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Abstract 
 

Capacitance probes are used in agriculture to allow the real time measurement of soil 

moisture to assist in irrigation scheduling. This type of frequency domain measurement 

system is fast replacing the older, neutron probe technology. Clay soils have a tendency to 

form cracks around the access tube as they dry. In dry conditions, these cracks may cause the 

sensors to give readings which could be lower than the actual moisture content. In wet 

conditions (immediately following a rainfall or irrigation event) the cracks could fill with 

water and cause the sensors to give a reading higher than the actual moisture content. Soil and 

water based experiments were undertaken in order to gain an understanding of the behaviour 

of a Sentek EnviroSCAN ® in terms of soil moisture, soil temperature, and salinity effect 

allows conclusions to be drawn on how these probes respond in cracking clay soils. 

 

Similar work was conducted by Paltineanu and Starr (1997), and although some methodology 

and experimental procedures vary slightly, their work is used in many cases as a basis for 

results comparison. 

 

Soil was packed around an EnviroSCAN ® access tube into a 293mm (ID) x300 mm deep 

sleeve. Sensor readings were collected from the centre of the soil mass. The cylindrical soil 

mass was then reduced in diameter by inserting smaller sleeves and shaving off the soil from 

the outside. Results indicated that 99% of the sensors response is obtained from within 72mm 

from the outside of the PVC access tube.   

 

Experiments were conducted to investigate the degree to which temperature affects the 

capacitance probe response. The temperature experiments were undertaken by oven drying 

and heating the soil which gave little variation in response. This may be explained by the 

work of Paltineanu and Starr (1997) in that soil water is required in order to gain a response 

from soil temperature variation. 

 

Water based experiments were also undertaken to determine the effects of varying electrical 

conductivity on the probes response. As discussed in Kelleners et al (2004) increased 

electrical conductivity resulted in the probe reporting moisture contents in excess of the actual 

volumetric moisture content (θv) 
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Chapter 1.   Introduction 
 

Irrigated agriculture covers 2.4 million hectares in Australia (ABS, 2005). Being the driest 

inhabitable continent in the world means that for irrigated agriculture to be a sustainable 

practice, efficient use of available water is essential.  

 

Applying appropriate amounts of water at the right place in the field at the right time in the 

season for optimal plant growth is the philosophy behind for efficient water use. Determining 

the values of these parameters in real time is a challenging practice. Technologies exist to 

indirectly measure the soil moisture status in the field, which may assist a grower in making 

decisions about the timing and amount of irrigation necessary to fulfil a crop’s requirements.  

 

Tools for this application include a variety of soil moisture probes. These probes have been 

widely used in agricultural applications because the data that they provide can be used to 

schedule irrigation which in turn assists is improving water use efficiency. The neutron and 

gamma probes which have been used for many years are being replaced with the safer TDR 

(time domain reflectometry) and capacitance probes. All soil moisture probes estimate soil 

moisture a discrete location in the field. This means that the readings that are taken are from a 

single point source are then inferred to be representative of the entire field.  

 

Some clay soils are prone to shrinking and swelling as they change in moisture content. This 

shrinking and swelling can form surface and sub surface cracks in the soil. These cracks are 

of concern in point source moisture monitoring applications as they have the capacity to affect 

the probes readings if they are in contact with, or near the access tube (Kelleners et al, 2004).   

 

Further developing the knowledge on the behaviour of capacitance probes assists  the user to 

understand the effects that soil cracking has on the output form the probe and therefore 

improves basis for decision making . 
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1.1 Aims 
 
The broad aim of the project is to investigate the behaviour of a capacitance probe when used 

in a single soil type while varying soil moisture and soil thickness surrounding the probe as 

well as other possible variables including soil temperature and salinity. 

 

It is seen that the application of the results may provide insight to the infield behaviour of the 

probes in the presence of cracked soil.  Similar work has been completed by Paltineanu and 

Starr (1997) and several comparisons are made between their work and the work presented 

here. 

 

1.1.1 Project Aims 
 
The project specification (Issue B) (Appendix A) delivered on the 16 May 2005 lists the 

specific project aims as 

1. Research the background information on the behaviour and sensitivity of soil 

moisture measurement focusing on time domain and frequency domain 

(capacitance) probes. 

2. Design a suitable apparatus to create compacted soil of known bulk density and 

water content which will allow successive reductions in the diameter of the 

apparatus in order to detect any variation in readings by the sensor  

3. Develop suitable methods to collect, characterize and process soil materials for 

testing the sensitivity of capacitance probes 

4. Investigate the effects of volumetric water content and bulk density of soil on the 

measured water content by a capacitance probe 

5. Analyse results to evaluate the sensitivity of the capacitance probe to soil 

moisture within varying volumes of soil 

6. Discuss the application of results to measurement of soil moisture in cracking 

clay soils 

 

1.1.2 Aim of the Dissertation 
 
The aim of the document is to present the information found during the work listed in the 

above section.  Furthermore this dissertation contributes to satisfying the requirements of the 

course ENG4111and ENG4112 Engineering Research Project as part of the Bachelor of 

Engineering program at the University of Southern Queensland 
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1.2 Dissertation Overview 
 

This document has been produced in chapters with three levels of subheadings to allow easy 

navigation through the work presented. Below is a brief outline of what is contained in each 

chapter. 

 

Chapter 1 Introduction 

This chapter provides an introduction to the reasons for undertaking this project and the aims 

of the project as specified in the Project Specification – Issue B (Appendix A). 

 

Chapter 2  Background  

Chapter 2 discusses in detail the techniques of soil moisture measurement especially 

focussing on the indirect methods using capacitance probes. It then explains how capacitance 

probes are commonly used in irrigation scheduling and then briefly describes cracking clay 

soils. 

 

Chapter 3  Materials and Methods  

In this chapter the material used including the Sentek EnviroSCAN ® and the testing 

apparatus is discussed. Also a description of the soil used and a full description of the 

methods used in both the soil and water based experiments conducted for this project. For 

simplicity the experiments conducted have been categorised into either soil based experiments 

or water based experiments. 

 

Chapter 4  Results and Discussion  

This chapter of the document presents the results obtained from the soil and water based 

experimental analysis. The results are presented as graphs and tables which are then discussed 

with respect to the impact on cracking clay soils.  An analysis of the potential sources of 

experimental error has also been included in this chapter. 

 

Chapter 5  Conclusions and Recommendations 

Chapter 5 shows which of the tasks proposed in the Project Specification have been 

completed as well as some brief conclusions and suggestions for further work in this field. 
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Chapter 2. Background 
 

Irrigated agriculture is thought to have started in what is now the Middle East between the 

Tigress and the Euphrates rivers (Upshur et al, 2002).  Nowadays irrigation is an essential part 

of agriculture for crops requiring regular watering events.  All crops have different water use 

requirements, and subsequently there are various methods of irrigation available to the 

grower.  The question of when to irrigate and how much water to apply involves several 

unknowns including future weather variables and the current soil water status. While typically 

weather forecasting can be highly variable, there is some degree of certainty in the various 

forms of soil moisture measurement.  

 

2.1 Soil moisture measurement 
 

Soil is a complex heterogeneous mixture of solids, liquids and gases as well as a vast number 

of micro-organisms (Jury & Horton, 2004).  The volumetric soil moisture content (θv) is the 

standard parameter for soil moisture measurement in agricultural applications and is defined 

as the volume of water associated with a given volume of soil (Brady & Weil, 1999). 

 

The gravimetric method is a direct method of measuring soil water content and is simply the 

ratio of the weight of water to the weight of solids in a sample (Craig, 1997). While this 

parameter alone does not provide detail on the porosity of the soil it is used in the calculation 

of the more comprehensive volumetric soil moisture (�v) parameter. The gravimetric 

moisture content is calculated using Equation 1. 

 
Equation 1 

( )
S

Sw
g M

MM −
=θ   (McIntyre and Loveday, 1974) 

 
Where  gθ  Gravimetric moisture content (g/cm3) 

 wM  Wet mass of sample  (g) 

SM  Mass of soil solids  (g) 
 
 
The gravimetric soil moisture content can then be converted into a volumetric measurement 
using Equation 2 
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Equation 2 

w

B
gV ρ

ρ
θθ ×=    (McIntyre and Loveday, 1974) 

 
Where  Vθ  Volumetric moisture content  (cm3/cm3) 

gθ  Gravimetric moisture content (g/g) 

Bρ  Bulk density   (g/cm3) 

wρ  Density of water @ 20oC = 1.00 (g/cm3) 
 

This type of direct soil moisture measurement is not considered as the ideal method for 

determining soil moisture in agricultural application.  The direct method is destructive and 

requires the removal of a sample from the field for laboratory analysis. Further direct methods 

do not allow for instantaneous or continuous soil moisture measurements.  

 

It is for this reason that indirect methods were established.  Indirect methods are comprised of 

nuclear techniques and electromagnetic techniques (Kelleners et al, 2004).  The development 

of electromagnetic techniques have made nuclear techniques including the neutron scattering 

probe less appealing. Leib, Jabbro & Matthews (2003) state that the neutron probe is 

essentially a device which emits radiation, the device therefore has inherent safety issues.  

Regulations governing the use of radioactive materials have also made neutron scattering 

methods less desirable to the user (Baumhardt et al, 2000).  

 

Lane and Mackenzie (2001) and Kelleners et al, (2004) suggest that the capacitance probe is 

faster, cheaper and safer and also has better resolution and is more easily automated than the 

neutron scattering probe.  In addition, frequency domain techniques (capacitance probes) are 

operationally more simple than TDR (Dirksen, 1999) 

 

2.2 Capacitance Probes 
 

Capacitance Probes are an electromagnetic method for measuring soil moisture content.  They 

allow for real time monitoring and as such are widely used as an irrigation management tool 

(Fares and Alva, 2000). 

 

There are several commercially available capacitance probes which vary by design but the 

principals behind the devices are the same. The probes electrodes are places in the soil in such 

a manner that the soil surrounding them acts as the dielectric of a capacitor in a resonant 



 
Chapter 2  Background 

Page 6 

circuit. The inductance of the circuit is fixed and the resonant frequency varies dependant on 

the dielectric properties of the soil, water, air mix (Dane and Topp, 2002). 

 

Capacitance probes are able to respond to small changes in volumetric soil moisture because a 

relatively small amount of water (with its high dielectric constant) can significantly increase 

the average dielectric constant of the soil, water air mix (Morgan et al, 1999) 

 

The probe design can be adapted to suit various electrode configurations which are then 

buried or pushed into the soil. The electrode configurations may take the form of two or more 

parallel rods or 1 of more pairs of brass rings which are separated by a non conductive plastic 

ring (Dane and Topp, 2002). 

