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Abstract

The auscultation of the heart with a stethoscope is one of the most common methods

employed by physicians to diagnose cardiovascular and respiratory illnesses. Phono-

cardiography refers to the technique of acquiring and recording of heart sound signals.

The emergence of teleheath and electronic stethoscope technology has opened new op-

portunities for rural and regional medical services including the remote screening of

heart murmurs.

This dissertation investigates the design and implementation of a wireless data acqui-

sition module to capture auscultation sounds from an electronic stethoscope, and sets

the foundation for further research into the area of remote auscultation diagnosis and

non-invasive techniques for diagnosing abnormalities.

Methods to detect activity in the signal are evaluated for the suppression of ambient

noise and adaptive gain control. Several well known noise reduction techniques for

signals acquired from a single source are studied and evaluated. A PI controller is

developed to control the gain of the input stage to account for attenuation of the heart

and respiratory sounds caused by volume effects (i.e. absorption) of the human body.

The acquisition module is controlled by a 16bit dsPic digital signal controller which

samples auscultation signals from a digital stethoscope and streams the auscultation

signals to the host over a wireless Bluetooth connection. The signal and power supply is

isolated for compliance with the international standards for medical devices (IEC 60601-

1). A Windows application incorporating a Bluetooth client was developed to receive

incoming data packets from the acquisition module and display the signal graphically.
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Chapter 1

Introduction

The auscultation of the heart with a stethoscope is one of the most common methods

employed by physicians to diagnose cardiovascular and respiratory illnesses. With the

growing acceptance of teleheath (remote diagnosis) and electronic stethoscope tech-

nologies, the acquisition and graphical display of heart and lung sounds may prove to

be beneficial for rural and regional medical services.

The benefits of a wireless stethoscope are numerous: Heart and lung sounds can be

transferred to a PC, laptop or mobile phone further further analysis without cables.

The patient and practitioner are free to move without hindrance and are safe from

potentially fatal voltage sources that may be present on a device that is not properly

isolated.

Phonocardiography provides a graphical visualisation of auscultation signals, allowing

clinical observation of heart sounds that are characterised by frequencies outside the

normal range of human hearing (Tilkian and Conover, 2001). The time-frequency

analysis of auscultation signals has been proven to be a powerful diagnosis tool for the

segmentation of heart and lung sound components and identification of abnormal heart

sounds including systolic murmurs and ventricular septal defects.

The key objective of this project is to capture heart sounds from an electronic stetho-

scope and transmit the data to a desktop PC for display.
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The purpose of this report is to review background research in the field of signal process-

ing when applied to phonocardiographic records. This includes: (i) An understanding

of the sounds generated by the heart, (ii) methods of controlling the signal gain before

it is sampled, (iii) an evaluation of common de-noising techniques and (iv) an evalua-

tion of time-frequency transforms for the display of phonocardiographic signals in the

time-frequency domain.

1.1 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 reviews past and current research in the field of heart sounds and data

acquisition.

Chapter 3 investigates the signal processing aspects of the project.

Chapter 4 discusses the hardware and firmware design of the wireless acquisition

module.

Chapter 5 discusses the software design of the host application.

Chapter 6 discusses the test and implementation stage of the project.

Chapter 7 concludes the dissertation and suggests further work in the area of remote

auscultation diagnosis.



Chapter 2

Literature Review

2.1 Introduction

The auscultation of the heart is one of the most common methods employed by physi-

cians to diagnose cardiovascular and respiratory illnesses. The most common auscul-

tative tool is the stethoscope. An experienced physician can diagnose a wide range

of cardiovascular abnormalities including mitral stenosis and systolic murmurs, how-

ever many abnormalities are commonly missed due to an inability to apply selective

listening to the various components of the heart beat, or a natural inability to detect

frequencies outside the normal range of human hearing. Segmentation of the various

heart sound components, including components that indicate an abnormality, can be

difficult to achieve if they occur simultaneously or close apart (Tilkian and Conover,

2001).

Phonocardiography provides a graphical visualisation of auscultatory signals, allowing

clinical observation of heart sounds characterised by frequencies outside the normal

range of human hearing. With the application of a Short-Time Fourier Transform or

Continuous Wavelet Transform, heart sounds are represented in the time-frequency

domain, hence allowing heart sound components to be readily identified. As such, the

phonocardiogram is not only a useful diagnosis tool for the experience clinician, but

also a valuable learning tool for trainee medical staff (ibid).
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The phonocardiogram also facilitates a screening process to rule out innocent murmurs

before referring the patient to a cardiologist for expensive echocardiography.

This review of literature will cover the foundations of bioacustics pertaining to the

cardiovascular system, the capture of auscultative signals in a noisy environment and

evaluate methods of transforming heart sounds into the time-frequency domain for

analysis.

2.2 Acoustic Properties of the Heart

2.2.1 Cardiac Cycle

The cardiac cycle can be defined as as the synchronized activity of the atria and the

ventricles. During the atrail and ventricular diastole: (i) Venous (deoxygenated) blood

enters the right atrium through the superior and inferior venae cavae.(ii) Blood flows

into the right ventricle through the tricupsid valve. (iii) Arterial (oxygenated) blood

flows from the lung into the left atrium. (iv) The left ventricle is filled with the atrerial

blood through the mitral blood (Tilkian and Conover, 2001).

During the atrial systole phase, the atria begins to contract towards the end of the

ventricular diastole. During the ventricular systole phase: (i) Venous blood moves

through the pulmonary artery from the right ventricle to the lungs for oxidation. (ii)

Arterial blood passes through the aorta from the left ventricle to the circulatory system

(ibid).

The human heart consists of four valves to ensure that blood flows in only one direction

through the circulatory system. The mitral and tricuspid valves, commonly referred to

as the atrioventricular valves, guard the entrance from the atria to the ventricles. The

semilunar valves (aortic and pulmonic valves) prevent blood from flowing back into the

ventricles from the aorta and pulmonary arteries (ibid).
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Figure 2.1: The blood flow through the four valves of the heart. Source: Tilkian and

Conover (2001)

2.2.2 Heart Sounds

The first heart sound (S1) is caused by the closure of the atrioventricular valves - first

the mitral valve followed shortly by the tricuspid valve. The closure of the aortic valve

closure, closely followed by the pulmonary valve closure, causes the second heart sound

(S2). The first and second heart sounds occur within a frequency range of 20Hz to

175Hz (Tilkian and Conover 2001). Rangayyan and Lehner (1987) however discovered

that S1 contained peaks in low frequency range (10-50Hz) and and medium frequency

range (50-140Hz), whilst S2 was found to contain peaks in a lower frequency range (10

to 80Hz), medium-frequency range (80-200Hz) and high-frequency range (220-400Hz).

The third (S3) and fourth (S4) heart sounds are the result of passive ventricular filling

(early diastole) and active ventricular filling sound (late diastole) respectively. The

third and fourth heart sounds occur between 20Hz and 70Hz. The presence of S3
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Figure 2.2: The four valves of the heart. Source: Tilkian and Conover (2001)

and S4 may suggest heart abnormalities, and therefore should be examined carefully

(Tilkian and Conover 2001).

Figure 2.3: Frequencies of common heart and respiratory sounds. Source:Tilkian and

Conover (2001)

There are various other heart sounds that may indicate an abnormality. Such heart

sounds include clicks, pops and ejection sounds. Ejection sounds may be caused by a

diseased aortic and pulmonary valve. An abnormal or stenosed mitral or tricuspid valve

may result in an opening snap or click (Tilkian and Conover 2001). Rangayyan and

Lehner (1987) discovered that some murmurs can occur at frequencies up to 600Hz.
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2.3 Time-Frequency Analysis

Frequency analysis is an important component of phonocardiographic diagnosis. Re-

search has found that large intensity murmurs can overlap with the first and second

heart sounds (Liang et al, 1997), therefore a time-domain representation of the phono-

cardiographic signal alone is inadequate for diagnosis. Analysis of the heart sounds in

the frequency domain can be accomplished by performing a Fourier Transform over a

segment of the heart sounds.

The Discrete Fourier Transform (DFT) is defined by:

X(k) =
N−1∑
n=0

x(n)ejnωk (2.1)

where

wk =
2πk

N

Time information is lost as a consequence of transforming the signal into the frequency

domain. The Fourier Transform is therefore useful for analysing stationary signals (sig-

nals that do not vary over time), but inadequate for the study of a signal that contains

non-stationary characteristics (Lee et al, 1999). An adaptation of the Fourier Trans-

form, the Short-Time Fourier Transform (STFT), computes the time-varying frequency

of the signal by calculating the Fourier Transform over a series of short, overlapping

segments of the signal (Vikhe et al, 2009). The time information is derived from the

location of the current segment (window) under analysis (Lee et al, 1999). To reduce

the effects of spectral leakage, each segment is passed through an appropriate window

function (Obaidat and Matalgah, 1992).

The Discrete Short-Time Fourier Transform is defined by

X(k,w) =
N−1∑
n=0

w(n− k)x(n)ejnωk (2.2)

where

wk =
2πk

N
(2.3)

Lee et al (1999) found that the STFT was constrained by strict limitations on the

time-frequency resolution. The resolution is set by the length of the window. Thus,
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higher frequency components are displayed with equal precision as lower frequency

components. Increasing the length of the window will increase the frequency resolution,

but at the same time decrease the time resolution of the signal (Obaidat and Matalgah,

1992).

An alternative to the Short-Time Fourier Transform is the Continuous Wavelet Trans-

form. Whilst the Fourier transform uses a sinusoidal wave to analyse the signal, the

Wavelet Transform transforms a time-domain signal into the time-frequency domain

with wavelets of finite energy. Unser and Aldroubi (1996) analogised the wavelet trans-

form as a function of correlation of which maximum output occurs when the input

signal most resembles the analysis template (mother wavelet).

The mother wavelet is defined by:

ψa,b(t) =
1√
a
ψ(
t− b
a

)dt (2.4)

where a is the scaling parameter and b is the shifting parameter.

The continuous wavelet transform is defined as:

W (a, b) =

∫ ∞
−∞

x(t)ψa,b(t)dt (2.5)

The time spread is proportional to the scaling parameter a, whereas a is inversely

proportional to the frequency. Thus, the wavelet transform exhibits localisation in

time whereby higher frequency components are accurately displayed on the time axis.

The time interval between the closure of the aortic and pulmonary heart valve can be

measured to test for a heart condition known as pulmonic stenosis (Vikhe et al, 2009).

Vikhe et al discovered that it was impossible to determine the time period between

the closure of the aortic and pulmonary heart valves during the second heart sound

with the short time Fourier transform. In contrast, the time localisation of the wavelet

transform enabled an accurate time measure between the closure of the aortic and

pulmonary heart valves.
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2.4 First Heart Sound Detection

The observed PCG signal can be modelled as:

S(n) = F (n) + C(n) +N(n) (2.6)

Where F(n) denotes the fundamental components of the heart sound, S1 and S2, C(n)

represents a mixture of other heart sound components and N(n) represents noise. The

analyse of heart sounds for diagnostic purposes is therefore dependent on adequate

segmentation of the heart sound. Accurate segmentation of the heart sounds greatly

simplifies the identification of abnormal heart sounds from the cardiac cycle (Wang et

al, 2005).

Malarvili et al (2003) demonstrated a simple method of segmenting the heart sound

components by correlating the instantaneous energy of the patients ECG signal with

the heart sound signal. The segmentation worked under the premise that the opening

and closing of cardiac valves are preceded by electrical events of the cardiac cycle.

Iwata et al (1980) introduced a method to detect the first and second heart sounds

by spectral analysis. The spectral parameters are extracted from a linear prediction

process. An ECG reference is used to aid the selection of the spectral peaks for analysis

by limiting the range of tracking .

Since ECG signal analysis is outside the scope of this dissertation, these methods will

not be considered.

Liang et al (1997) introduced a time-domain technique of heart sound segmentation

that derived an envelope from the Shannon energy principle. The envelope is filtered

twice, forward and time-reversed, to remove phase-distortion and delay. After filtering,

the signal is normalised to the absolute maximum amplitude of the signal envelope. The

average Shannon energy is then calculated over contiguous blocks with the following

formula:

Es(t) =
−1

N

N∑
i=1

x2(i) · logx2(i) (2.7)
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Where N is the number of samples in the contiguous block segment.

The average Shannon energy is then normalised with the following equation:

Pa(t) =
Es(t)− Ēs(t)
σ(Es(t)

(2.8)

Where Ēs(t) and σ(Es(t) is the mean and standard deviation of the average Shannon

energy, respectively.

The output is represented by a series peaks that correspond to the first and second

heart sound, other heart sound components, and noise. A threshold is temporarily

applied to remove peaks caused by low-level noise. Liang et al added a rule based

algorithm to reject extra peaks caused by noise (eg speech) and recover weak heart

sound components that are below the threshold. Identification of S1 and S2 follows by

identifying the respective systolic and diastolic periods with the assumption that the

systolic period is constant whereas the diastolic period is variable.

Liang et al continued their research on heart segmentation by developing an algorithm

which used discrete wavelet decomposition and reconstruction to extract the signal

within frequency bands that correspond to the first and second heart sounds. The

heart sound signal was applied to fifth-level discrete wavelet transform to obtain the

1st to 5th detail coefficients as well as the 4th and 5th approximation coefficients. The

signal was reconstructed with a filter bank consisting of 6th order Duabechies filters.

The Shannon energy envelogram from Liang et al’s earlier research was applied to the

reconstructed detail and approximation frequency bands to determine the peaks that

correspond to S1 and S2.

Liang et al argued that the discrete wavelet decomposition and reconstruction method

offers greater immunity to previous time-domain and fixed-filter methods. Respira-

tion noise was eliminated, however external environmental noise including speech and

ambient noise caused errors during segmentation.

Wang et al (2005) argued that time-domain algorithms proposed by Liang et al and

others are unreliable if the signal is contaminated by lung noises or environmental noise.
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Wang et al developed an improved segmentation method by implementing a Wavelet

de-noising algorithm using prior to reconstructing the coefficients applicable to the

S1 and S2 frequency bands. Not unlike Liang’s wavelet segmentation algorithm, the

Shannon energy is calculated from the reconstructed signal and analysed to determine

the peaks of S1 and S2.

2.5 Heart Rate Detection

A simple approach to determine the heart rate was outlined by Markandey (2009). The

heart sound signal is first smoothed by a moving average filter defined by the following

expression:

y(i) =
1

N

N−1∑
j=0

x(i+ j) (2.9)

Where N is the order of the filter.

The first heart sound is then detected by calculating the maximum slope of the resulting

waveform. The heart rate, HR, is calculated as:

HR =
fs · 60

n
(2.10)

Wherefs is the sampling frequency and n is the number of samples between two con-

secutive S1 events.

Markandey’s algorithm applied a moving average to the heart rate to produce a stable

heart rate figure suitable for display on a user interface.

2.6 Auto Gain Control

The purpose of an Automatic gain control (AGC) in the input sampling stage of a

data acquisition circuit is to ensure that the input analogue waveform is accurately

quantised by the analogue-to-digital (ADC) converter (Kang and Lidd, 1988). This is

especially true in the case of linear quantisation. Weak input analogue signals result in
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a power signal-to-noise ratio due to quantisation noise (Young, 1995). Conversely, an

AGC can attenuate high-amplitude signals to prevent saturating the ADC (ibid).

With reference to the propose phonocardiogram acquisition module, an input stage

consisting of an AGC is necessary because: 1. The output characteristics of the elec-

tronic stethoscope are unknown; and; 2. Attenuation of sound due to the volume effects

of the human body.

Kaniuas (2006) studied the attenuation of biosignals through the chest region. Volume

effects (i.e. absorption) accounted for most of the attenuation, of which the three main

causes of sound absorption in the chest were: (i) inner friction, (ii) thermal conduction

and (iii) molecular relaxation. Each cause exhibited a different sound absorption coef-

ficient. In an earlier paper, Kaniuas et al (2005) demonstrated a correlation between

attenuation and the body mass index (BMI). A increased amplitude of auscultative

signals were observed in patients with a higher BMI.

Kaniuas approximated the amplitude at the point of auscultation by the following

equation:

p(r) = k · p0
r
· e−α(r)·r (2.11)

Where k is the constant, r = propagation distance, p0 is the sound pressure amplitude

of the point source at r=0, and a(r) is the sound absorption coefficient as a function

of r. Kaniuas et al (2005) observed the attenuation at likely regions of the chest to be

examined by stethoscope:

It is therefore possible to conclude that a manual gain control would be inadequate

for this application because the amplitude of the input signal would vary significantly

during the auscultation.

A conventional analogue AGC system consists of a variable gain amplifier, a fixed gain

amplifier, a signal detector, low pass filter and difference amplifier in a feedback loop

(Steber, 1988). The gain of the variable gain amplifier is determined by the difference

amplifier which compares the output of the signal with a reference voltage.
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Figure 2.4: Attenuation of the human body due to volume effects Source: Kaniuas et al

(2005)

Figure 2.5: Typical Analogue AGC System

Although Steber noted that analogue AGC systems are low-cost and easily implemented

in hardware, Steber identified a number of problems with the analogue AGC system:

(i) Analog AGC systems tend to have a poor transient response because of the analogue

filter components in the control loop. (ii) Undesirable distortion due to overloading can

occur because the gain is a function of average amplitude rather than peak amplitude.

Another constraint, according to Kang and Lidd (1984), is that a gain-change within

the analysis window of a time-varying waveform can introduce errors into a system

involving analysis and synthesis. This not only creates problem for the de-noising stage

of the phonocardiogram acquisition module if a transform/thresholding algorithm is

applied to the signal, but also for any subsequent analysis of the heart sounds.

Using digital signal processing techniques, Steber implemented an automatic gain con-
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trol system that was equivalent to the analog system. The signal detector was imple-

mented by extracting the positive half-cycles from the waveform. If any part of the

half-cycle is above the noise-floor threshold, the signal would be multiplied by a gain

factor to increase the amplitude of the signal to the maximum value. The noise-floor

threshold is pre-determined by the characteristics of the input signal.

Kang and Lidd (1984) introduced a automatic gain control (AGC) algorithm based on

a LPC encoder that used low-band energy estimation for voice activity detection. The

algorithm used a probably density function to compute the mean value of the low-band

energy of the signal to smooth out fluctuations caused by sudden changes in loudness,

leakage of higher frequency components and ambient-noise. The error signal of the

control loop was calculated by subtracting the mean of the low-band energy from a

reference level.The gain would then be incrementally adjusted by an incremental gain

with a non-linear relationship to the error.

One of the advantages of Kang and Lidd’s AGC algorithm is that gain is not adjusted

during unvoiced (non-speech) periods. Commenting on the auto gain control algorithm,

Kang and Lidd noted that steady state was achieved within a few seconds and remained

stable with unnecessary gain recalculations.

Archibald (2008) built upon the research of Steber and Kang et al by adding a proportional-

integral (PI) controller for detecting voice activity. One distinguishing aspect of Archibald’s

auto gain control system is that it incorporates an adaptive noise detection algorithm,

whereas the methods proposed by Steber and Kang et al required a LPC encoder to

detect speech and non-speech periods. The adaptive noise detection algorithm utilises

a PI controller to estimate the noise floor level for voice activity detection.

Stationary noise is determined by computing the variation of signal energy within an

envelope. A flat variation indicates stationary noise. In contrast, an envelop with a

high variation of signal energy indicates a period of voice/activity. In the event of a

non-voice period, the gain is set to 0. Otherwise, the gain is calculated by:

G =
DesiredAmplitude

PeakAmplitude
(2.12)
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Which is a rather simplistic method to correct the gain. On commenting on the pro-

posed algorithm, Archibald noted that the quality of the output signal was dependant

on the rate of gain change. Audible zipper noise will occur if the gain change is too fast,

whereas noise amplification and clipping can occur if the gain change is too slow. This

behaviour observed by Archibald corresponds to the transient response of under-damp

and over-damped second order systems respectively (Nise, 2000).

Archibald’s algorithm could be improved by applying a proportional-integral-derivative

(PID) controller to the amplitude error calculated by:

Error = DesiredAmplitude− PeakAmplitude (2.13)

Ogata (1995) expressed the continuous PID controller as:

m(t) = K

[
e(t) +

1

Ti

∫ t

0
e(t)dt+ Td

de(t)

dt

]
(2.14)

The discrete PID controller can be represented as a difference equation of:

mk = q0ek + q1ek−1 + q2ek−2 +mk−1 (2.15)

Where coefficients q0 = K
(
Td
T

)
, q1 = −K

(
1 + 2Td

T = T
Ti

)
and q2 = KTd

T for a rect-

angular approximation of integration. Coefficients q0, q1 and q2 can be determined

experimentally,and/or computed with a maximum descent algorithm (Aigner et al).

2.7 Performance Characteristics of Voice Activity Detec-

tion

Beritelli et al (2002) identified several parameters which characterised the performance

of a voice activity detection algorithm:

• Front End Clipping (FEC): Clipping introduced in passing from noise to speech

activity.
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• Mid Speech Clipping (MSC): Clipping due to speech misclassified as noise.

• OVER: Noise interpreted as speech due to a late detection of the transition from

active to silence.

• Noise Detected as Speech (NDS): Noise interpreted as speech within a silence

period.

To reduce the probability of front end and mid speech clipping from occuring, Woo et

al (2000) proposed the formation of a hysteresis based on the estimated noise floor.

2.8 Ambient Noise Cancellation

The quality of heart sounds acquired by a phonographic device can be impaired by

internal (bodily) and external noise sources. Leading causes of noise include respiration

sounds, movement of the patient, movements of the stethoscope (shear noise) and

external environmental noises (Varady, 2001).

