University of Southern Queensland Faculty of Engineering and Surveying

An Investigation into the Australian Height Datum on Ballina Island

A dissertation submitted by

Mr. Matthew Stanley

In fulfillment of the requirements of

Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Spatial Science (Surveying)

Submitted: October, 2010

<u>Abstract</u>

Australian Height Datum (AHD) is the national height datum used in Australia, and is realised with the use of permanent survey marks, that have been connected to the AHD network by the NSW state government. This report investigated the AHD on Ballina Island on the North Coast of NSW by analysing the permanent survey mark infrastructure that supports it.

Through the use of survey techniques such as Precise Differential Levelling, Rapid Static GNSS, and Reciprocal EDM Height Traversing, the inter-relationship (order) of a sample of the permanent survey marks in the subject area were able to be investigated, and compared with the AHD value stated for the recently installed Ballina CORS, and the value of MSL determined at the Ballina tide gauge over the last 24 years.

From the results of the varied surveys it has been concluded that the majority of the permanent survey mark network only fits a 3^{rd} order relationship or less, and that the inter-relationship between the permanent survey mark infrastructure, and the recently installed CORS lays between 4^{th} to 5^{th} order. Furthermore, the relationship between the AHD in Ballina, and the value of MSL was derived, and determined to befit that of 3^{rd} order standards.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 & ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and Surveying, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course "Project and Dissertation" is to contribute to the overall education within the student's chosen degree programme. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Joch Bullon

Professor Frank Bullen Dean Faculty of Engineering and Surveying

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Matthew Stanley Student Number: 0050085891

Signature

Date

Acknowledgements

First and foremost I would like to acknowledge my project supervisor, Associate Professor Kevin McDougall for his help and guidance throughout the year. I would also like to thank my friend and employer Mr Neil Kennedy for his support and provision of time and resources necessary to the completion of this project. In addition I'd like to offer thanks to Mr Graham Cumming of C.R. Kennedy for the loan of equipment and technical support, Mr Graeme Stewart of Land and Property Management for guidance and provision of CORS data, and Miss Andrea Schmid, Mr Peder Bailey and Mr Paul Flanagon for their selfless donation of time to help with the field component of the project.

Last but not least, a special thanks to my wife Rachael and my two children Zachary and Daniella for their love and support throughout the entire duration of this degree.

Table of Contents

Contents	Page
Title Page	i
Abstract	ii
Limitations of Use	iii
Certification	iv
Acknowledgements	v
Table of Contents	vi
List of Figures	Х
Acronyms	xii
Chapter 1: Introduction	1
Background	1
Project Aim	2
Project Justification	3
Proposed Approach	4
Summary	5
Chapter 2: Literature Review	6
Introduction	6
Height Systems and Datums	7
Height Systems Not Related to Gravity	7
Height Systems Related to Gravity	8
Tide Gauges and Height Datums	13

Australian Height Datum	16
Height Datum History in New South Wales	16
Australian Height Datum Derivation	17
Australian Height Datum – Some Issues	19
Permanent Survey Mark Infrastructure in NSW	22
Summary	25
Chapter 3: Testing of the Ballina Island Network of Permanent Survey Marks	26
Introduction	26
Survey Design	28
Equipment	30
Survey Procedures & Techniques	31
Reduction of Measurements	34
Results	35
Analysis of Survey	35
Determination of a Value for AHD	40
Summary	43
Chapter 4: Testing of the Ballina Continuously Operating Reference Station to the Network of Permanent Survey Marks	44
Introduction	44
Survey Design	46
Survey Procedures & Techniques	49
Reduction of Measurements	51
Results	52
Class & Order Qualification	55
Summary	59

Chapter 5: Derivation of an AHD Value for Mean Sea Level As Observed at Ballina Tide Gauge	60
Introduction	60
Survey Design	61
Results	65
Class & Order Qualification	72
Summary	76
Chapter 6: Discussion	77
Introduction	77
The Permanent Survey Mark Infrastructure	77
The Ballina Continuously Operating Reference Station	84
Mean Sea Level at Ballina Tide Gauge	86
Implications and Recommendations	89
Summary	90
Chapter 7: Conclusion	91
Introduction	91
Project Aims and Results	91
Further Work	93
References	94
Appendix A: Project Specification	A-1
Appendix B: Differential Level Network Data	B-1
Loop 1 Raw Data: Kerr Street	B-2
Loop 2 Raw Data: Burnett Street	B-3
Loop 3 Raw Data: Cherry Street	B-4
Loop 4 Raw Data: Cawarra – Martin - Fox Streets	B-5
Loop 5 Raw Data: Norton – Bentinck – Owen Streets	B-6

Loop 6 Raw Data: River Street (Owen – Cherry Streets)	B-8
Loop 7 Raw Data: River Street (Cherry – Kerr Streets)	B-9
Loop 8 Raw Data: Grant Street	B-10
Loop 9 Raw Data: Martin Street (River – Bentinck Streets)	B-11
Loop 12 Raw Data: Bentinck Street (Norton – Martin Streets)	B-12
Differential Level Network – Least Squares Adjustment Report	B-13
Appendix C: Rapid Static GNSS Survey Data	C-1
GNSS Station Level Loop – Cawarra	C-2
GNSS Station Level Loop – Saunders	C-2
GNSS Baseline Vector Report	C-3
GNSS Baseline Misclose Report	C-7
GNSS Least Squares Reduction Report	C-10
Appendix D: Reciprocal EDM Heighting Data	D-1
Loop 10 Raw Data: Northern Bank, Richmond River	D-2
Loop 11 Raw Data: Southern Bank, Richmond River	D-3
Reciprocal EDM Heighting Data	D-4
Reciprocal EDM Heighting Least Squares Reduction Report	D-8

List of Figures

<u>Figure</u>	Page	<u>Title</u>
1.1	4	Ballina Island
2.1	8	The Ellipsoidal Height System
2.2	11	The Orthometric Height System
2.3	12	The Normal Height System
2.4	18	Australian Levelling Survey
2.5	22	Type 2: State Survey Mark
2.6	23	Type 4: Permanent Mark
3.1	27	Pre 1971 1 st Order Route
3.2	28	Proposed Level Route
3.3	29	Part of 1992 Department of Lands Level Network
3.4	36	Table Showing Raw Data Miscloses – Class LB Ballina Island Loop
3.5	37	Graph Showing Deviation Between Published and Observed Height Differences
3.6	39	Graph Showing the Derived Order of Existing Published Height Differences
3.7	40	Graph Showing the Percentage of Height Differences by Order
3.8	41	Graph Showing the Deviation from AHD as Determined from PM37056
3.9	42	Graph Showing the Deviation from AHD as Determined from PM37056 (Outliers Excluded)
3.10	43	Table Depicting Published and Derived AHD Values
4.1	49	Rapid Static Survey Network
4.2	50	Rapid Static Survey Session Plan

4.3	52	Table Showing Rapid Static Survey Results
4.4	53	Ballina CORS Coordinates
4.5	57	GNSS Survey Precision Statistics
4.6	58	Rapid Static Survey Order Statistics
5.1	62	Location of Ballina Tide Gauge and Benchmarks
5.2	66	Reciprocal EDM Heighting Network
5.3	67	Reduced Reciprocal EDM Heighting Measurements
5.4	68	One-way Height Differences from Reciprocal EDM Heighting
5.5	71	Determined and Quoted Heights of Tide Gauge Benchmarks
5.6	73	Results of Differential Level Runs
5.7	74	Reciprocal EDM Heighting Class Statistics
6.1	80	PM37144 Intersection Upon Mark Placement
6.2 & 6.3	80	PM37144 Intersection on 24/10/10
6.4	81	PM39317 Intersection Upon Mark Placement
6.5 & 6.6	81	PM39317 Intersection on 24/10/10
6.7	82	PM37060 Intersection Upon Mark Placement
6.8 & 6.9	82	PM37060 Intersection on 24/10/10
6.10	83	PM7888 Intersection Upon Mark Placement
6.11 & 6.12	83	PM7888 Intersection on 24/10/10

<u>Acronyms</u>

The following terms have been used throughout the course of this report.

AHD	Australian Height Datum
CORS	Continuously Operating Reference Station
DCP	Development Control Plan
EDM	Electromagnetic Distance Measurement
GNSS	Global Navigation Satellite System
ICSM	Inter-governmental Committee on Surveying and Mapping
LPMA	Land and Property Management Authority
LWOST	Low Water Ordinary Spring Tide
MSL	Mean Sea Level
RINEX	Receiver Independent Exchange Format
RRVD	Richmond River Valley Datum
RTK	Real Time Kinematik
SCIMS	Survey Control Information Management Service
TGBM	Tide Gauge Benchmark

<u>Chapter 1:</u> Introduction

Background

Australian Height Datum (AHD) is the national height datum used in Australia. It was adopted in 1971 at the culmination of many years of spirit levelling work undertaken across the continent, and was adjusted to fit the mean sea level observations of 30 tide gauges. The AHD is realised on the most part in New South Wales, with the use of permanent survey marks that have been connected to the AHD network, through various means such as spirit levelling, trigonometric and EDM heighting, and more recently the use of the Global Navigation Satellite System (GNSS).

The responsibility for coordinating these marks with respect to AHD, is predominantly the duty of the New South Wales Land and Property Management Authority (LPMA), which is the new departmental conglomerate encompassing the older land and planning divisions, such as Land and Property Information (LPI), Soil Conservation Service (SCS), and the Board of Surveying and Spatial Information (BOSSI) (LPMA, 2010). The AHD values given to the permanent survey marks are qualified to the class and order system, which serves as a statement of the marks precision and accuracy with regards to surrounding marks, and the absolute value of AHD.

There are many cases for the need of an accurate singular height datum network such as the AHD. Some of the practical uses by surveyors include the assignment of height covenants on land, to provide a benchmark datum for vertical subdivisions, and to aid in complying with development conditions such as minimum floor levels. The latter is particularly relevant on Ballina Island, which forms the subject area for this investigation. Ballina Island is the local term for the central part of the township of Ballina, which is situated on the Far North Coast of New South Wales.

Project Aim

The aim of this project therefore was to investigate the AHD on Ballina Island, by looking into the possibility of any degradation of the established network of permanent survey marks. In addition the project seeked to investigate, whether any differences exist in the values of AHD between the permanent survey mark infrastructure, the newly established Ballina Continuously Operating Reference Station (CORS), and the local value of Mean Sea level (MSL), as observed at the Ballina Tide Gauge.

Project Justification

The Ballina Island subject area forms the centre of the Ballina Shire Council Local Government Area, and is home to the majority of the service infrastructure, commercial and retail, along with a large proportion of residential land use. Geologically and topographically the Ballina Island area is constituted of mostly river gravels, alluvium, sand and clay (NSWDM, 1967) at a relative height of about 1-2m AHD.

As Ballina Island is such a low lying area, virtually surrounded by the waterways of North Creek and the Richmond River as shown in figure 1.1, Ballina Shire Council as part of its Development Control Plan (DCP), stipulate minimum habitable floor heights for buildings and residences in the area. Currently this level is 500mm above the minimum fill levels stipulated in the Ballina DCP, which for the subject area corresponds to 2m AHD (BSC, 2006).

Due to the nature of these requirements, the responsibility of ensuring that the regulations are met, is placed solely on the surveyor, who is charged with bringing vertical control with relation to AHD onto any new building site, and certifying it during construction. In order to carry out these duties as well as others, the surveyor needs to rely on the local permanent survey mark infrastructure, to provide them with accurate heights with relation to AHD.

Figure 1.1 – Ballina Island (Source: Google Earth, 2010)

Proposed Approach

In order to carry out the aims of the project, and carry out a full investigation of the AHD in the subject area, the aspect of order, in relation to height datum quality, was to be determined and assessed in three sections as outlined below.

The first section devised and observed a precise differential level network, to class LB standards. This network was to incorporate a large sample of permanent survey marks of 2nd order accuracy, that were part of the vertical control survey of 1992, and located throughout the Ballina Island subject area. From this survey the task was to analyse the network, and determine whether or not any degradation had

taken place in the network in the 18 years since it was established. In addition a mean value of AHD for the sample of permanent survey marks was to be determined.

The second part of the survey was to devise and observe a static Global Navigation Satellite System (GNSS) survey, connecting the differential level network to the Ballina CORS, with the aim of determining whether any difference exists between the AHD values of the two networks, and to establish the true order between them.

Finally the third section was to devise and observe a reciprocal EDM heighting network, to connect the permanent survey mark network and the Ballina CORS, to the Ballina tide gauge, and determine what difference, if any, exists between the value of AHD determined, and MSL.

Summary

AHD is the national height datum for Australia, and its accurate determination is relied upon for a variety of purposes. This chapter briefly introduced the datum, including some background into the AHD such as its derivation, propagation, and uses. The subject area for this project was identified as the area known locally as Ballina Island, which is home to the majority of the retail, and a large amount of residential land use in the area. The aim of this project was identified as being an investigation, through three different survey methods, of the interrelationship between a sample of the 18 year old class LB network of permanent survey marks located in the subject area, the newly established CORS that is also located on Ballina Island, and the value of MSL at Ballina tide gauge, located adjacent to the southern breakwall at South Ballina.

The following chapter will summarise the literature, with regard to different height datum systems, the AHD derivation and propagation, and benchmark infrastructure.

<u>Chapter 2:</u> Literature Review

Introduction

The current literature is rife with investigations into AHD, mostly with regards to the original derivation in 1971, the methods implemented, and the differential levelling network observed. In the proceeding sections, the components for deriving a vertical control network are identified, with some focus placed on definition and analyses of the AHD. With respect to the different components, the various height systems available are defined, along with the adopted systems for the derivation of AHD.

In addition the methods for propagating AHD are examined, and the types of benchmark infrastructure utilised are identified with some notes on potential stability. Because the subject area is located in New South Wales, the following discussion will focus largely on infrastructure and practices with relation to this state only.

Height Systems & Datums

Heights are generally related to a particular datum or reference plane, which is primarily dependant on what type of height system has been employed. Featherstone & Kuhn (2006), in their review of height systems, identify two main types, those that are related to gravity, and those that are not.

Height Systems Not Related To Gravity

Height systems that are not related to gravity are generally described as being geometrically derived. The most common geometric height system is the ellipsoidal height system, which is described as being the distance measured along a straight line, normal to a reference ellipsoid and a point of interest on the earths surface (Featherstone & Kuhn, 2006). This relationship is best described as shown in figure 2.1.

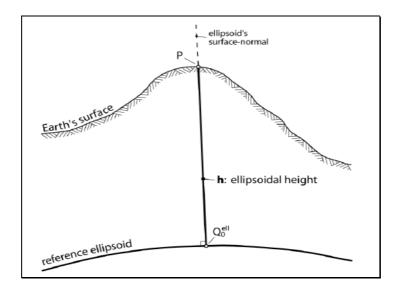


Figure 2.1 – The Ellipsoidal Height System (Featherstone & Kuhn, 2006)

The ellipsoidal height system is predominately used when deriving a height by utilising GNSS equipment. Due to the position derived by GNSS equipment being made with reference to an ellipsoid, any height derived from this equipment is subsequently made as an ellipsoidal height (Featherstone & Kuhn, 2006). In light of this, the datum that is employed for ellipsoidal heights is generally the reference ellipsoid itself. In Australia the reference ellipsoid for ellipsoidal heights is the International Terrestrial Reference Frame, locked at epoch 2000 (ITRF2000) (Featherstone & Kuhn, 2006).

Height Systems Related to Gravity

Any object on the earth's surface is ultimately enacted on and influenced by gravity. As such it stands to reason that any height system that is to be utilised should take the influence of gravity into account. To ignore the effects of gravity potential as is the case in the ellipsoidal height system outlined above, can lead to instances where a negative change in ellipsoidal height, can have a positive change in gravity potential, and thus from a design perspective, objects and fluids can appear to move uphill.

Height systems that are related to gravity, generally utilise the geoid as their datum plane. The geoid can be defined as an equipotential surface, perpendicular to the direction of gravity (Johnstone & Featherstone, 1998), where gravity potential is

equal to zero. For all intents and purposes, the value of mean sea level is approximately coincident, and generally adopted as this surface (Johnstone & Featherstone, 1998).

Featherstone & Kuhn (2006) identify 5 main types of gravity dependant height systems, these 5 systems are briefly summarised below;

- Geopotential Numbers Essentially speaking, Geopotential Numbers are defined by Featherstone & Kuhn (2006, p.6-7), as 'the difference between the Earth's gravity potential at the point of interest W, and that on the reference geopotential surface chosen W_o ', ie the geoid. Since geopotential numbers are required to be converted into dimensions of length to be effective, these measurements are normally used in addition to spirit levelling exercises (Featherstone & Kuhl, 2006).
- The Dynamic Height System This system uses geopotential numbers, and divides them by a constant value of gravity to give a measurement of length. The main failing of this system alone, comes about due to the variation of the value of gravity, as adopting a constant value for all latitudes can lead to distorted height values (Featherstone & Kuhn, 2006).

The Orthometric Height System – The orthometric system is defined as the length of the curved line that is normal to the Earth's gravity field, from a point of interest at the Earth's surface, to the geoid (Featherstone & Kuhn, 2006). The curved nature of this line is due to the change in orientation of an equipotential surface, with the change in mass-density distribution inside the topography. In order to physically model these changes, it would be necessary to take gravity readings at every point along this line, inside the topography, a situation that is virtually impossible to attain (Featherstone & Kuhn, 2006). The system is demonstrated further in figure 2.2.

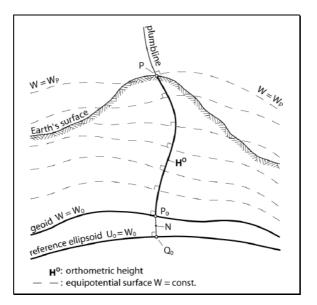


Figure 2.2 – The Orthometric Height System (Featherstone & Kuhn, 2006)

• The Normal Height System – In order to define the normal height system, two new surfaces are introduced, the telluroid, and the

quasigeoid. The telluroid is a surface defined by projecting a point on the Earth's surface (P in figure 2.3), along the ellipsoidal normal, until it reaches a point on the normal gravity field, that coincides with the gravity potential value identified at P. This separation distance is termed the height anomaly (ζ). The quasigeoid is defined as 'a non equipotential surface of the Earth's gravity field that coincides reasonably closely with the geoid' (Featherstone & Kuhn, 2006, p.13). The separation distance between the quasigeoid and the reference ellipsoid, along the ellipsoid normal, is identical to the height anomaly. From here the correction for the distance along the normal plumbline, can be calculated from the reference ellipsoid, to the point on the telluroid, due to determination of the geopotential number, through the measurement of gravity values at P (Featherstone & Kuhn, 2006). This system is further described in figure 2.3.

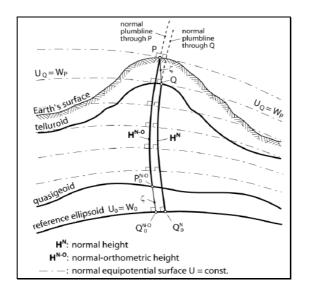


Figure 2.3 – The Normal Height System (Featherstone & Kuhn, 2006)

• The Normal – Orthometric Height System – This system utilises similar concepts of the normal and orthometric height systems, of determining corrections for spirit levelling, however it negates the need to take gravity measurements along the levelling traverse (Featherstone & Kuhn, 2006). This system utilises an approximation of gravity - the normal gravity field, to determine normal geopotential numbers, which are used to determine the corrections. Fluctuations of the normal gravity field, are correspondent to change in north-south position only, and as such determination of the normal geopotential numbers, is reliant only on the recording of approximate latitude (Featherstone & Kuhn, 2006).

Tide Gauges and Height Datums

As was noted previously, gravitational methods generally require a gravitational model known as the geoid, as the datum for the height system. As such MSL has been identified as being a close approximation for the geoid, and determination of this surface has generally been reliant on tidal observations, through the installation and accurate survey of tide gauges (IOC, 2006).

The first tide gauge installed in Australia was located at Williamstown in Victoria in 1859, followed by Fort Denison in Sydney in 1866 (Roelse et al. 1975). There

are a number of different types of tide gauges employed at the present, including the Stilling Well and Float, Pressure Systems, Acoustic Systems and Radar Systems (IOC, 2006). Most installations in New South Wales are of the float and pressure types, and generally all standard tide gauge installations require the following infrastructure;

- A data recording device (now normally digital).
- At least one water level sensor.
- A means of communication to users.
- Some means of independently checking the height and time recorded.
- A station height datum.
- A tide gauge bench mark (TGBM) to which a relative height difference to the tide gauge is known.
- Additional recovery benchmarks in case of TGBM destruction or disturbance.
- A standard time zone.
- Documentation outlining levelling procedures used.

(ICSM, 2004)

The Australian Permanent Committee on Tides and Mean Sea Level (PCTMSL, n.d.) have published a document outlining all of the steps to be carried out, during survey of all tide gauges. The most relevant steps to this investigation include;

- Installation of benchmarks of a durable nature, in areas so as to be free of disturbance, and located approximately 100 metres apart.
- Levelling between the zero of the tide staff and the benchmarks, and connection of the tide staff datum to the national levelling survey, to third order accuracy, as set down under the Intergovernmental Committee on Surveying and Mapping's (ICSM) Special Publication 1

 Standards and Practices for Control Surveys.

Determining accurate MSL from tide gauges is complex, with varied factors having influence on results. The ICSM (2004) have identified that weather related affects such as storm surges created by wind and atmospheric lows, can have a great deal of impact on the data recorded. In addition poor sighting of tide gauges in harbours and river mouths, can introduce distortions in the tidal profiles due to shallow waters (compound tides) (ICSM, 2004), and the mixing of fresh and salt water can have the effect of increasing buoyancy.

The ICSM (2004) have also stated that for correct datum definition by MSL observation, it is recommended that at least 18.6 years of data needs to be collected at any one tide gauge, in order to encompass one full lunar nodal cycle. This is termed the Tidal Datum Epoch (ICSM, 2004).

Australian Height Datum

AHD was adopted in 1971 as the sole vertical geodetic datum on the Australian mainland (GA, 2010). A separate version of AHD as defined by levelling between tide gauges at Burnie and Hobart was adopted for Tasmania (GA, 2010), with no connection having been made between the two. The following section will analyse the mainland version, looking at the history and development of the datum, the height system and the reference plane used, and outline some of the issues that have become apparent in the years since its adoption.

Height Datum History in New South Wales

Prior to 1971, heights in New South Wales were referred to Standard Datum, which was related to MSL at Fort Denison in Sydney Harbour. The value for MSL was calculated in 1897 from 13 years of tidal observation records (NSWDL, 1976a). In an effort to make this datum more accessible, a connection was made between the tide gauge at Fort Denison, to a brass plug placed in the wall of the Department of Lands building in Macquarie Street, Sydney, with a reduced level of 8.821m (NSWDL, 1976a).

A network of 1st order levelling followed in 1954 along the eastern seaboard of New South Wales, with the intention of extending standard datum into country

areas (NSWDL,1976a). This was later supplemented in 1961 by federal government funded 3rd order networks, that extended the survey over the rest of the state, which were to form part of the Australian Levelling Survey (NSWDL,1976a). As these surveys progressed into regional areas, interim heights on Standard Datum were assigned for benchmarks in these areas, until a final adjustment was done for the complete survey, with final values published in 1968. The aforementioned levelling surveys additionally connected to tide gauges at Coffs Harbour, Camp Cove (Sydney), Port Kembla and Eden (NSWDL,1976a).

In 1971 with the recent derivation of the AHD completed, the decision was made to abandon Standard Datum in New South Wales, and instead adopt the new national system (NSWDL,1976a).

Australian Height Datum Derivation

The AHD was the final culmination of 161,000 kilometres of spirit levelling observations, taken in the years between 1945 and 1970 (Roelse et al. 1975). In the process of undertaking the level network, connection was made to 30 tide gauges around the Australian mainland (Filmer & Featherstone, 2009; Roelse et al. 1975). MSL was determined at these gauges from tidal observations, spanning a two year period between 1966 and 1968, for 29 of the 30 gauges, and from 1957 to 1960 at the Karumba gauge (Roelse et al. 1975).

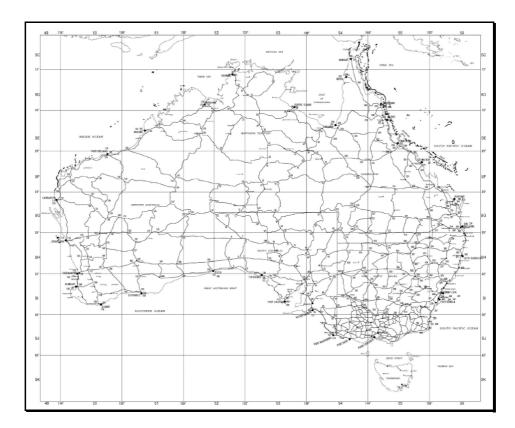


Figure 2.4 – Australian Levelling Survey (Filmer & Featherstone, 2009)

In terms of the height system adopted for the derivation of the AHD, it has been recognised by Filmer & Featherstone (2009), as a version of the normal – orthometric system. This is due to a truncated form of orthometric correction being utilised, with normal gravity being adopted from the GRS67 reference ellipsoid (Featherstone & Kuhn, 2006). In addition Featherstone & Kuhn (2006) state that most of the latitudes used to derive the values for the normal geopotential numbers necessary for the calculation of the corrections, were generally only scaled from aerial photography, with a precision in the order of about 1 mile (1.7km).

The normal - orthometric corrections were applied to the predominately 3rd order Australian Levelling Survey, as part of a fully constrained least squares adjustment, whereby the MSL value observed at the 30 tide gauges connected to during the level work, were held fixed at zero (Roelse et al. 1975). This has resulted in a distorting of the levelling network, in order to make it fit the observed sea level plane (Roelse et al, 1975). Featherstone & Kuhn (2006) state that this is in contrast to other national datums, such as the Ordnance Datum Newlyn (ODN) utilised in England (IOC, 2006). Under this regime the MSL value is only held fixed at one gauge, and the network undergoes a free-net adjustment. An adjustment of this sort was carried out on the Australian Levelling Survey by Roelse et al. (1975), and the results indicated a separation of up to 1.5m between the two planes.

Australian Height Datum – Some Issues

Australian Height Datum has since its adoption been recognised as a third order mapping datum, and as such suffers from a few issues. One such issue has become apparent due to the 1st order re-levelling of a section between Coffs Harbour and Cairns in the mid 1970's. Morgan (1992) identifies that there are some major discrepancies between the re-levelled data, and that observed during the Australian Levelling Survey by using 3rd order, one-way techniques. Morgan (1992) states that the isolated discrepancies call into question other sections of the survey that were observed using these methods, and as such, that the AHD is in need of readjustment, with these sections either re-observed, or at least down-weighted.

Kearsley et al. (1993) in their investigation into national height datum development, identify concerns with the constrained least squares method used for the adjustment of the AHD. According to Kearsley et al. (1993) this is due to MSL not being coincident with the geoid due to the influence of sea surface topography, and the poor sighting of some tide gauges leading to incorrect determination of MSL. In addition Kearsley et al. (1993) identify that the method of holding only one tide gauge fixed, and undertaking a free-net adjustment, as was the case in the development of Standard Datum in New South Wales, suffers from the same flaws as those outlined for the constrained method, with the additional problem that it ignores the derivation of MSL at all the other tide gauges.

The large scale development and use of GNSS equipment for a variety of spatial uses in the last 20 years, has identified other issues with the AHD. Due to GNSS equipment determining a three dimensional position with relation to a reference ellipsoid, it has been necessary to develop accurate geoid models for conversion of ellipsoidal height values, that are independent of the influence of gravity, to orthometric heights. These geoid models are normally determined using a combination of satellite orbit analyses, and terrestrial gravity measurements (Kearsley, 1988).

The latest in the series of Australian gravimetric geoids is AusGeoid98, and it has been identified by Featherstone & Kuhn (2006) and Luton & Johnston (2001) as having a general north-south inclination from the AHD plane of between 1 and 1.5 metres. This provides problems with the derivation of absolute AHD values from GNSS observations only, and makes local connection to AHD benchmarks still necessary, if AHD needs to be determined with confidence and accuracy. Interestingly enough, Morgan (1992) also notes that the free net adjustment of the original Australian Levelling Survey, indicates a north south inclination along the east coast of Australia of 1.5m from the adopted AHD surface.

Another potential problem that may be attributed to the AHD is that of an incorrect definition of MSL, due to the limited observation time at the 30 tide gauges that were used to fix it. Roelse et al. (1975) state that observations for mean sea level at 29 of the 30 gauges utilised, were taken over a two year period from 1st January 1966, to 31st December 1968, and from 1st January 1957, to 31st December 1960 at the Karumba gauge. This is contrast with the recommendations outlined previously for an observational record length of one Tidal Datum Epoch, or 18.6 years, as defined by ICSM (2004).

Permanent Survey Mark Infrastructure in NSW

In order to propagate and make the AHD available to users all over the country, networks of state control marks have been established, with state government authorities being assigned the task of coordinating this infrastructure, with values related to both horizontal and vertical datums.

There are a number of different types of Permanent Survey Marks in use in New South Wales, and they are stipulated in Schedule 4 of the Surveying Regulation 2006 (NSW). Of the varied marks the two most common types in use in urban areas such as Ballina Island, are the Type 2 State Survey Mark (SSM) and the Type 4 Permanent Mark (PM) as depicted in figures 2.5 and 2.6. The Type 2 SSM is a brass plaque, with a pre-stamped number identifier, that is set into concrete kerb, whereas the Type 4 Permanent Mark, is a steel pin, set into a sub surface concrete block, covered with a cast iron box, which is set flush with the natural ground surface.

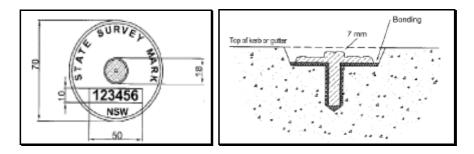


Figure 2.5 – Type 2: State Survey Mark (Surveying Regulation, 2006, NSW)

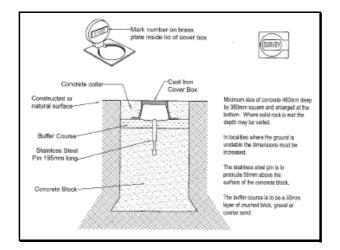


Figure 2.6 – Type 4: Permanent Mark (Surveying Regulation, 2006, NSW)

In New South Wales the assigning of accurate heights for the permanent survey marks with relation to AHD is carried out by the LPMA. The assignment of accurate levels is conducted under the class and order system, as stipulated in ICSM's Standards and Practices for Control Surveys. This document defines the class of a levelling survey to be reliant upon;

- The network design;
- the survey practices adopted;
- the equipment and instruments used; and
- the reduction techniques adopted.