 

The capacitance probe used in the series of experiments presented in this document was the 

EnviroSCAN ® supplied by Sentek (Adelaide, Australia). Figure 2-1 is a sketch of the brass 

ring electrode configuration used in the EnviroSCAN ® capacitance probe. 

 

 
Figure 2-1 EnviroSCAN ® capacitance probe  (Dane and Topp, 2002) 
 

Dane and Topp (2002), list the positive features of capacitance probes as robust and stable 

instrumentation, fast response times, accuracy with good soil-probe contact, ease of use, 

safety, availability in several sensor configurations, and ability to be linked to an automatic 

data logger.  However, for a capacitance probe to function correctly it is absolutely essential 
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that there is good contact between the access tube and the surrounding soil materials 

(Kelleners et al, 2004). de Rosny et al (2001) also found the sensitivity of the capacitance 

probe to soil moisture was significantly reduced when good contact between the access tube 

and surrounding soil is not maintained. 

 

Like neutron scattering methods and TDR, the accuracy of soil moisture estimates from a 

capacitance probe is largely dependant on the equation used to convert the raw signal into a 

moisture content in cm3 cm-3.  While Sentek provides a default calibration equation derived 

from sands, loams and clay loams, it is common practice to generate a calibration equation for 

the particular soil type that is being used and Jabbro et al (2005), have stated that not only soil 

specific but site specific calibration is essential for precise soil moisture content. 

 

The calibration equation used to convert the output from the probe into a moisture content 

must be of the form given in Equation 3. 

 
Equation 3 

CAxy B +=  
 
 Where  y = Scaled Frequency 
  x = Volumetric soil water content in mm 
  A, B, C = Calibration coefficients determined experimentally 
 
The default values supplied by Sentek for the coefficients are: 
 
A = 0.19570 
B = 0.40400 
C = 0.02852 
 
The scaled frequency is discussed in further detail in Chapter 3.1.3 

 

Despite Jabbro et al (2005) claim, Sentek (2001) have suggested that for the typical irrigator 

that uses a capacitance probe, purely for irrigation scheduling purposes, soil and site specific 

calibration is not important.  Sentek (2001) have also stated that most of the economic gains 

recorded with their capacitance probe in commercial agriculture have been made using the 

concept of “relative change” in soil water. 

 

2.3 Irrigation Scheduling 
 
Increased knowledge of the relationships between soil, water and plants, produces better 

technologies and management strategies which allow a more efficient use of resources.  
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Irrigation scheduling is a management strategy based on understating the amount of water in 

the soil that is available to plants at any given time. From this knowledge a grower can 

determine when are the optimum times and rates required to fulfil the plants needs.  

 

If irrigation scheduling is undertaken correctly, it should both increase yield, because 

available water should never be the limiting factor, and increase water use efficiency, because 

the amount of water applied should match the requirements of the plant and limit losses to 

deep drainage (Meyer, 1985).  

 

The strategy is based on understating the amount of water required by the plant and the 

amount of water stored in the soil at any given time. From this knowledge a grower can 

determine when are the optimum times and amounts to irrigate to fulfil the plants needs. 

Meyer (1985) has suggested two methods of calculating the soil moisture balance.  

 

1) Through measurement, either directly by soil sampling, which is destructive and 

not often practical during the growing season, or by the use of soil moisture 

measuring probes which has been discussed earlier.  

2) A method based on meteorological variables that can be used to calculate the 

evaporative capacity of the weather conditions and the transpiration rates of the 

plant. 

 

Using a capacitance probe to provide soil moisture information for irrigation scheduling 

allows instant and continuous information that can be remotely accessed if necessary by a 

GSM modem. 

 

The risk involved in using only a capacitance probe is apparent in the presence of cracked 

soils especially when the cracks are surrounding the access tube. There is the potential for 

erroneous raw counts to be recorded by the capacitance probe sensors as they detect the air 

gap. These results may cause the irrigator to make decisions based on misinformation on the 

soils water status and potentially over irrigate. 

 

 

2.4 Cracking Clay Soils 
 

Clay soils can form either in place or after translocation of decomposed minerals and the 

recombination of weathered materials (Singer and Munns, 1996). 
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A cracking clay as the term suggests is a soil (>35% clay (McKenzie et al, 1999)) that has a 

tendency to significant swelling and shrinking as it becomes wet or dry (Marshall and 

Holmes, 1988). Clays that crack on a small scale (distance between cracks <100mm) can be 

treated the same as any other soil. However soils that form cracks of greater than 100mm 

wide require particular management strategies in order to work with them effectively (Dane 

and Topp, 2002).  

 

Cracking clays are generally the soils of either alluvial plains (south eastern and eastern 

Australia) or the slightly undulating uplands of the arid southwest (Hubble, 1984). Australia 

has large areas of cracking clay soils which form a major part of the county’s soil resources 

(Hubble, 1984) comprising much of the Darling Downs and it is the seasonal wetting and 

drying of the soil whichcauses surface and sub surface cracking (McKenzie et al, 1999). 

 

The study of water flow in cracking clays is an area of complex soil physics. (Smiles, 1984) 

and the use of capacitance probes for soil moisture detection inherits many of these 

difficulties. However the water holding capacity of these soils (McDonald et al, 1984) and the 

flat or gently sloping terrain on which they are found make for an attractive site for cropping 

enterprises.  
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Chapter 3. Materials and Methods 
 

3.1 Sentek EnviroSCAN capacitance probe 
 

3.1.1 Design 
 
As mentioned in Chapter 2.2, the capacitance probe used in this series of experiments was the 

Sentek EnviroSCAN ®. 

 
The probe used consists of a circuit board and six sets of brass rings which form the 

electrodes (Figure 3-1) discussed in Chapter 2.2. Each pair of brass rings acts as one sensor 

which is approximately 100mm in length including circuitry, with the sensors being spaced 

100mm apart (centre to centre). This allows the user to install the probe into the access tube 

and continuously and instantaneously monitor or access the moisture content at specific 

depths below the soil surface. Additional sensors can be added on to a probe until all possible 

positions on probe are filled. The usual configuration is to measure at every 100mm or 

200mm below surface to the rooting depth of the plant.  

 

          
Figure 3-1 Sentek EnviroSCAN ® showing two sensors and the circuit board 
 
Typically a PVC tube housing, known as the access tube which is 56.7 mm outside diameter 

is buried into the ground and the capacitance probe with several sensors at known depths, is 

positioned in the access tube which is then connected to the logger box. This is in contrast to 
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the Sentek Diviner capacitance probe in which the access tube is left in the ground and the 

user inserts the probe when a soil moisture reading is required.  

 

3.1.2 Air and Water Reference Counts 
 
The sensors report what is known as a raw count thorough the circuit board the logger. The 

raw count is converted to a scaled frequency based on Equation 4. The calculation can be 

made automatically by the Sentek Software for conversion into a soil moisture content in mm, 

but the scaled frequency for the series of experiments presented here was calculated using a 

Microsoft Excel spreadsheet for the series of experiments presented here. 

 

Air and water counts are taken before the capacitance probe is used to detect soil moisture. 

The air count is the sensors response (raw count) when the probe is surrounded by air and in 

essence provides a 0% moisture content. To do this the probe is held at arms length and at 

room temperature inside the PVC access tube so as to limit any interference from the user. As 

air has a low dielectric constant (typically 1.0 (Clipper controls, 2005)) the attenuated 

frequency when air surrounds the sensors is quite high, therefore the air reference counts are 

approximately 35000Hz (depending on individual sensor) 

 

Similarly the water count is the sensors response when water is surrounding the access tube. 

This was done by sliding the probe through a modified esky that has been filled with water 

(Figure 3-2) at room temperature this essentially provides a 100% moisture content. The 

modified esky has a short piece of access tube installed in the centre. This allows the sensors 

to be surrounded by at least 100mm of water in all directions. The distance from the front 

edge to the centre of the esky was noted to ensure that each sensor was in the middle of the 

esky at the time when the water count was logged using the Sentek software. Water having a 

much higher dielectric constant (approximately 80.0 (Clipper controls, 2005))) has a large 

effect on the signal, therefore the water reference counts are in the order of  

25000 Hz – 26000 Hz 

 

Air and water counts are performed for each of the sensors separately to accommodate any 

variation between the sensors.  
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Figure 3-2 Modified esky for taking water counts from the EnviroSCAN ® 
 

3.1.3 Scaled Frequency 
 

The purpose for determining an air and water count for each of the sensors before beginning 

testing is so that the scaled frequency can be calculated. The scaled frequency is a measure 

that is used to determine the proportion of the signal that can be attributed to the soil medium 

that surrounds the access tube and uses the air and water counts discussed above as the 0% 

and 100% values. The equation used for calculating scaled frequency is given as Equation 4. 

 

Equation 4 

CountWaterCountAir
CountSoilCountAirFrequencyScaled

−
−

=  

 

The scaled frequency is then used as a variable in a calibration equation to yield a soil 

moisture content. While Sentek provides a default calibration equation (Equation 3) derived 

from sands. Loams and clay loams, it is common practice to generate a calibration equation 

for the particular soil type that is being used.  

 

For this series of experiments comparison is being made between the actual soil moisture 

content and the sensors response. Therefore, while sufficient data has been collected to 

develop a soil specific calibration equation, this has not been done because any effects that the 

soil moisture has on the probes behaviour will be detected in the variation in scaled 

frequency. 
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3.2 Testing Apparatus 
 

3.2.1 Concept 
 

As mentioned in Chapter 2 the behaviour of capacitance probes with any variation in the 

actual soil moisture was the primary interest in this series of experiments. In order to analyse 

the capacitance probe response to these variations in terms of scaled frequency, an appropriate 

testing apparatus needed to be designed and constructed. Ideally the design needed to allow 

soil of a known moisture content to be packed to known bulk density. The capacitance probe 

would then be used to take raw counts which would then be converted into scaled frequencies.  

Then a known amount of soil could be removed from the outside of the packed mass without 

disturbing the remaining soil. Scaled frequencies would then be calculated based on raw 

counts that had been taken from this slightly smaller mass of soil. This process would 

continue until there was a very small (or no) amount of soil surrounding the access tube.  This 

same apparatus should also be water tight so that experiments using water of varying 

electrical conductivity could be undertaken. 

 

As the signal from the EnviroSCAN ® operates between the two brass rings in an annular 

shape (Sentek, 2001), it was decided that the shape of the packed soil mass should be circular 

so that the distance from the sensor to the outermost boundary of the packed mass would be 

the same on all sides. Paltineanu and Starr (1997) have conducted a radial and axial sensitivity 

study and state that 99% of the EnviroSCAN ® capacitance probes response is obtained from 

100mm both radially and axially from the centre of the brass rings.  This information was 

considered when designing the testing apparatus. 

