

University of Southern Queensland

Faculty of Engineering and Surveying

An Internet Based SCADA System

A dissertation submitted by

Jason Michael Lynch

in fulfillment of the requirements of

Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Electrical/Electronic Engineering

Submitted: October, 2005

Abstract

The Supervisory Control and Data Acquisition (SCADA) system has an integral role

in modern industry. It provides a link to the electronic controllers used to control

factory plant and processes, and is the visible portion of a factory’s Human Machine

Interface (HMI) system. It allows a factory operator to control the plant and provides

feedback about the current state of the factory processes, including any alarms.

 The SCADA system also provides a way for important plant performance information

to be obtained for use by managers and engineers at a corporate level. Timely access

to this information is important in decision making. With large modern companies

being so geographically diverse in the location of individual business units, the

Internet has become an important communication channel to allow the exchange of

data. This dissertation describes the design of an Internet based SCADA system that

allows real-time factory data to be made available to the necessary personnel,

regardless of where they may be on the globe.

The system developed is based around an XML Web Service written in Visual Basic

.NET. The Web Service accepts client requests and retrieves the desired information

from the control database. This information is then returned to the client. XML was

chosen because its simple text-based structure means that it is an easily parsed

platform-independent data structure. The sample client program is a simple Windows

Console application also written in Visual Basic .NET.

Page i

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 & ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk
of the Council of the University of Southern Queensland, its Faculty of Engineering
and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled ‘Research Project’ is to
contribute to the overall education within the student’s chosen degree program. This
document, the associated hardware, software, drawings, and other material set out in
the associated appendices should not be used for any other purpose: if they are so
used, it is entirely at the risk of the user.

Prof G Baker
Dean
Faculty of Engineering and Surveying

Page ii

Certification

I certify that the ideas, designs and experimental work, results, analyses and
conclusions set out in this dissertation are entirely my own effort, except where
otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course or institution, except where specifically stated.

Jason Michael Lynch

Student Number: 0019722478

 Signature

Date

Page iii

Acknowledgements

I would like to thank the following people for their invaluable assistance and

contributions which have aided the success of this project:

Dr. Peng (Paul) Wen (Supervisor) for his guidance during the execution of the project

and the preparation of this dissertation.

The staff of Millmerran Operating Company for their assistance during the duration of

the project.

Jane for her support and encouragement throughout the year.

Page iv

Contents

Abstract ...i

Acknowledgements..iv

Contents ..v
Table of Figures..vii

Chapter 1...1

Introduction...1
1.1 Project Objectives ..2
1.2 Dissertation Layout ...2
1.3 Chapter Summary ..3

Chapter 2...4

SCADA and Web-based SCADA Systems..............................4
2.1 An Industrial Control System ...4
2.2 SCADA System Description...6
2.3 SCADA System Functions ..6
2.4 Commercial SCADA Systems..8
2.5 SCADA System Evolution and IP Convergence9
2.6 Web-Based Implementations ..11
2.7 Key Issues for an Internet Based SCADA System......................16
2.8 Chapter Summary ..18

Chapter 3...19

Communication over the Internet...19

3.1 Overview..19
3.2 The Seven Layer OSI Model ..20
3.3 Sockets and TCP/IP...22
3.4 Distributed Component Object Model (DCOM)26
3.5 Hyper Text Transfer Protocol (HTTP) ...26
3.6 Simple Object Access Protocol (SOAP)..27
3.7 XML Web Services ...28
3.8 Quality of Service of Real-Time Data..29
3.9 Communication Method Selected..31

Page v

3.10 Chapter Summary ..32

Chapter 4...33

Design Methodology ...33
4.1 Overview..33
4.2 Programming Language Considerations..33
4.3 Programming in C..34
4.4 Programming in C++ ..34
4.5 Programming in Java ..34
4.6 The .NET Framework...35
4.7 Programming Language Selection...35
4.8 System Design Alternatives ..36
4.10 Chapter Summary ..37

Chapter 5...38

System Development and Implementation38
5.1 Overall Description ...38
5.2 Client-Server Interoperability ...38
5.3 Server Program Function ...39
5.4 Client Program Function..42
5.5 Testing Process...44
5.6 Problems Encountered..45
5.7 Chapter Summary ..46

Chapter 6...47

Conclusions and Recommendations for Future Work....47
6.1 Achievement of Objectives ...47
6.2 Future Work ..48

