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Abstract

Sugar, a vital resource, is one of the key products extracted from sugarcane. During the

extraction of this product, the sugarcane is passed through a series of grooved rollers.

This project is concerned with the automation of the manufacture of these rollers.

After reviewing the various methods that could be used to cut a series of grooves into

the roller shell, the aim of the project was to develop a device or machine which will

automate part of the manufacture of the roller shells. Specifically, the design was to

meet the following requirements:

• Able to handle a typical sized roller and most if not all of the roller sizes used.

• Able to complete assigned operations at an equivalent production rate as current

processes employed, or better.

• Able to sense roller position and status and then determine the appropriate course

of action.

• Able to operated safely by non-technical personnel.

Rather than attempt to modify a traditional lathe, a novel approach was developed

and pursued. This approach was to hold the roller stationary and rotate the cut-

ting tool around the roller instead. Areas that are covered in this document include:

traditional machining methods; non-traditional machining methods; sensing methods;

control methods; ergonomics; machining and power calculations; and stress analysis.
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Chapter 1

Introduction

Sugar, a vital part of everyday life, is a key ingredient in a majority of foods. In

Australia, refined sugar is primarily produced from the crushing of sugarcane. The

harvested sugarcane is fed into a series of crushing rollers and the juice is extracted

for processing and refinement. These rollers vary in their dimensions and are typically

manufactured from certain grades of metal, the exact composition of which is confi-

dential. Like all moving metal machinery parts however, these rollers are subject to

wear-and-tear and require periodic repair or replacement.

Crushing rollers are composed of two parts, a shaft and a shell, and the combined weight

of which can be as high as 40 T. Both components are made out of similar grades of

metal and cast as two separate pieces, machined to suit each other, and then the shell

is mounted on the shaft. As shown in Appendix C below, the roller shell is grooved

and these grooves are what actually crushes the cane while the the shaft supports the

shell and transmits the driving rotation to the shell.

The grooving of the roller shell is currently cut into the shell using a lathe. While

some automation of this process currently exists, it is still a time consuming and labor

intensive process. It involves positioning the roller within the lathe, checking the size

of the roller shell, monitoring the cutting of the grooves, measuring the cut profile, and

changing the cutting tool when it is worn. This process is the focus of this project,

namely the automation of the cutting a groove in the shell or a sugar mill roller.
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Background

As mentioned above, rollers are used to extract juice from sugarcane in order to produce

sugar. Each roller is of course unique on the micro scale, yet overall, each roller is

machined as close as possible to a specific macroscopic pattern. That is, there are

several common features of all rollers that occur within certain specific ranges and with

their own patterns. While it is the combination of these ranges and features that make

each roller unique, by allowing for all possible combinations it is possible for all rollers

to be considered alike and thus be catered for in a manufacturing machine.

Rollers can expect to have up to 20mm of wear per year and can last 3-5 years depending

on treatment and usage. Typically they are replaced after 10% of main shell diameter

is worn away (i.e. 600mm dia will be replaced at 540mm dia).

Some of the features that may or may not be included in the final roller, depending

upon the requirements of the customer, are:

• Hard-facing

• Shell Arcing

• Juice Rings

• Juice Grooves
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Additionally when a roller is sent to the foundry for repair, the repair may include

repairing and/or resizing the shaft journals.

These features are outlined in the following section.

2.1 Roller Features

2.1.1 Hard-facing

Hard metal placed on outside of the shell, reducing the wear of the shell and the groove

profile. This in turn extends the life of the roller, but is offset by the cost of producing

and machining the hard-facing.

2.1.2 Shell Arcing

After the shell has had the grooves cut in it, some customers require a bead of metal

to be welded to the tip of the resultant teeth, and partway down the sides of the teeth.

These beads are designed to help the shell grip the cane as it is being crushed due to

the increased surface area of the teeth. It is important that the arcing be of a high

quality, and that there be no ‘splatter’ from the welds elsewhere on the tooth profile.

The amount of splatter is dependant on many variables, one of which is the orientation

of the welding head relative to the workpiece and that of ’down’.

One of the “features” of the automatic arcing machine used at the foundry is the fact

that the welding head is oriented correctly and then held in position while the workpiece

rotates. As the core concept in this project is holding the workpiece stationary, the

arcing of shells was dropped from the design. However, if at some latter date, this

project is to include arcing, it should be possible to quickly modify the design of the

clamps, and add compensation for the rotation of the shell in the controlling computer

programs.
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2.1.3 Juice Grooves

Juice Grooves are one feature of the sugar cane roller that can vary between rollers.

A juice groove is an additional groove at the base of the tooth profiles that aids in

the collection and extraction of juice. The juice grooves are perpendicular to the

longitudinal axis of the roller, and can be up to 75mm in depth and 16mm in width.

2.1.4 Juice Rings

Juice rings are bolted onto the end of the shell and are an aid in channeling the extracted

juices away from the grooves. These juices are then transported to collection ducts to

be moved to the juice-pans for holding.

2.2 Manufacture and Repair Process

2.2.1 Manufacture

The manufacturing process for a roller begins when the order for one is placed with

the foundry, usually by a mill. These orders can be received up to eighteen months in

advance, or could be part of a larger project that the foundry is completing for a client

- e.g. for a client who has requested the foundry to design and build a sugar mill, of

which the roller is automatically considered a part thereof.

The very first step of the manufacturing process that takes place once the order has

been placed takes place, not on the foundry floor, but in the design office. Every mill

has its own unique set of characteristics of its rollers. While all rollers were designed

and constructed within certain constraints, it is extremely rare for any two mills to

have the exact same combination of roller characteristics i.e. roller length and radius,

teeth angle, groove pitch, etc. Thus, the design office uses a selection of engineers and

drafters to detail the exact design of the roller and its shell to suit the requirements of

the client, while also detailing the precise steps to be taken on the foundry’s factory

floor to produce the roller and shell to the appropriate standard of quality control and
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Figure 2.1: Blank shells with center bored out.

assurance.

Once the design reaches the factory floor, there are two distinct processing trees that

are followed that, while separate, must still coincide at some point.

The first processing tree is that for the manufacture of the outer shell. The dimensions

of the shell are sent to the molding center, where carpenters are employed to build the

molds. The casting shop uses these molds to cast the blank shell. The blank shell, in

basic terms, consists of a single cylinder, as shown in Figure 2.1. The blank shell has

outer dimensions which exceed the required dimensions by a significant factor whilst

still by a minimized amount in other words, so that there is plenty of material to

work with for cutting the grooves in case the unexpected occurs, whilst still ensuring

that there is minimal wastage of materials. Once this blank shell is cast and cooled, a

boring machine is applied to the shell’s cylinder to remove an internal cylinder along

the central axis of the shell, the dimensions of which are those of the appropriate section
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Figure 2.2: Shaft being machined to size

of the roller shaft to within a tolerance of 0.1mm. The shell cylinder thus becomes as

a large metal tube. It is at this point that it must now meet up with the other process

tree.

The second processing tree is that of the roller shaft, a relatively complicated design

that, when placed with its central axis vertical, consists of a series of cylinders stacked

on top of each other. Following a similar process as for the shell, a suitable mold

(slightly larger than the final dimensions) for the shaft is constructed and then sent to

the cast shop. Once the shaft has been cast and then cooled, it is machined to size to

suit the client’s requirements, as shown in Figure 2.2. Due to the nature of casting, it

cannot be absolutely guaranteed that the result is truly circular as it may present an

oval-bodied nature to a certain degree, and the central axes of its components may not

be as tightly aligned as required. Thus, the cast shaft is placed into a lathe and then

machined down to suit the design’s requirements and tolerances. Once this machining

is finished, the process tree for the roller is complete.
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Figure 2.3: Furnace used to heat shells - not in use

These two process are now combined into a single process tree.

This combined process tree has the initial step of inserting the shaft into the roller’s

shell. As the shaft and shell are designed to have an interference fit, the shell must be

heated in a gas fired furnace, shown in Figure 2.3, so that the shell might expand to

allow its shaft to be inserted. Once this expansion has occurred to a suitable degree,

the shaft is removed from the furnace. At this point, the roller shaft is inserted into

the bored hole along the center of the shell and the shell then allowed to cool. Once

initial contact is made between the shell and its shaft, the entire roller is moved into

the open air to cool naturally. When complete, this step results in the roller literally

being locked into place within the shell, as is characteristic of an interference fit.

The next step in the combined process tree is where the grooves / teeth are cut into

the shell, and also where the arcing is performed if the client has requested it. This

has already been described above, and is depicted in Figure 2.4.

All that remains, at this point, in the process tree are the finishing touches. This

includes such things as painting, drilling holes where required to prepare the roller to

be inserted in its mill, placing the foundry stamp on the finished article, etc. This

completes the final process tree for the manufacturing of the roller.

The roller can then be delivered to its client and the job is complete.
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Figure 2.4: About to commence cutting the grooves in a shell

Figure 2.5: Two completed rollers. The rear roller has arcing, the front one does not.
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2.2.2 Repair

As with the manufacturing process, the repair process begins when the order for a

roller’s repair is placed with the foundry. However, after that point, the process differs

from when a new roller is constructed.

Officially, the repair process begins when the roller is delivered to the foundry for work

to completed on it. This is the point where the design office enters into the process, as

the engineers test the condition of all roller components in order to determine precisely

what work needs to be completed on the roller. The relevant drawings and designs for

this work are then completed and sent to the foundy’s factory floor to accompany the

roller.

From there, the old shell is removed from the shaft and the material of the shell re-

covered, if it is at all possible. If the shaft should require repair, it is completed as

described below in the following sub-section whilst it is without a shell.

At this point, the repair tree incorporates a process tree, namely that of the manufacture

of a new shell. A newly blank shell is molded and cast, and the center of the shell is

removed via a boring machine to suit the dimensions of the accompanying roller.

