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Abstract 

The aim of this research is to determine the validity of available theoretical approaches for 

the side weir problem. This will be done with the experimental results gained from 

experimentation conducted in the hydraulics lab. It is hoped that the project will result in a 

more general solution for side weir problems that allows designers a greater amount of 

flexibility in weir configurations. 

This dissertation has examined methods of solution for the side weir problem based on 

theory found during a literature review. An experimental flume was constructed for the 

specific purpose of side weir experimentation. Experimental results have been compared 

with available theory in An attempt to validate the theory available, however incomplete 

and inaccurate data from the experimental work has hindered this process. As time was not 

permitting no attempt was made to formulate and validate a more complete method of 

solution 
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CHAPTER 1 

 

1. INTRODUCTION 

1.1 Overview of the Problem 

The side weir problem is one that is vastly more complex than a typical weir situation. It is 

an arrangement that occurs frequently throughout civil and agricultural engineering fields. 

Ambiguities are evident in many texts and journals which deal with the side weir problem 

so an investigation has taken place to clarify and expand knowledge of the topic. The intent 

of this project is to clarify the available theory on side weirs by comparison with 

experimental data.  

 

 

 

 



Significance of the Problem ROWLINGS (2010) 

2 

1.2 Significance of the Problem 

Side weir flow has been examined in a variety of journals and texts. There has been no 

definitive method of solving this problem in all of the research conducted. As side weirs are 

used extensively throughout irrigation channels, as storm water overflows and in other civil 

infrastructure, accurate and reliable design methods are important.  

It is important to note that there are several empirical methods of solution which are 

reliable and produce reasonably accurate results. As with many empirical methods though, 

the range in which the method is useful is limited. This limitation means that when a design 

is required for a situation which occurs outside of the empirical methods accurate range that 

more in-depth experimentation or analysis is required.  

For this reason it is important to have a solution method which is both accurate and robust. 

It is this which is the critical aspect of the side weir problem, as finding a solution method 

which is both of these will allow for effective and efficient practice in the design and use of 

side weirs.  To date no complete and proven analytical solution is available, which is 

largely due to the large number of parameters which need to be considered in such a 

problem. 
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1.3 Background Information on Side Weirs 

A side weir is a lateral outflow structure which is located in the side of a channel, as 

opposed to straight across the channel. As a weir its‟ purpose is a control and measurement 

point. Typically weirs are classified as a flow measuring structure (Chadwick et al, 2004) 

however it is important to note that the side weir also acts as a discharge structure in the 

same way the spillway does.  

Side weir flow can be described in terms of a change in momentum or a change in energy, 

and this thesis will examine in part the accuracy of one over the other. It is thought that the 

principles of momentum will provide the more accurate results as it is more suitable for this 

particular case as. This is because no energy losses are seen over the weir, just a momentum 

change as a portion of the water ejects from the side weir. 

Side weirs have been researched extensively and finding relevant literature is not a hard 

task. On the other hand, finding literature which sets out a means of solution in a clear and 

precise manner is not so easy to come by. Many of the solutions found are empirical, and 

do not cover a wide range of side weir applications or situations.  

Ramamurthy and Carballada (1980) propose a method of solution which is based on the 

free efflux theory of McNown and Hsu (1954). This solution examines the geometric 

configurations and the velocity ratios to find a total discharge. The method uses a taylor 

series approximation a coefficient of discharge which can be used to calculate the weir 

discharge.  
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Hager (1987) examined the diminishing velocity over the length of the weir. This decrease 

in lateral outflow intensity is demonstrated in Figure 1.1, which is a summary of Hager‟s 

experiments, and clearly shows that the discharge angle is decreasing over the weir length.  

 

 

 

 

Figure 1-1 Lateral Outflow and Surface Velocity Profiles (sourced: Hager, 1987) 
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Muslu (2001) conducted a numerical analysis of side weirs which examined them by using 

a variation of De Marchi‟s (1934) integral solution method. This slight alteration takes the 

stance that the weir coefficient and discharge angle are not in fact constant, as De Marchi 

assumed, but functions of several parameters. Doing this complicated the problem to such 

an extent that it could only be solved using an iterative process. 

Muslu (2001) also compiled a comparison of several empirical methods and their results.  

This comparison shows the wide variation that occurs in solutions of side weir problems. 

The range of the geometric configurations and the corresponding weir discharge coefficient 

vary considerably across the different methods given the same Froude number, upstream 

depth and height of the weir.  

One method which clearly outlines a solution and is based on the gradually varied flow 

principles is that presented by Chow (1959) in the text Open Channel Hydraulics. This 

theory outlines a method for lateral inflow and outflow; however derivation of the two 

cases is different. It is the difference in derivation of these equations which gives rise to 

ambiguities and makes the accuracy of this method questionable.  

Prior to this thesis it appears that no work has been carried out examining the change in 

parameters between discrete and long weirs. Using the discrete weir will hopefully give 

insights into the changing angle of discharge and discharge coefficient. 
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1.4 Project Objectives 

The crux of this project is a comparison between theoretical and experimental analysis of 

side weirs. In doing this it is hoped a better understanding of the available theory will be 

reached. The essential element to allowing this to happen will be the comparison between 

the discrete side weir and the weir the same width as the main channel. This should provide 

insights into the geometric and velocity ratios.  

The experimental process aims to characterise the side weir problem by examining different 

weir lengths. Using vastly different weir lengths under the similar flow conditions will 

allow the robustness of currently solution methods to be tested. It will also show how the 

side weir characteristics differ with the length of the weir. 
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1.5 Scope of Thesis 

This thesis has a large scope, as it attempts to validate current theory by comparison with 

experimental results. It is also looking at whether anything can be learned by examining the 

discrete lateral slot, in comparison with the longer weir. The project therefore includes a 

large variety of techniques, including: 

 Experimentation 

 

 Computer modeling of experimental results 

 

 Empirical analysis 

 

 Numerical analysis 

 

 Analytical analysis 

 

 Comparative analysis of all modeling and results 
  



Theory and Modelling ROWLINGS (2010) 

8 

 

CHAPTER 2 

 

2. BACKGROUND THEORY 

2.1 Theory and Modelling 

The ability to derive relevant theories and in some cases laws of nature for a physical 

situation, allows us to make predictions, and model these circumstances. This is the essence 

of most engineering fields and as such it is very important, in particular to this thesis.  

Several laws and theories are very important to the side weir problem and these will be 

presented systematically in this chapter. It is important to note that some of these are only 

theories, and as such their accuracy, in some circumstances, is not always guaranteed; 

however all of what is presented here is used widely within engineering practice.  
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2.2 Fundamental Laws of Fluid Dynamics 

2.2.1 Conservation of Mass 

The law of conservation of matter states that ‘matter can be neither created nor 

destroyed, though it may be transformed (e.g through chemical process)’. As fluid 

dynamics in civil applications does not involve any chemical transformations this can be 

simplified to the conservation of mass. This means that the mass entering a control volume 

will equal the mass leaving the control volume, and is represented in its simplest form by 

equation 2-1. Conservation of mass is used in the solution of all fluid dynamic problems 

(Chadwick et al., 2004). 

          Eq 2-1 

2.2.2 Conservation of Energy 

The law of conservation of energy states that „energy may neither be created nor 

destroyed’. It can be transformed from one form to another, such as potential to kinetic, but 

it cannot be destroyed. The term energy loss is sometimes used, however this just refers to 

the energy being lost from the water and being transferred to heat for example with friction 

losses (Chadwick et al, 2004). In hydraulic problems the energy equation is most regularly 

used in the form of the Bernoulli equation; equation 2-2 below. Equation 2-2 can be broken 

down into segments of Pressure Head, Kinetic Head and Potential Head. 

  

   
 

  

  
    

  

   
 

  

  
                 Eq 2-2 
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Currently most side weir solution methods employ the use of this theory. It is this 

which is a point of contention as the momentum law seems more applicable. 

2.2.3 Conservation of Momentum 

The law of conservation of momentum states that „a body in motion cannot gain or 

lose momentum unless some external force is applied’. This is Newton‟s second law of 

motion, and as such has applications to fluid dynamics. The simplest form of this equation 

is momentum entering equals momentum leaving, which is demonstrated in equation 2-3.  

                      Eq 2-3 

This equation however cannot be applied in this form to the side weir problem as 

the flow is being divided at the downstream end of the control volume. Therefore the 

equation used will be of the form of equation 2-4, with first term being the flow upstream 

of the weir, the second term the flow immediately downstream of the weir and the third 

term representing the portion of flow going over the side weir.  

                             Eq 2-4 
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2.3 Laminar and Turbulent Flow 

It is important to differentiate between the types of flow which are occurring within a 

channel. In open channel problems the type of flow will determine how accurately the 

problem can be solved.  

Laminar flow is when the flow is seen to be flowing in straight streamlines which do not 

mix with one another. Turbulent flow on the other hand is where the streamlines are mixed 

and irregular, with the possibility of eddies forming, depending on how turbulent the water 

is. In between the two types is a transitional zone where the water is neither here nor there, 

with partial turbulence and partial laminar flow (Chadwick et al., 2004). The three types of 

flow are depicted in figure 1 below. 

 

 

Figure 2-1 - Laminar, Transitional and Turbulent Flow 

Source: Chadwick et al. (2004, p70) 
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These flows can be classified depending on the value of the Reynolds number. For open 

channel flow a value of 500 or less implies laminar flow, 1000 or greater turbulent, and 

between the two is the transition zone (Chadwick et al., 2004). Reynolds number for open 

channel flow can be calculated using equation 2-5.  

   
   

 
       Eq 2-5 
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2.4 Froude Number 

For open channel flow the Froude number defines the regime of flow (Chadwick et al., 

2004). It is useful as the momentum and energy equations can be written in terms of the 

Froude number (Chadwick et al., 2004). The flow regimes are as follows: 

Fr < 1  Subcritical flow; relatively deep, slow flow 

Fr = 1  Critical flow; transitional flow 

Fr > 1  Supercritical flow; relatively shallow, fast flow  

These flow regimes can be defined in terms of waves, equation 2-6, subcritical flow will 

allow a wave to propagate upstream. Supercritical on the other hand will not allow a wave 

to propagate upstream. The critical flow condition is the boundary condition where the 

velocity of the wave trying to propagate is exactly equal to the velocity in the channel (ie. 

Velocity is equal to   ).   

   
              

             
 

 

   
     Eq 2-6 
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2.5 Darcy-Weiscbach and Colebrook-White Equations 

The Darcy-Weisbach equation (2-7) as used in pipe problems can be modified for the open 

channel situation by the substitution of equations 2-8 and 2-9  to give the equation 2-10 

(Chadwick et al., 2004). Equations 2-8 and 2-9 convert pipe figures into forms which can 

be used for open channel purposes.   

    
    

   
       Eq 2-7 

  
 

 
        Eq 2-8 

   
  

 
       Eq 2-9 

  
     

         Eq 2-10 

If the Colebrook-White equation (2-11) has the open channel variation of the Darcy-

Weisbach equation substituted into it, equation 2-12 is formulated, and then a solution is 

possible for mean section velocity, V.   

 

  
       

 

     
 

     

     
      Eq 2-11 

              
 

     
 

      

        
    Eq 2-12 

This equation is used when flow is not rough turbulent, as the Manning equation is not very 

accurate in the other zones. It is when friction is very low that a small difference in 

manning‟s n cause big variations in velocity.  
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The accuracy of the Darcy-Weisbach, Colebrook-White method is also questionable as the 

formulae are derived from equations for pressurised pipe flow where the frictional 

resistance is uniformly distributed (Chadwick et al., 2004). In the open channel case, 

because of the free surface, the velocity distribution is affected because the frictional 

resistance is non-uniformly distributed around the boundary (Chadwick et al., 2004).  Even 

considering this, it is still a more reliable method of solution in the laminar and transitional 

zones, even if not completely accurate.  
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2.6 Manning’s Equation 

The manning equation is one of most widely used equations for open channel flow 

characteristics. Given the bed slope, hydraulic radius and Manning‟s n value, the mean 

section velocity of the channel can be easily computed. This equation has the benefit of 

being simple and accurate, when within the rough turbulent zone (Chadwick et al, 2004). 

Manning derived this equation from the Chezy equation (2-13) and that the Chezy 

coefficient, C, could be replaced by R
1/6

/n (Nalluri et al., 2001). This resulted in the 

Manning equation as can be seen in equation 2-14.  