 

3.2.2 Construction 
 

It was decided that a set of sleeves of various diameters would be an appropriate basis for the 

testing apparatus. The largest sleeve would be packed with soil and then the thickness of soil 

surrounding the access tube would be reduced by pushing a smaller sleeve inside the existing 

soil packed sleeve. The soil shaved from the outside of the mass would be collected and used 

in a composite sample for assessing the actual moisture content and bulk density.  A packing 

tool was also needed to ensure that the soil was packed evenly into the largest sleeve.  

 

Without knowledge of how the dry, moist and wet soil would behave with respect to 

cohesion, it was decided that the sleeves would be left in place while the capacitance probe 

was used to take the raw count readings. This meant that the material that the sleeves were 
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made of was significant. Obviously a device like a capacitance probe which uses electrical 

signals would be affected by any metallic components in the testing apparatus.  

 

The idea of a series of sleeves was based on an assumption that prefabricated tube in a variety 

of sizes would be readily available. At the beginning of construction of the testing apparatus 

this was not the case. Stormwater and pressure pipe available to the university purchasing 

officer were only available in 90 mm, 100 mm, 200 mm etc. The distance between each of 

these pipe sizes would not have allowed the precision that was required in testing the 

capacitance probes behaviour, especially at close proximities to the access tube (small soil 

thicknesses). 

 

It was then decided to construct each sleeve in 2 halves using 3mm acrylic or polycarbonate 

sheeting. Polycarbonate was purchased and cut to size but maintaining a consistent 

temperature in the polycarbonate for long enough to allow moulding to the required shape 

was a very difficult task. Three methods were tried and retried. The first method involved 

slumping the rectangular sheet (300 mm x (300 mm x π)/4) to form half of a circular sleeve, 

into a concave mould. This was done by drying and heating the polycarbonate in accordance 

with the manufacturer’s specifications then placing it over the concave mould and allowing it 

to slump under its own weight in the oven. The second method was to use the same sized 

piece of polycarbonate and again used the slumping technique only this time over a lathed 

timber cylinder of 300 mm height and 300 mm diameter. The third and final method was to 

use both the concave mould and the lathed timber cylinder together with the polycarbonate 

sheet between the pair. All three methods encountered the same problem, a differential in the 

temperature on either side of the formed sheet while it cooled. This meant that the sleeve half 

would loose its shape when it was removed from the mould. As mentioned earlier it was 

considered important that the sleeves were round so that the distance from the access tube to 

the boundary of the soil would be the same in all directions. 

 

After two weeks of trials and much effort from the USQ Engineering workshop one full 

sleeve of 297 mm diameter was constructed. 

 

This timing coincided with the release of a new catalogue from a material supplier which 

were able to provide acrylic tubing in approximately 5 – 10 mm diameter increments from 

38mm to 300mm.  
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Access
Tube

5 sections of 3 mm acrylic tubing was purchased and cut down to 300 mm lengths. The 

internal diameters of the sections were: 86 mm, 100 mm, 120mm, 147 mm and 200 mm 

(Figure 3-3). A bevel was machined into one end of all of the acrylic sleeves to create a 

cutting edge so when they are pushed into an existing soil mass the outer soil is shaved down 

leaving the inner soil undisturbed. These five sleeves and the 297mm polycarbonate were then 

used in the final design of the testing apparatus. 

 

3.2.3 Final design 
 

The final design used a 1 metre length of access tube mounted in a stand such that would 

allow a capacitance probe with multiple sensors to slide through the packed soil mass (Figure 

3-4). This design allows each sensor to be positioned in the centre of the soil mass while the 

raw count is recorded. Using multiple sensors on the EnviroSCAN ® compensates for any 

inherent problems that a single sensor may have.  

 

Table 1 shows the diameters of the set of six sleeves (1 polycarbonate and 5 acrylic) and the 

corresponding radial distance from the outside of the access tube to the inside edge of the 

sleeve. 

 
Table 1  Description of polycarbonate and 
acrylic sleeves used in final design of the testing 
apparatus 
 
Sleeve  Inside Diameter 

(mm) 
Distance from 
access tube (mm) 

1 78 11 
2 100 22 
3 120 32 
4 157 50 
5 200 72 
6 297 120 

 

 

The largest sleeve (297 mm inside diameter) was made in two sections so a brace was 

required to hold the two sections together and to provide strength to the sleeve when packing 

soil into it. The second largest sleeve 200 mm was also cut along its length to allow it to be 

easily removed when the next smallest sleeve was inserted into the soil mass. The thought 

behind the design was to use heavy plastic tape to hold the two halves together while inserting 

the sleeve into the soil mass and then the tape would be cut to allow for the next smallest 

sleeve to be inserted into the soil mass. Unfortunately the internal stresses caused the 
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prefabricated sleeve to lose its shape when it was cut and a pair of donut shaped timber disks 

were needed to maintain the circular section of the 200mm sleeve.  

 

Experimentation indicated that for moist to wet samples the sleeve was able to be removed 

and the soil mass would retain its cylindrical shape. This also allowed the next smallest sleeve 

to be pushed through the free standing sample to shave of the out portion of soil. This meant 

that it was not necessary to cut the remaining sleeves (1, 2, 3 and 4) along their length.  

 

 
Figure 3-3 Sleeves surrounding access tube showing the largest 2 sleeves cut along their 
length 
 

Figure 3-4 shows the final design of the constructed testing apparatus. The access tube is 

mounted into the platform stand which holds the soil that has been packed into the largest 

sleeve using the compacting tool 
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Figure 3-4 Testing apparatus showing largest sleeve and brace and the compacting tool 
3.3 Soil 
 

In this series of experiments the behaviour of the capacitance probe is being examined.  It is 

this behaviour that will be compared with some of the known properties of cracking clays 

(primarily shrinking and swelling). Therefore, it was not seen to be essential to necessarily 

use a cracking clay in the experimentation.  

 

The ease of access to a red Ferrosol and the comparative ease to work with this type of soil 

was the reason that this soil was chosen for use in the soil based experiments.  

 

3.3.1 Description of Soil 

 

Red Ferrosols are typically permeable clayey soils with greater than 5% free iron oxide 

(McKenzie et al, 1999).  They are well drained and are used for a wide variety of crops 

including sugar cane in south central Queensland, grain crops and vegetables in south 

Queensland (Mackenzie et al, 1999).   

 

Compacting tool 

297 mm sleeve 

Sleeve brace 

Platform 

Access tube 
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The in field physical properties of the red Ferrosol used in the soil experiments have been 

summarised in Table 2 

Table 2 Physical properties of the Ferrosol in field 
Colour 5YR 3/3   Dark Red Brown 

Field Texture Clay Loam  

Coarse Fragments None visible 

Structure Pedal Sub angular Blocky 

Consistence Very Firm 

Field pH 5.5 

 

3.3.2 Collection of Soil 
 
The red Ferrosol used was sourced from the University of Southern Queensland Agricultural 

Plot located on Baker St, Toowoomba, Queensland.  

 

A sample of soil in an undisturbed state would have been ideal and would have provided a 

representative indication of the in-field structure and bulk density of the Ferrosol.  However 

the volume required for each soil experiment (300 mm deep x 297 mm diameter core) would 

have been difficult to collect as well as difficult to vary the moisture content in such a way 

that it was consistent through the entire sample. 

 

The soil was sampled by removing the vegetation (grasses) from the top 30 mm – 40 mm with 

a shovel then further scraping with the shovel to no greater than 100 mm to collect sufficient 

soil to process and conduct experiments.  One collection of soil (approx 30 kg) was less than 

was required for all of the experiments that were conducted and so a second collection was 

undertaken some weeks later. The second collection was taken from the same location, in the 

same manner to avoid any experimental errors that may occur from any slight variation in the 

soil. 

 

3.3.3 Processing Soil 
 

The soil that was collected required sieving to obtain a particle size that would allow wetting 

such that the moisture was relatively consistent throughout the sample. While Sentek advise 

that sieving to 5 mm was sufficient for laboratory based determination of the calibration 

equation, it was decided to use a smaller sieve size of 2 mm. the smaller particles allowed for 

a more even distribution of water through the sample and fewer unwanted air spaces when 
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packing the soil into the 297 mm sleeve. The soil was sieved using a set of standard brass soil 

sieves. Care was taken when using the sieves as Tan (1996) states that some abrasion of the 

sieves can occur and may have impact on the results of tests. Some mechanical breaking up of 

the larger aggregates was performed using a mortar and pestle and later using an asphalt 

compacting tool. The asphalt compacting tool was used to save time by allowing larger 

volumes of soil to be compacted in each session.  The processing of the soil was performed 

initially and for each new experiment that required soil. 

 

The processed soil was then oven dried at 50oC for at least 24 hours and then stored in plastic 

bags to limit the change in moisture content of the soil due to absorption from the atmosphere. 

Initially it was thought that using oven dried soil would be necessary so that the actual soil 

moisture content could be varied accurately. After initial testing, the process for selecting 

which soil moistures should be tested was changed. This is discussed in Chapter 3.5.1.  

 

3.4 Water 
 

Water was used in the soil based experiments as well as in water based experiment which did 

not use soil at all and instead tested the capacitance probes behaviour when just water was 

used in contact with the access tube.  

 

Using distilled water to take the water reference counts and to add to the air dried soil as well 

as for use in the water based experiments would have been ideal, however the volumes 

required and the expense to distil the water meant that Toowoomba tap water was used 

instead.  

 

3.5 Soil Based Experiments 
 

The methodologies used in this experiment are a combination of those documented in 

Methods of Soil Analysis Part 4 – Physical methods and Paltineanu and Starr (1997) and 

some techniques that were developed specifically for this project. 

 

3.5.1 Varying Moisture Content 
 

Initially calculations were made for combining soil and water in exact amounts to obtain a 

volume of water and a volume of soil required to pack the largest sleeve to a known water 

content and bulk density.  
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For example, to create the exact amount of soil and water required for 20% volumetric soil 

moisture to be packed into the 293 mm sleeve (19459.48 cm3) at a bulk density of 1.15 g cm-1 

would require: 22378.402 kg of air dried soil (with a gravimetric water content =2.9%) to be 

mixed with 3846 ml of water (Appendix B).  

 

These calculations and precise measurements were not required because the format in which 

the results are reported (Chapter 4) did not require precise intervals for the actual soil 

moisture i.e. it was not important to test at 5%, 20% and 40%.  Values such as 3.6%, 21.38% 

and 43.03% were acceptable for regression analysis.  The actual moisture content was not 

determined at the time of mixing the soil and water but instead the volumetric soil moisture 

was determined at the end of each test through the process outlined in Chapter 2.1.  Another 

reason for not accurately measuring the soil and water required was the loss of some soil in 

the mixing process which will be discussed later. If the exact quantity of soil was to be mixed 

then any losses would need to be considered when packing the soil into the 293 mm sleeve. 

