
University of Southern Queensland

Faculty of Engineering & Surveying

Real Time Implementation of Obstacle

Avoidance for an Autonomous Mobile Robot

Using Monocular Computer Vision

A dissertation submitted by

Iain Brookshaw

in fulfilment of the requirements of

ENG4112, Research Project

towards the degree of

Bachelor of Mechatronic Engineering

Submitted: October, 2011





Abstract

For autonomous robotic motion, it is essential for the mobile machine to be able

to judge its position relative to potential obstacles. This implies the ability to

identify potential obstacles, study their approach and take appropriate action

when necessary to avoid collision. In this age of cheap and available digital

cameras and powerful computers, it is desirable to achieve this with a single

digital camera as the sensor.

The digital camera has the advantages that it is cheap, easily installed, well

understood, passive and physically small. When coupled with a small, powerful

on-board computer it has the potential to create a effective obstacle avoidance

system.

This investigation was attempt to create just such a system. A series of methods

dealing with identifying, tracking and avoiding obstacles were be investigated,

and the results of their implementation discussed. Alternative methods were be

analysed and weighed. It was the initial intention to produce a program that

could identify parts of the image as “obstacles”, determine the approach of these

obstacles and use this information to direct a small mobile, autonomous machine.

To achieve this a region based segmentation approach was used to identify the

boundaries and extents of obstacles, while several Looming based methods were

employed to judge object range and approach, specifically Looming through blur

and Looming through area. Also considered were the ways and means of creating



ii

frame to frame correlation of objects based on region geometry. Unfortunately,

the final result was too inconsistent to enable true avoidance to be implemented.

The inconsistencies in the results were largely due to small errors in each section

compounding as the program evolved. However, a wide range of tests on each

of the component parts of the system illustrated that the concepts and methods

selected are viable individually. While there were problems with consistency when

the program is run, it was clear from the results that the individual components

could be made to function if additional time was spent correcting errors.

The end conclusion was that, although the methods discussed were clearly viable,

they require further experimentation and development before they can be fully

implemented



University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying, and the staff of the University of Southern Queensland, do not

accept any responsibility for the truth, accuracy or completeness of material

contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at

the risk of the Council of the University of Southern Queensland, its Faculty of

Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitled “Research

Project” is to contribute to the overall education within the student’s chosen

degree program. This document, the associated hardware, software, drawings,

and other material set out in the associated appendices should not be used for

any other purpose: if they are so used, it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying



Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and

conclusions set out in this dissertation are entirely my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted

for assessment in any other course or institution, except where specifically stated.

Iain Brookshaw

0050086292

Signature

Date



Acknowledgments

This thesis was typeset using the LATEX 2ε typesetting program.

The author would like to thank Dr. Tobias Low for his clear guidance, Dr. Leigh

Brookshaw, for his generous assistance, Mr. Erin Heaton for his longstanding

support and finally, all those poor souls who showed great patience whilst the

author excitedly showed off the latest results.

Iain Brookshaw

University of Southern Queensland

October 2011





Contents

Abstract i

Acknowledgments v

List of Figures xiii

Chapter 1 Introduction 1

1.1 Computer Vision and Mobile Robots . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Background, Vision and Image Processing . . . . . . . . . . . . . 4

1.3.1 Image Acquisition and Processing . . . . . . . . . . . . . . 4

1.3.2 Software and Libraries . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Hardware Preconceptions . . . . . . . . . . . . . . . . . . . 6

1.4 Chapter Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Image Segmentation and Obstacle Identification 9



viii CONTENTS

2.1 Why Segment an Image? . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Segmentation Methods . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Region Growing . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Split and Merge Techniques . . . . . . . . . . . . . . . . . 20

2.3 Single Pass Split Merge Segmentation . . . . . . . . . . . . . . . . 21

2.3.1 Merging Algorithm . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Splitting Algorithm . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Image Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Noise Removal and Image Smoothing . . . . . . . . . . . . 31

2.4.2 Finding a Tolerance . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Potential Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3 Distance and Approach 35

3.1 Methods of Distance Estimation . . . . . . . . . . . . . . . . . . . 38

3.2 Looming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



CONTENTS ix

3.2.3 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Blur Calculation . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Looming Calculation . . . . . . . . . . . . . . . . . . . . . 55

3.4 Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Approach Categorisation . . . . . . . . . . . . . . . . . . . 56

3.4.2 Direction Decisions . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 4 Tracking and Correlation 59

4.1 Frame to Frame Correlation . . . . . . . . . . . . . . . . . . . . . 61

4.2 Point or Feature Tracking . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Region Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Chosen Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Centroid Calculation . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Data Recording . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Centroid Matching . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 5 Results and Discussion 73

5.1 Ideal Test Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



x CONTENTS

5.2 Segmentation Verification . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Effects of Pre-Processing Filtering . . . . . . . . . . . . . . 78

5.3 Centroid Verification . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Tracking Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Blur Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Looming Computation . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6.1 Area Looming . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6.2 Blur Looming . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7.3 Looming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 6 Conclusions 103

6.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Looming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Completion of Objectives . . . . . . . . . . . . . . . . . . . . . . . 106



CONTENTS xi

Chapter 7 Future Work 109

7.1 Obstacle Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Tracking and Correspondence . . . . . . . . . . . . . . . . . . . . 112

7.3 Looming, Approach and Avoidance . . . . . . . . . . . . . . . . . 113

7.4 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References 117

Appendix A Original Specifications 121

A.1 Research Specification . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix B Program Listings 125

B.1 Final Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.1.1 Main Driver Function . . . . . . . . . . . . . . . . . . . . . 127

B.1.2 Segmentation Functions . . . . . . . . . . . . . . . . . . . 131

B.1.3 Centroid Finding Functions . . . . . . . . . . . . . . . . . 146

B.1.4 Tracking Function . . . . . . . . . . . . . . . . . . . . . . 153

B.1.5 Looming Function . . . . . . . . . . . . . . . . . . . . . . 157

B.2 Testing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2.1 Segmentation Test Program . . . . . . . . . . . . . . . . . 158

B.2.2 Tracking Test Program . . . . . . . . . . . . . . . . . . . . 160



xii CONTENTS

B.2.3 Looming Test Program . . . . . . . . . . . . . . . . . . . . 165



List of Figures

2.1 Illustration of the pixels in an image. Counter clockwise from top:

the original image, a close up illustrating the graduations of pixels

and a extreme close up, illustrating the graduation of pixels in an

object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Illustration the single pass split and merge operation, showing the

four pixel group and the previously labeled pixels. . . . . . . . . . 20

2.3 The merging algorithm as implemented . . . . . . . . . . . . . . . 23

2.4 The orientation of the pixels in the four pixel block. This orienta-

tion is also used in the final program . . . . . . . . . . . . . . . . 24

2.5 The original splitting algorithm, which was not implemented suc-

cessfully . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 The various combinations possible with a four by four pixel block.

Note that viii and ix are the same. . . . . . . . . . . . . . . . . . 28

2.7 The final splitting algorithm, where splitting was based on patterns

in order of precedence . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 illustration of the difference between range and depth. . . . . . . . 37



xiv LIST OF FIGURES

3.2 Stereo vision, using one camera and the frame difference to find

depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Graphical depiction of Looming using projected area. . . . . . . . 41

3.4 The Gaussian curve, showing standard deviation (σ) and the true

radius of blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Plot of various step functions representing the region edge with

varying degrees of ideal blur. f(x) is the original step, with b(x)

being the camera’s blurred edge and ba(x) and bb(x) being the

re-blurred edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Plot of Rmax values recovered in Note the symmetrical nature of

the plot around the region boundary. . . . . . . . . . . . . . . . . 49

3.7 Illustration of finding the four points of a region for blur compu-

tation. The left hand image shows the case of the centroid being

in the region. The right hand image is for the centroid being out

of the region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Illustration of the difficulties of tracking for non-orthogonal move-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 the recursion algorithm as used by the tracking program . . . . . 68

5.1 Original checkerboard test image. 600 by 600 pixels . . . . . . . . 75



LIST OF FIGURES xv

5.2 Illustration of segmentation of a complex image. On the left, the

original image, on the right the segmented output. n.b. this image

was used as a test image in (Hu & de Haan 2006) (among others)

and was repeated as a test image here as the author found its prove-

nance rather amusing. In actuality any reasonably uncomplicated

image would do. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Illustration of the differences between two segmented images. The

top set is 2% smaller than the bottom set. Notice the region dis-

crepancies, especially in the foreground. . . . . . . . . . . . . . . . 79

5.4 The test image, showing the successful finding of the centroids. . . 81

5.5 The test more complex test image image, again showing the suc-

cessful finding of the centroids. . . . . . . . . . . . . . . . . . . . . 81

5.6 Checkerboard test image distorted for tracking. 600 by 600 pixels 82

5.7 Distorted checkerboard showing tracked centroids. The grey line

from the centroids in the right hand figure shows the computed

position of the centroids in the previous (left hand) frame. . . . . 82

5.8 The results of tracking the segmented images in figure 5.3. The

line from each centroid indicates the calculated position of that

region in the previous frame. . . . . . . . . . . . . . . . . . . . . . 85

5.9 The ideal blur test image. It is simply a two square checkerboard

400 by 200 pixels. Note the grey values used to colour the squares

are not black and white. . . . . . . . . . . . . . . . . . . . . . . . 85

5.10 The recovered blur radius for the ideal test image with initial radius

of 1 and a re-blur σ values of 4 and 7. . . . . . . . . . . . . . . . . 89



xvi LIST OF FIGURES

5.11 The step functions for the blurred edges showing the initial recov-

ered blur and the two re-blurred edges. Re-blur σ values of 4 and

7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.12 Maximum recovered blur difference for the ideal test image with

initial radius of 1 and a re-blur σ values of 4 and 7. . . . . . . . . 91

5.13 Multi-coloured test image for general blur recovery tests. . . . . . 92

5.14 The area Looming test images. Not the black area in the left image

is 64% smaller than the right. . . . . . . . . . . . . . . . . . . . . 94



Chapter 1

Introduction





1.1 Computer Vision and Mobile Robots 3

1.1 Computer Vision and Mobile Robots

Giving functioning robots the ability to “see” and understand their environment

through complex anthropomorphic optical sensors is a long sought after goal in

robotics. Such sensors have the distinct advantage of being passive (in that they

do not give off any signal, they simply receive data) and are able to obtain much

information about their environment from relatively simple sources. Currently,

with the development of sophisticated, inexpensive web cams such systems are

practicable for minimal cost.

In order to implement a system that can use such vision to avoid obstacles, much

information must be recovered from the digital image. The information that a

human obtains without conscious effort (relative size of objects, their position

and their very extent) must be laboriously recovered from the image data. What

follows is chiefly concerned with recovering information that could then be used

to guide a hypothetical autonomous machine.

The critical information for the avoidance of obstacles is: the extent of objects in

the image, their correspondence to objects in previous images and their position

relative to the viewer. This is fairly obvious and the reader can do all of these

things without effort, however it can be a laborious process to recover these

things from the image flow. Thus the minimal form of any machine attempting

to navigate via vision is a camera, a computer (of significant processing speed)

and a mechanism for controlling the drive.

1.2 Objectives

The initial project objectives were to design a means for an autonomous mobile

robot to avoid unknown obstacles. It was intended that this be accomplished in

real time with the focus on an small scale autonomous platform.

Iain Brookshaw



4 Introduction

The final programs were intended to separate an object from its surroundings,

make an estimate of its approach and use this data to formulate a response for

the machine. This was meant to be implemented with only one camera.

Time permitting, these were intended to be extended to include true navigation,

as opposed to simple avoidance.

In the event, these were found to be overly simplistic objectives. Other unforeseen

problems extended the project in some directions and curtailed it in others. For

a detailed list of initial specifications see Appendix A.1.

1.3 Background, Vision and Image Processing

1.3.1 Image Acquisition and Processing

Machine vision has a great many meanings and applications. All, to some degree,

revolve around interpreting the response of photo-sensitive electronics to changing

light conditions. In this case a simple web-cam type digital camera was used to

obtain a detailed picture of the immediate surroundings. It was intended at all

stages of the project that the final results would be obtained from inexpensive

cameras of this sort.

Once the image has been obtained from the camera, a variety of filters and

algorithms were applied to obtain information, such as object location, position

and approach. All of these filters involved running over the image (frequently

pixel by pixel) and recording data.

A digital image, the output of the camera, is simply an array of numbers con-

taining the values for brightness at that point, as interpreted by the camera. 1

1The basics of a digital image can be obtained from any text on the subject. The information

recounted here is an amalgamation of the background given in (Sonka, Hlavac & Boyle 1994),

Iain Brookshaw



1.3 Background, Vision and Image Processing 5

Add enough elements to this matrix and an image of recognisable complexity is

created. This image could be colour or gray-scale. In the former, the matrix is

three dimensional with several values or channels (usually Red, Green, Blue and

alpha or transparency) for each pixel or point in the image. It is the combination

of these values that comprises the “colours” one sees. By contrast the latter ar-

rangement has only one number per pixel, a integer of value 0 to 255 (in a colour

image data is also stored in integers in this range). This means that there is only

shadings of light to dark for each pixel (usually 255 is fully white and 0 is fully

black). The reason for this range is that it enables one byte, 8 bits to be used

for every pixel (28 = 256, hence 256 is the maximum integer that can be stored

in an 8 byte space). For simplicity, single channel gray-scale images were used

throughout this project. It was not felt that colour would give any noticeable

advantage.

The key point from all this description, is that the image fundamentally remains

an array of integer points from 0 to 255, and as such can be treated with numerical

approaches like any other array of data.

1.3.2 Software and Libraries

To implement any algorithm in the computer vision field it is necessary to first

select the programming environment. In this case the selection was governed by

two key constraints, speed and ease of use. As the focus was real time applications,

the program execution must be rapid in the extreme. This immediately ruled out

scripting languages such as Matlab (although Matlab was used in very early

stages as a familiar environment in which to test ideas, the code developed was

very limited and is not included). Furthermore, the programing language needed

to be simple to learn and debug, with a wide range of support and documentation

(when the project began the author had familiarity with Matlab only) as it was

(Jain, Kasturi & Schunck 1995), (Davies 1997) and (Bradski & Kaehler 2008) as well as other

sources.

Iain Brookshaw



6 Introduction

anticipated that no time could be spared for programing errors brought on by

ignorance.

Considering these factors and soliciting advice from several parties, finally led

to the selection of C as the programing language and the Open Computer Vi-

sion library as the basis for further programing. The existence of a open source

computer vision library (recommended by Dr. Tobias Low) was critical in this

decision.

All programs developed throughout this project use this library as a basis and

rely on it for frame acquisition, image format and data storage and low level

manipulation. The complete library can be obtained from http://sourceforge.

net/projects/opencvlibrary.

All code was compiled on a Debian Linux machine (version 6.0.3) using the gcc

compiler (version 4.4.5) linked with the OpenCV library (version 2.1).

1.3.3 Hardware Preconceptions

Mobile robots and autonomous machines are the objectives of many fields of

study. While the applications are obvious, there are a great number of them and

the methods used to develop solutions to one may not necessarily apply to the

others. Throughout this project the focus has been on developing a vision system

for a small scale autonomous device. The resultant designs may not function out

of this context.

Although the title “Autonomous Mobile Robot. . . ” could imply a machine of

almost any size and application, it was always envisaged as a small platform of

desktop size. Thus the robot’s speed and operating environment were similarly

modest in scope. it was imagined such a device would spend much of its time

moving at a slow walking pace along smooth corridors and around rooms. In

Iain Brookshaw

http://sourceforge.net/projects/opencvlibrary
http://sourceforge.net/projects/opencvlibrary


1.4 Chapter Summaries 7

addition it was assumed that the objects in view would all be rigid and static.

Thus the initial vision for the end user was a small machine operating indoors

in an environment where the only movement in the image was caused by the

camera’s motion.

The reasons for these limitations were simple. Although the focus called for “real

time” initial research quickly showed that any method would involve a good deal

of image manipulation. This was expected to slow computation considerably.

Thus the speed of the machine (and hence the discrepancy between frame) should

be reduced. As this implied a slow moving device, the other assumptions soon

followed.

As it transpired the programs were never implemented on actual hardware (time

being prohibitive and results limited). Nevertheless, the above considerations

formed the background to all stages of the project

1.4 Chapter Summaries

• Chapter 2 covers the ways and means of separating objects from their sur-

roundings. A number of processes are reviewed and the final method eluci-

dated.

• Chapter 3 discusses ways of quantifying the approach of these objects.

While a number of methods were reviewed, the Looming approach was

finally decided upon.

• Chapter 4 describes how frame to frame correlation of objects was accom-

plished.

• Chapter 5 covers the results of implementation.

• Chapter 6 discussed the conclusions drawn from chapter 5.

Iain Brookshaw



8 Introduction

• Chapter 7 discusses the future possibilities of the project and possibilities

for fixing the remaining errors.

Iain Brookshaw



Chapter 2

Image Segmentation and Obstacle

Identification





2.1 Why Segment an Image? 11

2.1 Why Segment an Image?

When instructing a computer to avoid obstacles, the first difficulty is defining

what is meant by an “obstacle”. When a person examines a scene, they are

capable of separating one object from another. Intuitively a person knows that

this object is here, it is occluded by this object, which is obscured by this object

and so on. Many people are probably wholly unaware of what they are doing

when they make these distinctions. Electronic eyes have no innate ability to

create these distinctions. The computer does not “see” anything, per say, instead

the light is detected and transformed into a matrix of numbers, representing the

colour and intensity of the light at that discrete point or pixel.

This matrix is the computer’s representation of an image. The light and dark pat-

terns, which the human eye and mind would instantly recognise as a representa-

tion of three dimensional space, mean nothing to the computer (Jain et al. 1995)).

This is a critically important point and one that must be held in constantly mind.

While the image may represent familiar objects to the viewer, to the computer

they are only numbers in an array. Furthermore, these numbers represent the

projection of the three-dimensional space on a two-dimensional plane. Thus it

follows that the computer is incapable of recognising one object from another, or

even distinguishing between foreground and background without aid.

This would appear to be fairly obvious, yet it is easy to confuse the image as

the eye sees it and the image as the computer interprets it. Segmentation is

the first step in enabling the computer to differentiate between objects. More

succinctly, segmentation is “to divide an image into parts that have a strong

correlation to objects or areas of the real world” (Sonka et al. 1994) pg 112).

A close examination of a digital image will reveal that a single object is not

represented by pixels of a single colour (see figure 2.1). Instead, an object is

represented by pixels of graduated intensity1. This represents the shading caused

1Many sources refer to intensity, grey-scale, illumination, etc as if they were distinguishable

Iain Brookshaw



12 Image Segmentation and Obstacle Identification

Figure 2.1: Illustration of the pixels in an image. Counter clockwise from top: the

original image, a close up illustrating the graduations of pixels and a extreme close

up, illustrating the graduation of pixels in an object.

by the reflection of light from the surface. Notice that while there may be a clear

edge (see section 2.2.2) the pixel values within this edge (the object boundary)

may all be different.

Segmentation, then is the means by which all pixels within an object are dis-

tinguished from the pixels in another object (Sonka et al. 1994). This can be

done several ways, but its purpose is to enable subsequent routines to distinguish

between one obstacle and another, assign values of range and depth (see section

3.1) and conduct avoidance and navigation calculations. This can only be done

swiftly if each object in view is clearly distinguishable from all others.

quantities. In fact what they usually mean is the numerical grey value of the given pixel (Jain

et al. 1995), for an image of 8-bit depth this is 0 to 255. The terms intensity, grey-scale, etc are

in fact usually used interchangeably.

Iain Brookshaw



2.2 Segmentation Methods 13

2.2 Segmentation Methods

There are a number of ways of splitting an image into it’s component parts. All to

some extent rely on the change in some numeric property at the object boundary,

or similarity of connected pixels that represent an object (Jain et al. 1995). The

various approaches most commonly described in the relevant literature include:

Thresholding, Edge Detection and Split-Merge techniques . In this particular

project, a species of the split merge technique was selected.

2.2.1 Thresholding

Although too simple for the purposes of this project, the Thresholding method

provides a good illustration of many of the techniques used in more applicable

methods.

Essentially, the Thresholding method is based separating an object from its back-

ground (Sonka et al. 1994). A threshold is selected based on analysis of the image

properties (Jain et al. 1995) and each pixel compared to this value. The pixels in

the output image are then assigned as 255 or 0 depending on which side of the

threshold the input pixel falls.

Relying on a clear distinction between objects and background, this method is

usually divides the image into two segments, background and foreground. A more

complex version of this is band Thresholding, described in (Sonka et al. 1994). In

this approach, bands of grey-scales are selected and the pixels sorted into these

bands. In essence it is the same technique, but using several thresholds instead of

one. This is a useful method for objects of known grey-levels (Sonka et al. 1994).

This is of course, far too simplistic approach for this application, relying as it does

on clear demarcation between only two objects. As the objectives of the project

involve unknown images of undetermined complexity, there would probably be

Iain Brookshaw



14 Image Segmentation and Obstacle Identification

obscure edges and indeterminate outlines. Additionally, the assumption that

there is two or a small limited number of arbitrary regions is clearly too crude

for obstacle avoidance in an unknown environment. However, the Thresholding

method illustrates the basic idea that like pixels are arranged into groups and

that this likeness is judged by the numerical value of each pixel. Furthermore,

the concept of a threshold is an important one. Most segmentation methods

employ some means of establishing demarcation, some numerical value acquired

from analysis of the entire image data that establishes a boundary.

2.2.2 Edge Detection

A much more sophisticated method than Thresholding, edge detection methods

rely on the change in pixel values between objects. Requiring much less prior

knowledge of the image (Sonka et al. 1994), edge detection is a potentially more

powerful tool. However, in the context of obstacle avoidance it created a number

of difficulties in application. Namely, the difficulty in creating closed outlines

and problems related to objects that may not have edges (such as walls in close

proximity). While the former may be overcome (see section 2.2.2), the latter

poses a more complex problem. Although a useful tool, it was felt to possess

more drawbacks and fewer advantages compared to the the chosen system (see

section 2.3).

Edge detection functions on the assumption that between one object and the

next there is a notable demarcation. If this distinction is sharp enough, an object

edge has been located (Jain et al. 1995). These distinctions are important local

changes and are widely used in image analysis (Jain et al. 1995), in some form all

segmentation ultimately employs the idea that different objects are represented

by dissimilar pixels. In consequence, a number of methods exist for distinguishing

edges, judging the probability of that edge’s actual existence (Sonka et al. 1994)

and combining them into contours. However, as it was felt that the problems with

Iain Brookshaw



2.2 Segmentation Methods 15

edge detection were inherent in the result, rather than the process, these were not

investigated in great detail. Suffice it to say that most edge detection relies on

the assumption that there is some clear demarcation between the group of pixels

representing one object and the pixels representing another (Sonka et al. 1994).

It is frequently assumed that the this intensity changes takes the form of a step,

ramp, impulse or similar function (in one dimension) (Jain et al. 1995). The

result of this process is a series of unrelated “dots”, pixels that fit a criterion of

an edge.

Once the edges have been established it is becomes necessary to produce contours,

a list or mathematical curve that describes the edges (Jain et al. 1995). The

validity of the edges must be assessed, their strength or weakness evaluated to

remove weak edges (those with a low probability of existence, based on their

surroundings (Sonka et al. 1994). Then the gaps in edges must be filled. Finally,

one has to break the image into regions based on the results of this process (or

use the contours themselves, see below). Each step in this process would require

a unique pass of the image and all of these passes are simply those needed to

create successful segmentation. It does not include the prepossessing steps. Such

an involved process was felt to be too computationally intensive to employ.

It could be argued that once these contours have been established, one need only

use the resultant edges to define obstacles, without further segmentation. This

is partially true, however it causes problems not only with the method used to

track and gauge distance 2 but causes problems with obstacles that are too large

to see.

Consider a wall, it is clearly an obstacle, yet unless its end is in view or it is

heavily textured, it produces no edge, only a line on the floor. This line would not

noticeably expand or contract as the camera approached, it would simply move

2see section 3.2 it could become difficult to establish the motion of a contour owing the

possibility of its being one dimensional. This problem could be overcome with the centroids

approach described in chapter 4, but the other problems were felt too large to render it useful.

Iain Brookshaw



16 Image Segmentation and Obstacle Identification

“up” and “down” the image frame. During the early stages of the project this

was felt to be unsatisfactory from a Looming perspective (see section 3.2), owing

to the fact that the line area was not expanding. Later when blur was selected

this problem became less of an issue and the need to have two dimensional objects

became less important. However, by that stage other segmentation methods were

chosen.

Edge detection was investigated in the initial phases of the project and discarded

when many of the methods outlined in sources returned only a disconnected series

of dots. These “edges” could have to then be amalgamated into contours, that

could then be used to create regions. This seemed a very time consuming and

pain full process. Discouragement with uninspiring initial results involving the

Canny Edge detection algorithm (Bradski & Kaehler 2008) reinforced this view.

It was later discovered that there were far more effective means of employing edge

detection methods (see section below).

Edge Tracing

Following the author’s decision to use region based segmentation (see below) as

the basis of obstacle detection, an alternative method, Edge Tracing was sug-

gested. Although a potentially highly applicable and useful tool, this method

was not implemented due to time constraints, the completion of segmentation

sections and other, contrary advice.

While the simple edge detection methods researched in earlier phases of the

project produced unsatisfactory results, edge tracing had the potential to produce

accurate and computationally simple answers. The dissatisfaction with previous

edge detection devices resulted from the disjointed output. As mentioned above,

they mostly searched the image pixel by pixel, flagging all pixels that matched

their definition of “edge” and blacking out the others. This produced a collec-

tion of disjointed dots that then had to be transformed into continuous contours

Iain Brookshaw



2.2 Segmentation Methods 17

(Billingsley 26th May 2011).

By contrast, an tracing algorithm, searches until an “edge” is found, then follows

the edge by searching the surrounding pixels for the next stage. The next pixel in

the line is then found and the program moves forward until no surrounding pixels

meet the edge criteria. Thus from this process a continuous line is found, with a

definite start and conclusion for each edge. This method can be made swifter by

employing various search patterns on the basis of spirals to remove the necessity

of searching every pixel in the image (Billingsley 26th May 2011).

While far more efficacious than any other edge detection method, the edge tracing

algorithm was not selected for final use in the finished program for a number

of reasons. When identified to the author, writing for the final segmentation

algorithm (see below) was already nearing completion. It was initially felt that

additional expenditure of time could not be justified, especially as virtually all

existing work would have to be rewritten and for a method that was bound

to have unforeseen and time consuming side issues. Secondly, it was believed

that the edge based approach suffered from a serious flaw. By definition only

the outlines of objects are considered. While this requires far less computational

power than other methods (only a tiny fraction of the image is under consideration

(Billingsley 26th May 2011), it renders most of the image a blank map with no

information about those pixels. If the machine was to approach a blank wall, an

edge detection device could only extract information about the line where the

floor meets the wall.

