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The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

 

Abstract 
 

 

The oxides of nitrogen (NOx) are airborne pollutants that result from the combustion 

of pulverised coal. The aim of this project is to identify operational methods that 

reduce the NOx emissions from a coal fired boiler whilst maintaining satisfactory 

performance. 

 

This project describes important combustion properties and the processes occurring 

during the combustion of pulverised coal. Detail is provided on the pulverisation 

plant, draught plant and steam system of a large utility boiler. The dominant NOx 

formation mechanisms in coal fired boilers are discussed and NOx reduction 

strategies applicable to these boilers are described. Engineering models are 

developed to describe initial flame temperature, furnace residence times, furnace 

heat pickup and thermal NOx formation.  

 

A series of tests were designed and undertaken to measure and assess the effect on 

NOx  formation and boiler performance to variations in:- 

 

• The distribution of secondary air to each windbox, and 

• The level of excess oxygen measure at the boiler exit. 

 

During each test the following was undertaken:- 

 

• Detailed temperature survey of the furnace region 

• Coal sampling for laboratory analysis 

• Fly Ash sampling to determine loss of ignition 

• Logs of relevant data to determine plant performance 

 

Difficulties and shortcomings regarding the predictive models are discussed and the 

performance of the boiler under each test is compared. 
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1.1 Introduction 
 

Australia is highly dependent on fossil fuels for the production of electricity with the 

Australian Bureau of Statistics (1999) reporting 89% of electricity is generated from 

the burning of coal.  There are numerous pollutants created from the combustion of 

coal which include carbon dioxide (CO2), sulphur dioxide (SO2) as well as nitric 

oxide (NO) and nitrogen dioxide (NO2) which are collectively known as NOx.   

 

This project concentrates on gaining an understanding of the factors contributing to 

NOx emissions and investigates how variations in operational parameters affect the 

emissions.  The testing component of the project was undertaken on a 350 megawatt 

(MW) coal fired boiler at Stanwell Power Station in Central Queensland. 

 

Even though there is an emergence of environmentally friendly power generation 

methods, namely geothermal and tidal as well as the existing “green” methods of 

hydro, solar and wind, Australians will continue to rely on coal for power generation 

well into the foreseeable future.  Therefore this project has particular relevance in 

today’s environmentally conscious society. 

 

 

1.2 Statement of Problem 
 

The formation of NOx is an inevitable result of burning pulverised coal due to 

inherent nitrogen in both the fuel and in the air used to support combustion.  There 

are numerous techniques available to reduce NOx emissions, with many of these 

techniques involving substantial capital investment.  This project investigates 

operational methods, that is, those that do not involve capital investment or 

modification to plant, to reduce NOx emissions.  

 

The reduction of NOx emissions often results in a decline in plant efficiency.  This 

project aims to identify and test the effect on emissions and performance as the 

boiler is operated under various operational configurations.   
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1.3 Aim 
 

The aim of this project is to identify and implement different boiler operational 

configurations and test whether these techniques are effective in the minimisation of 

NOx emissions, whilst still satisfying boiler operational requirements. 

 

 

1.4 Objectives 
 

The objectives to achieve this aim include:- 

 

• Describe coal characteristics and the sequence of processes a coal particle 

undergoes during combustion in a pulverised fuel (PF) boiler. 

• Describe boiler plant operation and limitations including fuel delivery and 

pulverisation, air, gas and steam plant. 

• Determine various combustion properties including stoichiometric air 

requirements, initial flame temperature, residence time/s and equilibrium 

combustion products. 

• Describe the mechanisms responsible for the formation of NOx during 

combustion and use the combustion properties to build a model to predict 

thermal NOx production.  

• Identify and describe the present methods used in the reduction of NOx in PF 

boilers. 

• Design and undertake baseline testing of the NOx produced under present 

operation. Implement different operational factors and assess any effect on 

the NOx produced.  
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1.5 Overview 
 

1.5.1 Chapter 2 – Environmental and Economic Considerations 

 

Chapter 2 discusses acid pollution and its effect on the environment.  It also looks at 

the Kyoto Agreement and Australia’s refusal to ratify the requirements of the 

Agreement.  This Chapter also discusses the economic considerations of enforcing 

pollution control measures. 

 

 

1.5.2 Chapter 3 – Coal Analysis and Boiler Plant 

 

Chapter 3 provides details on the ranking of coal by the American Society for 

Testing and Materials and the various analyses of coal including Proximate Analysis, 

Ultimate Analysis and Specific Energy.  This Chapter also looks at the machinery 

utilised in boiler plant operations including the water and steam plant, draught plant 

as well as fuel and combustion plant. 

 

 

1.5.3 Chapter 4 – Coal Combustion Principles 

 

Chapter 4 details the processes as pulverised coal enters the combustion zone of the 

furnace. Information is also provided on principles useful when dealing with 

combustion problems including mole and mass fractions, atom balances and 

equivalence ratios. 

  

 

1.5.4 Chapter 5 - NOX Creation Mechanisms and Control 

 

Chapter 5 discusses the mechanisms responsible for NOx formation in a pulverised 

coal boiler specifically fuel NOx and thermal NOx. Technology available to limit 

NOx emissions from boiler plant are described in detail.  
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1.5.5 Chapter 6 – Engineering Models 

 

In Chapter 6 a number of engineering models are developed to describe factors 

influential to NOx formation and plant performance. These include furnace residence 

times, flame temperature, furnace heat pickup and thermal NOx formation.  

 

 

1.5.6 Chapter 7 – Testing 

 

Chapter 7 describes the variables of interest that were monitored during testing. The 

apparatus used to measure NOx emissions, flame temperature and flue gas loss of 

ignition are described in detail. Other test information including method for 

determination of excess oxygen, the data used to determine furnace heat pickup and 

the location of test points throughout the furnace region are described. The set up, 

specific requirements, assumptions and boiler conditioning requirements for each 

test are detailed.  

 

 

1.5.7 Chapter 8 – Results 

 

Chapter 8 compares the results obtained for each of the tests. A series of graphs are 

created to allow quick comparison of some of the variables of interest. Explanations 

for discrepancies between predicted and actual values are offered and the positive 

results coming from the tests are mentioned. 

  

 

1.5.8 Chapter 9 – Conclusion 

 

Chapter 9 provides a summary of what the project has achieved. 
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1.6 Risk Assessment 
 

This project involved both field work and office work and there were risks 

associated with both of these.  All testing was carried out at Stanwell Power Station 

whilst the research and reporting was carried out both in a work and home 

environment.  

 

Table 1.1 details the control measures undertaken to minimise the identified hazards 

during the testing stage. Hazards that required management in the research and 

reporting phase included back and eye strain issues. These hazards were controlled 

by adopting good posture and taking regular breaks. There was also a risk of losing 

the data and write ups performed, so multiple copies were kept of important data at 

all times. 

 
 

Risk Source Hazard Control Measures 

Thermal Burns from furnace 
exhaust gases 

Sleeves to be rolled down, welding 
gloves and facemasks to be worn 
while performing tests. 

Thermal Dehydration Water bottle to be kept on hand. 

Noise Damaged hearing Suitable hearing protection to be worn 
at all times. 

Kinetic Foreign objects in eyes Eye protection to be worn at all times. 

Environment Trips and falls Ensure adequate lighting is installed at 
test points. 

 
Table 1.1 – Risk Assessment and Control Measures 
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2.1 Environmental Impacts 

 
2.1.1 Acid Pollution 

 

Acid pollution is a side effect of our heavy reliance on fossil fuels. Whenever coal, 

oil or natural gas is burned, sulphur dioxide and nitrogen oxides are released into the 

atmosphere where they undergo a series of chemical processes that turn them into 

acids. All rainfall is slightly acidic as a result of sulphur, nitrogen and carbon dioxide 

occurring naturally in the air, however acidification has become much worse ever 

since the advent of the industrial revolution (McCormick, 1997). 

 

As McCormick (1997) states, acid pollutants have numerous environmental effects 

including damaging trees, plants and crops, contributing to the decline in freshwater 

animal and plant life, acidifying soils, rivers and lakes and not to mention the threat 

to human health.  However the problem exists that “while the general process of acid 

damage is well established and proven, the mechanisms by which the damage 

occurs, and the relative contribution of the different components of acid pollution 

and other natural or man-made factors, are still debated” (McCormick, 1997, p21).   

This presents a problem for not only scientists but also policymakers as without a 

clear understanding of how and why the damage occurs, it is difficult to agree on 

workable policies.  As a result, the government and industries are reluctant to finance 

pollution control measures when there is often no certainty about which pollutants 

are causing what kind of damage (McCormick, 1997).  Through national and 

international research programmes, more certain answers are being provided to these 

questions, however few programmes have been operating for more than 10 to 15 

years making it difficult to establish long term trends (McCormick, 1997). 

 

 

2.1.2 NOx and the Environment 

 

As mentioned above, NOX is generated in complex mechanisms during the high 

temperature combustion of coal, oil and gas fuels.  Motor vehicle emissions are the 

primary producer of NOX whilst power generation, petrol refining, food 
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manufacturing, gas and wood heaters, cigarette smoke, lightning storms and 

bushfires also contribute to the problem.  Although not the primary producer of 

NOX, the contribution made by electricity generators still accounts for a significant 

proportion of total NOX and its overall contribution to global pollution cannot be 

ignored. 

 

In a coal fired boiler the quantity and composition of the nitrogen oxides depends on 

how the combustion of the fuel takes place. In general, by lowering the combustion 

temperature and reducing the time the combustion products reside in the combustion 

chamber can reduce NOX formation.  By doing so however generally affects the 

efficiency of the plant. The level of NOX emissions that power generators can 

produce are dictated to them by the Environmental Protection Authority under the 

Environmental Protection Act 1994.  Power generators have the task of balancing 

environmental factors versus plant efficiency and economic considerations. 

 

 

2.2 Economic Considerations 

 
The Kyoto Agreement, signed in the Japanese city of Kyoto in 1997, is aimed at 

reducing the emissions from carbon based fuels into the atmosphere.  It is believed 

that these emissions as well as the release of other gases is a source of global 

warming and other changes in the climate worldwide (Hot Enough For You?, 2002).  

The United States has withdrawn entirely from the Kyoto process even though it is 

the world’s leading contributor of greenhouse gases.  Recently, Australian Prime 

Minister John Howard also refused to ratify the requirements of the Agreement 

(Howard Stands Firm Against Kyoto, 2004) on the grounds that abiding by the terms 

of the Agreement would cost jobs and damage the economy through the loss of 

important markets to non-signatory countries such as Indonesia.  Dodson & Gordon 

(2002, p1) suggest that “ratifying the Kyoto Protocol is seen by the government as 

imposing the risk of economic penalties on resource exporters, which would not be 

faced by other countries signing it, such as China and India”.  This in turn would 

mean the loss of industries from Australia to countries like China and India that do 

not have the same restrictions under Kyoto as Australia would have. 
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It is also reported that the emissions target for Australia under Kyoto is demonstrably 

tougher than that for most countries.  This is due to the increasing prevalence of 

emissions intensive industries in the Australian economy and because of our 

relatively fast rate of population growth (Daley, 2000).  Much of the industrial plant 

in Australia was designed with little thought given to emission control as at the time 

there were no legislative requirements to abide by. Achieving compliance may 

require implementation of expensive retrofit technology and/or reductions in the 

capacity of existing plant. These measures effectively increase the price of 

Australian manufactured goods and services and places Australian based companies, 

both locally and foreign owned, at an economic disadvantage. This is especially the 

case given Australia’s main competitors do not have any commitments under Kyoto 

(Daley, 2000). 

 

In reality, pollution control measures equate to additional costs in the production of 

goods and services and puts Australia at a competitive disadvantage compared to 

countries refusing to abide by any pollution standards. 
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Coal Analysis and Boiler Plant 

3
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3.1 Coal Analysis 
 
3.1.1 Rank 

 

Coal can be divided into two major groups of constituents:- 

 

1. The parts that when combusted liberate substantial energy in an exothermic 

reaction;  and  

 

2. Those that do not contribute to the combustion process.  

 

The physical and chemical properties of coal vary for different coals and for 

convenience the different types are classified by rank. The American Society for 

Testing and Materials (ASTM) classification system ranks coals according to their 

fixed carbon content and specific energy. Table 3.1 details the variation of coal 

properties with ASTM rank.  

 

 
 

 
 
Table 3.1 – ASTM Classification of Coal by Rank 
(Source: Juniper, 1999, p7) 
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3.1.2 Proximate Analysis 

 

The proximate analysis of coal determines the quantity of moisture, ash, volatile 

matter and fixed carbon in a coal sample. These quantities are determined 

gravimetrically and involve the following steps:- 

 

1. The air dried moisture content is determined by spreading out the sample 

and allowing it to dry in the lab atmosphere. A moisture determination is 

then carried out by heating the sample to between 105°C and 110°C in an 

atmosphere of nitrogen. 

 

2. The ash content is the inorganic residue of the sample after it is incinerated 

at 815°C in an atmosphere containing excess oxygen. 

 

3. The volatile matter is determined as the loss in mass, corrected for moisture, 

which occurs when the sample is heated in an inert atmosphere to a 

temperature of 900°C for seven minutes. 

 

4. The fixed carbon content is calculated by subtracting the total of the 

percentages of the air dried moisture, ash and volatile matter. 

 

 

3.1.3 Ultimate Analysis 

 

The ultimate analysis is performed to determine the main organic constituents in the 

coal and is reported on a mass basis. Various standard laboratory procedures are used 

to obtain quantities of carbon, hydrogen, nitrogen and sulphur with the oxygen 

content taken as the balance of the elements. 
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3.1.4 Specific Energy 

 

The specific energy (SE) refers to the amount of energy that is liberated during 

combustion per unit mass of coal. There are two ways to express the specific energy, 

the Gross SE and the Net SE, the difference being the amount of heat required to 

evaporate the water already present in the coal as well as the water formed from the 

combustion of hydrogen. Laboratories normally report the Gross SE of the coal. The 

Net SE can be calculated using the following formula:- 

 







 +−=

100
9

100
42.2 22 HOHSESE grossnet    (MJ/kg)  ( 3.1 ) 

 
 where: SE = Specific Energy (MJ/kg) as received) 
  H2O = Moisture Content (% as received) 
  H2 = Hydrogen Content (% as received) 

   
The Gross SE can be calculated from the ultimate analysis of the coal using the 

Dulong formula. The results from this calculation are usually within 1.5% of the 

measured value for bituminous and anthracitic coals. The formula is:- 

 

SOHCSE 42.9
8

25.14483.33 +





 −+=    (MJ/kg)  ( 3.2 ) 

 

where C, H, O and S = fractions of carbon, hydrogen, oxygen and sulphur.   

