known and the design process aims at achieving the largest rate

within certain tolerances.

2. Required exactness and traffic load are known and an efficient channel must

be engineered to accomplish the task. The process usually involves designing

receivers, antennas, and transmitters to meet certain signal-to-noise ratio and

bandwidth requirements.

Referring again to Figure 3.5, the next parts to describe are the source encoder and

source decoder. The task of the source encoder is data compression. The source encoder

accepts the source outputs and provides a sequence of bits that represent the original

data in the best possible way. Source encoding often involves mapping larger sets of data

into smaller sets of data. The source decoder performs a much simpler inverse process,

it receives a string a converts it to an appropriate form (real characters, numbers, or

waveforms).

After source coding, most systems will have some form of encryption. Source encryption

3.4 Speech Coding 25

is the process of changing data into ciphertext text so that secrecy and/or authenti-

cation can be employed. Authentication is making sure that the message was sent

from whom you think it was sent from and secrecy is keeping the data unrecognizable

over the transmission medium. Source decryption is converting the ciphertext back to

original data.

After encryption the data stream is channel encoded. A channel encoder is a discrete-

input, discrete output device. The channel encoder provides error-correction capability

for the system and promotes better memory utilization. An often over-looked task of the

channel encoder is spectral shaping. The channel encoder can produce an output stream

that ultimately shapes the power spectrum of the signal produced by the modulator

(Wilson 1996).

The modulator conveys the compressed, encrypted, and encoded message in suitable

format for transmission. Digital modulation is explored in the next chapter.

In concluding this brief outline of a digital communication system it is important to

state that an efficient communication system will be one that realizes the following:

1. An efficient source encoder/decoder, which associates the source output with a

discrete message set of source approximations, typically labelled by binary strings.

2. An efficient channel modulation and coding system designed to convey these

source coder labels.

3.4 Speech Coding

As stated in the previous section source coding is a very important part of a commu-

nication system. This is particularly true in software radio where processing speed is

crucial and a software radio system has not been realized at gigahertz frequencies. This

section outlines speech coding fundamentals and details a number of techniques that

are used. The LPC10 algorithm is looked at in detail and Matlab code is used to depict

the workings of this algorithm.

3.4 Speech Coding 26

Understanding how speech works from a biological view is crucial in order to employ

effective coding techniques. Speech is created from air in the lungs moving through the

vocal cords and into the vocal tract and out the mouth. The vocal tract, on average, is

17cm long and short term correlations can occur at approximately 1ms. Many speech

coding techniques therefore utilize the vocal tract as a short term filter. As the vocal

tract varies the filter is updated infrequently every 20-30ms.

In every filter there needs to be an input or excitation. The vocal tract is excited when

air is forced into it. Speech can be broken down into three classes (Woodard 2004):

• Voiced Sounds are produced when vocal cords vibrate open and closed and

create pulses of air. The rate of opening and closing is related to the pitch of the

sound. Repetition occurs about the pitch period, which is typically between 2

and 20ms.

• Unvoiced Sounds are produced when the air excitation is “noisy” from being

forced at high speed into the vocal tract. Unvoiced sounds have little long-term

repetition.

• Plosive Sounds occur when a total closure is made in the vocal tract and air

pressure is built up behind this closure and then quickly released.

Some sounds are combinations of these three classes. In all speech there is a degree

of predictability and speech coding techniques exploit this to reduce bit rates yet still

maintain a suitable level of quality.

Describing speech coding techniques, or speech codecs, is simplified by dividing them

into three groups, namely: waveform codecs, source codecs, and hybrid codecs. Wave-

form codecs lead to very good quality speech and are used at high bit rates. Source

codecs operate at very low bit rates and the reconstructed speech is often ‘robotic’

sounding. Hybrid codecs use elements from both waveform codecs and source codecs.

Hybrid codecs lead to good reconstructed speech and average bit rates. Figure 3.6

depicts the three groups of speech codecs and their performance in terms of bit rate

and speech quality.

3.4 Speech Coding 27

1 2 4 8 16 32 64
 BIT RATE (kbits/s)

EXCELLENT

GOOD

FAIR

POOR

BAD

SPEECH
QUALITY

HYBRID
CODECS

WAVEFORM
CODECS

SOURCE
CODECS

Figure 3.6: Performance of Speech Codec Groups (Adapted from: Woodard, 2004).

3.4.1 Waveform Codecs

Waveform codecs without any information about how the signal was created attempt

to reconstruct the waveform as close as possible to the original. The simplest form

of Waveform coding is Pulse Code Modulation (PCM), which is simply sampling and

quantizing. Narrow-band speech is normally band-limited to 4kHz and sampled at

8kHz. 12 bits/sample is needed for satisfactory linear quantization so the resulting

bit rate is therefore 96kbits/s. The bit rate in PCM can be greatly reduced by using

non-uniform quantization.

A commonly used technique in waveform coding is to attempt to predict the value of

the next sample based on the previous samples. This is possible due to correlations

that occur in speech from vocal cord vibrations. If the error between the predicted

samples and actual samples has less variance than the original speech itself, then the

error can be quantized instead of the waveform. This is the basis of Differential Pulse

Code Modulation (DPCM) where the difference between the original and the predicted

samples are quantized.

3.4 Speech Coding 28

Frequency domain based waveform coding can be used as well as time domain based

coding. Sub-Band Coding (SBC) is where the input speech signal is split into a number

of frequency bands, or sub-bands and each is coded separately using a DPCM based

code. The receiver decodes each of these sub-bands and then combines them to create

the reconstructed speech. Frequency domain based coding is effective because different

sub-bands can be allocated more or less bits depending on their perceived importance.

Filtering within SBC codes leads to a higher level of complexity when compared to

time based codes.

3.4.2 Source Codecs

Source codecs use a model of how the source was created, and try to extract parameters

from the original signal. These extracted parameters are what is transmitted.

Source coders work by viewing the vocal tract as a time-varying filter, and they are

excited by noise, unvoiced speech, or a series of pitch pulses spaced at pitch intervals.

Along with the filter specifications a voiced/unvoiced flag, variance of excitation signal,

and pitch period for voiced speech are sent in the transmission. The parameters are

recalculated every 10-20ms to allow for the changes in speech.

Source encoders can calculate the parameters in different ways and employ both time

domain and frequency domain methods. Source coders function at approximately

2.4kbits/s or less and produce satisfactory speech although it is not as natural sounding

as most people would accept. Source coders have found a place in the military where

natural sounding speech is not as important as bit rates.

3.4.3 Hybrid Codecs

A good compromise between waveform codecs and source codecs is found within the

group of hybrid codecs. Hybrid codecs produce good speech quality at relatively low

bit rates.

The most successful and the most common hybrid codecs are time domain Analysis-

3.4 Speech Coding 29

by-Synthesis (AbS) codecs. AbS codecs use the same filter as the Linear Predictive

Code (LPC), however they don’t use a two state voiced/unvoiced model to find the

filter inputs. The excitation comes from attempting to match the reconstructed to the

original.

Commonly used techniques in this grouping are Multi-pulse excited (MPE) codes,

Regular-Pulse excited (RPE), and Code Excited Linear Predictive (CELP). CELP

codes use a code book of waveforms as inputs into the filter. Originally the CELP code

book contained white Gaussian sequences because it was found that this could produce

high quality speech. However an analysis-by-synthesis procedure meant that every ex-

citation sequence had to be passed through. This lead to a high level of complexity and

processing. Today CELP codes have reduced complexity and they are aided greatly by

increases in processing, such as high speed DSP chips.

3.4.4 The Linear Predictive Coder (LPC)

So far in this section the three groups of speech coders have been briefly described.

This subsection takes a more detailed approach and investigates the workings of one

particular speech coder, the linear predictive coder (LPC).

The LPC is a source coder or parametric coder and operates at 2400 bps. The LPC

aims to predict, as accurately as possible, the value of future samples based on past

samples. A linear approach to prediction is used through the means of a weighted linear

sum as follows:

ŝ(n) = a1s(n− 1) + a2s(n− 2) + ... + aps(n− P) (3.1)

=
P∑

k=1

aks(n− k) (3.2)

where n is the current sample number and a1, a2, a3 etc are the prediction coefficients.

Therefore a speech signal, s(n), at a particular instant can be viewed as containing a

predicted value, ŝ(n), plus an error value, e(n):

s(n) = ŝ(n) + e(n) (3.3)

3.4 Speech Coding 30

The error squared is depicted in the following equation.

E = e2(n) = [s(n)−
P∑

k=1

aks(n− k)]2 (3.4)

By finding the partial derivatives of the error squared equation and setting them to

equal zero the optimal prediction coefficients, ak values, are determined. This process

can be achieved through autocorrelation.

The predictor coefficients will be transmitted and used in a synthesis filter at the

receiver, however this synthesis filter will need excitation. This is where the pitch

information becomes important. It has already been explained in this section that

voice is repetitive. The key to the LPC is matching the pitch pulses as closely as

possible to the actual period of the original waveform. The pitch can be calculated by

analyzing a waveform, s(n), with a delayed version, s(n− τ). τ is the pitch lag and due

to the repetition in voice waveforms the most accurate value of τ will result when the

difference between s(n) and s(n− τ) is at its smallest. The following equation depicts

the mean square error between a signal and a delayed version of the signal as a function

of pitch lag τ and gain β.

E(τ, β) =
1
N

N−1∑

n=0

(s(n)− βs(n− τ))2 (3.5)

Substituting the gain, β, with an expression in terms of τ and minimizing the equation

yields equation 3.6 from which the optimal pitch lag, τopt, can be determined:

Rn(τ) =
∑N−1

n=0 s(n)s(n− τ)√∑N−1
n=0 s2(n− τ)

(3.6)

The LPC promotes effective quantization and more or less bits can be allocated to

prediction coefficients in terms of their significance in the reconstruction. A commonly

implemented LPC is the LPC10 where 10th order prediction is used. Table 3.1 shows

the bit allocation used for the LPC10 with a 2.4kbps bit rate (Parsons 1987).

3.5 Chapter Summary 31

Sample Rate 8kHz
Frame Size 180 samples
Frame Rate 44.44 frames/second
Pitch 7 bits
Spectrum(5,5,5,5,4,4,4,4,3,2) 41 bits
Gain 5 bits
Spare 1 bit
Total 54 bits/frame
Bit Rate 54 × 44.44 = 2400 bits/sec

Table 3.1: Bit Allocation for the 2.4kbps LPC10.

The Matlab program LPC10p.m implements the LPC10 speech coder (see Appendix

D.1 for the fully annotated code listing of LPC10p.m). A wav file is broken down into

frames and processed frame by frame. The 10 predictor coefficients are calculated by

using autocorrelation and then the optimal pitch lag is determined for each frame. The

reconstructed audio is then calculated by using these values in a linear synthesis filter.

The root mean square value of the frame is used to determine the appropriate gain.

This program works quite well on both male and female voice. The reconstructed audio

is surprisingly natural sounding and not as ‘robotic’ sounding as first expected.

3.5 Chapter Summary

Understanding digital communication systems in a broad sense will greatly aid the

development of software radio programs. Although not all the digital communication

system components mentioned in this chapter will be implemented, it is still helpful to

become familiar with the concepts.

The LPC10 speech codec program that was developed proved to work well and can

be incorporated into digital modulation programs that will be explored in the next

chapter.

Chapter 4

Digital Modulation Techniques

4.1 Chapter Overview

‘Digital modulation is a process that impresses a digital symbol onto a signal suitable

for transmission’ (Xiong 2000). Software radio is concerned with digital bandpass mod-

ulation or carrier modulation. In bandpass modulation a sequence of digital symbols are

used to change the characteristics of a sinusoidal waveform. The three characteristics

of a sine wave are amplitude, phase, and frequency so the basis modulation schemes are

therefore amplitude modulation, frequency modulation, and phase modulation. Table

4.1 lists various digital modulation schemes that are based either on one of the basis

modulation methods or a combination of two of the basis methods.

In this chapter four specific modulation techniques are examined and implemented

using Matlab 6.5. The specific techniques are: two phase modulation techniques; binary

phase shift keying (BPSK) and quadrature phase shift keying (QPSK), the quadrature

amplitude modulation (QAM) technique which is a combination of phase and amplitude

modulation, and minimum shift keying (MSK) which is a frequency modulation scheme.

4.2 Phase Shift Keying 33

Abbreviation Descriptive Name
BPSK Binary Frequency Shift Keying
MFSK M-ary Frequency Shift Keying
BPSK Binary Phase Shift Keying
QPSK Quadrature Phase Shift Keying
OQPSK Offset QPSK
MPSK M-ary Phase Shift Keying
SHPM Single-h (modulation index) Phase Modulation
MHPM Multi-h Phase Modulation
CPFSK Continuous Phase Frequency Shift Keying
MSK Minimum Shift Keying, Fast FSK
SMSK Serial Minimum Shift Keying
GMSK Gaussian Minimum Shift Keying
ASK Amplitude Shift Keying
QAM Quadrature Amplitude Modulation
QORC Quadrature Overlapped Raised Cosine Modulation
SQAM Superposed-QAM
XPSK Crosscorrelated QPSK

Table 4.1: Digital modulation schemes (Adapted from Xiong 2000).

4.2 Phase Shift Keying

Phase shift keying (PSK) is a large group of digital modulation techniques, and is

widely used in the communications industry. A carrier signal may be represented as

follows:

S(t) = A cos(2πfct + θ(t)) (4.1)

where, A = Amplitude, fc = Center frequency and θ(t) = Time-variant phase of the

carrier wave signal.

If the phase of the signal is changed in accordance with the digital information data,

then the modulation scheme is called Phase Shift Keying. In this dissertation 2 PSK

techniques are examined; namely binary PSK (BPSK) and quadrature PSK (QPSK).

4.2 Phase Shift Keying 34

Digital Data

B
in

ar
y

D
at

a

Carrier Wave

Time (s)

A
m

pl
itu

de

Figure 4.1: Graphical representation of digital data (top) and carrier frequency (bottom)
as used in BPSK modulation scheme.

4.2.1 Binary Phase Shift Keying

Binary Phase Shift Keying (BPSK) allows binary information to be contained in two

signals with different phases. The two phases normally used are 0 and π. Input data 0

or 1 is directly converted to phase 0 or π respectively as shown in the following equation

(Harada & Prasad 2002):

S(t) = A cos(2πfct + π.dk) (4.2)

dk is the information data sequence

The BPSK wave is generated by multiplying between the digital signal data and the

carrier wave. The Matlab program BPSKdemo.m outputs plots which graphically show

how the technique works (see Appendix D.2).

Figure 4.1 shows the ‘raw’ waveforms with the intended information to be sent at the

top and the carrier wave at the bottom. Figure 4.2 shows how the digital information

4.2 Phase Shift Keying 35

BPSK Wave

Time (s)

A
m

pl
itu

de

Figure 4.2: Graphical depiction of the BPSK wave.

and the carrier wave can be combined to form the BPSK transmission waveform.

Even though there is only one transmission waveform, the BPSK signal can be viewed

as two different signals as follows:

S1(t) = A cos 2πfct, 0 ≤ t ≤ T, for 1 (4.3)

S2(t) = −A cos 2πfct, 0 ≤ t ≤ T, for 0 (4.4)

Equation 4.4 contains a negative sign to give a phase of π . Changing phase in this

manner is easier than adding π to the cosine expression. Equation 4.3 and 4.4 represent

signals which are called antipodal which implies that they are equal and opposite. The

two signals have the same frequency and energy and only the phase is modulated which

leads to a constant waveform envelope as opposed to a varying waveform envelope that

would be found in an amplitude modulated signal. Other important points to note

about these two signals is that they lead to a correlation coefficient of -1 and the

waveform phase is not continuous at bit boundaries.

4.2 Phase Shift Keying 36

∫
+ Tk

kT
dT

)1(1 or 0

tfcΠ2cos

r(t) l

CR

0

0

1

Figure 4.3: Conceptual block diagram of BPSK demodulator.

The modulator for the BPSK technique is relatively simple. A bipolar data stream,

a(t), is formed from the binary data stream as shown in equation 4.5:

a(t) =
∞∑

k=−∞
akp(t− kT) (4.5)

where ak ∈ +1,−1, p(t) is the rectangular pulse with unit amplitude defined on [0, T].

The next stage in modulation is to multiply a(t) with an appropriate carrier such as

Acos2πfct. This leads to the BPSK modulated signal:

s(t) = Aa(t)cos2πfct, −∞ < t < ∞ (4.6)

Figure 4.3 outlines the BPSK demodulation process. A scaled down reference signal

is generated by the carrier recovery (CR) circuit. The reference signal needs to have

the same frequency and phase as the received signal. The received signal is multiplied

with this reference signal and discrete integration is used to determine the bit sequence

(Xiong 2000).

In summarizing the BPSK scheme it can be said that modulation is simple but the

information rate or data rate is not good.

4.2 Phase Shift Keying 37

11

10

01

00

phase 1

Figure 4.4: QPSK signal phasor representation.

4.2.2 Quadrature Phase Shift Keying

BPSK is not a commonly used modulation technique due to its bit rate, however

Quadrature phase shift keying (QPSK) which is only slightly more complex than BPSK

allows the bit rate to be doubled. QPSK is the most widely used phase modulation

scheme and has applications that range from voice-band modems to high-speed satellite

transmissions (Wilson 1996).

The QPSK signals are defined as follows:

si(t) = Acos(2πfct + θi), 0 ≤ t ≤ T, i = 1, 2, 3, 4 (4.7)

where

θi = (2i−1)π
4

The four available phases are therefore π
4 , 3π

4 , 5π
4 , 7π

4 . Four combinations of dibits

(two bits) can be represented as shown in the phasor diagram or signal constellation

(Figure 4.4).

QPSK can also be referred to as Quadriphase shift keying or 4-PSK. As outlined by

Wilson (1996) QPSK is frequently used for several reasons:

4.2 Phase Shift Keying 38

Dibit
Logic

Data Bits

Clock

Convert to
polar form

Convert to
polar form

°90

~

Carrier
Oscillator

tcwsin−

tcwcos

Modulated
Carrier

O/P

707.0±

707.0±

+
+

1 or 0

1 or 0

Figure 4.5: QPSK Modulator (Adapted from: Ball, 2004).

• The signals are easily formed by sign (not sine) modulation of a carrier or quadra-

ture versions of the carrier.

• The signals have constant amplitude and can be amplified by nonlinear devices.

• Reasonable level of bandwidth conservation.

The QPSK modulation process is depicted in Figure 4.5 (Ball 2004). Initially the bi-

nary data is broken down into dibits and each bit in a particular dibit is modulated in

a different channel. The first bit in the dibit is used to switch the I-channel (in phase

channel) and the second bit in the dibit is used to switch the Q-channel (Quadrature

phase channel). Each bit is changed into polar form which means that a logic 1 is

changed to 1/
√

2 and a logic zero is changed to −1/
√

2 resulting in a waveform similar

to a square wave. The two polar form waveforms are shown in Figure 4.6 on page 39

under the titles I-channel data and Q-channel data. The Matlab program QPSKmod-

ulatordemo.m (see Appendix D.3) was used to produce these waveforms.

4.2 Phase Shift Keying 39

−1

0

1
I−Channel Data

−1

0

1
Q−Channel Data

−1

0

1
I Signal

−1

0

1
Q Signal

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−1

0

1
QPSK Signal

time (s)

Figure 4.6: QPSK modulation waveforms at different stages in the modulation process.

The next stage in the modulation process is to multiply the polar form data with a

carrier wave (for the I-channel) and a phase shifted version of this carrier wave (for the

Q-channel). The output of the two product modulators are shown in Figure 4.6 under

the headings I signal and Q signal. Finally these two signals are combined through

means of a summing junction to produce the QPSK signal as shown at the bottom of

Figure 4.6. The amplitude of the QPSK signal is 1 due to the calculation of complex

magnitude ((1/
√

2)2 + (1/
√

2)2 = 1).

A frequency plot of the QPSK signal is shown in Figure 4.7 1. From this figure two

major points can be made. Firstly there is a lot of spectrum splatter due to abrupt

changes at bit boundaries in the signal and secondly the major frequency component

is 900 Hz and not 1000 Hz (carrier frequency).
1Frequency plot created from Matlab program Freqplot.m (see appendix D.4).

4.2 Phase Shift Keying 40

0 1000 2000 3000 4000 5000 6000 7000
0

500

1000

1500

2000

2500
Frequency content of waveform

frequency (Hz)

Figure 4.7: Frequency plot of the QPSK signal as depicted in Figure 4.6.

4.2 Phase Shift Keying 41

CR

QPSK
Signal

tcwcos

 tcwsin−

Integrate

Integrate

1

0
0

1

0
0

P/S
Output

binary data

Figure 4.8: QPSK Demodulator (Adapted from: Xiong, 2000).

A QPSK demodulation block diagram is shown in Figure 4.8. This diagram depicts

a coherent demodulation scheme where the carrier frequency has to be recovered in

correct frequency and phase. Carrier Recovery is dealt with in the next chapter on

software phase locked loops. The recovered carrier, as denoted by CR in Figure 4.8, and

a phase shifted version of the carrier are multiplied with the QPSK signal. The outputs

of these multipliers are shown in Figure 4.9 under the titles I channel and Q channel
2. Due to trigonometric identities these two waveforms are double the frequency of the

modulated carrier and half the amplitude. The vertical changes in these waveforms

are dependant on whether the phase in the cosine and sine components are negative or

positive.

The output waveforms from the integrators are also shown in Figure 4.9. These wave-

forms are instantaneous representations meaning that the integration is performed cu-

mulatively sample by sample and not over each symbol time. The instantaneous inte-

gration can be performed in Matlab code using the cumsum (cumulative sum) function.

After each dibit interval the integrator is reset to zero as depicted in the waveforms.

To resolve the binary information a comparator followed by a ‘sample and hold’ allows

a logic 1 output if the integrator output is positive and a logic zero output if the
2The Matlab program QPSKdemodulatordemo.m produced Figure 4.9 (see Appendix D.5).

4.2 Phase Shift Keying 42

−1

0

1
I channel

−1

0

1
Q channel

−5

0

5
x 10

6 I channel Integrator Output

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−5

0

5
x 10

6 Q channel Integrator Output

time (s)

Figure 4.9: QPSK demodulation waveforms at different stages in the demodulation
process.

integrator output is negative. Finally a parallel to serial converter (P/S) combines the

two bit streams to reproduce the original digital intelligence.

The Matlab file QPSKsim.m (see Appendix D.6) simulates the QPSK scheme by mim-

icking transmission of a sound file. Many factors needed to be considered in order to

construct this code as explained in the following paragraphs.

Firstly the form of the intelligence needs to be changed in order to be effectively rep-

resented. In Matlab language .wav files are represented by decimal values between -1

and 1. These sample values need to be scaled to between 0 and 255 to allow for easy

and effective conversion to binary. As well as this, conversion to binary leads to results

that are either 8 bits or less, the later being potentially confusing to modulate and

demodulate. Therefore values that contain less than 8 bits after conversion to binary

4.2 Phase Shift Keying 43

Block Size (samples) Processing Time (seconds)
500 2.453
400 2.694
300 3.115
250 3.525
200 4.536
150 4.927
100 6.690

Table 4.2: QPSKsim.m processing time for different block sizes.

require logic zeros to be added to the front of these numbers to make up the remaining

bits.