(ICSM, 2007 pA-12)

In addition the LPMA also assign an order to the Permanent Survey Marks and this is reliant on how well the marks value fits with the height values of the existing surrounding infrastructure (ICSM, 2007).

In the Ballina Island subject area, the majority of the permanent survey marks AHD value is of a second order nature, having a class and order of LB - L2 respectively. It is apparent from mark information available from the LPMA, that the heights of this order were assigned on 17th August 1992 and were part of an AHD densification survey, assigning vertical control to 98 Permanent Survey Marks in the Ballina – West Ballina area (Halls, 1992). During the course of this survey, eight existing permanent survey marks were held fixed and adopted as the source of AHD, all of them with values to first order standards, and originally included as part of the National Levelling Adjustment of Australia in 1971 (Halls, 1992).

Despite the large order of accuracy that is expected in the process of assigning height values to permanent survey marks, there still exists the possibility of degradation of a network, through movement of the marks themselves over time. During the aforementioned determination of second order heights by the Department of Lands in 1992, it was reported that five Type 4 Permanent Marks were found to have moved since the last adjustment in 1971, and as such were required to have their values adjusted, and their class and order downgraded to that of the survey (Halls, 1992).

Such movement of subsurface marks has been identified in Sliwa (1987), with some of the reasons for movement including settlement of surrounding building construction, and changes in ground water level. The change in groundwater level probably affects sandy soils like that found in the subject area the least, this is due to the permeability of sand, as opposed to clay which tends to expand and contract a lot more with changes in water content. In addition Lazzarini (in Sliwa, 1987) also notes that the settlement of newly constructed buildings can have an influence on benchmark infrastructure around them, especially within a distance of twice the height and four times the width of any new building.

Summary

This section has identified the concepts behind the derivation of the AHD including a review of the height systems that are in existence, as well as the methods for deriving MSL. In addition some of the issues with the AHD have been identified and the types and some issues for the permanent survey marks used to define the AHD in the subject area have been identified.

With this section having identified all the necessary background information into height datum derivation and propagation the next chapter marks the beginning of the investigation into the height network in the subject area.

Chapter 3:Testing of the Ballina Island Network of
Permanent Survey Marks.

Introduction

AHD was first brought onto Ballina Island as a result of the adjustment of 1st order geodetic levelling of section 202-203 of the Australian Levelling Survey (NSWDL, 1971). This survey traced a route through Ballina Island as indicated in figure 3.1. As a result of this survey, connections were made and AHD to Class LA, Order L1 standards was assigned to the following permanent survey marks that reside in the subject area;

- PM37060 (RL 1.359);
- PM7888 (RL1.486);
- PM37148 (RL1.517);
- PM37147 (RL 1.335);
- PM37144 (RL 1.593); and,
- PM37145 (RL 1.566).

Figure 3.1 – Pre 1971 1st Order Route (Google Earth, 2010)

The majority of the permanent survey marks in the subject area however, are the result of further 2nd order differential levelling that took place in early 1992 (Halls, 1992). This survey was conducted for the purposes of extending the framework of vertical control, by levelling 98 permanent survey marks on Ballina Island, and West Ballina. Upon completion of this survey, five permanent survey marks that were heighted in the initial 1st order network, were assigned new AHD heights due to movement over the ensuing 20 year period (Halls, 1992).

The purpose of this survey is to investigate the integrity of the 2nd order network of permanent survey marks, located in the subject area of Ballina Island, as indicated in figure 3.2. As a consequence it is also intended to connect to those marks of 1st

order origin that reside in the subject area, in order to ascertain whether any additional movement in these marks has occurred.

Survey Design

For the purposes of investigating the permanent survey mark network, a Class LB differential levelling survey was designed. As the majority of the permanent survey marks that are located in the test area are a product of the 2nd order levelling survey undertaken in 1992, the subject route that was adopted in 1992 was replicated by this survey, both surveys are shown in figures 3.2 & 3.3 below. In addition to this route a further leg was devised in an attempt to replicate the 1st order route undertaken originally.

Figure 3.2 – Proposed Class LB Level Network (Google Earth, 2010)

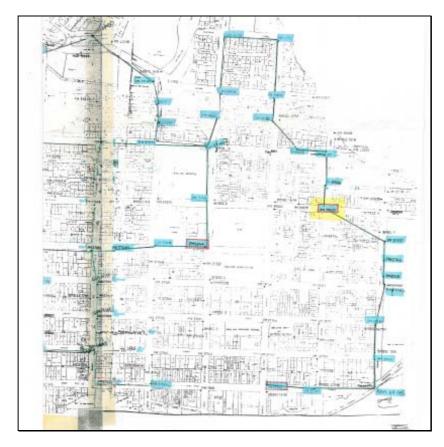


Figure 3.3 – Part of 1992 Department of Lands Level Network (Halls, 1992)

The Intergovernmental Committee on Surveying & Mapping (ICSM) in the publication '*Standards & Practices for Control Surveys (SP1)*' (ICSM, 2007), outlines best practice methodologies for achieving control surveys of various class and order. As far as was practical SP1 was the guideline that was utilised whilst conducting the collection and reduction of all field observations.

Equipment

In line with the 'Best Practice Guidelines' by ICSM (2007), equipment to be utilised to carry out a class LB level survey should meet accuracies of 0.4mm/km whether using either an optical instrument with parallel plate micrometer, or a digital instrument. In the case of this survey, the instrument used was a Leica DNA03 digital level, with achievable accuracies of 0.3mm/km, when used in conjunction with two way levelling techniques (Leica, 2002).

One of the key pre-requisites to higher order levelling is the use of invar staffs. The expense of these staffs has been prohibitive to acquisition for the purposes of this project, and so a Leica geodetic fibreglass staff, with handles and fixed bubble was used in its place. The coefficient of expansion between the two staves is the major difference between using invar staves to fibreglass. The difference between the two, that equates to around 6.7ppm/°C (fibreglass 8 ppm/°C (Rueger, 1997) and invar 1.3 ppm/°C (Cooper, 1982)), was kept to a minimum due to the absence of extreme temperature and height differences in the subject area. The latter is a result of the relatively flat nature of the topography in the subject area. This essentially results in measurements being made to the same part of the staff each time, and so the effect of the invar staffs superior stability it is hoped will have been fairly inconsequential.

Survey Procedures & Techniques

The network was observed using the two-way method, and leap frog progression, to observe the network in a series of 10 closed loops ranging from 320 to 1,200m in length. In order to further satisfy class LB requirements of ICSM (2007), the following procedures were enacted;

- An umbrella was utilised to shade the instrument throughout observations in order to prevent differential heating and cooling of the instrument.
- Solid change points were created in the form of nails in concrete paths and kerb throughout the survey, so as to eliminate the possibility of movement of portable change points.
- A 2 peg test was carried out on the instrument at the beginning of each days observation, this eliminated any errors in collimation that exceeded 1.5mm/80m.
- In order to eliminate booking errors staff readings were recorded both digitally and manually to the nearest 0.1mm, being an average of 5 measurements per sight, and standard deviations noted to being within a tolerance of ±1mm.
- Maximum line of sight length was kept to 60m.

- Each leg of the survey was checked to ensure that each loop misclosure satisfied the class LB requirements of $8\sqrt{d}$, where *d* is the length of the loop in kilometres.
- The instrument was levelled unsystematically in order to eliminate systematic errors that can be attributable to automatic levels.

A further requirement under ICSM (2007) is that an even number of instrument set ups is necessary between benchmarks. This is mainly done as outlined by Cooper (1982), to eliminate the zero error in a levelling staff when utilising 2 staves for the survey. Cooper (1982) further notes that the effect of zero error when using only one staff for observations, is eliminated with each set up. As only 1 staff was utilised in the conducting of the survey, it was decided when 2 permanent survey marks were located less than 120m apart, that only 1 instrument set up would be required.

The effect of the earth's curvature has the effect of increasing the value of the staff reading. It is stated in Cooper (1982) that the effects of the curvature of the earth can be negated by ensuring that backsight and foresight distances at each set up, are kept as close as is possible to equal, provided that the coefficient of refraction is the same. This is echoed by ICSM (2007) in their class LB requirement to keep backsight and foresight lengths to within 2% of the sight distance.

By adopting the equation for the estimation of curvature as proposed by Bannister & Raymond (1984);

$$CorrectonForCurvature = 0.078(d)^2$$

where d is the length of sight in kilometres, and allowing for a radius of the earth of 6,370km, and a line of sight of 60m as adhered to in this survey,

CorrectonForCurvature =
$$0.078(d)^2$$

CorrectonForCurvature = $0.078(0.06)^2$
CorrectonForCurvature = 0.00028

would constitute an increase in staff reading of 0.28mm. Since the requirement for recording staff measurements is to be of the precision of the nearest 0.1mm for class LB surveys, as stipulated by ICSM (2007), a difference of 0.05mm (and thus affecting the recorded measurement) would be observed where a difference of 8.9m in backsight and foresight distances occurs. Therefore where ICSM (2007) requires a minimum of 2% of sight distance, estimates after Bannister & Raymond (1984) allows for a far more lenient value of around 6%.

Cooper (1982) identifies that refraction of the line of sight tends to become an issue when sighting along uneven topography. This is due to the differing thermal properties of air with relation to its proximity to the ground. Cooper (1982) further identifies that this is less of an issue when surveys are conducted in relatively flat areas, and as such ICSM (2007) states a minimum ground clearance of 0.5m for class LB surveys.

With regards to this survey the effects of refraction would be fairly inconsequential, as long as the concept of equal backsight and foresight distances were observed. This is due once again to the relatively flat nature of the topography in the subject area, creating a situation where the line of collimation of the instrument remains a fairly constant height above the earth's surface. As such any effects of refraction observed along a backsight, would equal that observed along a foresight of equal length, and thus negating it.

Finally, another consideration taken into account whilst conducting the survey, was the possible change in instrument height between backsight and foresight readings. Belshaw (in Cooper, 1982) outlines the effect of a change in instrument height over time, due to the release of stresses on the tripod feet, upon digging them into soil. This difference it was indicated can reach up to 2.4mm over a period of 6 minutes. The effect of this was reduced whilst carrying out the survey, by setting the instrument so far as was practicable on concrete footpaths and other hard surfaces.

Reduction of Measurements

Raw observation data was downloaded from the instrument into Leica's Geo Office software. Leica Geo Office provides a complete reduction suite for GPS, TPS and Level observations. From here the data was exported into Microsoft Excel for analysis, with least squares adjustment carried out using Adjust Version 5

Results

Analysis of Survey

Upon reduction of the observed level network, the following raw data results were observed as indicated in figure 3.4 below. The table shows the individual loops constituting the network, including the forward and backward observed height differences, the resultant misclose of each loop, the one way level leg length, and the misclose allowable for each loop, using ICSM's (2007) class LB formula $8\sqrt{d}$.

Loops 1 through to 7 in the following table constitute the main control loop which starts and finishes on PM37056. The combined level loop resulted in a one way levelled distance of 5.6km with a final misclose on PM37056 of 10.7mm, easily satisfying ICSM's (2007) requirements of 26.8mm for the network.

Loops 8, 9 and 12 were all observed as internal ties, with the aim of strengthening the control loop. Loop 8 traversed Grant Street as per the original Department of Lands survey in 1992 and loop 9 traversed Martin Street as per the 1st order network observed as part of the Australian Levelling Network.

Loop	From	То	Forward	Back	Misclose	Distance	Allowable Misclose
1	PM37056	PM37040	0.1978	-0.1978	0.0000	500.0	0.0080
2	PM37040	PM37144	0.1719	-0.1746	-0.0027	709.5	0.0095
3	PM37144	PM42055	-0.2429	0.2391	-0.0038	864.2	0.0105
4	PM42055	PM39317	0.2745	-0.2763	-0.0018	873.5	0.0106
5	PM39317	CP20	0.3336	-0.3346	-0.0010	1184.1	0.0123
6	CP20	CP24	-0.5485	0.5478	-0.0007	702.0	0.0095
7	CP24	PM37056	-0.1940	0.1933	-0.0007	770.4	0.0099
Total			-0.0076	-0.0031	-0.0107	5603.6	0.0268
8	PM37060	PM37083	-0.0164	0.0166	-0.0002	546.2	0.0084
9	PM37148	PM37145	0.0328	-0.0332	-0.0004	1004.6	0.0113
12	PM39315	CP36	-0.2055	0.2057	-0.0002	319.38605	0.0064

Figure 3.4 - Table Showing Raw Data Miscloses - Class LB Ballina Island Loop

In order to eliminate the miscloses in the various level loops, the raw observations under went a least squares regression adjustment. This was carried out using the Adjust software - Version 5 by CG Consultants. The network was adjusted under a 'free' adjustment routine, whereby only one permanent survey mark was held fixed at its published SCIMS height value. Due to the fact that it was the start and end point for the main control loop, PM37056, with a published height of 1.229, was chosen to be the control point for the adjustment.

Analysis of Existing Permanent Survey Mark Infrastructure

Due to the least squares adjustment carried out on the survey being free, no other constraints were placed upon the observations other than a weighting that was based purely on the approximate distance measured between permanent survey marks. The resulting height differences (Δ Ht) were compared against the height differences between the published AHD heights for the permanent survey marks, as supplied by the LPMA. The deviation between the two sets of height differences are plotted in figure 3.5.

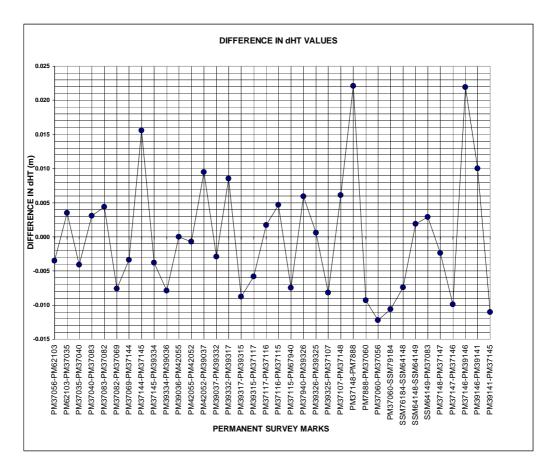


Figure 3.5 - Graph Showing Deviation Between Published and Observed Height Differences

From the above results there appears to be quite a bit of variation in height differences between the permanent survey marks published heights, and the differences observed by survey. Most notably from these results are the differences between PM37148 and PM7888, and PM37146 and PM39146 both of which appear to have a variation in height differences of up to 22mm from their published heights.

Once again looking back at ICSM (2007), we can utilise the formulas for the allowable misclose variation, this time to test the quality of the published height differences between the permanent marks. This approach gives a better indication of the quality of the height differences, because it factors in the distance component between the marks. Figure 3.6 shows the allowable variation in height difference between adjacent permanent survey marks, based on the distance between them. The allowable variation has been calculated for control survey orders 2nd, 3rd, 4th and 5th and is essentially the r-value as stated in ICSM (2007). Furthermore, plotted against the allowable variation, is the derived r-value for the difference between the published height difference between the permanent survey marks, and the height difference that was observed as part of this survey. It should be noted that all r-values for the purpose of this graph were reduced to positives.

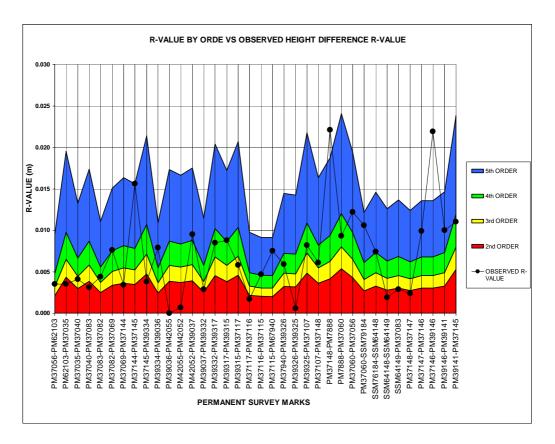


Figure 3.6 – Graph Showing the Derived Order of Existing Published Height Differences

As can be seen from the above graph, many of the published height differences in the network do not meet the standards set down for a 2^{nd} order network, and indeed for the two height differences mentioned previously, being between PM37148 and PM7888, and PM37146 and PM39146 don't even comply with the variation set down for a 5^{th} order relationship. A break down of the percentage of height differences and their corresponding orders is simplified in figure 3.7.

Figure 3.7 - Graph Showing the Percentage of Height Differences by Order

From this graph it can be determined that almost 70% of the height differences measured between permanent survey marks in the study area, have a variation from the actual observed height differences that correspond to a third order relationship or less.

Determination of a Value for AHD

In order to determine a value for AHD from the network, actual observed AHD values for the 38 individual permanent survey marks in the subject area, were determined by adopting the published SCIMS AHD value for PM37056, of RL1.229, as mentioned in the previous section. The difference between the observed and the published AHD value for each permanent survey mark was then determined resulting in the following figure 3.8.

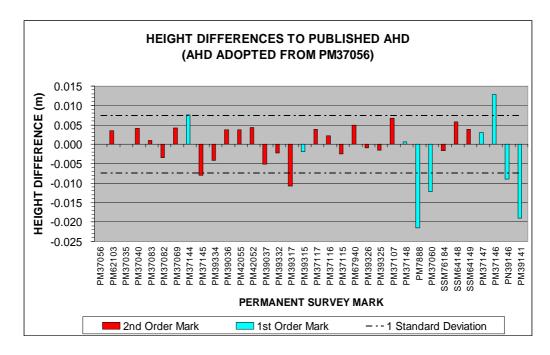


Figure 3.8 – Graph Showing the Deviation from AHD as Determined from PM37056

Based upon these results, it was determined that the mean of the differences was -0.0008, and as such is the amount that the calculated AHD values of the permanent survey marks should be adjusted by, in order to calculate the true value of AHD as propagated by this selection of permanent survey marks (ie moving away from the adoption of the published height of PM37056). However due to the large departures from the original 1992 network as shown above and in the previous section, it is therefore prudent to remove the influence of these marks when determining the mean, in order to gain a better indication of the true value of AHD. To this end all absolute height differences that lay outside of one standard deviation were excluded, and the mean recalculated with the results presented in figure 3.9 below.

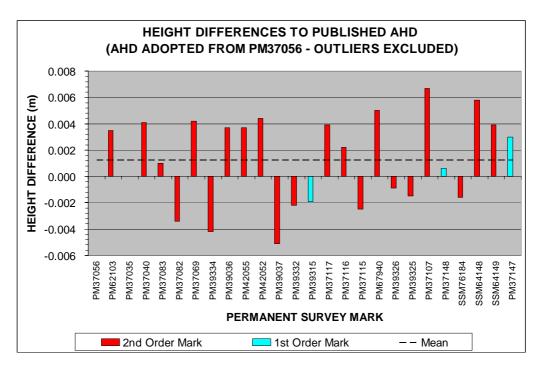


Figure 3.9 – Graph Showing the Deviation from AHD as Determined from PM37056 (Outliers Excluded)

As can be seen from the above graph, the mean has shifted from -0.0008m to 0.0012m due to the exclusion of the outliers that were beyond one standard deviation of the total mean. Therefore it is most likely that the true value of AHD actually lies 0.0012m above the value of RL1.229 for PM37056 as quoted by LPMA. To this end the best value of AHD for the permanent survey marks sampled in the subject area are depicted in figure 3.10;

Permanent Survey Mark	RL (AHD71)	RL (Survey)	Height Difference	Permanent Survey Mark	RL (AHD71)	RL (Survey)	Height Difference
PM37056	1.229	1.2302	0.0012	PM37117	1.278	1.2831	0.0051
PM62103	1.401	1.4057	0.0047	PM37116	1.358	1.3614	0.0034
PM37035	1.199	1.2002	0.0012	PM37115	1.424	1.4227	-0.0013
PM37040	1.423	1.4283	0.0053	PM67940	1.362	1.3682	0.0062
PM37083	1.329	1.3312	0.0022	PM39326	0.922	0.9223	0.0003
PM37082	1.367	1.3648	-0.0022	PM39325	1.219	1.2187	-0.0003
PM37069	1.551	1.5564	0.0054	PM37107	1.299	1.3069	0.0079
PM37144	1.593	1.6018	0.0088	PM37148	1.517	1.5188	0.0018
PM37145	1.559	1.5522	-0.0068	PM7888	1.486	1.4657	-0.0203
PM39334	1.441	1.4380	-0.0030	PM37060	1.359	1.3480	-0.0110
PM39036	1.838	1.8429	0.0049	SSM76184	1.481	1.4806	-0.0004
PM42055	1.356	1.3609	0.0049	SSM64148	1.338	1.3450	0.0070
PM42052	1.190	1.1956	0.0056	SSM64149	1.337	1.3421	0.0051
PM39037	1.142	1.1381	-0.0039	PM37147	1.335	1.3392	0.0042
PM39332	1.048	1.0470	-0.0010	PM37146	1.807	1.8211	0.0141
PM39317	1.646	1.6365	-0.0095	PM39146	1.559	1.5512	-0.0078
PM39315	1.689	1.6883	-0.0007	PM39141	1.735	1.7172	-0.0178

Figure 3.10 – Table Depicting the Published and Derived AHD Values

Summary

This section has seen the first part of fieldwork as conducted to achieve the objectives of the project. The section has outlined the background to the supply of AHD infrastructure in the subject area, as well as the methods and procedures implemented to test the AHD infrastructure. Results of the class LB survey in terms of the observed height differences were reported, as was the value of AHD derived as a best fit from the sampled Permanent Survey Mark infrastructure.

Chapter 4:Testing of the Ballina ContinuouslyOperating Reference Station to theNetwork of Permanent Survey Marks

Introduction

The Continuously Operating Reference Station (CORS) network in New South Wales is a network of Global Navigation Satellite System (GNSS) receivers operated by the NSW LPMA. The network is termed CORSnet-NSW and is a state-wide expansion of the original SYDnet network also implemented by LPMA (Jannsen et al, 2010). CORSnet-NSW has been identified by Jannsen et al. (2010) to consist of some 29 continuously operating receivers across the state as of January 2010, with the role out to eventually number 70 by 2013.

CORSnet-NSW, like other CORS networks, has been beneficial to the surveying community, in that by connecting to this network, the user can work in Real Time Kinematic (RTK) mode, without the requirement of having to establish their own base station. The system works with the aid of a mobile phone, which downloads and provides to a users roving unit, RTK corrections that are uploaded to a server by the CORS network. Additionally raw data in Receiver Independent Exchange (RINEX) format is continuously logged and stored by the LPMA, and made available to end users for the purposes of conducting post processed surveys. The reference stations themselves are given three dimensional coordinates made with reference to the Geodetic Datum of Australia (GDA97) for horizontal position and AHD71 for vertical. The stations, like the permanent survey mark infrastructure in the previous section, have a class and order qualification made to them, with respect to how well they tie in with surrounding control.

The Ballina CORS was installed atop the LPMA building located in the subject area of Ballina Island prior to February 2009. The station which has been given the reference of Trigonometric Station 12089, constitutes a Leica GRX 1200GGPro receiver, mounted atop a steel pillar fixed to the upper eastern wall of the building. The vertical position of the station is quoted by the Survey Control Information Management Service (SCIMS) to be 6.991m with respect to AHD, and qualifies the position to be within the tolerances set down under a class and order of A – 1 respectively. The order of the station is determined through connection between the mark, and a selection of pre existing control marks in what LPMA (2010b) calls a local tie survey.

In addition to the coordinates for the station as provided by SCIMS, the LPMA (2010c) has also published coordinates for its CORS network sites with relation to a new realisation of GDA94, entitled GDA94(2010). The new horizontal coordinate system has been derived from direct connection to the Australian

Fiducial Network (AFN) and has resulted in a shift in horizontal coordinates of up to 0.3m and vertical of up to 0.7m.

Since the Ballina CORS was established some time after the permanent survey mark network investigated in the previous chapter, the aim of this survey is therefore to test the integrity of the height order of the Ballina CORS with respect to this network. In order to achieve this, the value of AHD as determined previously for the network of permanent survey marks, will be compared to that currently published for the Ballina CORS.

Survey Design

Since the Ballina CORS is GNSS dependant in terms of methods of connection to the mark itself, these are the methods that were utilised in order to carry out this survey. As stated previously the Ballina CORS has been given a height value that is qualified with a class and order of A - 1 respectively. Under the guidelines set out in ICSM (2007) there are a range of GNSS survey methods available to be used in order to gain results that satisfy the requirements of a class A survey. The different survey types are as follows;

- Classic Static;
- Quick (or Rapid) Static;
- Stop and Go, and;
- Real Time Kinematic (RTK).

This is in contrast to higher class surveys such as 2A & 3A, which stipulate that they are to be conducted using Classic Static methods only. In terms of other requirements that need to be satisfied for a GNSS survey to be considered class A under ICSM (2007) are as follows;

- A Minimum station spacing of 500m;
- Typical station spacing between 500m and 10km;
- At least 20% of the stations occupied must be occupied three times, and;
- All occupied stations must be occupied no less than twice.

For the higher class surveys such as 2A and 3A, the number of station occupations that need to be occupied three times increases to 40 and 50% respectively, as does the minimum (1.5 and 5km) and typical station spacing.

The location of the Ballina CORS atop the LPMA building is approximately 100m from the southern leg of the class LB differential level network at its minimum, and 1.5km from the furthest extent of the level network to the north. Due to the location of the Ballina CORS with relation to that of the permanent survey mark network, it was decided that rapid static methods would be implemented in order to connect the two. The reason behind the selection of this method, was predominantly to do with the fact that minimum and typical station spacing, would not be satisfied for a class 2A survey in the subject area, and accuracies over the

shorter baseline lengths between classic and rapid static methods, would be relatively comparable.

In preparation for this part of the overall investigation contained in this project, a number of GNSS stations were established throughout the differential level network, and included;

- Saunders RL1.535 Peg placed in Saunders Oval;
- Cawarra RL1.5917 Peg placed in Cawarra Park, and;
- PM37117 RL1.2819 Permanent survey mark found adjacent to Kingsford Smith Park.

In addition to these stations, two other stations were placed in order to facilitate the MSL - AHD derivation survey conducted in the following chapter, and are as follows;

- Stn 2 RL1.7693 Galvanised iron nail in bitumen, River Street, Richmond River - northern bank, and;
- Stn 4 RL unknown Peg placed, South Wall access track, Richmond River southern bank.

The network devised to connect these stations and the Ballina CORS is shown in figure 4.1.

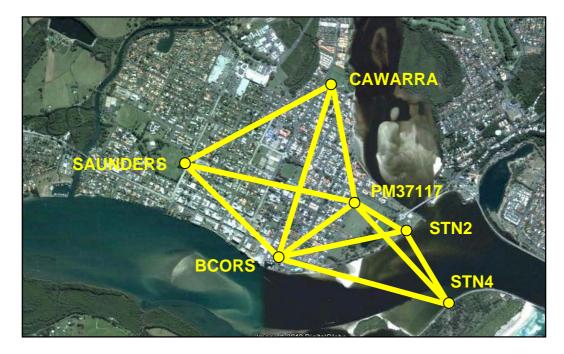
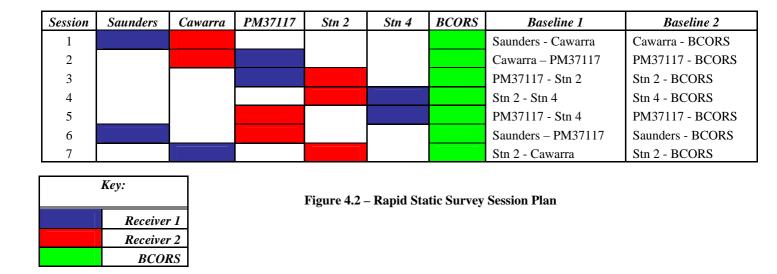



Figure 4.1 – Rapid Static Survey Network (Google Earth, 2010)

Survey Procedures & Techniques

The network as depicted in figure 4.1 was observed in 7 different sessions, and the session plan that was utilised is reprinted below in figure 4.2. The session plan was devised whilst attempting to satisfy ICSM's (2007) guidelines pertaining to a class A rapid static survey, with respect to total number of baselines observed per session, and independent occupations per station. As can be determined from the session plan (figure 4.2) all of the stations in the network have been independently occupied twice, and three of the five stations (60%), have been independently occupied three times or more.

With regard to the number of independent baselines that can be observed in any one session, ICSM (2007) states that it can be calculated from the formula;

IndependentBaselines = n-1

where *n* is equal to the number of receivers being utilised for the survey. In order to carry out the survey, in addition to the Ballina CORS permanently operating receiver, two Leica Viva GS-15 dual frequency GNSS receivers were used to observe the remainder of the network, bringing the total number of receivers used to three. Under this regime the number of independent baselines per session was calculated as being two (ie n - 1 = 3 - 1 = 2) which once again satisfies ICSM's (2007) recommendations for a class A survey of two per session.

As previously stated the rapid static survey was conducted utilising two Leica GS-15 dual frequency receivers. According to Leica Geosystems (2009) the GS-15 receivers are capable of achieving accuracies of 5mm +0.5ppm in the horizontal plane, and 10mm +0.5ppm in the vertical when used under rapid static conditions. Since the longest baseline observed in the network is approximately 1.6km (BCORS to Cherry), this results in a minimum vertical accuracy of each height of \pm 10.8mm.

In terms of session length, ICSM (2007) states in its guidelines pertaining to Rapid Static surveys, that session lengths should be planned so as to ensure that enough time elapses for ambiguities to be resolved, and that in order to determine this time frame, manufacturers should be consulted. It was therefore decided that each session would be observed for a total duration of 20 minutes, with a logging epoch of 1 second. This time frame was assured during consultation with Leica representatives, to be more than adequate.

Reduction of Measurements

A number of steps were involved in the download and reduction process of the rapid static network. Raw data from the GS-15 receivers was downloaded into Leica Geo Office, together with RINEX data for the Ballina CORS, that was provided by the LPMA office in Ballina. Baselines were then processed, and loop misclosures checked to ensure that no gross errors were evident. Baseline vector

data was then imported into Star*Net version 6.0.25 software, and underwent a minimally constrained least squares adjustment. AusGeoid98 corrections were then applied to the adjusted ellipsoidal heights to give orthometric heights, and these were adjusted to a local value of AHD.