 

The soil/water mix for the first test was mixed in a large container using a trowel. The 

moistened soil was then transferred to a sealed bucket and stored for at least 24 hours to allow 

sufficient time for the water to permeate into the soil pores.  Due to the large volume of soil 

used in comparison to most laboratory based physical soil investigations, the mixing by hand 

with a trowel required significant effort to ensure a good mixing had occurred.  The USQ 

soils laboratory has a large (approximately 0.5 m3) industrial cement mixer used mainly for 

concrete blending trials. With the exception of the first test, all soil and water mixing was 

done with the industrial cement mixer. Approximately 25 kg of air dried soil was added to the 

mixer and then a measured quantity of water, was added by trickling over an open hand so as 

to reduce the incidence of one single portion being much wetter than the rest of the sample. 

The trickling method was developed due to some poor mixing in earlier experiments which 

yielded poor results.  

 

When all of the water was added at once, one large mud ball formed with the rest of the soil 

remaining dry. More time in the industrial mixer did, in time, break up the mud ball and 

disperse the water through the soil sample. However, the cohesive nature of the red Ferrosol 

and the continual rotation of the mixer caused the sample to form many smooth spheres 

varying in size from approximately 5mm to 8mm in diameter. These spheres, when packed 

into the 293mm sleeve left air spaces throughout the sample. The cylindrical soil mass did not 

behave well when a smaller sleeve was used to shave the sample down to a smaller volume. 
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As a result the mixer was used for the shortest possible time to still allow adding all the water 

required and sufficient mixing.  

 

All mixes were still stored in an air tight bucket for at least 24 hours to allow time for the 

water to completely infiltrate the soil pores. 

 

3.5.2 Packing Acrylic Sleeves 
 

Once the soil had been prepared and stored for at least 24 hours it was able to be packed into 

the largest sleeve (293mm). This was done by adding approximately 4 x 500ml scoops of soil 

to the sleeve positioned on the stand with the access tube in place. These four scoops were 

then spread evenly around the sleeve created a depth of soil approximately 2cm.  

 

 
Figure 3-5 Tool used for compacting soil into the largest diameter sleeve 
 

The compacting tool shown in Figure 3-5 was then placed on top of the soil and struck five 

times with a rubber mallet to compact the soil. The surface of the compacted soil was then 

roughened on using the scoop and another 2cm of soil was added to the sleeve and 

compacted. The roughening of the surface was done to reduce the possibility of any 

stratification in terms of density in the sample. The filling and compacting of the 2cm layers 

was continued until the sleeve was full to the top and the sample was 300mm deep.  
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While using the compacting tool shown in Figure 3-5 there was some difficulty in packing the 

soil to high bulk densities. This was not seen as a great concern as long as the bulk density 

was uniform throughout the sample.  However, while care was taken to ensure that there were 

no large air spaces in the compacted soil, the wet sample presented in Figure 4-3 tended to 

form clumps which were not able to be completely removed by compaction. 

 

3.5.3 Collecting Air and Water Reference Counts 
 

Air and water reference counts were collected for each sensor on the EnviroSCAN ® as 

described in Chapter 3.1.2 in order to define the upper and lower boundaries for the raw 

counts and allow the calculation of scaled frequency. Air and water reference counts were 

taken before each experiment was conducted.  To ensure that the EnviroSCAN ® was 

delivering consistent responses through the duration of the experiment, air and water 

reference counts were collected at the beginning of the experiment and at the completion of 

the experiment for comparison.  Figure 3-6 shows the air and water reference counts before 

testing began on the y-axis and the air and water reference counts collected at the end of 

testing on the x-axis.  The R2 values for the regression line indicates that there is very strong 

relationship between the air and water reference counts before and after testing. This suggests 

that there is very little change in the sensors response throughout the testing period. 

 

R2 = 0.9999

24000

26000

28000

30000

32000

34000

36000

38000

24000 26000 28000 30000 32000 34000 36000 38000

Air and Water counts at completion of testing

A
ir 

an
d 

W
at

er
 c

ou
nt

s 
at

 b
eg

in
ni

ng
 o

f t
es

tin
g

 Water

Air

 
Figure 3-6 Comparing the air and water counts before and after testing 
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3.5.4 Collecting Raw Counts 
 

Raw counts were then collected from the packed soil mass so that a scaled frequency could be 

calculated using Equation 4 

 

The capacitance probe was inserted into the access tube until the sensor closest to the bottom 

of the probe (sensor 6) was aligned with the centre of the packed soil mass.  This gave 

150mm of soil above and below the centre of the sensor in accordance with Bolvin et al 

(2004).  The Sentek software “Logger Manager” (Figure 3-7) was used to observe the 

instantaneous raw counts detected by the sensor. The sensor was left in place to allow the 

reading to stabilise as per Morgan et al (1999) and then the raw counts were entered into a 

Microsoft Excel spreadsheet. An example of the spreadsheet used to capture the data has been 

included as Appendix C. 

 

The probe was then inserted a further 100mm into the access tube until the centre of the next 

sensor (sensor 5) was aligned with the centre of the soil mass. This was repeated for sensors 

4, 3 and 2 and raw counts were collected from all but the top sensor. The length of the access 

tube above the soil mass inhibited the probe being inserted any deeper.  Readings were taken 

from 5 out of the 6 sensors on the EnviroSCAN ® so that the effects of any inherent errors in 

a single sensor would be reduced.  

 

As a quality control, the raw count readings were repeated 3 times for each soil thickness and 

the values were recorded from all sensors regardless of their position relative to the soil mass. 

For example when sensor number 3 was in the centre of the soil mass, raw counts for sensors 

2, 3, 4, 5 and 6 were all recorded.  This allowed data checking to be done before calculating 

the scaled frequency. 
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Figure 3-7 A screen capture from Sentek’s ‘Logger Manager’ Software 
 

The process of recording raw counts and then moving on to the next sensor and taking more 

raw counts was repeated three times for each thickness of soil. This meant that there was in 

total 5 sensors x 3 repeats = 15 raw counts for each soil thickness 

 

3.5.5 Calculating Scaled Frequency 
 

The scaled frequency was calculated using the equation shown in Chapter 3.1.3. Air and 

water reference counts that are unique to each sensor were used to calculate the scaled 

frequency for each raw count from each repetition for each soil thickness.  An example of a 

scaled frequency calculation has been shown below. 

 

Sensor 5 (counts taken on 8 August 2005) 

Air count  36335 

Water count  26124 

Soil count  28095  (120mm soil thickness, θ = 34.53) 

 

72765.0
2612436335
2890536335

=
−
−

=FrequencyScaled  

 

The scaled frequency is unit-less as the units of the raw and reference counts are in Hertz on 

both the top and bottom of the equation and are therefore cancel out.  This example shows 

that the higher the dielectric constant (water ≈ 80, air ≈ 1 (Clipper controls, 2005)), the greater 

the attenuation of signal, which leads to a lower raw count. Which when applied to the scaled 

Raw counts recorded in Lab  
Data Sheet (Appendix C) 
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frequency formula above it can be seen that the wetter the soil, the higher the scaled 

frequency.  

 

From this equation it may be incorrectly assumed that the scaled frequency will tend towards 

unity as the water content increases, but this would only be the case if there were no soil 

surrounding the probe, only water. This is because the response from the sensor is based on 

the combined dielectric properties of the soil, water and air in the sample (Paltineanu and 

Starr, 1997).  Experiments were also conducted (Chapter 3.6) which involved just water 

without soil surrounding the access tube as well as water with varying electrical 

conductivities.  

 

3.5.6 Reducing Soil Thickness 
 
As previously mentioned the two largest sleeves (293 mm and 200 mm diameter) were cut 

along their length (Figure 3-3). This allowed them to be easily removed as the next smallest 

size sleeve was used to shave off the outer section of the soil mass. The larger sleeves were 

held in place as the next smallest sleeve was pushed down into the soil mass. The split 

sections allowed the expansion of the soil mass due to displacement when the new sleeve was 

being inserted.  A series of raw counts were collected as outlined in 3.5.4 for each sleeve. 

 

The remaining, smaller sleeves (147mm, 120 mm, 100 mm and 86 mm) were able to be 

gently removed by lifting them off the top of the moist soil mass to leave a free standing 

sample surrounding the access tube. This free standing sample was then shaved back to a 

smaller diameter using the next smallest size sleeve.  Obviously the ability to form the free 

standing column of soil was dependant on the cohesive properties of the soil, which increased 

(to a point) with increased moisture content. 

 

When testing the dry soils which would not bind together and form a cohesive soil mass, a 

different method for reducing the thickness of soil surrounding the access tube needed to be 

developed. 

 

The testing apparatus was made with no metallic components to reduce potential interference 

in the capacitance probe readings. However, all materials have a dielectric constant which is 

the material property that is responsible for the attenuation in the signal from the capacitance 

probe. Clipper controls (2005) has indicated both polycarbonate which is the material that the 

largest sleeve is made from, and acrylic (all other sleeves) has a dielectric constant of 
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approximately 3.  The dielectric constant of soil is approximately 3 to 4 (Clipper controls, 

2005). This information lead to experiments being undertaken to determine if leaving the 

sleeves in place while taking readings with the capacitance probe would have an effect on the 

raw counts collected.  

 

Raw counts were taken using the EnviroSCAN ® while the largest sleeve was in place 

holding the sample together. Then raw counts were taken with the sleeve removed and the 

sample held together by the cohesive properties of the soil.  This was then repeated for the 

remaining sleeves.  The raw counts taken when the sleeves were in place (over the range of 

soil thicknesses) were then plotted against the raw counts collected when there were no 

sleeves present for a wet soil (Figure 3-8) and for a moist soil (Figure 3-9). The linear best fit 

for the wet soil had an R2 value of 0.9328 which indicates a strong linear relationship between 

the raw counts with and without the sleeves in place.  The relationship between the raw 

counts for a moist soil is even stronger with an R2 of 0.9953.  

 

R2 = 0.9328
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Figure 3-8 Comparing the scaled frequency with and without Perspex sleeves in place using 
wet soil 
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R2 = 0.9953
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Figure 3-9 Comparing the scaled frequency with and without Perspex sleeves in place using 
moist soil 
 

Further to this analysis, a paired T-test was undertaken to determine if there was a significant 

difference between the two different treatments. 

 

A t-test is used to determine if two population means are equal and allows the user to 

determine if there are any significant differences present in the data sets. Because there were 

two treatments that were measured in the same manner, a paired t-test was an appropriate 

statistic to use. 

