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Abstract 
 

 

The most common method of roof framing employed by Australian builders in 

modern construction is the use of pre-fabricated nail plated timber roof trusses.  

These trusses are predominantly manufactured from structural framing timber 

limited in length to a maximum of 6 metres.  The style and size of houses 

increasingly preferred by Australian homeowners means that trusses are regularly 

required to span further than 6 metres.  Truss manufacturers therefore use larger 

or additional nail plates to splice members during fabrication, and the assembly 

process becomes far more complex.   Finger jointing of sawmill off-cuts and 

other short lengths of timber is a means of manufacturers economically 

producing timber in longer lengths.  This dissertation investigates the suitability 

of using finger jointed structural timber for the fabrication of nail plated roof 

trusses. 

 

Physical testing and statistical analysis has been used to compare the 

performance of finger jointed structural timber with standard structural framing 

timber normally used in truss fabrication.  This study involved characterizing the 

mechanical properties of the timber, as well as assessing the performance of 

joints including mechanical fasteners.  These methods, along with the static 

modelling of loading situations, were also used to quantify the probability of 

inducing failures unique to finger jointed timber, during the truss fabrication and 

erection process. 

 

These investigations concluded that finger jointed timber could be produced with 

equivalent mechanical properties to standard framing timber.  Joints 

manufactured from finger jointed and solid structural timber also exhibited no 

significant difference in performance.  Furthermore, failures unique to finger 

jointed timber could occur during fabrication and erection, however, the 

probability of these, under normal use conditions, is generally quite low. 
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Chapter 1 

 

 

 

Introduction 

 

 

1.0 Outline of the study 

 

This study into the suitability of using finger jointed structural timber for the fabrication 

of nail plated timber roof trusses is motivated by the ongoing investigation into methods 

of producing timber house frames more efficiently.  The project aims to assess the 

performance of finger jointed timber through the fabrication and erection process, and 

in final use, by comparing it with the performance of standard non-finger jointed timber.  

The ultimate objectives of the research are to determine whether direct substitution of 

solid structural timber with finger jointed structural timber of the same cross section and 

grade is possible, and to provide information to ensure its successful implementation by 

the building industry. 
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1.1 Background 

 

Australians enjoy the largest houses in the world (Timber Talk, 20 September 2011), 

and timber has long been the material of choice.  The ever increasing desire for open-

plan living means roof frames have to span further than ever.  Construction history 

indicates that one of the most efficient means of achieving large spans is through the use 

of trusses.  The use of trusses in residential construction was rare until the mid twentieth 

century, but the advent of World War II, and the population boom that followed, saw 

timber roof trusses adopted as a means of reducing house construction times.   

 

This technique has continued to evolve with modern materials and fasteners, to the 

point that trusses are now used in the majority of houses constructed.  These modern 

trusses are fabricated in factories and delivered to site ready for installation.  The 

members of the truss are normally standard framing timber, connected with pressed in 

metal “nail plates”, as shown in Figures 1.1 and 1.2.  A diagram of a typical nail plated 

roof truss is shown in Figure 1.3. 

 

 

 

Figure 1.1 – Metal Nail Plate 
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Figure 1.2 – Nail Plated Truss Joint 

 

 

 

Figure 1.3 – Typical Nail Plated Roof Truss 

 

 

The standard framing timber used for the members is most commonly plantation grown 

softwoods.  Growth characteristics such as trunk taper, limit the length of rectangular 

framing sections that can be cut from the tree.  The maximum length to which softwood 

framing can be produced is also constrained by the practical handling capabilities of the 

processing equipment.  These factors result in standard softwood framing generally 

being available in 0.6 metre increments, with a maximum length of 6 metres. 

 

Given that most of the trusses used in modern houses are required to span well beyond 

this maximum available length, end jointing of the framing timber is required to 

produce truss chords of adequate length.  Currently this is achieved by splice jointing 

the timber using nail plates.  Along with increasing the complexity of the truss 

fabrication process this also requires the use of more, or larger, nail plates per truss, 

resulting in decreased production efficiency and increased cost. 

 

Although they are produced in factories, roof trusses are fabricated to the exact 

specifications of each individual house.  Variations in roof pitch and truss span mean 

truss members need to be cut to the appropriate lengths for the truss being produced.  
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Due to the incremental nature of standard framing this results in unusable off-cuts.  

Multiple members are cut from individual feedstock lengths where possible.  Reduced 

off-cut volumes, and hence greater efficiency, are achieved when longer feedstock 

lengths are used.  

 

Economical methods exist for overcoming this length limitation.  Glue-laminated timber 

beams and timber I-beams are currently produced in lengths of twelve metres and 

beyond using the same standard framing feedstock.  The required lengths are achieved 

by “finger jointing” shorter lengths of timber. 

 

Finger jointing involves machining matching profiles into the ends of lengths of timber, 

applying an adhesive, and pushing the profiles together until a permanent connection is 

formed.  Examples of a finger joint profile, and finished finger joint, are shown in 

Figures 1.4 and 1.5, respectively. 

 

 

 

Figure 1.4 – Machined Finger Joint Profile 

 

 

 

Figure 1.5 – Finished Finger Joint 
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Along with producing “over-sized” lengths from standard framing timber, finger 

jointing has been used to join off-cuts produced during framing production into useable 

lengths, improving the efficiency of sawmilling operations. 

 

Despite successful use in both glue-laminated timber, and timber I-beams, finger jointed 

timber has not been used as a “stand alone” structural element in Australia, except in 

primarily compression applications such as wall studs.  This is most likely due to an 

industry perception that finger jointed timber lacks tensile capacity. 

 

Existing anecdotal evidence suggesting that finger jointed timber is already used 

successfully for the fabrication of roof trusses in South Africa.  If this was to be 

implemented in Australia several benefits are foreseeable.  As mentioned previously, 

sawmill efficiency could be improved through the jointing and use of framing off-cuts.  

Truss fabrication efficiency could also be improved by reducing the size and number of 

nail plates required, and by reducing the unusable off-cuts produced.  

 

This project seeks to investigate the suitability of finger jointed timber for use in nail 

plated roof truss fabrication, allowing the aforementioned benefits to be realised.          

 

 

1.2 Project Aim and Scope 

 

The aim of this project is to determine the suitability of finger jointed timber for use in 

nail plated roof trusses from a fabrication, erection and in-service perspective.  This will 

involve performance comparisons of truss components fabricated from conventional 

fixed length timber and from proposed continuous length finger jointed timber.   

 

Finger jointed timber was produced as part of this trial as a means of providing material 

for test specimens.  Manufacture was completed on commercially operated equipment 

using a proven timber adhesive.  Whilst the manufacture techniques, including joint 

profile and adhesive type, are reported they do not form part of the scope of the project.  

The scope of the project is limited to the performance of the finished material only, 

from the perspectives indicated in the aim. 
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1.3 Project Objectives 

 

In order to satisfactorily complete the research project, it was determined that the 

following aims and objectives, initially identified as a part of the Project Specification, 

included as Appendix A, had to be met: 

 

1. Research the in-service performance requirements of finger jointed timber in nail 

plated roof trusses and associated assessment methods. 

 

2. Research fabrication and erection techniques relating to nail plated roof trusses to 

determine material requirements and associated assessment methods. 

 

3. Design and complete a testing regime to assess the mechanical properties of finger 

jointed timber. 

 

4. Design and complete a testing regime to assess the structural capacity, and 

deformation, of typical roof truss joints containing finger jointed timber. 

 

5. Design and complete a testing regime to replicate and assess issues related to 

fabrication and erection techniques. 

 

6. Analyse and interpret the results of all testing to compare the performance of trusses 

fabricated from finger jointed and standard fixed length framing timber. 

 

As an extension, and time permitting, the following further objectives were proposed: 

 

7. Monitor the fabrication of full scale trusses from finger jointed timber and assess 

fabrication issues not previously identified. 

 

8. Test full scale trusses fabricated from both finger jointed and fixed length timber to 

compare failure modes. 

 

9. Fabricate trusses from finger jointed timber and place into a real structure for longer 

term performance monitoring. 
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1.4 Overview of the Dissertation  

 

This study of the suitability of finger jointed timber for use in nail plated roof trusses 

involved the review of related literature, experimental testing and statistical evaluation 

of results.  This section presents the general structure of the dissertation. 

 

Chapter 1 is an introduction.  It contains background information to provide an 

understanding of the motivation for this project.  It also outlines the aims and objectives 

of the project. 

 

Chapter 2 contains a review of existing information on both nail plated roof trusses and 

finger jointed timber.  As little work has been completed on combining the two, the 

research focuses on current practices and their applicability to assessing the possibility 

of fabricating roof trusses from finger jointed timber. 

 

Chapter 3 outlines the materials and processes used to manufacture the finger jointed 

timber assessed as part of this project. 

 

Chapter 4 describes the testing and assessment of critical performance criteria 

identified in the literature review.  It discusses the preparation of test specimens and the 

methodology involved in the experimental testing of the specimens.  The chapter also 

includes the data analysis techniques employed and the methods used to assess the 

suitability of the results.  

 

Chapter 5 presents and discusses the experimental test results, analysed and assessed 

using the methods described in Chapter 4.    

 

Chapter 6 presents the conclusions that can be drawn from this research.  

Recommendations for further work are also provided in this chapter. 

 

References and Appendices provide the supporting information referred to throughout 

the dissertation. 
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Chapter 2 

 

 

 

Literature Review 

 

 

2.0 Introduction 

 

This chapter aims to present an overview of the literature to substantiate the proposed 

project objectives, and to identify appropriate methods of achieving these.  As this 

project involves the combining of two established technologies most investigation was 

focussed on preocesses currently used for these. 

 

This project was supported by a timber producer and a truss fabricator.  Hyne and Son 

operate the two largest softwood sawmills in Australia.  These mills predominately 

produce structural framing sections for the residential housing market.  A large portion 

of the framing produced is sold to truss fabricators for the production of nail plated roof 

trusses.  Sid‟s Place supplies building materials and hardware from several locations in 

South East Queensland.  Its operations include pre-fabricated wall frame and roof truss 

manufacturing facilities. 
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As a part of initial project discussions, representatives from both Hyne and Son and 

Sid‟s Place (2011, pers. comm.) indicated that they were unaware of any previous work, 

with regards to the use of finger jointed timber in roof trusses, being completed in 

Australia.  Subsequent searches validated this claim.  Anecdotal evidence, provided by 

several timber and truss industry sources, suggested that finger jointed timber is 

currently being used successfully for nail plated truss fabrication in South Africa.  

Further searches were again unable to identify existing research related to this work. 

 

As a result the project was guided by the advice of industry experts, predominately 

representing the aforementioned companies.  The consensus of discussions conducted 

indicated that if it could be proven that finger jointed timber would perform 

equivalently to the fixed length framing timber currently used, there would be nothing 

to prevent its use in the fabrication of nail-plated roof trusses. 

 

Based on this advice, research was conducted assuming that no special considerations 

would be made when fabricating roof trusses from finger jointed timber, as compared to 

current practices using standard framing timber. 

 

 

2.1 In-Service Performance 

 

Roof trusses are a key load-bearing component of house frames.  The way in which 

trusses perform as a part of the overall structure was investigated.  Through this 

investigation, the critical performance criteria were identified.  Finger jointed timber 

will need to be assessed against these criteria.  

 

 

2.1.1 Truss Action 

 

Roof trusses are provided in a structure as a means of transferring roofing loads to the 

supporting walls.  These loads are then transferred via the floor, be it a slab or frame, to 

the ground.  Roofing loads typically consist of the following (Multinail, n.d.): 

 

 Dead Loads – due to roofing materials, ceiling materials, and the self weight of 

the truss. 
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 Live Loads – due to temporary occurrences such as people or snow. 

 Wind Loads – which vary depending on the buildings location. 

 

Typically these loads are distributed loads and are applied to the truss chords.  The truss 

chords support the load by firstly acting as beams between the panel points (Multinail, 

n.d.).  As a result of this bending action the loads are then applied at the panel points.  

These loads are then supported by the truss members as axial loads.  As the truss joints 

are assumed to be pin connections the sum of forces acting on the joint must be zero, 

and consequently the axial force in each member can be determined (Multinail, n.d.).  

Figure 2.1 describes this process graphically when loads are applied to a typical “A-

Type” truss.  

 

Consequently, the mechanical properties of the timber used as truss chords are critical to 

the truss‟s ability to carry the required loads.  Multinail (n.d.) states that truss chords 

must be designed for strength and stiffness when subjected to axial forces, bending 

moment and shear, whilst truss webs are designed for axial forces.  This indicates that to 

perform equivalently to the solid timber currently used, finger jointed timber of the 

same cross section must have equivalent Tension Strength, Compression Strength, 

Shear Strength, Bending Strength (Modulus of Rupture) and Bending Stiffness 

(Modulus of Elasticity). 
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Figure 2.1 – Truss Loading Process 
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Once loads are being applied to truss joints, truss action 

(members in tension and compression) applies.

Therefore need to confirm Bending Strength and Stiffness of Finger Jointed material.

(Shear failure also possible in very short spans, therefore need to check Shear Strength also)

Truss Chords act as beams in bending to transfer loads to truss joints.

Ceiling Loads act directly on Truss Bottom Chord (or via Battens)

Roof Loads act on Truss Top Chords via Roofing Battens

(Loads may also be outward in the case of wind)
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2.1.1.1  Details of Material in Application 

 

Structural framing timber in Australia is produced in a range of standard cross sections 

and grades.  The categorising of structural timber into standardised grades ensures users 

a consistent level of performance between framing sourced from different suppliers, and 

from different production runs.  For structural framing to be assigned a particular grade 

it must possess the appropriate mechanical properties for that grade as specified in 

Australian Standard AS1720.1 (2010).   

 

The softwood framing used for roof truss manufacture is most commonly MGP10, 

MGP12 or MGP15 grade.  Table 2.1 contains data extracted from AS1720.1 (2010) 

Table H.3.  It shows the required values of selected mechanical properties, discussed 

above, for timber assigned each of these grades. 

 

 

Stress 

Grade 

Section Size 
Characteristic Values (MPa) 

 

Bending 

 

(f’b) 

Tension 

Parallel 

to Grain 

(f’t) 

Compression 

Parallel to 

Grain 

(f’c) 

Shear 

 in 

Beams 

(f’s) 

Average modulus 

of elasticity  

parallel to grain 

(E) 

Depth 

 

(mm) 

Breadth 

 

(mm) 

MGP10 

70 to 140 
35  

and  

45 

17 7.7 18 2.6 

10 000 
190 16 7.1 18 2.5 

240 15 6.6 17 2.4 

290 14 6.1 16 2.3 

MGP12 

70 to 140 
35  

and  

45 

28 12 24 3.5 

12 700 
190 25 12 23 3.3 

240 24 11 22 3.2 

290 22 9.9 22 3.1 

MGP15 

70 to 140 
35  

and  

45 

39 18 30 4.3 

15 200 
190 36 17 29 4.1 

240 33 16 28 4.0 

290 31 14 27 3.8 

 

Table 2.1 – Characteristic Values for Design – MGP Stress Grades 

  

 

Discussions with Hyne and Son salespeople indicated that the most common product 

supplied to truss fabricators is 90 x 35 mm MGP10 framing (McDonald, J 2011, pers. 
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comm.).  This data was substantiated with Sid‟s Place confirming that 90 x 35 mm 

MGP10 is the most commonly used feedstock for the chords of trusses they 

manufacture for the residential market (Blanch, S 2011, pers. comm.).  It was also 

indicated that 70 x 35 mm is generally used for truss webs as they are subjected to less 

severe loading.  Given that truss webs are extremely unlikely to ever exceed the 6 metre 

available length limit of structural softwood framing, this project is focussed on finger 

jointed timber replacing standard framing material in truss chords.  As such, finger 

jointed material, 90 x 35 mm in cross section, will be compared with the mechanical 

properties of MGP10 timber.  

 

 

2.1.1.2  Test Methods 

 

Structural framing timber is required to have certain mechanical properties, governed by 

Australian Standards, to allow it to be classified as the appropriate stress grade.  To 

confirm that it does in fact possess the required properties, representative samples of the 

timber must be tested.  As discussed previously the assigning of standard stress grades 

aims to ensure uniformity between timber acquired from different sources.  To further 

ensure this uniformity, the testing to determine the mechanical properties on which 

classification is made must be conducted consistently.  To guarantee that this occurs, 

given that the testing is completed on different equipment, by different people, 

standardised methods have been developed. 

 

The Australian Standard series, AS/NZS4063 (2010), provides the procedures for 

testing and characterising timber to the stress grades contained in AS1720.1 (2010).  

The necessary loading configurations, test spans, sample lengths and testing processes 

are specified in AS/NZS4063.1 (2010), whilst the methods required for the statistical 

analysis of test results are prescribed by AS/NZS4063.2 (2010). 

 

The AS/NZS4063 (2010) series provides test and analysis methods appropriate to all 

mechanical properties previously identified as being critical.  Specific details of all 

testing conducted is contained in subsequent sections of this report.  The assessment of 

mechanical properties as a part of this project is conducted strictly in accordance with 

AS/NZS4063 (2010) wherever possible.  
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2.1.2 Truss Joints and Connections 

 

Along with the adequacy of individual truss members, the interaction of these members 

with each other, and with other structural elements, is critical to the overall performance 

of the truss.  Loads need to be transferred between truss members and this is achieved 

by the use of nail plates.  This method of load transfer is referred to as a “truss joint” in 

this project.  Loads also need to be transferred between trusses and other structural 

elements.  This project refers to these interactions as “connections”. 

 

  

2.1.2.1  Truss Joints 

 

Nail plated joints occur at the intersection of truss chords and webs.  They transfer loads 

between combinations of these members intersecting at various angles.  Figure 2.2 

highlights the locations at which nail plated joints occur in a typical “A-Type” truss. 

 

 

 

Figure 2.2 – Truss Joint Locations 

     

 

Nail plates can also be used for the splice jointing of timber, as shown in Figure 2.3.  

Splice joints can potentially occur in trusses when the length of one or more of the 

chords exceeds the maximum available length of feedstock material.  Discussions with 

Sid‟s Place indicate that splice joints are made to coincide with existing chord / web 

joints wherever possible to avoid the need for additional nail plates (2011, pers. comm.).  

Figure 2.4 shows a joint of this type. 

Roof trusses may also potentially fail at joints.

A typical selection of these is shown below.

2

43

1

2

3
4
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Figure 2.3 – Nail Plated Splice Joint 

 

 

 

Figure 2.4 – Combined Splice and Chord / Web Joint 

 

 

By not imposing restrictions on the use of finger joint timber for roof truss chords it is 

highly likely that a finger joint will coincide with a nail plate at some point.  Closer 

inspection of the joint locations highlighted in Figures 2.2 and 2.3 indicates that finger 

joints may occur at various angles under nail plates.  These angles range from finger 

joints in timber with its grain running approximately parallel to the major axis of the 

nail plate, to finger joints in timber with its grain running approximately perpendicular 

to the nail plate major axis, as shown in Figure 2.5. 

 

Finger jointed timber will be considered to perform equivalently to standard framing 

timber if joints, using the same sized nail plates, do not suffer a reduction in load 

carrying capacity when a finger joint is located under the nail plates, at any of the angles 

shown.  Further to the strength requirement, nail plated joints coinciding with finger 
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joints should not experience a significant change in joint deformation, when compared 

to nail plated joints in standard framing timber. 

 

 

 

Figure 2.5 – Finger Joints Under Nail Plates 

 

 

2.1.2.1.1 Details of Material in Application 

 

A number of variables exist that are likely to have an impact on the load carrying 

capacity of a nail plated truss joint.  These include timber size, grade and species, along 

with nail plate size, thickness and manufacturer.  As a result, standard joint capacity 

values are not published for all combinations.  In order to assess the effect of finger 

joints on joint capacity this project compares the performance of solid timber and finger 

jointed timber. 

 

The previous section showed that nail plates can be orientated at various angles to the 

grain of the timber, and hence, to finger joints.  Taking into account the variability of 

roof slopes and spans these angles become almost infinite in number.  Australian 

Standard AS1649 (2001), which defines the testing of nail plated joints in timber, 

indicates that, as a minimum, testing must be conducted with nail plates orientated 

   Heel Joint
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parallel, and perpendicular, to the grain of the timber.  Joint capacities of intermediate 

angles can then be interpolated.  Following discussion with Hyne and Son and Sid‟s 

Place representatives it was decided that if equivalent results for standard and finger 

jointed timber were obtained from testing in these two orientations, equivalent 

performance at all angles could be assumed (2011, pers. comm.).  As such, testing in the 

orthogonal orientations only will be completed as a part of this project.  

 

It can be seen from Figure 2.5 that nail plates orientated parallel to the grain of the truss 

chord most closely represent splice joints and truss heel joints.  For trusses with 90x35 

mm MGP10 chords Sid‟s Place would typically use 150 x 75 mm nail plates in these 

locations (Blanch, S 2011, pers. comm.).  This plate size has been adopted for testing, 

with solid 90 x 35 mm MGP10 used to provide baseline results for comparison with 

finger jointed timber. 

 

Similarly, Figure 2.5 shows that nail plates orientated perpendicular to the grain of the 

truss chord most closely represents a top chord / web joint.  In this case, for a truss with 

90 x 35 mm MGP10 chords, Sid‟s Place would typically use 100 x 40 mm nail plates 

(Blanch, S 2011, pers. comm.).  This size has been adopted for testing.  As described 

previously truss webs are most often 70 x 35 mm material.  This size, in MGP10 grade, 

has been selected as the web material for testing of both finger jointed and solid truss 

chords.  Again, solid 90 x 35 mm MGP10 chords have been used to provide baseline 

results for comparison with finger jointed timber. 

 

 

2.1.2.1.2 Test Methods 

 

For a truss to perform successfully adequate load transfer between members, via nail 

plates, is required.  Nail plates are proprietary products with values of their load 

carrying capacity provided by the plate‟s manufacturer.  To allow comparison of, and 

confidence in, nail plates sourced from different suppliers, standardised methods for 

assessing load carrying capacity have been developed. 

 

Australian Standard AS1649 (2001) defines the testing of nail plates.  It provides the 

necessary loading configurations, test spans, sample lengths, testing processes and 

statistical analysis methods.  The assessment of nail plated joint capacities as a part of 
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this project are conducted in accordance with AS1649 (2001) wherever possible.  

Specific details of the testing completed are contained in subsequent sections of this 

report. 

 

 

2.1.2.2  Connections 

  

Trusses need to be connected to other structural elements in order to complete the 

transfer of loads to the ground.  This includes elements transferring loads to the truss, 

and elements taking loads from the truss.  Loads are transferred to the truss by two 

major means.  Firstly, via battens that are fixed directly to the chords of the truss, and 

secondly, via secondary trusses supported by the truss rather than by walls.  Loads 

being transferred from the truss predominately consist of the truss being tied to the 

supporting wall frames to resist wind uplift loads. 

 

Figure 2.6 shows typical locations of these connections and the orientation of the most 

significant loads. 

 

 

 

Figure 2.6 – Truss Connection Locations and Loads 

 

 

As can be seen, the truss chords are intrinsically involved in all of these connections.  

As was indicated for nail plated truss joints, by not imposing restrictions on the use of 

finger jointed timber in truss chords it is inevitable that finger joints will coincide with 

the connections at some stage.  
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To perform equivalently to the solid timber currently used, connections using the same 

hardware in trusses fabricated from finger jointed timber must not suffer a reduction in 

load carrying capacity should a finger joint be located at the connection point. 

 

 

2.1.2.2.1 Details of Material in Application 

 

Australian Standard AS1684.4 (2010) provides several options for the tie down of roof 

battens to truss top chords.  The most appropriate method is determined based upon the 

batten and truss material used, and the applicable loading.  Discussion with Sid‟s Place 

indicates that one of the commonly used methods, for trusses with 90 x 35 mm chords,  

is 70 x 35 mm timber battens connected with a single Type 17 No. 14 Batten Screw, 75 

mm long (2011, pers. comm.).  The batten screw is required to resist axial withdrawal 

loads due to wind uplift.  Figure 2.7 shows this connection, and indicates how a finger 

joint may be penetrated by the screw. 

 

 

 

Figure 2.7 – Batten to Truss Chord Connection 

 

 

This connection type has been adopted to assess the effect of finger joints on batten to 

truss chord connections.  Solid 90 x 35 mm MGP10 chords have been selected to 

provide baseline results for comparison with finger jointed timber. 

 

Australian Standard AS1684.4 (2010) also outlines the requirements for roof tie down 

to supporting walls in residential construction.  Several manufacturers of nail plates and 

   Roofing Batten to Truss Top Chord

   Type 17 Batten Screw
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other timber connectors produce a range of products that meet these requirements.  Sid‟s 

Place identified the use of Gang-Nail MultiGrips fixed with Mitek 30 x 2.8 mm nails as 

common practice for trusses with 90 x 35 mm MGP10 chords (2011, pers. comm.).  

Figure 2.8, taken from Mitek (2007) indicates the number of nail required, and their 

locations. 

 

 

 

Figure 2.8 – MultiGrip Nail Requirements 

 

 

 It can be noted that some of the nails are required to resist axial withdrawal loads, while 

others are laterally loaded.  Figure 2.9 indicates how a finger joint may be penetrated by 

nails in this connection type. 

 

 

 

Figure 2.9 – Truss to Top Plate Connection 

   Truss Tie-Down to Top Plate

   MultiGrip with 30 x 2.8mm nails
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This connection type has been adopted to assess the effect of finger joints on truss to top 

plate connections.  Solid 90 x 35 mm MGP10 chords have been selected to provide 

baseline results for comparison with finger jointed timber. 

 

The manufacturers of nail plates and other timber connectors also produce a range of 

products for attaching secondary trusses to supporting trusses.  These connections 

generally take the form of steel brackets fixed to the trusses with nails, screws or bolts.  

Sid‟s Place advised that the most common practice, currently, is the use of self tapping 

screws (2011, pers. comm.).  Mitek (2007) indicates that the most appropriate screw, for 

use with trusses having 90 x 35 mm chords, is a Mitek No.14 x 30mm.  Figure 2.10, 

shows the typical number of screws required, and how a finger joint might be penetrated 

by these screws. 

 

 

 

Figure 2.10 – Truss to Girder Truss Connection 

 

  

It can be noted that the screws penetrating the chord of the supporting truss are subject 

to lateral loading.  This connection type has been adopted to assess the effect of finger 

joints on the ability of trusses to support loads from other trusses.  Solid 90 x 35 mm 

MGP10 chords have been selected to provide baseline results for comparison with 

finger jointed timber. 

 

 

 

   Truss to Girder Truss

   Girder Bracket with Type 17 screws
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2.1.2.2.2 Test Methods 

 

Australian Standard AS1649 (2001) contains methods for determining the capacity of 

fasteners such as nails, screws and bolts when subjected to axial or lateral loading.  

Although each of the connections identified includes components fitting these criteria, 

this project seeks to assess any effect finger joints may have on the load carrying 

capacity of the connection as a whole.   