              Eq 2-13 

  
 

 
 
 
     

 
        Eq 2-14 

This equation is an empirical one however it is a very effective one which makes solution 

of these problems a lot simpler than they would otherwise be. The manning n value is 

assigned according to the surface condition of the channel. These values were calculated 

based on experimental data from Bazin (Chow, 1959). 

As Manning‟s equation is simple to use it has become standard practice to solve open 

channel problems with it. 
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2.7 Gradually Varied Flow 

This is a type of flow which is defined as being steady and non uniform, typified by a 

smooth back water profile.  The side weir case is an example of a gradually varied flow 

situation when subcritical flow conditions exist upstream of the weir. Gradually varied flow 

is where the discharge passing through the channel cross sections is a constant, but the 

depth, width and mean velocity may change gradually between the sections (Hamill, 2001). 

There are three forms of the gradually varied flow equation however the one of most 

interest in this case is equation 2-15 below. This equation can be reworked to give equation 

2-16, so that it acts as a finite difference solution, where with each step of x a change in 

height is returned (Chadwick et al., 2004). This method is known as the direct step method 

and is used to solve many gradually varied flow problems.   

  

  
 

     

     
       Eq 2-15 

      
     

     
       Eq 2-16 
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2.8 Contracted Weir Discharge 

The weir equation is very similar to the orifice equation and it has been proposed that a 

weir can be thought of as a large orifice where the water surface has fallen below the top of 

the opening (Hamill, 2001).   

 

Figure 2 -2 - Contracted Weir  

Source: Chadwick et al. (2004, p432) 

Contracted weirs are characterised by the contraction of the sides of the flow as it springs 

clear of the weir. This contraction means the discharge calculation will vary from that of a 

full-width weir (Chadwick et al., 2004). For a full-width weir the discharge is defined by 

equation 2-17. This equation does not hold true for the contracted weir because it does not 

account for the changing flow path as the water ejects from the weir.     
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        Eq 2-17 

To account for the contraction of the flow after it expels from the weir a coefficient of 

discharge has been formulated to allow for this phenomena. This coefficient can be 

calculated by a couple of means, either with the Hamilton-Smith equation (equation 2-18), 

or by using experimental discharges as Q in equation 2-19 (Chadwick et al., 2004).  

           
  

  
       Eq 2-18 

   
 

      
       Eq 2-19 

Equation 2-18 can be used in conjunction with equation 2-17 to calculate the actual 

discharge of the weir; combining the two yields equation 2-20.  

   
 

 
        

 
        Eq 2-20 

Using equation 2-20 will allow the accurate calculation of weir discharge. It is important to 

note this is equation is important to this thesis as a comparison to the side weir equations 

that have been developed by others.  
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CHAPTER 3 

 

3. METHODOLOGY 

3.1 Theoretical Considerations 

3.1.1 Angle of Discharge 

The importance of the angle of discharge is of particular importance in side weir 

problems. As the water gets further along the weir the less longitudinal momentum there is 

pushing it which mean that the discharge angle will increase. This was demonstrated by 

Hager (1987) with several experiments, this is illustrated in Figure 1.1, which represents the 

water surface velocity during side weir experimentation. In Figure 1.1 it can be seen that 

the discharge angle increases with length along the weir.  This will be important to keep in 

mind during the experiments. 

3.1.2 Water Surface Profile 

Collinge (1957) showed that the water surface profile of the weir will change 

depending on variances in flow condition and bed slope. It can be seen from Figure 1.2 that 

under varying flow conditions the water surface profile will change. This is important to 
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note as the results will need to be required with as little variability in flow conditions as 

possible. 

 In figure 1.2 the first case is a critical flow regime upstream of the weir, the second 

is a subcritical flow regime upstream of the weir and the third is a super critical flow 

regime upstream of the weir.  As a subcritical flow is wanted for the experimental stage, 

these flow profiles are important to note, as they will give a good assessment of what flow 

regime is occurring within the channel.  

 

 

 

 

 

 

 

 

Source: Collinge, V (1957) 

  

Figure 3-1 – Weir Water Surface Profiles 
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3.2 Theoretical Models 

3.2.1 Lateral Flow 

Chow (1959) presents a means of solving the side weir problem using analytical 

techniques in the text Open-Channel Hydraulics. In the text chow divides lateral flow 

problems into two distinct categories, lateral inflow, where water is added to the main body 

of flow, and lateral outflow where water is lost from the main body of flow.  

 In the text Chow (1959) derives the equation for the solution of lateral inflow using 

the principles of momentum in conjunction with conservation of mass. The equation is 

derived from Eq 3-1 derivation yields Eq 3-2 as shown below. This can be altered to 

include the coriolis coefficient, α, in front of the Q terms (as shown in Eq 3-3 below), if a 

non-uniform velocity distribution is being considered.       

                                 Eq 3-1 

 

  

  
 

              

         
     Eq 3-2 

 

  

  
 

               

          
     Eq 3-3 
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 For the case of lateral outflow Chow (1959) derives the equation using the energy 

principle instead of momentum. No reason is stated for this and is justified by the statement 

that „the energy principle is directly applicable’. The derivation yields the expression for 

lateral outflow shown below in Eq 3-3. This can also be altered for the addition of the 

coriolis coefficient as in Eq 3-4.  

  

  
 

             

         
      Eq 3-4 

  

  
 

              

          
      Eq 3-5 

 It can be seen that there is a difference in the coefficient of the third term of the 

numerator in Eq 3-2 and Eq 3-4. Chow (1959) explains this difference by saying that „the 

momentum principle can also be used to for the derivation of Eq 3-4. In a spatially varied 

flow, with decreasing discharge, no momentum is added to the water. Following a 

procedure similar to the derivation of Eq 3-2, the term containing dQ may be dropped from 

Eq 3-1; the resulting equation will be identical with Eq 3-2’.   

 The logic behind this decision to drop the dQ component is questionable. The 

statement that no momentum is being added to the water is correct; however momentum is 

being lost from the main body of fluid. This would apply that dQ would change sign, from 

positive to negative, as this would represent the fact that momentum is being lost in the 

water ejecting from the side weir.  

   Another query with this work is why Chow has chosen to derive the inflow equation 

using momentum principles and the outflow equation using energy principles. The energy 

equation deals with kinetic, potential and pressure changes. At a junction in a gradually 
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varied open channel flow problem, like a side weir, there will only be a kinetic energy 

change to be considered over the control volume; as there will be no significant change in 

potential and open channel flow experiences no pressure. Such a change is better 

considered by the momentum equation as it is more capable of handling the altered 

direction of flow.   

 It is worth noting the similarities between Chows lateral flow equations and the 

gradually varied flow formula, equation 2-15. These lateral flow equations can be treated in 

a similar way to equation 2-15, and a solution is achievable by using the direct step method.  
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3.2.2 Free Efflux 

The theory of free efflux was proposed by McNown and Hsu (1951) which provides a 

solution for a jet issuing from a lateral slot in a pipe or conduit. This uses a series of 

conformal transformations to solve the left side of equation 3-6.  

         
            Eq 3-6 

This led to the formulation of equations 3-7, 3-8 & 3-9. 

 

 
   

  

  
    

  

  
  

     

  
        Eq 3-7 

Where:  

                    
                Eq 3-8 

With the expression for         being in the same form 

                     
 

 
         Eq 3-9 

Smith (1988) presented a correction for these equations with the inclusion of the 

energy coefficient α. The equations have been presented as a graphical summary which is 

shown in figure 3.1. 
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Figure 3-2 – Characteristics of Free Efflux  

Source: McNown and Hsu (1951) 

McNown and Hsu mention that the work has a potential to act as a guide in 

experimental work with side weirs. It is possible that this method could become a tool to 

evaluate or formulate a new method of solving the side weir problem.   
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3.2.3 Lateral Weir Flow Model 

Ramamurthy and Carballada (1980) proposed a method of solving side weir 

problems. This empirical solution has used techniques described in McNown and Hsu 

(1951) theory of free efflux.  

 

 This model uses the velocity ratio, which is velocity upstream of the weir divided 

by the velocity of the water ejecting from the weir (Eq 3-10), and the geometric ratio, 

which is the length of the weir divided by the channel width, to define a coefficient of 

discharge for the side weir. Unlike many other models it does not attempt to account for the 

angle of discharge, instead allowing these other two parameters to be the defining factors.  

  
  

  
        Eq 3-10 

 The equation for the side weir coefficient of discharge is a Taylor series 

approximation, Eq 3-11. It has numerous variables and is as such more readily solved using 

the taylor series; however this limits its use to certain situations, namely: 

 The bed of the channel is horizontal 

 The flow in the channel upstream of the weir is subcritical 

 The length of the weir is limited to the width of the parent channel 

 The normal velocity component of Vj through any layer is equal to    , 

where h is the depth of the layer below the free surface 

 

              
  

 

 
    

 

  
 
 
  

       Eq 3-11 
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Where:  

      
      

 

 
 

   
 

  
  

 
  

  

      Eq 3-12 

     
 

 
       

   
  

 
 

     

   
            

  

  
   Eq 3-13 

              
 

 
      Eq 3-14 

               
 

 
      Eq 3-15 

              
 

 
      Eq 3-16 

   
  

    
       Eq 3-17 

    
  

     
       Eq 3-18 

   
 

   
 

  
  

 
  
      Eq 3-19 

              Eq 3-20 

In the above equations the channel width (B), weir width (L), upstream velocity 

(V1), height of weir (S) and upstream water height (y1) are all known. This allows a 

relatively simple solution by substituting these known values into the equations.  

It is worth noting that this method does not include direct use of the angle of 

discharge over the weir. This is accounted for by using the velocity of the water over the 

weir (Vj) in direct proportion to the upstream velocity (V1). This still only accounts for the 

discharge as a single entity that does not change with progression along the weir.  
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Figure 3-3 – Lateral Flow Model 
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3.2.4 Numerical Analysis 

Muslu (2001) model has made mention of the fact that the angle of discharge and the water 

height across the channel are not a constant across the length of the weir. It also notes that 

these characteristics are liable to change for different geometric configurations of the weir 

(ie. weir length and channel width). This is very different from most other theories which 

precede Muslu‟ work as they take these to be constant and as such can assume a constant 

coefficient of discharge for the weir.  

 The definition sketches in Appendix B demonstrate how Muslu has gone about 

notating the characteristic parameters for side weir flow. These figures will help with 

understanding Table 3.1. This table is a comparison of many of the major empirical 

methods which have been formulated over the past 80 years. It demonstrates the large 

amount of variability which occurs between Cm, which is the discharge coefficient 

calculated from measured data and L/B, which is the geometric ratio of weir length divided 

by channel width.  
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Source: Muslu    (2001) 

Much of Muslu‟ (2001) paper is based on the work of De Marchi, where he 

analytically integrated Eq 3-21 to calculate the side weir discharge. In this De Marchi 

assumed that the Cw was a constant which allowed for a simple method of solution. It is this 

which Muslu (2001) contends is not strictly correct as Cw in fact a function of several other 

parameters, namely Froude Number, geometric ratio  
 

 
  and the weir height divided by the 

energy head  
 

 
 .  

  
  

  
   

 

 
          

 
      Eq 3-21 

 Muslu (2001) determined that the coefficient of discharge is more accurately 

represented by Eq 3-22. Making Cw variable means that an analytical integration of De 

Marchi formula (Eq-21) is impossible, so a numerical technique was employed (Muslu, 

2001).  

                    Eq 3-22 

Table 3-1 - Side Weir Equations for Discharge Coefficients 
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In which: 

              Eq 3-23 

  
 

 
        Eq 3-24 

In Eq-23 the value of K is a function of 
 

 
, which is summarized in figure 7 of Muslu 

(2001). The value of K can be calculated using the standard equation of a straight line, as 

shown in Eq-25.  

        
 

 
           Eq 3-25 

  This model is more robust than the methods represented in Table 3.1 as it accounts 

for the variance that can occur in Cw given a change in a number of parameters. As it is 

based on hydrodynamic principles, and not experimental work which has then employed a 

curve fitting technique to derive a formula, it is a far more efficient solution technique 

(Muslu, 2001).   
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3.3 Theoretical Methods 

The models outlined above in section 3.2 are indicative of what experimental results will be 

compared to. It is hoped that this will shed some light on appropriate solution methods.  

Once experimental results have been analysed using the software package Matlab, the 

situation will then be compared to the results that are gained when the situation is simulated 

using the models mentioned previously. Doing this will allow a direct comparison between 

theoretical and experimental values. 
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3.4 Experimental Considerations 

This project required experimental work so that results can be compared to the theoretical 

methods available. One of the most important facets of the experiments is to find a way to 

determine the discharge of the main channel and the side weir accurately. The other 

requirement is that the change in momentum over the length of the weir needs to be 

determined.  

