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Abstract 

Water is a precious resource in much of Australia. Because of this, it is very important to be 

able to understand, control and manage this resource. One particular water intensive 

industry is the irrigation industry. Because of a very wide variety of irrigation methods it is 

hard to pick which is the most efficient or which can be developed into the most efficient. 

In aid to doing this, an unsteady free surface flow model is required. Many difficulties have 

been endured in developing a model that is accurate, versatile and robust enough to 

simulate many irrigation systems. Here the Finite Volume Method (FVM) gets investigated 

to find if it is a suitable method to be applied to these irrigation systems.  

The FVM is investigated by applying a pre-existing MatLab FVM model to a number of 

case studies. In doing this a series of adaption‟s need to take place to make the model more 

generalized so then it can be used to simulate a wider range of systems. The case studies 

look at the inclusion of differed boundary conditions, friction and bed slope, channel 

geometry, and dry channel bed conditions. 

It was found that the model was successful and proved versatile in modelling a very wide 

range of conditions throughout each case study. Comparing the valid steady state model 

outputs to results from the Mannings equation show the model has an average error of -

0.019% for water flowing in downhill applications. To find the region where the model 

becomes inaccurate due to restrictions with the Mannings equation other situations were 

tested. It was found that for very low heights the comparison yielded very large errors. The 

threshold for model accuracy compared to the Mannings equation found inaccuracies at 
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about 0.002m for a Mannings n value of 0.03, a bed slope of 2/1000, and a low flow rate. 

Other Mannings n values and bed slopes could be used to find other thresholds. This affects 

the size of the threshold that can be used and conflicts against the value recommended of 

0.0001m in Bradford & Sanders (2002b). This model has been successful within the case 

studies although some limitations have been proven.  
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α Wave speed m.s
-1
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2
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2
 

    Jacobian matrix  
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-2
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m mass kg 

n Mannings n  

N Number of computational cells  

P Wetted Perimeter m 

p Pressure N.m
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3
.s
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1. Introduction 

 

1.1 Outline 

 

Finite Volume Methods have been used successfully for simulating many different 

hyperbolic equations and have many advantages over other solution techniques. One form 

of hyperbolic equation is the shallow water equations which are otherwise known as the 

Saint Venant equations. These equations are used to solve gradually varying fluid flow 

problems like dam breaks and other similar problems. Other applications can also be with 

unsteady open channel flows, which is of our particular interest. This dissertation will 

investigate the finite volume balance for possible applications to irrigation channel 

modelling which have been difficult to model in the past for various reasons. The main 

difficulties have been with irregular beds and dry initial conditions, and have lead to 

various simplifications and adaptations which have taken away from the validity of the 

solution. This investigation has been set out to prove the validity of using the Finite 

Volume Method for irrigation channels and to investigate its ability to improve the 

accuracy and robustness of current irrigation modelling software.  
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1.2 Aim 

 

The aim of this dissertation is to investigate, test, and prove the validity of the Finite 

Volume Solution for the use within irrigation modelling. This will be done via MatLab 

modelling with various case studies which have been designed to improve the usefulness of 

a pre-existing program by making the model more generic and better suited to a wider 

range of circumstances. The case studies also have the task of setting up opportunities to 

test its accuracy and robustness via simple tests discussed later within this dissertation. 

 

1.3 Objectives 

 

The objectives of this study are to: 

1. Review Finite Volume Solution Techniques used with the unsteady free surface 

flow equations including the history, attributes, and applications of the techniques. 

2. Describe in detail the algorithms and working of an appropriate example of a Finite 

Volume technique 

3. Apply the MatLab codes of Sanders to a range of simple case studies to gain 

understanding of techniques and boundary conditions. 

4. Modify the MatLab code to handle more complex cases. 



UNIVERSITY OF SOUTHERN QUEENSLAND 

Faculty of Engineering and Surveying 

Adam M Gould  3 

5. Investigate application of Finite Volume techniques to flow over a dry bed by 

further modification of Sanders‟ code or development of original codes 

 

1.4 Background 

 

Water flow has been the topic of much research over the past couple of centuries. This is 

because it is important to understand how fluid will respond in set circumstances so that it 

is possible to utilize it efficiently. It has been difficult to mathematically describe many 

phenomena which has led to empirical methods and simplifications of some circumstances. 

The dynamic shallow water unsteady flow equations were introduced around 1871 by Saint 

Venant and are considered as a full mathematical description of shallow water flow. The 

Saint Venant equations do not rely on empirical methods or simplifications, but is a 

hyperbolic equation. Hyperbolic equations are tedious to solve exactly, but generally a 

good estimation can be achieved with the inclusion of computers. Before computers were 

available, it was often necessary to neglect many terms within these equations and work 

with much simpler equations which were solvable by hand.  

Irrigation models need the full set of Saint Venant equations because often there are 

circumstances which the simplified versions would not accurately predict. Irrigation 

systems also have various physical reasons which make it hard to replicate real situations in 

a numerical model. This leads to the use of advanced techniques such as the Finite Volume 

Method as the method to solve these equations.  
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The Finite Volume Method is an established method of solving hyperbolic equations. The 

attractiveness of this method comes from being adequately robust, highly accurate and is 

not restricted to rectangular solution grids. The grids can be irregularly shaped and are 

generally fitted with a software package because manually fitting grids can be very tedious. 

Irregular grids are appealing for irregularly shaped channel geometries which have large 

variations in profile. If this profile were fitted with the standard rectangular grids, it can be 

very hard to fit grids which cover all of the channel bed. This leads to various other shaped 

cells, e.g. triangular, which can be made to fit almost any channel bed no matter the 

complexity. This will be covered in detail later within this dissertation  
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2. Hydraulics Theory 

 

2.1 Introduction 

 

Here we introduce the necessary theory to be able to understand the following chapters. 

First we shall look at some fluid flow concepts and then follow that through to the affects 

that these concepts will have on the numerical model. 

 

2.2 Fluid flow concepts 

 

 

2.2.1 Subcritical and Supercritical Flows 

 

When fluid is flowing, it can take on different characteristics depending on velocity, height, 

bed shear and bed slope. A fast flowing fluid with relatively shallow height is termed 

supercritical while a slower fluid with relatively deep height is termed subcritical. A simple 

way to test this is to drop a small object into the flowing water and observe how these 

ripples propagate as shown in Figure 2.1.  
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Figure 2.1 Effect of Flow on Propagation of a Disturbance Akan(2006) 

The numerical way to differentiate between these two conditions is called the Froude 

number. It is shown in Eq 2-1 Chadwick et al(2004). 

 
   

 

   
 

Eq 2-1 

The numerical value of the Froude Number can then be interpreted by the following system 

from Chadwick et al(2004). 

If Fr > 1 then: 

 The flow is considered supercritical 

 A disturbance will travel downstream only 

 Upstream levels are unaffected by downstream controls 
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If Fr < 1 then: 

 The flow is considered subcritical 

 A disturbance will travel downstream and upstream 

 Upstream levels are affected by downstream controls 

The effect this has on the modelling process is detailed in Chapter 2.4.2. 

 

 

2.2.2 Laminar and Turbulent Flows 

 

This section addresses how laminar and turbulent flows affect the bed shear stress that acts 

on a channel. As shown in Figure 2.2, there is a region called the laminar boundary layer. 

The thickness of this layer depends on the viscosity of the water and the velocity of the 

water outside of the boundary layer. For laminar flow where velocities are slow and where 

the flow stays fairly straight, the laminar boundary layer is quiet thick. As the water 

velocity speeds up, this laminar boundary layer will get quiet small as the flow roughens. 

There is a layer known as the transitional layer which will develop where the flow is 

somewhere between laminar and turbulent. Finally, there will be a fully turbulent or rough 

turbulent layer which extends into the middle of the channel as shown the turbulent zone in 

Figure 2.2. 
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Figure 2.2 Laminar and Turbulent Boundary Layers Chadwick et al(2004) 

If we examine a particle of fluid moving, it will follow something called a streamline, as 

shown in Figure 2.3. 

 

Figure 2.3 Longitudinal Section through a Boundary Layer Chadwick et al(2004) 

When the fluid velocity is laminar, the streamlines will be straight. As the fluid moves into 

the transitional stage, the streamlines will become wavy. When turbulent flows are 



UNIVERSITY OF SOUTHERN QUEENSLAND 

Faculty of Engineering and Surveying 

Adam M Gould  9 

achieved, the streamlines movement will become unpredictable. This is shown in Figure 

2.4. 

 

Figure 2.4 Reynolds' Experiment Chadwick et al(2004) 

The energy transferred to the boundary walls via heat is different depending on boundary 

layer conditions. A laminar flow will have less shear stress then a rough turbulent flow. In 

open channels, turbulent flows are far more common then laminar flows which is why the 

equations to find the energy lost via bed shear are all suited to transitional or turbulent 

flows. The Mannings equation, Eq 2-2, is one such equation which is suited to rough 

turbulent flows. 

 
     

    

 
 
 

   
    

   
 
 

   
Eq 2-2 

 
  

 

 
 

Eq 2-3 
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The Mannings equation uses a roughness value which accounts for the roughness of the 

bed. Channels in common use have roughness values between 0.013-0.03 and between 

0.03-0.08 for most natural systems Akan(2006).  

 

2.3 1 Dimensional Saint Venant Equations 

 

The dynamic wave approximation of the Saint Venant equations is presented below 

including the full derivation of the equations as presented by Novak et al. (2010).  

To develop the equations which describe a flow, it is assumed that fluids adhere to the 

fundamental laws of physics Chadwick et al (2004). As stated in Chadwick et al.(2004) The 

pertinent laws are: 

1. Conservation of Mass (Continuity) 

2. Conservation of Energy 

3. Conservation of Momentum 

Here we are only concerned with continuity and the conservation of momentum. These 

laws will be governing in the derivation of the Saint Venant equations. The derivation of 

these equations are stated throughout (Akan 2006; Chadwick et al. 2004; Novak et al. 2010; 

Szymkiewicz 2010; Yen 1973 as cited in Akan 2006). This derivation of the continuity and 

momentum equation is based on that presented in Novak et al.(2010) 
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2.3.1 The continuity Equation 

 

Continuity stipulates that matter can neither be created nor destroyed. It can only be 

transformed. Chadwick et al (2004). As transformations due to chemical changes are of no 

use in this instance, the law then reduces to the conservation of mass throughout time 

Chadwick et al (2004).  Eq 2-4 which is Saint Venants version of the continuity equation 

represents this conservation of mass. 

   

  
 

  

  
    Eq 2-4 

 

For open-channel flow, the continuity equation is derived by writing the conservation of 

mass law for a control volume extending from x to x + dx, See Figure 2.5, between times t 

and t + dt Novak et al.(2010).  



UNIVERSITY OF SOUTHERN QUEENSLAND 

Faculty of Engineering and Surveying 

Adam M Gould  12 

 

Figure 2.5 Control Volume 

Consider the control volume in Figure 2.5. Length being dx, and the average cross-sectional 

area is A. The principle of conservation of mass states; 

Rate of change of mass of water into the element = Net Rate of mass into element Akan 

(2006). 

This principle can be written mathematically Novak et al.(2010) as; 

                      Eq 2-5 

Where m(t), Eq 2-6, is the mass contained within the control volume at time t, and F(x), Eq 

2-7, is the mass that passes x, between t and t + dt (Flux) Novak et al.(2010). 

              Eq 2-6 

              Eq 2-7 

 Substitution of these equations into Eq 2-5 results in  

                                 Eq 2-8 
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 Noting that  

 
             

  

    
 

Eq 2-9 

 And  

 
              

  

    
 

Eq 2-10 

 Simplifying by dt, dx, ρ leads to 

 

 

   

 t
 
 Q

 x
    

Eq 2-11 

 

 

2.3.2 The momentum equation 

 

The law of the momentum states that a body in motion cannot gain or lose momentum 

without some external force being applied to it Chadwick et al (2004). The momentum 

equation of Saint Venant is stated as Eq 2-12. 

    

  
 

 

  
                       

Eq 2-12 
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The momentum equation is obtained by applying the law of momentum to the same slice of 

length dx as the continuity equation Novak et al.(2010). The law of momentum can be 

written as; 

Time rate of change of the momentum accumulated within the element = net rate of 

momentum transfer into the element + sum of external forces in the flow direction Akan 

(2006). 

Thus the momentum balance can be written as Eq 2-13, Novak et al.(2010). 

                               Eq 2-13 

   

Where M(t) is the momentum of the fluid contained within the control volume at the time t, 

F(x), (also known as the momentum flux) Novak et al.(2010), is the amount of the 

momentum transferred into the control volume by the flow over the time interval dt at the 

point x, Akan (2006), and S is the sum of the external forces  in the flow direction which 

are exerted on the control volume between t and t+dt (Akan 2006; Novak et al.2010). 

The momentum M(t) is the product of the mass contained within the control volume and 

the average flow velocity Novak et al.(2010). 

       ρ     ρ    Eq 2-14 

 

Where V is the average flow velocity over the cross-sectional. The momentum flux can 

then be defined by Eq 2-15 from Novak et al.(2010). 
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       ρ        ρ        

  

    

 

 

Eq 2-15 

 

Where    is the point value of the flow velocity. If the flow velocity is uniform over the 

entire cross-sectional area, then   =V and the equation becomes 

 

     ρ        ρ      ρ
  

 
  

 

 

Eq 2-16 

 

In practice, the non-uniform character of the velocity distribution over the cross-section is 

accounted for by a coefficient β, Novak et al.(2010), which generally gets assumed to be 

uniform thus  β =1, but can be more if the velocity distribution is non-uniform . 

 
     βρ

  

 
   

Eq 2-17 

 

The external forces applied to the control volume are the following: 

1. Acting on the upstream and downstream faces of the control volume will be 

pressure forces. The sum of these forces are stated in Eq 2-18 

 
               

  

  
   

Eq 2-18 
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With an assumption that the pressure forces acting on the upstream face of the 

control volume are hydrostatic in nature then Eq 2-19 holds true: 

 

                                ρ              

η

  

η

   

 

Eq 2-19 

 

Because of the assumption of a prismatic cross section the equation can be 

simplified as follows. The auxiliary variable ξ   z – zb is introduced allowing the 

equation to be re-written as: Novak et al.(2010). 

 

     ρ     ξ     ξ     ξ

 

 

 

Eq 2-20 

 

2. There are two main vertical components acting on the control volume. The first is 

the weight of the control volume acting on the channel bed. The other is the reaction 

of the bed due to bedslope. Since the reaction of the bottom is exerted in the 

direction orthogonal to the bed of the channel, the following equity holds Novak et 

al.(2010). 

         Eq 2-21 

 

Where Rx is the x component of the bottom reaction. As the sum of the vertical 

forces is zero Novak et al.(2010). 
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         Eq 2-22 

 

Where g is the gravitational acceleration and Rz is the vertical component of the bed 

reaction. Consequently the x-component of the reaction is given by Novak et 

al.(2010) as: 

         ρ       Eq 2-23 

 

3. For purposes of friction, the assumption of a nearly horizontal bed means that the 

frictional force is seen as only acting in the x direction only. This friction force is 

proportional to length of the control volume and is usually written as Eq 2-24 

Novak et al.(2010).    

           ρ       Eq 2-24 

 

Where Sf is defined as the slope of the energy line. (Friction induced head loss per 

unit distance) Novak et al.(2010). As stated earlier Sf will be found using the 

Mannings equation for rough turbulent flows. 

Now this derivation is lengthy, but important when looking at the background of the 

different forms of the Saint Venant equations and the history of shallow water solvers. 

Looking at the momentum equation 
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                        Eq 2-25 

 

This equation when rearranged for Sf can be simplified depending on your intended use. 

This is shown as follows. 

 
      

  

  
 
   

   
 

  

   
 

Eq 2-26 

Represented 

as 

           

 Where Julien(2002) explains;  

 1 = friction slope  

 2 = bed slope  

 3 = pressure gradient, downstream change in flow depth  

 4 = velocity head gradient, downstream change in flow 

velocity 

 

 5 = local acceleration for unsteady flow  

 

By neglecting one or more of the above terms it is possible to obtain solution techniques 

such as, Kinematic wave approximation, Diffusive, Quasi-steady, or the Dynamic shallow 

water equations. 
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 Kinematic wave approximation;  

        Eq 2-27 

 Diffusive approximation;  

 
      

  

  
 

Eq 2-28 

 Quasi-steady approximation;  

 
      

  

  
 
   

   
 

Eq 2-29 

 Dynamic wave approximation;  

 
      

  

  
 
   

   
 

  

   
 

Eq 2-30 

 

Sturm(2001) presents a version of the equations that includes lateral inflows but is not 

pursued further here. 

 

2.4 Applying the Saint Venant Equations 

 

Applying the Saint Venant equations to a real situation posses many difficulties which are 

looked at within this dissertation. A simple system will have few issues, but once a dry bed, 

channel geometry, and junctions are introduced it brings in issues of instability, flux 

formulation difficulties, and boundary condition problems. In the next couple of chapters 
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these will be introduced and techniques of solving for each will be investigated in some 

depth. 

2.4.1 Dry Bed Treatment 

 

The term bed refers to the ground or channel surface itself and is a common term used 

within river hydraulics. A situation where there is a length of channel bed where there is no 

water is known as being dry. This situation is commonly encountered when there is a 

channel being filled causing a wave to propagate over a dry bed. This also works in reverse 

where the water flow is retreating, draining the bed and subsequently leaving it dry. For 

numerical modelling the channel is split up into many cells and when the wave front is 

passing through a cell it is defined as partially wet. See Figure 2.6.  

 

Figure 2.6 Partially Wetter Cell Bradford & Sanders (2002a) 
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Partially filled rectangular cells are defined in Bradford and Sanders (2002a) as a cell 

having at least one but no more than three corners dry. Indescrependicies come into the 

treatment of drybed in these partially wet cells which occur along the wave front where the 

height of water aproaches 0. When this depth is then cell averaged, i.e. altered to an 

equivalent thin layer of water over the entire cell, it can lead to an artificial propagation of 

the wave front which leads to artificial spreading into adjacent cells Bradford and Sanders 

(2002a). In the case of averaging the depths of a partially filled cell produces small depths 

throughout the entire cell which causes instability and inaccuracy when the momentum 

fluxes terms are divided by the height (Bradford and Sanders (2002a); Garcia-Navarro & 

Toro(2007); Novak et al(2010)). Commonly a minimum area or depth tolerance, , needs to 

be set in order to maintain stability in the solution. (Bergundelli, Bradford & Sanders 

(2008); Bergundelli & Sanders (2006 & 2007); Bradford and Sanders (2002a &2002b)). 

