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Abstract 

This research project sought to provide insight into the possible applications of solar 

thermal energy within the meat processing industry..  

This project is carried out in conjunction with Churchill Abattoir; with the view to 

develop a solar thermal alternative for producing heated water to cater in part for the 

needs of their operation whilst simultaneously providing refrigeration.  In terms of an 

industry comparison, Churchill Abattoir is ranked approximately 25-30
th

 of 180 

abattoirs nationwide and processes (i.e. slaughter, bone and butcher) around 2500 

cattle per week. 

The meat processing industry has a high demand for heated water. Its uses vary from 

hand washing and laundry (43C) to sterilisation of equipment such as saws, meat 

hooks knives etc (83C). It also has high energy needs for refrigeration. 

A solar thermal system that could reduce energy costs in these areas would not only 

benefit Churchill Abattoir but may see further application within industry. 

Project aims include 

 Research current alternatives in solar thermal systems. 

 Establish design parameters. 

 Produce a conceptual solar thermal system. 

 Investigate the potential of such a system to cooling processes. 

The project began by researching the existing alternatives for system components 

such as energy collectors, solar tracking, chillers and heaters. Once the component 

variables and design parameters for a conceptual system had been established an 

initial design was proposed and analysed to determine its capabilities. As a result of 

the analysis components and sizes were selected for a real system that could be 

implemented at the abattoir.  
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This project seeks ultimately to improve abattoir operations by reducing non-

renewable energy use through the development of a solar thermal system. Its 

outcomes have the potential to benefit the wider industry. 
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Nomenclature 

 

Aa Aperture area m
2 

Ar Receiver area m
2
 

α Solar altitude angle degrees 

β Collector tilt angle degrees 

C Concentration ratio  

cp Specific heat kJ/kg 

δ Declination angle degrees 

η Collector efficiency  

ηo Optical efficiency  

FF Wind speed m/s 

FR Heat removal factor  

γ Optical intercept factor  

h Hour angle degrees 

   Monthly average total insolation on 

a horizontal terrestrial surface 

MJ/m
2
 

    Monthly average daily diffuse 

insolation on a horizontal terrestrial 

surface 

MJ/m
2
-d 

    Monthly average daily total 

insolation on a horizontal 

MJ/m
2
-d 
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extraterrestrial surface 

θ Incidence angle degrees 

    Monthly average clearness index  

Kθ Incidence angle modifier  

p Solar profile angle degrees 

ρ Trough reflectance  

Qu Energy collected kW 

rd Ratio of hourly diffuse radiation to 

daily diffuse radiation 

 

r Ratio of hourly total radiation to 

daily total radiation 

 

RH Relative humidity  

Ta Ambient temperature °C 

Ti Fluid temperature into collector °C 

τ Transmittance  

Uo Overall heat loss coefficient W/m
2
-K 

φ Solar zenith degrees 

z Solar azimuth angle degrees 
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Chapter 1 - Introduction 

 

1.1 Outline 

 

This research has provided insight into the possible applications of solar thermal 

energy within the meat processing industry. A conceptual system was designed and 

subsequently analysed in order to determine whether it would be possible to provide 

for the water heating needs of the abattoir whilst simultaneously cooling air for 

refrigeration.  

 

 

1.2 Background 

 

This project is carried out in conjunction with Churchill Abattoir (located in western 

Ipswich, Queensland) with the view to develop a solar thermal alternative to 

producing heated water for their operation. In terms of industry comparison, 

Churchill Abattoir is ranked approximately 25-30
th

 of 180 abattoirs nationwide and 

processes (i.e. slaughter, bone and butcher) around 2500 cattle per week. They 

supply Woolworths directly with cleaned carcasses. Woolworths lease a building 

onsite known as the “boning room” from Churchill Abattoir. Woolworths must 

purchase utilities from Churchill that they themselves do not produce i.e. hot water 

and refrigeration. 

The meat processing industry has a high demand for heated water. Its uses vary from 

hand washing and laundry (43C) to sterilisation of equipment such as saws, meat 

hooks knives etc (83C). In 2008, the boning room alone used 9ML and 11ML of 

hot and warm water respectively. 

Many abattoirs produce their own hot water as a by-product of some other process. 

For example, Churchill Abattoir uses an 8 MW coal fired boiler to produce steam to 
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drive a “cooker” that renders meat by-products for further use.  At the same time 

some of this steam is passed through a heat exchanger that heats water for use in the 

plant. Over one year the plant uses approximately 150 ML of water with a coal bill 

of $100,000. 

Refrigeration at the abattoir is provided through utilization of 5 x Mycom™ 

compressors coupled to 12 cooling towers/chillers provide cooling to the abattoir and 

the boning room. The working fluid is Anhydrous Ammonia which, at fluid 

temperatures of -9°C to -5°C. The cold rooms are maintained at approximately 4C 

although the acceptable range is 2°C to 10°C. As fresh carcasses are brought into the 

cold rooms there is a sudden “heat shock” so to speak and the refrigeration system 

must deal with this sudden dramatic temperature increase. 

 

Churchill Abattoir approached the University of Southern Queensland with the 

project proposal for the conceptual design of a solar thermal system that would not 

only be capable of producing heated water but would also have the ability to provide 

air cooling. A solar thermal system that would provide water at the temperature and 

flow rates required by the abattoir or the boning room would be incredibly expensive 

both in terms of installation and space requirements, not to mention that a solar 

thermal cooling system could never match the minimum temperature achievable by 

traditional refrigeration. Rather it was envisaged that the system would not be a sole 

solution to the energy needs but rather a renewable energy “boost” system with the 

aim to reduce overall energy consumption. 

 

 

1.3 Aim 

 

This research aimed to investigate current solar thermal technology with the 

intention of designing a conceptual system that would provide for the water heating 

needs of a typical abattoir whilst simultaneously having some application to cooling 

air for boosting refrigeration. In recent years there has been an increase in the use of 
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solar thermal energy, especially in the domestic sector and consequently there is a 

wealth of information system design for such needs. However there is a far greater 

potential for energy savings through the development of solar thermal systems for 

use in the industrial sector. At present the majority of large scale solar thermal 

systems are designed for power generation, not water heating. This project arose 

from the need to further this area of solar thermal system design. 

 

 

1.4 Objectives 

 

The objective of this research was to determine if a solar thermal system could be 

designed such that it would provide for the water heating needs of a medium scale 

abattoir whilst also having the potential to cool air to provide a refrigeration boost. 

After examining available collection, storage and cooling technologies and defining 

the design parameters, various systems were proposed. The design deemed to have 

best satisfied these requirements was then completely analysed in order to fully 

determine its capabilities and limitations. 

 

 

1.5 Summary 

 

This dissertation aims to provide a solar thermal water heating system to satisfy the 

usage needs of a mid-sized abattoir; i.e. industrial scale. Due to its specific 

application to the meat processing industry it furthers engineering knowledge in this 

field. In designing this system a great deal of literature was drawn upon in 

determining the current solar thermal technologies available. The next chapter 

presents a review of this technology in terms of energy collection, solar tracking, 

system design, heat storage and air cooling. Chapter 3 identifies the design 

parameters, selection process and means of system analysis. The potential designs, 
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individual analysis is carried out in Chapter 4. The conclusions drawn from this 

research are presented in Chapter 5 
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Chapter 2 – Initial Research 

 

2.1 Introduction 

 

In recent years the popularity of renewable energy has risen dramatically. Increased 

awareness of the environmental impacts surrounding many current practices has seen 

both industry and consumers changing their practices; further encouraged by 

government grants to do so.  

Consequently there are vast amounts of basic information available on solar thermal 

system concepts. This chapter seeks to establish the current state of solar thermal 

technology as applied to water heating/air cooling on an industrial scale. It also 

serves to inform the reader of the variables available regarding energy collection, 

system design and cooling that are ultimately selected from to produce conceptual 

designs. 

Please note that the following literature review presents a lot of fundamental 

information relating to collector types, solar theory and analysis methods. 

Consequently much of the material is referenced to a few texts whose guidance was 

used extensively. Sources that support these findings but may not have been 

referenced in text are presented in a bibliography at the end of the document. 

 

 

2.2 Collecting Solar Thermal Energy 

 

Solar collectors are devices that absorb solar energy and pass it on to some heat 

transfer fluid (air, water oil etc). The heat within the HTF may then be used directly 

or transferred to a storage medium from which energy can be drawn during 

inadequate insolation. 
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Collecting devices themselves can be classified primarily by their type, concentrating 

or non-concentrating. In non-concentrating systems, collection area is equal to 

absorption area. The second design feature used for grouping designs is whether they 

are stationary or sun tracking. Sun tracking systems may operate on one or two axis 

rotation. A solar collector achieves the greatest energy density when solar radiation 

strikes it normal to its inclination. Through sun tracking this feature can be exploited 

for a greater time period though they add substantial cost to system design. 

The following is an outline that provides a general description of the design and 

capabilities of collectors available in today‟s marketplace. The information is generic 

and is provided a preface to the engineering project. 

 

Stationary, Non-Concentrating Collectors 

Note that whilst the collectors outlined in the following section are typically 

produced to be non-concentrating, one can install reflectors around them to focus 

radiation onto them for better operation. However here they are referred to in their 

basic form. Non concentrating collectors can utilise all forms (beam, diffuse and 

ground reflected) of solar radiation. 
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2.2.1 Flat Plate Collectors 

 

A typical flat plate collector is shown below. 

 

 

 

Figure 2.1 A typical flat plate collector, (Source: GreenSpec, 2010) 

 

 

As these collectors are most commonly used for domestic water heating there is vast 

amounts of information regarding their construction. A typical flat plate collector 

consists of 5 components: 

 A cover – one or more sheets of glass/radiation transmitting material. Glass is 

most commonly used as it can transmit up to 90% of the incoming shortwave 

radiation whilst trapping practically all of the longwave radiation emitted by 

the absorber plate (Kalogiru, 2009). 



University of Southern Queensland 

Faculty of Engineering and Surveying 

20 Zach Muller 

 Fluid passages – tubes, fins or piping that carry the heat transfer fluid through 

the system. Heat absorbed by the plate is conducted to the working fluid and 

piped away. 

 Absorber plate – Grooved, corrugated or flat plates to which the fluid 

passages attach. Plates are commonly shaped to allow embedding of the 

passages. Absorber plates typically receive a selective coating: i.e. one that 

allows high absorption of short wave radiation (solar influx) whilst 

maintaining low emittance to limit re-radiation. 

 Headers – inlet and outlet piping. 

 Insulation – minimizing heat lost from the back of the collector.  

 

Radiation passes through the cover and into the collector where its energy is 

transferred as heat to the absorber plate. As fluid passes through the flow tubes it is 

heated. It follows that the outlet temperature is directly related to the mass flow rate 

of the fluid through the system. That is to say that slower flow leads to higher 

temperatures. This goes on until there is no flow and stagnation temperature is 

reached. At stagnation temperature, heat transferred to the fluid is equal to the 

system losses and so temperature stabilizes. This concept holds for any collector.  

FPC‟s are usually a fixed installation with no tracking. They should be oriented 

toward the equator; that is facing north in southern hemisphere and vice versa. 

According to Kalogiru (2004) the angle of tilt is approximately equal to the latitude.  

Kalogiru (2009 p.122) states that FPC‟s are capable of temperatures of up to 80°C. 

They are capable of utilizing both direct and diffuse (scattered by atmosphere) 

radiation and their performance suffers greatly during cloudy weather. 
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An FPC installation is shown below. 

 

 

Figure 1.2 A sample FPC installation, (Source: HubPages 2010) 

 

 

2.2.2 Evacuated Tube Collectors 

 

The collection component of these systems consists of a heat pipe within an 

evacuated tube as seen below. The heat pipe receives a selective coating similar to 

the absorber plate in the FPC to maximize the absorption of radiation whilst the 

vacuum surrounding the tube serves to reduce convective and conductive losses. This 

allows the ETC to achieve higher operating temperatures than a common FPC. 

Achievable temperatures range from 50-200˚C (Kalogiru 2009). 

Within the heat pipe is a smaller fin/tube, typically copper that contains a liquid-

vapour phase change material such as methanol. As it is heated, the methanol begins 

to vaporize. The vapor rises and travels to the heat sink at the collector header. Here 

the system HTF flows over the tip/bulb and in doing so is heated. The vapour 

condenses and flows back into the system and the process repeats. 

A typical ETC system schematic is shown below. 
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Figure 2.3 The system diagram of an evacuated tube collector, (Source: GreenSpec 2010) 

 

 

According to Quanshing (2005, pp. 92-93) the ingress of hydrogen atoms into the 

vacuum is unavoidable due to their size and they destroy the vacuum with time. In 

order to combat this phenomenon there is a variation on the design known as Dewar 

tubes. They consist of two concentric glass tubes within one another, the space 

between which is evacuated. In this way there is no need to penetrate the design to 

remove heat thus eliminating losses.  

ETC have similar orientation requirements to the FPC system though angles cannot 

so low as to limit the ability of the vapour to rise effectively. They are comparatively 

expensive as compared to FPC but this is relative to their capabilities. 

A variation of this system is as mentioned previously, to array reflective surfaces so 

that they increase incident radiation on the collector. This essentially produces a 

variation of the CPC (discussed in next section). Below is a sample ETC installation. 
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Figure 2.4 A sample ETC installation, (Source: Solar and wind energy, 2010) 

 

 

Concentrating, Solar Tracking Collectors 

 

It is well known that solar radiation concentrated on a small area leads to a local 

increase in energy density and heat; one may use the analogy of the child burning 

ants with a magnifying glass. The same concept applies to the following collectors; 

by reducing the area on which the solar radiation is absorbed temperatures far higher 

than those of non-concentrating systems are achievable. These systems exhibit 

higher thermal efficiency due to the size of the absorption area relative to the 

collection area. However there are inherent disadvantages to these systems i.e. 

surfaces must be kept clean or else reflection is inhibited. Also, some mechanism is 

required to continuously reposition the system to follow the suns path. Concentrating 

collectors can only utilise the direct beam radiation component of the available 

radiation. 

 

 



University of Southern Queensland 

Faculty of Engineering and Surveying 

24 Zach Muller 

2.2.3 Compound Parabolic Collector 

 

A typical CPC is shown below 

 

 

 

Figure 2.5 A single absorber CPC, (Source: Kalogiru, 2004) 

 

 

Due to their parabolic nature, CPC can reflect incident radiation from a large range 

of angles to the absorbing tube (i.e. ETC tube) positioned at the bottom of the 

collector. They are commonly configured as a trough type arrangement. Often there 

is a glass cover over them to prevent settling of dust etc that would reduce reflective 

capability whilst still allowing radiation to pass. They may be arranged as a single 

absorber system as shown above or with a series of collectors within. They collect 

only incident radiation that is within the angle . Consequently, to increase the time 

over which the collector functions one can simply increase the angle or install a 

tracking system. They only need to be re-positioned a few times daily. 

 



c
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2.2.4 Parabolic Trough Collector (PTC) 

 

 

 
Figure 2.6 Simplified parabolic trough collector, (Source: National Renewable Energy 

Laboratory, 2010) 

 

 

 

PTC‟s, as the image shows are made of reflective material that focus radiation back 

to a central collection point. Here, the sun is concentrated by a factor of 80 or more 

(Quanshing 2005, p.23). These collectors can only focus beam radiation. The 

receiver is linear and placed along the troughs focus. Within the receiver flows the 

selected HTF which gains heat as it flows through the system. Receivers are typically 

metallic with a selective coating to reduce the emittance of thermal energy whilst 

encouraging high energy absorption. In order to further reduce energy loss from the 

receiver a glass envelope may be added as it will inhibit convection. Taking this 

concept a step further the space between receiver and the glass may also be 

evacuated. However the addition of a glass cover means that reflected radiation must 

pass through the glass cover to reach the collector. Hence a transmittance loss of 

about 0.9 is induced when glass is clean (Kalogiru, 2009, p.140). Consequently glass 

covers will often receive an anti-reflective surface treatment to improve 

transmissivity. These collectors are capable of temperatures ranging from 50° - 400° 

through the use of a pressurized collector loop. Consequently they are very suitable 
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for process heating applications. They are very suitable for process heating 

applications. The PTC typically utilizes single axis tracking; e.g. oriented N-S 

longitudinally tracking sun E-W and vice versa. These tracking methods are 

discussed in detail later on. 

Due to their ability to produce high temperature in HTF‟s these systems are widely 

used in electricity generation. Power plants that have successfully utilised this 

approach include America‟s SEGS (Solar Electricity Generating Systems) plant, a 

series of smaller capacity fields providing a total capacity of 350MW Kalogiru 

(2009). Other systems of note are the 64MW “Nevada Solar One” and Spain‟s 

50MW “Andasol 1” and “Andasol 2”. 

 

 

Figure 2.7 A sample PTC installation, (Source: NEP Solar) 

 

 

2.2.5 Linear Fresnel Collector (LFC) 

 

Linear Fresnel collectors are a similar concept to that of the PTC. They rely on strip 

mirrors aligned parallel to a fixed receiver, the focal point for their concentrated solar 

energy. Receiver design is much the same as that of a PTC. The LFC can be 

visualized as a parabolic trough that has been broken down to individual reflectors. 