This lack of information was considered a serious problem If an edges are used, the

only points in the image that are known are those edges. There is no information

about the remainder of the image. From a avoidance perspective this is workable,

but not satisfactory and leaves little room for expansion. While the machine could

be instructed to avoid the line on the floor that represents the wall, it would be

better if it were known more about it, such as how far the wall extends. A edge

based approach may show the top of the wall, but the machine has no way of

Iain Brookshaw



18 Image Segmentation and Obstacle Identification

knowing that the line representing the top is connected to the line representing

the bottom. Thus a shallow “step” could be misinterpreted as an insurmountable

obstacle. This and other similar objections lead to the belief that it would be

far more useful if all the pixels representing the object could be labeled and the

object’s full extent known.

Having full knowledge of an object’s extents could enable the final program to

be expanded into other areas (eg: object recognition, identification etc.) and

while such expansion was beyond the scope of this project, after consultation

(Low 15/12/2010 to October 27/10/2011) it was agreed that Edges did not offer

the best chances for future expansion and that a region based approach might be

more efficacious.

2.2.3 Region Growing

Where edge detection can be used to outline a region for later segmentation, re-

gion growing functions in the opposite direction. The regions are defined directly,

producing blocks of continuous colour that define the extent of an object. The

resultant image can then be combined with edge detection methods if the edges

are desired (Davies 1997). The methods for region growing are based around

determining the similarity (or dissimilarity) of regions, on the assumption that

all pixels that represent an object will exhibit similar characteristics.

The similarity of regions is assessed via the “homogeneity criterion”. Simply,

the definition of the permissible difference in some numerical property between

similar regions if those regions are to be considered part of the same object. This

is often based on the difference in grey-scale levels from one region to the next.

Iain Brookshaw



2.2 Segmentation Methods 19

Merging Techniques

The merging technique is relatively self explanatory. Essentially, like regions are

joined or merged as judged by some homogeneity criterion. This criterion is

usually based on the grey-scale properties of the regions in question.

The simplest, but most expensive way of implementing this method (as described

in (Sonka et al. 1994) is to consider every pixel as a separate region and try to

merge a pixel with its neighbours. If the neighbours are “similar” then those pixels

are marked by the same colour in the output image and the program moves on.

Therefore for a image of n pixels by m pixels one begins with n × m separate

regions and continues to merge adjacent regions into large segments until it is no

longer possible to merge a new pixel without violating the predefined homogeneity

criterion. Thus one grows regions much as one would grow a crystal in a jar and

at about the same speed.

Needless to say, this is far to slow and simple a method to employ for a real time

application. However, it does serve to illustrate the merging method.

Splitting Techniques

Virtually the exact algorithmic inverse of the pure merging method, region split-

ting takes the entire image as one region and successively breaks it into smaller

regions. The original full image region is broken down repeatedly until it is im-

possible to segment further without violating the homogeneity criterion. When

this point is reached it means that all the remaining regions satisfy the criterion

and can be considered as a single object.

Interestingly, while the methodologies are clear inversions, the results are not

identical (Sonka et al. 1994). Despite the complementary nature of the algorithm

the same image segmented by these two methods will yield different results.

Iain Brookshaw



20 Image Segmentation and Obstacle Identification

Figure 2.2: Illustration the single pass split and merge operation, showing the four

pixel group and the previously labeled pixels.

Once again, it is apparent that this method, by itself is unsatisfactory for the

same reasons as above.

2.2.4 Split and Merge Techniques

The most promising method of image segmentation arose from the split and merge

branch of techniques. As mentioned above they are not direct inversions, however

when used in conjunction they may produce an efficient and effective algorithm

(Sonka et al. 1994).

It is possible to combine the split and merge algorithms to produce a more sat-

isfactory result. The simplest way to do this is to subdivide the image into a

grid of four large regions (Yang & Lee 1997), then recombine two or more of

the four if they meet some homogeneity criterion (usually the mean grey-scale

value). The resulting regions are then split into four again (if this is possible

without violating the criterion) and the process of combination repeated with the

new sub-regions. This process is repeated until it is no longer possible to split

the sub-regions without violating the criterion used (Sonka et al. 1994).

This criterion is usually grey-scale. The average grey value or brightness of the

Iain Brookshaw



2.3 Single Pass Split Merge Segmentation 21

prospective region is measured and compared to a set tolerance (Davies 1997). Al-

ternative approached include approximating the region to a planar surface (Yang

& Lee 1997). If the mean squared error is below a certain tolerance the region is

homogeneous.

Needless to say, this approach is almost as slow and computationally intensive

as the previously mentioned split or merge methods. It is significant, however in

illustrating the combination of the split and merge concepts. The idea of initial

splitting and later re-merging can be adapted to give a much more rapid and

successful method.

2.3 Single Pass Split Merge Segmentation

The basic split and merge technique, while easy to explain, somewhat compu-

tationally expensive and slow (Sonka et al. 1994). This can be remedied by a

conceptual modification referred to as Single Pass Split and Merge. This algo-

rithm is capable of segmenting the image in one pass, rather than the complex

tree structure described above. Due to the real-time focus of the project, this

was eventually the method selected.

The method works in two distinct stages. First a small section of the image is

subjected to a splitting algorithm and labels assigned to the pixels accordingly.

These split pixels are then compared to the regions in the main image to which

they were previously assigned and the split groups merged to their larger coun-

terparts as appropriate. The similarity or dissimilarity of pixels and regions is

determined by a tolerance established by the image properties (Sonka et al. 1994).

This method enables one to segment the image in one pass. The small image

section is a square of n pixels that is stepped through the image sequentially until

it reaches the end. As it passes the pixels in the square are split, as though that

square is an entire image, then the split groups are merged back into the main

Iain Brookshaw



22 Image Segmentation and Obstacle Identification

image where possible and new regions begun where not. This way the entire

segmentation process is performed as the square advances. Other merging or

splitting methods imply multiple levels of processing and multiple passes through

the image (Dep 1998). See figure 2.2 for the practical application of this process.

2.3.1 Merging Algorithm

Although merging is actually the second step in the process, it is the simplest

and will of necessity be described first. From the above description of the single

pass split merge algorithm, it is clear that the n pixel splitting block is far to

small to be of any use in representing entire regions. To fully segment the image

it was necessary to merge the split block with larger regions in the image.

To accomplish this, one uses the labels that the splitting algorithm assigned to

the n pixels. This algorithm divided these n pixels into a maximum of n groups

and a minimum of 1. Each group was compared to the region it was part of

before the splitting algorithm was run. Notice in figure 2.2 that by because of the

sequential nature of the process at least two of the pixels in the four pixel block

have been assigned before. For the four pixel block pictured, up to two pixels are

previously unassigned to any region (for most of the image three are previously

assigned, but for edges the reduces to two or one). Thus one can compare the

groups designated in the n pixel block to the larger regions and merge them as

appropriate.

The merging is performed by finding the difference between the mean grey level

of the large region and the mean grey level of the group in the block. If this

difference is within a tolerance, the regions are merged. If an entire split group

of pixels have never been assigned before, they become a new region in the main

image. It is assumed that the new region would have been incorporated in another

of the small groups if its boundary were not marked.

Iain Brookshaw



2.3 Single Pass Split Merge Segmentation 23

Merging Algorithm

1. Obtain a block of four pixels split into groups by the splitting algorithm

(see section 2.3.2).

2. Compare each pixel in group n to its previous region and find the best

match. Note: some pixels may not have been previously assigned (this is

accounted for in the program).

3. Assign all pixels in group n to the region which produces the best match if

that match is within tolerance. If not, then make that group a new region

in the output image.

4. If a group is comprised wholly of pixels that have no previous assignment,

make them a new region in the output image.

5. Repeat until all groups have been merged.

Figure 2.3: The merging algorithm as implemented

What this means is that most pixels are assessed several times while the algorithm

still makes only one pass through the image. This ensures that the sub-groups in

the n pixel block are merged with the most appropriate region. To ensure the best

match, the sub-group mean is compared with the mean of the larger regions. The

pixels in the sub-group that are already part of larger regions (and are labeled

as such in the output image) from this the large region mean is known. If the

pixels in the subgroup comprise components of several regions, the region mean

which is closest to the sub-group mean is the best match for the sub-group. This

means that pixels may be reassigned to several different regions as the program

continues and better matches are found.

Iain Brookshaw



24 Image Segmentation and Obstacle Identification

Figure 2.4: The orientation of the pixels in the four pixel block. This orientation

is also used in the final program

2.3.2 Splitting Algorithm

In order to successfully employ merging, it was necessary to select a small section

of the image to split, as discussed above. Having done this, the split regions could

be merged back into the larger image, thus creating regions.

The section to be split is a square of n = 4 pixels, the top left hand pixel being

the current location in the main image 3 (see figure 2.2). This four pixel block

is now split according to the dissimilarity of the pixels. Now this seems fairly

straightforward, simply see how dissimilar the pixels are and split accordingly.

Unfortunately, a more rigorous definition is needed than “dissimilar”, dissimilar to

what or whom? It was exceedingly difficult to find a good criterion to distinguish

between varying pixels, especially as the various sources studied were annoyingly

vague on the subject. Several approaches were tried, but most sources remained

exasperatingly silent on just how one is supposed to assess dissimilarity.

Initially, this was not judged to be of much importance. The main reference

for this topic, (Sonka et al. 1994), did not even discuss how the splitting was

3 There is nothing especially magical about four pixels, virtually any conglomeration of

manageable size would do, (Sonka et al. 1994) list several examples. In this case four was

chosen as the most workable number

Iain Brookshaw



2.3 Single Pass Split Merge Segmentation 25

Original Splitting Algorithm

1. Obtain the four pixel block

2. Check to see if range of grey-scale values are within tolerance. If they are,

make all four pixels part of the same group and stop.

3. Find the grey-scale mean.

4. Group pixels below the mean together and group those above the mean

together.

5. Continue to split the groups up based on the groups’ mean until the groups’

grey-scale range is less than tolerance.

Figure 2.5: The original splitting algorithm, which was not implemented success-

fully

to be accomplished. Clearly the working area was too small for the large scale

splitting methods described in previous sections. Because of this gap, there grew

the erroneous belief that any slack in the splitting would be picked up by the

subsequent merging. Out of this grew the first splitting algorithm, discussed

below (readers disinterested in a method that did not work and why it failed

should skip to section 2.3.2).

Original Algorithm

In the original algorithm the dissimilarity was judged according to the distance

of the various pixels from the mean (at this point it is worth reiterating that the

numerical value attached to all pixels is the grey-scale value). When the block

was split, only the four pixels are in consideration. The block is treated as though

it was an image in isolation.

Iain Brookshaw



26 Image Segmentation and Obstacle Identification

Once obtained, the grey-scale values of the four pixel block were examined and

a mean grey-scale value and grey-scale range found. If the range is less than a

tolerance, all four pixels are labeled as one group and the splitting algorithm is

ended. If not, then the four pixels are divided based on the mean. All those falling

below the mean comprise one group, while all those above the mean comprise the

other group. This process was continued in the subgroups until the grey-scale

range in the subgroups was less than the tolerance.

This appears a complex and difficult process. Why not just compare each pixel to

each other pixel? There are after all, only six comparisons to make. Unfortunately

this option, in addition to being difficult to code successfully, creates an additional

problem. Suppose that one has determined that pixel A and B are similar, A

and C may also be similar, yet C and B may be dissimilar. Which pixel to assign

to a given group may end up being a matter of where the algorithm started

first, thus creating different segmentation results for each order. This is clearly

unsatisfactory.

Having thus split the four pixels into their component groups (a minimum of one

and a maximum of four separate groups), one now had labels for each pixel in

the group indicating it’s relationship with the other pixels in the four pixel set.

These labels were then utilised in the merge section of the algorithm.

This was a complicated and fairly arbitrary process. However it did function after

a fashion, the algorithm ran without computational error and, when combined

with the merging algorithm (see section 2.3.1), produced a segmented image that

appeared to correspond to the objects in view. It was only after the introduction

of centroid calculations and tracking, much later (see section 4.4) that it became

obvious that something was very wrong with the original method.

Without getting ahead of sequence (readers interested in why centroids or tracking

are of interest should turn to section 4.4), later steps in the project indicated

that the image regions were wildly unstable and tended to split and join without

Iain Brookshaw



2.3 Single Pass Split Merge Segmentation 27

much warning. The reason why this was not picked up much earlier was that the

edges of the regions were fairly stable, although they tended randomly fragment

inside. Thus, while being difficult to spot through observation, a unacceptable

randomness was being introduced into the segmentation process.

Long hours of painful and tedious investigation later, it became apparent that

the problem was with the splitting algorithm. The original splitting algorithm,

as described in figure 2.5, functioned on means. Splitting the four pixel block was

accomplished by comparing the individual pixels to the mean of their prospective

groups. Unfortunately, this method contained a very large logical flaw. If two

pixels A and B were close together, close enough that they were obviously part

of the same group, it was thought that they would be assured assignment to the

same group. However if they lay on opposite sides of the mean, they would be

irrevocably split into the upper and lower groups. This meant that an artifi-

cial barrier could conceivably be created in the middle of the four pixel block.

This barrier may, or may not be re-merged in the merging stages. It was this

unfortunate possibility that was introducing a random divide into the finished

regions.

Ironically, this problem was considered (although its true importance was not full

recognised) early in the project. However it was overshadowed by the need to

determine what to do if A and B are a group and A and C are a group, but C

and B are not (as discussed above). Essentially, it was thought that the initial

method was the best compromise in dealing with a difficult situation. For some

considerable time, no better answer could be formulated.

Final Algorithm

Once it had been recognised that the initial algorithm was unsatisfactory, it

became necessary to produce an new method for splitting the four pixels. In the

end, it became necessary to consider all possible combinations.

Iain Brookshaw



28 Image Segmentation and Obstacle Identification

Figure 2.6: The various combinations possible with a four by four pixel block. Note

that viii and ix are the same.

Iain Brookshaw



2.3 Single Pass Split Merge Segmentation 29

With four pixels, simple observation showed that there is a maximum of sixteen

different patterns possible. Further investigation shows that there are actually

fifteen for the purposes of this project (see figure 2.6). Thus, regardless of the

pixel values they must form one of these patterns. Viewed from this perspective

pixel similarity is simply a problem of finding which of the sixteen is the best

match.

This may seem simple, but it is in fact an exacting and demanding process. One

must be careful not to be too demanding in the criteria that decides the pattern

match, or it is entirely possible that no match will be found (nothing will exactly

fit the search if the criteria are defined too narrowly). Once again the problem

of A, B vs A, C appears. The logic needs to be sufficiently rigorous to prohibit

random edges from being formed, yet adequately flexible so a pattern is eventually

made.

The best way to achieve this was found after much experimentation and revolves

around comparison of differences. The crucial decider of homogeneity is the

difference between each pixel. Once this is grasped, one can easily find the six

difference combinations for the four pixel block. It is these differences, A − B,

A − C, A − D, C − D, B − C and B − D, that are used to form that basis of

the decision making process. Once they have been computed (note that it is the

absolute difference, negatives are not used), a set of comparisons are used. To

prevent the logic from becoming to rigid, only the most desired patterns were

explicitly defined.

Analysis of the fifteen combinations shown in figure 2.6 showed that a number

would encourage the formation of new regions. If a single pixel was left in a

solitary group, the chances were higher that it could form a new region when

merged back into the main image. This is because it may not have been considered

before and is therefore, by definition a new region (see section 2.3.1). This would

be especially true if that lone pixel was the lower right (or D) pixel. As this pixel

not part of any previous region in the main image, it would be guaranteed to

Iain Brookshaw



30 Image Segmentation and Obstacle Identification

become a new region, at least temporarily. Thus all combinations that left this

pixel in a group of one were undesirable, this included combinations v, xi, xiii,

xiv and xvi. Therefore these were at the bottom of the list.

Considering the above in reverse, the most desirable combinations were those

that maintained pixel D in as large a group as possible. As can be seen in figure

2.6, these sets were: i, iv, vi and vii followed by ii, iii, viii, x and xii through

xv. The selection logic was arranged so that these best and the most distinctive

candidates were looked for first, with explicit requirements. Following this several

layers of less rigorous logic followed with the least desired combinations at the

bottom, for groups that failed all other tests.

The initial tests were simple, using the six differences and the image tolerance (see

section 2.3.1). If the largest difference was less than the tolerance, then all pixels

were of a group, if the smallest difference was greater, they were all separate.

Following this ii, iii, xiii and ix were also searched for explicitly, using exacting

if statements that ensured the derided shapes existed. Then an if statement

was constructed for each difference. If the considered difference was less than

tolerance, then the number of shapes the block could be was restricted. For

example if A− B < T then all combinations that split A and B can be ignored.

This list of probables can be reduced still further if once considers the combination

that were rejected to reach this point. Often, there was only one possibility. In

cases where there were more, they were selected by nested if, else statements

that used other differences and guaranteed preference to preferred shapes. Thus

an appropriate assignment was ensured, and all four pixel blocks assigned some

split pattern.

This, when combined with the merging algorithm, produced much more stable

results.

Iain Brookshaw



2.4 Image Pre-Processing 31

Final Splitting Algorithm

1. Obtain the four pixel block

2. Find the absolute differences of all the pixels.

3. Try and fit the desired patterns explicitly.

4. Try for the less desired patterns in order of precedence. Continue fitting

patterns until one is selected.

Figure 2.7: The final splitting algorithm, where splitting was based on patterns in

order of precedence

2.4 Image Pre-Processing

The output of the segmentation process described above was sufficient all one

wished was to subdivide a still image. However, upon implementation it became

aspirant that the process was rather too simple. Regions representing immobile

objects tended to grow and shrink in an apparently random fashion. This was

attributed to insufficient flexibility in the program relative to variable conditions

in the image.

2.4.1 Noise Removal and Image Smoothing

The creation of regions was found to be highly susceptible to the image noise.

As the initial camera was not of the highest quality (it was the stock machine

attached to the author’s laptop), steps had to be taken to alleviate the noise.

Some simple investigations4 showed that the OpenCV library contained some

4It in necessary to confess that the research in this area was not as in depth as others. This

problem was considered less important than others and less time was spent on it.

Iain Brookshaw



32 Image Segmentation and Obstacle Identification

preexisting functions for image smoothing.

Image smoothing involves subjecting the image to a controlled blur, this smooths

out the random high points in the image caused my noise (Bradski & Kaehler

2008). The difficulty with this, as might be imagined, is that important features

can become obscured if the blur is severe enough. Initially, a standard Gaussian

blur was used however it was found that the more complicated Bilateral filter

would be able to perform a Gaussian blur on the interior of objects whilst pre-

serving the edges, the effect of which is “typically to turn an image into what

appears to be a watercolor painting of the same scene. This can be useful as an

aid to segmenting the image” (Bradski & Kaehler 2008). This quote was taken

at face value and a moderate Bilateral filter installed before the segmentation

algorithm and run once over each frame.

2.4.2 Finding a Tolerance

All the segmentation methods described above required some form of homogeneity

criterion or tolerance to work. This is yet another area upon which the literature

was annoyingly glib. Because of this, several methods were tried to find a truly

flexible and accurate tolerance. Indeed, for some time it was believed that one of

the key problems with the regions stability was lack of a good tolerance value.

In original versions, the tolerance value was fixed to an arbitrary number at the

start of the program. Clearly this was an unacceptable situation. Changing light

patterns, movement, the intrusion of darker or lighter objects into the screen all

had the effect of changing the relationship between various objects.

In order to alleviate this problem it was necessary to make the tolerance relative.

That is, to recompute the tolerance for each frame. Thus, for an insignificant

computational penalty, it was possible to ensure that the tolerance adapted for

changing conditions.

Iain Brookshaw



2.4 Image Pre-Processing 33

While it is easy to comprehend the necessity for such a scheme, the literature

provides very few explicit references regarding methodology. Most sources simply

state the need for such a system, without describing the minutiae of execution.

Initially, it was decided to find the maximum and minimum grey values in the

given frame and set the tolerance to n% of the difference. This value n was found,

after patient experimentation to be best set to 10%.

The disadvantage of this system is that it still contained an arbitrary quantity,

the constant n. While the method was, in theory flexible, it wasn’t much of an

improvement over its predecessor, as a rule it was found that all “real” images

contained a 0 and 255 pixel. So in effect the value of tolerance remained static.

The final modification was to base the tolerance on the standard deviation of the

image. The standard deviation is the square root of sum of the average of the

squares of the distance from the mean (Moore 1995). What that cumbersome

descriptor means is that standard deviation is a measure of the spread of the

image pixel values. In other words, how widely separate the numerical values

of the pixels are. Thus an almost black image will have a very low standard

deviation while a image of many sharp, vibrantly coloured objects will have a

very high one.

However, the standard deviation, while tied to the image itself, evolves in precisely

the opposite way to desired. If an image is largely blank, the tolerance should

increase, to prevent every article of noise from becoming a region. If there are

a multitude of shades, the tolerance should decrease, to capture each surface

as a region. Thus the inversion of the standard deviation was finally used as

a tolerance. As this was too small to be of practical value it was found that

multiplication by 1000 would bring it up to a useful magnitude.

Iain Brookshaw



34 Image Segmentation and Obstacle Identification

2.5 Potential Problems

Despite all the investigations and considerations mentioned, there remain a num-

ber of potential difficulties with the implemented method. The first of these

arises when the merging process is considered. In order to accurately judge which

groups to merge with what regions, a tally of the total number of pixels and the

total grey-scale value of each region. This enables a mean to be computed and

compared to the group mean to assess merging potential.

The difficulty that arises in how this information is stored. The program creates

two vectors 256 entries long. The number of each entry is the output grey-scale

value of the pixels filling it. This means that if pixel A is merged to a region

of output value 45, then the 45th element in vector RegionCount is incremented

by one and the 45th element in vector RegionSum is increased by the original

value of A. In this way an average of all pixels of value n in the output image

can be kept. However, this process does not take into account region congruity.

By definition (Jain et al. 1995) pixels in a region must be both homogeneous and

share a common edge. This approach tallies all the pixels in all the regions that

are value n in the output, as though they were in one region.

Despite this problem, the practical results are still workable. Extensive though

and consultation resulted in the conclusion that the problem outlined above was

not significant (Low 15/12/2010 to October 27/10/2011). This is due to the

fact that, while regions (as defined by RegionCount and RegionSum) may not be

continuous, they are of similar grey value in the input image. This means that

were they to be continuous, they would almost certainly be included in the same

region anyway. This means that the region means will not be severely affected

by this approach. Furthermore, any modification would result in a fundamental

re-design of the segmentation algorithm. This was felt too drastic a remedy for

such a problem.

Iain Brookshaw



Chapter 3

Distance and Approach





3.1 Methods of Distance Estimation 37

Figure 3.1: illustration of the difference between range and depth.

Once the image has been segmented, one might reasonably ask how can we find

the location of these segmented objects, relative to the camera? Recall that the

purpose of segmentation was to determine which pixels in the image belong to

which object in reality. Thus there is a correspondence between the objects in

the projected image and the objects before the viewer.

Before one sets about the task of establishing the distance between the segmented

objects and the camera, it is necessary to bear certain restrictions in mind. First

of these is the existence of only one camera. This is crucial as it implies that

the objects cannot be found by direct triangulation. Secondly is the necessity

for the chosen method to function uniformly and not to be confused by the

changing environment, recall that the purpose of this exercise is to maneuver a

mobile machine through a unknown obstacle field. Finally, the method must be

computationally swift and inexpensive, as the focus is a autonomous real time

implementation.

Iain Brookshaw



38 Distance and Approach

Figure 3.2: Stereo vision, using one camera and the frame difference to find depth.

3.1 Methods of Distance Estimation

The literature describes two broad methods of estimating the position and motion

of an object relative to the camera. These two groups are, those based on stereo

vision and those based on the evolution of the image over time (Jain et al. 1995),

(Davies 1997). Obviously, true stereo vision is not an option (the focus is on

monocular vision). This restriction led to the conclusion that the location of

objects would have to be calculated based on analysis and information from a

number of successive frames.

Before proceeding it is perhaps best to clarify some terminology. Depth in most

sources refers to the distance from the object to the image plane. That is the

length of the vector that stretches from the image plane to the object and is

orthogonal to the image plane (see figure 3.1). Range, on the other hand, refers

to the distance from the object to the focal point (Davies 1997). This is what

most people mean when they discus “distance” in everyday conversation. These

distinctions are important to keep in mind as some methods will relate to one or

another. With these definitions clear, it becomes possible to conduct an investi-

gation into the various methods of depth and range recovery.

Iain Brookshaw



3.1 Methods of Distance Estimation 39

As mentioned, there are two broad categories of distance estimation. Stereo

appears the most frequently and although true stereo vision was not considered,

it is possible to approximate it from the difference between two frames of a moving

image. Classic stereo vision involves two cameras set some distance apart. Both

record the same scene but from a different perspective. The discrepancy between

the two provides the basis for calculations that describe depth and range (Jain

et al. 1995). Such an arrangement would be familiar to most readers in the form

of human eyes and binocular optical range finders.

While this arrangement is perhaps the most intuitive of distance judging tech-

niques, the focus on monocular methods render it inappropriate in this case.

Nevertheless it is possible to achieve the same effect from one camera and the

image sequence. This is because, for a moving scene, each frame is slightly differ-

ent than the last. Thus one may approximate the stereo arrangement by noting

that as the scene moves, the camera is seeing the scene from a slightly different

perspective (Davies 1997). This shift in perspective can be combined with some

simple geometry and used to generate the distance from the camera to the point.

Therefore there is now sufficient information to compute the range of any given

point, if it has been tracked from frame to frame (see figure 3.2).

While potentially useful, this method suffers from one serious flaw. It cannot

assess motion if that motion is directly long the optical axis (the line orthogonal

to the image plane and passing through the focal point, the center of the image in

effect). Examination of the equations used to compute range revealed that they

fail when distance from the optical axis approaches zero (Davies 1997). This is

because there ceases to be any discrepancy between the frames, the point of view

becomes constant. Hence an object can approach at any speed, but if the line of

approach is the optical axis, there will be no movement in the projected image

plane. This means that objects approaching from directly ahead remain invisible.

This clearly renders it an unsuitable method for this application.

Despite this disadvantage it was briefly considered as a viable option for when the

Iain Brookshaw



40 Distance and Approach

robot was turning. At early stages, it was assumed that the hypothetical robot

would be able to execute a zero point turn (also it was assumed that it would

be desirable to do this). As other methods considered (especially Looming, the

selected method, see section 3.2) require some forward component of motion,

stereo from motion was considered an ideal alternative. As the camera turned,

all objects in frame would undergo motion from one frame to the next. There

would be no blind spot as described above, because all image motion vectors

would have been orthogonal to the optical axis.

This effect would enable the range to be calculated while turning, providing a

good estimation of range for when the rotation had ceased and other methods

could be resumed. Otherwise, it was thought that the machine would have to

shuffle backwards and forwards to artificially create motion and so orient itself

after each rotation.

In the event, it was found that the hardware envisaged would not necessarily

need to perform this maneuver. Every turn could be accompanied by some for-

ward motion component. Also, it was observed (Low 15/12/2010 to October

27/10/2011) that the movement from frame to frame as the machine turned may

be insufficient to enable accurate computations to be made. Thus, for these rea-

sons, Looming was recommended as a preferred alternative (Low 15/12/2010 to

October 27/10/2011). Nevertheless, stereo from motion remains a potentially

powerful tool, especially for rotational motion.

Other methods of distance estimation were reviewed and considered. However

many dealt with multi camera platforms, or amalgamating cameras with other

forms of sensors, both clearly inapplicable. Others, such as methods based on

optical flow alone were discounted after advice indicated that they would be

unsatisfactory (Low 15/12/2010 to October 27/10/2011).