Only if the height of water is above this tolerance is the cell deemed to be wet and the 

momentum fluxes computed Bradford and Sanders (2002b). Sensitivity to the value of  is 

low in frictionless simulations but for models that include friction, via the Manning 

expression Eq 2-2, it brings in an increased sensitivity because there is a height term on the 

bottom of the Mannings equation Bradford and Sanders (2002a). This will result in 

unrealistically high predictions of shear stress in shallow regions near wet/dry interfaces 

which makes the momentum equations become stiff and the solution unstable Bradford and 

Sanders (2002a). This requires  to be increased by one or two orders of magnitude to 

values above 1
-6

m. It has been reported that this value can be decreased to as much as 1
-30

m 

providing a much higher level of accuracy Bradford and Sanders (2002b). This tolerance 

layer suggests that there is actually a very thin layer of fluid within the model that is needed 
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to hold stability. If the real fluid surface prediction falls below this tolerance, the cell is 

perceived to be dry and no water is within the cell. Bradford and Sanders (2002b) justifies 

this because the model accurately predicts wave propagation. Whereas with other models 

(Anastasiaduo-Partheniou, Banti & Aissis 2010; Zhang and Cundy 1989; Playan et al. 

1994) which also assume a thin layer of water result in the incorrect propagation of waves. 

For example, bores that reach the shoreline will collapse and intrude on a dry beach as a 

depression wave but where there is a thin layer of water on the shore, a model will wrongly 

predict that the bore will travel up the beach Bradford and Sanders (2002b). In addition, 

such models will have instability when grid cells become dry during a simulation Bradford 

and Sanders (2002b).  

 

2.4.2 Boundary Conditions 

 

The boundary conditions are used as a way to provide the program with a set of parameters 

which it will use to predict the flow characteristics throughout the rest of the channel. These 

vary depending on user requirements, model geometry, and flow conditions. With model 

geometry, it is possible to set up inflows, outflows, or reflective boundaries depending on 

the particular situation. Some applications require a change from subcritical to supercritical 

or vice-versa which varies the number of boundary conditions required. For instance, as a 

channel sloping uphill fills, it can have a subcritical profile, but when the wave runs out of 

momentum or draining is taking place the water is then flowing downhill and it is then 
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possible to see a change to critical flow at the outlet. For super-critical inflow boundaries 

both height and velocity are stated in the boundary conditions and the gradients of both are 

set to zero (Bradford and Sanders 2002b). For subcritical flows, the inflow boundary 

condition can have specified the flow rate and the gradient of the velocity is set to zero 

(Bradford and Sanders 2002b). For outflow conditions, the velocity and height are 

extrapolated to the boundary conditions. The gradients of these boundary conditions are 

kept the same as the interior cell values. The height will then be extrapolated from the first 

interior cell and then the area and velocity are easily determinable (Bradford and Sanders 

2002b).  

 

2.4.3 Lateral Flows 

 

Lateral flows are flows which enter or leave a channel at a junction. An example of which 

is the branching system shown in Figure 2.7. Other lateral flows can be more regularly 

spaced like furrows leaving a head ditch for irrigation purposes. These junctions can 

complicate modelling a system e.g. the proportion of flow flowing out of each junction 

must be known or a relationship for this must be obtainable. 
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Figure 2.7 Branching Channel System Novak et al. (2010) 

Junctions, similar to a branched canal network, should be treated by isolating each channel 

as separate channels by splitting the channel at the junction. Therefore for the simple T 

section junction shown in Figure 2.7 there will be three separate channels as shown in 

Figure 2.8. These separate channels are defined as downstream of the junction, upstream of 

the junction, and the offshoot channel (Novak et al 2010). From an algorithmic point of 

view, the classical-flow equation is still applicable within each reach and the structure or 

junction is considered as a boundary condition for each of the elementary channels, hence 

the term „internal boundary‟(Novak et al 2010).  
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Figure 2.8 Junction Splitting Novak et al. (2010) 

 

 

2.5 Applications of the Saint Venant Equations 

 

The shallow water equations are used to model wave propagation, lake hydrodynamics, 

surface irrigation, overland flow, estuarine and tidal flows. The Saint Venant equations can 

also be used for structures within wave zones to analyse the conditions exerted on the 

structure. These equations are accurate but are computationally expensive which means that 

at least desktop computers are needed to calculate to any form of accuracy. The shallow 

water equations have been used extensively of recent times in programs like HEC-RAS 

which is an open channel solver for designing civil structures. HEC-RAS can be used to 
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solve the simplified shallow water equations and provisions have been made for solving the 

full set of shallow water equations. If accuracy is not essential, it would be beneficial to 

consider using one of the less complete forms of the equations, such as the kinematic 

equation or similar.  

 

2.6 Solution Techniques for the Saint Venant Equations 

 

The Saint Venant equations are an example of hyperbolic partial differential equations. 

Hyperbolic partial differential equations have been solved using a number of methods 

which have varying forms of accuracy and robustness. These solutions include both 

implicit and explicit techniques which rely on the finite difference approximation. The 

finite difference approximation is not suitable for the Saint Venant equations as the 

accuracy of the solution, and robustness, does not reflect the standard of accuracy given by 

using the full set of the Saint Venant equations. Also, complications within these methods 

would arise when considering irregular geometries which require irregular grid patterns. 

Alternatively, there is the finite volume approximation which is accurate enough, robust 

enough and can handle irregular topographies. The FVM is covered in Chapter 3. 
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3. Godunov-Type Algorithms: The Finite Volume Method (FVM) 

 

3.1 Introduction 

 

This dissertation examines a Matlab code provided by Sanders as described in Bradford and 

Sanders (2002a &2002b). This code uses a Godunov algorithm to solve an abbreviated 

form of the shallow water equations. Within this chapter, we will analyze the Godunov 

algorithm as a way of building an understanding of the theory behind the model. The model 

follows a version of the MUSCL-Hancock approach to the FVM which incorporates a Roe 

type Riemann invariant solver.  

The FVM falls into the family of Godunov-type algorithms and is a technique for solving a 

system of hyperbolic equations. This method is considered very accurate as it conserves 

mass at every time step Bradford and Sanders (2002b). It operates by updating the solution 

within some control volume and includes all the intercell mass and momentum flux 

contributions in a single step (Toro 2009).  

 

3.2 The Godunov type algorithm 
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Before getting into the details of the Godunov algorithm, we must first build some 

background knowledge so then we can understand the process. We will do this by going 

through some definitions. 

 

3.2.1 Definitions 

 

3.2.1.1 Subscripts 

 

Table 3.1 Subscript meanings 

Subscript Definition 

j Spatial coordinate 

k Time 

 

3.2.1.2 Cartesian and Non-Cartesian Grids 

 

Cartesian grids are grids that follow the x, y and z planes. See Figure 3.1. They are not 

restricted to rectangles but every component of the grid must follow one of the Cartesian 

planes. 
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Figure 3.1 Cartesian Grid 

 

Non-Cartesian Grids are those which have parts that do not follow the x y z planes. Figure 

3.2 is a representation of a Non-Cartesian grid but Non-Cartesian grids are not limited to 

just this shape. 
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Figure 3.2 Non-Cartesian Grid 

 

3.2.1.3 Channel Geometry  

 

The channel geometry refers to the shape of the channel where the water flows. With 

increased complexity in the channel shape comes increased difficulty in estimation of the 

area and finding the wetted perimeter. The process we are using to find the fluxes can find 

the fluxes for arbitrary topography which means that little accuracy is sacrificed to find the 

fluxes. Roe‟s numerical flux scheme can be used as a good estimate of the interface flux. 

 lthough not an exact solution, it doesn‟t have a large influence on the model as cell 
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averaging occurs at every time step (Bradford and Sanders 2002b). Roe‟s numerical flux 

scheme will be discussed further in this chapter. 

Complex channel geometry can complicate the process of forming finite volumes 

especially when non-uniform grid patterns are introduced. Often software is used to create 

irregular grid patterns because manually creating grids by hand can be exceptionally 

tedious. 

 

3.2.1.4 The Riemann Problem 

 

The Riemann problem involves solving what is known as a piecewise constant problem. 

Figure 3.3 demonstrates both the Riemann problem and the piecewise constant problem. 

Something that is piecewise constant has a constant value for each part or cell in the field. 

For example, within Figure 3.3 between 0 and xo the cell has one value UL and the cell after 

xo has another constant value UR. For the Riemann problem, we must examine the point xo. 

At xo there are then two values for U namely UL & UR. The solution to the Riemann 

problem is being able to find a singular value that represents both values. This value is an 

average of the left and right values and is the solution to the Equivalent Riemann Problem 

(ERP) and is known as data or variable reconstruction. 
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Figure 3.3 The Riemann Problem Guinot(2003) 

 

3.2.1.5 The Equivalent Riemann Problem and the Generalized Riemann 

Problem 

 

The Generalized Riemann problem (GRP) is a problem where the relationships on the left 

and right sides of the point in examination are not constant. See Figure 3.4. This means at 

point x0 the 2 values of U do not represent their entire cell. This requires that the values of 

U be converted into values that are representative of the entire cell by averaging the non-

constant relationship into an equivalent piecewise constant problem. The process of 

converting nonlinear functions to piece-wise linear functions is the process of turning the 

GRP to the Equivalent Riemann Problem (ERP). 
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Figure 3.4 The Generalized Riemann Problem Guinot(2003) 

 

3.2.1.6 Source Terms 

 

Source terms is the term given to the affects that are not taken into account via the 

evolution in time formula provided as Eq 3-24 or Eq 3-25. Source term possibilities include 

bed slope, friction head loss (Bergundelli, Bradford & Sanders (2008); Bergundelli & 

Sanders (2006 & 2007); Bradford and Sanders (2002a &2002b)), infiltration Walker & 

Kasilingam (2004), wind forces Garcia-Navarro & Toro (2007), eddy diffusion Bradford & 

Sanders (2006), and sediment transport Julien(2002). 
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3.2.1.7 Intercell Fluxes 

 

Mass and momentum fluxes are calculated to determine how much water from the last cell 

is being transferred into the next cell and the speed at which it is travelling. These are also 

stated as flux invariants in some texts. 

 

3.2.1.8 The Finite Volume Method (FVM) 

 

The variation of the Godunov algorithm we are using is the FVM. Instead of breaking the 

model into discrete cells, we break the model into discrete volumes. The main advantages 

of this method are that it can handle Non-Cartesian geometries which are required for most 

natural circumstances. It does not need to generate and remove cells around wetting and 

drying boundaries Bradford Sanders (2002b). It can handle subcritical and supercritical 

boundaries with only minor adjustments.The FVM appears very promising and will get 

investigated further within this chapter.   
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3.2.1.9 Limiters 

 

Limiters are used to prevent spurious oscillations at discontinuities within the model. These 

spurious oscillations are encountered in the higher order of accuracy schemes Bradford & 

Sanders (2006). Commonly used limiters are MinMod, Double MinMod, and Superbee 

Bradford & Sanders (2006). 

 

3.2.2 The Process of the Godunov-type Algorithm (Toro 2009) 

 

The Godunov-type algorithm has six main steps which are detailed in (Guinot 2003;Toro 

2009)  

1. Involves the discretisation of space into finite volumes or computational cells where 

the solution of U, is sought over each cell. (Guinot 2003). See Figure 3.5 

 

Figure 3.5 Discretion into Finite Volumes Guinot(2003) 
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2. Finding the GRP in each cell by reconstruction of each cells distribution of U. 

(Guinot 2003). See Figure 3.6. This is done using cell limited gradients and is the 

predictor step of the MUSCL-Hancock approach covered later in this chapter. 

 

Figure 3.6 Redistribution into Cell Averages Guinot(2003) 

3. Convert GRP to ERP by converting the piecewise constant values into a single 

value at each node. 

 

Figure 3.7 Conversion to ERP Guinot(2003) 

4. Determine the fluxes. Determining the fluxes manually is a lengthy process that 

requires trial and error and iteration and should be avoided by using Riemann 

solvers (Guinot 2003). Within our model we use Roe‟s Reimann solver as a part of 
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the Flux Invariants step of the MUSCL-Hancock. Figure 3.8 is a representation of 

this. 

 

Figure 3.8 Flux Determination Guinot(2003) 

5. Computation of the value of U at the next time step via flux balance over the cells 

(Guinot 2003). This represented in Figure 3.9 and is the corrector step of the 

MUSCL-Hancock scheme. 

 

Figure 3.9 Flux Balancing Guinot(2003) 

6. Source terms (If Any). This is represented by Guinot(2003) in Figure 3.10 as an end 

adjustment to the results but it is quiet often included as an extra part within the 
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fifth step (Bergundelli, Bradford & Sanders (2008); Bergundelli & Sanders (2006 & 

2007); Bradford and Sanders (2002a &2002b), Julien(2002), Strelkoff(1970)). 

 

Figure 3.10 Source Term Adjustment Guinot(2003) 

These six steps will be detailed within this chapter. 

 

3.3 Structure of the Finite Volume Method 

 

The finite volume method is structured according to several techniques which have been 

successfully used to solve hyperbolic equations and originated with the Euler equations and 

the aerospace industry. These techniques follow the Godunov type algorithm detailed in 

Chapter 3.2 and have incorporated a Predictor-Corrector solution format in combination 

with several other techniques. The layout of the finite volume method generally has the 

following steps; 

1. Prediction Step (Godunov step 2 and 3) 
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2. Determine Fluxes (Godunov step 4) 

3. Correction Step (Godunov step 5) 

3.3.1 Prediction Step 

 

The predictor step progresses A (Area), and V (velocity) to a halfway point in the time-

step. The result is accurate except where there are discontinuities, e.g. hydraulic jumps, to 

which the gradients of the variables have to be limited to prevent over-predicting and 

under-predicting oscillations. The prediction step uses a rearranged version of the Saint 

Venant equations of Eq 2-11 and Eq 2-12. The momentum equation, Eq 2-12 can be 

rearranged and simplified as shown in Eq 3-1 through to Eq 3-8 to result in Eq 3-10 which 

is used for the predictor step to find velocity.  

    

  
 

 

  
                       

Expanding leads to 

Eq 3-1 

    

  
 
    

  
 
     

  
             

Eq 3-2 

 Division by A results in  

   

  
 
   

  
 
    

  
            

Eq 3-3 

 Multiplied by dt results in  

 
   

   

  
   

    

  
                  

Eq 3-4 
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 Simplifying  

 
   

  

  
                          

Eq 3-5 

 Rearranging for    results in  

 
    

  

  
                          

Eq 3-6 

 Where   

   
     

   
     Eq 3-7 

 And where subscript k+1/2 results in dt=dt/2  

 
  
     

   
  

  

   
                

  

 
        

Eq 3-8 

 

In a very similar way the continuity equation Eq 2-11 can be used to produced Eq 3-9 

where we solve for    instead of   . Eq 3-9 is the equation used to determine the cross-

sectional area at a half time step and equation Eq 3-10 is 

 
  
     

   
  

  

   
                  

  
Eq 3-9 

 
  
     

   
  

  

   
                 

 

 

 
   

 
      

  
 

 
     

 
 
 

 
     

     
  

Eq 3-10 
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The values calculated within the predictor step are then used for the calculation of the flux 

terms which are determined in the following section using a variation of the MUSCL-

Hancock technique. 

 

3.3.2 The MUSCL-Hancock Scheme – Data Reconstruction 

 

Once the prediction step finds the cell averaged values, ERP needs to be solved. The 

MUSCL approach is used here and three has three main steps. 

1. Data Reconstruction 

2. The Riemann Problem 

3. Evolution in Time 

 

3.3.2.1 Data Reconstruction 

 

In the data reconstruction step, data cell averaged values
 
from the prediction step are locally 

replaced by piece-wise linear functions in each cell (Toro 2009). Examples from (Sanders 

B 2001) are shown below for height, h, velocity, V, and area, A. 
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Eq 3-11 

 
        

 

 
               

Eq 3-12 

 
      

 

 
          

Eq 3-13 

 
        

 

 
               

Eq 3-14 

 

The area A on the left and right side of each cell face is then computed using the 

extrapolated depths and the depth-area relationship defined at the cell face. Hence,  

          Eq 3-15 

          Eq 3-16 

 

 

3.3.2.2 The Riemann Problem 

 

Once the variables are calculated at the cell boundary the mass and momentum fluxes can 

be calculated via a Reimann problem. For the rectangular or triangular case this is simple, 

but for arbitrary topography an approximate solution needs to be formulated. The following 

Roe scheme is used Sanders (2001). 
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Eq 3-17 

 Where FL and FR are fluxes evaluated with MUSCLE reconstructed data  

 Where AU is the Jacobian matrix given by dF/dU and the matrix is 

defined as, 

 

                Eq 3-18 

 For one-dimensional flow, these matrices are given as,  

 
     

     
      

  
Eq 3-19 

     
  

          
  

Eq 3-20 

 
   

 

   
        
       

  
Eq 3-21 

 Where a=(gA/T)
1/2

. The quantities denoted with a hat are known as Roe 

averages. Roe average for velocity is found by Eq 3-22 

 

 
   

           

       
 

Eq 3-22 

 ∆U within Eq 3-17 is evaluated as   

 

    

 

 
 
 

 

 
    

    

  
 

 
 

 
    

    

  
 
 

 
 
 

 

Eq 3-23 
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3.3.2.3 Evolution in Time 

 

The extrapolated boundary values can then be used to evolve the solution to t ∆t according 

to the following MUSCL-Hancock formula 

 
        

 

 

  

  
      

       
   

Eq 3-24 

Note that the evolution step is contained entirely within each cell as the intercell fluxes are 

evaluated with the boundary extrapolated values of each cell. At each intercell position 

j+1/2 there are two distinct fluxes namely F(Uj
R
) and F(Uj+1

L
) (Toro 2009).  

As there are many variations to the MUSCL-Hancock method an appropriate one must be 

selected. It is documented that Green‟s theorem should be used (Bradford & Sanders 

2002b) which yields the exact formula by integrating the governing equations with space 

and time over the control volume (Toro 2006). This yields 

 
  
      

  
  

  
  

  
 
 
  

  
 
 
       

Eq 3-25 

Comparing this to the corrector step formula of (Bradford & Sanders 2002b) a direct 

relevance can be seen with the addition of some extra source terms for bed slope and 

friction. 
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Eq 3-26 

 Where  

 
    

 
  
  

Eq 3-27 

 And  

 
    

 
         

  
Eq 3-28 

 

3.3.3 Slope Limiters 

 

 ccording to Godunov‟s theorem spurious oscillations will occur where strong gradients 

are located. To avoid this, slopes ∆j are replaced by limited slopes    . This extension to 

non-linear systems is somewhat empirical but will lead to satisfactory results (Toro 2009). 