 

The general concepts of joint and connection testing described in AS1649 (2001) will 

form the basis of testing the identified connections, with the specific configurations 

altered to represent the overall connection being assessed.  The statistical methods 

provided in AS1649 (2001) will be used to analyse the test results.  Specific details of 

the testing completed are contained in subsequent sections of this report. 

 

 

2.1.3 Fabrication Issues 

 

The handling of long length feedstock was identified by both Hyne and Son and Sid‟s 

Place as a potential difficulty of fabricating trusses from finger jointed timber (2011, 

pers. comm.).  Apart from the additional length, it is anticipated that finger jointed 

timber could be handled identically to the standard framing timber currently used.  Of 

particular concern is the possibility of feedstock breaking at finger joints under the 

increased bending moments induced during handling due to the increased length of the 

boards. 

 

By observing the timber manufacturing processes of Hyne and Son, and the truss 

fabrication processes of Sid‟s Place, three typical handling techniques were identified.  

Discussions with representatives of both parties confirmed that these techniques are 

common practice (2011, pers. comm.). 

 

Firstly, levering is a technique that allows individual boards to be raised or moved by a 

single person.  The board is held at one end and supported at a single point part way 

along.  Downward pressure is applied at the held end raising the far end of the board 

allowing it to be repositioned. 
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Secondly, a two man lift allows individual boards to be raised, moved and relocated by 

hand.  The board is supported at each end whilst it is lifted and repositioned. 

 

Finally, individual boards, or packages of boards, can be moved by fork lifting.  This 

involves supporting the boards at two locations near to their centre, with the ends 

unrestrained, while raising or lowering the boards.  Inspection of the forklifts used at 

Hyne and Son operations, and discussion with the timber despatch manager, showed 

that the most common support spacing is 1.5m on the machines used for timber 

handling (Muller, R 2011, pers. comm.). 

 

For all of these techniques bending moments are typically induced about the minor axis 

of the timber section.  This project seeks to determine the probability of finger jointed 

timber failing under these techniques by modelling the stresses likely to occur and 

testing the capacity of the finger joints in the appropriate orientation.   

 

 

2.1.3.1  Modelling of Handling Stresses 

 

When observing these handling techniques in practice it was realised that both static and 

dynamic loading was being applied to the timber.  Due to the modelling methods and 

test equipment available during the short duration of this project, only the static loads 

have been assessed. 

 

It was also identified that forklifts handle timber in both individual board and package 

form.  The strapping together of boards into packages reduces the severity of actions 

acting on individual boards.  As a result only individual boards have been assessed 

when subjected to each of the handling techniques. 

 

When considering static loads only, each of the handling techniques can be represented 

by a simple loading diagram.  Figure 2.11 shows the loading diagram for each 

technique. 
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Figure 2.11 – Loading Diagrams for Handling Techniques 

 

 

As can be seen, each technique is made up of one or more statically determinate loading 

and support configurations, such as simply supported single spans and cantilevers.  

American Wood Council (2007) provides bending moment diagrams, and equations, for 

each configuration.  These can be combined to determine the overall bending stresses 

applied to a board when handled by each technique. 

 

The loads applied to each board, as shown in Figure 2.11, are dependent upon the self 

weight of the boards.  Values of self weight for typical finger jointed boards can be 

obtained by weighing boards after manufacture.  Australian Standard AS/NZS4063 

(2010) describes methods of assigning frequency distributions to data.  These methods 

will be used to determine the probability of a board of a certain weight occurring. 

 

 

2.1.3.2  Test Methods 

 

For a board to break during handling a finger joint must occur in a board whose weight 

provides stresses substantial enough to exceed the joints capacity.  To determine the 
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probability of this event occurring, the capacity of typical finger joints, when loaded in 

the appropriate orientation, must be known. 

 

Australian Standard AS5068 (2006) describes a method of determining the strength of 

finger joints in timber sections bent about the minor axis.  The necessary loading 

configurations, test spans, sample lengths and testing processes are specified.  AS5068 

(2006) provides this test method for the purpose of production quality control and as a 

result the methods provided for analysing test results are limited.  Australian Standard 

AS/NZS4063 (2010) describes methods of assigning frequency distributions to data, 

and hence, can be used to determine the probability of a finger joint with a certain 

capacity occurring. 

 

For the purposes of this project the testing of finger joints in timber bent about the 

minor axis will be conducted in accordance with AS5068 (2006), with the results 

analysed in accordance with AS/NZS4063 (2010). 

 

 

2.1.4 Truss Erection Issues 

 

The possibility of truss chords failing under temporary construction loads, due to an 

adversely located finger joint, was suggested by representatives of Sid‟s Place (2011, 

pers. comm.).  Further investigation indicated that two areas for concern existed.  The 

first related to a truss top chord failing at a finger joint when a builder stands on the end 

of the truss overhang, and secondly, the bottom chord failing at a finger joint if a builder 

stands at the centre of bottom chord panel.  The described loading locations are shown 

in Figure 2.12. 

 

 

 

Figure 2.12 – Location of Temporary Construction Loads 
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This project seeks to determine the probability of truss chords failing at a finger joint 

when subjected to the temporary construction loads discussed.  It is planned to model 

the stresses that are likely to occur and compare them to the capacity of finger joints 

loaded in the appropriate orientation.   

 

 

2.1.4.1  Modelling of Temporary Construction Stresses 

 

The building industry is male dominated.  It seems fair to assume that the temporary 

construction loads, discussed in the previous section, will most likely be due to adult 

males.  A study by the McLennan and Podger in 1995 found the average body weight of 

an Australian adult male to be 81.9 kilograms, with the standard deviation of the data 

being 15.02 kilograms. 

 

Statistical methods exist, such as those described in AS/NZS 4063.2 (2010), to 

determine the distribution of a data set based on these parameters.   These methods can 

be used to determine the probability of a man with a certain weight occurring. 

 

American Wood Council (2007) provides bending moment diagrams, and equations, for 

statically determinate beams.  By considering the top chord of a truss, when subjected to 

a point load at the end of the overhang, as a simply supported beam with overhang, the 

stresses induced in it can be determined using these. 

 

The bottom chord of an “A-type” truss, as shown in Figure 2.12, is a three span 

continuous member.  Multinail (n.d.) suggests that bending moments in the chord 

should be evaluated using Clapeyron‟s Theorem of Three Moments.  By application of 

this theorem the stresses induced by a builder standing at the centre of a bottom chord 

panel can be determined. 

 

 

2.1.4.2  Test Methods 

 

For a truss chord to break at a finger joint, under temporary construction loads, a finger 

joint must occur at an appropriate location when a builder, whose weight is great 

enough to provide stresses sufficient to exceed the joints capacity, stands at the critical 
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location on the chord.  To determine the probability of this event occurring, the capacity 

of typical finger joints, when loaded in the appropriate orientation, must be known. 

 

Australian Standard AS5068 (2006) describes a method of determining the strength of 

finger joints in timber sections bent about the major axis.  The necessary loading 

configurations, test spans, sample lengths and testing processes are specified.  AS5068 

(2006) provides this test method for the purpose of production quality control and as a 

result the methods provided for analysing test results are limited.  Australian Standard 

AS/NZS4063 (2010) describes methods of assigning frequency distributions to data, 

and hence, can be used to determine the probability of a finger joint with a given 

capacity occurring. 

 

For the purposes of this project the testing of finger joints in timber bent about the 

major axis will be conducted in accordance with AS5068 (2006), with the results 

analysed in accordance with AS/NZS4063 (2010).  
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Chapter 3 

 

 

 

Manufacture of Finger Jointed Timber 

 

 

3.0 Introduction 

 

This project aims to determine the suitability of finger jointed timber for use in nail 

plated roof trusses.  This suitability will be gauged by comparing its performance with 

the standard framing timber currently used for truss manufacture.  Physical testing must 

be performed to assess the performance of finger jointed timber.  As Hyne and Son do 

not currently produce structural grade finger jointed timber for sale adequate quantities 

were manufactured for the purposes of this project. 

 

This chapter outlines the materials and processes used as a part of this manufacture.    

The selection of materials and manufacture techniques does not form part of the scope 

of this project.   The scope of the project is limited to the performance of the finished 

material only.  
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3.1 Materials 

 

Structural grade finger jointed timber consists of two material components, graded 

timber feedstock joined with structural grade adhesive.  This section provides details on 

the type and source of each of these components. 

 

 

3.1.1 Timber Feedstock 

 

Hyne and Son‟s Tuan Mill processes plantation grown softwood, predominately Slash 

Pine (Pinus elliottii) and Caribbean Pine (Pinus caribaea).  These species are not 

separated as a part of the normal operation of the mill.  No special sorting measures 

were undertaken as a part of sourcing timber feedstock for this project and as such it is 

expected that the finished finger jointed timber consists of both species. 

 

As a part of the literature review it was determined that 90 x 35 mm finger jointed 

timber would be assessed in this project, with the mechanical properties of MGP10 

targeted.  Ungraded off-cuts, 600 mm in length, were collected during a standard 90 x 

35 mm production run at Hyne and Son‟s Tuan Mill.  No physical assessment, 

mechanical or otherwise, was made of the mechanical properties of the off-cuts.    

 

The off-cuts were visually graded to eliminate defects that fall outside Hyne and Son‟s 

proprietary limits for standard MGP10 production.  This included discarding pieces 

containing knots with a diameter greater than 50% of the wide face dimension.  Knots 

of any diameter were not permitted within 50 mm of the end of a block to ensure a good 

quality joint.  Off-cuts containing wane, the rounding of section corners due to the 

circular nature of a tree, greater than the limits shown in Figure 3.1 were also excluded. 
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Figure 3.1 – Hyne and Son Wane Limits for MGP10 

 

 

3.1.2 Adhesive 

 

Although Hyne and Son do not currently produce structural grade finger jointed timber 

for sale they have done so previously.  During this time a polyurethane adhesive was 

used successfully.  Adhesives of this type have a proven record of successful 

performance in structural applications both in Australia and overseas, particularly in 

Europe. 

 

A polyurethane adhesive, Purbond HB S109 was selected when manufacturing finger 

jointed timber for this project.  It was applied and cured in accordance with the 

manufacturer‟s directions.   More information about Purbond HB S109 can be found on 

the technical data sheet, included in this report as Appendix B. 

 

 

3.2 Process 

 

The general procedure for manufacturing finger jointed timber involves machining 

matching profiles into the ends of timber blocks, applying a suitable adhesive to the 

profiles, applying mechanical pressure to force the joints closed, and allowing the 

adhesive to cure and form a permanent bond.  This process was followed when 

producing finger jointed timber for this project. 

 

A finger jointer currently operates at Hyne and Son‟s Melawondi plant manufacturing 

non-structural finger jointed timber feedstock for the production of mouldings.  By 

WANE

Limit = 

25% of 

both    

faces
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replacing the finger joint cutters this machine was used to produce structural grade 

finger jointed material for this project.  

 

The finger jointer used as a part of the project produces vertical finger joints.  Cutters 

were sourced to provide a joint with 15 mm long fingers, a profile used widely for 

structural finger joints in Europe.  Figure 3.2 contains a picture of the profile used, and 

Figure 3.3, sourced from AS5068 (2006), provides its dimensions. 

 

 

 

Figure 3.2 – Finger Joint Profile Used 

 

 

 

Figure 3.3 – Dimensions of Finger Joint Used 

 

 

The pressure used to close the joints was appropriate for the 90 x 35 mm timber cross 

section, and in accordance with the adhesive manufacturer‟s recommendations.  More 

 

 

 

l = 15 mm 

lt = 0.5 mm max. 

p = 3.8 mm 

bt = 1 mm approx. 
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than 100 finger jointed boards, 5.4 metres in length, were produced and allowed to cure 

for the appropriate period for the adhesive used.  A number of these boards contained 

non-structural grade timber used when setting up the finger jointer.  These boards were 

not tested as a part of this project.  After full cure the finished boards were planed to 

remove any excess glue from the surface of the timber.  The cross sectional dimensions 

of the timber remained as 90 x 35 mm.  The finger jointed timber produced is shown in 

Figure 3.4, prior to planing. 

 

 

 

Figure 3.4 – Finger Jointed Timber Before Planing 

 

 

As a means of ensuring that finger jointed timber is produced with adequate strength 

properties, proof loading is often conducted as a part of the manufacturing process.  All 

boards produced as a part of this project were subjected to an appropriate proof load 

applied in tension.  The minimum load required to achieve the target characteristic 

tension strength of 90 x35 mm MGP10 was applied to each board.  The procedure used 

to calculate this load is contained in Appendix C. 

 

Overall, 1 of the 96 boards tested failed under the applied proof load.  This board failed 

in a low density section of clear timber.  Details of the proof load applied to all pieces 

are contained in Appendix D.  

 

On completion of the manufacture process 95 pieces of 90 x 35 mm finger jointed 

timber, 5.4 m long, were available for testing as a part of this project. 
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Chapter 4 

 

 

 

Methods of Testing and Assessment 

 

 

4.0 Introduction 

 

Finger jointed timber has been identified as a potential feedstock for nail plated roof 

truss fabrication.  Before it can be adopted for use its ability to perform adequately must 

be investigated.   A literature review identified the critical criteria for which the 

performance of finger jointed timber must be measured, and benchmark values against 

which this performance can be compared.  This chapter presents details of the physical 

testing conducted to measure performance.  It also describes in detail how the 

appropriate benchmark values were obtained, and how performance was assessed 

against them.  
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4.1 Mechanical Properties 

 

This section outlines the methods used to test and assess the critical mechanical 

properties of finger jointed timber, with regards to its potential use in nail plated roof 

trusses. 

 

 

4.1.1 Assessment 

 

As identified in the literature review, finger jointed timber will be considered to possess 

adequate mechanical properties if it achieves the values specified for standard MGP10 

framing in Australian Standard AS1720.1 (2010).   

 

Assessment involved simply comparing the results of testing conducted, and analysed, 

in accordance with AS/NZS4063 (2010), with the standard values.  This assessment 

process was appropriate for all mechanical properties considered. 

 

 

4.1.2 Testing and Analysis Methods 

 

 

4.1.2.1  Bending Strength and Stiffness 

 

Testing of 30 samples of finger jointed timber was completed in Hyne and Son‟s Tuan 

test rig, shown in Figure 4.1.  The samples were cut from separate, randomly selected 

full-length boards, and contained finger joints at random locations.  Each sample was 

weighed before testing and its density determined. 
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Figure 4.1 – Hyne & Son’s Tuan Bending Rig 

 

 

All samples were subjected to four point loading, in the configuration required by 

AS/NZS 4063.1 (2010), as shown in Figure 4.2.  All specimens tested were 90 x 35 mm 

in section. 

 

 

 

Figure 4.2 – AS/NZS4063 Bending Test Set-up 

 

 

Load was applied to the test sample via a spreader beam driven by an Enerpac 10 ton 

hydraulic ram.  The applied load was measured by a Kelba 10 ton S-type load cell, and 
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the resulting deflection at centre span by a Mitutoyo ID-C1050XB digital indicator.  As 

no data logging system was available corresponding values of load and deflection were 

recorded at two points within the elastic range of the timber, to allow the slope of the 

load-deflection curve to be calculated.  The applied load at failure of the test sample was 

recorded, along with the failure source and location, measured from the mid-point of the 

test span. 

 

The recorded data was used with Equation (4.1) to determine the Modulus of Elasticity 

(bending stiffness), E, of each sample. 

 

     
  

   
(
 

 
)
 

(
     

     
)
 

 
      (4.1) 

 

Where 

L = The test span 

d = The depth of the test specimen 

b = The breadth of the test specimen 

F1 = The lower of the loads recorded in the elastic zone 

F2 = The higher of the loads recorded in the elastic zone 

e1 = The deflection corresponding to F1 

e2 = The deflection corresponding to F2 

 

 

If failure of the test specimen occurred between the loading points, the recorded failure 

load was used with Equation (4.2) to determine the bending strength, fb, of each test 

sample. 

 

      
     

   
        (4.2) 

 

Where 

Fult = The recorded failure load 
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If failure of the test specimen occurred between a loading point and adjacent support, 

the recorded failure load, and failure location, was used with Equation (4.3) to 

determine the bending strength, fb, of each test sample. 

 

      
     (     )

    
       (4.3) 

 

Where 

Lv = The horizontal distance from the point of failure to the centre of the test       

        span 

 

 

The characteristic value for Modulus of Elasticity, E, of the finger jointed timber was 

then calculated using the bending stiffness test results, by the method shown in 

Appendix E, extracted from AS/NZS4063.2 (2010). 

 

The characteristic value for Bending Strength, fb, of the finger jointed timber was then 

calculated using the bending strength test results, by the method shown in Appendix F, 

extracted from AS/NZS4063.2 (2010). 

 

 

4.1.2.2  Tension Strength 

 

Testing of 30 samples of finger jointed timber was completed in Hyne and Son‟s 

tension test rig, shown in Figure 4.3.  The samples were cut from separate, randomly 

selected full-length boards, and contained finger joints at random locations.  Each 

sample was weighed before testing and its density determined. 
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Figure 4.3 – Hyne & Son’s Tension Test Rig 

 

 

All samples were subjected to axial loading, in the configuration required by AS/NZS 

4063.1 (2010), as shown in Figure 4.4.  All specimens tested were 90 x 35 mm in 

section, and the actual test span used was 2800 mm. 

 

 

 

Figure 4.4 – AS/NZS4063 Tension Test Set-up 

 

 

Load was applied to the test sample via steel jaws driven by an Enerpac 12 ton 

hydraulic ram.  The applied load was measured by a Precision Transducers PT-

LPX5000 5 ton compression type load cell.  The jaw, load application, and load 

measurement arrangements are shown in detail in Figures 4.5, 4.6 and 4.7 respectively.  

The applied load at failure of the test sample was recorded, along with the failure 

source, be it a finger joint or naturally occurring defect. 
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Figure 4.5 – Tension Testing Rig Jaw Arrangement 

 

 

 

Figure 4.6 – Tension Testing Rig Load Application Arrangement 

 

 

 

Figure 4.7 – Tension Testing Rig Load Measurement Arrangement 
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The recorded failure load was used with Equation (4.4) to determine the tension 

strength parallel to grain, ft,0, of each test sample. 

 

        
    

  
        (4.4) 

 

Where 

Fult = The recorded failure load 

d = The depth of the test specimen 

b = The breadth of the test specimen 

 

 

The characteristic value for Tension Strength, ft,0, of the finger jointed timber was then 

calculated using the tension strength test results, by the method shown in Appendix F, 

extracted from AS/NZS4063.2 (2010). 

 

 

4.1.2.3  Shear Strength 

 

A total of 62 samples of finger jointed timber were tested in Hyne and Son‟s Tuan 

bending rig, adjusted for shear testing as shown in Figure 4.8.  The samples were 

sourced from off-cuts of the randomly selected full-length boards used for the bending 

tests, and contained finger joints at random locations.  Each sample was weighed before 

testing and its density determined. 
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Figure 4.8 – Hyne & Son’s Tuan Bending Rig Adjusted for Shear Testing 

 

 

All samples were subjected to three point loading, in the configuration required by 

AS/NZS 4063.1 (2010), as shown in Figure 4.9.  All specimens tested were 90 x 35 mm 

in section. 

 

 

 

Figure 4.9 – AS/NZS4063 Shear Test Set-up 
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Load was applied to the test sample via a spreader beam driven by an Enerpac 10 ton 

hydraulic ram.  The applied load was measured by a Kelba 10 ton S-type load cell.  The 

applied load at failure of the test sample was recorded, along with the failure mode and 

source.  

 

The recorded failure load was used with Equation (4.5) to determine the shear strength, 

fv, for test samples that were considered to have failed in shear. 

 

      
        

  
        (4.5) 

 

Where 

Fult = The recorded failure load 

d = The depth of the test specimen 

b = The breadth of the test specimen 

 

 

The characteristic value for Shear Strength, fv, of the finger jointed timber was then 

calculated using the test results of samples that failed in shear, by the method shown in 

Appendix F, extracted from AS/NZS4063.2 (2010). 

 

 

4.1.2.4  Compression Strength 

 

Testing of 30 samples of finger jointed timber was completed in Hyne and Son‟s 

compression test rig, shown in Figure 4.10.  The samples were sourced from off-cuts of 

the randomly selected full-length boards used for the bending and shear tests, and 

contained finger joints at random locations.  Each sample was weighed before testing 

and its density determined. 
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Figure 4.10 – Hyne & Son’s Compression Test Rig 

 

 

All samples tested were 90 x 35 mm in section. The AS/NZS 4063.1 (2010) 

compression test configuration, shown in Figure 4.11, indicates that a minimum sample 

length of 2720 mm is required for this section size.  Due to limitations of the test rig, the 

maximum specimen length that could be tested was 2400 mm.  With the exception of 

sample length, all other requirements of AS/NZS 4063.1 (2010) for compression testing 

were met. 

 

 

 

Figure 4.11 – AS/NZS4063 Compression Test Set-up 

 

 

Load was applied to the test sample via a steel plate connected to an Enerpac 60 ton 

hydraulic ram.  The applied load was measured by a Precision Transducers LPX25000 

25 ton compression type load cell.  The load application, and load measurement 

arrangements are shown in detail in Figures 4.12 and 4.13 respectively.  The applied 

load at failure of the test sample was recorded, along with the failure source, be it a 

finger joint or naturally occurring defect. 
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Figure 4.12 – Compression Testing Rig Load Application Arrangement 

 

 

 

Figure 4.13 – Compression Testing Rig Load Measurement Arrangement 

 

 

The recorded failure load was used with Equation (4.6) to determine the compression 

strength parallel to grain, fc,0, of each test sample. 
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        (4.6) 

 

Where 

Fult = The recorded failure load 

d = The depth of the test specimen 

b = The breadth of the test specimen 

 

 

The characteristic value for Compression Strength, fc,0, of the finger jointed timber was 

then calculated using the compression strength test results, by the method shown in 

Appendix F, extracted from AS/NZS4063.2 (2010). 

 

 

4.2 Truss Joints and Connections 

 

This section outlines the methods used to test and assess the effect of finger joints on 

the nail plated connection of truss members, and the connection of trusses to other 

structural elements, identified in the literature review. 

 

 

4.2.1 Assessment 

 

As previously identified, finger jointed timber will be considered to perform adequately 

in truss joints and connections if no significant difference in the performance of test 

joints constructed from finger jointed timber, and standard framing timber, is observed. 

 

Assessment of the strength of all identified joints and connections involved the testing 

of sample joints manufactured from standard framing timber and finger jointed timber.  

Samples of the latter were biased so that a finger joint was located directly within the 

joint or connection.  The test results were compared using a standard statistical test for 

assessing the significance of the difference of means of small populations. This test is 

based on the Student‟s t Distribution, and is described in Spiegel (1982).  A two-tailed 

test was conducted.  
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 An assessment of the deformation exhibited by end joints loaded parallel to the timber 

grain was also conducted.  Testing was performed to measure the stiffness across each 

joint type, as shown in Figure 4.14.  The test results were compared by the same 

statistical test for assessing the significance of the difference of means of small 

populations, used to compare the joint strength values. 

 

 

 

Figure 4.14 – Joint Types for Stiffness Testing 

 

 

4.2.2 Testing and Analysis Methods 

 

 

4.2.2.1  Nail Plate Parallel to Timber Grain – Stiffness and Strength 

 

Samples for testing nail plated joints were fabricated to meet the dimensional 

requirements of AS1649 (2001).  The fixing of nail plates was performed by Sid‟s Place 

using a rolling press.  No teeth were removed from the plates.  Prior to joining, the 

timber components were weighed to ensure a relatively even wood quality across the 

joint.  Twenty samples were produced from both finger jointed timber and standard 

MGP10 timber.  The finger jointed timber was sourced randomly from the material 

manufactured for the project, and the standard MGP10 framing from an ordinary Hyne 

Nail Plate & Finger Joint

Nail Plate Only

Finger Joint Only

No Joint
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and Son production run.  The dimensions of the samples, and location of finger joints, 

are shown in Figure 4.15. 

 

 

 

Figure 4.15 – Nail Plate Parallel to Grain Sample Dimensions 

 

 

A further 10 samples of the same overall length were cut from both finger jointed 

timber and standard MGP10 framing.  The finger jointed samples were cut so that a 

finger joint was located at the specimen‟s mid-point.  No joining of these samples was 

required. 

 

Testing was conducted on Hyne and Son‟s tension test rig.  Axial load was applied over 

a 500 mm span, with deformation of the sample measured longitudinally over 205mm at 

centre span.  The test set-up is shown in Figures 4.16 and 4.17. 
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Figure 4.16 – Joint Deformation Measuring – Front View 

 

 

 

Figure 4.17 – Joint Deformation Measuring – Top View 

 

 

Load was applied and measured as previously described for tension strength testing.  

The joint deformation was measured using a Mitutoyo ID-F150 digital indicator.  No 

data logging system was available so corresponding values of applied load, and joint 

deformation, were recorded at regular intervals.  The applied load at failure of the test 

sample was recorded, along with the failure mode.  

 

Equation (4.7) was used to convert the recorded loads to stress values, σi. 

 

      
  

  
        (4.7) 

 

Where 

Fi = The recorded load 

d = The depth of the test specimen 

b = The breadth of the test specimen 
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Equation (4.8) was used to convert the recorded joint deformations to strain values, δi. 

 

      
  

   
        (4.8) 

 

Where 

ei = The recorded joint deformation 

 

 

A stress-strain curve was then plotted for each sample, with the slope of the linear 

portion of this graph representing the stiffness of the joint.  Load carrying capacity was 

the parameter used to describe the strength of the joints.  No calculations were required 

with the joint capacity being simply the ultimate failure load.   

 

All nail plated joint samples were loaded to failure and had their strength value 

determined.  Only 10 of each of those produced from finger jointed timber and standard 

MGP10 had intermittent loads and deformations recorded, and the joint stiffness 

calculated.  Samples produced from finger jointed timber and standard MGP10 without 

nail plates were not taken to failure and only had the information required for 

determining stiffness recorded and analysed. 

 

 

4.2.2.2  Nail Plate Perpendicular to Timber Grain 

 

Samples for testing nail plated joints perpendicular to the grain of the timber were 

fabricated to meet the dimensional requirements of AS1649 (2001).  The fixing of nail 

plates was performed by Sid‟s Place using a rolling press.  No teeth were removed from 

the plates.  Prior to joining, the timber components were weighed to ensure a relatively 

even wood quality across the joint.  Twenty samples were produced from both finger 

jointed timber and standard MGP10 timber.  The finger jointed timber was sourced 

randomly from the material manufactured for the project, and the standard MGP10 

framing from an ordinary Hyne and Son production run.  The dimensions of the 

samples, and location of finger joints, are shown in Figure 4.18. 
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Figure 4.18 – Nail Plate Perpendicular to Grain Sample Dimensions 

 

 

Testing was conducted on Hyne and Son‟s vertical test rig, shown in Figure 4.19.  

Tensile load was applied by anchoring the sample with a pin through the hole in the 

vertical leg, and pulling upwards at the ends of the horizontal branch.  A clear span of 

210 mm was maintained between the loading points. 