With these considerations in mind a suitable experimental set up needs to be considered. As 

there is no flume capable of side weir experimentation at the university, an appropriate 

experiment needed to be designed and constructed. With the arrangement of the experiment 

such that:  

 Weir discharge can be contained 

 Weir lengths can be changed 

 Velocities can be measured with precision at set locations 

 Enough length in the flume to ensure minimal turbulence 

 Water height can be adjusted for longer weirs 

 Discharge can be measured for the entire flume 
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CHAPTER 4 

 

4. EXPERIMENTAL TECHNIQUES 

4.1 Initial Designs 

The first stage of the project was to construct a flume capable of side weir experimentation 

as the university does not have anything suitable. Preliminary thoughts on the matter 

involved connecting a flume onto the reticulation system in the universities hydraulics 

laboratory. The idea was that this would allow an easy method of dealing with the water 

discharging from the side weir. Constructing an entirely new flume also had the added 

advantage of being able to install a false side which would allow for an efficient means of 

changing the side weir length. 

It was thought that this would be the best way to approach the problem as it provided 

simple and efficient way of adjusting for different weir lengths. A major problem with this 

approach however, was going to be measuring velocities in a precise manner. This is 

critical in calculating a velocity profile at either end of the side weir. 
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As this approach would also require a considerable amount of construction and would be 

difficult in terms of taking measurements it was deemed that a new approach should be 

sought.   
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4.2 Experimental Flume 

After some thought it was decided that the broad flume in the hydraulics laboratory could 

be used. This would involve constructing a narrow flume to sit in the broad flume and 

devising a way to contain all the flow within the narrow flume. The broad flume was 

appealing for several reasons: 

 No concerns of containing side weir flow 

 Smaller amount of construction needed 

 Velocities could be precisely measured using the ADV which is primarily 

attached to the broad flume 

 More cost efficient 

 Flow meter is attached to the broad flumes main pump 

For the above reasons it was decided to run the experiments within the broad flume as it 

was more than adequate for what was required.  

 

4.2.1 Flume Design 

The design for the narrow flume needed to be reasonably similar to that of the initial 

design in that it needed a false side or some other means of changing the weir length 

without having to move the entire flume. As the weir needed to be a sharp crested weir it 

also needed to be made of a material that could be milled, such as Perspex or steel.  
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Initially it was thought that Perspex would be the best option and it would be ideal 

if the entire flume was made from it, so that no changes in roughness occurred. After a 

costing of this it was quickly decided this would not be appropriate for this projects budget, 

seeing as one sheet of Perspex costs roughly $800.00 and two sheets would be required to 

have a flume the length of the broad flume.  

Following discussions with workshop staff it was discovered that a square section 

of 10mm Perspex was available. This section was 300 x 300 mm, internal dimension, 

which was ideal to fit within the flume; the only issue was its length. As it was only a 2.4 

meter long section, concerns were raised about the flow not being steady enough as it 

passed the side weir, which had the potential to cause erroneous results. It was decided that 

this section should be adequate so it was cut into a 300 x 200 mm flume, with the base 

being 300 mm.  

To allow for different weirs to be installed an 800 mm slot was cut out 400 mm 

from the end of the flume. Initially it was hoped this could be a tongue and grove joint to 

prevent leakage and cause minimal disturbance to the water, however workshop staff 

advised that this would be difficult to mill. Therefore it was decided that the piece would be 

cut as a tight fit and a piece of Perspex secured to the outside of the channel to hold this 

section in place with a light silicon seal to keep it water tight (refer figure 4.1).  
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Figure 4-1 – Weir piece which can be removed to allow weir resizing 

 

4.2.2 Controlling the Flow 

The major issue with having a narrow flume sit inside the broad flume is that all the 

water from the intake needs to be directed down the narrow flume. An additional problem 

was that the side weir was at the same height as the broad flumes sides, so to achieve side 

weir flow water needed to be flowing at a height greater than the broad channels sides.  

 

 



Experimental Flume ROWLINGS (2010) 

40 

This was overcome by placing a box over the intake which increased the head of the 

channel (refer figure 4.2) and placing a weir at the end of the narrow flume to back the 

water up and create a subcritical flow regime (refer figure 4.3). Three sharp crested weirs 

were milled at heights of 100, 125 and 150 mm; this ensures that as the side weir length is 

increased the depth of the flow in the channel can be increased to create adequate flow over 

the side weir.  

 

Figure 4-2 – Intake box to ensure flow is contained in narrow flume 
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Figure 4-3 – Downstream weir to increase water level 

 

As this box over the intake increased the total head of the water, a significant 

amount of energy is added to the water which is not needed. This energy causes big 

disturbance which creates a more turbulent flow. The added turbulence means that the 

water does not eject cleanly from the weir and actually clings to the outer face of the 

channel. This is demonstrated in figure 4.4 where it can be seen that the flow is clinging to 

outer channel face at the downstream end.   
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Figure 4-4 – Weir flow clinging to outer channel face 

 

4.2.3 Stilling the Flow 

To prevent this disturbance to the flow more intensive stilling measures were put in 

place. These measures needed to be quite extensive as the development length is rather 

short.  The measures put in place include: 

 Perspex Baffles 

 5 layers of fly screen 

 2 weirs and a sluice gate (weir, sluice gate, weir) 

 17 x 10mm holes in the box over the intake 



Experimental Flume ROWLINGS (2010) 

43 

All of these measures where contained in the first meter of flow and contributed to 

getting the flow to a steadier rate (refer figure 4.5). It could be seen that it was working 

because the water was cleanly ejecting from the side weir and velocity readings being taken 

were at a far more constant rate (refer figure 4.6). This can be seen when comparing figure 

4.4 and 4.6 

 

 

Figure 4-5 – Means of steadying the flow 
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Figure 4-6 – Weir flow ejecting cleanly 
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4.3 Measurement Techniques 

4.3.1 Acoustic Doppler Velocimeter 

The Acoustic Doppler Velocimeter, or ADV, is a device used to measure point velocities 

within an open channel flow environment. The ADV can be used in conjunction with a 2 or 

3 arm probe configuration. For these experiments the probe with the 3 arms was used, as it 

measures velocity in the three component directions, x, y, and z (refer figure 4.7).  

 

Figure 4-7 – ADV probe 

 

 The ADV measures velocities by examining a sample volume, the size of which the 

user is able to select. It then emits out a sound wave of a frequency which is also able to be 
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elected by the user. The movement of this sound wave over the sample volume in the 

component directions, x, y and z is then converted to component velocities. Users are also 

able to select how many samples are to be taken. 

 In this set of experiments a 9 mm sample volume was used in conjunction with a 

1Hz frequency. It was decided that 60 samples would be adequate to find the average of 

each component in the case of slight variations in the velocities. This meant that velocity 

readings took one minute to gather at each point   

Using the ADV allows point velocities to be measured which will allow point 

momentum losses to be calculated across the length of the weir. This will demonstrate the 

fact that there is a net momentum change.   

 

4.3.2 Angle of Discharge 

To measure the angle of discharge several photographs will be taken of the side 

weir flow in plan view. These photographs are then imported into a drafting package such 

as AutoCAD 2010. Using such a package will then enable the angle of discharge to be 

determined to a higher precision than would be found by measuring it in the laboratory. 

This will be an important facet as the changing angle of the flow will be an interesting 

characteristic to compare between the discrete weir and the longer weir.  
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4.3.3 Flow Rate 

The discharge, or flow rate, will be known for the flow at the upstream end of the 

side weir. This will be determined using the flow meter which is attached to the pump 

outlet. Knowing this flow rate will provide a way a validating the velocities being measured 

by the ADV.  

 

4.3.4 Water Depth 

Water depth has been measured in a rather crude form. Metal rulers were used to 

take the heights upstream and downstream of the weir. Initially it was hoped to take a water 

profile using a needle gauge, however setting this up would have taken some time. So it 

was decided because of time restrictions to use a simpler approach that would provide the 

essential information.   
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CHAPTER 5 

 

5. EXPERIMENTAL RESULTS 

5.1 Discrete Side Weir 

The discrete side weir was the first to be tested. It was a 50 mm slot the with the weir crest 

sitting 100 mm above the channel bed. The purpose of testing this weir was to demonstrate 

the side weir characteristics, and seeing if these remained constant across the length of the 

weir.  

Data from experiments has been analysed using a Matlab script, which is contained in 

Appendix C, and examines several aspects of the side weir flow, mainly: 

 Velocity vectors 

 Momentum change over the weir, longitudinal and lateral 

 Velocity contour plot and extrapolation 

 Mean section velocity 

 Angle of discharge 

 Calculated side weir discharge 

 Flow conditions (Reynolds number, Froude number) 
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The main interest in this is examining the side weir discharge in comparison to theoretical 

methods. It is also important to confirm that there is a momentum change as water flows 

past the side weir.  

 

5.1.1 Velocity Vectors 

Velocity vectors have been determined using Matlab‟s quiver function. This 

function requires inputs of the position of the vector in x, y and z components and the 

velocity vector in x, y, and z components. The output of this function is in the form of a 3D 

graph such as figure 5.1, which is the velocity vector plot for the discrete side weir. 

These vectors are a graphical representation of the data measured using the ADV, 

plotted in the location of measurement. Velocities were measured at three depths and across 

the channel in ten mm increment. Sixty sample velocities were taken for each component at 

each point; these were averaged to calculate x, y and z velocity components for each point. 

 This vector plot is used to validate the data that was measured and ensure that no 

outliers are in the data set, which is evident from this plot. If the plot above is rotated to so 

that it is a view of the x-y axis it can be seen that the vectors on the 70, 80 and 90 mm 

layers are almost precisely overlaid.  

 It is interesting to note the divergence of flow between 350 and 400 mm on the x-

axis at 0 mm on the y-axis, this x-position being on the weir side of the channel and the y 

position being upstream of the weir.  This is shows the flow starting to break away as some 

lateral momentum is clearly added to the water. At the same x position but at 90 mm on the 
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y-axis, immediately downstream of the weir, the flow has a significant vertical component. 

This can be explained as the flow trying to revert back to an equilibrium flow after a 

component of water was lost over the side weir.  

 

 

Figure 5-1 – Discrete Weir Velocity Vectors 
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5.1.2 Momentum Change 

The change in momentum has been considered by examining point momentums 

upstream and downstream of the weir and then calculating the difference between them. 

For example if considering a point at 200 mm along the x-axis, 0 mm along the y-axis and 

90 mm along the z-axis; then it would be related the same point but at 90 mm along the y-

axis. This treats the flow as stream lines and examines how the momentums of these change 

over the length of the weir.  

 Momentum at a point has been calculated using equation 5.1, which gives the 

momentum in terms of a force (N). The value calculated can then be used to find the 

difference between two points on the same streamline. This has been done to calculate 

changes in momentum in the lateral and longitudinal flow.  

 

                  Eq 5-1 

 

 Figure 5.2 shows these longitudinal momentum changes for the points in each layer 

of the z-axis and also has averages of the momentum changes for those layers. No clear 

trend is evident among the layers, however if examined as a whole it does seem to trend 

upward with progression to the right. This indicates that momentum is being lost, however 

on the weir side of the channel there is a slight momentum gain. A gain at this point could 

be caused by the relatively large body of water trying to fill the space left by the flow that 

ejected out the side weir.  
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 The average for the channel is a loss of momentum which supports the argument 

that Chow (1959) was wrong to drop the term which contained the change in discharge. 

However, because of the erratic nature of the graph it is thought to be inconclusive.  

 

Figure 5-2 – Longitudinal Change in Momentum for Discrete Weir  

 

 Figure 5.3 shows the lateral momentum change over the side weir. This was plotted 

by calculating the momentum change in the x direction between the upstream and 

downstream points. It shows clearly that there is a significant amount of momentum being 

gained near the side weir, in proportion to the other side of the channel. The average 

change in momentum for the channel was an increase in momentum in the lateral direction.  
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Figure 5-3 – Lateral Change in Momentum for Discrete Side Weir 

 

5.1.3 Velocity Contours 

It was necessary to create a contour plot of the velocity for two reasons: 

 Velocities on the very edges of the flume couldn‟t be measured 

 Measuring the entire depth was too time consuming 

The plot is effective as it gives a visual profile of how the velocity acts across the 

channel and is also able to extrapolate velocities for uncalculated regions. Having a full 

velocity profile is important for the ensuing calculations.  
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Figure‟s 5.4 and 5.5 show the distribution of velocities at sections upstream and 

downstream of the side weir. This is an important factor as the uneven distribution of 

velocities dictates how hydraulic theory can be applied when analysing the problem.  