Results

The final derived results of the various steps described above for the reduction of the rapid static survey, are provided in the table below shown as figure 4.3.

Station	AHD	Ellipsoidal (BCORS)	Geoid Seperation (AusGeoid98)	Orthometric Heights (AusGeoid98)	Difference (AHD- Orthometric)	Adjusted Orthometric Heights	Difference AHD-Adj Orthometric
Cawarra	1.5917	39.1900	37.445	1.7450	-0.1533	1.5936	-0.0019
Saunders	1.5350	39.1162	37.440	1.6762	-0.1412	1.5248	0.0102
PM37117	1.2819	38.8396	37.404	1.4356	-0.1537	1.2842	-0.0022
Stn 2	1.7693	39.3169	37.390	1.9269	-0.1576	1.7755	-0.0061
Stn 4		42.0163	37.365	4.6513		4.4999	
BCORS	6.9910	44.5210	37.398	7.1230		6.9716	0.0194

Figure 4.3 – Table Showing Rapid Static Survey Results

The first column of the table shows the AHD values for the stations Cawarra, Saunders, PM37117 and Stn 2 as per the derived value of AHD, based on the differential level network observations in the previous section. As such the orthometric integrity of the height differences between these stations is of class LB and therefore to a high degree of accuracy. The AHD value shown for the Ballina CORS, is the value that is quoted by SCIMS, and therefore does not bear any relationship to the other four stations. Station 4 does not have a value with relation to AHD as yet, due to its location on the southern bank of the Richmond River.

Column 2 shows the adjusted ellipsoidal height values for all the stations in the network with relation to the Ballina CORS. Upon reduction of the baseline vectors using Leica Geo Office and the checking of loop closures, the baseline vectors underwent a minimally constrained least squares adjustment, whereby the MGA94 (2010) coordinates for the Ballina CORS were held fixed. The coordinates used are reprinted in figure 4.4 below;

Ballina Continuously Operating Reference Station						
Easting MGA94(2010)	550,009.893					
Northing MGA94(2010)	6,805,990.018					
Ellipsoidal Height (GRS80)	44.521					

Figure 4.4 – Ballina CORS Coordinates (LPMA, 2010b)

The result of this adjustment is the ellipsoidal height values for the remaining five stations, as derived by GNSS, and with relation to the fixed value of the Ballina CORS.

As was stated in the literature review, GNSS heights are made with relation to a reference ellipsoid. The separation distance between the reference ellipsoid and the geoid, known as an *N-value*, can be determined by the application of a geoid model. AusGeoid98 is the latest geoid model on offer from Geoscience Australia and provides a 2' or 3.6km grid of *N-values* over the entire Australian continent. The separation values given in column 3 are based on this system, using interpolation software AG98LGO, Version 1.3 (Abbey, 2004).

Orthometric heights are an approximation of AHD at best, and are a result of the application of a geoid model to ellipsoidal heights. The relationship between the three is given by the formula;

H = h - N

Where: H = the orthometric height; h = the ellipsoid height, and; N = the geoid – ellipsoid separation.

The application of this formula gives the orthometric heights in column 4, and the resulting difference between the derived orthometric heights and AHD is shown in column 5.

The variation in the difference values in column 5, is put down as measurement inaccuracies between the relatively well fixed differential levels and the slightly looser GNSS heights (each height by Rapid Static methods was previously determined to be \pm 10.8mm). Due to these vagaries, the AHD-orthometric differences were meaned to give a separation value between the orthometric GNSS heights, and the value for local AHD. This separation value was then applied to the orthometric heights for all seven stations, and the resultant values for all the stations on local AHD derived, and shown in column 6.

Column 7 depicts the differences between the differentially levelled stations, and the GNSS derived stations with respect to stations Cawarra, Saunders, PM37117 and Stn 2 only. As can be seen all differences are within the 10.8mm stated by the manufacturer, as the accuracy to be expected from the equipment under this regime. The difference in values for that of the Ballina CORS, derived as 19.4mm is partially to do with the equipment error, but more to the point, is a difference between the value with respect to AHD given by SCIMS, and the local value of AHD determined by the differential level survey, conducted in the previous section.

Class & Order Qualification

The above results show that some differences do appear to exist between the value of AHD as per the permanent survey mark network, and the value of AHD as per the Ballina CORS. However some qualification is still required to establish whether or not the differences are within the tolerances of the stated order.

As identified previously, class is a measure of the precision of a survey, in terms of the relative differences in position between stations in the survey. In order to assign class to a survey, ICSM (2007) identifies that the allowable length of the semimajor axis for any given baseline derived by a GNSS survey, is given in millimetres by;

r = c(d + 0.2)

Where: r = semi major axis (mm);

c = an empirically derived factor, and;

d = the length of the baseline (km).

Using this formula, together with the semi major axis results attained as a result of the least squares adjustment carried out in Star*Net, the following c-values were derived for horizontal and vertical precision.

Station From	То	Semi Major Axis (mm)	Distance (km)	C-Value (Horizontal)	Vertical SD (mm)	C-Value (Vertical)
BCORS	Cherry	3.22	1.620	1.8	3.18	1.7
BCORS	Kerr	3.72	1.212	2.6	3.80	2.7
BCORS	PM37117	2.74	0.776	2.8	2.84	2.9
BCORS	Stn 2	2.87	0.999	2.4	2.83	2.4
BCORS	Stn 4	3.55	1.479	2.1	3.59	2.1
Cherry	Kerr	3.71	1.484	2.2	3.40	2.0
Cherry	PM37117	3.22	1.109	2.5	2.92	2.2
Cherry	Stn 2	3.41	1.453	2.1	3.13	1.9
Kerr	PM37117	3.64	1.535	2.1	3.46	2.0
PM37117	Stn 2	3.06	0.438	4.8	2.84	4.4
PM37117	Stn 4	3.56	1.154	2.6	3.50	2.6
Stn 2	Stn 4	3.58	0.726	3.9	3.37	3.6

Figure 4.5 – GNSS Survey Precision Statistics

Since class is stated as being a factor of not only the mathematical precision of a survey, but also a factor of the procedures that are used, the main test here is that since the procedures that were implemented for this survey allow for a survey of class A or less, does the mathematical precision fit a survey of the class required. Referring back to ICSM (2007), in order to be deemed a class A survey, a c-value of 7.5 or less must be attained. As can be seen from the results in figure 4.5, the largest c-value in a horizontal plane is 4.8 and in the vertical 4.4, both of which correspond to the baseline measured between stations PM37117 and Stn 2. Since these values are less than 7.5 it would appear that the rapid static survey is of class A precision.

Order however is assigned on the basis of how well the absolute value of the survey corresponds with the adjacent control. In terms of AHD, the four stations,

Cawarra, Saunders, PM37117, and Stn 2 all have derived AHD values as per the network of permanent survey marks that were sampled in the previous section. With the class A results of the rapid static survey, it has been possible to derive an AHD value for the Ballina CORS based on the permanent survey marks. The following table in figure 4.6, shows the difference in height between the published SCIMS value for the Ballina CORS and the four stations, as well as the difference in height between the derived AHD value for Ballina CORS and the four stations, as well as the difference in height between the derived AHD value for Ballina CORS and the four stations, as determined by the rapid static survey.

From	То	Distance (km)	Height Difference by AHD	Height Difference by Survey	Misclose	C-Value
BCORS	Cawarra	1.620	5.4560	5.4366	0.0194	15.3
BCORS	Saunders	1.212	5.3993	5.3799	0.0194	17.7
BCORS	PM37117	0.776	5.7091	5.6897	0.0194	22.1
BCORS	Stn 2	0.999	5.2217	5.2023	0.0194	19.5

Figure 4.6 – Rapid Static Survey Order Statistics

Furthermore the two calculated height differences has allowed a misclose to be determined between the two, and utilising the formula to determine class and order for differential levels, the corresponding c-values could be calculated using;

$$r = c\sqrt{d}$$

Where

r = allowable misclose;

c = an empirically derived factor, and;

d = the distance between stations (km).

Since the differential level network observed in the previous section was observed to 2nd order standards only, this is the maximum order that is achievable in this survey. However, the corresponding c-values derived in figure 4.6, state that based on the c-values by order stated in ICSM (2007), the best that can be assigned to the Ballina CORS based on the permanent survey marks adjacent to it, is closer to 5th order, with the two closest stations (PM37117 and Stn 2) having c-values between 18 and 36. However the connection between the two furthest stations, do fit a 4th order relationship, with c-values lying between 12 and 18.

Summary

This section has described the methods and procedures used in order to determine a comparison of the AHD value between the recently established Ballina CORS and the permanent survey mark infrastructure located adjacent to it. Through the course of this section, it has been shown that indeed a difference does exist between the two in the vicinity of 19.4mm, and the relationship between the two is closer to 5^{th} order, which is in contrast to the SCIMS stated relationship of 1^{st} order.

Chapter 5:Derivation of an AHD value for Mean SeaLevel as Observed at Ballina Tide Gauge.

Introduction

The derivation of AHD on the Australian continent as identified in chapter 2, was carried out by forcing a majority 3rd order differential level network, that connected 30 tide gauges scattered around the continent, to the MSL value, that was observed at each one of the tide gauges. The value for MSL that was used for the derivation of AHD, was a result of the analysis of approximately 2 years worth of tide level observations.

It is held by ICSM (2004), that in order to use MSL data as the basis for the definition of a height datum, that the data used should be from a minimum of 18.6 years worth of records. This 18.6 year period is the time duration that defines one tidal datum epoch. The tidal datum epoch is generally calculated as being the time taken for the positions of the earth sun and moon to repeat, and as such the time taken for the entire tidal system to repeat (ICSM, 2004).

As was also outlined in chapter 2, there are other limitations that have been identified with the derivation of AHD, including some questions regarding errors in some 3rd order one way levelling techniques, and not observing the effects of sea

surface topography to name but a few. The result has been the classification of AHD as being no more than a 3rd order mapping datum.

Although not a part of the derivation of the AHD having only been installed in 1986, the Ballina tide gauge at its present location, adjacent to the southern breakwall at the mouth of the Richmond River, has been recording data since installation. As such Manly Hydraulics Laboratory (MHL) holds complete MSL records for the last 24 years, relative to Richmond River Valley Datum.

Since the Ballina tide gauge does have sufficient data to satisfy the requirements of one tidal datum epoch, the purpose of this survey therefore, is to derive a value for MSL with relation to AHD, as propagated by the sample of permanent survey marks on Ballina Island and determined in chapter 3. The aim of this process is to determine if AHD is the best representation of MSL in the subject area.

Survey Design

The tide gauge at Ballina is a Zwarts type, electromagnetic system, and consists of two copper tubes approximately 50mm in diameter, that are mounted to a steel 'I – beam' (MHL, n.d.). With this type of system, water level measurements are made with reference to the length of the un-immersed section of tube. As a result there is no visible gauge staff with which to directly connect to the tide gauge. Instead, surveyed height connection is made to a series of tide gauge benchmarks that have

a set height above the same datum with which the tide measurements are made (ICSM, 2004). In the case of the Ballina gauge there are three of these benchmarks, with heights made with respect to Richmond River Valley Datum (RRVD). RRVD is also stipulated as being a realisation of the local level of Low Water at Ordinary Spring Tide (LWOST) which is the datum reference that has been stated by MHL when quoting their derived value of MSL.

The location of the Ballina tide gauge, adjacent to the southern bank of the Richmond River, along with the associated tide gauge benchmarks as depicted in figure 5.1, has led to the necessary implementation of reciprocal EDM heighting methods. These methods were necessary in order to transfer the determined AHD height value, from the permanent survey mark network located on the northern bank, across to the southern side of the Richmond River.

Figure 5.1 – Location of Ballina Tide Gauge and Benchmarks (Google Earth, 2010)

In order to make this surveyed connection, three main tasks were necessary, and are as follows;

- To carry out a reciprocal EDM height network in the form of a braced quadrilateral, transferring height differences between two stations located on the northern bank of the Richmond River, to two stations on the southern bank.
- To carry out a differential level survey that connected the two reciprocal EDM heighting stations located on the northern bank of the Richmond River, with the class LB differential level survey, and;
- To carry out a differential level survey, that incorporated the three tide gauge benchmarks and the two stations placed on the southern bank of the Richmond River, in order to connect the reciprocal EDM heighting survey, and the Ballina Tide Gauge.

In addition to these tasks the height difference determined from the GNSS based connection between Stations 2 and 4, will also be used as a check on the results achieved with the reciprocal heighting.

With respect to the methods, procedures and equipment utilised whilst conducting the two differential level surveys, the procedures as outlined in the section detailing the class LB differential level network on Ballina Island were strictly adhered to, and are not reiterated here.

As with the other aspects of this project, procedures utilised whilst carrying out the reciprocal EDM heighting survey were aligned as far as was practical with the guidelines set down by ICSM (2007). The practical guidelines followed were;

- Observing two sets of six vertical and horizontal angle observations in line with that for class B trigonometric heighting observations.
- Keeping observation times between 10am and 4pm, once again as stated for class B trigonometric heighting observations.
- Observing two sets of six electronic distance measurement (EDM) readings to each station.

The observations that are outlined above were conducted utilising two Geodimeter 700 total stations. Ideally when utilising two instruments for reciprocal EDM heighting it is best practice to make vertical angle observations simultaneously, as this eliminates the effects of refraction. However, this requires specialist equipment to allow for the attachment of prism assemblies to the total stations, and this equipment was not readily available for the project.

Due to the inability to make observations simultaneously, the effects of refraction were required to be accounted for during the reduction procedures. However, in order to make the refraction effect as small as possible, the observations were made with two instruments concurrently, as the turnaround time of around 20-30 mins to relocate from the northern to the southern side of the Richmond River, that would have been required if only one instrument was used, was seen to be too great.

Prior to the observation of the reciprocal heighting network, it was necessary to ensure that both the total stations' distance measuring features were aligned and functioning correctly. In order to ensure this, both instruments were placed over the LPMA certified EDM baseline located at Kingscliff, near the NSW - Queensland border. The baseline test resulted in two different corrections being determined for the instruments that were later applied to the measured slope distances. It should be further qualified that throughout the observation of the network, changes in temperature and pressure were constantly monitored and 'dialled in' to both the instruments, for the purposes of on-board calculation, and application of first velocity (atmospheric) corrections.

Results

The initial part of the survey was to determine the reduced levels of two stations on the northern side of the Richmond River, with respect to the AHD as derived by the class LB differential network. This was carried out by utilising the same methods and equipment as the aforementioned survey, to observe a separate loop that started and ended on SSM92282, itself a part of the main differential network, and included connection to reciprocal heighting stations 1 and 2. The resultant AHD values for the reciprocal heighting stations 1 and 2 were therefore determined as follows;

- Stn 1 RL2.2671 Galvanised Iron Nail in Bitumen.
- Stn 2 RL1.7693 Galvanised Iron Nail in Bitumen.

The second part of the survey was the transferring of the AHD from Ballina Island, across the Richmond River to South Ballina, via reciprocal EDM heighting. As indicated in figure 5.2, this was carried out in a braced quadrilateral format, with two sets of six slope distances, horizontal, and vertical angles observed from each station to the other three stations. A summary of the resultant measurements is shown in the table in figure 5.3.

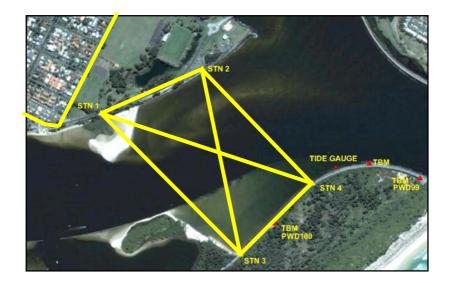


Figure 5.2 – Reciprocal EDM Heighting Network (Google Earth, 2010)

From	То	Horizontal Angle	Vertical Angle	Slope Distance	h (inst)	h (target)
1	3	0°00'00.00"	89°56'57.83"	882.8096	1.579	1.398
1	2	287°06'47.25"	90°04'36.33"	485.9994	1.579	1.445
1	4	335°32'58.00"	89°52'19.50"	950.9213	1.579	1.536
2	4	0°00'00.00"	89°47'20.17"	726.1058	1.547	1.536
2	3	26°31'12.25"	89°54'48.33"	873.5258	1.547	1.398
2	1	101°30'37.92"	89°57'29.83"	485.9993	1.547	1.480
3	4	0°00'00.00"	89°49'37.33"	393.9749	1.515	1.536
3	1	272°29'45.50"	90°04'27.33"	882.8056	1.515	1.480
3	2	304°37'05.67"	90°06'29.33"	873.5223	1.515	1.445
4	3	0°00'00.00"	90°13'07.83"	393.9745	1.675	1.398
4	1	68°02'46.00"	90°09'01.33"	950.9258	1.675	1.480
4	2	98°05'57.00"	90°14'13.17"	726.1052	1.675	1.445

Figure 5.3 – Reduced Reciprocal EDM Heighting Measurements

The measurements as summarised above are the result of the following reduction procedures;

- Horizontal angles have been determined by taking the mean value of all 12 observations.
- Vertical angles were calculated by taking the mean of all 6 face left and face right observations, and calculating and applying the vertical circle correction.
- The mean was taken of all 12 slope distance observations, and the correction determined from the Kingscliff baseline test was applied.

Having determined the reduced observations in figure 5.3, the one way height differences were calculated using;

$$H_2 - H_1 = d_{1-2} \times \cos z_{1-2} + \left(\frac{1-k}{2R}\right) \times \left(d_{1-2} \sin z_1\right)^2 + h_i - h_i$$

Where: d_{1-2} = slope distance from 1 – 2; Z_{1-2} = observed zenith angle from 1 – 2; R = The earths radius – 6,370,000m; k = The coefficient of refraction – 0.07; h_i = The height of instrument, and; h_t = The height of target.

After Hamilton (n.d.).

The results of applying the above formula to the observations in figure 5.3 are the one way height differences shown in figure 5.4;

From	То	Forward ∆H	Reverse ∆H	Difference	Mean ∆H
1	2	-0.4998	0.4381	-0.0617	-0.4690
1	3	1.0176	-1.0521	-0.0345	1.0349
1	4	2.2320	-2.2346	-0.0026	2.2333
2	3	1.5246	-1.5231	0.0015	1.5239
2	4	2.7243	-2.7348	-0.0105	2.7296
3	4	1.1797	-1.2165	-0.0368	1.1981

Figure 5.4 – One–Way Height Differences From Reciprocal EDM Heighting.

As can be seen from the above table, there are some very large differences that exist between the forward and reverse ΔH 's. With regard to the 61.7mm difference between stations 1 & 2, this is most likely to do with a large variation in the

coefficient of refraction, due to the sight lines traversing predominately bitumen roadway. The same can most likely be said for the line between stations 3 and 4, as this sight line also traversed roadway, except the surface in this instance was compacted gravel/dirt.

For the remainder four lines that actually traversed the Richmond River, it would appear that the close correlation between forward and reverse Δ H's, confirms the coefficient of refraction adopted of 0.07. The only exception remains with the line between stations 1 and 3, whose forward and reverse Δ H differences remain inexplicably large (34.5mm).

The three dimensional network was adjusted once again using the Star*Net version 6.0.25 software, under the following conditions;

- The horizontal position of stations 1 and 2 were held fixed the horizontal coordinates were assumed on a local coordinate system, and the inter-relationship based on the measured horizontal distance.
- The vertical position of stations 1 and 2 were held fixed at the AHD heights determined previously.
- The Δ H between stations 3 and 4 determined by differential levelling was held fixed.

The results of the first run failed to pass a Chi^2 test at the 5% level, with further analysis indicating a standard residual for the ΔH observation from station 3 to 1 well in excess of the others at 4.8. The adjustment was run again, this time excluding the station 3 to 1 observation, and the results having passed all statistical testing are as follows;

- Station 3 RL3.2937 Dumpy peg placed in access track.
- Station 4 RL4.4977 Dumpy peg placed in access track.

It should also be qualified at this point that the AHD value for station 4 as determined here as RL4.4977 agrees within 2.2mm of the level determined for the station in the GNSS survey in the preceding section (RL4.4999).

With the AHD values determined for stations 3 and 4, it was then possible to determine the heights of the three tide gauge bench marks, with connection made via differential level observations. As with the other differential level runs, the procedures and equipment used satisfied ICSM's (2007) standards and practices for a class LB control survey. The results of the differential survey are as follows in figure 5.5.

Tide Gauge BM	Height (AHD) By Survey	Height (RRVD) As Quoted By DPW (2001)	∆Ht
PWD100	4.7455	5.581	-0.8356
SSBM	3.1444	3.979	-0.8346
PWD99	5.8398	6.678	-0.8382
		Mean ∆Ht	-0.8361

Figure 5.5 – Determined and Quoted Heights of Tide Gauge Benchmarks

The above table indicates in the first row the height determined for each of the tide gauge benchmarks with relation to the value of AHD derived on Ballina Island. The height in the second row is the height as determined by the Department of Public Works (DPW, 2001) for the same three benchmarks with respect to RRVD. This allowed for a difference between the two datums to be determined with the overall relationship depicted by;

AHD = RRVD(LWOST) - 0.8361

Manly Hydraulics Laboratory (MHL) as stated previously, are the custodians of the tidal observation data that has been collected at the Ballina tide gauge since its installation in 1986. MHL (2010) has quoted that the MSL value as observed at the gauge is $0.817m \pm 0.05m$ with relation to LWOST (RRVD), having excluded the effects of any localised flooding and storm surges. Therefore the value of MSL with relation to AHD can be determined as follows;

AHD = RRVD(LWOST) - 0.8361 $AHD_{MSL} = 0.817 - 0.8361$ $AHD_{MSL} = -0.0191$

As indicated above the value of MSL with respect to the Ballina Island value of AHD is RL-0.019 \pm 0.05. The relationship between the various height planes is summarised in figure 5.6.

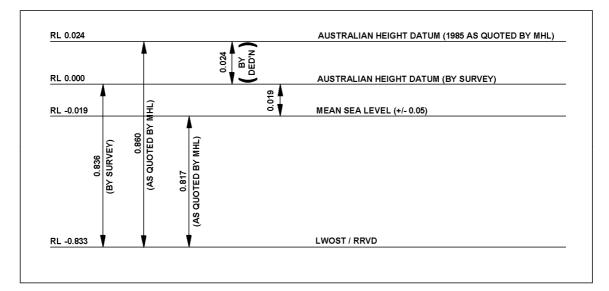


Figure 5.6 – Derived Height Plane Relationships

Class & Order Qualification

As with the previous chapters, precision of the various surveys carried out in order to determine the aforementioned value of MSL, needs to be quantified, as does the accuracy with which the AHD network fits the absolute value of MSL. To begin with, the class of the differential level survey can be determined through the application of the formula for allowable maximum misclose, as presented by ICSM (2007);

$$r = c\sqrt{d}$$

- Where: r = The allowable misclose (mm);
 - c = an empirically derived factor, and;
 - d = the length of the level run (km)

The results for the two differential level runs conducted on either side of the

Richmond River are summarised in figure 5.7;

Loop	From	То	Forward	Back	Misclose	Distance	Allowable Misclose – Class LB
10	SSM92282	STN 2	-0.3337	0.3327	-0.0010	695.059	0.0094
11	STN 3	PWD99	2.5461	-2.5462	-0.0001	1027.7101	0.0115

Figure 5.7 – Results of Differential Level Runs

As can be seen from the above table, the observed misclose for the two level runs easily satisfies the allowable misclose for a class LB survey, which is the highest precision possible whilst using the adopted observation procedures.

In order to determine the class of the reciprocal EDM heighting survey, it is necessary to adopt the formula for maximum value of the semi major axis of the

respective line error ellipses. This formula as presented in ICSM (2007) is as follows;

$$r = c(d+0.2)$$

Where: r = semi major axis (mm)

c = an empirically derived factor, &

d = the length of the line (km)

The resultant semi major axis of the error ellipses for each line in the least squares adjustment, are shown below in figure 5.8.

From	То	Distance (km)	Vertical (mm)	C-Value
1	2	0.486	0 (Fixed)	-
1	3	0.882	3.40	3.1
1	4	0.950	3.40	3.0
2	3	0.874	3.40	3.2
2	4	0.726	3.40	3.7
3	4	0.394	0 (Fixed)	-

Figure 5.8 – Reciprocal EDM Heighting Class Statistics

The above table indicates that the c-value for the four Δ H's that were used to transfer the AHD from Ballina Island across to the southern break-wall, are in the range set down by ICSM (2007) for a class A survey, being in the range between 3 and 7.5. However due to the constraining height differences and the methods used only meeting class B standards, this is the maximum class that is able to be assigned to the combined network.

As with the assigning of the order of the GNSS survey in the previous chapter, the method of assigning order to the value of AHD with respect to the value of MSL will utilise the maximum misclose formula for differential levels, as indicated in ICSM (2007) as follows;

$$r = c\sqrt{d}$$

The difference here is that no horizontal location has been determined for the Ballina tide gauge, and as such the distance from the tide gauge to the closest section of the Ballina Island class LB differential level network is unknown. For the purposes of this exercise, it was therefore decided to scale a distance utilising the distance measuring tool in 'Google earth' software version 5.2.1.1588 (2010) with the approximate distance determined to be 1.22km. Therefore the c-value for the order between the two datums can be determined by;

$$c = \frac{r}{\sqrt{d}}$$
$$c = \frac{19.2}{\sqrt{1.22}}$$
$$c = 17.4$$

The determined c-value of 17.4 corresponds to a third order relationship as it lays between the c-values of second and third order as stated by ICSM (2007) of 15 and 30 respectively. Therefore the relationship between the value of AHD and the value of MSL, as observed over the past 24 years at Ballina tide gauge differs by 19.2mm, and is a third order relationship.

Summary

Throughout the course of this section, the various methods and procedures that were required to transfer the value of AHD, as determined by the class LB differential level survey, across to South Ballina for the purposes of connection to the Ballina tide gauge were described. Furthermore the value of RL-19.2mm AHD was determined for MSL as has been observed at the gauge over the past 24 years, with the relationship between the two conforming to third order standards only.

Chapter 6: Discussion

Introduction

The preceding three chapters have outlined the methods, procedures, and results of the various surveys that were necessary in order to investigate the status of the AHD network on Ballina Island. In order to accomplish this, the inter-relationship between different mark types, different ages of infrastructure and different realisations of sea level height datums were compared.

In the following sections some rationale is put forward and discussed with relation to the reasoning behind the observed results of the surveys.

The Permanent Survey Mark Infrastructure

The objective of the survey in chapter 3 was to determine whether or not the accuracy of the inter-relationship between a sample of the permanent survey marks located in the subject area is still to the stated order. To test this inter-relationship, a class LB differential level network was designed to incorporate a sample of marks. Of these permanent survey marks the majority were of class and order LB - L2 respectively and were a result of one heighting campaign conducted by the

Department of Lands in 1992. A small selection of LA - L1 marks, of a vintage some 20 years older then the 2nd order network were also included in the survey.

The result of this survey has indicated that 31% (11), of the height differences between permanent survey marks, still agree with the derived height differences from the SCIMS published heights, to the standards set down for a 2^{nd} order relationship. The remaining 69% (25) of height differences measured, have a relationship to 3^{rd} order or lower, and of this 69%, 6% (2) lay outside the standards set for a 5^{th} order relationship.

The movement of permanent survey marks in the subject area is not a new occurrence. Vertical movement of a selection of these marks was reported by Halls (1992) in a report accompanying the results of the 2nd order AHD densification survey that was conducted in 1992. Two of the marks that were identified in Halls' (1992) report were PM37107 and PM37145. The former was found too have moved upwards by 5mm over the 20 year period, (RL1.294 to RL1.299) and the latter was found to have sunk by 7mm (RL1.566 to RL1.559). It should also be added, that further movement of these marks has been identified as a result of this survey, over the ensuing 18 year period. The movement noted for PM37107 has been determined as lifting a further 7.9mm, taking its current RL to 1.3069, and PM37145 has continued sinking a further 6.8mm, to RL1.5522.

These results confirm the questionable nature of the stability of the predominately alluvial sand and clay soil types in the subject area. Sliwa (1987) identified that the influence of clay in soils can have an effect on benchmark stability, especially due to the expansion and contraction of clays with changing water content.

Another possible reason identified for the movement of permanent survey marks in the area, is disturbance due to construction works. The NSW Surveying and Spatial Information Regulation (2006), states in clause 44(1)(c) that any new permanent survey mark placed, must 'be identified in a sketch plan prepared in accordance with approved standards'. Furthermore, in section 4 of the same clause it states that these sketches 'must be forwarded to the Surveyor-General within two months of the placement of the survey mark concerned'. The sketch plans aid with the location of permanent survey marks, by showing measurements to surrounding features such as fence posts, power poles and telecommunications pits, and when completed well, can give a snapshot of the surrounding area at the time of placement.

Through the course of study of the aforementioned sketches for four of the worst performing permanent survey marks, it has been identified that some degree of construction works either adjacent to, or above has been carried out since placement, and could possibly be a cause for the marks movement. A summary of the survey marks and the apparent works completed has been provided below. **PM37144** - This mark has seen an upwards shift of 8.8mm since originally heighted in 1992. Construction works since placement has seen a reworking of the entire intersection including the installation of kerb and guttering, piping of an open stormwater flow-path immediately adjacent to the mark, and the concreting in of the cast iron cover box into a footpath. The permanent mark sketch plan and a current photograph of the intersection has been provided in figure's 6.1 - 6.3.

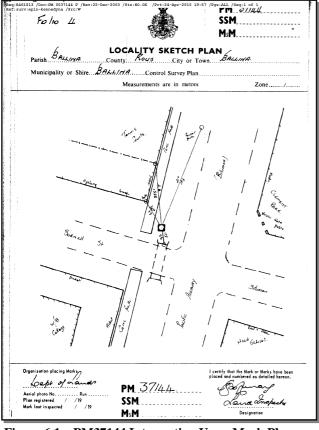


Figure 6.1 – PM37144 Intersection Upon Mark Placement (Source: LPMA, 2010d)

Figure 6.2 - PM37144 Intersection on 24/10/10

Figure 6.3 - PM37144 Intersection on 24/10/10

PM39317 – This mark has sunk 9.5mm since heighted in 1992. Works in the area have included the installation of kerb and guttering, the placement of a concrete footpath, and the apparent relocation of a sewer manhole that is now located immediately adjacent to the mark. Once again the locality sketch plan and recent photographs of the area are shown in figures 6.4 - 6.6.

