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Abstract 

 
This project aims to investigate Coal Seam Gas (CSG) as an alternative fuel for stationary 

gas turbine engines. CSG is a new and emerging technology especially in Queensland 

which has extensive and very attainable reserves. Technological and infrastructural 

developments are making CSG more attainable and more cost effective as an alternative 

fuel for domestic use, as a replacement for petrol and diesel fuels, heating and cooling, 

and also for export.  

 

There are two essential facets of this project being a detailed analysis of the 

transportation and distribution issues, and the development of a small scale gas turbine 

engine.  

 

The model turbine has been built as a basis for experiment to compare fuel consumption, 

and thermal efficiency of CSG compared to another appropriate fossil fuel.  

 

Transportation and distribution will be analysed through research into CSG extraction and 

refinement, existing CSG infrastructure, expected points of use in the context of stationary 

jet engines, and the required infrastructure to provide the gas to the expected points of 

use. 

 

Based on the research and preliminary testing conducted in this report it was concluded 

that CSG is a very feasible fuel which will only become cheaper with time due to significant 

investments in infrastructure and technology relating to CSG. The running cost 

calculations based on the model engine’s collected test data provided a running cost 

saving of 58.1% for CNG over LPG. This is a significant margin which does not consider 

case by case variables such as specific infrastructure installation costs however does allow 

for significant initial investment due to the significant saving in running costs. 
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Glossary of Technical Terms 

 CSG – Coal Seam Gas – A naturally occurring Methane rich gas. 

 NG – Natural Gas – A Methane rich gas. 

 LPG – Liquefied Petroleum Gas – A commonly used petroleum based fuel gas. 

 CBM – Coal Bed Methane – Another name for Coal Seam Gas. 

 CNG – Compressed Natural Gas – Natural gas is compressed to increase the energy 

density for storage and transport. 

 LNG – Liquefied Natural Gas – Natural gas is liquefied to increase the energy density 

for storage and transport. 

 Co-generation – a term referring to the extraction of multiple energy sources from 

one process (eg. Heat energy and shaft power from a gas turbine) 

 USQ – The University of Southern Queensland 

 Hydrocarbon – An organic compound consisting of hydrogen and carbon. 

 Biogas – A form of natural gas produced by the biological breakdown of organic 

matter. 

 Conventional natural gas – Natural gas sourced from oil fields or natural gas fields. 

 Un-conventional natural gas – Natural gas sourced all other sources. 
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 Dewar – A heavily insulated and evacuated storage vessel for LNG. 

 Octane number – A measure of a fuels resistance to auto-ignition. 

 Thermal efficiency – A ratio of the work output to the supplied heat energy.  

 CH4 – Chemical formula for Methane. 

 NOx – Nitrogen Oxides produced during some combustion processes. 

 Stoichiometric – A measure of how well the fuel is burnt in the combustion process. 

 Lean burn operation – A process where the air/fuel ratio is decreased significantly 

allowing savings in fuel consumption. 

 Ppm – Parts per million - A measurement of gas quantities. 

 Kinetic energy – The energy an object posses as a result of its motion. 

 Adiabatic – A thermodynamic process where no heat is transferred to the working 

fluid. 

 AutoCAD – An engineering drawing suite. 

 2-D – Two Dimensional. 

 3-D – Three Dimensional. 

 CFD – Computational Fluid Dynamics. 
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Chapter 1 – Introduction 

 

1.1 Introduction 

Throughout the known history of mankind natural resources have existed in abundance 

and been exploited in varying ways for our benefit. Today – in the 21st century – 

essentially the same process is conducted on an ever increasing scale. Energy 

consumption rates have increased exponentially with the world population growth as 

more people in developing countries are expecting to live the western energy intensive 

lifestyle.  

 

A sobering fact is conventional non-renewable energy sources, as the name suggests, are 

finite in reserves and will run out in the not too distant future. This has become more 

obvious in recent times since the cost of exploration, extraction, production, and 

distribution of crude oil based fuels is increasing to a point where society is pushing for a 

viable alternative. Environmental pressure, political pressure, and increasing tax and levy 

rates are also pushing this development in alternative fuels. 

 

It is widely accepted that renewable energy sources are without doubt the long-term 

solution for our energy needs. Development of these technologies is making 

unprecedented progress, however this technology faces several issues. Some of these 

include low natural energy density available for collection, inability to provide peak power 

at times of high demand without an energy storage system, highly energy intensive 

equipment construction, and associated high cost. These issues will certainly be addressed 

in the upcoming years with technological developments powered by investment, and 

renewable energy sources will prevail as the energy source of choice, however in the 

interim period an alternative energy source needs to be implemented.  
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Coal Seam Gas (CSG) (also known as Coal Bed Methane – CBM) is naturally occurring 

methane rich gas mostly held within the coal molecular structure under pressure. This 

pressure is essential for the gas to stay within the structure of the coal, so when the coal 

seam is drilled and this pressure is released, then so too is the gas. An advantage of CSG is 

it mostly contains much less heavier hydrocarbons such as propane or butane, and also 

less carbon dioxide than fossil natural gas. CSG can be transported in compressed (CNG) or 

liquid form (LNG) just as other natural gasses. 

 

Although not a permanent solution, CSG is an excellent alternative to conventional fossil 

fuels for the purpose of energy production and transport. In Queensland significant 

reserves of CSG are located in the Surat and Bowen basin, and in an increasingly carbon 

constrained economy these reserves will play a big role in energy generation in the near 

future. An advantage about using CSG for these purposes is existing vehicles or power 

plants can easily be converted to run on the new fuel. Natural gas fuelled power plants 

can be constructed based on gas turbines using co-generation technology and achieve 

significantly higher efficiencies than conventional coal fired power stations (around 80% 

compared to 36%)[5]. When used in electricity generation, natural gas fired power plants 

emit approximately 45% of the emissions of coal fired power stations(10).  

 

This report is targeted at all gas turbines aside from those found in aircraft (or any 

application where weight is an issue). These can be ships, large hovercraft, and especially 

high efficiency power plants and co-generation applications. Currently gas turbines 

operate on many different fuels mostly depending on their location and application. This 

report will assess the feasibility of the fuel conversion and provide recommendations 

toward the transition to CSG. 
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1.2 Aims and Objectives 

 

This project aims to investigate Coal Seam Gas (CSG) as an alternative fuel for stationary 

gas turbine engines (in particular gas turbine based co-generation systems). In order to 

satisfactorily complete this project there are two essential aspects which need to be 

covered.  

 

 The first is a detailed analysis of the transportation and distribution issues. These 

issues are a major part of this project because of the nature of Natural Gas (NG) and 

its associated low energy density. Research into CSG extraction and refinement will 

help create an understanding of what CSG is, and where it comes from. Existing CSG 

infrastructure will also be researched which will help in making conclusions about CSG 

as an alternative fuel by assessing the void between the existing infrastructure and 

the required infrastructure. Research into stationary turbine applications in Australia 

and expected points of use for the gas is also important when considering 

infrastructure needs for CSG.  

 

 

 The second is the development of a small scale gas turbine. To give this project a 

practical aspect this model engine will be developed and used to obtain experimental 

results in order to deduct conclusions about CSG as a widespread alternative fuel for 

stationary gas turbine engines. From this engine fuel consumption, combustion 

chamber pressure, and exhaust temperature data will be collected. Ideally the engine 

would be run on both CSG and LPG, however attaining any sort of methane rich gas to 

get comparative tests has proven to be impossible because it is not sold in 

compressed and bottled form (CNG) in Queensland. An equivalent CSG fuel 

consumption can still be calculated using the measured LPG consumption (easily 

attainable broad-spread fossil fuel). A computer flow analysis of the constructed 

model combustion chamber will also be completed which will help provide a better 

picture of how this model engine works. Despite completing this step this project has 
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been carefully steered away from designing the turbine because this was believed this 

to be a completely different undertaking to what was initially pictured for this project. 

It was the intention that the model engine would be used only as a means of attaining 

experimental results from a turbine to aid in making conclusions about CSG as an 

alternative fuel. Research was conducted into buying a used turbine however this 

alternative has proved to be far too expensive to justify for this project or the engines 

were damaged beyond repair. 

 

Once the research into the transportation and distribution issues has been completed, 

and all test results have been collated from the model engine an analysis of distribution 

needs, environmental impact, potential market and associated locations can be 

completed and conclusions made about the feasibility of CSG as an alternative fuel.  

 

1.3     Methodology  

 

When conducting an engineering project focus, discipline, and methodology are important 

factors. When researching aspects for this project it is important that only relevant 

information is included in the report and referenced correctly as to the source of the 

information. Also when conducting the experimental work there is a degree of danger 

which must be managed by associated risk assessments (see chapter 7 and appendix A) 

and safety measures.  
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1.4   Resource Requirements 

 

 During the first stage of this project many resources were required when constructing 

the jet. Many of these were scrap material at a welding and fabrication shop. Some 

parts still had to be bought such as fittings, bolts, and hoses but all steel was supplied 

(see section 6.7 for full details). All costs were covered by myself for the construction 

as it was intended to be completed before the start of semester one this year (2010). 

This was not the case, so some assembly was left to be completed at university. 

 

 The last of the assembly at university was the second stage of the process. This 

required few resources, only a lab to complete the assembly in (s-block basement 

engineering lab), and some machining to be completed by the engineering workshop 

(discussed further in chapter 6). This work was submitted to the workshop and 

completed using the allocated budget for the project to pay for this work. 

 

 The next stage is research which requires resources from the USQ library and the 

internet. The books needed for the research had been previously chosen and they 

were researched to have relatively good availability.  

 

 The last stage is testing the model and collecting experimental data (see chapter 7). 

This stage requires a location to run the jet, LPG in a portable cylinder form, and 

appropriate safety equipment as outlined in the risk assessment document (Appendix 

A). The safety equipment was provided by the university, and the LPG gas is easy to 

get hold of. Much effort has been invested into attaining a methane rich gas however 

it is not available for purchase in bottled form so existing data on Natural Gas will have 

to be used.  
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Chapter 2 – Project Background 

 

2.1  Introduction 

This chapter aims to provide appropriate background information on all aspects of this 

project. This information has been summarised as a result of research from many 

information sources and will be essential in the analysis and scoping of the work to be 

conducted in this project.  

 

2.2  Natural Gas Introduction, Composition, Sources and Availability 

As reported by Ingersoll (1996), Natural gas occurs naturally as a mixture of methane, 

hydrocarbons, and non-hydrocarbons. Ingersoll is specifically assessing conventional 

natural gas however because the composition of conventional Natural Gas and Coal Seam 

Gas are very similar (ie. very high methane content) it is still relevant to this project.  

 

Most commercially sold natural gas is found as a bi-product from oil fields, or natural gas 

fields and is known as Fossil Natural Gas (an exception to this is Biogas which can be 

extracted from decaying organic matter). Lawrence and Kapler (1989) reported that the 

1985 world gas conference had estimated that unconventional (ie. other than the by-

product of crude oil extraction) natural gas supplies could reach 6 – 9% of the world’s 

natural gas demands by the year 2000, and 9 – 11% by the year 2020. They also said that 

these figures would rely heavily on the development of improved gas recovery 

technologies. 

 

Ingersoll also stated in the same publication that natural gas was once considered a waste 

product from oil wells. Now however, the value of natural as an energy source has been 

realised and the gas is captured and used for energy production.  

 



ENG4111/4112                                                                                                                                                                     Research Project 

Page 19 of 121 

2.3  Natural Gas Extraction, Refining, Transportation and Storage 

 

Ingersoll (1996) reported natural gas extraction can be a complex and difficult process 

which can vary depending on the geological structure of the surrounding area. Ingersoll 

also stated that coal bed methane extraction can be achieved using either closely spaced 

holes or horizontal drilling. Sometimes methods from tight shale deposits and tight sands 

can also be used for coal seal gas to enhance production.  

 

Natural gas has extremely low energy density when extracted from the ground so post 

extraction gas storage is a serious concern. To increasing the economic viability of 

distributing the gas it is ether liquefied (LNG) or compressed to very high pressures (CNG).  

 

CNG is natural gas compressed at the refinery and distributed in reinforced solid 

containers. Very high pressures are achieved (3000 – 3600psi) at atmospheric 

temperature. CNG is much cheaper to produce than LNG however it has a mere 25% of 

the energy density of Diesel fuel (see table 3.2) and so requires a much larger storage 

container per unit of useable energy. CNG can also be compressed at the refinery to 

slightly less pressure than that in cylinders and transported by pipeline to a required site 

or distribution centre. Once the infrastructure is in place this is by far the cheapest way of 

transporting natural gas however there must be a large demand in a particular place to 

justify laying a pipeline. 

 

LNG is gas converted to liquid form for storage and transportation. Maxwell and Jones 

(1995) report that to store natural gas in liquid form (LNG) it must be brought to and 

maintained at cryogenic temperatures (−162 °C). This process is mainly used for gas 

transportation over long distances where pipelines do not exist because LNG can have an 

energy density of up to 60% (see table 3.2) of diesel fuel (i.e. much more economical to 

transport than CNG). The end user then re-gasifies the product and distributes it 

accordingly. Unfortunately the liquefication process is expensive, energy intensive, and all 

transport vehicles need to be modified to keep the payload in cryogenic conditions. In the 
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same document the significant advantage of LNG over CNG is described as volumetric 

energy density. To store an equivalent 20 gallons of gasoline in a vessel a tank volume of 

2.7 ft³ is required for gasoline, 11.3 ft³ is required for CNG stored at 3600 psi and 4.6 ft³ is 

required for LNG. 

 

A heavily insulated and evacuated storage vessel similar to a thermos and called a Dewar 

is needed to maintain these temperatures. Maxwell and Jones (1995) then continues on to 

say that there are more issues with storing the gas for extended periods of time, and there 

are significant safety concerns whilst refuelling. They also briefly mentions that LNG 

production facilities are not widespread and fuel availability can be a big issue in some 

circumstances. For the purpose of this project LNG will not be considered due to the 

problems with producing and storing it. 

 

 

Figure 2.1: Insulated Liquefied Natural Gas tank on a truck [29].   

 

Maxwell and Jones (1995) also reported on the distribution infrastructure of natural gas. 

They say that one of the largest problems associated with the widespread use of natural 

gas as a fuel is the availability of refuelling stations. Significant investments in 

infrastructure must continue to occur or fuel availability will continue to be a major 

underlying issue. Although the article centres on the use of natural gas in the context of a 

vehicle fuel in America, it still encapsulates the major problem associated with natural gas 

very well. This problem is more applicable in Australia than America which has a 

comprehensive and developed natural gas distribution pipeline network already in place. 
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2.4  Natural Gas As A Fuel For Combustion Engines 

 

Fortunately natural gas has several aspects which make it appealing as a fuel aside from 

cost. These advantages have been reported on many times including by Ingersoll (1996) 

who stated natural gas has a very high octane number of around 130, has superior 

environmental emissions, and reduced engine wear characteristics to conventional fuels. 