These plots were achieved by creating a mesh grid which extrapolated data from the 

points which already had experimental velocities assigned to them. This allowed a full 

section velocity to be calculated with reasonable accuracy. The velocities were calculated 

on a 2.5 mm grid, which means that velocities are known across the entire section at 2.5 

mm increments. The experimental velocities used were the y components as the change in 

this component indicates exactly how much flow has been lost. 

A reason that these plots may be slightly inaccurate is that the velocity above the 

highest measured point in the flow, which was at 90 mm in the z position, will actually 

decrease. It has been shown that the free surface velocity in open channel flow is in fact 

less than the velocity of the water just below the surface (Chadwick et al., 2004). These 

points along the water surface could not be measured with the 3 dimensional probes as the 

entire probe would not be submerged; however with the right probe configuration these free 

surface velocities could be measured with the 2-dimensional one.  
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Figure 5-4 – Upstream Velocity Contour/ Surface Plot 
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Figure 5-5 – Downstream Velocity Contour/ Surface Plot 
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5.1.4 Mean Section Velocity 

The mean section velocity is important as continuity requires the average velocity 

be used in conjunction with area and discharge. Using the grid data formulated to produce 

the contour plots, the mean section velocity could be calculated. This was done by taking 

the mean of the entire array which returned mean values for each column of velocities, then 

by taking the mean of these values the mean section velocity was found.  

 This process is scripted into the Matlab program. For the section upstream of the 

weir a velocity of .0542 m/s was calculated and downstream a velocity of .0563 m/s was 

found. It was unexpected that the downstream velocity is greater than the upstream, this 

could be an error of measurement, or an error in the extrapolation (i.e. needed more 

velocity points). 

 

5.1.5 Angle of Discharge 

The angle of discharge is an important characteristic of the side weir problem. It has 

a direct relationship with the longitudinal velocity and can be used in conjunction with that 

to determine the velocity of the water ejecting from the weir.  

 Measuring the angle of the discharge of the discrete weir shows clearly that it is not 

a constant value. With the angle upstream 31 degrees from perpendicular and the 

downstream angle 8 degrees anti-clockwise from perpendicular. This implies that the angle 

is decreasing along the weir which means that there is more lateral momentum acting on 

the flow the further downstream the weir that is being examined. This means that discharge 
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is not a constant for the entire length of the weir and is in fact increasing with each step 

downstream.   

 

  

 

 

 

 

 

  

 

5.1.6 Side Weir Discharge 

There are two ways of measuring the side weir discharge, either using the difference 

in discharges calculated from the mean section velocities or, by using the flow rate 

determined using the flow meter which is on the outlet of the pump and the angle of 

discharge. Using both will serve as a validation and highlight any experimental error.  

Figure 5-6 – Discrete Weir Angle of Discharge 
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 Both of these discharges are calculated in the Matlab script. The discharge based on 

the velocity profiles is calculated by using the mean section velocities to find flow rates 

upstream and downstream of the weir. These flow rates are then subtracted from one 

another to give a discharge for the side weir. The discharge was calculated by the Matlab 

script as being -.00013 m
3
/s, this is obviously wrong as this implies water is being added to 

the channel which is clearly not the case.  

The Matlab program is calculating this value correctly as the downstream velocity is 

higher than upstream, which would correlate to the resulting side weir discharge. The most 

likely cause for this error is either an experimental error or an error relating to the 

extrapolation of the measured velocity points. It is most likely that the measured points did 

not extend deep enough into the water profile, which has not allowed the exact shape of 

profile to be calculated.  

By using the angle of discharge the weir discharge can also be calculated. This 

method is still going to be unreliable as the mean section velocity downstream of the weir 

will still need to be used.  If the error is contained in the downstream velocity then it will 

also be carried into this discharge calculation.  

The upstream velocity for this calculation was found using the channels flow meter, 

which for the side weir experiments was reading 140 L/min. This was first converted to 

litres per second and then divided by the upstream area to give a velocity of .0654 m/s 

which is greater than the calculated mean section velocity of .0537 m/s. The value of .0654 

m/s this can be used in conjunction with the downstream velocity of .0563 m/s and the 

angle of discharge which taken at an average is 23 degrees.  
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Using Eq 5-2 a velocity of .0656 m/s was calculated for the velocity of the side weir 

flow. This can be converted to a discharge by using the height of flow over the weir, which 

was 119 mm upstream and 122 mm downstream. The calculated discharge was found to be 

.000395 m
3
/sec, which is equivalent to .395 L/sec. This answer seems reasonable for the 50 

mm discrete weir however because of uncertainty surrounding the mean section velocities it 

is hard to be sure.  

                   Eq 5-2 

 

5.1.7 Flow Conditions 

It is important to characterise the flow conditions as it will determine how the flow is 

considered by certain theoretical applications. The two main considerations are the 

Reynolds number, which classifies the mixing of the streamlines, and the Froude number, 

which indicates the flow regime.  

 For the discrete weir a Reynolds number of 1720 was calculated. This means the 

flow is turbulent according to the classification that flow with a Reynolds number of greater 

than 1000 is turbulent. 

The flow regime has been classified based on the Froude number. It was found that a 

Froude number of .061 existed upstream of the weir which indicates flow is subcritical. 

This means that the normal depth of flow is above the critical depth, and that the velocity is 

less than celerity. Knowing this means that the experiment was run under the right 

conditions as supercritical and critical flows fall outside the scope of this project.   
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5.2 Long Side Weir 

The long side weir was the first to be tested. It was a 300 millimeter slot the with the weir 

crest sitting 100 millimeters above the channel bed. The purpose of testing this weir was to 

make a comparison with the discrete side weir, and examine it with reference to the 

theoretical analysis as the channel width is the constraining factor of the side weir length in 

many of the empirical approaches.  

Data from experiments has been analysed using a Matlab script, which is contained in 

Appendix C, and examines the same aspects of side weir flow looked at in the discrete weir 

experiments. 

5.2.1 Velocity Vectors 

The velocity was measured for the long weir in the same manner as the discrete 

weir; measurements were taken at 20 mm increments in the x direction, 10 mm increments 

in the z direction and 140 mm increments in the y direction. The x position spanned the 

entire measurable width of the channel, while the z position started from when the probe 

was just below the water surface to a point 20 mm below this. Measurements in the y 

direction started at a point just upstream of the weir, then mid weir, and finished with 

measurements downstream of the weir.  

 Figure 5.7 is a plot of the velocity vectors for the long weir experiment. As with the 

discrete weir the velocities are plotted at the point where measurements were taken at in the 

flume. This figure clearly shows a divergence of roughly half the flow, this was expected as 
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the weir is the same length as the channel width. Seeing this would imply that the discharge 

of the side weir will be around half of the upstream discharge.  

 

Figure 5-7 – Long Weir Velocity Vectors 

 

 In figure 5.7 there is a much larger z component to the velocities near the side weir. 

This is due to the fact that much more water is being drawn off over the side weir, which 

would result in a momentum gain in the z direction as well.   
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5.2.2 Momentum Change 

Momentum change has been calculated using the same method outlined in section 

5.1.2. The following figures are in the same format as those presented in section 5.1.2, and 

even though velocities were measure in the middle of the weir these have been considered. 

 Figure 5.8 shows the longitudinal momentum change. It is interesting to note that in 

comparison with Figure 5.2 that the long weir momentum change has a clear trend which is 

followed by all layers.   

 

Figure 5-8 – Longitudinal Change in Momentum for Long Weir 

 

  In Figure 5.8 the trend is following a clear path, which was to be expected. This is 

vastly different from figure 5.2 which is very erratic in contrast. The momentum change for 

the long weir is expected to be more clearly defined though, as the change is far more 
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prevalent due to the fact more water is discharging via the side weir. It is interesting to note 

that the greatest change does not occur to the far right of the channel where the weir is but 

is in fact offset to the left a little bit. This could be viewed as conformation that the discrete 

weir change longitudinal momentum plot (Figure 5.2) is accurate as it had a similar trend, 

although not as clearly defined. 

  Figure 5.9 shows the lateral momentum change over the length of the long side 

weir. This follows the same trend as seen in Figure 5.3, but with a greater magnitude. The 

bottom layer of measured point here is not experiencing the gains seen in the other layers. 

This would imply that the deeper the measurements are taken the less lateral momentum 

gain would occur. This makes sense as the side weir location means that only the top 

portion of flow is dramatically affected. That would imply that velocity measurements 

taken closer to the channel base would result in momentum gain approaching zero in the x-

direction.  
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Figure 5-9 – Lateral Change in Momentum for Long Weir  

 

 The results for the change in momentum for the long weir are particularly 

conclusive. Especially for the longitudinal momentum loss, this shows that if momentum 

isn‟t being added to the water it does not mean that there is no momentum change.  

 

5.2.3 Velocity Contours 

The contour plots for the long side weir were compiled using the same method 

outlined in section 5.1.3. It can be seen that these contours have predicted at negative 

velocity in the bottom right hand corner. This is unlikely, particularly for the upstream 

velocity profile. What has probably occurred is that the measured velocities did not extend 
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deep enough and the velocity profile is not a true representation how the velocities change 

throughout the section.  

This means that if the velocity appears to be dropping off quite significantly in the 

top section of the channel, where the velocity measurements were taken, then the 

extrapolation will conform to these rates of change. It is most likely that this has resulted in 

the negative velocities.  

Apart from this discrepancy with the rate of change over the channel cross section, 

the contours seem to be plausible. There is a distinct change in maximum velocity between 

Figures 5.10 and Figures 5.12; this is to be expected with much greater discharges 

occurring with the long side weir.  

These plots also show how the velocity magnitude changes across the channel 

section before during and after the side weir. A shift is noticeable as the velocity goes from 

being greatest in the centre of the channel upstream, then more concentrated to the right of 

the channel at the mid weir section and heavily skewed to the left of channel downstream of 

the weir.  
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Figure 5-10 – Upstream Velocity Contour/ Surface Plot 
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Figure 5-11 – Mid Weir Velocity Contour/ Surface Plot 

 

 

 

  



Long Side Weir ROWLINGS (2010) 

69 

 

 

 

 

Figure 5-12 – Downstream Velocity Contour/ Surface Plot 
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5.2.4 Mean Section Velocity 

Mean section velocity is calculated by the Matlab script, as mentioned in section 

5.1.4. The mean section velocities for each cross section are outlined in Table 5.1 below.  

Measurement Point 
Mean Section 

Velocity (m/s) 

Upstream of Weir 0.0721 

Mid Weir 0.0622 

Downstream of Weir 0.0163 
Table 5-1 – Long Weir Mean Section Velocities 

 

 Table 5.1 shows that the velocities are decreasing with progression down the weir. 

This is the expected result and seems far more accurate than those for the discrete weir. It is 

interesting that a significant proportion of the velocity upstream remains at the mid weir 

point. This would indicate that the velocity loses momentum at an exponential rate.  

 

5.2.5 Angle of Discharge 

As with the discrete weir, the angle of discharge is not constant. In fact it has a 

greater variance across the length of the long side weir. This was to be expected though as 

there is a longitudinal momentum loss and lateral momentum gain, which results in the 

increased angle of discharge.  

 The measured angles can be seen in Figure 5.13 below. It should be noted that the 

flow had a tendency to cling to the outer wall of the channel in this experiment. The most 

likely cause of this is a chip out of the downstream corner of the side weir. This weir was 
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not milled as precisely as was hoped and as such the results have probably suffered. Time 

constraints meant that another test could not be performed and as such the angle may in fact 

be greater than was measured at the downstream end. 

 

Figure 5-13 – Long Weir Angle of Discharge 
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5.2.6 Side Weir Discharge 

The side weir discharge has again been calculated using two methods as was done 

with the discrete weir. A discharge of .0020 m
3
/sec was calculated using the difference in 

the upstream and downstream discharges which were found by using the mean section 

velocities.  Using the flow meter discharge and the angle of discharge a side weir discharge 

of .0020 m
3
/sec was calculated. As these values match up it can be assumed that this data is 

reliable enough to be compared with the theoretical methods.  

There is still the possibility of error in these results as the flow meter was 

fluctuating from 192 L/min to 200 L/min. 195 L/min was used in calculations as it was 

deemed to sit around this value for the majority of the experiments.  It is likely that an error 

is contained in the mean section velocity calculation, which would be carried through to the 

side weir discharge calculation.  

 

5.2.7 Flow Conditions 

For the long weir a Reynolds number of 2397 was calculated. This means the flow 

is turbulent according to the classification of flow, in an open channel with a Reynolds 

number of greater than 1000, is turbulent.  