Initially when the QPSK simulation program was written the whole sound file was

modulated at once. This proved to be unworkable as vector operations became ex-

ceedingly longer with each dibit modulated and thus the overall time to modulate and

demodulate was far too long.

A better approach was employed which involved breaking the sound file into blocks

and processing block by block. This process also better reflects a “real life” system.

Although the processing time was substantially improved through block coding it was

still to slow and far from a real time approximation. Finally speech coding techniques

were incorporated into the code. The LPC10 algorithm, as shown on the preceding

module, was used to greatly reduce the number of bits that needed to be modulated for

every block. Adding speech coding to the QPSK simulation improved processing time

substantially and the reproduced sound file which was played back every block whilst

still being slower than real time was intelligible and natural sounding in terms of pitch.

The Matlab functions tic and toc calculate the time it takes to execute a program.

Table 4.2 shows the processing time for different block lengths for a female voice file.

The original sound file takes approximately 2 seconds to play back.

A block size of less than 250 samples takes too long to process and a block size of more

than 400 samples starts to distort the sound quality because the filter is approximating

too larger time span. Therefore a block size of approximately 300 samples is the most

appropriate for this application.

4.3 Quadrature Amplitude Modulation 44

The final coding consideration to mention is the carrier frequency. The carrier frequency

used in this code was 1kHz and the sample frequency was 10kHz. These values represent

scaled down frequencies and bandpass filtering and down conversion components would

be needed in a real system.

4.3 Quadrature Amplitude Modulation

Quadrature Amplitude Modulation (QAM) combines two basis modulation schemes:

phase modulation and amplitude modulation. The QAM signal can be written as

follows:

s(t) = s1(t)cos2πfct− s2(t)sin2πfct, −∞ < t < ∞ (4.8)

where

s1(t) =
∞∑

k=−∞
Ak1p(t− kT) (4.9)

s2(t) =
∞∑

k=−∞
Ak2p(t− kT) (4.10)

The QAM modulation process is shown in Figure 4.10. The p(t) block depicted in

the figure and the above equations is pulse shaping. Pulse shaping is used to smooth

the signal, particularly at symbol boundaries. Pulse shaping is sometimes omitted

(Xiong 2000). The first stage in the modulation process involves splitting the binary

data into quadbits (4 bits). Similarly to QPSK the modulation process then continues

through two channels: I channel (in phase) and Q channel (quadrature channel). The

level generator defines the amplitude for each channel. This is depicted in Figure 4.11

under the headings I-channel Amplitude and Q-channel Amplitude 3.

The level generator also defines the sign for each channel as shown in Figure 4.11.

Therefore the quadbit is effectively broken down into two dibits. The first bit in each
3The Matlab program QAMmodulatordemo.m (see Appendix D.7) produced waveforms for Fig-

ure 4.11 and Figure 4.12.

4.3 Quadrature Amplitude Modulation 45

Level
Generator

p(t)

p(t)
Osc.

pi/2
+

+

coswct

-sinwct

s(t)

Figure 4.10: QAM modulator (Adapted from: Xiong, 2000).

dibit defines the amplitude for each channel and the second bit in each dibit defines

the sign for each channel. This combination can be changed depending on the desired

constellation.

The next stage in the modulation process as shown in Figure 4.10 is to multiply each

channel by a known carrier and a phase shifted version of that carrier. Typical versions

of these two resulting waveforms are shown in Figure 4.12 (I signal and Q signal). Fi-

nally the two channels are added together to produce the QAM signal. This modulation

process leads to 16 possible symbol representations as shown in the QAM constellation

(Figure 4.13 on page 47). This scheme has twice the bit rate of QPSK with the same

bandwidth. QAM is therefore a popular digital modulation technique.

Figure 4.14 on page 48 depicts coherent QAM demodulation. Similarly to QPSK de-

modulation the carrier is recovered in correct phase and frequency and multiplied with

the QAM signal. The resulting waveforms are shown in Figure 4.15 under the headings

I channel and Q channel.

If the pulse shaping components are omitted the next stage in the demodulation process

is integration. The output waveforms from the integrators clearly show four distinct

4.3 Quadrature Amplitude Modulation 46

1

1.5

2

I−Channel Amplitude

−1

0

1

I−Channel Sign

1

1.5

2

Q−channel Amplitude

0 1 2 3 4 5 6 7 8

x 10
−3

−1

0

1

Q Channel Sign

time (s)

Figure 4.11: QAM modulation waveforms at different stages in the modulation process.

4.3 Quadrature Amplitude Modulation 47

−2

−1

0

1

2
I signal

−2

−1

0

1

2
Q signal

0 1 2 3 4 5 6 7 8

x 10
−3

−2

−1

0

1

2
QAM signal

time (s)

Figure 4.12: QAM modulation waveforms at different stages in the modulation process.

0.707 1.414

1111

1101

0111

0101

0011

0001

1011

1001

1000 0000

1010 0010

0100 1100

0110 1110

I

Q

Figure 4.13: QAM constellation diagram.

4.3 Quadrature Amplitude Modulation 48

Carrier
Recovery

s(t)

p(t)

p(t)

pi/2 phase shift

Integrate

Integrate

Threshold
Detector

Data

Figure 4.14: Coherent QAM demodulator (Adapted from: Xiong, 2000).

levels for each channel. These levels allow the threshold detector to recover the bit

sequence 4.

The QAM modulation and demodulation process are simulated in the Matlab program

QAMsim.m (see Appendix D.9). This program modulates and demodulates a voice

file and is embedded within the LPC10 speech coding algorithm. The advantages of

employing speech coding techniques were discussed with regard to QPSK modulation,

ultimately only eleven eight bit numbers (10 coefficients and pitch delay) are required

to be modulated as opposed to the entire 300 sample block.

The same coding considerations pertaining to QPSK simulation were employed for the

QAM simulation. The demodulation portion of the code employed a standard sum over

the quad bit interval as opposed to a cumulative sum leading to four possible values.

If the sum value for a quad bit interval for a particular channel was positive a logic one

filled the position indicating the sign for that particular channel and vice versa.

In terms of amplitude however a threshold level had to be specified. This level was

calculated by closely examining the integrator outputs as typified in Figure 4.15. The

value fifteen proved to be a good middle value to attribute amplitude levels for each

channel. Embedded ‘if’ statements were used to determine the value for the amplitude

and sign bits for each channel. The portion of code that resolves the binary data for
4The Matlab program QAMdemodulatordemo.m (see Appendix D.8) produced waveforms for Fig-

ure 4.15.

4.3 Quadrature Amplitude Modulation 49

−2

0

2
I channel

−2

0

2
Q channel

−40

−20

0

20
I channel Integrator Output

0 1 2 3 4 5 6 7 8

x 10
−3

−50

0

50
Q channel Integrator Output

time (s)

Figure 4.15: QAM demodulation waveforms at different stages in the demodulation
process.

4.4 Minimum Shift Keying 50

Block Size (samples) Processing Time (seconds)
500 2.414
400 2.624
300 3.084
250 3.515
200 4.066
150 4.947
100 6.430

Table 4.3: QAMsim.m processing time for different block sizes using female voice file.

each channel is shown in lines 260 to 295 of QAMsim.m.

The time for the program to execute using different block sizes is shown in Table 4.3.

These times are quicker when compared the to QPSK simulation execution times. This

is due to the fact that the bit rate of QAM is twice that of QPSK or in other words one

particular carrier variation can represent 4 bits as opposed to 2. In terms of coding, this

effectively halves the amount of looping. The processing involved in each loop however

is more complex for QAM.

4.4 Minimum Shift Keying

Minimum shift keying (MSK) is a continuous phase or frequency modulation scheme.

MSK can be viewed as both a sinusoidal weighted Offset QPSK (OQPSK) and as a

special case of continuous phase frequency shift keying (CPFSK). In this section MSK

will be examined as a sinusoidal weighted OQPSK.

Offset QPSK differs from QPSK by staggering the I and Q channel pulse trains. By de-

laying the Q channel only phase changes of 0 or π
2 exist at symbol boundaries compared

to 0, π
2 , or π that exist in QPSK (Xiong 2000).

MSK continues from OQPSK by weighting each I channel and Q channel bit with a half

period of a cosine or sine waveform respectively. The cosine and sine waveforms have

a period of 4T (4 times the carrier period). The weighted sine and cosine functions

are then modulated onto two orthogonal carriers. Figure 4.16 depicts this process for

4.4 Minimum Shift Keying 51

−1

−0.5

0

0.5

1
I(t)

−1

−0.5

0

0.5

1
Cosine Function

−1 0 1 2 3 4 5 6 7

x 10
−3

−1

−0.5

0

0.5

1
I Carrier

time (s)

Figure 4.16: MSK waveforms for I channel.

the I channel. The bit sequence is converted to polar form with amplitudes of one and

negative one and multiplied with the cosine waveform to produce the middle waveform

of Figure 4.16. The modulated cosine waveform is then multiplied with an in-phase

carrier. The timing of MSK is of utmost importance and as shown the I channel stream

commences at -1ms or -T 5.

The Q channel modulation process (Figure 4.17) is the same as for the I channel except

sine waveforms are used and the Q channel stream starts at 0 as opposed to -T. Finally

the two orthogonal carriers are added together to produce the MSK signal as typified

by Figure 4.18.

Mathematically the MSK signal is:

s(t) = I(t) cos(
πt

2T
) cos 2πfct + Q(t) sin(

πt

2T
) sin 2πfct (4.11)

5The Matlab program MSKmodulatordemo.m produced Figure 4.16, Figure 4.17, and Figure 4.18.

4.4 Minimum Shift Keying 52

−1

−0.5

0

0.5

1
Q(t)

−1

−0.5

0

0.5

1
Sine Function

0 1 2 3 4 5 6 7 8

x 10
−3

−1

−0.5

0

0.5

1
Q Carrier

time (s)

Figure 4.17: MSK waveforms for Q channel.

As outlined by Xiong (2000) the MSK signal (Figure 4.18) has the following properties:

1. the waveform envelope is constant;

2. the phase is continuous at bit transitions in the carrier and there are no abrupt

changes at bit transitions like in QPSK or QAM and;

3. the signal is an FSK signal with two different frequencies and with a symbol

duration of T.

The diagram for an MSK modulator implemented as a sinusoidal weighted OQPSK is

shown in Figure 4.19. The process follows Figure 4.16, Figure 4.17, and Figure 4.18.

The first stage in the process is serial to parallel conversion (S/P) where the I channel

data stream consists of even numbered bits and the Q channel data stream consists of

odd numbered bits (Xiong 2000). The duration for each bit in the I and Q channels

is 2T and Q(t) is delayed by T with respect to I(t) as shown in the diagram. The

4.4 Minimum Shift Keying 53

−1 0 1 2 3 4 5 6 7 8

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
MSK Signal

time (s)

Figure 4.18: MSK signal.

4.4 Minimum Shift Keying 54

T

S/P

+

+cosine function

sine function

cosine carrier

sine carrier

digital data

I(t)

Q(t)

s(t)

Figure 4.19: MSK modulator (Adapted from: Xiong, 2000).

output of the first multipliers will be I(t) cos(πt
2T) and Q(t) sin(πt

2T) because the period

of the cosine and sine functions as shown in Figure 4.16 and Figure 4.17 is 4T. The two

channels are then modulated onto orthogonal carriers and added together to produce

the MSK signal.

Figure 4.20 shows MSK demodulation process. The output of the first multiplier for

the I channel will be:

s(t) cos 2πfct

= [I(t) cos(
πt

2T
) cos 2πfct + Q(t) sin(

πt

2T
) sin 2πfct] cos 2πfct

=
1
2
I(t) cos(

πt

2T
) +

1
2
I(t) cos(

πt

2T
) cos(4πfct)

+
1
2
Q(t) sin(

πt

2T
) sin(4πfct) (4.12)

Only the first term is required so a low pass filter is used to reject the two higher

terms. The first term is then multiplied by the cosine function signal (period of 4T) in

the second multiplier and integrated over consecutive bit times (2T for one channel).

The integration for the I and Q channel will be different because the Q channel was

staggered at modulation. If their is little or no noise and channel impairments the

4.4 Minimum Shift Keying 55

s(t) + n(t)

LPF

LPF Integrate

Integrate

1

-1

1

-1

cosine carrier

sine carrier

cosine function

sine function

Threshold
Detector

I data

Q data

Figure 4.20: MSK demodulator (Adapted from: Xiong, 2000).

threshold detector which has a zero threshold level can directly resolve the binary data

(Xiong 2000).

The MSK digital modulation scheme is simulated by the program MSKsim.m (Ap-

pendix D.11). Similarly to QPSKsim and QAMsim this program is embedded inside

the LPC speech coding algorithm.

The ten LPC coefficients and pitch delay are calculated for each frame and placed in a

vector. These values are then converted to binary and modulated one by one to form

the MSK signal for the frame. The four even bits in each 8 bit number are isolated and

used to modulate the I channel and the 4 odd bits in each 8 bit number are used to

modulate the Q channel. Figure 4.16, Figure 4.17, and Figure 4.18 depict this process.

The demodulation process is coded by isolating the correct number of samples in the

MSK signal that depict each 8 bit number and demodulating the 11 parameters one at

a time. The isolated sections are then multiplied by the recovered carrier (dealt with in

next chapter) as defined by Idemod1 and Qdemod1 (line 247 and 248 of MSKsim.m).

The next stage in the demodulation process is low pass filtering. This is achieved

4.4 Minimum Shift Keying 56

−1

−0.5

0

0.5

1
Signal before filtering (time domain)

0

5

10

15

20
Signal before filtering (frequency domain)

−2 0 2 4 6 8

x 10
−3

−0.5

0

0.5
Signal after filtering (time domain)

time (s)
0 20 40 60 80 100

0

5

10

15

20
Signal after filtering (frequnecy domain)

frequency (samples)

Figure 4.21: MSK demodulation low pass filtering.

in Matlab code by using the fft (fast fourier transform) function. The I channel and

Q channel signals to be filtered are converted into the frequency domain, the higher

frequency components are removed, and then they are converted back into the time

domain. The Matlab ‘real’ function is used to remove complex components caused by

rounding. A graphical depiction of this low pass filtering process is shown in Figure 4.21

in both the time and frequency domain.

After the signals have been filtered they are then multiplied by the cosine and sine

functions (each with period of 4T). Figure 4.22 displays a typical signal for this stage.

This figure allows one to see how integration and threshold detection could easily return

the binary data. However as shown in MSKsim (lines 274 to 300) integration and

threshold detection must be performed over different limits for the I and Q channels to

allow for the staggering of the Q channel at modulation.

After demodulation the sound information for the frame is reconstructed as was the

same for QPSKsim and QAMsim.

4.4 Minimum Shift Keying 57

−1 0 1 2 3 4 5 6 7 8

x 10
−3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time (s)

Figure 4.22: Typical I channel output from second product modulator for MSK demod-
ulation.

The execution times for MSKsim are shown in table 4.4. These times, although slower

than real time, are fast enough to return an intelligible female voice. QPSKsim and

QAMsim had faster execution times than MSKsim due to the slower bit rate of MSK

and the extra processing required with low pass filtering.

4.5 Chapter Summary 58

Block Size (samples) Processing Time (seconds)
500 2.574
400 2.914
300 3.365
250 3.765
200 4.346
150 5.378
100 7.350

Table 4.4: MSKsim.m processing time for different block sizes using female voice file.

4.5 Chapter Summary

In practically and theoretically investigating different digital modulation techniques it

can be concluded that speech coding is a necessity for any Matlab based modulation

technique.

An investigation of phase shift keying techniques revealed that QPSK has a major

advantage over BPSK in terms of bit rate with only a slight step up in complexity.

Through modulation of amplitude as well as phase an even better bit rate can be

achieved through QAM.

A disadvantage of QPSK and QAM is the spectrum splatter that is caused by abrupt

changes at bit intervals. MSK, which can be thought of as a continuous phase shift

keying technique, amends this problem.

Chapter 5

Software Phase Locked Loops

5.1 Chapter Overview

Apart from optics most telecommunication areas are based on coherent detection as

opposed to incoherent detection. Coherent detection is where a Phase-Locked Loop

(PLL) tracks or recovers the frequency and phase of the received signal (Ferrero &

Camatel 2004). In incoherent or non-coherent demodulation systems the carrier wave

is not recovered. As outlined by Ferrero and Camatel (2004) the advantages of coherent

systems are largely attributed to:

• Increased receiver sensitivity and;

• Compatibility with complex modulation schemes, such as QPSK and QAM.

This chapter investigates Phase Locked Loops (PLL’s) and how they are used in co-

herent digital demodulation. The emphasis of this chapter is software implementation

of the essential components of a PLL.

5.2 Phase Locked Loop Fundamentals 60

Phase Detector Loop Filter

Voltage Controlled Oscillator
(VCO)

Sin(t)

Sout(t)

e(t)

Control
Voltage (Vc)

Figure 5.1: A Simple Phase Locked Loop.

5.2 Phase Locked Loop Fundamentals

Phase locked loops (PLL) principles have been employed for many years and in terms

of communications a PLL can be described as a receiver that adjusts a local oscillator

frequency and phase according to its measured phase error (Viterbi 1963).

A simple representation of a PLL is shown in Figure 5.1. From this figure it can be seen

that there are three main building blocks in a PLL: a phase detector (PD), a loop filter,

and a voltage controlled oscillator (VCO). The phase detector determines the difference

between the input signal and the VCO signal (Stephens 1998). A phase detector is

best thought of as a mixer. An ideal mixer will produce two frequency components; a

difference component and a summation component. The difference component is the

required component and the high frequency component is ignored by the loop filter.

Some implementations include a low-pass filter as part of the phase detector to remove

this term immediately whilst other systems leave this task solely to the loop filter.

Essentially the task of the phase detector and subsequent filtering is to present slow

changing phase difference signals to the VCO and reject fast changing signals. The

VCO is a variable frequency oscillator that outputs a frequency related to the input

5.2 Phase Locked Loop Fundamentals 61

 Voltage-controlled Oscillator
(VCO)

Output

Loop Filter (F) Phase Detector (PD)

Input
)()(sPKtv edd =

)(tvd)()()(2 svsFsv d=)(2 tv
)()(2 sv

s

K
sP o

o =

)(sPo

Figure 5.2: Block diagram of PLL with transfer functions (Adapted from: Kroupa,
2003).

control voltage (Parsons & Hancock 2003).

Figure 5.1 shows that the two input frequencies into the PD are the incoming signal

and VCO output signal. Therefore the PD will determine the phase difference between

the frequency of the incoming signal and VCO output frequency. If the frequency of

the incoming signal is close to the VCO frequency the PD will output a slow changing

phase difference and the VCO will output a signal that continually changes in frequency

toward the incoming signal until the two signals have the same frequency. At this stage

the PLL is locked. Alternatively when the incoming signal has a frequency that is not

close to the VCO frequency the PLL output signal will not change and the PLL will

be unlocked (Parsons & Hancock 2003).

PLL’s can be viewed as control systems and Figure 5.2 shows the Laplace transfer func-

tions for the individual building blocks. In this figure phase error and phase output are

denoted Pe and Po respectively. The output of the phase detector, vd(t), is proportional

to the phase difference of its two input signals as shown:

vd(t) = [Pi(t)− Po(t)]Kd (5.1)

where Kd is called the phase detector gain.

5.2 Phase Locked Loop Fundamentals 62

 Actuating
Signal

Feedback
Signal

Input
Signal

Output
Signal

)(sFM

)(sF
s

KK do

Figure 5.3: Block diagram of PLL with transfer function in feedback path (Adapted
from: Kroupa, 2003).

The signal vd(t) then passes through the loop filter, F (s), and v2(t) is the difference

component from the filter as described in Equation 5.2 (Kroupa 2003). In this equation

hf (t) is the time response of the loop filter.

v2(t) = vd(t)⊗ hf (t) (5.2)

The output from the VCO after having v2(t) applied to its input is shown in Equation

5.3 (Kroupa 2003). In Equation 5.3 ωc is the free running VCO frequency and Ko is

the VCO gain.

Po(t) = ωct +
∫

Kov2(t)dt (5.3)

Figure 5.3 depicts the whole PLL feedback system and from this the feedback signal

can be described in Laplace form:

[Pi(s)− Po(s)FM (s)]
KdKoF (s)

s
= Po(s) (5.4)

The input into a PLL is ‘phase in’ (Pi(s)) and the output is ‘phase out’ (Po(s)) so

therefore the PLL transfer function as shown in Equation 5.4 can be written as the

5.3 Software Implementations 63

ratio Po(s)
Pi(s)

(Kroupa 2003).

H(s) =
KdKoF (s)FM (s)

s

1 + KdKoF (s)FM (s)
s

=
G(s)

1 + G(s)
(5.5)

where the open loop gain G(s) is

G(s) =
KdKoF (s)FM (s)

s
(5.6)

5.3 Software Implementations

In understanding software phase locked loops (SPLLs) it is important to distinguish

them from digital phase locked loops (DPLLs). SPLL’s and DPLL’s essentially perform

the same task of employing PLL techniques on sampled systems however DPLL’s take

a more hardware based approach whilst SPLL’s have all components implemented in

software.

Advances in microcontrollers and digital signal processors (DSPs) have opened the door

for PLL’s to be implemented in software. The traditional operations of an analogue PLL

can be performed by a computer program with hardware components being replaced

by micro seconds of computational time. The number of program instructions to be

performed increases with the complexity of the PLL to be implemented. An SPLL can

only replace a hardware PLL if the required instructions can be performed fast enough

on the hardware platform (Best 2003).

According to the sampling theorem an SPLL is required to sample at least 2 to 4 times

the PLL reference to avoid aliasing. If the PLL reference signal is 100 KHz the SPLL

program must perform at least 200 000 operations per second. Microcontrollers do work

with gigahertz frequencies, however one instruction may take more than one machine

cycle to execute. Lower end microcontrollers are therefore not fast enough. DPS’s have

high clock frequencies and also have Harvard and pipeline architectures. A Harvard

architecture means that the program and data memories are separate so the DSP can

5.3 Software Implementations 64

u1(n)

Clock fs

u1

Phase
Detector

Digital
Filter

ud(n)

DCO

uf(n)

u2(n)

ADC

Figure 5.4: Block diagram depicting the operations to be performed by an SPLL
(Adapted from: Best, 2003).

get instructions and data within the same machine cycle (Higgins 1990). Pipelining

means different tasks can be started before others are finished to increase throughput.

The trade off between price and performance is the main factor in determining what

platform to use.

Figure 5.4 shows the operations that need to be performed in an SPLL which are similar

to those of an analog PLL. The term DCO stands for digitally controlled oscillator which

essentially performs the same task as a VCO in an analogue PLL. The term numerically

controlled oscillator (NCO) is also used in SPLL systems. This section investigates the

components shown in Figure 5.4.