This newly blank shell is combined with the old roller shaft (repaired as needed), and

the process tree followed from this point on is identical to the combined process tree

discussed previously.

2.2.3 Shaft Welding/Repair

As noted above, this may occur as part of the shell repair process. These situations

arise when the wear-and-tear of the roller shaft has caused cracks to appear as well as

faults in the metal that bring the shaft outside its specifications.

This is a process whereby metal is welded onto the shaft in the form of a continuous

bead. This increases the diameter of the shaft at the weld location. The shaft is them

machined to the required dimensions to within parts of 1mm. Due to the time taken for
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the welding process (including preheating the shaft, welding, welding on top of welds as

needed, cool down, etc.) it is typically restricted to where the bearings are mounted on

the shaft. These surfaces are typically machined to a high-grade finish and precision.
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Traditional Cutting Processes

There are many ways in which the grooving details can be machined onto the outside

surface of the roller shell. Each method has various benefits and problems, and have

different speeds at which they can produce the final, desired result.

Traditionally, when grooves need to be cut on a curved surface, the method used is like

that used in a lathe. Indeed, the lathe is what is currently in use at the Bundaberg

Foundry to cut the grooving detail onto the outside surface of the shell.

3.1 Historical background

The fundamental principle behind a lathe has been known since before the time period

commonly referred to as the Middle Ages. Initially, lathes were used to shape wood.

The first record of a device that was a type of a lathe was to accurately shape metal

by European clockmakers in the early Middle Ages. However, development of metal-

cutting lathes was limited due to economical constraints and limitation to available

energy supplies. Stephenson (1997) states that the first major study of metal-cutting

was in 1798 and was in relation to cannon boring using machine tools, a practice that

started in Italy in 1540. By 1850, English tool builders had perfected the design of

lathes. However, due to an export ban by the English government, the machine tool

industry has been dominated by American companies.
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Since that time, there has been a continuous advancement in the implementation and

optimization of the fundamental principles behind metal-cutting lathes. One of the

more notable advancements was the work done by Frederick W. Taylor. His research

(from 1880 to 1905) was instrumental in the development of the famous tool life equa-

tions that bear his name, and the understanding about the effects of tool temperatures

on the tools. Another major advancement came about in 1900, when the switch was

made from using steam engines to rotate the lathe to using electricity instead.

3.2 Fundamental Principles

The fundamental principle of a lathe is illustrated by its typical arrangement in Figure

3.1, where the piece of material to be shaped is mounted between two supports. The

support that drives the workpiece and spins it is called the head stock, while the other

support is called the tailstock. The actual portion of the headstock that rotates the

workpiece is called the spindle. The cutting tool itself is mounted on its own support

and this, in turn, is typically mounted on a translating carriage or turret. As can be

seen in the aforementioned figure, the workpiece itself remains relatively stationary, its

only motion being rotational around the central axis of the final shape. The tool, on the

other hand, has linear longitudinal and lateral movement, but no rotational moment.

The tool is steadily pressed against the workpiece so that the tool’s cutting edge carves

the required shape into the workpiece as that workpiece rotates.

Figure 3.1: Principle components and motions of a lathe. Source: Stephenson, D. (1997)
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3.3 Analysis

Much work has been carried out in the area of analyzing the mechanics, physics, and

mathematics behind machining metal with a lathe. There are many variables, each of

which can influence the other variables to varying degrees. Below is a brief outline of

some of the core mathematics behind lathe operation.

One of the main variables that is optimized is that of tool life, as expressed by Taylor’s

equation. Taylor’s equation relates the tool life T in minutes to the cutting speed V

through an empirical tool life constant Ct by:

V Tn = Ct (3.1)

where empirical constant Ct as well as the exponent n depend on tool material, work-

piece material, and cutting conditions.

The order in which cutting conditions are determined is first the cutting depth d, then

the feed rate fr, then the cutting speed V (rotational speed of the workpiece itself).

Note that these variables are determined in order of increasing impact.

The cutting depth, d, or the amount of material removed from the workpiece surface

each cut, is:

d =
D1 −D2

2
(3.2)

The feed rate is actually the tool advancement per revolution along its cutting path,

or how fast the tool is moving along the workpiece with each workpiece rotation. Its

specified in either mm/min (fr) or mm/rev (f), which are actually related through the

spindle’s rotational speed (rpm) by:

fr = f ×N (3.3)

The time required to cut a length L in the feed direction is thus:

tm =
L

fr
(3.4)
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The cutting speed V is affected by the rotational speed of the spindle N , and the initial

and final workpiece diameters, D1 and D2, by:

V = π ×N × D1 + D2

2
(3.5)

∼= π ×N ×D1 (3.6)

From these variables, we can find the level of the material removal rate per unit time,

Q, which is given by the product of the feed rate, cutting speed, and depth of cut, i.e.

Q = V × f × d (3.7)

By combining equations 3.1 to 3.7 and knowing the optimal time the tool should last,

it is possible to these equations and empirical data tables to relate this optimal tool life

back to the cutting conditions involved, and from there to such things as the material

removal rate, and on to the cutting forces, etc.



Chapter 4

Non-Traditional Cutting

Processes

There are several other types of non-traditional processes that could be used to form

the grooves in the roller. Many books have been written on these methods, which go

into much greater depth then is possible here. The methods that will be mentioned

below are by no means the only alternative methods available; they are merely the

more popular and better documented methods. The alternative methods considered

were: Abrasive Water-Jet Cutting (AWJC), Electro-Chemical Machining (ECM), Laser

Beam Machining (LBM), and Plasma Arc Cutting (PAC)

However, there are several major limitations and detractors that prevent these processes

from being used. Some of these limitations and detractors are outlined below, along

with a brief summary of the process.



4.1 Abrasive Water-Jet Cutting 16

4.1 Abrasive Water-Jet Cutting

• Description

(Machining 1999) states:

“Abrasive water-jet cutting has been used to cut through 50 mm (2

in.) thick steel plate, leaving a smooth, clean edge that requires no

further processing, such as grinding (Ref 34). The abrasive water-jet

cuts straight and contour edges without heat; this eliminates thermal

distortion and localized microstructural change.”

• For

One advantage of AWJC stated by (Machining 1999) is that AWJC “cuts

straight and contour edges without heat; this eliminates thermal distortion and

localized microstructural change.”

AWJC also tends to leave the workpiece with smooth and clean edges which

require no further machining operations.

• Against

According to the research materials available at the time of compiling, AWJC

is only suitable for plane sheets of metal, where the cutting nozzle is perpendicular

to the work-piece, and the cuts are through cuts. If the cutting nozzle is at

an angle to the work-piece, part of the cutting force is deflected, reducing the

efficiency of the process.

Additionally, the process uses significant quantities of water, even with recycle

systems in place. In view of the current crisis in Australia with a shortage of

water, this is major detractor from using this method.

• Conclusion

Not Suitable.
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4.2 Electro-Chemical Machining

• Description

ECM is a process where the material is removed from the workpiece on the

atomic level through the chemical decomposition reaction known as electrolysis.

The workpiece is immersed in an electrolytic solution, and an electrical current

is passed between the workpiece and a cathode shaped with the desired grooves.

• For

ECM is able to produce a surface finish of between 0.3 µm and 5 µm, although

this varies depending on current density, feed rate, gap dimensions, electrolyte

composition, viscosity, temperature, flow, and the workpiece microstructure.

• Against

As material is removed from the workpiece, the electrolytic solution will typ-

ically become diluted and a ‘sludge’ of waste materials will form which hinders

the precise control of the process. This sludge needs to be removed from the so-

lution, and the solution periodically replaced or clarified. Despite the extra costs

involved in clarifying the solution, typically with a centrifuge, it is cheaper then

the complete replacement even for the cheapest of electrolytic solutions.

Additionally, due to the dimensions of the rollers that will need to be handled by

this machining process, it would economically unfeasible considering the volume

of electrolytic solution that would be required.

The workpiece needs cleaning with either a ‘light’ acid or clean water or both im-

mediately after machining is completed. This is to remove the residue electrolytic

solution, and to maintain any achieved precision. This is both labor and material

intensive. Although a vapor-blasting might limit the amount of water used, it is

still an additional step in the machining process.

• Conclusion

Not Suitable
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4.3 Laser Beam Machining

• Description

LBM is a process that utilizes a powerful laster to machine the material. The

process works by first melting and then vaporizing a small area of the surface.

The vaporized metal is then removed via a transport gas, typically oxygen.

• For

One of the main advantages of the LBM process is that as the laser head

does not come into contact with the material and hence does not wear out.

Another advantage of the LBM over other methods is the readily available cutting

medium (laser), particularly when compared to other processes. For instance,

ECM, as detailed elsewhere, requires a continuous supply of electrolytic solution;

similarly, AWJM also requires a near-constant supply of water.

The very nature of the cutting medium means that, with careful control, the laser

is able to handle fragile and delicate materials that other methods cannot touch.

Also, the results are very accurate as the laser is able to machine very fine details

into the workpiece.

• Against

A problem frequently occurring with drilling is known as ‘optical piping,’

which arises from the internal reflection of the laser light as the hole becomes

progressively deeper. The light is increasingly reflected from the hole’s walls until

the angle of incidence at the foot of the hole is almost normal and most of the

light is absorbed in that region. Not only does this reduce maximum hole depth

achievable, but it also means that a straight hole is unattainable.

Moreover, the high temperatures passed onto the workpiece by the laser disturbs

the surface layers of its atomic structure and generate what is known as a Heat

Affected Zone, or HAZ. This zone reduces the fatigue properties of the workpiece.

Finally, generating the laser from the emitter uses high amounts of electricity, to

the point that there is a power consumption on the order of 200W to 1kW to

generate a laser suitable to cutting steel.
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• Conclusion

Not Suitable.