 

The test was undertaken using the built-in data analysis functions in Microsoft Excel 

(Appendix D). These functions generate a test statistic (t Stat) based on the degrees of 

freedom of the data set and P value. If the p-value associated with t is low (< 0.05), there is 

evidence to reject the null hypothesis. This means that there is evidence that there is a 

difference in means across the paired observations. 

 

The P values calculated for the wet and moist samples were 0.92 and 0.71 respectively.  As 

these values are both greater than 0.05, it can be accepted that there is no significant 

difference between the raw counts taken when the sleeves are in place and when the sleeves 

are not used. 

1:1 Line
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3.5.7 Determining Bulk Density 

 

As mentioned previously the bulk density was not predetermined but calculated after the soil 

sample had been analysed.   

 

Bulk density is defined as the ratio of the mass of a given sample to its volume (Blake, 1965; 

McIntyre and Loveday, 1974).  The mass of the sample is determined by oven drying at 

105oC for at least 24 hours this effectively removes all water from the sample.  The volume of 

the samples used in these experiments is simply the sum of the volumes inside each sleeve 

minus the volume occupied by the access tube and the sleeves themselves.  The equation for 

calculating the bulk density is shown in Equation 5. 

 
Equation 5   

B

S
B V

M
=ρ     (McIntyre and Loveday, 1974) 

 
Where  Bρ  Bulk density  (g/cm3) 

SM  Mass of soil solids (g) 
 BV  Bulk Volume  (cm3) 
 
Bulk Density is often required to determine the degree of the compactness (Roberts, 1996) or 

as indicator of the aeration status but the primary use for it in this series of experiments is to 

convert the soil moisture from a gravimetric to a volumetric measurement (McIntyre and 

Loveday, 1974). 

 

3.5.8 Determining Soil Moisture 
 

The soil moisture was calculated as an average of the soil moistures determined from each 

successive shaving of the cylindrical soil mass. The soil that was shaved from the outside of 

the soil mass was collected and weighed. It was then placed in an oven in accordance with 

Dane and Topp (2002) for at least 24 hours to completely remove any soil moisture. The 

gravimetric soil moisture content could then be calculated using Equation 1.  

 

The volumetric soil moisture content was then determined using the bulk density as 

determined above and the gravimetric moisture content using Equation 2. 
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3.5.9 Temperature of soil 
 

Baumhardt (2000) suggests that the temperature of the surrounding soil has the potential to 

affect the attenuation of the frequency emitted by the access probe.  This statement is also 

supported by Paltineanu and Starr (1997) in their findings.  This effect is of concern in 

situations when the exposed soil heated and cooled during normal cycles (Dane and Topp, 

2002).  An experiment was derived to examine the scaled frequency variation when using a 

soil that was significantly hotter than the ambient working temperature in the laboratory.  

 

Approximately 25 kg of air dried soil from the material used in the soil based experiments, 

and discussed in Chapter 3.3.1, was oven dried at 105oC for a period of no less than 24 hours. 

The soil was immediately removed from the oven and packed into the largest sleeve where 

raw counts were taken using the capacitance probe in the same manner as the previous soil 

experiments.  

 

The temperature of the soil that was being tested decreased in as it approached the ambient 

laboratory temperature as the experiment proceeded.  The temperature of the soil was 

recorded using a mercury thermometer at each reduction in soil thickness. Table 3 shows the 

temperatures recorded while the raw counts were being collected. The ambient temperature 

was only measured before the experiment began, but it is assumed that the ambient 

temperature remained reasonably constant. 

 
Table 3  Soil temperature change while conducting experiment using hot soil 
Time Sleeve Soil 

Temperature 
Ambient 
Temperature 

11:57 293 mm 72.6 oC Approx 19.5oC 

12:34 200 mm 68 oC Approx 19.5oC 

13:05 157 mm 64 oC Approx 19.5oC 

13:41 120 mm 59 oC Approx 19.5oC 

14:12 100 mm 51 oC Approx 19.5oC 

14:49 78 mm 45 oC Approx 19.5oC 
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3.6 Water Based Experiments 
 
Following investigations into the behaviour of capacitance probes response to varying soil 

moisture and soil temperature with varying soil thickness surrounding the access tube, tests 

were undertaken to investigate the capacitance probes response to varying thickness of water 

and air gaps between the access tube and water.  

 

3.6.1 Modifying Testing Apparatus 
 

The four smallest sleeves that had not been cut along their length were positioned around the 

access and sealed with silicon on the flat platform of the testing apparatus.  The access tube 

was also sealed to the testing apparatus to create a water tight unit. 

 

3.6.2 Creating Saline Solutions 
 
A saline solution was made using sodium chloride in order to increase the electrical 

conductivity (EC) of the water.  Approximately 10 litres of solution was mixed by hand in a 

bucket.  The solution was then tested using a calibrated TPS MC84 Salinity/conductivity 

meter which determined the conductivity of the solution to be 12.27 dS/m.  

 

A second saline solution was created by adding fresh water to the 12.27 dS/m solution to 

reduce the salinity.  The electrical conductivity was again measured using the TPS MC84 

which reported an EC of 8.28 dS/m.  

 

A final saline solution was created by adding more fresh water to the 8.28 dS/m. solution to 

further reduce the salinity to 5.91 dS/m.  

 

This gave in total 4 solutions for use in the water based experiments: 

• 0.36 dS/m (tap water) 

• 5.91 dS/m 

• 8.28 dS/m 

• 12.27 dS/m 

 



 
Chapter 3  Materials and Methods 

Page 31 

3.6.3 Collecting Air and Water Reference Counts 
 
Air and water reference counts were taken for each sensor prior to beginning the experimental 

work. The water reference counts were taken as per the methods described in 3.5.3 using the 

modified esky filled with fresh water (EC 0.37dS/m). However there was a slight variation to 

the method used to collect air reference counts.  

 

For this set of experiments, the air reference counts were taken from the access tube mounted 

in the testing apparatus and not from the spare access tube held at arms length (as in all 

previous experiments).  The reason for this was so that the sealed acrylic sleeves were 

incorporated into the air reference counts.  Unlike the soil experiments where only one sleeve 

was used at a time, the sleeves were sealed to the platform and were present through all stages 

of the water experiments and as such needed to be considered when collecting air reference 

counts. 

 

3.6.4 Collecting Raw Counts 
 

The cavity between the access tube and the first sleeve (11 mm thickness) was filled with 

Toowoomba tap water (Appendix E). The capacitance probe was then used in the same 

manner as in the soil based experiments. By moving the capacitance probe so that each sensor 

was positioned in the centre of the water mass, a raw count was able to be recorded from each 

sensor. Then the next sleeve (100mm) was filled with water providing a 22mm jacket of water 

surrounding the access tube while raw counts were again recorded for each sensor. This was 

repeated using the 120 mm sleeve (32 mm water thickness) and the 157 mm sleeve (50 mm 

water thickness).  As mentioned in Chapter 3.6.1 the two largest sleeves were not used as they 

were cut in half along their length. 

 

Once sleeves 1, 2, 3 and 4 were filled with water and raw counts had been taken and recorded, 

the sleeves were sequentially drained from the inner most sleeve outward. Sleeve 1 (78 mm) 

was drained leaving an 11 mm air gap between the access tube and the remaining water-filled 

sleeves. Raw counts were collected and then the 100mm sleeve was also drained leaving a 22 

mm air gap between the access tube and the water filled sleeves. This process was continued 

until all the sleeves were drained. The sequence of filling and draining had been represented 

graphically in Appendix F.  

 

The process was repeated using the 5.91 dS/m, 8.28 dS/m and 12.27 dS/m solutions of saline 

water. Scaled frequencies were then calculated using the methods described in 3.1.3. 
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Chapter 4. Results and Discussion 
 
4.1 Volumetric Moisture Content  
 

While seven experiments were performed using different soil moisture contents and bulk 

densities, only three have been reported here, a dry soil (θ = 0.036 cm3 cm-3), a moist soil  

(θ = 0.217 cm3 cm-3) and a wet soil (θ = 0.430 cm3 cm-3). Only a limited amount of data could 

be collected from the remaining experiments. The reasons behind this were, at low moisture 

contents and/or low bulk densities the cohesive properties of the soil sample made reducing 

soil thickness difficult. Especially when using the smaller diameter sleeves, the soil mass 

would crumble as the sleeve was being inserted. This problem was somewhat overcome by 

wrapping the soil mass with clear cling film before inserting the sleeves. This allowed some 

expansion of the mass while the sleeve was being inserted, but was not effective in all cases. 

However, the use of a dry, moist and wet soil sample was seen as adequate to develop an 

understanding of the behaviour of a capacitance probe with respect to varying soil thickness 

surrounding the access tube. 

 

After the raw counts from each sensor, and each repetition were collected, the scaled 

frequencies calculated.  The mean of the scaled frequencies for each soil thickness was then 

determined. The mean scaled frequency was then plotted on the y-axis against the thickness 

of soil surrounding the access tube in millimetres on the x-axis. 

 

Figure 4-1 is the graph of an air dry soil sample.  Using the methods discussed in Chapter 

3.5.8, the volumetric soil moisture content was determined to be 0.036 cm3 cm-3. The six data 

points on the graph correspond with the six sleeves used during the testing. The standard error 

of the mean associated with these data points was very small ranging between 0.00494 to 

0.00567 or approximately 1%.  These values for the standard error of the mean would not 

have been visible on the scale used, as such the error bars used on Figure 4-1, Figure 4-2 and 

Figure 4-3 have been used in this instance to describe one standard deviation from the mean.  
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Figure 4-1 Variation in scaled frequency with increasing thickness of soil surrounding the 
access tube for a dry soil  
 

From the above figure it can be seen that the average scaled frequency tends to decrease with 

reducing thickness of soil surrounding the access tube. Whereas at greater thicknesses of soil 

surrounding the access tube the change in scaled frequency is relatively small.  

 

The results that were obtained when comparing the average scaled frequency to the thickness 

of soil surrounding the access tube (mm) for a moist soil (θv = 0.217cm3 cm-3) showed a 

similar trend to the dry soil (Figure 4-2).  

 

Again the scaled frequency showed little change at large soil thicknesses but tended to 

decrease quickly with reducing soil thickness. The obvious difference between the dry and 

moist soil curves is the difference in maximum values, which as expected, increased with 

greater volumetric moisture content in the soil. Again, the error bars in Figure 4-2 describe 

one standard deviation away from the mean. 
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Figure 4-2 Variation in scaled frequency with increasing thickness of soil surrounding the 
access tube for a moist soil 
 

The curve for the wet soil (θv = 0.430cm3 cm-3) shows lower scaled frequency at smaller soil 

thicknesses surrounding the access tube. The decrease in scaled frequency appears to be much 

more pronounced in the wet soil than it did in the dry and moist soils. Is should be noted that 

only five out of a possible six sleeves were used to create varied soil thickness surrounding 

the access tube. The reason behind this has been described above as the soil mass slumped 

when attempting to insert the smallest sleeve. 
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Figure 4-3 Variation in scaled frequency with increasing thickness of soil surrounding the 
access tube for a wet soil 
 
Figure 4-4 shows the three curves plotted together, however the magnitude of the curvature is 

masked by the variation in the maximum scaled frequency. 