References..50

Appendix A...52

Project Specification ..52

Appendix B ...54

Server Program Listing..54
PlantData.asmx.vb ..55
PlantData1.vb..57
PlantData1.xsd ..65

Page vi

Appendix C ...66

Client Program Listing...66
Main.vb...67
Reference.vb ...71
PlantData.wsdl ..73

Table of Figures

Figure 2.1: General Layout of the Bailey Infi-90 DCS..5

Figure 2.2: Example SCADA Display ...7

Figure 2.3: PLC with Embedded Web Server ...12

Figure 2.4: SCADA Display for a PLC with Embedded Web Server....................13

Figure 2.5: Remote Access via a SCADA Service Provider....................................14

Figure 2.6: Remote and Local Access via a SCADA Service Provider..................14

Figure 2.7: Three Tier Client/Server Architecture of System proposed by Gooi,

H.B. and Qui, B. ..15

Figure 2.8: Hardware Layout of System proposed by Gooi, H.B. and Qui, B......16

Figure 3.1: The Seven Layer OSI Model ..20

Figure 3.2: The Seven-Layer OSI Model and TCP/IP Suite23

Figure 3.3: A TCP Segment ...24

Figure 3.4: An IP Datagram ..25

Figure 3.5: An XML .NET Web Service...29

Figure 4.1: The Visual Studio .NET IDE..36

Figure 5.1: The Client Application Window ..42

Page vii

Chapter 1

Introduction

The Supervisory Control and Data Acquisition (SCADA) system has an integral role

in modern industry. It provides a link to the electronic controllers used to control

factory plant and processes, and is the visible portion of a factory’s Human Machine

Interface (HMI) system. It allows a factory operator to control the plant and provides

feedback about the current state of the factory processes, including any alarms.

 The SCADA system also provides a way for important plant performance

information to be obtained for use by managers and engineers at a corporate level.

Timely access to this information is important in decision-making. With large

modern companies being so geographically diverse in the location of individual

business units, the Internet has become an important communication channel to

allow the exchange of data. This has led to the requirement for an Internet based

SCADA system to allow real-time factory data to be readily accessible to those who

need it, regardless of where they may be.

This project aims to design a Supervisory Control and Data Acquisition (SCADA)

System that enables a piece of plant to be remotely monitored and controlled via the

Internet.

Page 1

1.1 Project Objectives

Provided in the following list is an outline of the project objectives which are

primarily as defined by the project specification.

1. Research existing SCADA systems to determine their key components and

functions.

2. Investigate current Web-based implementations of SCADA systems.

3. Investigate different methods of communicating data across the Internet.

4. Design a system to allow a local server connected to a PLC to communicate

data to a remote server across the Internet.

5. Implement and test the system by simulation.

As time permits:

6. Test the system under real conditions with PLC Hardware.

In addressing the objectives as defined above a decision was made to concentrate on

the Internet communications portion of the system, rather than on communications

between the PLC or DCS and the Web Interface. This allowed a system to be

developed that is not specific to any brand of control equipment, and can thus be

used on any controller that has the required embedded communications functions.

1.2 Dissertation Layout

In compiling the research material for this project the objectives as defined in section

1.1 served as the primary source of direction. The following chapters are arranged

such that each objective is addressed in a logical format. This section provides a brief

overview of the content covered by each chapter and how this content strives to fulfil

the project goals.

Page 2

Provided in Chapter 2 is a brief overview of what a SCADA system is and the main

functions that it is expected to perform. It also presents a summary of current

commercial implementations of Web-based SCADA systems. This is intended to

help identify key issues that exist in the design and operation of such a system.

Chapter 3 details methods of communicating data across the Internet. It describes the

strengths and weaknesses of various methods.

In Chapter 4 the design methodology of the system is detailed. This includes an

examination of the issues identified and potential difficulties in implementing the

design. Various programming languages are described along with their perceived

strengths and weaknesses. The language selected for this project is then described

along with the reasons for its selection.

Chapter 5 provides detail of the system designed to fulfil the objectives of the

project. This includes a description of the testing process for the software and the

problems encountered during this process.

Presented in Chapter 6 are the conclusions for the project work conducted so far.

This also includes ideas for future work that will expand the application base of the

software and achieve increased functionality and flexibility.

1.3 Chapter Summary

This chapter presented a brief introduction to the project topic and this dissertation. It

outlined the reasons behind doing this project as well as the specific objectives. The

content of the various chapters of this dissertation was also explained.