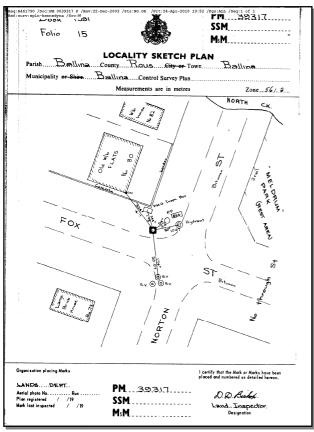


Figure 6.4 – PM39317 Intersection Upon Mark Placement (Source: LPMA, 2010d)

Figure 6.5 – PM39317 Intersection on 24/10/10

Figure 6.6 - PM39317 Intersection on 24/10/10

PM37060 – This mark is one of the original class LA marks and has dropped 11mm since it was checked in 1992. Works in the vicinity of this mark since placement have included the removal and subsequent extension of kerb and guttering into adjacent Grant Street, the addition of landscaping, the construction of the motel and adjacent brick fencing, and the concreting in of the PM cover box into a new footpath. This is depicted in the following figures 6.7 – 6.9.

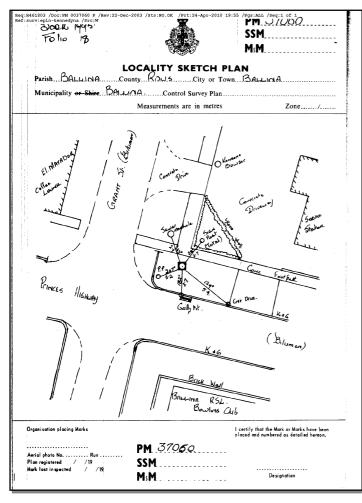


Figure 6.7 – PM 37060 Intersection Upon Mark Placement (Source: LPMA, 2010d)

Figure 6.8 - PM37060 Intersection on 24/10/10

Figure 6.9 – PM37060 Intersection on 24/10/10

PM7888 – This mark was found to be the worst performer of all the marks surveyed, and it has sunk 20.3mm since having last been surveyed in 1971. There have been extensive works done adjacent to the mark, these include the removal of a service station and erection of a single storey electrical store, the placement of a telecommunications pillar 0.5m to the west of the mark, and reworking of the surrounding intersection with new footpath, landscaping, and kerb and guttering.

Reg:R461801 /Doc:PM 0007888 P /Rev:18-Dec-2003 /Sts:NO.OK /Prt:24-Apr-2010 19:54 /Pgs:ALL /Seq:1 of 1 Form 6
Ref:surv:epin-kennedyna /Src:W Kegulation //
表示的 PM No.7888
SC. G4 #6
l l
PERMANENT MARK SKETCH PLAN
To be drawn in black works of the k, not necessarily to scale.)
Parish Ballina County Rous City or Town Ballina
Municipality or Shire. Balling Survey Area
Zone. 2. Map Sheet. Lismore 9549
NOTE - Measurements are to be shown from the mark to as many nearby survey marks, buildings, fence posts, kerbs, etc., as practicable. Up to six measurements are desirable.
Measurements are in Sect.
\uparrow
TWEED HEADS
abi 65 m
p .
"Austration"
Noter A tri
28.30
RIVER
PACIFIC
ST ST
P P
7888
1.6 - 1 Train 1 2
"Gran "
"Gran " q" &!
terrice 1 3
"G/day "
(Woodburn-Tweed Heads)
Placed in connection with (type of survey or work). Commonwealth 3rd order levelling
Co-ordinate values of mark. Projection
Reduced level of mark
3/1 t e.g., Standard, Railway, Public Works, M.W.S.D. Board, Main Roads, etc., or assumed.
1 certify that the Permanent mark shown in this sketch has been placed on the ground
*by me and that the information shown hereon is correct. *under my immediate supervision *Strike out whichever is not applicable.
Field Books. In spectrum Book. Nº. 172.
(Dote) 14th Jany. 1995 (Signoture) R. Vidat
Public Authority. Dapt. of Lands
(Date) 20 h May 1966 g CWatthy
Proper Officer
PM No.7888
Survey Grad Brench

Figure 6.10 – PM 7888 Intersection Upon Mark Placement (Source: LPMA, 2010d)

Figure 6.11 - PM7888 Intersection on 24/10/10

Figure 6.12 - PM7888 Intersection on 24/10/10

In addition to these improvements, this intersection was up until the 1990's the Pacific Highway, and as such was exposed to a great deal of heavy vehicle traffic. Where PM7888 is located is on the external bend of where heavy vehicles were braking and turning right when entering the intersection from the north, and exiting to the west. It is possible that such repeated heavy vehicle movement could have contributed to some of this vertical displacement. The intersection configuration when the mark was placed as opposed to now is shown in figures 6.10 - 6.12

It is identified here that the derivation of the mean value of AHD as conducted in chapter 3 is not ideal for deriving order relationships between marks. A much better option, especially due to the level of movement that has been observed in the network, would have been to make a connection to existing permanent survey marks outside of the dubious subject area, and located in more stable areas such as adjacent East Ballina. Due to time constraints on field work, external connection was outside of the scope of this investigation.

The Ballina Continuously Operating Reference Station

The survey outlined in chapter 4 compared the determined value of AHD as purported through the 1992 network of 2nd order permanent survey marks sampled in the subject area, to the AHD value of the newly installed Ballina Continuously Operating Reference Station, also located on the Ballina Island subject area. The CORS networks are subject to the same class and order system of dealing with mark precision and accuracy as the traditional permanent survey mark networks. The order of these stations is assigned as a result of local tie surveys, which connect the station to existing infrastructure through GNSS methods. In order to determine the relationship to the derived value of AHD from the permanent survey marks to the CORS, GNSS methods were utilised in this survey to connect four stations that were levelled as part of the survey in chapter 3 to the CORS. The result of the connection determined from chapter 4 was a difference of 19.4mm between the value of AHD determined from the permanent survey mark network, to that determined by the LPMA's local tie survey. This difference resulted in a 5th order relationship being derived from the two values.

The local tie survey that was conducted by LPMA that has given the Ballina CORS its final coordinates is adjustment report number 233873, and the report was compiled by Grinter (2009). Analysis of this report indicates that three marks were connected to on Ballina Island, and held fixed in the final adjustment and height derivation. The marks used were PM39315, PM37060 and PM7888. During the course of the class LB differential levelling survey in chapter 3, it was found that PM39315, which is located approximately 1.5km from the CORS, agreed exceptionally well with the derived AHD value, differing by only 0.7mm. However the inclusion of PM37060 and PM7888 in this survey, located approximately 700m and 300m from the CORS respectively, is particularly problematic. Both of these marks were the subject of previous discussion, and have indicated a difference of

-11mm and -20.3mm respectively. Due to the observed value of AHD for the Ballina CORS by this survey being 19.4mm lower than the published value, it is most likely that the difference determined is a direct result of the differences observed between these two marks.

Mean Sea Level at Ballina Tide Gauge

The purpose of this survey was to determine whether or not the value of AHD in the subject area is the best representation of MSL available. It has been identified in chapter 2 that AHD was originally derived by constraining a continent wide differential level network, to the value of MSL observed at 30 tide gauges around the Australian coastline.

The survey outlined in chapter 5 indicates that the value of MSL as observed over the past 24 years at Ballina tide gauge, currently resides 19.2mm below the zero value of AHD, as per the sampled permanent survey mark infrastructure. Based on the distance between the tide gauge located at South Ballina, the relationship between the derived AHD and the quoted MSL, was determined as a 3rd order relationship.

One of the issues surrounding the determination of AHD has already been identified in this paper, as the inadequate duration of tidal observation times to accurately determine the value of MSL. This begs question of whether such issues have manifested themselves with regards to the comparison of AHD and MSL as determined here, where sufficient tide gauge records are available to satisfy the minimum required duration outlined by ICSM (2004), of one tidal datum epoch. Indeed the situation of an incorrect value of MSL adopted from the AHD derivation gauges, can only be substantiated by a levelled connection between a gauge with adequate observation time such as the Ballina tide gauge, and the aforementioned AHD gauges, and is beyond the scope of this project.

Findings by Morgan (1992) indicate that re-levelling of the section between primary AHD tide gauges located at Coffs Harbour and Brisbane in 1976, turned up negligible variation in the form of 22.1mm from the original height difference determined during the establishment of AHD in 1971. Of this variation Morgan (1992) goes on to identify that 10.5mm of this is attributable to the 349km section between Coffs Harbour and Tweed Heads. This would indicate that determination of AHD in the subject area didn't suffer from some of the large errors experienced in other sections of the country, such as that between Bundaberg and Cairns as also identified by Morgan (1992), and as such should be a fairly reliable indicator of MSL.

In addition, it has been identified by Holgate & Woodworth (2004) that the decade of the 1990's saw a period of accelerated global sea level rise in the vicinity of 3.7mm/year. If this rate was observed throughout the period, or indeed the more conservative figures of 1-2mm/year over the past 100 years, the overall effect would have seen a positive value of MSL with respect to AHD at the Ballina tide gauge. In actuality the opposite has occurred with the results of the survey in the subject area, indicating that the AHD value of MSL is currently RL-0.0192. This would indicate, especially with regards to the observed sea level rise, that the original value of AHD as determined from the tide gauge observations prior to 1971, was quite substantially higher than the true value of MSL. Indeed by using the change of 1-2mm/year would mean that the 1968 value of MSL would have been between 42-84mm lower than it is currently.

One of the issues related to the determination of MSL for AHD as outlined in chapter 2, was the identification of buoyancy of water at river mouths due to the inclusion of fresh water. This may have been a factor in the determination of an MSL value used as the zero point for AHD that is substantially higher than that observed at Ballina.

The qualification by Manly Hydraulics Laboratory of the value of MSL quoted at Ballina tide gauge of being \pm 50mm, and the fact that the difference between MSL and AHD of 19.2mm is encompassed in the range of that qualification, would suggest that it is quite possible that the MSL is in fact coincident with the local value of AHD.

Implications and Recommendations

Prior to the commencement of fieldwork for this investigation, it was accepted that there was a high possibility that there had been some quite substantial movement of permanent survey marks in the subject area. What this series of surveys has shown is that in areas of dubious stability, it is difficult to maintain a certain standard of quality when it comes to the inter-relationship of permanent survey marks.

There are two main implications that have come out of this investigation. Firstly, due to the amount of movement that has been shown to be able to occur over an 18 year period, it is advisable in the interest of survey correctness to conduct check surveys on a semi regular basis, especially in areas known to have stability issues. However, it is recognised that such surveys are expensive and time consuming, and since there is AHD infrastructure already existing that is guaranteed by the State of NSW, such surveys are therefore of a low priority.

Secondly, this investigation has highlighted a need for further investigation of the accuracy of permanent survey marks before they are merely adopted for the derivation of values for new survey infrastructure, such as continuously operating reference stations. It is recommended here that in areas of potential disturbance and settlement that checks are made out to marks that are of a more stable nature.

Summary

Throughout this section the findings of the surveys conducted in chapters 3, 4 and 5 were discussed with relation to some of the possible reasons for the results obtained. With regards to the permanent mark survey, soil type, together with human interference with the surrounding areas, were identified as contributors to the overall degradation of the network. In terms of the connection to the Ballina CORS, the adoption of some of the poorer performing marks in the differential level survey having been adopted for LPMA's local tie surveys, has been identified as the reason behind the 19.4mm overall difference in height between the two networks. Finally in terms of the derivation of the AHD value of MSL, it has been difficult to identify any concrete reasons behind the 19.2mm difference between the datums, with the measured difference being within the order of accuracy quoted by Manly Hydraulics Laboratory, it has been determined that it is quite feasible that the two are indeed coincident, however with the observed rise in sea level identified in Holgate & Woodworth (2004) it is unlikely that they always have been.

<u>Chapter 7:</u> <u>Conclusion</u>

Introduction

The Australian Height Datum was derived in 1971 with the adjustment of some 161,000km of spirit leveling observations, connecting 30 tide gauges around Australia. With the adoption of the AHD as the national height datum in Australia, its value is propagated throughout the country with the assigning of values with relation to it, to a wide variety of permanent survey marks.

Project Aims and Results

The aim of the class LB differential level survey was to connect to a sample of the permanent survey marks in the subject area of Ballina Island, and determine whether the network was still to the stated 2^{nd} order standards with respect to the vertical inter-relationship between the sampled marks. The results of the survey indicated that the majority (69%) of the height differences sampled were shown to belong to a 3^{rd} order relationship or lower. Throughout the course of the discussion in chapter 6, it was identified that some of the potential reasons behind the observed differences, lay in the unstable geotechnical nature of the subject area, and the degree of human

interference through construction works adjacent to the marks in the ensuing 18 years since placement.

The aim of the second survey was to test the relationship between the 18 year old permanent survey mark infrastructure to the recently established Ballina Continuously Operating Reference Station. In order to determine this, a rapid static GNSS survey was developed, connecting four stations part of the differential network, with the CORS receiver. The results of this survey has shown a 19.4mm difference between the two networks, with the majority of the difference attributable to adoption of some control marks for the establishment of the published CORS coordinates, that have been shown to have undergone some vertical movement, as ascertained from the results of the differential level survey.

Finally, the third survey was to determine whether or not AHD is a good representation of MSL in the subject area. A reciprocal EDM heighting survey was developed to transfer the value of AHD from the permanent survey mark infrastructure, across the Richmond River to the Ballina tide gauge, where it was compared to MSL. This survey determined that the relationship between AHD and MSL is in the vicinity of 3rd order, which further strengthens statements observed in chapter 2, that the AHD is little more than a 3rd order mapping datum.

Future Work

As a result of this work recommendation is made that the AHD on Ballina Island should undergo a re-adjustment, as it appears that natural and man made forces have conspired against the network in the 18 years since establishment, with the majority of marks sampled in this investigation having degraded to a 3rd order relationship or less. It is recommended here that during any re-adjustment of the network, that connection be made to more stable control marks outside of the Ballina Island subject area, so as to eliminate the possibility of adoption of marks that are as equally as dubious.

References

Abbey, D 2004, *AG98LGO.exe* - *Interpolation of N-values from the AusGeoid98 model*, Software Program, Version 1.3

Bannister, A, Raymond, S 1984, *Surveying*, 5th ed, Pitman Publishing Ltd, London.

BSC 2006, "Ballina Shire Council Combined Development Control Plan 2006". Ballina Shire Council, Viewed 16th May 2010. <<u>http://www.ballina.nsw.gov.au/cmst/ballina004/view_doc.asp?id=751&cat=359</u>>

Cooper, MAR 1982, *Modern Theodolites and Levels*, 2nd ed, Granada Publishing, Sydney, Australia

DPW, 2001, *Levelling for South Ballina Breakwall Automatic Gauging Station*, Department of Public Works & Services.

Featherstone, WE, Kuhn, M 2006, "Height Systems and Vertical Datums: A Review in the Australian Context". Viewed 1st May 2010 <<u>http://www.cage.curtin.edu.au/~will/HeightSystemsVerticalDatums6.pdf</u>>

Filmer, MS, Featherstone, WE 2009, "Detecting Spirit-Levelling Errors in the AHD: Recent Findings and Issues for Any New Australian Height Datum", *Australian Journal of Earth Sciences*, vol. 56, no.4, pp559-569.

GA 2010, "Geodesy – Australian Height Datum (AHD)" Geoscience Australia Viewed 20th May 2010 < <u>http://www.ga.gov.au/geodesy/datums/ahd.jsp</u>>

Google earth 2010, Google Earth, software program, version 5.2.1.1588.

Grinter, T 2009, Ballina CORS (TS12089) GDA94/AHD71 Adjustment – Adjustment Source ID 233873, Land & Property Information.

Halls, D 1992, Survey Adjustment Report: Levelling – Ballina Island and West Ballina & Adjustment – Vertical (91030)

Hamilton, J, n.d. *Use of EDM and Proper Reduction of Observations*. Viewed 7th July 2010. <<u>http://www.terrasurv.com/edm.pdf</u>>

Holgate, SJ, Woodworth, PL 2004, "Evidence for Enhanced Coastal Sea Level Rise During the 1990's", *Geophysical Research Letters*, Vol.31, pp1-4.

ICSM 2004, *Australian Tides Manual (Special Publication 9)*, Intergovernmental Committee on Surveying and Mapping, Viewed 26th April 2010. < <u>http://www.icsm.gov.au/icsm/SP9/index.html</u>>

ICSM 2007, *Standards and Practices for Control Surveys (Special Publication 1)*, Intergovernmental Committee on Surveying and Mapping, Version 1.7.

IOC 2006, Manual on Sea-level Measurements and Interpretation, Volume IV: An update to 2006. Paris, Intergovernmental Oceanographic Commission of UNESCO. 78 pp.

Jannsen, V, White, A, Yan, T 2010 "CORSnet-NSW: Towards State-wide CORS Infrastructure for New South Wales, Australia" FIG Congress 2010, Viewed 5th October 2010.

<http://www.fig.net/pub/fig2010/papers/ts08f%5Cts08f_janssen_grinter_3959.pdf

Johnston, GM, Featherstone, WE 1998 "AusGeoid98: A New Gravimetric Geoid for Australia", Viewed 1st May 2010. < <u>http://www.ga.gov.au/image_cache/GA5175.pdf</u>>

Kearsley, AHW, 1988, "The Determination of the Geoid Ellipsoid Separation for GPS Levelling", *The Australian Surveyor*, vol.34, no.1, pp.11-18.

Kearsley, AHW, Ahmad, Z, Chan, A 1993, "National Height Datums, Levelling, GPS Heights and Geoids", *Australian Journal of Geodesy, Photogrammetry and Surveying*, no.59, pp.53-88.

Leica Geosystems 2002, "Leica DNA Digital Levels" Viewed 20th April 2010. <<u>http://www.crkennedy.com.au/v1/cfdownload/?fileDir=brochures&fileName=Survey%20-%20Brochure%20DNA03_DNA10_en.pdf</u>>

Leica Geosystems 2009, "Leica Viva GNSS GS15 Receiver" Viewed 18th April 2010.

<<u>http://www.crkennedy.com.au/v1/cfdownload/?fileDir=brochures&fileName=Lei</u> <u>ca_Viva_GNSS_Brochure.pdf</u>>

LPMA 2010a, "NSW LPMA Fast Facts", Land and Property Management Authority, Viewed 21st October, 2010. < <<u>http://www.lpma.nsw.gov.au/___data/assets/pdf__file/0017/130247/LPMA_Fact_Fa</u> <u>cts_Brochure_2010.pdf</u>>

LPMA 2010b, "Network Station Details", Land and Property Management Authority, Viewed 8th October, 2010. <<u>http://www.lpma.nsw.gov.au/survey_and_maps/corsnet-</u> nsw/network_information/network_detail?result_131232_result_page=2>

LPMA 2010c, "GDA94(2010)", Land and Property Management Authority, Viewed 8th October, 2010. <<u>http://www.lpma.nsw.gov.au/survey_and_maps/corsnet-</u> nsw/network_information/gda942010>

LPMA 2010d, "SCIMS Image Request – Spatial Information Exchange", Land and Property Management Authority, Viewed 20th October, 2010. <<u>https://six.lands.nsw.gov.au/wps/myportal/!ut/p/c5/04_SB8K8xLLM9MSSzPy8x</u> Bz9CP0os3gP10tH07AwQwN3YyMDAyNTMycfPyMzINNQP11_yjwwNDDMdTZ1NjQPTDY2MDIz8_PxC0EpNQMKB-JVz4qKjsx2MnMxBxomKleGIyyF79guw0H0dHRUUAOoHOag!!/?reset=true>

Luton, GC, Johnston, GM 2001, "AHD71, AusGeoid and GPS: A Heighting Odyssey", Viewed 12th March 2010. < <u>http://www.isaust.org.au/innovation/2001-Spatial_Odyssey/pdf/luton.pdf</u>>

MHL, n.d. *Electromagnetic Wave and Tide Monitoring System*, Manly Hydraulics Laboratory, Manly Vale.

MHL, 2010, email, 13th July 2010. Manly Hydraulics Laboratory.

Morgan, P 1992, "An Analyses of the Australian Height Datum: 1971", *The Australian Surveyor*, vol.37, no.1, pp.46-63.

NSWDL 1976a, *Manual of the New South Wales Integrated Survey Grid*, NSW Department of Lands, Sydney.

NSWDL 1976b, *Specifications for Second Order Levelling: Survey Integration New South Wales*, New South Wales Department of Lands, Sydney.

NSWDM 1967, *Tweed Heads*, 1:250,000 Geological Series, sheet SH56-3, NSW Department of Mines.

PCTMSL n.d., *Tide Gauge Survey Instructions*, Permanent Committee on Tides and Mean Sea Level, Viewed 15th May 2010. <<u>http://www.icsm.gov.au/icsm/publications/pctmsl/Technical_Specifications_for_</u> <u>PCTMSL-pages10-17.pdf</u>>

Roelse, A, Granger, HW, Graham, JW 1975, *The Adjustment of the Australian Levelling Survey 1970-1971*, 2nd edn, Canberra, Australia.

Rueger, JM 1997, "Staff Errors in and the Adjustment of Ordinary Levelling Runs", *The Australian Surveyor*, vol.42, no.1, pp16-24.

Sliwa, L 1987, "Some Aspects of Bench Mark Stability", *Surveying and Mapping*, vol.47, no.2, pp.155-163.

Surveying Regulation 2006 (NSW), Viewed 24th April 2010. <<u>http://www.lands.nsw.gov.au/___data/assets/pdf_file/0008/38798/Surveying_Regu</u> lation_2006.pdf>

Appendix A: Project Specification

	University of Southern Queensland
FA	CULTY OF ENGINEERING & SURVEYING
E	NG4111/ENG4112 RESEARCH PROJECT PROJECT SPECIFICATION
FOR:	MATTHEW STANLEY
TOPIC:	INVESTIGATION OF THE AUSTRALIAN HEIGHT DATUM (AHE VALUES OF VARIOUS STATE CONTROL MARKS ON BALLIN/ ISLAND.
SUPERVISOR:	Associate Professor Kevin McDougall
ENROLMENT:	ENG4111 – External – Semester 1 – 2010 ENG4112 – External – Semester 2 – 2010
PROJECT AIM:	To investigate whether their has been any degradation, of the 1992 established network of second order Permanent Survey Marks on Ballina Island and investigate if any differences exist in the values of AHD between this survey mark infrastructure, the newly established Continuously Operating Reference Station (CORS) at Ballina and the local value of Mean Sea level (MSL) a observed at the Ballina Breakwater Tide Gauge
PROGRAM:	Issue B – 24 th April 2010.
1/	Research the methods used for derivation of the Australian Heigh Datum and the methods used for extending the height control inter-
2/	the subject area. Devise and carry out a precise level network incorporating a large proportion of state control marks of 2 nd order accuracy that were part of the heighting survey of 17 th August 1992, throughout the Ballina Island subject area.
3/	Devise and carry out a static GNSS survey connecting the level network to the Ballina Continuously Operating Reference Station and to the tide gauge located at South Ballina.
4/	 Adjust and analyse the network and determine; If there has been any degradation through settlement or other means in the relative height between the 2nd order state control marks over the past 18 years.
	 If there is any variation between the value of the Australian Height Datum as per the recently installed Continuously Operating Reference Station and the 18 year old 2nd order control marks. If there is any variation between the AHD and the local value of MSL in the Ballina subject area.
6/	Submit an academic dissertation of the research including any other trends that may become apparent throughout the course of conducting the research.
AGREED	(student)(supervisor) / / 2010 Date: / / 2010

Appendix B: Differential Level Network Data

Loop 1 Raw Data: Kerr Street

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
101	1.6281			31.9	PM37056
102		1.4526	0.1755	37.1	PM62103
102	1.7454			57.7	PM62103
103		1.6454	0.1000	54.1	CP1
103	1.4958			57.9	CP1
104		1.4146	0.0812	58.6	CP2
104	1.5567			33.1	CP2
105		1.9435	-0.3868	32.5	PM37035
105	1.8048			48.4	PM37035
106		1.5296	0.2752	45.5	CP3
106	1.5266			19.7	CP3
107		1.5739	-0.0473	22.6	PM37040
107	1.6145			22.6	PM37040
108		1.5674	0.0471	19.7	CP3
108	1.5193			45.5	CP3
109		1.7945	-0.2752	48.4	PM37035
109	1.9059			32.5	PM37035
110		1.5187	0.3872	33.0	CP2
110	1.4408			58.7	CP2
111		1.5216	-0.0808	57.9	CP1
111	1.673			54.2	CP1
112		1.7736	-0.1006	57.5	PM62103
112	1.5714			32.6	PM62103
113		1.7469	-0.1755	38.2	PM37056
Sum =	19.4823	19.4823			
Misclose =	0.0000				

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
201	1.7459			60.5	PM37040
202		1.5924	0.1535	60.2	CP4
202	1.4046			55.9	CP4
203		1.6562	-0.2516	56.4	PM37083
203	1.3729			45.5	PM37083
204		1.3392	0.0337	49.5	PM37082
204	1.743			53.9	PM37082
205		1.5216	0.2214	54.4	CP5
205	1.6113			31.1	CP5
206		1.6413	-0.0300	35.6	PM37069
206	1.5623			57.0	PM37069
207		1.3579	0.2044	57.0	CP6
207	1.3589			44.3	CP6
208		1.5184	-0.1595	47.5	PM37144
208	1.548			47.5	PM37144
209		1.3885	0.1595	44.3	CP6
209	1.367			56.9	CP6
210		1.5722	-0.2052	57.0	PM37069
210	1.7036			34.0	PM37069
211		1.6736	0.0300	33.8	CP5
211	1.482			54.5	CP5
212		1.7037	-0.2217	53.9	PM37082
212	1.476			49.6	PM37082
213		1.5095	-0.0335	45.6	PM37083
213	1.6962			56.2	PM37083
214		1.4461	0.2501	55.9	CP4
214	1.681			60.3	CP4
215		1.8348	-0.1538	60.5	PM37040
Sum =	21.7527	21.7554			
Misclose =	-0.0027				

Loop 2 Raw Data: Burnett Street

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
301	1.5977			51.1	PM37144
302		1.4675	0.1302	48.6	CP7
302	1.6367			44.0	CP7
303		1.8169	-0.1802	43.9	PM37145
303	1.9066			57.3	PM37145
304		1.5526	0.354	57.1	CP8
304	1.5127			56.9	CP8
305		1.4997	0.013	64.8	CP9
305	1.2464			58.9	CP9
306		1.7292	-0.4828	57.5	PM39334
306	2.0643			49.5	PM39334
307		1.6594	0.4049	42.9	PM39036
307	0.9191			57.6	PM39036
308		1.2457	-0.3266	60.2	CP10
308	1.3942			56.6	CP10
309		1.5496	-0.1554	57.5	PM42055
309	1.5101			57.5	PM42055
310		1.355	0.1551	56.6	CP10
310	1.3115			60.2	CP10
311		0.9846	0.3269	57.6	PM39036
311	1.5179			42.8	PM39036
312		1.9228	-0.4049	49.6	PM39334
312	1.7418			58.3	PM39334
313		1.2592	0.4826	58.1	CP9
313	1.4076	4 4000	0.045	59.8	CP9
314		1.4226	-0.015	61.6	CP8
314	1.4715	4 0000	0.0540	57.1	CP8
315	4 7770	1.8263	-0.3548	57.3	PM37145
315	1.7778	1.5981	0 4707	43.9	PM37145
316 316	1.4278	1.5981	0.1797	44.0 48.6	CP7 CP7
316	1.4278	1.5583	-0.1305	48.6 51.1	CP7 PM37144
Sum =	24.4437	24.4475	-0.1303	51.1	F 1VI37 144
Misclose =		24.4473			
wisciose =	-0.0038				

Loop 3 Raw Data: Cherry Street

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
401	1.8442	¥		58.5	PM42055
402		1.6098	0.2344	60.7	CP11
402	1.3075			45.9	CP11
403		1.7066	-0.3991	48.9	PM42052
403	1.9336			53.3	PM42052
404		1.6075	0.3261	55.7	CP12
404	1.5214			61.2	CP12
405		1.9059	-0.3845	66.9	PM39037
405	1.8144			51.1	PM39037
406		1.9061	-0.0917	50.6	PM39332
406	1.8679			54.5	PM39332
407		1.4688	0.3991	59.0	CP13
407	1.6513			60.1	CP13
408		1.5224	0.1289	56.9	CP14
408	1.4318			44.3	CP14
409		1.3705	0.0613	45.8	PM39317
409	1.312			45.9	PM39317
410		1.3738	-0.0618	44.2	CP14
410	1.4476			57.1	CP14
411		1.5761	-0.1285	60.0	CP13
411	1.4802			59.0	CP13
412		1.8794	-0.3992	54.5	PM39332
412	1.7997			50.8	PM39332
413		1.7092	0.0905	51.0	PM39037
413	1.8973			67.0	PM39037
414		1.5139	0.3834	61.1	CP12
414	1.5557			55.8	CP12
415		1.8824	-0.3267	53.2	PM42052
415	1.6904	4 0000	0 1000	48.9	PM42052
416	4 0055	1.2898	0.4006	45.9	CP11
416	1.6055	4 9 4 9 4	0 00 10	60.7	CP11
417		1.8401	-0.2346	58.5	PM42055
Sum =	26.1605	26.1623			
Misclose=	-0.0018				

Loop 4 Raw Data: Cawarra – Martin - Fox Streets

_					
Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
501	1.4515			60.6	PM39317
502		1.5149	-0.0634	59.0	CP15
502	1.7007			51.2	
503		1.5855	0.1152	58.1	PM39315
503	1.5885			58.1	
504		1.878	-0.2895	59.6	CP16
504	1.7333			58.0	
505		1.3965	0.3368	62.5	CP17
505	1.6439			44.6	
506		2.097	-0.4531	47.1	PM37117
506	1.9348			36.6	
507		1.8564	0.0784	36.8	PM37116
507	1.7377			30.9	
508		1.6765	0.0612	33.4	PM37115
508	1.6692			31.5	
509		1.7238	-0.0546	32.6	PM67940
509	1.6789			55.2	
510		1.7181	-0.0392	58.9	CP18
510	1.4789			22.5	
511		1.8855	-0.4066	24.5	PM39326
511	2.0463	4 6 4 4 7	0 40 40	53.5	
512	4 0700	1.6147	0.4316	57.2	CP19
512	1.6769	4 0400	0 4 0 5 7	22.7	
513	1 0000	1.8126	-0.1357	23.2	PM39325
513 514	1.9299	1.1774	0 75 25	49.4 56.8	
514 514	1.2206	1.1774	0.7525	56.8	CP20
514	1.2200	1.9734	-0.7528	49.4	PM39325
515	1.8163	1.9734	-0.7520	23.2	
516	1.0100	1.6804	0.1359	22.8	CP19
516	1.6508	110001	0.1000	57.1	
517		2.0832	-0.4324	53.5	PM39326
517	1.9421			24.5	
518		1.5348	0.4073	22.5	CP18
518	1.7288			58.9	
519		1.6899	0.0389	55.2	PM67940
519	1.8662			32.5	
520		1.8117	0.0545	31.6	PM37115
520	1.7808			33.2	
521		1.8421	-0.0613	31.3	PM37116
521	1.8185			36.1	
522		1.8966	-0.0781	36.9	PM37117
522	2.0421	4	0.450.4	46.7	
523		1.5897	0.4524	44.7	CP17