 

Table 3.2 details a typical coal analysis for a bituminous coal.  

 

 



Chapter 3 – Coal Analysis and Boiler Plant  15 
 

 
 

The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

 
Table 3.2 – Analysis of a Typical Australian Coal 

(Source: Juniper, 1999, p14) 

 

 

There are numerous other qualities of coal that can be tested including ash fusion 

temperatures, grindability and abrasion indexes and trace element analysis. These 

qualities were not described in any detail in this project. 

 

 

3.2 Boiler Plant Description 

 
3.2.1 Introduction 

 

The boilers used at Stanwell Power Station are a single drum radiant type 

manufactured by Babcock-Hitachi. At maximum continuous rating they evaporate 

297.7 kilograms of water per second. The design pressure of the boiler is 19,890 kPa 

(gauge) and the main steam pressure and temperature are 17,569 kPa (gauge) and 

541˚C respectively. The steam produced in the boiler is used to drive the high, 

intermediate and low pressure turbines at 3,000 rpm providing 350 MWe at full load. 

Figure 3.1 provides an example of a boiler similar in construction to the Stanwell 

boiler. 

 



Chapter 3 – Coal Analysis and Boiler Plant  16 
 

 
 

The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

 
 
Figure 3.1 – General Boiler Arrangement 

(Source:  Babcock & Wilcox, 1992, p40) 
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3.2.2 Water and Steam Plant 
 

The water/steam circuit comprises the following major items of plant:- 

 

Economiser 

 

The economiser section of the boiler comprises banks of horizontal finned tubes 

located in the rear pass of the boiler. Heat from the flue gases is transferred by 

convection to the feedwater passing through the tubes. The economiser is the last 

element of the boiler that extracts heat from the flue gas prior to the gas passing out 

of the boiler and through the air heaters. Feedwater is delivered to the economiser 

section by boiler feed pumps via a series of high pressure heaters. The economiser 

serves the purpose of heating the feedwater prior to delivery to the drum and as such 

results in less energy required to transform the feedwater to steam resulting in 

improved thermal efficiency. 

 

Boiler Drum 

 

The boiler drum is a large cylindrical vessel located at the top of the boiler. The 

major connections to the drum allow for:- 

 

 Incoming feedwater from the economiser 

 Incoming water-steam mixture from the boiler water walls and screen wall 

 Incoming chemical dosing lines 

 Outgoing downcomers which deliver water to headers located at the bottom 

of the boiler prior to entering the water walls 

 Outgoing saturated steam to the superheaters 

 

Figure 3.2 details a typical cross section of a boiler steam drum. 
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Figure 3.2 - Cross Section of Steam Drum 

(Source:  Babcock & Wilcox, 1992, p5-13) 

 

 

The main function of the drum is to perform effective separation of the water and 

steam. Efficient separation is achieved by installing mechanical devices such as 

cyclone separators and scrubbers. Separation of the water-steam mixture is critical in 

most boiler applications in order to:- 

 

 Prevent thermal damage to the superheaters by water droplet carryover 

 Minimise the amount of steam entrained in the water entering the 

downcomers thus reducing the effective hydraulic pumping head of the 

circulation system 

 Prevent solids dissolved in water droplets entrained in the steam from 

damaging the superheaters and turbine 

 

The circulation of the water steam mixture in the Stanwell boiler is achieved through 

natural circulation. As Figure 3.3 shows, water containing no steam flows down the 
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unheated downcomers. As heat is added to the boiler tubes a water-steam mixture is 

formed that has a density lower than that of the water. By this mechanism gravity 

causes the denser water to force the water-steam mixture back into the drum. In other 

systems circulation may be achieved by the installation of circulation pumps 

(Babcock & Wilcox, 1992). 

 

 

 

 
 
Figure 3.3 – Natural and Forced Circulation Systems 

(Source:  Babcock & Wilcox, 1992, p1-7)  

 

 

Furnace Water Walls 

 

The furnace water walls absorb the heat made available from the combustion of 

pulverised fuel. The dominant mode of combustion in this region is radiation. The 

front, rear and side water walls emerge from a series of headers located at the bottom 

of the boiler that are fed from the downcomers. Figure 3.4 shows how the water 

walls are formed around the burner area. 

 

The water walls consist of panels of tubes joined by membrane bars spaced at close 

centres to maximise heat absorption as shown in Figure 3.5. The size of the furnace 
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and hence the projected area of the water wall tubes is determined so as to allow 

complete combustion of the fuel and also to allow enough heat to be absorbed from 

the flue gas so that the temperature of the flue gases entering the convection zone of 

the boiler is acceptable. 

 

 

 
 
Figure 3.4 - Membrane Water Wall Construction showing Pulverised Fuel Burner Openings 

(Source:  Babcock & Wilcox, 1992, p18-6) 

 

 

 

 
Figure 3.5 – Water Wall Tubes 

(Source:  Babcock & Wilcox, 1992, p18-6) 

 



Chapter 3 – Coal Analysis and Boiler Plant  21 
 

 
 

The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

 

Superheaters 

 

The superheaters are heat exchange devices of either pendant or bank type that 

increase the temperature of the saturated steam. Increasing the temperature of the 

steam at constant pressure improves the quality of the steam and permits its use in 

the high pressure turbine. It is important that enough superheat is added to the steam 

so that water droplets are not formed on the turbine blades resulting in damage to the 

blades. 

 

Reheaters 

 

Reheaters are similar in design to superheaters but differ in the fact that they operate 

at lower pressures (Babcock & Wilcox, 1992). Steam, still above the saturation line, 

flows from the high pressure turbine into the reheat system where superheat enthalpy 

is added to the steam prior to use in the intermediate and low pressure turbines.  

 

 

3.2.3 Draught Plant 

 
Forced Draught Fans 

 

The forced draught fans supply air to the furnace for combustion of the pulverised 

coal. The fans are a constant speed axial type with variable pitch blades that control 

the amount of air delivered to the furnace. The fan blade pitch is governed by the 

amount of excess oxygen in the flue gas. As the excess oxygen level ranges above or 

below the required set point, the blade pitch is decreased or increased resulting in the 

required amount of air being available for combustion.  

 

The air supplied from the forced draught fans, termed secondary air, passes through 

the air heater where it is heated to approximately 330ºC before passing through the 

windbox dampers and air registers and into the furnace.  
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Primary Air Fans 

 

The primary air fans are centrifugal type fans that take air from the outlet of the 

forced draught fans and are used to supply air to the mills. After passing through the 

air heater the primary air is combined with unheated tempering air to dry the coal in 

the mills and transport the pulverised fuel to the furnace. The mixing of the hot 

primary air and the unheated tempering air is performed using dampers prior to entry 

to the mill.  The position of these dampers is controlled to maintain a mill outlet 

temperature of 90ºC. The primary air carrying the pulverised fuel to the furnace 

generally accounts for 20% of the required combustion air.  

 

Induced Draught Fans 

 

The induced draught fans are a centrifugal style of fan that remove the combustion 

gases from the furnace. A variable inlet vane on the fan is used to control the furnace 

pressure to –0.2 kPa (gauge). This slight vacuum is maintained to prevent hot gases, 

unburnt fuel or ash escaping from the furnace. At full load the two (2) induced 

draught fans are capable of removing over 450 kg/s of waste gas. 

 

Air Heaters 

 

Rotary regenerative air heaters are used to heat the primary and secondary air before 

the air passes into the mills or furnace. Heat is extracted from the flue gases as they 

pass out from the boiler over banks of finned elements contained within the air 

heater. As the hood arrangement rotates, heat is transferred to the air passing over the 

heated fins. The gas inlet temperature to the air heaters is approximately 380°C. The 

heat transfer to the elements drops the temperature by around 244°C to 136ºC. 

Excess heat transfer needs to be avoided as damage to downstream equipment will 

result if the dew point is reached resulting in the formation of sulphuric acid. 
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3.2.4 Fuel and Combustion Plant 

 

Feeders and Mills 

 

Coal feeders deliver “As Received” coal from the coal bunkers to the pulverisers 

using a gravimetric weighing process. The mass of the coal on the coal feeder belt is 

determined using load cells. This measurement is multiplied by the belt speed to give 

a coal flow in kilograms per second. A 350 MW unit operating at full load typically 

operates with four mills in service, each mill grinding approximately 8.5 kilograms 

per second of coal.   

 

Within the pulveriser, in this case a vertical spindle mill, the coal is crushed to a 

mass mean size of about 50 µm, roughly the diameter of a human hair, to ensure 

rapid combustion within the furnace. Essentially all of the particles are less than 300 

µm. The size distribution follows the Rosin-Rammler distribution (Borman & 

Ragland, 1998) as depicted in Figure 3.6. 

 

 
 

Figure 3.6 – Rosin-Rammler Chart for Pulverised Coal 

(Source: Borman & Ragland, 1998, p508) 
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Burners and Windboxes 

 

The combined fuel-primary air mixture is transported from the pulveriser, after 

passing through the classifying system, to the pulverised fuel burners.  The velocity 

of the fuel-air mixture in the delivery pipes must exceed 15 m/s to avoid settling of 

pulverised fuel in any horizontal sections of pipe. At the burner nozzle the velocity 

of the fuel-air mixture must exceed the speed of flame propagation so as to avoid 

flashback. The flame speed is dependent on the fuel-air ratio, particle size 

distribution, tube diameter, air preheat, and volatile matter and ash in the coal. Figure 

3.7 shows typical flame speeds for mixtures of sub-bituminous pulverised coal and 

air.  

 

 

 
 

Figure 3.7 – Typical Flame Speeds for Sub-Bituminous Pulverised Coals and Air 

(Source:  Borman & Ragland, 1998, p510) 
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The burner also contains an oil gun which burns fuel oil and is used for first light in 

the furnace after an extended period out of service and also to assist in the ignition of 

the coal particles if the coal flame becomes unstable.  

 

The secondary air supply provides the bulk of the air required for combustion and is 

delivered to the windboxes at a velocity of approximately 40 m/s and at a 

temperature of approximately 330°C. The secondary air is introduced to the furnace 

through the secondary air vanes of the air register, refer Figure 3.8, which impart a 

swirl on the air about the burner axis (Juniper, 2000). 

 

 
Figure 3.8 – Swirl Burner 

(Source:  Juniper, 2000, p61) 

 

 

This technique has long been used to increase flame stability and the intensity of 

combustion and results in a shorter and wider flame. The increase in ignition stability 

is due to an axial recirculation vortex which carries burning gases back towards the 
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burner where they become entrained in the primary fluid prior to ignition. Figure 3.9 

details the flow path of the combustion products in a typical burner. 

 

 

 
Figure 3.9 – Aerodynamic Flow Pattern in a Swirl Burner 

(Source:  Juniper, 2000, p62) 
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4.1 Introduction  

 
Borman and Ragland (1998) describe combustion as the rapid conversion of 

chemical energy to sensible energy. This process involves a transformation of 

reactants (fuels and oxidizers) to the products of combustion.  During the 

transformation there is no alteration of the nuclei of the reactants, however the 

creation or destruction of bonds involving the electrons of the molecules takes place. 

This process may cause heat to be liberated or heat may be required to form the 

bonds. When a chemical reaction liberates heat it is termed an exothermic reaction 

whereas where energy is absorbed, it is termed endothermic.   

 

In the case of a pulverised fuel boiler, the energy derived from an exothermic 

reaction can be exploited and used in the generation of steam.   

 

 

4.2 Pulverised Coal Combustion within a Furnace 

 
Juniper (2000) describes the processes that occur when a coal particle is combusted 

in a pulverised fuel (PF) boiler as follows:- 

 

• Release and combustion of volatile matter 

• Combustion of the residual char 

• Release of the mineral matter 

 

When a 100µm coal particle passes through a burner nozzle into a 1,400°C flame 

zone the particle reaches 400°C in around one (1) ms and 1,000°C after 

approximately ten (10) ms. 

 

At 100°C the moisture is drawn off and at 400°C devolatilisation begins. The 

gaseous volatiles contain various gases including CO2, H2O, N2 and small 

proportions of CO, H2, HCN and a variety of hydrocarbons (CxHy). These volatiles 

are mixed with the surrounding air and are rapidly burnt (Borman & Ragland, 1998). 

 



Chapter 4 – Coal Combustion Principles  29 
 

 
 

The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

By the time the particle reaches 1,000°C, devolatilisation is complete and porosity 

has been established in the char particle which consists of carbon, mineral matter and 

ash. At this stage oxygen reaches the char particle for the first time and char burning 

begins. Between ten (10) ms and 0.5s, half of the char is consumed with a surface 

temperature several hundred degrees hotter than the gas temperature due to surface 

reactions with the oxygen. As the reaction continues porosity increases and fissures 

are formed. The molten mineral matter begins to agglomerate and towards the latter 

parts of burnout the char may fragment into several pieces (Borman & Ragland, 

1998). The process is depicted in Figure 4.1.  

 

 

Figure 4.1 – Processes Occurring During Combustion 

(Source: Juniper, 1999, p27) 

 

 

4.3 Mole and Mass Fractions 

 
Turns (2000) states that when dealing with combustion problems it is useful to be 

able to characterise the composition of a mixture by both the mass fraction and the 

mole fraction. The mole fraction of species i, iχ  is defined as the fraction of the total 

number of moles in the system that are species i; that is:-  
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where Ni is the number of moles of species i 

 

The mass fraction of species i, Yi, is the amount of mass of species i compared to the 

total mixture mass:- 
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 where mi is the mass of the individual species i 

 

The mole and mass fractions are easily converted from one to another using the 

molecular weights of the mixture and of the species of interest:- 
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The mixture molecular weight, MWmix can be calculated from knowledge of either 

the species mass or mole fractions:- 
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Analysis 
Air Dried Basis 

(adb) 

Proximate Analysis  

Moisture  % 1.1 

Ash  % 18.1 

Volatiles  % 27.7 

Fixed Carbon % 53.1 

Ultimate Analysis  

Carbon  % 71.3 

Hydrogen  % 3.71 

Nitrogen  % 1.4 

Sulphur  % 0.54 

Oxygen (Diff.) % 3.85 

Specific Energy  

Coal  MJ/kg 28.83 

 

Table 4.1 Coal Analysis 

 

 

Using the values from the analysis detailed in Table 4.1 and the atomic mass of the 

individual elements from the periodic table shown in Appendix C, the mixture 

molecular weight on an ash free basis can be determined using Equation 4.6 as 

follows:- 
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The mole fractions of the individual species can now be readily calculated and are 

shown as follows:- 
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727.0=carbonχ  

 

006.0=nitrogenχ  

 

007.0
2

=OHχ  

 

014.0=oxygenχ  

 

021.0=sulphurχ  

 

225.0=hydrogenχ  

 

By definition, the sum of the constituent mole or mass fractions must be unity, ie., 

 

1=Σ ii
χ   ( 4.7 ) 

 

1=Σ ii
γ   ( 4.8 ) 

 

This can be verified by summing the mole fractions detailed above.  