Their greatest advantage is the cost saving as compared to PTC‟s as flat reflectors are 
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much cheaper. Also due to their low stance structural requirements are reduced. 

Similar to PTC they are capable of high temperatures but suffer more from 

shading/blocking by adjacent units. This can be reduced by increasing the height of 

the focal point but at the same time this leads to increased cost. Like the PTC they 

are used primarily in power generation and have much the same requirements for 

solar tracking. 

 

 

 

Figure 2.8 Typical Linear Fresnel Collectors 

 

 

An extension of this concept is the Heliostat/Power tower arrangement (seen on the 

next page). Primarily used for power generation and likely beyond the scope of 

collection for water heating this is merely included for interest 

Hundreds of two-axis reflectors surround a tower, their central focus point being the 

heat collector on the top of the tower. They are used for power generation. Heat in 

the receiver is transferred to a HTF that runs a closed loop between heat storage and 

power conversion. 

Kalogiru (2004) states this collection system has the following advantages 
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1. They collect solar energy optically and transfer it to a single receiver, thus 

minimizing thermal-energy transport requirements; 

2. They typically achieve concentration ratios of 300–1500 and so are highly 

efficient both in collecting energy and in converting it to electricity; 

3. They can conveniently store thermal energy; 

4. They are quite large (generally more than 10 MW) and thus benefit from 

economies of scale. 

With an array such as this the average solar flux impinging on the receiver has values 

between 200 and 1000 kW/m2. This high flux allows working at relatively high 

temperatures of more than 1500 °C and to integrate thermal energy in more efficient 

cycles 

 

 

 

Figure 2.9 “Power Tower” and arrayed heliostats 
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2.2.6 Parabolic Dish Reflectors (PDR) 

 

Parabolic Dish Reflectors use two-axis tracking to follow the suns motion. The point 

focus collector in the centre absorbs huge amounts of solar energy and imparts it to a 

receiver, typically a Stirling engine. The engine generates mechanical energy for use 

in power generation. PDR‟s are capable of heating working fluids up to 1500°C. 

They are capable of >20% efficiency and can also be driven by combustion heat 

from conventional means should sunlight be insufficient (Quanshing, 2005, p. 25) 

According to De Laquil et al., 1993 cited in Kalogiru (2009, p.147) parabolic dishes 

have several important advantages (over other collection systems): 

1. Because they are always pointing the sun, they are the most efficient of all 

collector systems; 

2. They typically have concentration ratio in the range of 600–2000, and thus 

are highly efficient at thermal-energy absorption and power conversion 

systems; and 

3. They have modular collector and receiver units that can either function 

independently or as part of a larger system of dishes. 

Similar to the Heliostat system mentioned in the previous section this is likely 

beyond use in a water heating arrangement and is merely included for the fact that it 

is a widely used solar energy collection device 

 

 

Figure 2.10 A simplified Parabolic Dish Receiver, (Source: Kalogiru, 2004) 
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2.3 Collector Comparison 

 

The following table is used to summarise the critical information presented above. 

 

Table 2.1 Comparison of collector capabilities 

Tracking Collector Type 
Absorber 

Type 

Concentration 

Ratio 

Temp. Range 

˚C 

Stationary 

Flat Plate Flat 1 30 - 80 

Evacuated Tube Flat 1 50 -200 

Compound Parabolic Tubular 1 - 5 ; 5 - 15 60 -240 ; 60 - 300 

Single Axis 

Linear Fresnel Tubular 10 - 40 60 - 250 

Parabolic Trough Tubular 10 - 85 60 - 400 

Dual Axis 

Parabolic Dish Point 600 - 2000 100 - 1500 

Heliostat/Central Receiver Point 300 - 1500 150 - 2000 
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NOTICE: Sections 2.4 – 2.9 present fundamental solar 

concepts. Whilst predominantly citing Kalogiru (2009) as it 

was the most recent and clearly presented, the following 

information is also presented in; 

 Geyer and Steine (2001); 

 Kreider, Kreith and Goswami (2000); 

 Beckman and Duffie (2006); and  

 Hoogendoorn, Kreider and Kreith (1989) 

 

2.4 Reckoning of Time 
 

Solar energy calculations use apparent solar time (AST) to express the time of day. 

AST is based on the angular motion of the sun across the sky and so does not 

coincide with local standard time (LST). For example, solar noon is the point at 

which the sun is directly above the observer and occurs at 12:00 AST. However the 

LST coinciding with this time may be 11:37; LST may be ahead or behind of AST 

depending on the time of year. Before any calculations can be completed the 

apparent solar time must be found. 

AST can be calculated using the following equation. Its components will be 

described further. 

 

                         

(2.1) 

Where:  LST =Local Standard Time 

ET = Equation Time [min]; 

SL = Standard Longitude [degrees]; 
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LL = Local Longitude [degrees]; and 

DS = Daylight Savings (0 or 60) [min]. 

 

 

2.4.1 Equation Time (ET) 

 

AST is known to vary from a clock kept running at a uniform rate. This is due in part 

to minor changes in the earth‟s orbital velocity at different times of the year. This 

variation is described primarily by the ET. The equation of time is necessary because 

the average time for the earth to complete a rotation about its polar axis is not 

uniform, though the yearly average is 24 hours. 

Also, as the earth‟s orbit is slightly elliptical the earth is further from the sun in June 

than it is in January. Consequently the speed of orbit is slower than the average from 

about April to September and faster for October though to March. 

Equation Time is represented as: 

 

                                              

(2.2) 

Where:            
   

   
 

(2.3) 

N = day number of the year. For example on February 7, N = 38 
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2.4.2 Longitude Correction 

 

This is necessary as the local standard time is referenced to the standard meridian, 

also known as the Greenwich and is located at 0° longitude. As the sun takes 4 

minutes to travel 1° of longitude the correction term of 4(SL-LL) is required. 

If the location of interest is east of the standard meridian the longitude correction is 

added to the clock time i.e. negative sign in front; if west, subtracted.  

 

 

2.5 Solar Angles; Finding the Sun 

 

It is general knowledge that the earth makes one rotation about the sun in 

approximately 365.25 days and completes one revolution on its own axis every 24 

hours. As observed from earth the sun moves daily across the sky reaching its 

highest point at noon. With seasonal change from winter to summer, sunrise and 

sunset points gradually move northward along the horizon and the total number of 

daylight hours increases. The following subsections detail the fundamental values 

used to describe the suns position at any given time. 

Kalogiru (2009, p.54) states that for simplicity of analysis in solar engineering we 

utilize the Ptolemaic view of the suns motion i.e. the sun moves about the earth. In 

this manner its motion is restricted to 2 degrees of freedom, described fully to a 

stationary observer by 2 angles; α solar altitude and z solar azimuth. These values are 

not fundamental angles, that is to say they are dependent on specific values of 

latitude, declination and hour angles. The following subsections provide a brief 

description of important variables in determining the suns position. 
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2.5.1 Declination, δ 

 

The earth‟s axis of rotation is at a constant tilt of 23.45˚ from the elliptic axis, which 

itself is normal to the plane of the earth‟s orbital path about the sun. As the earth 

rotates about the sun it is as if the polar axis is moving with respect to the sun. The 

angle between the earth-sun line (centre to centre) and the plane of the earth‟s 

equator is known as the declination angle. This can also be stated as the angle 

between the equator and the sun‟s rays. Kreider, Krieth and Goswami, (2000, p. 24) 

state that declinations north of the equator are designated as positive. Angles vary 

from -23.45˚ (summer solstice in southern hemisphere) to 23.45˚ (winter solstice in 

southern hemisphere). Declination angle passes through zero at the spring and 

autumn equinoxes as shown in the image below. 

 

 

Figure 2.11 Declination of the Sun, (Source: Kalogiru, 2009, p. 55) 

 

 

The solar declination angle may be estimated using the following: 

 

           
   

   
         

(2.4) 

Where:   N = day number. 
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2.5.2 Hour Angle, h 

 

The hour angle is defined as the angle through which the earth would turn to bring 

the meridian of the point directly under the sun. It is based on the average time of 24 

hours required for the sun to move 360° around the earth (remembering that the 

Ptolemaic model is in practice).  This reduces to 15° per hour. 

The hour angle can be expressed by either of the following equations 

 

                                                        

(2.5a) 

or 

             

(2.5b) 

Where:  AST = Apparent solar time. 

The figure below shows provides a visual representation of the hour, declination and 

latitude angles. 

 

Figure 2.12 Definition of hour, declination and latitude angles, (Source: Kalogiru, 2009, p. 54) 
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2.5.3 Solar Altitude Angle, α 

 

The solar altitude angle is the angle between the horizontal plane and the suns 

incident rays. It is related to the solar zenith angle, φ; the angle between incident rays 

and the vertical. (Kreider, Krieth and Goswami, 2000, p. 24) 

It is expressed as follows; 

 

                                              

(2.6a) 

    
 

 
   ° 

(2.6b) 

Where:  L = local latitude; values north of the equator designated as positive; 

  φ = solar azimuth angle [degrees]; 

  h = hour angle [degrees]; and 

  δ = declination angle [degrees]. 

 

Note that at sunrise and sunset the solar altitude angle will be 0°. Through 

rearrangement of equation 2.6a the sunrise and sunset hour angles can be found. 

These in turn can be used to find sunrise and sunset time in hours from solar noon as 

well as the length of the day using the equations below. Note that hss is designated as 

positive in the afternoon. 

 

                       

(2.7) 
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Where:  hss = is the hour angle at sunrise and sunset [degrees] 

  L = local latitude; values north of the equator designated as positive; 

  h = hour angle [degrees]; and 

  δ = declination angle [degrees]. 

 

As the hour angle is 0° at solar noon, we can find sunrise and sunset time in hours 

measured from either side as; 

 

         
 

  
                    

(2.8) 

 

Where:  Hss = is the number of hours from solar noon [hours]; 

  L = local latitude; with values north of the equator designated as 

      positive; and 

  δ = declination angle [degrees]. 

 

And the day length in hours as; 

 

           
 

  
                    

(2.9) 

Where:  L = local latitude; values north of the equator designated as positive; 

  δ = declination angle [degrees]. 

 



University of Southern Queensland 

Faculty of Engineering and Surveying 

38 Zach Muller 

2.5.4 Solar Azimuth Angle, z 

 

The solar azimuth angle is the angle formed between the sun‟s rays measured on the 

horizontal plane with respect to due North (in Southern Hemisphere) with westward 

angles designated as positive. Solar noon occurs when the azimuth is exactly 0°. 

Solar azimuth, z is expressed as; 

 

       
            

      
 

(2.10) 

Where:  δ = declination angle [degrees]; 

h = hour angle [degrees]; and 

  α = solar altitude angle [degrees]. 

   

 

The image below provides a visual representation of the angles presented so far. 

Note that in this image different terminology is used and corrections are stated 

below. 

 Solar azimuth, z is represented below as A 

 Solar zenith angle, φ is represented as θ. Theta represents the incidence angle 

which will be discussed in the next subsection. However for a horizontal 

plane incidence angle and zenith angle are on and the same 
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Figure 2.13 Sun/Surface coordinate system, (Source: Geyer and Stine, 2001) 

 

 

2.5.5 Solar Incidence Angle, θ 

 

This the angle formed between the sun‟s rays and the normal axis of a surface. As 

stated previously for a horizontal plane the zenith and incidence angles are the same. 

The solar incidence angle is used to determine the reduction in incident radiation on 

the solar collector due to off-normal orientations. 

With reference to the image below, Kalogiru (2009, p.61) provides the following 

general expression for incidence angle on a surface of any orientation. 
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Figure 2.14 Solar Angles, (Source: Kalogiru, 2009, p.61) 

 

 

                                                    

                          

                                 

                         ) 

(2.11) 

Where:  L = local latitude; with values north of the equator designated as 

      positive; and 

  δ = declination angle [degrees]; 

  β = angle of surface tilt [degrees]; 

Zs = surface azimuth angle; the angle between normal to 

       surface measured from due south. Westward values are 

       designated as positive [degrees]; and 

  h = hour angle [degrees]. 
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However equation 2.11 simplifies dramatically for many cases. For example: 

 Horizontal collector – β = 0°, θ = φ 

 Vertical collector- β = 90°, equation 2.11 becomes: 

 

                                                      

                     

(2.12) 

Incidence angle becomes an important issue when solar tracking is used. Solar 

tracking and the respective versions of equation 2.11 are presented in the next 

section. 

 

 

2.6 Solar Tracking; increasing collection efficiency 

 

Solar tracking collectors are those whose position is constantly readjusted in order to 

allow them to better follow the sun throughout the day, thus increasing their ability 

to collect the incident radiation. 

Tracking systems are classified based on their axis of rotation; single axis or dual 

axis (Sorenson, 2000, pp. 382-387). The different tracking modes are listed below. 

 Dual axis (fully tracked); 

 Polar Axis – tracking EW;  

 Horizontal EW axis -  tracking NS; and  

 Horizontal NS axis – tracking EW. 
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Figure 2.15 The different modes of solar tracking, (Source: Kalogiru, 2009, p.63) 

 

 

The advantage of a tracked collector is that the incidence angle is kept to a minimum, 

increasing the incident radiation. This concept will be discussed further at a later 

time. Consequently each tracking mode has its own equation for incidence angle, i.e. 

a modified version of equation 2.11. 

 

 

2.6.1 Dual axis, full tracking 

 

The greatest advantage of a two axis tracking system is that it allows the collection 

device to follow the suns path exactly by adjusting altitude and azimuth (Quanshing, 

2005, pp.45-67). 
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By keeping the collection surface normal to the solar radiation a full tracking system 

maintains a constant angle of incidence, θ. (assuming the system operates with 

complete accuracy) 

 

         

(2.13) 

i.e.     . Consequently this allows the system to collector to receive all of the 

radiation at the normal to its plane. The collector slope, β is equal to solar zenith 

angle, φ whilst the surface azimuth angle is equal to the solar azimuth angle z.  

 

 

2.6.2 Polar axis – tracking EW 

 

For a collector rotated about a north south axis at an angle of tilt equal to that of the 

earth and continuously adjusted to follow the sun will have an incidence angle given 

by the following equation. 

 

              

(2.14) 

Where:  δ = declination angle [degrees]. 

 

Consequently during the equinoxes, when δ = 0° the sun will be normal to the 

collector with maximum cosine effect at the solstices (δ = ±23.45°).Polar axis 

tracking requires the collector axis, about which rotation occurs to be oriented at an 

angle equal to that of the local latitude.  
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The slope of the surface, β as it rotates varies continuously and is described below. 

 

        
      

       
 

(2.15) 

Where:  L = local latitude; values north of the equator designated as positive; 

  Zs = surface azimuth angle; [degrees] 

 

Due to their upright stance these collectors can suffer from significant shading losses 

when placed in a multi row array. 

 

 

2.6.3 Horizontal EW axis – tracking NS 

 

The incidence angle for a collector continuously tracking the sun about a horizontal 

EW axis is given by Kreider and Kreith, (1978); Beckman and Duffie, (1991) cited 

in Kalogiru (2009, p.66) to be; 

 

               δ         

(2.16) 

Where:  δ = declination angle [degrees]; and 

  h = hour angle [degrees]. 

 

This form of tracking experiences minimal shading. During the summer months it 

can almost approximate the effect of full tracking but suffers seriously from cosine 

loss in the winter months. In short the winter performance is much less than summer. 
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Again the collector slope must change continually and the value required is given by: 

 

                      

(2.17) 

Where:  φ = solar zenith angle [degrees]; and 

z = solar azimuth angle [degrees]. 

 

 

2.6.4 Horizontal NS axis – tracking EW 

 

The incidence angle for a collector continuously tracking the sun about a horizontal 

NS axis is given by Kreider and Kreith, (1978); Beckman and Duffie, (1991) cited in 

Kalogiru (2009, p.66) to be; 

 

             α       δ         

(2.18) 

Where:  α = solar altitude angle [degrees]; 

δ = declination angle [degrees]; and 

h = hour angle [degrees]. 

   

 

Due to its orientation this tracking mode gives very little shading loss when arranged 

in multi row arrays. That is to say that shading is only a problem either very early or 

very late in the day.  
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The slope angle required to maintain the tracking is given by: 

 

                         

(2.19) 

Where:  φ = solar zenith angle [degrees]; 

z = solar azimuth angle [degrees]; and 

Zs is determined according to: 

          ° 

           ° 

 

 

2.6.5 Tracking mode comparison 

 

Due to its reliance on incidence angle the tracking mode selected affects the amount 

of incident radiation on the collector. The following table provides a comparison of 

the tracking modes discussed above. 
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Table 2.2 Solar energy collectors (Source: Kalogiru, 2009, p. 69) 

Tracking 
Solar energy received 

kWh/m
2
 

% to full tracking 

Equinox SSolstice WSolstice Equinox SSolstice WSolstice 

Full 8.43 10.6 5.7 100 100 100 

N-S Polar 

Axis; E-W 

rotation 

8.43 9.73 5.23 100 91.7 91.7 

E-W 

Horizontal 

Axis; N-S 

rotation 

7.51 10.36 4.47 89.1 97.7 60.9 

N-S 

Horizontal 

Axis; E-W 

rotation 

6.22 7.85 4.91 73.8 74 86.2 

 

 

Over the course of a year a horizontal N-S trough will collect slightly more energy 

than its E-W counterpart.  It will collect more energy in summer than E-W but less in 

winter so the choice for orientation depends primarily on the application (Kalogiru, 

2004). 