Grumet (1993) identified numerous external environmental noise sources in a clini-

cal environment. Call buttons, telemetric monitoring systems, electronic intravenous

machines, patient-activity monitors and personal movement are typical examples of en-

vironmental noises that were identified by Grumet. Grumet measured an average noise

level of 67db in acute care admission and general medical wards at night. A study

into noise pollution in a hospital setting by Cabrera and Lee (2000) supported this

observation in a separate study that found the noise levels in a typical urban hospital

would often exceed 55db.

Whilst much of research into noise within a clinical setting focuses on the psycholog-

ical impact on patients, the cancellation of ambient noise is of utmost importance to

phonocardiography which requires a signal with a relatively high signal to noise ration

for accurate analysis and diagnosis (Zhoa, 2005).

A conventional method of noise cancellation is to apply a fixed FIR or IIR filter to the

signal input. However a fixed filter will not eliminate all ambient noise from the signal
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because ambient noise can be caused by various sources at various frequencies and

signal intensities (Liang et al , 1997). Another difficulty is presented by the process of

selecting the frequency range of the fixed frequency band without degrading the useful

heart sounds components in signal (Varady, 2001). A superior de-noising technique

would involve the use of an adaptive filter as the impulse response of an adaptive filter

is adjusted automatically to operate under changing conditions and minimise the signal

error (Widrow et al, 1975).

The Weiner filter is an optimal filtering method that suppresses noise without degrading

the useful components of the signal (Widrow et al, 1975). The impulse response of a

Weiner filter is designed so that the output closely approximates the characteristics of

the expected signal (Proakis and Manolakis, 1996). Consider the following model:

From above model, the error can be mathematically represented as:

e(n) = d(n)− y(n) (2.16)

An ideal filter will reduce the mean-square error to zero.

The FIR Weiner filter of length M can be defined as

y(n) =

M−1∑
k=0

h(k)x(n− k) (2.17)

Where h(k) represents the coefficients of the filter.

The objective of the Weiner filter is to minimise error. From equation (2.16), the mean

square error is :

εM = E|e(n)|2 = E|d(n)−
M−1∑
k=0

h(k)x(n− k)|2 (2.18)
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Minimization of εM yields:

M−1∑
k=0

h(k)γxx(l − k) = γdx(k) (2.19)

Where γxx is the autocorrelation of the input signal and γdx(k) is the cross-correlation

between the expected and input signals, that is E [d(n)x∗(n− k)] (Proakis and Manolakis,

1996).

Equation (2.19) can be expressed as:

ΓMhM = γd (2.20)

Where ΓMhM is a M x M dimension Toeplitz matrix comprising of the autocorrelation

of the input signal and γd is the cross-correlation vector of the expected and input

signals (Proakis and Manolakis, 1996).

To solve for the optimal filter coefficients, hM :

hM = Γ−1M γd (2.21)

The above equation takes the form of a series of Yule-Walker equations which can be

efficiently solved by the Levinson-Durbin algorithm (Proakis and Manolakis, 1996).

One disadvantage of the Wiener filter proposed above, according to Widrow et al (1975),

is that it requires a ”priori” knowledge of the expected signal characteristics. However,

this information can be recorded in a noise free environment and stored in memory.

Boll (1979) proposed a subtractive noise suppression algorithm that obtained the noise

spectrum during periods of inactivity. The signal is buffered into contiguous frames and

windowed to eliminate spectral leakage. The fast Fourier transform (FFT) is applied to

the signal and averaged over successive frames. During periods of non-speech activity,

the noise floor level, also known as the bias, is estimated.

The bias is then subtracted from the the magnitude of the spectrum of speech periods.

Values with a negative magnitude are set to zero (Boll defines this process as half-wave

rectification). Boll proposes an additional step that involves selecting the minimum
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Figure 2.6: Flow chart of subtractive noise suppression algorithm. Source: Boll (1979)

magnitude value from three adjacent frames where the magnitude is less than the noise

floor level calculated in an earlier step. The signal is attenuated during periods of

non-speech activity, and finally transformed back into the time domain with an inverse

fast Fourier transform (IFFT) function.

Boll’s spectral subtraction algorithm presents a problem in relation to phonocardio-

graphic signals. Heart sounds are non-stationary signals (Iwata, 1980), thus averaging

the magnitude may cause temporal smearing of short transitory sounds (Boll, 1979).

Scarlat (1996) noted that the power spectral method proposed by Boll produced un-

natural artefacts described as ”musical noise”

Varady (2001) introduced a method of de-noising phonocardiographic signals with an

adaptive wavelet filter. Varady’s filter decomposed the heart sounds and a noise refer-

ence into coefficients with the discrete wavelet transform. A rule based algorithm was
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applied to perform cross-channel cancellation of noise whereby the wavelet coefficients

of the noise reference were subtracted from the wavelet coefficients of the heart sounds.

Adaptive thresholding was applied to the resulting coefficients to remove residual noise.

The signal is reconstructed with the inverse wavelet transform.

Varady’s algorithm assumes the presence of a second transducer to provide the noise

reference, however the noise can be extracted from non-speech (or non-heart beat)

sections as demonstrated by Archibald (2008) and Boll (1979).

Zhao (2005) studied a form of wavelet shrinkage that derives the threshold function

from the Stein Unbiased Risk Estimate (SURE). The Stein Unbiased Risk Estimate

is a statistical function that adaptively optimises the threshold levels used to remove

noise from the signal. Zhao’s wavelet shrinkage method makes the assumption that the

energy of the useful components will be concentrated in a few coefficients of the wavelet

transform, whereas noise will be uniformly distributed. Therefore, Zhao’s algorithm is

expected to be effective against ambient environmental noise (eg air conditioning) but

not so effective against non-stationary noise such as speech or crying.

2.9 Signal Encoding Techniques

In order to transmit the heart sounds wirelessly, the heart sounds must be encoded in a

digital format that is resilient to a high noise environment. The two encoding methods

covered in this section are (i) Pulse code modulation (PCM) and (ii) Continuously

variable slope delta modulation (CVSD).

Pulse code modulation (PCM) is a common technique for converting analogue signals

into a binary code for transmission.The amplitude of each sample is represented by a

word of data. A significant disadvantage of PCM encoding is the higher bandwidth

requirements compared to single-bit word encodings such as CVSD (Young, 1994).

Despite the simplicity of PCM, Prabhu et al (2006) argues that PCM is more prone to

interference than CSVD.

Continuously variable slope delta modulation (CVSD) is an adaptation of adaptive
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delta modulation. A sample is represented by a single bit which refers to change in the

amplitude of the signal. CVSD encoders typically require a higher sample rate due to

the reduction of bits per sample (Prabhu et al 2006).

2.10 Conclusions

The continuous wavelet transform was judged to be the best transform for representing

phonocardiographic signals in the time-frequency domain due to the superior resolution

properties over the short time Fourier transform. An automatic gain control algorithm

based on the PI controller was deemed to be superior to alternate techniques examined

by this review. An adaptive filter will filter noise far effectively than a fixed filter,

however an empirical approach is required to select the best filter given the constraints

of the hardware.



Chapter 3

Signal Processing

3.1 Chapter Overview

This chapter reviews fairly important signal processing principles that are applicable

to this project. Topics including voice activity detection, automatic gain control and

noise reduction will be investigated in this chapter.

3.2 Voice Activity Detection

3.2.1 Introduction

Voice activity detection (VAD) is the process of classifying ”silent” and ”voiced” pe-

riods in a signal. In this research project, voice activity detection is applied to signal

obtained from a digital stethoscope. Thus, ”voiced” periods refer not to human speech,

but rather to auscultation noises (eg heart beats). As ”silent” periods often contain

ambient noise, it is possible to perform a spectral estimation of noise during the silent

periods. Thus voice activity detection forms an integral component of the noise reduc-

tion algorithms discussed later in this chapter.

This chapter will evaluate and discuss the performance of a number of techniques to
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detect activity in a signal, namely:

• Energy Method

• Entropy Method

Each method follows a similar process:

1. Segment the signal into frames of 64. 2. Calculate the energy or entropy of the signal

3. Smooth the value with a moving average. 4. Determine if the value is greater than

the estimated noise floor. If it is greater, the segment is a heart sound. If the value is

lower than the noise floor, the segment is silence. 5. The noise floor is estimated from

the silent segments of the signal.

3.2.2 Energy of Signal Method

Energy is often used as a measure of activity in a signal. A periodic signal over a finite

time is said to have high energy, whereas a silent period will have significantly low

energy.

The energy of a discrete-time signal can be found by:

E =

N−1∑
i=0

|x(i)|2 (3.1)

Alternatively, in accordance with Parseval’s Theorem, the energy of a discrete signal

may also be found from the frequency domain by:

E =
1N∑ N−1

k=0

|X(k)|2 (3.2)

The signal is divided into short segments of 64 samples. Segments of high energy

indicates activity, whereas low energy indicates silence.
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The standard deviation of signal energy can also be used as a foundation to a VAD

algorithm. Segments showing a high degree of standard deviation indicate a periodic

signal with significant variation (e.g. a heart beat) The standard deviation of signal

energy is calculated by:

E =

√√√√N−1∑
i=0

|x(i)− Emean|2 (3.3)

However experimentation with standard deviation method did not indicate any signif-

icant performance boosts over the energy method.

3.2.3 Spectral Entropy Method

The entropy of a random sequence is a measure of the unpredictability, or disorgan-

isation, of a sequence. A signal consisting of white noise is inherently unpredictable,

therefore the entropy is high. The periodic nature of a heart sound is more organ-

ised, therefore the entropy approaches zero. This hypothesis can be applied to signal

processing for the detection of useful sounds (eg heart sounds) in a noisy signal.

Shannon’s equation to calculate entropy in a sequence is:

E =

N−1∑
i=0

p(i) · log(p(i)) (3.4)

where p is the probability density function (PDF) of a signal.

The PDF can be estimated from the power spectral density (PSD) of the signal:

(3.5)

where X is the fourier transform of the signal.

Figure 3.1 shows the design of the entropy based VAD used by this project.



3.2 Voice Activity Detection 25

Figure 3.1: Spectral Entropy Method of Detecting Signal Activity

3.2.4 Adaptive Thresholding

Noise is seldom constant. The amplitude of noise may change abruptly by simply

turning on or turning off an air-conditioner. A robust voice activity detector algorithm

must take into account variability of noise. Algorithms with a fixed threshold designed

for less noisy environments may incorrectly detect noise as activity when operated in

a noisy environment. Conversely, an algorithm designed for noisy environments may

detect weak signals as noise. Therefore, the threshold must adapt to the noise levels in

any given environment.

The noise threshold is estimated by calculating the entropy of the signal during non-

active segments in between heart beats. In the event of a continuous auscultation sound

(eg gallop rhythm), the signal is estimated before the stethoscope is applied to the chest

and between measurements. The noise threshold is ”smoothed” by a function that is

analogous to a PI controller. For the entropy method:

N(t) = (1− 0.999) ∗ E(t) + 0.999 ∗N(t− 1); (3.6)

Where N = noise and E = entropy of the current segment.

From this value, a hysteresis is formed by calculating a separate threshold for noise and

voice segments. The hysteresis allows for the transition phase of the heart sound (i.e
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inactivity to activity, and vice versa) to complete before changing state. The hysteresis

also provides a degree of tolerance for short variations in entropy during the active and

inactive segments.

Setting the range of the hysteresis function is an art in itself. If Ts is too high (re-

membering that a high entropy indicates predictability of the signal), each heart sound

will be truncated as the amplitude drops below the threshold. However this behaviour

occurred rarely during testing, due to the PI behaviour of the threshold estimation al-

gorithm. On the other hand, if Tn is set too low, the transition stage from non-activity

to activity is detected late, resulting front end clipping (FEC), as defined by Beritelli

et al(2002), is introduced.

A signal completely absent from noise will have a noise floor of zero, thus the entire

signal will be a ”voiced” segment.

3.2.5 Attenuation of Non-Envelope Segments

To improve the perceptive audio quality of the signal and ultimately increase the signal-

to-noise ratio, non-voice (noise only) segments are removed from the signal.

3.2.6 Test Method

The three methods discussed in this section were tested for resiliency to error against

2 test signals as follows:

• Clean normal heart beat signal

• Normal heart beat signal with additive white Gaussian noise

• Normal heart beat signal superimposed with ambient hospital noise

The clean normal heart beat is clearly segmented into the two normal heart sounds, S1

and S2.
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A small amount of Additive White Gaussian Noise (AWGN) was added to the clean

signal to model ambient noise. A real sample acquired from a hospital is then superim-

posed with the signal to investigate the performance of the VAD in a real environment.

3.2.7 Test Results

Figure 3.2: VAD Test - Energy of a Clean Signal

Figure 3.2 shows the performance of the energy method when applied to a clean signal.

As expected, the heart beats are detected as periods of activity.

Figure 3.3: VAD Test - Entropy of a Clean Signal

Figure 3.3 was a little unexpected at first glance. Most of the signal is detected as
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active periods. The adaptive threshold is set low due to the absence of ”disorganised”

signals, such as white noise.

Figure 3.4: VAD Test - Energy of a Signal with Real Ambient Noise

Figure 3.5: VAD Test - Entropy of a Signal with Real Ambient Noise

The performance of the energy and entropy methods for real noise are shown in figures

?? and 3.5 respectively. Both methods performance comparitively well.

The entropy method offers greater immunity to additive white Gaussian noise (Figure

3.7) than the energy method (Figure 3.6).,
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Figure 3.6: VAD Test - Energy of a Signal with AWGN

Figure 3.7: VAD Test - Entropy of a Signal with AWGN

3.2.8 Conclusion

Entropy based method was deemed most suitable due to its resilience to noise. The

noise threshold was adjusted using a PI controller. The entropy was smoothed with a

moving average filter. Non-voice segments are attenuated to improve SNR.
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3.3 Automatic Gain Control Algorithm

3.3.1 Design

The automatic gain control serves several important purposes, including the follow:

• BMI

• Amplify weak signals

• Attenuate signals to prevent clipping

The system design of the auto-gain algorithm proposed for this project is shown in

figure ??.

Figure 3.8: Automatic Gain Control Algorithm

3.3.2 Programmable Gain Amplifier (PGA) Controller

A hardware attenuator divides the input signal by 4. The signal is then applied to

the input of a programmable gain amplifier which is controlled by the digital signal

controller. The PGA selected for this project will amplify the input signal with a gain

of 1, 2, 4, 5, 8, 10, 16 or 32.

The required gain is calculated by dividing the expected gain by the actual gain, and

selecting the nearest value from table 3.1.
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Gain

Attenuation PGA Gain Total Gain

1/5

1 1/5

2 2/5

4 1

5 1

8 8/5

10 2

16 16/5

32 32/5

Table 3.1: PGA Gain Settings

3.3.3 Transition State

To prevent abrupt sudden changes in gain during a transition state, the peak amplitude

of the last 16 segments are stored in a sliding window. The maximum value is selected

from the sliding window.

3.4 Spectral Subtraction Noise Cancellation

Adaptive Spectral Subtraction, as shown in figure 3.9 involves a statistical analysis of

the signal to detect silent periods, of which the spectra of the ambient noise is calculated

and stored in memory. During an active period, the FFT of the signal is determined

and noise is subtracted. Further thresholding of the signal may be applied at this point.

The signal is transformed back to the time domain, ideally in a de-noised state.

To evaluate the performance of the spectral subtraction algorithm, additive White

Gaussian Noise was injected into a clean signal. The results are shown in figure 3.10.

It was discovered that the dsPIC signal controller selected for this project would not be

powerful enough for a useful implementation of this algorithm. One possible alternative
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Figure 3.9: Spectral Subtraction

is to remove the noise at the host PC instead.

3.5 An Evaluation of Data Communication Protocols

3.5.1 Introduction

During the prototyping of the wireless acquisition module, it was discovered that the

data transmitted from the onboard Bluetooth modem did not always arrive at the host.

This section investigates a few simple methods of sending ”connectionless” packets over

an unpredictable medium such as wireless, and methods of mitigating error due to data

loss.
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Figure 3.10: Spectral Subtraction

3.5.2 Raw PCM

This approach involved streaming raw PCM, without metadata (eg header), to the

desktop PC. The Wave header would be prefixed to the stream for playback on the

desktop storage. Data obtained from the 12 ADC was stored in two bytes, hi and low

(the 4 highest significant bits were padded with 0s), and streamed to the PC one byte

at a time.

This approach preserved the full integrity of the acquired signal, however without a

method to synchronise the signal at the host, the stream was often read in the wrong

sequence (eg lo byte from the previous packet read as hi, hi packet from the current

packet read as lo) if a byte was dropped by the communication link.

3.5.3 Custom Data Structure

DLE, STX, LEN, DATA, DLE, ETX

Where LEN refers to the length of the packet, including control characters and DATA

is the sampled auscultation signal of a variable length.
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If DLE occurred during the data segment, another DLE would be prefixed to the data

byte. The length of the packet was included to ensure the data integrity at the other

end, since in theory, the frame could be of variable length. If a mismatch was detected,

the packet would be dropped by the host and the sequence would be filled with 0s for

length N.

The implementation of this method was not immune to error however. The presence

of more than two consecutive DLE characters in the signal would cause errors at the

receiver end.

3.5.4 uLaw and aLaw

The 12 bit signal would be up-scaled to 16 bit, and then companded to an 8 bit loga-

rithmic value. Both standard preserve much of the signal.The benefit of this approach

is that the data does not need to be encapsulated in a data packet. i.e. the companded

data can be streamed raw. The data is already in a format that can be sent to a remote

host via VOIP technology. The disadvantage is the inherent loss in reducing the bit

resolution of a sampled signal.

3.5.5 Conclusion

Companding the signal into a logarithmic PCM value offered the least chance of error.
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3.6 Chapter Summary

This chapter investigated voice activity detection, automatic gain control, noise reduc-

tion and data transmission protocols.



Chapter 4

Hardware and Firmware Design

4.1 Chapter Overview

This chapter covers the hardware design aspects of the project. A top-down approach

was employed to design the circuit: Starting from the system level and ending with the

schematics.

4.2 Specifications

The hardware was designed to fulfil the following requirements:

1. The input shall accept line level signals from a digital stethoscope.

2. The acquisition module shall operate from a single voltage source of 3.3V

3. Frequency components less than 1000Hz shall be sampled

4. The signal path shall be protected by galvanic isolation

5. The signal shall be transmitted to a PC over a wireless connection.
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4.3 System Design

4.3.1 Acquisition Module

The system consists of the following modules:

• Input Stage and Automatic Gain Control

• Analogue-To-Digital Converter (including anti-aliasing filter)

• Signal Isolation and power isolation

• Digital Signal Controller

• Bluetooth Modem

Figure 4.1: Hardware System Design

The schematics of the acquisition module are listed in Appendix C.

4.3.2 Receiver

The receiver side, as shown in figure 4.2, consists only of a Bluetooth modem and PC.

No hardware design was required at the receiver end. An ”off-the-shelf” Bluetooth

adapter was used to receive auscultation signals from the acquisition module.
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Figure 4.2: Hardware System Design

4.4 Automatic Gain Control

4.4.1 Input Stage and Fixed Attenuator

The output of the electronic stethoscope is capacitively coupled to the input stage of

the wireless module to remove the DC component from the input. This was a necessary

compromise because the external signal source references system ground, whereas the

acquisition modules operates from a virtual ground referenced at Vdd/2 due to the

single-supply operation of the circuit. When a voltage source that is referenced to

system ground is connected to a op-amp stage that is referenced to virtual ground, a

non-negligible DC offset exists at the input. The presence of this offset is problematic

when the input was DC coupled because of the limited dynamic range available to the

amplifiers (and analogue-to-digital converter) due to the low-voltage constraints of the

circuit.

The solution is to AC couple the input, however this comes at a price. The decoupling

capacitor in series with the resistance network of the attenuator forms a high pass filter

which is undesirable as heart sounds contain valuable data at very low frequencies. A

sufficiently large capacitor is therefore required to preserve as much of the low frequency

components of the signal as practically possible. Given a Thevenin equivalent resistance

of 1M for the attenuation circuit, a capacitor value of 0.22uF would provide a cut off

frequency of 0.723Hz.

The attenuator is required for two reasons: 1. Whilst the line-level for consumer

products is rated at -10db (0.316V RMS), the reference model of digital stethoscope

used for design work was rated at 2.0V peak to peak. This exceeds the voltage swing

of the op-amps, leading to clipping of the signal peaks. 2. The attenuation allows for

better usage of the gains provided by the PGA. The signal can be attenuated when the
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gain is set less than 4, held constant at 4 and amplified at gains greater than 4.

The signal is attenuated by a resistive network and op amp configured to provide an

approximate attenuation rate of 1:4 and an input impedance of approximately 1M Ohm.

Line level outputs commonly have a very low output impedance (around 6-30 Ohms),

therefore loading effects are negligible.

Figure 4.3: Design of Automatic Gain Control Hardware

Due to the low-voltage requirement of this circuit, an op-amp with rail-to-rail amplifi-

cation was required to maximise the dynamic range of the circuit. The op-amp selected

for this task was the MCP601, a CMOS op-amp especially designed for signal-rail ap-

plications.

The attenuator and AC coupled input stage was simulated by MICROCAP, as shown

in 4.4.

4.4.2 Programmable Gain Amplifier (PGA)

The attenuated signal is amplified by a programmable gain amplifier (PGA) which is

controlled by the microcontroller over an isolated SPI bus. The Microchip MCP6S21

was selected for this task. Like the MCP601 single supply op-amp, the MCP6S21

is designed to operate on a single supply and provides rail-to-rail input and outputs.

The MCP6S21 also features a software shut down mode to conserve battery life which

can be enabled by the SPI interface. The device is woken upon receiving a new gain
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Figure 4.4: Frequency Response of Input Stage

instruction.

The PGA can amplify the signal at gains of 1, 2, 4, 5, 8, 10, 16 and 32. Thus, factoring

in an approximate attenuation ratio of 1:4, the resulting signal will be attenuated/am-

plified by a factor of 0.25, 0.5, 1, 1.25, 2, 2.5, 4 and 8 respectively.