 

 

4.4 Stoichiometry Requirements 

 
Turns (2000) describes the stoichiometric quantity of an oxidiser (O2) as being the 

exact amount required to completely burn a quantity of fuel. If less than the 

stoichiometric amount of oxidiser is supplied, the mixture is said to be fuel rich 

while if greater than the required amount of oxidiser is supplied, the mixture is 

termed fuel lean.  Pulverised fuel boilers in general run on a fuel lean mixture. This 

is done not only to extract the maximum energy from the fuel through the 
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minimisation of carbon losses but also combustibles passing out of the furnace create 

an increased risk of fire and explosion risks in the rear pass of the boiler.  

 

 

4.5 Simple Atom Balance 

 
The stoichiometric quantity of O2 is determined by writing simple atom balances and 

assuming that all carbon converts to CO2, all hydrogen converts to H2O, and all 

sulphur converts to SO2.  The inherent oxygen in the coal contributes to the required 

O2 and is consumed as part of the above reactions.  It is assumed there is no 

dissociation of species and all other constituents namely ash, nitrogen, moisture and 

trace metals take no part in the combustion process. This is shown as:- 

 

22 COOC →+           ( 4.9 ) 

 

OHOH 222 2
1

→+
        ( 4.10 ) 

22 SOOS →+         ( 4.11 ) 

 

For stoichiometric combustion one (1) mole of carbon with a mass of 12.01 grams 

requires one (1) mole of diatomic oxygen with a mass of 32 grams. Dividing through 

by the mass of the carbon results in a fuel-oxidiser ratio on a mass basis of 1:2.67. 

Similarly the stoichiometric combustion requirement for the other reactants present 

in the coal can be determined on a mass basis and are summarised below:- 

 

Reactant O2 Requirement 

1 kg carbon 2.67 kg 

1 kg hydrogen 7.94 kg 

1 kg sulphur 1.00 kg 

 
Therefore the oxygen requirements for stoichiometric combustion for one kilogram 

of coal as described in Table 4.1 can be determined as follows:- 
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0.7130 kg carbon requires   1.9040 kg of oxygen  

0.0371 kg hydrogen requires   0.2950 kg of oxygen  

0.0054 kg sulphur requires   0.0054 kg of oxygen  

0.0385 kg oxygen consumed 
in process 

- 0.0385 kg of oxygen  

  TOTAL   2.1660 kg of oxygen  

 

Summing the required amount of oxygen and subtracting the inherent oxygen results 

in a requirement of 2.166 kg of oxygen for every kilogram of coal. The atmospheric 

air used in the combustion process is 23.2% by mass oxygen, the majority of the 

remainder of this mixture being inert nitrogen. Therefore the stoichiometric air 

requirement is determined as:- 
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4.6 Equivalence Ratio 

 
The equivalence ratio,Φ , is used to indicate quantitatively whether a fuel-oxidiser 

mixture is lean, rich, or stoichiometric. It is defined as:- 
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 where A/F is the mass air-fuel ratio (kg/kg) 
 
 
The definition is such that for stoichiometric mixtures, Φ  = 1, for fuel rich mixtures, 

Φ  > 1, and for fuel lean mixtures, Φ  < 1.   

 

The mass flow rate of coal with the boiler operating at 270 MW is approximately  
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26 kg/s. The bulk of the combustion air is provided to the furnace by the forced 

draught fans with a small amount of air provided via the Sealing Air System on the 

mills and coal feeders. For the given fuel rate the required combustion air is  

26 (2.166) = 242.6 kg/s. Due to an imperfect sealing arrangement in the rotating 

regeneratitive air heaters, combustion air is lost from the higher pressure air side to 

the lower pressure gas side of the air heater before reaching the furnace. Recent 

testing indicated this efficiency loss to be approximately 5% resulting in a 

requirement of 1.05 (242.6)  =  254.7 kg/s  of combustion air.  

 

Using air flow values taken from the boiler control system for the forced draught 

system and values from the performance curve for the seal air fan show mass flow 

rates of air of 298 kg/s and 3.87 kg/s respectively. The equivalence ratio,Φ , for this 

particular configuration is determined as follows:- 
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Using Equation 4.12 the equivalence ratio is determined as:-  
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With the equivalence ratio now determined the percentage value of excess air can 

easily be evaluated using the following:- 

 

%5.20

%1001%

=

Φ
Φ−

=AirExcess

 (4.13) 

 

This amount of excess air will contain approximately 4.8% oxygen. This relates 

closely to the amount of excess oxygen measured by the O2 analysers located at the 

boiler exit under normal operation.   

 



 

 
 

The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

Nox Creation Mechanisms and 
Control 

 5
 



Chapter 5 –Nox Creation Mechanisms and Control 38 
 

 
 

The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

5.1 Introduction  

 
Nitrogen oxide (NO) and nitrogen dioxide (NO2) known collectively as NOx are 

atmospheric pollutants that contribute to the production of photochemical smog and 

acid rain.  NOx formation occurs during combustion in utility boilers regardless of 

the fuel being used. However, of the three major fuels (coal, oil and gas), coal is the 

most significant producer of NOx due to the nitrogen contained in the fuel itself. 

 

The Electric Power Research Institute (EPRI) (1993) describe the production of NOx 

formation in coal fired boilers by two dominant mechanisms, thermal NOx and fuel 

NOx. Thermal NOx results from the oxidation of nitrogen present in the combustion 

air, and fuel NOx results from the oxidation of nitrogen organically bound in the fuel. 

Figure 5.1 shows the relative contribution of thermal and fuel NOx to total NOx 

created using a high volatile bituminous coal for a range of stoichiometric ratios. 

 

 

 
 

Figure 5.1 - Relative Contribution of Fuel NO and Thermal NO to Total NOx Emissions  

(Source:  Electric Power Research Institute, 1993,  p3-2) 

 

 

A third mechanism, the prompt or Fenimore mechanism, results in the formation of 

NOx as a result of the reaction of nitrogen with partially burned hydrocarbons. A 
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significant fraction of the NOx produced in this way is converted to diatomic 

nitrogen in the boiler and as such was not considered further. 

 

 

5.2 NOx Creation Mechanisms 

 
5.2.1 Fuel NOx 

 

Fuel NOx generally accounts for between 50% to 80% of the total NOx formed 

during conventional pulverised coal burning. Fuel NOx is formed by the oxidation of 

the nitrogen present in the fuel during the devolatilisation and char burnout stages of 

combustion. Reactive gas phase nitrogen species develop from the nitrogen bound 

within the coal as the volatile matter evolves during combustion. High flame 

temperatures and high oxygen availability during devolatilisation encourage the 

conversion of volatile released nitrogen to NOx. The rates of NOx production from 

the char bound nitrogen are lower primarily due to the lower availability of oxygen 

in this stage of combustion (Babcock and Wilcox, 1992).  Figure 5.2 details the 

conceptual diagram of fuel bound nitrogen evolving to NOx. 

 

 

 
 

Figure 5.2 - Conceptual Diagram of Fuel Bound Nitrogen to NOx 

(Source: Electric Power Research Institute, 1993, p3-3) 
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The most effective method of reducing the amount of fuel NOx during combustion is 

to limit the amount of oxygen available as the volatiles are released. Air required to 

complete the char reaction process can be introduced later in the process to ensure 

sufficient burnout of the char particle and maintain combustion efficiency. 

 

The availability of oxygen during devolatilisation can be reduced by two methods. 

One method is to introduce combustion air elsewhere in the furnace and the second 

method is the modification or replacement of existing burners so that the rate at 

which air is introduced to the flame is reduced. Both of these staging techniques are 

described in greater detail later in this chapter. 

 

 

5.2.2 Thermal NOx 

 

The products of high temperature combustion are not as simple as those described by 

the simple atom balances used to determine stoichiometry. Rather the major species 

dissociate which results in the production of a host of minor species including O, N, 

OH, H, CH, HCN, N2O and NO. Thermal NOx is formed from the dissociation and 

oxidation of the nitrogen admitted to the furnace with the combustion air (Turns, 

2000).  

 

The rate at which thermal NOx can be formed is dependent upon the availability of 

oxygen in the flame and post flame zone and is exponentially dependent upon the 

temperature resulting from combustion. The reactions for thermal NOx formation 

occur rapidly as combustion temperatures exceed 1,538ºC. Thermal NO generally 

accounts for 20% - 50% of total NOx. 

 

The mechanism through which thermal NOx is produced is well described by the six 

(6) reactions of the extended Zeldovich mechanism as shown in Equations 5.1, 5.2 

and 5.3:- 
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 (5.1) 
 
 (5.2) 
 
 (5.3) 
 

 

The contribution to total thermal NOx of the third reaction pair is small for lean 

mixtures as is the case within the furnace. The first forward reaction controls the 

system but as this reaction has a very high activation energy it is slow at low 

temperatures. As a result thermal NOx is formed in the postflame products (Borman 

& Ragland, 1998).  

 

The rate coefficients for the forward and reverse reactions with the temperature in 

Kelvin and units of m³/ kmol-s are:- 
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Calculations reveal that the rate of formation of thermal NO is highly dependent on 

temperature, time and stoichiometry (Borman & Ragland, 1998). 
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5.3 NOx Control 

 
There are numerous technologies available to reduce the NOx emissions produced in 

large coal fired boilers. These methods range significantly in cost, effectiveness, 

complexity and extent of modifications required to achieve the reduction. As greater 

than half of the total NOx produced will be fuel NOx the most effective measures 

concentrate on limiting the formation of fuel NOx. 

 

NOx control techniques presently available for use in utility boilers include:- 

 

• Combustion optimisation 

• Overfire air (OFA) 

• Advanced low NOx burners 

• Flue gas recirculation 

• Reburning (natural gas, coal, fuel oil) 

• Selective non catalytic reduction (SNCR), and 

• Selective catalytic reduction (SCR) 

 

Each of these methods is discussed in detail below. 

 

 

5.3.1 Combustion Optimisation 

 

The optimisation of existing combustion systems is a low cost technique to reduce 

NOx emissions at minimal cost. Where a unit is only slightly exceeding acceptable 

levels of emissions, the tuning of the boiler may reduce these levels enough to 

eliminate the need for any retrofit controls. Under certain circumstances reductions 

in NOx of up to 25% are achievable with correct combustion tuning however the 

typical value of reductions is less than 10%, with this figure likely to be inconsistent 

with load variations. 
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The implementation of advanced process control systems based on neural networks 

can be configured to reduce NOx emissions whilst maintaining efficiency over 

changing plant conditions and time. 

 

 

5.3.2 Overfire Air (OFA) 

 

Overfire air is a furnace air staging NOx reduction technique. A proportion of the 

combustion air supply is injected into the furnace above the area of most intense 

combustion, the burner zone, through specially installed OFA ports. 

 

The injection of the balance of the combustion air above the fireball region allows 

the burn-out of the fuel to take place in a less intense, lower temperature combustion 

zone thus impacting both fuel NOx and thermal NOx.  

 

The use of overfire air has been applied in the power industry for over 25 years and 

is one of the most established NOx reduction technologies available (Canning, Jones 

& Balmbridge, 1999) . Figure 5.3 illustrates a typical overfire air layout.  

 
Figure 5.3 - NOx Reduction by Overfire Air 

(Source: Juniper, 2000, p68) 
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5.3.3 Advanced Low NOx Burners (ALNB) 

 

The original low NOx burners achieved reductions in NOx levels of up to 30% at the 

expense of boiler efficiency by way of carbon losses. It is now recognised that 

modern equipment can achieve an improved trade-off between NOx emissions and 

boiler efficiency (Canning et al, 1999).  

 

The formation of NOx is reduced in low NOx burners by controlling the mixing of 

the air in the primary stages of the combustion process. The burners are designed 

such that a fuel rich primary zone of combustion is established in which organically 

bound nitrogen is reduced to molecular nitrogen. The balance of the combustion air 

then combines with the partial combustion products at a point further away from the 

burner throat. A reduction in peak flame temperature also ensues leading to a 

reduction in thermal NOx (Canning et al, 1999) .  

 

The use of low NOx burners is likely to result in increased levels of unburnt carbon 

thus decreasing efficiency and may also impact on the saleability of the ash 

produced, as concrete manufacturers are unable to utilise fly ash with an excess of 

5% unburnt carbon. Figure 5.4 details a low NOx burner arrangement. 

 

 

 
Figure 5.4 - Low NOx Burner 

(Source: Juniper, 2000, p69) 
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5.3.4 Flue Gas Recirculation 

 

Flue gas recirculation has been used to control the formation of NOx in gas and oil 

fired boilers. Combustion products may be taken from an area in the rear pass of the 

boiler, for example near the economiser and injected into the combustion air supply 

to the burners. It is believed that the primary NOx reduction mechanism is the 

reduction of peak flame temperature and gas residence times. Because the main 

effect of flue gas recirculation is on thermal NOx with minimal impact on fuel NOx, 

it is rarely considered as an option for NOx reduction in large coal fired boilers 

(Canning et al, 1999).  

 

 

5.3.5 Reburning 

 

Reburning technology is based on the principle that in regions of high temperature 

and low oxygen, hydrocarbon based radicals strip oxygen from NO molecules, with 

the remaining nitrogen ions combining to form molecular nitrogen. 

 

Reburning is achieved by injecting a hydrocarbon based fuel above the main burners 

and combustion area. This fuel contributes to the thermal output from the boiler and 

produces a low stoichiometry NOx reduction zone. The balance of the combustion air 

to the furnace is injected via overfire air ports located above the reburn fuel injectors 

providing the oxygen required to burn out the reburn products and achieve the 

desired excess oxygen level for the system (Electric Power Research Institute, 1993). 