 

It is expected that the wet curve is in error due to the air spaces left in the sample after 

packing.  

 

The degree of attenuation of the raw count received by the sensor is a function of the amount 

of water present in the soil. At higher water contents, the attenuation is greater and the raw 

count received is lower than the raw counts received for a dry soil. This lower raw count is 

then translated into a higher scaled frequency. This means that for a given thickness of soil, 

the scaled frequency of a wet sample (greater attenuation) would always be higher than the 

scaled frequency of a dry sample (less attenuation). This is not the case shown for the wet 

curve in Figure 4-5 and will be further discussed in Chapter 4.3. 
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Figure 4-4 Variation in scaled frequency with increasing thickness of soil surrounding the access tube for a dry moist and wet soil 
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In order to compare all three curves on a single graph it was necessary to present the scaled 

frequency as a percentage of the maximum scaled frequency for each moisture content 

(Paltineanu and Starr, 1997). Table 4 provides an example of the calculations used to plot 

Figure 4-5.  

 
Table 4  Example of calculation of SF/SFmax for Figure 4-5 

Scaled Frequency 
(SF) 0.359571 0.466343 0.502394 0.541681 0.566485 0.564193

Maximum scaled 
frequency (SFmax) 

0.564193 0.564193 0.564193 0.564193 0.564193 0.564193

SF/SFmax 
 0.637906 0.815951 0.88804 0.951491 0.987364 1 

 
This is also the form that Paltineanu and Starr (1997) have used to present their ‘Radial 

Distance to Air’ data (Figure 4-6.) 

 
Figure 4-5 shows that the curves for the dry and moist soils are closely related in terms of 

curvature. While it is difficult to determine exactly where the wet curve begins to deviate 

from the moist and dry curves, it can be seen that the deviation occurs between sleeves 3 and 

4 (50 - 72 mm soil surrounding the access tube).  

 

The reasons for this deviation are to potentially be found in one of the forms of error 

discussed in Chapter 4.5. 

 
 



 
Chapter 4       Results and Discussion 

Page 38 

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 20 40 60 80 100 120 140

Thickness of Soil Surrounding Access Tube (mm)

SF
/S

Fm
ax Dry

Moist
Wet
99%

 
Figure 4-5 Scaled frequency curves as a percentage of the maximum scaled frequency for dry, moist and wet soil 
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Figure 4-6 Paltineanu and Starr ‘Radial distance to air against SF/SFmax 
 

 

Paltineanu and Starr (1997) have reported that their trials were conducted using five different 

volumetric moisture contents ranging from 7% to 37% unfortunately they have only presented 

two out of the five curves in Figure 4-6. 

 

While the volumetric moisture content of the dry, moist and wet samples shown in Figure 4-5 

were relatively evenly spaced (0.036 cm3 cm-3, 0.217 cm3 cm-3 and 0.430 cm3 cm-3 

respectively) the two curves presented by Paltineanu and Starr were quite close together 

(0.124 cm3 cm-3 and 0.179 cm3 cm-3).  Reporting on the dry and wet extremes of study 

conducted by Paltineanu and Starr (1997) may have shown that the wet curve shown in Figure 

4-5 is in error due to the air spaces left after packing. A set of experiments was then derived to 

test sensors response to the wettest possible condition: the sleeves filled with water and no 

soil. These experiments are discussed in Chapter 4.3. 

 

Kelleners et al (2004) have also conducted sensitivity studies which have revealed that 90% 

of the sensors response is obtained from a zone which extends about 30 mm above and below 

the brass electrodes and 30 mm radially.  The radial distance is confirmed by Paltineanu and 

Starr (1997) in Figure 4-6 but the distance found to provide 90% of the response shown in 

Figure 4-5 is 34mm. 
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Figure 4-5 shows a horizontal line representing 99% of the maximum scaled frequency for the 

dry, moist and wet soil. This 99% line intersects all three curves at 72mm of soil thickness 

surrounding the access tube regardless of the moisture content.  Paltineanu and Starr (1997) 

have reported that 99% of the sensors response was obtained from within 100mm radial 

distance to air.  It appears that there is a discrepancy between these results and those reported 

by Paltineanu and Starr (1997) 

 

Paltineanu and Starr (1997) have reported that the remaining 5% of the response extended to a 

soil thickness of 180 mm from the outside of the access tube. This may suggest that the 

100mm radial distance measurement may have been taken from the centre of the access tube 

and not the outside edge as reported.  The reasoning behind this assumption is that Paltineanu 

and Starr (1997) state that their calibration box is 355 mm x 355 mm square by 400mm deep. 

The access tube (56.7mm OD) is then inserted into the centre of the box allowing (355 mm – 

56.7 mm)/2  = 149.15 mm minimum thickness of soil from the outside of the access tube. 

This value would not allow Paltineanu and Starr to report to 180 mm radial distance from the 

outside of the access tube.  

 

However, if the measurements were taken from the centre of the access tube (and not the 

outside edge) then the minimum radial distance would be 355 mm/2 = 177.5mm ≈ 180mm. If 

this was the case then 99% of the sensors response (in Paltineanu and Starr’s work) would be 

obtained from 100mm – (56.7mm/2) = 71.65 ≈ 72mm which is the same soil thickness that 

was determined in Figure 4-5.  

 

4.2 Temperature of Soil 
 

The laboratory work was undertaken at room temperature between May and September 2005 

in the University of Southern Queensland’s Soil Laboratory.  A sample of hot and dry soil 

was prepared by oven drying soil for at least 24 hours at 105 oC. The ‘hot and dry’ soil was 

packed into the largest sleeve and tested in the same manner as the previous soil tests (as 

discussed in Chapter 3.5.9. As soon as the soil was removed from the oven it started cooling 

to ambient temperature.  Once testing had been completed, the oven dried soil was then stored 

in an open container.  

 

The soil was reused the following day in the ‘dry’ soil experiments. Having just been 

removed from the oven, the hot dry soil was assumed to have a soil moisture of  

zero cm3 cm-3, and as such, volumetric moisture (θv) determination was not undertaken.  
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Tan (1996) states that oven dried soil becomes hygroscopic when not stored in an airtight 

container, and will draw moisture from the atmosphere. This is likely to have occurred in the 

24 hours between testing the ‘hot and dry’ soil and testing the ‘dry’ soil. Evidence of this in 

that volumetric moisture content calculations were performed on the ‘dry’ soil after testing 

and yielded a θv of 0.036 cm3 cm-3. 

 

Figure 4-7 shows the variation between the scaled frequency curves of the ‘hot and dry’ soil 

and the ‘dry’ soil. There is an obvious variation in the maximum scaled frequency (measured 

at 120 mm soil thickness) between the two curves. It is difficult to ascertain if this variation is 

a result of temperature difference in the soils. The variation in volumetric moisture content 

between the treatments may be the cause for the differing maximum scaled frequency which 

may be creating a masking effect on any response to the temperature variation.  
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Figure 4-7 Variation in curve shape with hot soil 
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Paltineanu and Starr (1997) state that the dielectric constant of water is inversely related to 

temperature using Equation 6 

 

Equation 6 

( ) ( ) ( )[ ]38253 25108.2251019.12510579.4154.78 −×−−×+−×−= −−− ooo
w tttK  

 

The inverse relationship between water temperature and dielectric constant means that there 

will be a direct relationship between water temperature and scaled frequency (scaled 

frequency has an inverse relationship with dielectric constant). However they then proceed to 

report that there is a weak negative relationship between air temperature and relative 

frequency (frequency at temperature / frequency at 20 oC).  

 

Based on the assumption that there is an absence of water from the dry samples and that the 

soil temperature behaves the same as air temperature in terms of dielectric constant, 

Paltineanu and Starr (1997) support the findings shown in Figure 4-7. This is apparent 

because the ‘hot and dry’ soil curve has a maximum scaled frequency lower than that for the 

‘dry’ soil suggesting that the temperature is inversely proportional to scaled frequency and 

thus directly proportional to the dielectric constant of the surrounding material. 
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Figure 4-8 Scaled frequency curves as a percentage of the maximum scaled frequency for 
dry and hot soil and dry soil 
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When the ‘hot and dry’ and ‘dry’ curves are presented as SF/SFmax (Figure 4-8) there appears 

to be only a slight variation between the two curves.  This suggests that there is little effect of 

hot soil on the capacitance probe readings. Baumhardt et al (2000), states that the 

EnviroSCAN ® is sensitive to soil temperature and that variations of temperature need to be 

considered when interpreting the derived moisture content.  

 

It would appear that this would only be the case if there is some water present in the soil to 

allow the dielectric constant of the soil water medium to vary inversely with temperature. 
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4.3 Detection of water  
 
Baumhardt et al (2000), reports that using saline water (EC of 11.3 dS/m) in soil based 

experiments yields a soil moisture content of up to 20% greater than the volumetrically 

determined moisture content. Although this is considered highly saline (especially for use on 

clay soils (de Hayr and Gordon, 2005)) it provides an indication of the possible effects that 

saline soils or saline irrigation water could have on the output from a capacitance probe. 

 

Figure 4-9 shows the increase in scaled frequency with the increasing electrical conductivity. 

It is assumed that with more data points this would become a smooth curve tending to an 

upper limit.  
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Figure 4-9 Variation in scaled frequency with increasing salinity 
 

Figure 4-10 shows the variation in scaled frequency for the four different saline solutions 

tested. The maximum scaled frequency shown on this graph for the fresh water is 1.0.  This is 

to be expected due to the form of Equation 4 used to calculate scaled frequency. When the 

material being tested (usually soil) is the same as the material used in the water reference 

count, then the scaled frequency equation takes the form of Equation 7. 
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Equation 7 

1=
−
−

=
CountWaterCountAir
CountWaterCountAir

FrequencyScaled  

 

As Paltineanu and Starr (1997) and Kelleners et al (2004) have indicated, the presence of salts 

in the soil water will directly influence the dielectric behaviour of a soil. This is reflected in 

the maximum scaled frequencies shown in Figure 4-10.  An increase in EC increases the 

dielectric constant of the water which results in a reduced raw count being received by the 

sensor, this in turn results in an increased scaled frequency.  
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Figure 4-10 Behaviour of EnviroSCAN ® response in scaled frequency with varying amount 
of water surrounding the access tube 
 

The scaled frequency data displayed in Figure 4-10 has been converted into a percentage of 

the maximum scaled frequency in a similar process as shown in Chapter 4.1 for each of the 

four saline solutions. The resulting graph is given as Figure 4-11.  