5.3.1 Phase Detector

There are several different methods of digitally determining the phase difference be-

tween two waveforms. Some of these methods are better suited to hardware than

software and vice versa. This subsection details a few phase detector methods.

The positive zero crossing phase detector is one of easiest phase detectors to implement.

As shown in Figure 5.6 the incoming signal is band pass filtered and then sampled at

5.3 Software Implementations 65

BPF ADC

Input
Signal Sampled signal

Sampling instants
controlled by local

reference

Figure 5.5: Positive zero crossing phase detector (Adapted from: Lindsey and Chie,
2002).

the positive zero crossings of the reference signal. The output signal will be the sampled

phase difference signal (Lindsay & Chie 2002).

A much more complicated phase detector is the Hilbert transform PD. The main com-

ponent of this PD is the Hilbert transformer which is a type of digital filter that shifts

the phase of a waveform by −π
2 at any frequency. As well as this the Hilbert transformer

produces a gain of 1 at all frequencies. Assume the input into a Hilbert transform is

given by:

u1(t) = cos(ω0t + θe) (5.7)

the output from the Hilbert transformer is:

û1(t) = cos(ω0t + θe − π

2
) = sin(ω0t + θe) (5.8)

Through trigonometric computations the Hilbert transform PD extracts the phase error

θe (Rabiner & Gold 1975). The Hilbert transform PD requires an internal DCO that

can generate in phase and quadrature reference signals (I and Q). Due to the different

mathematical operations that this PD has to perform it is more suited to software

5.3 Software Implementations 66

BPF ADC
Digital

multiplier

Signal

Clock
pulses

Local
reference

Digtal phase
error

Figure 5.6: “Nyquist rate” phase detector (Adapted from: Kroupa, 2003).

implementation.

A similar yet much less complicated PD is the digital averaging PD. This PD also

requires a DCO to generate orthogonal signals. These two orthogonal signals are then

multiplied with the incoming signal. The phase difference signals are simply obtained by

averaging or integrating the multiplier outputs over a selected time frame (Oppenheim

& Schafer 1989).

A very common and easy to implement PD is the Nyquist rate PD (NRPD). As depicted

in Figure 5.6 the NRPD is basically a digital multiplier. The incoming signal is band

pass filtered to ensure that high frequency components that would cause aliasing are

not allowed into the system. Often this type of filter is called an anti-aliasing filter

(Kroupa 2003). The digital phase difference signal is obtained by multiplying the

numerically controlled oscillator (NCO) local reference signal with the incoming filtered

signal.

The waveforms for the NRPD (Figure 5.7) show that the incoming signal is sampled

according to the clock pulses. The output from the digital multiplier or the phase

difference signal is shown to contain an average value. As depicted in the figure this

average value is not zero and causes the signal not to be centered on the horizontal

axis. This average value is filtered out by the next stage in the SPLL, the digital filter.

The NRPD was chosen as the PD to be implemented for this research project. The

5.3 Software Implementations 67

Clock Pulses

Local Reference

Incoming Signal

time

Phase Difference Signal

Figure 5.7: ”Nyquist rate” phase detector waveforms.

design however is not strictly the same as Figure 5.6. The band pass filtering is to occur

after the ADC meaning that the only hardware component apart from the software

platform is the ADC itself.

A Finite Impulse Response (FIR) filter was used to achieve the required band pass

filtering. FIR filters utilize a simple, non-recursive difference equation as shown below

(Leis 2002a).

y(n) =
N−1∑

k=0

bkx(n− k) (5.9)

where bk represents filter coefficients and x(n) represents the waveform to be filtered.

The coefficients for the filter were calculated by using the frequency sampling method,

where the pass band is specified only in terms of samples (Leis 2002a). Designing

filter coefficients involves determining the frequency pass band and then calculating

the inverse Fourier transform of this pass band. The inverse Fourier transform as it

5.3 Software Implementations 68

pertains to the frequency sampling method is as follows:

h(n) =
1
N

+N−1
2∑

k=−N−1
2

H(k)ej 2nπk
N (5.10)

It is important to note that this equation has a negative sampling range. This is because

the required pass band is mirrored into negative time to allow the complex numbers to

cancel as conjugates in the frequency domain (Leis 2002a). The calculated coefficients

therefore have to be delayed by N−1
2 when used in the FIR filter so the filter “makes

sense” in the real world.

The Matlab program FIRcoeffPD.m (see Appendix D.12) calculated the coefficients for

the band pass filter. This program determines the coefficients for block sizes of 1000

samples. Therefore the values used are -500 to 500 to mirror the pass band, where

20 to 200 samples depict the required pass band of 200 Hz to 2000 Hz with a sample

frequency of 10 000 Hz. The mirrored pass band as developed in FIRcoeffPD.m (lines

30-50) is shown in Figure 5.8. The filter coefficients as calculated by the inverse Fourier

Transform (sampling method) are shown in Figure 5.9. The bottom half of this diagram

shows the delayed coefficients that are to be used in the FIR filter. Lines 54 to 76 in

FIRcoeffPD.m depict the coefficient calculation process and the isolation of the delayed

coefficients.

The next stage in phase detection is too apply these coefficients to an FIR filter. As

stated earlier in this section an FIR filter simply involves implementing a difference

equation as follows:

y(n) =
N−1∑

k=0

bkx(n− k) (5.11)

In this equation bk represents the filter coefficients and x(n) represents the waveform

to be filtered. The Matlab program DigitalFilter.m (see Appendix D.13) implements

this filtering process.

5.3 Software Implementations 69

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

Pass Band

samples

Figure 5.8: Mirrored pass band of 20 to 200 samples or 20 Hz to 2000 Hz.

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Filter Coefficients

0 20 40 60 80 100 120
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Filter Coefficients delayed by (Order−1)/2

Figure 5.9: Filter coefficients (top) and delayed filter coefficients (bottom).

5.3 Software Implementations 70

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000
Frequency content of waveform

frequency (Hz)

Figure 5.10: Frequency content in a typical QPSK signal.

The digital band pass filter was tested by filtering a typical QPSK signal 1. Figure 5.10

and Figure 5.11 display the frequency content in the QPSK waveform before and after

it is filtered. The required pass band of 200 Hz to 2000 Hz remains unaffected whilst

frequency components outside this range are severely attenuated. This verifies that the

band pass filtering process does work affectively and will prevent aliasing. Moreover

the PLL will be isolating the concerned frequency range.

The final stage to be implemented in the NRPD is the multiplier. This is simply a

vector multiplication of the filtered signal and the PLL reference signal with the result

being the required digital phase error.

5.3.2 Digital Filter

The digital filter is the next major component in the SPLL (Figure 5.4). The output

from the PD will ideally contain the difference and sum component of the input signal

and the PLL reference signal. The digital filter is required to isolate the slow changing
1The digital band pass filter uses programs FIRcoeffPD.m and DigitalFilter.m

5.3 Software Implementations 71

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500
Frequency content of waveform

frequency (Hz)

Figure 5.11: Frequency content in a filtered version of the QPSK signal in Figure 5.11.

2nd Order
Filter

2nd Order
Filter

2nd Order
Filter

1st Order
Filter

Figure 5.12: 7th order filter made from cascading stages (Adapted from: Parsons, 2003).

difference signal so therefore it is a low pass digital filter. If the difference signal is too

large, that is the input signal and the PLL reference signal are not reasonably close,

the digital filter will reject the difference signal as well as the summation signal.

Analog systems implement filters by using resistors, capacitors, and operational ampli-

fiers and the order of the filter is increased by adding reactive components. The process

may involve cascading 2nd and 1st Order filters to achieve the desired order as shown

in Figure 5.12 (Parsons 2003).

Digital filters can have an increased order with much less complexity than that required

in analog filters. The low pass digital filter designed to remove the difference component

follows the same process as the digital band pass filter outlined in the previous section.

5.3 Software Implementations 72

0 50 100 150 200 250
−0.005

0

0.005

0.01

0.015

0.02

0.025
Filter Coefficients

0 20 40 60 80 100 120
−0.005

0

0.005

0.01

0.015

0.02

0.025
Filter Coefficients delayed by (Order−1)/2

Figure 5.13: Coefficients for low pass digital FIR filter.

The pass band is defined from 0 to 10 samples or 0 to 100Hz. This low pass band is then

mirrored into negative time and the inverse Fourier Transform (sampling method) is

used to calculate the coefficients. These coefficients are then filtered with the concerned

waveform using the program DigitalFilter.m (see Appendix D.13). The program used

to calculate the low pass filter coefficients was LPFcoeff.m (Appendix D.14) and these

coefficients are shown in Figure 5.13. As before these coefficients are delayed to allow

for them being calculated in a mirrored negative frequency band.

The workings of this low pass filter are shown in Figure 5.14 and Figure 5.15. In

Figure 5.14 the difference component of 50Hz is successfully isolated with appropriate

gain as opposed to Figure 5.15 where the difference component of 400Hz is severely

attenuated as required.

5.3.3 Numerically Controlled Oscillator (NCO)

The final major component in the SPLL is the Digitally Controlled Oscillator (DCO)

or Numerically Controlled Oscillator (NCO). The purpose of the NCO is to define the

5.3 Software Implementations 73

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1
Original Waveform

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4
Filtered Waveform

Figure 5.14: Signal with 50Hz and a 1050Hz components applied to low pass digital
filter.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1
Original Waveform

0 100 200 300 400 500 600 700 800 900 1000

−0.2

−0.1

0

0.1

0.2

0.3
Filtered Waveform

Figure 5.15: Signal with 400Hz and a 1400Hz components applied to low pass digital
filter.

5.3 Software Implementations 74

divide-by-N
counter

~~

OUTfrom
loop filter

N modulus
control

Fixed high-frequency oscillator

Figure 5.16: Block diagram of a divide-by-N counter NCO (Adapted from: Best, 2003).

PLL internal frequency which is also the system output. As mentioned earlier if the

input signal into the SPLL is close to the NCO signal the NCO signal will change its

frequency slightly towards that of the input signal until they are the same.

There are many different types of NCO’s that can be implemented by hardware or

software. One of the simplest NCO’s is the divide-by-N counter NCO. A high fixed

frequency oscillator signal is scaled down by using a divide-by-N counter. The output

of the digital filter controls the scaling factor N of the divide-by-N counter (Best 2003).

A divide-by-N NCO is shown in Figure 5.16

A divide-by-N NCO is better suited to hardware implementation than software imple-

mentation. However a waveform-synthesizer NCO (Figure 5.17) is ideal for software

implementation. A waveform-synthesizer NCO uses tables stored in read-only memory

(ROM) to create cosine and/or sine waveforms. A fixed clock pulse is used to define

sampled signals at a desired frequency. Signals with lower frequencies will therefore be

generated with higher resolution than high frequency signals (Best 2003).

The NCO developed for this research project would be best described as a waveform-

synthesizer NCO. An advantage of using Matlab to code an NCO is that Matlab is first

and foremost a mathematical based language, therefore defining sine and/or cosine

values for different pulses becomes an easy task. The program developed to perform

5.3 Software Implementations 75

Waveform
synthesizer

NCO

Clock

from
loop filter

control

synthesized output

Figure 5.17: Waveform-synthesizer NCO (Adapted from: Best, 2003).

the oscillator defining task is appropriately called NCO.m and a fully annotated copy

is provided in Appendix D.15.

This program accepts the filtered phase difference signal and outputs a new reference

signal. The initial conditions required for this program are a frequency value in hertz,

a count of the samples in one cycle of initial frequency, and another flag that indicates

whether the NCO reference signal is to be increased or decreased. These initial condi-

tions are shown in lines 11 to 14 of NCO.m. Clock pulses at 10 000 Hz are defined to

synthesize the new signal (line 17). The NCO should only change frequency if the input

into the PLL is within a suitable range and to make sure this happens it is necessary

to have a defined gain whereby signals can be rejected or accepted for calculation in

the new frequency. Lines 20 and 24 allow this to happen by utilizing only the filtered

signals that have a gain greater 0.15 2.

The new oscillator signal is calculated from the following formulas:

for a positive change in frequency:

freq = (1 +
oldcount

newcount
)× freq (5.12)

for a negative change in frequency:

freq = (1− oldcount

newcount
)× freq (5.13)

2The gain threshold of 0.15 was determined through experimentation.

5.3 Software Implementations 76

−1

−0.5

0

0.5

1
Previous Oscillator Signal (1000 Hz)

−0.4

−0.2

0

0.2

0.4
Phase Difference Signal (50 Hz)

0 0.005 0.01 0.015 0.02 0.025 0.03
−1

−0.5

0

0.5

1
New Oscillator Signal (1050 Hz)

time (s)

Figure 5.18: Plots depicting the input and output waveforms of NCO.m

Oscillator = cos(2× π × freq × clock); (5.14)

In the above equations ‘newcount’ is the number of samples in one period of the phase

difference signal and ‘oldcount’ is the number of samples in one period of the previous

oscillator signal. The ‘newcount’ and ‘oldcount’ values are determined by finding the

difference between indexes for two sequential positive zero crossings in the relevant

signal. The ‘newcount’ and ‘oldcount’ values are determined in lines 28 to 47 and 67

to 86 respectively.

The workings of NCO.m are visualized in Figure 5.18. A 1050 is received by the PLL

and the oscillator signal is 1000 Hz (top plot). The filtered phase difference signal of

50 Hz (middle plot) is used to scale up the oscillator to 1050 Hz (bottom plot).

5.4 SPLLs and Receiver Considerations 77

5.3.4 The Complete System

The Matlab file PLL.m (Appendix D.16) combines filters and the NCO together to

form the complete system. Initially the band pass and low pass filter coefficients are

calculated and saved in vectors labelled h and c. As well as this an oscillator frequency

is defined for the first loop - this is defined at 1kHz with a sampling frequency of 10kHz.

After the incoming signal is band pass filtered the number of samples in one period of

the signal are counted so that the SPLL can determine whether to scale the frequency

up or down. The phase detector stage is completed by multiplying the incoming signal

and the defined oscillator signal as per the NRPD design. The subsequent two stages

simply call other programs (DigitalFilter.m and NCO.m) as previously explained.

It is reasonable to say that this SPLL program has simplified a much more complex

task. For example the NCO is not as accurate as it could be. The NCO determines

phase/frequency changes by counting samples in one period of a waveform where a more

accurate method would be to calculate samples in multiple periods and determine a

mean value as there will be discrepancies of 1 or 2 counts from cycle to cycle. Moreover

blocks sizes of 1000 samples are too large to adapt to rapidly changing signals such

as an MSK signal. This brings to light another problem regarding filtering where a

sufficient number of samples need to be used to design a reasonable filter hindering the

ability of the SPLL to lock onto signals that are changing in frequency every couple of

cycles.

The SPLL system described here does work in certain conditions and is a good starting

point towards understanding communication receivers namely software radio receivers.

However as shown in the following section changes need to be made to this SPLL design

to make it workable in communication systems.

5.4 SPLLs and Receiver Considerations

The modulation schemes investigated in this dissertation were binary phase shift keying

(BPSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation

5.4 SPLLs and Receiver Considerations 78

(QAM), and minimum shift keying (MSK). A coherent QPSK and QAM receiver extend

in complexity from a BSPK receiver whereas an MSK receiver is largely different. For

this reason a BPSK receiver will be explored in this section in order to cover the

fundamentals of more modulation schemes.

The purpose of this chapter is to explore PLL principles in order to design software radio

receivers for coherent modulation. Engineers typically prefer coherent schemes because

they are more efficient, especially if noise is added to the transmission (Best 2003).

To understand a BPSK receiver the BPSK signal must first be understood. Figure 5.19

shows the frequency content in a BSPK modulated waveform 3. The range considered

is only 0 to 2kHz, obviously there are higher harmonic components but for the purposes

of this discussion they can be ignored. The BPSK signal was modulated with a 1kHz

carrier and it is important to note that there is minimal signal power at the carrier

frequency. The reason for this is because the binary bit signal has approximately the

same number of 1’s and 0’s over a long run and therefore has a frequency greater than 0

which adds and subtracts from the carrier (Best 2003). This poses the obvious question:

What does the SPLL lock onto?

Certainly not the suppressed carrier frequency at 1kHz. The solution to this problem

has been realized in many different ways with the two most common being the squaring

loop and the Costas loop. The Costas loop has traditionally been used more often

because squaring devices are hard to implement with analog circuitry. However due

to signal processing advances the squaring loop is an appropriate solution and will be

employed for the purposes of this dissertation.

3This plot was produced by the Matlab program Freqplot.m (see Appendix D.4).

5.4 SPLLs and Receiver Considerations 79

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14
x 10

4 Frequency content of waveform

frequency (Hz)

Figure 5.19: Frequency content in a typical BPSK signal.

Square Mul Loop filter

VCO

down
scale

BPSK
signal

Carrier out

Figure 5.20: Squaring Loop (Adapted from: Best, 2003).

5.4 SPLLs and Receiver Considerations 80

A squaring loop as depicted in Figure 5.20 initially squares the signal as follows:

s(t) = m(t) cos(ω1t) (5.15)

where m(t) is the message bit signal.

s2(t) = m2(t)cos2(ω1t) (5.16)

Considering the trigonometric identity:

cos2(θ) =
1
2
(1 + cos(2θ)) (5.17)

it is apparent that there is a DC term and a frequency component at twice the carrier

frequency. This is verified in Figure 5.21 and this is the frequency the squaring loop

locks onto. The squaring loop then scales this signal down by a factor of two to recover

the carrier.

A squaring loop program (SquaringLoop.m - see Appendix D.17) was written to per-

form processes shown in figure 5.20. As the squaring loop is the first stage in the

demodulation process band pass filtering is required. The band pass filter coefficients

required for the FIR filter are calculated by the program BPFcoeff.m (see Appendix

D.18). These coefficients are calculated to pass frequencies between 300Hz and 3000Hz

and are calculated as outlined in preceding sections in this chapter. The main difference

however with this program is that it calculates the coefficients for various block lengths

according to demodulator requirements. Typical band pass filter coefficients calculated

from BPFcoeff.m are shown in Figure 5.22. These coefficients are denoted by h and

are implemented in an FIR filter on line 19 of SquaringLoop.m.

The filtered signal is then squared (line 25) – an easy task in Matlab. The DC com-

ponent is then removed along with any minor frequency components considered to be

unwanted noise (lines 27-45). Zero crossings are identified in this signal in order to

calculate the number of samples in one period. This count value is used to indicate

5.4 SPLLs and Receiver Considerations 81

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5 Frequency content of waveform

frequency (Hz)

Figure 5.21: Frequency content in a squared BPSK signal.

0 20 40 60 80 100 120
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Band Pass Filter Coefficients

Figure 5.22: Band Pass Filter Coefficients for Squaring Loop.

5.4 SPLLs and Receiver Considerations 82

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 Frequency content of waveform

frequency (Hz)

Figure 5.23: Frequency content in multiplier output.

whether the SPLL oscillator will need to be increased or decreased in frequency (lines

46-76).

The oscillator signal which is initially defined at 2kHz outside this program is multiplied

with the squared signal. Figure 5.23 depicts what happens when the modulator used a

carrier frequency of 1100Hz. The 1100Hz signal when squared has a 2200Hz component

which is multiplied with the 2kHz oscillator resulting in components at 4200Hz and

200Hz.

Low pass filtering then removes the difference component which in Figure 5.23 would

be 200Hz. The low pass filter coefficients are denoted by h24. The variable oscillator

component was achieved in much the same way as the NCO for the conventional SPLL

detailed earlier. The only difference being that clock pulses at 20kHz are used as

opposed to 10kHz and the input vector is now labelled ‘diff’ as shown of line 98 in

SquaringLoop.m. For coding ease a new program was used namely SNCO and an

annotated copy is listed in Appendix D.20.
4Low pass filter coefficients for squaring loop are calculated by LPFcoeffSL.m (Appendix D.19).

5.4 SPLLs and Receiver Considerations 83

Finally the recovered carrier frequency is determined by dividing the NCO frequency

by 2. The recovered carrier is computed to be the same length as the original BPSK

signal portion to make demodulation easier.

No major looping occurs in SquaringLoop.m itself because the looping occurs as it

is used for demodulation in a BPSK simulation program (CoherentBPSKsim.m - Ap-

pendix D.21). This coherent BPSK program is similar to the other simulation programs

detailed in this dissertation with the obvious difference being that the carrier is recov-

ered and not simply redefined.

As shown on line 217 of CoherentBPSKsim.m the recovered carrier is multiplied with

the band pass filtered BPSK waveform portion. The result of this multiplication is

depicted in Figure 5.24 and as expected this waveform allows the binary information to

be resolved through integration. The limits for each bit integration need to determined.

This is possible through two pieces of information:

1. The frequency of the carrier.

2. The number of cycles per bit.

The frequency of the carrier is obviously known from carrier recovery and the number

of cycles per bit is a known standard. Typically two cycles are used to represent 1 bit

for the BPSK scheme (see lines 222 - 225 in CoherentBPSKsim.m).

This coherent modulation program did take longer to execute than the previous simu-

lation programs. This is expected as carrier recovery requires extra processing in the

form of filters, multipliers, and NCO’s. Different modulator carrier frequencies ranging

from 800Hz to 1200Hz were tested and the squaring loop was able to lock on to these

frequencies and recover the carrier wave in all cases. Carrier values more than 500Hz

either side of 1kHz would not work because they would be rejected by the low pass

filter.

QPSK receivers have to deal with two carriers and they are therefore more complex

than BPSK receivers, however similar principles apply (Best 2003). QAM receivers are

essentially the same QPSK receivers apart from additional level defining components.

5.5 Chapter Summary 84

0 500 1000 1500 2000 2500 3000 3500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 5.24: Result of the recovered carrier being multiplied with the BPSK waveform.

5.5 Chapter Summary

This chapter described how the main components of a PLL can be implemented in

software. Matlab proved to be a useful language in developing software components for

a PLL. The main problems encountered were:

• obtaining a sufficient number of samples for filtering whilst adapting to fast chang-

ing signals;

• accurately determining new frequencies; and

• long processing times.

More processing power would help in at least two of these areas.

The squaring loop developed for BPSK coherent demodulation worked effectively and

was able to recover different carrier frequencies.

Chapter 6

Real Time Implementation

6.1 Chapter Overview

This project was originally envisaged to develop a software radio that executes in real

time using a Digital Signal Processor (DSP), however due to time restrictions and the

time taken for other project aspects this has not happened.

DSP’s are specifically made for sampled systems and have the following processing

advantages:

• Very fast on board memory;

• Harvard Architecture - separate program and data memory buses;

• Optimized instructions for operations such as multiplication.

Although a DSP based system was not developed this chapter describes the SHARC

EZ-KIT Lite DSP environment. Development software including simulators, compilers,

and assemblers are investigated.

Also included in this chapter is an outline of a software defined radio receiver developed

by a research group within the Toshiba Corporation.