Iain Brookshaw



3.2 Looming 41

Figure 3.3: Graphical depiction of Looming using projected area.

3.2 Looming

A review of literature and certain advice, indicated that Looming is potentially

the most useful method of range estimation. It possessed the potential for the

most intuitive, simple results, it matched perfectly with the segmentation ap-

proach and was computationally simple. Furthermore it could be easily imple-

mented with monocular vision, rendering it particularly suitable for the aims of

the project.

Looming is a generic term given to a number of methods, all based around the

fundamental premise that objects look larger when closer then when they are

further away (Sahin & Gaudiano 1998). This is intuitive and based on the size of

the projection on the image plane (see figure 3.3). More accurately, Looming is

founded on the concept that as objects approach, certain measurable character-

istics change with time. Identifiers such as physical range, projected area, image

irradiance, image focus and so on may be tracked over time and used to compute

a “Looming Value” (Raviv & Joarder 2000). This value, referred to as L, is re-

lated to the range from the camera to the object. With this value it is possible

Iain Brookshaw



42 Distance and Approach

to imply the range of an object without further calculation (Raviv 1995). The

quantity L is defined by the following equation,

L =
dR
dt

R
(3.1)

Where:

L is the Looming Value ( [time]−1)

R is the Range (m)

Thus it is evident that there is a relationship between the Looming value L, and

the range R. Notice that L is proportional not only to the range, but also to the

rate of change of range, the approach of the object. Thus if L can be calculated

another way, one could use the value of L for any given point to imply the range

of that point. Therefore, one defines L as:

L =
dg
dt

g
(3.2)

Where g is some property of the image that may be calculated (Raviv 1995).

Recalling that Looming is based on the idea that aspects of an image region

change as the real object approaches, it is possible to define L in terms of one of

these changing aspects. The most obvious solution is to simply use the change

in region area. Although this is possible, other aspects may be more useful. The

other region properties include: irradiance, texture and blur (Raviv 1995). These

four features occur repeatedly in the literature.

3.2.1 Area

Area is the most intuitive of Looming estimators. It is clear that as one ap-

proaches a rigid object, it appears larger. This is clearly illustrated in figure 3.3.

Iain Brookshaw



3.2 Looming 43

Notice that the projected size of the object is increasing as the object approaches.

Mathematically, the value L can be expressed as:

L =
dA
dt

A
(3.3)

While it is the simplest to explain and illustrate, the area method is flawed

in several important ways. Firstly, the area of the regions as derived by the

segmentation algorithm (see section 2.3) was found to fluctuate in practice. When

the segmentation program was run, the area of the segments was not stable

enough to produce consistent values of A (this is discussed further in section 5.2).

Secondly, and more importantly, the area method is limited by the field of view

(Sahin & Gaudiano 1998).

In order to accurately compute L from area or apparent size, one must have

the region in question fully in the frame in at least one dimension. If an object

approaches so that it begins to move out of the field of view, the total number of

pixels in that region begins to decline. Even though the object is still Looming

larger and approaching, the number of pixels that are used to represent it is

decreasing as the region slides off the edge of the image. Thus the Looming value

L would be decreasing even as the object is actually Looming larger.

This can be overcome to some degree by using length instead of area to measure L

(as suggested in (Sahin & Gaudiano 1998)). This would involve using the length

of the region in a given dimension to compute L. This length would be selected

as the dimension that grows as the object approaches. While possible, this was

considered too inelegant a solution. To implement it fully the computer would

need to be able to determine which dimension was still fully in the screen. This

implies tracking and remembering the growth of the object over its visual history

and determining which dimension would be best to track. This was felt to be too

complex an approach.

Iain Brookshaw



44 Distance and Approach

3.2.2 Irradiance

The illumination approach to Looming is yet another method of estimating the

range through the use of image data. In this case the image data used is the

temporal change in image irradiance (Raviv & Joarder 2000). Where “irradiance”

is some measure of the reflected light off the object surface. The idea is that this

will noticeably alter as the camera approaches the object, thus providing the

Looming indicator. The literature indicates that there are three approaches to

this method. All however, rely on the assumption that the surfaces in view are

Lambertian surfaces.

A Lambertian surface is essentially a surface that appears equally bright from all

viewing directions (Jain et al. 1995). This was considered a risky assumption,

considering that many surfaces in the field of view may not be strictly Lambertian.

This was a key reason in the decision to abandon this line of research.

The differing methods are based around the movement of the light source. In the

first case, the light source is stationary, while the camera moves. This is perhaps

the most apt approach to the problem for a mobile robot (assuming the machine

is not carrying its own light source). However, the method described in (Raviv

& Joarder 2000) makes no mention of the appearance of new light sources, as

would certainly happen as the machine moves down a corridor. Perhaps more

importantly this method requires the calculation of the angle θ. This is the angle

between the surface normal and the optical axis. While possible, the computation

of this angle was felt initially to be too complex a task in comparison with other

methods.

The second method is based around the assumption that the light source is moving

with the camera (Raviv & Joarder 2000). This could be easily achieved for a

mobile robot, however once again a Lambertian surface is required. Also, in

common with the first method, the angle θ is also needed.

Iain Brookshaw



3.2 Looming 45

These complexities ensured that Looming through irradiance was abandoned

early as a potential method. Although they could probably be solved, other

methods were considered easier to implement and more reliable in operation.

3.2.3 Texture

Looming through texture is yet another method of gauging object approach.

Fundamentally similar to all other Looming methods, the texture approach takes

as its changing variable the texture density. The idea is that as one approaches,

the texture of an object becomes more intricate.

To gauge this, one defines a “textel” (sometimes given other, similar names)

as a description of the texture pattern. The assumption is that any texture is

comprised of repeating units. These “textels” in summation comprise the entire

pattern (Pietikäinen 2000). As described in (Raviv 1995), the increase in “textels”

indicates an increase in the intricacy of the pattern and thus the approach of the

object. The general idea being that the more complexity one can see in an object,

the closer it must be.

This method of Looming was discounted for two important reasons. One, it ap-

peared unduly complex. The method of establishing descriptors for textures (as

described in (Jain et al. 1995) and (Pietikäinen 2000)) was excessively intricate.

More importantly, it was expected that many objects viewed as part of the ob-

stacle navigation application would be planar surfaces without significant texture

(walls, boxes etc) and thus the entire approach was deemed unsuitable for the

project.

Iain Brookshaw



46 Distance and Approach

3.2.4 Blur

The final Looming method mentioned in the literature is Looming through radius

of blur. If one considers a camera focused at a point, all points at a different

distance from the camera than the focused point will exhibit some degree of de-

focus or blur. The edges of each object will be fuzzy in a way which is proportional

to its distance from the camera. However, if the camera is focused at infinity,

all points not at infinity will exhibit some degree of blur, proportional to their

proximity to the camera. This means that objects in the far distance will appear

almost clear, while objects in the foreground will be badly out of focus. The

evolution of this optical blur magnitude over time can be used to compute the

Looming value (Raviv 1995).

L =
dr
dt

r
(3.4)

Equation 3.4 illustrates the relationship between the Looming value L and the

radius of blur r (Raviv 1995). However, to employ this equation, it becomes

necessary to somehow rigorously define blur. Some value which describes blur at

a given point must be obtained from the image data.

It transpires that the value in question can be taken as the radius of the point

spread function (PSF). This is the function which describes the blur circle and

when convolved with the original image produces the blur (Subbarao 1987). One

can say that r is some quantity that can be obtained from this function (Raviv &

Joarder 2000). If this value of r can be recovered, it could be possible to compute

L.

The challenge is thus the recovery of this radius. Many sources suggest that blur

can be modeled acceptably by a two dimensional Gaussian function or a rotated

one dimensional Gaussian (Subbarao 1987), (Luxen & Förstner 2002) . Using

this model (see equation 3.5), one may use the value of σ (in statistics this is the

Iain Brookshaw



3.2 Looming 47

Figure 3.4: The Gaussian curve, showing standard deviation (σ) and the true

radius of blur

standard deviation (De Veaux, Velleman & E. 2004) as r. Note that it is not

r, but rather proportional to r, however it is always proportional by the same

relationship and is thus an acceptable measure of r (Raviv 1995).

This relationship is demonstrated in figure 3.4. Notice that the true radius of

blur is where the curve becomes practically insignificant.

g(n, σ) =
1√
2πσ

exp

(
− n2

2σ2

)
(3.5)

Where,

n is the pixel range around the current position.

σ is the standard deviation of the Gaussian distribution.

Notice in equation 3.5 there is only one variable σ. In this application it is as-

sumed that the blur is symmetric. That is, it can be modeled by a rotated one

dimensional Gaussian. This means that only one value, σ need be recovered.

There exist models for two dimensional Gaussian blur, with two orthogonal val-

ues σ1 and σ2 (Luxen & Förstner 2002), however this was felt to add needless

complexity when there was every reason to suppose that one σ would be suffi-

Iain Brookshaw



48 Distance and Approach

Figure 3.5: Plot of various step functions representing the region edge with varying

degrees of ideal blur. f(x) is the original step, with b(x) being the camera’s blurred

edge and ba(x) and bb(x) being the re-blurred edges.

cient. Naturally, this assumes that the blur is symmetric. At this stage it will be

considered to be so, this will have to be tested in implementation.

At this point the question became how to recover this value from the image

data. Research has indicated that this can be done several ways. Firstly, there

exist iterative methods (Hu & de Haan 2006). These were excluded from the

investigation on the grounds of computational complexity. It is important to

recall that reducing computational complexity is critical, given the real time

project specification.

Further reading indicated the existence of other low cost blur estimation algo-

rithms, especially one based on blurring the image several times with a known

blur (see (Hu & de Haan 2006)).

In essence, the methodology eventually adopted relies on the difference between

blurred images. The original image is taken and re-blurred several times. The

differences between the images at each pixel location can be used to produce an

estimation for blur radius.

Iain Brookshaw



3.2 Looming 49

Figure 3.6: Plot of Rmax values recovered in Note the symmetrical nature of the

plot around the region boundary.

Consider the step function description of an ideal edge. Ideally, between one

object and another, there is a sharp demarcation. This demarcation could be

used in an edge detection algorithm to describe the object edge (see section

2.2.2). Ideally this is a step, as shown by the f(x) line in figure 3.5, however in

a real image, the edges of objects are seldom so crisp. There will be a certain

amount of blur present. If the camera is de-focused, as discussed above, this

blur will be guaranteed. This causes a “softening” of the edge step function, as

illustrated by the b(x) curve in figure 3.5. Notice that there is no longer a sharp

drop between regions, but that the edge has been rounded. pixels of a medium

value now lie between the two regions. This effect becomes more pronounced as

the blur becomes more severe (lines ba(x) and bb(x) in figure 3.5)

It is important to note that the values illustrated in 3.5 represent the ideal blur

edges. This is what would be produced if an ideal Gaussian blur was used. Math-

ematically these curves exhibit the perfect result. However, when implemented

they were not so exact (see figure 5.11).

How can this property be used? Recall that it is assumed that these blurred edges

Iain Brookshaw



50 Distance and Approach

can be produced by performing a convolution on the original f(x) step with a

Gaussian function. The Gaussian (equation 3.5), can be expressed as:

g(n, σ) =
1√
2πσ

exp

(
− n2

2σ2

)
(3.6)

Where n is the position in the image and σ is the standard deviation. From this

it is possible to show that 1 the blared step edge will be:

b(x) =
∑
n∈I

f(x− n)g(n, σ)

=



A

2

(
1 +

x∑
n=−x

g(n, σ)

)
+B, x ≥ 0

A

2

(
1−

x∑
n=−x

g(n, σ)

)
+B, x ≤ 0

(3.7)

Where A and B are the constants that define the idealised step function shown in

figure 3.5. The original Gaussian blur is now convolved with two new blurs. Using

the property illustrated in equation 3.2.4, the new blurred edge bax is illustrated

in equation 3.2.4.

g(n, σ1) ∗ g(n, σ2) = g(n,
√
σ2
1 − σ2

2) (3.8)

ba(x) =



A

2

(
1 +

x∑
n=−x

g(n,
√
σ2 − σ2

a)

)
+B, x ≥ 0

A

2

(
1−

x∑
n=−x

g(n,
√
σ2 − σ2

a)

)
+B, x ≤ 0

(3.9)

1All calculations here reproduced from (Hu & de Haan 2006).

Iain Brookshaw



3.2 Looming 51

The same equation can be used to describe the result of the second re-blur, except

σb is used instead of σa. Note that the two convolutions are separate operations,

the initial blurred image is not convolved sequentially. Thus there are two re-

blurred images that both started as the initial image.

The next step is to make the final operation independent of the constants A and

B. To do this, the ratio of differences (r(x)) between the two blurred edges is

computed:

r(x) =
b(x)− ba(x)

ba(x)− bb(x)
(3.10)

This equations for ba(x) and bb(x) (equation 3.2.4) can be substituted into equa-

tion 3.2.4. Using the properties of the edge location it is possible to say that:

r(x)max = r(−1) = r(0) =

1
σ
− 1√

σ2+σ2
a

1√
σ2+σ2

a

− 1√
σ2+σ2

b

(3.11)

This can be simplified further by the following assumption:

√
σ2 + σ2

a ≈ σa (3.12)

Needles to say, the approximation in equation 3.2.4 is only valid if σa >> σ. In

addition one also finds that σb >> σ and σa > σb. If this is assumed, it is possible

Iain Brookshaw



52 Distance and Approach

to find an expression for the initial blur:

σ ≈ σaσb
(σa − σb)r(x)max + σb

(3.13)

By examining figure 3.6, it can be seen that the maximum value of r(x) is always

at the region boundary. Thus the value of r(x)max can be found by substituting

values into equation 3.2.4 at that point. Using these properties, assumptions and

equation 3.2.4, it is possible to recover an approximation of the original blur at

the region boundary. (fuller working can be seen in (Hu & de Haan 2006)).

This method possess a number of great advantages over other Looming methods.

Firstly, it is applicable at a point, thus computational costs could be reduced

by computing the Looming value at one or at most several points in a region

and applying that value to the whole region (as it is assumed that a region is a

flat plane). Secondly, the above method of blur involves less assumptions than

irradiance, less complexity than texture and is not subject to the field of view

problems associated with area. For these reasons it was eventually selected as

the looming identifier.

3.3 Implementation

3.3.1 Blur Calculation

Now that a method of gauging blur has been selected, one needs to consider how

to implement this method in practice. As discussed, the blur recovery method

described in (Hu & de Haan 2006) can be (in theory) applied a single point on

the edge of a region. This is because the maximum blur ratio Rmax should occur

at an edge (see above).

Iain Brookshaw



3.3 Implementation 53

Consider the regions approach described. It is possible to swiftly find the edge of

a given region, by simply going from any point in the region to where the next

pixel is no longer of the same region as the current. The maximum blur ration

should be at this point. Thus the blur radius can be computed at any region edge

2.

To avoid errors, it would be inadvisable to simply take the result as computed at

one point. Ideally the result should be the average of all blur values around the

entire region edge. However to compute the blur at every pixel around the edge

was felt to be too computationally expensive. Thus a compromise was selected,

where the blur was computed at the four cardinal points of each region.

To fully describe this method it becomes necessary to move slightly ahead to

section 4.4.1. For reasons which will be expounded later, it was found convenient

to compute the region centroids. Thus a known handle for the region geometry

existed and could be utilised in blur finding. To find the blur at the four cardinal

points, one began at the centroid and advanced East, West, North and South to

the region borders. At these points, the blur radius was computed. The average

of these four comprised the blur estimation for the region.

This method only held true if the region was regular and not concave in shape.

If the latter, the centroid was likely to lie outside the region. To account for this,

a simple test was performed on each region before commencing blur calculations.

The grey value of the pixel representing the centroid was checked against the grey

value of the region. If they matched, the centroid was in the region and one may

proceeded as described. If not, then a slight modification to the above method

was needed.

If the centroid was found to be outside its region, the same process applied with

the distinction that the algorithm would go one pixel beyond the region border,

2This would appear to lend weight to the Edge Tracing method of obstacle detection outlined

in section 2.2.2, however regions were already selected as outlined.

Iain Brookshaw



54 Distance and Approach

Figure 3.7: Illustration of finding the four points of a region for blur computation.

The left hand image shows the case of the centroid being in the region. The right

hand image is for the centroid being out of the region.

into the next region before computing the blur. However, this means that in at

least one direction, the edge of the region will never be encountered. If the region

is a crescent with the concave section facing east, the eastern region edge will

always be to the west of the centroid. Thus going east from the centroid causes

one to fetch up on the edge of the image. For this reason a fail-safe was included

in the final algorithm to it from trying to find the blur at the edge of the image.

Thus, this method implies that the final blur result would be an average of at

least two, widely separate points. While this is not as good an estimation as

finding the blur at every point, it was considered a beginning. It was also hoped

that the blur recovery would be accurate enough to make the four point approach

sufficient. This was supported by the encouraging results obtained from (Hu &

de Haan 2006).

Iain Brookshaw



3.3 Implementation 55

3.3.2 Looming Calculation

Having found blur, it became necessary to create the means by which this blur

value would be used to find L, the Looming value. This was done in amalgamation

with the tracking algorithm (this algorithm will be described in detail in section

4.4, at this stage suffice it to say that a correlation is found between a region and

its corresponding match in the previous frame). Once value for blur has been

found it is recorded and combined with the value obtained for that region in the

previous frame to obtain Looming as per equation 3.4.

While there is little to be said on the calculation of blur (equation 3.4 is fairly

simple), it should be mentioned that there are several special conditions for L.

Because of the realities of implementation there will exist times where there is no

information about the previous blur. In this case, the Looming value was set to

zero. This can cause confusion as there are also times when the Looming value

is legitimately zero, for example when the region is not moving. However, it was

considered unlikely that any region would ever exhibit exactly zero movement,

therefore this duplication was considered acceptable.

The other special case is that of r, the current radius blur being zero. Mathe-

matically, when this happens equation 3.4 goes to infinity. In actuality what this

means is that the object in question is at infinity (the camera being focused at

infinity, an object at that point produces zero blur). Therefore, in the program

if the magnitude of the current blur is less than some very small number, the

Looming value is assigned to some very large, arbitrary number (1010).

The final point that should be mentioned is the significance of a negative L. As

the derivative in equation 3.4 is implemented by dividing the blur difference by

the time difference, the sign of the resultant L indicates whether the object in

question is advancing or retreating. As the blur difference is computed by taking

the current blur from the previous blur, an object of increasing blur (moving

towards the camera) will have a positive value of L.

Iain Brookshaw



56 Distance and Approach

3.4 Avoidance

Once all the segmentation, tracking and Looming calculations were complete, it

became necessary to use the information so gained to direct the machine around

obstacles. Using the information gathered from these sections it should be possi-

ble to avoid obstacles. However, the final results (see section 5.5) were too inexact

to permit a stable avoidance algorithm being implemented.

In addition, it was found that most sources ((Wang, Xu, Guzman, Jarvis, Goh &

Chan 2001), (Sahin & Gaudiano 1998), etc.). Were irritatingly glib concerning the

actual method used to avoid obstacles. Most of the sources devote the majority

of their time to extracting the relevant information, not discussing exactly how

it would be used. Thus very little information could be obtained on the best

method of using the Looming data. In the event this was not critical, as the

Looming results were too unstable to be employed anyway. However for the sake

of completeness there follows a brief description of the planed avoidance method.

This was never developed fully as it became clear from a relatively early stage

that it would not be implemented.

3.4.1 Approach Categorisation

Recall that the purpose of the exercise is to avoid the various objects in view.

This implies steering away from the objects as they approach to avoid collision.

The Looming algorithm has provided an estimation of the object’s approach and

the segmented object’s location in the original image gives some indication of

the position in the plane (left and right). From this the computer may place an

object in terms of two dimensional position and approach.

Steering would be accomplished by creating an imaginary line around the ma-

chine. This imaginary line would be based on Looming value, all objects that

Iain Brookshaw



3.4 Avoidance 57

exhibit an Looming value larger than this limit will be treated as impending col-

lisions. This limiting Looming value would have to be considered on the basis of

the minimum range desired.

3.4.2 Direction Decisions

Now that the approach of a object can be categorised, what needs to be done

with this information? If an “avoidable” object has been detected, the motors

need to be directed to avoid the object. It is obviously insufficient to simply steer

randomly and hope that avoidance just happens.

To resolve this, the position of the object in the image plane is used. Chapter

4.4 discusses the computation of region centroids. The location of these centroids

in the image plane would give some indication of the position of the object in

space. Thus motor control can be directed proportionally to the location of the

object left or right of the center plane. For example, if the object in view was

10% of the image width from the center of the image, the motors would turn the

machine at a rate proportional to that 10%. Other factors that would need to

be considered in deciding motor speed would be the Looming value of the object

at that point. Using this method, proportional control could be achieved. It was

simply assumed that all obstacles would be positive, in that holes in the ground

would not occur (as in (Wang et al. 2001)).

Iain Brookshaw



58 Distance and Approach



Chapter 4

Tracking and Correlation





4.1 Frame to Frame Correlation 61

4.1 Frame to Frame Correlation

Upon reading the above sections the reader will note that most of the methodolo-

gies described (particularly looming and related algorithms) rely on information

from a previous frame. This in turn implies some form of correlation from frame

to frame. The path of an object must be known through a series of progressive

frames to acquire this information. While human viewers of easily and intuitively

make connections between objects in successive frames (based on similarities in

shape colour etc.), the computer has no instinctive ability to do this. As in region

segmentation (see chapter 2), one must be careful not to anthropomorphize the

computer’s operation.

To fully define the idea of frame correspondence, the concept of “optical flow” has

been created. (Bradski & Kaehler 2008) describes optical flow as “the quantitative

assessment of the two dimensional movement of pixels from frame to frame” and

notes that values may be assigned to all pixels (dense optical flow) or only some

(sparse optical flow). This can be achieved a number of ways, with differing

emphasis. In this case, the real-time nature of the application necessitated that

a computationally simple and rapid method be adopted. However, this had to be

balanced with the critical importance of frame to frame correspondence for the

Looming methods1.

The first issue that needs to be addressed is sparse versus dense optical flow. Here

the choice is relatively simple, assigning movement values to every pixel in the

image would be a complex and time consuming process (Jain et al. 1995). As the

image is segmented into distinct regions anyway, there is no need to assign values

to every pixel as it was assumed that all pixels in a region move in tandem. Thus

the best method would be to compute the movement of each region and assign

that value to every pixel in the said region. This implies a sparse optical flow

1It is also possible to compute approach directly from optical flow. However, advice suggested

that this would not be advisable (see above)

Iain Brookshaw



62 Tracking and Correlation

method.

4.2 Point or Feature Tracking

When creating an algorithm for computing optical flow and correspondence there

is another fundamental choice that needs to be made. Will it be feature or region

based? The former tracing method is based on distinct features or points in the

image, while the latter attempts to track large objects as they evolve in time

(Davies 1997).

In the feature based approach, one takes points that possess good track-able

properties (as described in (Bradski & Kaehler 2008), these are usually corners

of objects). One uses these properties to find similar pixels in the next frame,

thus establishing continuity. As comparisons are generally based on grey-scale

similarities, using these comparisons it is in principle possible to track every pixel

in the image by finding the best local match for its numerical value in the next

(or previous) frame. However this would be not only very time consuming, but

in many real cases impossible (Neumann 1998). This is due to several problems

with optical illusions.

Consider the following; pixels in the center of an object are all of a similar grey

value. Thus as the objects move, only the pixels that represented the edges change

in value. This means that the interior pixels cannot be tracked with any degree

of reliability as they exhibit no significant change from frame to frame until they

become the object’s edge. One interior pixel could very well be any other (Jain

et al. 1995).

This would seem to signify that only edges can be tracked successfully. This

is partially true, however an examination of figure 4.1 shows that only edges

perpendicular to the direction of motion can be successfully tracked.

Iain Brookshaw



4.2 Point or Feature Tracking 63

Figure 4.1: Illustration of the difficulties of tracking for non-orthogonal movement

Iain Brookshaw



64 Tracking and Correlation

Figure 4.1 shows clearly that as the top edge is parallel to the line of motion, the

same problem applies. Any pixel in the top edge except the last two could be any

other. This leads to the idea that only the corners of an object can be tracked

(Bradski & Kaehler 2008). These unique pixels can be distinguished regardless of

the motion direction. This is because as a point, they are always “orthogonal” to

the direction of motion, no matter the direction the corners are always changing

with time.

Thus the “features” that are tracked are the corners of the object. However, not

all objects have traceable corners. A round ball for instance will probably not

the produce sharp projections necessary to enable unambiguous tracking.

While the corner approach is fairly robust, inexpensive and can be performed on

any image without much prior work, it has one important weakness when applied

in this case. Feature tracking thus assumes that there is a track-able point in

every object.

Consider a blank wall. This object is an untextured surface and as such probably

has no features that are amenable to tracking. As discussed above a white pixel

surrounded by other white pixels is impossible to track from frame to frame. In

the case of a wall, it is probable that the edges of the wall are not in view (in fact,

as the robot approaches closer and closer this becomes a certainty). Therefore it

will be impossible to track large (and therefor important) regions from frame to

frame, unless they have significant internal texture. The existence of such internal

texture was considered too much of an assumption for such a crucial point.

4.3 Region Tracking

The second approach considered was region tracking. This method aims to find

a correspondence between large regions, as distinct from individual pixels (Fuh

& Maragos 1989). Where the feature based method assigns values of optical flow

Iain Brookshaw



4.4 Chosen Algorithm 65

to regions based on an individual pixel, the region tracking methods describe

individual pixels through the movement of the corresponding regions.

The advantages of such a system are obvious in this context. When the image

is already segmented (as in this case, see section 2.3), it is possible to use the

existing regions to compute the motion of all pixels within them. To do this, it is

assumed that all pixels in a given region move in the same fashion (Fuh, Maragos

& Vincent 1993).

Furthermore, such a method is not constrained by the necessity of selecting

“track-able” pixels. There is no necessity to select the corners or any other single

point. The region’s own geometry can be used to provide the unique tracking re-

quirements and so divorce the tracking program from the necessity of considering

individual pixels (Javed & Shah 2006). A consideration of the region’s properties

reveals at least three distinct quantities that, combined distinguish a region from

its neighbours; the location of its centroid, the area of the region (or bounding

box, (Javed & Shah 2006)) and the average grey-scale value of its component

pixels.

4.4 Chosen Algorithm

Once the above problems had been carefully considered, it became clear that the

region based approach was the most applicable. The existing segmentation of

(hopefully) stable regions made it especially useful. To provide region correspon-

dence between frames three properties were used: the location of the centroid,

the area of the region and the average pixel value (Fuh et al. 1993). Other values

that have been seen include, bounding box size (Javed & Shah 2006).

To implement this method, a critical assumption was made. All tracking algo-

rithms and methods discovered during research were based on the assumption

that a given feature, region or object moves very little from frame to frame. The

Iain Brookshaw



66 Tracking and Correlation

frame rate is such that one may presume an object’s motion to be smooth, regular

and minimal from frame to frame. This implies that the geometric location of

an object’s projection in one frame will be very close to its projection in another

(Jain et al. 1995). While this seems obvious, it is important to mention because

it relies on the frame rate being very fast relative to motion. As motion increases

this assumption becomes increasingly inaccurate, thus reducing the accuracy and

effectiveness of tracking (Fuh et al. 1993).