Ingersoll’s assessment is of fossil natural gas in America as an alternative vehicle fuel, 

however talking about high octane numbers and reduced engine wear is also relevant to 

gas turbine engines.  

 

Maxwell and Jones (1995) also reports on the significant increase of thermal efficiency of a 

well tuned natural gas engine over a conventionally fuelled engine. This is because of the 

high octane number (130) of natural gas, the engine’s compression ratio can be increased 

which will increase the overall thermal efficiency. 

 

2.5  Coal Seam Gas  

 

Ingersoll (1996) suggested coal seam gas is an exciting emerging energy source, especially 

in Queensland where significant reserves exist. Ingersoll reports that coal bed methane 

was generated over long periods of time when organic material is transformed under 

pressure to form coal. The significant amount of methane trapped in the coal seams is 

held within the coal molecular structure. The book then says that this gas, which was once 

considered as a hazard to coal miners, is now recognised as a valuable fuel source. This 

reflects the positive change in attitude toward our energy sources over time. 
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2.6  Safety Issues When Working With Natural Gas 

 

Maxwell and Jones (1995) reported that natural gas has been demonstrated to be safe 

over the years of operation. This is because of two main reasons: NG is lighter than air so 

it dissipates quickly in the event of an accidental spillage, and its ignition point, 1200°F, is 

much higher than that of gasoline, 600°F. No burn accidents, other injuries, or fatalities 

have been reported during 500 million miles of natural gas vehicle operation (in 1995). 

These figures are for natural gas powered vehicles in America, however the natural gas 

safety figures are still applicable to all types of natural gas including within Australia.  

 

2.7  Emissions Of Natural Gas Engines 

 

One of the major advantages and selling points of natural gas fuelled engines is the 

comparatively low environmental impact due to cleaner exhaust emissions. Maxwell and 

Jones (1995) reported that well tuned natural gas engines have exceptionally low 

emissions of carbon monoxide, reactive hydrocarbons, and particulate matter. This is 

mostly due to the efficient combustion process caused by the methane (CH4) molecules 

oxidising with almost no intermediate hydrocarbon constituents. Ideally an engine would 

achieve 100% combustion efficiency however in reality the exhaust contains NOx and 

particulate matter.  

 

Natural gas engines suffer from high NOx emissions (just as gasoline and diesel engines 

do) which are formed as a result of high temperature gas created by the combustion 

process reacting with the nitrogen in the intake charge. The NOx emission can contain 

non-reacted and partially-reacted fuel due to inefficiencies and cold/hot spots in the 

combustion chamber, Nitrous Oxide (NO), Nitrogen Dioxide (NO2), and Sulphur Oxides. 

The NOx emissions from any engine can be reduced by exhaust gas recycling (EGR), lean 

burn operation, development in fuel mixing and stoichiometric control technology, and a 

typical three way catalyst in a combination closed loop exhaust oxygen level feedback. 
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Maxwell and Jones add the principle pollutant from a NG fuelled combustion engine is 

unburnt methane which is a result of improper fuel/air ratios and incomplete mixing. 

While their discussion specifically relates to NG fuelled reciprocating engines (such as 

those found in cars, trucks and buses), emissions and emission controls are still relevant to 

gas turbines. 

 

 

2.8  Stationary Gas Turbine Applications Within Australia  

 

Research has concluded that stationary gas turbines have many applications within 

Australia including power generation, co-generation, ships, hovercraft, and 

demonstration/test engines. 

 

Sinklair Knight Merz (2007) reported that they were undertaking a project with TRU 

energy constructing a 400MW Combined Cycle Gas Turbine (CCGT) Power Station at Yallah 

which is situated 13km South of Wollongong in southern NSW. 

 

Sinklair Knight Merz (2007) have also completed a project in conjunction with AGL in 

South Australia where the steam and power requirements of Coopers Brewery, Regency 

Park, Adelaide have been fulfilled since 2003 by a gas turbine based co-generation plant. 

This system was based around a Solar Turbines Centaur 50S gas turbine unit rated at 4.4 

MW. This particular turbine is achieving an impressive 8ppm NOx emission thanks to extra 

NOx burners which were installed at an extra cost of $200,000. 
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Figure 2.2: Natural gas turbine based co-generation plant by Sinklair Knight Merz [5].   

  

GHD have provided engineering consulting, design and estimation services to many gas 

turbine co-generation plants. On the GHD website they outline many different gas turbine 

projects which they have provided services for all over Australia. Most of these projects 

have served remote communities, mine sites, large industrial manufacturing sites or 

refineries and smelters which have particularly high electricity or heat energy demands. 

 

Gas turbines are also utilised in ships and large hovercraft. The Australian Academy of 

Scuba Diving website also gives details on the propulsion system of the HMAS Canberra 

military destroyer. This ship was powered by two electronically controlled gas turbines 

which gave the ship a versatile, responsive and powerful propulsion system (AOS Australia 

website). The Hovercraft Homepage also reported that large capacity jet turbine engines 

(or in particular gas turbines) were used in large military or commercial hovercraft. 

2.9 Manufacturers of Stationary Gas Turbines 

 

For medium to large scale installations most turbine and generator designs are specified 

for on a case by case basis and specially ordered. This will ensure the exact needs of the 

customer are met and the turbine is not under or over worked to meet the energy 

demands. Some small companies however manufacture small scale energy co-generation 

plants such as Turbec in Italy. They produce and sell small scale gas turbine based gas 
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turbine based electricity and co-generation plants. One of their products, the T100 CHP 

micro-turbine has been successfully manufactured for several years and has clocked 

3.617.384 reliable operating hours (Turbec website). 

 

Figure 2.3: Turbec manufactured gas turbine based co-generation plant [30].   

 

2.10  Comparison Of Gas Turbine Engines To Compression Ignition   Engines 

 

Mattingly (1996) reported that jet propulsion is a momentum change of a fluid by the 

propulsion system. The fluid may be gas used by the engine itself (e.g. turbojet), it may be 

a fluid available in the surrounding environment (e.g. air used by a propeller), or it may be 

stored in the vehicle and carried by it during the flight (e.g. rocket). These few points 

briefly outline jet engines and how they change the kinetic energy of the working fluid to 

provide propulsion. This is different to Compression Ignition engines which use the change 

in fluid volume by the combustion process (by heat addition) to create mechanical energy.  

 

2.11  Summary 

 

It has been found that coal seam gas is a naturally occurring methane rich gas which is 

stored in the molecular structure of underground coal seams. It was formed as organic 

matter sitting underground has been transformed to coal over long periods of time and 

http://www.turbec.com/products/products.htm
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under very high pressures. Coal seam gas was once considered a hazard and hindrance to 

coal miners, however with the change in attitude toward energy sources over time it is 

now considered a valuable resource. 

 

Natural gas must be stored at very high pressure as Compressed Natural Gas (CNG) or at 

very low temperature as Liquefied Natural Gas (LNG). This is because at atmospheric 

pressure and temperature natural gas has a very low volumetric energy density and so 

would be un-economical to transport and store. Even when natural gas is converted to 

CNG or LNG it still has relatively low energy density compared to conventional fossil fuels 

so energy density continues to be a major drawback of the technology. Because of these 

issues natural gas is mostly transported via piped networks which are very expensive and 

difficult to construct.  

 

Natural provides an excellent fuel source for combustion engines for several reasons. It 

has been documented that, compared to conventionally fuelled engines, natural gas 

engines have lower exhaust emissions of carbon monoxide, reactive hydrocarbons, and 

particulates. This is because natural gas has a very high octane number of around 130 

which allows for high compression and lean-burn technology to be used on conventional 

engines. Natural gas engines however suffer from high NOx emissions mostly consisting of 

partially reacted fuel, nitrous oxide, nitrogen dioxide, and sulphur oxides. High NOx 

emissions can be dealt with using Exhaust Gas Recycling (EGR), lean burn operation, 

development in fuel mixing and stoichiometric control technology, and a typical three way 

catalyst in a combination closed loop exhaust oxygen level feedback. 

 

Natural gas safety is a very important factor, and it has been documented that no burn 

accidents, other injuries, or fatalities have occurred in America as a result of natural gas 

despite more than 500 million miles of natural gas vehicle operation. This is because of 

two main reasons: NG is lighter than air so it dissipates quickly in the event of an 

accidental spillage, and its ignition point, 1200°F, is much higher than that of gasoline, 

600°F. 
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Gas turbine engines operate on similar principles to conventional reciprocating engines 

where heat energy from the combustion process expands the working fluid. The 

difference however is that gas turbines change the kinetic energy of the working fluid 

through a constant combustion process, and then extract energy from the exhaust using a 

turbine. This turbine is connected to a compressor wheel which forces more air in the 

intake. Conventional reciprocating engines utilise the expanding working fluid in a 

controlled volume to move a piston creating mechanical energy. 

 

Stationary gas turbine engines have many applications including energy generation, ship 

propulsion, and hovercraft propulsion. More specifically for this report stationary gas 

turbine engines are being used more frequently for low to medium scale co-generation 

projects. These projects have been most popular in remote communities, mine sites, large 

industrial manufacturing sites, refineries, or smelters which have particularly high 

electricity or heat energy demands. Most medium scale gas turbine based energy 

generation plants are specified and designed on a case by case basis however there are a 

several companies manufacturing small generic units and documenting excellent reliability 

data.  

 

 

 

 

 

 

 

 

 

 

 

 

 



ENG4111/4112                                                                                                                                                                     Research Project 

Page 28 of 121 

Chapter 3 – Coal Seam Gas Industry 

3.1  Introduction 

This chapter will firstly go over a brief industry overview including an explanation why Coal 

Seam Gas is undergoing a period of such rapid growth, the areas where Coal Seam Gas is 

located in Queensland, and an estimate of the quantity of attainable Coal Seam Gas in 

Queensland. A brief overview of existing natural gas distribution infrastructure will then 

be provided followed by a cost analysis of different fuels. 

3.2  Industry Overview 

With ever increasing environmental pressure and supplies of conventional fossil fuels past 

the peak supply, and exponentially increasing demand the price has been rising. It was 

anticipated that this price rise would promote a change in attitude toward the use of 

these fuels however household budgets have adopted to the price increase and demand 

has continued to exponentially grow. There will be a point however where the cost of 

these fuels reaches a point where it is too expensive to use crude oil based products in the 

current fashion. At this point alternate energy sources will be required to fulfil the 

requirements of our developed energy intensive western lifestyle. 

It is widely accepted that when this occurs renewable energy sources will be the long-term 

solution for our energy needs. Ideally the transition to renewable energy sources could 

begin immediately however the technology suffers from several problems. Some of these 

include low natural energy density available for collection, inability to provide peak power 

at times of high demand without an energy storage system, highly energy intensive 

equipment construction, and associated high cost. Development of these technologies is 

making unprecedented progress, however at the current level of technological 

development they are not a viable alternative for large scale main-stream energy 

generation. These issues will certainly be addressed by technological advances in the 

upcoming years and renewable energy sources will prevail as the energy source of choice, 

however in the interim period an alternative energy source needs to be implemented. 
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Because of this the natural gas industry (especially in Queensland) is going through a 

period of unprecedented growth and development. 

 

Coal Seam Gas can be produced wherever coal seams are present. For economic reasons 

however the accessibility which includes coal seam depth, soil/rock type, and the 

surrounding water table are all important considerations when analysing the extraction 

process. In Queensland Coal Seam Gas is currently produced from the Surat and Bowen 

basins however coal seams also exist in the Cooper, Clarence Moreton, and Galilee basins. 

 

 

Figure 3.1: Major Coal basins in Queensland [17].  

 

Domestic natural gas consumption in Australia is rising, and is expected to be around 1750 

Petajoules by 2020 [17]. The following graph shows the natural gas consumption trend, and 

projected trend. 
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Table 3.1: Australian natural gas consumption [17].  

 

Increasing domestic natural gas consumption will increase the feasibility of natural gas as 

an alternative fuel. This will promote an increase in investment of distribution 

infrastructure and therefore providing the fuel to more areas at a cheaper rate. 

 

Natural gas exports are expected to rise significantly in 2013 when several large LNG 

projects will be complete in Gladstone on the central Queensland coast. There are eight 

proposed coal seam gas projects worth in excess of $40 billion. These projects propose an 

annual gas production of 50 million tonnes of LNG from over 8600 wells piped to 

liquification plants in Gladstone and mostly exported [21]. 
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Some of the current project proposals which are currently in place in Queensland are: 

 

 Santos Ltd/Petronis proposes to construct an LNG plant near Gladstone along with a 

450km pipeline. 

 

 Queensland Gas Company (QGC) proposes to construct an LNG plant near Gladstone along 

with a 430km pipeline. 

 

 LNG Limited/Arrow proposes to construct an LNG plant near Gladstone. 

 

 ConocoPhillips/Origin Energy proposes to construct an LNG plant near Gladstone. 

 

 Shell (CSG) Australia Pty Ltd proposes to construct an LNG plant near Hamilton Point. 

 

 Sojitz Corporation proposes to construct an LNG plant near Gladstone. 

 

 Impel (Southern Cross LNG) proposes to construct an LNG plant near Gladstone along with 

a 400km pipeline. 

 

 Energy World Corporation proposes to construct an LNG plant at Abbott Point. 

 

Most of these projects are aimed at LNG production on the mid Queensland coast, and 

exportation. Unfortunately at the time of writing there was no information on projects 

developing the distribution infrastructure within metropolitan areas of Australia.  
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3.2.1  Existing Distribution Infrastructure  

As discovered in the background research, due to the low energy density of natural gas, 

transporting the fuel by road tanker is rarely feasible. Therefore the largest issue with 

natural gas is the distribution of the fuel. Assessing the infrastructure shortfalls is an 

important aspect of this project. The installation of small to medium scale gas turbine co-

generation plants around industrial and suburban areas (such as those proposed in this 

project) must be assessed on a case by case basis. Essential factors which will make or 

break the feasibility of the project is the heat energy demands of the area and especially 

the shortfalls of the natural gas pipelines. If the station will be situated 20m from an 

existing pipeline then the project may be feasible, however if it is 12 km through a 

metropolitan area then the cost of laying the pipe may outweigh any benefits the plant 

can offer. 