 

 

2.7 Shadowing effects 

 

When developing a solar energy system one should consider the potential effects of 

shading. Perhaps the collectors are to be placed close to existing structures to space 

constraints. As the shadows will drastically affect collector performance it is 

essential then to be able to predict the amount of shading on a collector be it from a 

building or simply from adjacent collectors. 

Since solar radiation travels a straight path, the shadow projected by a structure is 

given simply as the following geometric relationship known as the solar profile 

angle, p 
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(2.20) 

Where:  α = solar altitude angle [degrees]; 

z = solar azimuth angle [degrees]; and 

Zs = surface azimuth angle [degrees]. 

 

The image below depicts the orientation of values used in determining the solar 

profile angle. 

 

 

 

 

Figure 2.16 The geometric relationship describing solar profile angle, p. (Source: Kalogiru, 

2009, p. 70) 
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2.8 Solar radiation 

 

In order to analyse a solar thermal system one must have reliable data relating to the 

incident solar radiation, commonly termed insolation. Insolation is measured as 

irradiance or energy per unit time per unit area i.e. W/m
2
. 

Solar energy is electromagnetic radiation with wavelengths from 0.3 μm - >3 μm, 

(Kreider, Kreith and Goswami (2000, p.38). This range covers ultraviolet, visible and 

infra-red radiation. However the energy is most dense between UV and infra-red. 

As extraterrestrial radiation approaches the earth it must pass through the 

atmosphere. As it passes begins to enter, part of the radiation is reflected back into 

space. Once the radiation has entered the atmosphere it is further reduced as it is 

scattered by dust, aerosols or other particles, or absorbed by water vapour. 

Radiation that reaches the earth with no direction change is known as beam 

radiation, G_Bn. Radiation scattered by atmospheric conditions is termed diffuse 

radiation, G_D. 

The following image demonstrates the concepts presented above. 

 

Figure 2.17 Radiation as it passes though the atmosphere, (Source: Kreider, Kreith and 

Goswami, 2000, p.38) 
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The best data one can obtain for use in determining insolation on a terrestrial surface 

is the typical meteorological year (TMY). The TMY provides hourly values for 

radiation, ambient temperature, wind speed and other such variables that have been 

averaged over a period of 30 years or more. If a TMY can be obtained for the site of 

the collectors the analysis is simplified dramatically. However many locations do not 

have such data. The following paragraphs show a method for estimating the radiation 

values necessary for collector analysis when a TMY cannot be obtained.  

More commonly there is access to long term monthly average daily insolation data 

for the collector site. One may also obtain daily mean total insolation (beam + 

diffuse radiation) on a horizontal surface. Such information is commonly available 

through the Bureau of Meteorology. 

Once this basic information is obtained, both Kreith, Kreider and Goswami (2000) 

and Kalogiru (2009) describe the next step to be the definition of the monthly 

clearness index,   
    . 

     
  

   
 

(2.21) 

Where:     = monthly average total insolation on a horizontal terrestrial surface 

         [MJ/m
2
-day] (obtained for example from Bureau of 

       Meterorology); and 

      = monthly average daily total insolation on a horizontal 

         extraterrestrial surface [MJ/m
2
]. 

 

There are methods for calculating     but the data commonly comes in the form of a 

table that lists its value for each month as a function of latitude, and a representative 

day for the month. A small portion of such a table taken from Kalogiru (2009, p.94) 

is given below for demonstration. 
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Table 2.3 Monthly average daily extraterrestrial insolation on a horizontal surface, [MJ/m
2
] 

Latitude Jan-17 Feb-16 Mar-16 

60 S 41.1 31.9 21.2 

55 S 41.7 33.7 23.8 

50 S 42.4 35.3 26.3 

45 S 42.9 36.8 28.6 

 

 

As previously mentioned, in order to analyse the performance of a solar collector the 

hourly values of radiation are required. Using the relationship established in (2.21) 

the Liu and Jordan (1977) and Collares-Pereira and Rable (1979) cited in Kalogiru, 

(2009) empirical correlations can be used to find the hourly values. 

 

Liu and Jordan correlation 

 

    
 

  
 

           

        
     
          

 

(2.22) 

 

Where:  rd = ratio of hourly diffuse radiation to daily diffuse radiation; 

  hss = sunset hour angle [degrees]; and 

  h = hour angle taken at the midpoint of each hour [degrees]. 

 

 

   

  
                        

          
  

(2.23) 

Where:      = monthly average daily diffuse radiation on horizontal surface 

           [MJ/m
2
-d]; 

     = monthly average total insolation on a horizontal terrestrial surface 

         [MJ/m
2
-day] (obtained for example from BOM); and 

    =monthly clearness index as defined in (2.21). 
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Collares-Pereira & Rable correlation 

 

  
 

  
           

               

          
     
            

 

(2.24) 

Where:  r = ratio of hourly total radiation to daily total radiation; 

  hss = sunset hour angle [degrees]; 

  h = hour angle taken at the midpoint of each hour [degrees]; 

                           ; and 

                            ; 

 

The solving of these equations provides one with the values of    , r and rd. 

Now, 

                                    

                                           

The hourly beam radiation is simply hourly total radiation less hourly diffuse 

radiation. 

 

 

2.8.1 Radiation on a Tilted Surface 

 

Collectors are often installed not horizontally but at an angle in order to increase the 

amount of radiation intercepted and to reduce cosine losses (associated with the 

incidence angle). The same principle applies to surfaces that track the sun. As 

previously stated, most measured solar radiation data is measured with respect to a 

horizontal surface. 
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For a flat, tilted surface, the total radiation absorbed is given by: 

               

(2.25) 

Where :  GBt = beam radiation [W/m
2
];  

  GDt = diffuse radiation [W/m
2
]; and 

  GGt = ground reflected radiation [W/m
2
]. 

 

The beam component is described by: 

 

              

 (2.26) 

Where :  GBn = direct beam radiation [W/m
2
]; and 

  θ = incidence angle . 

 

And so we see that the greater the angle of incidence, less radiation the collector can 

utilise. 

The diffuse component is described by: 

 

               

 
 
   

 

            

   

 

 

(2.27) 

Where :  GR = diffuse sky radiance [W/m
2
]; and 

  φ = zenith angle. 
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The ground reflected component is described by: 

 

               

 
 

 
 
   

 

(2.28) 

Where :  Gr = isotropic ground reflected radiance (W/m
2
); and 

  φ = zenith angle. 

The presented above are common to both Kreith, Kreider and Goswami (2000) and 

Kalogiru (2009). 

 

 

2.9 Heat storage 

 

Solar thermal energy is commonly stored in one of two ways; as sensible heat or 

latent heat. By including a thermal storage component in a solar thermal design there 

can be better utilisation of collected energy. For example if the field is generating 

thermal energy at a rate greater than that at which it is being used the excess energy 

can be stored and called upon later when insolation has dropped. The selection of a 

storage system depends largely on the application. Without going into too much 

detail other factors to consider during selection are the location of storage devices 

and the rate at which they lose heat. The conceptual design produced by this project 

is anticipated to be an ancillary „boost” system and as such there is currently no 

intention to include storage in the system; this will be elaborated on later.  

However the following storage methods are discussed briefly to provide greater 

understanding of solar thermal system design. 



University of Southern Queensland 

Faculty of Engineering and Surveying 

55 Zach Muller 

 

2.9.1 Sensible heat 

 

“Sensible heat” is the form of heat storage that is most commonly encountered in day 

to day life. It is simply achieved through raising the temperature of an object without 

causing phase change or chemical composition. 

The amount of energy stored through increasing the temperature of an object with 

mass, m and specific heat cp from T1 to T2 under constant pressure is given by: 

      

  

  

   

The most common medium for sensible heat storage is water; favored because of its 

high specific heat. Water can store higher levels of heat if maintained under pressure 

to inhibit boiling. Other common mediums include oils, rocks, ceramics and salts. 

(Kreith, Kreider and Goswami, 2000). Two common mediums of interest expanded 

upon below. 

Graphite - Pure graphite has been found to be an effective medium for heat storage. 

It is not uncommon to have graphite collectors atop power tower systems. Graphite 

may be heated by absorbed radiation (direct heating) or it may be located elsewhere 

for storage and heated indirectly by a HTF. The energy is regained at a later time by 

passing a cooler HTF though the system. 

Molten Salts - Molten salts have been found to be very good HTF/storage mediums 

and are commonly used in power tower collection. They are typically liquid at 

atmospheric pressure, cheap and efficient. Most commonly used is salt peter (60% 

Sodium Nitrate and 40% Potassium Nitrate). Salt peter melts at 220°C and is stored, 

liquid at 290°C in tanks. Heat can be efficiently stored for up to one week. 
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2.9.2 Latent heat 

 

Thermal energy may be stored as latent heat in a material that undergoes phase 

change transformation. Phase change materials are those substances possessing high 

heat of fusion. Heat of fusion refers to energy that must be absorbed or released to 

change phase of 1mol of material. Initially, a solid-liquid PCM will act like a 

sensible heat storage medium. That is the temperature rises accordingly as heat is 

absorbed. However when the phase change temperature is reached they absorb large 

amounts of heat whilst remaining at an almost constant temperature until all of the 

material has changed. The process is fully reversible.  

According to Kreith, Kreider and Goswami, (2000, pp. 176-178), if a material with 

phase change temperature Tm is heated from T1 to T2 (where T1<Tm<T2), the thermal 

energy, Q stored in the mass, m is equal to: 

 

      

  

  

          

  

  

   

Where:    = heat of phase transformation. 

 

Geyer and Stine present the following example. The PCM of interest is Sodium 

Hydroxide (NaOH).  NaOH has a latent heat of fusion of 156 kJ/kg. That is to say 

that as I kg of NaOH melts it has absorbed 156 kJ of thermal energy. This is in 

contrast to heat transfer oil with a latent heat of fusion 2.1 kJ/kg-K. In order to 

absorb the same amount of energy the oil would need to increase in temperature but 

74 ºC. 

There are four kinds of phase transformation. 

 Solid   Solid 

 Solid   Vapour 
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 Liquid   Vapour 

 Solid   Liquid 

 

Solid-Liquid is most common in solar applications. There are typically two classes of 

PCM; organic and inorganic. Organic PCM‟s include Paraffin (CnH2n+2) and Fatty 

acids (CH3(CH2)2nCOOH).  Inorganic PCM‟s are typically salt hydrates. 

 

 

2.9.3 Thermochemical energy storage 

 

This method of energy storage is thermochemical energy storage. It is however at 

this stage still very much theoretical and there is no solar thermal system known to 

be running such a method at this stage. Thermochemical energy storage is achieved 

through the use of thermal energy to reversibly break chemical bonds. Breaking a 

bond requires a great deal of energy and whilst it remains broken the energy is 

stored. The product or products of a thermochemical reaction are usually very stable 

at ambient temperatures. At a later stage, at an increased temperature the process is 

reversed. The original compound forms and the heat is released. Geyer and Stine 

(2001) provide the following example. 

Consider the thermal dissociation of water. When its temperature exceeds 2000 ºC it 

begins to separate into its components 

2H2O + thermal energy = 2H2 + O2 

At ambient temperature, hydrogen and oxygen will not react. However in the 

presence of heat the reaction is explosive. 

2H2 + O2 = 2H2O + thermal energy 

So we see the attractiveness of this heat storage method. High amounts of energy can 

be stored in a small amount of mass. As components are non-reactive at ambient 

temperature they can be stored indefinitely (as opposed to latent and sensible systems 

which require insulation). The research into this area is ongoing. 
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2.10 Solar thermal water heating 

 

In the early stages of the research, common solar water heating systems were 

examined. Findings showed a great deal of information on the design of 

domestic/small scale heating systems. This research was omitted from the final 

review due to its irrelevance. 

Naturally the water heating component of this project will be quite different to solar 

hot water systems used in the domestic market. However the same basic principles 

apply. It became clear that on an industrial scale the process of water heating system 

design is somewhat simpler. Industrial process heat, in this case from a solar 

collection field, heats a fluid. If the working fluid through the collectors is the heated 

water required then this is known as direct heating. Alternatively if a HTF is passed 

through the collector it must then pass through a heat exchanger to heat the water. 

This is termed indirect heating. Water heating systems may be active (pumped) or 

passive (fluid moves due to convection).  

Often storage for the water once heated must be considered. However as the 

conceptual system is ancillary any heated water is plumbed directly into the existing 

infrastructure and so research into heated water storage was not carried out.  

 

 

2.11 Solar thermal air cooling 

 

Kalogiru (2009) states that solar thermal cooling, especially at an industrial level is 

typically achieved through the use solar sorption systems. Note that there are other 

solar related methods to cool air but are not nearly effective enough to be considered 

as an alternative for the system. 

A sorbent is a material capable of drawing and holding other gasses or liquids. A 

desiccant is a sorbent that works very well with water. Depending on the way the 

desiccant behaves as it draws the moisture to itself defines the process as either 
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adsorption or absorption. These processes are reversible. During the adsorption 

process, the desiccant does not change at all but for the increase in weight due to the 

particles drawn in; a similar concept to a sponge that has soaked up water. 

Absorption however changes the desiccant. A well known example of this process is 

the way table salt will change from a solid to a liquid as it absorbs the moisture 

around it. Solar thermal air cooling is then achieved in one of two ways, adsorption 

cooling or absorption cooling. Both systems mimic the operation of the traditional 

vapour-compression cycle and are explained now in detail. 

 

 

2.11.1 Adsorption cooling 

 

The amount of adsorbate drawn to an adsorbent depends largely on the mixture 

between the two and the adsorbate vapour pressure. As adsorbate concentration is 

dependent on temperature the adsorbent can be manipulated to adsorb or desorb the 

adsorbate through an increase/reduction of temperature under constant pressure 

(Kalogiru, 2009). This property is the driving force behind the adsorption 

refrigeration cycle. 

Common working pairs in adsorption cooling systems are silica gel – water, zeolite – 

water and zeolite – methanol. 

A simplified schematic of a typical adsorption machine is shown below. 
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Figure 2.18 A simplified adsorption chiller, (Source: Solair, 2009) 

 

As shown in the image above there are two separate sorbent compartments, one 

serves as an evaporator and the other a condenser. The sorbent in the primary 

compartment is continuously regenerated by a heated fluid entering from the 

collector loop (in this case water). The primary compartment continually desorbs 

water vapor to the evaporator. The sorbent in the secondary compartment adsorbs 

water vapor entering from the evaporator. The secondary compartment must be 

continuously cooled to ensure adsorption is uninterrupted. Chilled water leaves the 

evaporator to pass through an air-water heat exchanger. 

With an input of 80 °C to the primary compartment these systems can achieve a COP 

of approximately 0.6 (COP is defined as the ratio of the cooling effect to the heat 

input). Chillers commonly produced are capable of refrigeration output of up to 500 

kW. 

Due to the limited use of these systems they are relatively expensive to purchase. 
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2.11.2 Absorption cooling 

 

Absorption refers to the process by which a fluid can attract retain moisture. This is 

done using substances known as desiccants, materials that absorb moisture. The level 

of absorbed moisture is dependent on temperature. Absorption cooling takes place 

via a process that is similar to traditional vapour-compression air conditioning, the 

primary difference being the way the refrigerant is compressed. As mentioned above, 

the success of the system depends on the selection of a suitable working fluid pair. 

Kreider, Kreith and Goswami (2000, p. 270) gives the following ideal properties for 

a working pair: 

 No solid phase absorbent; 

 A refrigerant that is more volatile than the absorbent. This ensures that 

separation will occur easily; 

 An absorbent with a strong affinity for the refrigerant under absorption 

conditions; 

 Stability of components to ensure long term functionality; 

 The refrigerant should have large latent heat; and 

 Low fluid viscosity to reduce power consumed in pumping. This also 

improves heat transfer. 

 

There are two working pairs that satisfy these parameters. They are Ammonia-Water 

(NH3–H2O) and Lithium Bromide-Water (LiBr–H2O). The two different refrigerant 

types have different heating requirements and efficiencies. According to Kalogiru 

(2004), the NH3–H2O system requires generator temperatures in the range of 125–

170 °C and delivers a COP of 0.6 - 0.7. The LiBr–H2O system operates at a higher 

generator temperature of 70–95 °C has COP between 0.6 and 0.8  

Both systems must be supplied with cooling water (typically provided by cooling 

towers) for use in the absorber and condenser. The information above agrees exactly 

with (Sorenson, 2000) who also states that LiBr-H2O systems are well suited to flat 

plate collectors. LiBr systems are more popular not only due to superior performance 

but also because it is less toxic than ammonia. 
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A single stage absorption chiller is presented below. 

 

 

Figure 2.19 A single stage LiBr absorption chiller, (Source: Energy Solutions Centre) 

Herold, Klein and Radermacher (1996) summarise the cycle as follows: 

 The evaporator generates chilled water at 5 – 10 °C. The chilled water is 

pumped to an air-water heat exchange and the air distributed accordingly. 

Water is chilled as the refrigerant water at very low pressure absorbs heat and 

vaporizes. 

 The refrigerant (water) vapor enters the absorber. Here there is a concentrated 

LiBr solution which as previously stated has an affinity for water vapour. The 

LiBr solution absorbs the vapour as it flows over the absorber coil. 