If one accepts this assumption, it is possible to employ a number of region identi-

fiers to achieve correspondence. As mentioned, these are commonly the geometric

center of the region and the average pixel grey-value. The geometric center, or

centroid is the key indicator. This location is a physical spot on the image plane,

but is not tied to any one pixel. Thus it is not susceptible to the aperture prob-

lem outlined above (or rather, as a unique point it is always a corner). If the

frame rate is sufficiently rapid, one may assume that, in the next frame the closest

centroid to the one under consideration in the previous frame is a match.

4.4.1 Centroid Calculation

In order to use the centroid of a region to provide correspondence, this property

must first be calculated. The centroid of a shape refers the location of the geo-

metric center. In this case, as the image region is a two dimensional object the

centroid is the center of area and can be computed through use of equation 4.1.

y =
ΣA× y
A

(4.1)

Thus all that needs to be done to calculate the centroid is to find the position of

every pixel in a region and the area of the region. This requires an algorithm ca-

pable of visiting every pixel in a region, preferably with the minimum of overhead

(as it needed to perform this function for every region in the image) and recording

Iain Brookshaw



4.4 Chosen Algorithm 67

the location. The method selected for this was a simple recursion method. This is

not the best mechanism, but was simplest to implement (Brookshaw 10/12/2010

to 27/10/2011).

Recursion

The recursion method chosen to count all pixels in the region is a crude method.

While simple it is expensive in both time and memory, however it was relatively

easy to implement.

In essence the algorithm runs through the image pixel by pixel. If the current

pixel is part of the region in consideration it is recorded and its surrounding

pixels checked. If these pixels are part of the region in consideration they are also

recorded and their surrounds checked. This process continues until all pixels in

a given region are visited2.

A simple function “recursion”3 is created and checks the surrounding pixels for

any given point and flags pixels of the same region. If a surrounding pixel is of

the same region, the function “recursion” is called again, to pursue this method

with that pixel (the algorithm is given in figure 4.2). The implemented function

used a “four-connectivity” pattern, checking the pixels North, South, East and

West of the subject pixel. Although more complicated algorithms use all eight

surrounding pixels, this approach was rejected as too complex to implement. This

means that the function is called for every pixel that is found in the region. This

is a very time consuming process.

To ensure that the recursion is limited to previously unchecked pixels in the one

region, two comparisons are made with every new pixel. First, the new pixel

is checked to see if it is of the same region currently being considered. Next its

2Remember that a regions is an area of pixels of the same grey value. Thus the boundaries

of a region are simply where the colour changes to any other value
3See the centroid finding functions in Appendix B.1.3

Iain Brookshaw



68 Tracking and Correlation

Recursion Algorithm

1. Check current pixel

2. Record if criteria satisfied.

3. Check its surrounding pixels.

4. If they satisfy criteria, move to that pixel and return to 1.

5. Continue this process until all pixels accounted for.

Figure 4.2: the recursion algorithm as used by the tracking program

“flag” is checked to see if it has been tallied before. This flag is a counter assigned

to each pixel (in reality a matrix of zeros the same size as the image). When a

pixel is counted, the flag (corresponding entry in the matrix) set. If either the

flag is set or the pixel is not part of the same region, then it is not recorded or

included in the recursion (its neighbours are not checked either). This ensures

that the algorithm (when all flags are checked), will stop and move onto the next

region, not simply run round forever inside the same group.

What this means is that a given position in a region, the recursion algorithm will

begin to expand until it has counted every pixel inside the region. However, it is

evident that this is a very slow and laborious method. Despite this it was con-

sidered acceptable due to its ease of implementation. Given the time constraints

of the project, such ease of implementation was considered more important than

elegance in this case.

The real impact of this method is a slight, almost imperceptible delay in process-

ing and the necessity of permitting the operating system access to a larger stack

than usual. It was found that if this modification was not made, the amount of

numbers needed to be held in memory grew unacceptably large for big regions.

This lead to the program crashing with memory errors.

Iain Brookshaw



4.4 Chosen Algorithm 69

4.4.2 Data Recording

Once a centroid has been identified it needs must be stored. Remember that

tracking will proceed by locating the best match for a given centroid in another

image. Thus we will need several lists of centroids, one from the new image and

another from the old. Each list will need to contain a table for each centroid,

with data such as x, y location, average grey value, region label colour and so on.

Given this requirement, the centroid location is stored in a linked list structure.

This list is a simple construct, its only difficulty being that we do not know in ad-

vance how many centroids we have (the exact number of regions in a given image

is unknown). Thus we proceed as follows: Create a structure called “Centroid”

this contains all the information pertinent to that region, x location, y location,

grey sum, area, Looming value etc. The last entry in this list is a pointer to the

next “Centroid” structure in the series. This creates a chain of centroids the last

link of which points to nothing (House 1994).

This chain is then investigated and all centroids relating to regions of an area

less than A are removed. This is to prevent tiny regions (on order of several

pixels) from cluttering up the calculations and slowing the computational time.

We are only interested in objects that are large enough to see and be a hazard,

not tiny textures and grains on an object’s surface. This raises the concern

that important details may be lost. Thin wires for example, could represent an

“obstacle” yet be ignored by this contingency. This was considered and thought

to be too insignificant a probability to warrant the extra computational expense

of tracking tiny regions. Of course, the minimum size tolerance could simply be

reduced to zero to include all regions.

Once the list is cleaned to the essentials, we have a selection of centroids that we

can track in the next frame.

Iain Brookshaw



70 Tracking and Correlation

4.4.3 Centroid Matching

To track, the program attempts to find correspondence between the various cen-

troids from one frame to another. This can, as with most things, be done a

number of ways. Most sources ((Fuh et al. 1993), (Hager & Belhumeur 1998),

etc.) begin with creating a search area. This search area is the area around a

given centroid that will be considered for correspondence. If a centroid from the

other frame falls within this search area, it can be considered as a match for the

current centroid.

The program defines the search area by creating a square of the same area as the

region, centered on the region’s centroid (this was considered the easiest shape to

implement), recall that the centroid list contains the region’s area. Thus it is a

simple matter to define the square’s side. This done one may search through the

centroid list from the other frame for all centroids that fall within this area and

compile a list of probables. This square approach was selected over the bounding

box idea described in (Javed & Shah 2006) because it was considered easier to

implement. Initially, it was believed that the bounding box would be much more

difficult to code for no noticeable advantage.

Area alone however, is insufficient. There will probably be several centroids in

the search area, therefore some method must be made to distinguish between

them. The simplest method is just to choose the closest. However, this is still

flawed. Analysis of the segmentation program showed that regions and objects

will splinter into several regions (or re-merge) based on changes in the light,

occlusion and perspective change. Thus what was a single region in the previous

frame may be several regions in a new frame. Hence a algorithm that simply

selects the closest is not enough, it must have sufficient flexibility to assign more

then one region to another.

This is achieved by considering the difference in grey averages between regions.

The centroid calculating algorithm was modified to include a grey sum entry and

Iain Brookshaw



4.4 Chosen Algorithm 71

the total grey value for a region was recorded. Thus when combined with region

area it was possible to compute a grey mean. The probable regions are then

assigned based on this grey mean. If the mean difference of the region under

consideration and a probable region are within tolerance (a tolerance supplied

and used by the segmentation algorithm for this frame), then a match is found.

This method ensures that several matches are possible.

The flaw in this method is that several regions of similar colour could lie very

close to each other in space. This objection is countered by considering if so close

a match was possible then it would have been accounted for by the segmentation

algorithm and the regions would be merged.

The other advantage of this method is that it takes into account the arrival and

departure of regions as the image evolves. If a new object appears within frame,

there will probably be no object (within the search area) that matches its grey

mean value in the previous frame. Thus this new region will find no match when

the grey mean is considered. This region will remain undefined until the next

frame.

The final consideration is whether to consider the previous frame in relation to

the next or the current frame in relation to the last, whether to go backwards or

forwards. The final program operates from current to previous, finding a match

for the current regions in the previous image. The reason for this is to ensure

that new regions remain unmatched until the new frame (as above).

This is, in essence the method used to create correspondence of objects from frame

to frame. The tests and trial results of this method may be found in sections 5.3

and 5.4.

Iain Brookshaw



72 Tracking and Correlation



Chapter 5

Results and Discussion





5.1 Ideal Test Images 75

Figure 5.1: Original checkerboard test image. 600 by 600 pixels

The final program was long, complex and difficult to follow. While it certainly did

not work as expected, it was difficult to see exactly what it did do. To resolve this

each component part of the program was tested individually. The results showed

that, while there were inaccuracies that prevented coherent function of the whole,

each individual component could be shown to function correctly, within certain

limits.

5.1 Ideal Test Images

No computer program in the author’s experience has ever run perfectly when

written. There is always some logical error that causes unexpected failure, unin-

tended side effects or general mayhem. In many cases these errors are too subtle

to be detected when the program is run in a real world environment. This was

very much the case with the early stages of the project. Errors had a tendency

to appear randomly, control of the image was difficult and some problems simply

went unnoticed in the welter of real time image information.

To permit debugging, the programs involved were modified to operate on single,

still images. Artificially perfect stills such as figure 5.1 were then fed in and the

results examined. The results from these test images were simple enough that

problems could be swiftly identified. Each major section of the main program

Iain Brookshaw



76 Results and Discussion

was removed from its place and tested individually. This permitted verification

of the output from each major function.

The initial test image was a checkerboard of four squares (see figure 5.1). This

painfully trivial image was selected as it was easy to produce four distinct regions.

As the squares were absolutely black and white, there could be no ambiguity

about the region’s extent. This image and other similar pictures were then given

to each of the main program functions and manipulated, modified and otherwise

altered so that all the key aspects of the various functions could be tested.

Once the functions had passed the checkerboard test, they were given much more

complex images. These more sophisticated images depicted “real life” type scenes

and were intended to give a less rigorous “feel” for the workability of a given

process. Unlike the idealised images there was no exact check for success on

these images, rather a careful examination for any obvious ambiguities.

5.2 Segmentation Verification

Segmentation was easily tested using the checkerboard image. A guaranteed black

and white image was fed in and an identical image returned. This may seem

trivial, for segmentation is designed to produce such an image, therefore what is

the point of giving it an already segmented picture? However the checkerboard

test is doubly important for the segmentation function. If it cannot properly

segment the image (i.e.: return exactly the same image it received), then the

algorithm is randomly introducing variance into the image. This is critically

important as such random segmentation means that the output image would be

unstable. Regions would be appear and disappear randomly and tracking (and

hence Looming and avoidance) would be similarly random. If the stability of the

region algorithm is in question, the entire process becomes doubtful.

Thankfully, the tests run indicated that the output image was in every respect

Iain Brookshaw



5.2 Segmentation Verification 77

identical to the input image. This was verified by the simple expedient of sub-

tracting every pixel in the output from the input. All pixels in the resulting

image were then verified to be exactly zero. This simple test was run many times

without deviation. 1

Thus it is known that the segmentation function does not introduce new regions

randomly. However, we need to verify that more complex images are satisfactorily

segmented. This could have been done by simply watching the real time output of

the function. While this was done (many early and obvious problems were caught

this way), it was felt to be too subjective an assessment. To create more scientific

results, a complete image was introduced, segmented and the output compared

with the input. This can be seen in figure 5.2. As these images illustrate, there

is a fair correspondence between the two images, the edges of objects largely

correspond to the edges of regions and the regions seem to represent the flat

planes.

Given a slightly more complex image, it can be seen that segmentation is fairly

accurate, with respect to region boundaries and object locations. However, these

tests only covered the one image. What of the results for a sequence of images?

This is the section where problems begin. When the segmentation algorithm is

run for a sequence of images, it becomes apparent that there is some variation

(this may be seen by simple observation of the feed from a motionless camera

that has been processed by this function). Small variations in light and shade,

minute movements in the scene, even the subtle effect of image noise all combine

to make the regions in one frame different to the regions in the next.

This is difficult to demonstrate, however observe the images in figure 5.3. Note

that the segmented regions are subtly different. All that has been done to this

image is to increase its scale by 2% (with the top left hand corner in the same

1The test images are not replicated here (there is nothing to see). Interested parties with time

on their hands may see the outline of the modifications needed to produce this test algorithm

in appendix B.2.1

Iain Brookshaw



78 Results and Discussion

Figure 5.2: Illustration of segmentation of a complex image. On the left, the

original image, on the right the segmented output. n.b. this image was used as

a test image in (Hu & de Haan 2006) (among others) and was repeated as a test

image here as the author found its provenance rather amusing. In actuality any

reasonably uncomplicated image would do.

place). This implies that small changes in the image can create relatively large

changes in the resultant segmented images. This has serious connotations for the

tracking and Looming calculations.

Notice however, that (by and large) the background regions, where the original

focus was less sharp, retain their original composition. The discrepancies are far

less marked the further the original object was from the camera. Thus the greater

the de-focus the more stable the segmentation. Conversely the regions closer to

the observer are those that show the greatest discrepancy between segmented

frames.

5.2.1 Effects of Pre-Processing Filtering

The pre-processing filtering with a Bilateral filter (as described in section 2.4.1,

met with mixed success. Although, as advertised it smoothed the images and left

Iain Brookshaw



5.2 Segmentation Verification 79

Figure 5.3: Illustration of the differences between two segmented images. The top

set is 2% smaller than the bottom set. Notice the region discrepancies, especially

in the foreground.

Iain Brookshaw



80 Results and Discussion

the edges intact, it was also inordinately slow.

The greatest effect of the noise removal section was a lengthy time delay. This

delay (on order of several seconds) was longer than any other component part of

the entire program and far too large for a real-time application.

Despite this, the need for some form of noise reduction was found to be very real,

especially for poor quality cameras. The removal or reduction of the smoothing

algorithm caused significantly visible increase in the instability of the segmen-

tation routine. These same results were obtained when the numerical blur was

substituted for an optical blur (a camera with a de-focused lens).

5.3 Centroid Verification

Like the segmentation function, the centroid functions were tested initially using

the simple checkerboard shown in figure 5.6. The centroids of these squares were

well known, their location can be simply calculated from the image size and the

knowledge that the squares are of equal area.

Given these known positions and the simplicity of the image structure, it could

be expected, with reasonable certainty that the centroid functions would return

the centroid locations as the center of the squares. This they dutifully did (see

figure 5.4).

Thus the ability of the centroid functions to perform rudimentary calculations was

demonstrated. However, the real world will not return perfect squares, shapes

will often have the centroid outside their dimensions. To test the functions on

more complex images figure 5.5 was created. Again the centroids were found to

be in expected positions.

Finally, having ascertained the effectiveness of the centroid function on test im-

Iain Brookshaw



5.4 Tracking Testing 81

Figure 5.4: The test image, showing the successful finding of the centroids.

Figure 5.5: The test more complex test image image, again showing the successful

finding of the centroids.

ages, it was incorporated into a test function with the segmentation function

and given “real” images. These test images showed that centroids were being

computed reliably for all regions. This held true for any test image no matter

the number of times run. The accuracy of the placement was more difficult to

ascertain, as “real” image regions tended to be very irregular. However visual

inspections returned no anomalies and the x, y positions were the same for each

image, regardless of the number of times the test was run.

5.4 Tracking Testing

Before the Looming algorithm could be implemented fully it was necessary to

investigate the efficacy of the tracking algorithm. This was first accomplished

through use of the idealised test image 5.6. A test algorithm was produced which

ran the tracking function on only two images. The intention was that the two

Iain Brookshaw



82 Results and Discussion

Figure 5.6: Checkerboard test image distorted for tracking. 600 by 600 pixels

Figure 5.7: Distorted checkerboard showing tracked centroids. The grey line from

the centroids in the right hand figure shows the computed position of the centroids

in the previous (left hand) frame.

Iain Brookshaw



5.4 Tracking Testing 83

images would be slightly dissimilar, but not so different that tracking would be

problematic. Recall that tracking assumes that there is only a small movement

from frame to frame.

To this end, figure 5.1 was given to the test algorithm as both image one and two.

The intention of this seemingly trivial exercise was to see if the tracking algorithm

could successfully recognise that when no movement occurs, the centroids remain

in the same location. This would test the fundamental concepts of the tracking

program and ensure that no random element was present at so simple a level.

This test worked successfully over a number of trials and indicated that tracking

was at least possible by the method outlined.

The next step was to deform the ideal image, figure 5.1 so that the tracking

algorithm could be tested in a more complex environment. To this end, figure 5.1

was modified to figure 5.6. This retained the black and white perfect regions, but

modified their geometry so the centroid was forced to move. Once again, when

run the results clearly showed that the centroids can be tracked via the methods

used (see figure 5.7).

However, up to the present only perfect test images have been considered. It is

crucial to know how the system will respond to the more complex environment it

is likely to encounter when run. To determine this, the test images used in figure

5.3 were given to the tracking test function. As mentioned above, these two differ

by 2%. This is analogous to a small shift of the camera closer to the object. To

enable the tracking function to work, the segmented versions of these images (the

right hand images in figure 5.3) were used. The results (shown in figure 5.8) are

somewhat mixed. Some regions have tracked successfully and their corresponding

regions in the previous frame are as expected. However these represent a small

proportion. It was found that less than 50% of the regions had been tracked at

all (roughly 20 to 55% for repeated tests with various images) and of these, one

can see that some are not to the correct region.

Iain Brookshaw



84 Results and Discussion

When the full real time program was run, it was found that “tracked regions”

(those regions for which any match was found in the previous frame) ran to about

60 to 70% of the total if the image was held stationary (no camera motion, or

motion in the image, no changes in light intensity, etc). If the camera was moved,

this fell to around 50%, as found in the static test frames.

Interestingly, if the camera is de-focused so the image exhibits a severe blur, the

incidence of successful tracking rises to around 80 to 85% for a stationary camera

and about 75% for a moving one. It was found that the magnitude of the blur

was not overly significant and could be judged approximately by eye to find the

optimum results. If the blur was such that objects in the fore ground were just

distinguishable from objects in the background, then the results were noticeably

improved.

Upon receipt of these discouraging results attempts were made to investigate the

efficacy of the tracking algorithm itself. It was suspected that, like the segmenta-

tion algorithm, it was introducing randomness into the program. To verify this,

the tracking test function was given exactly the same still image to segment and

track. This returned a successful tracking rate of 100%, repeatedly and for all

images tried. This indicated that the algorithm itself was functioning success-

fully. It also indicated that the camera, no matter how still it is held, does not

return exactly the same image from frame to frame.

Despite this, the unsatisfactory results for moving images implied that the tem-

poral evolution of the image was less well understood that desired. This almost

certainly had effect on the results for Looming and avoidance (see below).

5.5 Blur Estimation

Having established that the segmentation, centroid and tracking functions work

(at least in controlled situations), it became necessary to establish the efficacy

Iain Brookshaw



5.5 Blur Estimation 85

Figure 5.8: The results of tracking the segmented images in figure 5.3. The line

from each centroid indicates the calculated position of that region in the previous

frame.

Figure 5.9: The ideal blur test image. It is simply a two square checkerboard 400

by 200 pixels. Note the grey values used to colour the squares are not black and

white.

Iain Brookshaw



86 Results and Discussion

of the blur recovery function. This function is of pivotal importance for the

Looming calculations, without success here, the Looming (and hence avoidance

and navigation) would be forced to rely on some other, less satisfactory method,

such as area (see section 3.2.1).

The aim of the initial experiments was to reproduce the results claimed in (Hu

& de Haan 2006). If successful in this endeavour, the program would then be ex-

panded to operate on general regions as might be encountered in the real images.

Once satisfactory results were obtained in a more complex field, it was felt that

it would be safe to incorporate the blur algorithm into the real time program.

The output could then be used to calculate Looming.

To determine the abilities of the blur function, the much used checkerboard (figure

5.6) was again employed. The Open CV library contains the useful function

cvSmooth, which can be used to apply a Gaussian blur to an image (recall that

it was assumed that the camera de-focus could be approximated by a Gaussian

blur, see section 3.2.4). Using this function, a blur with a known radius (σ) was

applied to the image. It was intended that the blur function recover this value.

This was an attempt to re-create the tests performed in (Hu & de Haan 2006).

This would both verify the data in (Hu & de Haan 2006) and prove that the blur

function worked in test conditions.

While simple in theory, this proved very difficult to implement in practice. The

mathematical justification given in (Hu & de Haan 2006) (and expounded in

section 3.2.4) was quite simple and straightforward. However on no account

could it be persuaded to work.

The method used was simple, the test image (initially the four square checker-

board of figure 5.6, later a simpler, two square version, figure 5.9) was blurred

using cvSmooth and known blur radius. the resultant image was then re-blurred

twice using two other different blur radii, to provide the two comparative im-

ages as described in section 3.2.4. This worked, insofar as could be determined,

Iain Brookshaw



5.5 Blur Estimation 87

perfectly. From this point on, however a coherent result was very difficult to

obtain.

The test image was of known dimensions. In consequence, it was possible to

simply go directly to the region boundary in the code, without having to search

for it. As described in section 3.2.4, the point of maximum difference occurs

at the region boundary. Once there the arithmetic portions of the code worked

correctly, but the answer was never even close to the initial blur (it was frequently

several orders of magnitude different). Worse still the answer was insensitive to

changes in the initial blur. As can be appreciated, this was unsatisfactory. The

change in blur in the real image would denote the approach or retreat of actual

objects, thus the recovery algorithm must be able to compute values that reflect

this movement.

The problem took considerable time to resolve. While it could be verified that the

calculations were functioning correctly and that the initial premise was sound,

the results were obstinately wrong. It was finally discovered that the problem lay

in the cvSmooth function. The function operated by specifying a blur radius and

kernel size. If no kernel size was specified one was automatically computed from

the desired blur radius. As the method was based around blur radius, the kernel

size was not initially considered and the program left to determine this on its

own. Unfortunately, this resulted in a very small kernel. It was discovered that

the kernel size had critical bearing on the result, after much experimentation it

was found that it needed to be of dimensions roughly three times the size of the

magnitude of blur. If this was not the case, the blur recovery was not stable or

accurate.

When the results of the algorithm are plotted over a series of pixels both before

and after the region boundary, the improvements of enlarged kernel size can

clearly be seen. Figures 5.10, 5.11 and 5.12 illustrate the results for when the

initial blur radius is 1 and the re-blur radii are 4 and 7, with kernel sizes of 13

and 25, respectively. The true edge for the test image (see figure 5.9) is located

Iain Brookshaw



88 Results and Discussion

at pixel 199. At this point we can see a σ value of 1.4 is recovered. This was

considered a sound estimate. However, the true value of 1 is almost exactly

recovered, at pixels 197 and 198. These are not the true region boundary, yet

they return the best value.

However, notice that the results in figure 5.11 are nowhere near as regular as

those illustrated in figure 3.5. The step functions have roughly the same number

of points, but the grey values for the re-blurred image in figure 5.11 do not come

to rest at the original grey values as in figure 3.5. Additionally, while the values

for maximum radius illustrated in figure 5.12 form a similar shape to that in

figure 3.6, the values for Rmax in the former are not constant over more than one

pixel, as in the latter case. This indicates that different values of blur will be

found on both sides of the region line, as is demonstrated by figure 5.10. This

is not a good value because the same blur function is used on both sides of the

region divide. All this implies that there are errors in the original code. However,

despite many attempts, these could not be uncovered.

Despite the less than satisfactory results from the static tests, it was decided

to implement the more general blur finding method. This involved adapting the

methods described above to find the blur at the north, south, east and west points

in each region (see section 3.3). To do this, a function was written that moved a

pointer from the centroid to the requisite region edge (but not counting the image

edges). The blur was then calculated at each region edge point and an average

obtained. The program was somewhat more complex than this, accounting for

cases where the centroid was not in the image region. However, in general this

was the approach taken.

Unfortunately, when implemented this was not fully successful. The answers were

in general neither accurate nor consistent, yet they did display interesting traits

under various conditions.

Initially, the program was tested on test images such as figure 5.9 and figure 5.4.

Iain Brookshaw



5.5 Blur Estimation 89

Figure 5.10: The recovered blur radius for the ideal test image with initial radius

of 1 and a re-blur σ values of 4 and 7.

Iain Brookshaw



90 Results and Discussion

Figure 5.11: The step functions for the blurred edges showing the initial recovered

blur and the two re-blurred edges. Re-blur σ values of 4 and 7.

Iain Brookshaw



5.5 Blur Estimation 91

Figure 5.12: Maximum recovered blur difference for the ideal test image with initial

radius of 1 and a re-blur σ values of 4 and 7.

Iain Brookshaw



92 Results and Discussion

Figure 5.13: Multi-coloured test image for general blur recovery tests.

These verified that the program was functioning correctly, going to the region

edges and correctly identifying the difference between a region and image border.

This done, the test images were subjected to a known blur and the full algorithm

run for recovery. The results on from the black and white test images were not

especially accurate (although roughly in range, values of approximately 2.1 were

returned for a blur of 1.5), but were consistent within colours. That is, all black

squares returned the same value at all points and all white squares returned

the same value. These values were never the same, yet it did illustrate internal

consistency.

However, real images do not exhibit this clear cut contrast between regions. To

simulate a more realistic image, while maintaining clear regions, a larger checker-

board image was prepared and the regions coloured distinct but similar colours.

This image is illustrated in figure 5.13.

When run, this image produced very interesting results. The recovered blur for

the regions was much less consistent, even internally. The north, south, east, west

points in each region no longer guaranteed the same result. In general each region

returned the same value for all four points, but several cases could be seen that

Iain Brookshaw



5.6 Looming Computation 93

did not. Additionally, the variance of returned values became much larger. To

gain some insight into the overall result an “average of averages” was computed,

being the average of all the region averages.

This value has no real application in a real world image, which would have a

different value of blur for every region in any case. However, in a test image, the

whole image was blurred by the same value. Thus the average of all recovered

blurs should be the initial blur value

When found, the “average recovered blur” was much more accurate than any

individual blur and that accuracy increased markedly after the initial blur value

passed 2.0

The other important point that was noticed was that when run repeatedly, for

the same image and blur, the program always returned the same answer. This

was encouraging as it indicated that the errors were not a product of random

behaviour in the program itself.

5.6 Looming Computation

In order to verify that the Looming method was functioning as advertised, several

test routines were created. As this is a fairly key area for success in the project,

several methods were tried under controlled conditions before the algorithm was

incorporated into the real time program.

5.6.1 Area Looming

While area was considered an unattractive method to use in real time (see section

3.2.1), in constrained environments it possesses the unique advantage of being

easily verifiable. The calculations could be easily checked if sufficiently simple

Iain Brookshaw



94 Results and Discussion

Figure 5.14: The area Looming test images. Not the black area in the left image

is 64% smaller than the right.

test images were given. To this end, the test image illustrated in figure 5.14 was

created. The black square was 200 by 200 pixels in a 400 by 400 image. This

image was then modified by increasing the black square to 250 by 250 pixels, thus

simulating a “approaching object”. The known increase in size was to enable

Looming to be computed by hand before hand. This was done and a value

of (22500/∆t)/62500 found. A test algorithm was then created that used the

Looming equations defined in section 3.2.