This fits into the prediction step of the Finite Volume Method as it alters the ∆V and    

terms before the initial prediction takes place. This is why the        and         are cell limited in 

the prediction step. 

Slope limiters are used to calculate cell-average gradients of the variables to preserve 

monotonicity of the solution at discontinuities (Bradford & Sanders 2002a). The limiters 

become first-order accurate at solution extrema in order to suppress numerical oscillations 

(Bradford and Sanders 2002b). The choice of limiters becomes an issue of accuracy and in 
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many journals the Superbee limiter is chosen. The Superbee limiter may be the best with 

poorly resolved grids but in some situations it would have poor performance (Bradford & 

Sanders 2006). (Bradford & Sanders 2006) make a strong case for the use of Double 

Minimum Modulus over the other limiters examined. The accuracy of Double Minimum 

Modulus predictions was in nearly all cases superior to the other predictions (Bradford & 

Sanders 2006). The Double MinMod scheme is presented from (Bradford & Sanders 2006).  

Double Minimum Modulus  

 

                 
  

   

 

   
   

Eq 3-29 

Where 
  

   
 

   
  

Eq 3-30 

Where    
    

      
  Eq 3-31 

And     
      

    
  Eq 3-32 

Where c represents concentration of a scalar moving in a fluid with velocity u and v in the x 

and y directions, respectively (Bradford & Sanders 2006). 

 

3.4 Alterations of the FVM 

 

There are several alterations that need to occur to the FVM so then it is stable during 

certain events. This includes alterations for dry bed treatment and alterations for irregular 

bed profiles. 
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3.4.1 Dry bed treatment 

 

To handle dry bed, several checks must be added to the program. (Bradford and Sanders 

2002b) recommends the following changes. “First, in the event that a depth less than εh is 

computed, the velocity and discharge are set to zero in the cell. Second, in the event that the 

extrapolated depth at a cell face (hL or hR) is less than zero, it should be set to zero prior to 

applying the numerical flux function. Third, in the event that the depth on both sides of a 

cell face are less than εh, the mass and momentum fluxes for the face should be set to zero, 

and the flux function need not be called. Note: the mass conservation properties are not a 

function of εh. That is, εh can be large and O(10-14) mass conservation will still be 

achieved”. The MUSCL reconstruction must also be altered to prevent leakage into the 

surrounding cells (Bradford and Sanders 2002a). Where a wet cell the cell is bounded by a 

partially wet cell, h should be extrapolated from the wet neighbour (Bradford and Sanders 

2002a). This is because when the height of water in the partially wetted cell is averaged 

over the whole cell, not just the wet area of cell, it becomes a layer of water that is much 

thinner than the real layer. Another alteration to the MUSCL process is in a partially wetted 

cell, the height extrapolation is done from the wet side only (Bradford and Sanders 2002a). 

This prevents wave propagation that is faster than realistic values. 
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3.4.2 Irregular Bed Treatment 

 

In our particular model irregular bed will not be treated. Channels will take standard 

geometries, but this topic still deserves a brief mention. It is claimed that any geometry can 

be modelled with this FVM technique as long as a grid of any sort can be fitted to the 

terrain. Furthermore there needs to be a height of water to cross sectional area relationship 

for every component of the governing equations to be found. On top of this, there needs to 

be a way to calculate hydraulic radius for friction terms within the equation. For real 

applications it would require surveyed data of the channel to determine accurate wetted 

perimeters. In the past it was impossible to find the flux invariants for irregular shapes and 

thus the solution was limited to standard geometric shapes that didn‟t change spatially. For 

this shape, an equation could be derived for the flux invariants but would only be useable 

for that particular model. When (Roe 1981) found an approximate method for solving 

arbitrary Riemann invariants, which was accurate enough to use with the shallow water 

equations, it became feasible to solve for arbitrary topography. 

 

3.4.3 Boundary Conditions and the Ghost Cell 

 

For the Godunov scheme to be applied over the entire domain the boundary conditions are 

placed within ghost cells. These ghost cells are immediately outside of the model boundary 
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and contain values that are extrapolated from within the model as seen in Figure 3.11 and 

Figure 3.12. Because the ghost cells are set up the same as a conventional cell, momentum 

and mass fluxes can be determined via the normal procedure applied to the rest of the cells. 

An outflow ghost cell is specified only from extrapolated values from inside the model. An 

inflow boundary needs to be set up in different ways depending on if it is a supercritical or 

subcritical flow. This is detailed in Chapter 2.4.2. 

 

Figure 3.11 Boundary Conditions and the Ghost Cell 

 

Figure 3.12 Uphill Ghost Cell 
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3.4.4 Solution Stability 

 

The solution is said stable to be stable if the Courant number is below one (Bradford and 

Sanders (2002a); Bradford and Sanders (2002b); Toro(2009); Guinot(2003)). The Courant 

number is defined as Eq 3-33. 

 
    

  

  
 

Eq 3-33 

It can be seen that for faster flow rates the solution can be kept stable by decreasing the 

time step or increasing the cell sizes.   
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4. Existing MatLab Models 

 

4.1 Introduction 

 

An existing MatLab model is available from Professor Brett Sanders. This model is 

provided to his masters students as a homework project with the task of changing it to dry 

bed. This model is one dimensional and is simplistic as it is predicting planar flows with no 

friction, no bed slope and the boundary conditions have been set to solid walls. This model 

uses an abbreviated version of the shallow water equations with no source terms. This 

means that friction and bed slope has been neglected. 

This then leaves several areas that would be desirable to change to make the model into 

something that is much more realistic. These changes will be detailed at the end of this 

chapter. 

It is now a good opportunity to introduce some more definitions to help the reader 

understand the terminology that will be used. 
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4.1.1 Accuracy  

 

Accuracy refers to the how close to real data, theoretical results, or experimental data that 

the model can predict. This accuracy can be with two main dimensions. These dimensions 

include the physical properties of the water flow and the accuracy throughout time. This 

dimension is measurable through the Mannings equation where the height to flow rate 

relationship can be examined knowing characteristics of the model, i.e. bedslope and 

Mannings n. This examines if the number achieved is realistic. The other dimension that the 

model can be inaccurate with is time. This looks at how long the model has taken to 

achieve steady state or how long a wave has taken to propagate downstream. This 

dimension is only comparable against data from a known source or experiment. This 

dissertation has only set out to measure against the theoretically obtainable results. 

 

4.1.2 Robustness 

 

Robustness refers to the set of circumstances that the model can successfully function with. 

The more circumstances that the model can function with, the more robust the model is. 

Robustness can be much more sensitive to particular parameters than to others and to test it 

fully, these must be found. 
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4.2 Potential Applications for the Model 

 

The program has no real applications other than modeling a dam break wave over a flat 

bed, with no friction, in a fixed boundary channel. Sanders freely states, that this program 

would be completely useless in any real life situation. 

4.3 Program (FVM1D) – Original Wet Bed Sanders Model 

This program comprises of seven scripts that together fulfill the first five steps of the 

Godunov algorithm. The sixth step, relating to source terms, has been ignored within this 

model. The seven scripts are referred to in Table 4.1. 

Table 4.1 Location of Scripts 

File Name Location 

fvm1d.m Appendix A.1 

limiter.m Appendix A.2 

limit.m Appendix A.3 

predictor.m Appendix A.4 

fluxes.m Appendix A.5 

solver.m Appendix A.6 

corrector.m Appendix A.7 
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The program has outputs which have not been changed in any way, that help to show the 

usefulness of the program. Figure 4.1 through to Figure 4.4 are some of the outputs of the 

program. As the initial Sanders model outputs have no units on the graphs, some 

housekeeping must be taken care of first to help get an understanding of the graphs. The top 

sub-plot of the figures is a plot of the free surface profile and energy. This is the height of 

water in meters on the y-axis and the channel bed is a length in meters. The length on the x-

axis holds true for all the subplots. The second sub-plot is the velocity of water movement 

which has the units of (m/s) on the y axis. The third and bottom subplot is the discharge of 

water which has the units of (m
3
/s) again on the y-axis. 

 

Figure 4.1 Original Sanders model output – Initial conditions 
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Figure 4.2 Original Sanders model output – Wave propagating 

 

Figure 4.3 Original Sanders model output – Wave reflecting 
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Figure 4.4 Original Sanders model output – Wave reflection 

 

4.3.1 Discussion of Results 

 

The initial conditions of the model have the model starting with a fixed volume of water set 

up somewhat like a dam that has just failed and the surge wave is propagating over a lake 

or water surface of some type. Once it hits the end of the model it is reflected back along 

the channel as if it has hit a solid wall. This model allows for no inflow or outflow, does not 

allow for dry bed situations, and does not allow for friction. It is hard to judge how accurate 

or robust the program is at this stage. Further changes will have to be done to the model 

before a judgment can be made on the accuracy or robustness and will be addressed in a 

later section in this dissertation. 
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4.4 Program (FVM1D) – Original Dry Bed Sanders Model 

 

Another script was obtained from Prof. Brett Sanders to deal with dry bed situations. This 

is shown in Appendix B. Although this script was functioning, it was found that the script 

would spiral out of control spontaneously for no apparent reason. Also this script, was 

found to be inaccurate and it was decided that this script would be of little use other than 

for guidance purposes only on how to deal with dry bed situations. The scripts locations are 

shown below. 

Table 4.2 Location of Scripts 

File Name Location 

fvm1d.m Appendix B.1 

limiter.m Appendix B.2 

limit.m Appendix B.3 

predictor.m Appendix B.4 

fluxes.m Appendix B.5 

solver.m Appendix B.6 

corrector.m Appendix B.7 

sourceterm.m Appendix B.8 
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4.5 Program Coding 

 

Although both codes achieve different results there are a lot of similar characteristics of 

both. Here we will introduce and discuss the original Sanders wet bed model. All dry bed 

alterations will be discussed in Chapter 8. The reader is referred to Appendix C where the 

fully commented wet bed code is presented. This commenting is ample for a person who 

has experience within hydraulic modeling and has read above. Below is a brief explanation 

of what the code does and the order in which it occurs. It is assumed that the reader has 

sufficient Matlab knowledge and experience to understand basic Matlab codes and if the 

reader doesn‟t have sufficient coding experience the reader is referred to Palm III(2  5). 

 

4.5.1 FVM1D.m 

 

This is the main program file. It contains all variables, sets up the initial conditions, calls 

the function files that follow the predictor corrector scheme proposed within Chapter 3. It 

also plots the graphs that represent the physical variables of the model. It is provided in 

Appendix B. Here we step through the code section by section. 

Firstly the program defines some variables to set up the model. The definitions of these 

variables are contained in Table 4.3 
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Table 4.3 Variable Declaration 

Variable Definition 

L Length in meters of the channel 

nc Number of cells the channel will be divided 

into 

nf Number of cell faces 

dx Length of each cell 

x An array holding all the edge coordinates 

along the channel bottom 

xc An array holding all the cell center 

coordinates along the channel bottom 

dt Time step in seconds 

nt How many time steps will the model run for 

ntplot How often will the graphs be updated with 

current results 

z Defines the height of each cell edge. This is 

equivocal to the term So which is common 

within hydraulics and which will be 

converted to later 

dz Is the difference in height between two 

neighbor cells at the cell edges 

zc Computes the height of the bed at each cell 

center 

grav Gravity acceleration constant at 9.806 

iorder Refers to the order of the finite volume 

scheme. Here we are only concerned with 

second order finite volume schemes 

beta Defines which limiter is to be used. Double 

Minimum Modulus is recommended 
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Table 4.4 Variable Declaration Cont... 

Variable Definition 

xo Position in meters from the left hand 

boundary that the wave originates 

etalo Height of water on the left hand side of the 

wave.  

etaro Height of water on the right hand side of the 

wave 

ulo Is the initial condition velocity of the water 

on the left hand side of the wave 

uro Is the initial condition velocity of the water 

on the right hand side of the wave 

 

These are the variables that are used mainly to set up the initial conditions. Setting up initial 

conditions is done within a loop which creates in every cell the following terms. 

Table 4.5 Initial Conditions 

Initial Conditions Left of wave Right of wave Comment 

eta etalo etaro Height from datum 

h eta-zc eta-zc Height of water 

u ulo uro Velocity of water 

uh uh uh Flow rate of water 
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Now that the initial conditions of the model have been set up, the model is ready to start 

simulating by progressing throughout time. For Matlab to be able to do this we must 

initialize some arrays by creating a matrix of the correct size. The numerical value of these 

values in this matrix will not matter because MatLab will be writing directly over the top of 

them. Thus the Matlab zeros function has been utilized here. 

Table 4.6 Initialized Variables 

Initialized variable Value 

deta A matrix the same size as eta of zeros  

du A matrix the same size as u of zeros 

t 0 

 

The following section is what progresses the model throughout time. It is essentially what 

implements the Godunov finite volume scheme presented earlier. The following will be 

called for every time interval. 
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Table 4.7 Time Stepping Code 

1
st
 layer 2

nd
 layer of 

program 

3
rd

 layer of 

program 

Comments 

For 2
nd

 order 

problems only 

      

Call limiter to 

find deta 

    Limiter is a function 

file that limits the 

gradients of certain 

variables 

deta = rate of 

change of eta 

      

 eta=f    

df=deta 

    

  df(cell 1)=0   Ghost cell water 

gradient 

  df(nf)=0   Ghost cell water 

gradient 

  For all 

interior cells 

    

  Take a 

forward 

difference 

(df1) 

    

  Take a 

backward 

difference 

(df2) 

    

  Call the Limit 

function 

  The limit function 

applies a limiting 

function to the gradient 

of a variable. Here we 

will use 

DoubleMinMod 

   If df1*df2 < 0       

f=0; 

If the sign of the 

forward difference and 

backward difference 

oppose each other.  

The change in water 

height is zero 

 

 



UNIVERSITY OF SOUTHERN QUEENSLAND 

Faculty of Engineering and Surveying 

Adam M Gould  63 

Table 4.8 Time Stepping Code Cont... 

1
st
 layer 2

nd
 layer of 

program 

3
rd

 layer of program Comments 

    If not   

    f = the sign of df1 and 

df2 * the minimum of 

(2*absolute(df1), 

(2*absolute(df2), 

(0.5*2*absolute(df1)+ 

2*absolute(df2)) 

  

      

Call limiter to 

find du 

     

du=rate of 

change of eta 

Same as 

deta 

    

       

Call the 

predictor step 

    The predictor step 

makes a prediction 

on values of velocity 

height and thus flow 

rate. These values 

are then used to find 

the flux terms which 

are required within 

the corrector step 

 dh=deta-dz;   Difference in height 

can be found from 

deta and dz 

  etap   For every cell 

apredicted eta can be 

calculated 

  up(i)   A predicted velocity 

can also be found 

  hp=etap-zc       
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4.9 Time Stepping Code Cont... 

1
st
 layer 2

nd
 layer of 

program 

3
rd

 layer of 

program 

Comments 

        S = 

grav*hp.*dz/dx; 

      

Call fluxes 

function 

      

 Sn=0 cn=1   For a 1D program. 

Note V is for the 

second dimension 

 Vl= 0 Vr=0     

  hr(1)   Boundary conditions 

  ur(1)   Boundary conditions 

  Call Solver   Roe Averages for hr 

and ur 

   Hhat    

    Uhat    

    Chat   

    dU   

   R   

          

    FL   

    FR   

    F   

    amax   

  F(1)    

  hl(nf)     

  ul(nf)     

  Call solver   Roe Averages for hr 

and ur 

     Same as hl and ul 

      

  F(nf)     
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Table 4.10 Time Stepping Code Cont... 

1
st
 layer 2

nd
 layer of 

program 

3
rd

 layer of 

program 

Comments 

      For all internal cells 

  hl     

  ul     

  hr     

  ur     

  Call solver     

       

      

  F1   Fluxes for cell face 2 to 

through to nf-1 

  amax   celerity 

       

S     Source term. In the 

case of the original 

Sanders model it is for 

bed slope treatment 

Call Corrector 

function 

      

     For all cells 

  h     

  q     

  u     

       

eta       

e       

cr       

Plotting       
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4.6 Proposed Program Adaptations 

 

To facilitate the changes that are required to make the model more useful, there were 

several case studies created. These case studies increase in difficulty, to step up the 

usefulness of the model and as a way to determine the source of errors. 

Before any case studies were created, it was necessary to comment the entire Sanders 

program as there was very little commenting within the program which proved a hindrance 

in determining what each line of code was doing.  After this task was completed, the case 

studies were addressed. 

The model needs many adaptations to become useful for the application required. These 

adaptations are introduced here. 

1. Boundary Conditions – Changed from reflective to free flowing conditions in 

Chapter 5 

2. Friction and Bed slope – Introducing friction and bed slope in Chapter 6 

3. Channel Geometry – Applying Channel Geometries in Chapter 7 

4. Dry Bed – Introduction of dry beds and partially wetted cells in Chapter 8 
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5. Boundary Condition Case Study 

 

5.1 Introduction 

 

The first case study changes the reflective boundary walls into free flowing inflow and 

outflow boundary conditions. Other changes will be with initial conditions but these 

changes will occur in every case study. 

 

5.2 Alterations 

 

The first case study is targeted at turning the enclosed channel into a free flowing channel 

where both entry and exit boundary condition allow flows. This turns it into something very 

similar to an exceptionally wide, frictionless, rectangular channel or a planar flow. This 

alteration is only in the fluxes function file where the boundary cell equations change. The 

following boundary conditions, shown in Eq 5-1 to Eq 5-4, were implemented. 