A test point is provided after the PGA for testing and validation.

4.4.3 SPI Interface

The PGA is controlled by a unidirectional SPI bus consisting of the clock, data-in and

chip-select lines. Gain is set by first pulling the chip select low. This instructs the

device to begin accepting serial data from the SPI bus. The chip-select will remain at

the low logic state until the instruction and gain select bytes have been sent.

This is followed by setting the ’Write to Register’ command bit (bit 7) of the instruction

register, as shown by table 4.1. All other command bits are set to 0. The resulting

instruction byte in hexadecimal is 0x40.

After the instruction register is set, the first (least significant) three bytes of the gain

register, as represented by table 4.2, to a value that represents the desired gain.

Where XXX refer to the gain select bits shown in table 4.3.
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Instruction Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 1 0 0 0 0 0 0

Table 4.1: MCP6S21 Instruction Register

Gain Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 X X X

Table 4.2: MCP6S21 Gain Register

Gain

Gain Setting (Decimal) Setting (Binary)

2 0 000

4 1 001

5 2 010

8 3 011

10 4 100

16 5 101

32 6 111

Table 4.3: MCP6S21 Gain Select Bits

Finally, the chip-select is returned to the nominal high logic state to instruct the PGA

to process the instruction and gain registers.

The PGA adjusts the gain when the two following conditions are met:

1. A 16 bit word, consisting of the instruction and gain bytes, is fully sent.

2. The chip select is released (i.e. pulled high)
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4.5 Data Acquisition

4.5.1 Anti-Alias Filter

Elementary Shannon-Nyquist theorem states that the sampling frequency must be at

least twice the highest frequency component of the sampled signal. The most common

practice is to filter the signal with a low pass filter to remove frequency components

above the Shannon-Nyquist frequency.

The first design performed anti-aliasing by a 2nd order low-pass Butterworth filter in a

standard Sallen Key topology. The filter was designed with a cut off frequency of 1khz

for an expected sampling rate of 2kHz. The frequency response is show in figure 4.5.

However, it was observed that the 2nd order filter did not provide an adequate roll-off

for anti-aliasing purposes. As a result, frequencies well above 1kHz were sampled which

introduced unwanted artefacts in the discrete signal due to the effects of aliasing.

Figure 4.5: Frequency Response of a 2nd Order Butterworth Filter

The filter was redesigned for a Chebychev response which provided a sharper roll-off

than the Butterworth (at the expense of a larger ”ripple” in the passband). This

provided only marginal improvement over the Butterworth filter, as seen in figure 4.6.

There were two obvious flaws with the design:

1. The transition region crossed over the Nyquist frequency.

2. The sampling frequency was two low.
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Figure 4.6: Frequency Response of a 2nd Order Chebychev Filter

The solution was to increase the order of the anti-aliasing filter and increase the sam-

pling rate to take into account the non-ideal properties of a low-pass filter (namely, the

roll-off within transition region).

The signal-to-noise ratio of an ideal analogue-to-digital converter can be calculated by:

SNR = (1.763 + 6.02b)dB (4.1)

Where b = bit resolution.

An ideal 12 bit ADC will have a SNR of 74db. It is therefore desirable to design a

low-pass filter with an attenuation of at least -74db at 1/2 the Nyquist frequency or

lower. The final design consisted of an 8 pole Butterworth low-pass filter with a gain

of -74db at 2905Hz as shown in figure 4.7. The sampling rate was increased to 8kHz.

Figure 4.7: Frequency Response of a 8th Order Butterworth Filter

The implementation of the filter comprised of 4 op-amps in Sallen Key topology. Very

few of the calculated resistor values were available commercially from local suppliers,
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therefore equivalent resistances were constructed with a trim technique as shown by

table 4.4.

Resistor Values

Desired R1 R2 Final Resistance Error (%)

9.76 10 390 9.75 0.102

21.5 22 910 21.48 0.090

10.7 12 100 10.71 0.134

15.8 22 56 15.79 0.032

7.68 8.2 120 7.68 0.059

3.65 3.9 56 3.65 0.107

Table 4.4: Trimmed resistor values used by the anti-aliasing filter

4.5.2 ADC

The signal is then sampled by a 12bit ADC and transferred to the microcontroller over

the SPI bus. The reference voltage is tied to the Vdd (3.3V) rail so that Vdd/2 becomes

the centre point.

4.5.3 SPI Interface

The conversion process is triggered by pulling the chip-select low. After the sample is

acquired and converted, the ADC will stream the digitised sample to the microcontroller

until all 12 bits are transferred. The ADC will continue to stream 0s until the chip-

select is reset to high logic state. Low power mode is enabled when the chip-select is

high.
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4.6 Power Supply

4.6.1 Battery Management

The acquisition module was designed to operate on battery. The benefits of battery

operation include true wireless functionality and isolation from mains power supply.

A rechargeable single cell lithium-ion battery was considered ideal for this application

given its superior energy to weight ratios and slow loss of charge when not in use.

However the charge process for a lithium-ion batteries requires special monitoring and

control, therefore battery management was implemented with the help of the Microchip

MCP73812.

4.6.2 Voltage Regulation

The digital signal processor operates on a voltage of 3.3V, whereas the nominal supply

voltage is 3.7V when operating from battery or 4.20V when powered by an external

power source (eg wall adapter). Regulation is therefore required given a the DSC’s

specified maximum voltage of 3.6V. The relatively small margin of 0.4V requires the

use of a low drop-out (LDO) regulator.

The MCP1700 satisfies this requirement, providing a stable output voltage of 3.3V

with a typical overhead of 178mV. As per conventional linear regulator applications,

the input and outputs are bypassed with a capacitor to reduce noise and improve

stability of the regulator circuit.

4.6.3 Single Supply Design

As this will be a single supply (0-3.3V) circuit, a virtual ground was designed to provide

a reference voltage to the op-amps. The op-amps selected for amplification and filtering

support single rail operation, however because the input signal swings below 0V, the

input must be biased at V/2. A simple solution would be to bias the inverting input

of the op-amp with two resistors, as shown by figure 4.8.
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Figure 4.8: Pseudo-Ground

However this circuit is subject to small variances in input voltage, resister drift and

mismatches in resistance. A far better option is to reference the the input to a virtual

earth which is formed by an unity gain op amp, as shown by 4.9

Figure 4.9: Virtual-Ground

The output voltage is fixed at V/2 and is not subject to the same constraints as the

resistor bias circuit. The bypass capacitor is placed in parallel to the second resistor to

filter Johnson noise caused by the relatively large resistances.
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4.7 Isolation

4.7.1 Medical Standards

Roy et al discovered that currents as low as 100 mA can paralyse the respiratory system

and cause the heart muscle to fibrillate (1976). Leakage current could originate from

the mains earth conductor, from another external device, or from the patient via the

applied part.

IEC 60601-1 defines a set of safety standards for electronic medical equipment. IEC

60601-1 standard was adopted by Australia under AS/NZ 3200.1 and may be used to

support the electrical safety component of an application to register the device under

the Australian Register of Therapeutic Goods (ARTG).

Any medical device that comes into physical contact with a patient is defined by the IEC

60601-1 as an applied part. The diaphragm of an electronic stethoscope is placed against

the patient’s chest, often for cardiac diagnosis. As such, an electronic stethoscope is

categorised by the IEC as type BF applied part. Type BF medical devices must be

separated from the earth to prevent dangerous leakage current flowing through the

patient to ground (or vice versa).

Even though the acquisition module is completely isolated from the mains supply (eg

powered by battery), there is still the risk of leakage current electrically coupled to the

enclosure of the modules that must be mitigated by proper isolation techniques.

4.7.2 Signal Isolation

The IEC 60601 requires medical equipment to withstand an electrical fast transient of

1kV for input/output lines, and up to 2kV protection against surges.

In this design, the isolation occurs after the signal is sampled. In other words, the SPI

bus and chip select lines are isolated, as opposed to the analogue signal input. Whilst

isolating the analogue signal input is possible, the circuitry required is far from trivial



4.7 Isolation 48

given the non-linear characteristics of opto-coupler and transformer based isolators.

The Writer investigated several analogue isolation amplifier solutions available on the

market, however none were suitable for a battery powered project (for example, many

required dual voltage rails of +/- 15V).

The SPI bus to the ADC and PGA, and the chip select lines, are isolated. Signal isola-

tion is provided by the ADUM2400 digital isolator by Analog Devices. The ADUM2400

is fully compliant with the requirements of IEC 60601-1 and is certified for use in med-

ical applications.

4.7.3 Power Supply Isolation

Signal path isolation provides little benefit unless the power supply is sufficiently iso-

lated. The power supply is isolated by an isolated 3.3V DC-DC converter.

The NKE0303DC is compliant with Underwriters Laboratory (UL) to UL 60950, which

specifies an identical distance through isolation (DTI) to IEC 60601. The DTI is the

internal-clearance between conductors inside the isolation device. Protection up to 3kV

is provided.

The device is a switch-mode converter operating at a typical switching frequency of

115kHz with a specified worse case ripple voltage of 80mV peak to peak. It is therefore

necessary to filter the output to reduce the ripple voltage. As recommended by the

data sheet, an LC filter was applied to the output in order to attenuate the ripple. The

LC notch filter was designed a resonant frequency of 23.215kHz on the premise that

the switching frequency of the DC-DC converter would be maintained well above this

level. SPICE simulation confirmed that the rippled would drop to 3.9mV.

It should be noted that whilst the Author is confident that the DC-DC converter

selected for this project meets most, if not all, of the requirements of IEC 60601, the

device is not certified for medical equipment. The cost of a fully certified DC to DC

converter was beyond the budget of the project. Production of this device is therefore

not recommended without further revision to the power supply isolation of the circuit.
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4.8 Digital Signal Controller

A digital signal controller is a variant of traditional microcontrollers that provide barrel

shifters and multiply accumulators (MAC) which are used extensively in digital signal

processing applications

The first step in the design process was to identify a digital signal controller that fulfilled

a set of criteria, including:

• Low voltage (3.0-3.6V)

• UART for communications to the Bluetooth module

• SPI communication module to control the PGA and ADC.

• Low pin count (Desirable, but not mandatory for the prototype)

This narrowed the field down to two microcontrollers: Texas Instruments MSP430

family and Microchip dsPIC33 family. The dsPIC33 was chosen because it offered

more RAM, faster processor speed and a hardware USART.

To simplify the circuit design, the microcontroller is clocked by an internal PLL at

80MHz (40 MIPS). An ISCP interface is provided for on-board firmware updates and

debugging.

4.9 Bluetooth Modem

Wireless data communications will be provided by a Bluetooth module via the mi-

crocontrollers hardware USART. The BlueSMiRF Gold (see figure 4.10) was selected

because it fully supports the service discovery (SDP) and RFCOMM protocols, and is

easily controlled by an AT-like command set.
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Figure 4.10: BlueSMiRF Gold Bluetooth Modem

4.10 User Interface

The user interface was kept simple, consisting only of an LED to display when data

capture is in process, and a push button to enable and disable data capture.

Following conventional design principles, current to the LED is supplied by the mi-

crocontroller through a current limiting resistor. A GPIO pin was set aside for this

purpose.

A simple momentary switch shorts a pull-up resistor to ground when it is pressed. The

input pin is mapped to a interrupt which invokes a callback from the interrupt service

routine (ISR).

4.10.1 Switch De-bouncing

A common problem with mechanical switches, shown in figure (?), is that the transition

between on and off is rarely clean. The conductive contacts ’bounce’ as they are moved

to the on or off position. The mechanical oscillations caused by the bounces is also

known as as ’switch bounce’.

One common solution involves placing a capacitor in parallel to the switch to damp

the mechanical oscillations, as shown in (?). Slight variations in voltage due to the

capacitor charging/discharging when the switch bounces are filtered by the hysteresis

input of a Schmitt inverter.
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Figure 4.11: Mechanical switch ’bounce’. Source: http://www.labbookpages.co.uk/

To simplify the circuit design and reduce the number of components required, a hard-

ware de-bouncing solution was not implement. Instead, a simple software de-bouncing

algorithm was implemented to filter the transition between on and off.

The interrupt will call the de-bounce algorithm which performs the following:

1. Check the status of the switch input. If the switch input is low, increment the

counter. If the switch is high, the switch has bounced - reset the counter.

2. Sleep for 1 millisecond

3. Repeat 10 times

The program will toggle the data capture mode if the input is held for 5 consecutive

milliseconds.

4.11 Electromagnetic Compatibility

Featuring a switch mode DC-to-DC converter and type 1 radio device, the acquisition

module is inherently a noisy device. Each IC is decoupled by a 0.1uF capacitor to filter

electrically coupled noised on the supply rail. Separate ground lines are provided for

analogue and digital devices.
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Figure 4.12: Hardware de-bouncing circuit
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4.12 Chapter Summary

This chapter discussed the hardware design of the acquisition module, including the

following topic:

• Input Stage and Automatic Gain Control

• Analogue-To-Digital Converter (including anti-aliasing filter)

• Signal Isolation and power isolation

• Digital Signal Controller

• Bluetooth Modem



Chapter 5

Software Design

5.1 Chapter Overview

The wireless acquisition module designed and implemented during this project would

not be very useful without a means of receiving the data for further analysis. The

software solution discussed in this chapter will capture the auscultation signal from

any Bluetooth adapter that supports the RFCOMM protocol, display the signal on the

screen and playback the signal to the PC’s sound card.

5.2 System Design

A simplified

5.3 Data Capture

5.3.1 Bluetooth Interface

Microsoft Windows will detect the BlueSMiRF Gold Bluetooth modem when it is within

range and automatically install the necessary drivers that will emulate an RS232 con-
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Figure 5.1: Data flow of host application

nection over the RFCOMM/SPP protocol, as shown by figure 5.2.

This simplifies development considerably, as the service-discovery (SDP) and low level

logic-link control are performed by the operating system. Communication with the

acquisition module can be achieved by opening a connection to a visualised serial port

(eg COM3).

5.3.2 Asynchronous Serial Communication

Rather than poll the serial port buffer for data at fixed timed intervals, most mod-

ern programming languages provide a convenient event-driven component for asyn-

chronous communications. That is, a new thread is created to poll the port in the

background. This allows the program to perform computationally complex algorithms

(eg Fast Fourier Transform, update graphs, etc) while the serial port waits for new

data.
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Figure 5.2: Bluetooth Properties in Windows 7

When new data arrives, the component buffers the data into a memory stream and

raises an event . The data is then transferred into two local FIFO buffers from the

memory stream. One buffer is used by the graphing module, while the other is used by

the real time sound play back module.

One important design consideration is the need for thread synchronisation when reading

and writing to the buffer. If two or more threads attempt to access the same memory

space simultaneously, a race condition could occur leading to unpredictable values. One

work around is to lock the buffer to prevent other threads from accessing while it is in

use.

5.3.3 uLaw to PCM Conversion

To display and playback the heart sounds, the data was converted back to linear PCM.

The function int ulaw2linear(byte ulawbyte) of the C# source reconstructs the

companded sample into a 16 bit linear PCM value. Note that the information lost dur-

ing the companding process can not be restored. The reconstructed signal will however
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retain most of the dynamic range of the original signal. The function ulaw2linear was

ported to C# from Java code originally developed by Sun Microsystems (Now Oracle).

5.4 Realtime Sound Playback

The function private void InitSound() establishes a DirectSound playback device

and creates a secondary buffer for double buffering the sound stream. A new thread is

created to transfer data from the primary buffer (i.e. the FIFO data structure that is

filled with data from the Bluetooth adapter) into the secondary buffer. The playback

device then plays the contents of the secondary buffer.

5.5 Real Time Graphing

5.5.1 Time Domain Graph

The time domain representation of the auscultation signals, also known as a phono-

cardiogram, is updated at a fixed timed interval from the FIFO data structure that is

populated by the serial port event handler.

5.5.2 Spectrogram (Short-Time Fourier Transform)

The Short-Time Fourier Transform provides a time-frequency representation of the

signal in real time. The signal is segmented into frames of 256 words. The Fast Fourier

Transform (FFT) is then calculated for each frame. The second half of the transform is

removed as this data is not required. The magnitude of the transform is then displayed.

The FFT algorithm is provided by the MathNet Numerics library.
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5.5.3 Scalogram (Discrete Wavelet Transform)

Some experimentation was performed. Similar to the Short-Time Fourier Transform

above, the signal was segmented into frames, except this time the size of the frame

was 128 words. The discrete wavelet transform employing an array of Duebechies D4

filter banks was calculated for each frame. The magnitude of the DWT was displayed.

The DWT was very similar to the STFT in many respects, however it provided better

time-frequency resolution at higher frequencies.

The Daubechies D4 wavelet transform algorithm was ported to C# code from Java

code developed by Ian Kaplan (2002).
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5.6 Chapter Summary

This chapter outlined the solution used to stream data from an RFCOMM compliant

Bluetooth adapter for desktop PCs and laptops. The signal can then be play backed

through the system’s sound card, and displayed in the time and frequency domains for

further analysis by a trained professional.



Chapter 6

Implementation and Testing

6.1 Chapter Overview

This chapter deals largely with the implementation and testing of the wireless acquisi-

tion module and phonocardiogram PC application. The challenges encountered during

the implementation stage are discussed in this chapter.

6.2 Hardware and Firmware

6.2.1 Breadboard

The hardware was partially constructed on breadboard, pictured in figure 6.1, primarily

to learn more about the dsPic and Bluetooth modem, but also to test key components of

the hardware including the anti-aliasing filter and SPI interface to the ADC. Although

the constructed circuit occasionally sent useful data to the host (PC), the circuit was

unstable. The stray capacitance of the breadboard and the high clock speed of the SPI

bus (10MHz and greater) were a recipe for spurious oscillations.

Absent from this prototype were the isolation and auto-gain control stages.
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Figure 6.1: Breadboarded Prototype

6.2.2 Prototype PCB (Stripboard)

The parts were delicately transfered to a stripboard shown in figure6.2. The isolation,

AGC and power supply components were added to this prototype to complete the

circuit.

6.2.3 Firmware Development

The firmware was developed in C and compiled with the MPLAB C30 compiler. The

code was edited, built, deployed and debugged in Microchip’s MPLAB IDE.

The dsPic was programmed and debugged with the PicKit 3 In-Circuit Debugger, pic-

tured in figure 6.4. The PicKit 3, when invoked by MPLAB, provided full debugging

and flash ROM programming capabilities through the ICSP interface that was imple-

mented as part of the hardware.

Due to the low pin count of the microcontroller, the alternate programming ports

(PGED2 and PGED1) were used instead of the default programming ports to free up

reprogrammable ports for the hardware serial modules (i.e. USART and SPI).
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Figure 6.2: Completed prototype on prototype board

6.2.4 Serial Communications

The dsPic was interfaced to the Bluetooth modem with the hardware USART module.

Ready-to-send (RTS) and clear-to-send (CTS) were configured for hardware flow con-

trol. Hardware flow control is not mandatory as it is possible to tie the RTS and CTS

pins together at the bluetooth modem end, however they were retained to prevent data

loss in the event that the internal buffer of the modem was full. The transmit data

(TxD) pin at the dsPic end was connected to the receive data (RxD) pin at the modem

end, and vice versa. The USART was configured for a baud rate of 115200.

6.2.5 Automatic Gain Control

Initial attempts to control the programmable gain amplifier (PGA) by the digital signal

controller’s internal SPI port failed. The troubleshooting process verified the correct

timing of the chip select line. Although unorthodox, an AC measure from a digital

multimeter confirmed the presence of the clock and data signals. Decreasing the clock

speed and changing the SPI mode made no difference. Interestingly, the SPI ADC

worked perfectly. The Writer did not have a logic analyser or oscilloscope with sufficient

bandwidth to fully debug the SPI problems, so unfortunately the problem was never
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Figure 6.3: MPLAB Integrated Development Environment

Figure 6.4: PicKit 3 In-Circuit Debugger. Source: http://www.microchip.com

resolved.

However, an alternate solution was found. Emulating the SPI controller by ”bit-

banging” the appropriate ports solved the problem completely.

1. Temporarily disable the internal SPI controller. 2. Set the chip select for the PGA

low. 3. Send the first bit (starting at the LSB) to the data-in line. 4. Set the clock

high 5. Delay for 50 cycles 6. Set the clock low 7. Shift the data byte left 8. Repeat

until the complete byte is fully sent. 9. Set the chip select high to set the gain. 10.

Re-enable the internal SPI controller.
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6.2.6 Analog to Digital Convertor

The SPI interface to the analogue to digital converter worked without any major dif-

ficulties. Although the ADC did not have a Data Input (DIN) pin, the SPI controller

still required the program to write to the SPI buffer in order for the SPI controller to

set the ”data ready” register.

6.3 Software

The phonocardiogram application was developed with C# in Visual Studio 2010. Tar-

geting the WinForms API, the application acquired data from the asynchronous serial

port control, displayed the signal on the screen and directed the acquired sound to the

sound card.

6.3.1 Graphing

The auscultation signals were displayed on-screen with a graphing component entitled

PlotLab. PlotLab was designed for real time instrumentation and performed remark-

ably well for auscultation sounds.

The spectrogram requires further work, as evident by figure 6.5. The number of bins

could be reduced to 2048 or beyond to provide greater resolution. While this would

increase computational complexity of the FFT calculations, modern desktop PCs and

laptops should have no difficulty handling the extra workload.

6.3.2 Sound Playback

The DirectSound API was used to play sound on the PC. The sound occasionally

jittered, suggesting that the size of the secondary buffer was not large enough to account

for minor delays in the stream. The artefacts introduced by companding the signal were

also noticeable. A sound delay estimate at 2 seconds was also very noticeable. This
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Figure 6.5: Phonocardiogram Application

delay could potentially cause echoes, requiring an echo cancellation filter if the loud

speakers are turned on.
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6.4 Chapter Summary

Some of the challenges encountered during the implementation of the wireless acquisi-

tion module and phonocardiogram PC application were discussed in this chapter. Some

possible improvements include an increase in the number of bins for the short-time

Fourier transform and an enlargement of the secondary buffer of the sound playback

algorithm.