The hand result was compared to the calculated value of from the test algorithm

and found to be identical. Now this seems fairly trivial. The Looming algorithm is

in itself, fairly simple, just a simple equation barely worthy of the name algorithm.

However to compute Looming, many stages of the program have to work in unison.

The centroid functions must accurately compute the x, y positions, the mean

grey-scale value and the area of the regions, the tracking function must assign

a correct correlation between the moving regions and then assign the values of

the previous region area to the current regions. An accurate value of Looming

confirmed that these operations worked, at least under test conditions2.

However, computing the Looming value for idealised test images is one thing,

2Interested readers may view the test algorithm in appendix B.2.3

Iain Brookshaw



5.6 Looming Computation 95

estimating it for a sequence of real time moving images, is something else entirely.

When the area based Looming was implemented in real time, it was found that

there was substantial instability in the result.

This instability was, to some extent expected. Despite the efforts expended on

the segmentation sections, there was still some degree of divergence from frame

to frame (this is discussed in detail above). This divergence meant that the value

of area for a given region fluctuates mightily from frame to frame. Although it

does not look so serious to the naked eye, this fluctuation can create seriously

erroneous values for Looming. This meant that the “closest” or most “distant”

object as computed by the Looming function were rarely the same region from

one frame to the next.

Although exact tests were difficult on the live feed, the main reasons for this

erratic behaviour were thought to be due to region fluctuation and tracking errors.

When tracking, the function works perfectly for test images. As mentioned in

section above, perfectly segmented images that are clearly delineated can be

tracked with ease. It is somewhat less successful in finding matches in a stream

of random shapes. The slight (or sometimes not so slight) variations in the

segmented image from frame to frame can be highly confusing. The result is

that the less stable regions seldom have correct matches from one frame to the

next. Thus, in addition to fluctuations in area, the region assigned “closest”

or “furthest” in one frame may not have any satisfactory match in the next, or

(worse) an incorrect match. This made the end result for the Looming value very

erratic.

5.6.2 Blur Looming

When Looming through blur was implemented the results were initially as dis-

couraging as previously. The “closest object” as decided by the blur-Looming

algorithms flickered and shifted from frame to frame. The same lack of stability

Iain Brookshaw



96 Results and Discussion

that had plagued the previous method was evident in blur Looming.

However to recover blur necessitated a different camera (the original camera being

unable to de-focus its image). This change highlighted some interesting points,

especially once the image focus had be decreased. As mentioned previously,

the original program had a section dedicated to “smoothing” the camera image

with a Gaussian blur. As the new camera3 had the ability to optically blur

the image, this was unnecessary and removed. The results were compatible (70%

successful tracking and higher when stationary and about 40 to 50% when moving

smoothly), but the processing time was much faster as a result of the removal of

the prepossessing stage.

However, the blur recovery was too unstable to be able to provide coherent values

of L. Simply running the program and asking for the max value of L illustrated

that there was little or no consistency, the same region rarely produced the same

value of Looming twice running. This meant that the stability of the “closest re-

gion” was not noticeable improved over the area Looming calculations, regardless

of the success of tracking.

5.7 Discussion

5.7.1 Segmentation

The results in this area indicate that nascent problems still exist with regards

to stability. This is evidenced by the discrepancies in the segmented frames.

However it is interesting to observe that these discrepancies are noticeably less

marked in background the objects. This indicates that background objects (which

3This new camera was an IDS GmbH “ueye”. Drivers and other technical information can

be obtained from www.ids-imaging.com. The camera was equipped with a fish-eye lens, the

image being cropped for quicker run time

Iain Brookshaw

www.ids-imaging.com


5.7 Discussion 97

are less clearly focused) suffer much less than foreground ones from whatever the

destabilising effects are.

As the foreground objects are relatively small (the closer the object is, the more

prone it is to break into separate regions) they could be more susceptible to subtle

changes in lighting, noise and other image factors. Increasing the robustness of

the tracking algorithm’s ability to decide on split regions could alleviate this.

Another potential cause for the region instability could be the nature of the single

pass split merge algorithm. This algorithm depends heavily on the overlap and

precedence of previous splitting runs. Thus a potential source of instability is the

differences in starting position. The differences in starting position could produce

an altered evolution in the segmentation process, resulting in different regions.

This could be one possible solution worth investigating.

The somewhat discouraging results for segmentation inevitably raise the ques-

tion, should it be replaced by another approach? As mentioned in section 2.2.2,

there exists other approaches, such as edge tracing. It would probably be worth

implementing such a device for the sake of comparison.

5.7.2 Tracking

It is difficult to know if there are any serious problems with the tracking algorithm,

or those that exist are the result of instability in the segmentation algorithm. The

idealised test results are promising, the ideal regions can be tracked successfully.

However when the real time algorithm is run there is some indication from visual

observation that the tracking is less than perfect. This is supported by the return

of about 50% of all regions tracked in the complex test images.

However it should be noted that the value of 50% success is only for two frames.

The next pair of frames may also return a value of 50% but it is not necessarily

Iain Brookshaw



98 Results and Discussion

the same 50%. It is virtually certain that the percentage of regions tracked for

more than two frames is actually much less than this.

It is possible that the means used to detect the regions in the previous frames

are not rigorous enough. As mentioned in section 4.4.3 the first thing defined is a

search area. Certain sources (Hager & Belhumeur 1998), employ a bounding box

instead. Such an approach could improve the tracking algorithm by making the

search area more responsive to region geometry. However, the response of 100%

success for motionless images is encouraging that the problem is not that of the

tracking algorithm.

The results obtained from a out of focus camera support this conclusion. There

is a noticeable improvement in tracking success when the image exhibits a degree

of de-focus. Thus there is an indication that the tracking algorithm is working

and that further stabilisation would improve the result. In this case the stabili-

sation was provided by the blurry image, resulting in less shades, fewer and more

consistent regions and better results generally. This implies that some form of

prepossessing, either by optical blur or a more effective Gaussian blur in software

is advisable.

The final obvious point with the tracking algorithm is its ability to distinguish

regions that have split or merged from one frame to the next (this would not

be tested by the motionless images that gave such good results). Currently it

employs a crude method for noting such events. However if additional time were

spent perfecting this, to account for multiple regions becoming one, one region

splitting into several and violent changes in geometry, a more robust result could

potentially be obtained. The simplest enhancement could be along the lines of

seeing if the location of a centroid in the previous frame is the same region label

(or a similar label) to the current region.

Iain Brookshaw



5.7 Discussion 99

5.7.3 Looming

Blur

While the key source for blur recovery presented a simple idea, it was found

difficult to implement in practice. As can be seen in the relevant graphs, the

recovered values were not as smooth in practice as indicated by the results in

that paper.

The most frustrating part of the problem was that the method described in (Hu

& de Haan 2006) was easy to understand. There appeared to be nothing wrong

with the mathematical theory. Using this as a base assumption, the test algorithm

was inspected again. The trouble was found to stem from the cvSmooth function.

When formulating the method (Hu & de Haan 2006) used an analytical Gaussian

function to approximate blur. This is a true Gaussian, in that it actually goes

to infinity in both directions. Of course, the magnitude as one departs from the

mean shrinks asymptotically towards zero, yet it still exists. When this function

is implemented numerically it is done via a convolution matrix of finite size. No

matter the dimensions of the kernel used, at some point a truncation error occurs.

It was believed to be this truncation error at the root of many difficulties.

Notice that the resulting step functions in figure 5.11 are not the exact mathe-

matical step and convolved functions as are those illustrated in figure 3.5. Again,

this is believed to be due to the numerical rendering of the functions depicted in

figure 3.5.

Also notice (as mentioned above) that the recovered vale for Rmax is not sym-

metrical around the region boundaries as illustrated by figure 3.6. Instead it

comes to a point and does not give the correct result at this point, rather at the

region boundary (the 199th pixel). This indicates that there is an error in the

recovery of the blur. It also indicates that this error is subtle enough to permit

the function to work partially.

Iain Brookshaw



100 Results and Discussion

These problems have implications for when the blur recovery algorithm is im-

plemented on real regions. The results were neither consistent nor especially

accurate. This is a serious problem for the Looming calculations. As the blur

values are not as expected, it is unclear where randomness in entering the algo-

rithms. As it cannot be assumed that the inaccuracies in the blur recovery are

proportional to the real values there is no guarantee that they will not shift wildly

with no relation to actuality as the region evolves.

The lack of consistency and accuracy in the general blur recovery was believed

due to the effects illustrated in figure 5.10. This illustrates a fairly accurate result,

but not necessarily exactly at the region boundary. Thus when run in general

terms on an abstract region the resultant blur recovered, may not be the exact

value used to blur the original image.

The results in figure 5.10 would seem to indicate that a more accurate value could

be found if the program was to compute the blur values at several points before

the region boundary was reached. Unfortunately, while this may be possible in

a test image where the original blur is known, this is not possible in a image of

unknown blur values as the program would have no way of knowing which of the

blur values was the most accurate.

The “average of averages” value computed would seem to give a more accurate

value. However, this is not a very good estimate of blur. To begin with it

ignores the large variance between individual results. To be fully comprehensive

a standard deviation or a variance value should be computed for comparison.

Also, it is impractical in a real image to find the “average blur.” Recall that

the purpose of blur recovery is to find different blur values at various points and

hence establish a Looming value. The average of averages value was simply an

attempt to illustrate that the inaccuracies were such that a ball park figure could

be arrived at if more points in the blurred region were considered. This it did,

especially for larger values of blur. This implies that more than four points should

be included in the calculation of blur for any one region.

Iain Brookshaw



5.7 Discussion 101

These difficulties have, of course spilled over into the Looming through blur sec-

tion. The erratic results for blur Looming imply that the errors noted above

have great implications for the stability of the Looming functions. This is clearly

another key area for further work. The stabilisation of the blur recovery is clearly

necessary before this system could be implemented.

Area

It was not really a surprise that area Looming was not overly successful. The

segmentation algorithm does not operate in a way that is conducive to reliable

area Looming, even when it is successful. When the segmentation algorithm

operates successfully, an object should break into smaller and smaller regions

as it approaches the camera. This is because, as the object approaches, it is

becoming more complex. Textures and shades that were previously indistinct

are now fully apparent. This means that what was previously one large region

has the potential to become several smaller ones as the object approaches. Such

alterations should be able to be handled by the tracking function with its ability

to assign two new regions to the same common ancestor. However, as can be

seen, this did not work all the time.

The upshot is that as regions approach closer and closer to the camera, they

fragment more and more, thus creating area losses just when one would expect

area gains. Thus just as the object is approaching the position where it is the

most danger to the moving machine, the ability to judge that hazard is decreasing.

Recall that the tracking and segmentation works fairly well on objects that are

distant. However distant objects are not an issue, it is close ones that are would

be problem.

Iain Brookshaw



102 Results and Discussion



Chapter 6

Conclusions





6.1 Segmentation 105

From the observations above it can be seen that the approach taken to detect

obstacles has some potential. Although they could not be made to successfully

operate at the present time, the results indicate that the systems could be made

to operate if the various problems could be resolved. Although the same could

be said of any proposal, the author is confident that the various problems are in

fact, easily solvable.

6.1 Segmentation

The region based approach is unstable and prone to frame to frame discontinu-

ities. Efforts should be made to make the algorithm more robust and investigate

plausible alternatives.

However, the region based approach is capable of rendering passable segmentation

of still images. It can be illustrated that the current algorithm does not introduce

any randomness into the segmented image.

From this one can conclude that the seeming instability of the segmentation

approach is probably due to the delicacy of the method itself or the difference in

the image from frame to frame. This indicates that the method has potential.

6.2 Tracking

While partially successful, this section could be improved. It is difficult to dis-

tinguish between inherent errors and problems due to the segmentation process,

yet it is felt that the current tracking framework is solid enough to permit future

experimentation along similar lines.

Iain Brookshaw



106 Conclusions

6.3 Looming

It is difficult to determine whether Looming has succeeded as a method, the

problems with other sections render the results too fragmentary. However, if

those difficulties could be resolved it is thought that Looming could become a

viable method.

Both looming through blur and looming through area exhibit severe instabilities.

However, it is believed that the problems with area are inherent, while the prob-

lems with the blur method could be resolved if a stable functioning output could

be obtained for blur radius. Additional work should be invested in improving the

blur recovery method.

6.4 Overview

In general, specific tests have indicated that the methods outlined are viable.

Despite the real time results being too fragmentary to state categorically that

the methods were successful, the test images strongly indicate that the concepts

outlined are valid.

6.5 Completion of Objectives

In general the objectives outlined at the commencement of the project were met.

The noticeable omissions involved the implementation and hardware integration.

This was not considered a serious restriction as the information about the efficacy

of the algorithms was garnered from other tests, which showed that the hardware

implementation would have revealed little more than was already known.

What was noticeable when reading the objectives upon completion was the un-

Iain Brookshaw



6.5 Completion of Objectives 107

foreseen problems that occurred. Nowhere in the objectives is there a mention

of tracking or blur recovery, yet these problems consumed many pages of expla-

nation and research and many weeks of work before solutions were found. When

the original objectives were reviewed at the end it became clear that they were

inadequate and did not fully describe all the steps of the problem.

This is to be expected. With the information to hand at the beginning of the

project the objectives were not going to be comprehensive, however despite this

the following points have been satisfied,

1. Review the literature to establish the best methodologies.

2. To design and implement a program capable of separating one object in a

digital image from another.

3. Once segmentation is achieved, create some means of estimating the dis-

tance of obstacles from the camera, using the segmented image. Despite

instability, a possible solution has been clearly identified.

4. The above points shall be implemented in real time, thus permitting truly

autonomous mobility.

5. The above points shall be implemented using only one camera.

Iain Brookshaw



108 Conclusions



Chapter 7

Future Work





7.1 Obstacle Detection 111

7.1 Obstacle Detection

The first and arguably most critical section is the identification and recognition of

potential obstacles. as mentioned above, the segmentation method is clearly func-

tional, yet has some nagging inadequacies. Specifically the differences between

one frame and another when the image is moved slightly. The entire segmentation

method appears unduly sensitive, which in turn makes it difficult to track. It is

possible that this could be improved by a more responsive tolerance, better image

pre-processing, using previous frames to help segmentation or perhaps employing

a different method altogether.

The tolerance is perhaps the first item that should be addressed. As discussed

in section 2.4.2, the tolerance is computed off the standard deviation. However

it is scaled by an arbitrary number to ensure that the result is of the correct

order of magnitude. Perhaps this is too crude an identifier for what is, after all

a very crucial measurement. While the tolerance is tied to the original image it

still contains arbitrary components. If these could be removed, then possibly the

image output will improve.

Another possibility could be the improvement of the pre-processing. As men-

tioned in section 5.2.1, the image is smoothed before being given to the segmen-

tation algorithm. This is done to remove the destabilising effects of noise from

the image. However, experimentation has shown that the magnitude of the im-

age smoothing strongly effects the stability of the image output. However, this

smoothing algorithm is the slowest single element of the program and increasing

the smoothing greatly decreases the speed of the algorithm 1. Investigating dif-

ferent ways of removing image noise from the camera feed whilst still retaining

consistent object edges and interiors would also be a good means of improving

1The OpenCV function cvSmooth, which is responsible for the smoothing, has caused serious

trouble here and with blur recovery. A good direction for future work would be to modify or at

least investigate closely the workings of this function and to adapt them better to the problem.

Iain Brookshaw



112 Future Work

the region stability.

A method more likely to produce advantageous results would involve incorporat-

ing the previous image data into the current frame segmentation process. As has

been demonstrated, the problem is not with the segmentation process itself, but

rather with the consistency from frame to frame. However the previous segmented

frame contains all the information needed to describe the segmented image. The

only difference will be at the edges of regions as the camera moves.

What this means is that the information required to partially segment any given

frame already exists, in the previous output image. If the segmentation process

could be limited to the edges of the image regions the center of the regions could

be made far more stable. Perhaps the tolerance could be weighted so that groups

are more likely to be merged if those pixels were joined in previous frames. This

would necessitate a great increase in complexity for the programs with the current

process being the mere beginning of the process.

However, it may be advantageous to reject regions altogether and instead im-

plement edge finding algorithms as mentioned in section 2.2.2. It is not known

to the author at this time if such an approach would guarantee a more stable

output, however an edge tracing algorithm could produce output that could be

easily inserted in place of the segmentation algorithm. The edge segments could

be tracked as the regions have been, by finding their centroid. Looming could

also proceed as normal. These advantages may outweigh the difficulties discussed

in section 2.2.2, but the advantages of edge tracing as opposed to regions should

be easy to investigate in the current program structure.

7.2 Tracking and Correspondence

By and large the tracking section functioned reasonably well. Although it is

true that a large number of regions in any image went “un-tracked”, this was

Iain Brookshaw



7.3 Looming, Approach and Avoidance 113

considered due to the instability in the region segmentation process, rather than

inherent flaws in the tracking algorithm. It is possible, however that tracking

could be improved by restructuring the tolerance, enhancing the search area and

considering the problems of occlusion and perspective in greater detail.

The tracking algorithm as covered in section 4.4 is relatively simple. The more de-

tailed tracking methods described in (Fuh & Maragos 1989), etc employ bounding

boxes in the tracking calculations. The addition of a bounding box would enable

the tracking algorithm to distinguish more accurately between regions of different

distribution but similar size. However, this would actually render the tracking

algorithm less robust unless the frame to frame segmentation process could be

stabilised.

If the segmentation process can not be stabilised, another possible solution would

be to adapt the tracking algorithm to compensate for the frame to frame varia-

tions in regions. This would be the more difficult option (it would be far more

satisfactory to improve the segmentation algorithm), as it would involve compen-

sating for wide variations in region area.

Another focus in tracking could be to expand the algorithm to include data from

more than two frames. The introduction of an analysis of the motion of various

regions over time could go along way to improving the incidence of successful

tracking. The present program only incorporates information from the previous

and current frame. With a more detailed picture of the region movement it would

be possible to assess the next frame based on probabilities, rather than only region

similarity.

7.3 Looming, Approach and Avoidance

The greatest weakness in the Looming approach was the difficulty in extracting

reliable results for blur. Clearly the first focus for future work should be improving

Iain Brookshaw



114 Future Work

the blur recovery function until reliable results are constantly obtainable. At this

stage it is not known were exactly the problem lies, however, it is expected that

consistent results are possible.

In this process it may be advantageous to create or modify the blurring function

cvSmooth provided as part of the open CV library. It is possible, though it

must be acknowledged not very probable, that this is behaving unexpectedly and

interfering with the result.

Once stable values for blur have been obtained, more rigorous tests would need

to be implemented on the looming algorithm. It is at this point that hardware

would become important. The program would need to be implemented on a

wheeled platform and test footage of a simple landscape shot. The footage would

then need to be analysed to see if the looming values were working, ie labeling

the correct objects as “farthest” and “closest”. Following this more rigorous

avoidance algorithms would need to be implemented.

Once looming could be verified as functioning correctly, the hardware implemen-

tation could be extended to full avoidance. This would imply more detailed

investigation of avoidance algorithms and their implementation in the program

structure. Their success could be simply gauged by the success of the hardware

platform in avoiding obstacles.

Originally the intention was to simply steer the robot based on the proximity of

the obstacles in view to the center of the image and distance from the camera. The

machine would be instructed to seer away from the closest object and towards the

furthest object at a speed proportional to that objects distance from the center

and distance. This was a simplistic approach and never implemented (due to the

instability in the output).

Iain Brookshaw



7.4 Navigation 115

7.4 Navigation

Once the avoidance program is modified to the point of stable operation, it would

probably become desirable to utilise the system to implement a Navigation algo-

rithm.

Although the implementation of such an algorithm is described in the objectives

(see Appendix A.1), time was too short to fully investigate the implications of

navigation. Also, the finished avoidance algorithm was found to be too unstable

to make such an investigation worthwhile. However, it could be possible once the

current problems have been fixed to add a final function to the tail of the current

structure that focuses on Navigation.

This would need to employ considerable information from previous frames. The

evolution of Looming values would have to be analysed in considerably more

detail than currently. Additionally, the evolution of region movement would also

have to be considered in more detail. These requirements imply considerable

more robustness in the tracking algorithm than currently exists.

This detailed tracking and recording could be implemented by expanding the

structure described in Centroid.h (see appendix B.1.3). Tables could be in-

corporated into the centroid structure detailing the evolution of the region over

time, with respect to both spatial location and looming value. These modifica-

tions could me made simply within the existing structure.

Iain Brookshaw



116 Future Work

Iain Brookshaw



References

Billingsley, J. (26th May 2011), ‘private correspondence’.

Bradski, G. & Kaehler, A. (2008), Learning OpenCV, Computer Vision with the

OpenCV Library, O’Reily.

Brookshaw, L. (10/12/2010 to 27/10/2011), ‘private correspondence’.

Davies, E. R. (1997), Machine Vision, Academic Press.

De Veaux, R., Velleman, P. F. & E., B. D. (2004), Intro Stats, Pearson Education.

Dep (1998), Homogenious Region Merging Approach for Image Segmentation Pre-

serving Semantic Object Contours.

Fuh, C.-S. & Maragos, P. (1989), Region-based optical flow estimation, in ‘Com-

puter Vision and Pattern Recognition, 1989. Proceedings CVPR ’89., IEEE

Computer Society Conference on’, pp. 130 –135.

Fuh, C.-S., Maragos, P. & Vincent, L. (1993), Visual motion correspondence by

region based approaches, in ‘Asian Conference on Computer Vision, Novem-

ber 1993, Osaka, Japan’.

Hager, G. D. & Belhumeur, P. N. (1998), Efficient region tracking with parametric

models of geometry and illumination, in ‘IEEE Transactions on Pattern

Analysis and Machine Intelligence’, Vol. 10.

House, R. (1994), Beginning With C, and introduction to professional programing,

International Thompson Publishing.

Iain Brookshaw



118 REFERENCES

Hu, H. & de Haan, G. (2006), Low cost robust blur estimator, in ‘Image Process-

ing, 2006 IEEE International Conference on’, pp. 617 –620.

Jain, R., Kasturi, R. & Schunck, B. G. (1995), Machine Vision, McGraw-Hill.

Javed, O. & Shah, M. (2006), Tracking and object classification for automated

surveillance, in A. Heyden, G. Sparr, M. Nielsen & P. Johansen, eds, ‘Com-

puter Vision ECCV 2002’, Vol. 2353 of Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, pp. 439–443.

URL: http://dx.doi.org/10.1007/3-540-47979-1 23

Low, T. (15/12/2010 to October 27/10/2011), ‘private correspondence’. Project

Supervisor.

Luxen, M. & Förstner, W. (2002), Characterizing image quality: Blind estimation

of the point spread function from a single image, in ‘PCV02’, p. A: 205.

Moore, D. S. (1995), The Basic Practice of Statistics, W.H. Freeman and Com-

pany.

Neumann, U.; You, S. (1998), Integration of region tracking and optical flow for

image motion estimation, in ‘Image Processing, 1998. ICIP 98. Proceedings.

1998 International Conference on’, Vol. 3, pp. 658 – 662.

Pietikäinen, M. K., ed. (2000), Texture Analysis in Machine Vision, Vol. 40 of

Series in Machine Perception Artificial Intelligence, World Scientific, Singa-

pore.

Raviv, D. (1995), ‘A quantitative approach to looming’, International Symposium

on Computer Vision .

Raviv, D. & Joarder, K. (2000), ‘The visual looming navigation cue: A unified

approach’, Computer Vision and Image Understanding 79.

Sahin, E. & Gaudiano, P. (1998), Mobile robot range sensing through visual

looming, in ‘Intelligent Control (ISIC), 1998. Held jointly with IEEE In-

Iain Brookshaw



REFERENCES 119

ternational Symposium on Computational Intelligence in Robotics and Au-

tomation (CIRA), Intelligent Systems and Semiotics (ISAS), Proceedings’,

pp. 370 –375.

Sonka, M., Hlavac, V. & Boyle, R. (1994), Image Processing, Analysis and Ma-

chine Vision, Chapman and Hall.

Subbarao, M. (1987), Direct recovery of depth-map i: Differential methods, in

‘Proceedings of the IEEE Computer Society workshop on Computer Vision’,

pp. 58–65.

Wang, H., Xu, J., Guzman, J. I., Jarvis, R. A., Goh, T. & Chan, C. W. (2001),

Real time obstacle detection for agv navigation using multi-baseline stereo,

in ‘Experimental Robotics VII’, Vol. 271 of Lecture Notes in Control and

Information Sciences, Springer Berlin / Heidelberg, pp. 561–568.

URL: http://dx.doi.org/

Yang, H. S. & Lee, S. U. (1997), ‘Split-and-merge segmentation employing thresh-

olding technique’, International Conference on Image Processing .



120 REFERENCES



Appendix A

Original Specifications





A.1 Research Specification 123

A.1 Research Specification

Iain J. Brookshaw

Topic Obstacle Detection using Vision for Mobile Robots

Title Real Time Implementation of Obstacle Avoidance for an Au-

tonomous Mobile Robot Using Monocular Computer Vision

Supervisor Dr. Tobias Low

Project Aim It is the author’s intention to research, design and practically im-

plement a methodology for real time obstacle avoidance. This will be attempted

using an vision controlled autonomous platform. It is intended that the obstacles

will be static, thus all motion will be provided by the movement of the camera.

Time permitting an attempt will be made to expand the program to include

navigation.

Programme

1. Review the literature to establish the best methodologies.

2. To design and implement a program capable of separating one object in a

digital image from another (image segmentation). This is the first step in

identifying potential obstacles.

3. Once segmentation is achieved, create some means of estimating the dis-

tance of obstacles from the camera, using the segmented image. This will

enable the devise to establish the location of obstacles relative to itself.

Iain Brookshaw



124 Original Specifications

4. Upon the successful implementation of the above, steps will be taken to

control the robot’s motors and enable it to avoid obstacles. Control will

be based on information from the image as discussed above. This will

necessitate communication between the camera, on-board computer and

the motor controls.

5. Time permitting, expand the design to enable navigation between obstacles,

as opposed to mere avoidance.

6. The above points shall be implemented in real time, thus permitting truly

autonomous mobility.

7. The above points shall be implemented using only one camera.

8. Once the above is completed existing results will be analysed and compared

to current practice.

Iain Brookshaw

Dr. Tobias Low (supervisor)

Iain Brookshaw



Appendix B

Program Listings





B.1 Final Programs 127

B.1 Final Programs

All code was compiled using the gcc compiler (version 4.4.5) on a Debian Linux

machine (version 6.0.3) against the Open Computer Vision Library (version 2.1).

B.1.1 Main Driver Function

This is the main function for the program. All other functions are ultimately

called from here.

Listing B.1: Main Driver Function.