 

Because of this need for individual case analysis to assess the feasibility of the project, 

then this report cannot make conclusions on individual cases without receiving further 

specific information, however an analysis of existing infrastructure will be conducted.  

 

Major Queensland natural gas transmission lines include: 

 

 The Roma to Brisbane Pipeline (RBP) from Wallumbilla (Roma) to Brisbane (438 

km) [16] 

 

 The South West QLD Pipeline (SWQP) from Ballera to Wallumbilla (Roma) (756 km) 

[16] 

 

 The Queensland Gas Pipeline (QGP) from Wallumbilla (Roma) to Gladstone and 

Rockhampton (627.1 km) [16] 

 



ENG4111/4112                                                                                                                                                                     Research Project 

Page 33 of 121 

 The Carpentaria Gas Pipeline (CGP) from Ballera to Mt Isa (840 km) [16] 

 

 The North QLD Pipeline (NQGP) from Moranbah to Townsville (391 km) [16] 

 

 

These pipelines are designed to transport natural gas from the field to large industrial 

customers, local distribution networks, and also natural gas power plants. In addition to 

these pipelines the Queensland - South Australia - New South Wales pipeline was 

commissioned in 2009, and the Queensland Hunter Gas Pipeline was approved for 

construction in early 2009. Both of these pipelines will link the top 4 above pipelines with 

large customers south of the border further powering the Queensland natural gas 

economy.  

 

Localised gas distribution networks fed from the above transmission lines are located in 

Brisbane, the Gold Coast, Toowoomba, Ipswich, Dalby, Roma, Oakey, Bundaberg, 

Maryborough, Gladstone, Rockhampton, and Hervey Bay [16].  

 

3.3  Natural Gas Cost Analysis 

The costs associated with coal seam gas production can vary greatly depending on the 

source location, type of terrain, geological makeup of the soil, distance from source to 

point of use, and the tariffs on the pipelines used. Some of these costs can commonly 

include: 

 Geological area analysis 

 Exploratory drilling 

 Securing land access 

 Drilling production wells 

 Compressing the gas 
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 Treatment of CSG well water 

 Pipeline tariffs  

 

These costs can be subject to change, and other costs can also occur depending on the 

circumstances.  

 

Despite the above costs one of the major advantages of natural gas over conventional 

fossil fuels is said to be the price. Gastech in Melbourne have quoted the price of natural 

gas to be $0.38/m3 (Baxter, R 2010, pers. comm., 2 June) at atmospheric pressure. 

Currently this gas is a blend of conventional natural gas and CSG. Predicting the cost of 

CSG in Queensland when it becomes available in a pure form is impossible however it is 

said to be similar to the above figure.  

 

From the above quoted figure and using atmospheric pressure (P0psi ) as 101.325 kPa 

 

P0psi V0psi = P3600psi V3600psi 

 

101325× 1 = 2.48×107× V3600psi 

 

V3600psi = 4.086 Litres 

 

Therefore the cost of CNG per litre = $0.38/4.086 = $0.093/L 

 

The approximate cost of LNG was now needed to successfully compare relative fuel prices 

and was quoted by Westfarmers as $0.48 per litre (Hazel, B 2010, pers. comm., 3 June). 

With this information the following table can be completed. 
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Table 3.2: Fuel cost and volume analysis. 

Fuel Petrol Tax free 

Diesel 

Compressed 

Natural Gas 

Liquefied 

Natural Gas 

LPG 

Cost/Litre 

(cents) 

109.9 91.9 9.3 48 62 

Energy Density 

(MJ/L) 

34.9 
[23] 38.6 

[23] 9 
[23] 23.16 

[23]
 25.3 

[23] 

Cost for 100L 

($) 

109.90 91.90 9.30 48.00 62.00 

Relative cost 

to 

diesel/Litre  

119.6 % N/A 10.1 % 52.2 % 67.5 % 

Volume of 

fuel for 3860 

MJ (L) 

110.6 100 428.9 166.7 152.6 

Cost for 3860 

MJ ($) 

121.55 91.90 39.89 80.02 94.61 

Relative cost 

to 

diesel/Energy 

Volume 

132.2 % N/A 43.41 % 87.07 % 102.95 % 

 

The above table shows the interesting comparison between the different available fuels. 

Several important points about the above table include: 

 

 Each fuel has different energy densities so for purposes of comparison each fuel 

has been compared to tax free diesel by analysing the cost of purchasing the 

equivalent energy of 100L of diesel (3860 MJ). The relative cost per litre, and then 
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per energy volume has then been provided for purposes of comparison.  

 

 The above prices and price comparisons do not include transport/delivery costs, or 

costs of installing specialised CNG lines which could dramatically affect the above 

figures. 

 

 Each of the above fuel prices were attained at the time of writing, and were either 

local average fuel price, or quoted prices for conventional natural gas in 

Melbourne at the time of writing. 

 

3.4  Conclusion 

 

This chapter aimed at increasing the scope of the analysis of CSG by looking at an industry 

overview, where CSG is located, and how much of it can be reasonably extracted. An 

overview of existing natural gas distribution infrastructure was then provided followed by 

a cost analysis of different fuels. 

 

Coal Seam Gas (CSG) is going through a un-precedented period of growth due to the push 

for alternative energy sources while development of renewable energy generation 

technology advances to a point where it can be widely used. In Queensland there are 

eight proposed coal seam gas projects worth in excess of $40 billion. These projects 

propose an annual gas production of 50 million tonnes of LNG from over 8600 wells piped 

to liquification plants in Gladstone and mostly exported. This is causing significant interest 

and investment in the technology, and it will provide a significant boost to employment 

and to the Queensland economy.  

 

CSG is sourced from anywhere that underground coal seams exist. In Queensland Coal 

Seam Gas is currently produced from the Surat and Bowen basins however coal seams 

also exist in the Cooper, Clarence Moreton, and Galilee basins. 
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Natural gas consumption is expected to rise over the upcoming years mostly due to the 

export projects stated above, and also the continued development and consumption of 

natural gas domestically. 

 

Major Queensland gas distribution pipelines were briefly summarised and local 

distribution networks in Brisbane, the Gold Coast, Toowoomba, Ipswich, Dalby, Roma, 

Oakey, Bundaberg, Maryborough, Gladstone, Rockhampton, and Hervey Bay were 

identified.  

 

The costs of natural gas production were then outlined and a costing analysis of different 

fuel types was conducted. Because of the different energy content per volume the fuels 

cannot be directly compared using the cost per litre. The energy content had to be 

employed to compare these fuels per contained energy volume. It was discovered that 

natural gas purchase was 43.41 % that of diesel per energy volume. This will be a very 

important tool in summarising the feasibility of CSG as an alternative fuel in later chapters. 
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Chapter 4 – Consequential Effects 

In this chapter the consequential effects of the work conducted in this project will be 

reviewed. To help in this analysis the ‘Engineering Frameworks for Sustainability’ 

published by the Institution of engineers Australia will be used.  

      

4.1   Sustainability 

 

Sustainability is becoming an issue of great significance in modern society. If a new 

technology is introduced (such as CSG in gas turbines) the environmental and 

sustainability aspects will be key issues which will need to be closely assessed. 

Sustainability of the technology can be assessed using the ‘Towards Sustainable 

Engineering Practice: Engineering Frameworks for Sustainability’, Institution of engineers, 

Australia, Canberra, 1997. This document outlines ten aspects of sustainability, some of 

which have relevance to this project.  

 

1. Development today should not undermine the development and environmental 

needs of future generations. – This project certainly has an impact on the use 

of finite resources which are not renewable. It is however using the finite 

resource CSG instead of crude oil based products. Crude oil based products are 

still commonly used despite knowledge of their lack of sustainability, and 

substituting their use in some areas such as fuels is going to help the existing 

crude oil reserves last longer for our future generations. CSG has potential 

uses in fuels and domestic gas supplies so using it for gas turbines is a good 

application. Australia and in particular Queensland has extensive reserves of 

CSG so using a domestic energy source also saves on inter-continental 

transportation of energy. 
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2. Environmental protection shall constitute an integral part of the development 

process. – Environmental protection is another important aspect of assessing 

alternative fuels. Most environmental protection issues lay with gas 

exploration, extraction, transportation, and exhaust emissions once burnt. A 

detailed analysis of the environmental issues with extraction, transport, and 

storage are beyond the scope of this report however they are still important 

and should be considered closely by the energy supplier. Initial research 

suggests that emissions are much more favourable whilst burning CSG as 

opposed to other crude oil based fuels.  

3. Engineering people should take into consideration the global environmental 

impacts of local actions and policies. – Development of CSG technology would 

lead to a spread of CSG use all over the world which would decrease reliance 

on crude oil, decrease running costs, create new jobs, and save significant 

environmental emissions. 

4. The precautionary approach should be taken – scientific uncertainty should not 

be used to postpone the measures to prevent environmental degradation – 

CSG is a new and emerging technology which has some big advantages over 

crude oil based fuels. An approach to a new technology such as CSG should be 

approached proactively instead of the general rule of caution. The advantages 

of this technology should be realised and development should be pushed 

forward to make it happen as soon as possible. The environmental benefits of 

NG have been documented many times over and action toward technological 

development, documentation of results, and community awareness needs to 

be taken. 

5. Environmental issues should be handled with the participation of all concerned 

citizens. – All citizens in western societies will be affected by the reduced 

reliance on crude oil based products. A significant reduction of environmental 

emissions by energy production and significant saving to transportation from 

converting engines to run on CSG will be seen.  

6. The community has a right of access to, and an understanding of, 

environmental issues. – All sections in this project have been structured in 
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such a way that all environmental aspects, results, and conclusions are readily 

accessible and easily understood. 

7. The polluter should bear the cost of pollution and so environmental costs 

should be internalised by adding them to the cost of production. – All potential 

pollution costs are assumed to be the responsibility of the energy provider 

because it is assumed that they will occur in the CSG exploration, extraction, 

and transportation stages of the process. All environmental emissions from 

burning CSG have been determined to meet all regulations. 

8. The eradication of poverty, the reduction in differences in living standards and 

the full participation of women, youth and indigenous people are essential to 

achieve sustainability. - This project has no impact on diversity, racism, ageism, 

or sexist issues. It is likely to bring money to remote communities where 

indigenous ratios are quite high, which could be used toward helping local 

issues. 

9. People in developed countries bear a special responsibility to assist in the 

achievement of sustainability. – If CSG was to spread all over the world the 

benefit to both developed and un-developed communities would be equal. 

Developed communities would receive a reliable source of energy which has 

low price variation, requires minimal modification to existing infrastructure, 

and is more environmentally friendly. Due to the nature of CSG it is spread all 

over the world so un-developed countries would benefit by selling the gas 

which would help their economies, create jobs, and develop political 

relationships with other countries. 

10. Warfare is inherently destructive of sustainability, and, in contrast, peace, 

development and environmental protection are interdependent and indivisible. 

– CSG is located all over the world and is not necessarily in high concentrations 

where the demand is located. This will promote international trading between 

countries. Over history this has proven to be both beneficial and a significant 

hindrance to worldwide political relationships. It would be hoped that only 

positive relationships between countries would develop from trading CSG but 

that is nearly impossible to accurately predict. 
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4.2   Ethical Responsibility 

 

Any engineering activity has ethical responsibility which is assumed by the 

conductor of the activity. A large portion of this particular project is risk free (the 

research) however it is important to conduct the research ethically. Another portion 

of the project being final assembly of the model engine, and operation of the engine 

to gain experimental data has significant health and safety issues associated with it.  

 

Considering this, a review of the Engineers Australia Code of Ethics was necessary 

for some guidance on how to conduct this task ethically. Upon review Tenets 2, 4, 

and 7 of the Engineers Australia Code of Ethics were chosen as relevant to this task 

and are as follows: 

 

2. Members shall act with honour, integrity and dignity in order to merit the trust 

of the community and the profession. 

4. Members shall act with honesty, good faith and without discrimination toward 

all in the community. 

7. Members shall express opinions, make statements or give evidence with 

fairness and honesty and only to the basis of adequate knowledge. 

 

After reading these guidelines it was concluded that two essential guidelines must 

be adhered to when completing this project. The first is to conduct research with 

honour, integrity, and dignity. This meant that work was written to the best of the 

available knowledge and also truthfully. Also all work had to be correctly referenced 

with careful citation to the information source in order to give the original authors 

due credit for their work. The second guideline was that the risks associated with 

conducting the work with my model had to be managed as best as possible. This is 

covered in the next section and also appendix A. 
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4.3 Natural Gas as a Fuel  

 

Safety issues of using natural gas as a fuel are very important in this project. Natural gas 

has been found to be lighter than air so it dissipates quickly in the event of an accidental 

spillage. This is a good property in the case of an accidental leak as the gas will quickly 

dissipate minimising risk to surrounding personnel. Natural gas also has an ignition point 

of 1200°F which is much higher than that of gasoline, 600°F so a much better ignition 

source is required to ignite the fuel. 

 

4.4 Safety Issues  

 

 It was decided that the best risk management procedure was to complete risk 

assessments for all activities being conducted to minimise the possibility of something 

going wrong. There are essentially two major activities which have been risk assessed and 

these are general assembly and soldering, and running the engine to gain experimental 

results. These assessments are attached respectively in Appendix A. 
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Chapter 5 – Gas Turbine History and Principles of Operation 

 

5.1 Introduction 

Combustion engines operate using a working fluid (mostly air) and subject it to process 

which allow the engine to extract energy from it. This chapter briefly looks at the history 

of gas turbines and the general principles which allow combustion engines to successfully 

operate. It then looks at the basic layout of a simple cycle gas turbine engine and 

summarises the cycles occurring and the components involved. 

 

5.2 Gas Turbine Origins 

 

Experimentation into gas turbine engines began in the 1930’s and it took several years 

until the design was refined enough to build the first practical engine for service in 1940. 

Design issues that stunted the expansion of the gas turbine in the early stages of 

development were lack of hi-tech materials capable of withstanding the high 

temperatures and velocities of the turbine blades, and low combustor and compressor 

efficiencies. These issues were improved over time and the expansion of gas turbine 

engines into service has seen an exponential growth since. 

 

5.3 Basic Engine Cycles 

 

In all heat (combustion) engines there are cycles which represent each process of 

operation. In most engines these cycles are adiabatic compression (1-2), heat addition (2-

3), adiabatic expansion (3-4), and heat rejection (4-1) as illustrated in the diagram below. 
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Figure 5.1: The Brayton cycle. 

 

5.4 Principles of Operation 

 

The simple cycle gas turbine engine has several essential components to ensure the basic 

thermodynamic cycles can occur and the engine can operate successfully. The basic 

components are outlined below.  