Chapter 7

Conclusions and Further Work

7.1 Achievement of Project Objectives

The following objectives have been addressed:

Literature Review Chapter 2 evaluated the characteristics of heart sounds and re-

view research into various signal processing and acquisition methodologies.

Signal Processing Chapter 3 proposed and simulated algorithms for automatic gain

control and noise reduction.

Hardware Design Chapter 4 discussed the hardware design of the wireless acquisition

module.

Software Design Chapter 5 discussed the software design of phonocardiogram ap-

plication that displayed ascultation sounds aquired by the wireless acquisition

module.
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7.2 Further Work

7.2.1 Server Side Signal Processing

The dsPic digital signal controller selected for this project was unfortunately too under-

powered to perform any serious adaptive noise cancellation. While there are far more

powerful products on the market designed for this tasks (eg dedicated DSP, FPGA,

etc), the noice cancellation could be performed at the PC end where CPU resources

are not a scarcity.

7.2.2 Telehealth

With the growing availability of fast internet services in rural areas, telehealth is be-

coming a practicle option for isolated patients and medical services. For this project

to be practical in a telehealth context, futher research is required in the areas of:

• Real time stream of auscultation signals during a VOIP or video conference.

• Echo cancellation

• Real time data compression

• Add support for Google Health, Microsoft Vault and/or Federal Governments

eHealth Initiative

7.2.3 Decision Based Segmentation of Heart Sound Components

The phonocardiogram presented by this project requires the expertise of a trained

medical practioner to analyse. Segmentation of the heart sounds could lead to an aid

for diagnosis, if for example, a heart murmour could be identified from a heart signal.

This could be helpful as a training tool, or as a screening tool for experienced specialist.

A decision based segmentation algorithm could rely on one or more concepts:

• ECG Reference
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• Shannon Energy Principle

• Artificial neural network

• Wavelet Transform
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Project Specification



University of Southern Queensland 

 

FACULTY OF ENGINEERING AND SURVEYING 

 

ENG4111/4112 Research Project 

PROJECT SPECIFICATION 

 

FOR: Justin Sean Neil MILLER 

TOPIC: WIRELESS PHONOCARDIOGRAM AQUISITION SYSTEM 

SUPERVISOR: Associate Professor John Leis 

PROJECT AIM:  To design and implement a wireless phonocardiogram acquisition and 

analysis system. 

PROGRAMME: (Issue A, 21 March 2010) 

1. Research information relating to the acoustic properties of the human heart. 

2. Critically evaluate current methods of acquiring and analysing heart sounds for auscultative 

diagnosis. 

3. Design and implement a phonocardiogram acquisition module to digitise heart sounds 

captured from an electronic stethoscope. 

4. Design and implement a pre-processing filter to: (i) automatically adjust gain; and (ii) remove 

ambient noise from the signal. 

5. Design and implement a wireless transceiver module to transmit heart sounds in real time. 

6. Design and implement a phonocardiogram analysis application that shall receive heart sounds 

from the acquisition module and display a graphical representation of the signal. 

  

As time permits: 

7. Design and implement a web service to store heart sounds for remote diagnosis by an off-site 

practitioner. 

8. Design and implement a teleconferencing client, or extend the functionality of an existing 

teleconferencing client by the means of a plug-in, to stream heart sound data over an internet 

connection. 

9. Evaluate methods used to detect the first heart sound. 

10. Implement first heart sound detection and design an algorithm to determine the heart rate.  
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B.1 The testnrg.m Energy VAD Method

The function testnrg.m detects activity in a signal by calculating the energy of the

signal and comparing this value to an adaptive threshold.

Listing B.1: Energy VAD Method.

clear a l l ;
close a l l ;

%noisyFi lename = ’ NoisyHeartSounds . wav ’ ;
noisyFi lename = ’ AmbientNoise2 . wav ’ ;
% noisyFi lename = ’NormalMono . wav ’ ;
o r i g i na lF i l ename = ’NormalMono . wav ’ ;

[ noisy , Fs ] = wavread( noisyFi lename ) ;
[ o r i g i n a l , Fs2 ] = wavread( o r i g i na lF i l ename ) ;

no i sy = no i sy ( 1 : Fs ∗4 ) ;
o r i g i n a l = o r i g i n a l ( 1 : length ( no i sy ) ) ;

r e fVo l t age = 3 . 3 ;
r e s o l u t i o n = 2ˆ12 ;
adc = −1:2/( r e s o l u t i o n −1) :1 ;
expectedPeak = r e s o l u t i o n / 2 ;
segLength =256;
numSegments = f ix ( length ( no i sy )/ segLength ) ;
frame = zeros (1 , segLength ) ;
wnd = rectwin ( segLength ) ;
s i l e n c e = Fs ∗ 0 . 2 5 ;
a t t enuat ion = 5 ;
g a i n S e t t i n g s = [ 1 , 2 , 4 , 5 , 8 , 10 , 16 , 3 2 ] ;

o f f s e t = 1 ;

c l ean = zeros (1 , length ( no i sy ) ) ;
energy = zeros (1 , length ( no i sy ) ) ;
detectArr = zeros (1 , length ( no i sy ) ) ;
o ld = zeros (1 , length ( no i sy ) ) ;
no i s e = zeros (1 , length ( no i sy ) ) ;
instGain = 1 ;
t h i s g a i n = 0 ;
la s tGa in = 0 ;

de t e c t o r = 0 ;

E = 0 ;
Enoise0 = 0 ;
Enoise1 = 0 ;

for z = 1 : length ( c l ean )
c l ean ( z ) = 0 ;

end

for s = 1 : numSegments

x = 0 ;
for p = o f f s e t : segLength∗ s

x = x + 1 ;
at tenuatedS ig = no i sy (p) / at t enuat ion ;
tempVar = f i n d c l o s e s t ( attenuatedSig , adc ) ;
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% Simulate ADC convers ion
frame ( x ) = find ( tempVar == adc ) ;

% Convert to s i gned i n t
frame ( x ) = frame ( x ) − expectedPeak ;

end

% Ca lcu l a t e energy
sumEnergy = 0 ;
for c = 1 : length ( frame )

sumEnergy = sumEnergy + abs ( frame ( c ) ) ˆ 2 ;
end

E = sumEnergy/ length ( frame ) ;

Tn = Enoise0 + 180 ;
Ts = Enoise0 + 120 ;

i f ( de t e c t o r == 0) && (E > Ts)
de t e c t o r = 1 ;

e l s e i f ( de t e c t o r == 1) && (E < Tn)
de t e c t o r = 0 ;

end

i f ( de t e c t o r == 0)
Enoise0 = 0.10 ∗ Enoise1 + (1 − 0 . 999 ) ∗ E;

Enoise1 = Enoise0 ;
t h i s g a i n = 0 ;

else
Enoise0 = 0.60 ∗ Enoise1 + (1 − 0 . 9 6 ) ∗ E;
Enoise1 = Enoise0 ;

t h i s g a i n = 5 ;

end

for p = 1 : segLength
o ld ( o f f s e t+p−1) = frame (p ) ;
c l ean ( o f f s e t+p−1) = frame (p) ∗ t h i s g a i n ;
energy ( o f f s e t+p−1) = E;
no i s e ( o f f s e t+p−1) = Enoise0 ;
detectArr ( o f f s e t+p−1) = de t e c t o r ;

end
o f f s e t = segLength∗ s + 1 ;

end

xax i s = 0 :1/ Fs : ( length ( c l ean )−1)/Fs ;
subplot ( 4 , 1 , 1 )
plot ( xaxis , o ld ) ;

t i t l e ( ’ Input ’ ) ;
xlabel ( ’Time ’ ) ;
ylabel ( ’ Amplitude ’ ) ;

subplot ( 4 , 1 , 2 )
plot ( xaxis , detectArr ) ;

t i t l e ( ’ Detector ’ ) ;
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xlabel ( ’Time ’ ) ;
ylabel ( ’ Detector ’ ) ;
yl im ( [ 0 , 1 . 2 ] ) ;

subplot ( 4 , 1 , 3 )
plot ( xaxis , no i s e ) ;

xlabel ( ’Time ’ ) ;
ylabel ( ’ Energy ’ ) ;
hold on
% %
plot ( xaxis , energy , ’m’ ) ;

subplot ( 4 , 1 , 4 )
%hold on
plot ( xaxis , c l ean ) ;

t i t l e ( ’ Output ’ ) ;
xlabel ( ’Time ’ ) ;
ylabel ( ’ Amplitude ’ ) ;

newSignal = c l ean / expectedPeak ;
sigPowerdB = 10∗ log10 (sum( o r i g i n a l . ˆ 2 ) / length ( o r i g i n a l ) ) ;
noisePowerdB = 10∗ log10 (sum( no i sy . ˆ 2 )/ length ( no i sy ) ) ;
cleanPowerdB = 10∗ log10 (sum( newSignal . ˆ 2 ) / length ( newSignal ) ) ;

snr = 10∗ log10 (sum( o r i g i n a l . ˆ 2 ) . / sum( no i sy . ˆ 2 ) ) ;
snrNew = 10∗ log10 (sum( o r i g i n a l . ˆ 2 ) . / sum( newSignal . ˆ 2 ) ) ;

B.2 The testent.m Entropy VAD Method

The function testent.m detects activity in a signal by calculating the entropy of the

signal and comparing this value to an adaptive threshold.

Listing B.2: Energy VAD Method.

clear a l l ;
close a l l ;

% [ noisy , Fs ] = wavread ( ’NormalMono . wav ’ ) ;
[ noisy , Fs ] = wavread( ’ AmbientNoise3 . wav ’ ) ;
% [ noisy , Fs ] = wavread ( ’ NoisyHeartSounds . wav ’ ) ;

no i sy = no i sy ( 1 : Fs ∗4 ) ;

r e fVo l t age = 3 . 3 ;
r e s o l u t i o n = 2ˆ12 ;
adc = −1:2/( r e s o l u t i o n −1) :1 ;
expectedPeak = r e s o l u t i o n / 2 ;
segLength =64;
numSegments = f ix ( length ( no i sy )/ segLength ) ;
frame = zeros (1 , segLength ) ;

s i l e n c e = Fs ∗ 0 . 2 5 ;
a t t enuat ion = 5 ;
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g a i n S e t t i n g s = [ 1 , 2 , 4 , 5 , 8 , 10 , 16 , 3 2 ] ;

window = hamming( segLength ) ;

o f f s e t = 1 ;

c l ean = zeros (1 , length ( no i sy ) ) ;
energy = zeros (1 , length ( no i sy ) ) ;
detectArr = zeros (1 , length ( no i sy ) ) ;
o ld = zeros (1 , length ( no i sy ) ) ;
no i s e = zeros (1 , length ( no i sy ) ) ;
instGain = 1 ;
t h i s g a i n = 0 ;
la s tGa in = 0 ;

de t e c t o r = 0 ;

entHi s t = zeros (1 , 8 ) ;
p t rH i s t = 0 ;

E = 0 ;
Enoise0 = 0 ;
Enoise1 = 0 . 5 ;

for z = 1 : length ( c l ean )
c l ean ( z ) = 0 ;

end

for s = 1 : numSegments

x = 0 ;
for p = o f f s e t : segLength∗ s

x = x + 1 ;
at tenuatedS ig = no i sy (p) / at t enuat ion ;
tempVar = f i n d c l o s e s t ( attenuatedSig , adc ) ;

% Simulate ADC convers ion
frame ( x ) = find ( tempVar == adc ) ;

% Convert to s i gned i n t
frame ( x ) = frame ( x ) − expectedPeak ;

end

F = f f t ( frame ) / length ( frame ) ;

energyFreq = abs (F ) . ˆ 2 ;
E = sum( energyFreq ) ;
PDF = energyFreq / E;

Entropy = 0 ;
for p=1:64

i f (PDF(p) > 0)
Entropy = Entropy + (PDF(p) ∗ log2 (PDF(p ) ) ) ;

else
Entropy = Entropy + 0 ;

end
end

Entropy = Entropy ∗ (−1/ log2 ( 6 4 ) ) ;

p t rH i s t = pt rH i s t + 1 ;
i f pt rH i s t > length ( entHi s t )

p t rH i s t = 1 ;
end
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entHi s t ( p t rH i s t ) = Entropy ;

Tn = Enoise0 ∗ 0 . 9 3 ;
Ts = Enoise0 ∗ 0 . 9 2 ;

f i l t E n t = mean( entHi s t ) ;

i f ( de t e c t o r == 0) && ( f i l t E n t< Tn)
de t e c t o r = 1 ;

e l s e i f ( de t e c t o r == 1) && ( f i l t E n t > Ts)
de t e c t o r = 0 ;

end

i f ( de t e c t o r == 0)
Enoise0 = 0.98 ∗ Enoise1 + (1 − 0 . 9 8 ) ∗ Entropy ;

Enoise1 = Enoise0 ;
t h i s g a i n = 0 ;

else
% Enoise0 = 0.94 ∗ Enoise1 + (1 − 0 .92) ∗ Entropy ;

Enoise1 = Enoise0 ;
t h i s g a i n = 1 ;

end

for p = 1 : segLength
o ld ( o f f s e t+p−1) = frame (p ) ;
c l ean ( o f f s e t+p−1) = frame (p) ∗ t h i s g a i n ;
energy ( o f f s e t+p−1) = Enoise0 ;
no i s e ( o f f s e t+p−1) = f i l t E n t ;
detectArr ( o f f s e t+p−1) = de t e c t o r ;

end
o f f s e t = segLength∗ s + 1 ;

end

xax i s = 0 :1/ Fs : ( length ( c l ean )−1)/Fs ;
subplot ( 4 , 1 , 1 )
plot ( xaxis , o ld ) ;

t i t l e ( ’ Input ’ ) ;
xlabel ( ’Time ’ ) ;
ylabel ( ’ Amplitude ’ ) ;

subplot ( 4 , 1 , 2 )
plot ( xaxis , detectArr ) ;

t i t l e ( ’ Detector ’ ) ;
xlabel ( ’Time ’ ) ;
ylabel ( ’ Detector ’ ) ;
yl im ( [ 0 , 1 . 2 ] ) ;

subplot ( 4 , 1 , 3 )
plot ( xaxis , no i s e ) ;

xlabel ( ’Time ’ ) ;
ylabel ( ’ Entropy ’ ) ;
hold on
% %
plot ( xaxis , energy , ’m’ ) ;
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subplot ( 4 , 1 , 4 )
%hold on
plot ( xaxis , c l ean ) ;

t i t l e ( ’ Output ’ ) ;
xlabel ( ’Time ’ ) ;
ylabel ( ’ Amplitude ’ ) ;

newSignal = c l ean / expectedPeak ;
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B.3 The main.c Firmware - Main Source File

The file main.c is where most of the functionality of the firmware resides.

Listing B.3: Firmware - Main Source File.

#include ”main . h”
#include ”uLaw . h”

FOSCSEL(FNOSC FRCPLL) ;
FOSC(FCKSM CSECMD & OSCIOFNC ON & POSCMD NONE) ;
FICD(JTAGEN OFF & ICS PGD2 ) ;
FWDT(FWDTEN OFF) ;

int main ( void )
{

i n i t p l l ( ) ;

i n i t g p i o ( ) ;
i n i t c n ( ) ;
i n i t t i m e r 1 ( ) ;
i n i t s p i ( ) ;
i n i t u a r t ( ) ;
open uart ( ) ;

LATAbits .LATA3 = 1 ; // Disab l e ADC
LATAbits .LATA4 = 1 ; // Disab l e PGA

SetGain ( 4 ) ; // Set un i t y gain to beg in wi th

while (1 )
{

LATAbits .LATA2 = a c t i v e ;
i f ( buttonPress )
{

DebounceSwitch ( ) ;
}

i f ( pollADC )
{

Read ADC ( ) ;
pollADC = ˜pollADC ;

}

i f ( symbolCount >= BUFFER SIZE)
{

SendBuffer ( ) ;
}

}
return 0 ;

}

void i n i t p l l ( void )
{

// Setup i n t e r n a l c l o c k f o r 80MHz/40MIPS
//7.37/2=3.685∗43=158.455/2=79.2275
CLKDIVbits .PLLPRE=0; // PLLPRE (N2) 0=/2



B.3 The main.c Firmware - Main Source File 83

PLLFBD=41; // p l l mu l t i p l i e r (M) = +2
CLKDIVbits .PLLPOST=0;// PLLPOST (N1) 0=/2

// Wait u n t i l the PLL i s ready
while ( ! OSCCONbits .LOCK) ;

}

void i n i t g p i o ( void )
{

AD1PCFGL = 0 x f f f f ; // A l l analog capab l e p ins in d i g i t a l mode

TRISAbits . TRISA2 = 0 ; // LED output
TRISBbits . TRISB0 = 1 ; // Switch input

}

void i n i t c n ( void )
{

CNEN1bits . CN4IE = 1 ; // Enable CN4 (RB0) pin f o r i n t e r r u p t d e t e c t i on
CNPU1bits .CN4PUE = 0 ; // Disab l e CN4 pu l l−up
IEC1bits . CNIE = 1 ; // Enable CN in t e r r u p t s
IFS1b i t s . CNIF = 0 ; // Reset CN in t e r r u p t
IPC4bits . CNIP = 3 ; // Set CN in t e r r u p t p r i o r i t y

}

void i n i t u a r t ( void )
{

RPINR18bits .U1RXR = 7 ; // RX
RPINR18bits .U1CTSR = 0 ; // CTS
RPOR2bits .RP4R = 3 ; // TX;
RPOR4bits .RP8R = 4 ; // RTS

// Setup UART
U1BRG = 85 ; //86@80mhz , 85@79 . xxx=115200
U1MODE = 0 ; // c l e a r mode r e g i s t e r

U1MODEbits . STSEL = 0 ; // 1−s top b i t
U1MODEbits .PDSEL = 0 ; // No Parity , 8−data b i t s
U1MODEbits .ABAUD = 0 ; // Auto−Baud Disab l ed
U1MODEbits .BRGH = 0 ; // Low Speed mode
U1MODEbits .BRGH = 1 ; // use h igh prec i son baud genera tor

U1STA = 0 ; // c l e a r s t a t u s r e g i s t e r
IFS0b i t s . U1RXIF = 0 ; // c l e a r the r e c e i v e f l a g

}

void i n i t s p i ( void )
{

SPI1STAT = 0 ; // I n i t i a l i s e SPI1Stat to 0 .
SPI1CON1 = 0 ; // I n i t i a l i s e SPI1Con to 0 .