// This program i s Master Driver Function
// IB .
//
// This ve r s i on w i l l use segmentation , c en t ro i d f i n d i n g and t r a c k i n g .
// 26−7−11
//
// modi f ied to i c l u d e area looming 1/9/11. This works but i s very
unstab le .
// w i l l p robab l y need to inc l ude some form of s t a b i l i s a t i o n
i n c l u d i n g prev ious
// data .
//
// modi f ied to inc l ude b l u r looming 13/10/11.
//==================================================================

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>
#include <cv . h>
#include <highgu i . h>
#include ” c en t r o id . h”

int s e g f u n c t i o n ( IplImage ∗ , Ip lImage ∗ , int , int , CvSize , int T) ;

Centroid ∗ c e n t f u n c t i o n ( IplImage ∗SegImage , int minarea , int
MinRegionCount ) ;

void t r a c k g e n e r a l ( IplImage ∗ Seg2 , Centroid ∗ Seg1Cent , Centroid ∗
Seg2Cent , int Tol ) ;

void g e n e r a l b l u r ( IplImage ∗ IN , IplImage ∗ Blur1 , IplImage ∗ Blur2 ,
Centroid ∗ Current , f loat Sigma1 , f loat Sigma2 ) ;

void l oomf b lu r ( IplImage ∗ Segmented , Centroid ∗ CentList , f loat dt ) ;

int main ( ) {
p r i n t f ( ” \n Sta r t i ng main d r i v e r func t i on \n” ) ;
p r i n t f ( ” I a i n Brookshaw\n USQ \n 13/10/11\n” ) ;

Iain Brookshaw



128 Program Listings

// =========== INITIALISATION & SET UP ============================
// de f i n e image v a r i a b l e s and Centroid names
IplImage ∗ IN ;
IplImage ∗ frame ;
IplImage ∗ frame1 ;
IplImage ∗ frameOut ;
IplImage ∗ Blur1 ;
IplImage ∗ Blur2 ;
Centroid ∗ CurrentImg = NULL;
Centroid ∗ PreviousImg = NULL;

// crea t e t o l e r anc e v a r i a b l e as used in s e g f un c t i on and t rack
f unc t i on
int Tol = 0 ;

// ge t image .
// p r i n t f (” p l e a s e s e l e c t d e s i r ed camera . . . \ n” ) ;
CvCapture∗ capture = cvCreateCameraCapture ( 0 ) ;

// t h i s shou ld ask f o r d e s i r ed camera .

p r i n t f ( ” beg in ing . . . \ n” ) ;
//CvCapture∗ capture = cvCaptureFromCAM(0 ) ;

// s e t up image windows .
cvNamedWindow( ” Or i g i na l ” , CV WINDOW AUTOSIZE ) ;
cvNamedWindow( ”Segmented” , CV WINDOW AUTOSIZE ) ;

// beg in camera f eed loop .
while (1){

//−−−−−−−−−−−−−−−− GET IMAGE & Preprocess ing
−−−−−−−−−−−−−−−−−−−−−−−−−−
IN = cvQueryFrame ( capture ) ;

int xMax = IN −> width ;
int yMax = IN −> he ight ;

CvSize S i z e ;
S i z e . width = xMax ;
S i z e . he ight = yMax ;

frame = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;
frame1 = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;

//make image g ray s ca l e .
cvConvertImage ( IN ,

frame ,
0
) ;

// smooth to remove b l u r .
cvSmooth (

frame ,
frame1 ,
CV BILATERAL,
1 , // 9 ,
0 ,
3 , // 15 ,
3
) ;

Iain Brookshaw



B.1 Final Programs 129

//==================== FUNCTION CALLS
================================

// −−−−−−−−−−−−−−−−−− SEGMENTATION −−−−−−−−−−−−−−−−−−−−−−
// Now c a l l the segmentat ion func t i on s e g f un c t i on . c
frameOut = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;
int MinRegionCount = s e g f u n c t i o n ( frame1 , frameOut , xMax ,
yMax , Size , Tol ) ;

// −−−−−−−−−−−−−−−−−− CENTROID CALC’ −−−−−−−−−−−−−−−−−−−−
//now c a l c u l a t e the c en t r o i d s o f a l l r e g i ons l a r g e r than
400 p i x e l s .
CurrentImg = c e n t f u n c t i o n ( frameOut , 400 , MinRegionCount ) ;

// −−−−−−−−−−−−−−−−−− TRACKING −−−−−−−−−−−−−−−−−−−−−−−−−−
// c a l l the t r a c k i n g func t i on .
t r a c k g e n e r a l ( frameOut , PreviousImg , CurrentImg , Tol ) ;

// −−−−−−−−−−−−−−−−− BLUR RECOVERY −−−−−−−−−−−−−−−−−−−−−−
// re−b l u r the o r i g i n a l input image to Blur1 and Blur2 .
// de f i n e the re−b l u r va l u e s :
double Sigma1 = 7 ;
double Sigma2 = 10 ;

// crea t e the b l u r ed comparison images .
Blur1 = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;
Blur2 = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;

cvSmooth ( frame ,
Blur1 ,
CV GAUSSIAN,
73 ,
73 ,
Sigma1 ,
Sigma1
) ;

//and again ,

cvSmooth ( frame ,
Blur2 ,
CV GAUSSIAN,
101 ,
101 ,
Sigma2 ,
Sigma2
) ;

//now c a l l the b l u r recovery func t i on .
Centroid ∗ Current = CurrentImg ;

g e n e r a l b l u r ( frameOut , Blur1 , Blur2 , Current , Sigma1 ,
Sigma2 ) ;

// −−−−−−−−−−−−−−−−−− LOOMING −−−−−−−−−−−−−−−−−−−−−−−−−−−
// f i nd looming through b l u r
f loat dt = 0 . 0 5 ;

Iain Brookshaw



130 Program Listings

l oomf b lu r ( frameOut , CurrentImg , dt ) ;

//show the reg ion wi th the g r e a t e s t looming va lue :
Centroid ∗ temp = CurrentImg ;
f loat maxL = 0 ;
int maxX = −1;
int maxY = −1;

while ( temp ){
i f ( temp−>L > maxL){

maxL = temp−>L ;
maxX = ( int ) ( temp−>x / temp−>area ) ;
maxY = ( int ) ( temp−>y / temp−>area ) ;

}
temp = temp−>next ;

}
CvPoint MAX Loom;
MAX Loom. x = maxX;
MAX Loom. y = maxY;

c v C i r c l e ( frameOut , // image name
MAX Loom, // center ,
10 , // radius ,
CV RGB(0 , 0 , 100) , //CvScalar co lor ,
8 , // i n t t h i c kn e s s =1,
8 , // i n t l ineType=8,
0 ) ; // i n t s h i f t=0 ) ;

//now make the curren t c en t ro i d l i s t the prev ious cen t ro i d l i s t .
PreviousImg = CurrentImg ;

// ================== DISPLAY AND CLEAN UP ==============

// d i s p l a y image .
cvShowImage ( ” Or i g i na l ” , frame1 ) ;
cvShowImage ( ”Segmented” , frameOut ) ;

char c = cvWaitKey ( 3 3 ) ; // see chapter four
//o ’ r i l l y book to see how to f i x t h i s frame ra t e .
i f ( c == 27 ) break ;

i f ( frame != NULL ) cvReleaseImage ( &frame ) ;
i f ( frame1 != NULL ) cvReleaseImage ( &frame1 ) ;
i f ( frameOut != NULL ) cvReleaseImage ( &frameOut ) ;
i f ( Blur1 != NULL ) cvReleaseImage ( &Blur1 ) ;
i f ( Blur2 != NULL ) cvReleaseImage ( &Blur2 ) ;

}//END OF IMAGE WHILE(1) LOOP.

cvReleaseCapture ( &capture ) ;
cvDestroyWindow ( ” Or i g ina l ” ) ;
cvDestroyWindow ( ”Segmented” ) ;

//Remove the cen t ro i d l i s t .
de l e t eC ent ro i d s ( CurrentImg ) ;
CurrentImg = NULL;
de l e t eC ent ro i d s ( PreviousImg ) ;
PreviousImg = NULL;

Iain Brookshaw



B.1 Final Programs 131

}//================== END OF PROGRAM ========================

B.1.2 Segmentation Functions

These functions are called by the main function to segment the original input

image. This set includes the merging and splitting sections and the mechanism

for moving through the image.

Listing B.2: Segmentation functions.

// This f unc t i on i s des igned to segment the camera ’ s image in t o
d i s t i n c t r e g i o n s
// Inputs −−− Ip l Image ∗ frame , the input image ( g ray s ca l e s i n g l e
channel ) .
// Ip l Image ∗ frameOut , the empty image ( g ray s ca l e
s i n g l e channel )
// the segmented image w i l l be
wr i t t en to .
// i n t xMax , the x s i z e o f the image .
// i n t yMax , the y s i z e o f the image .
// CvSize Size , the image s i z e ( dup l i c a t i o n o f above ) .
// There are no outputs , the output image frameOut i s s imply wr i t t en
to as the
// func t i on p rog r e s s e s .
//
// 27−3−11
// 29−6−11
// IB
// This f unc t i on uses the func t i on Sp l i tFunc
// This f unc t i on conta ins the s p l i t t i n g a l gor i thm .
// Inputs −−− unsigned char∗ IN , a vec t o r con ta in ing the four
va lue s p i x e l s
// to be s p l i t i n t o groups .
// unsigned char∗ OUT, a vec to r ( empty ) t ha t w i l l
conta in the
// output group l a b e l s in the same
p o s i t i o n s
// o f the input groups .
// f l o a t T, the t o l e r anc e f o r segmentat ion
// There are no ou tpu t s
//==================================================================

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>

#include <cv . h>
#include <highgu i . h>

Iain Brookshaw



132 Program Listings

void Spl i tFunc (unsigned char∗ IN , unsigned char∗ OUT, f loat T) ;

int s e g f u n c t i o n ( IplImage ∗ frame , IplImage ∗ frameOut , int xMax ,
int yMax , CvSize S i z e )
{

// =================− SEGMENT THE IMAGE−====================

// Now s e t the counters RegionCount & RegionSum . These w i l l be
ve c to r s o f
// l en g t h 256 ( e n t r i e s w i l l be 0 −−−−> 255) .

int RegionCount [ 2 5 6 ] ;
int RegionSum [ 2 5 6 ] ;

// now f i l l t h e s e wi th 0 ’ s
int i ;

for ( i = 0 ; i < 256 ; i ++){
RegionCount [ i ] = 0 ;
RegionSum [ i ] = 0 ;

} ;

// I n i t a l i s e the x and y counters .

int x ;
int y ;

// At t h i s po in t we need to s e t the t o l e r anc e .

// f i nd the s t a r t o f the image .
unsigned char∗ ptr0 = (unsigned char ∗ ) ( frame −> imageData ) ;
int tMax = 0 ;
int tMin = 1000 ;

// f i n d i n g T us ing standard deva t ion
ptr0 = (unsigned char ∗ ) ( frame −> imageData ) ;

int Sum = 0 ;
int t o t a l = yMax∗xMax ;

for ( y=0; y<yMax ; y++){
for ( x=0; x<xMax ; x++){

Sum = Sum + ∗ptr0 ;
ptr0++;

}
}

// r e s e t p t r0
ptr0 = (unsigned char ∗ ) ( frame −> imageData ) ;
f loat Mean = ( f loat )Sum/( f loat ) t o t a l ;
f loat i n t e r n a l = 0 ;

for ( y=0; y<yMax ; y++){
for ( x=0; x<xMax ; x++){

i n t e r n a l = i n t e r n a l + ((∗ ptr0 − Mean)∗ (∗ ptr0 − Mean ) ) ;
ptr0++;

}
}

f loat s = s q r t ( 1 . 0 / ( ( f loat ) t o ta l −1) ∗ i n t e r n a l ) ;

Iain Brookshaw



B.1 Final Programs 133

f loat T = ( 1 . 0 / s )∗1000 ;
// f l o a t T = 1000 .0 ;

// This 1000 i s a r b i t r a r y at t h i s time . The inv e r s e i s necessary
to ensure that t o l ’ becomes
// l e s s s e l e c t i v e as s dec r eace s .

unsigned char S p l i t [ 4 ] ;

// =================− Begin Loops −===================
f o r ( y=0; y<yMax−1; y++){

// get the po in t e r in to the image matrix . This i s the
po in t e r to
// the s t a r t o f the cur rent row !

// input image
unsigned char ∗ ptr1= ( unsigned char ∗ ) ( frame−>imageData +
y ∗ frame−>widthStep ) ;
// output image
unsigned char ∗ ptr2= ( unsigned char ∗ ) ( frameOut−>imageData +
y ∗ frameOut−>widthStep ) ;

f o r ( x=0; x<xMax−1; x++){

// This i s the beg in ing o f the x ( c o l ’ ) counter .
// IF x = y = 0 then we are at the s t a r t
// o f the image and a sepe ra t e s e c t i on i s needed to handle
t h i s .

// I f we are not at the s t a r t o f the image , we can proceed .

// −−−−−− INITIATE THE PIX ’ BLOCK (SPLITTING)
ALGORITHM. −−−−−−−
// ge t the 1∗4 vec t o r o f the l o c a l b lock , g i ven the current
l o c a t i o n
// o f the x , y counters .

unsigned char B in [ 4 ] ;

B in [ 0 ] = ∗ptr1 ;
B in [ 1 ] = ∗( ptr1+ 1 ) ;
B in [ 2 ] = ∗( ptr1+ frame−>widthStep ) ;
B in [ 3 ] = ∗( ptr1+ frame−>widthStep +1);

// f o r var ious reasons exp l a ined be l l ow , we a l s o need
the output
// image f o r t h i s l o c a t i o n . This v ec t o r s h a l l be c a l l e d B seg
unsigned char B seg [ 4 ] ;
B seg [ 0 ] = ∗ptr2 ;
B seg [ 1 ] = ∗( ptr2+ 1 ) ;
B seg [ 2 ] = ∗( ptr2+ frameOut−>widthStep ) ;
B seg [ 3 ] = ∗( ptr2+ frameOut−>widthStep +1);

// s p l i t the input v ec t o r B in
S p l i t [ 0 ] = 0 ;
S p l i t [ 1 ] = 0 ;

Iain Brookshaw



134 Program Listings

S p l i t [ 2 ] = 0 ;
S p l i t [ 3 ] = 0 ;
Spl i tFunc ( B in , Sp l i t , T) ;

//We need va l u e s f o r GroupSum and Count
int Count [ 4 ] ;
Count [ 0 ] = 0 ;
Count [ 1 ] = 0 ;
Count [ 2 ] = 0 ;
Count [ 3 ] = 0 ;

int GroupSum [ 4 ] ;
GroupSum [ 0 ] = 0 ;
GroupSum [ 1 ] = 0 ;
GroupSum [ 2 ] = 0 ;
GroupSum [ 3 ] = 0 ;

//now f i l l t h e s e va l u e s . Note t ha t the index in to GroupSum
and Count are
// the group l a b e l v a l u e s .

int n ;
int m;
for (n=0; n<4; n++){

for (m=0; m<4; m++){
i f ( S p l i t [m] == n+1){

GroupSum [ n ] = GroupSum [ n]+ B in [ n ] ;
Count [ n ] = Count [ n]++;

}
}

}
// p r i n t f (” Point1 \n” ) ;

unsigned char Iout [ 4 ] ;
Iout [ 0 ] = 0 ;
Iout [ 1 ] = 0 ;
Iout [ 2 ] = 0 ;
Iout [ 3 ] = 0 ;

// ====================================================
// | ASSIGN VALUES TO OUTPUT IMAGE |
// ====================================================

// Make Contingency f o r X AND Y == 0 THIS IS THE FIRST PIXEL

i f ( x == 0 && y == 0){

// i n i t a l i s e g r ay s ca l e counters .
int G1 = 256 ;
int G2 = 256 ;
int G3 = 256 ;
int G4 = 256 ;

// Run through the v e c t o r s and as s i gn the
// co r r e c t va l u e s to the output as one goes .

for ( i =0; i <4; i ++){

// f i r s t group
i f ( S p l i t [ i ] == 1){

Iain Brookshaw



B.1 Final Programs 135

i f (G1 == 256){
G1 = B in [ i ] ;
RegionCount [G1]++;
RegionSum [G1 ] = RegionSum [G1 ] + B in [ i ] ;

}
Iout [ i ] = G1 ;

}

// second group
i f ( S p l i t [ i ] == 2){

i f (G2 == 256){
G2 = B in [ i ] ;
RegionCount [G2]++;
RegionSum [G2 ] = RegionSum [G2 ] + B in [ i ] ;

}
Iout [ i ] = G2 ;

}
// t h i r d group
i f ( S p l i t [ i ] == 3){

i f (G3 == 256){
G3 = B in [ i ] ;
RegionCount [G3]++;
RegionSum [G3 ] = RegionSum [G3 ] + B in [ i ] ;

}
Iout [ i ] = G3 ;

}

// f ou r t h group
i f ( S p l i t [ i ] == 4){

i f (G4 == 256){
G4 = B in [ i ] ;
RegionCount [G4]++;
RegionSum [G4 ] = RegionSum [G4 ] + B in [ i ] ;

}
Iout [ i ] = G4 ;

}
}

// Now wr i t e Iou t to output image . To do t h i s use
// po in t e r a r i t hme t i c deve loped above .
// to do t h i s use ∗ ptr2 = Iout [X] REMEMBER: ∗ p t r =
X means put X in
// LOCATION s i g n i f i e d by the address p t r .
// p tr2 i s l o c a t i o n in OUTPUT IMAGE frameOUT . Get t h i s
f i r s t !

∗ptr2 = Iout [ 0 ] ;
∗( ptr2 +1) = Iout [ 1 ] ;
∗( ptr2+ frameOut−>widthStep ) = Iout [ 2 ] ;
∗( ptr2+ frameOut−>widthStep +1) = Iout [ 3 ] ;

}

// ======== NOW MERGE THE GROUPS ==============

i f ( x != 0 && y == 0){

// B and D p i x e l s have not ye t been sequenced .

Iain Brookshaw



136 Program Listings

// The f i r s t s t ep in a s s i gn in g va l u e s i s to a s s i gn
va lue s to
// Iou t based on the groups de s c r i b ed in S p l i t and the
e x i s t i n g
// reg ions .

// Once the groups de f ined by the s p l i t t i n g func t i on
are known ,
// one must d i s co v e r which o f the p i x e l s in t ha t group
makes the
// b e s t match wi th the corresponding reg ion in the
outer image .

// run through a l l the p o s s i b l e groups ( t he r e are a
maximum of 4)
int j = 0 ;
unsigned char ind [ 4 ] ;
f loat MeanDiff ;
f loat Md[ 4 ] ;
Md[ 0 ] = 1000 ;
Md[ 1 ] = 1000 ;
Md[ 2 ] = 1000 ;
Md[ 3 ] = 1000 ;

unsigned char index [ 4 ] ;
index [ 0 ] = 5 ;
index [ 1 ] = 5 ;
index [ 2 ] = 5 ;
index [ 3 ] = 5 ;

f loat LocalMean = 0 ;
f loat RegionMean = 0 ;

// beg in group counter (1−>4)
for ( j =0; j <4; j ++){

// beg in p i x e l counter (1−>4)
for ( i =0; i <4; i ++){

i f ( i == 1 | | i == 3) continue ;

i f ( S p l i t [ i ] == j +1){
LocalMean = GroupSum [ j ] / Count [ j ] ;
i f ( RegionCount [ B seg [ i ] ] != 0){

RegionMean =
RegionSum [ B seg [ i ] ] / RegionCount [ B seg [ i ] ] ;

} else {
RegionMean = 0 ;

}
MeanDiff = f a b s f ( RegionMean−LocalMean ) ;

i f ( MeanDiff < Md[ j ] ) {
Md[ j ] = MeanDiff ;
index [ j ] = i ;

}

} // i f ( S p l i t [ i ]==j )
} //end o f i

} //end o f j

Iain Brookshaw



B.1 Final Programs 137

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

int Gray ;
for ( j =0; j <4; j ++){

Gray = 256 ;
for ( i =0; i <4; i ++){

i f ( S p l i t [ i ] == j +1){

i f ( index [ j ] == 5){ // This group i s comprised only
o f p i x e l s

//not p r e v i o u s l y as s i gned to reg i ons .
i f ( Gray == 256){
Gray = B in [ i ] ;

}
Iout [ i ] = Gray ;

}

else {
i f ( Md[ j ] <= T){

Iout [ i ] = B seg [ index [ j ] ] ;

} else i f ( T < Md[ j ] ) {
i f ( Gray == 256){

Gray = B in [ i ] ;
}

Iout [ i ] = Gray ;
}

}
} // i f s p l i t

} // i
} // j

//===============================================

// Now as s i gn t h i s Iou t v e c t o r to the output image ( p t r2 ) .
(∗ ptr2 ) = Iout [ 0 ] ;
(∗ ( ptr2+ 1) ) = Iout [ 1 ] ;
(∗ ( ptr2+ frameOut−>widthStep ) ) = Iout [ 2 ] ;
(∗ ( ptr2+ frameOut−>widthStep +1)) = Iout [ 3 ] ;

//Now as s i gn the new RegionSum & RegionCount v e c t o r s .

//Reassign P i x e l A.
RegionCount [ B seg [ 0 ] ] = RegionCount [ B seg [ 0 ] ] − 1 ;
RegionSum [ B seg [ 0 ] ] = RegionSum [ B seg [ 0 ] ] − B in [ 0 ] ;

RegionCount [ Iout [ 0 ] ] = RegionCount [ Iout [ 0 ] ]++;
RegionSum [ Iout [ 0 ] ] = RegionSum [ Iout [ 0 ] ] + B in [ 0 ] ;

//Assign P i x e l B.
RegionCount [ Iout [ 1 ] ] = RegionCount [ Iout [ 1 ] ]++;
RegionSum [ Iout [ 1 ] ] = RegionSum [ Iout [ 1 ] ] + B in [ 1 ] ;

//Reassign P i x e l C.
RegionCount [ B seg [ 2 ] ] = RegionCount [ B seg [ 2 ] ] − 1 ;
RegionSum [ B seg [ 2 ] ] = RegionSum [ B seg [ 2 ] ] − B in [ 2 ] ;

RegionCount [ Iout [ 2 ] ] = RegionCount [ Iout [ 2 ] ]++;

Iain Brookshaw



138 Program Listings

RegionSum [ Iout [ 2 ] ] = RegionSum [ Iout [ 2 ] ] + B in [ 2 ] ;

//Assign P i x e l D.
RegionCount [ Iout [ 3 ] ] = RegionCount [ Iout [ 3 ] ]++;
RegionSum [ Iout [ 3 ] ] = RegionSum [ Iout [ 3 ] ] + B in [ 3 ] ;

}

//=================================================================

i f ( x!=0 && y !=0){

// D p i x e l has not ye t been sequenced .

// Once the groups de f ined by the s p l i t t i n g func t i on
are known ,
// one must d i s co v e r which o f the p i x e l s in t ha t group
makes the
// b e s t match wi th the corresponding reg ion in the
outer image .

// run through a l l the p o s s i b l e groups ( t he r e are a
maximum of 4)

int j = 0 ;
unsigned char ind [ 4 ] ;
f loat MeanDiff ;
f loat Md[ 4 ] ;
Md[ 0 ] = 1000 ;
Md[ 1 ] = 1000 ;
Md[ 2 ] = 1000 ;
Md[ 3 ] = 1000 ;
unsigned char index [ 4 ] ;
index [ 0 ] = 5 ;
index [ 1 ] = 5 ;
index [ 2 ] = 5 ;
index [ 3 ] = 5 ;
f loat LocalMean = 0 ;
f loat RegionMean = 0 ;

// beg in group counter (1−>4)
for ( j =0; j <4; j ++){

// beg in p i x e l counter (1−>4)
for ( i =0; i <4; i ++){

i f ( i == 3) continue ;

i f ( S p l i t [ i ] == j +1){
LocalMean = GroupSum [ j ] / Count [ j ] ;
i f ( RegionCount [ B seg [ i ] ] != 0){

RegionMean =
RegionSum [ B seg [ i ] ] / RegionCount [ B seg [ i ] ] ;

} else {
RegionMean = 0 ;

}
MeanDiff = f a b s f ( RegionMean−LocalMean ) ;

i f ( MeanDiff < Md[ j ] ) {
Md[ j ] = MeanDiff ;
index [ j ] = i ;

}

Iain Brookshaw



B.1 Final Programs 139

} // i f ( S p l i t [ i ]==j )
} //end o f i

} //end o f j
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

int Gray ;
for ( j =0; j <4; j ++){

Gray = 256 ;
for ( i =0; i <4; i ++){

i f ( S p l i t [ i ] == j +1){

i f ( index [ j ] == 5){ // This group i s comprised only
o f p i x e l s

//not p r e v i o u s l y as s i gned to reg i ons .
i f ( Gray == 256){
Gray = B in [ i ] ;

}
Iout [ i ] = Gray ;

}

else {
i f ( Md[ j ] <= T){

Iout [ i ] = B seg [ index [ j ] ] ;

} else i f ( T < Md[ j ] ) {
i f ( Gray == 256){

Gray = B in [ i ] ;
}

Iout [ i ] = Gray ;
}

}
} // i f s p l i t

} // i
} // j

//===============================================

// Now as s i gn t h i s Iou t v e c t o r to the output image ( p t r2 ) .
(∗ ptr2 ) = Iout [ 0 ] ;
(∗ ( ptr2+ 1) ) = Iout [ 1 ] ;
(∗ ( ptr2+ frame−>widthStep ) ) = Iout [ 2 ] ;
(∗ ( ptr2+ frame−>widthStep +1)) = Iout [ 3 ] ;

//Now as s i gn the new RegionSum & RegionCount v e c t o r s .

//Reassign P i x e l A.
RegionCount [ B seg [ 0 ] ] = RegionCount [ B seg [ 0 ] ] − 1 ;
RegionSum [ B seg [ 0 ] ] = RegionSum [ B seg [ 0 ] ] − B in [ 0 ] ;

RegionCount [ Iout [ 0 ] ] = RegionCount [ Iout [ 0 ] ]++;
RegionSum [ Iout [ 0 ] ] = RegionSum [ Iout [ 0 ] ] + B in [ 0 ] ;

//Reassign P i x e l B.
RegionCount [ B seg [ 1 ] ] = RegionCount [ B seg [ 1 ] ] − 1 ;
RegionSum [ B seg [ 1 ] ] = RegionSum [ B seg [ 1 ] ] − B in [ 1 ] ;

RegionCount [ Iout [ 1 ] ] = RegionCount [ Iout [ 1 ] ]++;

Iain Brookshaw



140 Program Listings

RegionSum [ Iout [ 1 ] ] = RegionSum [ Iout [ 1 ] ] + B in [ 1 ] ;

//Reassign P i x e l C.
RegionCount [ B seg [ 2 ] ] = RegionCount [ B seg [ 2 ] ] − 1 ;
RegionSum [ B seg [ 2 ] ] = RegionSum [ B seg [ 2 ] ] − B in [ 2 ] ;

RegionCount [ Iout [ 2 ] ] = RegionCount [ Iout [ 2 ] ]++;
RegionSum [ Iout [ 2 ] ] = RegionSum [ Iout [ 2 ] ] + B in [ 2 ] ;

//Assign P i x e l D.
RegionCount [ Iout [ 3 ] ] = RegionCount [ Iout [ 3 ] ]++;
RegionSum [ Iout [ 3 ] ] = RegionSum [ Iout [ 3 ] ] + B in [ 3 ] ;

}

//=============================================================

i f ( x == 0 && y != 0){

// C and D p i x e l s have not ye t been sequenced .
// Once the groups de f ined by the s p l i t t i n g func t i on
are known ,
// one must d i s co v e r which o f the p i x e l s in t ha t group
makes the
// b e s t match wi th the corresponding reg ion in the
outer image .