 

A reburn system requires a sufficient separation between the main burner zone and 

the reburn zone to allow a satisfactory level of combustion of the main combustion 

products. Any unburnt char entering the reburn zone will not have yet released all of 

its nitrogen resulting in the likelihood of the nitrogen being oxidised to NOx in the 

reburn zone. The residence time in the burnout zone needs to be sufficient to ensure 

NOx destruction levels are achieved as well as the satisfactory burnout of the 

reburned fuel and carbon char from the main burner zone.  
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The effectiveness of a retrofit reburn facility is governed by furnace geometry.  The 

relatively large plan areas of utility boilers can make satisfactory mixing of the initial 

combustion products with the reburn products very difficult. An inert carrying 

medium such as recirculated flue gas may be used to achieve satisfactory penetration 

of the reburn fuel across the furnace. 

 

 

 
Figure 5.5 - NOx Reduction by Reburning 

(Source: Juniper, 2000, p69) 

 

 

5.3.6 Selective Non Catalytic Reduction 

 

The selective non catalytic reduction process removes NOx by injecting a nitrogen 

based chemical reagent into the flue gas stream. The reagent, commonly urea or 

ammonia, combines with the NOx in the presence of oxygen to form oxygen and 

water vapour.  

 

Difficulties in using selective non catalytic reduction arise as a result of a relatively 

narrow temperature window, in the range of 850°C – 1,050°C, necessary for the 
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desired chemical reactions to occur. If the reagent is injected into a region where the 

temperature is too low the process reduction rates decrease, resulting in increased 

amounts of ammonia (slip) passing out in the flue gas stream. If the reagent is 

injected into a zone where the temperature is too high the reagent begins to react 

with O2 to actually form NOx rather than reacting with the NOx already present 

(Electric Power Research Institute, 1993). 

 

The application of selective non catalytic reduction has proven to be difficult in large 

boilers as there are often high levels of gas stratification and uneven temperature 

distributions. There may also be problems with the contamination of saleable ash, the 

blockage of air heater baskets and environmental trade offs between NOx emissions 

and process by-product emissions associated with ammonia slip (Canning et al, 

1999). 

 

5.3.7 Selective Catalytic Reduction 

 

The selective catalytic reduction system removes NOx from the flue gas stream by 

combining ammonia with the flue gas NOx in approximately equimolar quantities. 

This mixture is then passed over a suitable catalyst material producing primarily 

nitrogen, water vapour and trace concentrations of ammonia and sulphur trioxide 

(Canning et al, 1999). The temperature under which the NOx reducing reactions can 

occur is lowered to around 300°C - 400°C, typically the range of temperatures 

encountered in the economiser cross-over area prior to entry into the air heaters. 

 

The installation of a selective catalytic reduction system typically involves the re-

routing of the flue gas from the bottom of the economiser through the catalytic 

reactors before returning to the top of the air heaters. Problems that may arise due to 

the installation of selective catalytic reduction systems include contamination of 

saleable ash, air heater basket blockage and increased corrosion of downstream 

equipment due to high SO3 concentrations and sulphuric acid mists. There are also 

the environmental considerations including the emissions of SO3 and ammonia as 

well as the disposal of the potentially hazardous spent catalyst (Electric Power 

Research Institute, 1993). 
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6.1 Introduction 

 
A number of engineering models were developed to describe in sufficient detail the 

processes occurring within the boiler that are of interest to this project. Models were 

developed to estimate the residence time of the furnace, the initial flame temperature, 

the furnace heat pickup and the amount of thermal NOx created. 

 

 

6.2 An Engineering Model for Furnace Residence Times 

 
6.2.1 Plug Flow 

 

The time taken for an element to pass through the furnace is dependent on the 

particle path and flow patterns within the furnace. Only under perfect plug flow 

conditions where there is no mixing in the longitudinal direction can the residence 

time be known with certainty. In the case of plug flow, the residence time is the same 

for all material (Field, Gill, Morgan & Hawksley, 1967).  

 

If f(t)dt expresses the probability that material entering a combustor will reside there 

for a period t to t + dt, the fraction of feed residing for a period less than t may be 

written F(t) where 

 

∫=
t

dttftF
0

)()(  ( 6.1 ) 

 

and the mean period of residence 
_
t may be determined as,  

 

∫
∞

=
0

_
)( dtttft   ( 6.2 ) 
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It is usual to express a residence time distribution in a plot of F(t) against t/
_
t where 

t/
_
t  is the ratio of time spent within the combustor to the average residence time. The 

case for plug flow is illustrated in Figure 6.1.  
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Figure 6.1 – Plug Flow 

 

 

In reality, there will be significant mixing, recirculation zones, variations in boiler 

inflow and boiler conditions which will result in variations in residence times 

depending on the extent of departure from plug flow.  As a consequence, a 

combustor that has continual feed will have an exhaust which comprises a mixture of 

different ages. Figure 6.2 illustrates plug flow modified by a degree of mixing. 
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Figure 6.2 – Plug Flow with a Degree of Mixing 

 

6.2.2 Residence Time Estimate for Stanwell Furnace 

 
The residence time estimation for the Stanwell furnace was based on modified plug 

flow assuming that:- 

 

1. No fuel resides in the furnace less than 0.4 times the calculated mean 

residence time; 

 

2. That 90% of the combustion products have emerged 1.5 times the calculated 

mean residence time; and 

 

3. That no fuel resides in the combustion chamber for greater than 2.5 times the 

calculated mean residence time (Field et al, 1967).  

 

Using this information an estimate for residence time can be developed as shown in 

Figure 6.3. 
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Figure 6.3 – Residence Time Estimate for Stanwell Furnace 

 

 

Assuming an instantaneous conversion of the reactants detailed in Table 3.2 to 

combustion products, and an estimate of the average furnace temperature, the 

average residence time, 
_
t , can be determined by calculating the density of the 

combustion product mixture, the volume of the combustion chamber and the mass 

flow rate of the reactants as follows:- 

 

TR
PMW

u

mix=ρ  ( 6.3 ) 

 

    ( )
)2731100(3.8314

246.12101125
+

=  

 

    108.0=  3m
kg  

 

where: P = absolute pressure (Pa) 

            MWmix = molecular weight of the mixture (kmol/kg) 

            Ru = universal gas constant (J/kg.K) 

 T = temperature of combustion products (K)  
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Knowing the chamber volume and taking the mass flow rate of air and fuel from 

boiler control system data the residence time is determined as:- 

 

•
=

m

Vt ρ_
 ( 6.4 ) 

 

   

( )

ondssec63.1

327
4945108.0

=

=

 

  

 where 
•
m  = mass  flow rat (kg/s) 

 V = volume of combustion chamber (m^3) 

 

Applying the average residence time to the residence time estimate described above 

results in a minimum residence time of 0.65 seconds and a maximum residence time 

of 4.08 seconds. 

 

 

6.3 An Engineering Model for Flame Temperature 

 
The theoretical flame temperature is determined using a method described in Field et 

al (1967). The method is applicable to bituminous coal with moisture contents up to 

20%, equivalence ratios of 0.8 to 1.5, and pressures of one (1), three (3), or ten (10) 

atmosphere. This satisfies the coal type and moisture content of the coals used at 

Stanwell and the furnace with a steady pressure of -0.2 kPa (gauge) can be assumed 

to be at one (1) atmosphere. 

 

The method involves calculating the enthalpy of the products by combining the 

enthalpy of formation of the coal and the enthalpy of preheat and subtracting the heat 

losses from the flame. The amount of heat loss cannot be easily determined and for 

the purpose of this project will be assumed to be 15%. The value of the flame 

temperature is then calculated using the carbon/oxygen ratio, the nitrogen/oxygen 
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ratio and the calculated enthalpy with a correction made for the amount of nitrogen 

present in the flame zone.  

 

The Matlab functions Flame_Temp.m and Flame_Splines.m have been developed to 

calculate the flame temperatures under varying conditions. Inputs to the function 

include percentages of carbon, hydrogen, oxygen, nitrogen and sulphur of dry ash 

free coal, the moisture content of air dried coal, total fuel and air flow. Linear and 

spline interpolation was used in the program to determine the values from a series of 

given graphs. The Matlab functions Flame_Temp.m and Flame_Splines.m are 

presented in Appendix B.  

 

 

6.4 An Engineering Model for Furnace Heat Pickup 

 
The processes that occur as heat is transferred from the combustion products within 

the furnace to the water walls enclosing the furnace is governed by the conservation 

of energy which states that there is a balance between the energy, work and heat 

quantities entering and leaving the system. The conservation of energy may be 

written:- 

 

Initial energy 

 of the system  
+ 

Energy entering 

 the system 
= 

Final energy 

 of the system 
+ 

Energy leaving  

the system 

 

A system boundary can be applied such that the heat transfer to the water walls is a 

two flow open system. As there is an equal mass of fluid entering and leaving the 

system at any one time the system can be considered steady state. Figure 6.4 portrays 

such a system with the inlet boundary being the feedwater in and the outlet boundary 

being the steam out. These system boundaries can be used to determine the majority 

of the heat transferred to the water walls in the furnace region.    
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Figure 6.4 – Furnace Heat Pickup System 

(Source:  Babcock & Wilcox, 1992, p1-7) 

 

 

The energy components associated with the moving fluid entering the system 

comprise the following:- 

 

 

1

1

11

1

PEEnergyPotentialnalGravitatio

KEEnergyKinetic

VPEnergyFlow

UEnergyInternal

=

=

=

=

 

 

whilst the energy components associated with the moving fluid leaving the system 

comprise:- 
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2

2

22

2

PEEnergyPotentialnalGravitatio

KEEnergyKinetic

VPEnergyFlow

UEnergyInternal

=

=

=

=

 

 

By convention the heat, Q, is positive if received by the system and negative if 

rejected by the system. External work, W, done by the system is positive and 

negative if work is done on the fluid. Both the values of Q and W may be zero if heat 

is neither received nor rejected by the system or no work is done on or by the fluid. 

 

The conservation of energy for the system may now be written; 

 

WPEKEVPUEQPEKEVPUE SS +++++=+++++ 222222111111  (6.5) 

 

Recognising the combination of terms U + PV as the enthalpy and also that for a 

steady flow system the total energy of the fluid mass within the system, Es remains 

constant, Equation 6.5 can be simplified to:- 

 

( ) ( ) ( )121212 PEPEKEKEHHWQ −+−+−=−  (6.6) 

 

Incorporating specific fluid properties and system geometry into Equation 6.6 

yields:- 

 

wZ
g

C
hqZ

g
C
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2
2

21

2
1

1 22
 (6.7) 
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where: h  =  enthalpy (kJ/kg) 

            C = velocity (m/s) 

            g  = gravity constant (m/s2) 

 Z =  height above datum (m)  

 q = heat (kJ/kg) 

 w = work (kJ/kg) 

 

As there is no work performed on or by the furnace w = 0 and it can also be safely 

assumed that Z∆ , and 







∆

2

2C  from the feedwater inlet to the drum steam outlet are 

negligible compared to the change in enthalpy. Therefore Equation 6.7 can be 

simplified to:- 

 

12 hhq −=  (6.8) 

 

Equation 6.8 is to be used in conjunction with Equation 3.2, the Dulong formula, to 

form a ratio between the enthalpy change multiplied by the feedwater flow and the 

specific energy of the coal multiplied by the coal flow to give an estimate of the heat 

pick up and allow comparison between different boiler configurations. The furnace 

heat ratio formula is shown as Equation 6.9 

 

FlowCoalSE
FlowFeedwaterh

RatioHeatFurnace
coal

furnace

×

×∆
=  (6.9) 

 

 

6.5 An Engineering Model for Thermal NOx Production 
 

As stated in Chapter 5, the Zeldovich Mechanism can be used to describe the 

formation of thermal NOx. With the fuel NOx already produced during the 

combustion process, thermal NOx becomes the main source of NOx emissions where 

there is an excess of oxygen in the post-flame zone (Borman & Ragland, 1998).  
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To make use of the Zeldovich mechanism proper, the individual mole fractions of 

the O, N2, NO, N, and O2 species need to be determined. The required inputs to an 

equilibrium combustion product program provided by Turns (2000) are the number 

of carbon, hydrogen, and oxygen atoms, the equivalence ratio, the pressure and the 

flame temperature. The flame temperature is calculated using the input values from a 

typical coal type and boiler configuration used at Stanwell Power Station as 

follows:-  

 

 

Percentage of carbon (daf)  88% 

Percentage of hydrogen (daf) 4.91% 

Percentage of nitrogen (daf) 1.88% 

Percentage of sulphur (daf) 0.65% 

Air flow  306 kg / s 

Coal Flow 25.9 kg / s 

Moisture content (wet but ash free) 8.63% 

Calculated Temperature 2177 K 
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The inputs to the equilibrium combustion program by Turns (2000) are:- 

 

 

 

 

 

 

 

 

 

 

Running the program results in the following mole fractions of the equilibrium 

combustion products necessary for utilising the Zeldovich mechanism:- 

 

Species Mole Fraction 

O 0.000427 

O2 0.0338 

N2 0.748 

N 0.00000000816 

NO 0.004957 

 

 

The mole fraction of product species can be converted to a kmol/kg basis and 

combined with the rate mechanisms k+1, k-1, k+2, k-2 to form the following overall 

rate mechanism for the formation of NO:- 

 

 

[ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]ONOkONkNNOkNOk
dt
NOd

222121 −+−+ −+−=  ( 6.10 ) 

 

Difficulties in using Equation 6.10 became apparent after multiplying the rate 

constants by a small time step to calculate an initial value for NO formed. It became 

necessary to recalculate the mole fractions of the combustion products. This 

Number of carbon atoms 580 

Number of hydrogen atoms 771 

Number of oxygen atoms 45 

Number of nitrogen atoms 21 

Equivalence ratio 0.823 

Pressure 101 125 Pa 

Temperature 2177 K 
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recalculation is the subject of complex chemical equilibrium (Turns, 2000) and as 

such is well beyond the scope of this project.  

 

It is therefore necessary to simplify Equation 6.10 into a more convenient form. As 

the value of the N2 and O2 are much greater than the NO concentration, it can be 

safely assumed that these remain constant (Borman & Ragland, 1998). Also in 

processes where the combustion of the fuel is complete before NO production 

becomes significant, as is the case with the formation of thermal NOx in the post-

flame zone, the processes can be uncoupled. With sufficiently long time scales it is 

safe to assume that the N2, O2, and O concentrations are at equilibrium values and 

the N atoms are at steady state values. If the further assumption is made that the NO 

concentrations are much less than equilibrium values, that is, at the beginning of the 

post-flame zone the amount of NO formed by the thermal mechanism is zero, the 

reverse reactions can be ignored. This results in the following simple rate equation 

(Turns, 2000):-  

 

[ ] [ ] [ ]eqeq NOk
dt
NOd

212 +=  ( 6.11 ) 

 

Although this rate mechanism greatly simplifies the system and makes very broad 

and questionable simplifications, especially disregarding the presence of any NO in 

the immediate post-flame zone, for the purposes of this project it is considered 

sufficient. This simplified rate mechanism negates the complexities involved in the 

recalculation of the equilibrium combustion products. 