TRISAbits . TRISA3 = 0 ; // CS fo r ADC
TRISAbits . TRISA4 = 0 ; // CS fo r PGA
TRISBbits . TRISB9 = 0 ; // CLK output
TRISBbits . TRISB15 = 1 ; // DI Input
TRISBbits . TRISB14 = 0 ; // DO Output

RPOR4bits .RP9R = 8 ; // Clock
RPINR20bits . SDI1R = 15 ; // SDI input
RPOR7bits .RP14R = 7 ; // SDO output
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SPI1STAT = 0b00000000 ; // Master sample data in middle , data xmt on
// r i s i n g edge

// SPI1CON1 = 0b00110000 ; // enab l e Master SPI , bus mode 1 ,1 , FOSC/4
SPI1CON1 = 0b101100000 ; // enab l e Master SPI , bus mode 1 ,1 , FOSC/8

SPI1STATbits .SPIROV = 0 ; // Clear SPIROV (SPI r e c i e v e Overrun ) b i t .
SPI1STATbits . SPIEN = 1 ; // Enable SPI

}

void i n i t t i m e r 1 ( void )
{

T1CONbits .TON = 0 ; // Disab l e Timer
T1CONbits .TCKPS = 0b10 ; // S e l e c t the PRESCALER
T1CONbits .TCS = 0 ; // In t e rna l c l o c k
T1CONbits .TGATE = 0 ; // Disab l e Gated Timer mode
TMR1 = 0x00 ; // Make sure the t imer i s s t a r t i n g from zero
PR1 = 61 ; // How long the t imer shou ld run be f o r e an i n t e r r u p t ( in t imer t i c k s )

IFS0b i t s . T1IF = 0 ; // Clear Timer1 In t e r rup t Flag
IEC0bits . T1IE = 1 ; // Enable Timer1 i n t e r r u p t

T1CONbits .TON = 1 ; // Turn the i n t e r r u p t on
}

void open uart ( void )
{

U1MODEbits .UARTEN = 1 ; // UART1 enab led
U1STAbits .UTXEN = 1 ; // UARTx t ran smi t t e r enab led

}

void SendUART(unsigned char c )
{

while ( U1STAbits .UTXBF != 0 ) ;
U1TXREG = c ;

while ( U1STAbits .TRMT == 0 ) ;
}

void a t t r i b u t e ( ( i n t e r r u p t , no auto psv ) ) CNInterrupt ( void )
{

// In s e r t ISR code here
IFS1b i t s . CNIF = 0 ; // Clear CN in t e r r u p t

buttonPress = ˜ buttonPress ;
}

void a t t r i b u t e ( ( i n t e r r u p t ) ) a t t r i b u t e ( ( no auto psv ) ) T1Inter rupt ( void )
{

IFS0b i t s . T1IF = 0 ; // Clear Timer1 In t e r rup t Flag
pollADC = a c t i v e ;

}

void Read ADC( )
{

ADC DATA adc ;
int value ;

SPI1STATbits .SPIROV = 0 ;
LATAbits .LATA3 = 0 ; // Enable ADC

// MSB
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SPI1BUF = 0x01 ;
while ( ! SPI1STATbits . SPIRBF ) ;
adc . databyte [ 1 ] = SPI1BUF ;

// LSB
SPI1BUF = 0x81 ;
while ( ! SPI1STATbits . SPIRBF ) ;
LATAbits .LATA3 = 1 ; // Disab l e ADC
adc . databyte [ 0 ] = SPI1BUF ;

adc . r e s u l t >>= 1 ; // ad j u s t composite i n t e g e r f o r 12 v a l i d b i t s
adc . r e s u l t &= 0x0FFF ; // mask out upper n i b b l e o f i n t e g e r

// Sca l e to 16 b i t s
adc . r e s u l t = ( adc . r e s u l t << 4) ˆ ( adc . r e s u l t >> 8 ) ;

va lue = adc . r e s u l t − 0x7FFF ;

b u f f e r [ symbolCount ] = l inea r2u law ( value ) ;
symbolCount++;

}

void SendBuffer ( )
{

int i ;

for ( i = 0 ; i < BUFFER SIZE ; i++)
{

i f ( b u f f e r [ i ] == DLE)
SendUART(DLE) ;

SendUART( b u f f e r [ i ] ) ;
}

symbolCount = 0 ;

}

void DebounceSwitch ( void )
{

unsigned char Switch Count = 0 ;
int i , j ;

// Disab l e i n t e r r u p t
CNEN1bits . CN4IE = 0 ;

// Monitor sw i t ch input f o r 5 lows in a row to debounce
for ( i =0; i <10; i++)
{

i f (PORTBbits .RB0 != 0)
{

Switch Count++; // Pressed s t a t e d e t e c t e d
}

else
{

Switch Count = 0 ;
}

// Short de lay
for ( j =0; j < 20000 ; j++)

{
}
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}

// I f the sw i t ch
i f ( Switch Count > 5)
{

a c t i v e = ˜ a c t i v e ;
}

buttonPress = 0 ;

// Re−enab l e i n t e r r u p t
CNEN1bits . CN4IE = 1 ;

}

void send byte (unsigned char data ) {
int count ;
int i ;

for ( count =0; count<8; count++)
{

i f ( data & 0x80 )
LATBbits .LATB14 = 1 ;

else
LATBbits .LATB14 = 0 ;

LATBbits .LATB9 = 1 ;

for ( i =0; i< 50 ; i ++);

LATBbits .LATB9 = 0 ;
data <<=1;

}
}

void SetGain ( int gain )
{

int s e t t i n g ;

// Trans la te the r equ i r ed gain in to a v a l i d PGA s e t t i n g
switch ( ga in )
{

case 1 :
s e t t i n g = 0b000 ;
break ;

case 2 :
s e t t i n g = 0b001 ;
break ;

case 4 :
s e t t i n g = 0b010 ;
break ;

case 5 :
s e t t i n g = 0b011 ;
break ;

case 8 :
s e t t i n g = 0b100 ;
break ;

case 10 :
s e t t i n g = 0b101 ;
break ;

case 16 :
s e t t i n g = 0b110 ;
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break ;
case 32 :

s e t t i n g = 0b111 ;
break ;

default :
s e t t i n g = 0 ;

}

SPI1STATbits . SPIEN = 0 ; // Disab l e SPI

T1CONbits .TON = 0 ; // Turn the i n t e r r u p t o f f

LATBbits .LATB9 = 0 ;
LATAbits .LATA4 = 0 ; // Enable PGA Ch ip s e l e c t

send byte (0 x40 ) ; // Send i n s t r u c t i o n
send byte ( s e t t i n g ) ; // Send s e t t i n g

LATAbits .LATA4 = 1 ; // Disab l e PGA Ch ip s e l e c t

T1CONbits .TON = 1 ; // Turn the i n t e r r u p t on
SPI1STATbits . SPIEN = 1 ; // Re−enab l e SPI

}

B.4 The main.h Firmware - Main Header File

The file main.h is where the function declarations and global variables used by main.c

can be found.

Listing B.4: Firmware - Main Header File.

#include <p33FJ12GP201 . h>
#include <dsp . h>
#include ” f f t . h”
// #inc l ude ” tw idd l eFac to r s . c”

#define DLE 0x10
#define STX 0x02
#define ETX 0x03
#define BUFFER SIZE 64

unsigned char a c t i v e = 0 ;
unsigned char buttonPress = 0 ;
unsigned char pollADC = 0 ;

typedef union
{

char databyte [ 2 ] ; // dec l a r e temp array f o r adc data
unsigned int r e s u l t ; // dec l a r e i n t e g e r f o r adc r e s u l t

} ADC DATA; // de f i n e union v a r i a b l e

/∗ Extern d e f i n i t i o n s ∗/
extern f ractcomplex sigCmpx [FFT BLOCK LENGTH] /∗ Typica l l y , the input s i g n a l to an FFT
∗/

a t t r i b u t e ( ( s e c t i o n ( ” . ydata , data , ymemory” ) , /∗ rou t ine i s a complex array con ta in ing samples ∗/
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a l i gned (FFT BLOCK LENGTH ∗ 2 ∗ 2 ) ) ) ;
/∗ o f an input s i g n a l . ∗/

extern const f ractcomplex twidd l eFactor s [FFT BLOCK LENGTH/2 ] /∗ Twiddle Factor array in Program memory ∗/
a t t r i b u t e ( ( space ( auto psv ) , a l i gned (FFT BLOCK LENGTH∗ 2 ) ) ) ;

unsigned char b u f f e r [ BUFFER SIZE ] ;
unsigned char symbolCount = 0 ;

void i n i t p l l ( void ) ;
void i n i t g p i o ( void ) ;
void i n i t c n ( void ) ;
void i n i t u a r t ( void ) ;
void i n i t t i m e r 1 ( void ) ;
void open uart ( void ) ;
void i n i t s p i ( void ) ;
void SendUART(unsigned char ) ;
void Read ADC ( ) ;
void SendBuffer ( ) ;
void DebounceSwitch ( void ) ;
void SetGain ( int ) ;
void a t t r i b u t e ( ( i n t e r r u p t , no auto psv ) ) CNInterrupt ( void ) ;
void a t t r i b u t e ( ( i n t e r r u p t ) ) a t t r i b u t e ( ( no auto psv ) ) T1Inter rupt ( void ) ;

B.5 The ulaw.c Firmware - uLaw Source File

Listing B.5: Firmware - uLaw Function.

#include ”uLaw . h”

/∗
∗∗ This rou t ine conver t s from l i n e a r to ulaw
∗∗
∗∗ Craig Reese : IDA/Supercomputing Research Center
∗∗ Joe Campbell : Department o f Defense
∗∗ 29 September 1989
∗∗
∗∗ References :
∗∗ 1) CCITT Recommendation G.711 ( very d i f f i c u l t to f o l l ow )
∗∗ 2) ”A New D i g i t a l Technique f o r Implementation o f Any
∗∗ Continuous PCM Companding Law,” V i l l e r e t , Michel ,
∗∗ e t a l . 1973 IEEE Int . Conf . on Communications , Vol 1 ,
∗∗ 1973 , pg . 11.12−11.17
∗∗ 3) MIL−STD−188−113,” I n t e r o p e r a b i l i t y and Performance Standards
∗∗ f o r Analog−t o D i g i t a l Conversion Techniques ,”
∗∗ 17 February 1987
∗∗
∗∗ Input : Signed 16 b i t l i n e a r sample
∗∗ Output : 8 b i t ulaw sample
∗/

#define ZEROTRAP /∗ turn on the t rap as per the MIL−STD ∗/
#define BIAS 0x84 /∗ de f i n e the add−in b i a s f o r 16 b i t samples ∗/
#define CLIP 32635

unsigned char
l i n ea r2u law ( sample )
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int sample ; {
stat ic int exp lu t [ 2 5 6 ] = {0 , 0 , 1 , 1 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 ,

4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 ,
5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 ,
5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 ,
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 ,
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 ,
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 ,
6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ,
7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7} ;

int s ign , exponent , mantissa ;
unsigned char ulawbyte ;

/∗ Get the sample in t o s ign−magnitude . ∗/
s i gn = ( sample >> 8) & 0x80 ; /∗ s e t a s i de the s i gn ∗/
i f ( s i gn != 0) sample = −sample ; /∗ ge t magnitude ∗/
i f ( sample > CLIP) sample = CLIP ; /∗ c l i p the magnitude ∗/

/∗ Convert from 16 b i t l i n e a r to ulaw . ∗/
sample = sample + BIAS ;
exponent = exp lu t [ ( sample >> 7) & 0xFF ] ;
mantissa = ( sample >> ( exponent + 3) ) & 0x0F ;
ulawbyte = ˜( s i gn | ( exponent << 4) | mantissa ) ;

#ifde f ZEROTRAP
i f ( ulawbyte == 0) ulawbyte = 0x02 ; /∗ op t i ona l CCITT trap ∗/

#endif

return ( ulawbyte ) ;
}

B.6 The ulaw.h Firmware - uLaw Header File

Listing B.6: Firmware - uLaw Header File.

unsigned char l i n ea r2u law ( int ) ;

B.7 The twiddleFactors.c Firmware - Twiddle Factors

Listing B.7: Firmware - Twiddle Factors.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ 2005 Microchip Technology Inc .
∗
∗ FileName : tw idd l eFac to r s . c
∗ Dependencies : Header ( . h ) f i l e s i f a pp l i c a b l e , see be low
∗ Processor : dsPIC30Fxxxx
∗ Compiler : MPLAB C30 v3 .00 or h i ghe r
∗ IDE : MPLAB IDE v7 .52 or l a t e r
∗ Dev . Board Used : dsPICDEM 1.1 Development Board
∗ Hardware Dependencies : None
∗
∗ SOFTWARE LICENSE AGREEMENT:
∗ Microchip Technology Incorpora ted (”Microchip ”) r e t a i n s a l l ownership and
∗ i n t e l l e c t u a l proper ty r i g h t s in the code accompanying t h i s message and in a l l
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∗ d e r i v a t i v e s here to . You may use t h i s code , and any d e r i v a t i v e s c rea t ed by
∗ any person or e n t i t y by or on your beha l f , e x c l u s i v e l y wi th Microchip ’ s
∗ p rop r i e t a r y product s . Your acceptance and/or use o f t h i s code c o n s t i t u t e s
∗ agreement to the terms and cond i t i on s o f t h i s no t i c e .
∗
∗ CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP ”AS IS ” .
NO
∗ WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
∗ TO, IMPLIED WARRANTIES OF NON−INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
∗ PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH MICROCHIP’S
∗ PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.
∗
∗ YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE LIABLE, WHETHER
∗ IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF STATUTORY DUTY) ,
∗ STRICT LIABILITY , INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY INDIRECT, SPECIAL,
∗ PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR COST OR EXPENSE OF
∗ ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CAUSED, EVEN IF MICROCHIP HAS BEEN
∗ ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
∗ ALLOWABLE BY LAW, MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO
∗ THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP SPECIFICALLY TO
∗ HAVE THIS CODE DEVELOPED.
∗
∗ You agree t ha t you are s o l e l y r e s p on s i b l e f o r t e s t i n g the code and
∗ determining i t s s u i t a b i l i t y . Microchip has no o b l i g a t i o n to modify , t e s t ,
∗ c e r t i f y , or suppor t the code .
∗ ADDITIONAL NOTES:
∗
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include <dsp . h>
#include ” f f t . h”

#ifde f FFTTWIDCOEFFS IN PROGMEM

#i f (FFT BLOCK LENGTH == 64)
const f ractcomplex twidd l eFactor s [ ] a t t r i b u t e ( ( space ( auto psv ) , a l i gned (FFT BLOCK LENGTH∗2)))=
{
0x7FFF , 0x0000 , 0x7F62 , 0xF374 , 0x7D8A , 0xE707 , 0x7A7D , 0xDAD8,
0x7642 , 0xCF04 , 0x70E3 , 0xC3A9 , 0x6A6E , 0xB8E3 , 0x62F2 , 0xAECC,
0x5A82 , 0xA57E , 0x5134 , 0x9D0E , 0x471D , 0x9592 , 0x3C57 , 0x8F1D ,
0x30FC , 0x89BE , 0x2528 , 0x8583 , 0x18F9 , 0x8276 , 0x0C8C , 0x809E ,
0x0000 , 0x8000 , 0xF374 , 0x809E , 0xE707 , 0x8276 , 0xDAD8, 0x8583 ,
0xCF04 , 0x89BE , 0xC3A9 , 0x8F1D , 0xB8E3 , 0x9592 , 0xAECC, 0x9D0E ,
0xA57D , 0xA57D , 0x9D0E , 0xAECC, 0x9592 , 0xB8E3 , 0x8F1D , 0xC3A9 ,
0x89BE , 0xCF04 , 0x8583 , 0xDAD8, 0x8276 , 0xE707 , 0x809E , 0xF374
} ;

#endif
#i f (FFT BLOCK LENGTH == 128)

const f ractcomplex twidd l eFactor s [ ] a t t r i b u t e ( ( space ( auto psv ) , a l i gned (FFT BLOCK LENGTH∗2)))=
{
0x7FFF , 0x0000 , 0x7FD9 , 0xF9B8 , 0x7F62 , 0xF374 , 0x7E9D , 0xED38 ,
0x7D8A , 0xE707 , 0x7C2A , 0xE0E6 , 0x7A7D , 0xDAD8, 0x7885 , 0xD4E1 ,
0x7642 , 0xCF04 , 0x73B6 , 0xC946 , 0x70E3 , 0xC3A9 , 0x6DCA, 0xBE32 ,
0x6A6E , 0xB8E3 , 0x66D0 , 0xB3C0 , 0x62F2 , 0xAECC, 0x5ED7 , 0xAA0A,
0x5A82 , 0xA57E , 0x55F6 , 0xA129 , 0x5134 , 0x9D0E , 0x4C40 , 0x9930 ,
0x471D , 0x9592 , 0x41CE , 0x9236 , 0x3C57 , 0x8F1D , 0x36BA , 0x8C4A ,
0x30FC , 0x89BE , 0x2B1F , 0x877B , 0x2528 , 0x8583 , 0x1F1A , 0x83D6 ,
0x18F9 , 0x8276 , 0x12C8 , 0x8163 , 0x0C8C , 0x809E , 0x0648 , 0x8027 ,
0x0000 , 0x8000 , 0xF9B8 , 0x8027 , 0xF374 , 0x809E , 0xED38 , 0x8163 ,
0xE707 , 0x8276 , 0xE0E6 , 0x83D6 , 0xDAD8, 0x8583 , 0xD4E1 , 0x877C ,
0xCF04 , 0x89BE , 0xC946 , 0x8C4A , 0xC3A9 , 0x8F1D , 0xBE32 , 0x9236 ,
0xB8E3 , 0x9592 , 0xB3C0 , 0x9931 , 0xAECC, 0x9D0E , 0xAA0A, 0xA129 ,
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0xA57E , 0xA57E , 0xA129 , 0xAA0A, 0x9D0E , 0xAECC, 0x9931 , 0xB3C0 ,
0x9592 , 0xB8E3 , 0x9236 , 0xBE32 , 0x8F1D , 0xC3A9 , 0x8C4A , 0xC946 ,
0x89BE , 0xCF04 , 0x877C , 0xD4E1 , 0x8583 , 0xDAD8, 0x83D6 , 0xE0E6 ,
0x8276 , 0xE707 , 0x8163 , 0xED38 , 0x809E , 0xF374 , 0x8027 , 0xF9B8
} ;

#endif
#i f (FFT BLOCK LENGTH == 256)

const f ractcomplex twidd l eFactor s [ ] a t t r i b u t e ( ( space ( auto psv ) , a l i gned (FFT BLOCK LENGTH∗2 ) ) ) =
{
0x7FFF , 0x0000 , 0x7FF6 , 0xFCDC, 0x7FD9 , 0xF9B8 , 0x7FA7 , 0xF695 ,
0x7F62 , 0xF374 , 0x7F0A , 0xF055 , 0x7E9D , 0xED38 , 0x7E1E , 0xEA1E,
0x7D8A , 0xE707 , 0x7CE4 , 0xE3F4 , 0x7C2A , 0xE0E6 , 0x7B5D , 0xDDDC,
0x7A7D , 0xDAD8, 0x798A , 0xD7D9 , 0x7884 , 0xD4E1 , 0x776C , 0xD1EF,
0x7642 , 0xCF04 , 0x7505 , 0xCC21 , 0x73B6 , 0xC946 , 0x7255 , 0xC673 ,
0x70E3 , 0xC3A9 , 0x6F5F , 0xC0E9 , 0x6DCA, 0xBE32 , 0x6C24 , 0xBB85 ,
0x6A6E , 0xB8E3 , 0x68A7 , 0xB64C , 0x66CF , 0xB3C0 , 0x64E8 , 0xB140 ,
0x62F2 , 0xAECC, 0x60EC , 0xAC65 , 0x5ED7 , 0xAA0A, 0x5CB4 , 0xA7BD,
0x5A82 , 0xA57E , 0x5843 , 0xA34C , 0x55F6 , 0xA129 , 0x539B , 0x9F14 ,
0x5134 , 0x9D0E , 0x4EC0 , 0x9B18 , 0x4C40 , 0x9931 , 0x49B4 , 0x9759 ,
0x471D , 0x9592 , 0x447B , 0x93DC , 0x41CE , 0x9236 , 0x3F17 , 0x90A1 ,
0x3C57 , 0x8F1D , 0x398D , 0x8DAB, 0x36BA , 0x8C4A , 0x33DF , 0x8AFB,
0x30FC , 0x89BE , 0x2E11 , 0x8894 , 0x2B1F , 0x877C , 0x2827 , 0x8676 ,
0x2528 , 0x8583 , 0x2224 , 0x84A3 , 0x1F1A , 0x83D6 , 0x1C0B , 0x831C ,
0x18F9 , 0x8276 , 0x15E2 , 0x81E3 , 0x12C8 , 0x8163 , 0x0FAB, 0x80F7 ,
0x0C8C , 0x809E , 0x096B , 0x8059 , 0x0648 , 0x8028 , 0x0324 , 0x800A ,
0x0000 , 0x8000 , 0xFCDC, 0x800A , 0xF9B8 , 0x8028 , 0xF695 , 0x8059 ,
0xF374 , 0x809E , 0xF055 , 0x80F7 , 0xED38 , 0x8163 , 0xEA1E, 0x81E3 ,
0xE707 , 0x8276 , 0xE3F5 , 0x831C , 0xE0E6 , 0x83D6 , 0xDDDC, 0x84A3 ,
0xDAD8, 0x8583 , 0xD7D9 , 0x8676 , 0xD4E1 , 0x877C , 0xD1EF, 0x8894 ,
0xCF04 , 0x89BE , 0xCC21 , 0x8AFB, 0xC946 , 0x8C4A , 0xC673 , 0x8DAB,
0xC3A9 , 0x8F1D , 0xC0E9 , 0x90A1 , 0xBE32 , 0x9236 , 0xBB85 , 0x93DC ,
0xB8E3 , 0x9593 , 0xB64C , 0x975A , 0xB3C0 , 0x9931 , 0xB140 , 0x9B18 ,
0xAECC, 0x9D0E , 0xAC65 , 0x9F14 , 0xAA0A, 0xA129 , 0xA7BD, 0xA34C ,
0xA57E , 0xA57E , 0xA34C , 0xA7BD, 0xA129 , 0xAA0A, 0x9F14 , 0xAC65 ,
0x9D0E , 0xAECC, 0x9B18 , 0xB140 , 0x9931 , 0xB3C0 , 0x975A , 0xB64C ,
0x9593 , 0xB8E3 , 0x93DC , 0xBB85 , 0x9236 , 0xBE32 , 0x90A1 , 0xC0E9 ,
0x8F1D , 0xC3A9 , 0x8DAB, 0xC673 , 0x8C4A , 0xC946 , 0x8AFB, 0xCC21 ,
0x89BF , 0xCF04 , 0x8894 , 0xD1EF, 0x877C , 0xD4E1 , 0x8676 , 0xD7D9 ,
0x8583 , 0xDAD8, 0x84A3 , 0xDDDC, 0x83D6 , 0xE0E6 , 0x831C , 0xE3F5 ,
0x8276 , 0xE707 , 0x81E3 , 0xEA1E, 0x8163 , 0xED38 , 0x80F7 , 0xF055 ,
0x809E , 0xF374 , 0x8059 , 0xF695 , 0x8028 , 0xF9B8 , 0x800A , 0xFCDC
} ;