 

Figure 5.2: The simple cycle gas turbine layout. 
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The thermodynamic cycles occurring in a simple cycle gas turbine include: 

 

1. Intake – the working fluid is accelerated through the intake by the compressor from 

quiescent ambient conditions to a velocity at the compressor inlet.  

 

2. Compression – working fluid then undergoes reversible adiabatic compression by 

the compressor wheel of the turbocharger usually within a pressure ratio of 4 to 1 

to 15 to 1. This air is then forced through piping into the intake of the combustion 

chamber.  

 

3. Heat addition – the fuel is then injected in the first part of the combustion chamber 

and the working fluid undergoes heat addition at constant pressure.  

 

4. Expansion - the heated working fluid then undergoes reversible adiabatic expansion 

in the second part of the combustion chamber. This high velocity stream of gases 

flows over the turbine of the turbocharger which in turn drives the compressor 

wheel. 

 

5. Exhaust – heat is then rejected from the working fluid at constant pressure through 

the exhaust system beyond the turbine.  

 

 

Gas turbine engine can exist in both axial and radial flow layout. In axial flow engine the 

working fluid flows from the compressor in an axial direction to the engine shaft. Most 

commercially produced engines are of this design to minimise losses in the working fluid 

path. Simple cycle gas turbine engine based on automotive turbochargers however are 

radial flow (ie. the working fluid flows from the compressor in a direction perpendicular to 

the engine shaft). A diagram of such engines is provided below. 
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Figure 5.3: A radial flow simple cycle gas turbine engine based on a turbocharger. 

 

5.5 Conclusion 

The model test apparatus developed in the following chapter must successfully achieve 

the thermodynamic cycles outlined in this chapter. The basic design of the engine is 

known and further analysis and design justification is in the following chapter. 
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Chapter 6 – Model Design and Construction 

 

Objectives 

 

The objective of this chapter is to design and construct a model gas turbine engine to run 

on a gaseous fuel and gain experimental results to aid in the analysis of Coal Seam Gas as 

an alternative stationary jet fuel. 

 

6.1 Introduction 

 

This chapter firstly aims to analyse the design constraints and requirements of the model 

gas turbine engine which will be constructed for this project. The processes of a simple 

cycle gas turbine will then be revised before the conceptual design process is started. 

Design requirements and expected results will be used as criteria when refining the 

conceptual design. A successful conceptual design will be judged on the ability to provide 

the desired results once constructed. Once the concept is refined a 2-D conceptual jet 

design will be drafted on AutoCAD which will include more detailed dimensions. A 3-D 

model will then be created of the combustion chamber in order to undertake CFD analysis 

and get a better understanding of how the engine works in areas a that could not 

otherwise be seen. Once these drawings and models are complete the process of materials 

selection, creating a cutting list, and construction can begin. Once the jet is complete 

experimental work will be carried out and parameters such as fuel consumption, exhaust 

temperature, and combustion chamber pressure will be measured and recorded for 

further analysis. Finally the design and construction process will have a full appraisal and 

any future work and design changes will be noted. 
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6.2 Design Requirements & Constraints  

 

The design requirements of an engineering project are guidelines which outline the 

direction and parameters of the system design process. 

 

These include: 

 

1. The engine must operate reliably enough to attain the desired results 

 

This report is based on the analysis of coal seam gas as an alternative stationary jet 

fuel. The purpose of the model is to achieve experimental data on gas fuel 

consumption and calculate thermal efficiency of the model to aid in the reflection 

of the jet design process conducted in this report. It is essential that the engine is 

reliable enough to attain these results. Despite this engine being of primitive design 

and construction, and also having a relatively low expected thermal efficiency it will 

still be a good tool to aid in the analysis of CSG as an alternative fuel. 

  

2. The engine must be compact and portable 

 

The engine must be constructed and transported from storage sites to test areas 

which may be significant distances apart. The engine is also expected to spend 

some time in the university engine test labs (not for operation but simply storage 

and minor modifications). Because of these two factors the engine must be 

compact and portable. Moving the jet on a removalist trolley from location to 

location would be ideal. For this reason the jet will be constructed within an outer 

frame and all associated components will be housed within this exo-skeletal 

structure.  
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3. There must be built in safety systems to reduce risk 

 

Safety is an essential factor in any engineering project and this project is no 

exception. There is significant danger involved in the operation of a model jet such 

as the design being considered for this project. The turbocharger on which this jet 

is based on is being used in such a way that it was never designed for whilst the 

engine is achieving very high temperatures and very high turbocharger shaft 

speeds. Three essential steps will be undertaken to increase the safety of this 

model. The first is to install and exhaust temperature sensor close to the exhaust 

turbine of the turbocharger. This will be monitored during operation, and the 

engine will be shut down if the temperature rises above a selected point. The 

second is to make an exclusion zone in the exhaust of the jet to prevent any 

bystanders from being struck from any debris whilst in operation. The last is to 

conduct a risk assessment of the operation of the jet to minimise any potential 

risks. 

 

The design constraints of an engineering project are limitations which outline the direction 

and parameters of the system design process. It is possible for a design to address all of 

the design requirements but not satisfy the constraints, so it is important to consider these 

in the design process. 

 

These include: 

 

1. The engine must be manufactured for less than $1000 (excluding labour)  

 

The engine design and construction process must be kept in perspective for this 

project. Building a model jet which costs $20,000 and takes 1 year to manufacture 

is beyond the scope of this project. In the case of a gas turbine the extra expense 
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will only achieve greater thermal efficiency which will not benefit the outcome of 

the experimental process. 

 

2. All manufacturing process must be conducted by myself 

 

For the purpose of proper model analysis it was decided that all manufacturing was 

to be conducted using no machining processes. At the time of construction such 

machines were not available, and getting machining professionally done would 

quickly exceed the project budget. Therefore all construction was done using a 

welder, angle grinders, and other basic tools.  

 

3. The Combustion chamber must be designed for the turbocharger 

 

For this particular project a suitable turbocharger had already been sourced so the 

combustion chamber on this particular engine was to be built around this device. 

For this reason detailed turbocharger selection details will not be included but a 

brief overview can be seen in section 6.4.1. 

 

Now the requirements and constraints of the design are known the design process can 

begin. 

 

6.3 System Processes  

 

The simple cycle gas turbine engine this model will be based on will have the same cycles 

as outlined in section 5.3. This design relies on the turbocharger to provide a compressor 

and turbine, and the intake, combustion chamber, and exhaust will be constructed. Each 

of these processes is essential to the operation of the engine, so these cycles will be used 

in the design analysis and final design selection process. 
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6.4 Conceptual Design Analysis 

 

For this model engine the most essential part of construction is the correctly sized design 

of the combustion chamber for the selected turbocharger. The combustion chamber will 

therefore be designed, and the rest of the engine layout will be built around it. 

 

6.4.1 Turbocharger Considerations 

 

If the combustion chamber is to be built around the selected turbocharger then turbo 

selection is less important. There are several steps to take to ensure successful operation 

of the model engine. These are: 

 

1. Ensuring the turbocharger is in healthy working condition by checking for chips on 

the compressor and turbine wheels, and feeling for axial shaft play.  

 

2. Choosing the turbocharger for the desired engine size.  

 

3. Ensuring the turbocharger is not out of budget. 

 

For this particular project a Garrett GT 4082 journal bearing turbocharger was chosen for 

use. This turbocharger has a compressor inducer diameter of 58 mm and a high flow 

capacity.  

 

This turbocharger was chosen mainly because it was available at a low cost at the time of 

the build, and also its large size and high flow capacity would allow a larger engine to be 

built. This particular turbocharger also has an internal wastegate for its intended 

application on a compression ignition engine on a bus. This device is used to control boost 

levels in these engines and will be disabled as it is of no use in an engine of this design. 
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6.4.2 Combustion Chamber Design 

 

This section will look at some basic background theory of combustion chamber design 

specifically in the purpose and design of the combustion liner, and also measures to 

improve the efficiency of the system.  

 

The combustion chamber of a gas turbine engine introduces fuel to the compressed 

working fluid and, ideally, achieves efficient combustion. Minimising heat and pressure 

loss within the combustion chamber is essential in maximising the thermal efficiency of the 

system.  

 

Realistically the combustion chamber will have heat and pressure loss which will decrease 

the thermal efficiency of the system. As a solution the outer wall of the combustion 

chamber will be constructed from relatively thick material to minimise heat flow to the 

atmosphere. 

 

A combustion chamber can be designed to minimise the excess air passing through the 

system (say around 10-20%) which would also increase the thermal efficiency of the 

system. Unfortunately however certain parts of the turbine cannot operate at the elevated 

temperatures that would be produced by operating an engine in this way.  

 

Consequently a successful combustion chamber design must make careful allocation of a 

significant portion of the working fluid to the dilution and cooling of the combustion gases 

before they hit the turbine. This is achieved by dividing the compressed working fluid into 

two streams, the primary and secondary flows. The primary flow is subject to heat addition 

via fuel injection and ignition. The secondary flow is then progressively introduced to the 

primary flow lowering the outlet temperature of the combustion chamber and completing 

the combustion process.  
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For this style of jet engine the primary flow is separated from the secondary flow using a 

combustion liner inside the combustion chamber. This liner is around half the diameter of 

the outer wall of the combustion chamber and has holes drilled in it to allow only a portion 

of the air to mix with the fuel. More drawings and discussion of this liner will be provided 

later in the report. 

 

For engines of this design the combustion chambers have been found to be much larger 

diameter than the size of the turbine inlet on the exhaust housing of the chosen 

turbocharger. For this reason there will have to be a transition area to force the mixed 

post combustion working fluid into the entrance of the turbine. This transition area must 

be carefully designed to minimise head loss from sharp orifice like pathways for the 

working fluid. The combustion chamber will be gradually reduced in diameter at an angle 

of no greater than 20 degrees measured from the axis of the combustion chamber. 

 

6.4.3 Combustion Chamber Sizing 

 

As mentioned previously the sizing of the combustion chamber to the turbocharger is 

essential. If the combustion chamber is too small the engine will have a low thermal 

efficiency and may not reach full throttle because of flow restrictions. If the combustion 

chamber is too large the working fluid velocity may not be high enough to attain proper 

combustion and the engine may overheat and prematurely suffer turbine failure. 

 

The essential measurement for combustion chamber sizing is the inducer diameter which 

was previously stated as 58mm. As this is expected to be the smallest area through which 

all the working fluid must pass it is essential that no part of the system have a smaller 

diameter than this. The combustion chamber construction will also be heavily dictated by 

the available material and construction constraints such as access for welding and 

minimising heat loss in heat affected areas.  
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In the design process of the finalised combustion chamber the GR1 combustor formula 

attached in appendix D was used as a rough guide to pipe sizes. This formula was found in 

the research process and has been written by the website author Don Giandomenico after 

many projects similar to the one proposed in this report. It was decided that this formula 

would give an appropriately accurate component sizing guide for the context of this 

report. 

 

6.4.4 Combustion Chamber Pipe Work Layout 

 

This section will analyse the purpose and requirements of the pipe work carrying the 

compressed working fluid from the compressor outlet to the intake of the combustion 

chamber. Ideally these engines will have minimal pipe work between the heat addition 

process and the turbine to minimise frictional losses of the high speed gases. For this 

reason most combustion chambers in engines of this simple cycle design are bolted 

directly to the turbochargers turbine. The pipe work then provides the link between the 

compressor outlet and the top of the combustion chamber which sits perpendicular to the 

turbocharger shaft. 

 

As stated above the smallest diameter allowed for primary pipe work is 58mm so all pipe 

work will be a minimum of 2.5 inch (63.5mm) diameter.  

 

The pipe work would therefore start at the compressor outlet and be welded into the top 

of the combustion chamber. In order to increase symmetry and efficiency of the fuel 

mixing and post combustion cooling the intake pipe would be split, and feed into the top 

of the combustion chamber on opposite sides. This will decrease ‘cold spots’ in the 

combustion chamber where effective mixing does not occur and combustion is incomplete 

of non-existent. The pipes will also be set into the combustion chamber with an offset to 

create a whirlpool swirling like effect of the gases within the combustion chamber.  
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6.4.5 Combustion Liner Design 

 

The combustion chamber liner is an essential component to the success of a gas turbine 

engine design. The purpose and reasoning behind this has been covered in section (6.4.2.). 

This section of the report will cover the sizing of the liner, and also the size and placement 

of the holes allowing the separation of the primary working fluid flow.  

 

A successful combustion chamber liner must: 

 

1. Contain all fuel injection and ignition components 

 

2. Separate the working fluid into primary flow and secondary flow 

 

3. Achieve an approximate 1:4 primary to secondary flow ratio 

 

4. Successfully mix the secondary with the primary flow post combustion 

 

Achieving these criteria means there are several essential aspects of design which must be 

accurate to the criteria. The combustion liner must have an appropriate diameter such 

that there is sufficient room for a fuel injector and spark plug in the top, there is sufficient 

room for successful and non-restricted combustion to take place, and there is sufficient 

room for the secondary flow to bypass the liner and mix with the primary flow post 

combustion.  

 

Primary and secondary fluid flow separation is achieved by creating an area for the 

primary fluid flow to enter the combustion liner. This is nominally achieved by drilling 

evenly spaced holes in the liner. The number and size of the holes is carefully controlled to 

ensure their total area is 20% of the compressor inducer area.  
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The total inducer area is Ai =  x (di/2)2 

 Ai =  x (58/2)2 

 Ai = 2642.08 mm2 

 

Assuming constant working fluid velocity (V1), the volumetric flow rate (Q1) is related 

directly to the area (A1) through 

 

 

 

The actual working fluid velocity however will be significantly less than that at the inducer. 

This is because the area which the working fluid has to flow through increases significantly 

upon entrance to the combustion chamber. Estimating the total combustion liner hole 

area (AB) of around 20% of the inducer area will therefore suffice. Combustion chamber 

testing will ensure successful separation of primary and secondary flow of the ratio and 

complete combustion is occurring before the gases are exposed to the turbine.  

 

                                                              AB = 528.42 mm2 

 

These approximate dimensions have also been taken from the GR1 combustor formula 

talked about in chapter 6.4.3 and shown in appendix D. 

 

6.4.6 Afterburner design 

 

For an afterburner to successfully work on an engine of this design it must make a seal 

around the exhaust outlet from the turbocharger and allow the exhaust velocity to slow 

slightly. This is done by increasing the flow area (or pipe/duct diameter) and introducing 

fuel through a secondary injector which combusts utilising the remaining oxygen from the 
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secondary flow within the combustion chamber. The flow must then be restricted post 

combustion to increase the velocity of the working fluid.  