No inflow q(1)=0;     h(1)=h+1/2dh;     v(1)=v+1/2dv; 

F(1,1) = q           F(1,2)=q^2/h(1)+0.5*grav*h(1)^2 

Eq 5-1 

Inflow q=number;     h=h+1/2dh;      v=q/h; Eq 5-2 
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F(1,1) = q           F(1,2)=q^2/h(1)+0.5*grav*h(1)^2 

No outflow q=0;     h=h+1/2dh;     v= - (v+1/2dv); 

F(nf,1) = q           F(nf,2)=q^2/h(nf)+0.5*grav*h(nf)^2 

Eq 5-3 

Outflow q=q+1/2dq;          h=h+1/2dh;      v=v+1/2dv; 

F(nf,1) = q           F(nf,2)=q^2/h(nf)+0.5*grav*h(nf)^2 

Eq 5-4 

 

 

5.3 Results and Discussion 

 

The results from this case study are simplistic, but are an important step in being able to 

convert this model into a useful irrigation model.  Figure 5.1 through to Figure 5.3 show a 

system which starts with set initial conditions. When the system begins these figures show 

the faster moving inflow wave propagates over the top of the slower moving initial 

conditions wave and eventually the system seems to steady state. Conservation of mass and 

momentum appear in to be operating correctly. The simple Q=AV or in our case Q=hV 

shows that nothing appears wrong with this system. This system cannot be verified as there 

are no realistic situations or theoretical equations that apply. This is ok as verification of the 

models that include friction and bed slope will be enough to verify this case study. 
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Figure 5.1 Boundary Conditions Test – Part 1 

 

Figure 5.2 Boundary Conditions Test – Part 2 
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Figure 5.3 Boundary Conditions Test – Part 3 
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6. Friction and Bed Slope Case Study 

 

6.1 Introduction 

 

The second case study is concerned mainly with introducing friction and bed slope to this 

planar flow by alteration of the momentum equations. Friction is an important loss to take 

into account and is widely done in all hydraulics. However within this model care must be 

taken that the flow height doesn‟t get too small or it will cause errors because of excessive 

head losses. This will be examined further within this chapter. To be able to test this, the 

original Sanders model will have to be altered because it defines the height of flow on 

either side of the wave and extrapolates that with a gradient of zero to the left and right of 

the wave up until the boundary conditions. This can be altered by giving an extrapolation 

angle. In this case an angle of bed slope will be used as the angle of extrapolation  

 

6.2 Alterations 

 

The equations from the original Sanders model were abbreviated versions of the full Saint 

Venant equations and because of this there are alterations required. The momentum 

equations need to be altered to include the source terms of friction and dry bed. The 

abbreviated form of the momentum equations are shown as Eq 6-1 and Eq 6-2. 
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Eq 6-1 
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Eq 6-2 

 Where  

 
     

  

  
 

Eq 6-3 

 

To allow for friction and bed slope Eq 6-1 and Eq 6-2 must be changed to Eq 6-4 and Eq 

6-5 (Bradford and Sanders 2002b). 
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Eq 6-4 

Corrector 
  
      

  
  

 
       

     
       

     
         

     

 
  

 
            

 

 

            
 

   

  

Eq 6-5 

 Where for spatially uniform topography.  

      Eq 6-6 

     Bedslope  

     Friction losses via the Manning equation  
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Within Eq 6-5 there is two frictions terms. These friction terms are an average of friction at 

the current time step and friction at the next time. There is no found documented 

explanation as to why this is the case. It has been theorized that this is to achieve uniformity 

within the equation. All other variables have a k+1/2 subscript which translates to t+1/2dt. 

It could be justified that for a linear relationship an average between k and k+dt would 

equal k+1/2dt and uniformity in the equations would be achieved. 

The next alteration to occur is within the ghost cells. The original Sanders model assumed 

that the change in the height from the datum, deta, and the change in velocity, du, would be 

0 in the ghost cells. For a sloping channel it would be desirable to extrapolate values from 

the cells immediately inside the channel. This will alter the limiter function as shown in 

Table 6.1. Within the results section, the before and after effects of the alteration to the 

limiter will be shown to help show why this change is necessary. 

Table 6.1 Limiter Alterations 

Limiter function 

Original code  Altered code 

df(1)=0;         df(1)=f(2)-f(1);         

df(nc)=0;        df(nc)=f(nc)-f(nc-1); 

 These changes equate to a physical change in the ghost cell. See Figure 6.1 for the original 

code and Figure 6.2 for the altered change. 
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Figure 6.1 Assumption of deta = 0 

 

Figure 6.2 Deta Extrapolation 
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6.3 Results and Discussion 

 

Test runs were done on the model and some of them will be shown here to give examples 

of how the model performs. These examples represent a sample of the test runs that where 

done on the model and are a representation of the main situations that can be modelled. A 

full representation of all the test runs would be of unrealistic size and thus will not be 

presented here. 

For a system with no dry cells the model can handle many situations. The most common 

wet situation is one of water flowing downhill or of water slowing propagating uphill. Here 

both scenarios are looked at and the variation of initial conditions has little effect on the 

accuracy of the system, unless of course, the initial conditions have small heights which 

yield unrealistic frictional losses (addressed in Chapter 7 and Chapter 8).  Another way the 

initial conditions can hinder the model is if the initial conditions produce very fast flows. 

This can be done in a variety of ways which include large bed slope angles, small 

Mannings n values or high flow rates through a small height. A typical downhill system is 

shown in Figure 6.3 through to Figure 6.7. 
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Figure 6.3 Friction and Bed Slope Test 1 – Part 1 

 

Figure 6.4 Friction and Bed Slope Test 1 – Part 2 



UNIVERSITY OF SOUTHERN QUEENSLAND 

Faculty of Engineering and Surveying 

Adam M Gould  77 

 

Figure 6.5 Friction and Bed Slope Test 1 – Part 3 

 

Figure 6.6 Friction and Bed Slope Test 1 – Part 4 
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Figure 6.7 Friction and Bed Slope Test 1 – Part 5 

Within figures Figure 6.3 through to Figure 6.7 it can seen that a set of initial conditions 

then flow out of the system and eventually are being replaced by a steady state flow 

condition. This is realistic in irrigation channels which run over a long period of time and 

the above system took approximately 30 to 40 minutes to approach a steady state condition 

which seems realistic for a system of this size and flow rate. This type of system can be 

verified when it is in the steady state condition by comparing modelled results to those 

achieved by using the Mannings equation. This is done within Chapter 7. 

Next we will look at a pair of uphill scenarios, one with the original limiter function, and 

the other with the altered limiter function. See Figure 6.8 through to Figure 6.15. 
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Figure 6.8 Friction and Bed Slope Test 2 – Part 1 

 

Figure 6.9 Friction and Bed Slope Test 2 – Part 2 
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Figure 6.10 Friction and Bed Slope Test 2 – Part 3 

 

Figure 6.11 Friction and Bed Slope Test 2 – Part 4 

Figure 6.8 through to Figure 6.11 show an uphill system before the limiter had been altered. 

These figures show a set of initial conditions slowly flowing uphill, with the water from the 
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upstream end of the system flowing back with a negative flow rate. This is ok but the 

positive flow rate should prevail eventually. Instead with this system the negative flow rate 

takes over suggesting that the upstream boundary conditions now have inflow conditions 

rather than outflow conditions. This condition is looked at again in Chapter 8 where what is 

happening is examined in detail. 

Within the next section of this case study we now look at the situation where the limiting 

function has the boundary conditions altered. This is presented in Figure 6.12 through to 

Figure 6.15. 

 

Figure 6.12 Changed Limiter Conditions – Part 1 



UNIVERSITY OF SOUTHERN QUEENSLAND 

Faculty of Engineering and Surveying 

Adam M Gould  82 

 

Figure 6.13 Changed Limiter Conditions – Part 2 

 

Figure 6.14 Changed Limiter Conditions – Part 3 
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Figure 6.15 Changed Limiter Conditions – Part 4 

This section has identical initial conditions as the model examined with the different 

limiting function. It can be seen here that the inflow at the downstream end eventually takes 

over the rate of negative flow produced from the bed slope. Eventually the flow rate will 

reach a steady state. This means that the volume entering the system is the same as the 

volume exiting the system and thus the volume within the system is not changing. This 

system cannot be checked using the Mannings equation as the flow profile doesn‟t 

approach parallel with the bed slope. It has been assumed that if the system shows no 

problems, and is appropriately verified within the downhill system, that this uphill system 

is seen as verified. 
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7. Channel Geometry Case study 

 

7.1 Introduction 

 

The fourth case study will change the model so then it becomes easy to alter the channel 

from planar, to rectangular or trapezoidal cross section. In fact, with this model type any 

geometry could be modelled as long as a height to area/wetted perimeter relationship is 

known. This generalization will be done by transforming equations previously used with 

height of the fluid surface into one which uses hydraulic radius. 

 

7.2 Alterations 

 

Until now the model has been operating with planar flows. To alter the model to 

incorporate geometry, alterations need to be made to the Mannings equation for friction 

head loss. The alterations turn the height on the bottom of Eq 7-1 to hydraulic radius, which 

means the side walls of the channel, will be incorporated in the frictional affects. This is 

shown mathematically in Eq 7-1. 

 
     

    

 
 
 

   
    

 
 
 

 
Eq 7-1 
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Where 
  

 

 
 

Eq 7-2 

 

Because the height to area relationship is known and the area is directly available from the 

height it is only necessary to alter the Mannings equation and one term within the corrector 

step. Using the height instead of area within all other parts of the program is acceptable 

because there is a direct relationship between height and area. Here will only examine a 

rectangular channel but it is noted that to change to a trapezoidal channel type is as simple 

as altering the area, perimeter, and hydraulic radius equations within both the predictor and 

corrector steps. 

 

7.3 Results and Discussion 

 

The results within this section are very similar to those presented in Chapter 6. Verification 

is done in the same way where the results are compared to theoretically obtainable results 

of the Mannings equation. Figure 7.1 through to Figure 7.4 are an example of the results. 

Further results are examined to verify the results. 
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Figure 7.1 Channel Geometry Test – Part 1 

 

Figure 7.2 Channel Geometry Test – Part 2 
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Figure 7.3 Channel Geometry Test – Part 3 

 

Figure 7.4 Channel Geometry Test – Part 4 
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Verification of results obtained can be done by comparing the model obtained surface 

profile height, with known discharge, with the discharge obtained from that height with the 

Mannings equation. It was found over 9 tests that the average error for comparing systems 

with different flow rates, different bed slopes, and different Mannings n, was -0.035%. This 

is a very good result and it is believed that this result could be improved even further if the 

models were allowed to run for a longer time period. These results are summarised in  

Table 7.1 

 

Table 7.1 Mannings Verification 

Model Flow 
rate Q 
(cumecs) n 

height 
of water 
(m) b(m) A(m2) P(m) So Calculated Q 

Percentage 
Error (%) 

2.0000 0.0500 1.5564 2.0000 3.1128 5.1128 0.0020 2.0000 0.0000 

3.0000 0.0500 2.1606 2.0000 4.3213 6.3213 0.0020 2.9994 -0.0209 

4.0000 0.0500 2.7490 2.0000 5.4980 7.4980 0.0020 3.9987 -0.0314 

5.0000 0.0500 3.3239 2.0000 6.6477 8.6477 0.0020 4.9896 -0.2078 

6.0000 0.0500 3.9039 2.0000 7.8078 9.8078 0.0020 5.9986 -0.0241 

2.0000 0.1000 2.3187 2.0000 4.6374 6.6374 0.0030 2.0000 -0.0022 

2.0000 0.2000 3.7069 2.0000 7.4137 9.4137 0.0040 1.9993 -0.0329 

2.0000 0.0200 0.7765 2.0000 1.5530 3.5530 0.0020 2.0000 -0.0004 

2.0000 0.0100 0.6057 2.0000 1.2114 3.2114 0.0010 2.0000 0.0000 

       

Average 
error -0.0355 
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8. Dry Bed Case Study 

 

8.1 Introduction 

 

The fourth case study is aimed to transform the model to be able to incorporate a dry bed as 

an initial condition. This will increase the versatility of the model as it would be able to 

track a wave propagating uphill along a channel, and draining out of a channel. Both are 

desirable in modelling furrow irrigation systems.  

 

8.2 Alterations 

 

Dry bed alterations have been discussed in Chapter 2.4.1 and Chapter 3.4.1. Here we look 

at what that means within the program and mathematically. Initially the tolerance that was 

discussed within Chapter 3.4.1 is introduced into the MatLab model. Once this tolerance is 

set up, a series of if statements must be set up to determine whether the water is above or 

below the tolerance. The action taken by the program will then depend on the if statement‟s 

outcome. These if statements are situated at various locations within the program and will 

be discussed further in this section. 
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Within the initial conditions an alteration needs to occur in setting up partially wet cells. 

The original Sanders method was programmed such that a cell could never be dry. A cell is 

examined and the highest edged is deemed zmax, the lowest zmin. See Figure 8.1. 

 

Figure 8.1 Typical Dry Cell 

The original model treated the cell as dry if eta was smaller than zmin. However, it is not 

physically possible for eta to ever be below zmin. Therefore the statement was changed and 

is described here. The main change is that the height must be examined instead of eta. If the 

height of water is above zmax, the cell is wet and will be treated the normal way. If the 

height of the water is below zmin, the cell is dry, thus height is set to zero, velocity is set to 

zero, and thus the flow rate is set to zero. If the height of water is between these two limits, 

the cell is deemed to be partially wet and the water level is set with Eq 8-1. If this water 

level is below the set tolerance the cell is then deemed to be dry and the height and velocity 

is set to zero. 
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                           Eq 8-1 

 

Then within the predictor and corrector steps, the area, hydraulic radius, and frictional loss 

are only found when height of the water is above the threshold. If height is below the 

threshold, these terms are set to zero before the new velocities and new heights are found. If 

these new heights are under the threshold, they are set to zero along with the corresponding 

outflow and velocity. Within the fluxes step, at every cell interface if the height on the left 

or right side is below the threshold the perpetrating height is set to zero, if both are below 

the threshold they are both set to zero and the fluxes are not determined. 

The codes for this are presented in Appendix E 

File Name Location 

fvm1d.m Appendix E.1 

limiter.m Appendix E.2 

limit.m Appendix E.3 

predictor.m Appendix E.4 

fluxes.m Appendix E.5 

solver.m Appendix E.6 

corrector.m Appendix E.7 
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8.3 Results and Discussion 

 

Firstly a height threshold was set up. If the water height is below this height threshold then 

the cell is deemed to be dry. It was found that situations with a wave propagating along a 

downhill slope, with friction, that this threshold didn‟t affect the accuracy of the program 

greatly but would stop suddenly for thresholds smaller than the point where the Mannings 

equation became unstable. This is shown in Figure 8.2 and Figure 8.3. It is possible to step 

over this by making the dry bed water threshold limit one order higher than the Mannings 

equations limit.  

 

 

Figure 8.2 Dry Bed Program Mannings Threshold 
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Figure 8.3 Dry Bed Program Mannings Threshold Zoomed 

The Mannings limit was examined further by altering the inflow of the water for certain 

velocities and noting the height the model reads at steady state. It appears that for any 

height below 0.002m, for this particular circumstance, that the model and the mannings 

equation do not yield accurate results. So for this particular system the dry bed tolerance 

should be set to 0.002m to stop any errors accumulating. Other bed slope and Mannings n 

values would lead to a different tolerance being acceptable. 

Model 
Flow rate 
Q n 

height of 
water b A P So Calculated Q 

Percentage 
Error 

0.00008 0.03 0.001676 2 0.0034 2.0034 0.002 0.0001 -11.9439 

0.00006 0.03 0 2 0.0000 2.0000 0.002 0.0000 -100.0000 

0.00004 0.03 0 2 0.0000 2.0000 0.002 0.0000 -100.0000 

0.00002 0.03 0 2 0.0000 2.0000 0.002 0.0000 -100.0000 
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Another issue found was water spontaneously appearing near the upstream boundary where 

the conditions were dry. See Figure 8.4. It is possible to see that within the ghost cell there 

is an error within the Sanders model. This is an error with the extrapolation within the ghost 

cell. The extrapolation was using a wrong point to define change in bed slope within the 

fluxes script which needed to be rectified.  

 

 

Figure 8.4 Zoomed to Failure Point 

Another reason the water was appearing in the ghost cell is because the angle of change in 

eta over the ghost cell is defined in the Sanders script as zero, see Figure 6.1. This means 
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that when the angle is extrapolated from an uphill sloped dry cell, momentum and mass 

fluxes are created. When water appears in the ghost cell the angle of the bed slope allows 

this water to then drain into the model‟s cells creating a negative flow rate which adds some 

mass into the model, which is unaccounted for. This also creates large issues with model 

stability as the Courant number approaches 0.6. See Figure 8.5 to see that the stability 

occurs at the downstream end where the velocity is the greatest. These instability issues are 

largely removed once the issues detailed above were fixed. 

 

Figure 8.5 Downstream Stability Issues 
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By setting up the extrapolation angle equal of deta and du to the angle of deta and du 

respectively from the immediately interior cells, no water is added into the model. This 

change however causes issues when an uphill, dry bed situation occurs. The issue is faced 

when the water level reaches the final cell. As seen in Figure 8.6 if the angle of the deta, 

(height from datum), is extrapolated into the right hand side ghost cell, and the angle of the 

bed is extrapolated, there will be a negative water level, which triggers the dry bed clause. 

 

Figure 8.6 Uphill, Dry Bed, Free Flowing Boundary Condition Issues 
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Figure 8.7 Extrapolation in the Ghost Cell 

 

Because this height is then turned to zero, see Figure 8.8, an issue occurs with water level 

not being able to rise inside the model which causes an infinite friction situation. See Figure 

8.9. 
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Figure 8.8 Water Level Adjustment 

 

 Figure 8.9 Infinite Friction 

 

Now this doesn‟t appear good for uphill modelling, but the reality is in most cases that 

there will be no drainage ditch at that end. Instead, a system was modelled with a reflective 
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wall at the upstream end. Several of these systems were tried in the uphill case including 

adding clauses to switch between extrapolating the angle for dry bed situations and then 

setting the angle to zero for situations where the water is approaching the upstream 

boundary. This was to no avail as the system still encountered the same issue with upstream 

cases. Shown in Figure 8.10. A possible fix for this situation is to know the volume of 

water in the ghost cell by tracking water entering and leaving the ghost cell. From this 

volume it is then possible to find the height of water knowing the wave shape, which is 

covered later in this chapter. Other restrictions on uphill modelling were encountered with 

runtimes often being five or six hours. This is for two reasons. To find friction losses the 

height used is cell averaged. It was found when using bigger cells sizes the model would 

become unstable i.e. the courant number below 0.6, for small dry bed tolerances. This is 

because the big cell sizes create smaller water heights when averaging a partially wet cell. 