#endif
#i f (FFT BLOCK LENGTH == 512 )

const f ractcomplex twidd l eFactor s [ ] a t t r i b u t e ( ( space ( auto psv ) , a l i gned (FFT BLOCK LENGTH∗2∗2) ) ) =
{
0x7FFF , 0x0000 , 0x7FFE , 0xFE6E , 0x7FF6 , 0xFCDC, 0x7FEA, 0xFB4A,
0x7FD9 , 0xF9B8 , 0x7FC2 , 0xF827 , 0x7FA7 , 0xF695 , 0x7F87 , 0xF505 ,
0x7F62 , 0xF374 , 0x7F38 , 0xF1E4 , 0x7F0A , 0xF055 , 0x7ED6 , 0xEEC6,
0x7E9D , 0xED38 , 0x7E60 , 0xEBAB, 0x7E1E , 0xEA1E, 0x7DD6 , 0xE892 ,
0x7D8A , 0xE707 , 0x7D3A , 0xE57D , 0x7CE4 , 0xE3F4 , 0x7C89 , 0xE26D ,
0x7C2A , 0xE0E6 , 0x7BC6 , 0xDF61 , 0x7B5D , 0xDDDC, 0x7AEF, 0xDC59 ,
0x7A7D , 0xDAD8, 0x7A06 , 0xD958 , 0x798A , 0xD7D9 , 0x790A , 0xD65C ,
0x7885 , 0xD4E1 , 0x77FB , 0xD367 , 0x776C , 0xD1EF, 0x76D9 , 0xD079 ,
0x7642 , 0xCF04 , 0x75A6 , 0xCD92 , 0x7505 , 0xCC21 , 0x7460 , 0xCAB2,
0x73B6 , 0xC946 , 0x7308 , 0xC7DB, 0x7255 , 0xC673 , 0x719E , 0xC50D ,
0x70E3 , 0xC3A9 , 0x7023 , 0xC248 , 0x6F5F , 0xC0E9 , 0x6E97 , 0xBF8C,
0x6DCA, 0xBE32 , 0x6CF9 , 0xBCDA, 0x6C24 , 0xBB85 , 0x6B4B , 0xBA33 ,
0x6A6E , 0xB8E3 , 0x698C , 0xB796 , 0x68A7 , 0xB64C , 0x67BD , 0xB505 ,
0x66D0 , 0xB3C0 , 0x65DE , 0xB27F , 0x64E9 , 0xB140 , 0x63EF , 0xB005 ,
0x62F2 , 0xAECC, 0x61F1 , 0xAD97 , 0x60EC , 0xAC65 , 0x5FE4 , 0xAB36 ,
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0x5ED8 , 0xAA0A, 0x5DC8 , 0xA8E2 , 0x5CB4 , 0xA7BD, 0x5B9D , 0xA69C ,
0x5A83 , 0xA57E , 0x5964 , 0xA463 , 0x5843 , 0xA34C , 0x571E , 0xA238 ,
0x55F6 , 0xA128 , 0x54CA , 0xA01C , 0x539B , 0x9F14 , 0x5269 , 0x9E0F ,
0x5134 , 0x9D0E , 0x4FFB , 0x9C11 , 0x4EC0 , 0x9B17 , 0x4D81 , 0x9A22 ,
0x4C40 , 0x9930 , 0x4AFB, 0x9843 , 0x49B4 , 0x9759 , 0x486A , 0x9674 ,
0x471D , 0x9592 , 0x45CD , 0x94B5 , 0x447B , 0x93DC , 0x4326 , 0x9307 ,
0x41CE , 0x9236 , 0x4074 , 0x9169 , 0x3F17 , 0x90A1 , 0x3DB8 , 0x8FDD,
0x3C57 , 0x8F1D , 0x3AF3 , 0x8E62 , 0x398D , 0x8DAB, 0x3825 , 0x8CF8 ,
0x36BA , 0x8C4A , 0x354E , 0x8BA0 , 0x33DF , 0x8AFB, 0x326E , 0x8A5A ,
0x30FC , 0x89BE , 0x2F87 , 0x8927 , 0x2E11 , 0x8894 , 0x2C99 , 0x8805 ,
0x2B1F , 0x877B , 0x29A4 , 0x86F6 , 0x2827 , 0x8676 , 0x26A8 , 0x85FA ,
0x2528 , 0x8583 , 0x23A7 , 0x8511 , 0x2224 , 0x84A3 , 0x209F , 0x843A ,
0x1F1A , 0x83D6 , 0x1D93 , 0x8377 , 0x1C0C , 0x831C , 0x1A83 , 0x82C6 ,
0x18F9 , 0x8276 , 0x176E , 0x822A , 0x15E2 , 0x81E2 , 0x1455 , 0x81A0 ,
0x12C8 , 0x8163 , 0x113A , 0x812A , 0x0FAB, 0x80F6 , 0x0E1C , 0x80C8 ,
0x0C8C , 0x809E , 0x0AFB, 0x8079 , 0x096B , 0x8059 , 0x07D9 , 0x803E ,
0x0648 , 0x8027 , 0x04B6 , 0x8016 , 0x0324 , 0x800A , 0x0192 , 0x8002 ,
0x0000 , 0x8000 , 0xFE6E , 0x8002 , 0xFCDC, 0x800A , 0xFB4A, 0x8016 ,
0xF9B8 , 0x8027 , 0xF827 , 0x803E , 0xF695 , 0x8059 , 0xF505 , 0x8079 ,
0xF374 , 0x809E , 0xF1E4 , 0x80C8 , 0xF055 , 0x80F6 , 0xEEC6, 0x812A ,
0xED38 , 0x8163 , 0xEBAB, 0x81A0 , 0xEA1E, 0x81E2 , 0xE892 , 0x822A ,
0xE707 , 0x8276 , 0xE57D , 0x82C6 , 0xE3F4 , 0x831C , 0xE26D , 0x8377 ,
0xE0E6 , 0x83D6 , 0xDF61 , 0x843A , 0xDDDC, 0x84A3 , 0xDC59 , 0x8511 ,
0xDAD8, 0x8583 , 0xD958 , 0x85FA , 0xD7D9 , 0x8676 , 0xD65C , 0x86F6 ,
0xD4E1 , 0x877B , 0xD367 , 0x8805 , 0xD1EF, 0x8894 , 0xD079 , 0x8927 ,
0xCF04 , 0x89BE , 0xCD92 , 0x8A5A , 0xCC21 , 0x8AFB, 0xCAB2, 0x8BA0 ,
0xC946 , 0x8C4A , 0xC7DB, 0x8CF8 , 0xC673 , 0x8DAB, 0xC50D , 0x8E62 ,
0xC3A9 , 0x8F1D , 0xC248 , 0x8FDD, 0xC0E9 , 0x90A1 , 0xBF8C, 0x9169 ,
0xBE32 , 0x9236 , 0xBCDA, 0x9307 , 0xBB85 , 0x93DC , 0xBA33 , 0x94B5 ,
0xB8E3 , 0x9592 , 0xB796 , 0x9674 , 0xB64C , 0x9759 , 0xB505 , 0x9843 ,
0xB3C0 , 0x9930 , 0xB27F , 0x9A22 , 0xB140 , 0x9B17 , 0xB005 , 0x9C11 ,
0xAECC, 0x9D0E , 0xAD97 , 0x9E0F , 0xAC65 , 0x9F14 , 0xAB36 , 0xA01C ,
0xAA0A, 0xA128 , 0xA8E2 , 0xA238 , 0xA7BD, 0xA34C , 0xA69C , 0xA463 ,
0xA57D , 0xA57D , 0xA463 , 0xA69C , 0xA34C , 0xA7BD, 0xA238 , 0xA8E2 ,
0xA128 , 0xAA0A, 0xA01C , 0xAB36 , 0x9F14 , 0xAC65 , 0x9E0F , 0xAD97 ,
0x9D0E , 0xAECC, 0x9C11 , 0xB005 , 0x9B17 , 0xB140 , 0x9A22 , 0xB27F ,
0x9930 , 0xB3C0 , 0x9843 , 0xB504 , 0x9759 , 0xB64C , 0x9674 , 0xB796 ,
0x9592 , 0xB8E3 , 0x94B5 , 0xBA33 , 0x93DC , 0xBB85 , 0x9307 , 0xBCDA,
0x9236 , 0xBE32 , 0x9169 , 0xBF8C, 0x90A1 , 0xC0E9 , 0x8FDD, 0xC248 ,
0x8F1D , 0xC3A9 , 0x8E62 , 0xC50D , 0x8DAB, 0xC673 , 0x8CF8 , 0xC7DB,
0x8C4A , 0xC946 , 0x8BA0 , 0xCAB2, 0x8AFB, 0xCC21 , 0x8A5A , 0xCD92 ,
0x89BE , 0xCF04 , 0x8927 , 0xD079 , 0x8894 , 0xD1EF, 0x8805 , 0xD367 ,
0x877B , 0xD4E1 , 0x86F6 , 0xD65C , 0x8676 , 0xD7D9 , 0x85FA , 0xD958 ,
0x8583 , 0xDAD8, 0x8510 , 0xDC59 , 0x84A3 , 0xDDDC, 0x843A , 0xDF61 ,
0x83D6 , 0xE0E6 , 0x8377 , 0xE26D , 0x831C , 0xE3F4 , 0x82C6 , 0xE57D ,
0x8275 , 0xE707 , 0x8229 , 0xE892 , 0x81E2 , 0xEA1E, 0x81A0 , 0xEBAB,
0x8163 , 0xED38 , 0x812A , 0xEEC6, 0x80F6 , 0xF055 , 0x80C8 , 0xF1E4 ,
0x809E , 0xF374 , 0x8079 , 0xF505 , 0x8059 , 0xF695 , 0x803E , 0xF827 ,
0x8027 , 0xF9B8 , 0x8016 , 0xFB4A, 0x800A , 0xFCDC, 0x8002 , 0xFE6E
} ;

#endif

#endif

B.8 The fft.h Firmware - FFT Declarations

Listing B.8: Firmware - FFT Declarations.

/∗ Constant De f i n i t i o n s ∗/
#define FFT BLOCK LENGTH 64 /∗ = Number o f f requency po in t s in the FFT ∗/
#define LOG2 BLOCK LENGTH 8 /∗ = Number o f ” Bu t t e r f l y ” Stages in FFT proce s s ing ∗/
#define SAMPLING RATE 8000 /∗ = Rate at which input s i g n a l was sampled ∗/
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/∗ SAMPLING RATE i s used to c a l c u l a t e the f requency ∗/
/∗ o f the l a r g e s t e lement in the FFT output v ec t o r ∗/

#define FFTTWIDCOEFFS IN PROGMEM
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B.9 The FormMain.cs Phonocardiogram - Main Form

FormMain.cs is the main menu of the Windows Phonocardiom Host. The main menu

also graphs and plays back the ascultation signal in real time.

Listing B.9: Phonocardiogram - Main Form.

u s i n g System ;
us ing System . C o l l e c t i o n s . Generic ;
us ing System . Windows . Forms ;
us ing System . IO . Ports ;
us ing System . Threading ;
us ing SlimDX . DirectSound ;
us ing SlimDX . Multimedia ;
us ing MathNet . Numerics ;
us ing MathNet . Numerics . Integra lTrans fo rms ;

namespace Phonocardiogram
{

pub l i c p a r t i a l c l a s s FormMain : Form
{

stat ic short [ ] s eg end = {0xFF , 0x1FF , 0x3FF , 0x7FF ,
0xFFF, 0x1FFF , 0x3FFF , 0x7FFF} ;

double lastUpdate = 0 . 0 ;
const int SamplesPerSecond = 8000 ;

stat ic Queue<InData> b u f f e r = new Queue<InData >() ;
stat ic C i r c u l a r B u f f e r b u f f e r 2 = new C i r c u l a r B u f f e r ( ) ;
p r i v a t e double [ ] dwtArray = new double [ 1 2 8 ] ;

d e l e ga t e void AddTimeDomainDataCallback ( byte [ ] bu f f e r , int l en ) ;

pub l i c FormMain ( )
{

In i t i a l i z eComponent ( ) ;
}

p r i v a t e void button1 Cl i ck ( ob j e c t sender , EventArgs e )
{

t ry
{

t imerRef resh . Enabled = true ;
ser ia lPortBT . Open ( ) ;

InitGraph ( ) ;

InitSound ( ) ;
}
catch ( Exception ex )
{

MessageBox . Show( ex . Message ) ;
}

}

p r i v a t e void InitGraph ( )
{
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scopeTime . Channels [ 0 ] . Data . SampleRate = SamplesPerSecond ;
waterfallDWT . XAxis . Samples = SamplesPerSecond ∗ 3 / 258 ;
waterfallDWT . XAxis . MaxTick . AutoScale = f a l s e ;

}

p r i v a t e void UpdateScalogram (double [ ] frame )
{

daub dwt = new daub ( ) ;
dwt . daubTrans ( frame ) ;

for ( int i = 0 ; i < frame . Length ; i++)
frame [ i ] = Math . Abs ( frame [ i ] / frame . Length ) ;

waterfallDWT . Data . AddData( frame ) ;
}

p r i v a t e void UpdateSpectogram (double [ ] frame )
{

Complex [ ] data = new Complex [ frame . Length ] ;
for ( int j = 0 ; j < frame . Length ; j++)

data [ j ] = frame [ j ] ;

var f f t = new MathNet . Numerics . Integra lTrans fo rms . Algorithms . DiscreteFour ie rTrans form ( ) ;
f f t . Radix2Forward ( data , Four ierOpt ions . Matlab ) ;

int sampleRate = 4000 ;
double r e s = (double ) ( data . Length / 2) / sampleRate ;

r e s = 1 / r e s ;

double [ ] f f tFrame = new double [ data . Length / 2 ] ;
for ( int j = 0 ; j < data . Length / 2 ; j++)

f ftFrame [ j ] = Math . Abs ( data [ j ] . Real ) / ( frame . Length /2 ) ;

waterfallDWT . Data . AddData( f ftFrame ) ;
}

p r i v a t e void ser ia lPortBT DataRece ived ( ob j e c t sender , System . IO . Ports . Ser ia lDataReceivedEventArgs e )
{

S e r i a l P o r t sp = ( S e r i a l P o r t ) sender ;

byte [ ] b u f f e r = new byte [ 2 5 6 ] ;
int dataReceived = sp . Read ( bu f f e r , 0 , b u f f e r . Length ) ;

t ry
{

AddTimeDomainData ( bu f f e r , dataReceived ) ;
}
catch
{

// TODO: Handle t h i s er ror
}

}

int u law2 l inea r ( byte ulawbyte )
{

int [ ] e xp lu t = { 0 , 132 , 396 , 924 , 1980 , 4092 , 8316 , 16764 } ;
int s ign , exponent , mantissa , sample ;

ulawbyte = ( byte )˜ ulawbyte ;
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s i gn = ( ulawbyte & 0x80 ) ;
exponent = ( ulawbyte >> 4) & 0x07 ;
mantissa = ulawbyte & 0x0F ;
sample = exp lu t [ exponent ] + ( mantissa << ( exponent + 3 ) ) ;
i f ( s i gn != 0) sample = −sample ;

return ( sample ) ;
}

p r i v a t e void AddTimeDomainData ( byte [ ] bu f f e r , int l en )
{

l o ck ( b u f f e r )
{

for ( int i = 0 ; i < l en ; i++)
{

InData data = new InData ( ) ;
data . Value = b u f f e r [ i ] ;
data . TimeStamp = DateTime .Now;
lastUpdate = lastUpdate + ( 1 . 0 / 5000) ;
data . LastUpdate = lastUpdate ;

b u f f e r . Enqueue ( data ) ;
b u f f e r 2 . Add( b u f f e r [ i ] ) ;

}
}

}

p r i v a t e void C l o s e S e r i a l P o r t ( Object s t a t e I n f o )
{

ser ia lPortBT . Close ( ) ;
}

p r i v a t e void button2 Cl i ck ( ob j e c t sender , EventArgs e )
{

t imerRef resh . Enabled = f a l s e ;
ThreadPool . QueueUserWorkItem (new WaitCallback ( C l o s e S e r i a l P o r t ) ) ;

}

p r i v a t e void t imerRe f re sh Tick ( ob j e c t sender , EventArgs e )
{

UpdateGraphs ( ) ;
}

p r i v a t e void UpdateGraphs ( )
{

double [ ] frame = new double [ 2 5 6 ] ;
int element = 0 ;

int i = 0 ;
while ( b u f f e r . Count != 0 && i < 10)
{

InData data = b u f f e r . Dequeue ( ) ;
i f ( data != n u l l )
{

double pcmSample = (double ) u l aw2 l inea r ( data . Value ) ;
scopeTime . Channels [ 0 ] . Data . AddYPoint ( pcmSample ) ;
i ++;

frame [ element ] = pcmSample ;
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element++;
i f ( element > frame . Length − 1)
{

UpdateSpectogram ( frame ) ;
element = 0 ;

}
}

}
}

p r i v a t e void InitSound ( )
{

DirectSound ds = new DirectSound ( DirectSoundGuid . DefaultPlaybackDevice ) ;

ds . SetCooperat iveLeve l ( t h i s . Handle , Cooperat iveLeve l . P r i o r i t y ) ;

WaveFormat format = new WaveFormat ( ) ;
format . BitsPerSample = 8 ;
format . BlockAlignment = 1 ;
format . Channels = 1 ;
format . FormatTag = WaveFormatTag .Pcm;
format . SamplesPerSecond = SamplesPerSecond ;
format . AverageBytesPerSecond = format . SamplesPerSecond ∗ format . BlockAlignment ;

SoundBuf ferDescr ipt ion desc = new SoundBuf ferDescr ipt ion ( ) ;
desc . Format = format ;
desc . Flags = Buf f e rF lags . GlobalFocus | Buf f e rF lags . Cont ro lPos i t i onNot i f y | Buf f e rF lags . GetCurrentPos it ion2 ; //Allow n o t i f i c a t i o n about the p layback p o s i t i o n
desc . S i ze InBytes = 8 ∗ format . AverageBytesPerSecond ;
SecondarySoundBuffer sBu f f e r1 = new SecondarySoundBuffer ( ds , desc ) ;

N o t i f i c a t i o n P o s i t i o n [ ] n o t i f i c a t i o n s = new N o t i f i c a t i o n P o s i t i o n [ 2 ] ;
n o t i f i c a t i o n s [ 0 ] . O f f s e t = 0 ; // At the beg inn ing o f the SecondaryBuf fer
n o t i f i c a t i o n s [ 1 ] . O f f s e t = 4 ∗ format . AverageBytesPerSecond ; // At the mid−po in t o f the SecondaryBuffer
n o t i f i c a t i o n s [ 0 ] . Event = new AutoResetEvent ( f a l s e ) ;
n o t i f i c a t i o n s [ 1 ] . Event = new AutoResetEvent ( f a l s e ) ;
sBu f f e r1 . S e t N o t i f i c a t i o n P o s i t i o n s ( n o t i f i c a t i o n s ) ;

Thread CaptureThread = new Thread ( ( ThreadStart ) de l e ga t e
{

byte [ ] bytes = new byte [ 4 ∗ format . AverageBytesPerSecond ] ;
b u f f e r 2 . Read ( bytes , 4 ∗ format . AverageBytesPerSecond ) ;

// load the f i r s t h a l f o f the bu f f e r , then beg in p layback
sBu f f e r1 . Write<byte>(bytes , 0 , LockFlags . None ) ;
sBu f f e r1 . Play (0 , PlayFlags . Looping ) ;

while ( t rue )
{

n o t i f i c a t i o n s [ 0 ] . Event . WaitOne ( ) ; // wai t u n t i l a s i g n a l i s r e c e i v ed when t h i s event i s t r i g g e r e d by p layback h i t t i n g the o f f s e t ’0 ’
b u f f e r 2 . Read ( bytes , 4 ∗ format . AverageBytesPerSecond ) ;

// read the next ba tch o f audio data
sBu f f e r1 . Write<byte>(bytes , 4 ∗ format . AverageBytesPerSecond , LockFlags . None ) ;

// wr i t e to the second h a l f o f the b u f f e r
n o t i f i c a t i o n s [ 1 ] . Event . WaitOne ( ) ; // b l o c k t i l l p l ayback h i t s the midpoint o f the b u f f e r
b u f f e r 2 . Read ( bytes , 4 ∗ format . AverageBytesPerSecond ) ;

// read audio data from the stream
sBu f f e r1 . Write<byte>(bytes , 0 , LockFlags . None ) ;

// wr i t e the data to the f i r s t h a l f o f the b u f f e r
}
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} ) ;
CaptureThread . Sta r t ( ) ;

}
}

pub l i c c l a s s InData
{

pub l i c byte Value ;
pub l i c DateTime TimeStamp ;
pub l i c double LastUpdate ;

}

pub l i c c l a s s C i r c u l a r B u f f e r
{

Queue<byte> queue ;

pub l i c C i r c u l a r B u f f e r ( )
{

queue = new Queue<byte >() ;
}

pub l i c void Add( byte va lue )
{

queue . Enqueue ( value ) ;
}

pub l i c void Read ( byte [ ] bytes , int l en )
{

for ( int i = 0 ; i < l en ; i++)
{

i f ( queue . Count > 0)
{

bytes [ i ] = queue . Dequeue ( ) ;
}

}
}

}
}

B.10 Program.cs Phonocardiogram - DWT

DWT.cs performs an in-place discrete wavelett transform on an array of data using

the Daubechies D4 coefficients. This code was ported to C# from Java code de-

veloped by Ian Kaplan. See http://www.bearcave.com/misl/misl_tech/wavelets/

daubechies/index.html for more information.

http://www.bearcave.com/misl/misl_tech/wavelets/daubechies/index.html
http://www.bearcave.com/misl/misl_tech/wavelets/daubechies/index.html
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Listing B.10: Phonocardiogram - DWT.

u s i n g System ;
us ing System . C o l l e c t i o n s . Generic ;
us ing System . Linq ;
us ing System . Text ;

namespace Phonocardiogram
{

/∗∗
<p>
Daubechies D4 wave l e t transform (D4 denotes four c o e f f i c i e n t s )
</p>
<p>
I have to con f e s s up f r on t t ha t the comment here does not even come
c l o s e to d e s c r i b i n g wave l e t a l go r i t hms and the Daubechies D4
a l gor i thm in p a r t i c u l a r . I don ’ t t h ink t ha t i t can be de s c r i b ed in
anyth ing l e s s than a journa l a r t i c l e or perhaps a book . I even have
to apo l o g i z e f o r the no ta t i on I use to d e s c r i b e the a lgor i thm , which
i s b a r e l y adequate . But e x p l a i n i n g the co r r e c t no ta t i on would take
a f a i r amount o f space as w e l l . This comment r e a l l y r ep r e s en t s some
notes t ha t I wrote up as I implemented the code . I f you are
un fami l i a r wi th wave l e t s I s u g g e s t t h a t you look at the bearcave . com
web pages and at the wave l e t l i t e r a t u r e . I have ye t to see a r e a l l y
good r e f e r ence on wave l e t s f o r the so f tware deve l ope r . The b e s t
book I can recommend i s <i>Ripp l e s in Mathematics</i> by Jensen and
Cour−Harbo .
</p>

<p>
Al l wave l e t a l go r i t hms have two components , a wave l e t f unc t i on and a
s c a l i n g func t i on . These are sometime a l s o r e f e r r e d to as h igh pass
and low pass f i l t e r s r e s p e c t i v e l y .
</p>