 Diluted LiBr flows from the absorber to a solution heat exchanger. This 

essentially serves to increase system efficiency by pre-heating the diluted 

solution 

 Once in the generator the weak solution is exposed to the heat source under 

low pressure. Consequently the water boils out of the solution and forms a 

high temperature and pressure refrigerant vapour. 

 The vapour rises through the separator to the condenser where it collects on 

the surface of the cooling water coil. The liquid collects and passes once 

more into the evaporator to repeat the cycle. 
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Note that the performance of an absorption chiller can be improved through the 

addition of a secondary generator. Instead of diluted LiBr flowing directly back from 

the primary separator to the absorber via the solution heat exchanger it is passed to a 

secondary generator. The high temperature and pressure refrigerant vapour just 

generated leaves the separator and flows through a coil in the secondary generator. In 

this way a second round of refrigerant vapour is produced leading to a dramatic 

increase in the performance of the entire systems. 2 stage absorption chillers are 

known to achieve COP of 0.9-1.5. They do require a higher input temperature to 

accommodate the double generation; generally an input temperature to the primary 

generator of >145 °C is necessary. 

A 2 stage system is shown below. 

 

 

Figure 2.20 A two stage absorption chiller, (Source: Energy Solutions Centre) 
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2.12 Utilisation of solar thermal energy in the meat processing 

industry 

 

Initial research suggests that there is little to no utilisation of solar thermal energy for 

water heating or cooling within the meat processing industry; even though the 

potential of such systems has been identified previously by (Aye & Fuller, 2007, p. 

9) and (Australian Industry Group, n.d) 

Sustainable practice in the meat processing industry seems to be focused elsewhere 

at this time. As far back as the late „90s there has been pressure to reduce water 

consumption within abattoirs through increasing system efficiency and water 

treatment/re-use. Meat and Livestock Australia has produced resources for industry 

such as (Meat and Livestock Australia, 1997) and continues to do so. MINTRAC 

(National Meat Industry Training Advisory Council Limited) have also been guiding 

the industry toward efficient water usage beginning with the inclusion of a best 

practice module in their Diploma of Meat Processing (Meat and Livestock Australia, 

1998). The government too provides resources, both factual and monetary (in the 

form of rebates) to encourage sustainable use (Department of the Environment, 

Climate Change and Water, 2008) 

Recently there has been increased used of co-generation plants within industry, 

typically powered by natural gas. These systems, whilst expensive to implement are 

incredibly efficient due to the fact that they provide both electricity and water 

heating/steam simultaneously. One such case is found at KR Castlemaine Foods in 

Toowoomba where they significantly reduced greenhouse emissions through 

cogeneration. The system provides for ALL of the abattoirs electricity needs, even 

exporting 1.9 MW of power into the local grid; both of the original boilers have been 

made redundant as all steam and water heating required is provided for by the one 

unit (DDC Energy Services, 2007). A similar is that of Midfield Meats, 

Warnambool, VIC. They received a government grant towards the installation of 

their cogeneration system (Minister for Regional and Rural Development, 2009). Its 

system, similar to that of KR Castlemaine provides 80% of their power needs and 

provides steam/water heating with waste heat for an overall system efficiency of 

approx. 89% (EcoGeneration, 2010). 
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There is also research underway into the use of biogas for combustion. This biogas is 

typically on site through the anaerobic digestion/fermentation of organic matter (such 

as solid wastes from abattoirs). This biogas is made primarily of methane and can be 

further purified for combustion i.e. cogeneration (Biogas, 2010) 

 

 

2.13 Conclusions 

 

This literature review serves as the starting point for the conceptual design. It has 

given an overview of various devices used for energy collection, fundamental solar 

principles, heat storage methods as well as both water heating and air cooling 

options. It became apparent that whilst there is a great deal of generic information on 

energy collection and basic system design available on the internet, the best sources 

of information when beginning the research project were solar engineering texts as 

they cover all aspects of design. The following books were relied upon extensively 

throughout the project and have been invaluable; 

 Kalogiru, SA 2009, Solar Energy Engineering – Processes and Systems, 

Elsevier, San Diego. 

 Goswami, DY, Kreider, JF & Kreith, F 2000, Principles of Solar 

Engineering, 2
nd

 edition, Taylor & Francis, Philadelphia 

 Geyer, M, Stine, WB 2001, Power From The Sun, (a free online book at 

powerfromthesun.net) 

It was these texts that bridge the gap between the generic/domestic style information 

that is typically found on the internet to the comprehensive information needed for 

design on an industrial scale. It is expected therefore, that this project will bring 

something novel to body of knowledge in that solar thermal collectors used primarily 

for electricity generation will be adapted to provide water heating at an industrial 

level whilst simultaneously providing refrigeration.  
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It would seem that the meat processing industry is very interested in renewable 

energy utilisation, at the very least in increasing efficiency to reduce energy/resource 

consumption. However the focus seems to be more on cogeneration systems as they 

provide not only electricity but also steam/hot water. Their main drawback though is 

that they are incredibly expensive to implement. Should this project prove successful 

in producing a useful solar thermal system it may provide abattoir operators with an 

opportunity to reduce emissions and overheads for a fraction of the cost. 
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Chapter 3 – The Design Process  

 

3.1 Introduction 

 

This chapter will firstly outline the design requirements and constraints that apply to 

the conceptual system. Once the components have been broadly specified, the 

methods used to analyse the system components are presented; the primary focus 

being the analysis of the solar thermal collectors. The results of this analysis will 

provide the information needed to clearly define component requirements.   

 

 

3.2 The Design Process 

 

The design parameters for the conceptual solar thermal system will dictate its overall 

design. They are outlined below 

The design should: 

 Integrate with existing infrastructure at the abattoir. It is to be an ancillary 

system, a “boost” system rather than a sole energy solution. The collectors 

are to be roof mounted. Roof space available is approximately 2600 m
2
. For 

simplicity of analysis this is treated an area 50 m x 50 m. 

 Be as efficient as possible. 

 Provide chilled air. 

 Provide heated water. 

 Be easy to maintain; Low frequency periodical maintenance is ideal. 

 Not require heat storage. Heat storage is typically needed for night time 

operation and this plant is only run during the day. Although refrigeration 
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systems still run at night that will remain the concern of the existing systems. 

Whenever solar energy is available it is used by the system immediately. 

 

  

3.2.1 Component Selection 

 

After spending considerable time considering the systems potential components it 

became clear that by nature they will exhibit a dependence on one another. Based on 

this reasoning it became apparent that the air cooling system would be the defining 

factor in the selection the other components. This is because the energy collectors 

will need to provide enough power to drive the chiller effectively. The outputs from 

the chiller then determine the temperature of fluids that are provided to the heat 

exchangers and ultimately the temperature of fluid reentering the collector field. 

 

Air cooling 

Based on the findings of Chapter 2 there were two alternatives for solar thermal 

refrigeration; Adsorption and Absorption chillers. 

Recall that adsorption systems are typically only capable of COP <1 and utilise 

lower temperature fluids. The absorption systems typically have a COP in excess of 

one with the two stage systems capable of up to 1.5. 

Based simply on the fact that a two stage absorption system provides greater cooling 

effect per unit of heat input when compared to both the single stage system and the 

adsorption method it was chosen to be the air cooling device within the system. The 

chosen working fluid was Lithium Bromide–Water as it provides the greatest 

performance. Therefore the energy collection system needed to be able to provide 

temperatures in excess of 150 °C at the flow rate required by the chiller. 
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Energy Collection 

The energy collection devices are the heart of the system. Their ability to efficiently 

utilise the incident solar radiation impacts the performance of the chiller system and 

thus dictates the success of the design. 

The various collector types commonly used in solar thermal systems were presented 

in Chapter 2. There, the findings of this research were summarised in table form and 

are presented again for convenience below.  

 

 

Table 3.1 Solar Energy Collectors 

Tracking Collector Type 
Absorber 

Type 

Concentration 

Ratio 

Temp. 

Range ˚C 

Stationary 

Flat Plate Flat 1 30 - 80 

Evacuated Tube Flat 1 50 -200 

Compound Parabolic Tubular 1 - 5 ; 5 - 15 60 -240 ; 60 - 300 

Single Axis 

Linear Fresnel Tubular 10 - 40 60 - 250 

Parabolic Trough Tubular 10 - 85 60 - 400 

Dual Axis 

Parabolic Dish Point 600 - 2000 100 - 1500 

Heliostat/Central 

Receiver 
Point 300 - 1500 150 - 2000 

 

 

From the information above, the Parabolic Trough Collection system was deemed 

the best choice for the design. The justification for this choice is as follows: 

 The PDR and central receiver systems are ruled out as they are primarily 

designed for electricity generation. 
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 The FPC, ETC and CPC systems are not capable of providing the heat input 

required by an absorption chiller.  

 Linear Fresnel systems suffer from higher levels of shading loss due to their 

low stance and close proximity to one another.  

 Parabolic troughs are widely used for the collection of process heat (recall the 

power stations listed in Chapter 2). Due to their high concentration ratio they 

are easily capable of providing heated fluid within the range required by 2 

stage absorption chillers (earlier stated to be 150 – 220 °C). 

A parabolic trough collector requires a single axis tracking system to constantly track 

the sun if it is to minimize the cosine loss in incident radiation. The table below was 

also presented in Chapter 2 and provides a comparison of the various tracking 

methods available. 

 

 

Table 3.2 Tracking mode comparison 

Tracking 

Solar energy received 

kWh/m
2
 

% to full tracking 

Equinox SSolstice WSolstice Equinox SSolstice WSolstice 

Full 8.43 10.6 5.7 100 100 100 

N-S Polar 

Axis; E-W 

rotation 

8.43 9.73 5.23 100 91.7 91.7 

E-W 

Horizontal 

Axis; N-S 

rotation 

7.51 10.36 4.47 89.1 97.7 60.9 

N-S Horizontal 

Axis; E-W 

rotation 

6.22 7.85 4.91 73.8 74 86.2 

 

The E-W horizontal; N-S tracking system is very efficient during the summer months 

and has reasonable spring/autumn performance. However its winter performance is 

very poor. The N-S horizontal; E-W system exhibits a relatively constant level of 

energy collection. As previously mentioned, this means that the E-W tracking system 

will collect more energy over the year than its N-S counterpart. 
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Based on the reasoning presented above a field of parabolic trough collectors 

tracking the sun as it moves from east to west, tracked about a north-south axis of 

rotation was selected as the energy collection device for the system. 

Heat exchangers 

Heat exchangers are the last crucial component in the design of the system. 

Essentially there will be two heat exchangers required. The first is needed to remove 

the heat from ambient air using chilled water produced by the absorption chiller. The 

second is used to heat water from ambient temperature supply to the 84 °C required 

in the abattoir. The type and size of these heat exchangers is considered once the heat 

exchange requirements have been clearly specified. 

 

 

3.2.2 The Initial Design 

 

In summary the system will be comprised of: 

 An energy collection field that consists of horizontal parabolic trough 

collectors that track the suns path E-W about a N-S axis. The approximated 

area available for the collectors is 2600 m
2
. 

 A two stage absorption chiller utilizing LiBr-H2O working fluid; and 

 Two heat exchangers to provide chilled air and heated water. 

 

An initial system schematic is given on the next page. The process is described as 

follows; 

 The heat transfer fluid is pumped into the collector field. As it flows through 

the system the fluid is heated to in excess of 145 °C.  

 The fluid leaves the collectors and enters the generator of a 2 stage absorption 

chiller. It leaves the generator, now at reduced temperature and is passed on 

to a fluid-fluid heat exchanger. Water is passed through the other side of the 

heat exchanger thus raising its temperature to either 42 °C or 83 °C. The 
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heated water flows to the existing hot water distribution and storage system. 

The heat transfer fluid leaves the heat exchanger and reenters the collector 

field thus completing the collection loop.   

 Meanwhile, the absorption chiller produces chilled water at approximately 5 

°C – 7 °C. The chilled water passes through an air-water heat exchange to 

produce refrigerated air. 

 

 

Figure 3.1 Schematic of the initial system design 
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3.3 Further Research into System Components 

 

As can be seen from the previous image, the system is essentially a loop in which the 

output from one component in the system becomes the input to the next. As 

previously stated, the choice of two stage absorption cooling determined the need for 

the parabolic trough collectors. Now, the performance of such a collector field within 

the space available dictates the size of the chiller unit it can satisfy. Similarly, the 

outputs from the chiller unit define heat exchanger requirements. Output from the 

collection loop heat exchanger returns to the collection system and the cycle repeats. 

Further research was required into analysis methods for each of these components 

and is presented below. 

 

 

3.3.1 Parabolic Troughs 

 

As described in Chapter 2, the PTC collector takes incident radiation and 

concentrates it on the receiver tube. Consequently the analysis of a parabolic trough 

system requires an optical and thermal analysis. Both of these analyses are greatly 

dependent collector characteristics. 

 

Irradiance on the Collector Aperture 

As mentioned in Chapter 2, concentrating collectors can only utilise direct beam 

radiation. Therefore the irradiance on the collector aperture is given by equation 

(2.26), repeated below: 

The beam component is described by: 

 

              

 (2.26) 
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Where :  GBn = direct beam radiation [W/m
2
]; and 

  θ = incidence angle. 

 

Optical Efficiency 

Optical efficiency is given to be ratio of energy absorbed by the receiver to the 

energy incident on the collector aperture. Consequently it is affected by the optical 

properties of component materials, collector geometry and the standard of 

manufacture. According to Malik, M Mathur, S and Sodha M (1984) cited in 

Kalogiru (2009); 

 

                      

(3.1) 

Where:  ρ = trough reflectance; 

  τ = transmittance of glass cover (on receiver); 

α = absorptance receiver; 

γ = intercept factor; 

Af = geometric factor; and 

  θ = incidence angle. 

The designer of a parabolic trough will have access to all of these values. 

 

Thermal Analysis 

The thermal analysis of the trough receiver is used in order to determine how much 

energy can be captured. Useful energy can be used ultimately to find system 

efficiency. The receiver will lose heat through conduction, radiation and convection 

and these factors must be considered. In the case of receivers surrounded by a glass 

cover with the space between evacuated (most receivers), analysts seek to determine 

a loss coefficient, UL, an overall heat loss coefficient, UO. These terms are related to 

the receiver area, heat loss coefficients for convection and radiation and can be used 
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to find FR, the heat removal factor. Kalogiru (2009)  provides the theory behind this 

entire process but has not been included in this chapter as it was not used in the 

analysis for reasons to be explained shortly. 

 

After completion of a thermal analysis the amount of useful energy collected is given 

below as: 

                          

(3.2) 

Where :  Qu = useful energy [W]; 

  FR = heat removal factor; 

    = incident beam radiation (equation 2.26); 

ηo = optical efficiency; 

Aa = aperture area [m
2
]; 

Ar = receiver area [m
2
]; and 

        = difference between inlet an ambient temperature. 

 

Collector Performance 

If equation (3.2) is divided by the total incident radiation, GBAa, the efficiency, η of 

the system is derived. 

 

       
           

   
 

(3.2) 

Where:   FR = heat removal factor; 

     = incident beam radiation [W/m
2
] (equation 2.26); 

ηo = optical efficiency; 

C = concentration ratio, Ar/Aa ; and 
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         = difference between inlet an ambient temperature. 

 

Kalogiru (2009 pp. 219-226) states that in reality, the heat loss coefficient UL 

described in the previous section is not constant but a function of the inlet and 

ambient temperatures. 

Consequently, 

                  

 

Therefore efficiency can be rewritten as 

 

                
  

(3.3) 

Where :     =     ; 

    =     ; 

    =     ; and 

  y = (     ). 

Through extensive testing, the producer of a PTC can eventually obtain the 2
nd

 order 

polynomial to describe their collector efficiency. 

 

The Incidence Angle Modifier, Kθ 

The performance equations presented in the previous section hold true if the solar 

beam radiation strikes at normal to the collector aperture. When the radiation strikes 

off-normal the optical efficiency is affected. The higher the incidence angle the 

greater the impact on optical efficiency. To account for these effects the incident 

angle modifier (IAM) is applied to the efficiency equation as shown below; 
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(3.4) 

Similar to the case of collector efficiency, through extensive testing the IAM for a 

collector can be found through the fitting of a 2
nd

 order polynomial to recorded data. 

Array design 

As industrial systems typically utilise a large number of collectors to satisfy the 

process requirements array design becomes an important consideration for design. 

Kalogiru (2009), states that it is typically encouraged to arrange collectors in parallel 

connection; specifically in the “reverse-return array method”. This array method 

ensures that the collector is self balancing. In other words, each collector will operate 

with the same flow rate and pressure drop. The collectors are plumbed such that fluid 

entering and leaving each module will travel the same distance; that is the first 

collector to be supplied is the last to return the fluid. If series connection of modules 

is required it should be remembered that the performance of the other modules will 

suffer slightly due to higher receiver temperatures which ultimately lead to greater 

losses. However, if the flow rate through collectors in series is adjusted (single 

module flow multiplied by the number in the series) the single module performance 

data can still be used. 

  

NEP Solar and the PolyTrough 1200 

After the discovery of the information presented above it became obvious that a 

sample PTC would be needed if any analysis was to be carried out for a potential 

field at the abattoir. At this point the search began for a company that manufactured 

parabolic trough collectors who would be willing to assist. 