Loop 5 Raw Data: Norton – Bentinck - Owen Streets

523	1.4321			62.4	
524		1.7687	-0.3366	57.9	CP16
524	1.925			59.6	
525		1.6357	0.2893	58.0	PM39315
525	1.6146			58.1	
526		1.7296	-0.115	51.2	CP15
526	1.5551			59.0	
527		1.4918	0.0633	60.6	PM39317
Sum =	44.6635	44.6645			
Misclose=	-0.0010				

i.					
Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
601	1.8602			10.5	CP20
602		1.7276	0.1326	6.8	SSM92282
602	1.4723			56.0	
603		2.0539	-0.5816	62.4	CP21
603	1.5942			55.7	
604		1.8101	-0.2159	68.2	PM37107
604	1.8904			58.2	
605		1.607	0.2834	57.1	CP22
605	1.5948			44.4	
606		1.6658	-0.071	46.4	PM37148
606	1.9167			58.1	
607		1.6809	0.2358	59.3	CP23
607	1.5152			59.8	
608		1.847	-0.3318	59.2	CP24
608	1.868			59.0	
609		1.5378	0.3302	59.9	CP23
609	1.6605			59.3	
610		1.8964	-0.2359	58.2	PM37148
610	1.6617			46.5	
611		1.5901	0.0716	44.4	CP22
611	1.558			57.0	
612		1.8406	-0.2826	58.3	PM37107
612	1.8042			58.9	
613		1.5881	0.2161	65.0	CP21
613	2.0135			62.4	
614		1.4322	0.5813	55.9	SSM92282
614	1.4424			8.0	
615		1.5753	-0.1329	9.0	CP20
Sum=	23.8521	23.8528			
Misclose=	-0.0007				

Loop 6 Raw Data: River Street (Owen – Cherry Streets)

	D				0.0.1
Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
701	2.0499			18.2	CP24
702		2.0078	0.0421	16.5	PM7888
702	1.9474			61.2	
703		1.5912	0.3562	59.3	CP25
703	1.4326			63.8	
704		1.7764	-0.3438	62.5	CP26
704	1.735			57.7	
705		1.7277	0.0073	60.0	CP27
705	1.6171			39.9	
706		1.7548	-0.1377	41.7	PM37060
706	1.8001			60.5	
707		1.4515	0.3486	64.1	CP28
707	1.5511			46.8	
708		1.5274	0.0237	47.1	CP29
708	1.5913			30.5	
709		2.0817	-0.4904	41.4	PM37056
709	1.9585			37.4	
710		1.4679	0.4906	34.4	CP29
710	1.544			47.1	
711		1.5679	-0.0239	46.8	CP28
711	1.4585			62.0	
712		1.8074	-0.3489	62.7	PM37060
712	1.7779			41.5	
713		1.6405	0.1374	39.9	CP27
713	1.7153			60.1	
714		1.7227	-0.0074	57.8	CP26
714	1.8204			62.4	
715		1.477	0.3434	63.8	CP25
715	1.5817			59.3	
716		1.9377	-0.356	61.2	PM7888
716	2.016			18.0	
717		2.0579	-0.0419	15.2	CP24
Sum=	27.5968	27.5975			
Misclose=	-0.0007				

Loop 7 Raw Data: River Street (Cherry – Kerr Streets)

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
801	1.7073			59.1	PM37060
802		1.5744	0.1329	54.9	SSM76184
802	1.3531			56.8	
803		1.4236	-0.0705	52.7	CP30
803	1.4974			26.2	
804		1.5622	-0.0648	28.8	SSM64148
804	1.658			64.0	
805		1.6611	-0.0031	57.9	SSM64149
805	1.6165			58.4	
805		1.7795	-0.163	59.9	CP31
805	1.5895			13.0	
807		1.4374	0.1521	13.1	PM37083
807	1.4649			13.1	
808		1.6169	-0.152	13.0	CP31
808	1.7452			59.9	
809		1.5825	0.1627	58.5	SSM64149
809	1.6818			57.9	
810		1.6792	0.0026	64.1	SSM64148
810	1.5982			28.8	
811		1.5332	0.065	26.2	CP30
811	1.4443			52.7	
812		1.3735	0.0708	56.8	SSM76184
812	1.7552			63.0	
813		1.8877	-0.1325	53.8	PM37060
Sum=	19.1114	19.1112			
Misclose=	0.0002				

Loop 8 Raw Data: Grant Street

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
901	1.7573			63.5	PM37148
902		1.9371	-0.1798	54.8	PM37147
902	1.795			59.8	
903		1.3409	0.4541	58.4	CP32
903	1.6278			11.3	
904		1.6	0.0278	12.1	PM37146
904	1.4841			59.8	
905		1.6674	-0.1833	58.2	CP33
905	1.5877			11.7	
906		1.6745	-0.0868	12.2	PM39146
906	1.7079			57.5	
907		1.4273	0.2806	58.5	CP34
907	1.593			22.8	
908		1.7077	-0.1147	26.5	PM39141
908	1.6591			63.1	
909		1.4776	0.1815	58.2	CP35
909	1.598			63.5	
910		2.0138	-0.4158	58.0	CP36
910	1.6068			60.6	
911		1.401	0.2058	61.1	CP37
911	1.5721	4 7007	0 4000	35.2	
912	4 0074	1.7087	-0.1366	37.5	PM37145
912	1.6871	4 554	0.4004	37.5	
913	4 2000	1.551	0.1361	35.1	CP37
913	1.3008	4 507	0.0000	61.4	
914	4 0507	1.507	-0.2062	60.3	CP36
914	1.9587	4 9 4 9 9		58.2	
915	4 5000	1.6126	0.3461	62.8	CP38
915	1.5088	4 0400	0.444	58.9	
916	1 705	1.6198	-0.111	63.2	PM39141
916	1.705	1 5002	0.1148	26.4 22.8	CP34
917 917	1.3835	1.5902	0.1140	22.0 58.5	CP34
918	1.5055	1.6642	-0.2807	57.5	
918	1.6343	1.0042	-0.2007	12.2	
919	1.00+0	1.5481	0.0862	11.6	CP33
919	1.6063	1.0 10 1	0.0002	58.2	
920		1.4226	0.1837	59.7	PM37146
920	1.5462		0.1001	12.1	
921		1.6724	-0.1262	13.0	CP39
921	1.4015			58.6	
922		1.7571	-0.3556	58.2	PM37147
922	1.9594			55.5	
923		1.7798	0.1796	63.1	PM37148
Sum=	35.6804	35.6808		-	
Misclose=	-0.0004				

Loop 9 Raw Data: Martin Street (River – Bentinck Streets)

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
1201	2.1026			64.7	PM39315
1202		1.5732	0.5294	54.2	CP52
1202	1.3686			48.7	
1203		1.8529	-0.4843	47.0	CP53
1203	1.6462			54.0	
1204		1.8968	-0.2506	50.7	CP36
1204	1.9451			50.8	
1205		1.694	0.2511	54.0	CP53
1205	1.8803			47.0	
1206		1.396	0.4843	48.7	CP52
1206	1.6633			54.3	
1207		2.193	-0.5297	64.5	PM39315
Sum =	10.6061	10.6059			
Misclose=	0.0002				

Loop 12 Raw Data: Bentinck Street (Norton – Martin Streets)

Differential Level Network – Least Squares Adjustment Report

unl Data			
vel Data			
nchmark st			
********	******		
Station	Elevation		
PM37056	1.229		
	evation Differe		
*******	******	***	
From	To	Elevation Difference	s
PM37056 PM62103	PM62103 PM37035	0.1755	69.904450 293.904550
PM37035	PM37040	0.2279	136.201600
PM37040	PM37083	-0.0981	232.981500
PM37083	PM37082	0.0337	95.087950
PM37082 PM37069	PM37069 PM37144	0.1914 0.0449	175.587450 205.805650
PM37069 PM37144	PM37144 PM37145	-0.0500	205.805650
PM37145	PM39334	-0.1158	352.349900
PM39334	PM39036	0.4049	92.335000
PM39036	PM42055	-0.4820	231.927000
PM42055	PM42052	-0.1647	213.989200
PM42052 PM39037	PM39037 PM39332	-0.0584	237.105600 101.783800
PM39037 PM39332	PM39332 PM39317	0.5893	320.589700
PM39317	PM39315	0.0518	228.953750
PM39315	PM37117	-0.4058	329.598100
PM37117 PM37116	PM37116	0.0784	73.216100
PM37116 PM37115	PM37115 PM67940	0.0612	64.384900 64.053200
PM67940	PM39326	-0.4458	161.095300
PM39326	PM39325	0.2959	156.582350
PM39325	CP20	0.7525	106.214200
	SSM92282 PM37107	0.1326	17.156900
SSM92282 PM37107	PM37148	-0.7975 0.2124	242.302900 206.137700
PM37148	CP24	-0.0960	236.377200
CP24	PM7888	0.0421	33.927500
PM7888	PM37060	-0.1180	446.032500
PM37060 PM37060	PM37056 SSM76184	-0.1181 0.1329	290.431600 115.369300
	SSM64148	-0.1353	164.427200
	SSM64149	-0.0031	121.933650
SSM64149	PM37083	-0.0109	144.465650
PM37148	PM37147	-0.1798	118.423050
PM37147	PM37146	0.4819	141.741250
PM37146 PM39146	PM39146 PM39141	-0.2701 0.1659	141.852100
PM39141	CP36	-0.2343	242.942500
	PM37145	0.0692	194.344600
PM62103	PM37056	-0.1755	69.904450
PM37035	PM62103	0.2058	293.904550
PM37040	PM37035	-0.2281	136.201600
PM37083 PM37082	PM37040 PM37083	0.0963	232.981500 95.087950
PM37069	PM37082	-0.1917	175.587450
PM37144	PM37069	-0.0457	205.805650
PM37145	PM37144	0.0492	187.561500
PM39334	PM37145	0.1128	352.349900
PM39036 PM42055	PM39334 PM39036	-0.4049	92.335000 231.927000
PM42055 PM42052	PM39036 PM42055	0.4820	231.927000 213.989200
PM42032 PM39037	PM42052	0.0567	237.105600
PM39332	PM39037	0.0905	101.783800
PM39317	PM39332	-0.5895	320.589700
PM39315	PM39317	-0.0517	228.953750
PM37117 PM37116	PM39315 PM37117	0.4051 -0.0781	329.598100 73.216100
PM37115	PM37116	-0.0613	64.384900
PM67940	PM37115	0.0545	64.053200
PM39326	PM67940	0.4462	161.095300
PM39325	PM39326	-0.2965	156.582350
CP20 SSM92282	PM39325	-0.7528	106.214200
SSM92282 PM37107	CP20 SSM92282	-0.1329 0.7974	17.156900 242.302900
PM37107 PM37148	PM37107	-0.2110	206.137700
CP24	PM37148	0.0943	236.377200
PM7888	CP24	-0.0419	33.927500
PM37060	PM7888	0.1174	446.032500
PM37056 SSM76184	PM37060 PM37060	0.1178	290.431600 115.369300
SSM76184 SSM64148	PM37060 SSM76184	-0.1325 0.1358	115.369300
SSM64149	SSM64148	0.0026	121.933650