 

 

 

Figure 4.19 – Hyne & Son’s Vertical Test Rig 
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Load was applied to the test sample via a spreader frame driven by an Enerpac 30 ton 

hydraulic ram.  The applied load was measured, via a lever arm, by a Precision 

Transducers 5 ton compression-type load cell.  The measured load at failure of the test 

sample was recorded, along with the failure mode. 

 

Equation (4.9) was used to apply the effects of the lever arm to the measured loads, and 

calculate the ultimate failure loads, Fi. 

 

      
     

   
        (4.9) 

 

Where 

fi = The measured load at failure 

 

 

Load carrying capacity was the parameter used to describe the strength of the joints.  No 

calculations were required with the joint capacity being simply the ultimate failure load.  

All samples were loaded to failure and had their ultimate failure load determined. 

 

 

4.2.2.3  Batten Screw Connection of Roof Batten to Truss Chord 

 

Samples for testing axially loaded batten screw connections were fabricated to replicate 

the connection in service.  The dimensions of the sample were selected to meet the 

limitations of the available test equipment.  The initial test sample design is shown in 

Figure 4.20. 

 

 



52 

 

Figure 4.20 – Batten Screw Test Sample Initial Design 

 

 

Advice was sought from an experienced builder and it was suggested that this assembly 

was likely to fail by the screw head pulling through the batten.  This failure mode was 

considered unsatisfactory for assessing the effect on the connection of finger joints in 

the truss chord.  Prototype testing was conducted and the samples were found to 

regularly fail in this manner.  Hardwood battens were adopted to minimise the chances 

of this failure mode occurring. 

 

Ten samples were produced with finger jointed and standard MGP10 truss chords, both 

with hardwood battens.  The finger jointed timber was sourced randomly from the 

material manufactured for the project. The standard MGP10 framing was collected from 

an ordinary Hyne and Son production run, and the hardwood was supplied by the Hyne 

and Son laminated beam plant.  The truss chord component of each sample was 

weighed before joining, and its density determined.  The batten screws were driven until 

the heads were flush with the surface of the timber to ensure equal penetration for all 

tests.  The dimensions and finger joint locations of the samples adopted for testing are 

shown in Figure 4.21.  
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Figure 4.21 – Batten Screw Connection Sample Dimensions 

 

 

Testing was conducted on Hyne and Son‟s vertical test rig with appropriate attachments, 

as shown in Figure 4.22.  Axial load, with regards to the batten screws withdrawal from 

the truss chord, was applied by anchoring the sample at the ends of the batten, and 

pulling upwards at the ends of the truss chord.  A clear span of 210 mm was maintained 

between the loading points, and between the anchor points. 

 

 

 

  Figure 4.22 – Hyne & Son’s Vertical Test Rig – Batten Screw Test Set-up 

 

 

90 deg

Type 17 14g x 75 mm 

Bugle Batten Screw, 

centred in both 

directions

68x23 

Hardwood

90x35 FJ 

Timber,

FJ at centre

330

330

Finger Jointed Samples Standard MGP10 Samples

330

330

90x35 Std 

MGP10

68x23 

Hardwood

Type 17 14g x 75 mm 

Bugle Batten Screw, 

centred in both 

directions90 deg



54 

Load was applied and measured as previously described for nail plate testing 

perpendicular to the timber grain.  The measured load at failure of the test sample was 

recorded, along with the failure mode. 

 

Equation (4.9) was used to apply the effects of the lever arm to the measured loads, and 

calculate the ultimate failure loads, Fi, as described previously. 

  

Load carrying capacity was the parameter used to describe the strength of the joints.  No 

calculations were required with the joint capacity being simply the ultimate failure load.  

All samples were loaded to failure and had their ultimate failure load determined. 

 

 

4.2.2.4  MultiGrip Connection of Roof Truss to Supporting Wall 

 

Samples for testing MultiGrip tie down connections were fabricated to replicate the 

connection in service.  The dimensions of the sample were selected to meet the 

limitations of the available test equipment.  Normally, a single MultiGrip would be used 

to connect a truss to the supporting wall.  The equipment available requires a balanced 

joint for testing to avoid inducing eccentric loading.  Test samples were prepared using 

two multigrips to meet this requirement.  The dimensions of the samples, and location 

of finger joints, are shown in Figure 4.23. 

 

 

 

Figure 4.23 – MultiGrip Connection Sample Dimensions 
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Ten samples were produced with finger jointed and standard MGP10 truss chords, and 

70 x 45 MGP15 wall top plates.  The finger jointed timber was sourced randomly from 

the material manufactured for the project. The standard MGP10 and MGP15 framing 

were collected from ordinary Hyne and Son production runs. The truss chord 

component of each sample was weighed before joining, and its density determined.  All 

nails were driven until their heads were seated against the surface of the MultiGrips to 

ensure equal penetration for all tests.   

 

Testing was conducted on Hyne and Son‟s vertical test rig with appropriate attachments, 

as shown in Figure 4.24.  Lateral load was applied to the nails penetrating the truss 

chord by anchoring the sample at the ends of the top plate, and pulling upwards at the 

ends of the truss chord.  A clear span of 210 mm was maintained between the loading 

points, and between the anchor points. 

 

 

 

  Figure 4.24 – Hyne & Son’s Vertical Test Rig – MultiGrip Test Set-up 

 

 

Load was applied and measured as previously described for batten screw connection 

testing.  The measured load at failure of the test sample was recorded, along with the 

failure mode. 

 

Equation (4.9) was used to apply the effects of the lever arm to the measured loads, and 

calculate the ultimate failure loads, Fi, as described previously. 
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Load carrying capacity was the parameter used to describe the strength of the joints.  No 

calculations were required with the joint capacity being simply the ultimate failure load.  

All samples were loaded to failure and had their ultimate failure load determined. 

 

 

4.2.2.5  Screw Connection of Girder Bracket to Truss Chord  

 

This connection type involves fixing a bracket, as shown in Figure 2.10, to the truss 

chord rather than connecting 2 timber members.  This connection was replicated by 

fabricating an attachment for Hyne and Son‟s vertical test rig, to which a truss chord 

could be attached for testing.  The literature review identified that groups of 4 screws 

are commonly used to attach brackets to truss chords.  In practice these screws penetrate 

the truss chord from the same side.  To provide the balanced joint required by the test 

rig to avoid eccentric loading, the attachment provided locations for the insertion of 2 

screws from each side.  Figure 4.25 shows the test rig operating with the attachment. 

 

 

 

  Figure 4.25 – Hyne & Son’s Vertical Test Rig – Girder Bracket Test Set-up 

 

 

Ten samples were produced from finger jointed timber and standard MGP10 framing.  

The finger jointed timber was sourced randomly from the material manufactured for the 

project. The standard MGP10 was collected from an ordinary Hyne and Son production 

run.  Each sample was weighed before testing, and its density determined.  Once the 

samples were placed in the test rig, screws were driven into the timber until their heads 
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were seated against the surface of the girder bracket attachment to ensure equal 

penetration for all tests.  The dimensions of the samples, and location of finger joints, 

are shown in Figure 4.26. 

 

 

 

Figure 4.26 – Girder Bracket Connection Sample Dimensions 

 

 

Lateral load was applied to the screws penetrating the truss chord by pulling upwards at 

the ends of the truss chord.  A clear span of 210 mm was maintained between the 

loading points. 

 

Load was applied and measured as previously described for batten screw connection 

testing.  The measured load at failure of the test sample was recorded, along with the 

failure mode. 

 

Equation (4.9) was used to apply the effects of the lever arm to the measured loads, and 

calculate the ultimate failure loads, Fi, as described previously. 

  

Load carrying capacity was the parameter used to describe the strength of the joints.  No 

calculations were required with the joint capacity being simply the ultimate failure load.  

All samples were loaded to failure and had their ultimate failure load determined. 
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4.3 Fabrication Issues 

 

This section outlines the testing and assessment methods used to determine the 

probability of finger jointed timber boards breaking at a finger joint during the 

fabrication process, when handled by the techniques identified in the literature review. 

 

 

4.3.1 Assessment 

 

Finger jointed timber contains glued connections at which a board could potentially 

break.  These connections occur regularly, with their location depending upon the length 

off-cuts used for manufacture.  This assessment involved determining the probability of 

boards breaking at finger joints, under various scenarios, to provide information that 

enables end users to establish suitable handling practices. 

 

A board will fail at a finger joint if, a large enough stress is applied to the board, and, a 

finger joint with inadequate capacity to support this stress occurs, and, this finger joint 

occurs in the appropriate location.  From this statement it can be seen that the overall 

probability of a board failing is a combination of the probabilities of each of the three 

individual events occurring.  This is represented by Equation (4.10). 

 

                                    (4.10) 

 

Where 

ProbOA = The overall probability of a board breaking at a finger joint 

ProbSTR = The probability of a stress capable of breaking the board being applied 

ProbCAP = The probability of a finger joint with inadequate capacity to support  

     the applied stress occurring 

ProbLOC = The probability of this finger joint occurring in the appropriate  

     location 

 

 

The stresses applied to a board during handling are dependent upon the weight of the 

board and can be modelled using static engineering principles.  For this assessment the 

weights of a representative sample of finger joint boards were obtained from the 
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measured densities of the specimens used for bending strength, tension strength and 

compression strength testing.  The stresses that would be applied at a specified location 

during handling were then modelled for each board using the methods shown in Section 

4.3.2. 

 

It was found that the distribution of the sample board densities, and hence the stresses 

applied, could be estimated as log-normal.  A cumulative frequency distribution was 

then applied to the calculated stresses to determine the probability of occurrence of an 

applied stress exceeding a nominated value.  The cumulative frequency distribution is 

described by Equation (4.11).  A typical cumulative frequency distribution for the 

applied stresses is shown in Figure 4.27. 

 

         ( ̂      )       (4.11) 

 

Where 

Mi = The i-th percentile value of applied stress 

Ŷ = The mean of the natural logarithms of the modelled stresses 

zi = The z-score corresponding to the probability i, calculated using the   

       NORMSINV function of Microsoft Excel 

Sy = The standard deviation of the natural logarithms of the modelled stresses 

 

 

 

Figure 4.27 – Typical Cumulative Frequency Distribution for Applied Stress 
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For this assessment the capacities of a representative sample of finger joints were 

determined from testing.  The testing was conducted using the method shown in Section 

4.3.3. 

 

The distribution of the finger joint capacity test results was also found to be 

approximately log-normal.  A cumulative frequency distribution was then applied to the 

test results to determine the probability of occurrence of a finger joint below a 

nominated capacity.  The cumulative frequency distribution is described by Equation 

(4.12).  A typical cumulative frequency distribution for the finger joint capacities is 

shown in Figure 4.28. 

 

           ( ̂      )      (4.12) 

 

Where 

MFW i = The i-th percentile value of finger joint capacity 

Ŷ = The mean of the natural logarithms of the test results 

zi = The z-score corresponding to the probability i, calculated using the  

       NORMSINV function of Microsoft Excel 

Sy = The standard deviation of the natural logarithms of the test results 

 

 

 

Figure 4.28 – Typical Cumulative Frequency Distribution for Finger Joint Capacity 
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The frequency distributions for applied stress and finger joint capacity were then plotted 

on the same graph.  A typical graph of this type is shown in Figure 4.29.  The y-axis 

value corresponding to the point at which the distributions intersect was taken to be the 

probability of the applied stress exceeding the capacity of the finger joint, ProbSTR, and, 

the probability of the capacity of the finger joint being inadequate to support the applied 

stress, ProbCAP.  The probability of the finger joint breaking under the stress applied at 

the specified location in the board, ProbBREAK, was then calculated using Equation 

(4.13). 

 

                                (4.13) 

 

 

 

Figure 4.29 – Intersection of Applied Stress and Finger Joint Capacity Distributions 

 

 

The probability of a finger joint occurring at this specific location then needed to 

assessed, to determine the overall probability of a board breaking at a finger joint during 

handling.   It was considered that the length of the shortest off-cut likely to be used 

when manufacturing finger jointed timber is 450 mm.  This results in a finger joint 

always occurring within 225 mm of the maximum moment location in a board.  This 

region was divided into 5 equal zones, arranged concentrically about the maximum 

moment location, as shown in Figure 4.30.  It was assumed that there was an equal 

possibility of a finger jointing being located in each of the 5 zones. 
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Figure 4.30 – Bending Moment Zones 

 

 

The probability of the finger joint breaking, ProbBREAK, was calculated at the boundaries 

of each zone, by the procedure described previously in this section, and the minimum 

and maximum value for each zone identified.  The minimum, maximum, and average 

overall probability of a board breaking at a finger joint during handling was then 

calculated using Equations (4.14), (4.15), and (4.16), respectively. 

 

            
 

 
   ∑(            ) 

    (4.14) 

 

Where 

  

          =  The minimum overall probability of a board breaking at a 

finger joint during handling 

(            ) 
 = The minimum probability of the finger joint breaking 

under the applied stress in zone i 

 

 

 

            
 

 
   ∑(            ) 

    (4.15) 

 

Where 

          =  The maximum overall probability of a board breaking at a 

finger joint during handling 

(            ) 
 = The maximum probability of the finger joint breaking 

under the applied stress in zone i 
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   (                   )   (4.16) 

 

Where 

          =  The average overall probability of a board breaking at a 

finger joint during handling 

 

 

This assessment process was repeated for boards of various lengths, handled by each of 

the identified techniques.  The results were collated and presented as design charts. 

 

 

4.3.2 Modelling of Handling Stresses 

 

The stresses applied to finger jointed boards during handling were modelled using static 

engineering principles.  The following sections contain the appropriate loads and 

equations for calculating bending moment, for each handling technique. 

 

 

4.3.2.1  Levering 

 

The loads applied to a board when levering were identified in the literature review and 

are shown again in Figure 4.31. 

 

 

 

Figure 4.31 – Levering Loads 
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It was found from physical experimentation that the force required to raise a board by 

levering is only minimally larger than the force required to hold the board in balance.  It 

is assumed that there is no residual moment acting on a board when it is in balance.  As 

a result, the balancing force can be calculated relatively simply by summing the 

moments about the support point.  The calculated balancing force, FB, is shown in 

equation (4.17).  This balancing force was adopted as an approximation of the Lifting 

Force, P. 

 

     
  (    )

  
        (4.17) 

 

Where 

w = The self weight of the board (Density x Cross Sectional Area) 

L = The length of the board 

a = The length from the handled end of the board to the support point 

 

 

The bending moment for this loading arrangement was approximated by combining the 

bending moment diagrams of 3 simple loading scenarios.  The simple loading scenarios 

used, and their bending moment diagrams, are shown in Figure 4.32. 

 

 

 

Figure 4.32 – Simplification of Levering Loads 

Loading Diagram Bending Moment Diagram



65 

The bending moment diagram for the overall load arrangement, determined by adding 

those shown in Figure 4.32, is shown in Figure 4.33. 

 

 

 

Figure 4.33 – Bending Moment Diagram of Levered Board 

 

 

The bending moment, Mi, at any point in a levered board, x, as shown by the bending 

moment diagram in Figure 4.33, can be calculated by Equation (4.18), and Equation 

(4.19). 

 

When x ≤ a, 

     
  

 
(
 

 
(   )     )     (4.18) 

 

When x > a, 

     
 

 
(   )(      )      (4.19) 

 

Where 

w = The self weight of the board (Density x Cross Sectional Area) 

x = The distance from the handled end of the board 

L = The length of the board 

a = The length from the handled end of the board to the support point 

 

 

 

L

a

x

Bending Moment Diagram
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4.3.2.2  Two Man Lift 

 

The loads applied to a board when lifted by both ends were identified in the literature 

review and are shown again in Figure 4.34. 

 

 

 

Figure 4.34 – 2 Man Lift Loads 

 

 

This arrangement is a simply supported beam.  The bending moment diagram and 

equation were sourced from American Wood Council (2007), and are shown in Figure 

4.35, and Equation (4.20), respectively. 

 

     
  

 
(   )       (4.20) 

 

Where 

w = The self weight of the board (Density x Cross Sectional Area) 

x = The distance from the end of the board 

L = The length of the board 

 

2 Man Lift
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Board Length (L)

Self Weight (w)
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Figure 4.35 – Bending Moment Diagram of 2 Man Lifted Board 

 

 

4.3.2.3  Fork Lifted Board 

 

The loads applied to a board when lifted by a fork lift were identified in the literature 

review and are shown again in Figure 4.36. 

 

 

 

Figure 4.36 Fork Lifting Loads 

 

 

This is a standard arrangement contained in American Wood Council (2007).  The 

bending moment diagram is shown in Figure 4.37. 
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Figure 4.37 – Bending Moment Diagram of Fork Lifted Board 

 

 

The standard fork lift support spacing of 1.5 metres was substituted into the standard 

bending moment formula for this arrangement.  The bending moment, Mi, at any point 

in a fork lifted board, x, as shown by the bending moment diagram in Figure 4.37, could 

then be calculated by Equation (4.21), and Equation (4.22). 

 

When x ≤ a, 

     
    

 
        (4.21) 

 

When a < x ≤ L/2, 

     
  

 
(    )(   )   

   

 
     (4.22) 

 

Where 

w = The self weight of the board (Density x Cross Sectional Area) 

x = The distance from either end of the board 

L = The length of the board 

a = The length from the end if the board to the adjacent support point  

      (a= 0.5(L - 1.5)) 
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Bending Moment Diagram
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4.3.3 Test Method 

 

Testing of 30 samples of finger jointed timber was completed in Hyne and Son‟s Tuan 

test rig, modified to perform three point loading, as shown previously in Figure 4.8.  

The samples were cut randomly from the finger jointed timber produced for this project, 

with a finger joint at the mid-point.  Each sample was weighed before testing and its 

density determined. 

 

All samples were subjected to three point loading, in the configuration required by 

AS5068 (2006), as shown in Figure 4.38.  All specimens were 90 x 35 mm in section, 

650mm long, and were tested over a span of 540mm. 

 

 

 

Figure 4.38 – AS5068 3-point Flatwise Test Set-up 

 

 

Load was applied to the test sample via a spreader beam driven by an Enerpac 10 ton 

hydraulic ram.  The applied load was measured by a Kelba 10 ton S-type load cell.  The 

applied load at failure of the test sample was recorded, along with the failure mode as 

described by AS5068 (2006).  A copy of the AS5068 (2006) failure mode 

classifications is contained in Appendix G. 

 

The recorded failure load was used with Equation (4.23) to determine the flatwise 

bending moment capacity, MFW, of each sample. 
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        (4.23) 

Where 

P = The recorded failure load 

L = The test span 

 

 

4.4 Truss Erection Issues 

 

This section outlines the testing and assessment methods used to determine the 

probability of finger jointed timber truss chords breaking at a finger joint, when 

subjected to the temporary construction loads identified in the literature review.   

 

 

4.4.1 Assessment 

 

Finger jointed timber truss chords contain glued connections at which they could 

potentially fail.  These connections occur regularly, with their location depending upon 

the length off-cuts used for manufacture.    This assessment involves determining the 

probability of truss chords breaking at finger joints, under various scenarios, to provide 

information that enables end users to manage any associated risk. 

 

The assessment was conducted by adopting the same overall process that was used for 

assessing fabrication issues in Section 4.3.1.  The stresses applied to the truss chords are 

dependent upon the weight of the builders standing upon them, and, as for handling 

stresses, were modelled using static engineering principles.  The weights of builders 

used in this assessment were based on statistical data for the general population of 

Australian adult males in McLennan and Podger (1995).  Average and standard 

deviation values were sourced and, by considering the data to be normally distributed, 

converted to a cumulative frequency distribution using Equation (4.24). 
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        ̂              (4.24) 

 

Where 

Pi = The i-th percentile value of builder‟s mass 

Ŷ = The mean body weight value from McLennan and Podger (1995) 

zi = The z-score corresponding to the probability i, calculated using the  

       NORMSINV function of Microsoft Excel 

Sy = The standard deviation body weight value from McLennan and Podger  

        (1995) 

 

 

The stresses in a truss chord subjected to a builder‟s weight were modelled, at specified 

locations, using the methods described in Section 4.4.2.  The stress modelling results 

presented values that could be described by the same frequency distribution as the 

builder‟s weights.  When attributed to the stresses, Equation (4.25) describes the 

frequency distribution. 

 

         ̂              (4.25) 

 

Where 

Mi = The i-th percentile value of stress in the truss chord 

Ŷ = The mean value of the modelled stresses 

zi = The z-score corresponding to the probability i, calculated using the  

       NORMSINV function of Microsoft Excel 

Sy = The standard deviation of the modelled stresses 

 

 

The capacities of a representative sample of finger joints were again determined by 

testing.  The testing was conducted using the method shown in Section 4.4.3.  A 

cumulative frequency distribution was applied to the test results in an identical means to 

Section 4.3.1. 

 

The balance of the assessment was then carried out exactly as it was for handling loads, 

refer Section 4.3.1 for details.  The assessment process was repeated for both loading 
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situations identified.  A number of truss spans and eave widths were assessed.  The 

results were collated and presented as design charts. 

 

 

4.4.2 Modelling of Handling Stresses 

 

The stresses applied to finger jointed truss chords subject to temporary construction 

loads were modelled using static engineering principles.  The following sections contain 

the appropriate equations for calculating bending moment, for chords loaded at the end 

of overhangs, and at the mid-point of panels. 

 

 

4.4.2.1  Loads on Truss Overhangs 

 

The critical loading location, representing a builder standing on a truss overhang, was 

identified in the literature review and is shown again in Figure 4.39. 

 

 

 

Figure 4.39 – Truss Overhang Loads 

 

 

This loading arrangement was approximated by considering each top chord of the truss 

as a separate, simply supported beam with overhang.  The simple span represents the 

panel of the truss chord closest to the supporting wall, and a nominal span of 2.4 m was 

used.  The self weight of the truss chord was considered to have minimal effect when 

combined with the builders mass.  As a result, the point load only was used for 

modelling the stresses applied to the truss chord.  The loading arrangement used for 

modelling is shown in Figure 4.40. 

 

 

Builder Standing on Truss Overhang 
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Figure 4.40 – Simplification of Overhang Loads 

 

 

The overhang length, L, is dependent upon the eave width of the building.  When 

considering standard trusses, which run perpendicular to the supporting walls, as shown 

in Figure 4.41, the overhang length is simply the eave width.  When considering hip 

trusses, which run at 45
o
 to the supporting walls, also shown in Figure 4.41, Equation 

(4.26) is used to calculate the overhang length, L. 

 

     √ (  )        (4.26) 

 

Where 

WE = The eave width of the building 

 

 

 

Figure 4.41 – Orientation of Standard and Hip Trusses 

 

Loading Diagram
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The loading arrangement used is a standard configuration contained in American Wood 

Council (2007).  The bending moment diagram is shown in Figure 4.42. 

 

 

 

Figure 4.42 – Bending Moment Diagram of Truss Overhang 

 

 

The adopted simple span of 2.4 metres was substituted into the standard bending 

moment formula for this arrangement.  The bending moment, Mi, at any point in the 

truss chord, x, as shown by the bending moment diagram in Figure 4.42, could then be 

calculated by Equation (4.27), and Equation (4.28). 

 

When x ≤ L, 

               (4.27) 

 

When x > L, 

     
  

   
(       )      (4.28) 

 

Where 

P = The weight of the builder  

x = The distance from the end of the overhang 

L = The overhang length 

 

 

 

x
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4.3.2.2  Loads on Bottom Chord Panels 

 

The critical loading locations, representing a builder standing on a truss bottom chord, 

were identified in the literature review and are shown again in Figure 4.43. 

 

 

 

Figure 4.43 – Truss Bottom Chord Loads 

 

 

The bottom chord was considered as a continuous beam, consisting of three equal spans, 

for modelling the bending moment.  The self weight of the truss chord was considered 

to have minimal effect when combined with the builders mass.  As a result, the point 

load only was used for modelling the stresses applied to the truss chord.  The literature 

review identified Clapeyron‟s Theorem of Three Moments as the appropriate method 

for modelling this configuration.  Initial calculations using Clapeyron‟s Theorem 

showed that more severe moments occur when a point load is applied to one of the end 

spans, and this load location was adopted.  The loading arrangement used for modelling 

is shown in Figure 4.44. 

 

 

 

Figure 4.44 – Bottom Chord Loading Diagram 
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Clapeyron‟s Theorem was used, in conjunction with similar triangles, to determine the 

bending moment diagram, and bending moment formula, for the arrangement.  The 

resulting moment diagram is shown in Figure 4.45. 

 

 

 

Figure 4.45 – Bending Moment Diagram of Bottom Chord 

 

 

The bending moment, Mi, at any point in the truss chord, x, as shown by the bending 

moment diagram in Figure 4.45, could then be calculated by Equations (4.29), (4.30), 

(4.31) and (4.32). 

 

When x ≤ L/2, 

     
   

 
        (4.29) 

 

When L/2 < x ≤ L, 

     
 

 
(  

  

 
)       (4.30) 

 

When L< x ≤ 2L, 

     
 

 
(  

  

 
)       (4.31) 

 

When 2L< x ≤ 3L, 

     
 

  
(    )       (4.32) 

x

Bending Moment Diagram
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Where 

P = The weight of the builder  

x = The distance from the end of the truss adjacent to the load 

L = The panel span 

 

 

4.4.3  Test Method 

 

Testing of 20 samples of finger jointed timber was completed in Hyne and Son‟s Tuan 

test rig, modified to perform three point loading, as shown in Figure 4.46.  The samples 

were cut randomly from the finger jointed timber produced for this project, with a finger 

joint at the mid-point.  Each sample was weighed before testing and its density 

determined. 

 

 

 

Figure 4.46 – Hyne & Son’s Tuan Bending Rig Adjusted for 3-point testing 

 

 

All samples were subjected to three point loading, in the configuration required by 

AS5068 (2006), as shown in Figure 4.47.  All specimens were 90 x 35 mm in section, 

2600mm long, and were tested over a span of 2320mm, to more accurately replicate in-

service conditions. 
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Figure 4.47 – AS5068 3-point Edgewise Test Set-up 

 

 

Load was applied to the test sample via a spreader beam driven by an Enerpac 10 ton 

hydraulic ram.  The applied load was measured by a Kelba 10 ton S-type load cell.  The 

applied load at failure of the test sample was recorded, along with the failure source and 

location, measured from the centre of the test span. 

 

The recorded failure load was used with Equation (4.33) to determine the edgewise 

bending moment capacity, MEW, of each sample. 

 

       
 (
 

 
   )

 
       (4.33) 

 

Where 

P = The recorded failure load 

L = The test span 

Lv = The horizontal distance from the point of failure to the centre of the test  

        span 
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Chapter 5 

 

 

 

Test Results and Discussion 

 

 

5.0 Introduction 

 

The performance criteria, critical in determining the suitability of finger jointed timber 

for use in nail plated roof trusses, were highlighted in the literature review.  Methods to 

measure this performance were also identified.  The application of these test methods, 

and the process for analysing the subsequent results, was discussed in detail in the 

previous chapter. 

   

This chapter outlines the results that were obtained from the performance testing.  The 

data measured, and observations made throughout testing, are discussed.  The outcomes 

obtained from assessing the performance of finger jointed timber against appropriate 

benchmarks are also presented.  
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5.1 Mechanical Properties 

 

This section presents the results, and assessment, of testing conducted on the 

mechanical properties of finger jointed timber using the methods contained in Section 

4.1.  The results for all properties tested are presented initially, followed by an 

individual discussion for each series of tests. 