// run through a l l the p o s s i b l e groups ( t he r e are a
maximum of 4)

int j = 0 ;
unsigned char ind [ 4 ] ;
f loat MeanDiff ;
f loat Md[ 4 ] ;
Md[ 0 ] = 1000 ;
Md[ 1 ] = 1000 ;
Md[ 2 ] = 1000 ;
Md[ 3 ] = 1000 ;
unsigned char index [ 4 ] ;
index [ 0 ] = 5 ;
index [ 1 ] = 5 ;
index [ 2 ] = 5 ;
index [ 3 ] = 5 ;
f loat LocalMean = 0 ;
f loat RegionMean =0;
// beg in group counter (1−>4)
for ( j =0; j <4; j ++){

// beg in p i x e l counter (1−>4)
for ( i =0; i <4; i ++){

i f ( i == 2 | | i == 3) continue ;

i f ( S p l i t [ i ] == j +1){
LocalMean = GroupSum [ j ] / Count [ j ] ;
i f ( RegionCount [ B seg [ i ] ] != 0){

RegionMean =
RegionSum [ B seg [ i ] ] / RegionCount [ B seg [ i ] ] ;

} else {
RegionMean = 0 ;

}

Iain Brookshaw



B.1 Final Programs 141

MeanDiff = f a b s f ( RegionMean−LocalMean ) ;

i f ( MeanDiff < Md[ j ] ) {
Md[ j ] = MeanDiff ;
index [ j ] = i ;

}

} // i f ( S p l i t [ i ]==j )
} //end o f i

} //end o f j
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

int Gray ;
for ( j =0; j <4; j ++){

Gray = 256 ;
for ( i =0; i <4; i ++){

i f ( S p l i t [ i ] == j +1){

i f ( index [ j ] == 5){ // This group i s comprised only
o f p i x e l s

//not p r e v i o u s l y as s i gned to reg i ons .
i f ( Gray == 256){
Gray = B in [ i ] ;

}
Iout [ i ] = Gray ;

}

else {
i f ( Md[ j ] <= T){

Iout [ i ] = B seg [ index [ j ] ] ;

} else i f ( T < Md[ j ] ) {
i f ( Gray == 256){

Gray = B in [ i ] ;
}

Iout [ i ] = Gray ;
}

}
} // i f s p l i t

} // i
} // j

//===============================================

// Now as s i gn t h i s Iou t v e c t o r to the output image ( p t r2 ) .
(∗ ptr2 ) = Iout [ 0 ] ;
(∗ ( ptr2+ 1) ) = Iout [ 1 ] ;
(∗ ( ptr2+ frame−>widthStep ) ) = Iout [ 2 ] ;
(∗ ( ptr2+ frame−>widthStep +1)) = Iout [ 3 ] ;

//Now as s i gn the new RegionSum & RegionCount v e c t o r s .

//Reassign P i x e l A.
RegionCount [ B seg [ 0 ] ] = RegionCount [ B seg [ 0 ] ] − 1 ;
RegionSum [ B seg [ 0 ] ] = RegionSum [ B seg [ 0 ] ] − B in [ 0 ] ;

RegionCount [ Iout [ 0 ] ] = RegionCount [ Iout [ 0 ] ]++;

Iain Brookshaw



142 Program Listings

RegionSum [ Iout [ 0 ] ] = RegionSum [ Iout [ 0 ] ] + B in [ 0 ] ;

//Reassign P i x e l B.
RegionCount [ B seg [ 1 ] ] = RegionCount [ B seg [ 1 ] ] − 1 ;
RegionSum [ B seg [ 1 ] ] = RegionSum [ B seg [ 1 ] ] − B in [ 1 ] ;

RegionCount [ Iout [ 1 ] ] = RegionCount [ Iout [ 1 ] ]++;
RegionSum [ Iout [ 1 ] ] = RegionSum [ Iout [ 1 ] ] + B in [ 1 ] ;

//Assign P i x e l C.

RegionCount [ Iout [ 2 ] ] = RegionCount [ Iout [ 2 ] ]++;
RegionSum [ Iout [ 2 ] ] = RegionSum [ Iout [ 2 ] ] + B in [ 2 ] ;

//Assign P i x e l D.
RegionCount [ Iout [ 3 ] ] = RegionCount [ Iout [ 3 ] ]++;
RegionSum [ Iout [ 3 ] ] = RegionSum [ Iout [ 3 ] ] + B in [ 3 ] ;

}

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ptr2++;
ptr1++;

}//X LOOP

}// Y LOOP

//now tha t we know eve ry t h in g the r e i s to know about reg ions , we
//need to es t imate the t o t a l number o f r eg i ons . Experience
shows that
//a image o f one reg ion causes problems l a t e r wi th c en t ro i d
f i n d i n g
//and recur s ion .

// t h e r e f o r e f i nd the minimum number o f r eg i ons
int MinRegionCount = 0 ;

for ( i =0; i <255; i ++){
i f ( RegionCount [ i ] != 0) MinRegionCount++;

}
return MinRegionCount ;

}//end o f s e g f un c t i on

//==============================================================

// s p l i t f unc t i on .

void Spl i tFunc (unsigned char∗ IN , unsigned char∗ OUT, f loat T){

int Max = 0 ; //This i s max d i f f e r e n c e
int Min = 1000 ; //This i s min d i f f e r e n c e

// f i nd a l l 6 d i f f e r e n c e s

int AB = abs ( IN [ 0 ] −IN [ 1 ] ) ;
i f (AB > Max) Max = AB;
i f (AB < Min) Min = AB;

int AC = abs ( IN [ 0 ] −IN [ 2 ] ) ;
i f (AC > Max) Max = AC;

Iain Brookshaw



B.1 Final Programs 143

i f (AC < Min) Min = AC;

int AD = abs ( IN [ 0 ] −IN [ 3 ] ) ;
i f (AD > Max) Max = AD;
i f (AD < Min) Min = AD;

int BC = abs ( IN [ 1 ] −IN [ 2 ] ) ;
i f (BC > Max) Max = BC;
i f (BC < Min) Min = BC;

int BD = abs ( IN [ 1 ] −IN [ 3 ] ) ;
i f (BD > Max) Max = BD;
i f (BD < Min) Min = BD;

int CD = abs ( IN [ 2 ] −IN [ 3 ] ) ;
i f (CD > Max) Max = CD;
i f (CD < Min) Min = CD;

// now f i nd what i s not p o s s i b l e .
// f i r s t check f o r I and XVI .

// combination I , a l l in the same group .
i f (Max <=T){

OUT[ 0 ] = OUT[ 1 ] = OUT[ 2 ] = OUT[ 3 ] = 1 ;
// p r i n t f (”1\n” ) ;
return ;
}

// combination XVI, a l l in d i f f e r e n t groups .
i f (Min > T){

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 3 ;
OUT[ 3 ] = 4 ;
// p r i n t f (”2\n” ) ;
return ;

}

// combination II , two ho r i z on t a l groups .
i f (AB<=T && CD<=T && AD>T && AC>T && BC>T && BD>T){

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 2 ;
OUT[ 3 ] = 2 ;
return ;

}

// combination I I I , two v e r t i c a l groups .
i f (AC<=T && BD<=T && AB>T && AD>T && BC>T && CD>T){

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 2 ;
return ;

}

// combination VIII and IX , d i agona l s .
i f (AD<=T && BC<=T && AC>T && AB>T && CD>T &&BD>T){

Iain Brookshaw



144 Program Listings

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 2 ;
OUT[ 3 ] = 1 ;
return ;

}

//3rd at tempt . Succe s s i v e <=.

i f (CD<=T){ // can be IV , VII , XII
i f (AC<=T){ // re turn IV

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 1 ;
return ;

}

i f (BD<=T){ // re turn VII
OUT[ 0 ] = 2 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 1 ;
return ;

}
else {// re turn XII

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 3 ;
OUT[ 3 ] = 3 ;
return ;

}
}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f (AC<=T){ // can be IV ,V, XIII

i f (CD<=T){ // re turn IV
OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 1 ;
return ;

}

i f (AB<=T){ // re turn V
OUT[ 0 ] = 1 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 2 ;
return ;

}
else {// re turn XIII

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 3 ;
return ;

}
}

Iain Brookshaw



B.1 Final Programs 145

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (BD<=T){ // can be VI , VII , XV
i f (AB<=T){ // re turn VI

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 2 ;
OUT[ 3 ] = 1 ;
return ;

}
i f (CD<=T){ // re turn VII

OUT[ 0 ] = 2 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 1 ;
return ;

}
else {// re turn XV

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 3 ;
OUT[ 3 ] = 2 ;
return ;

}
}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (AB<=T){ //can be V, VI , XIV
i f (AC<=T){ // re turn V

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 1 ;
OUT[ 3 ] = 2 ;
return ;

}
i f (BD<=T){ // re turn VI

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 2 ;
OUT[ 3 ] = 1 ;
return ;

}
else {// re turn XIV

OUT[ 0 ] = 1 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 2 ;
OUT[ 3 ] = 3 ;
return ;

}

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (AD<=T){ //can be X.
OUT[ 0 ] = 3 ;
OUT[ 1 ] = 1 ;
OUT[ 2 ] = 2 ;

Iain Brookshaw



146 Program Listings

OUT[ 3 ] = 3 ;
return ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f (BC<=T){ //can be XI .
OUT[ 0 ] = 1 ;
OUT[ 1 ] = 2 ;
OUT[ 2 ] = 2 ;
OUT[ 3 ] = 3 ;
return ;

}

//IF we are here then the r e has been a s e r i ou s error !
//Crash and inform .

p r i n t f ( ” s p l i t : Should never get here !\n” ) ;
p r i n t f ( ”%hhu %hhu %hhu %hhu\n” , IN [ 0 ] , IN [ 1 ] , IN [ 2 ] , IN [ 3 ] ) ;
p r i n t f ( ”Tol ’ %f \n” , T) ;
e x i t ( 1 ) ;

}

B.1.3 Centroid Finding Functions

Main Function

This function is called by the main driver function when it becomes necessary to

find all the centroids. It it turn uses the utility functions (see below).

Listing B.3: Centroid main function.

// The i s the func t i on ver s i on o f the reg ion cen t ro i d f i n d i n g
program .
// re turns an po in t e r to a l i n k e d l i s t .
// IB
// Inputs −− Ip l Image ∗ SegImage , the segmented image
// i n t minarea , the minimum s i z e d reg ion to f i nd a
c en t r o id for
// i n t MinRegionCount , the mimumum number o f r eg i ons .
//
// Outputs − Centroid ∗ Parent , the c en t ro i d l i n k e d l i s t .
//
//
===================================================================

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>
#include <cv . h>
#include <highgu i . h>
#include ” c en t r o id . h”

Iain Brookshaw



B.1 Final Programs 147

Centroid ∗ c e n t f u n c t i o n ( IplImage ∗SegImage , int minarea , int
MinRegionCount ){

Centroid ∗Parent ;

// ge t the image . nb , the program c a l l w i l l need the image name
//as an argument .
i f ( SegImage == NULL) {

p r i n t f ( ”No image loaded !\n” ) ;
e x i t ( 1 ) ;

}

//Now f i nd the c en t r o i d s and p lace c i r c l e s on them .
// c a l l the func t i on ’ getALLCentroids ’
// Centroid ∗Parent = NULL;
i f ( MinRegionCount > 1){

Parent = getALLCentroids ( SegImage ) ;
i f ( Parent == NULL) p r i n t f ( ”NULL PARENT! ! ! \ n” ) ;
Parent = c l eanCent ro id s ( Parent , minarea ) ;

} else {

int width = SegImage−>width ;
int he ight = SegImage−>he ight ;
Parent = addCentroid ( NULL) ;

Parent−>area = width∗ he ight ;
Parent−>x =(width /2)∗ ( Parent−>area ) ;
Parent−>y =(he ight /2)∗ ( Parent−>area ) ;

int i ;
unsigned char ∗ptr0 ;
ptr0=SegImage−>imageData ;

for ( i =0; i<(width∗ he ight ) ; i ++){
Parent−>Gsum += ∗ptr0 ;
ptr0++;
i ++;

}
}
i f ( Parent == NULL) {

p r i n t f ( ”No cen t ro id found t h i s i s a b i t o f an e r r o r !\n” ) ;
e x i t ( 1 ) ;

}

//Now tha t a l l the c en t r o i d s are found , draw a c i r c l e a t each o f
the po in t s .
// crea t e a cvPoint s t r u c t u r e f o r the x and y coord ina t e s .
///∗
CvPoint Cent ;
Centroid ∗ptr = Parent ;

while ( ptr ){
i f ( ptr−>area > 0) {

Cent . x = ( int ) ( ptr−>x/ ptr−>area ) ;
Cent . y = ( int ) ( ptr−>y/ ptr−>area ) ;

c v C i r c l e ( SegImage , // image name
Cent , // center ,
5 , // radius ,

Iain Brookshaw



148 Program Listings

CV RGB(0 , 0 , 100) , //CvScalar co lor ,
1 , // i n t t h i c kn e s s =1,
8 , // i n t l ineType=8,
0 ) ; // i n t s h i f t=0 ) ;

} else {
p r i n t f ( ”Empty Centroid found\n” ) ;

}
ptr = ptr−>next ;

}
//∗/

return Parent ;
}

Utility Functions

These functions are designed for the centroid finding operations. They include

that is necessary to find centroids, allocate memory for the linked list, create flag

arrays, de-allocate memory, and clean up the lists.

Listing B.4: Centroid finding functions.

//This f i l e d e f i n e s a l l the c en t ro i d f unc t i on s .
// i n c l ud i n g the f l a g s f unc t i on s and the ca l c ’ , g e t and des t roy
// func t i on s .

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>

#include <cv . h>
#include <highgu i . h>
//nb <> means system headers ”” i s my headers ( l o c a l )
#include ” c en t r o id . h”
//This d e f i n e s the s t r u c t u r e type ’ Centroid ’

int Al l o ca t eF lag s ( int n , int m) ;
int Dea l l o ca t eF lag s ( ) ;
int SetFlag ( int n , int m) ;
int i s F l a g S e t ( int n , int m) ;

stat ic char∗ f l a g s = NULL;
stat ic int he ight = 0 ;
stat ic int width = 0 ;

// h e i g h t and width can ONLY be seen by f unc t i on s in THIS f i l e . t h i s
i s the
// purpose o f the ‘ s t a t i c ’ cmd .

//================================================================
// crea t e a func t i on t ha t c r ea t e s a new s t r u c t u r e f o r a new reg ion .

Centroid ∗addCentroid ( Centroid ∗parent ){
//This f unc t i on needs a po in t e r to the ’ Centroid ’ type s t r u c t ’

Iain Brookshaw



B.1 Final Programs 149

// t ha t was the prev ious c en t ro i d s t r u c t u r e .

Centroid ∗ptr ;
Centroid ∗new ;

new = ( Centroid ∗) mal loc ( s izeof ( Centroid ) ) ;
i f (new == NULL) return NULL; //mal loc f a i l e d !

// i n i t i a l i s e new , now tha t we have the memory .

new−>co l our = −1;
new−>area = 0 ;
new−>x = 0 . 0 ;
new−>y = 0 . 0 ;
new−>Gsum = 0 ;
new−>g prev = −1;
new−>g cu r r en t = −1;
new−>next = NULL;
new−>L = −1;

i f ( parent != NULL){
ptr = parent ;
while ( ptr−>next ) ptr = ptr−>next ; // loop through con t inuous l y
u n t i l a n u l l i s found , you are now at the end o f the l i s t .

ptr−>next = new ;
}
return new ;

}
//================================================================

void de l e t eC ent ro id s ( Centroid ∗parent ){
Centroid ∗ptr ;
while ( parent ){

ptr = parent−>next ;
// p t r becomes the next c en t ro i d IF parent a c t u a l l y po in t s to
a cento id .
f r e e ( parent ) ;
parent = ptr ;

}
}

//================================================================

Centroid ∗ c l eanCent ro id s ( Centroid ∗ s ta r t , int minarea ){
Centroid ∗parent ;
Centroid ∗ cur rent ;

i f ( ! s t a r t ) return NULL;

while ( s t a r t && sta r t−>area < minarea ){
cur rent = s t a r t ;
s t a r t = s ta r t−>next ;
f r e e ( cur rent ) ;

}
i f ( ! s t a r t ) return NULL;

parent = s t a r t ;
cur r ent = s ta r t−>next ;

while ( cur r ent ) {
i f ( current−>area < minarea ) {

Iain Brookshaw



150 Program Listings

parent−>next = current−>next ;
f r e e ( cur rent ) ;

} else {
parent=cur rent ;

}
cur rent = parent−>next ;

}
return s t a r t ;

}

// note : The above w i l l c l e a r the l i n k e d l i s t FROM WHERE ∗ parent
i s . I f you g ive i t a address that i s h a l f way down the l i s t IT WILL
CLEAR FROM THERE.
//==================================================================

Centroid ∗getALLCentroids ( IplImage ∗SegImage ){
Centroid ∗parent = NULL;
unsigned char ∗ grey = NULL;
Centroid ∗new ;
int i , j ;

int width = SegImage−>width ;
int he ight = SegImage−>he ight ;

// A l l o ca t eF l a g s ( SegImage−>width , SegImage−>h e i g h t ) ;
Al l o ca t eF lag s ( width , he ight ) ;

// p r i n t f (” Image width and he i g h t %d %d\n” , width , h e i g h t ) ;
for ( j =0; j < he ight ; j++){

for ( i =0; i < width ; i ++){

i f ( i s F l a g S e t ( i , j ) ) continue ; // cont inue i s s k i p to end o f
i n t e r i o r loop .

new = addCentroid ( parent ) ;
i f (new==NULL) return NULL;

i f ( parent == NULL) parent = new ;

grey = (unsigned char ∗ ) ( SegImage−>imageData +
SegImage−>widthStep ∗ j + i ) ; //Assume Grey−s c a l e

// p r i n t f (”( x , y , g ) (%d,%d,%hhu )\n” , i , j ,∗ grey ) ;

ca l cCent ro id ( i , j , new ,∗ grey , SegImage ) ;

}// i Loop
}// j Loop
// c l ean the f l a g s .
Dea l l o ca t eF lag s ( ) ;

return parent ;
}//END of getALLCentroids

//============================================================================

void ca l cCent ro id ( int i , int j , Centroid ∗ current , unsigned char
grey , IplImage ∗SegImage ){

// grey i s THIS segment co lour in segmented image .

i f ( i<0 | | i >= SegImage−>width ) return ;

Iain Brookshaw



B.1 Final Programs 151

i f ( j<0 | | j >= SegImage−>he ight ) return ;
i f ( i s F l a g S e t ( i , j ) ) return ;

unsigned char ∗ p i x e l = (unsigned char ∗ ) ( SegImage−>imageData +
SegImage−>widthStep ∗ j + i ) ; //Assume Grey−s c a l e
i f ( p i x e l == NULL ) {

p r i n t f ( ” p i x e l == NULL\n” ) ;
}
i f ( (∗ p i x e l ) != grey ) return ; // the curren t l o c a t i o n i s not in
same segment .

SetFlag ( i , j ) ;

current−>co l our = grey ;

current−>x += ( f loat ) i ;
current−>y += ( f loat ) j ;
current−>area += 1 ;
current−>Gsum += ∗ p i x e l ;

// recurse to the surrounding p i x e l s . Note the i f s ta tements above
w i l l stop us from dropping o f edge o f image &c .

ca l cCent ro id ( i +1, j , current , grey , SegImage ) ;
ca l cCent ro id ( i −1, j , current , grey , SegImage ) ;
ca l cCent ro id ( i , j +1, current , grey , SegImage ) ;
ca l cCent ro id ( i , j −1, current , grey , SegImage ) ;

}//End o f ca l cCent ro id .

// ===================== FLAG FUNCTIONS ======================

int Al l o ca t eF lag s ( int w, int h){
int i ;
char∗ ptr ;
f l a g s = (char∗) mal loc (w∗h∗ s izeof (char ) ) ;
// crea t e a matrix o f char ’ s the co r r e c t s i z e as de f ined by n & m;

i f ( f l a g s == NULL) return 1 ;
// i f t h a t d id not work re turn an error . i t p robab l y means you
are out o f
// memory .

for ( i =0, ptr=f l a g s ; i < w∗h ; i ++, ptr++){
∗ptr = 0 ;

}
// i n i t a l i s e t h i s matrix . Note : i< not i<= as i t i s assumed t ha t
// t h i s loop w i l l increment i and p t r one l a s t time a f t e r the
penult imate
// entry to do i = n∗m.

he ight = h ;
width = w;
return 0 ;
// i f i t d id work re turn no error .

}
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

int Dea l l o ca t eF lag s ( ){
// This f unc t i on dea l o ca t e s the v a r i a b l e f l a g s and i s des igned to

Iain Brookshaw



152 Program Listings

// prevent the memory from f i l l i n g up wi th ’ f l a g s ’ .

i f ( f l a g s ) f r e e ( f l a g s ) ;
// i f t h e r e i s something in f l a g s , f r e e f l a g s .
he ight =0;
width = 0 ;
f l a g s = NULL;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

int SetFlag ( int w, int h){
char ∗ptr ;

ptr = f l a g s + h∗width + w;
∗ptr = 1 ;

}
// NOTE! ! width in the func t i on above and be l l ow i s de f ined
out s id e the
// func t i on s at the top o f the page . The a l l o c a t i o n func t i on ( which
should be
// run f i r s t ) g i v e s i t a va lue . I t i s then used wi th t h i s va lue by
the f u n c t i o n s
// above and be l l ow

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

int i s F l a g S e t ( int w, int h){

i f (w<0 | | w >= width ) return 1 ;
i f (h<0 | | h >= height ) return 1 ;

return ( int ) (∗ ( f l a g s + h∗width + w) ) ;

// This w i l l r e turn e i t h e r a one or a zero
// depending on weather the f l a g has been s e t a t
// t h i s po in t or not . 1 == set , 0 == not s e t .

}

Data Type Definition

This section of code defines the Centroid data type. It is used in all functions

requiring use of centroid type structures.

Listing B.5: “Centroid” data structure.

// Header f o r the cen t ro i d f i n d i n g code .
// This d e f i n e s the s t r u c t u r e Centroid . I t w i l l have t h e s e type
v a r i a b l e s in i t .
// THIS MUST be inc l u ed in the s t a r t o f a l l f i l e s t h a t use t h i s
s t r u c t u r e .
// eg #inc l ude ” cen t ro i d . h” i s r e qu i r ed !

typedef struct Centro id {
int co l our ;

Iain Brookshaw



B.1 Final Programs 153

int area ;
f loat x ;
f loat y ;
int Gsum;
f loat g prev ;
f loat g cu r r en t ;
f loat L ;
struct Centro id ∗next ;

} Centroid ;

Centroid ∗getALLCentroids ( IplImage ∗SegImage ) ;
void de l e t eC ent ro id s ( Centroid ∗ ) ;
Centroid ∗ c l eanCent ro id s ( Centroid ∗ , int ) ;
Centroid ∗addCentroid ( Centroid ∗parent ) ;
Centroid ∗ c l eanCent ro id s ( Centroid ∗ s ta r t , int minarea ) ;
void ca l cCent ro id ( int i , int j , Centroid ∗ current , unsigned char
grey , IplImage ∗SegImage ) ;

// co lour i s the co lour in segmented image o f curren t reg ion .
// area i s area o f reg ion .
//x i s the sum of a l l x l o c a t i o n s .
//y i s the sum of a l l y l o c a t i o n s .
//Gsum i s the sum of a l l gray va l u e s f o r t ha t reg ion in o r i g i n a l
image .
// g prev i s the looming q u an t i t i y f o r the prev ious image ( as de f ined
in t r a ck ing ) .
// g cur r en t i s the looming quan t i t y f o r the current image , as d e f i n e
by blur .
// L i s the looming va lue f o r t h i s reg ion .

B.1.4 Tracking Function

Having found the centroids the main program calls this function to establish the

correspondence from frame to frame.

Listing B.6: Tracking function.

/∗
This i s the t r a c k i n g func t i on des igned f o r use in the ‘ d r i v e r ’
program .
This w i l l not a c tua l y re turn anyth ing excep t the l i n e s on the image .

I t i s in tended t ha t i t be passed the cen t ro i d l i s t s .

INPUTS: Ip l Image ∗ Seg2 −− t h i s i s the segmented image t ha t the
t racked

l i n e s w i l l be drawn on . Note t ha t i t
i s the
CURRENT image .

Centroid ∗ Seg1Cent −− This i s the cen t ro i d l i s t f o r the
PREVIOUS

frame .
Centroid ∗ Seg2Cent −− This i s the cen t ro i d l i s t f o r

Iain Brookshaw



154 Program Listings

the CURRENT
frame .

i n t Tol −− The t o l e r anc e used in the segmentat ion func t i on .

IB
26/7/11
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>
#include <cv . h>
#include <highgu i . h>
#include ” c en t r o id . h”

void t r a c k g e n e r a l ( IplImage ∗ Seg2 , Centroid ∗ Seg1Cent , Centroid ∗
Seg2Cent , int Tol ){

// prov ide cont ingency f o r t h e i r be ing no cen t ro i d . ( f i r s t frame
o f sequence ) .
i f ( Seg2Cent == NULL) return ;
i f ( Seg1Cent == NULL) return ;

//now tha t we have the c en t r o i d s f o r a l l t h r e e Segs , s t a r t wi th
Seg one
//and f i nd the c l o s e s t c en t ro i d to ( Seg1Cent 1 s t po in t ) in
Seg2Cent .
// the f i r s t s t ep i s to go to Seg2 and the f i r s t c en t ro i d on
the l i s t .
// f i nd the area o f the reg ion a t tached to t ha t c en t ro i d .

Centroid ∗NewImg = Seg2Cent ;
Centroid ∗OldImg = Seg1Cent ;
Centroid ∗temp ;

//These w i l l be the coord ina t e s in the PREVIOUS image t ha t are
// b e s t match f o r curren t c en t ro i d in CURRENT image .
int BestXMatch = −1;
int BestYMatch = −1;

//These are the coord ina t e s o f a cen t ro i d in a PREVIOUS image t ha t
//we are cu r r en t l y cons i de r ing .
int PrevX ;
int PrevY ;
f loat PrevG ;

// the s e are the c oo r i d i na t e s o f the current c en t ro i d in the CURRENT
// image
int CurX ;
int CurY ;

// t h i s i s co lour t o l e r anc e .
Tol −= Tol ∗ 0 . 1 ;

// ge t number o f c en t r o i d s in o ld image
int N = 0 ;
temp = Seg1Cent ;

while ( temp ){
N++;
temp=temp−>next ;

Iain Brookshaw



B.1 Final Programs 155

}

//The v a r i a b l e N i s the number o f c en t r o i d s in the PREVIOUS image .