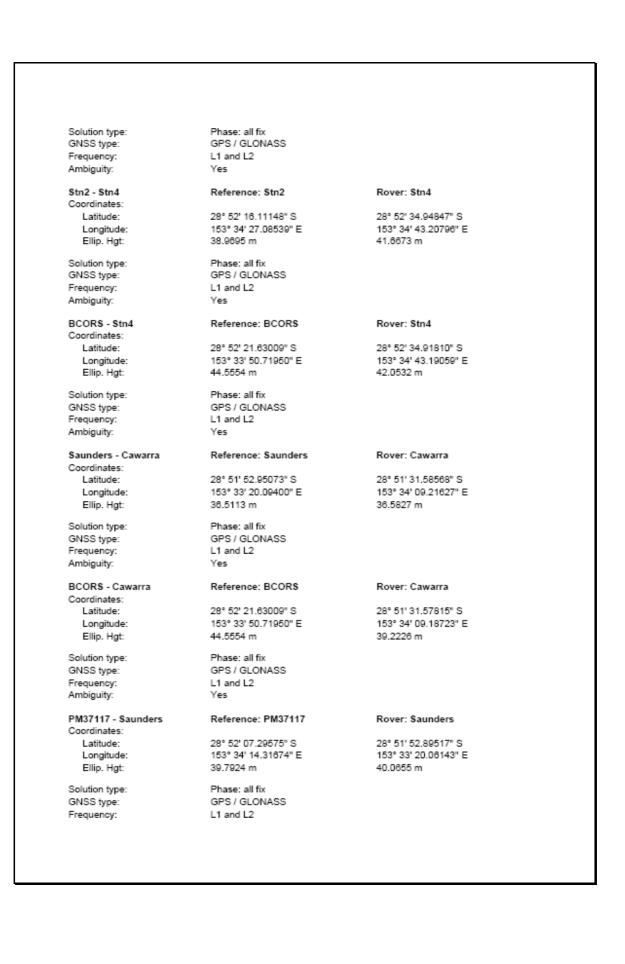
Heilik Bolik 0.178 13.42800 HEILK BOLIK 0.199 14.14100 HEILK BOLIK 0.199 14.14100 HEILK BOLIK 0.109 14.14100 HEILK BOLIK 0.109 14.3400 HEILK BOLIK 0.109 14.3400 HEILK BOLIK 0.109 15.3400 HEILK BOLIK 1.100 15.3400 HEILK BOLIK 1.100 15.3400 HEILK BOLIK 1.100 10.000 HEILK BOLIK 0.1000 1.0000 HEILK BOLIK 0.0000 0.0000 HEILK BOLIK 0.0000 0.0000 HEILK BOLIK 0.00000 0.00000 HEILK BOLIK 0.00000 0.00000 HEILK BOLIK 0.00000 0.00000 HEILK BOLIK 0.00000 0.00000				
PH03146 0.1499 141.85100 PH07145 PC34 0.1452 143.34600 PH07146 FLORENCE 141.4520 143.34600 PH07146 FLORENCE 141.4520 141.4520 PH07146 FLORENCE 141.4520 141.4520 PH07147 PH0703 PC0.2750 0.00004 PH0703 PH0703 PC0.2751 0.00014 PH0703 PH0703 PC0.2751 0.00014 PH0704 0.1514 0.00124 141.4514 PH0705 PL0144 PL0152 PL0144 PH0705 PL0144 PL0144 PL0144 PH0705 PL0144 PL0144 PL0144 PH0705 PL0144				
PM0313 PM0313 -0.159 16.24800 PM0313 C.1.00000000000000000000000000000000000				
TH38 PH0351 0.233 <td< td=""><td></td><td></td><td></td><td></td></td<>				
PH0113 PC312 -0.010 144.34400 PC313 PC312 0.000000133 319.34600 PARADEQUERTARS = 0.000000133 PC303 319.34600 Particle Status = 0.000000133 PC303 PC303 Particle Status = 0.000000133 PC303 PC303 Particle Status = 0.000000133 PC303 PC303 PC303 Particle Status = 0.000000 = 0.00001 PC303 PC303 PC303 PM0106 PC303 PC303 PC303 PC303 PC303 PC303 PM0103 PC304 = 0.00014 = 0.00014 = 0.00014 PC303 PM0104 PC313 = 0.0114 = 0.00014 = 0.00014 PC303 PM0105 PC303 = 0.0114 = 0.00014 = 0.00014 PC303 PM0105 PC303 = 0.0114 = 0.00014 = 0.00014 PM0105 PC303 = 0.0114 = 0.00014 PC303 PM0105 PC303 = 0.00014 = 0.000014				
PH3313 CF36 -0.303 319.38630 Bernano Variano 4 Second 5.31 Bernano Variano 4.3 Image: A control 1.30 Second 5.31 Second 5.31 Bernano Variano 4.3 Second 5.31 Second 5.31 Image: A control 1.30 Second 5.31 Second 5.31 Mattod 5.11 Second 5.31 Secon		CP36		194.344600
Mathema Valiano e 0.000000133 Begreso 1 Enedon = 43 Histore I Ened				
Reference 0 0 0 Trime To Elevation Difference V E PR07064 Med203 0.1753 0.00004 0.0002 PR07064 Med203 0.1753 0.00004 0.0002 PR07064 Med203 0.1753 0.00004 0.0002 PR07064 Med203 0.0154 0.00004 0.0002 PR07064 Med203 0.0154 0.00004 0.0002 PR07083 Med7020 0.0134 0.00024 0.0002 PR07084 Med7020 0.0134 0.00024 0.00024 PR07084 Med7020 0.0134 0.00024 0.00024 PR07084 Med334 -0.0144 0.00024 0.00024 PR07084 Med334 -0.0144 0.00024 0.00024 PR07084 Med334 -0.0144 0.00024 0.00024 PR07084 Med334 -0.0143 0.00024 0.00024 PR07084 Med334 -0.0144 0.00024	EN33312	0530	-0.2005	44.5×48.8844
Deprese of freedom - 45 Minimed Lieuxiton Differences Deprese of freedom - 45 Normal Science Normal Science Prom To Elevation Differences Normal Science Normal Science Normal Science PR0703 PR0703 Control Science Normal Science PR0703 PR0704 Control Science Normal Science PR0705 PR0705 Control Science Normal Science PR0705 PR0706 Control Science Normal Science PR0705 PR0706 Control Science Normal Science PR0705 PR0706 Promote Science Normal Science PR0705 PR0706 Promote Science Normal Science PR0705 PR0706 Promote Science Normal Science PR0705 Promote Science Normal				
Numerical activity No. Second				
Justice Levention Levention V S INPERTOR TO Levention Difference V S INPERTOR RECTOR C.0.0014 C.00014 C.00014 PRETORS RECTOR C.0.0014 C.00014 C.00014 PRESORS RECTOR C.0.0014 C.00014 C.00014 PRESORS RECTOR C.00014 C.00014 C.00014 PRESORS	Degrees of	freedom =	45	
Tree To Leartio D Ifferma V 5 H97056 H921033 H021040 -0.234 -0.00034 -0.00034 H970703 H021030 -0.0014 -0.00144 -0.00145 -0.00145 H970703 H021031 -0.00141 -0.00144 -0.00145 -0.00145 H970703 H021032 -0.0114 -0.00144 -0.00145 -0.00145 H970704 H021034 -0.01451 -0.00145 -0.00145 -0.00145 H970704 H021054 -0.01451 -0.00145 -0.00145 -0.00145 H970705 H021054 -0.01451 -0.00015 -0.00145 -0.00145 H970705 H021057 -0.4149 -0.00015 -0.00145 -0.00145 H993124 H021171 -0.4149 -0.00015 -0.00145 -0.00145 H993125 H021171 -0.4149 -0.00015 -0.00145 -0.00145 H993125 H021171 -0.4149 -0.00010 -0.00145 -0.00145	*********	********	********	
From To Elevation Difference V 5 PM02005 PM02103 PM02104 O.00213 O.00018 O.00028 PM02104 PM02104 O.01234 O.00018 O.00028 PM02104 PM02104 O.00028 PM02104 PM02104 O.00028 PM02104 PM02104 O.00028 PM02104				
PR1756 PR2753 PR2753 PR2754 PR2755 PR2755<	*********	*******	********	
PR1705 PR22103 0.1255 0.00024 0.00023 PR1703 PR17035 0.2351 0.00024 0.00024 PR1703 PR17042 PR17042 0.00024 0.00024 PR1703 PR17042 PR17042 0.00024 0.00024 PR17042 PR17042 0.00124 0.00024 PR17042 PR17042 0.0124 0.00024 PR17144 PR17042 PR17042 PR17042 PR17145 PR19334 PR19334 PR19334 PR19334 PR19334 PR19334 -0.1414 0.00137 0.00048 PR19335 PR19337 -0.0655 0.00064 0.00034 PR19335 PR1717 -0.0655 0.00046 0.00034 PR19335 PR1717 -0.0655 0.00046 0.00034 PR19335 PR1717 -0.0655 0.00046 0.00034 PR19335 PR1717 -0.0454 0.00014 0.00034 PR19336 PR19335 0.0445 0.00014	From	То	Elevation Difference	V S
PME2103 PMT7045 -0.2351 0.00018 PMT7045 PMT7045 0.0234 0.00018 PMT7048 PMT7045 0.0334 0.00018 PMT7048 PMT7048 0.0334 0.00018 PMT7048 PMT7048 0.0334 0.00018 PMT7048 PMT7048 0.0433 0.00018 PMT7048 PMT7048 0.0433 0.00018 PMT7048 PMT7048 0.0433 0.00018 PMT7048 PMT7048 0.0134 0.00018 PMT7048 PMT7049 0.01448 0.00018 PMT7059 0.0018 0.00018 0.00019 PME2051 PMT9731 0.0518 0.00019 PME3017 PMT8018 0.0018 0.00011 PMT97111 PMT7111 0.0173 0.00018 PMT97111 PMT7111 0.0173 0.00018 PMT97111 PMT7111 0.01710 0.00018 PMT97111 PMT7111 0.01710 0.00018 PMT97108<				
PMT7033 PMT7040 -0.231 0.00018 0.00018 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 0.1316 0.00018 0.00035 PMT7041 PMT7040 PMT7040 0.1454 0.00018 0.00036 PMT7041 PMT7040 PMT7040 0.0454 0.00026 0.00026 PMT7041 PMT7040 PMT7040 0.0454 0.00026 0.00026 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040 PMT7040				
PN37060 PK37083 -0.0711 0.0014 0.00039 PN37080 PK37080 0.0314 -0.0004 0.00039 PN37080 PK37140 0.0433 0.00043 0.00039 PN37080 PK37140 0.0433 0.00043 0.00039 PN37080 PK37140 0.0433 0.00044 0.00044 PN37080 PK37083 -0.1653 -0.00061 0.00039 PK42051 PK42052 -0.4653 -0.00061 0.00039 PK42051 PK3373 0.5955 0.00017 0.00046 PK42051 PK3373 0.5955 0.00017 0.00046 PK3373 PK3373 0.5955 0.00017 0.00046 PK3373 PK3115 0.0517 0.00023 0.00021 PK3373 PK3140 -0.6153 0.00010 0.00022 PK3373 PK3140 -0.6153 0.00021 0.00023 PK31741 PK3140 -0.6153 0.00021 0.00023 PK31748				
PN37082 PN37064 0.1916 0.00018 0.00035 PN37064 PN37144 0.0117 0.00017 0.00044 PN37045 PN37045 0.0117 0.00044 PN37045 PN37045 0.0117 0.00044 PN37045 PN42055 0.01420 0.00005 PN37045 PN42055 0.0153 0.00004 PN37035 PN37037 PN37037 PN37037 PN37037 PN37337 PN37337 PN37337 PN37337 PN37337 PN37337 PN37337 PN37338 PN37348 -0.0413 0.00021 PN37348 PN3744 -0.0413 0.00021 PN37347 PN3747 PN3747 PN				0.00104 0.00039
PN37069 PN37144 0.0453 0.0004 PN37144 PN37343 -0.0446 0.0004 PN37343 PN37343 PN37343 PN37343 PN37343 PN37343 PN37343 PN37343 PN37353 PN42055 -0.4633 -0.00061 PN42055 PN42052 -0.4673 0.00054 PN37337 PN3737 -0.8995 0.00017 PN37337 PN3737 -0.8995 0.00017 PN37337 PN3737 -0.6952 0.00059 PN37337 PN3737 -0.6952 0.00046 PN37337 PN3737 -0.6952 0.00042 PN3733 PN3737 -0.6952 0.00042 PN3733 PN3738 -0.6154 0.00022 PN3733 PN3738 PN3738 PN3738 PN3738 PN3739 -0.0023 0.00041 PN3738 PN3748 -0.1737 0.00023 PN3748 PN3749 -0.0025 0.00024 PN3748 <				
PM37144 PM37145 PM37144 PM37145 PM37145 PM37147 PM37147 PM37147 PM37147 PM37147 PM37147 PM37147 PM37117 PM371147 PM37147 <				
PN37146 PH29334 -0.1142 0.00037 0.00048 PN3334 PH2005 PH2005 -0.0153 0.00038 PN42005 PH20052 -0.0153 0.00058 0.00038 PN42005 PH20052 -0.011 0.00068 0.00037 PN33337 PN3337 0.4959 0.00046 0.00023 PN33338 PH3117 -0.4952 -0.00059 0.00046 PN33317 PH3116 0.0131 0.00023 0.00023 PN31131 PH3116 0.0131 0.00031 0.00023 PN31131 PH3116 0.0131 0.00031 0.00023 PN3123 PH3255 0.2463 0.00048 0.00034 PN3124 PH3255 0.2463 0.00034 0.00034 PN3126 PH3255 0.2463 0.00034 0.00034 PN3126 PH3265 0.00224 0.00034 PH3148 PN3126 PH3265 0.00234 0.00044 PH3148 PN3148 PH3148 <td></td> <td></td> <td></td> <td></td>				
PH3035 PH42055 -0.4820 0.00000 PH42051 PH42052 -0.1835 -0.00000 PH30317 PH59332 -0.011 0.00052 0.00037 PH39331 PH59332 -0.011 0.00052 0.00046 PH39331 PH59332 -0.013 0.00052 0.00046 PH39331 PH59335 0.013 -0.0000 0.00046 PH31115 PH57340 -0.0413 -0.00010 0.00022 PH31115 PH57340 -0.0445 -0.00010 0.00022 PH31125 PH57340 -0.0445 -0.00010 0.00022 PH31126 PH57345 -0.0445 -0.00010 0.00022 PH31127 -0.1328 -0.0005 0.00014 0.00013 PH31147 PH57148 -0.1328 -0.0005 0.00014 PH31147 PH57148 -0.1328 -0.00021 0.00014 PH3148 -0.175 -0.00021 0.00012 PH3149 PH57148 -0.1176 -0.00021<	PM37145	PM39334	-0.1142	0.00157 0.00048
PH42055 PH42052 -0.1054 -0.00054 PH42051 PH42051 PH42052 PH42051 PH42052 PH42051 PH42052 PH42052 PH53137 PH5317 -0.0518 -0.00059 0.00040 PH53137 PH5315 PH51116 -0.0618 -0.00059 0.00040 PH53137 PH5116 0.0613 -0.00029 0.00040 PH51116 PH5116 -0.0613 0.00010 0.00023 PH51135 0.0613 -0.00010 0.00023 0.00024 PH51260 PH5126 PH5125 -0.2645 -0.0003 PH5126 <				0.00002 0.00026
PH20202 PH20207 -0.0875 0.00090 0.00040 PH20203 PH20312 PH20312 PH20312 PH20312 PH20312 PH20313 PH20312 0.0017 0.00046 0.00021 PH20315 PH20116 0.0017 0.00046 PH20116 PH20116 0.0010 0.00022 PH20118 PH20116 0.0010 0.00022 PH20118 PH20118 0.0010 0.00022 PH20118 PH20118 0.0010 0.00021 PH20128 CP20 0.7527 0.00021 0.00031 PH20128 CP20 0.1328 0.0016 0.00011 PH20128 CP24 PH2048 0.0121 0.00031 PH20148 CP24 PH2048 0.0121 0.00031 PH20148 PH2148 0.0121 0.00031 0.00031 SH4148 PH2148 0.0121 0.00021 0.00023 SH4148 PH2146 0.1215 -0.00021 0.00021				
PH95037 PH95332 0.0911 -0.00027 PH95337 PH95331 0.1618 0.00000 0.00046 PH95337 PH95315 0.0518 0.00000 0.00023 PH97117 PH97115 -0.0613 0.00010 0.00023 PH97116 PH97115 -0.0613 0.00010 0.00023 PH97116 PH97125 -0.0613 0.00010 0.00023 PH97136 PH97325 -1.4459 -0.00010 0.00023 PH97301 PH97302 0.1378 0.00012 0.00014 PH97302 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 -0.1176 0.00031 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 PH97404 <				
PH93315 0.0518 -0.0000 0.0040 PH3315 PH3315 0.0518 0.0003 PH3315 0.0733 -0.00010 0.00022 PH37117 PH37140 0.0733 -0.00020 PH37140 PH39252 -0.4459 -0.00020 PH5325 PH39252 0.1328 0.00021 C220 0.7527 0.00022 PH37326 PH3748 0.0114 PH37148 C221 0.00031 0.00021 PH37148 C224 PH788 0.0420 0.00032 PH37148 PH27148 -0.1176 -0.00031 0.00040 C224 PH788 0.0420 -0.0032 0.00032 PH37060 PH37064 -0.1176 0.00032 0.00032 SM4148 PH0148 -0.1276 0.00021 0.00032 SM4148 PH3144 -0.1276 0.00021 PH3746 PH37144 PH3144 PH3144 PH3144 PH3144 PH3144 PH3144 PH3144 PH3144 PH3144 PH3144 PH3144 PH3144<				
PH93315 H07117 -0.4022 0.00056 PH37117 H07116 0.0111 0.00023 PH37116 H07115 0.0613 0.00023 PH37116 H07115 0.0613 0.00024 PH3325 0.2443 0.00042 0.00032 PH3325 0.2443 0.00042 0.00032 CF20 SM402282 0.1328 0.00014 SM40282 0.1328 0.00014 0.00014 PH3706 H07148 0.1116 0.00032 PH3706 H07148 0.1126 0.00032 PH37060 H07148 0.1326 -0.00032 PH37060 H07148 0.1326 -0.00032 PH37060 H07147 0.1326 -0.00032 PH37060 H07147 0.1264 -0.1003 PH37060 H07147 -0.1276 0.00032 PH37140 H07147 -0.1276 0.00032 PH37141 H07147 -0.1275 -0.00024 PH37145 H07				
PH971116 H077115 0.0783 -0.00010 0.00023 PH97116 H077115 0.0613 0.00010 0.00022 PH97116 H079325 0.0223 -0.00024 0.00033 PH93325 CF20 0.7577 0.00024 0.00033 CF20 SM82282 0.1338 0.00024 0.00034 CF20 SM82282 0.1338 0.00024 0.00034 PM97107 FM1707 -0.1973 0.00024 0.00034 PM97106 H07105 -0.1178 0.00032 0.00034 PM7108 H07105 -0.1178 0.00032 0.00034 PM7108 H07105 -0.1178 0.00032 0.00033 PM7108 H07105 -0.1178 0.00031 0.00031 PM7108 H07105 -0.1178 0.00031 0.00032 PM7108 H07115 0.00010 0.00032 PM1714 H07145 0.06071 0.00024 PM1714 H07144 H07145 0.0677				
PH37115 PH37115 0.0013 0.00012 PH37115 PH37145 PH3740 PH37345 PH3740 PH3325 PH3254 PH3254 PH3254 PH3254 PH3325 PH3254 PH3254 PH3254 PH3254 PH3252 PH3254 PH3254 PH3254 PH3254 SM92222 PH37148 PH32148 PH32148 PH32148 SM92224 PH3254 PH3254 PH3254 PH3254 PH32746 PH3254 PH3254 PH3254 PH3254 PH32746 PH3254 PH3254 PH3254 PH3254 PH3254 PH3254 PH3254 PH3254				
PH37115 PH67940 -0.0445 0.00010 0.00022 PH67940 PH69326 PH39325 -0.2463 0.00021 0.00021 PH3225 C220 0.7573 0.00022 0.00021 SSM2222 PH37107 -0.7773 0.00023 0.00021 PH37107 PH37107 0.00023 0.00038 PH37107 PH37107 0.00023 0.00038 PH37108 PH37106 -0.1176 0.00023 CF24 PH7888 PH37564 -0.1176 0.00023 SSM4144 SSM4143 SSM4143 SSM4143 SSM4143 SSM4144 SSM4143 SSM4143 SSM4143 SSM4143 PH37146 PH3786 -0.0175 -0.00021 0.00029 PH37147 PH37146 -0.4175 -0.00021 0.00029 PH37147 PH37146 -0.2281 0.00021 0.00029 PH37145 PH37145 -0.2281 0.00021 0.00024 PH37145 PH37145 -0.2281				
PH3325 C220 0.2963 0.00042 0.00028 CF20 SRM9228 0.1328 0.00012 0.00028 SRM9228 PH3107 PH37107 0.00023 0.00028 SRM9228 PH37107 PH37148 0.2119 -0.00050 0.00018 PH3706 PH37060 -0.1176 -0.00031 0.00014 PH37060 SRM6148 0.11256 -0.00023 0.00028 SRM61448 SRM6148 -0.01256 -0.00023 0.00021 PH37060 SRM6148 -0.01256 -0.00023 0.00021 PH37060 SRM6148 -0.0125 -0.00023 0.00021 PH37141 PH37144 -0.1156 -0.00023 0.00021 PH37141 PH37144 -0.1156 -0.00023 0.00021 PH37141 PH37144 -0.1156 -0.00024 0.00021 PH37145 PH37145 -0.00026 0.00021 PH37145 PH37145 -0.00126 0.00012 PH37145 PH371	PM37115	PM67940	-0.0545	0.00010 0.00022
PP13325 CF20 0.7527 0.00028 CF20 SM92282 0.1328 0.00014 SM92282 PM31147 -0.7973 0.00028 PM1107 PM3148 0.2119 -0.00055 PM17060 PM37060 -0.176 -0.00031 PM17060 PM37060 -0.1176 -0.00023 SSM76184 0.0128 -0.0023 0.00023 SSM76184 0.01356 -0.0023 0.00023 SSM76184 0.1356 -0.0023 0.00023 SSM6148 SSM6148 -0.1396 -0.0023 0.00023 SSM6148 SSM6148 -0.1098 0.00020 0.00023 SSM6148 SSM6148 -0.1098 0.00020 0.00032 PM17147 PM17147 -0.418 0.00031 PM17147 PM17147 PM17147 -0.418 0.00032 PM17148 PM17144 0.0149 0.00031 PM17145 PM17144 0.128 -0.00024 PM17144 PM1714				
Cr2:0 SSM0222 0.1328 0.0001 PM31107 PM31148 0.2119 -0.0025 0.00041 Cr2:4 PM3188 0.1420 -0.0025 0.00041 Cr2:4 PM3188 0.1420 -0.0025 0.00041 Cr2:4 PM3788 0.1420 -0.00031 0.00041 PM37060 SSM61148 -0.1326 -0.00022 0.00023 SSM61449 PM37080 -0.0023 0.00024 0.00023 SSM61449 PM37083 -0.0029 0.00024 0.00023 SSM61449 PM37083 -0.0029 0.00020 0.00023 PM37147 PM37147 -0.1796 0.00001 0.00031 PM37146 PM37145 -0.2246 -0.00024 0.000023 PM37145 PM37045 -0.255 -0.00024 0.00024 PM37041 PM37045 -0.256 -0.00024 0.00026 PM37045 PM37045 -0.255 -0.00024 0.00026 PM37045 PM37045				
SSM02222 PM37107 -0.7973 0.00023 0.00041 PM371184 CF24 -0.0951 0.00039 0.00040 CF24 PM1088 0.0120 -0.0009 0.00042 PM1080 PM1184 CF24 -0.01176 0.00024 PM1080 PM1184 SM01044 -0.1126 -0.00024 SM01184 SM01184 -0.1326 -0.00024 0.00024 SM1184 SM4149 -0.0129 0.00024 0.00024 SM1184 PM31184 PM31184 -0.1796 0.00023 PM31184 PM31184 -0.1299 0.00024 0.00023 PM31184 PM31184 -0.1299 0.00010 0.00023 PM31184 PM31184 -0.1299 0.00024 0.00024 PM31184 PM31184 -0.1295 -0.0024 0.00024 PM31184				
PH37148 CF24 -0.0951 0.00040 CF24 PH7688 0.4020 -0.0009 0.00016 PH37060 RM7066 -0.1178 0.00025 0.00042 PH37060 SSMF1144 0.1326 -0.00025 0.00025 SSMF4144 PH37083 -0.01029 0.00024 SSMF4144 PH37144 PH37144 -0.1796 0.00023 PH37144 PH37144 PH37144 -0.2699 0.00032 PH37144 PH37145 -0.2246 -0.00024 0.00034 C735 PH37145 -0.0336 -0.00024 0.00031 PH37040 PH37045 -0.2246 -0.00024 0.00032 PH37040 PH37045 -0.1376 -0.00024 0.00031 PH37040 PH37062 -0.1376 -0.00024 0.00032 PH37041 PH37045 -0.00044 0.00031 0.00031 PH37062 PH37063 -0.00024 0.00035 0.00031 PH37062 PH37063 -0.00020				0.00023 0.00041
CF24 PH7888 0.0420 -0.0009 0.00016 PH7060 PH37060 OH37056 -0.1176 0.00032 0.00042 SBM76184 SBM6148 -0.1356 -0.00025 0.00028 SBM76184 SBM6148 -0.1356 -0.00025 0.00033 SBM7184 SBM6148 -0.1356 -0.00025 0.00033 SBM7184 PH37147 -0.1796 0.00020 0.00032 PH37147 PH37147 -0.1796 0.00032 0.00032 PH37144 PH39144 -0.2699 0.00018 0.00032 PH39144 PH39144 -0.26697 0.00040 0.00032 PH37145 PH37145 0.00075 0.00040 0.00032 PH57030 PH37040 PH37040<				
PM17060 PM17060 PM17060 PM17060 SM17618 PM17060 SM17618 Quadratic constraints SM17618 SM16148 SM16148 Quadratic constraints Quadratic constraints Quadratic constraints SM16148 SM16148 SM16148 Quadratic constraints Quadratic constraints Quadratic constraints PM17147 PM17147 PU17147 Quadratic constraints Quadratic constraints PM17147 PU17147 Quadratic constraints Quadratic constraints Quadratic constraints PM17140 PU17147 Quadratic constraints Quadratic constraints Quadratic constraints PM17140 PU17147 Quadratic constraints Quadratic constraints Quadratic constraints PM17141 PM17143 Quadratonts Quadratic constraints Quad				
PM37060 SSM*6184 0.1326 -0.0022 0.00028 SSM*6143 SSM*61449 -0.1356 -0.0029 0.00029 SSM*61449 M37187 -0.1796 0.00029 0.00029 PM37147 M37146 0.4819 0.00032 0.00032 PM37147 M37146 0.4819 0.00032 0.00032 PM39146 PM39146 -0.2466 -0.00026 0.00040 C736 PM37147 -0.2346 -0.00026 0.00040 C736 PM37145 0.0697 0.00042 0.00021 PM37040 PM37035 -0.2281 0.00022 0.00042 PM37040 PM37083 -0.0336 -0.00012 0.00026 PM37040 PM37083 -0.0453 0.00033 0.00038 PM37041 PM37083 -0.0453 0.00034 0.00046 PM37042 PM37083 -0.0453 0.00037 0.00036 PM37043 PM37045 -0.0518 0.00014 0.000149 PM37041 <td></td> <td></td> <td></td> <td></td>				
SSM 6144 SSM 6144 -0.1356 -0.0003 0.0003 SSM 6144 PM37163 -0.0199 0.00029 SSM 6144 PM37147 PM37147 -0.1796 0.0003 PM37147 PM37146 -0.2699 0.0003 0.00032 PM39146 PM39146 -0.2346 -0.0003 0.00032 C736 PM37145 -0.02346 -0.00028 0.00040 C736 PM37145 -0.02346 -0.00028 0.00041 PM51031 PM37035 -0.2281 0.00042 0.00031 PM37035 PM32033 -0.2281 0.00036 0.00042 PM37045 PM37043 -0.0453 0.00036 PM37045 PM37045 PM37045 -0.0453 0.00036 PM37045 PM37145 PM37045 -0.1453 0.00037 0.00036 PM37145 PM37045 -0.1453 0.00036 PM37045 PM47045 PM37145 PM37145 -0.1453 0.00040 PM3716 PM47045 PM4				
SSM4144 SSM4149 -0.0029 0.00029 PM37147 HV37083 -0.0109 0.00001 PM37147 HV37146 0.4819 0.00032 PM37147 HV37146 -0.2699 0.00032 PM39146 HV39141 0.1660 0.00010 0.00034 PM39147 FM37145 0.0697 0.00040 0.00034 PM39141 C736 -0.2346 -0.00026 0.00034 PM370305 -0.21755 -0.00040 0.00023 PM37040 PM37083 -0.0336 -0.00022 0.00042 PM37082 PM37083 -0.0346 -0.00023 0.00042 PM37082 PM37083 -0.0433 0.00035 PM37044 PM37069 -0.0012 0.00036 PM37144 PM37069 -0.0433 0.00037 0.00036 PM37045 PM1444 0.0494 -0.00026 PM37045 PM1445				
SSME4149 PM37083 -0.0199 0.00004 0.00031 PM37147 PM37146 0.01796 0.00032 PM37146 PM39141 0.1660 0.00032 PM39146 PM39141 0.1660 0.00032 PM39141 CP36 -0.2346 -0.00020 0.00040 CP36 PM37145 0.0697 0.00040 0.00023 PM37035 PM37035 -0.0238 -0.00028 0.00042 PM37040 PM37040 0.0971 0.00026 0.00031 PM37063 PM37040 -0.09336 -0.00028 0.00036 PM37064 PM37040 0.0971 0.00076 0.00036 PM37044 PM37045 -0.1142 0.0013 0.00036 PM37145 PM37144 0.0466 0.00037 0.00036 PM37145 PM37144 0.0464 -0.00020 0.00026 PM39332 PM39334 -0.4049 -0.00020 0.00026 PM39315 PM49035 0.0575 0.00026				
PM37147 PM37146 0.4819 0.00032 PM37146 PM39146 PM39146 PM39141 0.1660 0.00032 PM39146 PM39141 0.1660 0.00032 0.00040 C736 PM37145 0.0286 0.00040 0.00033 PM5101 C736 PM37055 -0.00028 0.00042 PM37040 0.2285 -0.00028 0.00031 PM37061 PM37040 0.0971 0.00026 PM370769 PM37032 -0.0136 -0.00028 0.00038 PM37144 PM37040 -0.0971 0.00036 0.0038 PM37145 PM37144 0.0496 0.00028 0.0038 PM37145 PM37144 0.0496 0.00028 0.00040 PM3932 PM39334 -0.4499 -0.00028 0.00024 PM3932 PM39333 -0.4499 -0.00028 0.00024 PM39315 PM42055 0.1653 -0.00058 0.00024 PM39315 PM39317 -0.0518				
PM37146 PM39146 -0.2599 0.00032 PM39141 C736 -0.2346 -0.0026 0.00034 PM39141 C736 -0.2346 -0.0026 0.00036 PM52103 PM37055 -0.1755 -0.00028 0.00042 PM37035 PM37035 -0.2281 0.00028 0.00039 PM37081 PM37083 -0.0336 -0.00012 0.00035 PM37082 PM37063 -0.1916 0.00037 0.00036 PM37081 PM37069 -0.4643 0.00037 0.00036 PM37145 0.1142 0.0013 0.00026 PM37089 PM37145 0.1142 0.00136 PM39314 PM37145 0.1142 0.00137 0.00036 PM37045 PM37047 PM07027 PM07027 PM07027 PM07037 PM07027 PM07037 PM07027 PM07037 PM07017 PM37117 PM37117 PM37117 <td></td> <td></td> <td></td> <td></td>				
PM39146 PM39141 0.1660 0.00010 PM39141 C36 -0.2346 -0.00026 0.00040 CF36 PM37145 0.0697 0.00040 0.00023 PM37035 PM37055 -0.20010 0.00023 PM37040 PM37040 0.0971 0.00026 PM37069 PM37063 -0.0336 -0.00020 0.00026 PM37069 PM37069 -0.0453 0.00026 0.00026 PM37144 PM37069 -0.0453 0.00037 0.00036 PM37144 PM37069 -0.4043 0.00026 0.00026 PM39334 PM37145 0.1142 0.00137 0.00036 PM39334 PM49036 0.4820 -0.00020 0.00026 PM49037 PM42055 0.1653 -0.00050 0.00040 PM39317 PM39337 -0.0518 -0.00020 0.00027 PM39317 PM39317 -0.0518 -0.00020 0.00021 PM39317 PM39317 -0.0518 -0.00021 PM0745 PM39317 PM5940 0.4459 -0.00020				
PM39141 C736 -0.2346 -0.00026 C726 PM37145 0.0697 0.00046 PM37035 PM37035 -0.1755 -0.00040 PM37040 PM37035 -0.2281 0.00020 PM37040 PM37035 -0.0336 -0.00020 PM37062 PM37083 -0.0335 -0.00026 PM37069 PM37083 -0.0453 0.00026 PM37145 PM37144 PM37082 -0.0453 PM37144 PM37144 0.0496 0.00037 PM37145 PM37144 0.0496 0.00026 PM37344 PM39334 -0.4049 -0.00020 PM42052 PM42052 PM42052 0.1653 -0.00040 PM39332 PM39337 -0.9911 0.00038 0.00040 PM39332 PM39337 -0.9913 0.00020 0.00021 PM39315 PM39317 -0.0518 -0.00010 0.00040 PM39315 PM39317 -0.0613 0.00001 PM37116 <				
PM81035 PM817056 -0.1755 -0.0004 0.00033 PM37040 PM37035 -0.2281 0.00039 PM37082 PM37083 -0.0336 -0.00039 PM37082 PM37083 -0.0336 -0.00039 PM37084 PM37082 -0.1166 0.00012 0.00038 PM37144 PM37145 0.1142 0.00038 PM37145 PM37144 PM39334 -0.4049 -0.00005 0.00048 PM49334 PM42052 PM42052 0.4653 -0.00059 0.00040 PM3932 PM39337 0.0911 0.00089 0.00040 PM39332 PM39337 0.0911 0.00040 PM39335 PM39337 -0.518 -0.00010 0.00046 PM39317 PM59317 -0.0763 -0.00020 0.00022 PM39315 PM39317 -0.0763 -0.00020 PM20023 PM39317 PM5940 0.4459 -0.00020 PM20023 PM39317 PM5940 0.4459 -0.00020				
PM37035 PM62103 0.2055 -0.00028 0.00031 PM37060 PM37063 -0.2081 0.00026 0.00039 PM37082 PM37082 -0.1916 0.00026 0.00038 PM37084 PM37082 -0.4151 0.00037 0.00038 PM37145 PM37145 0.1142 0.00124 0.00036 PM39334 PM37145 0.1142 0.00124 0.00026 PM49055 PM39035 -0.4820 -0.00020 0.00026 PM42055 PM39037 0.0911 0.00026 0.00027 PM39037 PM42052 0.0575 0.00020 0.00046 PM39317 PM39317 -0.5895 0.00020 0.00027 PM39317 PM39317 -0.5818 -0.00020 0.00028 PM39116 -0.0611 0.00040 0.0022 PM39325 PM39325 -0.2633 0.00012 PM39325 PM39325 -0.2633 0.00012 PM39325 PM69326 -0.2663 0.00034 <td></td> <td></td> <td></td> <td></td>				
PH37040 PH37035 -0.2281 0.00020 0.00031 PH37082 PH37083 -0.0336 -0.0012 0.00035 PH37084 PH37083 -0.1916 0.00037 0.00038 PH37144 PH37044 0.0496 0.00037 0.00038 PH37144 PH37144 0.0496 0.00037 0.00038 PH39334 PH37145 0.1142 0.00040 0.00048 PH39035 PH39334 -0.4049 -0.00069 0.00040 PH42052 PH42055 0.1653 -0.00059 0.00040 PH39337 PH39332 -0.5515 0.00080 0.00027 PH39337 PH39332 -0.5515 0.00003 0.00040 PH39317 PH39332 -0.5515 0.00000 0.00023 PH39317 PH39317 -0.0513 -0.00010 0.00040 PH39315 PH39317 -0.0613 0.00002 0.00023 PH39316 PH39316 -0.0613 0.00033 0.0014 PH39325 PH39326 -0.7527 0.00034 0.00034 PH39325				
PM37083 PM37040 0.0971 0.00076 0.00039 PM37082 PM37083 -0.03012 0.00036 PM37144 PM37069 -0.0453 0.00037 0.00036 PM37145 PM37144 0.0496 0.00037 0.00036 PM3334 PM37145 0.1142 0.00143 0.00026 PM39037 PM39036 0.4820 -0.00020 0.00026 PM42055 PM39036 0.4820 -0.00069 0.00039 PM39037 PM42052 0.0575 0.00080 0.00040 PM39331 PM39337 -0.5895 0.00010 0.00046 PM39317 PM39317 -0.0518 -0.00020 0.00023 PM37116 PM37116 -0.0545 0.00000 0.00022 PM39325 PM39326 -0.2963 0.00018 0.00018 PM39325 PM39326 -0.2953 0.00018 0.00028 SM92282 CP20 -0.1328 0.00014 0.00011 PM37117 PM37145 0.0176 0.00028 SM92282 CP20 -0.1328				
PM37069 PM37062 -0.1916 0.00012 0.00035 PM37144 PM37069 -0.0453 0.00037 0.00038 PM39334 PM37145 0.1142 0.00143 0.00048 PM39334 PM37145 0.1142 0.00143 0.00048 PM39036 PM39336 -0.4699 -0.00069 0.00039 PM42055 PM42055 0.1653 -0.00069 0.00040 PM39337 PM42052 0.0575 0.00080 0.00040 PM39337 PM39377 0.0518 -0.00010 0.00040 PM39315 PM39317 -0.0518 -0.00020 0.00022 PM37116 PM37117 -0.0783 -0.00020 0.00022 PM39326 PA67940 0.4459 -0.00034 0.00034 PM39325 PM57930 0.4655 0.00014 0.00034 PM39326 PA67940 0.4459 -0.00032 0.00034 PM39325 PM39326 -0.2519 0.00014 PM37047 PM3928 </td <td>PM37083</td> <td>PM37040</td> <td>0.0971</td> <td>0.00076 0.00039</td>	PM37083	PM37040	0.0971	0.00076 0.00039
PM37144 PM37069 -0.0453 0.00037 0.00036 PM37145 PM37145 0.1142 0.00137 0.00036 PM39036 PM39334 -0.4049 -0.00002 0.00026 PM42055 PM39036 0.4820 -0.00009 0.00026 PM42052 PM42052 0.0575 0.00080 0.00040 PM39037 PM39037 0.0911 0.00026 0.00046 PM39315 PM3932 -0.5895 0.00003 0.00046 PM37117 PM39315 PM39317 -0.0518 -0.00001 0.00046 PM37116 PM37116 -0.0613 -0.00000 0.00023 PM37115 PM37115 PM37116 -0.0613 -0.00002 0.00023 PM37115 PM37116 -0.0613 0.00000 0.00022 PM67940 0.4459 -0.00032 0.00034 PM37325 PM39326 -0.2963 0.00018 0.00033 0.00034 PM39326 PM67940 0.4459 -0.00018 0.00034				
PM37145 PM37144 0.0496 0.00037 0.00036 PM39334 PM37145 0.1142 0.00143 0.00048 PM39036 PM39334 -0.4049 -0.00050 0.00026 PM42055 PM39036 0.4820 -0.00069 0.00039 PM39037 PM42055 0.0575 0.00069 0.00039 PM39037 PM39037 0.0911 0.00080 0.00046 PM39315 PM3932 -0.5895 0.00010 0.00046 PM39317 PM39315 -0.4052 0.00010 0.00046 PM37116 PM3917 -0.0518 -0.00010 0.00022 PM37116 PM37116 -0.0613 0.00000 0.00022 PM67940 PM3715 0.0545 0.00001 0.00033 CP20 PM39325 -0.7527 0.00071 0.00034 PM39325 PM39326 -0.2963 0.00014 0.00014 PM39326 PM39325 -0.2128 0.00014 0.00014 PM39326				
PM39334 PM37145 0.1142 0.00143 0.00048 PM39036 PM39334 -0.4049 -0.0002 0.00026 PM42055 PM39036 0.4620 -0.00065 0.00040 PM42052 PM42052 0.0575 0.00080 0.00040 PM39332 PM39037 0.0911 0.00080 0.00040 PM39317 PM39332 -0.5895 0.000010 0.00040 PM37117 PM39317 -0.0518 -0.00010 0.00040 PM37117 PM39315 0.4052 0.00010 0.00040 PM37117 PM39317 -0.0783 -0.00020 0.00022 PM373115 PM37115 0.0445 0.00000 0.00022 PM39325 PM39326 -0.2963 0.00014 0.00033 CP20 PM39325 -0.7527 0.000071 0.00028 SIM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SIM92282 0.7973 -0.00085 0.00038 CP24				
PM42055 PM39036 0.4820 -0.00005 0.00040 PM42052 PM42055 0.1653 -0.00069 0.00039 PM39037 PM42052 0.0575 0.00080 0.00027 PM39332 PM39332 -0.58955 0.000010 0.00046 PM39315 PM39317 -0.0518 -0.00010 0.00046 PM37117 PM39315 0.4052 0.00010 0.00023 PM37116 PM37115 0.0545 0.00000 0.00023 PM37115 PM37115 0.0545 0.00002 0.00034 PM39325 PM39325 -0.5527 0.00018 0.00038 CP20 PM39325 -0.1328 0.00014 0.00011 PM37107 SM92282 0.7973 -0.00013 0.00041 PM37107 SM92282 0.7973 -0.00014 0.00011 PM37148 M37107 -0.1328 0.00040 PM7888 CP24 PM37148 0.0951 0.00014 PM37056 PM37060 0.1176	PM39334	PM37145	0.1142	0.00143 0.00048
PM42052 PM42055 0.1653 -0.00069 0.00039 PM39037 PM42052 0.0575 0.00080 0.00040 PM39317 PM39332 -0.5895 0.00003 0.00046 PM39315 PM39315 0.4052 0.00010 0.00046 PM37116 PM37117 -0.0518 -0.00020 0.00023 PM37115 PM37115 -0.0783 -0.00020 0.00022 PM67940 PM37115 0.0545 0.00000 0.00022 PM39325 PM39326 -0.2963 0.00018 0.00033 cF20 PM39325 -0.7527 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.0013 0.00040 PM7888 CF24 -0.0420 -0.00013 0.00040 PM7888 CF24 -0.0420 -0.00013 0.00040 PM37056 PM37060 0.1178 -0.00012 0.00053 PM37056 PM37060 0.1178 -0.00012 0.00053 PM37056 PM37060 0.1178 -0.00012 0.00033 SSM64148				-0.00002 0.00026
PM39037 PM42052 0.0575 0.00080 0.00040 PM39332 PM39037 0.0911 0.00058 0.00027 PM39317 PM39322 -0.5895 0.00010 0.00046 PM39315 PM39317 -0.0518 -0.00010 0.00046 PM37117 PM39315 0.4052 0.00011 0.00046 PM37115 PM37116 -0.0513 -0.00020 0.00023 PM37115 PM37115 0.0545 0.00000 0.00022 PM39326 PM67940 0.4459 -0.00032 0.00034 PM39325 PM39325 -0.7527 0.00007 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SM92282 0.7973 -0.00013 0.00041 PM37148 PM37148 0.0951 0.00040 PM7888 CP24 PM37056 PM37060 -0.1176 0.00023 0.00053 PM37058 CP24 PM37060 -0.1326 -0.00015 0.00028 SSM6148 SNM5184 0.1176 0.00020 0.00042				
PM39332 PM39037 0.0911 0.00058 0.00027 PM39317 PM39332 -0.5895 0.00040 PM39315 PM39337 -0.0518 -0.00010 0.00040 PM37117 PM39315 0.4052 0.00010 0.00023 PM37116 PM37117 -0.0613 0.00000 0.00023 PM37115 PM37116 -0.0545 0.00000 0.00022 PM37932 PM39325 P0.0545 0.00003 0.00034 PM39325 PM39325 -0.2263 0.00018 0.00031 CP20 PM39325 -0.7527 0.00011 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.00013 0.00040 PM3788 CP24 PM37148 0.0951 0.00028 CP34 PM3706 0.1176 0.00020 0.00040 PM37056 PM37060 0.1178 -0.00012 0.00043 SM4148 SM76184 <t< td=""><td>PM39037</td><td>PM42052</td><td>0.0575</td><td>0.00080 0.00040</td></t<>	PM39037	PM42052	0.0575	0.00080 0.00040
PM39315 PM39317 -0.0518 -0.00010 0.00040 PM37117 PM39315 0.4052 0.00011 0.00023 PM37116 PM37117 -0.0783 -0.00020 0.00023 PM37115 PM37116 -0.0613 0.00000 0.00022 PM39325 PM3715 0.0545 0.00032 0.00034 PM39325 PM39326 -0.7527 0.00007 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.00013 0.00041 PM37148 PM37107 -0.2119 -0.00013 0.00041 PM3788 CP24 PM37148 0.0951 0.00018 0.00018 PM37056 PM37060 0.1176 0.00023 0.00053 PM37054 PM37060 -0.1326 -0.00015 0.00038 SSM64148 SNM6184 0.1356 -0.00015 0.00033 SSM64148 SNM6184 0.1356 -0.00015 0.00033 SSM64148 SNM6184 0.1356 -0.00015 0.00033	PM39332	PM39037	0.0911	0.00058 0.00027
PM37117 PM39315 0.4052 0.00010 0.00046 PM37116 PM37117 -0.0783 -0.00020 0.00023 PM37115 PM37116 -0.0613 0.00000 0.00022 PM67940 PM37115 0.0545 0.00000 0.00022 PM39326 PM67940 0.4459 -0.00032 0.00034 PM39325 PM39326 -0.7527 0.000018 0.00031 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.00013 0.00040 PM37107 SSM92282 0.7219 -0.00081 0.00040 PM7888 CP24 -0.0420 -0.00011 0.0016 PM37056 PM37060 0.1178 -0.00023 0.00053 PM37056 PM37060 0.1178 -0.00018 0.00033 SSM64148 SSM61448 0.0129 0.00018 0.00033 SSM64148 SSM61448 0.0129 0.00016 0.00031 PM37083 </td <td></td> <td></td> <td></td> <td></td>				
PM37116 PM37117 -0.0783 -0.00020 0.00023 PM37115 PM37115 -0.0613 0.00000 0.00022 PM37315 PM37115 0.0545 0.00000 0.00022 PM39326 PM67940 0.4459 -0.00030 0.00034 PM39325 PM39326 -0.2963 0.00018 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.00013 0.00041 PM37148 PM37148 0.0951 0.00014 0.00016 PM7888 CP24 -0.0420 -0.00011 0.00016 PM37060 PM1788 0.1176 0.00023 0.00023 SSM76184 O.1326 -0.00015 0.00023 0.00042 SSM76184 O.1326 -0.00015 0.00028 SSM76184 0.1356 SSM61149 SSM61148 0.0029 0.00033 SSM6149 SSM6149 0.0109 0.00016 PM37083 SSM64149 0.1796 0.00033 SSM6149 SSM6149 0.0109 0.00031				
PM37115 PM37116 -0.0613 0.00000 0.00022 PM67940 PM37115 0.0545 0.00000 0.00022 PM39326 PM67940 0.4459 -0.00032 0.00034 PM39325 PM39326 -0.2963 0.00018 0.00033 CP20 PM39325 -0.7527 0.00017 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.00013 0.00041 PM37148 PM37148 PM37148 PM37148 PM37148 PM37148 CP24 PM37148 0.0951 0.00011 0.00013 PM37056 PM37060 0.1176 0.00023 0.00053 PM37056 PM37060 -0.1326 -0.00012 0.00033 SSM64148 SSM6148 0.0125 0.00033 SSM64148 SSM6144 0.1326 -0.00018 0.00033 SSM64149 SSM64148 0.0129 0.00030 0.00029 PM37047				
PM39326 PM67940 0.4459 -0.00032 0.00034 PM39325 PM39326 -0.2963 0.00033 0.00033 CP20 PM39325 -0.7527 0.00007 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.00013 0.00041 PM37148 PM37107 -0.2119 -0.00085 0.00038 CP24 PM37148 0.0951 0.00010 0.00040 PM7888 CP24 -0.0420 -0.00011 0.00053 PM37060 PM1788 0.1176 0.00023 0.00053 PM37056 PM37060 -0.1326 -0.00015 0.00028 SSM6148 SSM6148 0.1025 0.00033 SSM64149 SSM6148 SSM6149 SSM6149 0.0109 0.00016 0.00031 PM37083 SSM64149 0.1796 0.00030 0.00029	PM37115	PM37116		0.00000 0.00022
PM39325 PM39326 -0.2963 0.00018 0.00033 CP20 PM39325 -0.7527 0.00007 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.2923 -0.00013 0.00041 PM37107 SSM92282 0.9973 -0.00013 0.00041 PM37148 PM37147 -0.2119 -0.00081 0.00040 CP24 PM37148 0.0951 0.00028 0.00040 PM7688 CP24 -0.0420 -0.00011 0.00053 PM37056 PM37060 0.1176 0.00023 0.00053 PM37056 PM37060 -0.1326 -0.00012 0.00028 SSM64148 SSM6144 0.1356 -0.00018 0.00033 SSM64149 SSM61448 0.01029 0.00030 0.00029 PM37083 SSM64149 0.1796 0.00003 0.00029				
CP20 PM39325 -0.7527 0.00007 0.00028 SSM92282 CP20 -0.1328 0.00014 0.00011 PM37147 SSM92282 0.7973 -0.00013 0.00041 PM37148 PM37107 -0.2119 -0.00081 0.00041 PM37148 CP24 PM37148 0.0951 0.00014 PM7888 CP24 -0.0420 -0.00011 0.00016 PM37060 PM7688 0.1176 0.00023 0.00053 PM37056 PM37060 -0.1326 -0.00012 0.00023 SSM64148 SSM65184 0.1356 -0.00018 0.00028 SSM64149 SSM64148 0.0029 0.00030 0.0029 PM37083 SSM64149 0.1796 0.000016 0.00031 PM37083 SSM64149 0.1796 0.00003 0.00029				
SSM92282 CE20 -0.1328 0.00014 0.00011 PM37107 SSM92282 0.7973 -0.00013 0.00041 PM37148 PM37107 -0.2119 -0.00085 0.00038 CP24 PM37148 0.0951 0.00010 0.00040 PM7888 CP24 -0.0420 -0.00011 0.00016 PM37060 PM7888 0.1176 0.00023 0.00053 PM37056 PM37060 -0.1326 -0.00015 0.00028 SSM76184 PM3766 -0.1326 -0.00018 0.00033 SSM64148 SSM75184 0.1029 0.00033 SSM64149 SSM64149 0.0109 0.00016 0.00031 PM37083 SSM64149 0.1796 0.00003 0.00029				
PM37148 PM37107 -0.2119 -0.00085 0.00038 C224 PM37149 0.0951 0.00081 0.00040 PM7898 CP24 -0.0420 -0.00011 0.00016 PM37060 PM7688 0.1176 0.00023 0.00042 SSM76184 PM37060 -0.1326 -0.00012 0.00028 SSM64148 SSM76184 0.1356 -0.00018 0.00029 PM37047 PM37147 PM37148 0.01796 0.00003	SSM92282	CP20	-0.1328	0.00014 0.00011
CP24 PM37148 0.0951 0.00080 PM7888 CP24 -0.0420 -0.00011 0.00016 PM37050 PM37060 PM37060 0.1176 0.00023 0.00053 PM37056 PM37060 -0.1326 -0.00012 0.00023 SSM76184 PM37060 -0.1326 -0.00018 0.00033 SSM64149 SSM75184 0.1356 -0.00018 0.00033 SSM64149 SSM64149 0.0109 0.00030 0.00029 PM37083 SSM64149 0.1796 0.00003 0.00029 PM37147 PM37148 0.1796 0.00003 0.00029				
PM7888 CP24 -0.0420 -0.00011 0.00016 PM37060 PM7888 0.1176 0.00023 0.00053 PM37056 PM37060 0.1178 -0.00012 0.00042 SSM76184 PM37060 -0.1326 -0.00018 0.00028 SSM64149 SSM65184 0.1326 -0.00018 0.00029 PM37083 SSM64149 0.0109 0.00029 PM37083 SSM64149 0.1796 PM37147 PM37148 0.1796 0.00003 0.00029 0.00016				
PM37060 PM7688 0.1176 0.00023 0.00053 PM37056 PM37060 0.1178 -0.00002 0.00042 SSM76184 PM37060 -0.1326 -0.00015 0.00028 SSM64148 SSM76184 0.1356 -0.00018 0.00033 SSM64149 SSM64149 0.0029 0.00030 0.00029 PM37047 PM37147 PM37148 0.1796 0.00003 0.00029				
SSM76184 PM37060 -0.1326 -0.00015 0.00028 SSM64148 SSM76184 0.1356 -0.00018 0.00033 SSM64149 SSM64148 0.0029 0.00003 0.00029 PM37083 SSM64149 0.0109 0.00016 0.00031 PM37147 PM37148 0.1796 0.00003 0.00029	PM37060	PM7888	0.1176	0.00023 0.00053
SSM64148 SSM76184 0.1356 -0.00018 0.00033 SSM64149 SSM64149 0.0029 0.00020 0.00029 PM3703 SSM64149 0.0109 0.00016 0.00031 PM37147 PM37148 0.1796 0.00003 0.00029				
SSM64149 SSM64148 0.0029 0.00030 0.00029 PM37083 SSM64149 0.0109 0.00016 0.00031 PM37147 PM37148 0.1796 0.00003 0.00029				
PM37083 SSM64149 0.0109 0.00016 0.00031 PM37147 PM37148 0.1796 0.00003 0.00029				
	PM37083	SSM64149	0.0109	0.00016 0.00031
EU21740 EU21741 =014612 =0100012 0100025				
	1913/146	1113/147	-0.4813	-0.00072 0.00025
	L			