The smaller the water height the worse the errors are within the Mannings equation. In 

order to utilize the high accuracy of this model the cell sizes were then reduced which 

allows testing of the point where the Mannings equation becomes unstable. The dt must 

then also be set to around 0.05-0.1 seconds. The model time for the model that produced 

Figure 8.10 was 186 000 seconds which equates to a runtime of about 6 hours. The model 

runtime is greatly affected by the amount of computational cells. The large run times 

obviously puts restrictions on the amount of situations that could be tested for uphill cases. 
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Figure 8.10 Last Output before Failure for Changed Boundary Conditions 
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Smaller cells sizes are also advantageous because the wave front is a direct interpolation 

between points within the cells. See Figure 8.11. So by decreasing the cell size the wave 

front becomes steep and the average of water height over the cell remains above the 

threshold. See Figure 8.13 and Figure 8.14. The question then becomes, at what angle does 

the front edge of the wave normally travel in dry conditions, and does the cell size replicate 

this. The same then goes for wet conditions. This will then come back to the modellers 

experience as a judgement will have to be made on cell sizes for channel length and wave 

height. 

 

Figure 8.11 Direct Interpolation – Part 1 
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Figure 8.12 Direct Interpolation - Part 2 

 

Figure 8.13 Decreased Cell Size and Time Step - Part 1 
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Figure 8.14 Decreased Cell Size and Time Step - Part 2 

Typical draining situations can also be modelled. This is shown 8.15 through to 8.18. Again 

with verification of draining models the only way of truly testing the accuracy of the model 

is to compare it against real data. Verification of such a case is not required in this 

dissertation. Visual inspection of the draining situation shows no major errors in the model. 

Because the model has also been verified for steady state downhill flows it is assumed that 

this model will also run correctly.  
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8.15 Draining Situations – Part 1 

 

 

8.16 Draining Situations – Part 2 
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8.17 Draining Situations – Part 3 

 

 

8.18 Draining Situations – Part 4 
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As can be seen in this chapter the model does have some limitations that will require further 

investigation. However, the model shows promising signs with its ability to handle a wide 

range of flows with a wide range of circumstances. This model has various limitations with 

smaller heights of flows, small velocities, and thus smaller flow rates. This appears to be 

linked mainly to the Manning‟s equations limitations and as there are few alternatives, this 

problem would plague many numerical solvers of this type.  
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9. Conclusion 

 

9.1 Limitations of Use and Future Work 

 

This model has been proven to be versatile but isn‟t without its limitations. These 

limitations are those that would be present in all forms of irrigation modelling and would 

have to be faced using any method for numerical simulation. An uphill, upstream, dry bed 

boundary condition is an issue that needs further attention. A suggested remedy is tracking 

the flow rate into the cell (nf-1) immediately interior of the ghost cell and interpolating the 

rate of change of flow rate from the cell (nf – 2). By doing this it could be possible to 

determine the volume of water leaving the model and because we have assumed shape of 

the water within the ghost cell it is possible to determine the height of the boundary 

condition. 

Other limitations occur when the flows are fast which makes the model unstable. When 

there are very fast flows, smaller time steps and larger cells sizes must be used to keep the 

Courant number below 0.6. This can then affect the accuracy of the Mannings equation and 

a tolerance must then be implemented to stop the model from failing. This has been 

documented as a valid fix for this issue as waves propagate with correct characteristics. 

Other areas that require attention are looking at lateral inflows and outflows. This would 

greatly increase the usefulness of the program and could be added as discrete flows or over 

the entire length of the channel. Infiltration is another possible addition to the model which 
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would increase its usefulness. Work should be done to extend the model into 2 dimensions. 

This would make the model more versatile, and would improve the modelling of discrete 

lateral flows and structures. 

Future work could be done on verifying the model type in the time dimension. This can be 

done with data from experiments or from measured field data. A positive result from this 

verification would be useful in fully validating the use of this model type. 

 

9.2 Modelling Conclusions 

 

The model is accurate for testing many different situations. Situations which do push the 

limits of the models ability are not common within the irrigation environment. For steady 

state flows it has been verified that the model can achieve a height within a limit of 0.05% 

and thus proven that the finite volume method is a good way of predicting water flows. For 

uphill situations the model cannot handle a dry bed for the final computational cell. But it 

does appear to model the water flows correctly and can model well if the initial conditions 

are wet.  

Draining situations model as expected but cannot be further verified here. Rigorous 

verifications could be done by comparing a simple model to a set of lab results, or field 

data. 
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Although not verified fully, the model shows many promising signs that could lead to 

further investigations being undertaken. The advantageous of using this modelling scheme 

make in ideal for modelling a range of flows with various source terms and make it useful 

to be incorporated into irrigation modelling.   
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Appendix A 

University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

ENG4111/4112 Research Project 

PROJECT SPECIFICATION 

FOR: ADAM GOULD 

TOPIC: „Finite volume solution of the unsteady free surface flow equations‟ 

SUPERVISORS: Prof. Rod Smith, Dr Malcolm Gillies 

PROJECT AIM: To understand finite volume (conservative) techniques for solution of the 

unsteady free surface flow equations and to apply them to simple case studies. 

PROGRAMME: 

1. Review Finite Volume Solution Techniques used with the unsteady free surface 

flow equations, including the history, attributes and applications of the techniques. 

2. Describe in detail the algorithms and working of an appropriate example of a Finite 

Volume technique. 

3. Apply the MatLab codes of Sanders to a range of simple case studies to gain 

understanding of techniques and boundary conditions. 

4. Modify the MatLab code to handle more complex cases. 

5. Investigate application of Finite Volume techniques to flow over a dry bed by 

further modification of Sanders‟ code or development of original codes. 

AGREED: 

 

_________________  _________________         ________________  

  (Student)   (Supervisors)       (Supervisors)      

 __  /___/___    __  /___/___   __  /___/___ 
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EXAMINER/CO-EXAMINER:_______________________________________________ 

Appendix B 

B.1 FVM1D 

%FVM1D - FOR WET BED PROBLEMS ONLY 

%by Brett F. Sanders (and pieces of code from Scott F. 

Bradford) 

% 

%This is a very simple 1D solver of the shallow-water 

equations 

%that uses the Hancock predictor-corrector time-stepping 

scheme, 

%the MUSCL method of slope limiting and variable 

reconstruction 

%and Roe's approximate Riemann solver to compute fluxes. 

% 

%The code is kept as simple as possible to emphasize the 

basic 

%flow of logic. To account for problems involving a dry bed, 

%one needs to add a number of "if" statements to avoid 

%division by zero. This makes the code pretty messy and 

%therefore these lines have been omitted. 

% 

%Note that the code can either be run in a first order or 

%second order accurate mode. The user can select from  

%several limiters to see how these impact the solution. 

% 

%To run this program, copy all the .m files into a directory 

%and run "fvm1d.m" by either typing "fvm1d" at the matlab 

%command prompt or pushing the execute button in the matlab 

%text editor. 

  

clear 

close all 

format long 
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global grav 

  

%Set up grid 

nc=100; %number of cells 

nf=nc+1; %number of edges 

L=1000; %length of channel 

dx=L/nc; %length of cell 

x=0:dx:L; %array of edge coordinates 

xc=dx/2:dx:L-dx/2; %array of cell center coordinates 

  

%Set up time marching and output interval 

dt=0.5; %time step (s) 

nt=100; %number of time steps 

ntplot=10; %plot interval (number of time steps) 

  

%Define bed elevation at faces z=f(x) 

z=zeros(size(x)); %flat bed - can enter own function here, 

z=f(x) 

  

%Compute bed slope 

for i=1:nc, 

    dz(i)=z(i+1)-z(i); %dimensions of length 

    zc(i)=0.5d0*(z(i+1)+z(i)); %elevation of cell center 

end 

  

%Set parameter values 

grav=9.806; 

  

%Set attributes of solver 

iorder=2; %1=first order scheme, 2=second order scheme 

beta=2; %controls limiter used by model 

%Notes on limiters 

%beta=1 => Minmod 

%beta=2 => Superbee 

%beta=3 => Fromm scheme, predicts oscillations at sharp 

fronts 

%beta=4 => Van Leer 

%beta=5 => Van Albada 

%beta=6 => Double Minmod 
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%Set up initial condition 

xo=L/2; 

etalo=10; 

etaro=1; 

ulo=0;  

uro=0; 

for i=1:nc, 

    if (xc(i) < xo), 

        eta(i)=etalo; 

        h(i)=eta(i)-zc(i); 

        u(i)=ulo; 

    else 

        eta(i)=etaro; 

        h(i)=eta(i)-zc(i); 

        u(i)=uro; 

    end 

end 

  

%Initialize arrays 

uh=h.*u; 

  

deta=zeros(size(eta)); 

du=zeros(size(u)); 

  

t=0; %start time 

for n=1:nt, %Begin time-marching loop 

    if (iorder == 2), %for second order accuracy only 

        deta = limiter(nc,beta,eta); 

        du = limiter(nc,beta,u); 

        [etap, up]=predictor(nc,eta,h,u,deta,du,dz,zc,dt,dx); 

        hp=etap-zc; %Update for dry bed cases 

        S = grav*hp.*dz/dx; %Source term treatment 

        [F, amax] = fluxes(grav,nf,etap,up,z,dz,deta,du); 

%Compute fluxes 

    else 

        [F, amax] = fluxes(grav,nf,eta,u,z,dz,deta,du); 

        S = grav*h.*dz/dx; %Source term treatment 

    end 

    [uh, h, u] = corrector(nc,h,uh,F,S,dx,dt); 

    eta=h+zc; %compute new free surface height 
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    e=eta+0.5*u.^2/grav; %compute energy in units of length 

(head) 

    t=t+dt; 

    cr=amax*dt/dx; %compute Courant number 

    fprintf(1,'%g %d\n',n,cr) 

    if (cr > 1) %Stops program if Courant number exceeds one. 

        break 

    end 

    if (mod(n,ntplot) == 0), 

        subplot(3,1,1) 

        plot(xc,e,'r-',xc,h+zc,'b-',xc,zc,'k-') 

        axis([0 L 0 16]) 

        legend('Energy','Free Surface','Bed') 

        subplot(3,1,2) 

        plot(xc,u,'b-') 

        axis([0 L -1 10])  

        legend('Velocity') 

        subplot(3,1,3) 

        plot(x,F(:,1),'b-') 

        axis([0 L -1 50])  

        legend('Discharge')  

        pause(0.1) 

    end 

end 

 

B.2 limiter 

function df = limiter(nc,beta,f) 

  

df(1)=0; 

df(nc)=0; 

for i=2:nc-1, 

    df1=f(i+1)-f(i); 

    df2=f(i)-f(i-1); 

    df(i)=limit(df1,df2,beta); 

end 
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B.3 limit 

function f=limit(d1,d2,beta) 

% 0 = first order, 1-2 = beta, 3= fromm, 4=vanleer, 

5=vanalbada, 6=double 

% minmod 

  

if beta==0, %first order 

    f=0; 

elseif beta >= 1 & beta <= 2%beta: minmod (beta=1) and 

superbee (beta=2) 

    if(d1*d2 < 0), 

        f=0; 

    else 

        s=sign(d1); 

        a=abs(d1); 

        b=abs(d2); 

        f=s*min(max([a b]),beta*min([a b])); 

    end 

elseif beta == 3 %Fromm 

    f=0.5*(d1+d2); 

elseif beta == 4 %vanleer 

    if(d1*d2 <= 0), 

        f=0; 

    else 

        f=2*d1*d2/(d1+d2); 

    end 

elseif beta ==  5 %vanalbada 

     eps=1.e-20; 

     f=(d1*(d2*d2+eps)+d2*(d1*d1+eps))/(d1*d1+d2*d2+2*eps); 

elseif beta == 6 %double minmod 

    if(d1*d2 < 0), 

        f=0; 

    else 

        s=sign(d1); 

        a=abs(d1); 

        b=abs(d2); 
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        c=0.5*(a+b); 

        f=s*min([2*a 2*b c]); 

    end 

end 

  

 

B.4 predictor 

function [etap, 

up]=predictor(nc,eta,h,u,deta,du,dz,zc,dt,dx); 

  

global grav 

  

dh=deta-dz; 

for i=1:nc, 

    etap(i)=eta(i)-0.5*dt/dx*(h(i)*du(i)+u(i)*dh(i)); 

    up(i)=u(i)-0.5*dt/dx*(u(i)*du(i) + grav*deta(i)); 

end 

B.5 fluxes 

function [F, amax0] = fluxes(grav,nf,eta,u,z,dz,deta,du) 

  

%I'm using a 2d solver in 1d, so I'm setting sn=0 and cn=1 

for all cases 

sn=0; 

cn=1; 

vl=0; 

vr=0; 

  

%Left Boundary : model as wall 

hr=eta(1)-0.5*deta(1)-z(1); 

ur=u(1)-0.5*du(1); 

[fdum, amax]=solver(hr,hr,-ur,ur,vl,vr,sn,cn); 

F(1,1)=fdum(1); 

F(1,2)=fdum(2); 
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%Right Boundary : model as wall 

hl=eta(nf-1)+0.5*deta(nf-1)-z(nf); 

ul=u(nf-1)+0.5*du(nf-1); 

[fdum, amax]=solver(hl,hl,ul,-ul,vl,vr,sn,cn); 

F(nf,1)=fdum(1); 

F(nf,2)=fdum(2); 

  

%Other bc options could be used 

%q=12.0; 

%hr=2; 

%F(1,1)=q; 

%F(1,2)=q^2/hr+0.5*grav*hr^2; 

  

%F(nf,1)=hl*ul; 

%F(nf,2)=ul^2*hl+0.5*grav*hl^2; 

  

  

  

amax0=0; 

for i=2:nf-1, %Sweep over faces 

    %Variable reconstruction 

    hl=eta(i-1)+0.5*deta(i-1)-z(i); 

    ul=u(i-1)+0.5*du(i-1); 

    hr=eta(i)-0.5*deta(i)-z(i); 

    ur=u(i)-0.5*du(i); 

    %Call solver 

    [fdum, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn); 

    F(i,1)=fdum(1); 

    F(i,2)=fdum(2); 

    amax0=max([amax0 amax]); %Keep track of max wave speed to 

check CFL 

end 
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 B.6 solver 

function [F, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn) 

  

global grav 

  

%Compute Roe averages 

duml=hl^0.5; 

dumr=hr^0.5; 

cl=(grav*hl)^0.5; 

cr=(grav*hr)^0.5; 

hhat=duml*dumr; 

uhat=(duml*ul + dumr*ur)/(duml+dumr); 

vhat=(duml*vl + dumr*vr)/(duml+dumr); 

chat=(0.5*grav*(hl+hr))^0.5; 

uperp=uhat*cn+vhat*sn; 

dh=hr-hl; 

du=ur-ul; 

dv=vr-vl; 

dupar=-du*sn+dv*cn; 

duperp=du*cn+dv*sn; 

dW=[0.5*(dh-hhat*duperp/chat); hhat*dupar; 

0.5*(dh+hhat*duperp/chat)]; 

  

uperpl=ul*cn+vl*sn; 

uperpr=ur*cn+vr*sn; 

al1=uperpl-cl; 

al3=uperpl+cl; 

ar1=uperpr-cr; 

ar3=uperpr+cr; 

R=[1 0 1; 

    uhat-chat*cn -sn uhat+chat*cn; 

    vhat-chat*sn cn vhat+chat*sn]; 

da1=max([0 2*(ar1-al1)]); 

da3=max([0 2*(ar3-al3)]); 

a1=abs(uperp-chat); 

a2=abs(uperp); 

a3=abs(uperp+chat); 
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%Critical flow fix 

if a1 < da1, 

     a1=0.5*(a1*a1/da1+da1); 

end 

if a3 < da3, 

     a3=0.5*(a3*a3/da3+da3); 

end 

  

%Compute interface flux 

A=diag([a1 a2 a3]); 

FL=[uperpl*hl; ul*uperpl*hl + 0.5*grav*hl*hl*cn; vl*uperpl*hl 

+ 0.5*grav*hl*hl*sn]; 

FR=[uperpr*hr; ur*uperpr*hr + 0.5*grav*hr*hr*cn; vr*uperpr*hr 

+ 0.5*grav*hr*hr*sn]; 

F=0.5*(FL + FR - R*A*dW); 

amax=chat+abs(uperp); 

  

  

 

B.7 corrector 

 

function [uhnew, hnew, 

unew]=corrector(nc,hold,uhold,F,S,dx,dt) 

  

for i=1:nc, 

    hnew(i)=hold(i)-dt/dx*(F(i+1,1)-F(i,1)); 

    uhnew(i)=uhold(i)-dt/dx*(F(i+1,2)-F(i,2))-dt*S(i); 

    unew(i)=uhnew(i)/hnew(i); %update for dry bed cases 

    %Add vfr for dry bed cases to compute eta from h 

end 
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Appendix C – Sanders Dry bed Model 

C.1 FVM1D 

clear 
close all 
format long 

  
global tol_h 

  
%This model adopts a linearly sloping structure for the bed. 

  
nc=100; 
nf=nc+1; 
L=100; 
So=0.01; 
nm=0.0; %Manning n 
dx=L/nc; 
x=0:dx:L; %cell edges 
xc=dx/2:dx:L-dx/2; %cell centers 

  
xo=60; 
etalo=0; 
etaro=0.8; 
ulo=0; 
uro=0; 
grav=9.806; 
beta=6; 
iorder=1; 
tol_h=1.d-4; 
anim_onoff=0; 
save_onoff=1; 
nsave=0; 

  

  

  
z=So*(L-x); 
zc=So*(L-xc); 

  
for i=1:nc, 
    zmin(i)=min([z(i) z(i+1)]); 
    zmax(i)=max([z(i) z(i+1)]); 
    hcrit(i)=0.5*(zmax(i)-zmin(i)); 
    dz(i)=z(i+1)-z(i); 
end 

  
t=0; 
dt=0.05; 
nt=2000; 
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if (anim_onoff == 1), 
    aviobj=avifile('linearz.avi'); 
end 
hf=figure(1) 