 

 

5.1.1 Overview of Results 

 

Table 5.1 presents the results of testing conducted on 90 x 35 mm finger jointed timber 

for Bending Stiffness, Bending Strength, Tension Strength, Shear Strength and 

Compression Strength.  It also shows the target value for each, as identified in the 

literature review. 

 

 

Mechanical Property 
No. of 

Samples 

Average 

Density 

(kg/m
3
) 

FJ Timber 

Calculated 

Characteristic 

Value (MPa) 

Target MGP10 

Characteristic 

Value (MPa) 

Modulus of Elasticity, E 30 578 10 155 10 000 

Bending Strength, fb 30 578 21.54 17.0 

Tension Strength, ft 30 585 13.05 7.7 

Shear Strength, fs 62 (18)
1 

596 (636)
2 

3.02 2.6 

Compression Strength, fc 30 580 21.87 18.0 

Notes: 1 – Analysis based on 18 samples that exhibited shear failure from a total of 62 tested 

 
2 – Bracketed value indicates average density of 18 samples exhibiting shear failure only 

 

Table 5.1 – Summary of Mechanical Property Test Results 

 

 

The consistency in the average density measured for each test type indicates that a 

representative sample of finger jointed timber was tested in each case.  It can be noted 

from Table 5.1 that, for each property tested, the characteristic value calculated from 
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test results exceeds the characteristic value for standard 90 x 35 mm MGP10, defined by 

AS1720.1 (2010). 

 

As a result of this testing it is considered that the 90 x 35 mm finger jointed timber 

produced for this trial could be directly substituted for standard MGP10 framing, from a 

mechanical property perspective. 

 

 

5.1.2 Bending Stiffness 

 

The characteristic Modulus of Elasticity of the finger jointed timber tested was 

determined to be 10155 MPa, as shown in Table 5.1.  A detailed record of the testing 

data and analysis used to calculate this value is contained in Appendix H.1. 

 

Investigation of the detailed results shows the coefficient of variation for the stiffness of 

individual samples to be 21.4%.  This value is similar to the coefficient of variation of 

18% achieved during the Quality Control testing of standard 90 x 35 MGP10 at Hyne 

and Son‟s Tuan Mill, in the last year. 

 

Testing regularly indicates a reasonably strong relationship between the density and 

stiffness of timber.  A comparison of density and Modulus of Elasticity for each sample 

of finger jointed timber tested is shown in Figure 5.1. 

 

 

 

Figure 5.1 – Relationship between Bending Stiffness and Average Sample Density 
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The relationship displayed in Figure 5.1 is not as strong as expected.  This is most likely 

a result of the variation in density that can occur between off-cuts contained in the same 

test sample.  The average density may be influenced by an off-cut occurring outside the 

centrally located, maximum moment zone responsible for the majority of deflection in a 

four point bending test.  A comparison of density at mid-span and Modulus of Elasticity 

for each sample tested is shown in Figure 5.2 

 

 

 

Figure 5.2 – Relationship between Bending Stiffness and Sample Mid-span Density 

 

 

Figure 5.2 shows a much stronger relationship when the density at mid-span is 

considered.  This indicates that bending stiffness is influenced more by the local density 

at critical locations, than by the overall density of the board.   

 

Although the grading of off-cuts conducted as a part of this project was proven to be 

adequate by the test results, it is likely that improved bending stiffness could be attained 

for finger jointed timber if lower density off-cuts were minimised as a part of the 

manufacture process. 
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5.1.3 Bending Strength 

 

The characteristic Bending Strength of the finger jointed timber tested was determined 

to be 21.54 MPa, as shown in Table 5.1.  A detailed record of the testing data and 

analysis used to calculate this value is contained in Appendix H.1. 

 

Investigation of the detailed results shows the coefficient of variation for the stiffness of 

individual samples to be 22.4%.  This value is far less than the coefficient of variation 

of 36% achieved during the Quality Control testing of standard 90 x 35 MGP10 at Hyne 

and Son‟s Tuan Mill, in the last year.  The greater uniformity in test results is thought to 

be due to a combination of, reducing the number of naturally occurring defects through 

grading of the off-cuts, and, introducing a more predictable failure source in the form of 

finger joints. 

 

The mode by which the samples failed was monitored as a part of testing.  Typically, 

failure initiated at a finger joint or knot, near the tension edge, in the centrally located, 

maximum moment zone.  When failure was initiated by a finger joint a brittle bending 

failure generally occurred with the fracture propagating directly from the tension edge 

to the compression edge.  This failure type is shown in Figure 5.3.  In samples which 

initially fractured at knots, tensile stresses perpendicular to the grain appeared to be 

induced in the reduced section, and the fracture propagated longitudinally through the 

board, as shown in Figure 5.4. 

 

 

 

Figure 5.3 – Typical Bending Failure at Finger Joint 
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Figure 5.4 – Typical Bending Failure at Knot 

 

 

A total of 30 samples were tested, of which, 26 failed at finger joint, including the 6 

lowest results.  This indicates that maintaining a high quality finger joint is critical in 

producing finger jointed timber with adequate bending strength.  

 

 

5.1.4 Tension Strength 

 

The characteristic Tension Strength of the finger jointed timber tested was determined 

to be 13.05 MPa, as shown in Table 5.1.  A detailed record of the testing data and 

analysis used to calculate this value is contained in Appendix H.2. 

 

Investigation of the detailed results shows the coefficient of variation for the strength of 

individual samples to be 21.8%.  This value is similar to the coefficient of variation of 

19% reported for 90 x 35 mm F5 in a confidential report on timber properties prepared 

in 1993 by CSIRO. 

 

The mode by which the samples failed was again monitored as a part of testing.  

Typically, brittle failure occurred at finger joints or knots, or a combination of both.  A 

typical finger joint, knot and combination failure is shown in Figures 5.5, 5.6 and 5.7, 

respectively. 

 

 

 

 

 

Fracture Path 
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Figure 5.5 – Typical Tension Failure at Finger Joint 

 

 

 

 

Figure 5.6 – Typical Tension Failure at Knot 

 

 

 

Figure 5.7 – Typical Tension Failure at Finger Joint and Knot 
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A total of 30 samples were tested, of which, 18 failures contained knots, either alone or 

in combination with a finger joint.  Included in these were 14 of the 16 lowest test 

results.  The test results indicate that limiting the size of knots, and their location with 

regards to finger joints, are important measures in ensuring adequate tension strength in 

finger jointed timber. 

 

 

5.1.5 Compression Strength 

 

The characteristic Compression Strength of the finger jointed timber tested was 

determined to be 21.87 MPa, as shown in Table 5.1.  A detailed record of the testing 

data and analysis used to calculate this value is contained in Appendix H.3. 

Due to limitations in the available test equipment, the minimum test span recommended 

by AS/NZS 4063.1 (2010) could not be used.  This Australian Standard recommends 

that an adjustment factor be applied to results obtained under non-standard test 

conditions.  However, it does not provide methods for determining the required 

adjustment factor.   

 

The 1992 version of this standard provides advice on adjusting test results for non-

standard test spans.  It indicates that an adjustment need not be applied to non-standard 

compression tests so long as “significant defects” are present within the tested sample.  

All samples tested as a part of this project were randomly selected, and contained 

multiple knots and finger joints.  The samples were approximately 90% of the 

recommended length.  It is considered highly likely, given the random nature of finger 

jointed timber, that the most “significant defects” have been included in the test 

samples.   

 

As a result, it is considered that the characteristic value for compression strength 

obtained through testing is representative of the finger jointed material produced for the 

project, and has not been compromised by the non-standard test conditions. 

 

Investigation of the detailed results shows the coefficient of variation for the strength of 

individual samples to be 12.5%.  This value is similar to the coefficient of variation of 

16% reported for 90 x 35 mm F5 in a confidential report on timber properties prepared 

in 1993 by CSIRO. 
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The mode by which the samples failed was again monitored as a part of testing.  

Typically, failure consisted of localised fibre buckling and splitting at finger joints or 

knots, or in low density clear wood.  This failure mode is highlighted in Figures 5.8, 5.9 

and 5.10, respectively. 

 

 

 

Figure 5.8 – Typical Compression Failure at Finger Joint 

 

 

 

Figure 5.9 – Typical Compression Failure at Knot 
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Figure 5.10 – Typical Compression Failure in Low Density Wood 

 

 

A total of 30 samples were tested, of which, 20 failed at knots, including the 12 lowest 

results.  Further analysis of the results indicated that failures at larger knots generally 

result in lower compression strengths.  This indicates that limiting the size of knots is 

critical in producing finger jointed timber with adequate compression strength.  

 

 

5.1.6 Shear Strength 

 

Despite following the methods prescribed in AS/NZS 4063.1 (2010), inducing shear 

failure in the timber during testing proved extremely difficult.  A total of 62 samples 

were tested with only 18 exhibiting shear-like failures.   

 

Generally 30 samples are required to confidently determine a characteristic strength 

value using the method described in AS/NZS 4063.2 (2010).  The characteristic Shear 

Strength of the finger jointed timber tested, shown in Table 5.1, has been calculated 

using this method, based on the 18 samples that failed in shear only.  A detailed record 

of the testing data and analysis is contained in Appendix H.4. 

 

The detailed data shows that the majority of samples failed in bending.  This was 

observed to be particularly prevalent when a finger joint was located near mid-span.  

This failure type was shown previously in Figure 5.3.  Bending failures were also 

common at knots and in clear wood at mid-span.   
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The 18 shear failures that did occur typically commenced with a fracture on the tension 

edge of a sample, at a finger joint or knot, and propagated horizontally through the 

sample.  This failure mode is shown in Figure 5.11.  The characteristic end grain “slip” 

associated with shear fractures was used to identify these failures.  This characteristic is 

shown in Figure 5.12.   

 

 

 

Figure 5.11 – Typical Shear-Like Failure Originating at Finger Joint 

 

 

 

Figure 5.12 – Characteristic End Grain Slip of Shear Failures 

 

 

The difficulties encountered in producing shear failures using this test method have 

been identified previously.  Papers by Lavielle, Gibier and Stringer (1996) and Leicester 

and Breitinger (1992) highlight these problems and investigated other potential methods 



90 

for testing the shear strength of beams, in a manner that reflects in-service performance.  

These methods include double-span testing with equal, and unequal, spans.  Shear block 

testing, which is not particularly representative of in-service conditions, is also 

discussed in these papers.  

 

An investigation into to the comparative performance of each of these methods, with the 

aim of identifying an improved method for testing beam shear in solid timber, is 

recommended.  Based on the findings of such an investigation, further testing could be 

conducted which would allow a value of characteristic shear strength to be determined 

for finger jointed timber, with greater confidence.  

 

 

5.2 Truss Joints and Connections 

 

This section presents the results, and assessment, of testing conducted on truss joints 

and connections containing finger jointed timber and standard MGP10 framing, using 

the methods contained in Section 4.2.  The results for all joint and connection types 

tested are presented initially, followed by an individual discussion for each series of 

tests. 

 

 

5.2.1 Overview of Results 

 

Table 5.2 presents the results of strength testing conducted on truss joints and 

connections constructed using 90 x 35 mm finger jointed timber, fastened with nail 

plates at different orientations, batten screws, Gang-Nail MultiGrips with nails, and 

girder bracket screws.  It also shows the results of identical tests conducted on identical 

joints and connections constructed from standard 90 x 35 mm MGP10 framing. 

 

The consistency in the average densities, measured for all joint types, indicates that a 

representative sample of both timber types was tested in each case.  The similarities in 

the average density of finger jointed timber and standard MGP10 framing samples, 

when compared for each test type, suggest that any difference in the performance of the 

two is unlikely to be due to wood quality. 
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It can be noted from Table 5.2 that, for the joints and connections tested, the average 

joint capacity for finger jointed timber and standard MGP10 framing are within 10%, in 

all cases.  Similar standard deviations were attained in all cases.  The test results were 

compared using a standard statistical test for assessing the significance of the difference 

of means of small populations, as described in Section 4.2.1.  The right hand column of 

Table 5.2 indicates that there was no significant difference in the performance of finger 

jointed timber and standard MGP10 framing for all of the joints and connections tested. 

As a result of this testing it is considered that the 90 x 35 mm finger jointed timber 

produced for this trial would perform equivalently to standard MGP10 framing, from a 

joint capacity perspective. 

 

 

Joint Type 

Finger Jointed Timber Standard MGP10 Framing 
Result of 

Statistical 

Significance 

Of Difference 

Test 

No. of 

Samples 

Avg. 

Density 

(kg/m3) 

Joint 

Capacity 

(kN) 
No. of 

Samples 

Avg. 

Density 

(kg/m3) 

Joint 

Capacity 

(kN) 

Avg. 
Std. 

Dev 
Avg. 

Std. 

Dev 

Nail Plate 

Parallel to 

Grain 

20 

(18)1 

569 

(566)2 
39.19 1.04 

20 

(19)3 

525 

(525)4 
39.53 1.07 

No Significant 

Difference 

Nail Plate 

Perp. to 

Grain 

20 581 7.51 1.15 20 561 7.02 1.29 
No Significant 

Difference 

Type 17 

Batten 

Screw 

10 575 5.90 1.09 10 574 5.33 1.07 
No Significant 

Difference 

MultiGrip 

with nails 
10 569 4.48 1.13 10 563 4.26 1.22 

No Significant 

Difference 

No. 14 

screws 
10 560 10.54 1.23 10 552 10.56 1.12 

No Significant 

Difference 

Notes: 1 – Analysis based on 18 samples that exhibited failure at joint from 20 tested 

 
2 – Bracketed value indicates average density of 18 samples exhibiting joint failure only 

3 – Analysis based on 19 samples that exhibited failure at joint from 20 tested 

 
4 – Bracketed value indicates average density of 19 samples exhibiting joint failure only 

 

Table 5.2 – Summary of Truss Joint and Connection Test Results 
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Table 5.3 presents the results of joint deformation testing conducted on 90 x 35 mm 

finger jointed timber and standard MGP10, splice joined using 150 x 75 mm Gang-Nail 

plates.  It also shows the results of identical tests conducted on finger jointed timber and 

standard MGP10 framing without nail plated joints. 

 

 

Joint Type 

Finger Jointed Timber Standard MGP10 Framing 
Result of 

Statistical 

Significance 

Of Difference 

Test 

No. of 

Samples 

Avg. 

Density 

(kg/m3) 

Joint 

Stiffness 

(GPa) 
No. of 

Samples 

Avg. 

Density 

(kg/m3) 

Joint 

Stiffness 

(GPa) 

Avg. 
Std. 

Dev 
Avg. 

Std. 

Dev 

Nail Plate 

Parallel to 

Grain 

10
 

560
 

NMR
1 

10 553
 

NMR
1
 NMR

1
 

Nail Plate 

Perp. to 

Grain 

10 599 11.0 4.33 10 609 11.4 4.24 
No Significant 

Difference 

Notes: 1 – NMR indicates that no meaningful result was obtained 

  

Table 5.3 – Summary of Joint Deformation Test Results 

 

 

Table 5.3 shows that no meaningful results were obtained from the joint stiffness testing 

of nail plated splice joints in both finger jointed timber and standard MGP10 framing.  

This is the result of inadequacies in the test method adopted, and data recording errors.  

These will be discussed in more detail in Section 5.2.7.   

 

Due to the inadequate test method, and data recording errors, no conclusion can be 

drawn regarding the performance of finger jointed timber, from a joint deformation 

perspective.  It is recommended that the joint deformation testing be repeated, using 

techniques suggested in Section 5.2.7, so that the effect of finger joints on the stiffness 

of nail plated joints can be assessed. 

 

Results were obtained for the tensile stiffness of finger jointed timber across a finger 

joint, and for standard MGP10 clear wood.  As indicated in Table 5.3 the average 
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sample density for both timber types was very similar, suggesting that any difference in 

the performance of the two is unlikely to be due to wood quality. 

 

Table 5.3 also shows that the average, and standard deviation, of the measured tensile 

stiffness for each timber type were very similar.  The test results were compared using a 

standard statistical test for assessing the significance of the difference of means of small 

populations, as described in Section 4.2.1.  The right hand column of Table 5.3 indicates 

that there was no significant difference in the tensile stiffness of finger jointed timber 

and standard MGP10 framing for the samples tested. 

 

As a result of this testing it is considered that the finger joints have no significant effect 

on the tensile stiffness of 90 x 35 mm structural timber.  This also provides further 

confirmation of the results achieved in the bending stiffness testing of finger jointed 

timber.  

 

 

5.2.2 Nail Plate Parallel to the Grain 

 

No significant difference in joint capacity was observed between finger jointed timber 

and standard MGP10 framing connected by 150 x 75 mm nail plates, orientated parallel 

to the grain of the timber, as shown in Table 5.2.  A detailed record of the testing data 

and assessment conducted is contained in Appendix I.1. 

 

A total of 3 samples, from the 40 tested, were excluded from the analysis of test results.  

One sample constructed from each timber typed failed at a knot, located a significant 

distance from the nail plated joint, as shown in Figure 5.13.  It was considered that this 

failure type was not related to the joint performance being assessed, and as a result it 

would be inappropriate to include the result in the performance comparison.   
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Figure 5.13 – Failure Unrelated to Nail Plated Joint 

 

 

The third sample excluded was found to have a manufacture defect.  The teeth of one 

nail plate had not been adequately embedded into one of the members being joined.  

Again, it was considered inappropriate to compare the result of this sample against 

correctly manufactured joints. 

 

The balance of samples failed in modes related the nail plated connection.  All failures 

exhibited one or more of the following characteristics: 

 

 Tearing of steel nail plates 

 Nail plate teeth pulled out of timber 

 Timber breakage between nail plates. 

 

Typical failure modes, combining the above characteristics, are shown in Figures 5.14, 

5.15 and 5.16. 
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Figure 5.14 – Double Pull Out of Nail Plate Teeth 

 

 

 

Figure 5.15 – Double Plate Tear 

 

 

 

Figure 5.16 – Single Plate Tear and Wood Break 
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Several samples of both finger jointed timber and standard MGP10 failed by each of 

these means.  There appeared to be no tendency for joints of either timber type to fail by 

a particular means.  This indicates that the presence of a finger joint does not promote 

premature failure in a nail plated joint parallel to the grain.    

 

 

5.2.3 Nail Plate Perpendicular to the Grain 

 

No significant difference in joint capacity was observed between finger jointed timber 

and standard MGP10 framing connected by 100 x 40 mm nail plates, orientated 

perpendicular to the grain of the timber representing a truss chord, as shown in Table 

5.2.  A detailed record of the testing data and assessment conducted is contained in 

Appendix I.2. 

 

All samples tested exhibited failure modes related to the nail plated joint.  Two distinct 

failure modes were observed.  The most prevalent mode involved the nail plate teeth 

withdrawing from the face of the truss chord component of the joint. This failure type is 

shown in Figure 5.17.  The splitting of the timber chord in the sample shown was not a 

common occurrence.  Withdrawal regularly occurred in plates located on both sides of 

the samples with regards to their position in the testing rig.  This indicates that no 

eccentricity was being introduced during loading. 

 

 

 

Figure 5.17 – Typical Plate Withdrawal Failure 
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The second failure mode displayed a fracture propagating from the location where the 

top row of nail plated teeth penetrated the truss chord component of the joint.  This 

fracture is considered to be a result of tensile forces applied perpendicular to the grain 

of the truss chord.  A typical failure of this type is shown in Figure 5.18. 

 

 

 

Figure 5.18 – Typical Tension Perpendicular to Grain Failure at Nail Plate 

 

 

Similar portions of the finger jointed timber, and standard MGP10, exhibited failure by 

each of these modes.  There appeared to be no greater tendency for joints of either 

timber type to fail by a particular means.  This indicates that the presence of a finger 

joint does not promote premature failure in a nail plated joint perpendicular to the grain 

of a truss chord.    

 

 

5.2.4 Batten Screw Connection of Roof Batten to Truss Chord 

 

No significant difference in joint capacity was observed between finger jointed and 

standard MGP10 truss chords penetrated by 75 mm batten screws, as shown in Table 

5.2.  A detailed record of the testing data and assessment conducted is contained in 

Appendix I.3. 

 

All samples tested exhibited failure modes related to the batten screw connection.  All 

10 of the samples containing standard MGP10 truss chord components, along with 7 of 
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the 10 finger jointed samples, failed when the thread of the batten screw pulled out of 

the truss chord.  This failure mode is shown in Figure 5.19. 

 

 

 

Figure 5.19 – Typical Batten Screw Connection Failure by Thread Pull Out 

 

 

The remaining samples containing finger jointed truss chords failed in a significantly 

different manner that appears to be a direct result of the batten screw penetrating a 

finger joint.  The failure appeared to initiate as a fracture on the tension edge of the 

chord at the finger joint.   Tensile stresses perpendicular to the grain were then induced 

in the reduced section, and the fracture propagated longitudinally through the chord 

from the screw tip, as shown in Figure 5.20. 

 

 

 

Figure 5.20 – Typical Batten Screw Connection Failure at Finger Joint 
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The cause of this different failure mode in finger jointed samples could not be identified 

with absolute confidence.  The interlocking of grain at the finger joint, the variation in 

density across the finger joint, or a combination of the two, may be preventing the 

withdrawal of the screw thread in certain circumstances.  Without a complete 

understanding of this failure type, a definite conclusion on the effect of finger joints on 

this connection type cannot be made. 

 

However, given that testing was conducted on representative samples of both finger 

jointed timber, and standard MGP10, and no significant difference in joint capacity was 

observed, it is considered that finger jointed timber will perform adequately in this 

connection type.   

 

 

5.2.5 MultiGrip Connection of Roof Truss to Supporting Wall 

 

No significant difference in joint capacity was observed between finger jointed and 

standard MGP10 truss chords connected to wall plates with MultGrips and nails, as 

shown in Table 5.2.  A detailed record of the testing data and assessment conducted is 

contained in Appendix I.4. 

 

All samples tested exhibited failure modes related to the MultiGrip connection.  Two 

distinct failure modes were observed.  The most prevalent mode involved laterally 

loaded nails withdrawing from the face of the truss chord component of the sample, as 

shown in Figure 5.21.  The withdrawal of nails regularly occurred from MultiGrips 

located on both sides of the samples with regards to their position in the testing rig.  

This indicates that no eccentricity was being introduced during loading. 
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Figure 5.21 – Typical MultiGrip Connection Failure in Truss Chord 

 

 

The second failure mode displayed laterally loaded nails withdrawing from the edge of 

the wall plate component of the sample, as shown in Figure 5.22.   

 

 

 

Figure 5.22 – Typical MultiGrip Connection Failure in Wall Plate 

 

 

Similar portions of the finger jointed timber, and standard MGP10, exhibited failure by 

each of these modes.  There appeared to be no greater tendency for joints of either 

timber type to fail by a particular means.  This indicates that the presence of a finger 

joint does not promote failure in a nailed MultiGrip connection.     
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5.2.6 Screw Connection of Girder Bracket to Truss Chord 

 

No significant difference in joint capacity was observed between finger jointed and 

standard MGP10 truss chords penetrated by 30 mm girder bracket screws, as shown in 

Table 5.2.  A detailed record of the testing data and assessment conducted is contained 

in Appendix I.5. 

 

All samples tested exhibited failure modes related to the girder bracket screw 

connection.  The majority of samples, of each timber type, failed in a similar mode.  The 

standard MGP10 truss chords exhibited fibre crushing beneath the screw threads and 

longitudinal splitting, due to tensile stress perpendicular to the timber grain, propagating 

from the top row of screws.  This failure mode is shown in Figure 5.23. 

 

 

 

Figure 5.23 – Typical Girder Bracket Screw Connection Failure in MGP10 

 

 

The finger jointed truss chords displayed identical failure characteristics, and 

additionally a fracture in the finger joint from the tension edge of the chord to the level 

of the bottom screws occurred.  This failure mode is shown in Figure 5.24.  Due to the 

enclosed nature of the testing bracket it is unclear whether the finger joint fracture, or 

the longitudinal splitting occurred first. 
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Figure 5.24 – Typical Girder Bracket Screw Connection Failure at FJ 

 

 

A single sample of each timber type failed in a different mode.  The standard MGP10 

sample showed extreme fibre crushing beneath the screws with the resulting joint 

deformation causing the screws to yield, as shown in Figure 5.25.  The finger jointed 

timber chord exhibited a bending type failure.  A brittle fracture initiated on the tension 

edge of the sample at the finger joint and propagated to the compression edge via the 

screw locations, as shown in Figure 5.26.  

 

 

 

Figure 5.25 – Failure due to Fibre Crushing and Screw Yield 
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Figure 5.26 – Bending Failure at Finger Joint 

 

 

The cause of the additional fracture seen in the typical failure of finger jointed samples 

could not be identified.  Without knowing whether it was a precursor to, or a result of, 

the longitudinal splitting in the sample, an absolute conclusion on the effect of finger 

joints on the failure of this connection type cannot be made.   

 

However, given that testing was conducted on representative samples of both finger 

jointed timber, and standard MGP10, and no significant difference in joint capacity was 

observed, it is considered that finger jointed timber will perform adequately in this 

connection type.   

 

 

5.2.7 Nail Plate Parallel to the Grain – Joint Deformation 

 

Table 5.2 indicated that no meaningful results were obtained from the joint deformation 

testing conducted on timber spliced with 150 x 75 mm nail plates.  However, the 

comparison testing conducted on finger jointed timber, and standard MGP10, without 

nail plated splices, yielded assessable results.  A detailed record of the testing data and 

assessment conducted is contained in Appendix I.6. 
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5.2.7.1  Tensile Stiffness without Nail Plated Splice 

 

The stress-strain curves produced from the recorded data, for both the finger jointed 

timber and standard MGP10, typically exhibited the expected shape.  The curves for all 

samples of finger jointed timber and standard MGP10 are shown in Figures 5.27 and 

5.28, respectively. 

 

 

 

Figure 5.27 – Stress-Strain Curves of FJ Timber without Splice 

 

 

 

Figure 5.28 – Stress-Strain Curves of Standard MGP10 without Splice 
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Some minor deviations from the overall linear nature of the curves can be seen.  This 

can most likely be attributed to the use of incremental, rather than continual, 

measurements.  The linearity of the curves, along with the absence of disproportionate 

increases in strain at higher stresses, indicates that all measurements were made in the 

elastic range of the timber.  As a result, the curves were deemed suitable for calculating 

tensile stiffness values.  

 

The recorded data for all samples except “FJ-1” resulted in reasonably consistent tensile 

stiffness values, comparable to the results obtained for bending stiffness.  Sample “FJ-

1” returned a tensile stiffness of 3808 MPa, well below the range typically expected for 

MGP10 material.  No manufacturing defects or errors in the testing process could be 

identified to explain this abnormal result.  Therefore, the sample was not excluded when 

analysis and comparison was conducted. 