 The flow regime has been classified based on the Froude number. It was found that 

a Froude number of .0853 existed upstream of the weir which indicates flow is subcritical. 

This means that the normal depth of flow is above the critical depth, and that the velocity is 
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less than celerity. This means that the experiment was run under the right conditions as 

supercritical and critical flows fall outside the scope of this project.   
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5.3 Results Discussion 

From the results obtained an opinion has been formed about the experiments and their 

accuracy.  It is the general line of thought that they have not been as successful as was 

hoped. The main problem has lain in the precision to which they have been conducted; with 

short cuts taken to save time having a big effect on accuracy.  

The biggest problem with the results has been the mean section velocities. Having a 

velocity profile it was hoped that the change in velocity over the length of the side weir 

would be easily determinable. However, it was found that because the velocity readings 

were not taken to a sufficient depth, the rate of change of the velocity was most likely not 

properly obtained. This has resulted in what is believed to be an over estimate of the mean 

section velocity, as was seen with the downstream mean section velocity in the discrete 

weir experiments.  

Another possibility is that an error has been contained in the positioning of the ADV. The 

ADV has an offset distance of about 10 mm when reading velocities, this was not taken 

into account when it was being positioned and so there is a possibility that the velocities 

recorded, particularly the downstream readings, actually having a component of the reading 

contained in the weir section. This would lead to skewed and inaccurate results.  

The error could also lie in the fact that the water was not still enough for the experiments. 

Any large variations in the flow could potentially skew the data set, which would lead to 

errors. In saying this the velocities did seem reasonably consistent, and aligned with 

expectations.  
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Another issue that arose during the experimentation process was manufactured parts that 

were not of a high enough quality. The main instance of this was with the long weir piece, 

which had chips in the corner of the weir crest and it was not milled to an even point across 

the length. It is thought that this is the main cause of the flow clinging to the outer edge of 

the channel in the long weir experiments. This would have compromised the angle of 

discharge measurement. 

As the discharges calculated in the discrete weir experiments do not align, there is no way 

of validating the results and as they need to be used with caution. The discharges calculated 

for the long weir experiment do match but as there are thought to be errors in the process 

these also need to be used carefully.  

The experiments would have benefited from a complete depth profile being taken at the 

velocity cross section and of the side weir. This would have allowed for a more complete 

comparison with the direct step method proposed by Chow (1959) and with Muslu (2001). 

It was not imperative however it would have acted as a form of validation.  

One or all of these issues discussed may have impacted on the experimental results; 

however one positive has arisen from the experiments. The momentum change was 

quantifiable over the length of the weir and as such it can be seen that Chow (1959) was 

wrong to drop the change in discharge from the derivation of the momentum equation when 

examining lateral outflow.  
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CHAPTER 6 

 

6.  THEORETICAL ANALYSIS 

6.1 Lateral Flow Model 

As was mentioned in chapter 3, an empirical method of solution has been developed by 

Ramamurthy and Carballada (1980). It is thought that this is one of the more accurate 

empirical methods available as it is based in the theory of free efflux which was presented 

by McNown and Hsu (1951). This section will examine a model that was constructed using 

the theory presented in lateral flow model, which was outlined in chapter 3. The results of 

this will be used comparatively with the experimental results.  

The model was constructed in a Microsoft Excel spreadsheet which is shown in Appendix 

D. It used the same set of circumstances that were present in the experiments and utilised 

some of the data that was gained to ensure the circumstances being examined were the 

same. Both the discrete and long weir cases were examined as a way of determining the 

range of situations which the theory is applicable for.   

Using this method with the same conditions that were present in the discrete and long weir 

experiments yielded discharges for the side weir. For the discrete weir the model predicted 
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a discharge of .233 L/sec, and for the long weir a discharge of 1.308 L/sec was calculated. 

These results have been tabulated in Table 6.1 below, with the results from the experiments 

included as a means of comparison.  

Method Discharge (L/sec) 

Experiment (Long Weir) Mean Section 

Velocities 

2.00 

Experiment (Long Weir) Angle of 

Discharge 

2.00 

Lateral Flow Model (Long Weir) 1.308 

Experiment (Discrete Weir) Mean Section 

Velocities 

-.133 

Experiment (Discrete Weir) Angle of 

Discharge 

.395 

Lateral Flow Model (Discrete Weir) .233 
Table 6-1 - Experimental Results and Lateral Flow Model Comparison 
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6.2 Lateral Inflow vs. Lateral Outflow 

Chow (1959) presented theory on lateral inflow and outflow, which has been examined in 

chapter 3. As was mentioned there this theory is contentious, so both the inflow and 

outflow equations have been examined. The thought is that the inflow equation should hold 

true for the outflow case, as there is momentum being lost in the outflow case which would 

just result in a change of sign not ignoring the change in discharge term completely.  

Therefore both the inflow and outflow equations were examined using the same parameters 

as the experimental set up. Both the discrete and long weir cases were examined. For the 

discrete weir a discharge of .330 L/sec was calculated using the inflow equation and .337 

L/sec using the outflow equation. As this solution uses a direct step technique a plot of the 

weir water surface profile as calculated by both equations was also possible; this is shown 

in Figure 6.1.  

The water surface profile plot is interesting as the inflow equation predicts a greater 

difference in the upstream and downstream water heights, which coincides with the 

measurements taken during the experimental process, with an upstream height of 119 mm 

and downstream height of 122 mm being recorded. This graph would imply that the inflow 

equation has the more accurate prediction based on these facts alone.  
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Figure 6-1 – Discrete Weir Water Surface Profile 

 

For the long weir situation this method calculated a discharge of 1.669 L/sec using the 

inflow equation and 1.665 L/sec using the outflow equation. This shows that there is not a 

great deal of difference in the methods, however there is the possibility of erroneous results. 

The possible errors are in the bed slope, which was calculated based on experimental data 

and not measured, or the water heights which were not measure by an accurate method.  

As with the discrete weir, a plot of the weir water surface profile was compiled to show the 

differences in the two methods. This is shown in Figure 6.2 below, and it can be seen that 

the inflow equation predicts a higher water surface profile in opposition to that of Figure 

6.1 where it predicted a smaller one.  
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Figure 6-2 –Long Weir Water Surface Profile 

  

Table 6.2 below, summarises the results of this method with comparisons to the 

experimental results. It is interesting to see that the inflow method calculates a higher 

discharge in one instance but lower in the other. The spreadsheets for this analysis are 

contained in Appendix D.  
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Method Discharge (L/sec) 

Experiment (Long Weir) Mean Section 

Velocities 

2.00 

Experiment (Long Weir) Angle of 

Discharge 

2.00 

Inflow Method (Long Weir) 1.669 

Outflow Method (Long Weir) 1.665 

Experiment (Discrete Weir) Mean Section 

Velocities 

-.133 

Experiment (Discrete Weir) Angle of 

Discharge 

.395 

Inflow Method (Discrete Weir) .330 

Outflow Method (Discrete Weir) .337 
Table 6-2 – Experimental Results and Lateral Flow Model Comparison 
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6.3 Numerical Analysis 

Muslu (2001) uses a numerical approach to model the side weir problem. This method is 

examines the coefficient of discharge as an entity which changes across the length of the 

weir. To do this the changes in the water surface profile across the weir are taken into 

account as one of the major determining factors. As limited water surface profile data was 

taken this means that a complete comparison with this method is not possible.  

This method is presented in a confusing manner and not much sense could be made of it. A 

summary of what could be determined was shown in chapter 3 which included a table of 

comparison of some existing methods of solution. The solution method looked promising 

however it could not be worked to get results which match up with the experimental data 

and the other methods. With a more thorough examination this method would be useful, 

however time restrictions meant that it could unfortunately not be used.  
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6.4 Results Discussion 

The theoretical analysis was not as comprehensive as was originally hoped for however it 

was not completely unfruitful. The techniques that were examined shed some light on the 

side weir problem.  

Ramamurthy and Carballada (1980) who presented the lateral flow model have established 

a technique which is good as a general solution. It is easy to use and computes values for 

side weir discharge with little difficulty, however in comparison with the experimental 

results it seems to be underestimating the discharge. This is undesirable as any designs 

based on this method will be potentially under designed.  

Chow (1959) who formulated the lateral flow equations has a technique which is more 

mathematically sound than Ramamurthy and Carballada (1989) Lateral Flow Model. There 

was some contention surrounding the formulation of the outflow equation, and based on the 

results of the experiments it has been determined that the inflow equation should be used 

for the outflow equation as there is clearly a change in discharge.  There is no reason 

warranting the dQ term being dropped in the derivation of the outflow equation and as such 

the inflow and outflow equations should be the same.  

It can be seen from the results of the theoretical analysis that the inflow and outflow 

equations produce results in a very similar range. It is important to note that having the dQ 

term present in the derivation of the inflow equation will mean that it is going to be the 

more accurate method of solution. This is why it is recommended in as the equation to be 

used when solving side weir problems.  
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The results for the lateral flow equations do not align precisely with the experimental 

values.  This can possibly be attributed to inaccuracy in the experimental process which led 

to miscalculated side weir discharges.  

Muslu (2001) Numerical Analysis for Lateral Weir Flow seemed to be a promising piece of 

work, however the structure of the solution method is not made clear. It appeared to be 

heavily reliant on the changing heights throughout the channel, of which not enough 

experimental data was recorded. This meant that comparison to this method would be 

difficult. 

 One point of interest is the comparison Muslu (2001) made between many of the existing 

calculation methods. It highlights the difference in answers gained by techniques which are 

supposed to calculate exactly the same thing. The summary showed how using the same 

weir height, upstream water height and Froude number, gave a vast array of results using 

the different theoretical methods.  

The results have been very inconclusive as no real comparisons could be made with the 

experimental data because there were too many errors. This means it is undeterminable as 

to which method is best. Assuming that the experimental discharge values are in the right 

order it would have to be said the Chow (1959) has a reasonably good solution. This is 

based on the fact that it is simple and easy to use with very few limitations.  
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CHAPTER 7 

 

7. CONCLUSION 

 

Side weirs have been the focus of extensive research in the past; however there is still no 

agreeance on what the best solution is. Each researcher who delves into the topic seems to 

formulate their own opinion on what the most important aspects of side weir flow are. This 

has caused a variety of solution techniques to be available, of which none seem to come to 

similar figures as was shown by Muslu (2001).  

In the initially stages of this research the opinion was held that the angle of discharge was 

the defining parameter. This is still the opinion held however no conclusive evidence could 

be found to support this fact. The experiments were error ridden in part and thus made 

comparisons with the theoretical data practically impossible.  

The need for precise and rigorous measurement technique in the experimental process has 

been highlighted. This is shown by the fact that when trying to extrapolate data to 

determine a mean section velocity, the water surface was predicted as having the highest 
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magnitude velocity; which we know in fact does not occur. Errors such as this could have 

been overcome by collecting more data points.  

It was shown however that there is a distinct change in momentum over the length of the 

side weir. This evidence shows that Chow (1951) statement about there being no 

momentum being added to the water in the outflow case is correct. This still does not 

justify dropping the term containing the change in flow as water is being lost from the 

channel. This means that momentum is being lost over the course of the weir, so it is 

concluded that a change of sign in the dQ is all that would be required. Therefore it is the 

held opinion that the inflow equation presented by Chow (1951) is more suitable for 

solving side weir problems.  

All of the theoretical approaches which were examined provided inconclusive findings as to 

which is the most appropriate method. Chow (1951) provided a technique which is simple 

and produces results similar to those obtained from the experiments. Although the results 

obtained from the Lateral flow model are still in the same vicinity as the experimental 

results they are not as close as Chows results.  

Table 3.1, presented by Muslu (2001) best summarises a majority of the theoretical 

approaches to side weir flow. This shows the number of methods which have been 

formulated and the distinct variance in solution method and results obtained. All of the 

results are similar but each method is different in some way, and as such not all that robust. 

None of these methods seem to provide a clear solution to the problem; however 

Ramamurthy and Carballada (1980) have provided a method which is workable and 

reasonably robust.  
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The theoretical approaches are all so similar and close that further research would be 

required to acquire any conclusive findings. It is recommended that computer modeling 

using a program such a fluent may give clues as to what might be the correct solution 

technique. The following are recommended in any future theoretical investigations that take 

place: 

 Comparisons need to be made with accurate experimental data. 

 In the instance where experimental data is inconclusive or unavailable, a 

highly precise computer modeling program such as fluent could be 

employed as a means of comparison.  