The first company found was NEP Solar, located in Warriewood, NSW. When the 

first phone call was made I was put in touch with Johan Dreyer who it was later 

learned is the CEO. After explaining the project, learning about NEP and explaining 

what they could do to help Johan agreed to assist in the project. 
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As outlined in previous sections, collector performance is affected primarily by the 

amount of incident radiation, the incidence angle, collector geometry and trough 

characteristics. Determining the useful energy that can be collected from a field of 

solar collectors requires the use a model that will consider all of these factors. 

In order to model a collector field for the case of the abattoir NEP provided the 

following assistance; 

 TMY data for Ipswich (an incredibly valuable piece of information) 

 Whilst they would not share the methods behind their collector yield model 

they agreed to provide a set of their results for Ipswich in order for a 

comparison to be made. 

 As NEP seeks to protect their intellectual property exact collector details 

would not be provided (such as collector geometry). They did however 

provide their own 2
nd

 order equations for collector efficiency and IAM. 

The process of building the yield model for Ipswich is presented in a later section. 

The collector loop in a PolyTrough 1200 system is maintained at 16 bar and utilizes 

water as the working fluid. By maintaining the collector loop at high pressure, water 

can be heated well above boiling point (in the case of this collector up to 220 °C). 

Based on collector dimensions provided in a PolyTrough 1200 brochure, the 

following collector array was designed with the aim of using the available space as 

efficiently as possible. 

A 30 module array was specified; 15 rows with 2 modules per row. Each module has 

an aperture area, Aa of 28.2 m
2
. These collectors utilise single axis tracking, 

repositioning themselves every 10 seconds to follow the sun. 
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Figure 3.2 Specified collector array as drawn by NEP Solar 

 

The rows are connected in parallel so that the pressure drop over each row is the 

same. Within the rows as stated previously there are two modules in series meaning 

the output of the first is the input to the second. This reduces system performance if 

not addressed. By simply doubling the flow through each row, the single collector 

performance data will hold true. The spacing between the two is such that shading 

effects are minimized. 

 

 

Figure 3.3 A PolyTrough 1200 module courtesy of NEP Solar 
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3.3.2 Two Stage Absorption Chillers 

 

Initially it was thought that a full system analysis of a LiBr-H2O chiller would be 

conducted. Books such as Kreider, Kreith and Goswami (2000), Kalogiru (2009) and 

Herold, Klein and Radermacher (1996) provide methods for determining the state of 

the working fluid at any point in the entire cycle. 

The process of analysis (to determine COP, mass balances and heat input) can be 

summarised as follows. 

Inputs required 

 Determine the amount in kW, of refrigeration required. Also specify the 

desired operation temperature of the evaporator, absorber and condenser and 

the temperature of the fluid pumped to the solution heat exchanger. 

 Determine generator temperature; provided by heated fluid from the energy 

collection systems. 

Assumptions 

 For the points where temperature is specified it is assumed that refrigerant 

and absorbent phases are in equilibrium. 

 Pressure drop in lines and internal heat exchangers are neglected. Pressure 

drop between condenser-absorber and solution HX return-Absorber cannot be 

neglected. 

 The pressures in the condenser and evaporator are equal to the vapor pressure 

of refrigerant (water). These values can be read from a steam table. The same 

applies for enthalpy. 

 LiBr mass fraction can be read from a LiBr concentration chart based on the 

values of enthalpy found in the previous step and the solution temperature. 

 Mass balances are applied across key point on the system. For example 

across the generator; 

o Total mass balance,            .  

That is to say that mass through the generator is equal to mass 

returning to absorber plus mass to condenser. 
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o LiBr balance,             .  

This relationship shows that the concentration of LiBr in the solution 

returning to the absorber is higher than the input solution. 

This process is repeated until the system has been fully defined. 

 Eventually the rate of heat supply to the generator for the required cooling 

effect is found allowing calculation of COP. 

 Heat transfer rates across solution exchanger and the condenser can be found 

using              . The rate of heat removal from the absorber is found 

via a system wide heat balance;                       

 

ECS and the BROAD Series Absorption chillers 

Similar to the solar collection system, the methods to analyse the chiller had been 

found. It is likely that a chiller could have been specified on the basis of the 

calculations above. However it was deemed more relevant to the projects aims to 

source a potential chiller from industry for use in the system design. 

Johan (NEP Solar) said that in the past NEP had worked on similar projects using 

two stage absorption chillers sourced from Energy Conservation Systems, Brisbane. 

He provided the name of one Shaun McKinnon. Once more, after a phone call 

explaining the project aims, progress thus far and what was needed to progress ECS 

Brisbane was on board. 

When asked whether it would be worth analyzing the system using the methods 

outlined previously Shaun stated that nobody does that anymore. Rather their 

systems are designed with integrated sensors and computer control that inform the 

owner of all temperatures, flow rates, concentrations and so on. 

ECS provided the following assistance to the project; 

 The latest catalogue for the BROAD: Generation X Absorption Chillers. The 

catalogue provides everything from system installation and construction 

advice, system requirements, dimensions, and most importantly the 

performance data. Based on a specified temperature drop through the primary 
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generator a value for the power required to run the system is obtained. When 

the power output of the field is known a chiller is selected accordingly. 

 A second data sheet showing 

o Model selection curves detailing chilled/cooling water temp, cooling 

capacity and COP for a specified cooling capacity. For example, if the 

unit is operating at 90% capacity and must produce chilled water at 6 

°C then cooling water should be supplied at 30 °C. The COP is 

through the average of the COP values attached to the 3 values just 

stated. 

o Model selection curves showing the chilled/cooling water flow rates 

against pressure drop. For example, in a BH20 chiller the pressure 

drop in chilled water at 100% design flow is 30 kPa. 

 

 

3.3.3 Heat Exchangers 

 

The primary focus of the system design thus far had been the energy collection 

devices and the chiller. However the elements that ultimately define the system 

capabilities are the heat exchangers. As shown previously there are two devices 

needed in the system; one for a collector loop to water exchange and the other for an 

ambient air to chilled water exchange. 

According to Shaun from ECS, the people who could provide assistance on heat 

exchanger sizing were Actrol Parts, Salisbury. Through this connection Ray Findlay 

and Claes Larsson joined the number of those assisting on the project.  
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3.4 Building the Solar Yield Model 

 

Knowing the capabilities of the collector field is the key to determining system 

capability. As NEP Solar were not going to share their method for analysis (and had 

never been expected to) it was determined that a yield model should be built for an 

ideal collector field located in Ipswich. Due to the nature of the data it was decided 

that Microsoft Excel would be the modeling tool. 

The model built by NEP Solar calculates all relative solar angles, radiation values 

and collector performance values for every hour of the year (as this is the format that 

a TMY comes in) in addition to other statistical analyses. This was deemed overly 

complex for the interest of this project. Rather after consultation with the supervisor 

Steven Goh and Johan from NEP Solar it was decided that the if the system yield for 

an average day of each month could be found, the monthly yield could be 

approximated by simply multiplying this value by the number of days in the month. 

Kalogiru, (2009, p. 56) provides the table below showing which day of the month 

should be used to provide the most accurate monthly representation. Based on the 

models findings, power output from the field can be found and a chiller model 

selected accordingly. The model does not include shading losses as they are assumed 

to be negligible. 

Note that all tables built in the model are included in Appendix B 
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Table 3.3 Recommended Average Days, (Source: Kalogiru, 2009) 

Month 
Day 

Number 
Average day of month 

Date N δ ° 

Jan i 17 17 -20.92 

Feb 31 + i 16 47 -12.95 

Mar 59 + i 16 75 -2.42 

Apr 90 + i 15 105 9.41 

May 120 + i 15 135 18.79 

Jun 151 + i 11 162 23.09 

Jul 181 + i 17 198 21.18 

Aug 212 + i 16 228 13.45 

Sep 243 + i 15 258 2.22 

Oct 273 + i 15 288 -9.6 

Nov 304 + i 14 318 -18.91 

Dec 334 + i 10 344 -23.05 

 

 

The process behind the models operation is as follows: 

 Find solar position at every hour of an average day for each month. This 

involves calculation of AST, hour angles, solar elevation and azimuth angles 

and incidence angles. Described below in subsection 3.4.1. 

 The hourly beam radiation for each month supplied in the TMY is averaged. 

In this way hourly radiation data for an average day is produced. The cosine 

loss is applied to the hourly insolation to give the true level of radiation 

incident on the collector aperture. Described below in subsection 3.4.2 

 Based on the radiation incident on the collector aperture, the model finds an 

hourly yield using the performance equations provided by NEP Solar specific 

to the PolyTrough 1200. Described below in subsection 3.4.3. 

 Determine yield for the average day and multiply by the number of days in 

the month to obtain the monthly yield. Described below in subsection 3.4.3. 

 



University of Southern Queensland 

Faculty of Engineering and Surveying 

85 Zach Muller 

3.4.1 Solar Position 

 

There are a number of variables that must be known in order to describe the suns 

position at any hour of any day; these are the fundamental solar values described in 

Sections 2.4 – 2.9. Typically, each variable calculated is dependent on values 

calculated previously. This was the primary focus of the first tables built in the 

model. 

The values calculated are outlined below, followed by sample tables from the model. 

 

Apparent Solar Time 

As solar calculations depend on AST it was the first set of data calculated. An AST 

value needed to be found for every hour of the day. Recall that AST is either slightly 

ahead or behind LST. 

 

                         

(2.1) 

Where:  LST =Local Standard Time 

ET = Equation Time [min]; 

SL = Standard Longitude [degrees]; 

LL = Local Longitude [degrees];  

DS = Daylight Savings (0 or 60) [min]. 

 

The theory behind and the methods for calculating equation time and longitude 

correction were presented previously. The project model finds AST for any hour of 

any month using the table developed below. 
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Table 3.4 MODEL: Time Table used to find AST 

Time Table 

  
Day 

# B 

Equation 

time ET 

(min) 

ET in time 

format 

Latitude Correction 

in time format 
LST 

Jan 17 -63.30 -9.49 11:50 PM 12:11 AM 5:00:00 AM 

Feb 47 -33.63 -14.00 11:46 PM 

 

6:00:00 AM 

Mar 75 -5.93 -9.24 11:50 PM 7:00:00 AM 

Apr 105 23.74 -0.66 11:59 PM 8:00:00 AM 

May 135 53.41 3.19 12:03 AM 9:00:00 AM 

Jun 162 80.11 0.37 12:00 AM 10:00:00 AM 

Jul 198 115.71 -5.34 11:54 PM 11:00:00 AM 

Aug 228 145.38 -3.33 11:56 PM 12:00:00 PM 

Sep 258 175.05 5.78 12:05 AM 1:00:00 PM 

Oct 288 204.73 14.52 12:14 AM 2:00:00 PM 

Nov 318 234.40 14.39 12:14 AM 3:00:00 PM 

Dec 344 260.11 5.91 12:05 AM 4:00:00 PM 

  

5:00:00 PM 

6:00:00 PM 

 

 

As can be seen above, the table includes everything needed to find AST. Notice that 

in Microsoft Excel, the addition and subtraction of time values requires all values of 

time to be fully specified. For example, 12:00 am – 13 minutes is not allowed. 

Therefore the ET is entered into the table as the corresponding number of minutes 

either side of midnight. The same concept applies to latitude correction. A sample 

calculation for 11 am on the March average day is as follows; 

                                       

 

Hour Angle, h 

Recall that hour angle is dependent on AST. Using equation 2.5a below, the hour 

angle is computed. 
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(2.5a) 

The hour angle at sunset/sunrise was also found for each representative day. This 

allows one to check the validity of the data being calculated. 

 

Solar Altitude Angle, α 

The solar altitude angle is the angle between the horizontal plane and the suns 

incident rays. It is calculated for every hour using the method given below. 

 

                                              

(2.6a) 

Where:   L = local latitude; values north of the equator designated as 

      positive; 

   φ = solar azimuth angle [degrees]; 

   h = hour angle [degrees]; and 

   δ = declination angle [degrees]. 

By comparing solar altitude angles at sunrise and sunset to the sunset hour angle 

mentioned above it is easy to visualize the relationship between the two. That is, an 

hour angle in excess of the sunset hour angle will produce a negative solar altitude 

angle meaning that the sun is below the horizon. 

 

Solar Azimuth Angle, z 

The solar azimuth angle is the angle formed between the sun‟s rays measured on the 

horizontal plane with respect to due North (in Southern Hemisphere) with westward 

angles designated as positive. Solar noon occurs when the azimuth is exactly 0°. 

Solar azimuth, z is expressed as  
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(2.10) 

Where:   δ = declination angle [degrees]; 

h = hour angle [degrees]; 

   α = solar altitude angle [degrees]. 

 

Solar Incidence Angle, θ 

This the angle formed between the sun‟s rays and the normal axis of a surface. This 

is the most important factor calculated with regard to solar position. Recall that the 

greater the incidence angle, the greater the cosine loss in radiation incident on the 

collector aperture. Section 2.6 presented the various correlations for incidence angle 

with regard to the different tracking methods commonly utilised. 

As previously mentioned, the collectors in this model are horizontal, tracking the sun 

from east to west about a north-south axis of rotation. Therefore the equation needed 

to find the incidence angle for any hour is (2.18) given once more below. 

 

             α       δ         

(2.18) 

 

Where:   α = solar altitude angle [degrees]; 

δ = declination angle [degrees]; 

h = hour angle [degrees]. 

 

 

  

The Average Day 

All of the values mentioned above are combined to form a table such as the one 

shown below. 
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Table 3.5 MODEL: The  March Average Day 

March 

Local Latitude 

(N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 -2.39 91.23 

Day Hour AST 
Solar Hour 

Angle, h 

Solar Altitude 

Angle, α 

Solar Azimuth 

Angle, z 

Incidence angle, 

θ 

5:01:45 AM -104.56 -11.73 -80.99 8.82 

6:01:45 AM -89.56 1.49 -88.09 1.91 

7:01:45 AM -74.56 14.77 -84.88 4.95 

8:01:45 AM -59.56 27.89 -77.08 11.40 

9:01:45 AM -44.56 40.55 -67.32 17.04 

10:01:45 AM -29.56 52.13 -53.41 21.46 

11:01:45 AM -14.56 61.19 -31.42 24.29 

12:01:45 PM 0.44 64.77 1.03 25.23 

1:01:45 PM 15.44 60.77 33.00 24.17 

2:01:45 PM 30.44 51.50 54.40 21.25 

3:01:45 PM 45.44 39.83 67.97 16.74 

4:01:45 PM 60.44 27.14 77.57 11.04 

5:01:45 PM 75.44 14.00 85.30 4.56 

6:01:45 PM 90.44 0.72 87.68 2.32 

 

In examining the table above we can justify its results based on the following 

observations; 

 Solar altitude is initially negative before rising, reaching its peak around 

midday and setting once more. Note the previously mentioned relationship 

between sunset hour angle and solar altitude. At 6:01:45PM, the hour angle is 

less than 91.23° and so the sun is only just up. 

 Recall that negative angles of solar azimuth were designated east. Before 

midday solar azimuth is negative. 

 It was mentioned in Chapter 2 that at solar noon, corresponding to AST = 

12PM the hour angle is always zero. In the table above, just after 12PM AST 

the value for the hour angle is only just positive. 
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3.4.2 Solar Radiation Data 

 

With the solar position fully defined relative to the collection systems, it was now 

necessary to determine the radiation incident on the collector aperture throughout the 

day. 

As previously stated, NEP Solar provided TMY data for Ipswich. This was a very 

valuable contribution as it greatly increases the validity of the final results. An 

excerpt of TMY data is shown below. 

 

Table 3.6 MODEL: TMY except courtesy of NEP Solar 

Ipswich - 

Australia 
All radiation values given in W/m

2 

-27.6154 152.7596 

3 1 6 1422 4 4 0 23.9 4.1 82 

3 1 7 1423 73 67 37 24.6 3.7 82 

3 1 8 1424 265 177 219 25.8 3.9 82 

3 1 9 1425 393 279 191 27 4.9 82 

3 1 10 1426 398 335 82 26.6 4.1 89 

3 1 11 1427 735 425 354 29.2 4.9 82 

3 1 12 1428 598 459 149 29.7 4.7 82 

3 1 13 1429 650 427 239 30.3 6.1 79 

3 1 14 1430 78 78 0 29.3 7.1 84 

3 1 15 1431 67 67 0 28.5 6.8 86 

3 1 16 1432 50 50 0 27.6 4.4 86 

3 1 17 1433 30 30 0 27.5 3.7 82 

3 1 18 1434 11 11 0 27 3.5 82 

 

 

Where  G_Gh = global (total) radiation on horizontal surface [W/m
2
]; 

G_Dh = diffuse radiation on horizontal surface [W/m
2
]; 

G_Bn = beam radiation [W/m
2
]; 

Ta  = ambient temperature [degrees C]. 

FF = wind speed [m/s]; and 

RH = relative humidity. 
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The table shows that values are arrayed for every hour of the year in their respective 

vertical columns. 

Recalling that a PTC can only utilise beam radiation, the model is only interested in 

the values of G_Bn. The next step was to obtain an hourly radiation profile for the 

average day. This was done through finding the average radiation value for each 

particular hour of every day over the entire month.  