 

 

5.2.7.2  Joint Stiffness of Nail Plated Splice 

 

The stress-strain curves resulting from the testing of finger jointed timber with a nail 

plated splice showed 2 distinct shapes.  Several samples displayed the shape typically 

expected, while others were completely incomparable.  The different results can be seen 

clearly in Figure 5.29. 

 

 

 

Figure 5.29 – Stress-Strain Curves of FJ Timber with Splice 
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The variation in results can be attributed to the use of an inadequate test method, which 

involved measuring the joint deformation on 1 face only, as shown previously in Figure 

4.17.  This test method was developed based on the assumption that the test samples 

would be symmetrical about all axes.  However, all samples showed asymmetry of 

varying degrees.  An exaggerated representation of this is shown in Figure 5.30. 

 

 

 

Figure 5.30 – Asymmetric Joint Deformation Test Sample  

 

 

The asymmetry is due to the use a roller press to embed the nail plates during sample 

manufacture.  The roller pushes down to embed the plate, and rotates to drive the 

sample longitudinally through the machine.  When pressure is applied at the ends of 

short members being connected, the far ends of the members may be lifted causing an 

uneven gap on opposite sides of the joint, as shown in Figure 5.31. 

 

 

 

Figure 5.31 – Embedment of Nail Plates by Roller Press 

 

 

The shape of the stress-strain curve obtained was dependent upon the orientation of the 

test sample in the test rig.  The stress-strain curve exhibited by samples “FJ-5”, “FJ-9”, 

and “FJ-14”, as shown in Figure 5.29, occurred when the joint deformation was 

measured on the convex face of the sample.  The curves exhibited by the remaining 
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samples were a result of measuring the joint deformation on the concave face.  The 

observed interaction between loading and deformation is explained in Figure 5.32. 

 

 

 

Figure 5.32 – Interaction of Loading and Deformation 

 

 

The observed behaviour of the joint under load clearly indicates that a value of joint 

stiffness calculated from the recorded stress-strain curve is not representative of the 

overall performance of the joint.  It is considered that a more accurate representation of 

a joint‟s performance would have been determined if deformation values were measured 

on both faces of the sample and averaged. 

 

The samples of standard MGP10 with a nail plated splice, manufactured for testing, 

displayed the same asymmetrical characteristics as the finger jointed timber specimens.  

As a result they exhibited the same behaviour under load.  The stress-strain curves for 

all samples are shown in Figure 5.33, and again 2 distinct shapes are evident.  The 

results for these samples are further compromised by a data recording error.  It was 

realised, after testing of the samples was complete, that all joint deformations had been 

recorded as absolute values. 

Loading Stage

Initial elongation due to seating of teeth and 

stretching of fibres

Shortening occurs as sample straightens under 

load

Elongation recommences as fibre stretches, 

plate yields and teeth tear through fibre

Elongation continues as fibre stretches, plate 

yields and teeth tear through fibre

Elongation continues as sample straightens 

under load

Initial elongation due to seating of teeth and 

stretching of fibres
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Initial

Intermediate

Final
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Figure 5.33 – Stress-Strain Curves of Standard MGP10 with Splice 

 

 

Due to the joint deformation being measured on one face of the sample only, and the 

data recording error, the stress-strain curves could not be used to calculate an accurate 

value for joint stiffness.  It is considered that a more accurate representation of a joint‟s 

performance would have been determined if deformation values were measured on both 

faces of the sample and averaged, as suggested previously for the finger jointed timber 

samples. 

 

 

5.3 Fabrication Issues 

 

This section presents the results of the assessment conducted on the probability of finger 

jointed timber boards breaking at a finger joint during the fabrication process, when 

handled by the techniques identified in the literature review.  The process used for 

assessment is presented in Section 4.3.   

 

The results, and a brief discussion, for each handling technique are presented in separate 

sub-sections. 
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5.3.1 Levering 

 

The design chart in Figure 5.34 presents the probability of a finger jointed board 

breaking at a finger joint when levered.  Probabilities are displayed for a range of board 

lengths and span configurations. 

 

 

 

Figure 5.34 – Design Chart - Levering 

 

 

Section 4.3.1 outlines the method used to determine the probability shown for each 

combination of board length and span configuration.  This process required the testing 

of a representative sample of finger joints to determine their capacity.  The testing was 

conducted in accordance with the method described in Section 4.3.3.  Detailed results of 

the testing are contained in Appendix J.1.  

 

The assessment process also required the modelling of stresses applied to the board 

during levering.  The measured density of finger jointed timber samples, used for 

mechanical property testing, was analysed to provide a load distribution for this 

modelling.  The details of the density analysis are included in Appendix J.2.  The 

applied stresses were then modelled for each combination of board length and span 
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configuration in accordance with Section 4.3.2.1.  An example of the stress modelling, 

and probability calculation, for a given combination of board length and span 

configuration, is provided in Appendix J.3. 

 

The assessment results, presented in Figure 5.34, indicate that there is a definite 

possibility of finger jointed boards breaking at a finger joint when levered.  It can be 

noted from the design chart that the probability of failure occurring increases as the 

lever length decreases, and as the board length increases. 

 

Anecdotal investigations, with timber production staff, indicate that it is highly unlikely 

that a single person could handle boards of these lengths with a lever less than one third 

of the board length.  Therefore, it is considered that finger joint boards up to 9 metres in 

length can be levered with a negligible probability of breaking at a finger joint, under 

static loading.    

 

 

5.3.2 Two Man Lift 

 

The design chart in Figure 5.35 presents the probability of a finger jointed board 

breaking at a finger joint when lifted by its ends.  Probabilities are displayed for a range 

of board lengths. 
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Figure 5.35 – Design Chart - 2 Man Lift 

 

 

The same overall assessment process, as described in Section 4.3.1, was used to 

determine the probabilities shown.  The finger joint capacity data in Appendix J.1, and 

the board density analysis in Appendix J.2, were used in the assessment, as they were 

for the levering assessment. 

 

The required modelling of applied stresses was conducted in accordance with Section 

4.3.2.2, for each board length.  An example of the stress modelling, and probability 

calculation, for a given board length, is provided in Appendix J.4. 

 

The assessment results, presented in Figure 5.35, indicate clearly, by their extremely 

low values, that there is a negligible probability of finger jointed boards, in lengths to 12 

metres, breaking at a finger joint when lifted by their ends.   
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5.3.3 Fork Lift 

 

The design chart in Figure 5.36 presents the probability of a finger jointed board 

breaking at a finger joint when lifted by a fork lift.  Probabilities are displayed for a 

range of board lengths. 

 

 

 

Figure 5.36 – Design Chart - Fork Lift 

 

 

The same overall assessment process, as described in Section 4.3.1, was again used to 

determine the probabilities shown.  The finger joint capacity data in Appendix J.1, and 

the board density analysis in Appendix J.2, were used in the assessment, as they were 

for the levering and 2 man lift assessments. 

 

The required modelling of applied stresses was conducted in accordance with Section 

4.3.2.3, for each board length.  An example of the stress modelling, and probability 

calculation, for a given board length, is provided in Appendix J.5. 

 

The assessment results, presented in Figure 5.36, indicate clearly, by their extremely 

low values, that there is a negligible probability of fork lifted finger jointed boards, in 
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lengths up to 12 metres, breaking at a finger when static loads are considered.  

Anecdotal evidence exists suggesting that long length finger jointed boards can break 

when the ends “bounce” during fork lifting.  This evidence, in combination with the 

results of the assessment conducted, indicates that dynamic loading effects may be 

critical in causing breakage in finger jointed timber handled by forklifts.  The 

assessment of dynamic loading effects was outside the scope of this project.     

 

 

5.4 Truss Erection Issues 

 

This section presents the results of the assessment conducted on the probability of finger 

jointed timber truss chords breaking at a finger joint when subjected to point loads 

during the truss erection process.  The process used for assessment is presented in 

Section 4.4.   

 

The results, and a brief discussion, for each load location are presented in separate sub-

sections. 

 

 

5.4.1 Loads on Truss Overhangs 

 

The design chart in Figure 5.37 presents the probability of a finger jointed truss chord 

failing at a finger joint when a builder stands at the end of the truss overhang.  

Probabilities are displayed for standard and hip trusses, for a range of building eave 

widths. 
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Figure 5.37 – Design Chart - Load on Truss Tail 

 

 

Section 4.4.1 outlines the method used to determine the probability shown for each 

combination of truss type and eave width.  This process required the testing of a 

representative sample of finger joints to determine their capacity.  The testing was 

conducted in accordance with the method described in Section 4.4.3.  Detailed results of 

the testing are contained in Appendix K.1.  

 

The assessment process also required the modelling of stresses applied to the truss 

chord during loading.  The applied stresses were modelled for each combination of truss 

type and eave width in accordance with Section 4.4.2.1.  An example of the stress 

modelling, and probability calculation, for a standard truss and given eave width, is 

provided in Appendix K.2.  A similar example, for a hip truss and given eave width, is 

provided in Appendix K.3. 

 

The assessment results, presented in Figure 5.37, indicate that there is a possibility of 

finger jointed truss chords breaking at a finger joint if a builder stands on the end of an 

overhang.  It can be noted from the design chart that the probability of failure is 

significantly greater for hip trusses, and increases as the eave width of the building 

increases. 
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The maximum eave width typically used in residential house construction is about 900 

mm, with 750 mm being most common.  The design chart, shown in Figure 5.37, 

indicates that there is a small risk of failure for hip trusses, and a minimal risk for 

standard trusses, in roofs with eaves of these widths.   

 

 

5.4.2 Loads on Bottom Chord Panels 

 

The design chart in Figure 5.38 presents the probability of a finger jointed truss chord 

breaking at a finger joint when a builder stands at the mid-point of an end panel in the 

bottom chord of a truss.  Probabilities are displayed for a simple “A-type” truss with a 

range of panel spans. 

 

 

 

Figure 5.38 – Design Chart - Load at Mid-Panel 

 

 

The same overall assessment process, as described in Section 4.4.1, was used to 

determine the probabilities shown.  The finger joint capacity data in Appendix K.1, was 

used in the assessment, as it was for the truss overhang assessment. 
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The required modelling of applied stresses was conducted in accordance with Section 

4.4.2.2, for each panel span.  An example of the stress modelling, and probability 

calculation, for a given panel span, is provided in Appendix K.4. 

 

The design chart, shown in Figure 5.38, indicates that the probability of failure, at a 

finger joint, of truss chords subjected to point loading at the mid-point of an end panel, 

is less than 1 in 10000 for panel spans up to 4.5 metres.  Advice from Sid‟s Place 

indicates that the maximum panel span achievable by 90 x 35 mm truss chords is 

approximately 3 metres.  Hence, it is considered that there is a minimal chance of 

failure at finger joints, in 90 x 35 mm truss chords loaded in this manner. 
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Chapter 6 

 

 

 

Conclusions and Further Work 

 

 

6.0 Summary 

 

This research project has investigated the suitability of finger jointed structural timber 

for use in nail plated roof trusses.  The research was based primarily on the 

experimental testing of sample truss components fabricated from finger jointed timber 

produced exclusively for this project.  The results of this testing were assessed by 

comparing them against the performance of standard MGP10 framing, derived from 

Australian Standards requirements and similar testing.  Modelling of loading situations, 

using static engineering principles, was also conducted to further investigate the 

performance of finger jointed timber. 

 

This chapter presents the conclusions that were drawn from this research, and highlights 

some opportunities for further work related to this project. 
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6.1 Conclusions 

 

The overall results of this research project were positive with regards to using finger 

jointed structural timber for the fabrication of nail plated roof trusses.  The following 

major findings have been established, based on the core objectives identified in the 

Project Specification.  Time was not permitting to undertake the additional objectives 

proposed in Section 1.3. 

 

 Finger jointed timber can be produced to meet the mechanical property 

requirements of MGP10.  It should be noted that the assessment of shear 

strength was based on 18 test samples only, and not the recommended 30, due to 

difficulties with the test method. 

 

 No significant difference was observed in the capacity of joints and connections, 

manufactured from finger jointed timber and standard MGP10.  This was in 

spite of the fact that the presence of a finger joint seemed to promote failure in 

some connections. 

 

 No meaningful results were obtained from the joint deformation testing of finger 

jointed timber and standard MGP10.  This was due to inadequacies in the test 

method used.  Testing conducted, for comparison purposes, indicated that there 

was no significant difference in the tensile stiffness of standard MGP10 clear 

wood, and finger jointed timber assessed across a finger joint. 

 

 It was determined that, while there is a possibility of a finger jointed board 

breaking, at a finger joint, during the fabrication process, the likelihood of it 

occurring can be minimised with the adoption of appropriate handling 

techniques.  It should be noted that this assessment was based on static loading 

scenarios only. 

 

 It was determined that there is a small likelihood of a finger jointed truss chord 

breaking, at a finger joint, under a temporary point load, during the truss 

erection process, in trusses with large spans and overhangs.  The risk appears to 

be minimal however, for the panel spans and eave widths typically used in 

domestic residential construction.    
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6.3 Further Work 

 

Along with the completion of the additional objectives proposed in the Project 

Specification, the following opportunities for further work were identified through the 

completion of this research project.   

 

 An investigation of alternative methods used for the testing of shear strength in 

wood products, with the aim of identifying an improved method, for assessing 

beam shear strength.   

 

 An investigation of the effect of finger joints on the deformation characteristics 

of nail plated truss joints using an improved test method. 

 

 An investigation of the dynamic loading effects applied to long length timber 

during handling, and an assessment of the implications for handling finger 

jointed timber. 

 

 A continuation of the investigation of truss erection issues, unique to finger 

jointed timber, to expand the range of design charts to include other commonly 

used truss types. 
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ENG 4111/4112 Research Project 

PROJECT SPECIFICATION 

FOR:   ANTHONY DAKIN 

TOPIC: INVESTIGATION OF THE SUITABILITY OF FINGER JOINTED STRUCTURAL 
TIMBER FOR USE IN NAIL PLATED ROOF TRUSSES 

SUPERVISORS:  A/ Prof Karu Karunasena 

   Geoff Stringer, Hyne & Son Pty Limited 

   Stephen Bolden, Hyne & Son Pty Limited 

SPONSORSHIP:  Hyne & Son Pty Limited 

   Sid’s Place 

PROJECT AIM: To determine the suitability of finger jointed timber for use in nail plated 
roof trusses from a fabrication, erection and in-service perspective.  This will 
involve performance comparisons of trusses fabricated from conventional 
fixed length timber and trusses fabricated from proposed continuous length 
timber.   

PROGRAMME:  Issue A, 22nd March 2011 

1. Research in-service performance/requirements of finger jointed timber and nail plated roof 
trusses and associated assessment methods. 

2. Research fabrication and erection techniques relating to nail plated roof trusses to 
determine material requirements and associated assessment methods.   

3. Design and complete testing regime to assess structural properties of finger jointed timber.   
4. Design and complete testing regime to assess structural capacity, and deformation, of 

typical roof truss joints containing finger jointed timber.  
5. Design and complete testing regime to replicate and assess issues related to fabrication and 

erection techniques. 
6. Analyse and interpret the results of above testing to compare the performance of trusses 

fabricated from finger jointed and conventional fixed length timber. 

As time permits, 

7. Monitor the fabrication of full scale trusses from finger jointed timber and assess fabrication 
issues not previously identified. 

8. Test full scale trusses fabricated from both finger jointed and fixed length timber to compare 
failure modes.  

9. Fabricate truss from finger jointed timber and place into real structure for longer term 
performance monitoring. 

 
AGREED:     (student)    (supervisor) 

  Date:      /  /   Date:      /  / 

Course Examiner:     
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Appendix B 

 

 

 

Purbond HB S109 Adhesive - Technical Data Sheet 
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Appendix C 

 

 

 

Calculation of Tension Proof Loads  
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Tension Proof Testing of FJ Stock 

 

Proof testing to be conducted in accordance with the test method for determining 

Tension Strength Parallel to Grain in AS/NZS 4063.1:2010. 

 

     
    
  

 

 

Where, 

ft,0 is the Tension strength parallel to the grain (MPa) 

Fult is the Axial tension load at failure (N) 

b is the breadth of the sample cross section (mm) 

d is the depth of the sample cross section (mm) 

 

This formula can be rearranged to determine the required load to be applied in order to 

develop a specified tension stress in the sample. 

 

         

 

Where, 

F is the required axial tension load (N) 

ft,0 is the specified tensions stress (MPa) 

 

Table H3.1 from AS 1720.1:2010 indicates the Characteristic Tension strength parallel 

to grain (  
 ) of 90x35 MGP10 as 7.7 MPa.  

 

Substituting these values into the above equation the load required to achieve a tension 

stress of 7.7 MPa in the sample is: 
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Appendix D 

 

 

 

Details of Tension Proof Testing 
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90 x 35 FJ Tension Proof Testing 

 

 

 

Depth (mm) 90 Length (mm) 5400

Breadth (mm) 35 Test Span (mm) 4200

Timber Details

Board 

No.

Load 

Applied 

(kg)

% of 

Target 

Load

Failure Failure Source
Board 

No.

Load 

Applied 

(kg)

% of 

Target 

Load

Failure Failure Source

10 2510 101% No - 59 2702 109% No -

11 2518 102% No - 60 2612 106% No -

12 2580 104% No - 61 2674 108% No -

14 2510 101% No - 62 2474 100% No -

15 2568 104% No - 63 2504 101% No -

16 2592 105% No - 64 2556 103% No -

17 2602 105% No - 65 2574 104% No -

18 2600 105% No - 66 2600 105% No -

19 2614 106% No - 67 2604 105% No -

20 2470 100% No - 68 2468 100% No -

21 2550 103% No - 69 2774 112% No -

22 2562 104% No - 70 2528 102% No -

23 2522 102% No - 71 2528 102% No -

24 2554 103% No - 72 2486 101% No -

25 2646 107% No - 73 2644 107% No -

26 2470 100% No - 74 2472 100% No -

27 2546 103% No - 75 2622 106% No -

28 2472 100% No - 76 2486 101% No -

29 2642 107% No - 77 2580 104% No -

30 2690 109% No - 78 2648 107% No -

31 2498 101% No - 79 2504 101% No -

32 2548 103% No - 80 2550 103% No -

33 2470 100% No - 81 2596 105% No -

34 2594 105% No - 82 2554 103% No -

35 2610 106% No - 83 2760 112% No -

36 2484 100% No - 84 2478 100% No -

37 2708 110% No - 85 2564 104% No -

38 2596 105% No - 86 2596 105% No -

39 2476 100% No - 87 2566 104% No -

40 2586 105% No - 88 2544 103% No -

41 2468 100% No - 89 2510 101% No -

42 2512 102% No - 90 2606 105% No -

43 2546 103% No - 91 2564 104% No -

44 2510 101% No - 92 2592 105% No -

45 2496 101% No - 93 2644 107% No -

46 2562 104% No - 94 2492 101% No -

47 2630 106% No - 95 2592 105% No -

48 2590 105% No - 96 2520 102% No -

49 2538 103% No - 97 2510 101% No -

50 2486 101% No - 98 2576 104% No -

51 2498 101% No - 99 2524 102% No -

52 2644 107% No - 100 2630 106% No -

53 2468 100% No - 101 2504 101% No -

54 2560 104% No - 102 2640 107% No -

55 1064 43% Yes Low Density Wood 103 2560 104% No -

56 2632 106% No - 104 2470 100% No -

57 2526 102% No - 105 2592 105% No -

58 2476 100% No - 106 2578 104% No -

Proof Test Details (Target Proof Load 2473 kg)
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Appendix E 

 

 

 

Method for Characterizing Bending Stiffness – 

AS/NZS 4063.2 (2010) 
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Appendix F 

 

 

 

Method for Characterizing Strength Properties - 

AS/NZS 4063.2 (2010) Method 1 
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Appendix G 

 

 

 

Method for Classifying Finger Joint Failures –   

AS5068 (2006) 
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Appendix H 

 

 

 

Test Data and Analysis – Mechanical Properties 
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Appendix H.1 – Bending Testing 

 

 

 

Depth     

(mm)

Breadth 

(mm)

90 35

Density
Load  

1

Defl.  

1

Load  

2

Defl.  

2

Failure    

Load

Fail. 

Loc'n.

Mod. Of 

Elast.

Bending 

Strength

(kg/m³) (kg) (mm) (kg) (mm) (kg) (mm) (MPa) (MPa)

10B 578 44 1.43 204 6.05 896 240 Finger Joint 12056 50.23

11B 630 35 1.17 214 7.24 647 260 Finger Joint 10266 36.27

19B 628 35 0.97 206 4.97 691 420 Finger Joint 14882 27.98

20B 573 34 0.98 205 5.92 655 400 Knot 12050 27.88

27B 578 34 1.64 207 7.46 450 95 Finger Joint 10348 25.23

32B 556 35 1.34 212 8.37 582 0 Finger Joint 8765 32.63

33B 565 34 1.13 206 7.04 723 200 Finger Joint 10131 40.53

34B 536 35 1.38 207 8.36 351 100 Finger Joint 8578 19.68

35B 577 35 1.53 204 6.35 693 170 Finger Joint 12206 38.85

38B 556 34 1.02 205 6.04 747 150 Finger Joint 11858 41.87

39B 534 36 1.70 204 9.81 555 370 Finger Joint 7211 25.35

44B 605 35 1.56 204 5.93 579 100 Finger Joint 13463 32.46

45B 606 35 1.07 206 6.72 721 255 Finger Joint 10536 40.42

47B 592 37 1.36 204 5.97 559 80 Finger Joint 12611 31.34

49B 543 35 1.34 205 7.25 635 190 Finger Joint 10013 35.60

57B 575 36 2.11 205 9.54 599 130 Finger Joint 7918 33.58

59B 606 36 1.04 204 6.17 621 100 Finger Joint 11400 34.81

60B 609 34 1.20 211 7.41 763 240 Finger Joint 9922 42.77

62B 536 34 1.38 206 8.33 574 30 Finger Joint 8615 32.18

66B 544 34 1.91 205 7.10 611 190 Finger Joint 11470 34.25

70B 528 35 2.15 206 11.38 634 115 Clear Wood 6449 35.54

71B 569 35 1.02 205 5.84 615 70 Finger Joint 12278 34.48

77B 585 34 0.95 205 5.74 497 150 Finger Joint 12427 27.86

81B 613 35 1.14 204 7.10 489 30 Finger Joint 9871 27.41

84B 485 35 1.80 206 10.53 589 75 Clear Wood 6819 33.02

86B 640 35 1.05 212 6.42 573 215 Finger Joint 11474 32.12

89B 606 35 0.99 204 5.58 946 335 Finger Joint 12817 46.65

90B 571 35 0.89 204 5.29 521 85 Finger Joint 13371 29.21

95B 652 37 1.59 205 8.55 341 260 Finger Joint 8403 19.12

105B 573 37 1.45 208 8.05 665 395 Knot 9019 28.65

90 x 35 Finger Jointed Timber - Bending Testing

Test Equipment - Hyne and Son Tuan Test Rig

Length     

(mm)

Test Span 

(mm)

16201800

Sample Details

Test Data

Sample 

No.

Failure 

Source

Test Operator - Tony Dakin
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Rank Ei pi ln(Ei) (ln(Ei)-ŷ)²

1 6449 0.017 8.772 0.224

2 6819 0.050 8.827 0.175

3 7211 0.083 8.883 0.131

4 7918 0.117 8.977 0.072

5 8403 0.150 9.036 0.044

6 8578 0.183 9.057 0.035

7 8615 0.217 9.061 0.034

8 8765 0.250 9.078 0.028

9 9019 0.283 9.107 0.019

10 9871 0.317 9.197 0.002

11 9922 0.350 9.203 0.002

12 10013 0.383 9.212 0.001

13 10131 0.417 9.223 0.000

14 10266 0.450 9.237 0.000 =

15 10348 0.483 9.245 0.000

16 10536 0.517 9.263 0.000 =

17 11400 0.550 9.341 0.009

18 11470 0.583 9.347 0.010 =

19 11474 0.617 9.348 0.011

20 11858 0.650 9.381 0.018 =

21 12050 0.683 9.397 0.023

22 12056 0.717 9.397 0.023 =

23 12206 0.750 9.410 0.027

24 12278 0.783 9.416 0.029 =

25 12427 0.817 9.428 0.033

26 12611 0.850 9.442 0.039 =

27 12817 0.883 9.459 0.045

28 13371 0.917 9.501 0.065 =

29 13463 0.950 9.508 0.069

30 14882 0.983 9.608 0.131

∑ 277.360 1.302 =

9.245

0.212

0.214

0.973

10591

7309

Ek,mean,1

Ek,mean,2

ŷ

Sy

VE

ks

Ê

E05

Characteristic Modulus of Elasticity, (MPa)
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10301

10155

90 x 35 Finger Jointed Timber - Bending Stiffness Testing

Analysis Method - AS/NZS 4063.2 (2010)

Test Data Calculated Parameters
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Rank fi pi ln(fi) (ln(fi)-ŷ)²

1 19.12 0.017 2.950 0.282

2 19.68 0.050 2.979 0.252

3 25.23 0.083 3.228 0.064

4 25.35 0.117 3.233 0.062

5 27.41 0.150 3.311 0.029

6 27.86 0.183 3.327 0.024

7 27.88 0.217 3.328 0.024

8 27.98 0.250 3.331 0.023

9 28.65 0.283 3.355 0.016

10 29.21 0.317 3.374 0.011

11 31.34 0.350 3.445 0.001

12 32.12 0.383 3.470 0.000

13 32.18 0.417 3.471 0.000

14 32.46 0.450 3.480 0.000

15 32.63 0.483 3.485 0.000 =

16 33.02 0.517 3.497 0.000

17 33.58 0.550 3.514 0.001

18 34.25 0.583 3.534 0.003 =

19 34.48 0.617 3.540 0.003

20 34.81 0.650 3.550 0.005

21 35.54 0.683 3.571 0.008 =

22 35.60 0.717 3.572 0.008

23 36.27 0.750 3.591 0.012

24 38.85 0.783 3.660 0.032 =

25 40.42 0.817 3.699 0.047

26 40.53 0.850 3.702 0.049

27 41.87 0.883 3.735 0.064 =

28 42.77 0.917 3.756 0.075

29 46.65 0.950 3.843 0.130

30 50.23 0.983 3.917 0.189

=
∑ 104.447 1.416

f05 22.60

Characteristic Bending Strength, (MPa)

fb 21.54

Sy 0.221

VR 0.224

ks 0.953

90 x 35 Finger Jointed Timber - Bending Strength Testing

Analysis Method - AS/NZS 4063.2 (2010) Method 1

Test Data Calculated Parameters
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Appendix H.2 – Tension Testing 

 

 

Depth     

(mm)

Breadth 

(mm)

Length 

(mm)

Test Span 

(mm)

90 35 4000 2800

Density
Failure    

Load

Tension         

Strength

(kg/m³) (kg) (MPa)

12T 594 6122 19.07

14T 579 7876 24.53

18T 596 7022 21.87

23T 560 5422 16.89

24T 629 6688 20.83

25T 582 6388 19.89

26T 565 3812 11.87

29T 562 9600 29.90

30T 589 5848 18.21

37T 598 3896 12.13

40T 582 6928 21.58

41T 570 4810 14.98

42T 566 7316 22.78

43T 592 7866 24.50

46T 582 5288 16.47

48T 540 6884 21.44

52T 551 5224 16.27

54T 588 6756 21.04

64T 560 5632 17.54

74T 590 5580 17.38

76T 610 7086 22.07

79T 546 5594 17.42

80T 617 5786 18.02

82T 587 8004 24.93

85T 647 6730 20.96

92T 573 6880 21.43

96T 619 9598 29.89

101T 586 6362 19.81

102T 577 5102 15.89

103T 618 5858 18.24

Finger Joint

Slipped in Jaws

Knot

Knot & Finger Joint

Knot

Finger Joint

Knot

Knot

Finger Joint

Knot & Finger Joint

Knot x2

Finger Joint

Finger Joint

Knot x2

Knot

Finger Joint

Knot

Finger Joint

Knot in Finger Joint

Sloping Grain around Knot

Knot & Finger Joint

Knot & Finger Joint

Slipped in Jaws

Knot & Finger Joint

Knot

Knot

Finger Joint & Sloping Grain

Knot

Finger Joint

Finger Joint

Sample No.