4.4 Plasma Arc Cutting

• Description

Plasma, often called the fourth state of matter, is the state of a material

where its gas has been heated to the point that its electrons have been striped

from its atoms. This produces a substance that is ionized - electrically charged.

(An example of this is the air within a bolt of lightning.)

In PMC, a gas is introduced between a cathode and an electrode that have an

electrical arc passing between them. This arc heats the gas to over 3000K, forming

plasma which is then directed at the workpiece. This process is primarily used

for cutting plate steel.

• For

When used in turning applications, the head does not touch the workpiece.

• Against

One of the main concerns with this process is the thermal stresses. Fine

cracks can form if the workpiece is allowed to cool down too quickly, affecting the

workpiece’s chemical properties and its fatigue characteristics.

Also, generating enough of a charge differential to create the necessary strength

(energy) in the electrical arc that is capable of overcoming the forces keeping the

electrons in an atom requires very high levels of energy. Thus, PAC has very high

levels of power consumption.

Moreover, due to its ionized nature (unstable nuclei) and the extreme heat gener-

ated, plasma cannot be directed without a very strong magnetic field. Moreover,

the effect of particle physics mean that the plasma cannot be directed to a high

level of certainty. In fact, other methods must be used to finish the machining in

cases where tolerances better than 1.6mm are required.
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• Conclusion

Not Suitable.

4.5 Additional Methods

The methods mentioned above are by no means the only non-traditional methods that

could be used to shape metal. There are many other methods that could be used, but

were not considered in depth as to their suitability for this application. Primarily this

was due to time constraints and the initial research which indicated that it would not

be worthwhile pursuing them as valid alternative approaches.

The non-traditional methods that were not pursued after the initial stage of the back-

ground research are as follows:

• Chemical Machining

• Electron Beam Machining

• Ultrasonic Machining

• Photochemical Machining

This research was primarily conducted in “Advanced Methods of Machining” (McGeough

1988a) and “Nontraditional Manufacturing Processes” (Benedict 1987).

An in-depth consideration of these methods however, might reveal errors in the initial

research material which lead to a false conclusion being drawn.
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4.6 Results of Analysis

There are many alternative methods that can be used in the place of mechanical cut-

ting. Upon analysis however, these non-traditional methods are not suitable for the

application being examined. They are unable to generate sufficient levels of accuracy,

too slow to generate results, consume to many resources, and/or are ineffective. There-

fore, at this point in time for the application being considered, namely the grooving

of sugarcane rollers, adapting the traditional method of mechanical cutting is consid-

ered a superior methodology and is by far the preferred option to having to adjust the

demands of the application to suit the non-traditional methods.



Chapter 5

Applicable Standards

As with any machine, particularly one of this magnitude, there are various standards

and guidelines that need to be adhered to. Thus when the concept outlined within this

document is finalized into actual plans for the production of machine, a check to ensure

that all appropriate standards have been met should be made. Some of the standards

that could apply are listed below.

• AS 1114.1-1985

Numerical control of machines - Data format for positioning, line motion and

contouring control

• AS 1115-1985

Numerical control of machines - Axis and motion nomenclature

• AS 2004-1977

Dimensions of carbide tips and tipped tools

• AS 2939-1987

Industrial robot systems - Safe design and usage

• AS 3877-1991

Manipulating industrial robots - Vocabulary
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• AS 3984-1991

Manipulating industrial robots - Performance criteria and related test meth-

ods

• AS 3985.1-1991

Manipulating industrial robots - Mechanical interfaces - Circular (form A)

• AS 3986-1991

Manipulating industrial robots - Coordinate systems and motions

• AS 3987-1991

Manipulating industrial robots - Presentation of characteristics equipment

There are several other standards that should be referred to in the final designing of

the device. Standards such as in the area of Ergonomics for the location and design of

the human interfaces, the safety standards for rotating machines, and so forth.



Chapter 6

Design Methodology

6.1 Methods Available

There are various design methods available that are well-known and proven to work with

(and not against) the creative process, just as each methodology has equally known and

proven pitfalls. The various methodologies can be classified by the descending levels

of details to which they are applied, and may be listed as follows: General Project,

Overall Design, Large Scale Design, and Small Scale Design.

In order to extract the most beneficial aspects of each methodology while avoiding as

best as possible the pitfalls attached to using each one, the design methodology used

for this project was a combination of these methodologies applied at various stages

and levels. This was done in an attempt to extract the most beneficial aspects of the

separate methodologies while trying to avoid the pitfalls that can arise for using them.

6.1.1 General Project

As a single body, the process of developing the design concept detailed herein was a

progressive or incremental process. This document, for example, was generally written

concurrently with the actual development of the concept. This was done to ensure that

any changes in the design were documented in this document, before a final review and
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possible editing was carried out. The disadvantage to this method was that several large

sections were rendered inaccurate, incomplete, and unnecessary due to the evolution

of the concept, and thus had to be completely re-written or removed entirely as the

project developed.

As a result of following this method, despite the rewriting of this document that oc-

curred, the time spent on actually developing the concept was better managed and

slightly increased than it would have been otherwise. This was due to the gradual doc-

umentation of previous results and that the conclusions from these results were readily

available for review.

6.1.2 Overall Design

When considering the design stage of the project as a whole, i.e. on a grand or overall

scale, it was decided that the ideal methodology to use would be what is called the

engineering design process, as indicated in Figure 6.1. This method would allow the

design to proceed in a logical manner, with clear targets or deadlines to be reached,

while also drawing on the parts of the project already completed.

Figure 6.1: Engineering Design Process
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6.1.3 Large Scale Design

The intended large-scale design methodology is to be a combination of a ‘top-down’

and then a ‘bottom-up’ approach. In the initial stages, this meant that the final design

concept and desired device (’the top’) was broken down into its various components

or tasks. These parts or tasks (i.e. cutting the groove, etc.) were likewise broken

down into various sub-tasks, and this process was repeated at all levels until the tasks

to be completed can be divided no further. At this point, the various parts needed

to complete each sub-task were then designed from the bottom upwards, progressively

combined together (redesigning and modifying as needed), until the final device was

produced.

6.1.4 Small Scale Design

After the final design was split into smaller sub-tasks, the small scale design method-

ology was used to actually design each of these sub-tasks. A modular design was used,

whereby each of these sub-tasks formed a module which worked on a specific set of

inputs to produce a specific output(s). It was decided to use a modular approach,

whereby each of these sub-tasks formed a distinct module that worked on a specific set

of inputs to generate specific output(s).

There are several advantages of taking this approach. If part of the device broke down

or required maintenance, only the modules involved would need repair or replacement,

rather than the entire machine. Additionally, by taking a modular approach, as tech-

nology improves or advances, obsolete modules can be upgraded without requiring

businesses to replace the entire machine. It was also decided that, as far as possible,

each module would be designed to be made out of ‘off-the-shelf’ components. All of this

will no doubt reduce and optimise the cost of producing, maintaining, and updating

the final machine.
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6.2 Further Design Considerations

6.2.1 Experimental Data

Due to the final size and fundamental properties of cutting metal in a turning situation,

producing a scale model in order to produce experimental data would not produce valid

results. This is because the forces involved in cutting metal do not scale, in that to

cut a certain type of metal, it will take the same amount of force per unit area of the

cutting tool whether that cutting tool be large or small in size. Moreover, in providing

the same level of force for the smaller tool, more pressure is placed on the tool than its

size would be able to support, and that the size of the prototype could withstand.

An additional factor in this matter was that, given the resource constraints, it would

also be too expensive at this stage to produce said prototype.

The obtaining of experimental data, particularly about the required levels of cutting

forces involved, was further complicated by the tight manufacturing schedule that the

foundry has to maintain. The lathes at the foundry are under continual operation as

the factory works under tight production windows, and it was not possible to interrupt

this window merely to place sensors on the lathes to gather data, nor did the resource

constraints allow these sensors to be obtained.

These tight production windows are in place due to the size of the foundry business, as

noted by Nancarrow (2006) in his article in January 7, 2006 edition of the News-Mail.

In the sugar industry alone, this heavy engineering business provides spare parts and

construction services to markets in Australia, islands in the Pacific, Asia, and South

America. It also has up to twelve people traveling around the world for installation and

services jobs. For instance, it is currently involved in the construction and installation

of sugar mills in Thailand and Mauritius. Outside of its work in the sugar industry,

this foundry has been involved in making equipment for businesses such as Queensland

Nickel and the Bundaberg Distilling Company.



6.2 Further Design Considerations 28

6.2.2 Automating the Process

It was suggested at one point that the entire operation of producing and/or repairing

a roller would benefit from being automated. In other words, that the project focus on

generating a Flexible Manufacturing System (FMS).

Flexible Manufacturing System (FMS)

The term “Flexible Manufacturing System” can be defined as a system where various

inputs (typically data, programs, and raw materials) are then transformed, integrated,

and/or processed to generate a definable output (typically a finished product, although

it may also be data and/or materials). Extending this definition, the process of con-

verting inputs into outputs by an FMS has minimal human intervention outside of

starting and stopping the process. Moreover, a typical FMS system deals with high-

level distributed data processing, automated flow of raw and processed materials, with

computers integrated into the storage and handling systems.1

For instance, in the case of the production of a roller, an FMS would take the set of

inputs, in this case the raw metals and the requirements of the design (dimensions,

grooving, etc.), and then with minimal human intervention would produce the finished

product, namely a completed roller that simply has to be packaged and delivered to

the client. (The various steps that are required to convert the raw material into the

final product were detailed in a previous chapter of this document.)

Within the FMS are various units, referred as cells or nodes, each of which may be

thought of as an intelligent subsystem. The purpose of each cell is to complete steps in

the manufacturing process, such as machining, welding, painting, cutting, inspection,

assembly, etc. As such, each cell is typically a complete machine in its own right,

designed and implemented to complete one or more steps in the manufacturing process

that the FMS encompasses.