<p>
The wave l e t f unc t i on i s passed two or more samples
and c a l c u l a t e s a wave l e t c o e f f i c i e n t . In the case o f
the Haar wave l e t t h i s i s
</p>

<pre>
coef<sub>i</sub> = odd<sub>i</sub> − even<sub>i</sub>
or
coef<sub>i</sub> = 0.5 ∗ ( odd<sub>i</sub> − even<sub>i</sub>)
</pre>
<p>
depending on the ve r s i on o f the Haar a l gor i thm used .
</p>
<p>
The s c a l i n g func t i on produces a smoother ve r s i on o f the
o r i g i n a l data . In the case o f the Haar wave l e t a l gor i thm
t h i s i s an average o f two ad jacen t e lements .
</p>
<p>
The Daubechies D4 wave l e t a l gor i thm a l s o has a wave l e t
and a s c a l i n g func t i on . The c o e f f i c i e n t s f o r the
s c a l i n g func t i on are denoted as h<sub>i</sub> and the
wave l e t c o e f f i c i e n t s are g<sub>i</sub>.
</p>
<p>
Mathematicians l i k e to t a l k about wave l e t s in terms o f
a wave l e t a l gor i thm app l i e d to an i n f i n i t e data s e t .
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In t h i s case one s t ep o f the forward transform can be expres sed
as the i n f i n i t e matrix o f wave l e t c o e f f i c i e n t s
r epre sen t ed be low mu l t i p l i e d by the i n f i n i t e s i g n a l
v e c t o r .
</p>
<pre>

a<sub>i</sub> = . . . h0 , h1 , h2 , h3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . .
s<sub>i</sub>

c<sub>i</sub> = . . . g0 , g1 , g2 , g3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . .
s<sub>i+1</sub>

a<sub>i+1</sub> = . . . 0 , 0 , h0 , h1 , h2 , h3 , 0 , 0 , 0 , 0 , 0 , . . .
s<sub>i+2</sub>

c<sub>i+1</sub> = . . . 0 , 0 , g0 , g1 , g2 , g3 , 0 , 0 , 0 , 0 , 0 , . . .
s<sub>i+3</sub>

a<sub>i+2</sub> = . . . 0 , 0 , 0 , 0 , h0 , h1 , h2 , h3 , 0 , 0 , 0 , . . .
s<sub>i+4</sub>

c<sub>i+2</sub> = . . . 0 , 0 , 0 , 0 , g0 , g1 , g2 , g3 , 0 , 0 , 0 , . . .
s<sub>i+5</sub>

a<sub>i+3</sub> = . . . 0 , 0 , 0 , 0 , 0 , 0 , h0 , h1 , h2 , h3 , 0 , . . .
s<sub>i+6</sub>

c<sub>i+3</sub> = . . . 0 , 0 , 0 , 0 , 0 , 0 , g0 , g1 , g2 , g3 , 0 , . . .
s<sub>i+7</sub>
</pre>
<p>
The dot product ( inner product ) o f the i n f i n i t e v ec t o r and
a row of the matrix produces e i t h e r a smoother ve r s i on o f the
s i g n a l (a<sub>i</sub>) or a wave l e t c o e f f i c i e n t ( c<sub>i</sub >).
</p>
<p>
In an ordered wave l e t transform , the smoothed (a<sub>i</sub>) are
s t o r ed in the f i r s t h a l f o f an <i>n</i> element array reg ion .

The
wave l e t c o e f f i c i e n t s ( c<sub>i</sub>) are s t o r ed in the second h a l f
the <i>n</i> element reg ion . The a l gor i thm i s r e cu r s i v e . The
smoothed va l u e s become the input to the next s t ep .
</p>
<p>
The transpose o f the forward transform matrix above i s used
to c a l c u l a t e an inv e r s e transform s t ep . Here the dot product i s
formed from the r e s u l t o f the forward transform and an inve r s e
transform matrix row .
</p>
<pre>

s<sub>i</sub> = . . . h2 , g2 , h0 , g0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . .
a<sub>i</sub>

s<sub>i+1</sub> = . . . h3 , g3 , h1 , g1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . .
c<sub>i</sub>

s<sub>i+2</sub> = . . . 0 , 0 , h2 , g2 , h0 , g0 , 0 , 0 , 0 , 0 , 0 , . . .
a<sub>i+1</sub>

s<sub>i+3</sub> = . . . 0 , 0 , h3 , g3 , h1 , g1 , 0 , 0 , 0 , 0 , 0 , . . .
c<sub>i+1</sub>

s<sub>i+4</sub> = . . . 0 , 0 , 0 , 0 , h2 , g2 , h0 , g0 , 0 , 0 , 0 , . . .
a<sub>i+2</sub>

s<sub>i+5</sub> = . . . 0 , 0 , 0 , 0 , h3 , g3 , h1 , g1 , 0 , 0 , 0 , . . .
c<sub>i+2</sub>

s<sub>i+6</sub> = . . . 0 , 0 , 0 , 0 , 0 , 0 , h2 , g2 , h0 , g0 , 0 , . . .
a<sub>i+3</sub>
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s<sub>i+7</sub> = . . . 0 , 0 , 0 , 0 , 0 , 0 , h3 , g3 , h1 , g1 , 0 , . . .
c<sub>i+3</sub>
</pre>

<p>
Using a standard dot product i s g r o s s l y i n e f f i c i e n t s ince most
o f the operands are zero . In p r a c t i c e the wave l e t c o e f f i c i e n t
va l u e s are moved a long the s i g n a l v e c t o r and a four element
dot product i s c a l c u l a t e d . Expressed in terms o f arrays , f o r
the forward transform t h i s would be :
</p>
<pre>
a<sub>i</sub> = s [ i ]∗ h0 + s [ i +1]∗h1 + s [ i +2]∗h2 + s [ i +3]∗h3
c<sub>i</sub> = s [ i ]∗ g0 + s [ i +1]∗ g1 + s [ i +2]∗ g2 + s [ i +3]∗ g3
</pre>
<p>
This works f i n e i f we have an i n f i n i t e data se t , s ince we don ’ t
have to worry about s h i f t i n g the c o e f f i c i e n t s ” o f f the end” o f
the s i g n a l .
</p>
<p>
I sometimes joke t ha t I l e f t my i n f i n i t e data s e t in my other bear
s u i t . The only problem with the a l gor i thm de s c r i b ed so f a r i s t h a t
we don ’ t have an i n f i n i t e s i g n a l . The s i g n a l i s f i n i t e . In f a c t
not on ly must the s i g n a l be f i n i t e , but i t must have a power o f two
number o f e lements .
</p>
<p>
I f i=N−1, the i+2 and i+3 e lements w i l l be beyond the end o f
the array . There are a number o f methods f o r hand l ing the
wave l e t edge problem . This ve r s i on o f the a l gor i thm ac t s
l i k e the data i s per iod i c , where the data at the s t a r t o f
the s i g n a l wraps around to the end .
</p>
<p>
This a l gor i thm uses a temporary array . A L i f t i n g Scheme ver s i on o f
the Daubechies D4 a lgor i thm does not r e qu i r e a temporary . The
matrix d i s cu s s i on above i s based on mater ia l from <i>Ripp l e s in
Mathematics</i>, by Jensen and Cour−Harbo . Any error are mine .
</p>

<p>
<b>Author</b>: Ian Kaplan<br>
<b>Use</b>: You may use t h i s so f tware f o r any purpose as long
as I cannot be he l d l i a b l e f o r the r e s u l t . P lease c r e d i t me
with au thor sh ip i f use use t h i s source code .
</p>
∗/

c l a s s daub {
protec ted stat ic double s q r t 3 = Math . Sqrt ( 3 ) ;
p ro tec ted stat ic double denom = 4 ∗ Math . Sqrt ( 2 ) ;
//
// forward transform s c a l i n g ( smoothing ) c o e f f i c i e n t s
//
protec ted stat ic double h0 = (1 + s q r t 3 ) / denom ;
protec ted stat ic double h1 = (3 + s q r t 3 ) / denom ;
protec ted stat ic double h2 = (3 − s q r t 3 ) / denom ;
protec ted stat ic double h3 = (1 − s q r t 3 ) / denom ;
//
// forward transform wave l e t c o e f f i c i e n t s
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//
protec ted stat ic double g0 = h3 ;
pro tec ted stat ic double g1 = −h2 ;
pro tec ted stat ic double g2 = h1 ;
pro tec ted stat ic double g3 = −h0 ;

//
// Inver se transform c o e f f i c i e n t s f o r smoothed va l u e s
//
protec ted stat ic double Ih0 = h2 ;
pro tec ted stat ic double Ih1 = g2 ; // h1
protec ted stat ic double Ih2 = h0 ;
pro tec ted stat ic double Ih3 = g0 ; // h3
//
// Inver se transform fo r wave l e t va l u e s
//
protec ted stat ic double Ig0 = h3 ;
pro tec ted stat ic double Ig1 = g3 ; // −h0
protec ted stat ic double Ig2 = h1 ;
pro tec ted stat ic double Ig3 = g1 ; // −h2

/∗∗
<p>
Forward wave l e t transform .
</p>
<p>
Note t ha t a t the end o f the computation the
c a l c u l a t i o n wraps around to the beg inn ing o f
the s i g n a l .
</p>
∗/

protec ted void trans form ( double [ ] a , int n )
{

i f (n >= 4) {
int i , j ;
int h a l f = n >> 1 ;

double [ ] tmp = new double [ n ] ;

i = 0 ;
for ( j = 0 ; j < n−3; j = j + 2) {

tmp [ i ] = a [ j ]∗ h0 + a [ j +1]∗h1 + a [ j +2]∗h2 + a [ j +3]∗h3 ;
tmp [ i+h a l f ] = a [ j ]∗ g0 + a [ j +1]∗g1 + a [ j +2]∗g2 + a [ j +3]∗g3 ;
i ++;

}

tmp [ i ] = a [ n−2]∗h0 + a [ n−1]∗h1 + a [ 0 ] ∗ h2 + a [ 1 ] ∗ h3 ;
tmp [ i+h a l f ] = a [ n−2]∗g0 + a [ n−1]∗g1 + a [ 0 ] ∗ g2 + a [ 1 ] ∗ g3 ;

for ( i = 0 ; i < n ; i++) {
a [ i ] = tmp [ i ] ;

}
}

} // transform

protec ted void invTransform ( double [ ] a , int n )
{

i f (n >= 4) {
int i , j ;
int h a l f = n >> 1 ;
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int h a l f P l s 1 = h a l f + 1 ;

double [ ] tmp = new double [ n ] ;

// l a s t smooth va l l a s t coe f . f i r s t smooth f i r s t coe f
tmp [ 0 ] = a [ ha l f −1]∗ Ih0 + a [ n−1]∗ Ih1 + a [ 0 ] ∗ Ih2 + a [ h a l f ]∗ Ih3 ;
tmp [ 1 ] = a [ ha l f −1]∗ Ig0 + a [ n−1]∗ Ig1 + a [ 0 ] ∗ Ig2 + a [ h a l f ]∗ Ig3 ;
j = 2 ;
for ( i = 0 ; i < ha l f −1; i++) {

// smooth va l coe f . v a l smooth va l coe f . v a l
tmp [ j ++] = a [ i ]∗ Ih0 + a [ i+h a l f ]∗ Ih1 + a [ i +1]∗ Ih2 + a [ i+h a l f P l s 1 ]∗ Ih3 ;
tmp [ j ++] = a [ i ]∗ Ig0 + a [ i+h a l f ]∗ Ig1 + a [ i +1]∗ Ig2 + a [ i+h a l f P l s 1 ]∗ Ig3 ;

}
for ( i = 0 ; i < n ; i++) {

a [ i ] = tmp [ i ] ;
}

}
}

/∗∗
Forward Daubechies D4 transform
∗/

pub l i c void daubTrans ( double [ ] s )
{

int N = s . Length ;
int n ;
for (n = N; n >= 4 ; n >>= 1) {

trans form ( s , n ) ;
}

}

/∗∗
Inver se Daubechies D4 transform
∗/

pub l i c void invDaubTrans ( double [ ] c o e f )
{

int N = c o e f . Length ;
int n ;
for (n = 4 ; n <= N; n <<= 1) {

invTransform ( coe f , n ) ;
}

}

} // daub

}



Appendix C

Schematics

Listed in this appendix are the schematics for the wireless acquisition module in the

following order:

1. Automatic Gain Control

2. Anti-Aliasing Filter and Analog-To-Digital Converter

3. Signal and Power Isolation

4. Microcontroller and Bluetooth Module

5. Power Supply and Battery Management



11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
27

/1
0/

20
10

Sh
ee

t  
  o

f
Fi

le
:

C
:\U

se
rs

\..
\In

pu
t S

ta
ge

.S
ch

D
oc

D
ra

w
n 

By
:

V
O

U
T

1
C

H
0

2

V
R

EF
3

V
SS

4

C
S

5

SI
6

SC
K

7

V
D

D
8

U
2

M
C

P6
S2

1-
I/P

V
iso

82
0K

R
1

20
0K

R
2

J1

G
N

D
iso

7

32

4

6

1
5

8
U

3
M

C
P6

01
-E

/P

10
0K

R
4

G
N

D
iso

0.
1u

F

C
4

V
iso

G
N

D
iso

V
dd

/2

10
0K

R
3

G
N

D
iso

V
iso

V
irt

ua
l G

ro
un

d

A
tte

nu
at

io
n

0.
1u

F
C

3

G
N

D
iso

G
N

D
iso

0.
1u

F
C

2

G
N

D
iso

V
ar

ia
bl

e 
G

ai
n

C
S2

_i
so

C
LK

_i
so

D
I_

iso

1 2

P1 Te
st 

Po
in

t

G
N

D
iso

7

32

4

6

1
5

8
U

1
M

C
P6

01
-E

/P

V
iso

0.
1u

F
C

5

G
N

D
iso

A
ut

om
at

ic
 G

ai
n 

C
on

tro
l

Ju
sti

n 
M

ill
er

0.
1

5
1

0.
22

uF

C
1

A
1

To
 A

nt
i-A

lia
sin

g 
Fi

lte
r



11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
27

/1
0/

20
10

Sh
ee

t  
  o

f
Fi

le
:

C
:\U

se
rs

\..
\A

D
C

St
ag

e.
Sc

hD
oc

D
ra

w
n 

By
:

32
1

8 4

U
4A

M
C

P6
02

-E
/P

D
IN

5

C
H

0
2

C
H

1
3

V
SS

4

C
S/

SH
D

N
1

D
O

U
T

6

C
LK

7

V
D

D
/V

R
EF

8

U
6 M

C
P3

20
2-

B
I/P

G
N

D
iso

G
N

D
iso

V
iso

0.
1u

F

C
19

C
ap

G
N

D
iso

A
D

C

C
LK

_i
so

D
I_

iso

D
O

_i
so

C
S1

_i
so

0.
01

2u
F

C
7

21
.5

k

R
8

G
N

D
iso0.

01
uF

C
8

22
0K

R
5

22
0K

R
6

1u
F

C
6

G
N

D
iso

V
iso

9.
76

k

R
7

G
N

D
iso

V
iso

0.
1u

F
C

15

G
N

D
iso

7
56

8 4

U
4B

M
C

P6
02

-E
/P

0.
01

5u
F

C
9

15
.8

k

R
10

G
N

D
iso0.

01
uF

C
10

10
.7

k

R
9

G
N

D
iso

V
iso

0.
1u

F
C

16

G
N

D
iso

32
1

8 4

U
5A

M
C

P6
02

-E
/P

0.
03

3u
F

C
11

10
k

R
12

G
N

D
iso0.

01
uF

C
12

7.
68

k

R
11

G
N

D
iso

V
iso

0.
1u

F
C

17

G
N

D
iso

7
56

8 4

U
5B

M
C

P6
02

-E
/P

0.
27

uF

C
13

3.
65

k

R
14

G
N

D
iso0.

01
uF

C
14

2.
55

k

R
13

G
N

D
iso

V
iso

0.
1u

F
C

18

G
N

D
iso

1 2

P2 Te
st 

Po
in

t

G
N

D
iso

A
nt

ia
lia

sin
g 

Fi
lte

r

A
na

lo
g 

to
 D

ig
ita

l C
on

ve
rte

r

Ju
sti

n 
M

ill
er

0.
2

5
2

A
1

Fr
om

 A
G

C

PIC?01 PIC?02
CO

C1
8

PIC?01 PIC?02
CO

C1
4

PI
C?
01

PI
C?
02CO

C1
3

PIC?01 PIC?02
CO

C1
7

PIC?01 PIC?02
CO

C1
2

PI
C?
01

PI
C?
02COC

11

PIC?01 PIC?02
CO

C1
6

PIC?01 PIC?02
CO

C1
0

PI
C?
01

PI
C?
02COC

9

PIC?01 PIC?02
CO

C1
5

PI
C?
01

PI
C?
02CO

C6

PIC?01 PIC?02
COC

8

PI
C?
01

PI
C?
02COC

7

PIC?01PIC?02
CO

C1
9

P
I
P
?
0
1

P
I
P
?
0
2COP

2

PI
R?
01

PI
R?
02

CO
R1

3
PI
R?
01

PI
R?
02

CO
R1

4

PI
R?
01

PI
R?
02

CO
R1

1
PI
R?
01

PI
R?
02

CO
R1

2

PI
R?
01

PI
R?
02

CO
R9

PI
R?
01

PI
R?
02

CO
R1

0

PI
R?
01

PI
R?
02

CO
R7

PIR?01PIR?02 COR
6

PIR?01PIR?02 CO
R5

PI
R?
01

PI
R?
02

COR
8

PIU?04
P
I
U
?
0
5

P
I
U
?
0
6

P
I
U
?
0
7

PIU?08
CO
U?
B

PIU?04
P
I
U
?
0
5

P
I
U
?
0
6

P
I
U
?
0
7

PIU?08

P
I
U
?
0
1

P
I
U
?
0
2

P
I
U
?
0
3

PIU?04PIU?08
CO
U?
A

P
I
U
?
0
1

P
I
U
?
0
2

P
I
U
?
0
3

P
I
U
?
0
4

P
I
U
?
0
5

P
I
U
?
0
6

P
I
U
?
0
7

P
I
U
?
0
8CO

U6

P
I
U
?
0
1

P
I
U
?
0
2

P
I
U
?
0
3

PIU?04PIU?08

P
O
C
L
K
0
I
S
O

P
O
C
S
1
0
I
S
O

P
O
D
I
0
I
S
O

P
O
D
O
0
I
S
O



11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
27

/1
0/

20
10

Sh
ee

t  
  o

f
Fi

le
:

C
:\U

se
rs

\..
\Is

ol
at

io
n.

Sc
hD

oc
D

ra
w

n 
By

:

1
3

2
4

U
9

N
K

E0
30

3S
C

G
N

D
G

N
D

iso

+3
.3

4.
7u

F
C

24

V
iso

Is
ol

at
ed

 D
C

-D
C

 C
on

ve
rte

r

0.
1u

F
C

25

G
N

D
1

2

V
O

D
11

V
O

C
12

V
O

B
13

V
ID

6

V
O

A
14

G
N

D
2

9

V
IC

5
V

IB
4

V
IA

3

V
E2

10

V
D

D
2

16
V

D
D

1
1

G
N

D
2

15

G
N

D
1

8

N
C

7

U
7

A
D

uM
24

00
A

R
W

Z

G
N

D
G

N
D

iso

G
N

D
G

N
D

iso

V
iso

0.
1u

F
C

20

G
N

D
iso

V
iso

0.
1u

F
C

22

G
N

D
iso

0.
1u

F
C

21

+3
.3

G
N

D

0.
1u

F
C

23

+3
.3

G
N

D

C
S2

_i
so

C
LK

_i
so

D
O

_i
so

D
I_

iso

C
S1

_i
so

1KR
15

C
S2

C
LKD

I

C
S1

D
O

1KR
16

10
uH

L1

G
N

D
1

2

V
O

D
11

V
O

C
12

V
O

B
13

V
ID

6

V
O

A
14

G
N

D
2

9

V
IC

5
V

IB
4

V
IA

3

V
E2

10

V
D

D
2

16
V

D
D

1
1

G
N

D
2

15

G
N

D
1

8

N
C

7

U
8

A
D

uM
24

00
A

R
W

Z

G
N

D
iso

Si
gn

al
 a

nd
 P

ow
er

 Is
ol

at
io

n

Ju
sti

n 
M

ill
er

0.
2

5
3

G
N

D
iso

+3
.3

V
iso



11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
27

/1
0/

20
10

Sh
ee

t  
  o

f
Fi

le
:

C
:\U

se
rs

\..
\A

qu
isi

tio
n 

M
od

ul
e.