90 x 35 Finger Jointed Timber - Tension Strength Testing

Test Equipment - Hyne and Son Tension Test Rig

Test Operator - Tony Dakin

Test Data

Sample Details

Failure Source
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Rank fi pi ln(fi) (ln(fi)-ŷ)²

1 11.87 0.017 2.474 0.246

2 12.13 0.050 2.496 0.225

3 14.98 0.083 2.707 0.069

4 15.89 0.117 2.766 0.042

5 16.27 0.150 2.789 0.033

6 16.47 0.183 2.801 0.028

7 16.89 0.217 2.826 0.021

8 17.38 0.250 2.855 0.013

9 17.42 0.283 2.858 0.013

10 17.54 0.317 2.864 0.011

11 18.02 0.350 2.891 0.006

12 18.21 0.383 2.902 0.005

13 18.24 0.417 2.904 0.004

14 19.07 0.450 2.948 0.000

15 19.81 0.483 2.986 0.000 =

16 19.89 0.517 2.990 0.000

17 20.83 0.550 3.036 0.004

18 20.96 0.583 3.043 0.005 =

19 21.04 0.617 3.046 0.006

20 21.43 0.650 3.065 0.009

21 21.44 0.683 3.065 0.009 =

22 21.58 0.717 3.072 0.010

23 21.87 0.750 3.085 0.013

24 22.07 0.783 3.094 0.015 =

25 22.78 0.817 3.126 0.024

26 24.50 0.850 3.199 0.052

27 24.53 0.883 3.200 0.053 =

28 24.93 0.917 3.216 0.060

29 29.89 0.950 3.398 0.183

30 29.90 0.983 3.398 0.183

=
∑ 89.101 1.345

0.215

2.970

90 x 35 Finger Jointed Timber - Tension Strength Testing

Analysis Method - AS/NZS 4063.2 (2010) Method 1

Sy

VR

ks

f05

ft

Characteristic Tension Strength, (MPa)

13.05

13.68

0.954

0.218

Test Data Calculated Parameters
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Appendix H.3 – Compression Testing 

 

 

Depth     

(mm)

Breadth 

(mm)

Length 

(mm)

Test Span 

(mm)

90 35 2400 2400

Density
Failure    

Load

Compression         

Strength

(kg/m³) (kN) (MPa)

10C 597 79.84 25.35

11C 617 84.96 26.97

19C 619 91.44 29.03

20C 541 95.82 30.42

27C 549 85.46 27.13

32C 538 85.08 27.01

33C 545 78.26 24.84

34C 613 68.02 21.59

35C 643 71.24 22.62

38C 565 93.02 29.53

39C 557 79.80 25.33

44C 548 86.42 27.43

45C 557 94.80 30.10

47C 593 85.44 27.12

49C 554 83.50 26.51

57C 594 75.54 23.98

59C 583 90.64 28.77

60C 568 107.12 34.01

62C 611 99.54 31.60

66C 563 90.12 28.61

70C 639 110.64 35.12

71C 545 73.74 23.41

77C 571 95.10 30.19

81C 583 92.72 29.43

84C 592 94.78 30.09

86C 562 75.90 24.10

89C 572 71.88 22.82

90C 609 101.20 32.13

95C 635 100.86 32.02

105C 546 80.22 25.47

Clear Wood

Knot

Knot

Knot

Knot

Knot

Knot

Knot

Knot

Knot

Finger Joint

Clear Wood

Finger Joint

Knot

Knot

Knot

Clear Wood

Finger Joint

Knot

Knot

Knot

Knot

Knot

Knot

Knot

Knot

Clear Wood

Finger Joint

Finger Joint

Finger Joint

90 x 35 Finger Jointed Timber - Compression Strength Testing

Test Equipment - Hyne and Son Compression Test Rig

Test Operator - Tony Dakin

Sample Details

Test Data

Sample No. Failure Source
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Rank fi pi ln(fi) (ln(fi)-ŷ)²

1 21.59 0.017 3.072 0.059

2 22.62 0.050 3.119 0.039

3 22.82 0.083 3.128 0.036

4 23.41 0.117 3.153 0.027

5 23.98 0.150 3.177 0.019

6 24.10 0.183 3.182 0.018

7 24.84 0.217 3.213 0.011

8 25.33 0.250 3.232 0.007

9 25.35 0.283 3.233 0.007

10 25.47 0.317 3.237 0.006

11 26.51 0.350 3.277 0.001

12 26.97 0.383 3.295 0.000

13 27.01 0.417 3.296 0.000

14 27.12 0.450 3.300 0.000

15 27.13 0.483 3.301 0.000 =

16 27.43 0.517 3.312 0.000

17 28.61 0.550 3.354 0.001

18 28.77 0.583 3.359 0.002 =

19 29.03 0.617 3.368 0.003

20 29.43 0.650 3.382 0.004

21 29.53 0.683 3.385 0.005 =

22 30.09 0.717 3.404 0.008

23 30.10 0.750 3.404 0.008

24 30.19 0.783 3.408 0.008 =

25 30.42 0.817 3.415 0.010

26 31.60 0.850 3.453 0.019

27 32.02 0.883 3.466 0.023 =

28 32.13 0.917 3.470 0.024

29 34.01 0.950 3.527 0.044

30 35.12 0.983 3.559 0.059

=
∑ 99.482 0.449

f05 22.45

Characteristic Compression Strength, (MPa)

fc 21.87

Sy 0.124

VR 0.125

ks 0.974

90 x 35 Finger Jointed Timber - Compression Strength Testing

Analysis Method - AS/NZS 4063.2 (2010) Method 1

Test Data Calculated Parameters

ŷ 3.316
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Appendix H.4 – Shear Testing 

 

 

Depth     

(mm)

Breadth 

(mm)

Length 

(mm)

Test Span 

(mm)

90 35 720 540

Density
Failure    

Load

Shear         

Strength

(kg/m³) (kg) (MPa)

10S 578 2448 Bearing -

11S 576 2635 Bending -

19S 820 2392 Shear 5.59

20S 582 1265 Bending -

27S 573 2671 Bending -

32S 550 2371 Bending -

33S 537 1172 Bending -

34S 604 1447 Shear 3.38

35S 542 2079 Bending -

38S 563 1384 Shear 3.23

39S 618 998 Bending -

44S 512 1424 Bending -

45S 515 2266 Bending -

47S 586 2627 Shear 6.14

49S 511 1119 Bending -

57S 619 1822 Bending -

60S 675 3351 Shear 7.83

62S 554 1400 Shear 3.27

66S 565 2026 Bending -

70S 550 1603 Shear 3.74

71S 799 3011 Shear 7.03

77S 649 1422 Bending -

81S 569 1751 Bending -

84S 558 2303 Bending -

86S 599 2640 Bending -

89S 579 2135 Bending -

89S 631 2796 Bearing -

90S 619 1082 Bending -

95S 695 2440 Bending -

105S 519 1905 Bending -

1 609 2416 Bending -

Clear Wood

Finger Joint

Finger Joint

Load Point

Finger Joint

Finger Joint

Knot

Finger Joint

Finger Joint

Finger Joint

Finger Joint

Finger Joint

Knot

Clear Wood

Finger Joint

Finger Joint

Finger Joint

Finger Joint

Finger Joint

Knot

Finger Joint

Finger Joint

Finger Joint

Finger Joint

Clear Wood

Load Point

Finger Joint

Knot

Finger Joint

Clear Wood

Clear Wood

90 x 35 Finger Jointed Timber - Shear Strength Testing

Test Equipment - Hyne and Son Tuan Test Rig

Test Operator - Tony Dakin

Test Data

Sample No. Failure Source

Sample Details

Failure 

Mode



148 

 

  

Density
Failure    

Load

Shear         

Strength

(kg/m³) (kg) (MPa)

2 599 2604 Bending -

3 602 2512 Shear 5.87

4 602 2069 Bending -

5 519 2387 Bending -

6 646 2976 Bending -

7 535 2630 Bending -

8 587 1915 Bending -

9 544 2297 Bending -

10 648 2410 Bearing -

11 601 2859 Shear 6.68

12 520 1447 Bending -

13 629 1740 Shear 4.06

14 630 2987 Shear 6.98

15 575 2809 Bending -

16 548 1711 Bending -

17 559 2217 Shear 5.18

18 616 2707 Shear 6.32

19 560 2807 Bending -

20 588 3239 Bending -

21 667 2926 Shear 6.83

22 598 2454 Bearing -

23 665 3545 Bending -

24 623 2645 Bending -

25 620 3504 Bending -

26 643 3306 Bending -

27 529 546 Bending -

28 561 2595 Bearing -

29 608 1976 Shear 4.62

30 700 2968 Shear 6.93

31 683 2765 Shear 6.46

32 520 1954 Bending -

Clear Wood

Internal Fracture

Load Point

Finger Joint

Finger Joint

Clear Wood

Clear Wood

Load Point

Knot

Clear Wood

Clear Wood

Clear Wood

Clear Wood

Knot

Clear Wood

Load Point

Clear Wood

Clear Wood

Clear Wood

Load Point

Knot

Knot

Knot

Finger Joint

Finger Joint

Knot

Knot

Knot

Clear Wood

Knot

90 x 35 Finger Jointed Timber - Shear Strength Testing (cont'd)

Test Data

Sample No.
Failure 

Mode
Failure Source

Knot
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Rank fi pi ln(fi) (ln(fi)-ŷ)²

1 3.23 0.028 1.173 0.254

2 3.27 0.083 1.185 0.243

3 3.38 0.139 1.218 0.211

4 3.74 0.194 1.320 0.128

5 4.06 0.250 1.402 0.076

6 4.62 0.306 1.529 0.022

7 5.18 0.361 1.644 0.001

8 5.59 0.417 1.720 0.002

9 5.87 0.472 1.769 0.008

10 6.14 0.528 1.814 0.019

11 6.32 0.583 1.844 0.028

12 6.46 0.639 1.865 0.035

13 6.68 0.694 1.899 0.049

14 6.83 0.750 1.922 0.060

15 6.93 0.806 1.936 0.067 =

16 6.98 0.861 1.943 0.070

17 7.03 0.917 1.951 0.075

18 7.83 0.972 2.058 0.145 =

=

=

=

=
∑ 30.193 1.492

f05 3.29

Characteristic Shear Strength, (MPa)

fs 3.02

Sy 0.296

VR 0.303

ks 0.918

90 x 35 Finger Jointed Timber - Shear Strength Testing

Analysis Method - AS/NZS 4063.2 (2010) Method 1

Test Data Calculated Parameters
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Appendix I.1 – Nail Plate Parallel to the Grain 

 

 

Avg 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

FJ-1 459 3758 36.87

FJ-2 503 4080 40.02

FJ-3 509 4296 42.14

FJ-4 521 4128 40.50

FJ-5 524 3858 37.85

FJ-6 531 4064 39.87

FJ-7 544 4108 40.30

FJ-8 548 3116 30.57

FJ-9 556 4146 40.67

FJ-10 559 4210 41.30

FJ-11 564 4242 41.61

FJ-12 586 3850 37.77

FJ-13 588 3748 36.77

FJ-14 599 3834 37.61

FJ-15 591 3984 39.08

FJ-16 604 3926 38.51

FJ-17 607 3862 37.89

FJ-18 653 2674 26.23

FJ-19 664 3874 38.00

FJ-20 675 3992 39.16

Avg 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

S-2 460 3758 36.87

S-4 461 4010 39.34

S-6 466 4286 42.05

S-8 468 3688 36.18

S-10 476 4462 43.77

S-13 484 3826 37.53

S-15 489 3780 37.08

S-16 495 4142 40.63

S-20 511 4244 41.63

S-24 524 3218 31.57

S-26 526 4196 41.16

S-28 528 4304 42.22

S-31 535 4122 40.44

S-34 537 4256 41.75

S-35 544 4042 39.65

S-42 557 4150 40.71

S-43 570 4370 42.87

S-54 596 3952 38.77

S-55 615 3350 32.86

S-60 662 3798 37.26

Plate Tear x2

Truss Joint Testing - Nail Plate Parallel to Grain

Test Equipment - Hyne and Son Tension Test Rig

Test Operator - Tony Dakin

Sample Type - Finger Jointed Timber

Test Data

Sample 

No.
Failure Description

Tooth Pull out & Wood Break in FJ Piece

Tooth Pull out & Plate Tear

Plate Tear x2

Plate Tear x2

Tooth Pull out & Plate Tear

Teeth Pull out of non-FJ piece.  Teeth not embedded.

Plate Tear & Wood Break

Failed at Knot Away from Joint

Plate Tear x2

Plate Tear x2

Plate Tear x2

Broke in Low Dens Wood at back of plate

Tooth Pull out & Plate Tear

Tooth Pull out & Plate Tear

Tooth Pull out & Plate Tear

Tooth Pull out & Wood Break in FJ Piece

Tooth Pull out & Plate Tear

Plate Tear x2

Plate Tear x2

Sample Type - Standard MGP10

Test Data

Sample 

No.
Failure Description

Plate Tear x2

Teeth Pull out & Low Dens Wood Break

Teeth Pull out & Plate Tear

Plate Tear x2

Teeth Pull out & Wood Break

Teeth Pull out & Low Dens Wood Break

Teeth Pull out & Low Dens Wood Break

Teeth Pull out & Low Dens Wood Break

Plate Tear & Wood Break

Plate Tear x2

Failed at Knot Away from Joint

Teeth Pull out & Plate Tear

Teeth Pull Out

Teeth Pull out & Low Dens Wood Break

Highlighted samples not included in analysis and comparison.

Teeth Pull out & Plate Tear

Plate Tear x2

Teeth Pull out & Plate Tear

Plate Tear x2

Plate Tear x2

Teeth Pull out & Low Dens Wood Break
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Rank Fi yi (yi)² Rank xi yi (yi)²

1 36.77 3.605 12.993 1 32.86 3.492 12.197

2 36.87 3.607 13.013 2 36.18 3.588 12.877

3 37.61 3.627 13.157 3 36.87 3.607 13.013

4 37.77 3.631 13.188 4 37.08 3.613 13.055

5 37.85 3.634 13.203 5 37.26 3.618 13.089

6 37.89 3.635 13.210 6 37.53 3.625 13.142

7 38.00 3.638 13.233 7 38.77 3.658 13.378

8 38.51 3.651 13.330 8 39.34 3.672 13.485

9 39.08 3.666 13.437 9 39.65 3.680 13.543

10 39.16 3.668 13.452 10 40.44 3.700 13.688

11 39.87 3.686 13.583 11 40.63 3.705 13.724

12 40.02 3.689 13.612 12 40.71 3.707 13.738

13 40.30 3.696 13.663 13 41.16 3.718 13.820

14 40.50 3.701 13.699 14 41.63 3.729 13.905

15 40.67 3.706 13.731 15 41.75 3.732 13.926

16 41.30 3.721 13.845 16 42.05 3.739 13.978

17 41.61 3.728 13.901 17 42.22 3.743 14.010

18 42.14 3.741 13.996 18 42.87 3.758 14.124

19 43.77 3.779 14.281

66.029 242.246 69.862 256.972

= 3.668 = 3.677

= 0.042 = 0.072

= 39.19 = 39.53

= 1.04 = 1.07

n1 = 18 X1 = 39.19 S1 = 1.04

n2 = 19 X2 = 39.53 S2 = 1.07

=

=

=

=

Truss Joint Testing - Nail Plate Parallel to Grain

Analysis Method - AS 1649 (2001)

Finger Jointed Timber Standard MGP10 Timber

Test Data Calculations Test Data Calculations

σ 1.089

∑ ∑

ŷ ŷ

s s

Avg Avg

Std Dev Std Dev

Comparison Method - Spiegel (1982)

T -0.951

t.995 2.725

t.975 2.03

-t.9 9 5  < T < t.9 9 5    &   -t.9 75  < T < t.9 75

therefore,

No significant difference between FJ Timber & MGP10
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Appendix I.2 – Nail Plate Perpendicular to the Grain 

 

 

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

FJ-1 595 289 7.09

FJ-2 527 282 6.92

FJ-3 600 253 6.20

FJ-4 548 278 6.82

FJ-5 564 246 6.03

FJ-6 722 342 8.39

FJ-7 572 308 7.55

FJ-8 656 370 9.07

FJ-9 642 324 7.95

FJ-10 644 306 7.50

FJ-11 550 227 5.57

FJ-12 593 322 7.90

FJ-13 487 364 8.93

FJ-14 591 304 7.46

FJ-15 584 358 8.78

FJ-16 558 354 8.68

FJ-17 537 290 7.11

FJ-18 565 294 7.21

FJ-19 554 308 7.55

FJ-20 531 357 8.76

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

S-1 461 257 6.30

S-2 506 188 4.61

S-3 638 454 11.13

S-4 493 282 6.92

S-5 523 311 7.63

S-6 478 251 6.16

S-7 515 324 7.95

S-8 662 393 9.64

S-9 660 363 8.90

S-10 582 273 6.70

S-11 572 326 8.00

S-12 444 230 5.64

S-13 562 363 8.90

S-14 599 233 5.71

S-15 669 287 7.04

S-16 624 357 8.76

S-17 589 299 7.33

S-18 576 269 6.60

S-19 529 152 3.73

S-20 545 284 6.97

Truss Joint Testing - Nail Plate Perpindicular to Grain

Test Equipment - Hyne and Son Vertical Test Rig

Test Operator - Tony Dakin

Test Data

Sample No. Failure Description

Sample Type - Finger Jointed Timber

Teeth pull out of chord

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Sample Type - Standard MGP10

Test Data

Sample No. Failure Description

Teeth pull out of chord

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Teeth pull out of chord

Tens. Perp. in Chord at Top Teeth

Teeth pull out of chord
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Rank Fi yi (yi)² Rank xi yi (yi)²

1 5.57 1.717 2.948 1 3.73 1.316 1.731

2 6.03 1.797 3.230 2 4.61 1.528 2.336

3 6.20 1.825 3.332 3 5.64 1.730 2.993

4 6.82 1.920 3.685 4 5.71 1.743 3.038

5 6.92 1.934 3.740 5 6.16 1.817 3.303

6 7.09 1.958 3.835 6 6.30 1.841 3.389

7 7.11 1.962 3.849 7 6.60 1.887 3.559

8 7.21 1.976 3.903 8 6.70 1.901 3.615

9 7.46 2.009 4.036 9 6.92 1.934 3.740

10 7.50 2.016 4.062 10 6.97 1.941 3.767

11 7.55 2.022 4.089 11 7.04 1.951 3.808

12 7.55 2.022 4.089 12 7.33 1.992 3.970

13 7.90 2.066 4.270 13 7.63 2.032 4.128

14 7.95 2.073 4.296 14 7.95 2.073 4.296

15 8.39 2.127 4.523 15 8.00 2.079 4.322

16 8.68 2.161 4.671 16 8.76 2.170 4.707

17 8.76 2.170 4.707 17 8.90 2.186 4.780

18 8.78 2.172 4.720 18 8.90 2.186 4.780

19 8.93 2.189 4.792 19 9.64 2.266 5.134

20 9.07 2.205 4.864 20 11.13 2.410 5.808

40.321 81.640 38.984 77.205

= 2.016 = 1.949

= 0.136 = 0.253

= 7.51 = 7.02

= 1.15 = 1.29

n1 = 20 X1 = 7.51 S1 = 1.15

n2 = 20 X2 = 7.02 S2 = 1.29

=

=

=

=

Truss Joint Testing - Nail Plate Perpindicular to Grain

Finger Jointed Timber

Comparison Method - Spiegel (1982)

Analysis Method - AS 1649 (2001)

Test Data Calculations

∑

Standard MGP10 Timber

Test Data Calculations

∑

ŷ

s

Avg

Std Dev

ŷ

s

Avg

Std Dev

No significant difference between FJ Timber & MGP10

σ 1.251

T 1.228

t.995

t.975

2.71

2.024

-t.9 9 5  < T < t.9 9 5    &   -t.9 75  < T < t.9 75

therefore,
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Appendix I.3 – Batten Screw Connection 

 

 

  

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

FJ-1 573 212 5.20

FJ-2 585 256 6.28

FJ-3 535 236 5.79

FJ-4 578 223 5.47

FJ-5 551 236 5.79

FJ-6 605 225 5.52

FJ-7 569 234 5.74

FJ-8 582 254 6.23

FJ-9 605 283 6.94

FJ-10 566 253 6.20

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

S-1 604 241 5.91

S-2 546 196 4.81

S-3 579 226 5.54

S-4 534 211 5.17

S-5 579 195 4.78

S-6 549 228 5.59

S-7 554 228 5.59

S-8 594 211 5.17

S-9 603 220 5.40

S-10 603 223 5.47

Sample 

No.
Failure Description

Truss Connection Testing - Batten Screw

Test Equipment - Hyne and Son Vertical Test Rig

Test Operator - Tony Dakin

Sample Type - Finger Jointed Timber

Test Data

Test Data

Tens. Perp. in Chord at Screw Tip

Thread pull out of Chord

Thread pull out of Chord

Tens. Perp. in chord at Screw Tip & Thread pull out

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord

Tens. Perp. in Chord at Screw Tip

Thread pull out of Chord

Thread pull out of Chord

Sample Type - Standard MGP10

Thread pull out of Chord

Sample 

No.
Failure Description

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord

Thread pull out of Chord
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Rank Fi yi (yi)² Rank xi yi (yi)²

1 5.20 1.649 2.718 1 4.78 1.565 2.449

2 5.47 1.699 2.887 2 4.81 1.570 2.465

3 5.52 1.708 2.917 3 5.17 1.644 2.702

4 5.74 1.747 3.053 4 5.17 1.644 2.702

5 5.79 1.756 3.083 5 5.40 1.686 2.841

6 5.79 1.756 3.083 6 5.47 1.699 2.887

7 6.20 1.825 3.332 7 5.54 1.712 2.933

8 6.23 1.829 3.346 8 5.59 1.721 2.963

9 6.28 1.837 3.375 9 5.59 1.721 2.963

10 6.94 1.937 3.753 10 5.91 1.777 3.157

17.744 31.547 16.739 28.061

= 1.774 = 1.674

= 0.084 = 0.068

= 5.90 = 5.33

= 1.09 = 1.07

n1 = 10 X1 = 5.90 S1 = 1.09

n2 = 10 X2 = 5.33 S2 = 1.07

=

=

=

=

Truss Connection Testing - Batten Screw

Analysis Method - AS 1649 (2001)

Finger Jointed Timber Standard MGP10 Timber

Test Data Calculations Test Data Calculations

σ 1.137

∑ ∑

ŷ ŷ

s s

Avg Avg

Std Dev Std Dev

Comparison Method - Spiegel (1982)

T 1.108

t.995 2.88

t.975 2.10

-t.9 9 5  < T < t.9 9 5    &   -t.9 75  < T < t.9 75

therefore,

No significant difference between FJ Timber & MGP10
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Appendix I.4 – MultiGrip with Nails Connection 

 

 

  

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

FJ-1 570 172 4.22

FJ-2 532 209 5.13

FJ-3 614 145 3.56

FJ-4 601 186 4.56

FJ-5 547 187 4.59

FJ-6 466 163 4.00

FJ-7 640 199 4.88

FJ-8 507 169 4.14

FJ-9 681 192 4.71

FJ-10 536 218 5.35

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

S-1 471 170 4.17

S-2 600 178 4.37

S-3 537 180 4.41

S-4 651 175 4.29

S-5 551 201 4.93

S-6 468 121 2.97

S-7 666 222 5.44

S-8 488 130 3.19

S-9 646 220 5.40

S-10 555 171 4.19

Sample 

No.
Failure Description

Truss Connection Testing - MultiGrip with Nails

Test Equipment - Hyne and Son Vertical Test Rig

Test Operator - Tony Dakin

Sample Type - Finger Jointed Timber

Test Data

Test Data

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

Horiz. nail pull out of Top Plate

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

Horiz. nail pull out of Top Plate

  Horiz. nail pull out of Chord

Sample Type - Standard MGP10

Horiz. nail pull out of Top Plate

Sample 

No.
Failure Description

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord

  Horiz. nail pull out of Chord
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Rank Fi yi (yi)² Rank xi yi (yi)²

1 3.56 1.269 1.610 1 2.97 1.088 1.183

2 4.00 1.386 1.920 2 3.19 1.159 1.344

3 4.14 1.422 2.022 3 4.17 1.428 2.038

4 4.22 1.439 2.072 4 4.19 1.434 2.055

5 4.56 1.518 2.303 5 4.29 1.457 2.122

6 4.59 1.523 2.320 6 4.37 1.474 2.172

7 4.71 1.549 2.401 7 4.41 1.485 2.205

8 4.88 1.585 2.513 8 4.93 1.595 2.545

9 5.13 1.634 2.671 9 5.40 1.686 2.841

10 5.35 1.676 2.810 10 5.44 1.695 2.872

15.002 22.641 14.499 21.378

= 1.500 = 1.450

= 0.123 = 0.199

= 4.48 = 4.26

= 1.13 = 1.22

n1 = 10 X1 = 4.48 S1 = 1.13

n2 = 10 X2 = 4.26 S2 = 1.22

=

=

=

=

Truss Connection Testing - MultiGrip with Nails

Analysis Method - AS 1649 (2001)

Finger Jointed Timber Standard MGP10 Timber

Test Data Calculations Test Data Calculations

σ 1.240

∑ ∑

ŷ ŷ

s s

Avg Avg

Std Dev Std Dev

Comparison Method - Spiegel (1982)

T 0.396

t.995 2.88

t.975 2.10

-t.9 9 5  < T < t.9 9 5    &   -t.9 75  < T < t.9 75

therefore,

No significant difference between FJ Timber & MGP10
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Appendix I.5 – Girder Bracket Screw Connection 

 

 

  

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

FJ-1 436 297 7.28

FJ-2 506 367 9.00

FJ-3 509 482 11.82

FJ-4 532 443 10.86

FJ-5 568 479 11.75

FJ-6 569 489 11.99

FJ-7 586 324 7.95

FJ-8 614 440 10.79

FJ-9 627 551 13.51

FJ-10 659 504 12.36

Chord 

Density

Measured 

Failure    

Load

Joint 

Capacity

(kg/m³) (kg) (kN)