The advantage of such a modular system as the Flexible Manufacturing System is that
1(Ranky 1983)
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it need not only be applied to machining systems, but also to other computer-integrated

projects where the machining process is itself a part of the whole.

Is An FMS Possible?

While the proposition of generating such a system to automatically manufacture and/or

repair a roller does have merit and would indeed have application in today’s modern

world, there are some concerns that had to be considered first.

Upon further investigation and consultation with the local supervisor, it was determined

that to automate the entire process of manufacturing a roller (the current process being

as described in an earlier chapter) would require designing and detailing a machine for

each step. These steps include the construction of the mold, casting, boring a hole in the

shell, machining both components as necessary, then heating the shell and inserting the

shaft, and finally cutting the grooves. Machines would also be needed to place arcing

on the grooves if required, to drill and tap holes in the shell, and also to cut and place

juice rings as well as wear rings on the roller. There would also need to be facilities to

place roller components in-to and out-of storage as needed. Moreover, to incorporate

repairing a roller into this process would require additional machines to cut the shell

off the shaft and to also salvage the materials (or deliver them to a workshop where

this will happen) of the shell if this is possible, and then to use welding to increase the

material of the shaft so that it can be re-machined.

As can be seen, there would be many cells needed to form a Flexible Manufacturing

System suited to the manufacture and/or repair of a roller. Each cell is likely to

require its own machine (if not multiple machines for some of them) for its set task to

be completed, as well as the facilities to integrate as seamlessly as possible with other

cells in the system.

Designing such a system in one year would require the resources of an expert team

of engineers from various disciplines, if not multiple teams to complete the level of

research, design, development, and testing that would be required. Moreover, even if

the technology was already in existence and only had to be combined to form a final
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design implementation, an engineer with many years of experience with this particular

industry called attention to the fact that it would be a multi-million dollar project

before it could be completed. The costs would be so high not only because of the

amount of engineers involved to complete the design in the required time-frame, but

also because of the disruption this would cause to the local workforces even to bring

the design up to the level of being ready to present for peer examination and approval.

Additionally, these costs and disruptions would be of such a level that any factory floor

that might be built from these design would need to operate for years to “break-even”

in order to cover these design costs.

In short, designing such a Flexible Manufacturing System for this application is simply

too large a task for one engineer with limited time and resources to complete with any

degree of satisfaction in the results.

It was therefore a logical decision to focus this particular project on one part (cell) of

the whole system, that only a portion of the manufacturing and repair process of a

roller would be considered for automation. Namely, that the focus would be centered

on designing a machine to machine the grooves into the roller (that is, into the shell

while the shaft is in place).

It is thus hoped that, in the fullness of time, the final design considered herein might

be used as a cell in a larger, automated process.



Chapter 7

Issues

7.1 Introduction

Despite the various design methodologies used, as outlined in chapter 6, or in some

instances because of these methods, serval issues came to light that needed to be ad-

dressed. These issues covered a variety of areas, with varying degrees of impact. Some

of the issues were able to be dismissed quickly as not being truly applicable, while

others highlighted areas of major concern. These issues have been documented below.

7.1.1 Design Issues

• Required Cutting Force

Reason: In order to shape metal, particularly in the turning process, large

forces are involved. These forces need to be generated somehow and also allowed

for. If the forces are too large for the design of the machine, serious failures of

both the machine and the workpiece could result.

Is it a Problem? See Appendix B for calculations of the forces involved in

turning the typical roller.

Determination: Not a problem with the correct design and allowances made.
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• Safety (See also Section 7.1.2 below)

Reason: Safety is a major concern and factor in the design. If the machine is

unsafe, it will not be used. Additionally, if the machine was found to be unsafe

due to a design error, the designer would face the possibility of legal action against

themselves.

Is it a Problem? Yes.

Determination: Incorporate multiple safeguards in the design, and use safe

methods.

• Environmental

Reason: The machine is to be used in a foundry. Thus the environment that

the machine will be used in is neither laboratory clean nor air-conditioned. The

expected operating conditions are very hostile to machines and the machine will

be expected to cope with the environment for multiple years with only simple

maintenance.

Is it a Problem? Yes. This will influence the design considerably.

Determination: Design the machine to meet industry standards for the en-

vironment. Design for a hostile environment and make allowances. Armor wires,

use angled rails to prevent swarf build-up, enclose electronics, etc. As far as

possible, design to IP65 rating.1

• Shaft Deflection

Reason: All metal cylinders of sufficient length will deflect if supported only

at each end, and will also experience some deflection in the middle when sup-

ported at both ends. This deflection is due to the cylinders own weight under

the influence of gravity. Additionally, any forces imposed on the cylinder will

alter the amount of deflection. Overall, the net deflection is proportional to the

qualities of the metal, the length and the radius of the cylinder, and the forces

that are being imposed upon it.
1According to (Altronics Electronics Engineering Catalouge 2005/2006 2005), an IP65 rating means

the object is dust-proof and spray proof. Please consult the relevant Australian Standard for further

details.
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Is it a Problem? See Appendix B for details on the calculations of the de-

flection for a series of shafts with shells.

Determination: Not an issue.

7.1.2 Safety Issues

There are many safety issues involved in the project, some of which are avoidable, but

others have to be addressed regardless of what approach may be used. However, the

exact nature of the specific safety issues that are to be handled in the project depend

largely on the final design or implementation of the concepts covered. Thus, safety is

to be one of the key criteria used to evaluate any final design or implementation.

One such example of a safety issue that must be handled regardless of the final design

and implementation is the issue of safely cutting the metal shell.

As brought out above (in Chapter 4) the method of producing the grooves in the roller

will be following a process similar to the traditional processes currently used due to

the limitations of the other (non-traditional) methods in this particular application.

However even our chosen method is not without safety hazards, as brought out below,

and several safety considerations need to considered. While most of these considerations

were mainly identified in the event that an alternative method was used, they are

still relevant to the design because the fundamental principles behind them are highly

applicable.

• If the full traditional rotational method was used:

– Prevent operators being injured by material that has been removed from the

workpiece.

– Principle: Workplace health and safety.

• If a chemical cutting agent was used:

– Ensure workers are not exposed to any fumes or hazardous gases;

– Ensure workers cannot come into contact with corrosive agents;
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– Ensure that chemical agent is completely removed from workpiece upon

completion of cutting.

– Principle: Handling of hazardous materials.

• If a ‘high-power’ cutting laser was used:

– Ensure laser only activates when roller shell in machine and at the correct

distance from the workpiece;

– Ensure that the laser is at the correct power and cutting duration;

– Ensure that workers cannot accidently place part of their body or other

items in the laser beam;

– Ensure workers cannot look directly into laser;

– Ensure that there is a suitable guard behind workpiece to interrupt and

absorb the laser beam;

– Ensure that any reflections do not cause a hazard.

– Principles: Ensuring correct use of machine and minimizing risk of injury

when improperly usage or interfaced with; controlling the human element as

much as possible.

• If a ‘low-power’ scanning laser was used:

– Ensure laser only activates when roller shell in machine;

– Ensure workers cannot look directly into laser;

– Ensure that any reflections do not cause a hazard.

– Principle: See previous section.

• Electrical concerns:

– Electrical connections and components are not exposed, and that they are

shielded where needed;

– Ensure that there is a safety switch in the event of a short-circuit or failure;

– Ensure that ‘safe’ voltages and currents are used as much as possible;

– Ensure that there is sufficient isolation between modules, i.e. isolate the

controls from the computer processor and from the motors.
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Figure 7.1: Typical warning label to be used with laser equipment. Source: “AR-600 data

sheet” from www.acuityresearch.com

– Principles: Safe use of resources and minimizing their wastage.

• Controls:

– The controls are easy to see and use;

– Ensure that the manual controls can override the automation at any time

except to breach safety restraints;

– Ensure the controls can not be accidentally activated during operation.

– Principle: Interfacing with and controlling the human element.

• Other safety issues:

– In an emergency, the machine stops in a safe manner;

– Where-ever a worker is around the machine, there is an emergency stop

within easy reach;

– The machine can not be activated while in an unsafe situation, i.e. under-

going maintenance.

– Principle: Operational safety.

Some of the above safety concerns cannot be fully minimized during the design stage,

but require safe working habits on the part of the workers, i.e. not trying to bypass the

failsafes, etc. During the development of the concept, various methods were found and
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explored that would cover all the issues mentioned above. However, as the design was

only able to be taken to conceptual and not to the final design stage, these methods

are not included in this document for the sake of clarity. Further consultation on these

matters is recommended when this concept is sought be developed further.

The exact nature and specification of the safety implementations would be finalized

during the actual design of the device, and would adhere to the guidelines specified by

the relevant Australian and International standards as a base minimum. Some of these

standards are mentioned in Chapter 5.



Chapter 8

Sensory Methods

8.1 Methods to sense/measure environment

There are many methods that can be used for the device to sense the location and

dimensions of the roller shell to be machined. These basically can be defined as either

requiring contact or non-contact methods. However, as the design brief stated that the

location of the surface of the roller was to be determined with non-contact methods,

only these methods were considered.