  
%Initial Condition 
for i=1:nc, 
    if (xc(i) < xo || xc(i) > 80), 
        eta(i)=etalo; 
        if (eta(i) > zmax(i)), 
            h(i)=eta(i)-zc(i); 
        elseif (eta(i) > zmin(i)); 
            h(i)=0.5*(eta(i)-zmin(i)); 
        else 
            h(i)=0; 
        end 
        if (h(i) > tol_h), 
            u(i)=ulo; 
        else 
            u(i)=0; 
        end 
    else 
        eta(i)=etaro; 
        if (eta(i) > zmax(i)), 
            h(i)=eta(i)-zc(i); 
        elseif (eta(i) > zmin(i)); 
            h(i)=0.5*(eta(i)-zmin(i)); 
        else 
            h(i)=0; 
        end 
        if (h(i) > tol_h), 
            u(i)=ulo; 
        else 
            u(i)=0; 
        end 
    end 
    if eta(i) < zmin(i), 
        eta(i) = zmin(i); 
    end 
    if (h(i) > tol_h), 
        cd(i)=grav*nm*nm/h(i); 
    else 
        cd(i)=0; 
    end 
end 
uh=h.*u; 

  
deta=zeros(size(eta)); 
du=zeros(size(u)); 
duh=zeros(size(uh)); 

  
t1=cputime; 
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%plot initial condition 
subplot(2,1,1) 
plot(xc,zc,xc,eta) 
ylabel('$\eta$ (m)','Interpreter','Latex') 
title('Linear z model') 
axis([0 L 0 1]) 
subplot(2,1,2) 
plot(xc,u) 
xlabel('$x$ (m)','Interpreter','Latex') 
ylabel('$u$ (m/s)','Interpreter','Latex') 
axis([0 L -10 10]) 
pause(0.1) 
if (save_onoff == 1), 
    nsave=nsave+1; 
    usave(:,nsave)=u; 
    etasave(:,nsave)=eta; 
    tsave(nsave)=0; 
end 

     
if (anim_onoff == 1), 
    aviobj=addframe(aviobj,hf); %adds frames to the AVI file 
end 

  
%Begin time loop 
for n=1:nt, 
    %eta = limiter(nc,beta,eta); 
    %if (iorder == 2), 
    %    deta = limiter(nc,beta,eta); 
    %    duh = limiter(nc,beta,uh); 
    %    [etap, hp, up, 

uhp]=predictor(grav,nc,eta,h,uh,deta,duh,zc,dz,dt,dx); 
    %    [F, amax] = fluxes(grav,nf,etap,up,uhp,zc,deta,du,duh); 
    %    S = sourceterm(grav,nc,etap,deta,zc); 
    %else 
        [F, amax] = fluxes(grav,nf,eta,u,uh,z,deta,du,duh); 
        S = -grav*h.*dz; 
    %end; 
    [uh, h, u] = corrector(nc,h,uh,F,S,cd,dx,dt); 
    for i=1:nc, 
        %Compute new free surface height (VFR method) 
        if (h(i) > hcrit(i)), 
            eta(i)=zc(i)+h(i); 
        else 
            eta(i)=zmin(i)+(2*h(i)*(zmax(i)-zmin(i)))^0.5; 
        end 
        %Compute new drag coefficient (for resistance) 
        if (h(i) > tol_h), 
            cd(i)=grav*nm*nm/h(i); 
        else 
            cd(i)=0; 
        end 
    end 
    %e=zc+h+0.5*u.^2/grav; 
    t=t+dt; 
    cr=amax*dt/dx; 
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    fprintf(1,'%g %d %d %d\n',n,cr,h(50),eta(50)) 
    if (cr > 1) 
        break 
    end 
    if (mod(n,20) == 0), 
        ttext=['t=' num2str(t)]; 
        subplot(2,1,1) 
        plot(xc,zc,xc,eta) 
        ylabel('$\eta$ (m)','Interpreter','Latex') 
        title('Linear z model') 
        text(80,0.8,ttext) 
        axis([0 L 0 1]) 
        subplot(2,1,2) 
        plot(xc,u) 
        xlabel('$x$ (m)','Interpreter','Latex') 
        ylabel('$u$ (m/s)','Interpreter','Latex') 
        axis([0 L -1 1]) 
        pause(0.1) 
        if (anim_onoff == 1), 
            aviobj=addframe(aviobj,hf); %adds frames to the AVI file 
        end 
        if (save_onoff == 1), 
            nsave=nsave+1; 
            usave(:,nsave)=u; 
            etasave(:,nsave)=eta; 
            tsave(nsave)=t; 
        end         
    end 
end 

  
if (anim_onoff == 1), 
    aviobj=close(aviobj); %closes the AVI file 
end 
close(hf); %closes the handle to invisible figure  

  
trun=cputime-t1 

  
if (save_onoff == 1), 
    save linearz xc zc etasave usave tsave 
end 

  

  

  

 

C.2 Limiter 

function df = limiter(nc,beta,f) 

  
df(1)=0; 
df(nc)=0; 
for i=2:nc-1, 
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    df1=f(i+1)-f(i); 
    df2=f(i)-f(i-1); 
    df(i)=limit(df1,df2,beta); 
end 

  

C.3 Limit 

function f=limit(d1,d2,beta) 
% 0 = first order, 1-2 = beta, 3= fromm, 4=vanleer, 5=vanalbada, 6=double 
% minmod 

  
if beta==0, %first order 
    f=0; 
elseif beta >= 1 & beta <= 2%beta 
    if(d1*d2 < 0), 
        f=0; 
    else 
        s=sign(d1); 
        a=abs(d1); 
        b=abs(d2); 
        f=s*min(max([a b]),beta*min([a b])); 
    end 
elseif beta == 3 %Fromm 
    f=0.5*(d1+d2); 
elseif beta == 4 %vanleer 
    if(d1*d2 < 0), 
        f=0; 
    else 
        f=2*d1*d1/(d1+d2); 
    end 
elseif beta ==  5 %vanalbada 
     eps=1.e-20; 
     f=(d1*(d2*d2+eps)+d2*(d1*d1+eps))/(d1*d1+d2*d2+2*eps); 
elseif beta == 6 %double minmod 
    if(d1*d2 < 0), 
        f=0; 
    else 
        s=sign(d1); 
        a=abs(d1); 
        b=abs(d2); 
        c=0.5*(a+b); 
        f=s*min([2*a 2*b c]); 
    end 
end 
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C.4 Predictor 

function [etap, hp, up, 

uhp]=predictor(grav,nc,eta,h,uh,deta,duh,zc,dz,dt,dx) 

  
dh=deta-dz; 
for i=1:nc, 
    %etap(i)=eta(i)-0.5*dt/dx*(h(i)*du(i)+u(i)*dh(i)); 
    etap(i)=eta(i)-0.5*dt/dx*duh(i); 
    hp(i)=etap(i)-zc(i); 

     
    %up(i)=u(i)-0.5*dt/dx*(u(i)*du(i) + grav*deta(i)); 
    %uhp(i)=up(i)*hp(i); 

     
    uhp(i)=uh(i)-0.5*dt/dx*(2*uh(i)*duh(i)/h(i) + (grav*h(i)-

uh(i)^2/h(i)^2)*dh(i) + grav*h(i)*dz(i)); 
    up(i)=uhp(i)/hp(i); 
end 

 

C.5 Fluxes 

function [F, amax0] = fluxes(grav,nf,eta,u,uh,z,deta,du,duh) 

  
global tol_h 

  
hr=eta(1)-0.5*deta(1)-z(1); 
if hr < 0, 
    hr=0; 
end 
F(1,1)=0; 
F(1,2)=0.5*grav*hr^2; 

  
hl=eta(nf-1)+0.5*deta(nf-1)-z(nf); 
if hl < 0, 
    hl=0; 
end 
%ul=u(nf-1)+0.5*du(nf-1); 
%ul=(uh(nf-1)+0.5*duh(nf-1))/hl; 
F(nf,1)=0; 
F(nf,2)=0.5*grav*hl^2; 

  
%q=2; 
%hr=2; 
%F(1,1)=q; 
%F(1,2)=q^2/hr+0.5*grav*hr^2; 

  
%F(nf,1)=hl*ul; 
%F(nf,2)=ul^2*hl+0.5*grav*hl^2; 
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sn=0; 
cn=1; 
vl=0; 
vr=0; 

  
amax0=0; 
for i=2:nf-1, 
    hl=eta(i-1)+0.5*deta(i-1)-z(i); 
    if hl > tol_h, 
        ul=(uh(i-1)+0.5*duh(i-1))/hl; 
        if (ul*ul/(grav*hl)) > 1, 
            ul=u(i-1)+0.5*du(i-1); 
        end 
    else 
        hl = max([hl 0]); 
        ul = 0; 
    end 
    hr=eta(i)-0.5*deta(i)-z(i);     
    if hr > tol_h, 
        ur=(uh(i)-0.5*duh(i))/hr; 
        if (ur*ur/(grav*hr)) > 1, 
            ur=u(i)-0.5*du(i); 
        end 
    else 
        hr = max([hr 0]); 
        ur = 0;         
    end 
    if (hl > tol_h || hr > tol_h), 
        [fdum, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn); 
        F(i,1)=fdum(1); 
        F(i,2)=fdum(2); 
        amax0=max([amax0 amax]); 
    else 
        F(i,1)=0; 
        F(i,2)=0; 
    end 
end 

  

  

 

C.6 Solver 

function [F, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn) 
g=9.806; 
duml=hl^0.5; 
dumr=hr^0.5; 
cl=(g*hl)^0.5; 
cr=(g*hr)^0.5; 
hhat=duml*dumr; 
uhat=(duml*ul + dumr*ur)/(duml+dumr); 
vhat=(duml*vl + dumr*vr)/(duml+dumr); 
chat=(0.5*g*(hl+hr))^0.5; 
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uperp=uhat*cn+vhat*sn; 
dh=hr-hl; 
du=ur-ul; 
dv=vr-vl; 
dupar=-du*sn+dv*cn; 
duperp=du*cn+dv*sn; 
dW=[0.5*(dh-hhat*duperp/chat); hhat*dupar; 0.5*(dh+hhat*duperp/chat)]; 

  
uperpl=ul*cn+vl*sn; 
uperpr=ur*cn+vr*sn; 
al1=uperpl-cl; 
al3=uperpl+cl; 
ar1=uperpr-cr; 
ar3=uperpr+cr; 
R=[1 0 1; 
    uhat-chat*cn -sn uhat+chat*cn; 
    vhat-chat*sn cn vhat+chat*sn]; 
da1=max([0 2*(ar1-al1)]); 
da3=max([0 2*(ar3-al3)]); 
a1=abs(uperp-chat); 
a2=abs(uperp); 
a3=abs(uperp+chat); 

  
if a1 < da1, 
     a1=0.5*(a1*a1/da1+da1); 
end 
if a3 < da3, 
     a3=0.5*(a3*a3/da3+da3); 
end 
A=diag([a1 a2 a3]); 
FL=[uperpl*hl; ul*uperpl*hl + 0.5*g*hl*hl*cn; vl*uperpl*hl + 

0.5*g*hl*hl*sn]; 
FR=[uperpr*hr; ur*uperpr*hr + 0.5*g*hr*hr*cn; vr*uperpr*hr + 

0.5*g*hr*hr*sn]; 
F=0.5*(FL + FR - R*A*dW); 
amax=chat+abs(uperp); 
%dU=[hr-hl; ur*hr-ul*hl; vr*hr-vl*hl]; 
%amax1=max([a1 a3]); 
%amax2=abs(uperp)+chat*cn; 
%amax3=abs(uperp)+chat*sn; 
%A=diag([amax1 amax2 amax3]); 
%F=0.5*(FL+FR-A*dU); 
%F=0.5*(FL+FR); 

  

  

  

C.7 Corrector 

function [uhnew, hnew, unew]=corrector(nc,hold,uhold,F,S,cd,dx,dt) 

  
global tol_h 
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for i=1:nc, 
    hnew(i)=hold(i)-dt/dx*(F(i+1,1)-F(i,1)); 
    uhnew(i)=uhold(i)-dt/dx*(F(i+1,2)-F(i,2))+dt*S(i)/dx; 
    if (hnew(i) > tol_h && hold(i) > tol_h), %account for friction 
        uhnew(i)=uhnew(i)/(1+dt*abs(uhold(i))/(hold(i)*hnew(i))); 
    end 
    if (hnew(i) > tol_h ), 
        unew(i)=uhnew(i)/hnew(i); 
    else 
        unew(i)=0; 
    end 
    if (hnew(i) < 0), 
        hnew(i)=0; 
    end 
end 

 

 

C.8 Sourceterm 

function S = sourceterm(grav,nc,eta,deta,z) 

  
for i=1:nc, 
    if z(i)>z(i+1), 
        if eta(i) > z(i), 
            h1=eta(i)-z(i+1); 
            h2=eta(i)-z(i); 
            Sl=0.5*grav*(h1*h1-h2*h2); 
        elseif eta(i) > z(i+1), 
            h1=eta(i)-z(i+1); 
            Sl=0.5*grav*h1*h1; 
        else 
            Sl=0; 
        end 
    else 
        Sl=0; 
    end 
    if z(i+1)>z(i), 
        if eta(i) > z(i+1), 
            h1=etar-z(i); 
            h2=etar-z(i+1); 
            Sr=-0.5*grav*(h1*h1-h2*h2); 
        elseif etar > z(i), 
            h1=etar-z(i); 
            Sr=0.5*grav*h1*h1; 
        else 
            Sr=0; 
        end 
    else 
        Sr=0; 
    end 
    S(i)=Sl+Sr; 
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end 
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Appendix D – Commented code 

D.1 FVM1D 

%FVM1D - FOR WET BED PROBLEMS ONLY 
%by Brett F. Sanders (and pieces of code from Scott F. Bradford) 
% 
%This is a very simple 1D solver of the shallow-water equations 
%that uses the Hancock predictor-corrector time-stepping scheme, 
%the MUSCL method of slope limiting and variable reconstruction 
%and Roe's approximate Riemann solver to compute fluxes. 
% 
%The code is kept as simple as possible to emphasize the basic 
%flow of logic. To account for problems involving a dry bed, 
%one needs to add a number of "if" statements to avoid 
%division by zero. This makes the code pretty messy and 
%therefore these lines have been omitted. 
% 
%Note that the code can either be run in a first order or 
%second order accurate mode. The user can select from  
%several limiters to see how these impact the solution. 
% 
%To run this program, copy all the .m files into a directory 
%and run "fvm1d.m" by either typing "fvm1d" at the matlab 
%command prompt or pushing the execute button in the matlab 
%text editor. 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%------------------Script edited by Adam M Gould USQ------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%--------------------------Initial Setup------------------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
clc 
close all 
format long 

  
global grav 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%   Set up grid   %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
nc=100;             %number of cells 
nf=nc+1;            %number of edges 
L=1000;             %length of channel 
dx=L/nc;            %length of cell 
x=0:dx:L;           %array of edge coordinates 
xc=dx/2:dx:L-dx/2;  %array of cell center coordinates 

  
%%%%%%%%%%%%    Set up time marching and output interval   %%%%%%%%%%%%%% 
dt=0.5;             %time step (s) 
nt=25000;             %number of time steps 
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ntplot=250;          %plot interval (number of time steps) 

  
%%%%%%%%%%%%%     Define bed elevation at faces z=f(x)    %%%%%%%%%%%%%%% 
%z=[2:-.04:0 0:.04:2] 
%z=zeros(size(x));   %flat bed - can enter own function here, z=f(x) 
So=1/1000; 
z=So*(L-x); 
%%%%%%%%%%%%%%            Compute bed slope            %%%%%%%%%%%%%%%%%% 

  

  
for i=1:nc,             %for cell 1 through to number of cells 
    dz(i)=z(i+1)-z(i);  %dimensions of length 
    zc(i)=0.5d0*(z(i+1)+z(i)); %elevation of cell center 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
%-----------------------Set parameter values-----------------------------

-% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
grav=9.806; 

  
%%%%%%--------------------Set attributes of solver------------------

%%%%%%% 

  
iorder=2;           %1=first order scheme, 2=second order scheme 
beta=2;             %controls limiter used by model 
                    %Notes on limiters 
                    %beta=1 => Minmod 
                    %beta=2 => Superbee 
                    %beta=3 => Fromm scheme, predicts oscillations at  
                            %sharp fronts 
                    %beta=4 => Van Leer 
                    %beta=5 => Van Albada 
                    %beta=6 => Double Minmod 
xo=L/2;                 %position along channel where wave starts 
etalo=2;               %height on left hand side of the wave 
etaro=1.5;                %height on right hand side of the wave 
ulo=1;                  %initial velocity left side of wave (U/S) 
uro=1;                  %initial velocity right side of wave (D/S) 

  

  
for i=1:nc, 
    if (xc(i) < xo),            %%If cell is before wave then 
        eta(i)=etalo;           %%height from datum = initial height left  
                                %%of wave 
        h(i)=eta(i)-zc(i);      %%height of water = initial height from  
                                %%datum - height of bed 
        u(i)=ulo;               %%velocity = velocity of left side of 

wave 
    else                        %%if cell is after wave then 
        eta(i)=etaro;           %%height from datum = initial height on  
                                %%right side of wave 
        h(i)=eta(i)-zc(i);      %%height of water = initial height from  
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                                %%datum - height of bed 
        u(i)=uro;               %%velocity = velocity of right side of 

wave 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%----Initialize arrays---%%%%%%%%%%%%%%%%%%%%%%%%% 
uh=h.*u;                  %%height of water * velocity ????flow rate 

matrix 

  
deta=zeros(size(eta));    %%Initialize change in height from datum 
du=zeros(size(u));        %%Initialize change in velocity 

  
t=0; %start time 

  
for n=1:nt, %Begin time-marching loop 
    if (iorder == 2), %for second order accuracy only 
        deta = limiter(nc,beta,eta); 
        du = limiter(nc,beta,u); 
                                %%we now have found the  
                                    %%difference in velocity and  
                                    %%difference in 
                                    %%height at the current moment in 

time 
        [etap, up]=predictor(nc,eta,h,u,deta,du,dz,zc,dt,dx); 
                                %%we now have height and velocity 
                                    %%at t+(1/2dt) 
        hp=etap-zc; %Update for dry bed cases    
        S = grav*hp.*dz/dx; %Source term treatment 
        [F, amax] = fluxes(grav,nf,etap,up,z,dz,deta,du); %Compute fluxes 
                                %%these fluxes are the momentum and mass 
                                %%fluxes at each cell interface 

         
    else 
        [F, amax] = fluxes(grav,nf,eta,u,z,dz,deta,du); 
        S = grav*h.*dz/dx; %Source term treatment 
    end 
    [uh, h, u] = corrector(nc,h,uh,F,S,dx,dt); 
    eta=h+zc; %compute new free surface height 
    e=eta+0.5*u.^2/grav; %compute energy in units of length (head) 
    t=t+dt; 
  %%%%%%%%%%%------------Check the courant number-----------%%%%%%%%%%%%% 
    cr=amax*dt/dx; %compute Courant number 
    fprintf(1,'%g %d\n',n,cr) 

     
    if (cr > 1) %Stops program if Courant number exceeds one. 
        break 
    end 