 

While it has been shown in Chapter 4.1 that 99% of the sensors response in soil was obtained 

within 72 mm of the access tube for soil this appears to differ when there is no soil only water 

being used.  
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Figure 4-11 shows that for fresh water 99% of the response from the capacitance probe is 

taken from the first 24 mm around the access tube. This becomes even closer to the access 

tube for higher salinities (13 mm for 5.91dS/m, others not determined).   

 

The salinity of the solution also appears to have an effect on the scaled frequency readings at 

low water thickness surrounding the access tube. The scaled frequency becomes less affected 

by the thickness of water surrounding the access tube as the EC increases. This is shown by 

the straightening out of the lines as the EC increases. This is due to the dissolved salts 

increasing the attenuation of the signal received by the sensors. 
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Figure 4-11 Scaled frequency curves as a percentage of the maximum scaled frequency for 
various Electrical Conductivities 
 
Following the experiments of filling the sleeves to increase the thickness of water surround 

the access tube, another set of experiments was conducted which involved the sequential 

draining of the sleeves to create air gaps of varying width adjacent to the access tube. 
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Figure 4-12 shows that draining the inner most sleeve had by far the largest effect on the 

scaled frequency readings. This creates an air gap of 11 mm surrounding the access tube 

which reduces the scaled frequency to approximately 10% of the maximum.  

 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Width of Air Gap (mm)

Sc
al

ed
 F

re
qu

en
cy

0.36 dS/m

5.91 dS/m

8.28 dS/m

12.27 dS/m

 
Figure 4-12 Rapid decrease in scaled frequency with increasing air void surrounding the 
access tube 
 

Further draining of the sleeves as illustrated in Appendix F showed an exponential decay in 

the sensors response to the water almost irrespective of the electrical conductivity. This 

indicates that even small air gaps in contact with the access tube have the potential to cause 

large scale variations in the probes ability to detect soil moisture 

 

These findings have been supported by finite element modelling undertaken by de Rosny et al 

(2001).  Their research revealed that the sensitivity of a capacitance probe to soil moisture is 

significantly limited when there is not good contact between the access tube and the soil.  

 
4.4 Applications to Cracking Clays 
 

As discussed in Chapter 2.4, the shrinking and swelling nature of cracking clays means that 

these soils require special management. Installing capacitance probes to measure field soil 

moisture is of great benefit to the decision making process involved in irrigation scheduling.  

But for efficient water use it is essential that an accurate estimate is recorded.  If cracks occur 
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around or near the access tube, the probes ability to accurately detect the soil moisture is 

inhibited (Kelleners et al, 2004). Both the proximity of the crack to the access tube and the 

crack width will have varying degrees of effect on the soil moisture estimated by the 

capacitance probe. 

4.4.1 Crack Proximity to Access Tube 
 
Experiments undertaken using dry, moist and wet soil have shown that the 99% of 

capacitance probe response to soil moisture is obtained within 72 mm from the outside of the 

access tube. However, the response is not linear function of distance as 90% of the response is 

obtained within 30 mm (Kelleners et al, 2004; Paltineanu and Starr, 1997) to 34 mm of the 

access tube. 

 

This suggests that a crack within 72 mm of the access tube has the potential to effect the 

capacitance probes response and a crack within 30 mm may have a significant effect.  

 

4.4.2 Temperature of Soil Surrounding Access Tube 
 

Testing a hot, oven dry soil against an ambient, air dried soil was not able to comprehensively 

detect the variation in the probes response to changing temperatures. The reason for this is 

most likely that the additional variable (soil moisture) may have masked the effects of the soil 

temperature variation. Paltineanu and Starr (1997) have stated that the raw counts collected by 

the sensor are directly proportional to water temperature with a slope of 4.4 x 10-4 oC-1 and as 

the dielectric constant dominates the combined dielectric constant of the soil, water air mix, it 

is seen that a change in (moist or wet) soil temperature will impact on the sensors 

performance. 

 

The practicality of this, is that the fluctuations in air temperature which affect the top  

300 mm of soil (Baumhardt, 200), are likely to cause the sensor to over predict the volumetric 

soil moisture content. Sensors below this are less likely to be affected by temperature 

variations and therefore less likely to over predict the moisture content with changes in air 

temperature. 

 

Following this analysis, water based experiments were undertaken to detect any variation in 

the sensors response with: 

 

1. varying electrical conductivity of the solution; and 

2. the presence of air gaps adjacent to the access tube. 
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4.4.3 Electrical Conductivity of Soil and Irrigation Water 
 

The testing undertaken demonstrated that increased electrical conductivity was matched by an 

increase in scaled frequency. The responses recorded are reinforced by Baumhardt et al 

(2000) findings, that an increase in electrical conductivity may cause the sensor response to 

over predict the volumetric soil moisture.  

 

The obvious implications to cracking clays are that in saline soils or when saline irrigation 

water is applied the capacitance probe may over predict the actual volumetric soil moisture 

content.  

 

4.4.4 Width of Crack Surrounding Access Tube 
 

By sequentially draining the water filled sleeves, an air gap surrounding the access tube was 

induced. This air gap was used to simulate a crack formation in direct contact with the access 

tube.  The results indicated that a crack width of greater than 11 mm (smallest sleeve size 

used) would result in a 90% reduction in the probes response. 

 

Therefore if a crack of >11 mm is in contact with the access tube then the capacitance probe is 

likely to under predict the actual volumetric soil moisture content by at least 90% 

 

4.5 Sources of Error 
 

The sources of error involved in this project can be classified into four categories. These are 

listed below: 

 

• Instrumental Errors 

• Operative Errors 

• Personal Errors  

• Analytical errors (Tan, 1996) 

 

Each of these errors will be introduced generically in the following sections with potential 

project specific sources discussed in further detail. The nature of errors is such that if they can 

be identified, often they can be avoided or compensated for. It is the unforseen or unnoticed 

errors that have the greatest potential to deliver spurious results. 



 
Chapter 4  Results and Discussion 

Page 50 

 
4.5.1 Instrumental Errors 

 

These errors are obviously related to the instrumentation or equipment used. If the error is a 

constant error (occurs 100% of the time) then it can be compensated for in other areas of the 

project work. For example if an un-calibrated balance is used, then adjustments can be made 

in the calculations using the weights obtained from that balance (Tan, 1996). 

 

Potential areas instrumental errors found in this project are in the capacitance probe, the 

balance used for weighing the samples and in the electrical conductivity meter.  

 

The EnviroSCAN ® was supplied by Sentek and no modifications have been made to the 

probe, sensors or software. Air and water reference counts were taken as described in 3.1.2 at 

the beginning of each experimental session for use in the scaled frequency calculation. 

Further to this an analysis of the air and water reference counts at the beginning and end of an 

experiment was undertaken to determine if there was any drift in the sensors during the 

experiment (Chapter 3.1.3.). 

 

The balance used was able to report to ± 0.1g and auto calibrated each time it was switched 

on. This balance was used for the all the weighing undertaken for the calculations of the 

volumetric water content of the soils tested. 

 

The TPS MC80 was calibrated using a 3 point calibration according to the user manual 

immediately before it was used to determine the electrical conductivity of the solutions used 

in water based experiments. 

 

It is expected that there was little instrumental error that could be attributed to instrumental 

error. 

 
4.5.2 Operative Errors 

 

Operative errors are those caused by the operator performing the analysis. These are often a 

result of inexperience or careless work. Operative errors may include poor sample selection, 

improper use of equipment, spills, etc (Tan, 1996). 
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Baumhardt et al, (2000) suggests that imprecise sensor positioning when taking water 

reference counts had the effect of incorporating some air effects on the water reference 

reading which would cause bias in all scale frequency calculations. 

 

The collection of soil shaved from the cylindrical soil mass was collected as carefully and as 

thoroughly as possible using a large tray under the testing apparatus to catch any fallen soil. 

However, it was not always possible to collect all of the soil removed for each successive 

sleeve. This is not considered to have impacted on the calculations for gravimetric water 

content and bulk density because the values calculated for these parameters was base on an 

average for all of the sleeves used during each experiment.  

 

The sleeves were not rinsed with fresh water and dried prior to filling with a solution of saline 

water. It is expected that the few droplets that remained on the sleeves after each one had been 

drained was of little consequence when considering the volume of solution added to each 

sleeve. 

 

The transfer of data from the Sentek ‘Logger Manager’ software to the Microsoft Excel 

spreadsheet was done using manual data entry. Using this method there is always the potential 

for mis-keying data. Raw count data was collected for all sensors regardless of their position 

relative to the centre of the soil mass. This provided approximate value (from the sensors 

either side) for comparison during data checking. 

 

The data collected was checked in excel to ensure that the raw counts recorded for the soil 

based experiments were between the air and water reference counts. 

 

The air spaces that were present in samples after compaction has had an effect on the raw 

counts and therefore the scale frequency especially in the wet sample that has been described 

in Figure 4-3.  This error may also be included in the analytical error category because the 

method of using the compacting tool shown in Figure 3-5 and a rubber mallet was not 

sufficient to compact the soil such that large air spaces were removed. 

 

Tan (1996) has suggested that the operative errors can be of significant value and it is 

expected that there is high potential for this type of errors to have an effect on this project. 

 

4.5.3 Personal Errors 
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Personal errors are those related to judgments made by the person performing the 

investigation.  A personal error can be made intentionally or unintentionally and these errors 

have the potential to affect the outcomes of an experiment quite significantly (Tan, 1996). 

 

As discussed in Chapter 3.3.2 the soil used (red Ferrosol) was sampled from the same location 

at the USQ Ag Plot to reduce the risk of variations in results due to differing soil composition. 

 

The selective inclusion and exclusion of experimental data based on wether sample crumbled 

prior to completion of the experiment may be considered an intentional personal error. 

However, it is seen that the effects of including data collected when the soil mass was no 

longer representing a constant thickness of surrounding the access tube, is considered a 

greater error. 

 

During the soil based experiments, the length of access tube mounted in the testing apparatus 

was not used to take air reference count; instead a spare section of access tube was used. The 

potential for this to cause erroneous results is low as both tubes were the factory supplied 

special sized PVC access tube and it is not expected that there would be inconsistencies in the 

tubes large enough to cause a large scale change in the air reference count. 

 

There is the possibility that personal errors may have had an effect on the project outcomes. 

 

4.5.4 Analytical Errors 
 

Analytical errors are related to flaws in the procedures and methods and not necessarily the 

person performing the tasks. These errors have the potential to mask any trends that may be 

occurring in the data set (Tan, 1996). 

 

All of the laboratory work was conducted by one person therefore it is expected that there is 

little variation in the methods and techniques used that have not been accounted for.  