//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// CURRENT CENTROID LOOP
//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int count = 0 ;

while (NewImg){

// r e s e t the PREVIOUS image po in t e r to the s t a r t o f the PREVIOUS
// image cen t ro i d l i s t .
OldImg = Seg1Cent ;

// r e s e t the f i n a l match
BestXMatch = −1;
BestYMatch = −1;

//Find the search area dimension based on s i z e o f CURRENT reg ion
int L = ( int ) ( s q r t (NewImg−>area ) ∗ 0 . 5 ) ;

// ge t the l o c a t i o n o f the CURRENT cen t ro i d
CurX = ( int ) ( NewImg−>x / NewImg−>area ) ;
CurY = ( int ) ( NewImg−>y / NewImg−>area ) ;

//Now go through a l l the c en t r o i d s in the PREVIOUS image and
// look f o r c en t r o i d s t ha t match . The match w i l l be dec ided by
// 1) i f the PREVIOUS cen t ro i d i s in the CURRENT search area .
// 2) i f the PREVIOUS reg ion ’ s mean i s w i th in t o l o f the
CURRENT mean .
//
// i f t h e s e two cond i t i on s are s a t i s f i e d , then a match i s made
and the
// BestXMatch &c . v a r i a b l e s can be s e t . Note t ha t t h i s makes
i t p o s s i b l e
// to have s e v e r a l CURRENT cen t r o i d s as s i gned to one PREVIOUS
c en t r o id .
// t h i s i s in tended .

int GMdiff = 1000 ;
int GM = 0 ;
int PrevGM ;
int CurGM;

while ( OldImg ){
// f i nd the PrevX and PrevY v a r i a b l e s .

PrevX = ( int ) ( OldImg−>x / OldImg−>area ) ;
PrevY = ( int ) ( OldImg−>y / OldImg−>area ) ;
CurGM = ( int ) ( NewImg−>Gsum / NewImg−>area ) ;

i f (CurX−L < PrevX && CurX+L > PrevX && CurY−L < PrevY &&
CurY+L > PrevY){

//we are in search area .
//now check the co lour match .
PrevGM = ( int ) ( OldImg−>Gsum / OldImg−>area ) ;

Iain Brookshaw



156 Program Listings

i f ( abs (PrevGM − CurGM) < GMdiff ){
GMdiff = abs (PrevGM − CurGM) ;
BestXMatch = PrevX ;
BestYMatch = PrevY ;
PrevG = ( OldImg−>g cu r r en t ) ;
// p r i n t f (”PrevG:% f \n” , PrevG ) ;

} else {//end co lour i f
// p r i n t f (” Colour not match !\n” ) ;

}
}//end search area i f

OldImg = OldImg−>next ;
}//end OldImg

i f ( BestXMatch > 0 && BestYMatch > 0){

CvPoint Old ;
CvPoint New;

New. x = CurX ;
New. y = CurY ;
Old . x = BestXMatch ;
Old . y = BestYMatch ;

// p r i n t f (”The prev ious x , y p o s i t i o n : %d %d\n” ,
BestXMatch , BestYMatch ) ;
// p r i n t f (” prev ious area from track %d\n” , PrevG ) ;

cvLine (
Seg2 ,
New,
Old ,
CV RGB(100 , 100 , 100) ,
2 ,
8 ,
0
) ;

count++;
}/∗

e l s e {//end i f .
p r i n t f (”NO MATCH FOUND \n” ) ;
}∗/

// p r i n t f (”End o f CURRENT cen t ro i d \n\n” ) ;
NewImg−>g prev = PrevG ;
NewImg = NewImg−>next ;

}//END OF NewImg LOOP!

//show how many reg ions t racked . . .
//we are going to see how many reg ions in the new l i s t have
// s u c c e s f u l l y t racked .
int t o t a l = 0 ;
Centroid ∗ Temp = Seg2Cent ;
while (Temp){

t o t a l ++;
Temp = Temp−>next ;

}

Iain Brookshaw



B.1 Final Programs 157

// the precentage number o f t racked . . .
f loat p = ( f loat ) ( count )/ ( f loat ) ( t o t a l )∗100 ;

// p r i n t f (” Tota l no o f c en t r o i d s : %d\n” , t o t a l ) ;
// p r i n t f (” Tota l number t racked : %d\n” , count ) ;
p r i n t f ( ”The percent no o f r e g i o n s tracked : %0.2 f \n” , p ) ;

}//end o f vo id t r a c k f ( . . . .

// ==================== END OF FUNCTION =======================

B.1.5 Looming Function

Listing B.7: Looming function.

/∗ This func t i on i s des igned to c a l c u l a t e looming through b l u r
rad ius .

I t i s in tended t ha t t h i s s h a l l s imply take the b l u r va lue from the
‘ ‘ curren t ’ ’ and ‘ ‘ p rev ious ’ ’ l i s t s and do the b l u r c a l c u l a t i o n .
IB
12/10/11

INPUTS −−−− Ip l Image ∗ Segmented , the segmented image
Centroid ∗ CentList , the current frame cen t r o i d s .
f l o a t dt , the time s t ep .

No outpu t s .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>
#include <cv . h>
#include <highgu i . h>
#include ” c en t r o id . h”

void l oomf b lu r ( IplImage ∗ Segmented , Centroid ∗ CentList , f loat dt ){

// crea t e a cen t ro i d counter .
Centroid ∗ temp ;

//go through the cen t ro i d l i s t and f i nd the Looming (L) va l u e s
for a l l

// reg ions in l i s t .

f loat L = −1;

temp = CentList ;
while ( temp ){

i f ( temp−>g prev >= 0 && temp−>g cu r r en t > 0 ){
L = ( ( temp−>g cu r r en t − temp−>g prev ) / dt ) / temp−>g cu r r en t ;

}

i f ( temp−>g prev < 0){

Iain Brookshaw



158 Program Listings

L = 0 ;
}

i f ( temp−>g cu r r en t == 0){
L = 1 e10 ;

}

i f ( temp−>g cu r r en t <0){
L = 0 ;

}

// i f L i s ’0 ’ t h e r e i s i n s u f f i c i e n t in format ion to compute L (
// e i t h e r the current or prev ious b l u r i s undef ined ) .
// t h i s i s a comprimise as ’0 ’ looming can occur
l e g i t i m a t e l y . Howvever , no
// o ther u sab l e marker e x i s t e d .
// i f L > 1e9 , then the re i s ’ i n f i n i t e ’ looming , the o b j e c t i s
upon you .

// p r i n t f (”L = %f \n” , L ) ;
temp−>L = L ;
temp = temp−>next ;
L = −1;

}
// the looming va lue i s now known .

}//end o f l o omf b l u r

B.2 Testing Algorithms

B.2.1 Segmentation Test Program

This function is designed to test the segmentation function. The full results of

this testing is discussed in section 5.2. To operate this function needs access to

the test image and the segmentation function.

Listing B.8: Segmentation Test Program.

/∗ This i s a t e s t program fo r v e r i f y i n g the segmentat ion a l gor i thm .
This program w i l l c r ea t e a t e s t image ( two b l a c k and whi te
squares )
and s u b j e c t them to segmentat ion . I t w i l l then go through the
segmented
image and attempt to f i nd any p i x e l s t h a t are not 0 or 255. I f
i t f i n d s
any i t w i l l r epor t them .
IB

Iain Brookshaw



B.2 Testing Algorithms 159

22/7/11
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>
#include <cv . h>
#include <highgu i . h>

int s e g f u n c t i o n ( IplImage ∗ , Ip lImage ∗ , int , int , CvSize ) ;

int main ( ){

IplImage ∗ TestImage ;
IplImage ∗ SegImage ;

//now crea t e the s i z e

CvSize S i z e ;
S i z e . width = 200 ;
S i z e . he ight = 200 ;

TestImage = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;
SegImage = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;

//now f i l l Test image wi th the apropr i a t e co l ou r s .

unsigned char∗ PtrT ;

PtrT = (unsigned char ∗ ) ( TestImage−>imageData ) ;

int x = 0 ;
int y = 0 ;

for ( y = 0 ; y < S i z e . he ight ; y++){

for ( x = 0 ; x < S i z e . width ; x++){
PtrT = (unsigned char ∗ ) ( TestImage−>imageData + x + y ∗
TestImage−>widthStep ) ;

i f ( x < ( S i z e . width )/2){
∗PtrT = 0 ;

} else {
∗PtrT = 255 ;

}
}//end f o r ( x< . . .

}//edn f o r (y< . . .

//we now have a h a l f whi te and h a l f b l a c k image . Give t h i s image
to the
// segmentat ion func t i on .

int MinRNo = s e g f u n c t i o n ( TestImage , SegImage , 100 ,100 , S i z e ) ;

//now go through t h i s image and f i nd a l l s u spec t p i x e l s .

x = 0 ;
y = 0 ;
int count = 0 ;
unsigned char∗ PtrS = (unsigned char ∗ ) ( SegImage−>imageData ) ;

for ( y = 0 ; y < S i z e . he ight ; y++){
for ( x = 0 ; x< S i z e . width ; x++){

PtrS = (unsigned char ∗ ) ( SegImage−>imageData + x + ( y ∗
SegImage−>widthStep ) ) ;

Iain Brookshaw



160 Program Listings

i f (∗PtrS != 0 | | ∗PtrS != 255){
count++;
}

}//x
}//y

p r i n t f ( ”The number o f suspec t p i x e l s i s : %d\n” , count ) ;

//===============DISPLAY================
cvNamedWindow( ”TestImage” ,CV WINDOW AUTOSIZE) ;
cvNamedWindow( ”SegImage” ,CV WINDOW AUTOSIZE) ;

cvShowImage ( ”TestImage” , TestImage ) ;
cvShowImage ( ”SegImage” , SegImage ) ;
cvWaitKey ( 0 ) ;

cvReleaseImage ( &TestImage ) ;
cvReleaseImage ( &SegImage ) ;

cvDestroyWindow ( ”TestImage” ) ;
cvDestroyWindow ( ”SegImage” ) ;

}//end o f Main

B.2.2 Tracking Test Program

This program was designed to test the operation of the tracking function. The

full results can be found in section 5.4

Listing B.9: Tracking Test Program.

/∗ This program i s the t r a c k i n g t e s t program . I t demonstrates t ha t
the t r a c k i n g
a l gor i thm works c o r r e c t l y f o r t e s t images . I t t a k e s as i t s input
2 s t i l l
images . I t i s recommended t ha t t h e s e s t i l l s be modi f ied v e r s i on s
o f the same
image or i d e n t i c a l images . The program w i l l save the t racked
images as
‘Track1OUT . png ’ and ‘Track2Out . png ’ in the curren t d i r e c t o r y . A l l
i npu t s must
be s i n g l e channel gray−s c a l e
The e x e cu t a b l e f i l e i s ‘ TrackTest ’

Iain Brookshaw



B.2 Testing Algorithms 161

Ia in Brookshaw
w0086292

28/9/11
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>
#include <cv . h>
#include <highgu i . h>
#include ” c en t r o id . h”

int s e g f u n c t i o n ( IplImage ∗ , Ip lImage ∗ , int , int , CvSize ) ;
Centroid ∗ c e n t f u n c t i o n ( IplImage ∗ , int , int ) ;

int main ( int argc , char∗∗ argv ){
//now to load th r ee images

// de f i n e and ge t the t h r ee images t ha t we w i l l be us ing .
IplImage ∗ frame1 ;
IplImage ∗ frame2 ;
// Ip l Image ∗ frame3 ;
IplImage ∗ Seg1 ;
IplImage ∗ Seg2 ;

cvNamedWindow( ”Frame1” ,CV WINDOW AUTOSIZE) ;
cvNamedWindow( ”Frame2” ,CV WINDOW AUTOSIZE) ;

cvNamedWindow( ”Seg1” ,CV WINDOW AUTOSIZE) ;
cvNamedWindow( ”Seg2” ,CV WINDOW AUTOSIZE) ;

frame1 = cvLoadImage ( argv [ 1 ] ,
CV LOAD IMAGE GRAYSCALE
) ;

frame2 = cvLoadImage ( argv [ 2 ] ,
CV LOAD IMAGE GRAYSCALE
) ;

//now f i nd the c en t r o i d s o f r eg i ons in frame1 .

CvSize S i z e ;

int xMax = frame1−>width ;
int yMax = frame2−>he ight ;
S i z e . width = xMax ;
S i z e . he ight = yMax ;

Seg1 = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;
Seg2 = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;

int RMCount1 = s e g f u n c t i o n ( frame1 , Seg1 , xMax , yMax , S i z e ) ;
int RMCount2 = s e g f u n c t i o n ( frame2 , Seg2 , xMax , yMax , S i z e ) ;

Centroid ∗ Seg1Cent = c e n t f u n c t i o n ( Seg1 , 100 , 2 ) ;
Centroid ∗ Seg2Cent = c e n t f u n c t i o n ( Seg2 , 100 , 2 ) ;

//now tha t we have the c en t r o i d s f o r a l l t h r e e Segs , s t a r t wi th
Seg one

//and f i nd the c l o s e s t c en t ro i d to ( Seg1Cent 1 s t po in t ) in
Seg2Cent .
// the f i r s t s t ep i s to go to Seg2 and the f i r s t c en t ro i d on

Iain Brookshaw



162 Program Listings

the l i s t .
// f i nd the area o f the reg ion a t tached to t ha t c en t ro i d .

Centroid ∗NewImg = Seg2Cent ;
Centroid ∗OldImg = Seg1Cent ;
Centroid ∗temp ;

//These w i l l be the coord ina t e s in the PREVIOUS image t ha t are
// b e s t match f o r curren t c en t ro i d in CURRENT image .
int BestXMatch = −1;
int BestYMatch = −1;

//These are the coord ina t e s o f a cen t ro i d in a PREVIOUS image t ha t
//we are cu r r en t l y cons i de r ing .
int PrevX ;
int PrevY ;

// the s e are the c oo r i d i na t e s o f the current c en t ro i d in the CURRENT
// image
int CurX ;
int CurY ;

// t h i s i s co lour t o l e r anc e . SHOULD COME FROM SEG FUNCTION.
int Tol= 10 ;

// ge t number o f c en t r o i d s in o ld image
int N = 0 ;
temp = Seg1Cent ;

while ( temp ){
N++;
temp=temp−>next ;

}

//The v a r i a b l e N i s the number o f c en t r o i d s in the PREVIOUS image .

//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// CURRENT CENTROID LOOP
//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int count = 0 ; // t h i s i s the number o f s u c c e s s f u l l y t racked
r e g i o n s .

while (NewImg){

// r e s e t the PREVIOUS image po in t e r to the s t a r t o f the PREVIOUS
// image cen t ro i d l i s t .
OldImg = Seg1Cent ;

// r e s e t the f i n a l match
BestXMatch = −1;
BestYMatch = −1;

//Find the search area dimension based on s i z e o f CURRENT reg ion
int L = ( int ) ( s q r t (NewImg−>area ) ∗ 0 . 5 ) ;

// ge t the l o c a t i o n o f the CURRENT cen t ro i d
CurX = ( int ) ( NewImg−>x / NewImg−>area ) ;
CurY = ( int ) ( NewImg−>y / NewImg−>area ) ;

Iain Brookshaw



B.2 Testing Algorithms 163

// p r i n t f (”CurX : %d\n” , CurX ) ;
// p r i n t f (”CurY : %d\n” , CurY ) ;

//Now go through a l l the c en t r o i d s in the PREVIOUS image and
// look f o r c en t r o i d s t ha t match . The match w i l l be dec ided by
// 1) i f the PREVIOUS cen t ro i d i s in the CURRENT search area .
// 2) i f the PREVIOUS reg ion ’ s mean i s w i th in t o l o f the
CURRENT mean .
//
// i f t h e s e two cond i t i on s are s a t i s f i e d , then a match i s made
and the
// BestXMatch &c . v a r i a b l e s can be s e t . Note t ha t t h i s makes
i t p o s s i b l e
// to have s e v e r a l CURRENT cen t r o i d s as s i gned to one PREVIOUS
c en t r o id .
// t h i s i s in tended .

int GMdiff = 1000 ;
int GM = 0 ;
int PrevGM ;
int CurGM;

while ( OldImg ){
// f i nd the PrevX and PrevY v a r i a b l e s .

PrevX = ( int ) ( OldImg−>x / OldImg−>area ) ;
PrevY = ( int ) ( OldImg−>y / OldImg−>area ) ;
CurGM = ( int ) ( NewImg−>Gsum / NewImg−>area ) ;

i f (CurX−L < PrevX && CurX+L > PrevX && CurY−L < PrevY &&
CurY+L > PrevY){

//we are in search area .
//now check the co lour match .
PrevGM = ( int ) ( OldImg−>Gsum / OldImg−>area ) ;
/∗
p r i n t f (” area Previous : %d\n” , OldImg−>area ) ;
p r i n t f (” gray sum Previous : %d\n” , OldImg−>Gsum) ;
p r i n t f (” area Current %d\n” , NewImg−>area ) ;
p r i n t f (” gray sum Currnet : %d\n” , NewImg−>Gsum) ;

p r i n t f (”Area match found\n” ) ;
p r i n t f (” Prev Gray Mean %d\n” , PrevGM) ;
p r i n t f (” Current Gray Mean %d\n” , CurGM) ;
∗/
i f ( abs (PrevGM − CurGM) < GMdiff ){

GMdiff = abs (PrevGM − CurGM) ;
BestXMatch = PrevX ;
BestYMatch = PrevY ;
// p r i n t f (” co lour match found\n” ) ;

} else {//end co lour i f
// p r i n t f (” Colour not match !\n” ) ;

}
}//end search area i f

OldImg = OldImg−>next ;
}//end OldImg

// p r i n t f (”BestXMatch : %d\n” ,BestXMatch ) ;

Iain Brookshaw



164 Program Listings

// p r i n t f (”BestYMatch : %d\n” ,BestYMatch ) ;

i f ( BestXMatch > 0 && BestYMatch > 0){

CvPoint Old ;
CvPoint New;

New. x = CurX ;
New. y = CurY ;
Old . x = BestXMatch ;
Old . y = BestYMatch ;

cvLine (
Seg2 ,
New,
Old ,
CV RGB(255 , 255 , 255) ,
2 ,
8 ,
0
) ;

count++;

} else {//end i f .
// p r i n t f (”NO MATCH FOUND \n” ) ;

}
// p r i n t f (”End o f CURRENT cen t ro i d \n\n” ) ;
NewImg = NewImg−>next ;

}//END OF NewImg LOOP!

//we are going to see how many reg ions in the new l i s t have
// s u c c e s f u l l y t racked .
int t o t a l = 0 ;

Centroid ∗ Temp = Seg2Cent ;
while (Temp){

t o t a l ++;
Temp = Temp−>next ;

}

// the precentage number o f t racked . . .
f loat p = ( f loat ) ( count )/ ( f loat ) ( t o t a l )∗100 ;

p r i n t f ( ” Total no o f c e n t r o i d s : %d\n” , t o t a l ) ;
p r i n t f ( ” Total number tracked : %d\n” , count ) ;
p r i n t f ( ”The percent no o f r e g i o n s tracked : %0.2 f \n” , p ) ;

//============== Save images ! ===============================

int s =cvSaveImage ( ”Track1OUT . png” , Seg1 , 0 ) ;

int s1= cvSaveImage ( ”Track2OUT . png” , Seg2 , 0 ) ;

//============== Disp lay and Clean ===========================

cvShowImage ( ”Frame1” , frame1 ) ;
cvShowImage ( ”Frame2” , frame2 ) ;
cvShowImage ( ”Seg1” , Seg1 ) ;

Iain Brookshaw



B.2 Testing Algorithms 165

cvShowImage ( ”Seg2” , Seg2 ) ;
cvWaitKey ( 0 ) ;

// c l ean up
//Remove the cen t ro i d l i s t .
de l e t eC ent ro id s ( Seg1Cent ) ;
d e l e t eC ent ro id s ( Seg2Cent ) ;

Seg1Cent = NULL;
Seg2Cent = NULL;

cvReleaseImage ( &frame1 ) ;
cvReleaseImage ( &frame2 ) ;
cvReleaseImage ( &Seg1 ) ;
cvReleaseImage ( &Seg2 ) ;

cvDestroyWindow ( ”Frame1” ) ;
cvDestroyWindow ( ”Frame2” ) ;
cvDestroyWindow ( ”Seg1” ) ;
cvDestroyWindow ( ”Seg2” ) ;

}//END OF MAIN ! ! !

B.2.3 Looming Test Program

Listing B.10: Area Looming Test Program.

/∗ This i s a t e s t program des igned to t e s t A l l a sp ec t s on a s t i l l
image .

This i s p r imar i l y in tended to t e s t looming through area

∗/

#include <s t d l i b . h>
#include <s t d i o . h>
#include <math . h>
#include <cv . h>
#include <highgu i . h>
#include ” c en t r o id . h”

int s e g f u n c t i o n ( IplImage ∗ , Ip lImage ∗ , int , int , CvSize , int T) ;
Centroid ∗ c e n t f u n c t i o n ( IplImage ∗SegImage , int minarea , int
MinRegionCount ) ;
void trackL ( IplImage ∗ Seg2 , Centroid ∗ Seg1Cent , Centroid ∗ Seg2Cent ,
int T) ;

int main ( int argc , char∗∗ argv ) {

IplImage ∗Segmented ;
IplImage ∗Segmented2 ;
IplImage ∗ Input= cvLoadImage ( argv [ 1 ] , CV LOAD IMAGE GRAYSCALE ) ;
IplImage ∗ Input2 = cvLoadImage ( argv [ 2 ] , CV LOAD IMAGE GRAYSCALE ) ;

cvNamedWindow( ” segmented1” , CV WINDOW AUTOSIZE ) ;
cvNamedWindow( ” segmented2” , CV WINDOW AUTOSIZE ) ;

Iain Brookshaw



166 Program Listings

cvNamedWindow( ” o r i g i n a l ” , CV WINDOW AUTOSIZE ) ;
cvNamedWindow( ” o r i g i n a l 2 ” , CV WINDOW AUTOSIZE ) ;

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
// SEGMENT THE IMAGES. //
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

// ge t image s i z e
int xMax = Input −> width ;
int yMax = Input −> he ight ;

CvSize S i z e ;
S i z e . width = xMax ;
S i z e . he ight = yMax ;

// prepare the segmented images .
Segmented = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;
Segmented2 = cvCreateImage ( Size , IPL DEPTH 8U , 1 ) ;

f loat Tol = 0 . 0 ;

int MinCount1 = s e g f u n c t i o n ( Input , Segmented , xMax , yMax ,
Size , Tol ) ;
int MinCount2 = s e g f u n c t i o n ( Input2 , Segmented2 , xMax , yMax ,
Size , Tol ) ;

p r i n t f ( ” images segmented\n ” ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
// ge t the c en t r o i d s //
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

Centroid ∗ CentList1 ;
Centroid ∗ CentList2 ;

CentList1 = c e n t f u n c t i o n ( Segmented , 200 , 2 ) ;
p r i n t f ( ”have the 1 s t c en t r o id \n” ) ;

CentList2 = c e n t f u n c t i o n ( Segmented2 , 200 , 2 ) ;
p r i n t f ( ”have the 2nd cen t ro id \n” ) ;

Centroid ∗ temp ;

// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− //
// TRACKING //
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− //

trackL ( Segmented2 , CentList1 , CentList2 , Tol / 2 ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
// Looming //
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

f loat L = −1;
f loat dt = 0 . 0 5 ;

temp = CentList2 ;
while ( temp ){

L = ( ( temp−>area − ( int ) temp−>g prev ) / dt ) / temp−>area ;
p r i n t f ( ”Looming value : %f \n” , L ) ;

Iain Brookshaw



B.2 Testing Algorithms 167

temp−>L = L ;
temp = temp−>next ;
L = −1;

}
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p r i n t f ( ”Have a l l looming values , g e t t i n g l a r g e s t . . . \ n” ) ;
// l e t us f i nd the reg ion t ha t has grown the l a r g e s t .

f loat maxL = −1e6 ;
int maxLx = −1;
int maxLy = −1;
CvPoint Loc ;

temp = CentList2 ;
while ( temp ){

i f ( temp−>L > maxL){

maxL = temp−>L ;
maxLx = ( int ) ( temp−>x / temp−>area ) ;
maxLy = ( int ) ( temp−>y / temp−>area ) ;

}
temp = temp−>next ;

}

i f (maxLx > 0 && maxLy > 0){
p r i n t f ( ”The c en t ro id o f the f a s t e s t growing reg i on i s : %d ,
%d\n” , maxLx , maxLy ) ;
//draw a c i r c l e t h e r e .
Loc . x = maxLx ;
Loc . y = maxLy ;

c v C i r c l e ( Segmented2 , // image name
Loc , // center ,
10 , // radius ,
CV RGB(0 , 0 , 100) , //CvScalar co lor ,
5 , // i n t t h i c kn e s s =1,
8 , // i n t l ineType=8,
0 ) ; // i n t s h i f t=0 ) ;

} else {
p r i n t f ( ”No max L value found ! ” ) ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

cvShowImage ( ”Segmented” , Segmented ) ;
cvShowImage ( ”Segmented2” , Segmented2 ) ;
cvShowImage ( ” o r i g i n a l ” , Input ) ;
cvShowImage ( ” o r i g i n a l 2 ” , Input2 ) ;

int r = cvSaveImage ( ”Out1 . png” , Segmented ) ;

cvWaitKey ( 0 ) ;
i f ( Input != NULL ) cvReleaseImage ( &Input ) ;
i f ( Segmented != NULL ) cvReleaseImage ( &Segmented ) ;

cvDestroyWindow ( ”Segmented1” ) ;
cvDestroyWindow ( ”Segmented2” ) ;

Iain Brookshaw



168 Program Listings

cvDestroyWindow ( ” o r i g i n a l ” ) ;
cvDestroyWindow ( ” o r i g i n a l 2 ” ) ;

cvDestroyWindow ( ” Input ” ) ;
}//end main

Iain Brookshaw


	Abstract
	Acknowledgments
	List of Figures
	Chapter Introduction
	Computer Vision and Mobile Robots
	Objectives
	Background, Vision and Image Processing
	Image Acquisition and Processing
	Software and Libraries
	Hardware Preconceptions

	Chapter Summaries

	Chapter Image Segmentation and Obstacle Identification
	Why Segment an Image?
	Segmentation Methods
	Thresholding
	Edge Detection
	Region Growing
	Split and Merge Techniques

	Single Pass Split Merge Segmentation
	Merging Algorithm
	Splitting Algorithm

	Image Pre-Processing
	Noise Removal and Image Smoothing
	Finding a Tolerance

	Potential Problems

	Chapter Distance and Approach
	Methods of Distance Estimation
	Looming
	Area
	Irradiance
	Texture
	Blur

	Implementation
	Blur Calculation
	Looming Calculation

	Avoidance
	Approach Categorisation
	Direction Decisions


	Chapter Tracking and Correlation
	Frame to Frame Correlation
	Point or Feature Tracking
	Region Tracking
	Chosen Algorithm
	Centroid Calculation
	Data Recording
	Centroid Matching


	Chapter Results and Discussion
	Ideal Test Images
	Segmentation Verification
	Effects of Pre-Processing Filtering

	Centroid Verification
	Tracking Testing
	Blur Estimation
	Looming Computation
	Area Looming
	Blur Looming

	Discussion
	Segmentation
	Tracking
	Looming


	Chapter Conclusions
	Segmentation
	Tracking
	Looming
	Overview
	Completion of Objectives

	Chapter Future Work
	Obstacle Detection
	Tracking and Correspondence
	Looming, Approach and Avoidance
	Navigation

	References
	Appendix Original Specifications
	Research Specification

	Appendix Program Listings
	Final Programs
	Main Driver Function
	Segmentation Functions
	Centroid Finding Functions
	Tracking Function
	Looming Function

	Testing Algorithms
	Segmentation Test Program
	Tracking Test Program
	Looming Test Program