6.5 Materials Selection 

 

Given all the above design parameters and the available material at the time of 

construction the following materials have been selected for the combustion chamber: 

 

 Primary combustion chamber shell – It has been discussed that the combustion 

chamber will have a thick primary shell to minimise the heat energy losses to the 

surrounding environment before the turbine. Because of this 5 inch (127 mm) thick 

walled mild steel pipe was chosen for its availability and heat retention capability.  

 

 Combustion liner - No information was available at the time of construction on the 

sizing of the combustion liner however many pictures were available on existing 

combustion liners. The available material was assessed and 3 inch (76.2 mm) thin 

walled mild steel exhaust pipe was chosen. With a liner this size there would be 

adequate room to drill holes for separating the primary and secondary flow, and 

also for the secondary flow to bypass the liner and mix with the primary flow 

before the turbine.  

 

 Pipe work – As stated earlier all pipe work will be 2.5 inch (63.5 mm) diameter to 

avoid flow restriction to the compressed working fluid. All pipe work within 200mm 

of the combustion chamber will be 2.5 inch thick walled steel steam pipe bends to 

aid in the construction of the bends, for ease of welding, and also for heat 

retention. All other pipe work will be thin walled mandrel bent exhaust pipe. 
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6.6 3-D Prototype creation and analysis 

 

The next step in the design and construction process was to make a 3-D model of the 

proposed combustion chamber design. Solidworks was chosen as the preferred drawing 

suite due to previous experience using the program, and also the ability to complete CFD 

analysis on the finalised model. The completed 3-D model is shown below. 

 

Figure 6.1: The completed pre-construction 3-D model of the combustion chamber. 

 

This model then had boundary conditions applied to it and solved for working fluid velocity 

and pressure distribution (no heat is added in the model so the velocities and pressures 
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post combustion will be inaccurate). The boundary conditions were set at a uniform 

velocity of 100m/sec in the inlet and atmospheric pressure at the outlet. The results are as 

follows: 

 

 

Figure 6.2: Pressure distribution within the 3-D model 
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Figure 6.3: Velocity distribution within the 3-D model 

 

These plots, especially the velocity, show how effective the combustion liner is separating 

the flow of gases by minimising the velocity within the combustion liner. A majority of the 

flow bypasses the combustion liner and effectively mixes with the primary flow post 

combustion. No obvious flow restrictions or high pressure points exist so model 

construction can begin. 
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6.7 Cutting List  

 

Based on the above materials, construction of the combustion chamber could begin. The 

following table is a list of materials used in this process.  

 

Table 6.1: Initial costing of the combustion chamber construction 
 

Component Material Length/quantity Source Cost 

Main Shell 5 inch MS pipe 350 mm Off cut from 
steel supplies 

$5.00 

Liner 3 inch MS exhaust 
pipe 

230 mm Exhaust shop $10.00 

Pipe Bends 2.5 inch 90° 
steam pipe bends 

6 Steel supplies $6.95 each 

Thin Walled 
Pipe 

2.5 inch exhaust 
pipe 

600 mm Exhaust shop $15.00 

Chamber Cap 6mm MS plate 85 mm radius 
circle 

Supplied $0.00 

Bolts M8x35mm Zinc 
plated 

8 Bolt shop $15.95 

Fuel Injector Modified 
countersunk brass 

orifice 

1 Hose supplies $1.95 

Spark Plug NGK B8S 1 Automotive 
shop 

$4.95 

Welding 
Materials 

Welding gas, wire, 
shield, glove 

- Supplied $0.00 

Angle Grinders 5 and 9 inch 
grinders with 

grinding, cutting, 
and flap disc 

wheels to suit 

- Supplied $0.00 

Oxy-acetylene 
Torch 

Oxygen, 
acetylene, wand, 

glasses 

- Supplied $0.00 

Paint High temperature 
enamel in a can 

1 Paint store $14.95 

 
 

From this table it can be seen that the total construction cost (not including labour) of the 

combustion chamber is $94.50. As planned the construction process on the rest of the jet 

can now be costed. 
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Table 6.2: Initial costing of the complete model construction 
Component Material/Specification Length/Quantity Source Cost 

Combustion 
chamber 

MS 1 Previously 
analysed 

$94.50 

Frame MS 25x50mm RHS, and 
50x5mm flat 

4x700mm, 
12x700mm 

Steel shop $36.50 
$44.50 

Turbocharger - 1 Supplied $0.00 
Oil pump Procon P/No. 630177  

150 Lt/h built in 
regulator 

1 Pump shop $220.00 

Oil pump engine - 1 Electrical 
shop 

$37.50 

Oil pump bracket Alloy 1 USQ 
machine 

shop 

USQ 
project 
budget 

allocation 
Oil lines Reinforced rubber 4m 3/8 inch, 

1m 7/8 inch 
Hose 

supplies 
$5.95/m 
$8.95/m 

Coil and points - 1 Automotive 
shop 

$76.95 
total 

Exhaust/afterburner MS 800mm 6 inch, 
2 x 4 to 6 inch 

adaptor, 1 x 4 to 3 
inch adaptor 

Truck 
exhaust 

shop 

$51.85 
total 

Intake MS 400mm 4inch Truck 
exhaust 

shop 

$10.00 

Hoses and clamps Reinforced 
silicone/rubber and 

stainless steel 

1 4inch x 50 mm, 1 
2.5inch x 50mm, 2 x 4 

inch clamps, 2 x 2.5 
inch clamps, 2 x 7/8 

inch clamps, 18 x 3/8 
inch clamps 

Hose 
supplies 

$84.65 
total 

Oil pressure gauge - 1 Supplied $0.00 
Boost pressure 

gauge 
- 1 Supplied $0.00 

Deep cycle 105 Ah 
battery 

Lead acid 1 Automotive 
shop 

$180.00 

Wires Insulated copper 1 Electrical 
shop 

$61.95 
total 

Oil cooler - 1 Supplied $0.00 
Thermo fan - 1 supplied $0.00 

Welding Materials Welding gas, wire, 
shield, glove 

- Supplied $0.00 

Angle Grinders 5 and 9 inch grinders 
with grinding, cutting, 
and flap disc wheels to 

suit 

- Supplied $0.00 

Paint Gloss black enamel can 3 Paint store $11.85 
total 
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From this table it can be seen that the total construction cost (not including labour) of the 

model jet is $943.00. This falls within the specified budget and so is deemed a successful 

construction plan.  

 

     Table 6.3: Initial experimental apparatus cost 
 

Component Length/quantity Source Cost 

9kg LPG gas 
bottle 

1 BBQ supplies $39.95 

Garden leaf 
blower 

1 supplied $0 

 
 
It can be seen from the above tables that the construction process has been costed within 

the prescribed budget so construction can now begin. 

 

6.8 2-D Prototype Engineering Construction Drawings 

 

Engineering construction drawings were now produced to aid in the construction of both 

the combustion chamber and the combustion liner (see appendix E). 

 

6.9 Construction 

 

This section of the report will go through the steps taken in the construction process. 

These steps are as follows: 

 

1. Gather all specified construction materials 
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2. Construct combustion chamber including combustion liner, fuel injector, and spark 

plug 

 

3. Attach combustion chamber to the turbocharger 

 

4. Build an appropriately dimensioned frame (exact dimensions unimportant) 

 

5. Build mounts on the frame for the turbocharger and the combustion chamber 

 

6. Install jet onto frame 

 

7. Construct exhaust and afterburner and attach 

 

8. Install oil system including pump, motor, cooler, thermo fan, and lines 

 

9. Add a dash panel and install all gauges 

 

10.  Complete all wiring and install battery 

 

11. Touch up all painted surfaces 

 

Each step will now be explained in further detail as to the method used 

 

 

Step 1: Gather all specified construction materials 

 

The first step in the construction process was to gather all specified construction materials 

in the above tables for ease of work once construction had begun. Fortunately all materials 

were sourced from local suppliers so this process was relatively easy, and was complete 

within a day. 
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Step 2: Construct combustion chamber including combustion liner, fuel injector, and spark 

plug 

 

It was decided earlier in this chapter that the most crucial component to the success of the 

engine, the combustion chamber, would be constructed first with all proceeding pieces 

fabricated to work in conjunction with it.  

 

The first step in this process was to modify the lower half of the 5 inch pipe such that it 

converges to a square outlet the same size as the turbine inlet on the turbocharger (73 x 

50 mm). To do this, 4 wedges were cut axially along opposing sides of the pipe, and the 

pipe was worked into the desired shape using a 12 pound sledge hammer. This was the 

seam welded, ground off, and buffed with a flap disc. The combustion liner was then cut to 

a length such that there was adequate bypass area for the secondary flow between the 

liner and the shell. The liner was then welded to the cap and bolted to the top of the pipe 

forming a removable lid in the combustion chamber. The pipe work was tacked into place 

to match the 3D model and fully welded. All welds were then cleaned with a 5 inch grinder 

and flap disc, and the whole assembly was painted to avoid corrosion.  

 

 

Figure 6.4: Side view of the completed combustion chamber 
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Figure 6.5: Top view of the completed combustion chamber 

 

 

Figure 6.6: Side view of the completed combustion liner 
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Figure 6.7: Top view of the completed combustion liner with fuel and spark inlet 

 

Step 3: Attach combustion chamber to the turbocharger 

 

The combustion chamber was then bolted to the turbocharger. 

 

Step 4: Build an appropriately dimensioned frame (exact dimensions unimportant) 

 

It was now time to build an appropriately dimensioned frame to house the jet and all 

associated components for operation (excluding the LPG bottle). When considering the 

layout of the components an important factor is the position of perishable components or 

flammable liquids in relation to hot surfaces. For this reason it was decided to mount the 

jet horizontally on top of a rectangular frame. This would also help with the oil drain of the 

turbocharger which needs to freely drain away. A frame was therefore constructed from 

available 25 x 50 RHS and 50 x 6 flat bar to appropriate dimensions for the application. 
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Step 5: Build mounts on the frame for the turbocharger and the combustion chamber 

 

Mounts on the completed frame were then constructed to safely mount the turbocharger 

and combustion chamber assembly perpendicular on top of the frame. Mounting points on 

both the turbocharger and the top of the combustion chamber were used for a secure 

attachment due to potential forces exerted on them during moving and operation. 

 

Step 6: Install jet onto frame 

 

Once all welding and grinding was complete the frame received a coal of gloss black 

enamel and the jet was installed for the last time. 

 

Step 7: Construct exhaust and afterburner and attach 

 

All materials for the afterburner were sourced from a truck exhaust shop specialising in 

large diameter thin walled mild steel exhaust pipe and reducers. Construction was started 

with an adaptor fitting which clamped to the turbocharger exhaust outlet. This adaptor 

was the attached to the length of 6 inch exhaust pipe using a reducer. Two reducers were 

then welded on the end of the afterburner to reduce the pipe outlet size to 3 inch. A fuel 

injector was then made from steel brake line and welded through a hole created just after 

the turbine. 

 

 

Figure 6.8: Side view of completed afterburner 
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Figure 6.9: Top view of the completed afterburner showing secondary fuel injection 

 

Step 8: Install oil system including pump, motor, cooler, thermo fan, and lines 

 

The oil system is a crucial component of the successful and reliable operation of the 

turbocharger. The chosen oil pump was a rotary vane pump with inbuilt and adjustable 

pressure regulator (see appendix B for full specifications). This pump was mounted on a 

custom fabricated bracket and powered by a 12 V electric motor via a belt drive. This 

system was installed along with the drain line from the turbocharger, intake line, filter, and 

appropriate connection for the oil gauge line. 
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Figure 6.10: Belt driven oil pump apparatus 

 

Step 9: Add a dash panel and install all gauges 

 

A simple dash panel was created from some scrap aluminium checker plate in which 

gauges and switches would be mounted within. The switches installed would control the 

power to the oil pump, and also power to the thermo fan mounted on the oil cooler. The 

gauges installed include oil intake pressure, combustion chamber pressure, and exhaust 

temperature. 

 

 

Figure 6.11: Dash with installed control switches and gauges 
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Step 10: Complete all wiring and install battery 

 

All wiring was now to be completed including installing the ignition system. The chassis of 

the engine was grounded directly to the negative terminal of the battery and all positive 

power lines were wired through switches if appropriate. The ignition coil was secured in a 

non heat-affected area using cable ties and the lead was run to the spark plug.  

 

Step 11: Touch up all painted surfaces 

 

Once all construction was completed all painted surfaces were touched up, wiring was 

secured with cable ties, and the model was ready to run. 
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Figure 6.12: Completed model apparatus ready for testing 

 

6.10 Conclusion 

The design and construction has been an initial success with the model being complete on 

time and within budget. Upon initial inspection the engine seems to adhere to the 

specified design requirements and constraints however a full design appraisal for this 

model will be conducted after the end of the testing in chapter 7. 
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Chapter 7 – Small Engine Performance 

 

7.1 Introduction 

 

As stated in section 1.3, the second aim of this project was to develop a small scale gas 

turbine engine which will be used to attain experimental data to aid in making conclusions 

about CSG as an alternative fuel. The previous chapter has extensively covered the 

construction process, so this chapter will cover the experimental testing process and 

provide attained test data, and basic calculations. 

 

7.2 Aims and Objectives 

 

The aims of an engineering experimental test procedure have both general aspects, and 

also project related aspects. The general aspects include: 

 

 Be conscious of risks as outlined in the risk assessment (appendix A) 

 

 Complete all activities with respect to the environment 

 

 Act in an ethical and professional manner 

 

 Ensure all results are as accurate as possible to what is occurring 

 

Some more specific aims are: 

 

 Attain all desired results 
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 Maintain a constant watch on engine vitals including oil pressure and especially 

exhaust temperature to minimise risk of a catastrophic failure 

 

 Ensure test apparatus does not allow the fuel supply to come in contact with heat 

 

These experimental aims are important considerations when planning the test apparatus 

and procedure to ensure the completion of the experiment safely and successfully. 

 

7.3 Test Apparatus 

 

With these aims in mind an experimental apparatus can be designed such that all 

experimental aims, specifically safety, are fulfilled by the experimental procedure. Given 

the nature of this type of engine safety of all operators and on-lookers will be the first 

priority. With this in mind the following points must be adhered to: 

 

 All flammable substances including lubricating oil and fuel must be kept as far 

away as practically possible from all heat and ignition sources 

 

 All persons must stay out of an exclusion zone in the exhaust stream and a 45 

degree tangent from it (see below diagram) 

 

 All on-lookers must stay at least 10 metres away from the operating engine in all 

other directions (see below diagram) 

 

 Only essential persons are allowed within these exclusion zones and these people 

must wear personal protection equipment 

 

There are several measures taken to ensure the above points are implemented. An 

appropriate exclusion zone is outlined. No one including the operators are allowed in the 
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exhaust exclusion zone due to the risk of flying debris, and only essential operators 

including the starter in the start procedure, and the fuel flow control and engine vital 

monitoring person are allowed in this area. The fuel supply (an LPG bottle) is kept away 

from all heat and ignition sources by a 2 metre long supply line (see below diagram).  