6.2 The SHARC EZ-KIT Lite Package 86

6.2 The SHARC EZ-KIT Lite Package

The SHARC EZ-KIT Lite package is an Analog Devices product and includes the

following:

• an evaluation board (SHARC EZ-KIT Lite board)

• software to develop DSP applications

• documentation describing the board and software

A photo of the SHARC DSP (Figure 6.1) as it was set up for this Research Project

depicts two main connections. The data connection is a serial line defined at the

computer end as communications port 1 (COM1) and the power supply for the board

is a 9V DC source provided from a suitable power inverter. As shown in the photo

there are also yellow, red, and black plugs that can be used as inputs into external

devices such as a Cathode Ray Oscilloscope (CRO).

The EZ-KIT Lite software was installed directly from the product CD. Included in this

software package were program examples (Analog Devices, Inc 1997).

The USQ Software Engineering Team Practice notes were used to explore the DSP

software (Leis 2002b) and a simple assembly language file (asmeg.exe) was loaded into

the simulator (Figure 6.2). The memory drop down menu allows a user to view any

line in a loaded program and the operations toggle format, also under the memory

menu, allows the format to be changed between assembly language, floating point,

hexadecimal integer, and decimal integer displays.

Figure 6.2 also shows different processor displays. DAG1 (DM) is read-write memory

and used for temporary variables whereas DAG2 (PM) is read-only memory and is used

for the program code itself and more permanent setup variables.

The distinction between DM and PM is shown in the map file (Figure 6.3) for the

assembly language program sgdata.asm. Segment names, locations, lengths, memory

types, and attributes are listed. The program memory initialization data can be read

6.2 The SHARC EZ-KIT Lite Package 87

Figure 6.1: Analog Devices SHARC DSP Board.

from a file using this assembler. This means that coefficients created in a high-level

language such as a Matlab modulation algorithm can be stored in code on the DSP

and then accessed in real time when required.

The EZ-KIT software package contains a C compiler called g21k. Compared to Matlab

C could be considered as a low-level language and C can access memory and input/out-

put devices where some other languages can’t (Leis 2002b). However assembly language

may still be needed in some applications and is often combined with C code when uti-

lizing a DSP board.

Downloading software onto the DSP board is achieved through the program EZ-KIT

Lite Host. Before any software is loaded onto the board communications between the

DSP board and the PC must be checked (Figure 6.4). Communications with the board

may be unsuitable if other EZ-KIT Lite programs are operating simultaneously with

EZ-KIT Lite Host or if the board needs resetting. The board can be reset by using

the manual reset option from the settings drop down menu or if that doesn’t work

disconnecting and reconnecting the power supply is sufficient.

6.2 The SHARC EZ-KIT Lite Package 88

Figure 6.2: EZ-KIT Lite Simulator.

6.3 Example of a Software Radio 89

Figure 6.3: Data Memory (DM) and Program Memory (PM) segments.

6.3 Example of a Software Radio

The Corporate Research and Development Center of the Toshiba Corporation devel-

oped a multimode software defined radio receiver using direct conversion and low-IF

implementations (Yoshida et al. 2003). The specifications for this device are shown in

Table 6.1.

The design of the device was broken down into three areas; the analog stage, the

sampling stage, and the DSP stage. The analog stage down-converts the entire system

band to baseband and contains two band pass filters directly after the antenna to

switch between two bands. The local oscillator is provided from a synthesizer PLL that

utilized two VCOs for the 1.5 and 1.9 GHz band. Two channels (I and Q) are outputs

from this stage

The sampling stage consists of a 64 MHz, 12-bit A/D converter, two digital quadrature

demodulators, four decimation filters, and four 256-tap FIR filters for each channel.

6.3 Example of a Software Radio 90

Figure 6.4: EZ-KIT Lite Host indicating suitable communications with board.

RF bands 1.5 and 1.9 GHz
RF bandwidth 10 MHz
A/D converter sampling frequency 64 MHz
A/D converter resolution 12 bits
Number of FIR filter taps 256
Modulation modes n-PSK, π/4-QPSK, GMSK, MSK
Transmission rate Maximum 384 kbps
Differential encoding ON/OFF

Table 6.1: Specifications for the multimode SDR receiver.

6.4 Chapter Summary 91

The demodulators and filters are implemented using programmable hardware. The I

and Q channels are frequency converted again but this time an NCO, set to the center

frequency of the wanted signal, is used. Four baseband signals are created from the

sampling stage namely II, IQ, QI, and QQ by different multiplication combinations and

then they are wave shaped by FIR filters.

DSP software is used to perform all radio signal processing in the DSP stage. The DSP

stage can further be broken down into 4 key components; clock recovery, de-mapping,

detector, and differential decoder. The clock recovery selects the optimal sample point

for detection and the de-mapping, detector, and differential decoder components per-

form the demodulation.

Also required in the design of this system was a controller to organize each stage.

The controller contained a CPU board for controlling the analog stage and a PC for

controlling the DSP stage, sampling stage, and analog controller.

6.4 Chapter Summary

A investigation of the EZ-KIT Lite DSP environment revealed that to develop a DSP

based system the C language is easier to compile and load onto the DSP board. More-

over an understanding of assembly language program is required as programs are often

required to use both C and assembly language directly.

The EZ-KIT package allowed the Harvard architecture to be visualized by displaying

program memory (PM) and data memory (DM) separately.

A brief outline of a multimode software defined radio receiver portrayed the complex-

ity of an SDR system and the requirement to effectively utilize and organize analog,

hardware, and software components.

Chapter 7

Conclusions and Further Work

7.1 Achievement of Objectives

Research conducted regarding software radio components proved to be beneficial and it

was found that many different varieties of software radio exist. The important conclu-

sion to draw from this is that as more radio components are implemented in software

the term ‘software radio’ becomes increasingly appropriate.

Researching information about standards and commercial interest for software radio

was another project objective that was successfully completed. In the area of stan-

dards it was appropriately stated that emerging standards and the commercial future

of SR are parallel progressions; as the SR commercial base broadens, standards will

also develop. It was found that the SDR Forum has commenced work in developing

SR standards to the extent where it has encouraged action from the Federal Communi-

cations Commission (FCC) to develop an initial Notice of Proposed Rules Making. In

terms of commercial interest it was found that it is expected to reach 31 billion USD

by 2008 for handsets and base stations combined.

The practical component of this Research Project began when a Linear Predictive

Speech Coder (LPC10) was successfully developed. The success of the LPC10 code was

proven in the fact that the reconstructed voice waveforms were ‘non-robotic’ sounding,

7.1 Achievement of Objectives 93

as some speech coders can be, and that the reconstructed voice sounded the same as the

original in terms of pitch. Although speech coding wasn’t originally stipulated in the

project specifications it proved to be necessary for modulation simulation programs.

Instead of modulating block sizes of typically 150 to 350 samples only 11 parameters

(10 coefficients and pitch delay) needed to be modulated onto the carrier.

Four modulation simulation programs were developed in Matlab code. The QPSK,

QAM, and MSK simulation programs were developed with the carrier wave for coherent

demodulation being regenerated instead of being recovered. The processing time for

these programs was close to real time or in other words the replayed speech block by

block was only slightly slower than the original.

The next project objective was to implement coherent demodulation. A standard

software PLL was initially developed but was changed to suit a communications system

using BPSK modulation. A squaring loop (appropriate for BPSK) was implemented

and it successfully recovered different carrier frequencies within an appropriate range.

Initially this Research Project was envisaged to develop a software radio that executes

in real time, however the time taken for other project aspects prevented this from

happening. Positive steps however were taken towards a real time implementation by

investigating the EZ-KIT Lite DSP package by Analog Devices including a DSP board,

assembler, simulator, C compiler, and a host program. A brief introduction to the DSP

and pertaining software revealed that a substantial amount of information about the

C language, assembly language, and DSP architecture is required to create a working

digital radio system. Moreover simply converting Matlab programs into C is not a

feasible option as the coding level is vastly different. Therefore it is more appropriate

to rewrite the entire programs in C code. The work involved in developing a DSP

based software radio was also verified by examining an SDR receiver developed by the

Corporate Research and Development Center within the Toshiba Corporation.

7.2 Further Work 94

7.2 Further Work

Software Radio research and development incorporates a broad range of engineering

topics and only a comparatively small amount of work has been completed in this

dissertation. Future student research projects for software radio could include the

following areas:

• Develop digital modulation algorithms in C code.

• Download software onto a DSP and implement a software radio which executes

in real time.

• Research the adaptability of SDR and the ability of modulation technique infor-

mation to be downloaded onto any mobile device.

• Consider possible security problems, which will be evident as the technology

evolves, and solutions to these problems.

References

Analog Devices, Inc (1997), SHARC EZ-KIT Lite Readme, 86-001805-01.

Ball, J. (2004), Communication Systems - Study Book, Vol. 1, Distance Education

Centre - The University of Southern Queensland.

Best, R. E. (2003), Phase-Locked Loops: Design, Simulation, and Applications,

McGraw-Hill Companies, Inc, United States of America.

FCC Notice of Inquiry (2000), Inquiry regarding software defined radios, FCC Docket

No. 00-103.

FCC Notice of Proposed Rules Making (2000), Authorization and use of software defined

radios, ET Docket No. FCC 00-430.

Ferrero, V. & Camatel, S. (2004), Coherent Modulation Format, world wide web,

<http://www.optcom.polito.it/research/CMF/CMF.htm>.

Harada, H. & Prasad, R. (2002), Simulation and Software Radio for Mobile Commu-

nications, Artech House, Boston, USA.

Higgins, R. J. (1990), Digital Signal Processing in VLSI, Prentice Hall, Englewood

Cliffs, NJ.

Kroupa, V. F. (2003), Phase Lock Loops and Frequency Synthesis, John Wiley and Sons

Ltd, West Sussex PO19 8SQ, England.

Leis, J. (2002a), Digital Signal Processing - A MATLAB-Based Tutorial Approach,

Research Studies Press Ltd., Hertfordshire, England.

REFERENCES 96

Leis, J. (2002b), Software Engineering Team Practice, The University of Southern

Queensland, Toowoomba, Australia.

Lindsay, W. C. & Chie, C. M. (2002), Phase-Locked Loops, IEEE Press, New York.

Massey, M. (2003), Emerging Technology Poised to Transform Wireless Industry, world

wide web, <http://www.pioneerconsulting.com>.

Miller, G. M. (1999), Modern Electronic Communication, Prentice-Hall International

(UK) Limited, London.

Oppenheim, A. V. & Schafer, R. W. (1989), Discrete-Time Signal Processing, Prentice

Hall, Englewood Cliffs, NJ.

Ortiz, S. (2003), ‘Software radios add flexibility to wireless technology’, IEEE: Com-

puter .

Parsons, D. (2003), Electronic Design and Analysis - Study Book, Distance Education

Centre - The University of Southern Queensland, Toowoomba, Australia.

Parsons, D. & Hancock, N. (2003), Electronic Measurement - Study Book, Vol. 1, Dis-

tance Education Centre - The University of Southern Queensland.

Parsons, T. (1987), Voice and Speech Processing, McGraw Hill.

Rabiner, L. R. & Gold, B. (1975), Theory and Application of Digital Signal Processing,

Prentice Hall, Englewood Cliffs, NJ.

SDR-Forum (2002), Software Defined Radio Standards, world wide web,

<http://www.sdrforum.org>.

Stephens, D. R. (1998), Phase-Locked Loops for Wireless Communications - Digital

and Analog Implementations, Kluwer Academic Publishers.

Tuttlebee, W. (2002a), Software Defined Radio: Origins, Drivers and International

Perspectives, John Wiley and Sons Ltd, West Sussex, England.

Tuttlebee, W. (2002b), Software Defined Radio: Enabling Technologies, John Wiley

and Sons Ltd, West Sussex, England, chapter 1.2, p. 9.

REFERENCES 97

Viterbi, A. J. (1963), Phase-Locked Loops Dynamics in the Presence of Noise by Fokker-

Planck Techniques, Vol. 51, Proceedings of the IEEE.

Wilson, S. G. (1996), Digital Modulation and Coding, Prentice-Hall, Inc, New Jersey,

USA.

Woodard, J. (2004), Speech Coding, world wide web,

<http://www.mobile.ecs.soton.ac.uk/speechcodecs>.

Xiong, F. (2000), Digital Modulation Techniques, Artech House, Boston, USA.

Yoshida, H., Kato, T., Tomizawa, T., Otaka, S. & Tsurimi, H. (2003), Multimode

software defined radio receiver using direct conversion and low-if principle: Imple-

mentation and evaluation, Technical report, Toshiba Corporation, Japan.

Appendix A

Project Specification

99

University of Southern Queensland

Faculty of Engineering and Surveying

ENG 4111/2 Research Project
PROJECT SPECIFICATION

FOR: Daniel WARNE

TOPIC: Software Radio Architectures — Part 2

SUPERVISOR: Dr. John Leis

ENROLMENT: ENG4111 - S1, D, 2004

ENG4112 - S2, D, 2004

PROJECT AIM: The aim of this research project is to research architectures and

specific algorithms for software radio. Included into the software

design will be essential elements such as phase locked loop, low-pass

and band-pass filters, speech coders and other processing components.

100

PROGRAMME: Issue B, July 2004

1. Research information about software radio components - both in the sending and

receiving of radio waves, and investigate any initial standards and commercial

interest for this emerging technology.

2. Investigate algorithms used for software radio, particularly digital modulation and

demodulation algorithms such as Binary Phase Shift Keying (BPSK), Quadrature

Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), and

Minimum Shift Keying (MSK).

3. Implement digital modulation algorithms in Matlab. Determine possible problems

and advantages of different techniques.

4. Investigate coherent demodulation and implement the technique by utilizing PLL

theory to lock onto carrier frequencies.

5. Describe how a software radio system which executes in real time would be im-

plemented.

And if time permits the following items can be attempted:

1. Download software onto a DSP and implement a software radio which executes

in real time.

2. Research the adaptability of SDR and the ability of modulation technique infor-

mation to be downloaded onto any mobile device.

3. Consider possible security problems, which will be evident as the technology

evolves, and solutions to these problems.

AGREED: (Student) (Supervisor)

Appendix B

Semester 1 Agenda

102

University of Southern Queensland

Faculty of Engineering and Surveying

ENG 4111/2 Research Project
SEMESTER 1 AGENDA

FOR: Daniel WARNE

TOPIC: Software Radio Architectures — Part 2

SUPERVISOR: Dr. John Leis

ENROLMENT: ENG4111 - S1, D, 2004

Task Completion Date

Introduction to software radio and specification

Item 1 April 16th

Specification Item 2 May 7

Project Appreciation May 17

Professional Practice 2 (ENG4903) presentation May 20

Specification Item 3 June 11

Write up chapters for specs 1-3 Start of semester 2

Appendix C

Semester 2 Agenda

104

University of Southern Queensland

Faculty of Engineering and Surveying

ENG 4111/2 Research Project
SEMESTER 2 AGENDA

FOR: Daniel WARNE

TOPIC: Software Radio Architectures — Part 2

SUPERVISOR: Dr. John Leis

ENROLMENT: ENG4112 - S2, D, 2004

Task Completion Date

Research PLL theory July 30

Write code for digital PLL August 30

Professional Practice 2 (ENG4903) final

presentation September 17

Investigate real time

implementation September 30

compile Project Dissertation Start: September 17

Finish: October 15

Appendix D

Matlab Code

D.1 LPC10p.m

0 %M− f i l e LPC10p .m
%ENG4111/2 − Research Pro jec t

%Written by Danie l Warne

%Reference : ”ELE406 − Advanced D i g i t a l Communications (Lecture S l i d e s)”
%J . Leis , Un i v e r s i t y o f Southern Queensland ,
%Module 7 − Speech Coding

10 %Encodes a wav sound f i l e us ing
%10 th order LPC a lgor i thm

clear a l l
close a l l
warning o f f MATLAB: s ingu la rMatr ix
warning o f f MATLAB: divideByZero

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Read in wav f i l e

20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wav=input (’ Enter wav f i l e name : ’) ;
[Y, FS ,NBITS]=wavread(wav) ;
%Y i s sound s i gna l , FS i s sample ra t e in Hertz ,
%and NBITS i s number o f b i t s per smaple .

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Play o r i g i n a l audio
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sprintf (’%s ’ , ’ Press any key to hear o r i g i n a l audio . ’)

30 pause
sound(Y,FS)

%−−

D.1 LPC10p.m 106

%Divide s i g n a l Y in to frame s i z e s o f n samples
%and proces s frame by frame .
%−−
n = length (Y) ;
order = 10 ; %order o f p r e d i c t i on
f ramelength =220;

40 framenum=n/ framelength ; %number o f frames
framenum=ce i l (framenum) ; %round up to neare s t whole i n t e g e r
codedaudio = [] ; %coded audio
s t a r t =1; %al l ow co r r e c t p i t c h i n t e r v a l pu l s i n g
for k=1:framenum

b=framelength −1; %sp e c i f y frame index ing (index+framelength−1=frame leng th)
a=((k−1)∗ f ramelength)+1; %index in t o o r i g i n a l audio s i g n a l
i f k < framenum %sp e c i f y current frame

frame=Y(a : a+b) ;
end

50 i f k == framenum %sp e c i f y f i n a l frame
f ramelength=n−(f ramelength ∗(k−1)) ; %leng t h o f f i n a l frame
b=framelength −1;
frame=Y(a : a+b) ;

end

%−−
%Ca l cu l a t e r va lues , r0 to r10 , f o r au t o c o r r e l a t i on
%−−
r = [] ; %de f i n e r v e c t o r

60 for i =0: order ;
r i=sum(frame (1 : framelength−i) . ∗ frame (i +1: f ramelength))/ f ramelength ;
r=[r r i] ;

end
r=r ’ ; %column vec to r f o r matrix maths

%−−
%Ca l cu l a t e R matrix o f a u t o c o r r e l a t i on va l u e s
%−−
%f i l l R matrix h o r i z o n t a l l y

70 for row=1: order %row index
for c o l =1: order %column index

d=co l ;
c=co l+(row−1);
i f c > order

break
end
R(row , c)=r (d) ;

end
end

80 %f i l l R matrix v e r t i c a l l y
for c o l =1:(order −1)

for row=order :−1:1
d=row−(co l −1);
i f d == 1

break
end
R(row , c o l)=r (d) ;

end
end

90 %−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e 10 c o e f f i e c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−
r r=r (2 : order +1);

D.1 LPC10p.m 107

c o e f f= inv (R)∗ r r ;

%−−−
%Ca l cu l a t e Optimal Pi tch Delay and Exc i t a t i on Vector
%−−−
i f k ˜= framenum %Don’ t c a l c u l a t e p i t c h f o r f i n a l frame because

100 Rn= [] ; %there may not be a s u i t a b l e number o f samples
for delay =20:150; %su i t a b l e range o f d e l a y s

num=sum(frame (de lay +1: f ramelength) . ∗ frame (1 : framelength−delay)) ;
den=sqrt (sum(frame (de lay +1: f ramelength) . ˆ 2)) ;
Rnt=num/den ;
Rn=[Rn Rnt] ; %vec to r o f au t o c o r r e l a t i on de l a y s

end
[q , z]=max(Rn) ; %pick out index o f maximised de lay va lue
p i t chde l ay=19+z ; %cor r e c t de l ay va lue (index s t a r t s a t 20)

end
110

MPE = zeros (framelength , 1) ; %Multi−Pulse Exc i t a t i on
for e x c i t e=s t a r t : p i t chde l ay : f ramelength

MPE(ex c i t e)=1;
end
s t a r t=pi tchde lay −(framelength−e x c i t e) ;
%MPE=rand (framelength , 1) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e new coded audio

120 %−−−−−−−−−−−−−−−−−−−−−−−−−
for nn = 1 : f ramelength
pred (nn) = MPE(nn) ;

for kk = 1 : order
i f ((nn−kk) > 0)
pred (nn) = pred (nn) + c o e f f (kk)∗ ca (nn−kk) ;
end

end
ca (nn)=pred (nn) ; %coded audio f o r frame

end
130

%−−
%Ca l cu l a t e RMS energy and RSM energy norma l i za t ion
%−−
rmsca=sqrt (sum(ca . ˆ2)/ f ramelength) ;
rmsframe=sqrt (sum(frame . ˆ2)/ f ramelength) ;
ga in=rmsframe/rmsca ;
ca=ca∗ gain ;

%−−−−−−−−−−−−−−−−−−
140 %Update coded audio

%−−−−−−−−−−−−−−−−−−
codedaudio = [codedaudio ; ca ’] ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Write Reconstructed waveform to a f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

150 wavwrite (codedaudio , FS ,NBITS , ’ codedaudio . wav ’) ;

%−−−−−−−−−−−−−−−−−−−−

D.1 LPC10p.m 108

%Play coded audio
%−−−−−−−−−−−−−−−−−−−−
sprintf (’%s ’ , ’ Press any key to hear coded audio . ’)
pause
sound(codedaudio , FS)

160

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Plot o r i g i n a l and coded audio waveforms
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot (Y)
hold
plot (codedaudio , ’ r ’)

%end o f LPC10p .m
%−−−−−−−−−−−−−

170 %−−−−−−−−−−−−−

D.2 BPSKdemo.m 109

D.2 BPSKdemo.m

0 % M− f i l e BPSKdemo − Binary Phase S h i f t Keying
% Simple matlab f i l e to demonstrate BPSK d i g i t a l
% modulation t echn i que .