 

An initial estimate of the rate of thermal NOx formation can be made by dividing the 

furnace into a system of four separate zones of equal residence times as shown in 

Figure 6.5. The system inlet boundary is a horizontal plane extended across the 

furnace directly above the top windbox row as indicated by the horizontal line at the 

bottom of Zone 1. The outlet boundary of the system is a horizontal plane extending 

across the top of the furnace in line with the point of the furnace nose as indicated by 

the horizontal line at the top of Zone 4. Each zone will have an average combustion 

product temperature and initial O concentration. The species concentration of O will 
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be recalculated after each nominated time step by subtracting the amount of atoms 

used in the creation of the NO molecules.   

 

 

 
 
Figure 6.5 – Furnace Zones for Initial Thermal NO Prediction      
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As stated previously, to apply the rate mechanism, the mole fractions of the species 

of interest are converted to an average kmol/kg basis using the ideal gas law at an 

average furnace temperature as follows:-  

 

 ( 6.12 ) 

 

 

 

 

 

 

 

where  P = system pressure (Pa) 

 v = specific volume (m^3) 

 R = universal gas constant (kJ / kmol-k) 

 T = Zone temperature (K) 

 

The molar concentration can now be expressed on a kmol / m3 basis by multiplying 

the mole fraction of the species of interest by the number of moles occupying one (1) 

m3 as determined by Equation 6.12. 

 

The variables of interest for Zone 1 are as follows:- 

 

Temperature (K) 2065 

Residence Time (s) 0.82 

Initial molar concentration of O 

(kmol/kg) 

0.00000290 

Molar concentration of N2 (kmol/kg) 0.00507 

Rate coefficient  1533 

Time step (s) 0.05 

 

 

( )
( )
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Applying rate Equation 6.11 in the following form for a time step of 0.05 seconds 

results in the following:- 

 

[ ] [ ]

( ) ( ) ( ) ( )

36

36

21

/1025.2

05.01007.51090.215332

2

mkmol

tNOkNO eqeq

−

−−

+

×=

××=

∆=∆

 

 

As the quantity of NO has increased, it is assumed that the amount of O remaining in 

the system has decreased by a similar amount resulting in:- 

 

[ ]

kmol

Omaining

6

66

1014.0

1025.21039.2Re

−

−−

×=

×−×=
 

  

This quantity of O is free to participate in NO formation during the second time step 

as follows:- 

 

 

[ ] [ ]

( ) ( ) ( ) ( )

37

36

21

/10088.1

05.01007.51014.015332

2

mkmol

tNOkNO eqeq

−

−−

+

×=

××=

∆=∆

 

 

Similarly the third and fourth rates of formation for each time step can be determined 

resulting in:- 

 
81042.2 −×=∆NO  

 
91040.5 −×=∆ NO   
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Plotting this data indicates a rapid formation of NO in the post-flame zone, reaching 

close to the initial value of the equilibrium O within a few time constants and still 

well within the Zone 1 residence time, as shown in Figure 6.6. 
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Figure 6.6 – Thermal NO Formation 
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7.1 Introduction 

 
The purpose of the testing is to determine the sensitivity of NOx

 emissions to 

variations of the usual operational configuration. Variations were made to the 

distribution of secondary air to the burner levels and also the amount of excess 

oxygen available within the furnace. Some of the data collected from the tests was 

compared to the predicted theoretical values from the models.  Due to confidentiality 

issues, the values of NO emissions from Stanwell Power Station do not carry units 

and have been modified. 

 

7.2 Variables of Interest 

 
7.2.1 NOx Production  

 

As nitrogen oxide (NO) generally accounts for greater than 95% of the total NOx 

emitted from coal-fired boilers (Electric Power Research Institute, 1993), the levels 

of raw NO were measured using the Sick GM 31 Emissions Monitoring System. 

This in-situ system allows gas to flow through the aperture of a probe installed into 

the flue duct. As the flue gases pass through the aperture, a deuterium lamp transmits 

pulses of ultraviolet light through the gas. The light then strikes a reflector which 

reflects the light back through the gas into the measuring unit. The GM 31 measures 

the attenuation of the light as a result of the absorption and dispersion in the mixture 

of gas and dust particles using the principle that gas molecules absorb light energy at 

wavelengths that are specific to the type of gas (GM 31 Operating Procedure, 1999). 

This allows the determination of the individual gas concentrations with a high degree 

of precision. The GM 31 measures the raw value of NO in the flue gas whereas the 

value for NOx is calculated using the unit control and monitoring system using raw 

data including NO, NO2, H2O and O2. Figure 7.1 shows the measuring principle of 

the GM 31 optical system. 
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Figure 7.1 - Measuring Principle of GM 31 

(Source:  GM 31 Operating Procedure, 1999)  

 

 

7.2.2 Flame Temperature 

 

Flame and combustion product temperature measurements were taken using a 

Raynger 3i Series Infrared Thermometer. The thermometer uses a lens to focus 

infrared radiation from the combustion products onto a detector. The intensity of the 

emitted infrared energy increases or decreases proportionally to the temperature. 

 

Three temperature measurements were taken through the furnace side port-holes in 

the fireball region including:- 

 

1. Temperature of the base of the flame as it exits the burner and first ignites;   

 

2. The furnace centre-line temperature where there is substantial mixing and 

interaction with the other burner flames;  and 
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3. The water wall temperature adjacent to the end burners.  

 

Other temperature measurements were recorded in the top and rear pass of the 

furnace including the platen superheater inlet and outlet temperatures, the exit of the 

Secondary Superheater II and the furnace throat. Figure 7.2 details the location of the 

test points at the side of the furnace relating to this project.  Temperatures were taken 

on both sides in the furnace area, and at five points along the boiler front at the 

platen entries.  

 

 

   
 
Figure 7.2 – Location of Temperature Measurement Points 
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7.2.3 Coal Sampling 

 

A sample of the coal burnt during each of the tests was taken by removing a quantity 

of coal from one of the in-service coal feeder belts. The samples were then sent to an 

external laboratory for ultimate analysis.   

 

 

7.2.4 Loss of Ignition 

 

Loss of ignition refers to losses in the form of combustibles passing out in the flue 

gas and may result from insufficient oxygen available for combustion or poor mixing 

of the reactants. As the volatiles are driven off and react early in the combustion 

process, the predominant losses will occur as a result of unburnt carbon in the flue 

gas. Low levels of unburnt carbon passing out in the flue gas equate to a loss of 

efficiency whilst high levels of unburnt carbon not only result in efficiency losses 

but also create a potentially hazardous situation with regard to fire and explosion in 

the rear pass of the boiler. 

 

The fly ash was sampled using a Cegrit manual sampler which extracts fly ash as it 

passes through the flue gas ductwork prior to it passing through the electrostatic 

precipitators. The flue gas carrying the fly ash is drawn continuously through a 

cyclone by an ejector device mounted in the duct. The cyclone effectively separates 

the gas and the solids with the solids falling into a sampling container clamped to the 

bottom of the cyclone. From here the composition of the solids can be analysed to 

determine the combustible content. Figure 7.3 details the components of the Cegrit 

sampler. 
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Figure 7.3 – Cegrit Sampler 

(Source:  Airflow Developments Operating Procedure, n.d.)  

 

 

7.2.5 Furnace Heat Pickup   

 

As described in section 6.4 the furnace heat pickup can be determined by the change 

in enthalpy as the feedwater leaving the economiser inlet is transformed within the 

furnace water walls to steam leaving the drum. The temperature of the feedwater 

leaving the economiser and the drum (system) pressure are available from the boiler 

control system. The values of the enthalpy at the system inlet and outlet are to be 

determined from the steam charts by the Japan Society of Mechanical Engineers 

(1980) to determine the amount of heat transferred to the furnace water walls. The 

mass flow rate of feedwater into the system and the mass flow rate of the coal 

delivered to the mill are also available from the boiler operating system to allow the 

calculation of the furnace heat pickup. 
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7.2.6 Economiser Excess Oxygen 

 

As the combustion products leave the furnace after passing through the economiser 

area, the flow of gas is split so that equal amounts of gas pass through each of the air 

heaters. Two oxygen transmitters are located on both ‘A’ and ‘B’ sides prior to entry 

to the air heaters to monitor the levels of excess oxygen. The actual excess oxygen 

set point is determined by the control system which averages the value of the two 

same side transmitters then bases the air flow delivered by the forced draught fans on 

the minimum of these two values. In manual operation the blade pitch on the forced 

draft fans can then be altered until the required excess oxygen levels for the test are 

achieved. As a consequence of this logic arrangement the actual excess oxygen 

levels will always be greater than the O2 level displayed by the boiler control system. 

Figure 7.4 details the control logic for the transmitters in setting the required O2 

level.  

 

 
Figure 7.4 – Excess Oxygen Control Logic 
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7.3  Secondary Air Redistribution  

 
7.3.1 Aim 

 

Tests 1, 2 and 3 were undertaken to examine the effect on the variables of interest of 

redistributing in-service secondary air among the in-service burners whilst 

maintaining a constant ratio of in-service secondary air to out-of-service secondary 

air. 

 

 

7.3.2 Testing Method 

 

The boiler at Stanwell Power Station is a horizontally opposed configuration with 

three levels of burner rows located front and back of the furnace.  Each burner row 

comprises five pulverised fuel burners similar to the furnace depicted in Figure 7.5.  

 

 
 
Figure 7.5 – Opposed Wall Fired Boiler 

(Source: EPRI Retrofit NOx Controls for Coal-Fired Utility Boilers, 1993, p3-4) 
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Located at the ends of each row of five burners are a pair of windbox dampers that 

control the amount of secondary air flow to each of the burner windboxes. These six 

sets of windbox dampers have a range of operation between 40% and 100% and can 

be adjusted to achieve the desired test position. 

 

 

7.3.3 Testing Assumptions  

 

The following assumptions were made for these series of tests:- 

 

1. Uniform secondary air duct static pressure and therefore a constant position 

to flow relationship irrespective of burner level. 

 

2. To maintain a constant ratio of in-service to out-of-service secondary air, 

assume a linear damper position to flow relationship. For example, the 

opening of one in-service windbox damper pair 15% to be compensated by 

closing the three remaining in-service windbox damper pairs by 5% each. 

 

 

7.3.4 Specific Requirements 

 

1. Test duration to be 1.5 hours minimum. 

 

2. Allow 30 minutes after dampers are adjusted to allow boiler to stabilise 

before commencing testing.  

 

3. Coal samples to be taken at commencement and conclusion of each test to 

check for variations in quality during test. 

 

 

7.3.5 Boiler Conditioning 

 

The following plant conditioning was required:- 
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• 270 MW – a steady load is required to allow comparable results to be obtained. 

 

• Automatic Governor Control (AGC) de-selected – this step is required to stop 

the market traders altering the output from the unit in response to changes in the 

national electricity market.  

 

• Boiler Load Set Point (BLSP) – the generator output is governed by the steam 

flow from the boiler.  

 

• Calorific Value (CV) trim to manual – this step will result in a steady mass flow 

of coal being delivered to each of the four in-service mills. 

 

• O2 trim to manual – this step fixes the position of the forced draft fans and 

results in a steady mass flow of air to the boiler.  

 

• No soot blowing to be performed during testing – soot blowing uses steam 

produced in the boiler resulting in reduced steam flow to the turbines and 

increased heat pick up from the areas that have been cleaned. Water vapour will 

also be present in the flue gas and affect the fly ash samples.  

 

 

7.4 Test 1 
 

A baseline test was performed to determine the value of the variables of interest 

under normal operating conditions. These windbox damper positions are those that 

were identified and incorporated into the control system during unit commissioning 

as detailed in Table 7.1.   
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Dampers In Service Position Out of Service Position 

F1-F2  45% 

A1-A2 70%  

B1-B2 85%  

E1-E2 45%  

C1-C2 70%  

D1-D2  45% 

 
Table 7.1 – Test  1 Windbox Damper Positions 

 

 

Table 7.2 details the maximum and average temperatures from the test points 

described in section 7.2.2 as well as the values from the control system used to 

determine plant performance. 
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Maximum Values 
Top Row Maximum 1358 Top Row Centreline Maximum 1430 
 Minimum 1314  Minimum 1430 
 Mean 1336  Mean 1430 
 Range 44  Range 0 
    
Middle Row Maximum 1405 Middle Row Centreline Maximum 1431 
 Minimum 1294  Minimum 1408 
 Mean 1360.5  Mean 1419.5
 Range 111  Range 23 
    
Bottom Row Maximum 1355 Bottom Row Centreline Maximum 1408 
 Minimum 1198  Minimum 1278 
 Mean 1276.5  Mean 1343 
 Range 157  Range 130 
    

Average Values 
Top Row Maximum 1330 Top Row Centreline Maximum 1416 
 Minimum 1292  Minimum 1388 
 Mean 1311  Mean 1402 
 Range 38  Range 28 
    
Middle Row Maximum 1354 Middle Row Centreline Maximum 1399 
 Minimum 1254  Minimum 1394 
 Mean 1297  Mean 1397 
 Range 100  Range 5 
    
Bottom Row Maximum 1280 Bottom Row Centreline Maximum 1280 
 Minimum 1241  Minimum 1254 
 Mean 1261  Mean 1267 
 Range 39  Range 26 
    

Performance Data 
Furnace Exit Gas 
Temperature ( C ) 

 
1028 

Platen Entry 
 Temperature Maximum 1104 

    Average 1040 
Drum Saturation 
 Temperature ( C )  344 Drum Pressure (Mpa) 

 
15.14 

      
Economiser Outlet  
Temperature ( C )  263.7 

Feedwater  
Flow ( kg/s )  217.7 

      
Loss of Ignition (%)  1.7 Total Air Flow (kg/s)  306 
      
NO Level  0.649 Total Fuel Flow (kg/s)  25.9 
 
Table 7.2 – Test 1 Data 
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7.5 Test 2 

 
A “square” in-service windbox pattern was trialled for Test 2 with all of the in-

service windboxes set to 67% as detailed in Table 7.3.   