Page 3

Chapter 2

SCADA and Web-based SCADA Systems

2.1 An Industrial Control System

The control system of a modern industrial site can be quite diverse and complex. It

can consist of a network of PLCs (Programmable Logic Controllers), individual

stand-alone process controllers, embedded device controllers, a DCS (Distributed

Control System) or a combination of all of the above. These devices are all generally

linked by a communications network. This link provides not only inter-controller

communication and controller-HMI communication, but a method for the engineer

and technician to access the controller to program it or modify the control logic.

Figure 2.1 shows the layout of the Bailey Infi-90 control system, as used at

Millmerran Power Station.

Page 4

Figure 2.1: General Layout of the Bailey Infi-90 DCS
<Bailey 1990>

With this configuration a computer connected to the INFI-NET loop via a dedicated

communications device (a Bailey ICI communications card) can communicate with

any controller on the loop. This communication is implemented by utilizing the

Bailey semAPI Application Programming Interface. This interface comprises the

Bailey proprietary function calls developed to allow communication between an

application and the controllers on the INFI-NET loop. (Bailey 1994)

Page 5

2.2 SCADA System Description

A SCADA, or Supervisory Control And Data Acquisition System is a system of

computer hardware and software that allows supervision and control of an industrial

control system. It communicates with the controllers used in the factory to obtain

information about the current state of operation of the plant. It also allows an

operator to control the plant by sending control signals back to the controllers. The

controllers could be Programmable Logic Controllers (PLC) or a Distributed Control

System (DCS).

Another common term used to describe a SCADA system is HMI. This stands for

Human Machine Interface. It is used to describe any system that provides an

interface between a person and a piece of machinery. The Industrial SCADA System

falls into this category. It provides a HMI by displaying process variables to the

operator and allowing control of the plant.

2.3 SCADA System Functions

A SCADA System has two basic functions. The first is to display information about

the current operating conditions of a piece of factory plant in an informative and

graphical interface. The second is to allow supervisory control of the plant by

company personnel. Larger commercial systems may also have other features, such

as Historical Trending of data to allow the past operation of the plant to be recorded

for future reference and for faultfinding. These other features are secondary to the

main purpose of the SCADA. Commercial standalone historian packages are

available and are commonly used concurrently with the SCADA system. An

example of such a package is OSISOFT’s PI.

The first primary function of displaying plant information in a graphical interface is

accomplished by developing interactive graphical windows that show the

interconnection of the various pieces of equipment that make up the factory. These

Page 6

interfaces are developed in specialised Graphical Development Environment

software that comprises part of the SCADA software package. This development

environment contains standard graphical symbols that can be used on these displays.

These symbols are then linked to the appropriate data points in the control system.

Any change in value of a data point can be displayed by changing the colour or

shape or some other attribute of the symbol. For example, a pump symbol might be

red when the pump is tripped and green when the pump is running. In this way a

clear picture of the current state of the equipment can be easily obtained. Shown

below in Figure 2.2 is an example of a SCADA display.

Figure 2.2: Example SCADA Display

The second primary function of allowing personnel to control the plant is also

accomplished through the display. Certain symbols that are placed on the graphic

during its configuration allow the operator to enter values into them. These symbols

Page 7

are linked to certain control blocks in the controller. When a value is entered it is

passed to the controller and thus alters the process being controlled.

2.4 Commercial SCADA Systems

There are literally hundreds of commercially available SCADA systems on the

market. These range from modest packages that provide basic control and display

functions for a handful of data tags through to large systems that provide not only

these basic functions, but also historical data trending, Tag Database tools and

various other information management facilities. These commercial systems can be

quite expensive and require extensive training and expertise to allow all the features

of the software to be properly configured and utilised.

Commercial SCADA systems are generally not designed for a particular brand or

model of controller. The software is generic and covers all types of controllers. To

make this generic software work with various manufacturers’ equipment, a software

driver is written which uses a controllers unique Applications Programming Interface

function calls to provide communications. The required drivers are installed

depending on the hardware being used.

Another important factor with respect to SCADA systems is the emergence of a data

communications standard called OPC. OPC stands for OLE for Process Control

(Matrikon 2005). It is a published industrial standard that is being adopted by a lot

of manufacturers in the process control industry. It sets out how process data should

be structured and handled and allows OPC compliant software from different

vendors to communicate. It is based around Microsoft’s COM and DCOM

technologies. The OPC specifications are established and maintained by the OPC

Foundation, which is a non-profit international organisation made up of hundreds of

companies throughout the world (Matrikon 2005). OPC is fast becoming popular as

it guarantees connectivity between hardware and software from different vendors.