 

 

Figure 7.1: Test apparatus. 

 

To address the more specific experimental aims outlined in the previous chapter the 

exhaust temperature will be monitored with a thermocouple temperature meter capable 

of reading very high temperatures (an EMTEK EMT-502 provided by the USQ Faculty of 

Engineering). The combustion chamber pressure and lubricating oil pressure will be 

monitored with an automotive boost gauge mounted on the dash panel of the model 

engine. The fuel supply (LPG bottle) will also be mounted on electronic scales to compare 

the change in mass with time. This will provide a fuel mass flow rate which will be useful 

in future calculations. 

 

 

 

7.4 Test Procedure 
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On the day of the experiment the following plan was outlined for the experimental 

procedure to ensure the safety and success of the procedure: 

 

1. Decide on an appropriate location to test the apparatus. 

 

2. Carefully transport all test apparatus and associated components to the chosen 

location. 

 

3. Set up the engine in an orientation such that the exhaust fumes and smoke will not 

affect any of the surrounding structures of wildlife. 

 

4. Outline specified exclusion zones with orange safety cones. 

 

5. Set up electronic scales in a location on the intake side of the engine and at a 

distance such that the length of the fuel feed line will be fully utilised. 

 

6. Sit LPG bottle onto scales and connect to the fuel line. 

 

7. Have a discussion with all operators and on-lookers to ensure there is a clear 

understanding of the exclusion zones, and plan the sequence of starting events 

with the starter.  

 

8. Connect the battery. 

 

9. Turn on the oil pump and monitor the rise and stabilisation of oil pressure to the 

turbocharger. 

 

10. Have the starter start the leaf blower and align with the engine intake. 

 



ENG4111/4112                                                                                                                                                                     Research Project 

Page 77 of 121 

11. Apply full power to the leaf blower, turn on fuel slowly whilst pressing the ignition 

button repeatedly and wait to hear a ‘pop’ sound which signifies the start of the 

combustion process. 

 

12. With the leaf blower still attached and on full power, slowly increase the supply of 

the fuel and listen to the engine turbine speed which will sound like a high pitched 

whine.  

 

13. Throttle the engine up to a point where the leaf blower is no longer needed (the 

starter will know this because the leaf blower engine revs will increase as the 

turbine sucks air through the device and takes load off the engine). 

 

14. Remove the leaf blower and adjust fuel supply to maintain a steady idle speed. 

 

15. Take a reading of the mass of the LPG bottle and start the stopwatch. 

 

16. Run the engine for the desired period of time (60 seconds was appropriate on this 

test day) and then take another reading of the LPG cylinder mass.  

 

17. The fuel mass flow rate will be the change of mass divided by the time taken.  

 

18. Repeat this fuel measuring procedure for a variety of throttle settings including full 

throttle and record all data. 

 

19. Ensure exhaust temperature and oil pressure is monitored throughout the entire 

test and shut the engine down immediately if these readings fall above or below 

pre-specified thresholds. 

 

20. Once all tests are complete shut the fuel supply down to the engine to stop the 

combustion process.  
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21. Keep the oil pump running for several minutes after shut down to help cool the 

turbocharger bearings. 

 

22. After this time turn the oil pump off, disconnect the battery and LPG cylinder and 

pack all test apparatus away being very careful of hot surfaces. 

 

Following these procedures, actioning the risk assessments and utilising common sense 

would increase the chance of a successful and safe experiment. These points were 

adhered to on an initial test day and the outcomes of this day are outlined below. 

 

7.5 Results 

 

On the day of the experiment the above procedure was followed and the results recorded 

at the lowest throttle setting required to maintain operation. 

 

The data recorded is as follows:  

 

 The LPG mass changed from 16.3 kg to 15.5 kg in 8 minutes of total operation 

 

 The surrounding temperature on the day was 15°C 

 

 The average exhaust temperature was 530°C 

 

 The average combustor pressure was 3.75 psi 

 

 

As discussed in the previous chapter results from a variety of throttle settings were 

required however premature turbine failure due to a lack of oil supply resulted in the test 
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being incomplete (see section 7.7 for further analysis). Despite this unfortunate failure, 

analysis on the recorded data can still be conducted. 

 

The process of analysis of a gas turbine engine assumes steady flow of the working fluid 

(air) during each of the operating cycles. The gas turbine relies on energy addition to the 

working fluid by an external source (fuel) and other variables are also assumed constant 

or are neglected such as pressure loss in the combustor, and change of working fluid 

specific heat between compression and exhaust. 

 

7.6 Thermal Efficiency Calculation 

 

From the experimental data the change in internal energy (U) could be found from 

reducing the steady state flow energy equation.  

 

The Steady State Energy Equation is given by: 

 

 

Because there is no input heat energy (Q), or input work (W) then these values are zero. 

Also there is no change in mass flow rate (m), or potential energy (Z) from the intake to 

the exhaust of the engine so these values can be neglected. There is also no input energy 

to the system (U1) so this value is zero. The Steady State Energy Equation is reduced to: 
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Where 

  = Input heat energy (Joules) 

 

  = Input work (Joules) 

 

  = Mass flow rate of the working fluid (kg/sec) 

 

  = Input energy to the system (Joules) 

 

  = Output energy of the system (Joules) 

 

  = Input potential energy to the system (Joules) 

 

  = Output potential energy of the system (Joules) 

 

  = Input enthalpy to the system (Joules) 

 

  = Output enthalpy of the system (Joules) 

 

 g = Gravitational acceleration (m/sec2) 

 

 Cpair = Specific Heat (J/kg.K) 
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 T∞ = Surrounding outside air temperature (°C) 

 

 Tout = Exhaust outlet temperature (°C) 

 

 

To find output energy (U2) the inlet and outlet temperature (T∞ and Tout respectively) of 

the running engine was required. The surrounding temperature (T∞) was taken with a 

thermometer and a thermocouple attached to an EMTEK EMT-502 receiver was placed in 

the exhaust stream to find the Tout. 

 

Therefore: 

 

T ∞ = 15 oC 

Tout = 530 oC 

 = 0.8 kg in 8 mins  

           = 1.67 x 10-3 kg/sec 

 

 

 

 

 

  Joules 

 

(note the absolute value of U2 is used when taking the square root) 

 

It can be said the system work (W) is the change in energy of the system.  

Therefore  

Cpair is sourced from Principles 

of Heat Transfer[11] in table 

A26. It is read as 1012 J/kg.K at 

20oC and 1076 J/kg.K at 500oC. 

Because these values are 

different an average will be 

taken. 
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W = ∆U 

We know  

U1 = 0 

So  

W = U2 = 1036.98 Joules 

 

We know thermal efficiency is the ratio of work output over heat energy within the 

supplied fuel[13]. This efficiency shows the amount of energy contained in the consumed 

fuel that is actually converted to power. This efficiency is expected to be quite low due to 

the nature of the engine however the results will still be useful to get a comparative CSG 

fuel consumption. 

 

Therefore 

 

 

 

Where 

 

 LCV = Lower Calorific Value (J/kg) 

 

 W = System work (Joules) 

 

 Qin = Input heat energy (Joules) 

 

The LCV of LPG has been found as 45.8 x 106 J/kg [12] 

 

 

Therefore  
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From this stage the comparative CSG fuel consumption can be calculated assuming similar 

burn characteristics and similar thermal efficiency. 

 

We know  

 

 =  

 

 

 

 

The LCV of CSG has been found as 38.7 x 106 J/kg [12] 

 

 

 

 kg/sec 

 

For comparative purposes this mass flow rate equates to 0.9504 kg of fuel in 8 minutes 

compared to the 0.8 kg of LPG in the same time. This figure is an increase of 18.8 % fuel 

consumption compared to LPG.  
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This comparison of fuel consumption by mass is of limited use in the analysis of CSG. This 

figure must be converted to volumetric fuel consumption to be of any use.  

 

The density of LPG is 1.882 kg/m3, and CSG is 0.8 kg/m3 [15].  

 

 

 

 

 

 

 

 

 

 

 

Where  

 

 Q = Volumetric flow rate (m3/sec) 

 

  = Mass flow rate (kg/sec) 

 

  = Gas density (kg/m3) 

 

 

 

 

Therefore the volumetric flow rate (Q) of each fuel is found to be: 
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These volumetric flow rates will be summarised later in the chapter. 

 

From table 3.2 it can be seen that 1000L (ie. 1 m3) of CNG costs $93.00 compared to 

$620.00 for 1000L of LPG. That makes the running cost of the engine $1977.80 /hour on 

LPG and $830.49 /hour on CNG. It can therefore be concluded that the running costs of a 

CNG powered engine would be 41.9% that of an LPG engine (a 58.1% saving).  

 

7.7 Design Appraisal and Discussion of Turbine Failure 

The first step of the design analysis stage was to set requirements and constraints to 

dictate the direction of the model construction stage of the project. 

 

The design requirements were: 

 

1. The engine must operate reliably enough to attain the desired results 

 

2. The engine must be compact and portable 

 

3. All manufacturing process must be conducted by myself 
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The design constraints were: 

 

1. The engine must be manufactured for less than $1000 (excluding labour)  

 

2. There must be built in safety systems to reduce risk 

 

3. The Combustion chamber must be designed for the turbocharger 

 

The success of this design will be how well it reflects these design requirements and 

constraints. If the design does not satisfy one or more of these criteria then the design 

process has partially failed and the process must be reflected to assess when the error 

occurred. 

 

The first design requirement, reliability, is an important factor of the finished model. 

Despite this upon initial testing of the model engine unfortunately the turbocharger has 

suffered a premature failure of the exhaust wheel and bearing (see below pictures). This 

failure has been traced to a leaking oil seal in the turbocharger which caused abnormally 

high lubricating oil consumption. This eventually used the 2L of oil in the reservoir and 

while the engine was operating the oil pump ran dry. Lubricating oil is essentially 

important for the bearings of a turbocharger so this failure caused significant wear on the 

bearing which allowed slight play in the shaft causing the exhaust wheel to come into 

contact with the exhaust housing damaging it. This failure was caused by two factors. The 

first was the defective seals in the turbocharger, and the second was the lack of oil level 

monitoring built into the design. It was assumed that if the oil level was checked between 

every run then a monitoring system was not needed. This turned out to be un-true and the 

failure of the system is partially a result of that.  
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Figure 7.2: Close up of turbocharger turbine wheel pre-failure 

 

 

Figure 7.3: Close up of turbocharger turbine wheel post-failure (note chips on blade edges) 
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The second requirement, compactness and portability, was deemed important for storage 

and transportation reasons. This was achieved well in the design process. The frame is 

large and heavy enough to resist movement at full engine throttle but compact enough to 

be moved by one person easily.  

 

The third and final requirement, all manufacturing work to be completed by myself, was 

also completed successfully with the exception of one piece. All welding and construction 

of the frame and combustion chamber, the wiring, and the plumbing was completed by 

myself as per the requirements. The oil pump bracket however was manufactured by the 

USQ machine shop. During the construction process it was decided that the accuracy of 

the belt drive and pump mount was essential for the stability of the oil supply. This could 

be done under the project budget allocation from the university and so would not affect 

the project budget. Despite this action being against one of the design requirements it was 

well worthwhile upon reflection. 

 

The first specified design constraint was the model had to be manufactured for less than 

$1000. As specified in the costing and cutting lists earlier in this chapter the construction 

process was completed within this budget so the construction process was a success in 

relation to this point.  

 

The second specified restraint was the inclusion of safety systems to minimise the risk to 

the operator and by standers during engine operation. Because of this an exhaust 

temperature monitoring device was installed to monitor the temperature of the exhaust. If 

the temperature rose beyond a pre-determined threshold the engine would be shut down 

to reduce the risk of premature failure. The lack of oil monitoring causing the previously 

discussed failure will be considered a safety failure due to the obvious safety concerns if 

the turbine was to fail at full throttle. 

 

In summary, most design requirements and restraints were achieved successfully. An 

exception to this was the lack of lubrication oil level monitoring which partially contributed 

to a premature turbine failure and was therefore considered a safety risk. Another 
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exception was the oil pump bracket which was manufactured by the USQ machine shop 

against one of the design requirements. This was however an important decision which did 

not affect any other requirements including the project budget. Because of this it will not 

be considered a failure in the design and construction process.  

 

7.8 Conclusion 

 

The testing procedure for the model set out to cover the experimental testing process and 

provide attained test data, and basic calculations.  

 

The test apparatus was designed in such a way as to minimise risk to experimental 

operators and on-lookers by thinking about the possible causes of failure, and taking 

precautionary measures to minimise the risk of these occurring. In the design of the 

exclusion and restriction zones outlined in figure 7.1, the potential dangers to operators 

and on-lookers was also predicted and danger areas were outlined as a result of this. All 

activities were also conducted in a professional and ethical manner, and also with respect 

to the environment.  

 

The experiment was carried out according to the test procedure outlined in section 7.3. 

During this experiment the engine was started and all measurements taken for one 

throttle setting. Once this period was over the oil pressure of the lubricating oil was 

observed to be rapidly dropping. The engine was promptly shut down however 

permanent damage to the turbocharger has occurred as a result of this. The turbine 

failure was as a result of excessively high oil consumption in the final minutes of operation 

most likely due to failed oil seals within the turbocharger.  

 

It was also concluded that the final model engine design did not have an oil level 

monitoring system built in which would have allowed the operator to monitor the oil level 
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and potentially shut the engine down before failure. This failure has resulted in the model 

and testing procedure failing to meet some of the outlined requirements.  

 

When conducting the design of the model a design requirement was that ‘The engine 

must operate reliably enough to attain the desired results’. These required results were at 

a variety of throttle settings which was not fulfilled by the testing procedure. An aim of 

the testing procedure was also to ‘Attain the desired results’ which was also not 

completed. Despite this, future work on this model can repair the turbocharger and 

conduct further tests to attain the initially desired results. 

 

From the obtained results however initial analysis of the data was conducted resulting in 

some very interesting conclusions. The thermal efficiency of the model engine was 

calculated to be 1.356 %. This figure is, despite appearances, a very acceptable figure for a 

home built model engine. Despite the relatively low thermal efficiency the calculations 

using results produced by this engine will still provide an accurate indication of the 

relative CSG fuel consumption and running cost. 