 

 

Dampers In Service Position Out of Service Position 

F1-F2  45% 

A1-A2 67%  

B1-B2 67%  

E1-E2 67%  

C1-C2 67%  

D1-D2  45% 

 
Table 7.3 – Test 2 Windbox Damper Positions 

 

 

Table 7.4 details the maximum and average temperatures from the test points 

described in section 7.2.2 as well as the values from the control system used to 

determine plant performance. 



Chapter 7 –Testing  78 
 

 
 

The Formation of Nitrogen Oxides in a Pulverised Coal Boiler 

 
Maximum Values 

Top Row Maximum 1379 Top Row Centreline Maximum 1485 
 Minimum 1364  Minimum 1468 
 Mean 1371.5  Mean 1476.5
 Range 15  Range 17 
    
Middle Row Maximum 1317 Middle Row Centreline Maximum 1458 
 Minimum 1288  Minimum 1450 
 Mean 1306.75  Mean 1454 
 Range 29  Range 8 
    
Bottom Row Maximum 1319 Bottom Row Centreline Maximum 1335 
 Minimum 1317  Minimum 1316 
 Mean 1318  Mean 1325.5
 Range 2  Range 19 
    

Average Values 
Top Row Maximum 1330 Top Row Centreline Maximum 1462 
 Minimum 1320  Minimum 1451 
 Mean 1325  Mean 1457 
 Range 10  Range 11 
    
Middle Row Maximum 1297 Middle Row Centreline Maximum 1430 
 Minimum 1212  Minimum 1427 
 Mean 1255  Mean 1429 
 Range 85  Range 3 
    
Bottom Row Maximum 1231 Bottom Row Centreline Maximum 1294 
 Minimum 1210  Minimum 1290 
 Mean 1221  Mean 1292 
 Range 21  Range 4 
    

Performance Data 
Furnace Exit Gas 
Temperature ( C )  1057 

Platen Entry  
Temperature Maximum 1112 

    Average 1081 
Drum Saturation 
Temperature ( C )  344.1 Drum Pressure (Mpa)  15.44 
      
Economiser Outlet  
Temperature ( C )  263.4 

Feedwater  
Flow ( kg/s )  224 

      
Loss of Ignition (%)  3.2 Total Air Flow (kg/s)  298 
      
NO Level  0.649 Total Fuel Flow (kg/s)  26 
 

 

Table 7.4 – Test 2 Data 
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7.6 Test 3 

 
An “inverted” windbox pattern was trialled for Test 3 with upper level in-service 

windbox opened to 80%, the lower level in-service windbox closed in to 50%, and 

middle windboxes left at 70% as detailed in Table 7.5. With the top in-service 

windbox opened to 80% and larger quantities of secondary air provided high in the 

furnace, it is expected a rise in furnace exit gas temperature will ensue. It is also 

predicted that burnout of the fuel will be high resulting in low carbon in fly ash 

losses. 

 

 

Dampers In Service Position Out of Service Position 

F1-F2  50% 

A1-A2 70%  

B1-B2 50%  

E1-E2 80%  

C1-C2 70%  

D1-D2  50% 

 
Table 7.5 – Test 3 Windbox Damper Positions 

 

 

Table 7.6 details the maximum and average temperatures from the test points 

described in section 7.2.2 as well as the values from the control system used to 

determine plant performance. 
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Maximum Values 
Top Row Maximum 1374 Top Row Centreline Maximum 1451 
 Minimum 1353  Minimum 1451 
 Mean 1363.5  Mean 1451 
 Range 21  Range 0 
     
Middle Row Maximum 1423 Middle Row Centreline Maximum 1450 
 Minimum 1295  Minimum 1414 
 Mean 1361.25  Mean 1432 
 Range 128  Range 36 
     
Bottom Row Maximum 1329 Bottom Row Centreline Maximum 1358 
 Minimum 1318  Minimum 1333 
 Mean 1323.5  Mean 1345.5 
 Range 11  Range 25 
     

Average Values 
Top Row Maximum 1331 Top Row Centreline Maximum 1428 
 Minimum 1322  Minimum 1406 
 Mean 1327  Mean 1417 
 Range 9  Range 22 
     
Middle Row Maximum 1389 Middle Row Centreline Maximum 1442 
 Minimum 1226  Minimum 1394 
 Mean 1309  Mean 1418 
 Range 163  Range 48 
     
Bottom Row Maximum 1250 Bottom Row Centreline Maximum 1321 
 Minimum 1245  Minimum 1308 
 Mean 1248  Mean 1315 
 Range 5  Range 13 
     

Performance Data 
Furnace Exit Gas 
Temperature ( C )  1032 

Platen Entry  
Temperature Maximum 1119 

    Average 1038 
Drum Saturation 
 Temperature ( C )  344 Drum Pressure (Mpa)  15.14 
      
Economiser Outlet  
Temperature ( C )  264.6 

Feedwater  
Flow ( kg/s )  216.8 

      
Loss of Ignition (%)  0.8 Total Air Flow (kg/s)  306 
      
NO Level  0.652 Total Fuel Flow (kg/s)  25.9 
 
 

Table 7.6 – Test 3 Data 
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7.7 Test 4 

 
7.7.1 Aim 

 

This test was undertaken to simulate the effects of over-fire air by opening the top 

out-of-service windbox whilst closing all other windboxes. The assumptions, 

specific requirements and boiler conditioning remain the same as the previous series 

of tests. The top out-of-service damper was opened to 80% position for this test with 

all other in-service dampers closed in 5% each as shown in Table 7.7.  There was a 

concern that the large quantity of secondary air being emitted from ‘F’ row may 

force the flames from the in-service ‘E’ row back onto the water wall causing a 

temperature differential from furnace front to back and poor flame stability.  To 

alleviate this potential risk, the flame detection system was constantly monitored 

during the preparations for this test. 

 

 

Dampers In Service Position Out of Service Position 

F1-F2  80% 

A1-A2 65%  

B1-B2 80%  

E1-E2 40%  

C1-C2 65%  

D1-D2  40% 
 

Table 7.7 – Test 4 Windbox Damper Positions 

 

 

Table 7.8 details the maximum and average temperatures from the test points 

described in section 7.2.2 as well as the values from the control system used to 

determine plant performance. 
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Maximum Values 
Top Row Maximum 1369 Top Row Centreline Maximum 1431 
 Minimum 1312  Minimum 1420 
 Mean 1340.5  Mean 1425.5 
 Range 57  Range 11 
      
Middle Row Maximum 1421 Middle Row Centreline Maximum 1412 
 Minimum 1270  Minimum 1410 
 Mean 1349  Mean 1411 
 Range 151  Range 2 
      
Bottom Row Maximum 1329 Bottom Row Centreline Maximum 1295 
 Minimum 1312  Minimum 1276 
 Mean 1320.5  Mean 1285.5 
 Range 17  Range 19 
      

Average Values 
Top Row Maximum 1335 Top Row Centreline Maximum 1408 
 Minimum 1259  Minimum 1397 
 Mean 1297  Mean 1403 
 Range 76  Range 11 
      
Middle Row Maximum 1346 Middle Row Centreline Maximum 1382 
 Minimum 1198  Minimum 1370 
 Mean 1272  Mean 1376 
 Range 148  Range 12 
      
Bottom Row Maximum 1260 Bottom Row Centreline Maximum 1274 
 Minimum 1219  Minimum 1247 
 Mean 1240  Mean 1261 
 Range 41  Range 27 

Performance Data 
Furnace Exit Gas 
Temperature ( C ) 

 
1028

Platen Entry  
Temperature Maximum 1135 

    Average 1086 
Drum Saturation 
 Temperature ( C )  15.2 Drum Pressure (Mpa) 

 
15.2 

      
Economiser Outlet  
Temperature ( C )  262.2

Feedwater  
Flow ( kg/s )  218.6 

      
Loss of Ignition (%)  5.9 Total Air Flow (kg/s)  303 
      
NO Level  0.601 Total Fuel Flow (kg/s)  26 
 
Table 7.8 – Test 4 Data 
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7.8 Variation in Excess Air  

 
7.8.1 Aim 

 

Tests 5, 6 and 7 examine the effect on the variables of interest of the levels of excess 

oxygen. The amount of combustion air provided to the furnace can be varied by 

altering the pitch on the forced draught fans until the desired excess oxygen levels 

are achieved at the economiser cross over.  

  

 

7.8.2 Assumptions 

 

1. The excess oxygen set point was determined from the values given by the 

control logic as described in section 7.2.6. 

 

 

7.8.3 Specific Requirements 

 

1. Test duration to be 1.5 hours minimum. 

 

2. Allow 30 minutes after required excess oxygen level has been achieved to 

allow boiler to stabilise before commencing testing. 

 

3. Coal samples to be taken at commencement and conclusion of each test to 

check for variations in quality during test. 

 

 

7.9 Test 5 
 

The amount of secondary air provided to the furnace was altered until an excess 

oxygen level of three percent was achieved. 
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Table 7.9 details the maximum and average temperatures from the test points 

described in section 7.2.2 as well as the values from the control system used to 

determine plant performance. 
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Maximum Values 
Top Row Maximum 1328 Top Row Centreline Maximum 1489 
 Minimum 1309  Minimum 1475 
 Mean 1318.5  Mean 1482 
 Range 19  Range 14 
    
Middle Row Maximum 1364 Middle Row Centreline Maximum 1451 
 Minimum 1287  Minimum 1450 
 Mean 1338  Mean 1450.5
 Range 77  Range 1 
    
Bottom Row Maximum 1291 Bottom Row Centreline Maximum 1351 
 Minimum 1277  Minimum 1338 
 Mean 1284  Mean 1344.5
 Range 14  Range 13 
    

Average Values 
Top Row Maximum 1335 Top Row Centreline Maximum 1476 
 Minimum 1252  Minimum 1408 
 Mean 1294  Mean 1442 
 Range 83  Range 68 
    
Middle Row Maximum 1348 Middle Row Centreline Maximum 1444 
 Minimum 1198  Minimum 1434 
 Mean 1300  Mean 1439 
 Range 150  Range 10 
    
Bottom Row Maximum 1223 Bottom Row Centreline Maximum 1323 
 Minimum 1219  Minimum 1300 
 Mean 1221  Mean 1312 
 Range 4  Range 23 
    

Performance Data 
Furnace Exit Gas 
Temperature ( C ) 

 
1064 

Platen Entry  
Temperature Maximum 1164 

    Average 1138 
Drum Saturation 
Temperature ( C )  345.2 Drum Pressure (Mpa) 

 
15.37 

      
Economiser Outlet  
Temperature ( C )  257 

Feedwater  
Flow ( kg/s )  216.4 

      
Loss of Ignition (%)  7.3 Total Air Flow (kg/s)  274 
      
NO Level  0.532 Total Fuel Flow (kg/s)  26.4 
 
Table 7.9 – Test 5 Data 
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7.10 Test 6 

 
The amount of secondary air provided to the furnace is to be altered until an excess 

oxygen level of four percent is achieved. 

 

Table 7.10 details the maximum and average temperatures from the test points 

described in section 7.2.2 as well as the values from the control system used to 

determine plant performance. 
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Maximum Values 
Top Row Maximum 1315 Top Row Centreline Maximum 1460 
 Minimum 1279  Minimum 1440 
 Mean 1297  Mean 1450 
 Range 36  Range 20 
    
Middle Row Maximum 1373 Middle Row Centreline Maximum 1383 
 Minimum 1324  Minimum 1356 
 Mean 1347.75  Mean 1369.5
 Range 49  Range 27 
    
Bottom Row Maximum 1297 Bottom Row Centreline Maximum 1292 
 Minimum 1292  Minimum 1250 
 Mean 1294.5  Mean 1271 
 Range 5  Range 42 
    

Average Values 
Top Row Maximum 1240 Top Row Centreline Maximum 1440 
 Minimum 1220  Minimum 1420 
 Mean 1230  Mean 1430 
 Range 20  Range 20 
    
Middle Row Maximum 1350 Middle Row Centreline Maximum 1370 
 Minimum 1170  Minimum 1345 
 Mean 1255  Mean 1358 
 Range 180  Range 25 
    
Bottom Row Maximum 1230 Bottom Row Centreline Maximum 1250 
 Minimum 1190  Minimum 1235 
 Mean 1210  Mean 1243 
 Range 40  Range 15 
    

Performance Data 
Furnace Exit Gas 
Temperature ( C ) 

 
1057 

Platen Entry 
 Temperature Maximum 1116 

    Average 1091 
Drum Saturation 
 Temperature ( C )  345.6 Drum Pressure (Mpa) 

 
15.44 

      
Economiser Outlet  
Temperature ( C )  263.3 

Feedwater  
Flow ( kg/s )  227.3 

      
Loss of Ignition (%)  10.9 Total Air Flow (kg/s)  294 
      
NO Level  0.545 Total Fuel Flow (kg/s)  26.4 
 
Table 7.10 – Test 6 Data 
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7.11 Test 7 

 
The amount of secondary air provided to the furnace is to be altered until an excess 

oxygen level of 5½ per cent is achieved. 

 

Table 7.11 details the maximum and average temperatures from the test points 

described in section 7.2.2 as well as the values from the control system used to 

determine plant performance. 
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Maximum Values 
Top Row Maximum 1310 Top Row Centreline Maximum 1436 
 Minimum 1298  Minimum 1408 
 Mean 1304  Mean 1422 
 Range 12  Range 28 
    
Middle Row Maximum 1411 Middle Row Centreline Maximum 1370 
 Minimum 1179  Minimum 1338 
 Mean 1295.25  Mean 1354 
 Range 232  Range 32 
    
Bottom Row Maximum 1316 Bottom Row Centreline Maximum 1245 
 Minimum 1305  Minimum 1220 
 Mean 1310.5  Mean 1232.5
 Range 11  Range 25 
    

Average Values 
Top Row Maximum 1290 Top Row Centreline Maximum 1395 
 Minimum 1238  Minimum 1359 
 Mean 1264  Mean 1377 
 Range 52  Range 36 
    
Middle Row Maximum 1376 Middle Row Centreline Maximum 1338 
 Minimum 1131  Minimum 1322 
 Mean 1254  Mean 1330 
 Range 245  Range 16 
    
Bottom Row Maximum 1266 Bottom Row Centreline Maximum 1222 
 Minimum 1257  Minimum 1193 
 Mean 1262  Mean 1208 
 Range 9  Range 29 

Performance Data 
Furnace Exit Gas 
Temperature ( C ) 

 
991 

Platen Entry  
Temperature Maximum 1083 

    Average 1054 
Drum Saturation 
 Temperature ( C )  345.3 Drum Pressure (Mpa) 

 
15.38

      
Economiser Outlet  
Temperature ( C )  266.5 

Feedwater  
Flow ( kg/s )  221 

      
Loss of Ignition (%)  6.1 Total Air Flow (kg/s)  318 
      
NO Level  0.624 Total Fuel Flow (kg/s)  26.4 
 
Table 7.11 – Test 7 Data 
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7.12 Testing Difficulties 

 
Ten (10) tests were actually undertaken however problems including failure of the 

test equipment, sootblowing during testing and major changes in coal quality 

rendered the results from some tests invalid and as such these tests had to be 

repeated.   