S-1 493 356 8.73

S-2 500 414 10.15

S-3 516 431 10.57

S-4 534 463 11.36

S-5 534 370 9.07

S-6 562 442 10.84

S-7 569 510 12.51

S-8 580 500 12.26

S-9 588 432 10.59

S-10 646 413 10.13

Bear. at screws & tens. perp. in chord & bend at FJ

Truss Connection Testing - Girder Bracket Screws

Test Equipment - Hyne and Son Vertical Test Rig

Test Operator - Tony Dakin

Sample Type - Finger Jointed Timber

Test Data

Sample 

No.
Failure Description

Bending Failure at Finger Joint

Bear. at screws & tens. perp. in chord & bend at FJ

Bear. at screws & tens. perp. in chord & bend at FJ

Bear. at screws & tens. perp. in chord & bend at FJ

Bear. at screws & tens. perp. in chord & bend at FJ

Sample Type - Standard MGP10

Test Data

Sample 

No.
Failure Description

Bear. at screws & tens. perp. in chord & bend at FJ

Bear. at screws & tens. perp. in chord & bend at FJ

Bear. at screws & tens. perp. in chord & bend at FJ

Bear. at screws & tens. perp. in chord & bend at FJ

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Screw Yield

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Tens. Perp. in chord

Bear. under screws & Tens. Perp. in chord
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Rank Fi yi (yi)² Rank xi yi (yi)²

1 7.28 1.986 3.943 1 8.73 2.167 4.695

2 7.95 2.073 4.296 2 9.07 2.205 4.864

3 9.00 2.197 4.828 3 10.13 2.315 5.361

4 10.79 2.379 5.658 4 10.15 2.318 5.372

5 10.86 2.386 5.691 5 10.57 2.358 5.560

6 11.75 2.464 6.070 6 10.59 2.360 5.571

7 11.82 2.470 6.100 7 10.84 2.383 5.680

8 11.99 2.484 6.172 8 11.36 2.430 5.903

9 12.36 2.515 6.323 9 12.26 2.507 6.283

10 13.51 2.604 6.779 10 12.51 2.526 6.382

23.556 55.859 23.570 55.673

= 2.356 = 2.357

= 0.203 = 0.115

= 10.54 = 10.56

= 1.23 = 1.12

n1 = 10 X1 = 10.54 S1 = 1.23

n2 = 10 X2 = 10.56 S2 = 1.12

=

=

=

=

Truss Connection Testing - Girder Bracket Screws

Analysis Method - AS 1649 (2001)

Finger Jointed Timber Standard MGP10 Timber

Test Data Calculations Test Data Calculations

σ 1.238

∑ ∑

ŷ ŷ

s s

Avg Avg

Std Dev Std Dev

Comparison Method - Spiegel (1982)

T -0.026

t.995 2.88

t.975 2.10

-t.9 9 5  < T < t.9 9 5    &   -t.9 75  < T < t.9 75

therefore,

No significant difference between FJ Timber & MGP10
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Appendix I.6 – Joint Deformation Testing 

 

 

  

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

FJ-1 226 772 1250 1646 1996 2376 2740 3112 0.04 0.12 0.19 0.25 0.31 0.37 0.44 0.51

FJ-2 64 234 662 1118 1628 2072 2718 3158 0.01 0.04 0.06 0.08 0.11 0.13 0.17 0.20

FJ-3 122 528 1028 1498 1936 2464 2784 3188 0.02 0.03 0.06 0.09 0.12 0.16 0.20 0.25

FJ-4 118 420 982 1476 1922 2362 2872 3398 0.01 0.05 0.07 0.09 0.12 0.16 0.19 0.22

FJ-5 88 478 846 1260 1960 2404 2912 3258 0.01 0.01 0.02 0.04 0.08 0.10 0.13 0.14

FJ-6 226 582 1124 1630 2166 2480 3210 0.03 0.06 0.10 0.17 0.20 0.22 0.29

FJ-7 54 432 930 1606 2074 2334 2752 3082 0.00 0.01 0.03 0.06 0.09 0.10 0.13 0.14

FJ-8 120 432 1054 1610 2038 2570 3080 0.00 0.04 0.07 0.09 0.11 0.13 0.15

FJ-9 118 552 1216 1700 2264 2934 3242 0.02 0.06 0.10 0.14 0.18 0.24 0.26

FJ-10 74 468 1108 1596 2134 2576 2896 3268 0.01 0.02 0.04 0.05 0.07 0.09 0.10 0.12

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

FJ-1 0.70 2.40 3.89 5.13 6.22 7.40 8.53 9.69 190 595 927 1210 1507 1810 2146 2502

FJ-2 0.20 0.73 2.06 3.48 5.07 6.45 8.46 9.83 63 185 298 385 522 639 829 956

FJ-3 0.38 1.64 3.20 4.67 6.03 7.67 8.67 9.93 98 146 268 420 595 800 966 1195

FJ-4 0.37 1.31 3.06 4.60 5.99 7.36 8.94 10.6 68 220 341 454 585 761 912 1078

FJ-5 0.27 1.49 2.63 3.92 6.10 7.49 9.07 10.1 39 54 107 205 371 483 615 702

FJ-6 0.70 1.81 3.50 5.08 6.75 7.72 10.0 156 298 502 820 971 1054 1390

FJ-7 0.17 1.35 2.90 5.00 6.46 7.27 8.57 9.60 10 54 137 302 434 502 615 688

FJ-8 0.37 1.35 3.28 5.01 6.35 8.00 9.59 15 185 332 439 512 615 707

FJ-9 0.37 1.72 3.79 5.29 7.05 9.14 10.1 73 307 507 678 873 1166 1288

FJ-10 0.23 1.46 3.45 4.97 6.65 8.02 9.02 10.2 29 93 171 254 332 415 483 561

Std Dev Joint Stiffness of

FJ Timber with No Plate Joint

4330 MPa

596

Truss Joint Testing - Joint Deformation

Test Equipment - Hyne and Son Tension Test Rig

Test Operator - Tony Dakin

Sample Type - 90 x35 Finger Jointed Timber with No Plate Joint

Test Data

Sample 

No.

Density Recorded Loads (kg) Recorded Deformations (mm)

(kg/m³)

539

555

559

569

571

7490

602

647

671

679

Calculated Values

Sample 

No.

Stress (MPa) Strain (x10^-6)
Joint 

Stiffness

(MPa)

3808

11811

7804

10454

13039

10980 MPa

12551

15981

8416

18447

Average Joint Stiffness of

FJ Timber with No Plate Joint
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FJ-9

FJ-10
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1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

S-1 80 302 682 1130 1556 2130 2386 2868 3420 0.00 0.02 0.04 0.07 0.09 0.13 0.14 0.17 0.20

S-2 64 360 704 1230 1762 2104 2544 2796 3026 0.00 0.03 0.05 0.06 0.09 0.10 0.13 0.14 0.15

S-3 142 560 1152 1726 2136 2534 2800 3214 0.00 0.01 0.03 0.05 0.06 0.07 0.08 0.10

S-4 82 254 760 1440 2178 2586 3126 0.03 0.05 0.09 0.14 0.19 0.22 0.26

S-5 58 208 684 1156 1736 2434 2918 3232 0.01 0.03 0.07 0.09 0.14 0.20 0.24 0.27

S-6 78 540 1150 1448 2028 2516 2952 3332 0.00 0.02 0.04 0.05 0.07 0.10 0.12 0.13

S-7 26 202 538 922 1482 1902 2344 2850 3092 0.01 0.04 0.07 0.09 0.12 0.15 0.17 0.21 0.22

S-8 112 368 822 1316 1752 2208 2700 3150 0.02 0.06 0.10 0.14 0.18 0.22 0.27 0.31

S-9 118 344 674 1150 1840 2330 2852 3330 0.02 0.04 0.07 0.11 0.18 0.23 0.28 0.32

S-10 240 530 1030 1462 1876 2310 2876 3278 0.02 0.04 0.05 0.07 0.10 0.12 0.15 0.17

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

S-1 0.25 0.94 2.12 3.52 4.85 6.63 7.43 8.93 10.7 0 73 190 317 439 629 702 839 995

S-2 0.20 1.12 2.19 3.83 5.49 6.55 7.92 8.71 9.42 20 141 220 312 415 493 629 693 751

S-3 0.44 1.74 3.59 5.38 6.65 7.89 8.72 10.0 10 59 137 220 278 337 380 473

S-4 0.26 0.79 2.37 4.48 6.78 8.05 9.74 146 263 454 673 922 1073 1254

S-5 0.18 0.65 2.13 3.60 5.41 7.58 9.09 10.1 49 137 317 454 668 985 1176 1298

S-6 0.24 1.68 3.58 4.51 6.32 7.84 9.19 10.4 20 98 190 239 356 478 571 649

S-7 0.08 0.63 1.68 2.87 4.62 5.92 7.30 8.88 9.63 24 171 341 444 600 727 849 1000 1063

S-8 0.35 1.15 2.56 4.10 5.46 6.88 8.41 9.81 98 278 468 693 888 1083 1322 1507

S-9 0.37 1.07 2.10 3.58 5.73 7.26 8.88 10.4 83 215 356 546 878 1102 1341 1576

S-10 0.75 1.65 3.21 4.55 5.84 7.19 8.96 10.2 117 195 259 356 468 566 712 820

Std Dev Joint Stiffness of

Std MGP10 with No Plate Joint

4238 MPa

Recorded Deformations (mm)

Calculated Values

Sample 

No.

Truss Joint Testing - Joint Deformation

Test Equipment - Hyne and Son Tension Test Rig

Test Operator - Tony Dakin

Sample Type - 90 x35 Standard MGP10 with No Plate Joint

Test Data

Sample 

No.

579

593

613

659

Recorded Loads (kg)Density

(kg/m³)

486

548

568

8016

663

679

697

Stress (MPa) Strain (x10^-6)
Joint 

Stiffness

(MPa)

10456

13574

20332

9085

Std MGP10 with No Plate Joint

11414 MPa

15238

10411

6992

6819

13213

Average Joint Stiffness of
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1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

FJ-5 60 244 594 1104 1512 1988 2390 2842 3290 0.01 0.02 0.00 -0.02 -0.02 -0.02 -0.01 -0.01 0.07

FJ-6 86 226 694 932 1300 1734 2100 2576 2916 0.04 0.04 0.08 0.11 0.18 0.27 0.38 0.54 0.74

FJ-7 132 380 898 1372 1968 2498 2816 3166 0.01 0.03 0.04 0.07 0.12 0.18 0.23 0.31

FJ-8 28 170 592 1132 1628 1974 2344 2654 2840 3054 0.00 0.02 0.06 0.13 0.24 0.33 0.45 0.62 0.80 1.02

FJ-9 68 350 738 1366 2022 2462 2870 3142 0.12 0.13 0.10 0.11 0.13 0.15 0.16 0.14

FJ-10 36 292 716 1176 1688 2106 2574 2986 0.01 0.03 0.08 0.17 0.31 0.47 0.70 1.06

FJ-11 86 242 580 980 1384 2048 2312 2722 3174 0.01 0.05 0.10 0.16 0.22 0.38 0.46 0.60 0.82

FJ-12 284 970 1468 1950 2276 2608 3086 0.04 0.09 0.15 0.23 0.30 0.38 0.54

FJ-13 116 468 914 1116 1530 1986 2436 2668 3028 0.02 0.05 0.08 0.11 0.19 0.29 0.43 0.52 0.72

FJ-14 230 380 768 1432 2066 2384 2800 3304 0.07 0.04 -0.01 -0.03 -0.02 -0.02 -0.03 0.00

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

FJ-5 0.19 0.76 1.85 3.44 4.71 6.19 7.44 8.85 10.2 29 88 10 -117 -102 -83 -63 -24 341

FJ-6 0.27 0.70 2.16 2.90 4.05 5.40 6.54 8.02 9.08 185 210 371 541 854 1332 1829 2629 3590

FJ-7 0.41 1.18 2.80 4.27 6.13 7.78 8.77 9.86 68 141 210 327 580 873 1107 1532

FJ-8 0.09 0.53 1.84 3.53 5.07 6.15 7.30 8.27 8.84 9.51 10 102 307 634 1171 1629 2185 3015 3878 4976

FJ-9 0.21 1.09 2.30 4.25 6.30 7.67 8.94 9.79 600 654 493 527 634 707 790 702

FJ-10 0.11 0.91 2.23 3.66 5.26 6.56 8.02 9.30 24 156 395 820 1522 2268 3434 5161

FJ-11 0.27 0.75 1.81 3.05 4.31 6.38 7.20 8.48 9.88 63 234 507 776 1093 1859 2239 2922 4015

FJ-12 0.88 3.02 4.57 6.07 7.09 8.12 9.61 171 415 717 1107 1439 1849 2649

FJ-13 0.36 1.46 2.85 3.48 4.76 6.18 7.59 8.31 9.43 107 234 395 551 907 1415 2093 2541 3502

FJ-14 0.72 1.18 2.39 4.46 6.43 7.42 8.72 10.3 332 195 -39 -122 -83 -102 -161 10

Std Dev Joint Stiffness of

FJ Timber with Plate Joint

- MPa

Test Method Inadequate - Refer Section 5.2.7.2

559

565

590

591

592

524

531

543

548

556

Sample 

No.

Avg 

Density
Recorded Loads (kg) Recorded Deformations (mm)

(kg/m³)

Truss Joint Testing - Joint Deformation

Test Equipment - Hyne and Son Tension Test Rig

Test Operator - Tony Dakin

Sample Type - 90 x35 Finger Jointed Timber with Plate Joint

Test Data

Calculated Values

Sample 

No.

Stress (MPa) Strain (x10^-6)
Joint 

Stiffness

(MPa)

- MPa

Average Joint Stiffness of

FJ Timber with Plate Joint
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1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

S-24 72 228 574 838 1232 1740 2288 2758 3124 0.03 0.06 0.13 0.18 0.27 0.39 0.57 0.79 1.05

S-26 40 310 598 1142 1610 2304 2848 3184 0.08 0.10 0.09 0.11 0.16 0.26 0.36 0.45

S-28 52 354 622 1086 1668 2138 2654 3120 0.06 0.04 0.02 0.04 0.09 0.14 0.22 0.33

S-31 36 206 576 1178 1712 2174 2762 3218 0.02 0.06 0.08 0.13 0.22 0.32 0.51 0.73

S-34 208 422 760 1174 1652 2266 2676 2904 0.03 0.06 0.09 0.14 0.19 0.28 0.36 0.42

S-35 146 350 696 1384 1642 2070 2600 3034 0.02 0.03 0.02 0.06 0.10 0.19 0.36 0.55

S-42 86 204 604 1100 1780 2334 2754 3006 0.01 0.02 0.08 0.17 0.34 0.52 0.72 0.85

S-43 60 350 734 1164 1634 2084 2548 2904 3218 0.01 0.04 0.09 0.15 0.21 0.29 0.29 0.38 0.50

S-54 96 436 592 1204 1666 2070 2752 3062 3472 0.06 0.07 0.05 0.04 0.05 0.08 0.09 0.12 0.17

S-55 114 344 836 1182 1740 2196 2678 3088 0.00 0.01 0.03 0.03 0.04 0.05 0.07 0.14

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

S-24 0.22 0.71 1.79 2.61 3.84 5.42 7.13 8.59 9.73 122 312 620 878 1298 1912 2795 3829 5102

S-26 0.12 0.97 1.86 3.56 5.01 7.18 8.87 9.92 380 463 439 541 780 1244 1761 2210

S-28 0.16 1.10 1.94 3.38 5.19 6.66 8.27 9.72 298 215 112 171 420 698 1088 1620

S-31 0.11 0.64 1.79 3.67 5.33 6.77 8.60 10.0 93 283 376 644 1073 1561 2502 3576

S-34 0.65 1.31 2.37 3.66 5.14 7.06 8.33 9.04 132 273 454 659 922 1371 1756 2044

S-35 0.45 1.09 2.17 4.31 5.11 6.45 8.10 9.45 88 156 117 273 483 937 1776 2698

S-42 0.27 0.64 1.88 3.43 5.54 7.27 8.58 9.36 29 107 376 839 1659 2541 3498 4146

S-43 0.19 1.09 2.29 3.63 5.09 6.49 7.94 9.04 10.0 49 210 424 712 1029 1434 1420 1834 2415

S-54 0.30 1.36 1.84 3.75 5.19 6.45 8.57 9.54 10.8 302 317 263 190 259 380 459 595 829

S-55 0.36 1.07 2.60 3.68 5.42 6.84 8.34 9.62 5 24 137 161 200 239 337 688

Std Dev Joint Stiffness of

Std MGP10 with Plate Joint

- MPa

Test Method Inadequate - Refer Section 5.2.7.2

544

Truss Joint Testing - Joint Deformation

Test Equipment - Hyne and Son Tension Test Rig

Test Operator - Tony Dakin

Sample Type - 90 x35 Standard MGP10 with Plate Joint

Test Data

Sample 

No.

Avg 

Density
Recorded Loads (kg) Recorded Deformations (mm)

(kg/m³)

524

526

528

535

537

557

570

596

615

Calculated Values

Sample 

No.

Stress (MPa) Strain (x10^-6)
Joint 

Stiffness

(MPa)

- MPa

Average Joint Stiffness of

Std MGP10 with Plate Joint

0

2

4

6

8

10

12

0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060

St
re

ss
, σ

 (
M

P
a)

Strain, δ

Stress-Strain Curve

S-24

S-26

S-28

S-31

S-34

S-35

S-42

S-43

S-54

S-55
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= 10980 = 11414

= 4330 = 4238

n1 = 10 X1 = 10980 S1 = 4330

n2 = 10 X2 = 11414 S2 = 4238

=

=

=

=

Arithmetic Mean and Standard Deviation - Microsoft Excel

Finger Jointed Timber Standard MGP10 Timber

-t.9 9 5  < T < t.9 9 5    &   -t.9 75  < T < t.9 75

therefore,

No significant difference between FJ Timber & MGP10

T -0.215

t.995 2.88

t.975 2.10

Avg Avg

Std Dev Std Dev

Comparison Method - Spiegel (1982)

σ 4515.993

Truss Joint Testing - Tensile Stiffness without Splice
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Appendix J.1 – Flatwise Finger Joint Capacity 

 

 

Depth     

(mm)

Breadth       

(mm)

Length     

(mm)

Test Span 

(mm)

35 90 650 540

Density
Failure       

Load

Joint    

Capacity

(kg/m³) (kg) (kN.m)

FWB2-1 605 915 1.21

FWB2-2 459 604 0.80

FWB2-3 732 540 0.72

FWB2-4 579 775 1.03

FWB2-5 622 827 1.10

FWB2-6 649 719 0.95

FWB2-7 694 910 1.21

FWB2-8 539 516 0.68

FWB2-9 588 906 1.20

FWB2-10 581 932 1.23

FWB2-11 586 762 1.01

FWB2-12 614 913 1.21

FWB2-13 513 415 0.55

FWB2-14 595 786 1.04

FWB2-15 706 943 1.25

FWB2-16 558 791 1.05

FWB2-17 586 521 0.69

FWB2-18 530 830 1.10

FWB2-19 551 1018 1.35

FWB2-20 560 780 1.03

FWB2-21 716 969 1.28

FWB2-22 564 789 1.04

FWB2-23 718 895 1.19

FWB2-24 564 594 0.79

FWB2-25 481 731 0.97

FWB2-26 664 846 1.12

FWB2-27 573 798 1.06

FWB2-28 461 605 0.80

FWB2-29 634 796 1.05

FWB2-30 554 503 0.67

4

90 x 35 Finger Jointed Timber - Flatwise Finger Joint Testing

Test Equipment - Hyne and Son Tuan Test Rig

Test Operator - Tony Dakin

Sample Details

Test Data

Sample No.
AS5068 Failure 

Mode

3

4

4

4

4

4

2

5

3

3

3

3

4

5

2

4

4

4

4

5

2

4

3

5

4

3

4

4

4
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Rank fi pi ln(fi) (ln(fi)-ŷ)²

1 0.55 0.017 -0.599 0.344

2 0.67 0.050 -0.406 0.156

3 0.68 0.083 -0.381 0.136

4 0.69 0.117 -0.371 0.129

5 0.72 0.150 -0.335 0.105

6 0.79 0.183 -0.240 0.052

7 0.80 0.217 -0.223 0.045

8 0.80 0.250 -0.222 0.044

9 0.95 0.283 -0.049 0.001

10 0.97 0.317 -0.032 0.000

11 1.01 0.350 0.009 0.000

12 1.03 0.383 0.026 0.001

13 1.03 0.417 0.032 0.002

14 1.04 0.450 0.040 0.003

15 1.04 0.483 0.044 0.003 =

16 1.05 0.517 0.046 0.003

17 1.05 0.550 0.053 0.004

18 1.06 0.583 0.055 0.004 =

19 1.10 0.617 0.091 0.011

20 1.10 0.650 0.095 0.011

21 1.12 0.683 0.114 0.016

22 1.19 0.717 0.170 0.033

23 1.20 0.750 0.182 0.038

24 1.21 0.783 0.187 0.039

25 1.21 0.817 0.190 0.041

26 1.21 0.850 0.192 0.042

27 1.23 0.883 0.210 0.049

28 1.25 0.917 0.222 0.055

29 1.28 0.950 0.249 0.068

30 1.35 0.983 0.299 0.096

∑ -0.351 1.533

90 x 35 Finger Jointed Timber - Flatwise Finger Joint Testing

Analysis Method - AS/NZS 4063.2 (2010) Method 1

Test Data Calculated Parameters

ŷ -0.012

Sy 0.230
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Joint Capacity, fi (MPa)

Test Data Lognormal Distribution
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Appendix J.2 – Analysis of Board Densities 

 

 

  

Rank fi pi ln(fi) (ln(fi)-ŷ)² Rank fi pi ln(fi) (ln(fi)-ŷ)²

1 485 0.006 6.184 0.032 46 579 0.506 6.362 0.000

2 528 0.017 6.269 0.009 47 582 0.517 6.366 0.000

3 534 0.028 6.281 0.007 48 582 0.528 6.366 0.000

4 536 0.039 6.283 0.006 49 582 0.539 6.367 0.000

5 536 0.050 6.283 0.006 50 583 0.550 6.368 0.000

6 538 0.061 6.288 0.006 51 583 0.561 6.369 0.000

7 540 0.072 6.291 0.005 52 585 0.572 6.372 0.000

8 541 0.083 6.293 0.005 53 586 0.583 6.373 0.000

9 543 0.094 6.298 0.004 54 587 0.594 6.375 0.000

10 544 0.106 6.300 0.004 55 588 0.606 6.376 0.000

11 545 0.117 6.301 0.004 56 589 0.617 6.379 0.000

12 545 0.128 6.302 0.004 57 590 0.628 6.380 0.000

13 546 0.139 6.302 0.004 58 592 0.639 6.383 0.000

14 546 0.150 6.303 0.004 59 592 0.650 6.383 0.000

15 548 0.161 6.307 0.003 60 592 0.661 6.384 0.000 =

16 549 0.172 6.308 0.003 61 593 0.672 6.385 0.000

17 551 0.183 6.312 0.003 62 594 0.683 6.386 0.001

18 554 0.194 6.316 0.002 63 594 0.694 6.387 0.001 =

19 556 0.206 6.320 0.002 64 596 0.706 6.389 0.001

20 556 0.217 6.320 0.002 65 597 0.717 6.393 0.001

21 557 0.228 6.322 0.002 66 598 0.728 6.393 0.001

22 557 0.239 6.323 0.002 67 605 0.739 6.406 0.002

23 560 0.250 6.327 0.001 68 606 0.750 6.406 0.002

24 560 0.261 6.328 0.001 69 606 0.761 6.407 0.002

25 562 0.272 6.331 0.001 70 606 0.772 6.407 0.002

26 562 0.283 6.332 0.001 71 609 0.783 6.411 0.002

27 563 0.294 6.334 0.001 72 609 0.794 6.412 0.002

28 565 0.306 6.336 0.001 73 610 0.806 6.413 0.002

29 565 0.317 6.336 0.001 74 611 0.817 6.415 0.003

30 565 0.328 6.338 0.001 75 613 0.828 6.418 0.003

31 566 0.339 6.338 0.001 76 613 0.839 6.419 0.003

32 568 0.350 6.342 0.000 77 617 0.850 6.425 0.004

33 569 0.361 6.345 0.000 78 617 0.861 6.425 0.004

34 570 0.372 6.346 0.000 79 618 0.872 6.427 0.004

35 571 0.383 6.347 0.000 80 619 0.883 6.428 0.004

36 571 0.394 6.348 0.000 81 619 0.894 6.428 0.004

37 572 0.406 6.349 0.000 82 628 0.906 6.442 0.006

38 573 0.417 6.350 0.000 83 629 0.917 6.444 0.007

39 573 0.428 6.351 0.000 84 630 0.928 6.446 0.007

40 573 0.439 6.352 0.000 85 635 0.939 6.454 0.008

41 575 0.450 6.354 0.000 86 639 0.950 6.459 0.009

42 577 0.461 6.357 0.000 87 640 0.961 6.461 0.010

43 577 0.472 6.358 0.000 88 643 0.972 6.466 0.010

44 578 0.483 6.359 0.000 89 647 0.983 6.473 0.012

45 578 0.494 6.360 0.000 90 652 0.994 6.480 0.014

∑ 572.738 0.261

90 x 35 Finger Jointed Timber - Board Density

Analysis Method - AS/NZS 4063.2 (2010) Method 1

Test Data Calculated Parameters

ŷ 6.364

Test Data Calculated Parameters

Sy 0.054
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Test Data Lognormal Distribution
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Appendix J.3 – Modelling and Assessment Example – Levering 

 

 

  

10.8 m ŷ = -0.012 ŷ = 6.364

0.25 Sy = 0.230 Sy = 0.054

Board 

Density

(kN.m) (kg/m3) -225 -180 -135 -90 -45 0 45 90 135 180 225

0.1% 0.486 686 1.269 1.294 1.318 1.342 1.367 1.391 1.380 1.368 1.357 1.345 1.334

0.5% 0.547 667 1.235 1.258 1.282 1.306 1.329 1.353 1.342 1.331 1.319 1.308 1.297

1.0% 0.579 658 1.218 1.241 1.265 1.288 1.311 1.335 1.324 1.313 1.302 1.291 1.280

5.0% 0.677 635 1.174 1.196 1.219 1.241 1.264 1.286 1.276 1.265 1.254 1.244 1.233

10.0% 0.736 622 1.151 1.173 1.195 1.217 1.239 1.261 1.251 1.240 1.230 1.220 1.209

15.0% 0.779 614 1.136 1.157 1.179 1.201 1.223 1.245 1.234 1.224 1.214 1.204 1.193

20.0% 0.814 608 1.124 1.145 1.167 1.188 1.210 1.232 1.221 1.211 1.201 1.191 1.181

25.0% 0.846 602 1.114 1.135 1.156 1.178 1.199 1.221 1.210 1.200 1.190 1.180 1.170

30.0% 0.876 597 1.105 1.126 1.147 1.168 1.189 1.211 1.201 1.191 1.181 1.171 1.161

35.0% 0.905 593 1.096 1.117 1.138 1.159 1.180 1.202 1.192 1.182 1.172 1.162 1.152

40.0% 0.932 588 1.089 1.109 1.130 1.151 1.172 1.193 1.183 1.173 1.163 1.154 1.144

45.0% 0.960 584 1.081 1.102 1.122 1.143 1.164 1.185 1.175 1.165 1.155 1.146 1.136

50.0% 0.988 580 1.074 1.094 1.115 1.135 1.156 1.177 1.167 1.157 1.148 1.138 1.128

55.0% 1.017 576 1.066 1.087 1.107 1.128 1.148 1.169 1.159 1.149 1.140 1.130 1.121

60.0% 1.048 573 1.059 1.079 1.100 1.120 1.140 1.161 1.151 1.141 1.132 1.122 1.113

65.0% 1.080 568 1.052 1.072 1.092 1.112 1.132 1.152 1.143 1.133 1.124 1.114 1.105

70.0% 1.115 564 1.044 1.064 1.084 1.104 1.124 1.144 1.134 1.125 1.115 1.106 1.097

75.0% 1.154 560 1.035 1.055 1.075 1.095 1.115 1.135 1.125 1.116 1.106 1.097 1.088

80.0% 1.199 555 1.026 1.045 1.065 1.085 1.105 1.124 1.115 1.106 1.096 1.087 1.078

85.0% 1.254 549 1.015 1.035 1.054 1.073 1.093 1.113 1.103 1.094 1.085 1.076 1.067

90.0% 1.327 541 1.002 1.021 1.040 1.059 1.079 1.098 1.089 1.080 1.071 1.062 1.053

95.0% 1.443 531 0.982 1.001 1.020 1.039 1.058 1.076 1.067 1.059 1.050 1.041 1.032

99.0% 1.687 512 0.947 0.965 0.983 1.001 1.019 1.037 1.029 1.020 1.012 1.003 0.995

99.5% 1.787 505 0.934 0.952 0.970 0.988 1.005 1.023 1.015 1.006 0.998 0.990 0.981

99.9% 2.011 491 0.908 0.926 0.943 0.960 0.978 0.995 0.987 0.979 0.971 0.962 0.954

61.47% 63.99% 66.42% 68.73% 70.94% 73.05% 72.07% 71.06% 70.04% 69.00% 67.93%

61.47% 63.99% 66.42% 68.73% 70.94% 73.05% 72.07% 71.06% 70.04% 69.00% 67.93%

37.78% 40.95% 44.11% 47.24% 50.33% 53.36% 51.93% 50.50% 49.06% 47.60% 46.15%

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

50.33% 47.24% 44.11% 40.95% 37.78%

53.36% 51.93% 50.50% 49.06% 47.60%

Prob.