%Written by Danie l Warne

clear a l l
close a l l

di =[1 0 1 0 0 . 00001]
10 % Use d i g i t a l i n t e l l i g e n c e = [1 0 1 0]

% Use c a r r i e r wave f requency o f 1 KHz

%Define time domain
t1 =0 : 0 . 0 0001 : 0 . 0 02 ;
t2 =0 . 00201 : 0 . 00001 : 0 . 0 04 ;
t3 =0 . 00401 : 0 . 00001 : 0 . 0 06 ;
t4 =0 . 00601 : 0 . 00001 : 0 . 0 08 ;

%Define Carr ier wave to corresponding time frame
20 y1=cos (2∗pi ∗1000∗ t1+pi) ; %Represents b inary 1

y2=cos (2∗pi ∗1000∗ t2) ; %Represents b inary 0
y3=cos (2∗pi ∗1000∗ t3+pi) ; %Represents b inary 1
y4=cos (2∗pi ∗1000∗ t4) ; %Represents b inary 0

t = [t1 t2 t3 t4] ;
y = [y1 y2 y3 y4] ;

c=cos (2∗pi ∗1000∗ t) ;

30 f igure (1)
subplot (2 , 1 , 1)
sta irs (d i)
axis ([1 5 −0.2 1 . 2]) ;
subplot (2 , 1 , 2)
plot (t , c) ;

f igure (2)
plot (t , y) ;

D.3 QPSKmodulatordemo.m 110

D.3 QPSKmodulatordemo.m

0 %QPSKmodulatordemo

%M− f i l e to d ep i c t QPSK modulation waveforms

%Written by Danie l Warne

clear a l l
close a l l

%Data Sequence
10 Dib i t s =[1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1] ;

%−−
%Carr ier O s c i l l a t o r
%−−
omega=2∗pi ∗1000 ; %Carr ier f requency = 1000 Hz
Tb=1/1000; %b i t time
t1 =0:0 .0001 :2∗Tb−0.0001;
%Use a very sma l l sample f requency to c r ea t e de f ined p l o t s
%Require 2 c y c l e s o f c a r r i e r to d i s p l a y 1 symbol

20 SL=length (t1) ; %Symbol l e n g t h in terms o f v e c t o r e lements

I c a r r i e r=cos (omega∗ t1) ; %Carr ier f o r I channel
Qcar r i e r=−sin (omega∗ t1) ; %Carr ier f o r Q channel

I b i t s = [] ; %To be used in maintaining l e v e l s
Qbits = [] ; %To be used in maintaining l e v e l s
I s i g n a l s = [] ; %To be used in d e f i n i n g a l l I s i g n a l s
Qsigna l s = [] ; %To be used in d e f i n i n g a l l Qs igna l s
Transmiss ion = [] ; %To be used in d e f i n i n g t ransmiss ion

30

for i =0:7 %Loop through d i b i t s and modulate

%−−
% Leve l S h i f t to +/− 1/ s q r t (2)
%−−
I b i t=Dib i t s (i ∗2+1); %I s o l a t e every second b i t 1 ,3 ,5 e t c
I b i t =1/sqrt (2)∗ ((I b i t ∗2)−1);
I b i t s (i ∗SL+1:(i ∗SL+1)+SL−1)= I b i t ; %Hold f o r symbol time , Ts

40 Qbit=Dib i t s (i ∗2+2); %I s o l a t e every second b i t 2 ,4 ,6 e t c
Qbit=1/sqrt (2)∗ ((Qbit ∗2)−1);
Qbits (i ∗SL+1:(i ∗SL+1)+SL−1)=Qbit ; %Hold f o r symbol time , Ts

%−−
%Product Modulators
%−−
I s i g n a l=I b i t ∗ I c a r r i e r ; %I−channel modulated s i g n a l
I s i g n a l s (i ∗SL+1:(i ∗SL+1)+SL−1)= I s i g n a l ;

50

Qsignal=Qbit∗Qcar r i e r ; %Q−channel modulated s i g n a l
Qsigna l s (i ∗SL+1:(i ∗SL+1)+SL−1)=Qsignal ;

%−−
%Summing Junct ion
%−−
Transmiss ion (i ∗SL+1:(i ∗SL+1)+SL−1)= I s i g n a l+Qsignal ;

D.3 QPSKmodulatordemo.m 111

%Signa l to be t ransmi t t ed a f t e r modulation i s complete

60 end

t2 =0:0 .0001 :16∗Tb−0.0001;

%−−−
%Plo t s
%−−−
f igure
subplot (5 , 1 , 1)
plot (t2 , I b i t s)

70 t i t l e (’ I−Channel Data ’)

subplot (5 , 1 , 2)
plot (t2 , Qbits)
t i t l e (’Q−Channel Data ’)

subplot (5 , 1 , 3)
plot (t2 , I s i g n a l s)
t i t l e (’ I S i gna l ’)

80 subplot (5 , 1 , 4)
plot (t2 , Qs igna l s)
t i t l e (’Q S igna l ’)

subplot (5 , 1 , 5)
plot (t2 , Transmiss ion)
t i t l e (’QPSK Signa l ’)

D.4 Freqplot.m 112

D.4 Freqplot.m

0 %Freqp l o t
%M− f i l e to p l o t f requency content in Hz
%fo r any waveform

%Written by Danie l Warne

close a l l

%INPUTS:
%

10 %Sample Frequency f s
%Waveform vec to r

f s=input (’ Enter the sample f requency in Hz : ’) ;
Waveform=input (’ Enter the waveform vector : ’) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Repeat waveform to c a l c u l a t e f requency
%response more ac cu ra t e l y
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20

y = [] ;
for i =1:64 %Lengthen Waveform by a f a c t o r o f 64
y=[y Waveform] ;
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Round y to neare s t power o f two
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 L=length (y) ;
a=log2 (L) ;
n=2ˆ f loor (a) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e f f t and power spectrum
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Y=f f t (y (1 : n)) ; %Take f f t wi th power o f two samples .
%Ps = Y.∗ conj (Y) / n ; %The power spectrum

40 %Note : I f z = a + bi , conj (z) = a − bi , z .∗ conj (z)= aˆ2 + b ˆ2;
% Pyy i s d i v i d ed by number o f samples (n) to s c a l e i t down .

%or use f o u r i e r transform magnitudes
ftm=abs (Y) ; %magnitudes o f f requency components

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Plot the f requency content
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 %Only graph n/2+1 samples − o ther samples are redundant in
%terms o f a meaningfu l a f requency p l o t . Mu l t i p l y by sample
%frequency because t ha t i s what the a x i s i s r ep r e s en t i n g

f r e q=f s ∗ (0 : n/2)/n ;
%d i v i d e by number o f samples (n) because n r ep r e s en t s f s

f igure

D.4 Freqplot.m 113

plot (f r eq , ftm (1 : n/2+1)) ;
%ftm cou ld be rep l aced by Ps

60 t i t l e (’ Frequency content o f waveform ’)
xlabel (’ f r equency (Hz) ’)

D.5 QPSKdemodulatordemo.m 114

D.5 QPSKdemodulatordemo.m

0 %QPSKdemodulatordemo .m

%M− f i l e to d ep i c t QPSK demodulat ion waveforms

%Danie l Warne

%The input f o r t h i s program i s the output t ransmis s ion
%vec to r from QPSKmodulatordemo .m

%−−
10 %Carr ier O s c i l l a t o r

%−−
omega=2∗pi ∗1000 ; %Carr ier f requency = 1000 Hz
Tb=1/1000; %b i t time
Ts=2∗Tb; %Symbol time
t1 =0:0 .0000001 :Ts−0.0000001;
%Require 2 c y c l e s o f c a r r i e r to d i s p l a y 1 symbol
SL=length (t1) ; %Symbol l e n g t h in terms o f v e c t o r e lements

I c a r r i e r=cos (omega∗ t1) ; %Carr ier f o r I channel
20 Qcar r i e r=−sin (omega∗ t1) ; %Carr ier f o r Q channel

Idemods = [] ; %Store demodulat ion waveforms
Qdemods = [] ; %Store demodulat ion waveforms
I b i t s = [] ; %Store I b i t s
Qbits = [] ; %Store Q b i t s

for i =0:7 %Loop through symbol t imes and demodulate

%−−
30 %I s o l a t e Symbol time i n t e r v a l f o r d i b i t

%−−
SI=Transmiss ion (i ∗SL+1:(i ∗SL+1)+SL−1); %Symbol i n t e r v a l

%−−
%Product Modulator
%−−
Idemod=SI .∗ I c a r r i e r ; %I channel demodulat ion s i g n a l
Idemods (i ∗SL+1:(i ∗SL+1)+SL−1)=Idemod ;

40 Qdemod=SI .∗ Qcar r i e r ; %Q channel demodulat ion s i g n a l
Qdemods(i ∗SL+1:(i ∗SL+1)+SL−1)=Qdemod ;

%−−
%In t e g r a t i on or Numerical Summation
%−−
I b i t =1/Ts∗cumsum(Idemod) ;
I b i t s (i ∗SL+1:(i ∗SL+1)+SL−1)= I b i t ;

Qbit=1/Ts∗cumsum(Qdemod) ;
50 Qbits (i ∗SL+1:(i ∗SL+1)+SL−1)=Qbit ;

end

t2 =0:0 .0000001 :16∗Tb−0.0000001;

D.5 QPSKdemodulatordemo.m 115

%−−−
%Plo t s

60 %−−−
f igure
subplot (4 , 1 , 1)
plot (t2 , Idemods)
t i t l e (’ I channel ’)

subplot (4 , 1 , 2)
plot (t2 , Qdemods)
t i t l e (’Q channel ’)

70 subplot (4 , 1 , 3)
plot (t2 , I b i t s)
t i t l e (’ I channel I n t e g r a t o r Output ’)

subplot (4 , 1 , 4)
plot (t2 , Qbits)
t i t l e (’Q channel I n t e g r a t o r Output ’)

D.6 QPSKsim.m 116

D.6 QPSKsim.m

0 %M− f i l e QPSKsim
%Fi l e t h a t s imu la t e s QPSK
%d i g i t a l modulation t echn i que

%Written by Danie l Warne
%fo r Research Pro jec t ENG4111/2
clear a l l
close a l l

warning o f f MATLAB: nonIntegerTruncatedInConversionToChar
10 warning o f f MATLAB: s ingu la rMatr ix

warning o f f MATLAB: divideByZero

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Read in wav f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wav=input (’ Enter wav f i l e name : ’) ;
[Y, FS ,NBITS]=wavread(wav) ;
%Y i s sound s i gna l , FS i s sample ra t e in Hertz ,

20 %and NBITS i s number o f b i t s per smaple .

t ic %s t a r t t imer

%−−
%Carr ier O s c i l l a t o r
%−−
omega=2∗pi ∗1000 ; %Carr ier f requency = 1000 Hz
Tb=1/100; %b i t time
Ts=2∗Tb; %Symbol time

30 t1 =0:0 .0001 :2∗Tb−0.0001; %Larges t p o s s i b l e sample f requency
%t1 i s the symbol time . Require 2 c y c l e s o f c a r r i e r
%to d i s p l a y one symbol .

I c a r r i e r =1/sqrt (2)∗ cos (omega∗ t1) ; %Carr ier f o r I channel
Qcar r i e r=−1/sqrt (2)∗ sin (omega∗ t1) ; %Carr ier f o r Q channel
%0.707 in t h e s e equa t i ons avo ids the need to conver t to po la r
%form l a t e r .

40 %−−
%Divide s i g n a l Y in to frame s i z e s o f n samples
%and proces s frame by frame .
%−−
n = length (Y) ;
order = 10 ; %order o f p r e d i c t i on
f ramelength =300;
framenum=n/ framelength ; %number o f frames
framenum=ce i l (framenum) ; %round up to neare s t whole i n t e g e r
codedaudio = [] ; %coded audio

50 s t a r t =1; %al l ow co r r e c t p i t c h i n t e r v a l pu l s i n g
for k=1:framenum

b=framelength −1; %sp e c i f y frame index ing (index+framelength−1=frame leng th)
a=((k−1)∗ f ramelength)+1; %index in t o o r i g i n a l audio s i g n a l
i f k < framenum %sp e c i f y current frame

frame=Y(a : a+b) ;
end
i f k == framenum %sp e c i f y f i n a l frame

D.6 QPSKsim.m 117

f ramelength=n−(f ramelength ∗(k−1)) ; %leng t h o f f i n a l frame
b=framelength −1;

60 frame=Y(a : a+b) ;
end

%−−
%Ca l cu l a t e r va lues , r0 to r10 , f o r au t o c o r r e l a t i on
%−−
r = [] ; %de f i n e r v e c t o r
for i =0: order ;

r i=sum(frame (1 : framelength−i) . ∗ frame (i +1: f ramelength))/ f ramelength ;
r=[r r i] ;

70 end
r=r ’ ; %column vec to r f o r matrix maths

%−−
%Ca l cu l a t e R matrix o f a u t o c o r r e l a t i on va l u e s
%−−
%f i l l R matrix h o r i z o n t a l l y
for row=1: order %row index

for c o l =1: order %column index
d=co l ;

80 c=co l+(row−1);
i f c > order

break
end
R(row , c)=r (d) ;

end
end
%f i l l R matrix v e r t i c a l l y
for c o l =1:(order −1)

for row=order :−1:1
90 d=row−(co l −1);

i f d == 1
break

end
R(row , c o l)=r (d) ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e 10 c o e f f i e c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−

100 r r=r (2 : order +1);
c o e f f= inv (R)∗ r r ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e Optimal Pi tch Delay
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f k ˜= framenum %Don’ t c a l c u l a t e p i t c h f o r f i n a l frame because

Rn= [] ; %there may not be a s u i t a b l e number o f samples
for delay =20:150; %su i t a b l e range o f d e l a y s

num=sum(frame (de lay +1: f ramelength) . ∗ frame (1 : framelength−delay)) ;
110 den=sqrt (sum(frame (de lay +1: f ramelength) . ˆ 2)) ;

Rnt=num/den ;
Rn=[Rn Rnt] ; %vec to r o f au t o c o r r e l a t i on de l a y s

end
[q , z]=max(Rn) ; %pick out index o f maximised de lay va lue
p i t chde l ay=19+z ; %cor r e c t de l ay va lue (index s t a r t s a t 20)

end

D.6 QPSKsim.m 118

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Sca le c o e f f i c i e n t s to between 0 and 255

120 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c o e f f 2=c o e f f +5; %Make a l l samples p o s i t i v e
c o e f f 2=c o e f f 2 ∗ (255/10) ; %8 b i t Quant i za t ion
c o e f f 2=round(c o e f f 2) ;
c o e f f 2 =[p i t chde l ay ; c o e f f 2] ;
c o e f f 2=real (c o e f f 2) ;

%−−−
%Modulate c o e f f i c i e n t s onto c a r r i e r
%−−−

130

OP= [] ; %Used in d i b i t l oop

for i =1: order+1 %Modulate p i t c h de lay and c o e f f i c i e n t s
Recon = [] ; %Vector f o r r e cons t ruc t ed c o e f f i c i e n t s
i n t=c o e f f 2 (i) ; %decimal i n t e l l i g e n c e

%Obtain i n t e l l i g e n c e in b inary form
di=dec2bin (i n t) ; %i n t e l l i g e n c e in (8− b i t) b inary form

140 %−−−
%Allow b inary number to have e i g h t b i t s i s i t i s l e s s than 128
%−−−
l=length (d i) ;
ext ra=8− l ; %Ca l cu l a t e e x t ra ze ro s needed
i f ext ra == 1

di =[’ 0 ’ d i] ;
end
i f ext ra == 2

di =[’ 00 ’ d i] ;
150 end

i f ext ra == 3
di =[’ 000 ’ d i] ;

end
i f ext ra == 4

di =[’ 0000 ’ d i] ;
end
i f ext ra == 5

di =[’ 00000 ’ d i] ;
end

160 i f ext ra == 6
di =[’ 000000 ’ d i] ;

end
i f ext ra == 7

di =[’ 0000000 ’ d i] ;
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%QPSK modulation
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

170

for j =0:3
d=j ∗2+1;
I c a r=I c a r r i e r ;
Qcar=Qcar r i e r ;
d i b i t=di (d : d+1); %I s o l a t e d i b i t
I b i t=bin2dec (d i b i t (1)) ; %Change to a decimal number
%The f i r s t d i b i t b i t i s used to sw i t ch the I channel

D.6 QPSKsim.m 119

%where I s tands f o r in phase
i f I b i t == 0

180 I c a r= −I c a r ; %Only i n v e r t s i g n a l i f b i t i s zero
end
Qbit=bin2dec (d i b i t (2)) ; %Change to a decimal number
%The second d i b i t b i t i s used to sw i t ch the Q channel
%where Q stands f o r quadrature phase
i f Qbit == 0

Qcar= −Qcar ; %E f f e c t i v e l y the same as mu l t i p l i e r
end
d i b i t c a r=I ca r+Qcar ;
OP=[OP d i b i t c a r] ;

190 end
end

%˜˜
%˜˜˜˜˜˜˜˜˜˜ Transmission ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%˜˜

%−−
200 %QPSK demodulat ion

%−−
bi = [] ; %recovered b inary in format ion

for k=0:(order+1)∗4−1 %4 d i b i t s in c o e f f i c i e n t
%−−
%Carr ier Recovery
%−−
I s i g=cos (omega∗ t1) ; %Carr ier recovered f o r I channel
Qsig=−sin (omega∗ t1) ; %Carr ier recoverd f o r Q channel

210 SL=length (d i b i t c a r) ;

%−−
%I s o l a t e Symbol time i n t e r v a l f o r d i b i t
%−−
SI=OP(k∗SL+1:(k∗SL+1)+SL−1); %Symbol i n t e r v a l

%−−
%Product Modulator
%−−

220 Idemod=SI .∗ I s i g ; %I channel demodulat ion s i g n a l
Qdemod=SI .∗Qsig ; %Q channel demodulat ion s i g n a l

%−−
%In t e g r a t i on or Numerical Summation
%−−
I n t I=1/Ts∗sum(Idemod) ;
IntQ=1/Ts∗sum(Qdemod) ;

%−−
230 %Binary Recovery

%−−
I b i t=sign (I n t I) ; %Greater than 0=1; l e s s than 0=−1
Qbit=sign (IntQ) ;

i f I b i t == −1
I b i t = ’ 0 ’ ; %Allow −1 to equa l b inary zero

else

D.6 QPSKsim.m 120

I b i t = ’ 1 ’ ; %Change to s t r i n g
end

240 i f Qbit == −1
Qbit = ’ 0 ’ ; %Allow −1 to equa l b inary zero

else
Qbit = ’ 1 ’ ; %Change to s t r i n g

end

bi =[b i I b i t Qbit] ; %Recovered b inary in format ion f o r b l o c k
Lbi=length (b i) ; %Check to see i f number i s complete
i f Lbi == 8 ;

sample = bin2dec (b i) ;
250 Recon = [Recon sample] ;

b i = [] ;
end
LR=length (Recon) ; %Check to see i f c o e f f i c i e n t s are ready
i f LR == order+1

p i t chde l ay=Recon (1) ;
Recon=Recon (2 : 1 1) ;
Recon = Recon / (255/10) ; %Sca le back down
Recon = Recon − 5 ; %Allow nega t i v e va l u e s

end
260 end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e Exc i t a t i on Vector
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MPE = zeros (framelength , 1) ; %Multi−Pulse Exc i t a t i on
for e x c i t e=s t a r t : p i t chde l ay : f ramelength

MPE(ex c i t e)=1;
end
s t a r t=pi tchde lay −(framelength−e x c i t e) ;

270

%−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e new coded audio
%−−−−−−−−−−−−−−−−−−−−−−−−−
for nn = 1 : f ramelength
pred (nn) = MPE(nn) ;

for kk = 1 : order
i f ((nn−kk) > 0)
pred (nn) = pred (nn) + Recon (kk)∗ ca (nn−kk) ;

280 end
end
ca (nn)=pred (nn) ;

end

%−−
%Ca l cu l a t e RMS energy and RSM energy norma l i za t ion
%−−
rmsca=sqrt (sum(ca . ˆ2)/ f ramelength) ;
rmsframe=sqrt (sum(frame . ˆ2)/ f ramelength) ;

290 gain=rmsframe/rmsca ;
ca=ca∗ gain ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Play coded audio on every b l o c k
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sound(ca , FS)
codedaudio=[codedaudio ca zeros (length (ca) , 1) ’] ;

D.6 QPSKsim.m 121

end
300

toc %stop t imer

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Write Reconstructed waveform to a f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wavwrite (codedaudio , FS ,NBITS , ’QPSKcodedaudio . wav ’) ;

D.7 QAMmodulatordemo.m 122

D.7 QAMmodulatordemo.m

0 %QAMmodulatordemo

%Fi l e t h a t demonstrates QAM
%d i g i t a l modulation t echn i que

%Written by Danie l Warne
%fo r Research Pro jec t ENG4111/2

clear a l l
close a l l

10

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Define inpu t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f =1000; %ca r r i e r wave o f 1 KHz
omega=2∗pi∗ f ; %frequency in rad ians / sec

qt =0.002;
%qt i s the quadb i t time
%This i s the time t ha t t h a t the c a r r i e r uses to r ep r e s en t 4 b i t s

20

Iamps = [] ;
Qamps= [] ;
I s i g n s = [] ;
Qsigns = [] ;
I c a r s = [] ;
Qcars = [] ;

Fs=15000; %sample f requency
Ts=1/Fs ; %sample time

30 t=0:Ts : qt−Ts ; %b i t time vec to r
I c a r r i e r=cos (omega∗ t) ; %Carr ier f o r I channel
Qcar r i e r=−sin (omega∗ t) ; %Carr ier f o r Q channel

SL=length (t) ;

OP= [] ; %Used in d i b i t l oop

decimal = [96 1 5 5] ;

40 for i =1:2
i n t=decimal (i) ;
%Obtain i n t e l l i g e n c e in b inary form
di=dec2bin (i n t) ; %i n t e l l i g e n c e in (8− b i t) b inary form

%−−−
%Allow b inary number to have e i g h t b i t s i s i t i s l e s s than 128
%−−−

l=length (d i) ;
ext ra=8− l ; %Ca l cu l a t e e x t ra ze ro s needed

50 i f ext ra >= 1
i f ext ra == 1

di =[’ 0 ’ d i] ;
end
i f ext ra == 2

di =[’ 00 ’ d i] ;
end
i f ext ra == 3

D.7 QAMmodulatordemo.m 123

di =[’ 000 ’ d i] ;
end

60 i f ext ra == 4
di =[’ 0000 ’ d i] ;

end
i f ext ra == 5

di =[’ 00000 ’ d i] ;
end
i f ext ra == 6

di =[’ 000000 ’ d i] ;
end
i f ext ra == 7

70 di =[’ 0000000 ’ d i] ;
end

end

for j =0:1
d=j ∗4+1; %index in to d i g i t a l i n t e l l i g e n c e
I c a r=I c a r r i e r ;
Qcar=Qcar r i e r ;
quadbit=di (d : d+3); %i s o l a t e quadb i t

80 %−−−−−−−−−−−−−−−−−−−−−
% In−phase (I) channel
%−−−−−−−−−−−−−−−−−−−−−
I b i t 1=bin2dec (quadbit (1)) ; %Def ines ampl i tude
I b i t 2=bin2dec (quadbit (2)) ; %Def ines s i gn

Iamp=Ib i t 1 +1; %Amplitude o f I channel s i g n a l
Iamps1 (1 : SL)=Iamp ; %Hold f o r symbol time
Iamps=[Iamps Iamps1] ; %Update

90 I s i g n=Ib i t 2 ∗2−1; %Sign o f I channel s i g n a l
I s i g n s 1 (1 : SL)= I s i g n ; %Hold f o r symbol time
I s i g n s =[I s i g n s I s i g n s 1] ; %Update

I c a r=I s i g n .∗ Iamp .∗ I c a r ; %I ca r r i e r s i g n a l
I c a r s 1 (1 : SL)= I ca r ; %Hold f o r symbol time
I c a r s =[I c a r s I c a r s 1] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Quadrature−phase (Q) channel

100 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Qbit1=bin2dec (quadbit (3)) ; %Def ines ampl i tude
Qbit2=bin2dec (quadbit (4)) ; %Def ines s i gn

Qamp=Qbit1+1; %Amplitude o f Q channel s i g n a l
Qamps1 (1 : SL)=Qamp; %Hold f o r symbol time
Qamps=[Qamps Qamps1] ; %Update

Qsign=Qbit2 ∗2−1; %Sign o f Q channel s i g n a l
Qsigns1 (1 : SL)=Qsign ; %Hold f o r symbol time