 

Planning and undertaking each of the tests required a significant amount of time and 

resources due to the following reasons:- 

 

• Ensuring all test equipment was functional 

• Ensuring operational staff were aware of boiler set up 

• Market trading staff were aware of testing 

• Time taken to adjust boiler to the required test position and allowing boiler to 

stabilise 

• Time taken to perform temperature survey and collect samples 
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8.1 Introduction 

 
This chapter details the results obtained through the testing phase of the project.  

Predicted flame temperatures are compared with measured values.  The loss of 

ignition and furnace heat pickup are compared between tests carried out.  The 

difficulties encountered with thermal NO prediction are outlined and the actual 

measured values of NO are compared between tests.  Appendix D details some of the 

data used in the calculation of the variables used to create the graphs in this section.   

 

8.2 Flame Temperature Comparison 

 
A series of comparisons were performed to determine the validity of the flame 

temperature estimates described in section 6.3. Figure 8.1 shows the calculated flame 

temperature values compared to the values measured around the furnace. The 

measured values are the mean maximum centre-line temperatures measured at the 

top burner level and the average centreline temperature measured from the same 

location. As can be seen from Figure 8.1, the calculated flame temperature is 

approximately 450˚C above the measured values and does not appear to follow the 

trend of the measured values. 

 

 

Flame Temperature Comparison for Top Row 
Burners

1200
1300
1400
1500
1600
1700
1800
1900
2000

Test
1

Test
2

Test
3

Test
4

Test
5

Test
6

Test
7

Test Number

Te
m

pe
ra

tu
re

 ( 
C

 )

Predicted Values

Mean Maximium
Centre Line
Temperature
Average Centre
Line Temperature

 
Figure 8.1 – Comparison of Predicted and Measured Temperatures for Top Row Burners 
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Figure 8.2 shows a similar comparison using the measured values from the bottom 

row of burners. Even in the lower burner region where the flame is less affected by 

surrounding flames, the values of the predicted temperatures still appear to show no 

trend compared to the measured values. The calculation of the flame temperature 

using the method described by Field et al (1967) does not accurately reflect the 

conditions found within the furnace at Stanwell. As such the temperature 

distributions used in the NO calculations used the values determined through testing. 

 

Flame Temperature Comparison for Bottom Row 
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Figure 8.2 – Comparison of Predicted and Measured Temperatures for Bottom Row Burners 

 

 

8.3 Loss of Ignition 

 
Figure 8.3 shows the loss of ignition (LOI) for each of the tests. The lowest value of 

LOI achieved was for Test 3 with a value of 0.8%. This high burnout was achieved 

when a large amount of secondary air was admitted high in the furnace. It is not 

known how much unburnt carbon was present in the bottom ash, however as bottom 

ash generally accounts for less than 10% of total ash it would not account for a 

significant loss. It is interesting to note that the windbox damper position for Tests 5, 

6 and 7 was the same as baseline Test 1 yet the LOI for these tests was significantly 

more. These tests had a greater amount of ash present in the coal which may have 
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hindered acceptable burnout. The result for Test 6 was unexpected as the LOI levels 

were expected to fall somewhere between the levels measured for Test 5 and 7. It 

appears that coal quality significantly affects loss of ignition.  
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Figure 8.3 – Loss of Ignition and Ash Content of Coal 

 

 

8.4 Furnace Heat Pickup 

 
Table 8.1 shows the steps undertaken to determine the enthalpy added to the 

feedwater to transform it to a saturated steam. The value of the drum pressure was 

gathered from the control system and the corresponding saturation temperature 

calculated by interpolating the values from the JSME steam tables. The liquid 

enthalpy change in raising the feedwater to a saturated liquid was determined and 

added to the enthalpy of evaporation required to raise the mix to a saturated vapour 

to determine the total change in enthalpy (Joel, 1996). 
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Test 
No. 

Drum 
Pressure   

(Mpa) 

Saturation 
Temperature 

(°C) 

Economiser 
Outlet 

Temperature
(°C) 

Enthalpy 
Change in 

Raising 
Water to 

Saturation 
Temperature

(kJ/kg) 

Enthalpy of 
Evaporation 

(kJ/kg) 

Total 
Change in 
Enthalpy 
(kJ/kg) 

Test 1 15.14 342.9 263.7 464.4 2,610.9 3,075.3 
Test 2 15.16 343.0 263.4 466.6 2,610.3 3,076.9 
Test 3 15.14 342.9 264.6 460.1 2,610.9 3,071.0 
Test 4 15.20 343.2 262.2 473.9 2,609.1 3,083.0 
Test 5 15.37 344.1 257.0 505.8 2,604.1 3,109.9 
Test 6 15.44 344.4 263.3 477.6 2,602.1 3,079.7 
Test 7 15.38 344.1 266.5 459.8 2,603.8 3,063.6 
 
Table 8.1 – Enthalpy Change from Economiser Outlet to Boiler Drum Steam Outlet 

 

 

The furnace heat ratio was determined to evaluate how much of the heat produced 

during the combustion of the pulverised coal was transferred to the water walls. The 

ratio was formed in the following way:- 

 

1. The numerator was formed by multiplying the total change in enthalpy as 

described above by the feedwater flow. 

 

2. The denominator was formed by multiplying the specific energy of the coal 

as determined from the Dulong formula (Equation 3.2) by the mass flow rate 

of the coal.  

 

The higher the value of the furnace heat ratio indicates an improvement in heat 

transfer. Table 8.2 details the calculation of the furnace heat ratio for each of the 

tests undertaken.   
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Test No. 

Total 
Change in 
Enthalpy 
(kJ/kg) 

Feed 
Water 
Flow 
(kg/s) 

Total 
Change in 
Enthalpy 
multiplied 

by Feed 
Water Flow 

(kJ/s) 

Specific 
Energy of 
Coal from  

Dulong 
Formula 
(kJ/kg) 

Coal 
Flow 
Rate 
(kg/s) 

Specific 
Energy of 

Coal 
multiplied 

by Coal 
Flow Rate 

(kJ/s) 

Furnace 
Heat 
Ratio 

Test 1 3,075.3 217.7 669,493 36,100 25.9 934,990 0.716 
Test 2 3,076.9 224.0 689,226 36,190 26.0 940,940 0.732 
Test 3 3,071.0 216.8 665,793 36,250 25.9 938,875 0.709 
Test 4 3,083.0 218.6 673,944 35,860 26.0 932,360 0.723 
Test 5 3,109.9 216.4 672,982 36,350 26.4 959,640 0.701 
Test 6 3,079.7 227.3 700,016 36,130 26.4 953,832 0.734 
Test 7 3,063.6 221.0 677,056 35,940 26.4 948,816 0.714 

 
Table 8.2 – Furnace Heat Ratio 
 

 

Figure 8.4 shows the furnace heat ratio and the specific energy of the coal for each of 

the tests undertaken. The furnace heat ratio was greatest for Test 6 with an excess air 

level of 4%. It is interesting to note the result for Test 4, the over-fire air simulation, 

which achieved favourable furnace heat pickup using a coal of low specific energy.  
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Figure 8.4 – Furnace Heat Ratio and Specific Energy of Coal  
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8.5 Thermal NO Prediction 

 
The prediction of thermal NO proved to be difficult and time consuming with no 

accurate measures or results achieved. As stated in Chapter 5, thermal NO generally 

accounts for 20% to 50% of total NOx emissions. Using the measured temperatures 

from Test 1, the results from the ultimate analysis of the coal and the equilibrium 

combustion program from Turns (2000) results in a minuscule amount of monatomic 

oxygen being produced. The rate coefficient determined at these temperatures was 

not large enough to counter the small amounts of monatomic oxygen, therefore the 

values of NO predicted are insignificant, being many orders of magnitude less than 

expected. The model was developed assuming basic plug flow and it was not 

considered a worthwhile exercise to incorporate the residence time estimate into the 

model. This same result was obtained for all of the tests. Figure 8.5 shows the 

predicted rate of NO for Test 1.  
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Figure 8.5 – Predicted NO for Test 1  

 

 

Even when the model is used to predict thermal NO at flame temperatures far greater 

than those recorded there was still not enough monatomic oxygen created in the 

system to yield expected values of NO.  
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Some of the possible reasons for the low values of NO may be:- 

 

1. It is possible that the assumption of an instantaneous conversion of the 

reactants to the products of combustion is not valid for this system and that 

diatomic oxygen continues to dissociate and form monatomic oxygen 

throughout the process.  

 

2. The measured flame temperatures are less than 1,538°C which is the 

temperature at which thermal NOx becomes significant as stated in section 

5.2.2. It may be that thermal NO accounts for much less than 20% of total 

NOx in this particular furnace with the majority of NOx being produced as 

fuel NOx. 

 

 

8.6 Measured NO Levels During Testing 

 
Although the attempt to predict NO was unsuccessful the actual measured amounts 

of NO recorded during testing did produce some promising results.  

 

 

8.6.1 Secondary Air Redistribution 

 

As can be seen from Figure 8.6 the redistribution of the secondary air to the in-

service windboxes for Test 1, Test 2 and Test 3 had very little effect on NO 

formation. In Test 4, the over-fire air simulation, the result was a decrease in NO 

produced by approximately 7.5 per cent. 
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Secondary Air Redistribution 
Measured NO Levels
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 Figure 8.6 – NO Produced for Secondary Air Redistribution Tests 

 

 

Figure 8.7 shows that this reduction in NO was achieved with an improvement in the 

furnace heat ratio when compared to the baseline test even though there was an 

increase in loss of ignition.  
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Figure 8.7 – Comparison of NO Produced with Furnace Heat Ratio for Tests 1-4 
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8.6.2 Excess Air Variation 

 

The results from these series of tests were mostly as expected with increased NO as 

the amount of excess air increased, as is shown in Figure 8.8. The furnace heat rate 

improved between Test 4 and 5 before declining again as the excess air reached the 

high levels of Test 7. 
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Figure 8.8 – Comparison of NO Produced with Furnace Heat Ratio for Tests 4-6 
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9.1 Introduction 
 

The oxides of nitrogen (NOx) are airborne pollutants that result from the combustion 

of pulverised coal.  NOx emissions contribute to acid rain and have been linked to 

climate change.  This project was undertaken to identify operational methods that 

reduce the NOx emissions whilst maintaining satisfactory plant performance.  

Testing was performed on a 350 MW coal fired boiler at Stanwell Power Station in 

Central Queensland. 

 

 

9.2 Achievement of Objectives 
 

Coal characteristics important in the combustion of pulverised coal include rank, 

ultimate analysis and specific energy.  The sequence of processes coal particles 

undergo during combustion including the release of the volatile matter, the 

combustion of residual char and release of mineral matter were discussed.   

 

The function of each of the boiler plant areas relevant to the project including 

pulverisation plant, draught plant and steam plant were discussed in detail.  

Limitations of the plant that affect the coal combustion process include flame 

stability, excess air requirements and minimum coal air mixture velocity.    

 

The dominant NOx formation mechanisms within the furnace are fuel NOx and 

thermal NOx.  The Zeldovich mechanism and its associated rate constants describe 

the formation of thermal NOx.  Currently there are no theoretical methods to describe 

fuel NOx formation within a coal fired furnace.  The technology available to control 

NOx emissions from thermal power stations include over-fire air, flue gas 

recirculation, combustion optimisation, advanced low NOx burners as well as 

selective catalytic and selective non-catalytic reduction. 

 

Combustion properties including equivalence ratios, initial flame temperature 

approximations, residence time approximations and mole and mass fractions were 

developed to describe the combustion process within the furnace.  These properties 
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were to be used in the development of a thermal NOx prediction model.  However, 

the model for thermal NOx did not adequately describe what was occurring in the 

furnace and it was considered futile to pursue a suitable model in a complex and 

uncontrollable plant by theoretical means. This is reiterated by the fact that it is 

impossible to distinguish the proportion of NOx produced by either of the two 

dominant mechanisms.  

 

A series of tests were undertaken to examine the effect on NOx formation and boiler 

performance by varying operational parameters such as secondary air distribution 

and excess oxygen levels. The secondary air redistribution tests did not produce any 

positive results with regard to NOx reduction whilst the excess air tests produced the 

expected result of NOx emissions increasing as excess air increased.  The simulated 

over-fire air test (Test 4) produced positive results with NOx emissions reduced by 

approximately 7.5% of baseline levels whilst achieving excellent furnace heat 

pickup.  

 

 

9.3 Further Work 

 

There is still a great deal of testing that would need to be undertaken before the 

optimum operational positions of the windbox dampers controlling the distribution 

of secondary air can be implemented. It would be a worthwhile exercise to traverse 

test the windbox ducts on each burner level with the dampers at different positions to 

determine the exact amount of secondary air being delivered to each of the burner 

rows. Although the simulated over-fire air test did achieve promising results there 

are other variables including clinker build up, flame stability and temperature 

distribution issues that would require investigation before any permanent changes to 

operational philosophy would be considered. 
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4. Develop understanding of boiler plant operation, fluid mechanics and heat transfer. 
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As time permits: 
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Appendix B 
 

 

Calculation of Flame Temperature 

 
The following scripts Flame_Temp2.m and Flame_Splines2.m are Matlab scripts 

developed to calculate the flame temperature of pulverised coal. They follow closely 

methods described by Field, Gill, Morgan and Hawkley, 1967.   