 Examining the effects of a wider range of parameters. 

Further work is also required in obtaining experimental data. This would allow a validation 

of current data, as the experimental data gained in the course of this project is deemed to be 

erroneous and as such unusable to an extent. Future experimental work would need to be 

more rigorous and performed to a higher degree of accuracy. Recommendations for further 

experimental work include: 

 Measure full depth of channel to ensure the rate at which the velocity 

changes over the channel section is accurately obtained.  

 Measure water depth profile to a high precision at cross sections where 

velocities are calculated. 

 Use a longer development length to ensure flow is still when the side weir is 

reached. 

 Ensure manufacturing is performed to high standard, especially when weir 

pieces are milled. Any chips out of the sharp crest will compromise results.  
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This dissertation has examined methods of solution for the side weir problem based on 

theory found during a literature review. An experimental flume was constructed for the 

specific purpose of side weir experimentation. The experiments allowed the measurement 

of velocity profiles, side weir discharge and discharge angle; however it did not allow 

accurate enough means of water depth to be taken. This is in part due to time restrictions as 

setting up a means of doing this would have compromised the completion of the 

dissertation.   

An attempt has also been made to validate the theory available, however incomplete and 

inaccurate data from the experimental work has hindered this process. As time was not 

permitting no attempt was made to formulate and validate a more complete method of 

solution. This means of the objectives set in Appendix A the four main points have been 

met, with objectives 5 and 6 not being attempted due to time restrictions and inconclusive 

results    
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DEFINITION SKETCHES 
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Source: Muslu (2001)   

 

Figure 3.8-2 – Definition Sketch End View   

 Source: Muslu (2001)   

Figure 3.8-1 – Definition Sketch Plan and Elevation   
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Appendix C 

 

 

MATLAB CODE 
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Example Data File Read by Script 

File name : 200_0_110 

Velocity 

Sample,Time,Event Counter,0,, 

1,1.500,0,-0.210,-7.280,0.070 

2,2.500,0,-0.190,-6.870,-0.370 

3,3.500,0,-0.230,-7.660,-0.420 

4,4.500,0,-0.110,-7.780,-0.110 

5,5.500,0,-0.300,-8.000,-0.200 

6,6.500,0,0.430,-7.750,-0.200 

7,7.500,0,0.070,-8.380,-0.270 

8,8.500,0,0.110,-8.080,0.140 

9,9.500,0,0.300,-8.510,-0.390 

10,10.500,0,0.160,-7.530,-0.050 

11,11.500,0,-0.010,-7.190,-0.150 

12,12.500,0,-0.220,-7.890,-0.380 

13,13.500,0,0.190,-7.850,-0.270 

14,14.500,0,-0.380,-7.920,-0.350 

15,15.500,0,-0.210,-6.480,0.440 

16,16.500,0,-0.340,-8.190,0.030 

17,17.500,0,0.290,-7.310,0.140 

18,18.500,0,-0.570,-6.720,-0.510 

19,19.500,0,-0.420,-7.170,0.300 

20,20.500,0,-0.240,-7.360,-0.380 

21,21.500,0,0.000,-9.500,-0.550 

22,22.500,0,-0.430,-8.510,-0.410 

23,23.500,0,-0.150,-7.330,-0.460 

24,24.500,0,-0.260,-7.970,-0.890 

25,25.500,0,-0.940,-7.540,-0.080 

26,26.500,0,0.290,-7.200,1.020 

27,27.500,0,-0.300,-7.990,-1.550 

28,28.500,0,0.190,-7.690,-0.080 

29,29.500,0,-0.060,-7.580,0.650 

30,30.500,0,-0.460,-7.290,-0.540 

31,31.500,0,-0.310,-7.520,-0.210 

32,32.500,0,0.090,-7.480,-0.020 

  



 ROWLINGS (2010) 

97 

Matlab Script for Discrete Weir 

 
%Velocity Profile 

  
%Written Dave Rowlings 4/10/10 

  
clc  
close all 
clear all 

  
%Geometric Data 
rho=1000; 
depth_us=.119;%m 
depth_ds=.122;%m 
weir_L=.05;%m 
width=.300;%m 

  

  
A_us=depth_us*width;%m^2 
A_ds=depth_ds*width;%m^2 
R_us=((A_us)/(width+2*depth_us)); 

  

  
q_fm=.140; %m^3/min from flow meter 
angle_ave=31-9; % average of discharge angles 

  

  
%open directory  
directory_name = uigetdir('','Select Data Directory'); 
FileList=dir('*.csv'); 
N=size(FileList,1); 
i=1; 

  

  
for FileCounter=1:N 

     
    [sample,time,event,x,y,z]=textread(FileList(FileCounter).name,'%f %f %f 

%f %f %f',...    
        'headerlines',2,'delimiter',','); 

     
    pos=textscan(FileList(FileCounter).name,'%f_%f_%f.vel.csv'); 

     
    x_pos(i,:)=pos(1); 
    y_pos(i,:)=pos(2); 
    z_pos(i,:)=pos(3); 

     
    x_pos_arr=cell2mat(x_pos);%converts from cell format to array 
    y_pos_arr=cell2mat(y_pos); 
    z_pos_arr=cell2mat(z_pos); 

     
    ave_vx=(sum(x)/length(x)); 
    ave_vy=abs(sum(y)/length(y));%abs will make the value positive 
    ave_vz=(sum(z)/length(z)); 
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    vx_store(i,:)=ave_vx; 
    vy_store(i,:)=ave_vy; 
    vz_store(i,:)=ave_vz; 

     
    i=i+1; 
end 

  

  
Z_pos_arr=200-z_pos_arr; %reverses value order so that velocities closest to 

the surface are on top 

  
%plot velocity vectors using quiver command, velocities will be 100 times 
%larger than they actually are... 
figure(1) 
hold on 
grid on 
quiver3(x_pos_arr,y_pos_arr,Z_pos_arr,vx_store,vy_store,vz_store, 0)%plots a 

vector profile of the velocities in 3d, 0 prevents scaling 
Title('VELOCITY VECTORS');  
xlabel('ADV X Position (mm)'); ylabel('ADV Y Position (mm)'); zlabel('ADV Z 

Position'); 
legend('Velocity (scaled up by a factor of 10)') 

  
%place relevant data into single matrix 
V=[vx_store, vy_store, vz_store, x_pos_arr, y_pos_arr, Z_pos_arr]; 

  
%seperates the velocities into layers 
V_top_us=V(1:6:132,:); %#ok<NASGU> 
V_mid_us=V(2:6:132,:); %#ok<NASGU> 
V_bot_us=V(3:6:132,:); %#ok<NASGU> 

  
V_top_ds=V(4:6:132,:); %#ok<NASGU> 
V_mid_ds=V(5:6:132,:); %#ok<NASGU> 
V_bot_ds=V(6:6:132,:); %#ok<NASGU> 

  
%converts velocity to m/s 
V_top_us_ms=V_top_us(:,1:3)./100; 
V_mid_us_ms=V_mid_us(:,1:3)./100; 
V_bot_us_ms=V_bot_us(:,1:3)./100; 

  
V_top_ds_ms=V_top_ds(:,1:3)./100; 
V_mid_ds_ms=V_mid_ds(:,1:3)./100; 
V_bot_ds_ms=V_bot_ds(:,1:3)./100; 

  
%put m/s velocities back into matrix replacing cm/s values 
V_top_us=[V_top_us_ms(:,1:3) V_top_us(:,4:6)]; 
V_mid_us=[V_mid_us_ms(:,1:3) V_mid_us(:,4:6)]; 
V_bot_us=[V_bot_us_ms(:,1:3) V_bot_us(:,4:6)]; 

  
V_top_ds=[V_top_ds_ms(:,1:3) V_top_ds(:,4:6)]; 
V_mid_ds=[V_mid_ds_ms(:,1:3) V_mid_ds(:,4:6)]; 
V_bot_ds=[V_bot_ds_ms(:,1:3) V_bot_ds(:,4:6)]; 
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V_us=[V_top_us;V_mid_us;V_bot_us]; 
V_ds=[V_top_ds;V_mid_ds;V_bot_ds]; 

  
%plot velocity profile contours using contour command 
figure(2) 
hold on 
xx_us=260:2.5:460; 
zz_us=min(0):2.5:max(depth_us*1000);%plots contour of entire channel depth 
%zz_us=min(V_us(:,6)):max(V_us(:,6));%plots contour of measured section only 
[XI_us ZI_us]=meshgrid(xx_us, zz_us); 
grid_us=griddata(V_us(:,4),V_us(:,6),V_us(:,2),XI_us, ZI_us, 'V4'); 
surf(XI_us, ZI_us, grid_us); 
title('Upstream Velocity Profile');   
xlabel('ADV X position (mm)'); ylabel('ADV Z position (mm)'); 

zlabel('Velocity (m/s)') 

  
figure(3) 
hold on 
xx_ds=260:2.5:460; 
zz_ds=min(0):2.5:max(depth_ds*1000);%plots contour of entire channel depth 
%zz_ds=min(V_ds(:,6)):max(V_ds(:,6));%plots contour of measured section only 
[XI_ds ZI_ds]=meshgrid(xx_ds, zz_ds); 
grid_ds=griddata(V_ds(:,4),V_ds(:,6),V_ds(:,2),XI_ds, ZI_ds, 'V4'); 
surf(XI_ds, ZI_ds, grid_ds); 
title('Downstream Velocity Profile');   
xlabel('ADV X position (mm)'); ylabel('ADV Z position (mm)'); 

zlabel('Velocity (m/s)') 

  
%calculate mean section velocities 
meanV_us=mean(mean(grid_us)); %mean section velocity upstream calculated from 

griddata extrapolation 
meanV_ds=mean(mean(grid_ds));%mean section velocity down stream calculated 

from griddata extrapolation 

  
%%calculate discharges 
q_us=meanV_us*A_us; 
   %%%mid weir discharge undeterminable as depths not known                     
q_ds=meanV_ds*A_ds; 

  
%side weir discharge calculated using velocity profiles 
q1_sw=q_us-q_ds 

  
%side weir discharge calculated using flow meter and discharge angle 
V_fm=(((q_fm/60))/A_us); 
V_sw=((V_fm+meanV_ds)/(2*cosd(angle_ave))) 
q2_sw=V_sw*(((depth_us+depth_ds)/2)*weir_L) 

  
%%%convert velocities to point momentums 
%flow rates 
Q_top_us=[(V_top_us(:,1:3).*A_us) V_top_us(:,4:6)]; 
Q_mid_us=[(V_mid_us(:,1:3).*A_us) V_mid_us(:,4:6)]; 
Q_bot_us=[(V_bot_us(:,1:3).*A_us) V_bot_us(:,4:6)]; 

  
Q_top_ds=[(V_top_ds(:,1:3).*A_us) V_top_ds(:,4:6)]; 
Q_mid_ds=[(V_mid_ds(:,1:3).*A_us) V_mid_ds(:,4:6)]; 
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Q_bot_ds=[(V_bot_ds(:,1:3).*A_us) V_bot_ds(:,4:6)]; 

  
%momentum  
M_top_us=[(V_top_us(:,1:3).*Q_top_us(:,1:3).*rho) V_top_us(:,4:6)]; 
M_mid_us=[(V_mid_us(:,1:3).*Q_mid_us(:,1:3).*rho) V_mid_us(:,4:6)]; 
M_bot_us=[(V_bot_us(:,1:3).*Q_bot_us(:,1:3).*rho) V_bot_us(:,4:6)]; 

  
M_top_ds=[(V_top_ds(:,1:3).*Q_top_ds(:,1:3).*rho) V_top_ds(:,4:6)]; 
M_mid_ds=[(V_mid_ds(:,1:3).*Q_mid_ds(:,1:3).*rho) V_mid_ds(:,4:6)]; 
M_bot_ds=[(V_bot_ds(:,1:3).*Q_bot_ds(:,1:3).*rho) V_bot_ds(:,4:6)]; 

  
M_top_loss_y=M_top_us(:,2)-M_top_ds(:,2); 
M_mid_loss_y=M_mid_us(:,2)-M_mid_ds(:,2); 
M_bot_loss_y=M_bot_us(:,2)-M_bot_ds(:,2); 