Such analysis for March produced the following radiation profile. 

 

 

Table 3.7 MODEL: Radiation profile for the March average day 

March 

Tracked 

Collector 
Day 

Hour 

G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 237.32 236.44 

8.00 486.00 476.41 

9.00 589.74 563.85 

10.00 588.42 547.61 

11.00 621.81 566.77 

12.00 565.32 511.41 

13.00 568.68 518.81 

14.00 564.03 525.70 

15.00 565.19 541.24 

16.00 558.13 547.79 

17.00 447.74 446.32 

18.00 199.45 199.29 

19.00 0.00 0.00 

 

 

Where G_Bt is a function of incidence angle as given below: 
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3.4.3 Collector Performance 

 

It has been mentioned that NEP Solar provided the performance equations for their 

collectors, namely the equations for collector thermal efficiency and IAM. The 

constant coefficients in the equations presented below are developed through 

extensive performance tests on the collectors, the description of which is beyond the 

scope of the project. 

Recall that the form of the both the efficiency and IAM equation is a 2
nd

 order 

polynomial. The NEP Solar provided equations are given below.  

 

Thermal efficiency, η 

  
                

  

   
 

(3.5) 

Where:  GBn = beam radiation on aperture [W/m
2
]; 

  ηo = 65 %; 

k1 = 0.4000; 

k2 = 0.0015; and 

ΔT = is the temperature rise over the collector (Tin – Tout) [degrees].

  

 

Incident Angle Modifier, Kθ 

             

(3.6) 

Where:   a = -0.0001576; 

   b = -0.0009167; and 

c = 1.0027789. 
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Notice that the equation for efficiency is dependent on the temperature change over 

the length of the collector. This meant that the rest of the system needed to be 

reasonably defined in order to estimate a reasonable temperature of fluid returned to 

the collector. After consultation with Johan and Shaun, it was decided that the 

systems performance would be evaluated for a 30 °C temperature rise over the 

collector. This accounted for the typical 15 °C drop in working fluid temperature as 

it passes through the generator of the absorption unit and a 15 °C allowance for hater 

heating.  

Using these equations, the performance of the collector field is determined as shown 

in the table below. The field is comprised of 30 PolyTrough 1200 collectors, each 

having an aperture area of 28.2 m
2
. This gives a total aperture area of 864 m

2
. The 

temperature rise across the collectors is designed to be 30 °C. 

 

Table 3.8 MODEL: Field performance on a March average day 

PolyTrough 1200; Field; March Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 
IAM, Kθ 

Thermal 

Efficiency 

Useful 

energy, Qu kJ 

Power 

kW 

6 0.00 1.91 1.00 0.0000 0.00 0.00 

7 236.44 4.95 0.99 0.6281 459278.15 127.58 

8 476.41 11.40 0.97 0.6565 945414.69 262.62 

9 563.85 17.04 0.94 0.6608 1091069.04 303.07 

10 547.61 21.46 0.91 0.6601 1023781.88 284.38 

11 566.77 24.29 0.89 0.6610 1034175.58 287.27 

12 511.41 25.23 0.88 0.6584 920996.28 255.83 

13 518.81 24.17 0.89 0.6588 944594.74 262.39 

14 525.70 21.25 0.91 0.6591 983089.12 273.08 

15 541.24 16.74 0.94 0.6599 1047821.60 291.06 

16 547.79 11.04 0.97 0.6601 1094912.31 304.14 

17 446.32 4.56 1.00 0.6546 904502.58 251.25 

18 199.29 2.32 1.00 0.6175 382709.98 106.31 

19 0.00 0.00 1.00 0.0000 0.00 0.00 

  

Total, kJ 10832345.95 

  Power kWh 3008.98 
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Chapter 4 –Yield Model Results and Design Refinement 

 

4.1 Introduction 

 

This chapter presents the results of the solar yield model developed previously. It has 

been previously stated that the performance of the system dictates the requirements 

of the other components within the system. Based on the results of the yield model 

the initial design can be re-evaluated. Knowing the collectors capabilities allows the 

selection of an absorption chiller and initial sizing of heat exchangers. Once this has 

been done and their capabilities defined the initial design phase in complete. 

 

4.2 Yield Model Results 

 

The modeling process outlined in Chapter 3 was repeated for every month. Once the 

collector yield had been determined for the average day of each month, the value was 

multiplied by the number of days in the month. This validity of this assumption was 

approved by both Steven and Johan. 

When all yield data was available it was determined that an array of 30 PolyTrough 

1200 collectors at an Ipswich site would have an annual yield of approximately 864 

MWh. 
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Figure 4.1 The Model Results for Collector Yield 

 

At this stage, NEP Solar provided the results of their own yield analysis for Ipswich 

as promised. Their result is displayed below. 

 

 

Figure 4.2 Collector Yield Predicted by NEP Solar 

 



University of Southern Queensland 

Faculty of Engineering and Surveying 

96 Zach Muller 

When comparing the results of the two models it is seen that the yield model 

produced in the previous chapter provides a similar yield profile to that of NEP 

Solar. Remember that NEP Solar did not share the theory or method behind their 

model. In essence this is a verification of the methods used to build the projects 

model as described in Chapter 3. 

On closer inspection it is revealed that the project model predicts a higher yield for 

every month of the year and hence a higher annual yield. The table given below was 

constructed to allow comparison of yield values and to determine the system error. 

 

Table 4.1 Model Error 

Model Predicted 

Monthly Collector 

Yields 

NEP Solar Model 

Yields 

Error of model as 

compared to NEP 

Month MWh 

 
MWh 

 
Error 

Jan 104 

 

81 

 

0.222884 

Feb 68 

 

52 

 

0.240188 

Mar 93 

 

71 

 

0.238839 

Apr 68 

 

57 

 

0.158286 

May 47 

 

37 

 

0.215226 

Jun 36 

 

28 

 

0.230914 

Jul 46 

 

37 

 

0.203569 

Aug 50 

 

39 

 

0.220031 

Sep 77 

 

62 

 

0.199229 

Oct 95 

 

70 

 

0.260139 

Nov 87 

 

64 

 

0.263386 

Dec 91 

 

69 

 

0.244015 

Annual 

Yield 864   655   0.241787 

 

 

The project model provides an over estimate of monthly yield by approximately 

22%. Over the course of the year this error leads to overestimation by almost a 

quarter. After considerable thought, and consultation with Johan the following 

conclusion was drawn as to the reason for the discrepancy. 
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The general profile of the results is the same meaning that the solar position 

calculations remain valid. Whilst the processes behind his model were not shared, 

Johan did state that the NEP Solar yield model calculates collector performance at 

every hour of the TMY. This means that for every hourly radiation entry in the TMY, 

individual values of apparent solar time, declination, hour angle, solar elevation, 

solar azimuth and incidence angle have been previously defined. When compared to 

the method behind the project model (finding an average day for each month based 

on its monthly radiation profile, multiplying daily yield out to a monthly yield) it is 

believed that the error is induced through the averaging of radiation data. This is the 

only area on which the two models differ. It is quite conceivable that the small error 

induced through the process of averaging the radiation profile for a single day is 

increased dramatically when the results are applied to the entire month. However, as 

the results provided by NEP Solar only give a total monthly yield, a comparison 

between errors on a daily basis could not be carried out. 

The full results of the NEP Solar yield model are presented in Appendix C. As 

mentioned above, their model analysed each and every hour of the year. This method 

also becomes more accurate when attempting to determine the peak power output by 

the system. To further explain this concept, consider a day in January where the 

incident radiation at midday is 1042 W/m
2
. Due to the effect of cloudy days and 

other meteorological issues the incident radiation for the same hour in the average 

day is found to be 676 W/m
2
. Consequently the model will under estimate the power 

output that can be provided by the collector under such high level insolation. 

As the model could not predict the actual peak power for the field, it was deemed 

reasonable to use the NEP Solar results for the remainder of the system design. 

Although the project designed yield model was not entirely accurate, it was however 

a valuable learning process. In this light the model may be viewed as successful. The 

model represents the consolidation of theory presented in a number of texts (and 

outlined here in previous sections) in order to produce a yield model unique to the 

project, with no guidance as to the process behind doing so received. Error in 

predicted values aside, the fact that the same monthly yield profile is produced 

between the project and NEP Solar models can be seen as a validation of the process 

used in all areas except the treatment of radiation data. 
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NEP Solar provided the following frequency distribution showing the collectors 

thermal output over the year. 

 

 

Figure 4.3 Gross thermal power, frequency distribution 

 

It shows that field has a peak power output of 518 kW. With the collector 

performance determined the process of refining the design can begin. 

 

 

4.3 Design Refinement 

 

4.3.1 Chiller Selection 

 

It was mentioned previously that Shaun from ECS Brisbane provided technical 

information on the BROAD series of absorption chillers that they provide and install. 

This information provided the means by which to determine an appropriate chiller 
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for the system as well as the performance it could deliver. The image below shows 

one of the key tables given in the catalogue. 

 

 

Table 4.2 An excerpt from the BROAD catalogue 

 

 

This table provides information on all of the 2 stage chillers driven by hot water (as 

opposed to steam or natural gas) within the series. In order to determine the size of 

the unit best suited for the design, a figure for power consumption in the generator 

needed to be found. 

Based on a temperature drop of 15 °C in the loop water (informed by Shaun that this 

value is a common design assumption when dealing with this equipment) as it passes 

through the generator the following analysis was used to determine power 

consumption. 

 



University of Southern Queensland 

Faculty of Engineering and Surveying 

100 Zach Muller 

          

(4.1) 

Where:      = mass flow rate [m
3
/h]; 

   cp = average specific heat [J/kg-K]; and 

ΔT = is the temperature drop through the generator [Kelvin]. 

 

When applied to the first three chillers in the series the results are as below. 

BH20 

   
                    

    
        

BH50 

   
                    

    
       

BH75 

   
                    

    
        

 

Recall that the peak power output of the field is 518 kW. Shaun advised regarding 

model selection, to select a chiller that will best be able to utilise the available power. 

In reference to the results produced above the BH75, if supplied by the field could 

never run at full load as the peak power never exceeds 518 kW. The BH20 would be 

considerably over supplied with power and some form of heat storage would need to 

be included. Ultimately the model selected is then the BH50. When the power 

exceeds 417 kW the machine performs above 100% capacity. 

Now that a chiller had been selected based on its heating requirements the rest of the 

values surrounding it operation needed to be determined. Cooling towers to suit 

application are assumed to be installed as part of the chiller package. From the data 
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sheets provided, the chiller system has the following characteristics when operating 

at full load to produce chilled water at 6 °C. 

 

BH50 

Cooling capacity;   582 kW 

Chilled water; 

 Flow rate;   71.3 m
3
/h 

 Temperature;   6 °C 

Cooling water; 

 Flow rate;   48.8 m
3
/h 

 Temperature;   27.8 °C 

COP;     1.4 

 

  

4.3.2 Heat Exchanger Requirements 

 

With the collector output specified and an absorption chiller selected all that 

remained was to size the systems heat exchangers. As mentioned previously there 

were two unit required; one for water-water exchange and the other an air-water 

exchange. 

During initial discussions regarding the system design with Shaun, he mentioned that 

when the time came I should speak to Ray Findlay of Actrol Parts, Salisbury.  

As a result of initial discussions with Ray regarding the heat exchange requirements 

of the system, it was agreed that once the operational parameters for the heat 

exchangers could be provided, Actrol would attempt to provide a heat exchanger that 

would satisfy the need. Based simply on the system requirements outlined, Ray 

proposed the use of compact plate heat exchangers for both units. Compact 

exchangers were selected due primarily for their efficiency due to the large exchange 

surface but also because space constraints in the abattoir would be likely. 
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In determining the heat exchanger requirements some engineering decisions needed 

to be made regarding the selection of the heat load. For example water leaving the 

absorber generator approaches the water-water heat exchanger with a defined 

temperature and flow rate. The temperature of this water as it leaves the heat 

exchanger needs to be defined if the heat load is to be fully defined. The same 

applies to the air-water heat exchange. 

Based on assumed summer values of ambient temperatures (as summer is essentially 

the worst case for refrigeration), the initial heat exchanger requirements were defined 

as follows.  

 

 

Table 4.3 Heat exchanger 1, initial heat load 

HX 1; Water-Water 

  Side 1 Side 2 

Tin °C 165 26 

Tout °C 150 42 

 m  m3
/h 25.7   

Heat 

Load 
422.1 kW 

 

 

Table 4.4 Heat exchanger 2, initial heat load 

HX 2; Air-Water 

  Side 1 Side 2 

Tin °C 35 6 

Tout °C 10 13 

 m  m3
/h 

 

 71.3 

Heat 

Load 
581 kW 
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Heat Exchanger 1 – Water-Water 

Ray passed the heat exchange requirements onto Claes Larsson, one of the engineers 

at SWEP heat exchangers. Claes would input the duty requirements of the heat 

exchangers into the companies sizing program and provide a unit to satisfy the need. 

However, the initial outputs of the program based on the requirements above 

produced an unacceptable system. There was a pressure drop in both fluid streams of 

almost 50 kPa and an 820% over surfacing factor. Over the phone Claes explained 

that this was due to the high flow rate of the hot stream and the relatively low 

temperatures on the other side. 

In order to produce a reasonable heat exchanger it was decided that the output 

temperature of the secondary stream, previously defined to be 42 °C would now be 

increased to 84 °C. The heat load would remain the same, hence flow rate and outlet 

temperature of the heated water would need to be reduced. The inclusion of a by-

pass loop in the collector line with a flow limiter was proposed to achieve this. 

Upon reevaluation of the system requirements as outlined above it was concluded 

that a SWEP B10Tx46H/1P compact brazed heat exchanger could produce water at 

84 °C for use in the abattoir at a rate of 6345 L/h. Water in the collector bypass loop 

exits the exchanger at 50 °C before rejoining the primary loop. 

 

Heat Exchanger 2 – Air-Water 

Again, Ray passed the heat exchange requirements onto Claes. The results of the 

companies program showed that the compact heat exchangers were totally unsuited 

to an air-water exchange, primarily because the air would need to be compressed for 

and reasonable heat removal. For example, one air-water option sized by the system 

consisted of 100 heat exchangers in parallel connection. 

The compact exchanger concept was ruled out. Instead, an air duct/coil option was 

proposed. In this case a duct is specified and a coil through which the chilled water is 

passed is placed within. A fan is placed in the duct, either before or after the coil to 
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draw air through the system. As the air is forced over the coil it surrenders its heat 

and is ducted away.  

Once this decision was made I set about conducting a preliminary analysis of such a 

cooling system. Air will enter the duct at atmospheric pressure, 35 °C @ 60% 

relative humidity (assumption for worst case scenario; summer will have the highest 

ambient temperature and thus the highest cooling load). The rate at which the air is 

fan forced through the duct is yet to be specified. Chilled water from the absorption 

chiller flows through a coil (or is supplied to a series of coils) that are placed in the 

duct. Water is supplied at 6 °C at a rate of 71.3 m
3
/h, (19.8 kg/s based on a density of 

999.94 kg/m
3
 interpolated from water table in Bohn and Kreith (2001)).  Based on 

these basic inputs a simple cooling analysis was conducted according to the process 

set out by Boles and Çengel (2007).  

Data 

Water in: 6 °C   Air on: 35 °C @ 65% RH  

Water out: 15 °C  Air off: 10 °C (saturated) 

Assumptions 

1. A steady flow of air is supplied (constant air mass flow rate); 

2. Dry air and water vapor are treated as ideal gasses; and 

3. Energy changes in the system are negligible. 

Working 

Through the use of a psyhcometric chart (shown in Appendix E), the specific volume 

of the incoming air and the enthalpy drop between the inlet and exit states are 

determined to be; 
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The specific heat of water is interpolated from the water table provided in Bohn and 

Kreith (2001) to be; 

         
  

  
 

 

Now, cooling capacity of the water in the system is found below; 

             

                           

 

According to the concept of a system energy balance, the heat energy gained by the 

water is equal to the heat energy lost by the air as it flows through the system. 

Therefore, applying this concept; 

          

      
   

  
            

Now in the case of air, with    representing volumetric flow rate; 

    
  

 
 

                      

        
  

 
 

 

Note that these are preliminary calculations and are included to demonstrate a basic 

technique for an initial duct/coil design. These calculations are based on a single duct 

with a single coil through which all supplied water flows. In reality it may be more 
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feasible to supply water to a number of individual coils in separate duct systems but 

this is yet to be examined. 

Once the volumetric air flow has been determined and a maximum air velocity 

stated, one can use a generic duct calculator (a type of slide rule estimate) to 

determine duct sizing and friction loss. According to Ray from Actrol Parts, this is a 

general approach taken to such initial estimates within industry. 

 

 

4.4 The Final Design 

 

4.4.1 Summary of System Operation 

 

The collector field proposed for the abattoir consists of 30 PolyTrough 1200 

collectors utilizing E-W solar tracking. Such a field is capable of producing up to 

518 kW and providing 655MWh per annum. The water within the receivers is 

heated, under pressure to 180 °C. This heat is used in the generator of a BROAD 

BH50 two stage absorption chiller. Water leaves the generator at 165 °C and the 

majority of this is piped directly back to the collectors. However some of the fluid 

enters a bypass loop with heavy flow restriction. This bypass loop provides the hot 

stream for a SWEP B10Tx46H/1P compact brazed heat exchanger. In this way, 

ambient water is heated to 84 °C for use in the abattoir at a rate of 6345 L/h. 