     
  %%%%%%%%%%%%%%---------------plotting loop---------------%%%%%%%%%%%%%% 

     
    if (mod(n,ntplot) == 0), 
        figure('Position',get(0,'ScreenSize')) 
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        subplot(3,1,1) 
        plot(xc,e,'r-',xc,h+zc,'b-',xc,zc,'k-') 
        axis([0 L 0 5]) 
        legend('Energy','Free Surface','Bed') 
        subplot(3,1,2) 
        plot(xc,u,'b-') 
        axis([0 L -2 10])  
        legend('Velocity') 
        subplot(3,1,3) 
        plot(x,F(:,1),'b-') 
        axis([0 L -5 10])  
        legend('Discharge')  
        pause(0.005) 
        saveas(gcf, num2str(n), 'bmp') 
    end 
end 

 

D.2 limiter 

function df = limiter(nc,beta,f)  %%deta or du = (nc,beta,eta) or 

(nc,beta,u) 

  
df(1)=0;        %% Ghost cell boundary condition 
df(nc)=0;       %% Ghost cell boundary condition 
for i=2:nc-1,   %%for rest of cells 
    df1=f(i+1)-f(i);        %%forward difference 
    df2=f(i)-f(i-1);        %%backwards difference 
    df(i)=limit(df1,df2,beta);      %%Call limit function 
end 

  

 

 

 

D.3 limit 

%%Only really concerned with beta = 2 
function f=limit(d1,d2,beta)                        
% 
% 0 = first order, 1-2 = beta, 3= fromm, 4=vanleer, 5=vanalbada, 6=double 
% minmod 

  
if beta==0, %first order 
    f=0; 
elseif beta >= 1 & beta <= 2%beta: minmod (beta=1) and superbee (beta=2) 
    if(d1*d2 < 0), 
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        f=0; 
    else 
        s=sign(d1);                                  
        %%sign means>0=1 0=0 <0=-1 
        a=abs(d1);                                   
        %%absolute values 
        b=abs(d2);                                   
        %%absolute values 
        f=s*min(max([a b]),beta*min([a b]));         
        %%where f = df which is deta or du                                             
        %%df = sign(forward                                           
        %%diff)*the min of(max(forward diff, back diff), 
        %beta*min(foward diff,back diff)) 
    end 
elseif beta == 3 %Fromm 
    f=0.5*(d1+d2); 
elseif beta == 4 %vanleer 
    if(d1*d2 <= 0), 
        f=0; 
    else 
        f=2*d1*d2/(d1+d2); 
    end 
elseif beta ==  5 %vanalbada 
     eps=1.e-20; 
     f=(d1*(d2*d2+eps)+d2*(d1*d1+eps))/(d1*d1+d2*d2+2*eps); 
elseif beta == 6 %double minmod 
    if(d1*d2 < 0), 
        f=0; 
    else 
        s=sign(d1); 
        a=abs(d1); 
        b=abs(d2); 
        c=0.5*(a+b); 
        f=s*min([2*a 2*b c]); 
    end 
end 

  

 

 

 

D.4 predictor 

%%The prediction step is used to predict future velocity and future 

height 
%the future is dt/2 or in this case .25 of a second 
%%This is know as the Hancock's method described on pg323 of  
%%high resolution and non-oscillatory 
%%note these equations are eq12(A) and eq13(v)without friction and 

bedslope 
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%%terms 
function [etap, up]=predictor(nc,eta,h,u,deta,du,dz,zc,dt,dx); 

  
global grav 

  
dh=deta-dz; 
for i=1:nc, 
    etap(i)=eta(i)-0.5*dt/dx*(h(i)*du(i)+u(i)*dh(i));       

%%eq12(refered above) 
    up(i)=u(i)-0.5*dt/dx*(u(i)*du(i) + grav*deta(i));       %%eq13 

without bedslope or friction terms 
end 

 

D.5 fluxes 

function [F, amax0] = fluxes(grav,nf,eta,u,z,dz,deta,du) 

  
%I'm using a 2d solver in 1d, so I'm setting sn=0 and cn=1 for all cases 

  
sn=0; 
cn=1; 
vl=0;           %%%these are zero because 1D solver 
vr=0;           %%%These are zero because 1D solver 
q=2; 

  
%Left Boundary 
hr=eta(1)-0.5*deta(1)-z(1);         %%eq18 pg324 
ur=u(1)-0.5*du(1);                  %%eq19 pg324 
[fdum, amax]=solver(hr,hr,-ur,ur,vl,vr,sn,cn); 

  
F(1,1)=q;               %% inflow boundary 
F(1,2)=q^2/hr+0.5*grav*hr^2;            %%momentum boundary 

  

  
%Right Boundary 
hl=eta(nf-1)+0.5*deta(nf-1)-z(nf);  %%eq18 pg324 
ul=u(nf-1)+0.5*du(nf-1);            %%eq19 pg324 
[fdum, amax]=solver(hl,hl,ul,-ul,vl,vr,sn,cn); 
F(nf,1)=hl*ul;                      %%boundary flow rate 
F(nf,2)=ul^2*hl+0.5*grav*hl^2;      %%boundary momentum 

  

  

  
amax0=0; 
%%Same as above repeated for internal cells 
for i=2:nf-1, %Sweep over faces 
    %Variable reconstruction 
    hl=eta(i-1)+0.5*deta(i-1)-z(i); 
    ul=u(i-1)+0.5*du(i-1); 
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    hr=eta(i)-0.5*deta(i)-z(i); 
    ur=u(i)-0.5*du(i); 
    %Call solver 
    [fdum, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn); 
    F(i,1)=fdum(1); 
    F(i,2)=fdum(2); 
    amax0=max([amax0 amax]); %Keep track of max wave speed to check CFL 
end 

 

D.6 solver 

%%fluxes are calculated as described within pg290 and 291 of Finite 

volume 
%%model for shallow water flooding of arbitrary topography 

  
function [F, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn) 

  
global grav 

  
%Compute Roe averages 
duml=hl^0.5; 
dumr=hr^0.5; 
cl=(grav*hl)^0.5; 
cr=(grav*hr)^0.5; 
hhat=duml*dumr; 
uhat=(duml*ul + dumr*ur)/(duml+dumr); 
vhat=(duml*vl + dumr*vr)/(duml+dumr); 
chat=(0.5*grav*(hl+hr))^0.5; 
uperp=uhat*cn+vhat*sn; 
dh=hr-hl; 
du=ur-ul; 
dv=vr-vl; 
dupar=-du*sn+dv*cn; 
duperp=du*cn+dv*sn; 
dW=[0.5*(dh-hhat*duperp/chat); hhat*dupar; 0.5*(dh+hhat*duperp/chat)];      

%%eq12 

  
uperpl=ul*cn+vl*sn; 
uperpr=ur*cn+vr*sn; 
al1=uperpl-cl; 
al3=uperpl+cl; 
ar1=uperpr-cr; 
ar3=uperpr+cr; 
R=[1 0 1;                                                                   

%%eq11 
    uhat-chat*cn -sn uhat+chat*cn; 
    vhat-chat*sn cn vhat+chat*sn]; 
da1=max([0 2*(ar1-al1)]); 
da3=max([0 2*(ar3-al3)]); 
a1=abs(uperp-chat); 
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a2=abs(uperp); 
a3=abs(uperp+chat); 

  
%Critical flow fix 
if a1 < da1, 
     a1=0.5*(a1*a1/da1+da1); 
end 
if a3 < da3, 
     a3=0.5*(a3*a3/da3+da3); 
end 

  
%Compute interface flux 
A=diag([a1 a2 a3]);                                                         

%%eq9 
FL=[uperpl*hl; ul*uperpl*hl + 0.5*grav*hl*hl*cn; vl*uperpl*hl + 

0.5*grav*hl*hl*sn];%%eq7 
FR=[uperpr*hr; ur*uperpr*hr + 0.5*grav*hr*hr*cn; vr*uperpr*hr + 

0.5*grav*hr*hr*sn];%%eq7 
F=0.5*(FL + FR - R*A*dW);                                                          

%%eq8 
amax=chat+abs(uperp);                                                              

%%just below eq9 

  

  

D.7 corrector 

function [uhnew, hnew, unew]=corrector(nc,hold,uhold,F,S,dx,dt) 

  
for i=1:nc, 
    hnew(i)=hold(i)-dt/dx*(F(i+1,1)-F(i,1));%%Unsure where 
    uhnew(i)=uhold(i)-dt/dx*(F(i+1,2)-F(i,2))-dt*S(i);%%eq9 of high res 

and non-osc or eq36 for dry bed 
    unew(i)=uhnew(i)/hnew(i); %update for dry bed cases 
    %Add vfr for dry bed cases to compute eta from h 
end 
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Appendix E – End Product 

E.1 FVM1D 

%FVM1D - FOR WET BED PROBLEMS ONLY 
%by Brett F. Sanders (and pieces of code from Scott F. Bradford) 
% 
%This is a very simple 1D solver of the shallow-water equations 
%that uses the Hancock predictor-corrector time-stepping scheme, 
%the MUSCL method of slope limiting and variable reconstruction 
%and Roe's approximate Riemann solver to compute fluxes. 
% 
%The code is kept as simple as possible to emphasize the basic 
%flow of logic. To account for problems involving a dry bed, 
%one needs to add a number of "if" statements to avoid 
%division by zero. This makes the code pretty messy and 
%therefore these lines have been omitted. 
% 
%Note that the code can either be run in a first order or 
%second order accurate mode. The user can select from  
%several limiters to see how these impact the solution. 
% 
%To run this program, copy all the .m files into a directory 
%and run "fvm1d.m" by either typing "fvm1d" at the matlab 
%command prompt or pushing the execute button in the matlab 
%text editor. 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%------------------Script edited by Adam M Gould USQ------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%--------------------------Initial Setup------------------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
clc 
close all 
format long 

  
global grav 
global tol_h 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%   Set up grid   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
nc=200;             %number of cells 
nf=nc+1;            %number of edges 
L=1000;             %length of channel 
dx=L/nc;            %length of cell 
x=0:dx:L;           %array of edge coordinates 
xc=dx/2:dx:L-dx/2;  %array of cell center coordinates 
nm=0.2;            %Manning n 
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    %can include bed slope So 
%%%%%%%%%%%%    Set up time marching and output interval   %%%%%%%%%%%%%% 

  
dt=0.05;             %time step (s) 
nt=2000000;             %number of time steps 
ntplot=5000;          %plot interval (number of time steps) 
So=2/1000; 

  
%%%%%%%%%%%%%     Define bed elevation at faces z=f(x)    %%%%%%%%%%%%%%% 
    %if using So t need this section 
%z=[2:-.04:0 0:.04:2] 
%z=zeros(size(x));   %flat bed - can enter own function here, z=f(x) 
z=So*(L-x); 
%zc=So*(L-xc); 
%%%%%%%%%%%%%%            Compute bed slope            %%%%%%%%%%%%%%%%%% 
%j = jth cell 
for j=1:nc, 

     
    zc(j)=0.5d0*(z(j+1)+z(j));  %elevation of cell center 

     
    zmin(j)=min([z(j) z(j+1)]);%lowest point in the cell 
    zmax(j)=max([z(j) z(j+1)]);%highest point in the cell 
    hcrit(j)=0.5*(zmax(j)-zmin(j)); 
    dz(j)=z(j+1)-z(j);%change in elavation at the cell 
    %So=dz/dx; 

     
end 

  
% for i=1:nc,                     %for cell 1 through to number of cells 
%     dz(i)=z(i+1)-z(i);          %dimensions of length 
%     zc(i)=0.5d0*(z(i+1)+z(i));  %elevation of cell center 
% end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%----------------------Set parameter values-----------------------------% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
grav=9.806; 
tol_h=1.d-4; %height to define whether cell is wet or dry 
%%%%%--------------------Set attributes of solver------------------%%%%%% 

  
iorder=2;           %1=first order scheme, 2=second order scheme 
beta=6;             %controls limiter used by model 
                    %Notes on limiters 
                    %beta=1 => Minmod 
                    %beta=2 => Superbee 
                    %beta=3 => Fromm scheme, predicts oscillations at  
                            %sharp fronts 
                    %beta=4 => Van Leer 
                    %beta=5 => Van Albada 
                    %beta=6 => Double Minmod 
xo=L/20;                 %position along channel where wave starts 
etalo=.2;               %height on left hand side of the wave 
etaro=-3;                %height on right hand side of the wave 
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ulo=.1;                  %initial velocity left side of wave (U/S) 
uro=.1;                  %initial velocity right side of wave (D/S) 

  

  
for j=1:nc, 

     
    if (xc(j) < xo),            %%If cell is before wave then 
        %eta(j)=etalo;           %%height from datum = initial height 

left  
                                %%of wave 
        eta(j)=etalo+zc(j);  
        if (eta(j) > zmax(j)),  %%if height from datum is higher 
                                %%than the highest bed elevation                         
            h(j)=eta(j)-zc(j);      %%height of water = initial height 

from  
                                %%datum - height of bed 
        elseif (eta(j) > zmin(j));%if height from datum is smaller than 
                                    %%highest cell point but bigger than  
                                    %%the lowest cell point 
         h(j)=0.5*(eta(j)-zmin(j));%h = 1/2 height of water from datum 
                                        %%- bed elevation    
         else 
            h(j)=0; %else water = 0 
        end 
        if (h(j) > tol_h), %if water height is bigger than threshold  
            u(j)=ulo;%%velocity = velocity of left side of wave 
        else  
            u(j)=0;%if not velocity is zero 
            h(j)=0; 
        end     
    else                        %%if cell is after wave then 
        eta(j)=etaro;           %%height from datum = initial height on  
         if (eta(j)-zc(j))<0; 
             eta(j)=zc(j); 
             h(j)=0; 
         end 
                                %%right side of wave 
        if (eta(j) > zmax(j)),  %%if height from datum is higher than  
                                %%the highest bed elevation 
            h(j)=eta(j)-zc(j);  %%height of water = initial height from  
                                %%datum - height of bed                         
        elseif ((eta(j)-zc(j)) > 0);%zmin(j));%if height  
                                    %from datum is smaller than 
                                    %%highest cell point but bigger than  
                                    %%the lowest cell point 
            h(j)=0.5*(eta(j)-zmin(j));%h = 1/2 height of water from datum 
                                        %- bed elevation 
        else 
            h(j)=0;              %%if not water height is zero 
        end 
        if (h(j) > tol_h),   %if water height is bigger than threshold 
            u(j)=ulo;%%velocity = velocity of left side of wave%I believe 
                     %%this should be u(i)=uro; 
        else 
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            u(j)=0; 
            h(j)=0;%if not water height is zero 
        end 
    end 
    if eta(j) < zmin(j), %if water height from datum is smaller than the  
        eta(j) = zmin(j);   %%bed height there is no water at this point 
                            %%and eta=bed height 

         
    end 

  
end 

 
%%%%%%%%%%%%%%%%%%%%%%%----Initialize arrays----%%%%%%%%%%%%%%%%%%%%%%%%% 
uh=h.*u;                  %%height of water * velocity ????flow rate 

matrix 

  
deta=zeros(size(eta));    %%Initialize change in height from datum 
du=zeros(size(u));        %%Initialize change in velocity 
dh=zeros(size(h)); 
duh=zeros(size(uh)); 
t=0; %start time 

  
for i=1:nt, %Begin time-marching loop 
    if (iorder == 2), %for second order accuracy only 

   
        deta = limiter(nc,beta,eta,h,tol_h); 
        du = limiter(nc,beta,u,h,tol_h); 
                                %%we now have found the  
                                    %%difference in velocity and  
                                    %%difference in 
                                    %%height at the current moment in 

time 

  
        [etap, hp, up, Uhp, Sfnew]=predictor_d... 
            (nc,eta,h,uh,deta,du,dz,zc,dt,dx,nm,So,u); 
                                %%we now have height and velocity 
                                    %%at t+(1/2dt) 

  

         
        [F, amax, Hplot] = fluxes_d... 
            (grav,nf,etap,up,Uhp,z,deta,du,duh,dz,zc); %Compute fluxes 
                                %%these fluxes are the momentum and mass 
                                %%fluxes at each cell interface 

  
    else 

         
        [F, amax, Hplot] = 

fluxes_d(grav,nf,eta,u,uh,z,deta,du,duh,dz,zc); 
    end 
    [uh, h, u] = corrector_d(nc,h,uh,F,S,dx,dt,So,nm,h,u); 
    eta=h+zc; %compute new free surface height 
    e=eta+0.5*u.^2/grav; %compute energy in units of length (head) 
    t=t+dt; 
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    %%%%%%%%%%------------Check the courant number-----------%%%%%%%%%%%% 

  
    cr=amax*dt/dx; %compute Courant number 
    fprintf(1,'%g %d\n',i,cr) 

     
    if (cr > 1) %Stops program if Courant number exceeds one. 
        break 
    end 

     
    %%%%%%%%%%%%%---------------plotting loop---------------%%%%%%%%%%%%% 
    if (mod(i,ntplot) == 0), 
        hold on 
        figure('Position',get(0,'ScreenSize')) 
        subplot(3,1,1) 
        plot(xc,e,'r-',xc,h+zc,'b-',xc,zc,'k-') 
        ylabel('$\eta$ (m)','Interpreter','Latex') 
        axis([0 L -2 10]) 
        legend('Energy','Free Surface','Bed') 
        subplot(3,1,2) 
        plot(xc,u,'b-') 
        xlabel('$x$ (m)','Interpreter','Latex') 
        ylabel('$u$ (m/s)','Interpreter','Latex') 
        axis([0 L -5 10])  
        legend('Velocity') 
        subplot(3,1,3) 
        plot(xc,uh,'b-') 
        xlabel('$x$ (m)','Interpreter','Latex') 
        ylabel('q (m^3/s)') 
        axis([0 L -2 10])  
        legend('Discharge')  
        %pause(0.005) 
        saveas(gcf, num2str(t), 'bmp') 
        close 
    end 

     
end 

 

 

E.2 limiter 

function df = limiter(nc,beta,f,h,tol_h)  %%deta or du = (nc,beta,eta) or 

(nc,beta,u) 

  
df(nc)=f(nc)-f(nc-1);   %%Ghost cell boundary Extrapolation 

  
df(1)=f(2)-f(1);        %%Ghost cell boundary extrapolations 

  
for i=2:nc-1,   %%for rest of cells 
    df1=f(i+1)-f(i);        %%forward difference 
    df2=f(i)-f(i-1);        %%backwards difference 
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    df(i)=limit(df1,df2,beta);      %%Call limit function 
end 