 

The equivalent fuel consumption of CSG was then calculated, and both mass flow rate fuel 

consumptions were converted to volumetric fuel consumptions using the gas densities. 

Using table 3.2 it was observed that from the possessed data 1000L (ie. 1 m3) of CNG costs 

$93.00 compared to $620.00 for 1000L of LPG. The running cost of the engine was then 

calculated to be $1977.80 /hour on LPG and $830.49 /hour on CNG.  

 

These results produced a running cost saving of 58.1% for CNG over LPG. This result is an 

excellent conclusion for the case of CNG as an alternative fuel. 58.1% is a significant 

margin for saving and would produce significant saving in electricity which could be 

passed on to the consumer.  

 

It must be said however that gas turbine based electricity generation plants do not 

commonly operate on LPG and ideally a comparison of CSG running costs to Jet A1 (a 

common petroleum based jet fuel), or kerosene would be conducted. It was however 
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concluded that the evaporation and injection system required for a liquid fuelled gas 

turbine would dramatically affect the performance so it would not be accurate to compare 

these fuels to LPG in the way that CSG has been compared with LPG. This is maybe an 

excellent place for future work to be conducted on this project. 
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Chapter 8 – Project Conclusion 

 

8.1 Introduction 

This section of the report aims to conclude the findings of the work completed in this 

project, reflect on what objectives were outlined for this project and how effective the 

work has been in achieving these objectives, and outline any future work to be completed 

for this project. 

 

8.2 Summary 

 

This project essentially had two essential facets both aimed at assessing Coal Seam Gas 

(CSG) as an alternative fuel for power generation using gas turbine based co-generation 

plants. The first facet of this project was aimed at finding out what CSG is, where it comes 

from, and also what distribution infrastructure existed. The second facet was to develop a 

test engine from which experimental results could be attained to aid in the overall 

conclusion of the suitability of CSG as an alternative fuel. 

 

Research into background information relating to CSG found it is a naturally occurring 

methane rich gas which is stored in the molecular structure of underground coal seams. It 

was formed as organic matter sitting underground has been transformed to coal over long 

periods of time and under very high pressures. CSG was once considered a hazard and 

hindrance to coal miners, however with the change in attitude toward energy sources 

over time it is now considered a valuable resource. 

 

This research also concluded that natural gas at atmospheric pressure and temperature 

has very low volumetric energy density and so would be un-economical to transport and 

store. Because of this natural gas must be stored at very high pressure as Compressed 
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Natural Gas (CNG) or at very low temperature as Liquefied Natural Gas (LNG). Even when 

natural gas is converted to CNG or LNG it still has relatively low energy density compared 

to conventional fossil fuels so energy density continues to be a major drawback of the 

technology. Because of these issues natural gas is mostly transported via piped networks 

which are very expensive and difficult to construct.  

 

Natural gas poses as an excellent fuel source for combustion engines due to several 

reasons. It has been documented that, compared to conventionally fuelled engines, 

natural gas engines have lower exhaust emissions of carbon monoxide, reactive 

hydrocarbons, and particulates. This is because natural gas has a very high octane number 

of around 130 which allows for high compression and lean-burn technology to be used on 

conventional engines. Natural gas engines however suffer from high NOx emissions mostly 

containing partially reacted fuel, nitrous oxide, nitrogen dioxide, and sulphur oxides. High 

NOx emissions can be dealt with using Exhaust Gas Recycling (EGR) ), lean burn operation, 

development in fuel mixing and stoichiometric control technology, and a typical three way 

catalyst in a combination closed loop exhaust oxygen level feedback. 

 

Natural gas safety is a very important factor, and it has been documented that no burn 

accidents, other injuries, or fatalities have occurred in America as a result of natural gas 

despite more than 500 million miles of natural gas vehicle operation. This is because of 

two main reasons: NG is lighter than air so it dissipates quickly in the event of an 

accidental spillage, and its ignition point, 1200°F, is much higher than that of gasoline, 

600°F. 

 

The analysis of the CSG industry was deemed to be very important for the overall 

conclusion of the project. CSG is locations within Queensland were summarised, and 

attainable quantities of the gas in Queensland was also researched to scope the analysis. 

An overview of existing natural gas distribution infrastructure was then provided followed 

by a cost analysis of different fuels. 
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 From this analysis Coal Seam Gas (CSG) was found to be going through a un-precedented 

period of growth due to the push for alternative energy sources while development of 

renewable energy generation technology advances to a point where it can be widely used. 

In Queensland there are eight proposed coal seam gas projects worth in excess of $40 

billion. These projects propose an annual gas production of 50 million tonnes of LNG from 

over 8600 wells piped to liquification plants in Gladstone and mostly exported. This is 

causing significant interest and investment in the technology, and it will provide a 

significant boost to employment and to the Queensland economy.  

 

The CSG sources in Queensland Coal Seam Gas have been found to be from the Surat and 

Bowen basins however coal seams also exist in the Cooper, Clarence Moreton, and Galilee 

basins. 

 

Natural gas consumption is expected to rise over the upcoming years mostly due to the 

export projects stated above, and also the continued development and consumption of 

natural gas domestically. 

 

Major Queensland gas distribution pipelines have been briefly summarised and local 

distribution networks in Brisbane, the Gold Coast, Toowoomba, Ipswich, Dalby, Roma, 

Oakey, Bundaberg, Maryborough, Gladstone, Rockhampton, and Hervey Bay were 

identified.  

 

The costs of natural gas production were then outlined and a costing analysis of different 

fuel types was conducted. Because of the different energy content per volume the fuels 

cannot be directly compared using the cost per litre. The energy content had to be 

employed to compare these fuels per contained energy volume. It was discovered that 

natural gas purchase was 43.41 % that of diesel per energy volume. 
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With this initial information the project was at a stage where further analysis required 

experimental fuel consumption so the focus turned to gas turbine engines. It was found 

that gas turbine engines operate on similar principles to conventional reciprocating 

engines where heat energy from the combustion process expands the working fluid. The 

difference however is that gas turbines change the kinetic energy of the working fluid 

through a constant combustion process, and then extract energy from the exhaust using a 

turbine. This turbine is connected to a compressor wheel which forces more air in the 

intake. Conventional reciprocating engines utilise the expanding working fluid in a 

controlled volume to move a piston. 

 

Stationary gas turbine engines have been found to have many applications including 

energy generation, ship propulsion, and hovercraft propulsion. More specifically for this 

report stationary gas turbine engines are being used more frequently for low to medium 

scale co-generation projects. These projects have been most popular in remote 

communities, mine sites, large industrial manufacturing sites, refineries, or smelters which 

have particularly high electricity or heat energy demands. Most medium scale gas turbine 

based energy generation plants are specified and designed on a case by case basis 

however there are a few companies manufacturing small generic units and documenting 

excellent reliability data.  

 

The thermodynamic cycles of a simple cycle gas turbine engine were outlined and it was 

concluded that the basic design of the model engine must allow these cycles to occur. 

 

The first step of the design analysis stage was to set requirements and constraints to 

dictate the direction of the model construction stage of the project. 
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The design requirements were: 

 

1. The engine must operate reliably enough to attain the desired results 

 

2. The engine must be compact and portable 

 

3. All manufacturing process must be conducted by myself 

 

The design constraints were: 

 

1. The engine must be manufactured for less than $1000 (excluding labour)  

 

2. There must be built in safety systems to reduce risk 

 

3. The Combustion chamber must be designed for the turbocharger 

 

The success of this design was analysed on how well it reflected these design requirements 

and constraints. The first design requirement, reliability, was placed as an important factor 

of the finished model. Despite this upon initial testing of the model engine unfortunately 

the turbocharger has suffered a premature failure of the exhaust wheel and bearing. This 

failure has been traced to a leaking oil seal in the turbocharger which caused abnormally 

high lubricating oil consumption. This eventually used the 2L of oil in the reservoir and 

while the engine was operating the oil pump ran dry. Lubricating oil is essentially 

important for the bearings of a turbocharger so this failure caused significant wear on the 

bearing which allowed slight play in the shaft causing the exhaust wheel to come into 

contact with the exhaust housing damaging it.  

 

This failure was caused by two factors. The first was the defective seals in the 

turbocharger, and the second was the lack of oil level monitoring built into the design. It 

was assumed that if the oil level was checked between every run then a monitoring system 
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was not needed. This turned out to be un-true and the failure of the system is partially a 

result of that.  

 

The second requirement, compactness and portability, was deemed important for storage 

and transportation reasons. This was achieved well in the design process. The frame is 

large and heavy enough to resist movement at full engine throttle but compact enough to 

be moved by one person easily.  

 

The third and final requirement, all manufacturing work to be completed by myself, was 

also completed successfully with the exception of one piece. All welding and construction 

of the frame and combustion chamber, the wiring, and the plumbing was completed by 

myself as per the requirements. The oil pump bracket however was manufactured by the 

USQ machine shop. During the construction process it was decided that the accuracy of 

the belt drive and pump mount was essential for the stability of the oil supply. This could 

be done under the project budget allocation from the university and so would not affect 

the project budget. Despite this action being against one of the design requirements it was 

well worthwhile upon reflection. 

 

The first specified design constraint was the model had to be manufactured for less than 

$1000. As specified in the costing and cutting lists earlier in chapter 6 the construction 

process was completed within this budget so the construction process was a success in 

relation to this point.  

 

The second specified restraint was the inclusion of safety systems to minimise the risk to 

the operator and by standers during engine operation. Because of this an exhaust 

temperature monitoring device was installed to monitor the temperature of the exhaust. If 

the temperature rose beyond a pre-determined threshold the engine would be shut down 

to reduce the risk of premature failure. The lack of oil monitoring causing the previously 

discussed failure will be considered a safety failure due to the obvious safety concerns if 

the turbine was to fail at full throttle. 
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The testing procedure for the model set out to cover the experimental testing process and 

provide attained test data, and basic calculations.  

 

The test apparatus was designed in such a way as to minimise risk to experimental 

operators and on-lookers by thinking about the possible causes of failure, and taking 

precautionary measures to minimise the risk of these occurring. In the design of the 

exclusion and restriction zones outlined in figure 7.1, the potential dangers to operators 

and on-lookers was also predicted and danger areas were outlined as a result of this. All 

activities were also conducted in a professional and ethical manner, and also with respect 

to the environment.  

 

The experiment was carried out according to the test procedure outlined in section 7.3. 

During this experiment the engine was started and all measurements taken for one 

throttle setting. Once this period was over the oil pressure of the lubricating oil was 

observed to be rapidly dropping. The engine was promptly shut down however 

permanent damage to the turbocharger has occurred as a result of this. The turbine 

failure was as a result of excessively high oil consumption in the final minutes of operation 

most likely due to failed oil seals within the turbocharger. It was also concluded that the 

final model engine design did not have an oil level monitoring system built in which would 

have allowed the operator to monitor the oil level and potentially shut the engine down 

before failure. This failure has resulted in the model and testing procedure failing to meet 

some of the outlined requirements.  

 

Most design requirements and restraints were achieved successfully. However when 

conducting the design of the model a design requirement was that ‘The engine must 

operate reliably enough to attain the desired results’. These required results were at a 

variety of throttle settings which was not fulfilled by the testing procedure. An aim of the 

testing procedure was also to ‘Attain the desired results’ which was also not completed. 

Despite this, future work on this model can repair the turbocharger and conduct further 

tests to attain the initially desired results. 
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From the obtained results however initial analysis of the data was conducted resulting in 

some very interesting conclusions. The thermal efficiency of the model engine was 

calculated to be 1.356 %. This figure is, despite appearances, a very acceptable figure for a 

home built model engine. Despite the relatively low thermal efficiency the calculations 

using results produced by this engine will still provide an accurate indication of the 

relative CSG fuel consumption and running cost. 

 

The equivalent fuel consumption of CSG was then calculated, and both mass flow rate fuel 

consumptions were converted to volumetric fuel consumptions using the gas densities. 

Using table 3.2 it was observed that from the possessed data 1000L (ie. 1 m3) of CNG costs 

$93.00 compared to $620.00 for 1000L of LPG. The running cost of the engine was then 

calculated to be $1977.80 /hour on LPG and $830.49 /hour on CNG.  

 

These results produced a running cost saving of 58.1% for CNG over LPG. This result is an 

excellent conclusion for the case of CNG as an alternative fuel. 58.1% is a significant 

margin for saving and would produce significant saving in electricity which could be 

passed on to the consumer.  

 

8.3 Conclusion 

From the work conducted in this project a preliminary conclusion about CSG as an 

alternative fuel source would be that it is feasible.  

 

From the background research into CSG it was discovered that there is existing 

distribution infrastructure which connects the gas supply with localised networks in 

almost every major city in Queensland. The fuel usage and proposed projects are seen to 

be increasing at a very high rate which will increase the distribution infrastructure by 

attracting investment. Further analysis of CSG showed that there are real benefits in 

environmental emissions, thermal efficiency, and the fuel cost per energy volume was 
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43.41 % for CNG compared to that of diesel. This shows significant benefits in converting 

to CSG, and may financially and environmentally outweigh the installation of application 

specific infrastructure (ie. expensive fuel pipelines to each individual site). 

 

A model gas turbine engine has also been developed to assist in making conclusion about 

CSG. Despite suffering a premature failure in the early stages of the experimental process 

preliminary experimental data has been collected and analysed. These results produced a 

running cost saving of 58.1% for CNG over LPG for this style of engine. This was deemed a 

significant margin of saving and is an exceptionally strong argument toward CSG even 

without the previously said benefits. 

 

In conclusion CSG has been found to exist in Queensland in significant and easily 

attainable quantities. The benefits of CSG as a fuel include significant cost saving, 

environmental benefits, and an increase of thermal efficiency compared to conventional 

fossil fuels. It has potential to significantly boost the Queensland economy over the 

upcoming intermediate future and create an un-precedented amount of employment and 

investment in infrastructure.  
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8.4 Future Work 

Future work for the model gas turbine includes: 

 

 Repair of the turbocharger 

 

 Installation of an lubrication oil level monitoring system 

 

 Conduct further experimental work to collect more data 

 

 Experiment with different fuels (ie. liquid fuels) and an evaporator 

 

 Conduct further tests with an intake pre heater to increase efficiency 
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Appendix A – Risk Assessments 

 
University of Southern Queensland 
Risk Management Plan 
http://www.usq.edu.au/hr/healthsafe/safetyproc/whsmanual/whsmanr1.htm 

 
Date:  6 May 2010 
 

 

 
Faculty/Dept:  
FACULTY of ENGINEERING AND 
SURVEYING (FoES)  
 

 
Assessment completed by: 
Rhys Kirkland 

 
Contact No: 
0403221200 

What is the task? 
Final assembly and wiring of gas turbine 

Location where task is being conducted: 
Ground floor S-block labs 

Why is the task being conducted? 