  
%average the momentum losses and make an array so it can be plotted 
ave_m_top_loss_y=zeros(length(M_top_loss_y),1); 
ave_m_top_loss_y(:,1)=sum(M_top_loss_y)/length(M_top_loss_y); 

  
ave_m_mid_loss_y=zeros(length(M_mid_loss_y),1); 
ave_m_mid_loss_y(:,1)=sum(M_mid_loss_y)/length(M_mid_loss_y); 

  
ave_m_bot_loss_y=zeros(length(M_bot_loss_y),1); 
ave_m_bot_loss_y(:,1)=sum(M_bot_loss_y)/length(M_bot_loss_y); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%longitudinal momentum change%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
figure(4) 
hold on 
grid on 
%plot point momentum losses  
plot(M_top_us(:,4), M_top_loss_y,'-bs', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'b') 
plot(M_mid_us(:,4), M_mid_loss_y,'-yd', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'y')                                             
plot(M_bot_us(:,4), M_bot_loss_y,'-mo', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'm')  
%plot average momentum losses                                     
plot(M_top_us(:,4),ave_m_top_loss_y,'--b') 

  
plot(M_mid_us(:,4),ave_m_mid_loss_y,'--y') 

  
plot(M_bot_us(:,4),ave_m_bot_loss_y,'--m') 

  
title('LONGITUDINAL MOMENTUM CHANGE OF MEASURED POINTS ACROSS SIDE WEIR'); 



 ROWLINGS (2010) 

101 

legend('Top Layer Point', 'Mid Layer Point', 'Bottom Layer Point', 'Top Layer 

Average Change', 'Mid Layer Average Change', 'Bottom Layer Average Change') 
xlabel('ADV X Position (mm)'); ylabel('Momentum Change (N)'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%lateral momentum change%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M_top_loss_x=M_top_us(:,1)-M_top_ds(:,1); 
M_mid_loss_x=M_mid_us(:,1)-M_mid_ds(:,1); 
M_bot_loss_x=M_bot_us(:,1)-M_bot_ds(:,1); 

  
%average the momentum losses and make an array so it can be plotted 
ave_m_top_loss_x=zeros(length(M_top_loss_x),1); 
ave_m_top_loss_x(:,1)=sum(M_top_loss_x)/length(M_top_loss_x); 

  
ave_m_mid_loss_x=zeros(length(M_mid_loss_x),1); 
ave_m_mid_loss_x(:,1)=sum(M_mid_loss_x)/length(M_mid_loss_x); 

  
ave_m_bot_loss_x=zeros(length(M_bot_loss_x),1); 
ave_m_bot_loss_x(:,1)=sum(M_bot_loss_x)/length(M_bot_loss_x); 

  
figure(5) 
hold on 
grid on 
%plot point momentum losses  
plot(M_top_us(:,4), M_top_loss_x,'-bs', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'b') 
plot(M_mid_us(:,4), M_mid_loss_x,'-yd', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'y')                                             
plot(M_bot_us(:,4), M_bot_loss_x,'-mo', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'm')  
%plot average momentum losses                                     
plot(M_top_us(:,4),ave_m_top_loss_x,'--b') 

  
plot(M_mid_us(:,4),ave_m_mid_loss_x,'--y') 

  
plot(M_bot_us(:,4),ave_m_bot_loss_x,'--m') 

  
Title('LATERAL MOMENTUM CHANGE OF MEASURED POINTS ACROSS SIDE WEIR'); 
Legend('Top Layer Point', 'Mid Layer Point', 'Bottom Layer Point', 'Top Layer 

Average Change', 'Mid Layer Average Change', 'Bottom Layer Average Change') 
xlabel('ADV X Position (mm)'); ylabel('Momentum Change (N)'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%% 
%%%flow conditions%%% 
%%%%%%%%%%%%%%%%%%%%% 
%reynolds number 
Re_us=1000*depth_us*V_fm/(4*1.13*10^-3); 

  
%froude number 
Fr_us=V_fm/(sqrt(9.81*depth_us)) 

  
disp(Re_us); 
disp(Fr_us); 
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Matlab Script for Long Weir 

 
%Velocity Profile 

  
%Written Dave Rowlings 4/10/10 

  
clc  
close all 
clear all 

  
%Geometric Data 
rho=1000; 
depth_us=.118;%m 
depth_ds=.1195;%m 
width=.300;%m 
weir_L=.300;%m 

  
%measured clockwise is positive 
us_angle=45; 
ds_angle=32; 

  
A_us=depth_us*width;%m^2 
A_ds=depth_ds*width;%m^2 

  
q_fm=.195; %m^3/min from flow meter 
angle_ave=(us_angle-ds_angle); % average of discharge angles 

  
%open directory  
directory_name = uigetdir('','Select Data Directory'); 
FileList=dir('*.csv'); 
N=size(FileList,1); 
i=1; 

  

  
for FileCounter=1:N 

     
    [sample,time,event,x,y,z]=textread(FileList(FileCounter).name,'%f %f %f 

%f %f %f',...    
        'headerlines',2,'delimiter',','); 

     
    pos=textscan(FileList(FileCounter).name,'%f_%f_%f.vel.csv'); 

     
    x_pos(i,:)=pos(1); 
    y_pos(i,:)=pos(2); 
    z_pos(i,:)=pos(3); 

     
    x_pos_arr=cell2mat(x_pos);%converts from cell format to array 
    y_pos_arr=cell2mat(y_pos); 
    z_pos_arr=cell2mat(z_pos); 

     
    ave_vx=(sum(x)/length(x)); 
    ave_vy=abs(sum(y)/length(y));%abs will make the value positive 
    ave_vz=(sum(z)/length(z)); 
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    vx_store(i,:)=ave_vx; 
    vy_store(i,:)=ave_vy; 
    vz_store(i,:)=ave_vz; 

     
    i=i+1; 
end 

  

  
Z_pos_arr=200-z_pos_arr; %reverses value order so that velocities closest to 

the surface are on top 

  
%plot velocity vectors using quiver command, velocities will be 100 times 
%larger than they actually are... 
figure(1) 
hold on 
grid on 
quiver3(x_pos_arr,y_pos_arr,Z_pos_arr,vx_store,vy_store,vz_store, 0)%plots a 

vector profile of the velocities in 3d, 0 prevents scaling 
title('VELOCITY VECTORS');  
xlabel('ADV X Position (mm)'); ylabel('ADV Y Position (mm)'); zlabel('ADV Z 

Position'); 
legend('Velocity (scaled up by a factor of 10)') 

  
%place relevant data into single matrix 
V=[vx_store, vy_store, vz_store, x_pos_arr, y_pos_arr, Z_pos_arr]; 

  
%seperates the velocities into layers 
V_top_us=V(1:9:99,:); %#ok<NASGU> 
V_mid_us=V(2:9:99,:); %#ok<NASGU> 
V_bot_us=V(3:9:99,:); %#ok<NASGU> 

  
V_top_mw=V(4:9:99,:); %#ok<NASGU> 
V_mid_mw=V(5:9:99,:); %#ok<NASGU> 
V_bot_mw=V(6:9:99,:); %#ok<NASGU> 

  
V_top_ds=V(7:9:99,:); %#ok<NASGU> 
V_mid_ds=V(8:9:99,:); %#ok<NASGU> 
V_bot_ds=V(9:9:99,:); %#ok<NASGU> 

  
%converts velocity to m/s 
V_top_us_ms=V_top_us(:,1:3)./100; 
V_mid_us_ms=V_mid_us(:,1:3)./100; 
V_bot_us_ms=V_bot_us(:,1:3)./100; 

  
V_top_mw_ms=V_top_mw(:,1:3)./100; 
V_mid_mw_ms=V_mid_mw(:,1:3)./100; 
V_bot_mw_ms=V_bot_mw(:,1:3)./100; 

  
V_top_ds_ms=V_top_ds(:,1:3)./100; 
V_mid_ds_ms=V_mid_ds(:,1:3)./100; 
V_bot_ds_ms=V_bot_ds(:,1:3)./100; 

  
%put m/s velocities back into matrix replacing cm/s values 
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V_top_us=[V_top_us_ms(:,1:3) V_top_us(:,4:6)]; 
V_mid_us=[V_mid_us_ms(:,1:3) V_mid_us(:,4:6)]; 
V_bot_us=[V_bot_us_ms(:,1:3) V_bot_us(:,4:6)]; 

  
V_top_mw=[V_top_mw_ms(:,1:3) V_top_mw(:,4:6)]; 
V_mid_mw=[V_mid_mw_ms(:,1:3) V_mid_mw(:,4:6)]; 
V_bot_mw=[V_bot_mw_ms(:,1:3) V_bot_mw(:,4:6)]; 

  
V_top_ds=[V_top_ds_ms(:,1:3) V_top_ds(:,4:6)]; 
V_mid_ds=[V_mid_ds_ms(:,1:3) V_mid_ds(:,4:6)]; 
V_bot_ds=[V_bot_ds_ms(:,1:3) V_bot_ds(:,4:6)]; 

  
V_us=[V_top_us;V_mid_us;V_bot_us]; 
V_mw=[V_top_mw;V_mid_mw;V_bot_mw]; 
V_ds=[V_top_ds;V_mid_ds;V_bot_ds]; 

  
%plot velocity profile contours using contour command 
figure(2) 
hold on 
xx_us=260:2.5:460; 
zz_us=min(0):2.5:max(depth_us*1000);%plots contour of entire channel depth 
%zz_us=min(V_us(:,6)):max(V_us(:,6));%plots contour of measured section only 
[XI_us ZI_us]=meshgrid(xx_us, zz_us); 
grid_us=griddata(V_us(:,4),V_us(:,6),V_us(:,2),XI_us, ZI_us, 'V4'); 
surf(XI_us, ZI_us, grid_us); 
title('Upstream Velocity Profile');   
xlabel('ADV X position (mm)'); ylabel('ADV Z position (mm)'); 

zlabel('Velocity (m/s)') 

  
figure(3)%adjust this one 
hold on 
xx_mw=260:2.5:460; 
zz_mw=min(0):2.5:max(((depth_us+depth_ds)/2)*1000);%plots contour of entire 

channel depth 
%zz_ds=min(V_ds(:,6)):max(V_ds(:,6));%plots contour of measured section only 
[XI_mw ZI_mw]=meshgrid(xx_mw, zz_mw); 
grid_mw=griddata(V_mw(:,4),V_mw(:,6), V_mw(:,2),XI_mw, ZI_mw, 'V4'); 
surf(XI_mw, ZI_mw, grid_mw); 
title('Mid Weir Velocity Profile');   
xlabel('ADV X position (mm)'); ylabel('ADV Z position (mm)'); 

zlabel('Velocity (m/s)') 

  
figure(4) 
hold on 
xx_ds=260:2.5:460; 
zz_ds=min(0):2.5:max(depth_ds*1000);%plots contour of entire channel depth 
%zz_ds=min(V_ds(:,6)):max(V_ds(:,6));%plots contour of measured section only 
[XI_ds ZI_ds]=meshgrid(xx_ds, zz_ds); 
grid_ds=griddata(V_ds(:,4),V_ds(:,6),V_ds(:,2),XI_ds, ZI_ds, 'V4'); 
surf(XI_ds, ZI_ds, grid_ds); 
title('Downstream Velocity Profile');   
xlabel('ADV X position (mm)'); ylabel('ADV Z position (mm)'); 

zlabel('Velocity (m/s)') 
%calculate mean section velocities 
meanV_us=mean(mean(grid_us)) %mean section velocity upstream calculated from 

griddata extrapolation 
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meanV_mw=mean(mean(grid_mw)) %mean section velocity mid weir calculated from 

griddata extrapolation 
meanV_ds=mean(mean(grid_ds)) %mean section velocity down stream calculated 

from griddata extrapolation 

  
%%calculate discharges 
q_us=meanV_us*A_us; 
    %mid weir discharge undeterminable as depths not known                     
q_ds=meanV_ds*A_ds; 

  
%side weir discharge 
q_sw=q_us-q_ds 

  
%side weir discharge calculated using flow meter and discharge angle 
V_fm=(((q_fm/60))/A_us); 
V_sw=(V_fm+meanV_ds)/(2*cosd(angle_ave)); 
q2_sw=V_sw*(((depth_us+depth_ds)/2)*weir_L) 

  

  
%%%convert velocities to point momentums 
%flow rates 
Q_top_us=[(V_top_us(:,1:3).*A_us) V_top_us(:,4:6)]; 
Q_mid_us=[(V_mid_us(:,1:3).*A_us) V_mid_us(:,4:6)]; 
Q_bot_us=[(V_bot_us(:,1:3).*A_us) V_bot_us(:,4:6)]; 

  
Q_top_ds=[(V_top_ds(:,1:3).*A_us) V_top_ds(:,4:6)]; 
Q_mid_ds=[(V_mid_ds(:,1:3).*A_us) V_mid_ds(:,4:6)]; 
Q_bot_ds=[(V_bot_ds(:,1:3).*A_us) V_bot_ds(:,4:6)]; 