PM39146 PM39141 CP36 PM37145	PM37146 PM39146	0.2699	0.00002	
CP36 PM37145		-0.1660		
PM37145			-0.00010	0.00034
	PM39141 CP36	0.2346	0.00044	
CP36	PM39315	0.2058	0.00007	
PM39315	CP36	-0.2058	-0.00027	0.00043

Adjusted Elev				
**********	******			
Station	Elevation	s		
PM37056 PM62103	1.229	0.0002		
PM37035	1.199	0.0005		
PM37040	1.427	0.0005		
PM37083 PM37082	1.330	0.0005		
PM37069	1.555	0.0006		
PM37144 PM37145	1.601 1.551	0.0007		
PM39334	1.437	0.0009		
PM39036	1.842	0.0009		
PM42055 PM42052	1.360	0.0009		
PM39037	1.137	0.0009		
PM39332	1.046	0.0009		
PM39317 PM39315	1.635	0.0009		
PM37117	1.282	0.0009		
PM37116 PM37115	1.360	0.0009		
PM37115 PM67940	1.367	0.0009		
PM39326	0.921	0.0009		
PM39325 CP20	1.217	0.0009		
SSM92282	2.103	0.0008		
PM37107	1.306	0.0008		
PM37148 CP24	1.518	0.0007		
PM7888	1.464	0.0007		
PM37060 SSM76184	1.347	0.0004		
SSM64148	1.344	0.0005		
SSM64149	1.341	0.0005		
PM37147 PM37146	1.338	0.0008		
PM39146	1.550	0.0008		
PM39141 CP36	1.716	0.0008		
0100	1.101	0.0000		
l				

Appendix C: Rapid Static GNSS Survey Data

GNSS Station Level Loop – Cawarra


From	То	Backsight	Foresight	Rise/Fall	RL
PM42055		1.56			1.3597
	CP		1.095	0.465	1.8247
CP		1.223			
	Cawarra		1.456	-0.233	1.5917
Cawarra		1.482			
	CP		1.25	0.232	1.8237
CP		1.183			
	PM42055		1.647	-0.464	1.3597

GNSS Station Level Loop – Saunders

From	То	Backsight	Foresight	Rise/Fall	RL
PM37035		1.83			1.199
	Saunders		1.494	0.336	1.535
Saunders		1.515			
	PM37035		1.852	-0.337	1.198

GNSS Baseline Vector Report

		ø	
		Je Gensy	ica
	Processing Sur	nmary	O COM- o
	Project Sta	tic	
Project Information			
Project name:	Project Static		
Date created:	10/12/2010 21:29:28		
Time zone:	10h 00'		
Coordinate system name:	WGS 1984		
Application software: Start date and time:	LEICA Geo Office 7.0 07/17/2010 10:48:15		
End date and time:	07/17/2010 15:53:30		
End date and time: Manually occupied points:	14		
Processing kernel:	PSI-Pro 2.0		
Processed:	10/12/2010 22:41:42		
Processing Parameters			
Parameters Cut off apple:	Selected 15°		
Cut-off angle:	Broadcast		
Ephemeris type: Solution type:	Automatic		
GNSS type:	Automatic		
Frequency:	Automatic		
Fix ambiguities up to:	80 km		
Min. duration for float solution (static):	5' 00"		
Sampling rate:	Use all		
Tropospheric model:	Hopfield		
Ionospheric model:	Automatic		
Use stochastic modelling:	Yes		
Min. distance:	8 km		
lonospheric activity:	Automatic		
Baseline Overview			
Cawarra - PM37117 Coordinates:	Reference: Cawarra	Rover: PM37117	
Latitude:	28° 51' 31.58201" S	28° 52' 07.34761" S	
Longitude:	153° 34' 09.22113" E	153° 34' 14.35400" E	
Ellip. Hgt:	39.3512 m	38.9950 m	
Solution type:	Phase: all fix		
GNSS type:	GPS / GLONASS		
Frequency:	L1 and L2		
Ambiguity:	Yes		
BCORS - PM37117 Coordinates:	Reference: BCORS	Rover: PM37117	
Latitude:	28° 52' 21.63009" S	28° 52' 07.34379" S	
Longitude:	153° 33' 50.71950" E	153° 34' 14.32005" E	
Ellip. Hgt:	44.5554 m	38.8730 m	
model a differ			

Ambiguity:	Yes	
BCORS - Saunders	Reference: BCORS	Rover: Saunders
Coordinates:		
Latitude:	28° 52' 21.63009" S	28° 51' 52.94317" S
Longitude:	153° 33' 50.71950" E	153° 33' 20.06482" E
Ellip. Hgt:	44.5554 m	39.1511 m
Solution type:	Phase: all fix	
GNSS type:	GPS / GLONASS	
Frequency:	L1 and L2	
Ambiguity:	Yes	
Stn4 - PM37117	Reference: Stn4	Rover: PM37117
Coordinates:		
Latitude:	28° 52' 34.89438" S	28° 52' 07.32004" S
Longitude:	153° 34' 43.22240" E	153° 34' 14.35202" E
Ellip. Hgt:	40.9809 m	37.8039 m
Solution type:	Phase: all fix	
GNSS type:	GPS / GLONASS	
Frequency:	L1 and L2	
Ambiguity:	Yes	
BCORS - PM37117	Reference: BCOR\$	Rover: PM37117
Coordinates:		
Latitude:	28° 52' 21.63009" S	28° 52' 07.34376" S
Longitude:	153° 33' 50.71950" E	153° 34' 14.32013" E
Ellip. Hgt:	44.5554 m	38.8730 m
Solution type:	Phase: all fix	
GNSS type:	GPS / GLONASS	
Frequency:	L1 and L2	
Ambiguity:	Yes	
Cawarra - Stn2	Reference: Cawarra	Rover: Stn2
Coordinates:		
Latitude:	28° 51' 31.58201" S	28° 52' 16.08506" S
Longitude:	153° 34' 09.22113" E	153° 34' 27.10201" E
Ellip. Hgt:	39.3512 m	39.4806 m
Solution type:	Phase: all fix	
GNSS type:	GPS / GLONASS	
Frequency:	L1 and L2	
Ambiguity:	Yes	
BCORS - Stn2	Reference: BCORS	Rover: Stn2
Coordinates:		
Latitude:	28° 52' 21.63009" S	28° 52' 16.08121" S
Longitude:	153° 33' 50.71950" E	153° 34' 27.06806" E
Ellip. Hgt:	44.5554 m	39.3518 m
Solution type:	Phase: all fix	
GNSS type:	GPS / GLONASS	
Frequency:	L1 and L2	
Ambiguity:	Yes	
PM37117 - Stn2	Reference: PM37117	Rover: Stn2
Coordinates:		

 Latitude:
 28° 52' 07.29575" S
 28° 52' 16.03311" S

 Longitude:
 153° 34' 14.31674" E
 153° 34' 27.06478" E

 Ellip. Hgt:
 39.7924 m
 40.2653 m
 Phase: all fix GPS / GLONASS L1 and L2 Solution type: GNSS type: Frequency: Frequency: Yes Ambiguity: BCORS - Stn2 Reference: BCORS Rover: Stn2 Coordinates: 28° 52' 21.63009" S 28° 52' 16.08117" S 153° 33' 50.71950" E 153° 34' 27.06803" E 44.5554 m 39.3515 m Latitude: Longitude: Ellip. Hgt: Solution type: Phase: all fix GPS / GLONASS GNSS type: L1 and L2 Frequency: Yes Ambiguity:

GNSS Baseline Misclose Report

		-	s and Mis www.MOVE3. (c) 1993-2008 G sed to Leica Geo	com rontmij	Gsusyster	115
		Cre	ated: 10/12/2010	0 23:03:47		
Project	Information					
Project name: Date created: Time zone: Coordinate system name: Application software: Processing kernel:		10h 00' WGS 1984 LEICA Ge MOVE3 4.	0 21:29:28 4 o Office 7.0			
Critical v Dimensio	alue W-test is: on:	1.96 3D				
GPS B	aseline Loops					
Loop 1	From Cawarra Stn2 PM37117	To Stn2 PM37117 Cawarra	dX[m] 376.5144 37.8242 -414.3470	dY[m] -728.2913 366.9938 361.3026	dZ[m] -1199.9658 235.7966 964.1610	
	X: Y: Z:	-0.0085 m 0.0051 m -0.0082 m	W-Test:	-4.43 4.47 -6.32	<u>ふ</u> ふ	
	Easting: Northing: Height:	-0.0008 m -0.0024 m 0.0128 m	W-Test:	-0.63 -1.71 7.49	۸	
	Closing error: Length:	0.0129 m 3001.0339 m	(4.3 ppm)	Ratio:(1:23344	4)	
Loop 2	From Cawarra Saunders PM37117	To Saunders PM37117 Cawarra	dX[m] 877.0965 -462.7611 -414.3470	dY[m] 1050.7151 -1412.0180 361.3026	dZ[m] -576.0333 -388.1340 964.1610	
20092		-0.0117 m -0.0004 m	W-Test:	-5.72 -0.33 -4.44	<u>نه</u> ه	
2009 2	X: Y: Z:	-0.0063 m				

	Closing error: Length:	0.0133 m 4130.6115 m	(3.2 ppm)	Ratio:(1:3106	08)	
Loop 3	From Stn2 PM37117 Stn4	To PM37117 Stn4 Stn2	dX[m] 37.8242 16.4169 -54.2434	dY[m] 368.9938 -881.8208 514.8352	dZ[m] 235.7966 -744.9476 509.1484	
	X: Y: Z:	-0.0023 m 0.0082 m -0.0026 m	W-Test:	-0.99 5.67 -1.62	۸	
	Easting: Northing: Height:	-0.0063 m 0.0004 m 0.0063 m	W-Test:	-3.81 0.24 3.04	<u>له</u>	
	Closing error: Length:	0.0089 m 2318.4390 m	(3.8 ppm)	Ratio:(1:2603	16)	
Loop 4	From PM37117 Stn4 BCORS BCORS	To Stn4 BCORS PM37117 PM37117	dX[m] 18.4169 454.0048 -470.4167 -470.4181 -470.4174	dY[m] -881.8208 1382.2196 -480.3983 -480.3982 -480.3973	dZ[m] -744.9476 357.0342 387.9141 387.9149 387.9145	Average
	X: Y: Z:	0.0042 m 0.0015 m 0.0010 m	W-Test:	1.19 0.65 0.43		
	Easting: Northing: Height:	-0.0032 m -0.0006 m -0.0032 m	W-Test:	-1.24 -0.22 -1.02		
	Closing error: Length:	0.0046 m 3410.3289 m	(1.4 ppm)	Ratio:(1:7388	03)	
Loop 5	From PM37117 Saunders BCORS BCORS	To Saunders BCORS PM37117 PM37117	dX[m] 462.7611 7.6612 -470.4167 -470.4181 -470.4174	dY[m] 1412.0180 -931.6217 -480.3963 -480.3982 -480.3973	dZ[m] 388.1340 -776.0467 387.9141 387.9149 387.9145	Average
	X: Y: Z:	0.0049 m -0.0010 m 0.0018 m	W-Test:	1.18 -0.42 0.58		
	Easting: Northing: Height:	-0.0013 m -0.0008 m -0.0051 m	W-Test:	-0.49 -0.24 -1.38		
	Closing error: Length:	0.0053 m 3524.5413 m	(1.5 ppm)	Ratio:(1:6618	87)	
Loop 6	From	То	dX[m]	dY[m]	dZ[m]	

	Saunders Cawarra BCORS	Cawarra BCORS Saunders	-877.0965 884.7595 -7.6812	-1050.7151 119.0972 931.6217	576.0333 -1352.0793 776.0467	
	X: Y: Z:	0.0018 m 0.0038 m 0.0008 m	W-Test:	0.43 1.72 0.26		
	Easting: Northing: Height:	-0.0042 m 0.0007 m -0.0003 m	W-Test:	-1.54 0.22 -0.08		
	Closing error: Length:	0.0043 m 4317.7084 m	(1.0 ppm)	Ratio: (1:1006271)		
Loop 7	From PM37117 Stn2 Stn2 BCORS BCORS	To Stn2 BCORS BCORS PM37117 PM37117	dX[m] -37.8242 508.2443 508.2444 508.2444 -470.4167 -470.4181 -470.4174	dY[m] -366.9938 847.3867 847.3875 847.3871 -480.3963 -480.3982 -480.3973	dZ[m] -235.7966 -152.1146 -152.1134 -152.1140 387.9141 387.9149 387.9145	Average Average
	X: Y: Z:	0.0027 m -0.0040 m 0.0039 m	W-Test:	1.02 -2.56 2.08	<u>承</u> 本	
	Easting: Northing: Height:	0.0024 m 0.0014 m -0.0056 m	W-Test:	1.30 0.68 -2.38	لم	
	Closing error: Length:	0.0062 m 2213.8528 m	(2.8 ppm)	Ratio:(1:356620))	

GNSS Least Squares Reduction Report

STAR*NET-DEMO Version 6.0.25 Copyright 1988-2002 Starplus Software, Inc. Licensed for Demo Use Only Run Date: Tue Oct 12 2010 22:46:50 Summary of Files Used and Option Settings ====== _____ Project Folder and Data Files Project Name PROJECT STATIC MINIMALLY CONSTRAINED Project Folder C:\DOCUMENTS AND SETTINGS\...\RAPID STATIC\PROJECT_STATIC Data File List C:\Documents and Settings\...\free adjustment coords.txt Vectors-Project Static Project Option Settings STAR*NET Run Mode : Adjust with Error Propagation Type of Adjustment : 3D Project Units : Meters; DMS Coordinate System : UTM; Zone 0056 : WGS-84 : 6378137.000; 298.257223563000 Ellipsoid Major Axis; 1 / Flattening : 0.0000 (Default, Meters) : Positive West : East-North : At-From-To . 91-project Geoid Height Longitude Sign Convention Input/Output Coordinate Order Angle Data Station Order Distance/Vertical Data Type : Slope/Zenith Convergence Limit; Max Iterations : 0.010000; 10 Default Coefficient of Refraction : 0.070000 Create Coordinate File : ---Create Coordinate File : Yes Create Geodetic Position File : Yes Create Ground Scale Coordinate File : No Create Dump File : No GPS Vector Standard Error Factors : 8.0000 CDS Vector Standard Error Factors : 8.0000 GPS Vector Centering (Meters) : 0.00150 GPS Vector Transformations : None

		d Input Observations	
	Number of Entered St	ations (Meters) = 1	
Fixed Stations	E	N Elev	Description
BCORS	555009.8930 68	05990.0180 44.521	.0 BALLINA CORS
Nu	mber of GPS Vector Obs	ervations (Meters) =	14
From	DeltaX		CorrelXY
Γo	DeltaY DeltaZ		CorrelXZ CorrelYZ
(V1 project static		5545115	COLLETIN
BCORS	-884.7595		-0.1668
Cawarra	-119.0972		0.1916
(V5 project static	1352.0793	0.0024	-0.0952
BCORS	-470.4181	0.0034	-0.3244
PM37117	-480.3982		0.3925
	387.9149	0.0028	-0.2172
(V2 project static			
BCORS PM37117	-470.4167 -480.3963		-0.1493
rnd/ll/	-480.3963 387.9141		0.1489
(V6 project static		0.0021	
BCORS	-7.6612		-0.2853
Saunders	931.6217		0.3353
	776.0467	0.0029	-0.1966
(V7 project static SCORS	-508.2444	0.0029	-0.2056
Stn2	-847.3875		0.1233
	152.1134		-0.0988
(V3 project static	baselines.asc)		
BCORS	-508.2443		-0.1409
3tn2	-847.3867		0.1751
(V4 project static	152.1146	0.0024	-0.1055
BCORS	-454.0048	0.0029	-0.2529
Stn4	-1362.2196		0.2117
	-357.0342	0.0025	-0.1318
V8 project static			
Cawarra	414.3470		-0.0417
PM37117	-361.3026 -964.1610		0.0413
(V9 project static		0.0022	0.0200
Cawarra	376.5144	0.0024	-0.0872
Stn2	-728.2913	0.0022	0.0528
	-1199.9658	0.0022	-0.0378
(Vll project stati PM37117	c baselines.asc) 462.7611	0.0024	-0.0963
Baunders	1412.0180		0.1110
	388.1340		-0.0611
(V10 project stati	c baselines.asc)		
PM37117	-37.8242 -366.9938	0.0023	-0.0412
3tn2		0.0022	0.0612
(V12 project stati	-235.7966 c baselines.asc)	0.0022	-0.0317
(viz project stati Saunders	-877.0965	0.0023	-0.0405
Cawarra	-1050.7151	0 0022	0.0537
	576.0333	0.0022	-0.0212
(V13 project stati	c baselines.asc)		
Stn2		0.0023	-0.0757
Stn4	-514.8352 -509.1484		0.0639
(V14 project stati	c baselines.asc)	0.0022	-0.0390
Stn4	-16.4169	0.0026	-0.1474
PM37117		0.0023	0.1787

Adjustment Statistical Summary _____ Convergence Iterations = 2 Number of Stations = 6 Number of Observations = 42 Number of Unknowns = 15 Number of Redundant Obs = 27 Observation Count Sum Squares Error of StdRes Factor GPS Deltas 42 23.255 0.928 Total 42 23.255 0.928 Total 42 The Chi-Square Test at 5.00% Level Passed Lower/Upper Bounds (0.735/1.265)

	Adjust	ed Station Info	ormation		
	======				
	Adjuste	d Coordinates	(Meters)		
Station	E	N	Elev	Description	
BCORS	555009.8930	6805990.0180	44.5210	BALLINA CORS	
Cawarra	555517.5586	6807528.0077			
PM37117	555651.3322	6806426.6314	38.8396		
Saunders	554183.6124	6806876.7921	39.1162 39.3169		
Stn2	555995.3781	6806156.0667	39.3169		
Stn4	556429.3056	6805574.2252	42.0163		
	Adjusted Position	s and Ellipsoid	d Heights (M	(eters)	
	(Average Ge	oid Height = 0.	.000 Meters)		
Station	Latitude	Longitude			
BCORS	-28-52-21.629758	-153-33-50.719	9997 44.	5210	
Cawarra	-28-51-31.577807				
PM37117	-28-52-07.343437				
Saunders	-28-51-52.942850				
Stn2	-28-52-16.080834				
Stn4	-28-52-34.917788	-153-34-43.193	1062 42.	0163	
Co	nvergence Angles				
	(Grid Asimuth =				
(Elevat	ion Factor Includ	es a 0.00 Meter	r Geoid Heig	ht Correction)	
	-		_		
	Convergence		Factors		
Station	Angle			n = Combined	
BCORS				1 0.99963035	
Cawarra				4 0.99963188	
PM37117				0 0.99963212	
Saunders Stn2					
Stn2 Stn4				2 0.99963252	
	s: -0-16-28.53	0.99963929	0.9999934	0 0.99963270	
Froject Average	s: -0-16-28.53	0.99963797	0.9999930	4 0.99903101	

	Adjusted Observations and Residuals						
Adjusted GPS Vector Observations Sorted by Names (Meters)							
From	Component	Adj Value	Residual	StdErr	StdRes		
To (V1 project stat	tic baselines.asc)						
BCORS	Delta-N	1540.9530	0.0002	0.0022	0.1		
Cawarra	Delta-E	500.5343	-0.0011	0.0022	0.5		
	Delta-U	-5.5376	0.0018	0.0030	0.6		
	Length	1620.2164					
	tic baselines.asc)						
BCORS	Delta-N	439.8197					
PM37117	Delta-E Delta-U	639.5919 -5.7287	-0.0009 0.0010				
	Length	776.2423	0.0010	0.0039	0.2		
(V2 project stat	tic baselines.asc)	110.2423					
BCORS	Delta-N	439.8197	0.0005	0.0023	0.2		
PM37117	Delta-E	639.5919		0.0022			
	Delta-U	-5.7287		0.0028			
	Length	776.2423					
(V6 project stat	tic baselines.asc)						
BCORS	Delta-N Delta-F	883.1627	-0.0004	0.0025	0.2		
Saunders	Derow D	-830.7933	0.0007				
	Delta-U	-5.5203	-0.0006	0.0039	0.2		
	Length	1212.5280					
	tic baselines.asc)						
BCORS	Delta-N	170.7946 985.0473	0.0011				
Stn2	Delta-E Delta-U	-5.2824	-0.0000				
	Length	999.7584	-0.0005	0.0030	0.2		
(V2 project stat	tic baselines.asc)	999./004					
BCORS	Delta-N	170.7946	-0.0000	0 0023	0.0		
Stn2	Delta-E	985.0473	0.0007				
	Delta-U	-5.2824	-0.0002				
	Length	999.7584					
(V4 project stat	tic baselines.asc)						
BCORS	Delta-N	-409.1905	-0.0009	0.0023	0.4		
Stn4	Delta-E	1421.8969	-0.0006				
	Delta-U	-2.6762	-0.0026	0.0032	0.8		
	Length	1479.6063					
	tic baselines.asc)				_		
Cawarra	Delta-N	-1101.1272	-0.0008				
PM37117	Delta-E Delta-U	139.1053		0.0021			
	Delta-U Length	-0.4474 1109.8791	0.0058	0.0023	2.5		
(V9 project stat	tic baselines.asc)	1109.0/91					
Cawarra	Delta-N	-1370.1375	0.0008	0.0022	04		
Stn2	Delta-E	484.5722	-0.0001				
	Delta-U	-0.0393	-0.0024				
	Length	1453.3021					
(V11 project st:	atic baselines.asc)						
PM37117	Delta-N	443.2617	0.0003	0.0022	0.1		
Saunders	Delta-E	-1470.4097	0.0018	0.0022	0.8		
	Delta-U	0.0918	0.0035	0.0026	1.4		
	Length	1535.7688					
	atic baselines.asc)						
PM37117	Delta-N	-269.0061	-0.0009				
Stn2	Delta-E	345.4701	-0.0022				
	Delta-U	0.4623	0.0043	0.0023	1.9		
(11) 2	Length	437.8517					
	atic baselines.asc)	667 6040	-0.0000	0.0003	0.0		
Saunders Cawarra	Delta-N Delta-E	657.6948 1331.3747	-0.0000 0.0024				
Cawarra	Delta-E Delta-U	-0.0991	0.0024				
	Length	1484.9650	0.0027	0.0023	1.1		
	Length atic baselines.asc)	1404.9090					