Meanwhile, the BH50 also produces chilled water at a rate of 71.3 m
3
/h. The chilled 

water is passed though a coil within a duct through which ambient air is forced. 

Though there has been no initial sizing of the duct, coil or fan, there is the potential 

for 748 kW of cooling. 

As a result of the system reevaluation the initial schematic presented earlier is 

modified to show the need for the bypass loop about the water-water heat exchanger. 

 



University of Southern Queensland 

Faculty of Engineering and Surveying 

107 Zach Muller 

 

Figure 4.4 Simplified schematic of final design 
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Chapter 5 – Project Conclusion  

 

5.1 Discussion 

 

This primary aim of this project was to investigate the potential for a solar thermal 

system that would provide both refrigeration and water heating to Ipswich‟s 

Churchill Abattoir. Based on the generic research regarding the potential system 

components a conceptual system consisting of parabolic trough collectors, a two 

stage absorption chiller and two separate heat exchange devices was proposed. 

Further research into the issues surrounding the systems mentioned above was 

carried out to provide deeper understanding of their performance capabilities and the 

way they interact dependently within the system. The process of seeking proof of 

concept through a theoretical analysis eventually led to the selection and sizing of 

some components for a real system with real, defined outputs. Where components 

were not fully defined the elements for analysis are present but time ran short. The 

projects eventual involvement with industry was rewarding not only for the 

outcomes of the project but also in terms of personal growth and networking. 

The solar yield model built in order to determine potential collector yield for an array 

in Ipswich, whilst not explicitly used in the final design stages was still a very 

relevant system. It showed the same monthly yield profile as the results produced by 

NEP Solar. Bearing in mind that none of the theory behind their own model was 

shared beyond the equations for collector efficiency and incident angle modifier, this 

was very promising. As discussed in Chapter 4 it is believed the model was let down 

by its treatment of radiation data 

Based on the findings of this project it can be concluded that the Churchill Abattoir 

could stand to benefit considerably through the implementation of such a system. 

Indeed the applications for a system such as this spread far beyond the meat 

processing industry to any situation where relatively low levels of refrigeration are 

required.  
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5.2 Future Work 

Future work in completing this design project includes 

 Modification of the project built solar yield model to calculate collector 

performance for every value in the TMY data. This should see a significant 

reduction in errors between the project model results and those provided by 

the industry model. 

 Design of the air-water heat exchange component. The initial concept is for a 

fan driven air duct in which air is forced through a coil containing chilled 

water produced by the absorption chiller. Further work is needed to 

adequately define potential performance as well as duct, coil and fan sizing. 

 There is also the need for greater mechanical design beyond a successful 

conceptual study; re evaluation of the air cooling system, design of system 

piping and instrumentation, structural support, control systems/monitoring 

etc. 

 Once the entire design process is complete a cost/benefit analysis can begin 

to determine installation costs, energy savings, payback period and so on. 

 
 

5.3 Recommendations 
 

If management at Churchill Abattoir is seriously considering the application of such 

technology to their operations it is recommended that they approach industry as soon 

as possible. More than once this project was subjected to delay as those providing 

assistance were too busy with their own responsibilities. 

All of the industry connections in this project arose through the recommendations of 

Johan Dreyer, CEO of NEP Solar. Essentially he provided contact details for the 

companies they use when designing their solar thermal systems. 

NEP Solar – 0266 9998 4700 or contact@nep-solar.com. Ask for Johan and mention 

this project. 

mailto:contact@nep-solar.com
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Appendix B – The Solar Model 

Average Days 

Jan 

Local 

Latitude (N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 -20.92 101.35 

AST 

Solar 

Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:01:30 AM -104.63 -2.49 -64.78 25.19 

6:01:30 AM -89.63 9.84 -71.45 18.27 

7:01:30 AM -74.63 22.64 -77.39 11.63 

8:01:30 AM -59.63 35.73 -83.11 5.59 

9:01:30 AM -44.63 48.99 -89.29 0.47 

10:01:30 AM -29.63 62.25 -82.59 3.44 

11:01:30 AM -14.63 75.10 -66.49 5.89 

12:01:30 PM 0.38 83.29 3.00 6.70 

1:01:30 PM 15.38 74.48 67.78 5.81 

2:01:30 PM 30.38 61.59 83.09 3.28 

3:01:30 PM 45.38 48.32 88.95 0.70 

4:01:30 PM 60.38 35.07 82.82 5.87 

5:01:30 PM 75.38 21.99 77.10 11.95 

6:01:30 PM 90.38 9.21 71.13 18.61 
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Feb 

Local 

Latitude (N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-

hss 

-27.6154 152.7596 150 -13.33 97.00 

Day Hour 

AST 

Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

4:57:00 AM -105.75 -7.31 -70.77 19.07 

5:57:00 AM -90.75 0.44 -76.66 13.34 

6:57:00 AM -75.75 13.72 -76.13 13.46 

7:57:00 AM -60.75 26.87 -72.13 15.89 

8:57:00 AM -45.75 39.57 -64.73 19.21 

9:57:00 AM -30.75 51.28 -52.68 22.29 

10:57:00 AM -15.75 60.62 -32.58 24.42 

11:57:00 AM 0.75 64.76 1.71 25.22 

12:57:00 PM 14.25 61.33 29.95 24.56 

1:57:00 PM 29.25 52.35 51.11 22.55 

2:57:00 PM 44.25 40.80 63.77 19.55 

3:57:00 PM 59.25 28.16 71.54 16.21 

4:57:00 PM 74.25 15.05 75.88 13.62 

5:57:00 PM 89.25 1.77 76.77 13.22 

 

March 

Local 

Latitude (N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 -2.39 91.23 

Day Hour 

AST 

Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:01:45 AM -104.56 -11.73 -80.99 8.82 

6:01:45 AM -89.56 1.49 -88.09 1.91 

7:01:45 AM -74.56 14.77 -84.88 4.95 

8:01:45 AM -59.56 27.89 -77.08 11.40 

9:01:45 AM -44.56 40.55 -67.32 17.04 

10:01:45 AM -29.56 52.13 -53.41 21.46 

11:01:45 AM -14.56 61.19 -31.42 24.29 

12:01:45 PM 0.44 64.77 1.03 25.23 

1:01:45 PM 15.44 60.77 33.00 24.17 

2:01:45 PM 30.44 51.50 54.40 21.25 

3:01:45 PM 45.44 39.83 67.97 16.74 

4:01:45 PM 60.44 27.14 77.57 11.04 

5:01:45 PM 75.44 14.00 85.30 4.56 

6:01:45 PM 90.44 0.72 87.68 2.32 
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April 

Local Latitude 

(N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-

hss 

-27.6154 152.7596 150 9.49 85.06 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:10:20 AM -102.42 -15.33 -87.16 2.74 

6:10:20 AM -87.42 -2.12 -80.39 9.60 

7:10:20 AM -72.42 10.81 -73.18 16.51 

8:10:20 AM -57.42 23.22 -64.73 23.10 

9:10:20 AM -42.42 34.66 -53.98 28.92 

10:10:20 AM -27.42 44.37 -39.45 33.50 

11:10:20 AM -12.42 50.99 -19.69 36.34 

12:10:20 PM 2.58 52.81 4.22 37.08 

1:10:20 PM 17.58 49.17 27.11 35.59 

2:10:20 PM 32.58 41.30 44.99 32.10 

3:10:20 PM 47.58 30.87 58.03 27.03 

4:10:20 PM 62.58 19.02 67.84 20.90 

5:10:20 PM 77.58 6.40 75.76 14.15 

6:10:20 PM 92.58 -6.65 82.74 7.21 

 

May 

Local 

Latitude (N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 18.81 79.90 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:14:11 AM -101.45 -18.42 -77.92 11.45 

6:14:11 AM -86.45 -5.60 -71.68 18.23 

7:14:11 AM -71.45 6.74 -64.65 25.16 

8:14:11 AM -56.45 18.31 -56.20 31.88 

9:14:11 AM -41.45 28.63 -45.56 37.92 

10:14:11 AM -26.45 36.98 -31.86 42.73 

11:14:11 AM -11.45 42.27 -14.72 45.70 

12:14:11 PM 3.55 43.45 4.63 46.35 

1:14:11 PM 18.55 40.23 23.22 44.56 

2:14:11 PM 33.55 33.34 38.77 40.64 

3:14:11 PM 48.55 23.95 50.92 35.18 

4:14:11 PM 63.55 12.96 60.42 28.76 

5:14:11 PM 78.55 0.98 68.11 21.89 

6:14:11 PM 93.55 -11.61 74.70 14.98 
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June 

Local Latitude 

(N) 

Local 

Longitude (E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-

hss 

-27.6154 152.7596 150 23.08 77.33 

AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

6:11:22 AM -87.16 -8.12 -68.15 21.62 

7:11:22 AM -72.16 3.90 -61.37 28.55 

8:11:22 AM -57.16 15.09 -53.18 35.35 

9:11:22 AM -42.16 25.00 -42.95 41.56 

10:11:22 AM -27.16 32.93 -30.02 46.61 

11:11:22 AM -12.16 37.97 -14.23 49.84 

12:11:22 PM 2.84 39.23 3.38 50.65 

1:11:22 PM 17.84 36.46 20.52 48.87 

2:11:22 PM 32.84 30.21 35.26 44.88 

3:11:22 PM 47.84 21.43 47.11 39.31 

4:11:22 PM 62.84 10.98 56.49 32.82 

5:11:22 PM 77.84 -0.57 64.08 25.92 

6:11:22 PM 92.84 -12.83 70.46 19.04 

 

July 

Local 

Latitude (N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 21.10 78.54 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:05:39 AM -103.59 -21.17 -76.52 12.56 

6:05:39 AM -88.59 -8.42 -70.53 19.25 

7:05:39 AM -73.59 3.82 -63.76 26.18 

8:05:39 AM -58.59 15.31 -55.64 32.98 

9:05:39 AM -43.59 25.59 -45.49 39.22 

10:05:39 AM -28.59 33.99 -32.57 44.33 

11:05:39 AM -13.59 39.54 -16.51 47.68 

12:05:39 PM 1.41 41.26 1.75 48.71 

1:05:39 PM 16.41 38.76 19.76 47.21 

2:05:39 PM 31.41 32.59 35.25 43.48 

3:05:39 PM 46.41 23.77 47.59 38.11 

4:05:39 PM 61.41 13.22 57.30 31.73 

5:05:39 PM 76.41 1.57 65.12 24.87 

6:05:39 PM 91.41 -10.79 71.71 17.96 
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Aug 

Local Latitude 

(N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 13.30 83.01 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:07:40 AM -103.08 -17.57 -83.88 5.84 

6:07:40 AM -88.08 -4.46 -77.32 12.64 

7:07:40 AM -73.08 8.30 -70.21 19.58 

8:07:40 AM -58.08 20.44 -61.84 26.25 

9:07:40 AM -43.08 31.55 -51.26 32.23 

10:07:40 AM -28.08 40.86 -37.28 37.00 

11:07:40 AM -13.08 47.17 -18.91 40.03 

12:07:40 PM 1.92 49.05 2.85 40.89 

1:07:40 PM 16.92 45.92 24.02 39.45 

2:07:40 PM 31.92 38.71 41.25 35.92 

3:07:40 PM 46.92 28.84 54.24 30.79 

4:07:40 PM 61.92 17.42 64.14 24.59 

5:07:40 PM 76.92 5.08 72.12 17.81 

6:07:40 PM 91.92 -7.78 79.02 10.88 

 

 

September 

Local 

Latitude (N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 1.99 88.97 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:16:46 AM -100.81 -10.50 -86.73 3.21 

6:16:46 AM -85.81 2.79 -86.29 3.71 

7:16:46 AM -70.81 15.96 -79.02 10.55 

8:16:46 AM -55.81 28.78 -70.60 16.93 

9:16:46 AM -40.81 40.85 -59.71 22.42 

10:16:46 AM -25.81 51.36 -44.17 26.61 

11:16:46 AM -10.81 58.62 -21.09 29.07 

12:16:46 PM 4.19 60.12 8.43 29.53 

1:16:46 PM 19.19 55.11 35.05 27.93 

2:16:46 PM 34.19 45.75 53.60 24.46 

3:16:46 PM 49.19 34.24 66.20 19.49 

4:16:46 PM 64.19 21.68 75.51 13.44 

5:16:46 PM 79.19 8.62 83.16 6.76 

6:16:46 PM 94.19 -4.64 89.83 0.17 
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Oct 

Local Latitude 

(N) 

Local 

Longitude (E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-

hss 

-27.6154 152.7596 150 -10.04 95.23 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:25:31 AM -98.62 -2.87 -77.11 12.88 

6:25:31 AM -83.62 10.24 -83.95 5.95 

7:25:31 AM -68.62 23.51 -89.25 0.69 

8:25:31 AM -53.62 36.75 -81.65 6.68 

9:25:31 AM -38.62 49.68 -71.79 11.67 

10:25:31 AM -23.62 61.67 -56.24 15.29 

11:25:31 AM -8.62 70.64 -26.44 17.27 

12:25:31 PM 6.38 71.42 20.09 17.41 

1:25:31 PM 21.38 63.29 52.99 15.70 

2:25:31 PM 36.38 51.56 69.96 12.30 

3:25:31 PM 51.38 38.71 80.37 7.50 

4:25:31 PM 66.38 25.49 88.19 1.63 

5:25:31 PM 81.38 12.21 84.95 4.93 

6:25:31 PM 96.38 -0.93 78.16 11.84 

 

Nov 

Local 

Latitude (N) 

Local 

Longitude 

(E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-hss 

-27.6154 152.7596 150 -19.28 100.37 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:25:23 AM -98.65 1.56 -68.99 21.00 

6:25:23 AM -83.65 14.21 -75.41 14.13 

7:25:23 AM -68.65 27.22 -81.38 7.66 

8:25:23 AM -53.65 40.45 -87.50 1.90 

9:25:23 AM -38.65 53.73 -85.23 2.82 

10:25:23 AM -23.65 66.80 -74.04 6.22 

11:25:23 AM -8.65 78.49 -45.40 8.05 

12:25:23 PM 6.35 79.83 36.24 8.18 

1:25:23 PM 21.35 68.76 71.49 6.61 

2:25:23 PM 36.35 55.76 83.89 3.44 

3:25:23 PM 51.35 42.49 88.51 1.10 

4:25:23 PM 66.35 29.25 82.30 6.72 

5:25:23 PM 81.35 16.19 76.35 13.10 

6:25:23 PM 96.35 3.47 70.03 19.93 
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December 

Local Latitude 

(N) 

Local 

Longitude (E) 

Standard 

Longitude 

(E) 

Declination 

angle, δ 

(degrees) 

hss; hsr=-

hss 

-27.6154 152.7596 150 -23.12 102.70 

Day Hour AST 
Solar Hour 

Angle, h 

Solar 

Altitude 

Angle, α 

Solar 

Azimuth 

Angle, z 

Incidence 

angle, θ 

5:16:54 AM -100.78 1.70 -64.67 25.32 

6:16:54 AM -85.78 14.01 -70.96 18.46 

7:16:54 AM -70.78 26.77 -76.55 11.98 

8:16:54 AM -55.78 39.82 -81.90 6.21 

9:16:54 AM -40.78 53.05 -87.60 1.44 

10:16:54 AM -25.78 66.33 -84.87 2.06 

11:16:54 AM -10.78 79.28 -67.62 4.06 

12:16:54 PM 4.23 84.11 41.29 4.42 

1:16:54 PM 19.23 72.08 79.79 3.13 

2:16:54 PM 34.23 58.85 89.50 0.26 

3:16:54 PM 49.23 45.58 84.29 3.99 

4:16:54 PM 64.23 32.44 78.89 9.36 

5:16:54 PM 79.23 19.54 73.46 15.56 

6:16:54 PM 94.23 0.00 66.51 23.49 

 

Averaged Radiation Data 

Jan Tracked Collector 

Hour LST 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 333.81 326.96 

8.00 602.39 599.52 

9.00 658.03 658.01 

10.00 676.74 675.52 

11.00 654.00 650.55 

12.00 497.19 493.80 

13.00 485.81 483.31 

14.00 492.94 492.13 

15.00 490.23 490.19 

16.00 469.55 467.08 

17.00 421.94 412.80 

18.00 238.45 225.98 

19.00 0.00 0.00 

 

 

Feb Tracked Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 231.87 225.49 

8.00 424.87 408.63 

9.00 460.93 435.26 

10.00 477.63 441.96 

11.00 479.50 436.61 

12.00 416.10 376.42 

13.00 416.17 378.50 

14.00 404.23 373.33 

15.00 430.27 405.47 

16.00 411.17 394.83 

17.00 357.33 347.28 

18.00 217.63 211.86 

19.00 0.00 0.00 
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March 

Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 237.32 236.44 

8.00 486.00 476.41 

9.00 589.74 563.85 

10.00 588.42 547.61 

11.00 621.81 566.77 

12.00 565.32 511.41 

13.00 568.68 518.81 

14.00 564.03 525.70 

15.00 565.19 541.24 

16.00 558.13 547.79 

17.00 447.74 446.32 

18.00 199.45 199.29 

19.00 0.00 0.00 

 