Non-contact methods include:

• Ultrasound

• Optical

• Magnetic

Each of these methods are explained in more detail below.
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8.1.1 Ultrasound

Ultrasound is the term used for sound that has a higher frequency than audible sound,

typically, above 20kHz. At these frequencies, sound waves tend to become highly

directional, and can be thus used as a method of sensing the environment around a

device. Ultrasonic ’sonar’-like devices are often used in mobile robotics (both at a hobby

level and at an industrial level) as collision prevention mechanisms. Due to the much

slower speed of sound propagation in air when compared to optical or radio methods,

these ’ultrasonic sonar’s are also able to directly measure distances, using time-of-

flight methods rather than using triangulation methods. At sea level in calm air at

20◦C, sound travels at approximately 334m/s. Also, due to the larger wavelength and

wavefront of ultrasonic sound waves, small items like dust particles will not affect the

accuracy of the sensors, whereas dust particles can disrupt optical sensors in sufficient

concentrations. Most hobby built ’ultrasonic sonar’ arrangements can resolve a distance

to between 5-10mm. However, professional producers of ultrasonic distance measuring

devices have claimed that they can achieve a 0.1% to 0.01% accuracy, i.e. 0.01mm at

a distance of 100mm1. The downside to ultrasonic measuring devices is that they are

fairly delicate, and prefer relatively vibration free work platforms.

8.1.2 Optical

Optical sensing methods are methods of detecting the surrounding environment using

light. There are many different types of optical methods that may be used. For example

there is visual sensing with a camera or similar, distance measurement via triangulation,

and location determination via a beam breaking arrangement.

Visual scanning via camera basically mimics the function of the human eye and the

visual processing abilities of the brain, to a limited extent. There has been much work

done in this field of optical sensing, however it is not able to be used to measure the

dimensions and shape of the roller being machined. The required resolution for that

particular application is too great for this method, and the processing overhead would

be too high. On the other hand, a camera could be used along with a steel rule to
1(Opara 2005)
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measure the position of the tool along the longitudinal axis of the machine.

Beam Breaking is possibly the simplest optical sensing method. It involves a transmitter

and a receiver. The transmitter constantly sends a beam of light to the receiver, and

when an object of sufficient size gets between the two, the beam is broken.

Distance measurement via triangulation is more difficult than a simple beam breaking

approach, but is less vibration sensitive than a visual method, as multiple measurement

if taken within a short enough window, can be averaged and the vibrational error mostly

removed. This method can also produce a high resolution result. The light (typically a

low powered laser) is reflected off a target and into a high resolution camera mounted

a set distance and angle offset to the light source. The position of the reflection in the

camera can then be used to quickly determine the position of the surface that the light

reflected off.

Figure 8.1: Laser Triangulation Principle. Source: Kennedy, W.(1998)

8.1.3 Magnetic

Another method that could be used for sensing the position of material are magnetic

sensing, for example using Hall Effect Sensors. This works by detecting alterations in

magnetic fields caused by the metal. The magnetic field typically is either generated

by the sensor, or by passing a current through the metal. However, for this application,

it is not feasible to use magnetic senors.
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8.2 Methods chosen

After consideration of the above aspects, the following chooses were made:

• Ultrasound

Due to their coarser resolution and its preference for a large, flat surface to

reflect off, it was decided that if an ultrasonic sensor were to be used, it would

not be to use an ultrasonic ‘sonar’ as a measuring device. Rather, it would be

used as a safety device, particularly in detecting the presence of a shell.

• Optical

The accuracy and resolution that can be obtained using this method of sens-

ing means that it is almost ideal for this application. Thus, optical sensing should

be used as the primary sensing method.

• Magnetic

While magnetic detection method for metal does have its applications, this

is not one of them. The mass of metal is too small, and the required precision

too great for magnetic methods of detection to be used as the primary sensing

system.

8.3 Other Sensors

Although sensing the location of the surface of the roller shell is one of the main

requirements of the sensors used in the device, it is not the only item that needs to be

monitored, measured, and suitable reactions made as a result.

However, it should be noted that as the design discussed in this document is only

completed to a conceptual level, and not to a final specific design stage, only major

details will be included. Moreover, the ever-changing “face” of technology means that

any equipment or component suggested here may well be obsolete or deemed unsuitable

by the time the machine is actually constructed. Thus, the exact components to be
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used and their specifications would be detailed during the transition from concept to

working prototype and/or to final design.

That said, these additional sensors required and their purpose(s) are explained in the

following chapters.



Chapter 9

Initial Designs Considered

Having specified and considered the issues involved with this project and the methods

to be used to complete it, it is at this point that the concepts and designs to implement

these ideas may be considered. The aim of this consideration is to produce a conceptual

design of an automated shell grooving machine.

For the purposes of this thesis, ‘conceptual’ is here used in regard to its definition of “an

elaborated concept.” Hence, the main focus was determined to be on ways to implement

the basic concept described in Section 9.1, in order to describe the major components

and key elements such an implementation would require. Critical dimensions are given

mainly as figures based on appraisals of existing roller designs and a consultation of

the appropriate industrial standards (some of which are mentioned in Chapter 5).

For this reason, specific dimensions of each component and the complete and detailed

design of the final machine has been viewed as outside this conceptual level of design.

This is largely because the conceptual designs are yet to be fully approved and officially

examined to determine whether the reasoning behind the designed can be found to be

sound. Until that occurs, it would be foolhardy and wasteful to act on decisions that

might yet be found to be faulty. The designs referred to in this chapter and in the

following chapter are included in Appendix D.

One major decision that was made was to rest the entire design on a relatively simple
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principle, which will now be examined.

9.1 Core Principles

The basic design concept (pursued in various incarnations) is an alternative approach to

the traditional method of cutting metal. As outlined above in Chapter 3, the principle

behind this tradition is based on relative motion between the tool and the workpiece

in a machine that we’ve come to refer to as a ’lathe.’ This is usually accomplished by

rotating the workpiece and holding the tool in a ‘fixed’ location. Any variation in the

‘fixed’ location is as minimal as possible, and is rather small compared to the continual

and relatively fast rotation of the workpiece.

This is a method that is especially suited to relatively small objects needing to be ma-

chined to a certain shape. However, the drawback of this method becomes increasingly

obvious as larger and larger pieces are considered. If the workpiece is of significant

mass, a great deal of energy must be expended in order to rotate it, whereas a propor-

tionally smaller amount of energy is used to move the tool. Moreover, a relatively large

amount of energy is required to quickly overcome the extremely high inertia of a large

workpiece in the event of safety emergency.

Considering that the extreme worst case scenario is a roller of up to 40T, the energy

required to rotate the roller greatly outweighs the amount of energy that would be

needed to instead rotate the tool, which might typically weigh only as much as 100kg

(by itself), around a particular central or rotational axis or point.

Thus, it seemed a rather obvious and logical decision to switch the location of the

rotational movement. That is, instead of rotating the workpiece and fixing the tool, it

was decided to instead fix the workpiece in place and rotate the tool around the piece.

There were two design concepts that were partially developed before the final concept

was developed. Due to their incomplete and partial nature, however, they will be

considered relatively briefly.
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9.2 Design Concept I

9.2.1 Features

The first design implementation was based on multiple long and thin worm gear like

shafts which could be placed on an invisible ring concentric to the roller’s perimeter,

along which one or more large metal rings could be moved. In this design, each ring

would support a particular tool to be rotated around the roller.

These complete rings might be considered to have three components, each component

being a ring in itself. The outermost ‘ring’ is that through which the worm gears

are run, through six shafts radially located in the ring, though not technically equally

spaced around the ring. They would be equally spaced were there eight shafts instead

of six (located at standard angles of 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦), but

it is as if the two shafts at 90◦ and 270◦ (along the vertical axis) are no longer present.

The reasoning behind ‘removing’ the shaft at 90◦ was to facilitate the placing of the

roller into the assembly through the top via a crane, and thus also for extraction of the

roller. The bottom shaft, at 270◦, was removed to preemptively prevent it being fouled

by the swarf produced during machining operations.

Each ring assembly would derive its lateral movement and position from a single worm

gear shaft on this ‘outer’. The remaining five shafts for that particular ring assembly

would be used to provide structural rigidity. This would be achieved by placing a

fixed bearing on the ‘drive’ shaft while placing a bearing that is free to rotate on the

remaining five shafts. Each ring assembly would be driven by a different shaft, allowing

for up to six rings to be run simultaneously. Moreover, the worm gear shafts would

perform a “double duty” by providing lateral positioning as well as support.

The ‘middle’ ring can be considered to be hollow, as it is designed to shield the mecha-

nisms to rotate the ‘inner’ ring whilst simultaneously providing a “guide rail” for that

inner ring to rotate on. This latter purpose of the middle ring is provided by using a

lubricated “tongue-and-groove” fit to the inner ring. Thus, it is actually this ‘inner’

ring that rotates around the roller by sliding along the ‘grooves’ in the middle ring.
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This entire system is guided by a drive assembly at one end of the six drive shafts,

which contains a separate motor for each one of the shafts.

Each roller shaft is connected at each end to a lathe-type support which has been

modified to hold the roller shaft stationary. The support at the drive-assembly end is

fixed in place, while the support at the other end is able to be moved to accommodate

various roller lengths.

9.2.2 Flaws

One of the most critical errors of judgement in this concept implementation was the lack

of support provided for the worm drive shafts. Being long and relatively thin, asked

to support multiple ring-and-tool assemblies, as well as having a gear profile cut onto

its surface in the dimensions required, it would be impossible to prevent these drive

shafts from bending in the middle of each run. Due to each shaft’s unique physical

characteristics, they would each bend by a slightly different amount and would thus

change the gear profile. This would cause it to lock up in the bearing assembly and

would rapidly lead to a cascading catastrophic failure.

The other main flaw is that there is no measure to ensure that the ring assembly does

not buckle. Such an event would be caused by the assembly failing to maintain a normal

orientation to the roller surface due to not advancing by identical amounts along all six

shafts. This would be exacerbated by the thin-ness of these rings in the design. They

were not made thick enough to prevent buckling, and attempts to make them thicker

would only advance the failure of the shafts as discussed in the previously.