 
 %Script to calculate flame temperature closely following methods 
%detailed in "Combustion of Pulverised Coal" by Field et al (1967) 
%Written by Anthony Goodger 2004 
 
%Inputs  
%Carbon,Hydrogen,Nitrogen,Oxygen,Sulphur expressed  
%as a percentage of dry ash free coal 
%Moisture content expressed as a percentage of wet but ash free coal 
%Gross calorific value expressed in cal/g for daf coal 
%ratio of O2 actually supplied to the fuel to the quantity required 
to 
%burn C,H & S to CO2,H2O & SO2 (additional to O2 in fuel) 
 
%Output 
%Flame temperature in Kelvin 
 
per=input('Enter C,H,O,N,S as percentage of daf coal:') 
 
airflow=input('Enter total (FD) air flow:') 
coalflow=input('Enter total fuel flow:') 
 
%allow for air heater loss and seal air fans 
airflow=(0.95*airflow+3.87)*0.23; 
 
%Calculation of stoichiometric air requirement 
f_denom=(per(1)*0.0267+per(2)*0.0794+((per(5)-
per(3))/100))*coalflow; 
f0=airflow./f_denom; 
 
l=per(1)/12; 
m=per(2); 
p=per(3)/16; 
q=per(4)/14; 
r=per(5)/32; 
M=input('Enter moisture content as % of wet but ash free coal:'); 
k=100*M/(18*(100-M)); 
alpha=f0*(2*l+0.5*m+2*r-p); 
beta=68.7*alpha+18*k+100; 
 
%Determine C,H & N to O ratios 
den=alpha+p+k; 
COrat=l/den; 
HOrat=(m+2*k)/den;
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NOrat=(3.76*alpha+q)/den; 
 
%Determine enthalpy of product gas 
%Heat of formation of fuel 
%Determine CV from method described in Juniper 1999 
CVMJ=0.366*per(1)+1.212*per(2)-0.083*per(3)-1.786; 
%Convert MJ/kg to cal/g 
CV=CVMJ*238.85; 
hfuel=100*CV-94052*l-34159*m; %cal/mole fuel 
 
%Equations to determine value of f from Fig C.1 
x=COrat; 
y=HOrat; 
xl=[0.363 0.394 0.423 0.443 0.467 0.492]; 
yl=0.368*xl+0.0025; 
xu=[0.311 0.337 0.357 0.371 0.39 0.409]; 
yu=1.206*xu-0.0002; 
m=(yu-yl)./(xu-xl); 
c=yu-m.*xu; 
eq1=m(1)*x+c(1); 
eq2=m(2)*x+c(2); 
eq3=m(3)*x+c(3); 
eq4=m(4)*x+c(4); 
eq5=m(5)*x+c(5); 
eq6=m(6)*x+c(6); 
 
if y>eq1&y<eq2 
   f=1.2 
elseif y>eq2&y<eq3 
   f=1.1 
elseif y>eq3&y<eq4 
   f=1.05 
elseif y>eq4&y<eq5 
   f=1 
elseif y>eq5&y<eq6 
   f=0.95 
else 
   f=0.9 
end 
 
%Enthalpy of preheat air (cal/mole) 
%h_pre=input('Temp of preheat air:100, 200 or 300 degrees C:') 
%Enter values for test runs 
h_pre=300; 
switch h_pre 
case 100 
   h_p=523.6; 
case 200 
   h_p=1228; 
case 300 
   h_p=1944.3; 
end 
%Heat Loss- assume 15% 
hl=100*CV/6.67; 
%Enthalpy of product gas 
h_gas=hfuel+h_p-hl; 
 
%Divide by beta to obtain enthalpy of product gas in cal/g 
h_gas2=h_gas/beta; 
[TT]=Flame_splines2(COrat,h_gas2,f); 
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Temperature=round(TT) 
 
%Apparent NO correction from Fig C.2 
x_low=[0.322 0.347 0.361 0.377 0.395]; 
y_low=-1.096.*x_low+3.73; 
x_up=[0.356 0.389 0.409 0.428 0.449]; 
y_up=-0.086.*x_up+3.77; 
m=(y_up-y_low)./(x_up-x_low); 
c=y_low-m.*x_low; 
 
switch f 
 case 1.2 
      if COrat<x_up(1) 
         NO_app=m(1).*COrat+c(1); 
      else 
         NO_app=-0.086.*COrat+3.77; 
      end 
     case 1.1 
      if COrat<x_up(2) 
         NO_app=m(2).*COrat+c(2); 
      else 
         NO_app=-0.086.*COrat+3.77; 
      end 
   case 1.05 
      if COrat<x_up(3) 
         NO_app=m(3).*COrat+c(3); 
      else 
         NO_app=-0.086.*COrat+3.77; 
      end 
   case 1 
      if COrat<x_up(4) 
         NO_app=m(4).*COrat+c(4); 
      else 
         NO_app=-0.086.*COrat+3.77; 
      end 
    case 0.95 
      if COrat<x_up(5) 
         NO_app=m(5).*COrat+c(5); 
      else 
         NO_app=-0.086.*COrat+3.77; 
      end 
end 
    
%determine deltaNO 
deltaNO=NOrat-NO_app; 
 
%figure C.3 splines 
T_2=1400:200:3000; 
switch f 
 case 0.95 
    delE_delNO=[129 128 127 126 125 120 110 92 73]; 
    val=spline(T_2,delE_delNO,TT); 
 case 1 
    delE_delNO=[132 131 130 128 125 119 108 90 70]; 
  val=spline(T_2,delE_delNO,TT); 
 case 1.05 
    delE_delNO=[127 126 125 124 121 117 105 88 69]; 
    val=spline(T_2,delE_delNO,TT); 
 case 1.1 
    delE_delNO=[122 121 120.5 119 117 113 102 84 67]; 
    val=spline(T_2,delE_delNO,TT); 
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 case 1.2 
    T_2=1400:200:2600; 
    delE_delNO=[112 111 109 108 106 103 95]; 
    val=spline(T_2,delE_delNO,TT); 
end 
 
%correct enthalpy value 
enth_corr=deltaNO*val+h_gas2; 
h_gas2=enth_corr;    
[TT]=Flame_splines2(COrat,h_gas2,f); 
   
Corrected_Temperature=round(TT) 
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%Cubic spline script to calculate flame temperature from graphs 
%detailed in "Combustion of Pulverised Coal" by Field et al (1967) 
%Written by Anthony Goodger 2004 
 
 
%Cubic splines to solve for temperature 
function[TT]=Flame_splines2(COrat,h_gas2,f) 
 
T=[1400:200:2800]; 
switch f 
     
case 0.9; 
   if COrat>0.401&COrat<0.4300 
      H=[-381 -317 -250 -85 -111 -11 129 296]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4301&COrat<0.4500 
      H=[-355 -288 -225 -159 -87 7 148 318]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4501&COrat<0.4700 
      H=[-329 -267 -205 -137 -63 30 163 326]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4701&COrat<0.5200 
      H=[-307 -244 -181 -115 -44 48 178 333]; 
      TT=spline(H,T,h_gas2); 
 end 
  
case 0.95; 
   if COrat>0.3901&COrat<0.4100 
      H=[-390 -330 -265 -197 -115 -7 140 317]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4101&COrat<0.4300 
      H=[-362 -307 -241 -172 -86 17 155 322]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4301&COrat<0.4500 
      H=[-338 -282 -218 -149 -69 35 172 328]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4501&COrat<0.4700 
      H=[-320 -262 -200 -135 -55 48 179 345]; 
      TT=spline(H,T,h_gas2); 
 end 
 
case 1; 
   if COrat>0.3701&COrat<0.3900 
      H=[-413 -343 -273 -200 -110 0 143 316]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.3901&COrat<0.4100 
      H=[-380 -317 -250 -173 -87 23 163 330]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4101&COrat<0.4300 
      H=[-357 -290 -223 -150 -67 43 180 350]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4301&COrat<0.4500 
      H=[-333 -273 -206 -133 -46 63 197 350]; 
      TT=spline(H,T,h_gas2); 
 end 
 
case 1.05; 
 if COrat>0.3501&COrat<0.3700 
      H=[-383 -323 -257 -180 -93 13 157 333]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.3701&COrat<0.3900 
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      H=[-353 -293 -230 -157 -70 37 180 343]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.3901&COrat<0.4100 
      H=[-327 -270 -207 -133 -43 63 200 353]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.4101&COrat<0.4300 
      H=[-310 -250 -190 -120 -30 77 213 363]; 
      TT=spline(H,T,h_gas2); 
   end 
 
case 1.1; 
   if COrat>0.3401&COrat<0.3550 
      H=[-348 -290 -219 -148 -68 35 174 345]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.3561&COrat<0.3700 
      H=[-329 -270 -203 -132 -52 55 187 358]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.3701&COrat<0.3900 
      H=[-303 -248 -177 -106 -29 74 206 371]; 
      TT=spline(H,T,h_gas2); 
 elseif COrat>0.3901&COrat<0.4300 
      H=[-281 -225 -158 -90 -13 87 223 380]; 
      TT=spline(H,T,h_gas2); 
   end 
 
case 1.2; 
   T=[1400:200:2600] 
   if COrat>0.2901&COrat<0.3100 
      H=[-306 -243 -176 -106 -23 73 203]; 
      TT=spline(H,T,h_gas2) 
 elseif COrat>0.3101&COrat<0.3300 
      H=[-273 -210 -146 -77 3 100 227]; 
      TT=spline(H,T,h_gas2) 
 elseif COrat>0.3301&COrat<0.3600 
      H=[-240 -177 -113 -47 33 120 257]; 
      TT=spline(H,T,h_gas2) 
   end 
   end 
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Appendix C 
 

 

Periodic Table 
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Appendix D 
 

 

Coal Analysis and Test Data 
 

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 

 Baseline 1 Square Inverted OFA 

3%  
Excess 

O2 
4%  

Excess O2 
5.5%  

Excess O2 

        

Moisture Content (%ar) 7.5 7.5 7.6 7.4 7.9 8.3 8.2 

Ash Content (%ad) 13.1 15.2 13.8 16.1 18.2 15.6 18.5 

Carbon Content (%daf) 88 87.9 88 87.3 89 88.1 87.8 

Hydrogen Content (%daf) 4.91 5.02 5.01 4.96 4.74 4.89 4.86 

Nitrogen Content (%daf) 1.88 1.86 1.9 1.91 1.83 1.91 1.88 

Sulphur Content (%daf) 0.65 0.56 0.66 0.77 0.73 0.68 0.77 

Oxygen Content (%daf) 4.53 4.68 4.47 5.02 3.66 4.38 4.71 

        

Reactant Mass (kg/kg coal) 0.804 0.784 0.796 0.777 0.753 0.774 0.748 

Carbon (kg/kg coal) 0.707 0.689 0.701 0.678 0.671 0.682 0.657 

Hydrogen (kg/kg coal) 0.039 0.039 0.040 0.039 0.036 0.038 0.036 

Nitrogen (kg/kg coal) 0.015 0.015 0.015 0.015 0.014 0.015 0.014 

Sulphur (kg/kg coal) 0.005 0.004 0.005 0.006 0.005 0.005 0.006 

Oxygen (kg/kg coal) 0.036 0.037 0.036 0.039 0.028 0.034 0.035 

        

Stoichiometric O2 2.171 2.121 2.158 2.084 2.052 2.092 2.013 

Stoichiometric Air 9.357 9.143 9.301 8.982 8.844 9.019 8.677 

        

Forced Draft Flow (kg/s) 306 298 306 303 274 294 318 

Combustion Air (kg/s) 294.6 287.0 294.6 291.7 264.2 283.2 306.0 

Coal Flow Rate (kg/s) 25.9 26 25.9 26 26.4 26.4 26.4 

        

Equivalence Ratio 0.823 0.828 0.818 0.801 0.884 0.841 0.749 

        

Excess Air 21.548 20.713 22.276 24.914 13.149 18.929 33.564 

        

Excess O2 4.999 4.806 5.168 5.780 3.051 4.392 7.787 

        

LOI 1.7 3.2 0.8 5.9 7.3 10.9 6.1 

        

NO Level 0.649 0.649 0.652 0.601 0.532 0.545 0.624 

        

MW carbon 12.011 12.011 12.011 12.011 12.011 12.011 12.011 

MW hydrogen 1.00797 1.00797 1.00797 1.00797 1.00797 1.00797 1.00797 

MW nitrogen 14.007 14.007 14.007 14.007 14.007 14.007 14.007 

MW sulphur 32.064 32.064 32.064 32.064 32.064 32.064 32.064 

MW oxygen 15.9994 15.9994 15.9994 15.9994 15.9994 15.9994 15.9994 
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 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 

 Baseline 1 Square Inverted OFA 

3%  
Excess 

O2 
4%  

Excess O2 
5.5%  

Excess O2 

        

MW mix 9.8457 10.0057 9.8606 10.1644 10.6235 10.2403 10.6212 

        

Mole Fractions        

        

Carbon 0.5798 0.5744 0.5754 0.5740 0.5930 0.5813 0.5809 

Hydrogen 0.3855 0.3909 0.3904 0.3886 0.3764 0.3845 0.3831 

Nitrogen 0.0106 0.0104 0.0107 0.0108 0.0105 0.0108 0.0107 

Sulphur 0.0016 0.0014 0.0016 0.0019 0.0018 0.0017 0.0019 

Oxygen 0.0224 0.0230 0.0219 0.0248 0.0183 0.0217 0.0234 

        

        

Atom Ratios        

        

Carbon 0.5798 0.5744 0.5754 0.5740 0.5930 0.5813 0.5809 

Hydrogen 0.7710 0.7818 0.7807 0.7772 0.7527 0.7690 0.7663 

Nitrogen 0.0212 0.0208 0.0213 0.0215 0.0209 0.0216 0.0213 

Sulphur 0.0016 0.0014 0.0016 0.0019 0.0018 0.0017 0.0019 

Oxygen 0.0448 0.0459 0.0439 0.0496 0.0366 0.0434 0.0468 

        

Carbon 579.8 574.4 575.4 574.0 593.0 581.3 580.9 

Hydrogen 771.0 781.8 780.7 777.2 752.7 769.0 766.3 

Nitrogen 21.2 20.8 21.3 21.5 20.9 21.6 21.3 

Sulphur 1.6 1.4 1.6 1.9 1.8 1.7 1.9 

Oxygen 44.8 45.9 43.9 49.6 36.6 43.4 46.8 

        

Flame Temp by Field (K) 2177 2094 2175 2167 1950 2086 2108 

        

Specific Energy (MJ/kg) 
Dulong Formula 36.10 36.19 36.25 35.86 36.35 36.13 35.94 

Specific Energy (MJ/kg) 36.00 36.08 36.12 35.76 36.23 36.02 35.85 

Specific Energy (cal/g) 8597.87 8617.99 8628.00 8541.43 8653.32 8603.79 8562.34 

 