Page 8

2.5 SCADA System Evolution and IP Convergence

To understand the need for an Internet based SCADA system the evolution of

SCADA technology must be examined from the point of its inception through to the

modern systems we have today. The desired direction for this technology in the

future must also be recognised and addressed. These two things give a clear

development plan for the next generation of SCADA systems.

The first generation of SCADA systems were generally termed Monolithic

(McClanahan 2003). The systems were based around a single Mainframe computer

system that performed all computing functions associated with the system. Networks

had not yet been developed into a commercially viable technology, so the SCADA

systems were standalone systems that were not connected to any other computer

(McClanahan 2003). Connection of the controllers to the SCADA master Mainframe

was also very limited. It was usually accomplished by using proprietary controllers

or adaptors plugged directly into the buses on the CPU backplane. Some limited

communication could be established with external systems by utilising

communication standards such as RS-232. These were of course simple low-speed

serial connections. As can be seen, the first generation of SCADA systems were

generally limited in functionality. They also had the drawback of generally tying the

consumer to the hardware and software selected and sold by the control system

vendor.

The second generation of SCADA systems were termed Distributed (McClanahan

2003). These systems were designed to take advantage of the developing Local-Area

Network (LAN) technologies and the improvements in computer system size, cost

and performance. The computers used were generally of the Minicomputer class

rather than Mainframes. Several of these would be connected via a LAN and would

share real-time data about the control system with each other. This allowed different

nodes on the network to take on different tasks. Some nodes would be

communication servers whose sole role was to communicate with the controllers.

Page 9

Others served as HMIs, allowing control by factory personnel as described in the

previous section. Still more nodes existed to provide calculation and database

services. By distributing all of these functions between separate machines it was

possible to provide more processing power for the system as a whole (McClanahan

2003).

This distribution of computing power also had the advantage of increasing the

systems redundancy and reliability (McClanahan 2003). This was achieved by

having multiple HMI stations available, so that in the event of a failure of one station

the other could be used. This was a feature not available in First Generation SCADA.

These early systems had to rely on the failover of a second mainframe that was

waiting in hot standby, but was not providing any processing other than to monitor

the computer being used.

One final important point to note with Second Generation SCADA systems is the

fact that some of the LAN protocols used were of a proprietary nature. The control

system manufacturers created their own control system protocols rather than using a

common protocol. This allowed them to optimise their LAN for Real-Time traffic. It

also had the disadvantage of effectively limiting the devices that could be connected

to the LAN to devices produced by the particular vendor that developed the LAN.

This was a significant downside of these Second Generation Systems.

The Third Generation of SCADA systems are referred to as Networked systems

(McClanahan 2003). The primary difference between the overall architecture of

these systems and that of their predecessors is that these systems utilise an open

architecture. This means that open protocols, such as TCP/IP, rather than proprietary,

vendor-controlled protocols are used. The use of open protocols allows off-the-shelf

systems to be used instead of the vendors’ own hardware. Third-party products can

therefore be more easily integrated into the system. A second advantage to this shift

towards open protocols is that SCADA vendors are concentrating their efforts on

software rather than hardware development (McClanahan 2003).

Page 10

The development of the Third Generation SCADA system has led to the present

situation. From this point on the future of SCADA systems and indeed Information

Technology in general is dominated by the term Convergence. Convergence is used

to describe the concept that many different types of Information Technology and

Information Services are converging toward a common end. They are being driven to

use common protocols so as to allow different systems to integrate and work together

in a more efficient and effective way (McClanahan 2003). In particular this refers to

the integration of Corporate Networks with SCADA Networks to aid in the prompt

transfer of data from the factory to the management and engineering teams and vice

versa. With this integration and sharing of common resources comes new problems

that must be considered. These include SCADA system security and Quality of

Service (QoS) of the real-time data (McClanahan 2003). These are issues that must

be addressed in the development of the next generation of SCADA systems.

2.6 Web-Based Implementations

There are several different Web-based architectures currently on offer for an Internet

based SCADA system. The systems are quite different in design and functionality.

Each has its own set of advantages and disadvantages and these must be considered

with respect to the proposed application. In general, Internet and Web-based SCADA

systems have advantages over traditional SCADA systems for reasons of (e-

scada.com 2002), (Bentek Systems).