Working toward the completion of my major undergraduate research project 

What are the nominal conditions? 
 

Personnel 

Facility Operator, and some or all 
of the following: Facility 
Technician(s), Experimenter(s), 
Visitor(s).   

Equipment 

Various non-moving hand tools 
and a soldering iron 
 

Environment 

Laboratory 
 

Other 

 
 

Briefly explain the procedure for this task (incl. Ref to other procedures) 
Utilise the above mentioned equipment to complete final assembly and wiring of my major project. 
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Risk Register and Analysis 
[ALARP = As Low As Reasonably Practicable]  

 
Element or Sub 
Element/ 
Process Step 

 
The Risk: 
 What can happen 
and what will be the 
result 
 
 

 
EXISTING CONTROLS 

 
Risk Rating 
with 
existing 
controls? 

See 
next 
pag
e  

Is it 
ALARP? 
Yes/No 

 
ADDITIONAL 
CONTROLS 
REQUIRED 

 

 
Risk Rating 
with 
additional 
controls? 

Is it 
ALARP? 
Yes/No 

Risk 
Decision: 
Accept 
Transfer 
Treat 

 List major steps 

or tasks in process  

 Electric shock 

 Eye infection 

 Fire / explosion 

 Physical injury 

 Cut / graze 

 Chemical burn 

List all current controls that are already 

in place or that will be used to undertake 
the task eg 

 List of Personal Protective 

Equipment (PPE) 

 Identify types facility, location 

 Existing safety measurers 

 Existing emergency procedures C
o

n
s
e
q

u
e
n

c
e
s
 

L
ik

e
li

h
o

o
d

 

R
a
ti

n
g

 

 

Additional controls may be required to 

reduce risk rating eg 

 Greater containment (PC2) 

 Additional PPE – gloves safety 
glasses 

 Specific induction / training  

C
o

n
s
e
q

u
e
n

c
e
s
 

L
ik

e
li

h
o

o
d

 

R
a
ti

n
g

 

  

Soldering Small burns 
from the hot 
soldering tip or 
fume inhalation. 

Equipment is operated by 
an experienced operator. 
Eye protection and a 
respirator is worn by the 
operator and all personnel 
within a safe distance. The 
exhaust fan is also used. 

1 E L Yes      Yes   

Assembly Potential 
personal injury 
from sharp tips. 

Equipment is operated by 
an experienced operator. 
Eye protection is worn by 
the operator and all 
personnel within a safe 
distance. 

1 E L Yes     Yes  
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Risk Treatment Schedule 

 

Risk 
No 

Risk 
 

Treatment Person 
Responsible for 
Implementation 

Timetable for 
Implementation 

Date 
Treatment 
Completed 

Review of 
Effectiveness 
Effective/Not 
effective 

1. A small burn from the 
soldering iron, Fume 
inhalation. 

Minor first aid. The operator. Upon occurrence.   

2. Personal injury from a sharp 
object. 

Minor first aid. The operator. Upon occurrence.   

 
Notes 
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The task should not proceed if the risk rating after the controls are implemented is still either HIGH or EXTREME or if any risk is 

not As Low As Reasonably Practicable (ALARP). 

 

This Risk Assessment score of Low (L) is only on the condition that all existing and additional controls are in place at the time 
of the task being conducted.  
 

 
Assessment completed by:  
 
Name:      Rhys Kirkland 

 
Signature: 

 
Position:   Equipment operator 

 
Contact No:    0403221200 

 
Date: 

 

 
Supervisor or Designated Officer  
 
Name:     Talal Yusaf 

 
Signature: 

 
Position:  Supervisor 

 
Contact No:  EXT 1373 

 
Date:        

 

 
 
Safety Coordinator  
 
Name:    Jim Farrell 

 
Signature: 

 
Position:  Safety Officer 

 
Contact No: 

 
Date: 
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         University of Southern Queensland 
Risk Management Plan 
http://www.usq.edu.au/hr/healthsafe/safetyproc/whsmanual/whsmanr1.htm 

 
Date:  24 May 2010 
 

 

 
Faculty/Dept:  
FACULTY of ENGINEERING AND 
SURVEYING (FoES)  
 

 
Assessment completed by: 
Rhys Kirkland 

 
Contact No: 
0403221200 

What is the task? 

Start-up and running of model gas turbine engine to gain exhaust gas 
emission data 

Location where task is being conducted: 

An oval far from any buildings or trees 

Why is the task being conducted? 

Working toward the completion of my major undergraduate research project 

What are the nominal conditions? 
 

Personnel 

Facility Operator, and some or all 
of the following: Facility 
Technician(s), Experimenter(s), 
Visitor(s).   

Equipment 

Various non-moving hand tools, 
model gas turbine, fuel gas storage 
cylinders, garden blower for start-
up, exhaust gas analyser. 
 

Environment 

Outside 
 

Other 

 
 

Briefly explain the procedure for this task (incl. Ref to other procedures) 

Start-up model jet at a safe distance from any building to gain exhaust gas analysis data from two different fuels. An essential step in my major 
research project. 
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Risk Register and Analysis 
[ALARP = As Low As Reasonably Practicable]  

 
Element or 
Sub 
Element/ 
Process 
Step 

 
The Risk: 
 What can happen and 
what will be the result 
 
 

 
EXISTING CONTROLS 

 
Risk Rating 
with 
existing 
controls? 

See 
next 
pag
e  

Is it 
ALARP? 
Yes/No 

 
ADDITIONAL 
CONTROLS 
REQUIRED 

 

 
Risk Rating 
with 
additional 
controls? 

Is it 
ALARP? 
Yes/No 

Risk 
Decision: 
Accept 
Transfer 
Treat 

 List major 

steps or tasks 
in process  

 Electric shock 

 Eye infection 

 Fire / explosion 

 Physical injury 

 Cut / graze 

 Chemical burn 

List all current controls that are already 

in place or that will be used to undertake 
the task eg 

 List of Personal Protective 

Equipment (PPE) 

 Identify types facility, location 

 Existing safety measurers 

 Existing emergency procedures C
o

n
s
e
q

u
e
n

c
e
s
 

L
ik

e
li

h
o

o
d

 

R
a
ti

n
g

 

 

Additional controls may be required to 

reduce risk rating eg 

 Greater containment (PC2) 

 Additional PPE – gloves safety 
glasses 

 Specific induction / training  

C
o

n
s
e
q

u
e
n

c
e
s
 

L
ik

e
li

h
o

o
d

 

R
a
ti

n
g

 

  

Obtain 
Fuel and 
move to 
location 

 Fire/explosio
n 

 Back injury 

 Fume 
inhalation 

 Fuel stored in 
approved cylinders 

 Handled outdoors 
(good ventilation) 

3 D M No  Fire extinguisher on-
site 

 Wear safety gear 

3 E L Yes  

Move jet 
to 
location 

 Back injury  Multiple person lift 

 Experience on 
correct lifting 
practices 

1 E L Yes     Yes  

Connect 
all fuel 
lines 

 Fire/explosio
n 

 Fume 
inhalation 

 Handled outdoors 
(good ventilation) 

 Common sense 

3 D M No  Fire extinguisher on-
site 

 Wear safety gear 

3 E L Yes  

Start jet 
with 
blower 

 Fire/explosio
n 

 Fume 
inhalation 

 Good ventilation 

 Bystander exclusion 
zone 

3 D M No  Fire extinguisher on-
site 

 Wear safety gear 

3 E L Yes  
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Element or 
Sub 
Element/ 
Process 
Step 

 
The Risk: 
 What can happen and 
what will be the result 
 
 

 
EXISTING CONTROLS 

 
Risk Rating 
with 
existing 
controls? 

See 
next 
pag
e  

Is it 
ALARP? 
Yes/No 

 
ADDITIONAL 
CONTROLS 
REQUIRED 

 

 
Risk Rating 
with 
additional 
controls? 

Is it 
ALARP? 
Yes/No 

Risk 
Decision: 
Accept 
Transfer 
Treat 

Run jet 
for short 
period of 
time 

 Fire/explosio
n 

 Engine 
overheat/over
run 

 Good ventilation 

 Bystander exclusion 
zone 

 Common sense 

4 D M No  Fire extinguisher on-
site 

 Wear safety gear 

4 E L Yes  

Connect 
EGA & 
record 
data 

 Fire/explosio
n 

 Engine 
overheat/over
run 

 Good ventilation 

 Bystander exclusion 
zone 

 Common sense 

3 D M No  Fire extinguisher on-
site 

 Wear safety gear 

3 E L Yes  
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Guidance Notes for review of Controls and Risk Management Plan. 
 
When monitoring the effectiveness of control measures, it may be helpful to ask the following questions:  
 • Have the chosen control measures been implemented as planned?  

 - Are the chosen control measures in place?  
 - Are the measures being used?  
 - Are the measures being used correctly?  

 • Are the chosen control measures working?  
 - Have any the changes made to manage exposure to the assessed risks resulted in what was intended?  
 - Has exposure to the assessed risks been eliminated or adequately reduced?  

 • Are there any new problems?  

 - Have the implemented control measures introduced any new problems?  
 - Have the implemented control measures resulted in the worsening of any existing problems?  

 
To answer these questions:  
 • consult with workers, supervisors and health and safety representatives;  
 • measure people’s exposure (e.g. taking noise measurements in the case of isolation of a noise source);  
 • consult and monitor incident reports; and  
 • review safety committee meeting minutes where possible.  
 
Set a date for the review of the risk management process. When reviewing, check if:  

 • the process that is currently in place is still valid;  
 • things have changed that could make the operating processes or system outdated;  
 • technological or other changes have affected the current workplace; and  
 • a different system should be used altogether.  
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Note: In estimating the level of risk, initially estimate the risk with existing controls and 
then review risk controls if risk level arising from the risks is not minimal 

 
TABLE 1 - CONSEQUENCE 

L
e
v
e
l 

Descriptor Examples of Description 

1 Insignificant No injuries. Minor delays. Little financial loss. $0 - $4,999* 
2 Minor First aid required. Small spill/gas release easily contained within work 

area. Nil environmental impact.  
Financial loss $5,000 - $49,999* 

3 Moderate Medical treatment required. Large spill/gas release contained on 
campus with help of emergency services. Nil environmental impact.  
Financial loss $50,000 - $99,999* 

4 Major Extensive or multiple injuries. Hospitalisation required. Permanent 
severe health effects. Spill/gas release spreads outside campus area. 
Minimal environmental impact. 
Financial loss $100,000 - $250,000* 

5 Catastrophic Death of one or more people. Toxic substance or toxic gas release 
spreads outside campus area. Release of genetically modified 
organism (s) (GMO). Major environmental impact. 
Financial loss greater than $250,000* 

* Financial loss includes direct costs eg workers compensation and property damage and indirect costs, eg 
impact of loss of research data and accident investigation time. 
 
 

Table 2 - Probability 
Level Descriptor Examples of Description 

A Almost certain The event is expected to occur in most circumstances. Common or 
repetitive occurrence at USQ. Constant exposure to hazard. Very high 
probability of damage. 

B Likely The event will probably occur in most circumstances. Known history of 
occurrence at USQ. Frequent exposure to hazard. High probability of 
damage.  

C Possible The event could occur at some time. History of single occurrence at 
USQ. Regular or occasional exposure to hazard. Moderate probability 
of damage.  

D Unlikely The event is not likely to occur. Known occurrence in industry. 
Infrequent exposure to hazard. Low probability of damage. 

E Rare The event may occur only in exceptional circumstances. No reported 
occurrence globally. Rare exposure to hazard. Very low probability of 
damage. Requires multiple system failures. 
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Table 3 – Risk Rating 

Probability Consequence 

Insignificant 

1 
 

Minor 

2 
 

Moderate 

3 

Major 

4 

Catastrophic 

5 

A (Almost  
certain) 

 M  H E E E 

B (Likely) M H H E E 

C (Possible) L M H H H 

D (Unlikely) L L M M M 

E  (Rare) L L L L L 

 
 
 
 
Recommended Action Guide: 
 

Abbrev Action 
Level 

Descriptor 

E Extreme The proposed task or process activity MUST NOT proceed until the 
supervisor has reviewed the task or process design and risk controls. 
They must take steps to firstly eliminate the risk and if this is not possible 
to introduce measures to control the risk by reducing the level of risk to 
the lowest level achievable. In the case of an existing hazard that is 
identified, controls must be put in place immediately. 
 

H High Urgent action is required to eliminate or reduce the foreseeable risk 
arising from the task or process. The supervisor must be made aware of 
the hazard. However, the supervisor may give special permission for staff 
to undertake some high risk activities provided that system of work is 
clearly documented, specific training has been given in the required 
procedure and an adequate review of the task and risk controls has been 
undertaken. This includes providing risk controls identified in Legislation, 
Australian Standards, Codes of Practice etc.* A detailed Standard 
Operating Procedure is required. * and monitoring of its implementation 
must occur to check the risk level 
 

M Moderate Action to eliminate or reduce the risk is required within a specified period. 
The supervisor should approve all moderate risk task or process 
activities. A Standard Operating Procedure or Safe Work Method 
statement is required 
 

L Low Manage by routine procedures.  
 

*Note: These regulatory documents identify specific requirements/controls that must be implemented to reduce the risk of an 
individual undertaking the task to a level that the regulatory body identifies as being acceptable. 
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Appendix B – Oil System Specification 
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Appendix C – Turbocharger Specifications 
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Appendix D – Combustor Formula 

 

 

  

                            The GR-1 Combustor Formula is as follows: 

       The inside diameter (in cm) of the turbocharger’s inducer (inlet) shall 
be represented by the value “I”   *** Only use centimeters not inches!!! *** 

The inside diameter (in cm) of the combustion liner:                   A = 1.3 X I 

The length (in cm) of the combustion liner:                                  B = 3.85 X I 

The inside diameter (in cm) of the combustion chamber:            C = 2.1 X I 

The cross-section area (in square cm) of the bypass section:     D = 3.6 X I 

The total area (in square cm) of the combustion liner holes:       E = 4 X I 

The total number of holes (F) in the combustion liner:                 F = E / 0.33 

The individual size (G) of the liner holes (in square cm):             G = E / F 
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Appendix E – Combustion Chamber Construction Drawings 
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