However, as previously mentioned some of the methods used were developed specifically for 

this project and may in fact be inadequate or inappropriate or inconsistent with the intended 

aims of the experiments.  

 

As mentioned under operative errors the choice of compaction method was inadequate. The 

target measurement when using a capacitance probe is volumetric soil moisture content which 

accounts for bulk density (Equation 2). Therefore the amount of compaction was not critical 
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as long as it was consistent throughout the sample volume.  However, the air spaces left 

caused problems in the accurate determination of the scaled frequency. This could have been 

over come by using an hydraulic press similar to that used by Paltineanu and Starr (1997). 

 

All calculations have been undertaken and reported as a thickness of soil or water from the 

access tube.  It would be very rare to find an application whereby the capacitance probe is 

being used without an access tube, therefore the 0.2mm clearance between the brass rings and 

the inside wall of the access tube and the 2.7mm wall thickness of the access tube have been 

considered a constant and have not been included in the distance calculations.  

 

Also, during the water based experiments as well as during the dry soil experiments when the 

acrylic sleeves were left in place during the testing, no consideration was given to the effect 

that the sleeves would have on the raw counts from the sensors.  The sleeves effectively 

added 3mm to the thickness of the medium being tested. This was not of great consequence in 

the soil experiments as detailed in Chapter 3.5.6 because the soil solids and polycarbonate/ 

acrylic have similar dielectric constants (Clipper controls, 2005), but in the water based 

experiments the difference between the dielectric constants of the water and the acrylic may 

have caused an effect. 

 

It is considered that analytical errors would have had some effect on the experimental 

outcomes. 
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Chapter 5. Conclusions and Recommendations 
 
5.1 Completed Objectives 
 
The aims of this project as given in the Project Specification (Issue B) dated 16 May 2005 

(Appendix A) have been tabulated below along side the status of work for each of the tasks. 

 

Table 5  Project tasks and status of each task 

Task Status 

Research the background information on the behaviour and sensitivity of soil 

moisture measurement focusing on time domain and frequency domain 

(capacitance) probes. 

Completed 

Design a suitable apparatus to create compacted soil of known bulk density 

and water content which will allow successive reductions in the diameter of 

the apparatus in order to detect any variation in readings by the sensor 

Completed 

Develop suitable methods to collect, characterize and process soil materials 

for testing the sensitivity of capacitance probes 
Completed 

Investigate the effects of volumetric water content and bulk density of soil on 

the measured water content by a capacitance probe 
Completed 

Analyse results to evaluate the sensitivity of the capacitance probe to soil 

moisture within varying volumes of soil 
Completed 

Discuss the application of results to measurement of soil moisture in cracking 

clay soils 
Completed 

As time permits 

Expand the investigation to detect the effect of cracks of various geometry 

and orientation on readings from the capacitance probe 
Incomplete 

Examine the possible application of models in dielectric behaviour of 

materials to the project data 
Incomplete 

 
5.2 Conclusions  
 

The EnviroSCAN ® made by Sentek is a capacitance probe used for detecting soil moisture. 

Capacitance probe technology is a non destructive indirect method for detecting soil moisture 

in real time.  The capacitance technique is effective due to the large variation in the dielectric 

constants of air and soil (1 and 3-4 respectively) and water (80) (Morgan et al, 1999 and 

Clipper controls, 2005).  A small change in the water content of an air, water, soil mix will 

significantly impact on the combined dielectric of the matrix.  
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The radial sensitivity tests were conducted to determine if varying moisture content had an 

effect on the radius of influence of the sensor the results from this work is inconclusive. 

However, based on an understanding of dielectric properties of a soil, water and air mix as 

well as the way that a capacitance probe uses this property to estimate a soil moisture content, 

it is assumed that the higher the moisture content in the soil the smaller the thickness of soil 

required surrounding the access tube 

 

Literature suggests that an increase in temperature is likely to cause the sensor to over predict 

the volumetric soil moisture content. This was not comprehensively determined in this 

experimental work because the variation in moisture content between the control (dry) and the 

treatment (hot and dry) soils.  

 

Increasing electrical conductivity in the water based experiments increased the scaled 

frequency. Therefore capacitance probe reading in saline soils or following irrigation with 

saline water may over predict the actual volumetric soil moisture content.  It is recommended 

that the water intended for use in irrigation should be used to take the water reference counts. 

 

Air gaps adjacent to the access tube in the water based experiments representing soil cracks 

had a profound effect on the sensor response. Air gaps of >11 mm produced a 90% reduction 

in the scaled frequency. 

 

5.3 Further investigations 
 

Further developing the knowledge surrounding the behaviour of capacitance probes with 

respect to environmental variables will allow increased confidence in the sensors response.  

 

A direct extension of the work presented above could include a water based experiment 

involving the draining of sleeves 2 and/or 3. This would represent a crack of varying width at 

some distance (11 mm or 22 mm) from the access tube, while still maintaining direct contact 

between water and the access tube. However, it may be possible to undertake this analysis 

mathematically using the data collected in the above experiments with respect to the amount 

of response obtained from varying soil thicknesses. 

 

It may be of benefit to users of capacitance probes in clay soils if a table of scaling factors 

was developed. The table should show a factor to be used when cracks are present 

surrounding the access tube. If the parameters used in the table are the crack width and the 
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distance between the access tube and the crack (Table 6), scaling factors can be determined 

which the user can multiply the probes response by to achieve a closer representation of the 

actual volumetric moisture content. 

 

Other scaling factor tables could be developed for the electrical conductivity of the soil 

surrounding the access tube or temperature flux. 

 
Table 6 Possible product of experimental work 

Crack width 
(mm) 

Distance between access 
tube and crack (mm) 

 1 2 3 
1  scale factors scale 
2 factors scale factors 
3 scale factors scale 
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the measured water content by a capacitance probe 

5. Analyze results to evaluate the sensitivity of the capacitance probe to soil 
moisture within varying volumes of soil 

6. Discuss the application of results to measurement of soil moisture in cracking 
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orientation on readings from the capacitance probe 
8. Examine the possible application of models in dielectric behavior of materials to 

the project data 
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Appendix B Soil to water calculation for moisture content and bulk density 
 
Water Content of Air Dryed soil for BD= 1.0

1 M1 Mass of tin (g) 40.97 MC soil required (g) Water Required (ml)
M2 Mass of air dried soil and tin (g) 93.12 5 6486.49 142
M3 Mass of oven dried soil and tin (g) 91.68 10 6486.49 466

15 6486.49 791
M4 Mass of water = M2-M3 1.44 20 6486.49 1115
M5 Mass of soil = M3-M1 50.71 25 6486.49 1439
Gravimetric W.C. (%) = M4/M5*100 2.84

for BD= 1.05

2 M1 Mass of tin (g) 38.88
M2 Mass of air dried soil and tin (g) 94.56 MC soil required (g) Water Required (ml)
M3 Mass of oven dried soil and tin (g) 92.96 5 6810.82 149

10 6810.82 490
M4 Mass of water = M2-M3 1.6 15 6810.82 830
M5 Mass of soil = M3-M1 54.08 20 6810.82 1171
Gravimetric W.C. (%) = M4/M5*100 2.96 25 6810.82 1511

3 M1 Mass of tin (g) 41.4
M2 Mass of air dried soil and tin (g) 96.23
M3 Mass of oven dried soil and tin (g) 94.69 for BD= 1.10

M4 Mass of water = M2-M3 1.54 MC soil required (g) Water Required (ml)
M5 Mass of soil = M3-M1 53.29 5 7135.14 156
Gravimetric W.C. (%) = M4/M5*100 2.89 10 7135.14 513

15 7135.14 870
average 2.90 20 7135.14 1227

25 7135.14 1583
WC 2.9% = 2.9g water /100g air dried soil

To create 5% WC we need to add 2.1ml of water to each 100g soil for BD= 1.15
To create 10% WC we need to add 7.1ml of water to each 100g soil
To create 15% WC we need to add 12.1ml of water to each 100g soil MC soil required (g) Water Required (ml)
To create 20% WC we need to add 17.1ml of water to each 100g soil 5 7459.47 163
To create 25% WC we need to add 22.1ml of water to each 100g soil 10 7459.47 536

15 7459.47 909
Bulk density 20 7459.47 1282

25 7459.47 1655
BD=Mass of oven dried soil/packing volume

where packing volume = (pi x  0.293^2)/4 x 0.1 per 100mm depth for BD= 1.20
- 0.006486 m^3 -access tube
= 6486.493 cm^3 MC soil required (g) Water Required (ml)

5 7783.79 170
so for a 120g sample with BD of 1.0 (g/cm^3) & WC of 20% we need 10 7783.79 560
100g OD soil x volume (6486.49cm^3/100mm depth)= 6486.493 15 7783.79 949

+ 20g water or 20 7783.79 1338
102.9g AD soil + 6674.601 25 7783.79 1727

= 17.1g water 1109.19
120g wet soil 7783.791  
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Appendix C Laboratory data sheet 
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Appendix D Paired T-test for raw counts taken with and without polycarbonate or acrylic 
sleeves in place 
 
t-Test: Two-Sample Assuming Unequal Variances 
for wet soil with and without sleeves in place 

 with  without 
Mean 28820.63 28845.9

4
Variance 1547718 1477259
Observations 48 48
Hypothesized Mean 
Difference 

0

df 94
t Stat -0.10083
P(T<=t) one-tail 0.45995
t Critical one-tail 1.661226
P(T<=t) two-tail 0.919899
t Critical two-tail 1.985523

 
 
 

t-Test: Two-Sample Assuming Unequal Variances 
for moist soil with and without sleeves in place 

 with without 
Mean 31116.47 31064.8

8
Variance 551372.1 577330.

6
Observations 59 59
Hypothesized Mean 
Difference 

0

df 116
t Stat 0.373017
P(T<=t) one-tail 0.354908
t Critical one-tail 1.658096
P(T<=t) two-tail 0.709816
t Critical two-tail 1.980626
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Appendix E Typical chemical parameters from Toowoomba City Council Municipal Water 
Supply 
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Appendix F Sequence of filling and draining sleeves sealed onto apparatus 
platform. 

Access
Tube

Access
Tube

 

Access
Tube

Access
Tube

Access
Tube

Access
Tube

All sleeves 
in place 

Only 4 
smallest 
sleeves 

Sleeve 
1 filled 

Sleeves 
1, 2 and 
3 filled 

Sleeves 
1 and 2 
filled 

Sleeves 1, 2, 3 
and 4 filled 
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Access
Tube

Access
Tube

Access
Tube

Access
Tube

 
 
 

Sleeve 1 
drained 

Sleeves 1 and 2 
drained 

Sleeves 1, 2 
and 3 drained All sleeves 

drained 