¾ Wide Area Connectivity

¾ Routable connection rather than direct connection

¾ Parallel Polling

¾ Redundancy and Hot Standby

¾ Large addressing range

¾ Convergence of IT and Automation and Monitoring Networks

¾ Standardisation

 A brief description of the various systems available follows.

Page 11

The first system is the PLC with a Web Server embedded directly in the device. This

type of device is suitable for small remote standalone systems that do not require a

large controller but need remote access via the Internet. The PLC is connected

directly to the Internet and has preconfigured web pages stored in the embedded Web

Server (Industrial Control Links 2002). These pages are then accessed by the user

just as any other web site would be accessed, using a standard web browser such as

Internet Explorer, Netscape Navigator or any one of the numerous other browsers

available (Industrial Control Links 2002). A PLC such as this is shown in Figure 2.3.

Figure 2.3: PLC with Embedded Web Server
<(Industrial Control Links 2002)>

Page 12

While this type of system is suitable for small projects, it would not be viable for

large factories. Another disadvantage is that the graphics are preconfigured and not

very flexible when compared with the graphics in a larger traditional SCADA

system. An example of the graphics available for the controller of Figure 3 is shown

in Figure 2.4. The main advantage of this type of system lies in it’s relatively low

cost which allows it to be implemented in small systems.

Figure 2.4: SCADA Display for a PLC with Embedded Web Server
<(Industrial Control Links 2002)>

The next step up from the PLC with Embedded Web Server is the Internet based

system that can best be described as a hosted SCADA system (Bentek Systems).

With this system a company that wishes to take advantage of the benefits of an

Internet based SCADA system will subscribe to a SCADA Service Provider (SSP)

Page 13

http://www.iclinks.com/

company such as e-scada. This SCADA Service Provider will provide the required

data transfer across the Internet between the client’s equipment and their own Web

Server. This Web Server does all the data processing and returns the HMI graphics to

the user across the web as a Java/Web graphical Interface (e-scada.com 2002). This

interface is again accessed using a standard web browser. Figure 2.5 and Figure 2.6

show two different applications based on the SSP system. Figure 2.5 shows remote

clients on the Internet accessing the SSP web server in order to control the remote

factory plant while Figure 2.6 shows both local and remote clients using the SSP

server to access the plant.

Figure 2.5: Remote Access via a SCADA Service Provider
<(Control Engineering 2005)>

Figure 2.6: Remote and Local Access via a SCADA Service Provider
<(e-scada.com 2002)>

Page 14

The main advantage of this system is that it removes some of the cost associated with

a traditional large scale SCADA system. The need for in house expertise to provide

support and maintenance for the system is removed as this is all done by the SCADA

Service Provider (e-scada.com 2002).

Another system is that proposed by Gooi, H.B. and Qiu, B. that is designed for

substation control (Qiu, Gooi, Lui & Chan 2002), (Qiu & Gooi 2000). The system is

implemented using a three-tier client/server architecture as shown in Figure 2.7.

Figure 2.7: Three Tier Client/Server Architecture of System proposed by Gooi,

H.B. and Qui, B.
< (Qiu & Gooi 2000)>

This system uses RMI and sockets to implement communications in TCP/IP across a

network between the commercial SCADA system database and the Main Server,

which they call the SpecNET server. The system that completes this task has been

named JavaCON. The RMI system referred to is a system that allows an object

running in one Java Virtual Machine to invoke methods on an object running in

Page 15

another Java Virtual Machine (Qiu et al. 2002). The SpecNET Server then displays

the data from the SpecNET database in Java applets designed to run in a Java

enabled web browser. The client side of the web communications is handled through

the use of Internet Information Services web server software. The layout of the

various components of the system is shown in Figure 2.8.

Figure 2.8: Hardware Layout of System proposed by Gooi, H.B. and Qui, B.
<(Qui et al. 2002) >

The system is implemented in Java and uses the Java Database Connectivity (JDBC)

drivers to access the database. The main advantage of using Java in this system is

that Java is platform independent. This is because the Java bytecode is executed in

the Java Virtual Machine at runtime. The end result is that the software can be run

across different platforms without modification (Qiu & Gooi 2000).

2.7 Key Issues for an Internet Based SCADA System

An Internet based SCADA system has a number of unique issues that set it apart

from traditional SCADA systems. These issues must be identified and addressed

early in the design of the system. While some of the problems can be resolved by

appropriate choice of technology and design methodology, others are merely a result

Page 16

of the nature of networks and the Internet in general. These latter problems can be

mitigated to some extent but not completely resolved.