110 Qsigns=[Qsigns Qsigns1] ; %Update

Qcar=Qsign .∗Qamp.∗Qcar ; %Q ca r r i e r s i g n a l
Qcars1 (1 : SL)=Qcar ; %Hold f o r symbol time
Qcars=[Qcars Qcars1] ; %Update

%−−
%Quadbit c a r r i e r

D.7 QAMmodulatordemo.m 124

%−−
quadbitcar=I ca r+Qcar ; %quad−b i t c a r r i e r

120 OP=[OP quadbitcar] ; %t o t a l c a r r i e r

end
end

t=0:Ts :4∗ qt−Ts ;

%−−−
%Plo t s
%−−−

130 f igure

subplot (4 , 1 , 1)
plot (t , Iamps)
t i t l e (’ I−Channel Amplitude ’)
axis ([0 0 .008 0 .8 2 .2])

subplot (4 , 1 , 2)
plot (t , I s i g n s)

140 t i t l e (’ I−Channel Sign ’)
axis ([0 0 .008 −1.2 1 . 2])

subplot (4 , 1 , 3)
plot (t ,Qamps)
t i t l e (’Q−channel Amplitude ’)
axis ([0 0 .008 0 .8 2 .2])

subplot (4 , 1 , 4)
plot (t , Qsigns)

150 t i t l e (’Q Channel Sign ’)
axis ([0 0 .008 −1.2 1 . 2])

f igure

subplot (3 , 1 , 1)
plot (t , I c a r s)
t i t l e (’ I s i g n a l ’)

160 subplot (3 , 1 , 2)
plot (t , Qcars)
t i t l e (’Q s i g n a l ’)

subplot (3 , 1 , 3)
plot (t ,OP)
t i t l e (’QAM s i g n a l ’)

D.8 QAMdemodulatordemo.m 125

D.8 QAMdemodulatordemo.m

0 %Mfi l e : QAMdemodulatordemo
%Fi l e t h a t demonstrates QAM
%d i g i t a l demodulat ion t echn i que

%Written by Danie l Warne
%fo r Research Pro jec t ENG4111/2

%Input in t o t h i s program i s OP
%from QAMmodulatordemo .m

10 %Carr ier Recovery
f =1000; %ca r r i e r wave o f 1 KHz
omega=2∗pi∗ f ; %frequency in rad ians / sec
Fs=15000; %sample f requency
Ts=1/Fs ; %sample time
qt =0.002; %symbol time
t=0:Ts : qt−Ts ; %quadb i t time vec to r
t1=0:Ts :2∗ qt−Ts ; %8 b i t i n t e r v a l
SL1=length (t1) ;
SL2=length (t) ;

20

I s i g=cos (omega∗ t) ; %s i g n a l f o r I channel demodulat ion
Qsig=−sin (omega∗ t) ; %s i g n a l f o r Q channel demodulat ion

Idemods = [] ; %Store demodulat ion waveforms
Qdemods = [] ; %Store demodulat ion waveforms
I b i t s = [] ; %Store I b i t s
Qbits = [] ; %Store Q b i t s
a=ones (1 , SL2) ; %Used in loop

30

%Recovered b inary in format ion
bi = [] ;

for j =0:1 %demodulate each number
s i g=OP(j ∗SL1+1: j ∗SL1+SL1) ; %i s o l a t e por t i on o f s i g n a l

%demodulate each quadb i t
for i =0:1

40 %−−−−−−−−−−−−−−−−−
%I s o l a t e i n t e r v a l
%−−−−−−−−−−−−−−−−−
qbi=s i g (i ∗SL2+1: i ∗SL2+SL2) ; %qb i=quadb i t i n t e r v a l =4∗ b i t i n t e r v a l

%−−−−−−−−−−−−−−−−−
%Product Modulator
%−−−−−−−−−−−−−−−−−
Idemod=qbi .∗ I s i g ; %I channel demodulat ion
Idemods=[Idemods Idemod] ; %Update

50

Qdemod=qbi .∗Qsig ; %Q channel demodulat ion
Qdemods=[Qdemods Qdemod] ; %Update

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Numerical Sumation (I n t e g r a l)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I b i t=sum(Idemod) ; %I channel sumation

D.8 QAMdemodulatordemo.m 126

I b i t=I b i t ∗a ;
I b i t s =[I b i t s I b i t] ; %Update

60

Qbit=sum(Qdemod) ; %Q channel sumation
Qbit=Qbit∗a ;
Qbits=[Qbits Qbit] ; %Update

end

end

t2=0:Ts :4∗ qt−Ts ; %8 b i t i n t e r v a l
70

%−−−−−−−−−−−−−−−−−−−−−−−−−
%p l o t s
%−−−−−−−−−−−−−−−−−−−−−−−−−
f igure
subplot (4 , 1 , 1)
plot (t2 , Idemods)
t i t l e (’ I channel ’)

subplot (4 , 1 , 2)
80 plot (t2 , Qdemods)

t i t l e (’Q channel ’)

subplot (4 , 1 , 3)
plot (t2 , I b i t s)
t i t l e (’ I channel I n t e g r a t o r Output ’)

subplot (4 , 1 , 4)
plot (t2 , Qbits)
t i t l e (’Q channel I n t e g r a t o r Output ’)

D.9 QAMsim.m 127

D.9 QAMsim.m

0 %Mfi l e QAMsim.m

%Fi l e t h a t s imu la t e s QAM d i g i t a l
%modulat ion and demodulat ion t echn i que

%Written by Danie l Warne
%as par t o f ENG4111/2 − Research Pro jec t

clear a l l
close a l l

10

warning o f f MATLAB: nonIntegerTruncatedInConversionToChar
warning o f f MATLAB: s ingu la rMatr ix
warning o f f MATLAB: divideByZero

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Read in wav f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wav=input (’ Enter wav f i l e name : ’) ;
[Y, FS ,NBITS]=wavread(wav) ;

20 %Y i s sound s i gna l , FS i s sample ra t e in Hertz ,
%and NBITS i s number o f b i t s per sample .

t ic %s t a r t t imer

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Define inpu t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f =1000; %ca r r i e r wave o f 1 kHz
omega=2∗pi∗ f ; %frequency in rad ians / sec

30 qt =0.002; %qt i s the quadb i t time
%This i s the time t ha t t h a t the c a r r i e r uses to r ep r e s en t 4 b i t s
Fs=15000; %sample f requency
Ts=1/Fs ; %sample time
t=0:Ts : qt−Ts ; %quadb i t time vec to r
t1=0:Ts :2∗ qt−Ts ; %8 b i t i n t e r v a l
SL1=length (t1) ; %Length o f 8 b i t number time
SL2=length (t) ; %Length o f quadb i t time

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 %Carr ier O s c i l l a t o r

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I c a r r i e r =1/sqrt (2)∗ cos (omega∗ t) ; %Carr ier f o r I channel
Qcar r i e r=−1/sqrt (2)∗ sin (omega∗ t) ; %Carr ier f o r Q channel

OP= [] ; %Used in d i b i t l oop
decimal = [96 1 5 5] ; %decimal i n t e l l i g e n c e

%−−
50 %Divide s i g n a l Y in to frame s i z e s o f n samples

%and proces s frame by frame .
%−−
n = length (Y) ;
order = 10 ; %order o f p r e d i c t i on
f ramelength =300;
framenum=n/ framelength ; %number o f frames
framenum=ce i l (framenum) ; %round up to neare s t whole i n t e g e r

D.9 QAMsim.m 128

codedaudio = [] ; %coded audio
s t a r t =1; %al l ow co r r e c t p i t c h i n t e r v a l pu l s i n g

60 for k=1:framenum
b=framelength −1; %sp e c i f y frame index ing (index+framelength−1=frame leng th)
a=((k−1)∗ f ramelength)+1; %index in t o o r i g i n a l audio s i g n a l
i f k < framenum %sp e c i f y current frame

frame=Y(a : a+b) ;
end
i f k == framenum %sp e c i f y f i n a l frame

f ramelength=n−(f ramelength ∗(k−1)) ; %leng t h o f f i n a l frame
b=framelength −1;
frame=Y(a : a+b) ;

70 end

%−−
%Ca l cu l a t e r va lues , r0 to r10 , f o r au t o c o r r e l a t i on
%−−
r = [] ; %de f i n e r v e c t o r
for i =0: order ;

r i=sum(frame (1 : framelength−i) . ∗ frame (i +1: f ramelength))/ f ramelength ;
r=[r r i] ;

end
80 r=r ’ ; %column vec to r f o r matrix maths

%−−
%Ca l cu l a t e R matrix o f a u t o c o r r e l a t i on va l u e s
%−−
%f i l l R matrix h o r i z o n t a l l y
for row=1: order %row index

for c o l =1: order %column index
d=co l ;
c=co l+(row−1);

90 i f c > order
break

end
R(row , c)=r (d) ;

end
end
%f i l l R matrix v e r t i c a l l y
for c o l =1:(order −1)

for row=order :−1:1
d=row−(co l −1);

100 i f d == 1
break

end
R(row , c o l)=r (d) ;

end
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e 10 c o e f f i e c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−

110 r r=r (2 : order +1);
c o e f f= inv (R)∗ r r ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e Optimal Pi tch Delay
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f k ˜= framenum %Don’ t c a l c u l a t e p i t c h f o r f i n a l frame because

Rn= [] ; %there may not be a s u i t a b l e number o f samples

D.9 QAMsim.m 129

for delay =20:150; %su i t a b l e range o f d e l a y s
num=sum(frame (de lay +1: f ramelength) . ∗ frame (1 : framelength−delay)) ;

120 den=sqrt (sum(frame (de lay +1: f ramelength) . ˆ 2)) ;
Rnt=num/den ;
Rn=[Rn Rnt] ; %vec to r o f au t o c o r r e l a t i on de l a y s

end
[q , z]=max(Rn) ; %pick out index o f maximised de lay va lue
p i t chde l ay=19+z ; %cor r e c t de l ay va lue (index s t a r t s a t 20)

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Sca le c o e f f i c i e n t s to between 0 and 255

130 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c o e f f 2=c o e f f +5; %Make a l l samples p o s i t i v e
c o e f f 2=c o e f f 2 ∗ (255/10) ; %8 b i t Quant i za t ion
c o e f f 2=round(c o e f f 2) ;
c o e f f 2 =[p i t chde l ay ; c o e f f 2] ; %Inc lude p i t c h de lay
c o e f f 2=real (c o e f f 2) ;

%−−−
%Modulate c o e f f i c i e n t s onto c a r r i e r
%−−−

140

OP= [] ; %Used in quadb i t loop

for i =1: order+1 %Modulate p i t c h de lay and c o e f f i c i e n t s
Recon = [] ; %Vector f o r r e cons t ruc t ed c o e f f i c i e n t s
i n t=c o e f f 2 (i) ; %decimal i n t e l l i g e n c e

%Obtain i n t e l l i g e n c e in b inary form
di=dec2bin (i n t) ; %i n t e l l i g e n c e in (8− b i t) b inary form

150 %−−−
%Allow b inary number to have e i g h t b i t s i s i t i s l e s s than 128
%−−−
l=length (d i) ;
ext ra=8− l ; %Ca l cu l a t e e x t ra ze ro s needed
i f ext ra >= 1

i f ext ra == 1
di =[’ 0 ’ d i] ;

end
i f ext ra == 2

160 di =[’ 00 ’ d i] ;
end
i f ext ra == 3

di =[’ 000 ’ d i] ;
end
i f ext ra == 4

di =[’ 0000 ’ d i] ;
end
i f ext ra == 5

di =[’ 00000 ’ d i] ;
170 end

i f ext ra == 6
di =[’ 000000 ’ d i] ;

end
i f ext ra == 7

di =[’ 0000000 ’ d i] ;
end

end

D.9 QAMsim.m 130

for j =0:1
180 d=j ∗4+1; %index in t o d i g i t a l i n t e l l i g e n c e

I c a r=I c a r r i e r ;
Qcar=Qcar r i e r ;
quadbit=di (d : d+3); %i s o l a t e quadb i t

%−−−−−−−−−−−−−−−−−−−−−
% In−phase (I) channel
%−−−−−−−−−−−−−−−−−−−−−
I b i t 1=bin2dec (quadbit (1)) ; %Def ines ampl i tude
I b i t 2=bin2dec (quadbit (2)) ; %Def ines s i gn

190

Iamp=Ib i t 1 +1; %Amplitude o f I channel s i g n a l

I s i g n=Ib i t 2 ∗2−1; %Sign o f I channel s i g n a l

I c a r=I s i g n .∗ Iamp .∗ I c a r ; %I ca r r i e r s i g n a l

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Quadrature−phase (Q) channel
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

200 Qbit1=bin2dec (quadbit (3)) ; %Def ines ampl i tude
Qbit2=bin2dec (quadbit (4)) ; %Def ines s i gn

Qamp=Qbit1+1; %Amplitude o f Q channel s i g n a l

Qsign=Qbit2∗2−1; %Sign o f Q channel s i g n a l

Qcar=Qsign .∗Qamp.∗Qcar ; %Q ca r r i e r s i g n a l

%−−
210 %Quadbit c a r r i e r

%−−
quadbitcar=I ca r+Qcar ; %quad−b i t c a r r i e r
OP=[OP quadbitcar] ; %t o t a l c a r r i e r

end
end

%˜˜
%˜˜˜˜˜˜˜˜˜˜˜ Transmission ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

220 %˜˜

%−−−
%QAM demodulat ion
%−−−
Recon = [] ; %Recons truc t ion vec t o r

for j =0: order %demodulate each number
s i g=OP(j ∗SL1+1: j ∗SL1+SL1) ; %i s o l a t e por t i on o f s i g n a l

230

%−−
%Carr ier Recovery
%−−
I s i g=cos (omega∗ t) ; %Carr ier recovered f o r I channel
Qsig=−sin (omega∗ t) ; %Carr ier recoverd f o r Q channel

bi = [] ; %Recovered b inary data

D.9 QAMsim.m 131

for i =0:1 %demodulate each quadb i t
240

%−−−−−−−−−−−−−−−−−
%I s o l a t e i n t e r v a l
%−−−−−−−−−−−−−−−−−
qbi=s i g (i ∗SL2+1: i ∗SL2+SL2) ; %qb i=quadb i t i n t e r v a l =4∗ b i t i n t e r v a l

%−−−−−−−−−−−−−−−−−
%Product Modulator
%−−−−−−−−−−−−−−−−−
Idemod=qbi .∗ I s i g ; %I channel demodulat ion

250 Qdemod=qbi .∗Qsig ; %Q channel demodulat ion

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Numerical Sumation (I n t e g r a l)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I b i t=sum(Idemod) ; %I channel sumation
a I b i t=abs (I b i t) ; %Abso lu te va lue

Qbit=sum(Qdemod) ; %Q channel sumation
aQbit=abs (Qbit) ; %Abso lu te va lue

260

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ichanne l convers ion to b inary
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f I b i t > 0 %I channel s i gn

i f a I b i t > 15 %I channel ampl i tude
i d i b i t = ’ 11 ’ ;

else
i d i b i t= ’ 01 ’ ;

end
270 else %I channel s i gn

i f a I b i t > 15 %I channel ampl i tude
i d i b i t = ’ 10 ’ ;

else
i d i b i t = ’ 00 ’ ;

end
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Qchannel convers ion to b inary

280 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f Qbit > 0 %I channel s i gn

i f aQbit > 15 %I channel ampl i tude
qd i b i t = ’ 11 ’ ;

else
qd i b i t= ’ 01 ’ ;

end
else

i f aQbit > 15
qd i b i t = ’ 10 ’ ;

290 else
qd i b i t = ’ 00 ’ ;

end
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Recovered b inary in format ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D.9 QAMsim.m 132

bi =[b i i d i b i t qd i b i t] ;
dn=bin2dec (b i) ; %decimal number

300 end
Recon=[Recon dn] ; %Update decimal c o e f f i c i e n t s

end

p i t chde l ay=Recon (1) ;
Recon=Recon (2 : 1 1) ;
Recon = Recon / (255/10) ; %Sca le back down
Recon = Recon − 5 ; %Allow nega t i v e va l u e s

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
310 %Ca l cu l a t e Exc i t a t i on Vector

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MPE = zeros (framelength , 1) ; %Multi−Pulse Exc i t a t i on
for e x c i t e=s t a r t : p i t chde l ay : f ramelength

MPE(ex c i t e)=1;
end
s t a r t=pi tchde lay −(framelength−e x c i t e) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e new coded audio

320 %−−−−−−−−−−−−−−−−−−−−−−−−−
for nn = 1 : f ramelength
pred (nn) = MPE(nn) ;

for kk = 1 : order
i f ((nn−kk) > 0)

pred (nn) = pred (nn) + Recon (kk)∗ ca (nn−kk) ;
end

end
ca (nn)=pred (nn) ;

end
330

%−−
%Ca l cu l a t e RMS energy and RSM energy norma l i za t ion
%−−
rmsca=sqrt (sum(ca . ˆ2)/ f ramelength) ;
rmsframe=sqrt (sum(frame . ˆ2)/ f ramelength) ;
ga in=rmsframe/rmsca ;
ca=ca∗ gain ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
340 %Play coded audio on every b l o c k

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sound(ca , FS)
codedaudio=[codedaudio ca zeros (length (ca) , 1) ’] ;

end

toc %stop t imer

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
350 %Write Reconstructed waveform to a f i l e

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wavwrite (codedaudio , FS ,NBITS , ’QAMcodedaudio . wav ’) ;

%−−−
%End of QAMsim.m

D.9 QAMsim.m 133

%−−−

D.10 MSKmodulatordemo.m 134

D.10 MSKmodulatordemo.m

0 %M− f i l e MSKmodulatordemo .m
%Fi l e t h a t demonstrates MSK
%d i g i t a l modulation t echn i que

%Written by Danie l Warne
%fo r ENG4111/2 Research Pro jec t

clear a l l
close a l l

10 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Carr ier Waves
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f =1000; %ca r r i e r wave o f 1 KHz
omega=2∗pi∗ f ; %frequency in rad ians / sec
T=1/ f ; %Each b i t in I (t) and Q(t) has a dura t ion o f 2T
t=−T: 0 . 0 0 0 1 : 8 ∗T;
I c a r r i e r=cos (omega∗ t) ; %I−channel c a r r i e r
Qcar r i e r=sin (omega∗ t) ; %Q−channel c a r r i e r
bt=−T: 0 . 0 0 0 1 :T; %b i t time

20 Lbt=length (bt)−1; %Length o f b i t t ime
Lbt1=Lbt /2 ; %Length o f h a l f b i t t ime

%−−−−−−−−−−−−−−−−−−−−−−−−−
%Cosine and s ine f unc t i on s
%−−−−−−−−−−−−−−−−−−−−−−−−−
Tf=4∗T;
f f =1/Tf ; %frequency f o r f unc t i on s
omega2=2∗pi∗ f f ;
cos fun=cos (omega2∗ t) ; %cos ine func t i on

30 s i n fun=sin (omega2∗ t) ; %sine func t i on

i n t =142; %decimal i n t e l l i g e n c e
di=dec2bin (i n t) ; %d i g i t a l i n t e l l i g e n c e in (8− b i t) b inary form

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%I s o l a t e I channel − even numbered b i t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I =[bin2dec (d i (2)) bin2dec (d i (4)) bin2dec (d i (6)) . . .

b in2dec (d i (8))] ;
40 I=I ∗2−1; %Obtain I in po la r form (b inary 1=1 and b inary 0=−1)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%I s o l a t e Q channel − odd numbered b i t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Q=[bin2dec (d i (1)) bin2dec (d i (3)) bin2dec (d i (5)) . . .

b in2dec (d i (7))] ;
Q=Q∗2−1; %Obtain Q in po la r form (b inary 1=1 and b inary 0=−1)

%−−−
50 %1 s t Product Modulators

%−−−
cos fun1=cos fun ;
s in fun1=s in fun ;

for j =0:3

%I channel cos ine func t i on

D.10 MSKmodulatordemo.m 135

cos fun1 (j ∗Lbt+1: j ∗Lbt+Lbt)=I (j +1)∗ cos fun1 (j ∗Lbt+1: j ∗Lbt+Lbt) ;

60 %Q channel s ine func t i on
s in fun1 (j ∗Lbt+Lbt1+1: j ∗Lbt+Lbt1+Lbt)=Q(j +1)∗ s in fun1 (j ∗Lbt+Lbt1+1: j ∗Lbt+Lbt1+Lbt) ;

end

%−−
%2nd Product Modulators
%−−
I channe l=cos fun1 .∗ I c a r r i e r ;
Qchannel=s in fun1 .∗ Qcar r i e r ;

70 %−−−
%Summing Junct ion
%−−−
MSKsignal=Ichanne l+Qchannel ;

%−−−
%Plo t s
%−−−
L=length (t) ;
b i t s=ones (1 ,L) ;

80 I1=b i t s (1 : Lbt)∗ I (1) ; I2=b i t s (Lbt+1:2∗Lbt+1)∗ I (2) ;
I3=b i t s (2∗Lbt+2:3∗Lbt)∗ I (3) ; I4=b i t s (3∗Lbt+1:4∗Lbt)∗ I (4) ;
I b i t s =[I1 I2 I3 I4] ;

Q1=b i t s (Lbt1+1:Lbt1+Lbt)∗Q(1) ; Q2=b i t s (3∗Lbt1+1:3∗Lbt1+Lbt+1)∗Q(2) ;
Q3=b i t s (5∗Lbt1+2:5∗Lbt1+Lbt)∗Q(3) ; Q4=b i t s (7∗Lbt1+1:7∗Lbt1+Lbt)∗Q(4) ;
Qbits=[Q1 Q2 Q3 Q4] ;

f igure
90

subplot (3 , 1 , 1)
plot (t (1 : 4∗ Lbt) , I b i t s)
t i t l e (’ I (t) ’)

subplot (3 , 1 , 2)
plot (t (1 : L−Lbt1−1) , cos fun1 (1 : L−Lbt1−1)) ;
t i t l e (’ Cosine Function ’)

100

subplot (3 , 1 , 3)
plot (t (1 : L−Lbt1−1) , I channe l (1 : L−Lbt1−1))
t i t l e (’ I Car r i e r ’)
hold
plot (t (1 : L−Lbt1−1) , cos fun (1 :L−Lbt1−1) , ’ : ’) ; %Plot enve lope
plot (t (1 : L−Lbt1−1),− cos fun (1 :L−Lbt1−1) , ’ : ’) ; %Plot enve lope

f igure
110

subplot (3 , 1 , 1)
plot (t (Lbt1+1:7∗Lbt1+Lbt) , Qbits)
t i t l e (’Q(t) ’)

subplot (3 , 1 , 2)
plot (t (Lbt1+1:7∗Lbt1+Lbt) , s in fun1 (Lbt1+1:7∗Lbt1+Lbt))

D.10 MSKmodulatordemo.m 136

t i t l e (’ S ine Function ’)

120 subplot (3 , 1 , 3)
plot (t (Lbt1+1:7∗Lbt1+Lbt) , Qchannel (Lbt1+1:7∗Lbt1+Lbt))
t i t l e (’Q Car r i e r ’)
hold
plot (t (Lbt1+1:7∗Lbt1+Lbt) , s i n fun (Lbt1+1:7∗Lbt1+Lbt) , ’ : ’) ; %Plot enve lope
plot (t (Lbt1+1:7∗Lbt1+Lbt) ,− s i n fun (Lbt1+1:7∗Lbt1+Lbt) , ’ : ’) ; %Plot enve lope

f igure

plot (t , MSKsignal)
130 t i t l e (’MSK Signa l ’)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%End of MSKmodulatordemo .m
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D.11 MSKsim.m 137

D.11 MSKsim.m

0 %MSKsim.m
%Program tha t s imu la t e s MSK
%modulation and demodulat ion t echn i que

%Implemented as OQPSK techn ique

%Written by Danie l Warne
%fo r ENG4111/2 Research Pro jec t

clear a l l
10 close a l l

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Read in wav f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wav=input (’ Enter wav f i l e name : ’) ;
[Y, FS ,NBITS]=wavread(wav) ;
%Y i s sound s i gna l , FS i s sample ra t e in Hertz ,
%and NBITS i s number o f b i t s per sample .