  
%momentum  
M_top_us=[(V_top_us(:,1:3).*Q_top_us(:,1:3).*rho) V_top_us(:,4:6)]; 
M_mid_us=[(V_mid_us(:,1:3).*Q_mid_us(:,1:3).*rho) V_mid_us(:,4:6)]; 
M_bot_us=[(V_bot_us(:,1:3).*Q_bot_us(:,1:3).*rho) V_bot_us(:,4:6)]; 

  
M_top_ds=[(V_top_ds(:,1:3).*Q_top_ds(:,1:3).*rho) V_top_ds(:,4:6)]; 
M_mid_ds=[(V_mid_ds(:,1:3).*Q_mid_ds(:,1:3).*rho) V_mid_ds(:,4:6)]; 
M_bot_ds=[(V_bot_ds(:,1:3).*Q_bot_ds(:,1:3).*rho) V_bot_ds(:,4:6)]; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%longitudinal momentum change%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M_top_loss_y=M_top_us(:,2)-M_top_ds(:,2); 
M_mid_loss_y=M_mid_us(:,2)-M_mid_ds(:,2); 
M_bot_loss_y=M_bot_us(:,2)-M_bot_ds(:,2); 

  
%average the momentum losses and make an array so it can be plotted 
ave_m_top_loss_y=zeros(length(M_top_loss_y),1); 
ave_m_top_loss_y(:,1)=sum(M_top_loss_y)/length(M_top_loss_y); 

  
ave_m_mid_loss_y=zeros(length(M_mid_loss_y),1); 
ave_m_mid_loss_y(:,1)=sum(M_mid_loss_y)/length(M_mid_loss_y); 

  
ave_m_bot_loss_y=zeros(length(M_bot_loss_y),1); 
ave_m_bot_loss_y(:,1)=sum(M_bot_loss_y)/length(M_bot_loss_y); 
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figure(5) 
hold on 
grid on 
%plot point momentum losses  
plot(M_top_us(:,4), M_top_loss_y,'-bs', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'b') 
plot(M_mid_us(:,4), M_mid_loss_y,'-yd', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'y')                                             
plot(M_bot_us(:,4), M_bot_loss_y,'-mo', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'm')  
%plot average momentum losses                                     
plot(M_top_us(:,4),ave_m_top_loss_y,'--b') 

  
plot(M_mid_us(:,4),ave_m_mid_loss_y,'--y') 

  
plot(M_bot_us(:,4),ave_m_bot_loss_y,'--m') 

  
title('LONGITUDINAL MOMENTUM CHANGE OF MEASURED POINTS ACROSS SIDE WEIR'); 
legend('Top Layer Point', 'Mid Layer Point', 'Bottom Layer Point', 'Top Layer 

Average Change', 'Mid Layer Average Change', 'Bottom Layer Average Change') 
xlabel('ADV X Position (mm)'); ylabel('Momentum Change (N)'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%lateral momentum change%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M_top_loss_x=M_top_us(:,1)-M_top_ds(:,1); 
M_mid_loss_x=M_mid_us(:,1)-M_mid_ds(:,1); 
M_bot_loss_x=M_bot_us(:,1)-M_bot_ds(:,1); 

  
%average the momentum losses and make an array so it can be plotted 
ave_m_top_loss_x=zeros(length(M_top_loss_x),1); 
ave_m_top_loss_x(:,1)=sum(M_top_loss_x)/length(M_top_loss_x); 

  
ave_m_mid_loss_x=zeros(length(M_mid_loss_x),1); 
ave_m_mid_loss_x(:,1)=sum(M_mid_loss_x)/length(M_mid_loss_x); 

  
ave_m_bot_loss_x=zeros(length(M_bot_loss_x),1); 
ave_m_bot_loss_x(:,1)=sum(M_bot_loss_x)/length(M_bot_loss_x); 

  
figure(6) 
hold on 
grid on 
%plot point momentum losses  
plot(M_top_us(:,4), M_top_loss_x,'-bs', 'linewidth', 1, ... 
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                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'b') 
plot(M_mid_us(:,4), M_mid_loss_x,'-yd', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'y')                                             
plot(M_bot_us(:,4), M_bot_loss_x,'-mo', 'linewidth', 1, ... 
                                        'Markeredgecolor', 'k', ... 
                                        'Markersize',5, ... 
                                        'Markerfacecolor', 'm')  
%plot average momentum losses                                     
plot(M_top_us(:,4),ave_m_top_loss_x,'--b') 

  
plot(M_mid_us(:,4),ave_m_mid_loss_x,'--y') 

  
plot(M_bot_us(:,4),ave_m_bot_loss_x,'--m') 

  
title('LATERAL MOMENTUM CHANGE OF MEASURED POINTS ACROSS SIDE WEIR'); 
legend('Top Layer Point', 'Mid Layer Point', 'Bottom Layer Point', 'Top Layer 

Average Change', 'Mid Layer Average Change', 'Bottom Layer Average Change') 
xlabel('ADV X Position (mm)'); ylabel('Momentum Change (N)'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%% 
%%%flow conditions%%% 
%%%%%%%%%%%%%%%%%%%%% 
%reynolds number 
Re_us=1000*depth_us*V_fm/(4*1.13*10^-3) 

  
%froude number 
Fr_us=V_fm/(sqrt(9.81*depth_us)) 
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Appendix D 

 

 

LATERAL FLOW MODEL 
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Lateral Flow Model 

Lateral Weir Flow 
Model 

        

          
assumptions 

1. Flow upstream is 
subcritical 

      

 
2. Length of weir is limited to the width of the channel 

   

         
  

Discrete 
        

  

  knowns 
       

  

L 0.05 m length of weir, cannot exceed B 
  

  

B 0.3 m width of channel 
    

  

L/B 0.166667 
 

geometric ratio 
    

  

V1 0.065 m/s velocity upstream 
    

  

S 0.1 m the height of the weir from the channel base 
 

  

y1 0.119 m height of water upstream 
   

  

h0 0.019 m height of water at the upstream end of the weir 
 

  

F1 0.06053 
 

froude number upstream, should be less than 1 (ie subcritical flow) 

F0 0.151484 
 

froude number over weir 
   

  

η0 0.106506 
 

velocity ratio 
    

  

Vj_barr 0.413563 m/s mean velocity over weir 
   

  

         
  

Taylor Series Approximations used to find Cd 
     

  

c1 -0.49833 
       

  

c2 0.097 
       

  

c3 -0.21167 
       

  

f(η0,L/B) 163.6575 
 

function of velocity and geometric ratios 
  

  

         
  

Cd_barr 0.593888 
 

mean coefficient of discharge for side weir 
 

  

         
  

Qt 0.000233 m3/s 
discharge over 
weir 

    
  

Q1 0.002335 m3/s 
discharge 
upstream 

    
  

Q2 0.002101 m3/s discharge downstream 
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Long 
       

        L 0.3 m length of weir, cannot exceed B 
 B 0.3 m width of channel 

   L/B 1 
 

geometric ratio 
   V1 0.092 m/s velocity upstream 
   S 0.1 m the height of the weir from the channel base 

y1 0.118 m height of water upstream 
  h0 0.018 m height of water at the upstream end of the weir 

F1 0.085323 
 

froude number upstream, should be less than 1 (ie subcritical 
flow) 

F0 0.21846 
 

froude number over weir 
  η0 0.152664 

 
velocity ratio 

   Vj_barr 0.408986 m/s mean velocity over weir 
  

        Taylor Series Approximations used to find Cd 
   c1 -0.29 

      c2 0.292 
      c3 -0.62 
      f(η0,L/B) 55.28309 
 

function of velocity and geometric ratios 
 

        Cd_barr 0.592202 
 

mean coefficient of discharge for side weir 

        Qt 0.001308 m3/s discharge over weir 
   Q1 0.00325 m3/s discharge upstream 
   Q2 0.001942 m3/s discharge downstream 
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Appendix E 

 

LATERAL INFLOW/OUTFLOW CALCULATIONS 

 



 

 

 

 

  

Long weir Lateral Inflow  
        

 
xi yi ybar Abar Pbar Sf ∆Q Qi Qbar dy/dx 

300 0 0.1195 
     

0.0006 
  

   
0.119 0.036 0.53897 0.00000097 0.000281 

 
0.000726 

-3.19221E-
05 

250 -0.05 0.1195 
     

0.0009 
  

   
0.119 0.036 0.5389 0.00000187 0.000280 

 
0.001006 

-4.44128E-
05 

200 -0.1 0.1194 
     

0.0011 
  

   
0.119 0.036 0.5388 0.00000306 0.000279 

 
0.001286 

-5.67864E-
05 

150 -0.15 0.1194 
     

0.0014 
  

   
0.119 0.036 0.53867 0.00000454 0.000278 

 
0.001565 

-6.89986E-
05 

100 -0.2 0.1193 
     

0.0017 
  

   
0.119 0.036 0.53852 0.00000630 0.000276 

 
0.001842 

-8.10326E-
05 

50 -0.25 0.1192 
     

0.0020 
  

   
0.119 0.036 0.53835 0.00000834 0.000274 

 
0.002117 

-9.28604E-
05 

0 -0.3 0.11913 
     

0.0023 
  

     
Weir Discharge 0.001669 

   



 

 

Long Weir Lateral Outflow 
       

xi yi ybar Abar Pbar Sf ∆Q Qi Qbar dy/dx 

0 0.11950 
     

0.0006 
  

  
0.119 0.036 0.53895 0.00000 0.000281 

 
0.000725 

-1.57231E-
05 

-0.05 0.11945 
     

0.0009 
  

  
0.119 0.036 0.53884 0.00000 0.000280 

 
0.001006 

-2.19504E-
05 

-0.1 0.11939 
     

0.0011 
  

  
0.119 0.036 0.53872 0.00000 0.000278 

 
0.001285 

-2.81215E-
05 

-0.15 0.11933 
     

0.0014 
  

  
0.119 0.036 0.53859 0.00000 0.000277 

 
0.001563 

-3.42302E-
05 

-0.2 0.11926 
     

0.0017 
  

  
0.119 0.036 0.53844 0.00001 0.000275 

 
0.001839 -4.0257E-05 

-0.25 0.11918 
     

0.0020 
  

  
0.119 0.036 0.53828 0.00001 0.000274 

 
0.002113 

-4.62034E-
05 

-0.3 0.11910 
     

0.0023 
  

    
Weir Discharge 0.001665 

    

  



 

 

Discrete Weir Lateral Inflow 
        

 
xi yi ybar Abar Pbar Sf ∆Q Qi Qbar dy/dx 

50 0 0.1220 
     

0.0021 
  

   
0.122 0.037 0.544 0.00001 0.000067 

 
0.002134 -2.1946E-05 

40 -0.01 0.1220 
     

0.0022 
  

   
0.122 0.037 0.5438 0.00001 0.000067 

 
0.002201 -0.00022544 

30 -0.02 0.1218 
     

0.0022 
  

   
0.122 0.037 0.5434 0.00001 0.000066 

 
0.002267 

-
0.000229887 

20 -0.03 0.1216 
     

0.0023 
  

   
0.122 0.036 0.543 0.00001 0.000065 

 
0.002333 -0.0002341 

10 -0.04 0.1214 
     

0.0024 
  

   
0.121 0.036 0.5426 0.00001 0.000064 

 
0.002398 

-
0.000238083 

0 -0.05 0.1212 
     

0.0024 
  

     
Weir Discharge 0.000330 

    

  



 

 

Discrete Weir Lateral 
Outflow 

       
xi yi ybar Abar Pbar Sf ∆Q Qi Qbar dy/dx 

0 0.12200 
     

0.0021 
  

  
0.122 0.037 0.54399 0.00001 0.000067 

 
0.002134 

-1.09598E-
05 

-0.01 0.12199 
     

0.0022 
  

  
0.122 0.037 0.54397 0.00001 0.000067 

 
0.002201 

-1.13081E-
05 

-0.02 0.12198 
     

0.0022 
  

  
0.122 0.037 0.54395 0.00001 0.000067 

 
0.002268 -1.1656E-05 

-0.03 0.12197 
     

0.0023 
  

  
0.122 0.037 0.54393 0.00001 0.000067 

 
0.002336 

-1.20038E-
05 

-0.04 0.12196 
     

0.0024 
  

  
0.122 0.037 0.54391 0.00001 0.000067 

 
0.002403 

-1.23513E-
05 

-0.05 0.12195 
     

0.0024 
  

    
Weir Discharge 0.000337 

    