Stn2	De	lta-N	-	579.9479		0.0010	0.0022	0.5
Stn4	De	lta-E		436.8986	- (0.0017	0.0022	0.8
	De	lta-U		2.6580		0.0017	0.0024	0.7
	Le	ngth		726.1040				
(V14 proje	ect static b	-	asc)					
Stn4		lta-N		848.9139		0.0003	0.0022	0.1
PM37117	Delta-E		-	782.4086	-0.0024		0.0022	1.1
		Delta-U		-3.2814				0.1
		ngth		154.4820				
		GPS Vect	or Resid	ual Summa	rv (Mete	====)		
				Residual	-			
From	То	N	E	Up	2D	3D	Length	VectID
	To PM37117	-	E 0.001	-			-	
Cawarra		-0.001	0.001	-	0.002	0.006	-	8
Cawarra PM37117	PM37117	-0.001 -0.001	0.001	0.006	0.002	0.006	1110	8 10
Cawarra PM37117 PM37117	PM37117 Stn2	-0.001 -0.001 0.000	0.001 -0.002 0.002	0.006	0.002 0.002 0.002	0.006 0.005 0.004	1110 438 1536	8 10 11
Cawarra PM37117 PM37117 Saunders	PM37117 Stn2 Saunders	-0.001 -0.001 0.000 -0.000	0.001 -0.002 0.002 0.002	0.006 0.004 0.004	0.002 0.002 0.002 0.002	0.006 0.005 0.004 0.004	1110 438 1536 1485	8 10 11 12
Cawarra PM37117 PM37117 Saunders BCORS	PM37117 Stn2 Saunders Cawarra	-0.001 -0.001 0.000 -0.000 -0.001	0.001 -0.002 0.002 0.002 -0.001	0.006 0.004 0.004 0.003	0.002 0.002 0.002 0.002 0.002 0.001	0.006 0.005 0.004 0.004 0.003	1110 438 1536 1485 1480	8 10 11 12 4
Cawarra PM37117 PM37117 Saunders BCORS Stn2	PM37117 Stn2 Saunders Cawarra Stn4	-0.001 -0.001 0.000 -0.000 -0.001 0.001	0.001 -0.002 0.002 0.002 -0.001 -0.001	0.006 0.004 0.004 0.003 -0.003	0.002 0.002 0.002 0.002 0.001 0.001	0.006 0.005 0.004 0.004 0.003 0.003	1110 438 1536 1485 1480 726	8 10 11 12 4 13
Cawarra PM37117 PM37117 Saunders BCORS Stn2 Cawarra	PM37117 Stn2 Saunders Cawarra Stn4 Stn4	-0.001 -0.001 0.000 -0.000 -0.001 0.001 0.001	0.001 -0.002 0.002 -0.001 -0.002 -0.002 -0.000	0.006 0.004 0.004 0.003 -0.003 0.002	0.002 0.002 0.002 0.002 0.001 0.001	0.006 0.005 0.004 0.004 0.003 0.003 0.003	1110 438 1536 1485 1480 726 1453	8 10 11 12 4 13 9
Cawarra PM37117 FM37117 Saunders BCORS Stn2 Cawarra Stn4	PM37117 Stn2 Saunders Cawarra Stn4 Stn4 Stn2	-0.001 -0.001 0.000 -0.000 -0.001 0.001 0.001 0.000	0.001 -0.002 0.002 -0.001 -0.002 -0.000 -0.000 -0.002	0.006 0.004 0.003 -0.003 0.002 -0.002	0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002	0.006 0.005 0.004 0.003 0.003 0.003 0.003 0.003	1110 438 1536 1485 1480 726 1453 1154	8 10 11 12 4 13 9 14
Cawarra PM37117 FM37117 Saunders BCORS Stn2 Cawarra Stn4 BCORS	PM37117 Stn2 Saunders Cawarra Stn4 Stn4 Stn2 PM37117 Cawarra	-0.001 -0.001 0.000 -0.000 -0.001 0.001 0.001 0.000 0.000	0.001 -0.002 0.002 -0.001 -0.002 -0.000 -0.002 -0.002 -0.001	0.006 0.004 0.003 -0.003 0.002 -0.002 0.002 0.000	0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.001	0.006 0.005 0.004 0.003 0.003 0.003 0.003 0.003 0.002	1110 438 1536 1485 1480 726 1453 1154 1620	8 10 11 12 4 13 9 14 14
Cawarra PM37117 PM37117 Saunders BCORS Stn2 Cawarra Stn4 BCORS BCORS	PM37117 Stn2 Saunders Cawarra Stn4 Stn4 Stn2 PM37117 Cawarra	-0.001 -0.001 0.000 -0.000 -0.001 0.001 0.001 0.000 0.000 0.000	0.001 -0.002 0.002 -0.001 -0.002 -0.000 -0.002 -0.002 -0.001	0.006 0.004 0.003 -0.003 0.002 -0.002 0.000 0.002 0.000 0.002	0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.001	0.006 0.005 0.004 0.003 0.003 0.003 0.003 0.003 0.002	1110 438 1536 1485 1480 726 1453 1154 1620 776	8 10 11 12 4 13 9 14 1 2
Cawarra PM37117 PM37117 Saunders BCORS Stn2 Cawarra Stn4 BCORS BCORS BCORS	PM37117 Stn2 Saunders Cawarra Stn4 Stn4 Stn2 PM37117 Cawarra PM37117	-0.001 -0.001 -0.000 -0.001 0.001 0.001 0.000 0.000 0.000 -0.000	0.001 -0.002 0.002 -0.001 -0.002 -0.000 -0.002 -0.001 0.001 -0.001	0.006 0.004 0.003 -0.003 0.002 -0.002 0.000 0.002 0.000 0.002	0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002	0.006 0.005 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002	1110 438 1536 1485 1480 726 1453 1154 154 154 776 776	8 10 11 12 4 13 9 14 1 2
From Cawarra PM37117 PM37117 Saunders BCORS Stn2 Cawarra Stn4 BCORS BCORS BCORS BCORS BCORS	PM37117 Stn2 Saunders Cawarra Stn4 Stn4 Stn2 PM37117 Cawarra PM37117 PM37117	-0.001 -0.001 -0.000 -0.001 0.001 0.001 0.000 0.000 0.000 -0.000 0.001	0.001 -0.002 0.002 -0.001 -0.002 -0.000 -0.002 -0.001 0.001 -0.001	0.006 0.004 0.003 -0.003 0.002 -0.002 0.002 0.000 0.002 0.000 0.002 0.000 0.001 0.001	0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002	0.006 0.005 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002	1110 438 1536 1485 1480 726 1453 1154 1620 776 776 1000	8 10 11 12 4 13 9 14 1 2 5

	(Rel	ative Confidence	e of Asimuth	is in Se	conds)	
rom	То	Grid Asimuth	Grid Dist	954	RelConfi	dence
			Grnd Dist	Azi	Dist	PPM
ORS	Cawarra	18-16-02.00	1619.6100 1620.2077	0.40	0.0032	1.9883
ORS	PM37117	55-45-27.90	775.9352 776.2215	0.72	0.0027	3.4812
CORS	Saunders	317-01-20.86	1212.0676 1212.5160	0.62	0.0036	3.0011
CORS	Stn2	80-26-08.95	999.3764 999.7448	0.59	0.0028	2.8173
CORS	Stn4	106-19-37.37	1479.0590 1479.6042	0.49	0.0035	2.3864
awarra	PM37117	173-04-29.11	1109.4706 1109.8790	0.59	0.0032	2.8933
awarra	Saunders	243-58-44.25	1484.4170 1484.9650	0.51	0.0037	2.4716
awarra	Stn2	160-47-52.07	1452.7676 1453.3021	0.48	0.0034	2.3345
M37117	Saunders	287-03-04.21	1535.2022 1535.7687	0.49	0.0035	2.3056
M37117	Stn2	128-10-56.03	437.6904 437.8514	1.44	0.0030	6.9288
M37117	Stn4	137-36-50.21	1154.0533 1154.4776	0.63	0.0036	3.0810
tn2	Stn4	143-17-06.19	725.8323 726.0990	1.01	0.0036	4.9294

		Error	Propagation			
		=====				
	Stati	on Coordinate S	tandard Deviat	tions (Meters)		
		-				
Station BCORS		E	N 0.000000	Elev		
Cawarra		0.001296				
PM37117		0.001096				
Saunders		0.001468				
Stn2		0.001148				
Stn4		0.001438	0.001445	0.001830		
	St	ation Coordinat				
		Confiden	ce Region = 9	58		
Station		Semi-Major Axis		Asimuth of	Elev	
BCORS		0.000000	AN15	Major Anis	0.000000	
Cawarra		0.003220	0.0000000	0-00 19-01	0.002182	
PM37117		0.002737	0.002682		0.002840	
Saunders		0.003718			0.003795	
Stn2		0.002865			0.002830	
Stn4		0.003547	0.003510	149-41	0.003586	
			or Ellipses (1			
		Confiden	ce Region = 9	58		
Stations		Sami -Mai an	8 i - Mi	Asimuth of	Vantianl	
From	То	Axis		Major Anis	Vertical	
	Cawarra	0.003220			0.003183	
					0.002840	
BCORS	PM37117 Saunders	0.003718	0.003591	9-53	0.003795	
	Stn2	0.002865	0.002804	15-43	0.002830	
	Stn4	0.003547	0.003510	149-41	0.003586	
Cawarra	PM37117	0.003216	0.003182	17-10	0.002916	
Cawarra	Saunders	0.003705	0.003643	13-56	0.003403	
Cawarra		0.003412	0.003182 0.003643 0.003364 0.003364	17-10 13-56 21-59	0.003130	
	Saunders	0.008080	0.0000000	10 02	0.003459	
PM37117 PM37117		0.003061 0.003558		13-55 158-28	0.002836 0.003501	
	Stn4	0.003578			0.003371	
5612	50114	0.003070	0.003001	140 07	0.0033/1	
		Elapsed T	ime = 00:00:0	D		

Appendix D: Reciprocal EDM Heighting Data

Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
1002	1.785			58.2	SSM92282
1003		1.5515	0.2335	60.0	CP40
1003	1.5698			41.2	
1004		1.6394	-0.0696	41.7	STN1
1004	1.582			59.1	
1005		1.6718	-0.0898	59.2	CP41
1005	1.9855			59.3	
1006		1.351	0.6345	63.4	CP42
1006	1.6157			61.7	
1007		2.0664	-0.4507	61.5	CP43
1007	1.3502			60.0	
1008		1.9138	-0.5636	57.9	STN5
1008	1.579			7.0	
1009		1.607	-0.028	5.0	STN2
1009	1.633			5.0	
1010		1.605	0.028	7.0	STN5
1010	1.8782			58.0	
1011		1.3149	0.5633	59.8	CP43
1011	2.0409			61.6	
1012		1.5913	0.4496	61.7	CP42
1012	1.36			63.5	
1013		1.995	-0.635	59.1	CP41
1013	1.6959			58.9	
1014	1.056.1	1.6049	0.091	59.2	STN1
1014	1.6561	4 500 1	0.000-	41.7	
1015	4 506 4	1.5864	0.0697	41.1	CP40
1015	1.5621			59.1	
1016		1.796	-0.2339	59.1	SSM92282
Sum=	23.2934	23.2944			
Misclose=	-0.0010				

Loop 10 Raw Data – Northern Bank, Richmond River

			-		I
Point ID	Backsight	Foresight	Rise/Fall	Distance	Station
1101	2.1429			60.5	STN3
1102		1.485	0.6579	62.9	CP44
1102	1.7946			62.5	
1103		1.3059	0.4887	64.5	CP45
1103	1.66			4.8	
1104		1.3552	0.3048	5.8	PWD100
1104	1.2541			6.0	
1105		1.559	-0.3049	4.9	CP45
1105	1.5659			60.6	
1106		1.5862	-0.0203	60.4	CP46
1106	1.6953			13.9	
1107		1.6175	0.0778	11.3	STN4
1107	1.9778			59.0	
1108		1.4795	0.4983	53.9	CP47
1108	2.0747			59.5	
1109		1.3468	0.7279	61.0	CP48
1109	1.8619			58.6	
1110		1.8909	-0.029	59.1	CP49
1110	1.0349			42.4	
1111		3.5854	-2.5505	50.4	SSBM
1111	3.6638			44.3	
1112		1.1706	2.4932	45.3	CP50
1112	1.7175			37.2	
1113		1.5153	0.2022	39.1	PWD99
1113	1.4166			39.2	
1114		1.6191	-0.2025	37.0	CP50
1114	1.7642	4 5050		45.2	
1115	4 5044	1.5352	0.229	43.4	CP51
1115	1.5211	1 0000	0 4740	45.2	
1116	4 0704	1.6923	-0.1712	47.5	CP49
1116 1117	1.8764	1.8474	0 0 0 0	59.1	CP48
	1 2625	1.0474	0.029	58.5	6640
1117 1118	1.3625	2.0905	-0.728	60.9 59.6	CP47
1118	1.4805	2.0905	-0.720	53.9	0147
1119	1.4005	1.979	-0.4985	59.1	STN4
1119	1.6367	1.575	0.4000	13.0	
1120	1.0007	1.7142	-0.0775	11.9	CP46
1120	1.6552	1.7 1 12	0.0770	60.3	
1121		1.6348	0.0204	60.7	CP45
1121	1.6943	1100 10	010201	6.5	
1122		1.389	0.3053	7.3	PWD100
1122	1.2904			7.4	
1123		1.5956	-0.3052	6.6	CP45
1123	1.3691			63.4	
1124		1.8571	-0.488	63.6	CP44
1124	1.5085			62.8	
1125		2.1675	-0.659	60.6	STN3
Sum=	41.0189	41.019			
Misclose=	-0.0001		L .		
	0.0001	1			

Loop 11 Raw Data – Southern Bank, Richmond River

Ξ.									1	882.8049												
Horizontal Dista noe									3-1	83												
Corrected Slope Distance										882.805589												
Sio pe Distan ce	882.813 882.813	882.813	882.813 882.813	882.813	882.816 887 815	862.816	882.816		_	882.8144	0.0015											
Sec				4 35.333					55 40.5	4 27.333	sD											
uw Bed				8					269	8												
	85	32	8 %	Ģ	88	1	8	4	8		I											
Min Sec	4 4	4	4 4	4	18 18	8	8	8	8													
8	88	8 8	8 8	8	88	8	88	88	580													_
Horizontal Distance									3-4	393.9731											3 - 2 873 5207	
Corrected Slope Distance										393.97489											873.62,236	
Stope Distance	303,979 303,979	303.979	393.978	393.978	393.979	393.979	393.979	393.979	393.979	393.9788	0.0004	873.531	873.531	873.531	873,531	873.531	873.531	873531	873.531	873,531	873.8344	0.000.0
ŝ				40.833					25.667	37.333	S					35.333					29.333	00
Min				\$					ę	\$						ω				1	8 4	ľ
ŝ	0.00	~ '		8	0 1				28 270	8		N *				8	N .				8 8	ł
80	8 9 8 9		8 8		5 9 7 8			10 21				6 32 e 32					88					
u Wi	68 68 68 68			-	22 6							06					88					
ž.	କ ମ		1.16	\$	8 4			8		45.5	3.119	8 8			9		C4 (4 6	1		20.17	
Min Sec	29	29	28	29	29	58	28	29			સં	~ ~		~	~	⊳					7 20	
Deg M	272									272		88	8	8	8	8					32	ţ
	-								_	W	2	2									×	i ĝ
From To	4											-										
a.	e											n										

Reciprocal EDM Heighting Data

Horizontal Dista noe												1-4	950.9167																	
Corrected Stope Distance													950.921324																	
Sio pe Distance	860,93	360,33	960.931	850.831	850.831	950.931	950.931	950.931	950.931	950.931	950.931	850.831	950.9308	0.0004																
						8						51.167	19.5	SD																
Min Sec						52							23																	
Z						8						270	8																	
Sec	8	8	8	8	8	31	53	8	8	5	8	52		_																
Min 3	8	8	8	8	8	23	2	2	2	2	2																			
Geo.	8	8	8	8	8	8	52	270	220	2/2	270	270																_	_	
Horizontal Distance												1-3	882.8093														1-2	485.999		
Corrected Slope Distance													882.80962															485,99942		
Siope Distance	882,813	882,814	882,815	882.815	882.815	882.815	882.816	882.816	882.815	882.815	882.815	882.815	882.8149	0.0008	486.003	486.003	486.002	486.002	100.000	700100	700/005	486.002	486.002	486.003	486.003	486.002	486.002	485.0023	0.0005	
ŝ						11.833						16	57.833	S	Γ						40.000						35.5	36.333	8	
Min S						6							8								e						18	4		
8						8							8								R						9 <u>2</u>	8		
200	9	15		7	7 14	7 13			-			3 17			4 58	4							37	8	34	8				
Min	89 57	89 57	89 57	89 57		89 57					9 9				80 4	90						8			8					
Z											63 270		8	8										8 8		40 260			3	1
Min Sec	32	32	32	32	32	32	32	32	32	32	32	32	32	4.1	9	φ	¢		• •		0	ø	ø	ø	ø	9	ø	6 47.		
Deg Mi	88	188	18	88	38			388	188	335	188		335		287	287	287	287		204	107	287	287	287	287	287	287	287		
	4											_		5	C1				-									⊢	S	
From To	n														e															
14	-														-															

Horizontal Distance													4-3	393.9716																			
Corrected Stope Distance														393.974477																			
Stope Distance	303,979	303.978	303.979	383.979	302 070	200.070	302.072	-000-070	0/R.080	0/2.000	383.978	383.978	363.978	393.9784	0.0005																		
36						43 0 3333								13 7,8333	SD	I																	
Deg Min						8	8						589	8																			
8	13 12	9 5	13 14			2 0					89 86		48 57																				
Deg Min	8					8 8					88		2000		_																	_	
Horizontal Distance												,	4-7	950.9225																4-2	726.099		
Slope Distance														950.92582																	726.10524		
Stope Distance	960,936	960,935	960,935	860,835	050.035	000000	000000	000000	000000	201200	950.935	950.935	_	950.9353	0.0005		726.113	726.113	PDB 11 2	160.110	611.07/	726.113	726.113	728.112	728.11.2	100 44 0 0	711.07/	726.112	726.112		726.1125	0.0005	
8						7 44 44							- 1	1.3333	SD	I	F						19.167								13.167	ß)
uy Beg						8							°	6									8							- 1	8 4		
Sec	9		9				ь <u>г</u>				0	5	8		L		14 21	4	1		4		14 17						8	8 8		1	
Deg Min	06		6			2 6			R 10				208				90 1										-	288					
ŝ	2	2	8	5	1 0			4 C			4		2	2 46	4.285		5 61			8 8	8	0 8	8 9	ю 10	. K			8 9		5 8	5 57	5.673	
Deg Min	8	8	8	8	3 2	3 8	8 8	8 8	8 8	8 8	8	8	8	8			8	8	. 8	8 8	8	8	8	9	3	8 8	8	8	8	8	8		
From To	6 1													W	SD		3														W	SD	}
¥	4																4																

Horizontal Distance													2-4	726.1009																		
Corrected Slope Distance														726.10581	L	-																
Stope Distance	728.111	728.111	728.11	728.11	100	19	728.11	728.11	726.11	726.11	726.11	726.11	728.11	726.1102	0.0004																	
Min Sec						!	47 30.167						12 49.667	47 20.167																		
Z			_				8	~		~	~		270	8																		
98 1	47 31	47 28	47 30					12 48	12 46	12 49		12 57																				
uw Geo	8	8	8	8	8 8	8	8	22	220	270																						
Horizontal Distance D													2-3	873.5248	I		Γ												2-1	485.9992]	
Corrected Slope H Distance D														873.52576	İ															48 5, 99 925		
Siope Distance	873531	873,531	873,531	873531	01000	10070 /0	873.531	873.531	873.531	873.531	873.531	873.531	873.531	873,5310	0.000.0		486.002	486.002	486.002	486.002	40.000	700/000	486.002	486.003	486.003	486.002	486.002	486.002	486.002	485.0022	0.0004	
88							55 2.8333						5 25.833	54 48.333			Γ						0/ 42833						2 43.167	67 29.833	SD	•
uw B							8						270	8	L								8						270	8		
Sec Deg	m	n	प	0	1 1	0	0	27	8	18	8	8	10	┢	1		9	4	q	44		8 1	4	8	8	¥	Ş		£		1	
Min S	19	18	18	8	3 8	8	8	'n	ŵ	ŵ	ø	ŵ	ŝ				6	20										61				
2	68	68	68	88	0 0	8	68	8	20	270	22	220	270	L			68	68	68	68		8	50	23	22	8	220	22	270			
ŝ	16	ξ†	6	44	: '	_	5	19	2	0 -	4	5	12	12.25			8	4	18		: 8			37		8			8	37.92	4.295	
Min													33	L			L											101 30		101 30		
8	e													L	SD]	1	ž	÷	Ť		- ;	ŕ	Ŧ	ŕ	÷	÷	÷	÷	_	SD	1
From To	4														U)		4													-	ŝ	
¥.	~																N															

Reciprocal EDM Heighting Least Squares Reduction Report

STAR*NET-DEMO Version 6.0.25 Copyright 1988-2002 Starplus Software, Inc. Licensed for Demo Use Only Run Date: Sun Oct 17 2010 09:58:18 Summary of Files Used and Option Settings _____ _____ Project Folder and Data Files Project Name TRIG HEIGHTING ADJUST Project Folder C:\DOCUMENTS AND SETTINGS\...\FIELD DATA\BRACED QUAD Data File List LEVEL NETWORK.txt Project Option Settings STAR*NET Run Mode : Adjust with Error Propagation : 3D : Meters; DMS : LOCAL : 1.0000000000 Type of Adjustment Project Units Coordinate System Apply Average Scale Factor : East-North : At-From-To Input/Output Coordinate Order Angle Data Station Order Distance/Vertical Data Type : Hor Dist/DE Convergence Limit; Max Iterations : 0.010000; 10 Default Coefficient of Refraction : 0.070000 : 6372000.00 Meters Earth Radius Create Coordinate File : No Create Ground Scale Coordinate File : No Create Dump File : No Instrument Standard Error Settings Project Default Instrument Distances (Constant) : 0.001000 Meters 0.000000 Distances (PPM) -Angles 4.000000 Seconds -Directions 3.000000 Seconds -Asimuths & Bearings 4.000000 Seconds -10.000000 Seconds Zeniths -0.010000 Meters Elevation Differences (Constant) : Elevation Differences (Constant) : 0.010000 Heters Elevation Differences (PPM) : 0.000000 Differential Levels : 0.005000 Meters Centering Error Instrument : 0.002000 Meters Centering Error Target : 0.002000 Meters Centering Error Vertical : 0.002000 Meters 0.005000 Meters / Km

S000.0000 8000.0000 2.2670 5485.9990 8000.0000 1.7699 Number of Angle Observations (DMS) = 8 From To Angle StdErr 4 1 272-29-45.50 3.10 1 2 32-07-20.17 5.30 3 4 325-32-58.00 4.10 3 2 287-06-47.25 2.70 3 1 68-02-46.00 4.30 3 2 98-05-57.00 5.70 4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 Number of Distance Observations (Meters) = 10 N Distance StdErr HI HT Type 1 882.8093 0.0030 0.000 0.000 H 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 920.9167 0.0030			Number of Ente	ered Station	ıs (Met	ers) = 2		
5485.9990 8000.0000 1.7699 Number of Angle Observations (DMS) = 8 From To Angle StdErr 4 1 272-29-45.50 3.10 1 2 32-07-20.17 5.30 3 4 335-32-58.00 4.10 3 2 287-06-47.25 2.70 3 1 66-02-46.00 4.30 3 2 98-05-57.00 5.70 4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 Number of Distance StdErr HI HT 1 882.8049 0.0030 0.0000 0.000 2 873.5207 0.0030 0.0000 0.000 H 2 873.5207 0.0030 0.0000 0.000 H 2 726.0991 0.0030 0.0000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2<	ed Stat:	ions						Description
Number of Angle Observations (DM3) = 8 From To Angle StdErr 4 1 272-29-45.50 3.10 1 2 32-07-20.17 5.30 3 4 335-32-58.00 4.10 3 2 287-06-47.25 2.70 3 1 68-02-46.00 4.30 3 2 98-05-57.00 5.70 4 3 26-31-12.25 5.70 4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 Number of Distance Observations (Meters) = 10 A To Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.0000 0.000 H 2 726.0991 0.0030 0.0000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
4 1 272-29-45.50 3.10 1 2 32-07-20.17 5.30 3 4 335-32-58.00 4.10 3 2 207-06-47.25 2.70 3 1 68-02-46.00 4.30 3 2 98-05-57.00 5.70 4 3 26-31-12.25 5.70 4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 A To Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 H 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 4 950.9167 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 1 950.9225 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 4 950.9167 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 4 2.7243 0.0043 726 3 1.0176 0.0043 726 3 1.0176 0.0047 874 3 1.5246 0.0047 874 3 1.5246 0.0047 874 1 -2.2346 0.0049 951 4 2.2320 0.0049 951								
<pre>1 2 32-07-20.17 5.30 3 4 335-32-58.00 4.10 3 2 287-06-47.25 2.70 3 1 68-02-46.00 4.30 3 2 98-05-57.00 5.70 4 3 26-31-12.25 5.70 4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 a To Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 H 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 1 950.9167 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 4 2.726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 4 2.7243 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 883 2 -1.5231 0.0047 874 3 1.5246 0.0047 874 3 1.5246 0.0047 874 1 -2.2346 0.0049 951 4 2.2320 0.0049 951</pre>								
3 4 335-32-58.00 4.10 3 2 297-06-47.25 2.70 3 1 68-02-46.00 4.30 3 2 98-05-57.00 5.70 4 3 26-31-12.25 5.70 4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 Number of Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 H 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 H 1 4 27.7348 0.0043 726 4								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
3 1 68-02-46.00 4.30 3 2 98-05-57.00 5.70 4 3 26-31-12.25 5.70 4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 a To Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 H 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 H H H 3 873.5248 0.0030 0.000 H H H H H H H H H H H H H H H H H H					5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4 1 101-30-37.92 4.30 Number of Distance Observations (Meters) = 10 a To Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 H 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 H H H 3 873.5248 0.0030 0.000 H H H H H H H H H H H H H H H H H H								
Number of Distance Observations (Meters) = 10 To Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.9993 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 0.000 H 2 72.7348 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 883 2 -1.5231								
To Distance StdErr HI HT Type 1 882.8049 0.0030 0.000 0.000 H 3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 4 950.9167 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 H H 3 873.5248 0.0030 0.000 H H H H 1 485.9993 0.0030 0.000 H H H H 1 485.9993 0.0030 0.0000 H H							10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200							
3 882.8093 0.0030 0.000 0.000 H 4 726.1009 0.0030 0.000 0.000 H 2 873.5207 0.0030 0.000 0.000 H 4 950.9167 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 H H 3 873.5248 0.0030 0.000 H H 485.9993 0.0030 0.000 0.000 H H Number of Differential Level Observations (Meters) = 8 H H H 2 -2.7348								-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			882.8093	0.0030	0.000	0.000	н	
4 950.9167 0.0030 0.000 0.000 H 2 485.9992 0.0030 0.000 0.000 H 1 950.9225 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 H H Number of Differential Level Observations (Meters) = 8 A To Elev Diff StdErr Length 2 -2.7348 0.0043 726 3 1.0176 0.0047 883 2 -1.5231 0.0047 874 3 1.5246 0.0047 874 4 2.2320 0.0049 951								
2 485.9992 0.0030 0.000 0.000 H 1 950.9225 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 0.000 H Number of Differential Level Observations (Meters) = 8 To Elev Diff StdErr Length 2 -2.7348 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 883 2 -1.5231 0.0047 874 3 1.5246 0.0047 874 1 -2.2326 0.0049 951 4 2.2320 0.0049 951								
1 950.9225 0.0030 0.000 0.000 H 2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 0.000 H Number of Differential Level Observations (Meters) = 8 To Elev Diff StdErr Length 2 -2.7348 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 853 2 -1.5231 0.0047 854 2 1.5246 0.0047 874 1 2.2320 0.0049 951 4 2.2320 0.0049 951								
2 726.0991 0.0030 0.000 0.000 H 3 873.5248 0.0030 0.000 0.000 H 1 485.9993 0.0030 0.000 0.000 H Number of Differential Level Observations (Meters) = 8 To Elev Diff StdErr Length 2 -2.7348 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 883 2 -1.5231 0.0047 874 3 1.5246 0.0047 874 1 -2.2346 0.0049 951 4 2.2320 0.0049 951								
<pre>1 485.9993 0.0030 0.000 0.000 H Number of Differential Level Observations (Meters) = 8 To Elev Diff StdErr Length 2 -2.7348 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 883 2 -1.5231 0.0047 874 3 1.5246 0.0047 874 1 -2.2346 0.0049 951 4 2.2320 0.0049 951</pre>								
Number of Differential Level Observations (Meters) = 8 a To Elev Diff StdErr Length 2 -2.7348 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 883 2 -1.5231 0.0047 874 3 1.5246 0.0047 951 4 2.2320 0.0049 951								
To Elev Diff StdErr Length 2 -2.7348 0.0043 726 4 2.7243 0.0043 726 3 1.0176 0.0047 7883 2 -1.5231 0.0047 874 3 1.5246 0.0047 874 4 2.2320 0.0049 951		_						- •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	oon						ers/	- 0
4 2.7243 0.0043 726 3 1.0176 0.0047 883 2 -1.5231 0.0047 874 3 1.5246 0.0047 874 1 -2.2346 0.0049 951 4 2.2320 0.0049 951					-			
2 -1.5231 0.0047 874 3 1.5246 0.0047 874 1 -2.2346 0.0049 951 4 2.2320 0.0049 951		4	2.724	43 0.0043	: 7	26		
3 1.5246 0.0047 874 1 -2.2346 0.0049 951 4 2.2320 0.0049 951								
1 -2.2346 0.0049 951 4 2.2320 0.0049 951								
4 2.2320 0.0049 951								

> The Chi-Square Test at 5.00% Level Passed Lower/Upper Bounds (0.692/1.307)

		Coordinates (M		
Station 1 2 3 4	E 5000.0000 5485.9990 5259.7749 5630.8891	N 8000.0000 8000.0000 7156.2798 7288.5024	2.2670 1.7699	Description

			d Observations and				
		=======					
		Adjuste	ed Angle Observatio	ons (DMS)			
At	From	To	Angle	Residual	StdErr		
3	4	1	272-29-49.40	0-00-03.90	3.10		
3 1	1	2	32-07-21.70	0-00-01.53	5.30	0.3	
1	3	4 2	32-07-21.70 335-32-58.54 287-06-47.49 68-02-47.94	0-00-00.34	2 70	0.1	
4	3	1	68-02-47.94	0-00-01.94	4.30	0.5	
4	3	2					
2	4	3	98-05-59.49 26-31-11.60	-0-00-00.65	5.70	0.1	
2	4	1	101-30-37.39	-0-00-00.53	4.30	0.1	
		Adjusted I	Distance Observatio	ons (Meters)			
	From	То	Distance	Residual	StdErr	StdRes	
	3	1	882.8062				
	1	3	882.8062	-0.0031	0.0030	1.0	
	2	4	726.1005				
	3	2	873.5222				
	1	4	950.9205				
	1	2	485.9990				
	4	1 2	950.9205 726.1005				
	2	3	873.5222				
	2	1	485.9990				
	Adi	usted Differ	rential Level Obser		rs)		
	From	То	Elev Diff			StdRee	
	4	2	-2.7278				
	2	4	2.7278				
	1	3	1.0267	0.0091	0.0047	1.9	
	3	2	-1.5238	-0.0007	0.0047	0.2	
	2	3	1.5238	-0.0008			
	4	1	-2.2307				
	1	4	2.2307 1.2040	-0.0013 0.0000			
	3	1	1.2040	0.0000	11650	0.0	

		d Bearings (DMS) an ====================================					
From	То		Distance	954	8 RelConf:		
1	2 3	N90-00-00.00E S17-06-47.49E	882.8062	0.00	0.0047	5.2856	
1 2 2	4 3 4	341-33-48.95E 315-00-34.21W 311-30-37.39E	873.5222	2.58	0.0047	5.3544	
3	4	N70-23-23.11E					

			r Propagation			
		Station Coordinate	Standard Devia	tions (Meters)		
Station		E	N	Elev		
1 2		0.000000		0.000000		
3		0.004619				
4			0.002615			
		Station Coordina				
Station			nce Region = 9		F 1	
Station		Semi-Major Axis	Semi-Minor Axis	Major Amis	Liev	
1		0.000000			0.000000	
2		0.00000	0.000000	0-00	0.000000	
3		0.011307		88-54	0.003406	
4		0.012149	0.003610	62-53	0.003406	
			ror Ellipses () nce Region = 9			
			-			
Stations			Semi-Minor		Vertical	
From		Axis	Axis	Major Anis		
	2 3	0.000000 0.011307		0-00 88-54	0.000000 0.003406	
	4	0.012149			0.003406	
2	3			88-54	0.003406	
2	4	0.012149	0.003611 0.003610	62-53	0.003406	
3	4	0.014825	0.006159	73-57	0.000000	