Sc
hD

oc
D

ra
w

n 
By

:

M
C

LR
1

PG
ED

2/
EM

U
D

2/
A

N
0/

V
R

EF
+/

C
N

2/
RA

0
2

PG
EC

2/
EM

U
C

2/
A

N
1/

V
R

EF
-/C

N
3/

RA
1

3

PG
ED

1/
EM

U
D

1/
A

N
2/

R
P0

/C
N

4/
R

B
0

4

PG
EC

1/
EM

U
C

1/
A

N
3/

R
P1

/C
N

5/
R

B
1

5

O
SC

1/
C

LK
I/C

N
30

/R
A

2
6

O
SC

2/
C

LK
O

/C
N

29
/R

A
3

7

PG
ED

3/
EM

U
D

3/
SO

SC
I/R

P4
/C

N
1/

R
B

4
8

PG
EC

3/
EM

U
C

3/
SO

SC
O

/T
1C

K
/C

N
0/

RA
4

9

IN
T0

/R
P7

/C
N

23
/R

B
7

10

SC
L1

/R
P8

/C
N

22
/R

B
8

11

SD
A

1/
R

P9
/C

N
21

/R
B

9
12

V
SS

13

V
CA

P/
V

D
D

C
O

R
E

14

A
N

7/
R

P1
4/

C
N

12
/R

B
14

15

A
N

6/
R

P1
5/

C
N

11
/R

B
15

16

V
SS

17

V
D

D
18

U
10

D
SP

IC
33

FJ
12

G
P2

01
-E

/P

+3
.3

G
N

D

D
1

LE
D

0

33
0

R
20

G
N

D

C
S2

C
LK D

O

C
S1 D

I

0.
1u

F
C

26

G
N

D

10
uF

C
27

C
ap

 T
an

t

123456

P3 IC
SP

G
N

D

10
K

R
18

10
K

R
19

G
N

D

+3
.3

1 2 3 4 5 6

P4 B
lu

et
oo

thCT
S

RT
S

R
X

TXG
N

D
V

dd

G
N

D

+3
.3

C
ap

tu
rin

g 
D

at
a

En
ab

le
/D

isa
bl

e 
D

at
a 

C
ap

tu
re

D
ig

ita
l S

ig
na

l C
on

tro
lle

r

S1 SW
-P

B

D
ig

ita
l S

ig
na

l C
on

tro
lle

r a
nd

 B
lu

et
oo

th
 M

od
ul

e

Ju
sti

n 
M

ill
er

0.
2

5
4



11

22

33

44

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze A
4

D
at

e:
27

/1
0/

20
10

Sh
ee

t  
  o

f
Fi

le
:

C
:\U

se
rs

\..
\P

ow
er

 S
up

pl
y.

Sc
hD

oc
D

ra
w

n 
By

:

G
N

D
1

V
IN

2
V

O
U

T
3

U
?

M
C

P1
70

0-
33

02
E/

TO
1u

F
C

30
0.

1u
F

C
32

1u
F

C
31

G
N

D
G

N
D

+3
.3

G
N

D

V
SS

2

V
D

D
4

V
BA

T
3

C
E

1

PR
O

G
5

U
?

M
C

P7
38

12
T-

42
0I

/O
T

BT
1

B
at

te
ry

1u
F

C
29

2kR
21

1u
F

C
28

G
N

D

12

P? H
ea

de
r 2

H

B
at

te
ry

 C
ha

rg
er

LD
O

G
N

D

+3
.3

33
0

R
22

D
2

LE
D

2

S2 SW
-S

PS
T

O
n/

O
ff

Po
w

er
 In

di
ca

to
r

Po
w

er
 S

up
pl

y 
an

d 
B

at
te

ry
 M

an
ag

em
en

t

Te
xt

Ju
sti

n 
M

ill
er

0.
1

5
5



Appendix D

Datasheets



  2004 Microchip Technology Inc. DS21314F-page 1

M MCP601/2/3/4

Features
• Single-Supply: 2.7V to 5.5V
• Rail-to-Rail Output
• Input Range Includes Ground
• Gain Bandwidth Product: 2.8 MHz (typ.)
• Unity-Gain Stable
• Low Quiescent Current: 230 µA/amplifier (typ.)
• Chip Select (CS): MCP603 only
• Temperature Ranges:

- Industrial:  -40°C to +85°C
- Extended:  -40°C to +125°C

• Available in Single, Dual and Quad

Typical Applications
• Portable Equipment
• A/D Converter Driver
• Photo Diode Pre-amp
• Analog Filters
• Data Acquisition
• Notebooks and PDAs
• Sensor Interface

Available Tools
• SPICE Macro Models at www.microchip.com
• FilterLab® Software at www.microchip.com

Description
The Microchip Technology Inc. MCP601/2/3/4 family of
low-power operational amplifiers (op amps) are offered
in single (MCP601), single with Chip Select (CS)
(MCP603), dual (MCP602) and quad (MCP604)
configurations. These op amps utilize an advanced
CMOS technology that provides low bias current, high-
speed operation, high open-loop gain and rail-to-rail
output swing. This product offering operates with a
single supply voltage that can be as low as 2.7V, while
drawing 230 µA (typ.) of quiescent current per
amplifier. In addition, the common mode input voltage
range goes 0.3V below ground, making these
amplifiers ideal for single-supply operation.

These devices are appropriate for low-power, battery-
operated circuits due to the low quiescent current, for
A/D convert driver amplifiers because of their wide
bandwidth or for anti-aliasing filters by virtue of their low
input bias current.
The MCP601, MCP602 and MCP603 are available in
standard 8-lead PDIP, SOIC and TSSOP packages.
The MCP601 and MCP601R are also available in a
standard 5-lead SOT-23 package, while the MCP603 is
available in a standard 6-lead SOT-23 package. The
MCP604 is offered in standard 14-lead PDIP, SOIC and
TSSOP packages.
The MCP601/2/3/4 family is available in the Industrial
and Extended temperature ranges and has a power
supply range of 2.7V to 5.5V.

Package Types  

VIN+
VIN–

VSS

VOUT

VDD

1
2
3
4

8
7
6
5

NC

NC

NC

VINA+
VINA–

VDD

VINC+

VSS

VOUTC

VINC–

VOUTA

VINB+

VIND–

VOUTD

VOUTB

VINB–

VIND+VINA+
VINA–

VSS

VINB–

VOUTB

1
2
3
4

8
7
6
5

VDD

VINB+

VOUTA

MCP601
PDIP, SOIC, TSSOP

MCP604
PDIP, SOIC, TSSOP

MCP602
PDIP, SOIC, TSSOP

VIN+
VSS

VIN–

1
2
3

5

4

VDDVOUT

MCP601
SOT23-5

VIN+
VSS

VIN–

1
2
3

6

4

VDDVOUT

MCP603
SOT23-6

CS5

VIN+
VIN–

VSS

VOUT

VDD

1
2
3
4

8
7
6
5

CS

NC

NC

MCP603
PDIP, SOIC, TSSOP

14
13
12

1
2
3
4
5
6
7

11
10
9
8

VIN+
VDD

VIN–

1
2
3

5

4

VSSVOUT

MCP601R
SOT23-5

2.7V to 5.5V Single-Supply CMOS Op Amps



 2003 Microchip Technology Inc. DS21117A-page 1

M MCP6S21/2/6/8

Features
• Multiplexed Inputs: 1, 2, 6 or 8 channels
• 8 Gain Selections:

- +1, +2, +4, +5, +8, +10, +16 or +32 V/V
• Serial Peripheral Interface (SPI™)
• Rail-to-Rail Input and Output
• Low Gain Error: ±1% (max)
• Low Offset: ±275 µV (max)
• High Bandwidth: 2 to 12 MHz (typ)
• Low Noise: 10 nV/√Hz @ 10 kHz (typ)
• Low Supply Current: 1.0 mA (typ)
• Single Supply: 2.5V to 5.5V

Typical Applications
• A/D Converter Driver
• Multiplexed Analog Applications
• Data Acquisition
• Industrial Instrumentation
• Test Equipment
• Medical Instrumentation

Package Types

Description
The Microchip Technology Inc. MCP6S21/2/6/8 are
analog Programmable Gain Amplifiers (PGA). They
can be configured for gains from +1 V/V to +32 V/V and
the input multiplexer can select one of up to eight chan-
nels through an SPI port. The serial interface can also
put the PGA into shutdown to conserve power. These
PGAs are optimized for high speed, low offset voltage
and single-supply operation with rail-to-rail input and
output capability. These specifications support single
supply applications needing flexible performance or
multiple inputs.

The one channel MCP6S21 and the two channel
MCP6S22 are available in 8-pin PDIP, SOIC and
MSOP packages. The six channel MCP6S26 is avail-
able in 14-pin PDIP, SOIC and TSSOP packages. The
eight channel MCP6S28 is available in 16-pin PDIP
and SOIC packages. All parts are fully specified from
-40°C to +85°C.

Block Diagram
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SELECTION GUIDE

Order Code

Nominal 
Input 

Voltage

Output
 Voltage

Output 
Current

Input 
Current at 

Rated Load
Effi ciency

Isolation 
Capacitance

MTTF1

Package 
Style

V V mA mA
%

pF kHrs
Min. Typ.

NKE0303DC 3.3 3.3 303 400 68 72 30 1234

DIP
NKE0305DC 3.3 5 200 400 72 75 35 632
NKE0309DC 3.3 9 111 403 71 74 30 1204
NKE0312DC3 3.3 12 83 398 73 76 33
NKE0315DC3 3.3 15 66 394 74 77 35
NKE0303SC 3.3 3.3 303 400 68 72 30 1234

SIPNKE0305SC 3.3 5 200 400 72 75 35 632
NKE0309SC 3.3 9 111 403 71 74 30 1204

NKE0503DC 5 3.3 303 270 70 74 40 619

DIP

NKE0505DC 5 5 200 289 66 69 28 2414
NKE0505DEC 5 5 200 250 75 77 34 419
NKE0509DC 5 9 111 266 72 75 29 1173
NKE0512DC 5 12 83 260 73 78 30 633
NKE0515DC 5 15 66 256 74 78 32 360
NKE0503SC 5 3.3 303 270 70 74 40 619

SIP

NKE0505SC 5 5 200 289 66 69 28 2414
NKE0505SEC 5 5 200 250 75 77 34 419
NKE0509SC 5 9 111 266 72 75 29 1173
NKE0512SC 5 12 83 260 73 78 30 633
NKE0515SC 5 15 66 256 74 78 32 360

NKE1205DC 12 5 200 117 68 72 35 620

DIP
NKE1209DC 12 9 111 107 72 78 50 488

NKE1212DC 12 12 83 105 73 79 57 360
NKE1215DC 12 15 66 103 76 81 60 252
NKE1205SC 12 5 200 117 68 72 35 620

SIP
NKE1209SC 12 9 111 107 72 78 50 488
NKE1212SC 12 12 83 105 73 79 57 360
NKE1215SC 12 15 66 103 76 81 60 252

NKE0505SEC/NKE0505DEC offers higher effi ciency than NKE0505SC/NKE0505DC but over a narrower operating temperature range. 
See temperature characteristics graph.

INPUT CHARACTERISTICS

Parameter Conditions Min. Typ. Max. Units

Voltage range
Continuous operation, 3.3V input types 2.97 3.3 3.63

VContinuous operation, 5V input types 4.5 5.0 5.5
Continuous operation, 12V input types 10.8 12.0 13.2

Refl ected ripple current 3.3V input types 40 60 mA p-p

ABSOLUTE MAXIMUM RATINGS

Lead temperature 1.5mm from case for 10 seconds 300°C
Internal power dissipation 530mW
Input voltage VIN, NKE03 types 5.5V
Input voltage VIN, NKE05 types 7V
Input voltage VIN, NKE12 types 15V

1. Calculated using MIL-HDBK-217F with nominal input voltage at full load.
 All specifi cations typical at TA=25°C, nominal input voltage and rated output current unless otherwise specifi ed.

DESCRIPTION

The NKE sub-miniature series of DC/DC Converters 
is particularly suited to isolating and/or converting 
DC power rails. A smaller package size, improved 
effi ciency, lower output ripple and 3kVDC isolation 
capability through state of the art packaging and
improved technology. The galvanic isolation allows 
the device to be confi gured to provide an isolated 
negative rail in systems where only positive rails 
exist. The wide temperature range guarantees 
startup from –40°C and full 1 watt output at 85°C.

FEATURES

� RoHS Compliant

� Sub-Miniature SIP & DIP Styles

� 3kVDC Isolation

� UL Recognised

� Wide Temperature performance at full  
 1 Watt load, –40°C to 85°C

� Increased Power Density to 2.09W/cm3

� UL 94V-0 Package Material

� Footprint at 0.69cm2

� Industry Standard Pinout

� 3.3V, 5V & 12V Input

� 3.3V, 5V, 9V, 12V and 15V Output

� Internal SMD Construction

� Fully Encapsulated with Toroidal   
  Magnetics

� MTTF up to 2.4 Million hours

� Custom Solutions Available

� No Electrolytic or Tantalum Capacitors



 Quad-Channel Digital Isolators
   ADuM2400/ADuM2401/ADuM2402
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FEATURES 
Low power operation 

5 V operation 
1.0 mA per channel maximum @ 0 Mbps to 2 Mbps 
3.5 mA per channel maximum @ 10 Mbps 
31 mA per channel maximum @ 90 Mbps 

3 V operation 
0.7 mA per channel maximum @ 0 Mbps to 2 Mbps 
2.1 mA per channel maximum @ 10 Mbps 
20 mA per channel maximum @ 90 Mbps 

Bidirectional communication 
3 V/5 V level translation 
High temperature operation: 105°C 
High data rate: dc to 90 Mbps (NRZ) 
Precise timing characteristics 

2 ns maximum pulse width distortion 
2 ns maximum channel-to-channel matching 

High common-mode transient immunity: >25 kV/μs 
Output enable function 
16-lead SOIC wide body package (RoHS compliant) 
Safety and regulatory approvals 

UL recognition: 5000 V rms for 1 minute per UL 1577 
CSA Component Acceptance Notice #5A 

IEC 60950-1: 600 V rms (reinforced) 
IEC 60601-1: 250 V rms (reinforced) 

VDE Certificate of Conformity 
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 
VIORM = 846 V peak 

APPLICATIONS 
General-purpose, high voltage, multichannel isolation 
Medical equipment 
Motor drives 
Power supplies 

GENERAL DESCRIPTION 
The ADuM240x1 are 4-channel digital isolators based on Analog 
Devices, Inc., iCoupler® technology. Combining high speed CMOS 
and monolithic air core transformer technology, these isolation 
components provide outstanding performance characteristics that 
are superior to alternatives, such as optocoupler devices. 
By avoiding the use of LEDs and photodiodes, iCoupler devices 
remove the design difficulties commonly associated with opto-
couplers. The typical optocoupler concerns regarding uncertain 
current transfer ratios, nonlinear transfer functions, and 
temperature and lifetime effects are eliminated with the simple 
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents 
pending. 
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Figure 1. ADuM2400 
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Figure 2. ADuM2401 
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Figure 3. ADuM2402 

iCoupler digital interfaces and stable performance characteristics. 
Furthermore, iCoupler devices run at one-tenth to one-sixth 
the power of optocouplers at comparable signal data rates. 

The ADuM240x isolators provide four independent isolation 
channels in a variety of channel configurations and data rates (see 
the Ordering Guide). The ADuM240x models operate with the 
supply voltage of either side ranging from 2.7 V to 5.5 V, providing 
compatibility with lower voltage systems as well as enabling a 
voltage translation functionality across the isolation barrier. In 
addition, the ADuM240x provide low pulse width distortion (<2 ns 
for CRWZ grade) and tight channel-to-channel matching (<2 ns 
for CRWZ grade). Unlike other optocoupler alternatives, the 
ADuM240x isolators have a patented refresh feature that ensures dc 
correctness in the absence of input logic transitions and during 
power-up/power-down conditions. 
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Operating Range:
• Up to 40 MIPS operation (at 3.0-3.6V):

- Industrial temperature range (-40°C to +85°C)
- Extended temperature range (-40°C to +125°C)

High-Performance DSC CPU:
• Modified Harvard architecture
• C compiler optimized instruction set
• 16-bit-wide data path
• 24-bit-wide instructions
• Linear program memory addressing up to 4M 

instruction words
• Linear data memory addressing up to 64 Kbytes
• 83 base instructions, mostly one word/one cycle
• Sixteen 16-bit general purpose registers
• Two 40-bit accumulators with rounding and 

saturation options
• Flexible and powerful addressing modes:

- Indirect
- Modulo
- Bit-Reversed

• Software stack
• 16 x 16 fractional/integer multiply operations
• 32/16 and 16/16 divide operations
• Single-cycle multiply and accumulate:

- Accumulator write back for DSP operations
- Dual data fetch

• Up to ±16-bit shifts for up to 40-bit data

Interrupt Controller:
• 5-cycle latency
• Up to 21 available interrupt sources
• Up to three external interrupts
• Seven programmable priority levels
• Four processor exceptions

On-Chip Flash and SRAM:
• Flash program memory (12 Kbytes)
• Data SRAM (1024 bytes)
• Boot and General Security for Program Flash

Digital I/O:
• Peripheral Pin Select Functionality
• Up to 21 programmable digital I/O pins
• Wake-up/interrupt-on-change for up to 21 pins
• Output pins can drive from 3.0V to 3.6V
• Up to 5V output with open drain configuration
• All digital input pins are 5V tolerant
• 4 mA sink on all I/O pins

System Management:
• Flexible clock options:

- External, crystal, resonator, internal RC
- Fully integrated Phase-Locked Loop (PLL)
- Extremely low-jitter PLL

• Power-up Timer
• Oscillator Start-up Timer/Stabilizer
• Watchdog Timer with its own RC oscillator
• Fail-Safe Clock Monitor
• Reset by multiple sources

Power Management:
• On-chip 2.5V voltage regulator
• Switch between clock sources in real time
• Idle, Sleep and Doze modes with fast wake-up

Timers/Capture/Compare:
• Timer/Counters, up to three 16-bit timers:

- Can pair up to make one 32-bit timer
- One timer runs as Real-Time Clock with 

external 32.768 kHz oscillator
- Programmable prescaler

• Input Capture (up to four channels):
- Capture on up, down, or both edges
- 16-bit capture input functions
- 4-deep FIFO on each capture

• Output Compare (up to two channels):
- Single or Dual 16-bit Compare mode
- 16-bit Glitchless PWM Mode

High-Performance, 16-Bit Digital Signal Controllers
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Communication Modules:
• 4-wire SPI:

- Framing supports I/O interface to simple 
codecs

- Supports 8-bit and 16-bit data
- Supports all serial clock formats and 

sampling modes
• I2C™: 

- Full Multi-Master Slave mode support
- 7-bit and 10-bit addressing
- Bus collision detection and arbitration
- Integrated signal conditioning
- Slave address masking

• UART:
- Interrupt on address bit detect
- Interrupt on UART error
- Wake-up on Start bit from Sleep mode
- 4 character TX and RX FIFO buffers
- LIN bus support
- IrDA® encoding and decoding in hardware
- High-Speed Baud mode
- Hardware Flow Control with CTS and RTS

Analog-to-Digital Converters (ADCs):
• 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion:

- Two and four simultaneous samples (10-bit ADC)
- Up to 10 input channels with auto-scanning
- Conversion start can be manual or 

synchronized with one of four trigger sources
- Conversion possible in Sleep mode
- ±2 LSb max integral nonlinearity
- ±1 LSb max differential nonlinearity

CMOS Flash Technology:
• Low-power, high-speed Flash technology
• Fully static design
• 3.3V (±10%) operating voltage
• Industrial and extended temperature
• Low power consumption

Packaging:
• 18-pin SDIP/SOIC
• 28-pin SDIP/SOIC/SSOP/QFN
 

Note: See Table 1 for the exact peripheral
features per device.
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dsPIC33FJ12GP201/202
dsPIC33FJ12GP201/202 Product Families
The device names, pin counts, memory sizes, and
peripheral availability of each family are listed below,
followed by their pinout diagrams.

TABLE 1: dsPIC33FJ12GP201/202 CONTROLLER FAMILIES
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dsPIC33FJ12GP201 18 12 1 8 3(1) 4 2 1 3 1 1 ADC, 
6 ch

1 13 SDIP
SOIC

dsPIC33FJ12GP202 28 12 1 16 3(1) 4 2 1 3 1 1 ADC, 
10 ch

1 21 SDIP
SOIC
SSOP
QFN

Note 1: Only two out of three timers are remappable.
2: Only two out of three interrupts are remappable.
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MCP1700

Features
• 1.6 µA Typical Quiescent Current
• Input Operating Voltage Range: 2.3V to 6.0V
• Output Voltage Range: 1.2V to 5.0V
• 250 mA Output Current for output voltages ≥ 2.5V
• 200 mA Output Current for output voltages < 2.5V
• Low Dropout (LDO) voltage

- 178 mV typical @ 250 mA for VOUT = 2.8V
• 0.4% Typical Output Voltage Tolerance
• Standard Output Voltage Options:

- 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
• Stable with 1.0 µF Ceramic Output capacitor
• Short Circuit Protection
• Overtemperature Protection

Applications
• Battery-powered Devices
• Battery-powered Alarm Circuits
• Smoke Detectors
• CO2 Detectors
• Pagers and Cellular Phones
• Smart Battery Packs
• Low Quiescent Current Voltage Reference
• PDAs
• Digital Cameras
• Microcontroller Power

Related Literature
• AN765, “Using Microchip’s Micropower LDOs”, 

DS00765, Microchip Technology Inc., 2002
• AN766, “Pin-Compatible CMOS Upgrades to 

BiPolar LDOs”, DS00766, 
Microchip Technology Inc., 2002

• AN792, “A Method to Determine How Much 
Power a SOT23 Can Dissipate in an Application”, 
DS00792, Microchip Technology Inc., 2001

General Description
The MCP1700 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 250 mA of
current while consuming only 1.6 µA of quiescent
current (typical). The input operating range is specified
from 2.3V to 6.0V, making it an ideal choice for two and
three primary cell battery-powered applications, as well
as single cell Li-Ion-powered applications.

The MCP1700 is capable of delivering 250 mA with
only 178 mV of input to output voltage differential
(VOUT = 2.8V). The output voltage tolerance of the
MCP1700 is typically ±0.4% at +25°C and ±3%
maximum over the operating junction temperature
range of -40°C to +125°C.

Output voltages available for the MCP1700 range from
1.2V to 5.0V. The LDO output is stable when using only
1 µF output capacitance. Ceramic, tantalum or
aluminum electrolytic capacitors can all be used for
input and output. Overcurrent limit and overtemperature
shutdown provide a robust solution for any application.

Package options include the SOT-23, SOT-89 and
TO-92.

Package Types  

1

3

2

VIN

GND VOUT

MCP1700

1 2 3

VINGND VOUT

MCP1700

3-Pin SOT-23 3-Pin SOT-89

321
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VIN

Low Quiescent Current LDO
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