The unpredictable transmission latency of networks is one such issue that requires

mitigation measures in order for reasonable performance to be expected. The Internet

is a shared resource in which many users are simultaneously transmitting data (Luo

& Chen 2000). As the number of messages on a network increases the rate of data

transfer decreases. This is not desirable in a system designed to transmit real-time

data. This issue can be controlled to some extent by appropriate system design, and

by implementing techniques such as Traffic Smoothing algorithms (Bello, Kaczynski

& Mirabella 2005) and Server Based Scheduling of the network (Nolte, Nolin &

Hansson 2005). These techniques are described in Chapter 3. Even with careful

design this problem will become more prevalent as the amount of data transmitted

increases.

Security is another issue that is of concern to users of Internet based SCADA

systems (Qiu et al. 2002), (Qiu & Gooi 2000), (Bentek Systems). The potential exists

for unauthorised users to gain access to sensitive information from the SCADA

system or indeed gain access to control of the factory plant. The risk of this

occurring can be reduced by implementing appropriate security measures such as

firewalls, cryptography, digital certificates and public key infrastructure (Qiu et al.

2002). The use of secure hypertext transfer protocol (HTTPS) could also be used to

secure transactions across the Internet (Qiu et al. 2002).

Scalability must also be a feature of an Internet based SCADA system. This is the

requirement for the system to be capable of handling the transfer of large amounts of

data. This particular requirement can be addressed early in the system development

by appropriate design techniques.

Platform independence is important to allow the system to be applied in a large

number of situations. Different companies have different IT requirements and

Page 17

philosophies. If the system cannot be easily implemented in most situations then it

will not be widely accepted. The choice of both system design and programming

language are the keys to designing a software system that is platform independent.

One final issue that is a consideration in the design of an Internet based SCADA

system is the ease of implementation of the software. This can be measured by the

amount of configuration of software such as firewalls that is necessary for the system

to operate correctly. A complicated implementation procedure can affect reliability

of the system by introducing possible points of human error and therefore system

failure. This problem is again overcome by careful system design.

2.8 Chapter Summary

The main functions of a SCADA system are to display information about the current

operating conditions of a piece of factory plant in an informative and graphical

interface, and to allow supervisory control of the plant by a factory operator. These

functions allow a PLC or DCS or any other variety of controller to be monitored and

modified. This makes the safe and efficient operation of modern industrial sites

possible.

Recent developments in IT have pushed the idea of convergence of SCADA systems

and corporate IT infrastructure. This convergence presents a unique set of problems

for an Internet based SCADA system that need to be addressed by careful system

design methodologies.

Page 18

Chapter 3

Communication over the Internet

3.1 Overview

Since the beginning of mainstream networked computing and the Internet, there has

been substantial evolution in the communications methods used to connect

computers. Over the past decade the focus of web applications has shifted from

connectivity, using such protocols as TCP/IP, to presentation focused applications

using HTML. The most recent shift in focus has been towards programmability using

XML and the SOAP protocol. These technologies are implemented with the goal of

making interoperability easier amongst different platforms and programming

languages. This chapter examines different methods of communicating data over the

Internet and describes in detail the communication method used in the development

of this Internet based SCADA system. The Quality of Service of real-time data over

a network is also explored along with methods for ensuring the timely delivery of

this data.

Page 19

3.2 The Seven Layer OSI Model

In 1983, a branch of the International Standards Organisation called the Open

Systems Interconnection Committee developed a layered model that describes how

two computer systems could communicate with each other over a network

(McClanahan 2003). This model is referred to as the OSI model. It defines seven

layers of network functionality that should be addressed by any “open” network.

Those seven layers are, from one to seven, the Physical layer, the Data Link layer,

the Network layer, the Transport layer, the Session layer, the Presentation layer and

the Application layer. This model is shown below in Figure 3.1.

Figure 3.1: The Seven Layer OSI Model
< (RAD Data Communications 2003) >

The actual protocol stacks often combine one or more layers into a single layer

(HowStuffWorks 2005).

Page 20

At the top of the stack is the Application Layer. This layer is where the computer

applications execute (McClanahan 2003). It also defines the protocols that

applications use to exchange data and provides applications the ability to access the

services of the other layers (Halar 2003).