FJ 

Capacity

ProbBREAK-M IN

ProbBREAK-M AX

ProbOA - M IN

ProbSTR

ProbC A P

ProbB R EA K

44.08%

50.49%

47.29%

Applied Stress (kN.m)

Location (mm from Max Moment Location)

ProbOA - M A X

ProbOA - A V G

90 x 35 Finger Jointed Timber - Assesment of Handling Loads

Technique - Levering

a/L =

FJ Capacity Board Density

Board Length, L =

0%

20%

40%

60%

80%

100%

0.0 0.5 1.0 1.5 2.0 2.5

P
ro

b
ab
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ty

Bending Moment (kN.m)

Current Location = Max + 225mm
FJ Capacity Applied Stress
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Appendix J.4 – Modelling and Assessment Example – 2 Man Lift 

 

 

 

  

12.0 m ŷ = -0.012 ŷ = 6.364

Sy = 0.230 Sy = 0.054

Board 

Density

(kN.m) (kg/m3) -225 -180 -135 -90 -45 0 45 90 135 180 225

0.1% 0.486 686 0.381 0.381 0.382 0.382 0.382 0.382 0.382 0.382 0.382 0.381 0.381

0.5% 0.547 667 0.371 0.371 0.371 0.371 0.371 0.371 0.371 0.371 0.371 0.371 0.371

1.0% 0.579 658 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366

5.0% 0.677 635 0.352 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.353 0.352

10.0% 0.736 622 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346

15.0% 0.779 614 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341

20.0% 0.814 608 0.337 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.338 0.337

25.0% 0.846 602 0.334 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.334

30.0% 0.876 597 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332

35.0% 0.905 593 0.329 0.329 0.329 0.330 0.330 0.330 0.330 0.330 0.329 0.329 0.329

40.0% 0.932 588 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327 0.327

45.0% 0.960 584 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325

50.0% 0.988 580 0.322 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.323 0.322

55.0% 1.017 576 0.320 0.320 0.320 0.321 0.321 0.321 0.321 0.321 0.320 0.320 0.320

60.0% 1.048 573 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318 0.318

65.0% 1.080 568 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316 0.316

70.0% 1.115 564 0.313 0.314 0.314 0.314 0.314 0.314 0.314 0.314 0.314 0.314 0.313

75.0% 1.154 560 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311 0.311

80.0% 1.199 555 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308

85.0% 1.254 549 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305

90.0% 1.327 541 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301 0.301

95.0% 1.443 531 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295

99.0% 1.687 512 0.284 0.284 0.284 0.285 0.285 0.285 0.285 0.285 0.284 0.284 0.284

99.5% 1.787 505 0.280 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.280

99.9% 2.011 491 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00%

0.0000001650%

ProbOA - M A X 0.0000001664%

ProbOA - A V G 0.0000001657%

ProbOA - M IN

ProbSTR

ProbC A P

ProbB R EA K

ProbBREAK-M IN

ProbBREAK-M AX

Board Length, L =

Prob.

FJ 

Capacity

Applied Stress (kN.m)

Location (mm from Max Moment Location)

90 x 35 Finger Jointed Timber - Assesment of Handling Loads

Technique - 2-Man Lift FJ Capacity Board Density

0%

20%

40%
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80%

100%
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Current Location = Max + 225mm
FJ Capacity Applied Stress
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Appendix J.5 – Modelling and Assessment Example – Fork Lift 

 

 

  

12.0 m ŷ = -0.012 ŷ = 6.364

Sy = 0.230 Sy = 0.054

Board 

Density

(kN.m) (kg/m3) -225 -180 -135 -90 -45 0 45 90 135 180 225

0.1% 0.486 686 0.268 0.273 0.277 0.282 0.287 0.292 0.292 0.291 0.290 0.290 0.289

0.5% 0.547 667 0.260 0.265 0.270 0.275 0.279 0.284 0.284 0.283 0.282 0.282 0.281

1.0% 0.579 658 0.257 0.261 0.266 0.271 0.276 0.280 0.280 0.279 0.279 0.278 0.277

5.0% 0.677 635 0.248 0.252 0.257 0.261 0.266 0.270 0.270 0.269 0.268 0.268 0.267

10.0% 0.736 622 0.243 0.247 0.252 0.256 0.260 0.265 0.264 0.264 0.263 0.263 0.262

15.0% 0.779 614 0.240 0.244 0.248 0.253 0.257 0.261 0.261 0.260 0.260 0.259 0.259

20.0% 0.814 608 0.237 0.241 0.246 0.250 0.254 0.259 0.258 0.258 0.257 0.256 0.256

25.0% 0.846 602 0.235 0.239 0.243 0.248 0.252 0.256 0.256 0.255 0.255 0.254 0.254

30.0% 0.876 597 0.233 0.237 0.241 0.246 0.250 0.254 0.254 0.253 0.253 0.252 0.252

35.0% 0.905 593 0.231 0.235 0.240 0.244 0.248 0.252 0.252 0.251 0.251 0.250 0.250

40.0% 0.932 588 0.230 0.234 0.238 0.242 0.246 0.251 0.250 0.249 0.249 0.248 0.248

45.0% 0.960 584 0.228 0.232 0.236 0.240 0.245 0.249 0.248 0.248 0.247 0.247 0.246

50.0% 0.988 580 0.226 0.231 0.235 0.239 0.243 0.247 0.247 0.246 0.246 0.245 0.245

55.0% 1.017 576 0.225 0.229 0.233 0.237 0.241 0.246 0.245 0.244 0.244 0.243 0.243

60.0% 1.048 573 0.223 0.227 0.231 0.236 0.240 0.244 0.243 0.243 0.242 0.242 0.241

65.0% 1.080 568 0.222 0.226 0.230 0.234 0.238 0.242 0.241 0.241 0.240 0.240 0.240

70.0% 1.115 564 0.220 0.224 0.228 0.232 0.236 0.240 0.240 0.239 0.239 0.238 0.238

75.0% 1.154 560 0.218 0.222 0.226 0.230 0.234 0.238 0.238 0.237 0.237 0.236 0.236

80.0% 1.199 555 0.216 0.220 0.224 0.228 0.232 0.236 0.236 0.235 0.235 0.234 0.234

85.0% 1.254 549 0.214 0.218 0.222 0.226 0.230 0.234 0.233 0.233 0.232 0.232 0.231

90.0% 1.327 541 0.211 0.215 0.219 0.223 0.227 0.231 0.230 0.230 0.229 0.229 0.228

95.0% 1.443 531 0.207 0.211 0.215 0.218 0.222 0.226 0.226 0.225 0.225 0.224 0.224

99.0% 1.687 512 0.200 0.203 0.207 0.210 0.214 0.218 0.217 0.217 0.216 0.216 0.216

99.5% 1.787 505 0.197 0.200 0.204 0.208 0.211 0.215 0.214 0.214 0.214 0.213 0.213

99.9% 2.011 491 0.192 0.195 0.198 0.202 0.206 0.209 0.209 0.208 0.208 0.207 0.207

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00%

0.0000000000063%

ProbOA - M A X 0.0000000000245%

ProbOA - A V G 0.0000000000154%

ProbOA - M IN

ProbSTR

ProbC A P

ProbB R EA K

ProbBREAK-M IN

ProbBREAK-M AX

Board Length, L =

Prob.

FJ 

Capacity

Applied Stress (kN.m)

Location (mm from Max Moment Location)

90 x 35 Finger Jointed Timber - Assesment of Handling Loads

Technique - Fork Lift FJ Capacity Board Density

0%

20%

40%

60%

80%

100%
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Bending Moment (kN.m)

Current Location = Max + 225mm
FJ Capacity Applied Stress
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Appendix K.1 – Edgewise Finger Joint Capacity 

 

 

  

Depth     

(mm)

Breadth       

(mm)

Length     

(mm)

Test Span 

(mm)

90 35 2600 2320

Density
Failure       

Load

Failure 

Location

Joint    

Capacity

(kg/m³) (kg) (mm) (kN.m)

1 526 385 Finger Joint 0 2.19

2 593 311 Finger Joint 0 1.77

3 611 390 Finger Joint 0 2.22

4 587 312 Finger Joint 0 1.78

5 627 320 Finger Joint 570 0.93

6 556 288 Finger Joint 0 1.64

7 559 365 Finger Joint 0 2.08

8 593 432 Finger Joint 0 2.46

9 574 338 Finger Joint 0 1.92

10 619 346 Finger Joint 0 1.97

11 569 256 Finger Joint 0 1.46

12 582 238 Finger Joint 0 1.35

13 546 218 Finger Joint 0 1.24

14 575 236 Finger Joint 0 1.34

15 553 323 Finger Joint 0 1.84

16 599 344 Finger Joint 0 1.96

17 637 342 Finger Joint 0 1.95

18 605 304 Finger Joint 0 1.73

19 546 398 Finger Joint 0 2.26

20 582 362 Finger Joint 0 2.06

Sample No.
Failure 

Source

90 x 35 Finger Jointed Timber - Edgewise Finger Joint Testing

Test Equipment - Hyne and Son Tuan Test Rig

Test Operator - Tony Dakin

Sample Details

Test Data
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Rank fi pi ln(fi) (ln(fi)-ŷ)²

1 0.93 0.025 -0.077 0.414

2 1.24 0.075 0.215 0.123

3 1.34 0.125 0.295 0.074

4 1.35 0.175 0.303 0.069

5 1.46 0.225 0.376 0.036

6 1.64 0.275 0.494 0.005

7 1.73 0.325 0.548 0.000

8 1.77 0.375 0.571 0.000

9 1.78 0.425 0.574 0.000

10 1.84 0.475 0.609 0.002

11 1.92 0.525 0.654 0.008

12 1.95 0.575 0.666 0.010

13 1.96 0.625 0.672 0.011

14 1.97 0.675 0.677 0.012

15 2.06 0.725 0.723 0.024 =

16 2.08 0.775 0.731 0.027

17 2.19 0.825 0.784 0.047

18 2.22 0.875 0.797 0.053 =

19 2.26 0.925 0.817 0.063

20 2.46 0.975 0.899 0.111

∑ 11.328 1.090

Sy 0.240

90 x 35 Finger Jointed Timber - Edgewise Finger Joint Testing

Analysis Method - AS/NZS 4063.2 (2010) Method 1

Test Data Calculated Parameters

ŷ 0.566
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40%
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80%
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Joint Capacity, fi (MPa)

Test Data Lognormal Distribution
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Appendix K.2 – Modelling and Assessment Example – Standard Truss 

Overhang 

 

 

  

0.9 m ŷ = 0.566 ŷ = 81.9

0.9 m Sy = 0.240 Sy = 15.02

Point 

Load

(kN.m) kg -225 -180 -135 -90 -45 0 45 90 135 180 225

0.1% 0.840 128 0.850 0.906 0.963 1.020 1.076 1.133 1.112 1.090 1.069 1.048 1.027

0.5% 0.951 121 0.799 0.852 0.905 0.958 1.011 1.065 1.045 1.025 1.005 0.985 0.965

1.0% 1.009 117 0.774 0.825 0.877 0.928 0.980 1.032 1.012 0.993 0.974 0.954 0.935

5.0% 1.188 107 0.706 0.753 0.800 0.847 0.894 0.941 0.924 0.906 0.888 0.871 0.853

10.0% 1.296 101 0.670 0.714 0.759 0.804 0.848 0.893 0.876 0.860 0.843 0.826 0.809

15.0% 1.374 97 0.645 0.688 0.731 0.774 0.818 0.861 0.844 0.828 0.812 0.796 0.780

20.0% 1.440 95 0.626 0.668 0.709 0.751 0.793 0.835 0.819 0.803 0.788 0.772 0.756

25.0% 1.499 92 0.609 0.650 0.691 0.731 0.772 0.813 0.797 0.782 0.767 0.752 0.736

30.0% 1.554 90 0.594 0.634 0.674 0.713 0.753 0.793 0.778 0.763 0.748 0.733 0.718

35.0% 1.607 88 0.581 0.619 0.658 0.697 0.735 0.774 0.760 0.745 0.731 0.716 0.702

40.0% 1.658 86 0.568 0.605 0.643 0.681 0.719 0.757 0.743 0.728 0.714 0.700 0.686

45.0% 1.710 84 0.555 0.592 0.629 0.666 0.703 0.740 0.726 0.712 0.698 0.684 0.670

50.0% 1.762 82 0.542 0.578 0.615 0.651 0.687 0.723 0.710 0.696 0.682 0.669 0.655

55.0% 1.816 80 0.530 0.565 0.600 0.636 0.671 0.706 0.693 0.680 0.667 0.653 0.640

60.0% 1.872 78 0.517 0.552 0.586 0.621 0.655 0.689 0.677 0.664 0.651 0.638 0.625

65.0% 1.932 76 0.504 0.538 0.571 0.605 0.638 0.672 0.659 0.647 0.634 0.622 0.609

70.0% 1.998 74 0.490 0.523 0.556 0.588 0.621 0.654 0.641 0.629 0.617 0.605 0.592

75.0% 2.071 72 0.475 0.507 0.539 0.570 0.602 0.634 0.622 0.610 0.598 0.586 0.574

80.0% 2.155 69 0.459 0.489 0.520 0.550 0.581 0.611 0.600 0.589 0.577 0.566 0.554

85.0% 2.258 66 0.439 0.469 0.498 0.527 0.556 0.586 0.575 0.564 0.553 0.542 0.531

90.0% 2.395 63 0.415 0.443 0.470 0.498 0.525 0.553 0.543 0.532 0.522 0.512 0.501

95.0% 2.613 57 0.379 0.404 0.429 0.454 0.480 0.505 0.496 0.486 0.477 0.467 0.458

99.0% 3.076 47 0.311 0.332 0.352 0.373 0.394 0.415 0.407 0.399 0.391 0.383 0.376

99.5% 3.266 43 0.286 0.305 0.324 0.343 0.362 0.382 0.374 0.367 0.360 0.353 0.346

99.9% 3.694 35 0.235 0.251 0.266 0.282 0.298 0.313 0.307 0.302 0.296 0.290 0.284

0.11% 0.20% 0.34% 0.53% 0.81% 1.17% 1.02% 0.89% 0.77% 0.66% 0.56%

0.11% 0.20% 0.34% 0.53% 0.81% 1.17% 1.02% 0.89% 0.77% 0.66% 0.56%

0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

0.01% 0.00% 0.00% 0.00% 0.00%

0.01% 0.01% 0.01% 0.01% 0.00%

0.0022%

ProbOA - M A X 0.0085%

ProbOA - A V G 0.0053%

ProbOA - M IN

ProbSTR

ProbC A P

ProbB R EA K

ProbBREAK-M IN

ProbBREAK-M AX

Eave Width, WE =

O/hang Length, L

Prob.

FJ 

Capacity

Applied Stress (kN.m)

Location (mm from Max Moment Location)

90 x 35 Finger Jointed Timber - Assesment of Erection Loads

Technique - O/hang - Std FJ Capacity Builders Weight
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20%

40%
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80%

100%
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FJ Capacity Applied Stress
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Appendix K.3 – Modelling and Assessment Example – Hip Truss 

Overhang 

 

 

  

1.05 m ŷ = 0.566 ŷ = 81.9

1.485 m Sy = 0.240 Sy = 15.02

Point 

Load

(kN.m) kg -225 -180 -135 -90 -45 0 45 90 135 180 225

0.1% 0.840 128 1.586 1.643 1.699 1.756 1.813 1.869 1.834 1.799 1.764 1.729 1.694

0.5% 0.951 121 1.490 1.544 1.597 1.650 1.703 1.757 1.724 1.691 1.658 1.625 1.592

1.0% 1.009 117 1.444 1.496 1.547 1.599 1.650 1.702 1.670 1.638 1.606 1.574 1.542

5.0% 1.188 107 1.318 1.365 1.412 1.459 1.506 1.553 1.524 1.495 1.466 1.436 1.407

10.0% 1.296 101 1.250 1.295 1.339 1.384 1.429 1.473 1.446 1.418 1.391 1.363 1.335

15.0% 1.374 97 1.205 1.248 1.291 1.334 1.377 1.420 1.393 1.367 1.340 1.313 1.287

20.0% 1.440 95 1.169 1.210 1.252 1.294 1.335 1.377 1.351 1.326 1.300 1.274 1.248

25.0% 1.499 92 1.137 1.178 1.219 1.259 1.300 1.341 1.315 1.290 1.265 1.240 1.215

30.0% 1.554 90 1.110 1.149 1.189 1.229 1.268 1.308 1.283 1.259 1.234 1.210 1.185

35.0% 1.607 88 1.084 1.123 1.161 1.200 1.239 1.277 1.253 1.229 1.206 1.182 1.158

40.0% 1.658 86 1.059 1.097 1.135 1.173 1.211 1.248 1.225 1.202 1.178 1.155 1.131

45.0% 1.710 84 1.036 1.073 1.110 1.147 1.184 1.221 1.198 1.175 1.152 1.129 1.106

50.0% 1.762 82 1.012 1.048 1.085 1.121 1.157 1.193 1.171 1.148 1.126 1.104 1.081

55.0% 1.816 80 0.989 1.024 1.060 1.095 1.130 1.166 1.144 1.122 1.100 1.078 1.056

60.0% 1.872 78 0.965 1.000 1.034 1.069 1.103 1.138 1.116 1.095 1.074 1.052 1.031

65.0% 1.932 76 0.941 0.974 1.008 1.042 1.075 1.109 1.088 1.067 1.046 1.026 1.005

70.0% 1.998 74 0.915 0.948 0.980 1.013 1.046 1.078 1.058 1.038 1.018 0.997 0.977

75.0% 2.071 72 0.887 0.919 0.950 0.982 1.014 1.045 1.026 1.006 0.987 0.967 0.947

80.0% 2.155 69 0.856 0.887 0.917 0.948 0.978 1.009 0.990 0.971 0.952 0.933 0.914

85.0% 2.258 66 0.820 0.849 0.878 0.908 0.937 0.966 0.948 0.930 0.912 0.894 0.876

90.0% 2.395 63 0.774 0.802 0.830 0.857 0.885 0.913 0.896 0.878 0.861 0.844 0.827

95.0% 2.613 57 0.707 0.732 0.757 0.783 0.808 0.833 0.818 0.802 0.786 0.771 0.755

99.0% 3.076 47 0.580 0.601 0.622 0.643 0.663 0.684 0.671 0.658 0.646 0.633 0.620

99.5% 3.266 43 0.534 0.553 0.572 0.591 0.610 0.629 0.618 0.606 0.594 0.582 0.570

99.9% 3.694 35 0.439 0.454 0.470 0.486 0.501 0.517 0.507 0.498 0.488 0.478 0.468

8.46% 9.96% 11.57% 13.28% 15.10% 17.00% 15.81% 14.66% 13.54% 12.46% 11.41%

8.46% 9.96% 11.57% 13.28% 15.10% 17.00% 15.81% 14.66% 13.54% 12.46% 11.41%

0.72% 0.99% 1.34% 1.76% 2.28% 2.89% 2.50% 2.15% 1.83% 1.55% 1.30%

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

2.28% 1.76% 1.34% 0.99% 0.72%

2.89% 2.50% 2.15% 1.83% 1.55%

1.42%

ProbOA - M A X 2.18%

ProbOA - A V G 1.80%

ProbOA - M IN

ProbSTR

ProbC A P

ProbB R EA K

ProbBREAK-M IN

ProbBREAK-M AX

Eave Width, WE =

O/hang Length, L

Prob.

FJ 

Capacity

Applied Stress (kN.m)

Location (mm from Max Moment Location)

90 x 35 Finger Jointed Timber - Assesment of Erection Loads

Technique - O/hang - Hip FJ Capacity Builders Weight

0%

20%

40%

60%

80%

100%

0.0 1.0 2.0 3.0 4.0
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Bending Moment (kN.m)

Current Location = Max + 225mm
FJ Capacity Applied Stress
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Appendix K.4 – Modelling and Assessment Example – Panel Mid-Span 

 

 

 

4.0 m ŷ = 0.566 ŷ = 81.9

Sy = 0.240 Sy = 15.02

Point 

Load

(kN.m) kg -225 -180 -135 -90 -45 0 45 90 135 180 225

0.1% 0.840 128 0.894 0.916 0.939 0.962 0.984 1.007 0.973 0.939 0.905 0.871 0.837

0.5% 0.951 121 0.840 0.861 0.883 0.904 0.925 0.946 0.914 0.883 0.851 0.819 0.787

1.0% 1.009 117 0.814 0.834 0.855 0.876 0.896 0.917 0.886 0.855 0.824 0.793 0.762

5.0% 1.188 107 0.743 0.761 0.780 0.799 0.818 0.837 0.808 0.780 0.752 0.724 0.695

10.0% 1.296 101 0.705 0.722 0.740 0.758 0.776 0.794 0.767 0.740 0.713 0.687 0.660

15.0% 1.374 97 0.679 0.696 0.713 0.731 0.748 0.765 0.739 0.713 0.687 0.662 0.636

20.0% 1.440 95 0.658 0.675 0.692 0.709 0.725 0.742 0.717 0.692 0.667 0.642 0.617

25.0% 1.499 92 0.641 0.657 0.674 0.690 0.706 0.722 0.698 0.674 0.649 0.625 0.600

30.0% 1.554 90 0.625 0.641 0.657 0.673 0.689 0.705 0.681 0.657 0.633 0.609 0.586

35.0% 1.607 88 0.611 0.626 0.642 0.657 0.673 0.688 0.665 0.642 0.618 0.595 0.572

40.0% 1.658 86 0.597 0.612 0.627 0.642 0.657 0.673 0.650 0.627 0.605 0.582 0.559

45.0% 1.710 84 0.584 0.598 0.613 0.628 0.643 0.658 0.635 0.613 0.591 0.569 0.547

50.0% 1.762 82 0.570 0.585 0.599 0.614 0.628 0.643 0.621 0.599 0.578 0.556 0.534

55.0% 1.816 80 0.557 0.571 0.586 0.600 0.614 0.628 0.607 0.586 0.564 0.543 0.522

60.0% 1.872 78 0.544 0.558 0.572 0.585 0.599 0.613 0.592 0.572 0.551 0.530 0.509

65.0% 1.932 76 0.530 0.544 0.557 0.570 0.584 0.597 0.577 0.557 0.537 0.517 0.497

70.0% 1.998 74 0.516 0.529 0.542 0.555 0.568 0.581 0.561 0.542 0.522 0.503 0.483

75.0% 2.071 72 0.500 0.513 0.525 0.538 0.551 0.563 0.544 0.525 0.506 0.487 0.468

80.0% 2.155 69 0.482 0.495 0.507 0.519 0.531 0.544 0.525 0.507 0.489 0.470 0.452

85.0% 2.258 66 0.462 0.474 0.485 0.497 0.509 0.521 0.503 0.485 0.468 0.450 0.433

90.0% 2.395 63 0.436 0.447 0.458 0.470 0.481 0.492 0.475 0.458 0.442 0.425 0.409

95.0% 2.613 57 0.398 0.408 0.419 0.429 0.439 0.449 0.434 0.419 0.403 0.388 0.373

99.0% 3.076 47 0.327 0.335 0.344 0.352 0.360 0.369 0.356 0.344 0.331 0.319 0.306

99.5% 3.266 43 0.301 0.309 0.316 0.324 0.331 0.339 0.328 0.316 0.305 0.293 0.282

99.9% 3.694 35 0.247 0.253 0.260 0.266 0.272 0.278 0.269 0.260 0.250 0.241 0.231

0.18% 0.22% 0.27% 0.33% 0.40% 0.48% 0.37% 0.27% 0.20% 0.14% 0.10%

0.18% 0.22% 0.27% 0.33% 0.40% 0.48% 0.37% 0.27% 0.20% 0.14% 0.10%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00%

0.00055%

ProbOA - M A X 0.00125%

ProbOA - A V G 0.00090%

ProbOA - M IN

ProbSTR

ProbC A P

ProbB R EA K

ProbBREAK-M IN

ProbBREAK-M AX

Panel Span, L

Prob.

FJ 

Capacity

Applied Stress (kN.m)

Location (mm from Max Moment Location)

90 x 35 Finger Jointed Timber - Assesment of Erection Loads

Technique - Mid Panel FJ Capacity Builders Weight
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40%
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80%

100%
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Bending Moment (kN.m)

Current Location = Max + 225mm
FJ Capacity Applied Stress