 

May Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

7.00 0.00 0.00 

8.00 287.77 244.37 

9.00 455.94 359.69 

10.00 498.45 366.17 

11.00 518.19 361.92 

12.00 507.29 350.15 

13.00 525.65 374.54 

14.00 558.13 423.50 

15.00 577.03 471.64 

16.00 512.58 449.36 

17.00 318.68 295.71 

18.00 0.00 0.00 

 

 

Apr Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

7.00 0.00 0.00 

8.00 318.37 292.84 

9.00 588.20 514.82 

10.00 624.63 520.86 

11.00 630.27 507.66 

12.00 628.77 501.66 

13.00 627.60 510.37 

14.00 622.87 527.65 

15.00 632.83 563.69 

16.00 594.27 555.19 

17.00 311.00 301.57 

18.00 0.00 0.00 

 

 

 

June Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

7.00 0.00 0.00 

8.00 201.67 164.48 

9.00 381.17 285.20 

10.00 476.50 327.31 

11.00 473.17 305.19 

12.00 474.13 300.66 

13.00 518.60 341.10 

14.00 536.80 380.38 

15.00 528.87 409.19 

16.00 502.43 422.25 

17.00 307.13 276.24 

18.00 0.00 0.00 
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July Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

7.00 0.00 0.00 

8.00 322.90 270.86 

9.00 486.77 377.14 

10.00 552.55 395.28 

11.00 579.03 389.87 

12.00 597.52 394.32 

13.00 595.32 404.42 

14.00 580.39 421.15 

15.00 547.29 430.63 

16.00 497.58 423.20 

17.00 337.13 305.86 

18.00 0.00 0.00 

 

Sept Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 64.27 63.18 

8.00 358.63 343.10 

9.00 565.10 522.37 

10.00 593.27 530.44 

11.00 608.57 531.91 

12.00 601.70 523.55 

13.00 614.80 543.21 

14.00 593.13 539.91 

15.00 586.93 553.32 

16.00 568.10 552.53 

17.00 364.53 362.00 

18.00 72.90 72.90 

19.00 0.00 0.00 

 

 

Aug Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

7.00 0.00 0.00 

8.00 249.42 223.70 

9.00 453.55 383.68 

10.00 498.58 398.20 

11.00 505.94 387.40 

12.00 516.48 390.43 

13.00 517.74 399.80 

14.00 514.10 416.32 

15.00 494.29 424.61 

16.00 439.58 399.71 

17.00 242.03 230.43 

18.00 0.00 0.00 

 

 

Oct Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 318.10 318.07 

8.00 528.26 524.67 

9.00 587.71 575.57 

10.00 602.77 581.43 

11.00 575.32 549.39 

12.00 472.68 451.02 

13.00 473.16 455.51 

14.00 506.97 495.33 

15.00 475.29 471.23 

16.00 466.42 466.23 

17.00 425.32 423.75 

18.00 245.39 240.17 

19.00 0.00 0.00 

20.00 0.00 0.00 
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Nov Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 251.33 249.09 

8.00 462.90 462.65 

9.00 517.70 517.07 

10.00 523.13 520.06 

11.00 512.57 507.51 

12.00 455.90 451.26 

13.00 445.43 442.48 

14.00 455.73 454.91 

15.00 462.80 462.71 

16.00 463.57 460.39 

17.00 436.63 425.27 

18.00 255.77 240.45 

19.00 0.00 0.00 

 

 

 

 

 

 

 

 

 

 

 

Dec Tracked 

Collector 

Hour 
G_Bn, 

W/m
2
 

Gbt, 

W/m
2
 

6.00 0.00 0.00 

7.00 279.61 273.52 

8.00 497.61 494.69 

9.00 523.42 523.25 

10.00 541.74 541.39 

11.00 542.16 540.80 

12.00 443.00 441.68 

13.00 445.94 445.27 

14.00 458.16 458.16 

15.00 464.48 463.36 

16.00 465.84 459.64 

17.00 412.74 397.61 

18.00 261.45 239.79 

19.00 0.00 0.00 
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Monthly Collector Yield Results 

 

 

 

PolyTrough 1200; Field; January Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power, 

kW 

6 0.00 18.27 0.93 0.0000 0.00 0.00 

7 326.96 11.63 0.97 0.6437 635501.08 176.53 

8 599.52 5.59 0.99 0.6622 1225956.62 340.54 

9 658.01 0.47 1.00 0.6642 1362606.47 378.50 

10 675.52 3.44 1.00 0.6648 1393607.55 387.11 

11 650.55 5.89 0.99 0.6640 1332705.13 370.20 

12 493.80 6.70 0.99 0.6575 999302.57 277.58 

13 483.31 5.81 0.99 0.6569 979756.24 272.15 

14 492.13 3.28 1.00 0.6574 1004341.78 278.98 

15 490.19 0.70 1.00 0.6573 1004215.21 278.95 

16 467.08 5.87 0.99 0.6559 945295.42 262.58 

17 412.80 11.95 0.97 0.6522 811684.82 225.47 

18 225.98 18.61 0.93 0.6254 409331.26 113.70 

19 0.00 0.00 1.00 0.0000 0.00 0.00 

  

Total, kJ 12104304.15 

  
Energy 

kWh 3362.31 

 

 



University of Southern Queensland 

Faculty of Engineering and Surveying 

M Zach Muller 

 

PolyTrough 1200; Field; Febuary Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power, 

kW 

6 0.00 13.34 0.96 0.0000 0.00 0.00 

7 231.87 13.46 0.96 0.6269 434907.63 120.81 

8 424.87 15.89 0.95 0.6531 818546.07 227.37 

9 460.93 19.21 0.93 0.6556 871241.36 242.01 

10 477.63 22.29 0.90 0.6566 881851.06 244.96 

11 479.50 24.42 0.89 0.6567 868147.99 241.15 

12 416.10 25.22 0.88 0.6524 742551.33 206.26 

13 416.17 24.56 0.89 0.6524 747565.61 207.66 

14 404.23 22.55 0.90 0.6515 738837.25 205.23 

15 430.27 19.55 0.92 0.6535 808670.58 224.63 

16 411.17 16.21 0.95 0.6520 789311.91 219.25 

17 357.33 13.62 0.96 0.6472 691259.47 192.02 

18 217.63 13.22 0.96 0.6232 406277.20 112.85 

19 0.00 0.00 1.00 0.0000 0.00 0.00 

  

Total, kJ 8799167.48 

  
Power 

kWh 2444.21 

 

PolyTrough 1200; Field; March Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

6 0.00 1.91 1.00 0.0000 0.00 0.00 

7 236.44 4.95 0.99 0.6281 459278.15 127.58 

8 476.41 11.40 0.97 0.6565 945414.69 262.62 

9 563.85 17.04 0.94 0.6608 1091069.04 303.07 

10 547.61 21.46 0.91 0.6601 1023781.88 284.38 

11 566.77 24.29 0.89 0.6610 1034175.58 287.27 

12 511.41 25.23 0.88 0.6584 920996.28 255.83 

13 518.81 24.17 0.89 0.6588 944594.74 262.39 

14 525.70 21.25 0.91 0.6591 983089.12 273.08 

15 541.24 16.74 0.94 0.6599 1047821.60 291.06 

16 547.79 11.04 0.97 0.6601 1094912.31 304.14 

17 446.32 4.56 1.00 0.6546 904502.58 251.25 

18 199.29 2.32 1.00 0.6175 382709.98 106.31 

19 0.00 0.00 1.00 0.0000 0.00 0.00 

  

Total, kJ 10832345.95 

  
Power 

kWh 3008.98 
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PolyTrough 1200; Field; April Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

7 0.00 16.51 0.94 0.0000 0.00 0.00 

8 292.84 23.10 0.90 0.6389 522314.80 145.09 

9 514.82 28.92 0.84 0.6586 890511.54 247.36 

10 520.86 33.50 0.80 0.6589 848799.27 235.78 

11 507.66 36.34 0.76 0.6582 791245.74 219.79 

12 501.66 37.08 0.75 0.6579 772142.14 214.48 

13 510.37 35.59 0.77 0.6584 805308.29 223.70 

14 527.65 32.10 0.81 0.6592 877414.34 243.73 

15 563.69 27.03 0.86 0.6608 999687.94 277.69 

16 555.19 20.90 0.91 0.6605 1043377.33 289.83 

17 301.57 14.15 0.96 0.6402 575476.78 159.85 

18 0.00 7.21 0.99 0.0000 0.00 0.00 

  

Total, kJ 8126278.19   

Power 

kWh 2257.30   

 

 

 

PolyTrough 1200; Field; May Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

7 0.00 25.16 0.88 0.0000 0.00 0.00 

8 244.37 31.88 0.81 0.6299 389431.50 108.18 

9 359.69 37.92 0.74 0.6474 537040.21 149.18 

10 366.17 42.73 0.68 0.6481 498898.49 138.58 

11 361.92 45.70 0.63 0.6476 460568.05 127.94 

12 350.15 46.35 0.62 0.6464 437661.51 121.57 

13 374.54 44.56 0.65 0.6489 490602.73 136.28 

14 423.50 40.64 0.71 0.6530 606572.22 168.49 

15 471.64 35.18 0.78 0.6562 746541.73 207.37 

16 449.36 28.76 0.85 0.6548 774343.81 215.10 

17 295.71 21.89 0.91 0.6394 533512.03 148.20 

18 0.00 14.98 0.95 0.0000 0.00 0.00 

  

Total, kJ 5475172.28   

Power 

kWh 1520.88   
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PolyTrough 1200; Field; June Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

7 0.00 28.55 0.85 0.0000 0.00 0.00 

8 164.48 35.35 0.77 0.6034 238742.03 66.32 

9 285.20 41.56 0.69 0.6377 391716.39 108.81 

10 327.31 46.61 0.62 0.6437 404758.17 112.43 

11 305.19 49.84 0.57 0.6408 344084.74 95.58 

12 300.66 50.65 0.55 0.6401 330507.81 91.81 

13 341.10 48.87 0.58 0.6454 398198.77 110.61 

14 380.38 44.88 0.64 0.6494 494995.57 137.50 

15 409.19 39.31 0.72 0.6519 600025.83 166.67 

16 422.25 32.82 0.80 0.6529 688529.86 191.26 

17 276.24 25.92 0.87 0.6362 477263.66 132.57 

18 0.00 19.04 0.93 0.0000 0.00 0.00 

  

Total, kJ 4368822.83   

Power 

kWh 1213.56   

 

 

 

PolyTrough 1200; Field; July Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

7 0.00 26.18 0.87 0.0000 0.00 0.00 

8 270.86 32.98 0.80 0.6352 428717.36 119.09 

9 377.14 39.22 0.72 0.6491 551641.81 153.23 

10 395.28 44.33 0.65 0.6507 522048.48 145.01 

11 389.87 47.68 0.60 0.6503 473799.32 131.61 

12 394.32 48.71 0.58 0.6507 466263.08 129.52 

13 404.42 47.21 0.61 0.6515 498488.04 138.47 

14 421.15 43.48 0.67 0.6528 568683.18 157.97 

15 430.63 38.11 0.74 0.6535 646832.29 179.68 

16 423.20 31.73 0.82 0.6530 700524.12 194.59 

17 305.86 24.87 0.88 0.6409 538035.34 149.45 

18 0.00 17.96 0.94 0.0000 0.00 0.00 

  

Total, kJ 5395033.01   

Power 

kWh 1498.62   
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PolyTrough 1200; Field; Aug Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

7 0.00 19.58 0.92 0.0000 0.00 0.00 

8 223.70 26.25 0.87 0.6248 378294.26 105.08 

9 383.68 32.23 0.81 0.6497 627725.43 174.37 

10 398.20 37.00 0.75 0.6510 607245.44 168.68 

11 387.40 40.03 0.71 0.6501 558926.10 155.26 

12 390.43 40.89 0.70 0.6503 554214.22 153.95 

13 399.80 39.45 0.72 0.6511 584101.41 162.25 

14 416.32 35.92 0.77 0.6525 647575.20 179.88 

15 424.61 30.79 0.83 0.6531 711694.91 197.69 

16 399.71 24.59 0.88 0.6511 716356.43 198.99 

17 230.43 17.81 0.94 0.6266 420549.05 116.82 

18 0.00 10.88 0.97 0.0000 0.00 0.00 

  

Total, kJ 5806682.45   

Power 

kWh 1612.97   

 

PolyTrough 1200; Field; September Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

6 0.00 3.71 1.00 0.0000 0.00 0.00 

7 63.18 10.55 0.98 0.0000 0.00 0.00 

8 343.10 16.93 0.94 0.6456 649080.68 180.30 

9 522.37 22.42 0.90 0.6590 966782.89 268.55 

10 530.44 26.61 0.87 0.6593 942961.44 261.93 

11 531.91 29.07 0.84 0.6594 919649.28 255.46 

12 523.55 29.53 0.84 0.6590 899653.26 249.90 

13 543.21 27.93 0.85 0.6599 952540.37 264.59 

14 539.91 24.46 0.89 0.6598 981803.27 272.72 

15 553.32 19.49 0.93 0.6604 1051396.89 292.05 

16 552.53 13.44 0.96 0.6604 1091717.59 303.25 

17 362.00 6.76 0.99 0.6476 721475.06 200.41 

18 72.8997 0.1740 1.003 0.5014 113985.63 31.66267 

19 0.0000 0.0000 1.003 0.0000 0.00 0 

  

Total, kJ 9291046.36 

  
Power 

kWh 2580.85 
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PolyTrough 1200; Field; Oct Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

6.00 0.00 5.95 0.99 0.0000 0.00 0.00 

7.00 318.07 0.69 1.00 0.6425 637013.86 176.95 

8.00 524.67 6.68 0.99 0.6591 1064409.92 295.67 

9.00 575.57 11.67 0.97 0.6613 1149174.17 319.22 

10.00 581.43 15.29 0.95 0.6616 1138845.93 316.35 

11.00 549.39 17.27 0.94 0.6602 1060435.53 294.57 

12.00 451.02 17.41 0.94 0.6549 862767.56 239.66 

13.00 455.51 15.70 0.95 0.6552 881458.47 244.85 

14.00 495.33 12.30 0.97 0.6576 980313.37 272.31 

15.00 471.23 7.50 0.99 0.6562 949319.65 263.70 

16.00 466.23 1.63 1.00 0.6559 951958.70 264.43 

17.00 423.75 4.93 0.99 0.6530 855882.00 237.75 

18 240.17 11.84 0.97 0.63 455656.68 126.57 

19 0.00 0.00 1.00 0.00 0.00 0.00 

  

Total, kJ 10987235.84 

  
Power 

kWh 3052.01 

 

PolyTrough 1200; Field; Nov Average Day 

hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

6 0.00 14.13 0.96 0.0000 0.00 0.00 

7 249.09 7.66 0.99 0.6309 482235.57 133.95 

8 462.65 1.90 1.00 0.6557 943942.88 262.21 

9 517.07 2.82 1.00 0.6587 1058265.59 293.96 

10 520.06 6.22 0.99 0.6588 1056137.97 293.37 

11 507.51 8.05 0.99 0.6582 1023636.77 284.34 

12 451.26 8.18 0.98 0.6549 905206.97 251.45 

13 442.48 6.61 0.99 0.6543 891418.72 247.62 

14 454.91 3.44 1.00 0.6552 924976.03 256.94 

15 462.71 1.10 1.00 0.6557 945142.39 262.54 

16 460.39 6.72 0.99 0.6555 928849.24 258.01 

17 425.27 13.10 0.96 0.6531 832583.12 231.27 

18 240.45 19.93 0.92 0.63 433688.46 120.47 

19 0.00 0.00 1.00 0.00 0.00 0.00 

  

Total, kJ 10426083.72 

  
Power 

kWh 2896.13 
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PolyTrough 1200; Field; December Average Day 

Hour 
Gbt 

w/m^2 

Incidence 

Angle 

IAM, 

Kθ 

Thermal 

Efficiency 

Useful energy, 

Qu kJ 

Power 

kW 

6 0.00 18.46 0.93 0.0000 0.00 0.00 

7 273.52 11.98 0.97 0.6357 524154.89 145.60 

8 494.69 6.21 0.99 0.6575 1002624.34 278.51 

9 523.25 1.44 1.00 0.6590 1073756.75 298.27 

10 541.39 2.06 1.00 0.6599 1111420.01 308.73 

11 540.80 4.06 1.00 0.6598 1105981.10 307.22 

12 441.68 4.42 1.00 0.6543 894946.31 248.60 

13 445.27 3.13 1.00 0.6545 905040.68 251.40 

14 458.16 0.26 1.00 0.6554 936313.24 260.09 

15 463.36 3.99 1.00 0.6557 941819.02 261.62 

16 459.64 9.36 0.98 0.6555 918726.55 255.20 

17 397.61 15.56 0.95 0.6509 765056.59 212.52 

18.00 239.79 23.49 0.89 0.63 419450.73 116.51 

19.00 0.00 0.00 1.00 0.00 0.00 0.00 

  

Total, kJ 10599290.20 

  
Power 

kWh 2944.25 
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Appendix C – NEP Solar Yield results 
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Appendix D – BROAD Absorption Chiller Data Sheets 
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Note that the image is a little unclear. It was provided this way. 
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Appendix E – Psychometric Chart 

 