The next layer down is the Presentation Layer. This layer is responsible for resolving

any environmental differences between the applications that are running on the two

different machines (McClanahan 2003). It is this layer that takes care of things such

as character code conversion (eg. From ASCII to EBCDIC) and data encryption and

decryption. The purpose behind this layer is that the application running in Layer 7

should not have to know about the environment in which the remote target

application is running.

Layer 5 is the Session Layer. This layer is responsible for maintaining an ongoing

connection between the applications on two separate network nodes (McClanahan

2003). It preserves the packets of a data stream as on ongoing session.

Further down the stack from Layer 5 is Layer 4 or the Transport Layer. It is this

layer that ensures that the end-to-end transfer of data across the network is reliable

(McClanahan 2003). The transport layer provides a means for lost or corrupted

packets to be retransmitted. It also places the packets into the correct order if they

arrive out of sequence. Protocols such as TCP and UDP reside in this layer.

Layer 3 is the Network Layer. It describes how packets destined for a node not on

the same LAN are to be routed (McClanahan 2003). Logical rather than physical

network addresses are used in this layer. The IP protocol exists in this layer.

Layer 2 is known as the Data Link Layer. The Data Link Layer defines how the

nodes on a network obtain access to and share the physical network connection

(McClanahan 2003). It is here that the details of a network such as Ethernet or Token

Page 21

Ring are implemented. This layer uses the physical address of a node (MAC address)

to communicate.

The final layer is the Physical Layer. It is in this layer that the medium connecting

the two nodes is defined (McClanahan 2003). This medium may be twisted-pair

wire, fibre-optic cable, radio system or any other medium used as a communications

connection. It is also in this layer that the electrical characteristics of the signal that

passes over the medium are defined.

Communication using this model is done as follows. An application running in Layer

7 on Node 1 wishes to communicate with an application on Node 2. To do this the

application passes the packet destined for Node 2 down through each layer of the

stack. At each layer the packet is processed and an appropriate header and footer is

appended to the packet. At the Physical Layer the packet is transferred to Node 2.

Once it reaches Node 2 the procedure is reversed and the packet is passed up through

each layer of the stack until it reaches the destination application. At each layer in

the stack the packet is analysed and the headers and footers are removed before the

packet is passed up to the next layer.

3.3 Sockets and TCP/IP

TCP/IP or Transport Control Protocol/Internet Protocol was developed long before

the Seven Layer OSI model was conceived (McClanahan 2003). These protocols

(and also the Internet) grew out of an American federal government project in the

late 1960s called ARPAnet (Advanced Research Projects Agency). The goal of this

project was to link a number of research sites across America with a Wide Area

Network (WAN) (McClanahan 2003).

Although TCP/IP was developed before the OSI model, it fits neatly into it. It

generally spans layers 3 and 4 of the model (McClanahan 2003). It is independent of

Page 22

layers 1 and 2 which means that it can run on any type of network infrastructure

from Ethernet to token-ring networks to frame-relay circuits and dial-up telephone

connections. It is also independent of the layers above it in the stack. This means that

any application has the option of implementing TCP/IP as its transport and network

protocols. Figure 3.2 shows the relationship between the TCP/IP protocol suite and

the seven-layer OSI model.

Figure 3.2: The Seven-Layer OSI Model and TCP/IP Suite
< (Tech Target 2005) >

The transport layer of the model contains the Transport Control Protocol. TCP is a

connection-oriented protocol that is responsible for ensuring reliable transmission of

data. It divides the data into packets that the IP protocol in the network layer can

transmit. It is also responsible for error checking and ensuring that the packets are

not lost or received out of sequence. If necessary the TCP will request retransmission

of any lost packets and will place out of sequence packets into the correct order

before passing them up the stack to the application. The TCP data unit is known as a

segment. Figure 3.3 shows the structure of a TCP segment.

Page 23

Figure 3.3: A TCP Segment

In the TCP segment, the Source Port identifies the application from which the packet

originated. The Destination Port identifies the application on the destination machine

that should receive the packet. The Sequence Number identifies each packet in a

stream and allows for the reconstruction of this stream on the destination node.

These are the important features of the header that ensure proper routing of data

between applications. The Acknowledgment Number, Window and Checksum are

used to ensure that the transmission is error free.

The network layer of the model contains the Internet Protocol. IP is the protocol that

ensures correct routing of the packet to the destination node. The IP protocol sends

data without consideration for the sequencing of the packets or reliability of the

connection in terms of data errors and lost packets. The IP data unit is known as a

datagram. Figure 3.4 shows the structure of an IP datagram.