20 t ic %s t a r t t imer

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Carr ier Waves
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f =1000; %ca r r i e r wave o f 1 KHz
omega=2∗pi∗ f ; %frequency in rad ians / sec
T=1/ f ; %Each b i t in I (t) and Q(t) has a dura t ion o f 2T
t=−T: 0 . 0 0 0 1 : 8 ∗T;
Lt=length (t) ; %Length o f time vec t o r

30 I c a r r i e r=cos (omega∗ t) ; %I−channel c a r r i e r
Qcar r i e r=sin (omega∗ t) ; %Q−channel c a r r i e r
bt=−T: 0 . 0 0 0 1 :T; %b i t time
Lbt=length (bt)−1; %Length o f b i t t ime
Lbt1=Lbt /2 ; %Length o f h a l f b i t t ime

%−−−−−−−−−−−−−−−−−−−−−−−−−
%Cosine and s ine f unc t i on s
%−−−−−−−−−−−−−−−−−−−−−−−−−
Tf=4∗T;

40 f f =1/Tf ; %frequency f o r f unc t i on s
omega2=2∗pi∗ f f ;
cos fun=cos (omega2∗ t) ; %cos ine func t i on
s i n fun=sin (omega2∗ t) ; %sine func t i on

%−−
%Divide s i g n a l Y in to frame s i z e s o f n samples
%and proces s frame by frame .
%−−
n = length (Y) ;

50 order = 10 ; %order o f p r e d i c t i on
f ramelength =300;
framenum=n/ framelength ; %number o f frames
framenum=ce i l (framenum) ; %round up to neare s t whole i n t e g e r
codedaudio = [] ; %coded audio
s t a r t =1; %al l ow co r r e c t p i t c h i n t e r v a l pu l s i n g
for k=1:framenum

b=framelength −1; %sp e c i f y frame index ing (index+framelength−1=frame leng th)

D.11 MSKsim.m 138

a=((k−1)∗ f ramelength)+1; %index in t o o r i g i n a l audio s i g n a l
i f k < framenum %sp e c i f y current frame

60 frame=Y(a : a+b) ;
end
i f k == framenum %sp e c i f y f i n a l frame

f ramelength=n−(f ramelength ∗(k−1)) ; %leng t h o f f i n a l frame
b=framelength −1;
frame=Y(a : a+b) ;

end

%−−
%Ca l cu l a t e r va lues , r0 to r10 , f o r au t o c o r r e l a t i on

70 %−−
r = [] ; %de f i n e r v e c t o r
for i =0: order ;

r i=sum(frame (1 : framelength−i) . ∗ frame (i +1: f ramelength))/ f ramelength ;
r=[r r i] ;

end
r=r ’ ; %column vec to r f o r matrix maths

%−−
%Ca l cu l a t e R matrix o f a u t o c o r r e l a t i on va l u e s

80 %−−
%f i l l R matrix h o r i z o n t a l l y
for row=1: order %row index

for c o l =1: order %column index
d=co l ;
c=co l+(row−1);
i f c > order

break
end
R(row , c)=r (d) ;

90 end
end
%f i l l R matrix v e r t i c a l l y
for c o l =1:(order −1)

for row=order :−1:1
d=row−(co l −1);
i f d == 1

break
end
R(row , c o l)=r (d) ;

100 end
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e 10 c o e f f i e c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−
r r=r (2 : order +1);
c o e f f= inv (R)∗ r r ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
110 %Ca l cu l a t e Optimal Pi tch Delay

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f k ˜= framenum %Don’ t c a l c u l a t e p i t c h f o r f i n a l frame because

Rn= [] ; %there may not be a s u i t a b l e number o f samples
for delay =20:150; %su i t a b l e range o f d e l a y s

num=sum(frame (de lay +1: f ramelength) . ∗ frame (1 : framelength−delay)) ;
den=sqrt (sum(frame (de lay +1: f ramelength) . ˆ 2)) ;
Rnt=num/den ;

D.11 MSKsim.m 139

Rn=[Rn Rnt] ; %vec to r o f au t o c o r r e l a t i on de l a y s
end

120 [q , z]=max(Rn) ; %pick out index o f maximised de lay va lue
p i t chde l ay=19+z ; %cor r e c t de l ay va lue (index s t a r t s a t 20)

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Sca le c o e f f i c i e n t s to between 0 and 255
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c o e f f 2=c o e f f +5; %Make a l l samples p o s i t i v e
c o e f f 2=c o e f f 2 ∗ (255/10) ; %8 b i t Quant i za t ion
c o e f f 2=round(c o e f f 2) ;

130 c o e f f 2 =[p i t chde l ay ; c o e f f 2] ; %Inc lude p i t c h de lay
c o e f f 2=real (c o e f f 2) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Modulate c o e f f i c i e n t s onto c a r r i e r
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MSKsignal = [] ;

for i =1: order+1
in t=c o e f f 2 (i) ; %decimal i n t e l l i g e n c e

140

%Obtain i n t e l l i g e n c e in b inary form
di=dec2bin (i n t) ; %i n t e l l i g e n c e in (8− b i t) b inary form

%−−−
%Allow b inary number to have e i g h t b i t s i s i t i s l e s s than 128
%−−−
l=length (d i) ;
ext ra=8− l ; %Ca l cu l a t e e x t ra ze ro s needed
i f ext ra >= 1

150 i f ext ra == 1
di =[’ 0 ’ d i] ;

end
i f ext ra == 2

di =[’ 00 ’ d i] ;
end
i f ext ra == 3

di =[’ 000 ’ d i] ;
end
i f ext ra == 4

160 di =[’ 0000 ’ d i] ;
end
i f ext ra == 5

di =[’ 00000 ’ d i] ;
end
i f ext ra == 6

di =[’ 000000 ’ d i] ;
end
i f ext ra == 7

di =[’ 0000000 ’ d i] ;
170 end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%I s o l a t e I channel − even numbered b i t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I =[bin2dec (d i (2)) bin2dec (d i (4)) bin2dec (d i (6)) . . .

b in2dec (d i (8))] ;

D.11 MSKsim.m 140

%Change to decimal 1 and 0 to a l l ow maths opera t i ons
I=I ∗2−1; %Obtain I in po la r form (b inary 1=1 and b inary 0=−1)

180

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%I s o l a t e Q channel − odd numbered b i t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Q=[bin2dec (d i (1)) bin2dec (d i (3)) bin2dec (d i (5)) . . .

b in2dec (d i (7))] ;
%Change to decimal 1 and 0 to a l l ow maths opera t i ons
Q=Q∗2−1; %Obtain Q in po la r form (b inary 1=1 and b inary 0=−1)

%−−−
190 %1 s t Product Modulators

%−−−
cos fun1=cos fun ;
s in fun1=s in fun ;

for j =0:3

%I channel cos ine func t i on
cos fun1 (j ∗Lbt+1: j ∗Lbt+Lbt)=I (j +1)∗ cos fun1 (j ∗Lbt+1: j ∗Lbt+Lbt) ;

200 %Q channel s ine func t i on
s in fun1 (j ∗Lbt+Lbt1+1: j ∗Lbt+Lbt1+Lbt)=Q(j +1)∗ s in fun1 (j ∗Lbt+Lbt1+1: j ∗Lbt+Lbt1+Lbt) ;

end

%−−
%2nd Product Modulators
%−−
I channe l=cos fun1 .∗ I c a r r i e r ;
Qchannel=s in fun1 .∗ Qcar r i e r ;

210 %−−−
%Summing Junct ion
%−−−
MSKsig=Ichanne l+Qchannel ;
MSKsignal=[MSKsignal MSKsig] ; %Update MSK s i g n a l

end

220 %˜˜˜
%˜˜˜˜˜˜˜Transmission ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%˜˜˜

%−−
% MSK Demodulation
%−−

%−−
%Carr ier Recovery

230 %−−
I c a r r i e r=cos (omega∗ t) ; %I−channel c a r r i e r
Qcar r i e r=sin (omega∗ t) ; %Q−channel c a r r i e r
cos fun=cos (omega2∗ t) ; %cos ine func t i on
s i n fun=sin (omega2∗ t) ; %sine func t i on

Recon = [] ; %Recons truc t ion vec t o r

D.11 MSKsim.m 141

for j =0: order %demodulate each 8 b i t number

240 bi = [] ; %binary va lue o f c o e f f i c i e n t

MSKsig=MSKsignal (j ∗Lt+1: j ∗Lt+Lt) ;
%−−
%1 s t Product Modulators
%−−
Idemod1=MSKsig .∗ I c a r r i e r ;
Qdemod1=MSKsig .∗ Qcar r i e r ;

%−−
250 %Low Pass F i l t e r s

%−−
f t I=f f t (Idemod1) ; %Frequency domain o f I modulated s i g n a l
ftQ=f f t (Qdemod1) ; %Frequency domain o f Q modulated s i g n a l

%Remove h i ghe r f requency components
f t I (5 : length (f t I)−5)=0;
ftQ (5 : length (ftQ)−5)=0;

%Change back to time domain
260 Idemod2= i f f t (f t I) ;

Qdemod2= i f f t (ftQ) ;

%Remove complex components t ha t were crea t ed from rounding
Idemod2=real (Idemod2) ;
Qdemod2=real (Qdemod2) ;

%−−
%2nd Product Modulators
%−−

270 Idemod3=Idemod2 .∗ cos fun ;
Qdemod3=Qdemod2 .∗ s i n fun ;

%−−−
%In t e g r a t o r s and Threshold Detec tors
%−−−
I = [] ;
for time = −0 .001 :0 .002 :0 .007 ;

a=find (t >= time & t < (time +0 .002)) ;
i n t i=sum(Idemod3 (a) . ∗ 0 . 0 0 1) ;

280 i f i n t i > 0
b i t = ’ 1 ’ ;

else
b i t = ’ 0 ’ ;

end
I = [I b i t] ;

end

Q= [] ;
for time =0 . 0 0 0 : 0 . 0 0 2 : 0 . 0 0 8 ;

290 a=find (t >= time & t <(time +0 .002)) ;
in tq=sum(Qdemod3(a) . ∗ 0 . 0 0 1) ;
i f i n tq > 0

b i t = ’ 1 ’ ;
else

b i t = ’ 0 ’ ;
end
Q = [Q b i t] ;

D.11 MSKsim.m 142

end

300 bi =[Q(1) I (1) Q(2) I (2) Q(3) I (3) Q(4) I (4)] ;
dec=bin2dec (b i) ; %decimal number
Recon=[Recon dec] ; %Recovered decimal data f o r frame

end

p i t chde l ay=Recon (1) ;
Recon=Recon (2 : 1 1) ;
Recon = Recon / (255/10) ; %Sca le back down

310 Recon = Recon − 5 ; %Allow nega t i v e va l u e s

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e Exc i t a t i on Vector
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MPE = zeros (framelength , 1) ; %Multi−Pulse Exc i t a t i on
for e x c i t e=s t a r t : p i t chde l ay : f ramelength

MPE(ex c i t e)=1;
end
s t a r t=pi tchde lay −(framelength−e x c i t e) ;

320

%−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e new coded audio
%−−−−−−−−−−−−−−−−−−−−−−−−−
for nn = 1 : f ramelength
pred (nn) = MPE(nn) ;

for kk = 1 : order
i f ((nn−kk) > 0)

pred (nn) = pred (nn) + Recon (kk)∗ ca (nn−kk) ;
end

330 end
ca (nn)=pred (nn) ;

end

%−−
%Ca l cu l a t e RMS energy and RSM energy norma l i za t ion
%−−
rmsca=sqrt (sum(ca . ˆ2)/ f ramelength) ;
rmsframe=sqrt (sum(frame . ˆ2)/ f ramelength) ;
ga in=rmsframe/rmsca ;

340 ca=ca∗ gain ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Play coded audio on every b l o c k
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sound(ca , FS)
codedaudio=[codedaudio ca zeros (length (ca) , 1) ’] ;

end

350 toc %stop t imer

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Write Reconstructed waveform to a f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wavwrite (codedaudio , FS ,NBITS , ’MSKcodedaudio . wav ’) ;

D.12 FIRcoeffPD.m 143

D.12 FIRcoeffPD.m

0 %FIRcoeffPD .m
%f i l t e r c o e f f i c i e n t s f o r phase d e t e c t o r

%Written by Danie l Warne
%fo r Research Pro jec t ENG 4111/2

%M− f i l e to c a l c u l a t e f i l t e r c o e f f i c i e n t s f o r
%band pass f i l t e r f o r phase d e t e c t o r
%Frequency range = 200 Hz to 2000 Hz
%Sampling f requency = 10000 Hz

10

%Uses mirror method

%Frequency sampling method

%Reference John Leis (2002)
%D i g i t a l S i gna l Process ing p 202

%c l o s e a l l
%c l e a r a l l

20

%Desired f requency range = 200Hz to 2000Hz

%1000 samples are used
%500 i s e q u i v a l e n t to f s /2 = 5000Hz
k=−500:500;

N=length (k) ;
Mag=zeros (1 , length (k)) ;
%Magnitudes o f d e s i r e d f requency response

30

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Define Limits
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

fLow=20; %Lower f requency l im i t
%20 samples equa te s to 200 Hz
fHigh =200; %Higher f requency l im i t
%200 samples equa te s to 2000 Hz

40

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Define Gain
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% 0 to f s /2
index = find ((k >= fLow) & (k <= fHigh)) ;
Mag(index)= 1 ;

% − f s /2 to 0 mirror image
50 index = find ((k >= −fHigh) & (k <= −fLow)) ;

Mag(index)= 1 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e c o e f f i c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%h = c o e f f i c i e n t va l u e s

D.12 FIRcoeffPD.m 144

Order=201; %Order shou ld be odd
lowlim=−(Order−1)/2; %Lower l im i t

60 highl im=(Order−1)/2; %Higher l im i t

C=1/(N−1);
w=(2∗pi∗k)/ (N−1);
for n=lowlim : highl im

h(n−lowlim+1)= C∗sum(Mag.∗exp(j ∗n∗w)) ;
end

h=real (h) ;
subplot (2 , 1 , 1)

70 stem(h)
t i t l e (’ F i l t e r C o e f f i c i e n t s ’)
subplot (2 , 1 , 2)
h=h(highl im +1:Order) ;
stem(h)
t i t l e (’ F i l t e r C o e f f i c i e n t s de layed by (Order−1)/2 ’)

D.13 DigitalFilter.m 145

D.13 DigitalFilter.m

0 function y = D i g i t a l F i l t e r (h , waveform) ;

% D i g i t a l F i l t e r .m

%Written by Danie l Warne
%fo r Research Pro jec t ENG 4111/2

%Works in conjunc t ion wi th FIRcoeffPD .m and other
%other f i l t e r c o e f f i c i e n t c a l c u l a t i n g programs

10 %INPUTS: Co e f f i c i e n t s and waveform to be f i l t e r e d
%OUTPUT: F i l t e r e d waveform

close a l l

Coef f=h ; %F i l t e r c o e f f i c i e n t s
Order=length (h) ;

%subp l o t (2 ,1 ,1)
%p l o t (waveform) %Plo t o r i g i n a l waveform

20 %t i t l e (’ Or i g ina l Waveform ’) ;
%y i s output f i l t e r e d waveform

for n=1: length (waveform)
y (n)=0;
for k=0:Order−1

i f (n−k) > 0
y (n)= y(n) + Coef f (k+1)∗waveform (n−k) ;
end

end
30 end

%subp l o t (2 ,1 ,2)
%p l o t (y) %Plo t f i l t e r e d waveform
%t i t l e (’ F i l t e r e d Waveform ’) ;

D.14 LPFcoeff.m 146

D.14 LPFcoeff.m

0 %M− f i l e LPFcoeff .m
%ca l c u l a t e f i l t e r c o e f f i c i e n t s f o r Loop f i l t e r

%Written by Danie l Warne f o r
%Research Pro jec t ENG4111/2

%M− f i l e to c a l c u l a t e f i l t e r c o e f f i c i e n t s f o r
%D i g i t a l low pass f i l t e r

%Uses mirror method
10

%Frequency sampling method

%Reference John Leis (2002)
%D i g i t a l S i gna l Process ing p 202

%c l o s e a l l
%c l e a r a l l

%Desired f requency range = 0 to 100Hz
20

%1000 samples are used
%500 i s e q u i v a l e n t to f s /2 = 5000Hz
k=−500:500;

N=length (k) ;
Mag=zeros (1 , length (k)) ;
%Magnitudes o f d e s i r e d f requency response

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 % Define Limits

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

fLow=0; %Lower f requency l im i t
fHigh =10; %Higher f requency l im i t
%10 samples equa te s to 100 Hz

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Define Gain

40 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% 0 to f s /2
index = find ((k >= fLow) & (k <= fHigh)) ;
Mag(index)= 1 ;

%− f s /2 to 0 mirror image
index = find ((k >= −fHigh) & (k <= −fLow)) ;
Mag(index)=1;

50

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e c o e f f i c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%c = c o e f f i c i e n t va l u e s

Order=201; %Order shou ld be odd
lowlim=−(Order−1)/2; %Lower l im i t

D.14 LPFcoeff.m 147

highl im=(Order−1)/2; %Higher l im i t

60 C=1/(N−1);
w=(2∗pi∗k)/ (N−1);
for n=lowlim : highl im

c (n−lowlim+1)= C∗sum(Mag.∗exp(j ∗n∗w)) ;
end

c=real (c) ;
subplot (2 , 1 , 1)
stem(c)
t i t l e (’ F i l t e r C o e f f i c i e n t s ’)

70 subplot (2 , 1 , 2)
c=c (highl im : Order) ;
stem(c)
t i t l e (’ F i l t e r C o e f f i c i e n t s de layed by (Order−1)/2 ’)

D.15 NCO.m 148

D.15 NCO.m

0 %Fi l e name : NCO.m

%program tha t performs numer ica l l y
%c on t r o l l e d o s c i l l a t o r f unc t i on .

%Written by Danie l Warne
%fo r Research Pro jec t ENG4111/2

%Input : S i gna l from d i g i t a l f i l t e r ; pas t count o f samples
%Output : Sca led s i g n a l

10

%I n i t i a l c ond i t i on s
%f =1000; %Defined in PLL.m
%oldcount =10; %Defined in PLL.m
%change=1; %Defined in PLL.m

clock =0:1/10000 :0 . 2 ; %c lo c k pu l s e s

%Find maximum va lue o f s i g n a l a f t e r
%i n i t i a l s t a b i l i z i n g time

20 m=max(y (2 0 0 : 3 0 0)) ;

%Count how many samples in one per iod o f y

i f m > 0 . 1 5 ;
%Only a l l ow f r e qu en c i e s wi th s u i t a b l e gain to be l o cked

count1=0; %Allow p o s i t i v e zero c ro s s i n g f i r s t
stop1 =0;
stop2 =0;

30

for i =2:400
a=y(i) ;
b=y(i −1);
i f a >= 0 & b < 0 & stop1 == 0 ; %f ind p o s i t i v e zero c ro s s i n g

count1=i ;
stop1 =1;
a=0; b=0;

end
i f count1 > 0 ;

40 i f a >= 0 & b < 0 & stop2 == 0 ; %f ind next p o s i t i v e zero c ro s s i n g
count2=i ;
stop2 =1;

end
end

end
newcount=count2−count1 ;

%Ca l cu l a t e change
i f change==1 %Ind i ca t e an inc rea se in f requency

50 f r e q=(1+oldcount /newcount)∗ f r e q ; %New frequency
end

i f change==0 %Ind i ca t e a decrease in f requency
f r e q=(1−oldcount /newcount)∗ f r e q ; %New frequency
end

Os c i l l a t o r=sin (2∗pi∗ f r e q ∗clock) ;

D.15 NCO.m 149

pha s e s h i f t=changecount+1−(counta −1);
O s c i l l a t o r=Os c i l l a t o r (pha s e s h i f t : pha s e s h i f t +999); %cor r e c t phase

60

end

%Count how many samples in one per iod o f
%o s c i l l a t o r f o r next loop

index1=0; %Allow p o s i t i v e zero c ro s s i n g f i r s t
stop1 =0;
stop2 =0;

70

for q=2:100
a=Os c i l l a t o r (q) ;
b=Os c i l l a t o r (q−1);
i f a >= 0 & b < 0 & stop1 == 0 %f ind p o s i t i v e zero c ro s s i n g

index1=q ;
stop1 =1;
a=0; b=0; %Make sure the next c r o s s i n g i s d e t e c t e d

end
i f index1 > 0 ;

80 i f a >= 0 & b < 0 & stop2 == 0 ; %f ind next p o s i t i v e zero c ro s s i n g
index2=q ;
stop2 =1;

end
end

end
oldcount=index2−index1 ;

D.16 PLL.m 150

D.16 PLL.m

0 %PLL.m

%Program tha t combines phase de t ec to r ,
%d i g i t a l f i l t e r , and NCO to c r ea t e PLL

%Written by Danie l Warne
%fo r Research Pro jec t ENG4111/2

%Inputs : Input Waveform
%Output : Locked on waveform when at a s u i t a b l e f requency

10

%I n i t i a l Condi t ions : For Phase Dectec tor
%Define l o c a l o s c i l l a t o r : 1 kHz , sampled at 10 kHz
t =0:1/10000:0.1−1/10000;
O s c i l l a t o r=cos (2∗pi ∗1000∗ t) ;

%I n i t i a l Condi t ions : For D i g i t a l l y Con t ro l l ed O s c i l l a t o r
f r e q =1000;
o ldcount =10;
%Number o f samples in one c y c l e o f 1 kHz wave sampled at 10 kHz

20

%F i l t e r Co e f f i c i e n t s
FIRcoeffPD ; %Coe f f i c i e n t s f o r band pass f i l t e r denoted by h
LPFcoeff ; %Coe f f i c i e n t s f o r low pass f i l t e r denoted by c

PLLoutput = [] ;

for j =1:1000: length (InputS igna l) ; %Break the input s i g n a l v e c t o r down
waveform=InputS igna l (j : j +999);