  

 

 

 

E.3 limit 

%%Only really concerned with beta = 2 
function f=limit(d1,d2,beta)                        
% 
% 0 = first order, 1-2 = beta, 3= fromm, 4=vanleer, 5=vanalbada, 6=double 
% minmod 

  
if beta==0, %first order 
    f=0; 
elseif beta >= 1 & beta <= 2%beta: minmod (beta=1) and superbee (beta=2) 
    if(d1*d2 < 0), 
        f=0; 
    else 
        s=sign(d1);                                  
        %%sign means>0=1 0=0 <0=-1 
        a=abs(d1);                                   
        %%absolute values 
        b=abs(d2);                                   
        %%absolute values 
        f=s*min(max([a b]),beta*min([a b]));         
        %%where f = df which is deta or du                                             
        %%df = sign(forward                                           
        %%diff)*the min of(max(forward diff, back diff), 
        %beta*min(foward diff,back diff)) 
    end 
elseif beta == 3 %Fromm 
    f=0.5*(d1+d2); 
elseif beta == 4 %vanleer 
    if(d1*d2 <= 0), 
        f=0; 
    else 
        f=2*d1*d2/(d1+d2); 
    end 
elseif beta ==  5 %vanalbada 
     eps=1.e-20; 
     f=(d1*(d2*d2+eps)+d2*(d1*d1+eps))/(d1*d1+d2*d2+2*eps); 
elseif beta == 6 %double minmod 
    if(d1*d2 < 0), 
        f=0; 
    else 
        s=sign(d1); 
        a=abs(d1); 
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        b=abs(d2); 
        c=0.5*(a+b); 
        f=s*min([2*a 2*b c]); 
    end 
end 

  

 

E.4 predictor 

%%The prediction step is used to predict future velocity and future 

height 
%the future is dt/2 
%%This is know as the Hancock's method described on pg323 of  
%%high resolution and non-oscillatory 
%%note these equations are eq12(A) and eq13(v)without friction and 

bedslope 
%%terms 
function [etap, hp, up, Uhp,Sfnew]=predictor_d... 
    (nc,eta,h,Uh,deta,dU,dz,zc,dt,dx,nm,So,u); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%----------------------Variable Declaration---------------------------%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
b=2;%width of rectangular channel 
global grav 
global tol_h 

  
dh=deta-dz; 

  
a=1; 
Sfnew=zeros(nc,1);   

  
for a = 1:10; 

  
for j=1:1:nc, 

     
etap(j)=eta(j)-0.5*dt/dx*dU(j); %find the eta at t+1/2 
hp(j)=etap(j)-zc(j);%find the height at t+1/2 

  

  
%Sfold 
 if (h(j) > tol_h),%if water height is bigger than threshold 
     A(j)=h(j)*b;%Area for rectangle 
     P(j)=h(j)*2+b;%Perimeter for rectangle 
     R(j)=A(j)/P(j);% Hydraulic radius 
       Sfold(j)=nm*nm*u(j)*abs(u(j))/((R(j))^(4/3));%sf at current time 
       %than g*(manning n)^2 /h(at cell j) 
 else%if dry 
        Sfold(j)=0; %if not water height is zero 
        h(j)=0; 
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        A(j)=0; 
        P(j)=0; 
        R(j)=0; 
 end 

  
%find Velocity @ t+1/2 

  
U_temp(j)=u(j)-((0.5*dt/dx)*((grav*dh(j))-(u(j)*dU(j))))... 
    + (0.5*grav*dt*(So-(0.5*Sfold(j))-(0.5*Sfnew(j)))); 

  
if (hp(j) > tol_h),%if water height is bigger than threshold 
     Ap(j)=hp(j)*b; 
     Pp(j)=hp(j)*2+b; 
     Rp(j)=Ap(j)/Pp(j); 
       Sfnew(j)=(nm*nm*U_temp(j)*abs(U_temp(j)))/((Rp(j))^(4/3)); 
       %than g*(manning n)^2 /h(at cell j) 

  
 else 
        Snew(j)=0; %if not water height is zero 
        hp(j)=0; 
        Ap(j)=0; 
        Pp(j)=0; 
        Rp(j)=0; 
 end 

  

  
%refind velocity at t+1/2 

  
up(j)=u(j)-(0.5*dt/dx)*(grav*dh(j)-u(j)*dU(j))... 
    + 0.5*grav*dt*(So-(0.5*Sfold(j))-(0.5*Sfnew(j))); 
Uhp(j)=up(j)*hp(j);%flow rate 

  
if (hp(j) < tol_h),%if water height is smaller than threshold 
       up(j)=0; 
       Uhp(j)=0; 
    end 
end 

  
 a=a+1; 

  
end 

  

 

 

E.5 fluxes 

 
function [F, amax0,Hplot] = 

fluxes_d(grav,nf,eta,u,uh,z,deta,du,duh,dz,zc) 
global tol_h %dry bed threshhold 
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%I'm using a 2d solver in 1d, so I'm setting sn=0 and cn=1 for all cases 

  
sn=0; 
cn=1; 
vl=0;           %%%these are zero because 1D solver 
vr=0;           %%%These are zero because 1D solver 

  
q=0.05;     %flow rate 

  
hr=eta(1)-0.5*deta(1)-(z(1)); %extrapolation for the ghost cell 
if hr < tol_h,  %if height is under tol_h set to 0. 
    hr=0; 
end 

  

  
F(1,1)=q; %mass flux 
F(1,2)=q^2/hr+0.5*grav*hr^2; %momentum Flux 
        %%eq18 pg324 
%Right Boundary : model as wall 
hl=eta(nf-1)+0.5*deta(nf-1)-z(nf); %extrapolation for the ghost cell 
if hl < tol_h,%if height is under tol_h set to 0. 
    hl=0; 
end 
ul=u(nf-1)+0.5*du(nf-1); %extrapolation for the ghost cell 
[fdum, amax]=solver(hl,hl,ul,-ul,vl,vr,sn,cn); %solid wall boundary 
F(nf,1)=fdum(1); 
F(nf,2)=fdum(2); 

  
% ul=((u(nf-1))+0.5*du(nf-1));  Free flowing boundary conditions 
% F(nf,1)=hl*ul; 
% F(nf,2)=ul^2*hl+0.5*grav*hl^2; 

  
amax0=0; 
%same as above just for every internal cell 
for i=2:nf-1, 

  
hl=eta(i-1)+0.5*deta(i-1)-(z(i)); 
    if hl < tol_h, %if calculated h is below tol it is set to 0 
    hl=0; 
    end 
    if hl > tol_h,  
        ul=(uh(i-1)+0.5*duh(i-1))/hl; %find subcritical velocity for cell  
                                        %with atleast hl wet 
        if (ul*ul/(grav*hl)) > 1,       %Froude number 
            ul=u(i-1)+0.5*du(i-1);      %Super critical 
        end 
    else 
        hl = max([hl 0]); 
        ul = 0; 
    end 
    hr=eta(i)-0.5*deta(i)-(z(i));     
    if hr < tol_h,%if calculated h is below tol it is set to 0 
    hr=0; 
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    end 
    if hr > tol_h, 
        ur=(uh(i)-0.5*duh(i))/hr;%find subcritical velocity for cell  
                                        %with atleast hr wet 
        if (ur*ur/(grav*hr)) > 1, %Froude number 
            ur=u(i)-0.5*du(i);      %Super critical 
        end 
    else 
        hr = max([hr 0]); 
        ur = 0;         
    end 
    if (hl > tol_h || hr > tol_h),  %If the water is above both call 

solver 
        [fdum, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn);%find fluxes 
        F(i,1)=fdum(1);%Mass Flux 
        F(i,2)=fdum(2);%Momentum flux 
        amax0=max([amax0 amax]); 
    else 
        F(i,1)=0;%Dry Bed 
        F(i,2)=0;%Dry Bed 
    end 

     
end 

 

E.6 solver 

%%fluxes are calculated as described within pg290 and 291 of Finite 

volume 
%%model for shallow water flooding of arbitrary topography 

  
function [F, amax]=solver(hl,hr,ul,ur,vl,vr,sn,cn) 

  
global grav 

  
%Compute Roe averages 
%the majority of this code is used to set up variables to simplify the 

end 
%equations that documented below 
duml=hl^0.5; 
dumr=hr^0.5; 
cl=(grav*hl)^0.5; 
cr=(grav*hr)^0.5; 
hhat=duml*dumr; 
uhat=(duml*ul + dumr*ur)/(duml+dumr); 

  
vhat=(duml*vl + dumr*vr)/(duml+dumr); 
chat=(0.5*grav*(hl+hr))^0.5; 
uperp=uhat*cn+vhat*sn; 
dh=hr-hl; 
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du=ur-ul; 
dv=vr-vl; 
dupar=-du*sn+dv*cn; 
duperp=du*cn+dv*sn; 
dW=[0.5*(dh-hhat*duperp/chat); hhat*dupar; 0.5*(dh+hhat*duperp/chat)];      
%%eq12 

  
uperpl=ul*cn+vl*sn; 
uperpr=ur*cn+vr*sn; 
al1=uperpl-cl; 
al3=uperpl+cl; 
ar1=uperpr-cr; 
ar3=uperpr+cr; 
R=[1 0 1;                                                                    
    uhat-chat*cn -sn uhat+chat*cn; 
    vhat-chat*sn cn vhat+chat*sn]; 
%%eq11 
da1=max([0 2*(ar1-al1)]); 
da3=max([0 2*(ar3-al3)]); 
a1=abs(uperp-chat); 
a2=abs(uperp); 
a3=abs(uperp+chat); 

  
%Critical flow fix 
if a1 < da1, 
     a1=0.5*(a1*a1/da1+da1); 
end 
if a3 < da3, 
     a3=0.5*(a3*a3/da3+da3); 
end 

  
%Compute interface flux 
A=diag([a1 a2 a3]);                                                          
%%eq9 
FL=[uperpl*hl; ul*uperpl*hl + 0.5*grav*hl*hl*cn;... 
    vl*uperpl*hl + 0.5*grav*hl*hl*sn]; 
%%eq7 
FR=[uperpr*hr; ur*uperpr*hr + 0.5*grav*hr*hr*cn;... 
    vr*uperpr*hr + 0.5*grav*hr*hr*sn]; 
%%eq7 
F=0.5*(FL + FR - R*A*dW);                                                           
%%eq8 
amax=chat+abs(uperp);                                                               
%%just below eq9 

  

  

  

  

E.7 corrector 

function [uhnew, hnew, unew]=corrector_d... 
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    (nc,hold,uhold,F,dx,dt,So,nm,h,uold) 
%%$----------------------Variable Declaration--------------------------%% 
b=2;%channel width 
global tol_h 
global grav 
%%$--------------------------------------------------------------------%% 
a=0; 
Sfnew=zeros(50); 
for a = 1:10 

  
for i=1:1:nc, 
     hnew(i)=hold(i)-dt/dx*(F(i+1,1)-F(i,1));%determine new height at t+1 
     Anew(i)=hnew(i)*b;%Area 
     if hnew(i)<tol_h%dry bed check 
         hnew(i)=0; 
         Anew(i)=0; 
     end 

  
%find Friction 
%Sfold 
if (hold(i) > tol_h),%if water height is bigger than threshold 
     Aold(i)=hold(i)*b;%find area 
     P(i)=hold(i)*2+b;%find perimeter 
     Rold(i)=Aold(i)/P(i);%find hydraulic radius 
       Sfold(i)=nm*nm*uold(i)*abs(uold(i))/((Rold(i))^(4/3)); 
       %than g*(manning n)^2 /h(at cell j) 
    else 
        Sfold(i)=0; %if not water height is zero 
        hold(i)=0; 
        Aold(i)=0; 
        P(i)=0; 
        Rold(i)=0; 
 end 

  
 F_=F(i+1,2)-F(i,2); 
         u_temp(i)=uold(i)-(dt/(2*dx)*(F_))+dt... 
             /2*(grav*Aold(i)*(So-Sfold(i))+ grav*Anew(i)*(So-Sfnew(i))); 

         
%find friction 
%Sfnew 
if (hnew(i) > tol_h),%if water height is bigger than threshold 
     Anew(i)=hnew(i)*b; 
     Pc(i)=hnew(i)*2+b; 
     Rnew(i)=Anew(i)/Pc(i); 
       Sfnew(i)=nm*nm*u_temp(i)*abs(u_temp(i))... 
           /((Rnew(i))^(4/3));%than g*(manning n)^2 /h(at cell j) 
    else 
        Sfold(i)=0; %if not water height is zero 
        hnew(i)=0; 
        Anew(i)=0; 
        Pc(i)=0; 
        Rnew(i)=0; 
 end 
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%refind velocity at t+1/2 with friction 
F_=F(i+1,2)-F(i,2); 
%Find U at the next time step 
unew(i)=uold(i)-((dt/(2*dx))*(F_))+dt... 
    /2*(grav*Aold(i)*(So-Sfold(i))+ grav*Anew(i)*(So-Sfnew(i))); 

  
uhnew(i)=unew(i)*hnew(i);%flow rate 

  
if hnew(i)<tol_h%dry bed check 
         uhnew(i)=0; 
         unew(i)=0; 
         hnew(i)=0; 
end 
end 
 a = a+1; 
end 

  

 

 

E.8 Dry Bed Tests 

Initial Conditions 

Run 

No. 

So n dt dx q hl ul hr ur  Result 

1 0.002 0.02 0.2 200 2 0.2 0.1 -3 0.1 1
-10 

Fail 

2 0.002 0.02 0.2 200 2 .2 .1 -3 .1 1
-9

 Fail 

3 0.002 0.02 0.2 200 2 .2 .1 -3 .1 1
-8

 Fail 

4 0.002 0.02 0.2 200 2 .2 .1 -3 .1 1
-7

 Fail 

5 0.002 0.02 0.2 200 2 .2 .1 -3 .1 1
-6

 Fail 

6 0.002 0.02 0.005 1000 2 .2 .1 -3 .1 1
-6

 Pass -  
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7 0.002 0.02 0.025 1000 2 .2 .1 -3 .1 1
-6

 Pass 

8 0.002 0.02 0.02 1000 2 .2 .1 -3 .1 1
-6

 Pass 

9 0.002 0.02 0.2 200 2 .2 .1 -3 .1 1
-5

 Fail 

10 0.002 0.02 0.2 200 2 .2 .1 -3 .1 1
-4

 Pass 

11 0.002 0.02 0.05 1000 2 .2 .1 -3 .1 1
-6

 Fail -  

12 -0.002 0.02 0.01 1000 0.5 .2 .1 -3 .1 1
-6

  

 

Initial Conditions cont… 

Run 

No. 

So n dt dx q hl ul hr ur  Result 

13 -0.002 0.02 0.01 1000 0.5 0.2 0.1 -3 0.1 13  

 

initial v so t cell n   

0.01 2/1000 0.8 70 0.02   

            

readings v h sf e z 

1 0.0947 0.0005 0.0993 1.9315 1.9305 

2 0.0967 0.00075 0.058 1.9318 1.9305 

3 0.0976 0.001 0.0396 1.932 1.9305 

4 0.0981 0.00125 0.0294 1.9323 1.9305 

5 0.0985 0.0015 0.0231 1.9325 1.9305 

6 0.0987 0.00175 0.0188 1.9328 1.9305 

7 0.0989 0.002 0.0158 1.9333 1.9305 
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8 0.099 0.00225 0.0135 1.9333 1.9305 

9 0.0991 0.0025 0.0117 1.9335 1.9305 

10 0.0992 0.00275 0.0103 1.9338 1.9305 

11 0.0993 0.003 0.0092 1.934 1.9305 

12 0.0995 0.004 0.0063 1.935 1.9305 

13 0.0997 0.005 0.0047 1.936 1.9305 

14 0.0998 0.006 0.0037 1.937 1.9305 

15 0.0998 0.007 0.003 1.938 1.9305 

16 0.0999 0.008 0.0025 1.938 1.9305 

17 0.1 0.009 0.0022 1.939 1.9305 

18 0.1 0.01 0.0019 1.941 1.9305 
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initial v so t cell n 

0.15 2/1000 0.8 70 0.02 

          

readings v h sf z 

1 0.1382 0.0005 0.2217 1.9305 

2 0.1425 0.00075 0.1295 1.9305 

3 0.1445 0.001 0.0885 1.9305 

4 0.1457 0.00125 0.0658 1.9305 

5 0.1464 0.0015 0.0517 1.9305 

6 0.147 0.00175 0.0421 1.9305 

7 0.1473 0.002 0.0353 1.9305 

8 0.1473 0.00225 0.0302 1.9305 

9 0.1479 0.0025 0.0263 1.9305 

10 0.1481 0.00275 0.0232 1.9305 

11 0.1482 0.003 0.0206 1.9305 

12 0.1487 0.004 0.0141 1.9305 

13 0.1489 0.005 0.0105 1.9305 

14 0.1491 0.006 0.0083 1.9305 

15 0.1493 0.007 0.0067 1.9305 

16 0.1494 0.008 0.0057 1.9305 

17 0.1495 0.009 0.0048 1.9305 

18 0.1495 0.01 0.0042 1.9305 
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initial v so t cell n 

0.05 2/1000 0.8 70 0.02 

          

readings v h sf z 

1 0.0487 0.0005 0.025 1.9305 

2 0.0492 0.00075 0.0146 1.9305 

3 0.0495 0.001 0.01 1.9305 

4 0.0496 0.00125 0.0074 1.9305 

5 0.0497 0.0015 0.0058 1.9305 

6 0.0498 0.00175 0.0047 1.9305 

7 0.0498 0.002 0.004 1.9305 

8 0.0499 0.00225 0.0034 1.9305 

9 0.0499 0.0025 0.003 1.9305 

10 0.0499 0.00275 0.0026 1.9305 

11 0.05 0.003 0.0023 1.9305 

12 0.05 0.004 0.0016 1.9305 

13 0.0501 0.005 0.0012 1.9305 

14 0.0502 0.006 0.00092 1.9305 

15 0.0502 0.007 0.00075 1.9305 

16 0.0502 0.008 0.00063 1.9305 

17 0.0503 0.009 0.00054 1.9305 

18 0.0503 0.01 0.000474 1.9305 

 

 