While there were other flaws, such as not being able to ensure the centerline of the

roller is the same as the centerline of the device, these two main flaws were considered

drastic enough for the design to be reconsidered and eventually abandoned.
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9.3 Design Concept II

9.3.1 Features

The second conceptual implementation arose largely as a result of the flaws of the

first. Where the first design was largely circular in nature, this design employed square

frames and carriers to support the assembly in an effort to provide more support and

rigidity.

The implementation, as conceived, used two grid like structures, tied together at either

end to support and contain the cutting tool and arm. Each of these two structures

are approximately 9380mm in length, stand 3150mm high, and are constructed out of

380 PFC 1. This material was chosen to minimize the amount of material that had to

be “custom made” through utilization of material that can readily be obtained with

known dimensional standards. The structure consisted of 7 legs, equally spaced along

the longitudinal axis (1500mm intervals), onto which 3 inward facing guide rails are

mounted at 1100mm intervals from the top of the device. As mentioned previously,

the two structures are tied together at the top of both ends by a “spacer,” in order to

maintain the rigid structure.

The outer framework and guide rails thus provide a basis for supporting the carrier

frame. The vertical loading (weight) of the carrier frame is primarily carried on two

separate guide rails on the floor which are positioned at 1100mm intervals from the

center-line of the device. These are made also from 380 PFC2. The carrier frame has

three wheels or rollers per guide rail mounted on it, in a manner that takes inspiration

from roller coasters. This was intended to eliminate any possible (undesired) movement

of the carrier frame other than the longitudinal travel along the length of the machine.

Like the framework, the carrier itself is essentially square in nature, with a slot in the

top for the ring assembly to be inserted.
1As per Australian Standard AS 4100, see Appendix F for datasheet extract from an Australian

manufacturer
2An alternative mechanism to support the vertical loading was developed using two closely mounted

200 x 200 x 20EA which would tend to collect swarf was also developed.
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It is this ring assembly onto which the cutting tool is mounted. The ring assembly,

once locked into the carrier frame, is able to rotate the tool around the roller shell,

thereby cutting the grooves. This assembly was made removable from the carrier in

order to facilitate the use of different sized ring assemblies for different sized rollers.

The motor that rotated the ring would be mounted on each of the ring assemblies. The

ring assembly would be able to be inserted into the carrier frame via the same crane

that would be used to load the roller with shell into the machine and then extract the

final product again. This assembly would be inserted first, the carrier frame, driven

by a shielded worm and groove assembly mounted at the center of the bottom of the

carrier, would then be moved to one limit of its travel, the roller inserted, and then

the ring moved back into place once the roller with shell was secured. This is possible

because the upper limit to the size of the roller that the machine is designed to handle,

as stated elsewhere in the design brief, is 7200mm.

9.3.2 Flaws

It is a well documented fact that changes in temperature will cause metal to expand or

contract accordingly. It is also a given acknowledgement that every piece of metal has its

own minute flaws in structure and composition, and that these are essentially random

and unpredictable in nature and position. These two effects combine to produce the

result that two lengths of metal, placed apart, cannot be guaranteed to both expand and

contract to the precisely same amounts in the exact same direction and manner. Thus,

it is more likely than not that each of the fourteen supports or legs as well as the eight

guide rails will all react slightly differently to the heat generated through operation of

the device as well as that from external environment factors. The environment this

device is expected to operate in would be considered “highly hostile” in comparison to

laboratory conditions.3

An additional flaw in this design is similar to one encountered in the initial design,

namely that there is no real provision in place to ensure that the carrier advances
3The expected industrial environmental conditions to withstand include large temperature variations

from 0◦C to upwards of 40◦C (on good days), vibration from other machines, dust, grease, paint, metal

shavings (swarf) and metal dust, wear-and-tear through use, and also human error, to name a few.
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equally along all rails at any one time.

9.4 Outcome

As has been already noted, both concept implementations were developed only partly

before their flaws were discovered, usually during discussions with the local supervisor

of this project. These flaws were considered so critical and intrinsic in nature that

it was recommended for both implementations to be completely scrapped and a new

method developed.

This ‘new’ method of implementing the core concept was the one that was chosen as

being most suited to the final design, and as such is considered in the following chapter.



Chapter 10

Final Design

The design concept has only partially been compiled into a cohesive whole. At the time

of writing, the concept was mostly completed to the concept stage, with a few details to

included, finalized, or worked out how they matched the rest of the concepts. As such,

a completed finalized conceptual drawing showing everything is not able to be included.

Instead the various components of the concept shall be introduced and discussed. This

is intended to demonstrate the completed concept as much as possible and to lay the

foundation work for the concept to be finalized into a constructible machine.

10.1 Main Design Concept

This basic idea of the design, namely of keeping the roller still and rotating the tool, is

the concept that was explored and developed for this conceptual machine. After several

partial design iterations (see Chapter 9), the concept was developed to the stage shown

below in Figure 10.1.

In contrast to all previous implementations, this design lacks an outer framework to

support the ring assembly that is used to mount and rotate the tool. Instead, the

carrier assembly itself has a base which is larger in width by a significant margin than

the ring assembly and is moved along the roller as necessary. The roller is supported

at either end, the design employing the sheer size and weight of the roller to keep it
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Figure 10.1: Design Concept

stationary.

The ring assembly has a main carrier ring mounted on either side of the tool (detailed

in following sections). Unwanted vibrational movement is constrained through its size,

as the ring assembly is estimated to weigh 3.5T. As before, the rings are turned by a

separate motor, though this motor is mounted on the carrier in such a position and

manner to also minimize vibrational error. Unlike previous methods, the actual ring

assembly itself is only supported at three equidistant points separated by 120◦. This

thereby minimizes referencing errors. The base of the carrier travels along two slotted

rails and the lateral movement is provided by a shielded worm and groove drive, similar

to that used in existing lathes. One advantage of this design arising due to the outer

casing and size of the support/carrier structure is that the risk of someone putting

a hand between the tool and the workpiece is almost impossible, thereby maximizing
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safety.

10.1.1 Tool mounting

The method of mounting the cutting tool onto the machine can be technically classified

as a ’swing arm’ style of design. However, as with the approach to a lathe above, the

implementation of this swing arm design is again an unorthodox approach.

In automated device, the tool itself is already being controlled along two axes, namely,

along the longitudinal axis of the workpiece and along the axis normal to the workpiece

surface. Therefore, it should be only a slight increase in complexity to combine these

two motions with a third motion which maintains the relative rotational motion between

the tool and the workpiece. This was one of the core ideas behind the design concept.

Towards this end, the design incorporates a tool assembly that effectively ’orbits’ the

workpiece. The tool assembly itself is mounted on two adjacent rings to maintain

rigidity. Due to the size of these rings, very little in the way of vibrational dampening

is required to ensure tool accuracy. The size of these rings is also one of the main

limitations of the machine in terms of the largest size roller it can machine.

Each of these rings can effectively be thought of as a very large gear cog that has

been hollowed out to the diameter of at least a typical sugarcane roller. Due to the

arrangement of the rings, they can be driven together from a single axle which transmits

power via a gearbox from a suitably rated electric motor. This complete ring assembly

would then be mounted on a frame to provide the relative linear motion of the tool

parallel to the roller’s central axis.

This circular nature of the method of mounting tool assemblies onto the machine allows

for the possibility of various tools being mounted on one ring-pair. This increase in

the number of identical cutting tools on the ring decreases the time taken to perform

the required task without also requiring a proportional increase in the ring’s rotational

speed. For instance, two tools can be mounted on diametrically opposite each other on

the ring assembly, one of which cuts a groove at half-depth while the second tool cuts

the metal at full groove depth. Note, however, that more than three tools mounted



10.1 Main Design Concept 52

on a ring assembly are expected to lead to diminishing returns as well as physical size

limitations.

10.1.2 Welding

One of the initial actions that is was hoped that the device would accomplish was the

combining of the shaft welding and shell arcing along with the machining one the one

machine. Ideally, both types of operations would have been done simultaneously, on

different parts of the roller. In fact, the stationary workpiece was an attempt to cater

for the different rotational speed required by the welding process than that required by

the machining process.

However, it was quickly realized that the welding process had a ‘sweet’ spot, relative

to the pull of gravity, which would allow for quick welding with no splatter where it

was not wanted. Some orientations of the welding tool would be guaranteed to produce

problems, with the weld moving before the metal fully cools and solidified, excessive

‘splatter’, and/or the welding matter damaging the welding tool. The way to avoid this

would be to have the welding head fixed in the ‘sweet’ spot, and the workpiece then

rotate along its axis. However this would negate the advantages gained by having the

workpiece held stationary while the tools orbited it. Thus, this optional feature was

dropped from the concept, at this stage.

The design, however, is such that if this feature were to be required in the future, any

modifications should be relatively simple to implement, namely: a suitable drive motor

(with controller) to turn the shaft, a sensor of some sort to detect the rotation of the

shaft, and sufficient modifications to the controlling software to compensate for the

additional rotation of the workpiece.

10.1.3 Other Features

Another feature of the design is the ability to place multiple rings on the device, each

with the appropriate cutting tools. Assuming of course that the automation of the

machine can handle the additional operations, this leads to the possibility of carrying
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out multiple tool operations on the roller at the one time by operating a number of

rings simultaneously. This would lead to multiple reductions in the time to complete

one roller.

10.1.4 Pros and Cons

The advantages of this concept may be summarized as follows:

• Overall it’s more energy efficient to move the tool and supporting members (ex-

pected to be no more than 4T in total) than to move the large roller (min. 2T

up to 40T, average size of 13T)

• Easier to safely stop rotation of tool than rotation of roller in case of an emergency

• ‘Fixed’ loading on motor which as a result make it easier to tailor motor to design

- smaller motor needed or able to work faster

• Able to work on multiple parts of roller at different rotation speeds

• Very high flexibility of use.
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On the other hand, the disadvantages of the design are as follows:

• A lot more complex than the standard lathe;

• Larger than the standard lathe, and thus may not be a suitable fit for all its

possible implementations and/or usages;

• The difficulty of obtaining data and sending instructions to and from rotating

instruments and sensors;

• Increased likelihood of swarf adversely affecting operations, depending on the

tool’s location.