30 %−−−−−−−−−−−−−−−
%Phase d e t e c t o r
%−−−−−−−−−−−−−−−
PDsig1=D i g i t a l F i l t e r (h , waveform) ; %Band Pass F i l t e r

%c a l c u l a t e change va lue
counta=0; %Allow f i r s t p o s i t i v e zero c ro s s i n g f i r s t
stop1 =0;
stop2 =0;

40 for i =2:400
a=PDsig1 (i) ;
b=PDsig1 (i −1);
i f a >= 0 & b < 0 & stop1 == 0 ; %f ind p o s i t i v e zero c ro s s i n g

counta=i ;
stop1 =1;
a=0; b=0;

end
i f counta > 0 ;

i f a >= 0 & b < 0 & stop2 == 0 ; %f ind next p o s i t i v e zero c ro s s i n g
50 countb=i ;

stop2 =1;
end

end
end
changecount=countb−counta ;
i f changecount <= oldcount

change = 1 ; %Increase in f requency

D.16 PLL.m 151

end

60 i f changecount > oldcount
change = 0 ; %Decrease in f requency

end

PDout=PDsig1 .∗ Os c i l l a t o r ; %PD output

%−−−−−−−−−−−−−−−−−−−−−
%Loop D i g i t i a l F i l t e r
%−−−−−−−−−−−−−−−−−−−−−
y=D i g i t a l F i l t e r (c , PDout) ; %Low pass F i l t e r

70

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Numerica l ly Con t ro l l ed O s c i l l a t o r
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NCO;

%output from NCO i s O s c i l l a t o r

end

D.17 SquaringLoop.m 152

D.17 SquaringLoop.m

0 %SquaringLoop .m

%Program tha t implements a squar ing
%loop f o r BPSK demodulat ion

%Written by Danie l Warne
%fo r Research Pro jec t ENG4111/2

%Inputs : Modulated BPSK s i g n a l
%Output : Recovered c a r r i e r

10

l en=length (OP) ; %leng t h o f BPSK s i g n a l f o r a p a r t i c u l a r b l o c k

%−−
%Band Pass F i l t e r − I s o l a t e a l o c k on range
%−−
fOP=D i g i t a l F i l t e r (h ,OP) ; %f i l t e r the t ransmis s ion stream
%fOP = f i l t e r e d output

20

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Square
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Square=fOP . ˆ 2 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Remove DC term and low power no i se
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f t=f f t (Square) ; %Frequency Domain

30

f t (1 : 20)=0 ; %Remove low terms
indx = find (abs (f t) < 100) ; %Remove low power terms
f t (indx)=0;

%time domain
S1= i f f t (f t) ;

%remove complex components caused by rounding
S1=real (S1) ; %phase d i f f e r e n c e s i g n a l

40

S1gain=1/max(S1) ;
S1=S1∗S1gain ; %make ampl i tude equa l to 1

%−−−−−−−−−−−−−−−−−−−−−−−−
%ca l c u l a t e change va lue
%−−−−−−−−−−−−−−−−−−−−−−−−

counta=0; %Allow f i r s t p o s i t i v e zero c ro s s i n g f i r s t
stop1 =0;

50 stop2 =0;

for i =2:400
a=S1 (i) ;
b=S1 (i −1);
i f a >= 0 & b < 0 & stop1 == 0 ; %f ind p o s i t i v e zero c ro s s i n g

counta=i ;
stop1 =1;

D.17 SquaringLoop.m 153

a=0; b=0;
end

60 i f counta > 0 ;
i f a >= 0 & b < 0 & stop2 == 0 ; %f ind next p o s i t i v e zero c ro s s i n g

countb=i ;
stop2 =1;

end
end

end

changecount=countb−counta ;
i f changecount <= oldcount

70 change = 1 ; %Increase in f requency
end

i f changecount > oldcount
change = 0 ; %Decrease in f requency

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Mu l i t p l i e r
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

80 Mul=S1 .∗Osc (1 : l en) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Loop F i l t e r − Low Pass
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d i f f 1=D i g i t a l F i l t e r (h2 , Mul) ;
%i s o l a t e d i f f e r e n c e f requency

%Remove DC term
f t d=f f t (d i f f 1) ; %Frequency Domain

90

f t d (1)=0; %Remove DC term

%time domain
d i f f= i f f t (f td) ;

%remove complex components caused by rounding
d i f f=real (d i f f) ; %phase d i f f e r e n c e s i g n a l

%−−−
100 %DCO or NCO

%−−−
SNCO

%−−−
%Down Sca le
%−−−
Cfreq=f r e q /2 ; %Carr ier f r e q
Rcar r i e r=cos (2∗pi∗Cfreq ∗clock) ; %Recovered Carr ier
Rcar r i e r=Rcar r i e r (1 : l en) ;

D.18 BPFcoeff.m 154

D.18 BPFcoeff.m

0 %BPFcoeff .m
%f i l t e r c o e f f i c i e n t s f o r band pass f i l t e r
%at r e c e i v e r input

%Written by Danie l Warne
%fo r Research Pro jec t ENG 4111/2

%M− f i l e to c a l c u l a t e f i l t e r c o e f f i c i e n t s f o r
%band pass f i l t e r
%Frequency range = 300 Hz to 3000 Hz

10 %Sampling f requency = 20000 Hz

%Uses mirror method

%Frequency sampling method

%Reference John Leis (2002)
%D i g i t a l S i gna l Process ing p 202

%Desired f requency range = 300Hz to 3000Hz
20

%a va r i a b l e number o f samples are used
l en=length (OP) ;
%len /2 i s e q u i v a l e n t to f s /2 = 10000Hz
%(l en /2)/3.33 i s e q u i v a l e n t to 3000Hz
%(l en /2)/33.33 i s e q u i v a l e n t to 300Hz
k=−l en : l en ;

N=length (k) ;
Mag=zeros (1 , length (k)) ;

30 %Magnitudes o f d e s i r e d f requency response

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Define Limits
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

fLow=round ((l en / 2) / 3 3 . 3) ; %Lower f requency l im i t
%approx imate ly 300Hz

40 fHigh=round ((l en / 2) / 3 . 3 3) ; %Higher f requency l im i t
%approx imate ly 3000Hz

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Define Gain
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% 0 to f s /2
index = find ((k >= fLow) & (k <= fHigh)) ;

50 Mag(index)= 1 ;

% − f s /2 to 0 mirror image
index = find ((k >= −fHigh) & (k <= −fLow)) ;
Mag(index)= 1 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e c o e f f i c i e n t s

D.18 BPFcoeff.m 155

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%h = c o e f f i c i e n t va l u e s

60

Order=201; %Order shou ld be odd
lowlim=−(Order−1)/2; %Lower l im i t
highl im=(Order−1)/2; %Higher l im i t

C=1/(N−1);
w=(2∗pi∗k)/ (N−1);
for n=lowlim : highl im

h(n−lowlim+1)= C∗sum(Mag.∗exp(j ∗n∗w)) ;
end

70

h=real (h) ;
h=h(highl im +1:Order) ;

D.19 LPFcoeffSL.m 156

D.19 LPFcoeffSL.m

0 %LPFcoeffSL .m
%f i l t e r c o e f f i c i e n t s f o r low pass f i l t e r
%in squar ing loop .

%Written by Danie l Warne
%fo r Research Pro jec t ENG 4111/2

%M− f i l e to c a l c u l a t e f i l t e r c o e f f i c i e n t s f o r
%low pass f i l t e r
%Frequency range = 500 Hz and down

10 %Sampling f requency = 20000 Hz

%Uses mirror method

%Frequency sampling method

%Reference John Leis (2002)
%D i g i t a l S i gna l Process ing p 202

%c l o s e a l l
20 %c l e a r a l l

%Desired f requency range = 500Hz and down

%a v a r i a b l e number o f samples are used
l en=length (OP) ;
%len /2 i s e q u i v a l e n t to f s /2 = 10000Hz
%(l en /2)/20 i s e q u i v a l e n t to 500Hz
k=−l en : l en ; %su i t a b l e range

30 N=length (k) ;
Mag=zeros (1 , length (k)) ;
%Magnitudes o f d e s i r e d f requency response

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Define Limits
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

fHigh=round ((l en /2)/20) ; %Lower f requency l im i t
%approx imate ly 500Hz

40

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Define Gain
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% 0 to f s /2
index = find ((k <= fHigh) & (k >= 0)) ;
Mag(index)= 1 ;

50 % − f s /2 to 0 mirror image
index = find ((k >= −fHigh) & (k <= 0)) ;
Mag(index)= 1 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e c o e f f i c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%h2 = c o e f f i c i e n t va l u e s

D.19 LPFcoeffSL.m 157

Order=201; %Order shou ld be odd
60 lowlim=−(Order−1)/2; %Lower l im i t

highl im=(Order−1)/2; %Higher l im i t

C=1/(N−1);
w=(2∗pi∗k)/ (N−1);
for n=lowlim : highl im

h2 (n−lowlim+1)= C∗sum(Mag.∗exp(j ∗n∗w)) ;
end

h2=real (h2) ;
70 h2=h2 (highl im +1:Order) ;

D.20 SNCO.m 158

D.20 SNCO.m

0 %Fi l e name : SNCO.m

%program tha t performs numer ica l l y
%c on t r o l l e d o s c i l l a t o r f unc t i on .

%Written by Danie l Warne
%fo r Research Pro jec t ENG4111/2

%Input : S i gna l from d i g i t a l f i l t e r ; pas t count o f samples
%Output : Sca led s i g n a l

10

%I n i t i a l c ond i t i on s
%f =2000; %Defined in CoherentBPSKsim .m
%oldcount =10; %Defined in CoherentBPSKsim .m
%change=1; %Defined in CoherentBPSKsim .m

clock =0:1/20000 :0 . 4 ; %c lo c k pu l s e s

%Find maximum va lue o f s i g n a l a f t e r
%i n i t i a l s t a b i l i z i n g time

20 m=max(d i f f (2 0 0 : 3 0 0)) ;

%Count how many samples in one per iod o f y

i f m > 0 . 1 ;
%Only a l l ow f r e qu en c i e s wi th s u i t a b l e gain to be l o cked

count1=0; %Allow p o s i t i v e zero c ro s s i n g f i r s t
stop1 =0;
stop2 =0;

30

for i =2:400
a=d i f f (i) ;
b=d i f f (i −1);
i f a >= 0 & b < 0 & stop1 == 0 ; %f ind p o s i t i v e zero c ro s s i n g

count1=i ;
stop1 =1;
a=0; b=0;

end
i f count1 > 0 ;

40 i f a >= 0 & b < 0 & stop2 == 0 ; %f ind next p o s i t i v e zero c ro s s i n g
count2=i ;
stop2 =1;

end
end

end
newcount=count2−count1 ;

%Ca l cu l a t e change
i f change==1 %Ind i ca t e an inc rea se in f requency

50 f r e q=(1+oldcount /newcount)∗ f r e q ; %New frequency
end

i f change==0 %Ind i ca t e a decrease in f requency
f r e q=(1−oldcount /newcount)∗ f r e q ; %New frequency
end

Osc=cos (2∗pi∗ f r e q ∗clock) ;

D.20 SNCO.m 159

end

60

%Count how many samples in one per iod o f
%o s c i l l a t o r f o r next loop

index1=0; %Allow p o s i t i v e zero c ro s s i n g f i r s t
stop1 =0;
stop2 =0;

for q=2:100
a=Osc (q) ;

70 b=Osc (q−1);
i f a >= 0 & b < 0 & stop1 == 0 %f ind p o s i t i v e zero c ro s s i n g

index1=q ;
stop1 =1;
a=0; b=0; %Make sure the next c r o s s i n g i s d e t e c t e d

end
i f index1 > 0 ;

i f a >= 0 & b < 0 & stop2 == 0 ; %f ind next p o s i t i v e zero c ro s s i n g
index2=q ;
stop2 =1;

80 end
end

end
oldcount=index2−index1 ;

D.21 CoherentBPSKsim.m 160

D.21 CoherentBPSKsim.m

0 %M− f i l e CoherentBPSKsim .m
%Fi l e t h a t s imu la t e s coherent BPSK
%d i g i t a l modulation t echn i que

%Written by Danie l Warne
%fo r Research Pro jec t EMG4111/2

clear a l l
close a l l

10 warning o f f MATLAB: nonIntegerTruncatedInConversionToChar
warning o f f MATLAB: s ingu la rMatr ix
warning o f f MATLAB: divideByZero

%I n i t i a l Condi t ions : For D i g i t a l l y Con t ro l l ed O s c i l l a t o r
f r e q =2000;
o ldcount =10;
%Number o f samples in one c y c l e o f 2 kHz wave sampled at 20 kHz

20 %I n i t a l O s c i l l a t o r f o r squar ing loop
clock =0 : 0 . 0 0 005 : 0 . 4 ;
Osc=cos (2∗pi ∗2000∗ clock) ;
%Define O s c i l l a t o r at 2kHz

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Read in wav f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
wav=input (’ Enter wav f i l e name : ’) ;

30 [Y, FS ,NBITS]=wavread(wav) ;
%Y i s sound s i gna l , FS i s sample ra t e in Hertz ,
%and NBITS i s number o f b i t s per smaple .

t ic %s t a r t t imer

%−−
%Carr ier O s c i l l a t o r
%−−
omega=2∗pi ∗1100 ; %Carr ier f requency = 1000 Hz

40 Tb=2∗(1/1100); %b i t time
t1 =0:0 .00005 :Tb−0.00005; %sample f requency = 20000Hz
%t1 i s the b i t time . Require 2 c y c l e s o f c a r r i e r
%to d i s p l a y one b i t .

c a r r i e r=cos (omega∗ t1) ; %Carr ier
SL=length (c a r r i e r) ;

OP=ones (1 ,88∗SL) ; %needed f o r f i l t e r s p e c i f i c a t i o n s

50 BPFcoeff ;
%Ca l cu l a t e c o e f f i c i e n t s f o r band pass f i l t e r a t r e c i e v e r
%des i gna t ed by h

LPFcoeffSL ;
%Ca l cu l a t e c o e f f i c i e n t s f o r low pass f i l t e r in squar ing loop
%des i gna t ed by h2

D.21 CoherentBPSKsim.m 161

%−−
%Divide s i g n a l Y in to frame s i z e s o f n samples

60 %and proces s frame by frame .
%−−
n = length (Y) ;
order = 10 ; %order o f p r e d i c t i on
f ramelength =300;
framenum=n/ framelength ; %number o f frames
framenum=ce i l (framenum) ; %round up to neare s t whole i n t e g e r
codedaudio = [] ; %coded audio
s t a r t =1; %al l ow co r r e c t p i t c h i n t e r v a l pu l s i n g
for k=1:framenum

70 b=framelength −1; %sp e c i f y frame index ing (index+framelength−1=frame leng th)
a=((k−1)∗ f ramelength)+1; %index in t o o r i g i n a l audio s i g n a l
i f k < framenum %sp e c i f y current frame

frame=Y(a : a+b) ;
end
i f k == framenum %sp e c i f y f i n a l frame

f ramelength=n−(f ramelength ∗(k−1)) ; %leng t h o f f i n a l frame
b=framelength −1;
frame=Y(a : a+b) ;

end
80

%−−
%Ca l cu l a t e r va lues , r0 to r10 , f o r au t o c o r r e l a t i on
%−−
r = [] ; %de f i n e r v e c t o r
for i =0: order ;

r i=sum(frame (1 : framelength−i) . ∗ frame (i +1: f ramelength))/ f ramelength ;
r=[r r i] ;

end
r=r ’ ; %column vec to r f o r matrix maths

90

%−−
%Ca l cu l a t e R matrix o f a u t o c o r r e l a t i on va l u e s
%−−
%f i l l R matrix h o r i z o n t a l l y
for row=1: order %row index

for c o l =1: order %column index
d=co l ;
c=co l+(row−1);
i f c > order

100 break
end
R(row , c)=r (d) ;

end
end
%f i l l R matrix v e r t i c a l l y
for c o l =1:(order −1)

for row=order :−1:1
d=row−(co l −1);
i f d == 1

110 break
end
R(row , c o l)=r (d) ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e 10 c o e f f i e c i e n t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−

D.21 CoherentBPSKsim.m 162

r r=r (2 : order +1);
c o e f f= inv (R)∗ r r ;

120

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e Optimal Pi tch Delay
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f k ˜= framenum %Don’ t c a l c u l a t e p i t c h f o r f i n a l frame because

Rn= [] ; %there may not be a s u i t a b l e number o f samples
for delay =20:150; %su i t a b l e range o f d e l a y s

num=sum(frame (de lay +1: f ramelength) . ∗ frame (1 : framelength−delay)) ;
den=sqrt (sum(frame (de lay +1: f ramelength) . ˆ 2)) ;
Rnt=num/den ;

130 Rn=[Rn Rnt] ; %vec to r o f au t o c o r r e l a t i on de l a y s
end
[q , z]=max(Rn) ; %pick out index o f maximised de lay va lue
p i t chde l ay=19+z ; %cor r e c t de l ay va lue (index s t a r t s a t 20)

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Sca le c o e f f i c i e n t s to between 0 and 255
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c o e f f 2=c o e f f +5; %Make a l l samples p o s i t i v e

140 c o e f f 2=c o e f f 2 ∗ (255/10) ; %8 b i t Quant i za t ion
c o e f f 2=round(c o e f f 2) ;
c o e f f 2 =[p i t chde l ay ; c o e f f 2] ;
c o e f f 2=real (c o e f f 2) ;

%−−−
%Modulate c o e f f i c i e n t s onto c a r r i e r
%−−−

OP= [] ; %Used in d i b i t l oop
150

for i =1: order+1 %Modulate p i t c h de lay and c o e f f i c i e n t s
Recon = [] ; %Vector f o r r e cons t ruc t ed c o e f f i c i e n t s
i n t=c o e f f 2 (i) ; %decimal i n t e l l i g e n c e

%Obtain i n t e l l i g e n c e in b inary form
di=dec2bin (i n t) ; %i n t e l l i g e n c e in (8− b i t) b inary form

%−−−
%Allow b inary number to have e i g h t b i t s i s i t i s l e s s than 128

160 %−−−
l=length (d i) ;
ext ra=8− l ; %Ca l cu l a t e e x t ra ze ro s needed
i f ext ra == 1

di =[’ 0 ’ d i] ;
end
i f ext ra == 2

di =[’ 00 ’ d i] ;
end
i f ext ra == 3

170 di =[’ 000 ’ d i] ;
end
i f ext ra == 4

di =[’ 0000 ’ d i] ;
end
i f ext ra == 5

di =[’ 00000 ’ d i] ;
end

D.21 CoherentBPSKsim.m 163

i f ext ra == 6
di =[’ 000000 ’ d i] ;

180 end
i f ext ra == 7

di =[’ 0000000 ’ d i] ;
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%BPSK modulation
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for j =1:8
190 b i t c a r r i e r=c a r r i e r ; %ca r r i e r f o r each b i t

b i t=di (j) ; %I s o l a t e b i t
b i t=bin2dec (b i t) ; %Change to a decimal number
i f b i t == 0

b i t c a r r i e r = −b i t c a r r i e r ;
%Only i n v e r t s i g n a l i f b i t i s zero or −1 in po la r form

end
OP=[OP b i t c a r r i e r] ; %Transmission o f speech parameters

end
end

200

%˜˜
%˜˜˜˜˜˜˜˜˜˜ Transmission ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
%˜˜

%−−
%BPSK demodulat ion
%−−

210 SquaringLoop ;
%Program tha t band pass f i l t e r s incoming s i g n a l s and recove r s the c a r r i e r wave

%−−
%Product Modulator
%−−
PMout=fOP .∗ Rcar r i e r ; %PMout= Product Modulator Output

%−−
%Ca l cu l a t e number o f samples in b i t time .

220 %−−
Tb=2∗(1/Cfreq) ; %b i t time ; Cfreq i s c a r r i e r f requency
b i t t ime =0:0 .00005 :Tb−0.00005; %sample f requency = 20000Hz
%Require 2 c y c l e s o f c a r r i e r to d i s p l a y one b i t .
num=length (b i t t ime) ; %20000 i s c l o c k f requency

bi = [] ; %recovered b inary in format ion

for sym=1:num: length (fOP) ;
230

i f sym+num−1 <= length (PMout) %avoid index e r ro r s
%−−
%I s o l a t e Symbol time i n t e r v a l f o r b i t
%−−
SI=PMout(sym : sym+num−1); %Symbol i n t e r v a l

%−−

D.21 CoherentBPSKsim.m 164

%In t e g r a t i on or Numerical Summation
%−−

240 Int=sum(SI) ;

%−−
%Binary Recovery
%−−
Sbi t=sign (Int) ; %Greater than 0=1; l e s s than 0=−1
%Sign o f b i t

i f Sbi t == −1
b i t = ’ 0 ’ ; %Allow −1 to equa l b inary zero

250 else
b i t = ’ 1 ’ ; %Change to s t r i n g

end

else
b i t == ’ 0 ’ %I f problem occurs l e t b i t = 0 ;

end

bi =[b i b i t] ; %Recovered b inary in format ion f o r b l o c k
Lbi=length (b i) ; %Check to see i f number i s complete

260 i f Lbi == 8 ;
sample = bin2dec (b i) ;
Recon = [Recon sample] ;
b i = [] ;

end
LR=length (Recon) ; %Check to see i f c o e f f i c i e n t s are ready
i f LR == order+1

p i t chde l ay=Recon (1) ;
Recon1=Recon (2 : (order +1)) ;
Recon = Recon1 / (255/10) ; %Sca le back down

270 Recon = Recon − 5 ; %Allow nega t i v e va l u e s
end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e Exc i t a t i on Vector
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MPE = zeros (framelength , 1) ; %Multi−Pulse Exc i t a t i on
for e x c i t e=s t a r t : p i t chde l ay : f ramelength

MPE(ex c i t e)=1;
280 end

s t a r t=pi tchde lay −(framelength−e x c i t e) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−
%Ca l cu l a t e new coded audio
%−−−−−−−−−−−−−−−−−−−−−−−−−
for nn = 1 : f ramelength
pred (nn) = MPE(nn) ;

for kk = 1 : order
290 i f ((nn−kk) > 0)

pred (nn) = pred (nn) + Recon (kk)∗ ca (nn−kk) ;
end

end
ca (nn)=pred (nn) ;

end

%−−

D.21 CoherentBPSKsim.m 165

%Ca l cu l a t e RMS energy and RSM energy norma l i za t ion
%−−

300 rmsca=sqrt (sum(ca . ˆ2)/ f ramelength) ;
rmsframe=sqrt (sum(frame . ˆ2)/ f ramelength) ;
ga in=rmsframe/rmsca ;
ca=ca∗ gain ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Play coded audio on every b l o c k
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sound(ca , FS)
codedaudio=[codedaudio ca zeros (length (ca) , 1) ’] ;

310

end

toc %stop t imer

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Write Reconstructed waveform to a f i l e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%wavwrite (codedaudio ,FS ,NBITS, ’ CoherentBPSKcodedaudio . wav ’) ;