10.2 Electronics

10.2.1 Mechanical tool-life sensing

A strain gauge is a small electronic device that is used to measure strains in a material.

It is comprises typically of a length of fine wire arranged in such a manner that when

it is subject to a strain, the length of the wire increases. As the length increases,

following Ohm’s law, the resistance also changes. One disadvantage of most modern

day strain gauges it that they are only sensitive to strain exerted along a single axis.

Thus in order to monitor two dimensional strains in a material, multiple strain gauges

are needed. The ideal situation would be would be for three strain gauges mounted in

such a manner that their sensing axes are at a 45◦ angle to each other.

Despite the arrangement of the wires, the resultant change in resistance is only neg-

ligible. As such it will need to be amplified to measurable levels. This is typically

done in a Wheatstone bridge arrangement. A small resistance change in a normally

balanced Wheatstone bridge creates a significantly larger change in voltage, amplifying

the minute resistance change in the strain gauge into a measurable voltage. The other

option is a dedicated unit specifically designed for the measuring of strain gauge resis-

tance, for example one of the many Data Acquisition Systems produced by National

Instruments.
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Figure 10.2: Wheatstone bridge. Source: National Instruments (2003)

The strain gauge is coupled with a model stored in the computer of the expected tool-life

under various conditions,

But why is a strain gauge needed? As the tool cuts the metal, a force is exerted on

the tool tip, leading to stress. These stresses, are related to the strain that the tool is

experiencing. These stresses and strains are then transferred to the tool holder where

they can be measured. As the tool wears, the cutting force needed, and thus the stress

and strain produced, increases. Thus by measuring the strain in the tool holder, it

should be possible to monitor the condition of the tool. This is done by as set of strain

gauges, along with the principles developed by Mohr, to resolve the strains to a set

frame of reference. When coupled with a computer which knows the material being

cut, the depth of the cut, and the various other variables, and is able to calculate

the expected cutting forces for the specified operations, the ability to monitor tool

wear increases. Combining the strain gauge with the computer in this way allows the

computer to continually compare the condition of the tool against the ideal model and

thus instantly make the appropriate decision to automatically implement a tool change

as necessary.

10.2.2 Optical sensors

The main method of detecting the location of the surface of the roller workpiece is via

optical sensors. In particular, these sensors are classified as ’laser triangulation sensors.’

The principle behind these is explained previously.
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A survey of available sensors on the market currently revealed several likely candidates

which could be used in this application. The best candidate of all these was the Accu-

Range600 (AR600) available from Acuity Research. This particular sensor can measure

distances over 100mm span and is accurate to within 0.1% of that span. This meets

the design criteria of being able to measure the roller diameter to within 0.1mm.

Telephone consultation with a representative of Acuity Research (Sam Bhasin on 29

August 2005 at 1:15PM) confirmed that the sensor can handle the vibrational stresses

that would be applied to it, although there is a need to average several successive

measures at first to identify and eliminate vibrational error, and that the sensor is pre-

calibrated as well as self-correcting. Moreover, that this sensor uses diffuse reflection

from the incident surface in its detection of distances, it is also able to handle measuring

distances to uncut (matte) and freshly cut (reflective) surfaces. Also, this particular

sensor has an output that is readily compatible with any potential automation or data

acquisition system - such as the RS323 interface.

A data sheet for this sensor has been included in the Appendix ??. The cost of this

sensor was approximately A$5000.00 at the time of the discussion.

On the other hand, there was also the AR200 sensor, also from Acuity Research. How-

ever, this sensor has half the span (50mm) in return for being half the price of the

AR600. This reduction in accuracy makes this sensor inappropriate, as the minimum

distance it needed to be able to measure was 75mm.

10.2.3 Decision Making

The final device is to automate several tasks together at the one time. As such, it

is implied that some sort of computing power will be used. Given the amount of

sensors and data that is generated, for each particular tool assembly and driving ring,

the processor needs to be able to handle large amounts of information quickly and

effectively. Thus the computer that it is suggested to be used is not a “simple” processor

such as one of the PIC series. Rather, a full sized industrial computer similar to one

of the modern desktop computers should be used. This is due to there begin larger
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amounts of flexibility in a processor of this magnitude, it is able to process the volumes

of data quickly, and the controlling programs can be modified quickly.

Moreover, it is expected that at some point the machine’s flexibility of use will be

exploited. The size of the tool can be increased from a single point tool, to a multi-

point tool. Additionally, multiple tools can be mounted on each ring, and multiple rings

can be used. Also the size of the ring, within certain bounds, can be scaled up or down,

depending on the size requirements for the application. All that would be required to

ensure the computer processor can handle these adaptations would be relatively simple

software patches and/or upgrades. That this is a successful methodology is vindicated

by the Linux open source system, which has been updated and expanded in pace with

available technology.

10.2.4 Component Communication

Data is to be communicated around the machine via a series of Bluetooth devices.

Bluetooth actually describes the wireless networking standard used and not the actual

devices themselves. Thus there are many possible sources of Bluetooth enabled devices.

As mentioned previously, due to being a conceptual design only, specifying suppliers

and exact components to be used has been considered to be outside the scope of this

document.

Bluetooth transmits and receives data between two to eight enabled devices on the

2.4GHz ISM1 frequency band, as long as these devices are within 32ft (about 9.75m)

of each other. This frequency band is unlicensed, thus ensuring that it is relatively

cheep to use in as much as there are no licensing fees charged on either a one-off or

periodic basis. The system uses a selection of frequencies within the band, each called

a channel. The specifications call for the devices to selectively hop between these 79

channels 1600 times per second in a pseudo random manner.2 This is done to avoid

problems with noise, and interference with other devices and other technology using the
1ISM stands for Industrial, Scientific and Medical
2According to approximate calculations, assuming one channel has equal chance of being selected

as any other, the channel will be ”occupied” for roughly 50ms per second, though not necessarily in

consecutive increments.
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same frequency band. Only devices that are connected to each other are synchronized

to hop to the same frequencies at the same time. Moreover, if bits are lost on one

channel, they can be resent on another.

Thus, the Bluetooth system can overcome noise and interference easily, even from other

Bluetooth units, despite being low powered (usually by battery in most applications).

Each set of 2-8 units that are communicating together form a piconet, and only the

ones within a piconet are synchronized in their frequency hopping. Thus it is possible

to have multiple piconets working together within the same area without significant

degradation of bandwidth or signal strength.

Thus it was decided upon that the various pieces of data would be transferred to and

from the controllers, motors, sensors, and alike via Bluetooth devices. This would also

facilitate monitoring of these signals and future expansion if needed.

However, this approach will require the conversion of various analog signals into their

digital equivalents on as close as possible to a real-time basis in order for the system

to be able to immediately respond to any changes in the workpiece, the machine itself,

and it’s environment.

Note that other methods considered were:

• Physical connections via an electrical contact on a ring.

– Problems: wear, interference, signal noise, safety

• Optical transmission i.e. via infrared.

– Problems: moving parts, too easy to interrupt light beam, not practical

• UHF radio or similar (433MHz)

– Problems: Possible licensing issues, easily interfered with at power levels

involved (i.e. passing trucks, noisy equipment, etc)
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10.2.5 Additional electronic items and comments

There are many other electronic systems that would need to be designed and specified

for the device to become fully operational. For example, the motor to rotate the drive

ring would require a suitable controller, as would the motor used to position the tool

arm and the motor to rotate the the kicker gear inside the tool changer. Electrical

power to these latter two motors, along with the sensors mounted on the rotating

sections would need to be transmitted to them in a reliable manner. One of the most

likely solutions to this is to use a induction system similar to the MOVITRANS3 with

the inductor mounted in a loop surrounding the ring assembly.

The lateral position of the carrier assembly would be monitored via various methods,

and is one of the key areas which impact on the precision of the final device. One

suggested method was to use a camera mounted on the carrier which was focused

on a stationary graduated scale coupled with image recognition technology. Another

approach would be to used an off-the-shelf sensor called Sealed Incremental Linear

Encoder such as available from Heidenhain, some of which have a accuracy of ±3µm.

10.3 Mechanical Design

10.3.1 Tool changing

Why is a tool changer needed? A tool changer is needed due to the short life span of the

machining tool. The life of the machining tool is directly related to several variables,

which was analyzed in Chapter 3.

For instance, take the relative rotational speed at with the workpiece passes past the

tool. Obviously the deeper and faster the tool cuts, the quicker the task can be com-

pleted. However this incurs the penalty of greatly shortening the tool life of the ma-

chining tool. The tools usable ‘life’ can be as short as 15 minutes. Conversely a slower

speed and shallower cuts tends to increase tool life, but also increase the time take for
3MOVITRANS is a registered trademark of SEW- EURODRIVE
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the cutting tasks to be completed. As one of the research sources stated, if the tool

life is larger than 2 hours, then the tool is not being used effectively and needs to be

modified. When compared to the 60 hours required to properly machine a roller, it is

expected that several tools will be used for each roller.

Figure 10.3: Tool Assembly - Side sectional view

When the tool needs to be replaced, the carriage return to the ’tool change’ position.

An internal gear of the assembly then rotates and pushes the holder so that it pivots on

a central pin and slides out of the chute. The next tool is simply pushed up onto this

central pin, the arrangement of the internal pins and the force exerted on the tool under

normal operations locking the new tool into place without any further adjustments

being necessary.

10.3.2 Recognizing the tool

No single tool is able to do one complete job. This is because the tools wear, and that

in a typical roller machining operation many different types of cuts to various different

depths are needed. Thus the machine needs to be able to identify which tool is in the

tool holder and where the cutting edge of it is.
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Figure 10.4: Process of removing the tool

There are several ways in which the machine could identify which tool is being used at

that time. One way is for the upper surface of the tool to have a barcode printed on

it, and the machine read this barcode each time a tool is loaded. This has the problem

of the barcode not always being legible, and trying to mount a reader in the loading

mechanism.

Another method, and the method that was pursued, is to have the tool holder tell the

machine which tool it is holding. This is done by the human who loads the tools into

the tool holder in readiness for them to be loaded by the machine. A series of contacts

are positioned on the side of the tool holder, and when loaded and locked into position,

marry up to a similar set of contacts on the tool platform. These contacts (6-8) are

configured to provide a certain binary code, which the main computer then uses to find

the type of tool and the location of the cutting edge from a database in its memory.

Due to the posilock4 characteristics, the self locating properties of the tool holder, and

the size and positioning of the contacts, the tool holder contacts are ensured that they

will always locate the correct contacts on the tool platform and will always have a good

connection with them. Additionally, due to their location, it is extremely improbable
4A system where a component will find its own proper location and then lock into place, even as it

wears.
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that swarf or similar contaminates would be able to cause interference with time.

10.4 Some safety concerns

There are many safety features incorporated in this design. For example, mounted on

the main operator panel is to be a large emergency stop switch. When this switch

is pushed, it latches shut and disconnects the power to the main drive motors and

applies a short across the terminals, thus applying an electric braking action. This

is also monitored by the computer, and it will recognize that the device is now in an

emergency stop event, and will stop disconnect all power to the unit.

Due to the construction of the device, the swarf is mostly contained within the ma-

chine. Also, a ’light curtain’ or similar safety device should be mounted on the device,

which when it detects a sufficiently large enough intrusion into the work area, cease

all movement, sound an alert on the control panel, and then wait for the operator to

signal that it is cleared to continue operations.

Another area that monitoring is needed is that of the tool status. It is expected that

with the correct optimization of the cutting speed and the cutting depth, that the

tool will be replaced long before it reaches break point. Thus, if the tool suddenly

breaks, the device would detect this as a sudden change in the cutting force measured

by the strain gauges and the deflection of the tool holder. There would also likely be

a large variation in the reading between the two monitoring methods. Thus when the

controlling computer detects that the cutting force is outside the operational window,

it should stop cutting, return the tool assembly to the change location, and signal the

operator. One aspect that the operator would have to my a decision on was whether

the tool break has damaged the workpiece and whether it is still feasible to continue

with the job.

All of the above safety mechanisms do require input from an operator in order for the

error to be cleared. This is due to the serious nature of the hazard involved, or the

higher risk of inadvertent damage to the machine.
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One inherent safety feature, according to the design as currently implemented, is that

all the rotational parts are shielded behind casings, or extremely difficult (to the point

of physically impossible for an average sized individual) to reach without deliberately

attempting to do so, or tripping any of the other safety measures mentioned above.



Chapter 11

Conclusions

11.1 Achievement of Project Objectives

Various approaches to machining metal were analyzed as to suitableness. The result of

this analysis was that the traditional method, if somewhat adapted to this application,

was most suitable.

Based on this analysis, an alternative approach to the traditional lathe-based machining

approach was developed to conceptual stage. The issues involved in implementing this

alternative design concept was also explored, particularly in the area of safety concerns.

However, due to various constraints, the solutions developed to these concerns could not

be included in this document. Further consultation on these matters is recommended.

As noted, the main advantage of the developed design concept is its expansiveness.

The size of the tool can be increased from a single point tool, to a multi-point tool.

Additionally, multiple tools can be mounted on each ring, and multiple rings can be

used. Also the size of the ring, within certain bounds, can be scaled up or down,

depending on the size requirements for the application.
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11.2 Further Work

There are, however, several items that need to be addressed, before the device can be

taken to the final design or prototyping stages. These include, but are not limited to,

the following tasks:

• Design of the holding rack for used and unused tools for the tool changer.

• Design of a suitable ring and tool-changing assembly for use on the end faces of

the shell.

• A swarf collection and removal system suitable for the concept, to be applied to

each ring assembly.

• Complete mathematical analysis, in particular of vibrational dampening.

• Implement safety measures.

• Complete costing.

Additionally, areas where the design concept outlined herein could be expanded to

include are:

• Multiple ring assemblies, doing multiple cuts at different speeds.

• A ring dedicated to operations at the end of the shell, such as machining it to

size, drilling holes, etc.

• A smaller ring assembly for machining the bearing journals while the shell is being

grooved.
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Overall Largest Average Smallest

Shaft Length (mm) 6270

Shaft Weight (T) 26.1

Shell Weight (T) 18.39

Table B.1: Dimensions of the sample rollers used

B.1 Introduction to this Appendix

As with all engineering projects which involve designing objects, significant amounts of

mathematics is used. Rather than obstruct the flow of the above report, all the math-

ematical calculations mentioned in the report are included below. This information is

provided to support the figures stated in the report above.

B.2 Design Issue Calculations

B.2.1 Shaft Deflection

Due to the complex shape of the shafts involved, approximate the shaft with a single-

radius shaft of the same length, with the same mass, under the same loading.

Assumptions

• Use ‘weasel’ tonne, i.e. 1000 kg = 1 T.

• Use gravity (g) as 1kg = 9.81 N.

• Use density (ρ) of 7860 kg/m 3

• Use Modulus of Elasticity (E) of 207 GPa
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Equations and Definitions

Mass = V olume× density

V olume = Area× length

Area = πr2

∴ r =

√
Mass÷ density

π × length
(B.1)

Moment of Inertia:

I =
πd4

64
(B.2)

Deflection at center of beam, fixed both ends, central load:

y =
PL3

192EI
(B.3)

Deflection at center of beam, fixed both ends, uniform load:

y =
PL3

384EI
(B.4)

Calculations

For the Largest or maximum shaft, using the formulae and definitions stated above.

Equivalent radius, using Equation (B.1).

rmax =

√
(26.1)× (1000)÷ (7860)

π × (6720)× (10−3)

rmax =

√
26100÷ 7860

π × 6.72

rmax ≈ 400 mm

Moment of Inertia, using Equation (B.2).

Imax =
π × (800 mm)4

64

= 0.20106 m4
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To calculate total deflection, calculate the deflection from the shafts own weight and

the deflection due to the weight of the shell separately and then combine. Deflection

due to the shell’s weight, using Equation (B.3).

P = 18.39 T× 1000× 9.81 N

= 180344 N ≈ 180 kN

yshell =
180 kN× (6270 mm)3

192× (207 GPa)× (0.20106 m4)

= 0.005553 mm

Deflection due to the shaft’s own weight, using Equation (B.4).

P = 26.1 T× 1000× 9.81 N

= 256041 N ≈ 256 kN

yshaft =
256 kN× (6270 mm)3

384× (207 GPa)× (0.20106 m4)

= 0.007897 mm

B.2.2 Cutting Forces

Assumptions:

• Cutting tool material: Tool Steel

• Material being cut: Roller Iron equiviliant to K1040

• Material hardness: 220 BHN

• Depth of cut: 5mm

• Feed of cut: 1mm

• Tool lift desired: 180min
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Based on information in (Oberg 2004).

Speed = 85fpm

Depth cutting factor = Fd = 0.93

Feed cutting factor = Ff = 0.6

Tool life factor = Ft = 0.61

Adjusted cutting speed = 85× Fd × Ff × Ft

≈ 28.93fpm

Converting this to metric yields: 0.147m/s

This value can now be used to determine the amount of force being exerted in the tool.

This will allow for two calculations to be made, 1) the size of the motor required to

drive the tool, 2) the stresses that the tool is subjected to.

B.2.3 Angle Encoder

The rotational position of the tool is to be known to the precision of 0.1. Thus there

are 3600 possible values. One idea was using a barcode type system to measure the

rotational position of the ring.

Assuming the “barcode” is mounted on the other surface of the ring.

Maximum possible size of barcode = radius × sin(angular resolution)

Db = rr × sin 0.1◦

= 2200 mm× sin 0.1

= 4.18 ≈ 4.2 mm

While it is possible to have an encoder using barcode-like coding scheme with a small

enough form factor to fit under this limit, it is extremely difficult and not likely to

be very practical in this application. Thus alternative methods for monitoring the

rotational position would need to be employed.
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However, this level of precision is not required for general operations. It is only required

for the optional end rings, when drilling the holes in the roller shell. Under normal

conditions, for the main, central cutting only ring, the level of precision could be reduced

to approximately 1. This results in the following:

Maximum possible size of barcode = radius × sin(angular resolution)

Db = rr × sin 1◦

= 2200mm× sin1

= 38.39 ≈ 38.4mm

This value is much easier to design an encoding system for.
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Figure C.1: Reduced copy of roller with shell drawing from Bundaberg Foundry Engineers

Ltd.
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Figure C.2: Reduced copy of roller with shell drawing from Bundaberg Foundry Engineers

Ltd.
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Figure D.1: Reduced copy of initial design proposal
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Figure D.2: Reduced copy of second design proposal, page 1/4
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Figure D.3: Reduced copy of second design proposal, page 2/4
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Figure D.4: Reduced copy of second design proposal, page 3/4



85

Figure D.5: Reduced copy of second design proposal, page 4/4
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Figure D.6: Reduced copy of final design proposal, page 1/6
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Figure D.7: Reduced copy of final design proposal, page 2/6
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Figure D.8: Reduced copy of final design proposal, page 3/6
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Figure D.9: Reduced copy of final design proposal, page 4/6
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Figure D.10: Reduced copy of final design proposal, page 5/6
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Figure D.11: Reduced copy of final design proposal, page 6/6
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