Page 24

Figure 3.4: An IP Datagram

The main parts of an IP datagram header with respect to routing functionality are the

Source IP Address and the Destination IP Address. These are unique 32 bit addresses

that are used to identify a node on a network. IP is a connectionless protocol, which

means that there is not a continuous connection between source and destination.

Each packet that is sent is treated as an independent unit of data that has no

connection to any other packet. The connection between packets is established, as

explained previously, by the TCP protocol in the transport layer.

The IP address (Location) and port number (application) of a packet is combined into

a functional address called a socket. This socket must exist at both the source and

destination for communication to occur via TCP. At the server side, a socket is

established by an application binding itself to a port number. This combined with the

nodes IP address gives the socket. The application then listens on this socket for

incoming requests. A client program on another node establishes a connection by

creating its own socket. As can be seen from the figures shown above, the port

Page 25

number and IP address of this socket are part of the header of the packet sent to the

destination node. In this way the destination node knows which socket to send the

response to.

3.4 Distributed Component Object Model (DCOM)

The Distributed Object Component Model is an extension of the Component Object

Model (COM). It allows COM components to communicate across a network

(Webopedia 2005). COM is a software architecture developed by Microsoft that

allows the programmer to develop component-based applications. These applications

are built with COM objects, which are discrete components with a unique identity.

These components expose interfaces that allow other applications and components to

access their features (Webopedia 2005). COM objects are completely language

independent and have built-in interprocess communication capability.

DCOM is effectively a method for developing distributed applications. While

ordinary COM components can only communicate with other processes on the same

machine, DCOM can send and receive data between COM components on different

machines across a network (Webopedia 2005). It achieves this by using a Remote

Procedure Call approach to send arguments to the server, then receives the resulting

data from the server program (Webopedia 2005).

3.5 Hyper Text Transfer Protocol (HTTP)

The Hyper Text Transfer Protocol resides in the application layer of the Seven Layer

OSI model (Wikipedia 2005). It was originally developed by the World Wide Web

Consortium and Internet Engineering Task Force to allow the publication and

transmission of Hyper Text Mark-up Language (HTML) pages. It is the main method

Page 26

used to convey information on the World Wide Web. RFC 2616 describes HTTP/1.1,

which is the version of HTTP that is most commonly used today.

HTTP is based around a request/response model. An HTTP client sends a request by

establishing a TCP connection to a particular port on the server machine (Wikipedia

2005). The default port for HTTP is port 80. The HTTP server that is listening on

that port then accepts the request string from the client and sends a response string

containing the requested data. HTTP/1.1, unlike previous versions also has a feature

called pipelining (Wikipedia 2005). This feature allows a persistent connection to be

established between client and server. With previous versions only one request and

response were permitted per connection. After the response was received the

connection was terminated and any subsequent requests required a new TCP

connection. Persistence allows a client to send multiple additional requests and keep

the connection alive. This improves data transmission performance as it reduces the

TCP connection overhead.

A secure version of HTTP is available called HTTPS (Wikipedia 2005). This

protocol uses Secure Sockets Layer technology to authenticate the server for the

client. This requires the presence of a Secure Sockets Certificate on the server.

HTTPS uses port 443.

3.6 Simple Object Access Protocol (SOAP)

The SOAP protocol serves as a mechanism for passing messages between a client

application and a web server. It is similar to the HTTP GET and HTTP POST

protocols with the exception that the messages are sent in XML format (Thai & Lam

2003). The use of XML to transfer data means that the messages sent back and forth

between client and server have a better structure than those sent with HTTP GET and

HTTP POST. More complex information can therefore be conveyed.

Page 27

SOAP uses HTTP as its underlying transport protocol. The use of the Hyper Text

Transfer Protocol (HTTP) or the secure version HTTPS has the advantage of making

communication easier to implement. This is a result of the fact that HTTP uses port

80 to communicate. This is the port used by most web browsers and is therefore left

open in firewalls to allow access. The same is true for HTTPS which uses port 443.

Individual ports therefore do not have to be configured by systems administrators to

allow communication.

3.7 XML Web Services

An XML Web Service is a new technology, implemented in the Microsoft .NET

framework, that allows access to software components on different machines across

a network using standard web protocols and the XML data format (Thai & Lam

2003). They are similar in function to the DCOM technology described above with

the exception that standard web protocols are used rather than the proprietary

protocols used in DCOM. HTTP is the primary protocol used and this is

implemented by utilising the SOAP protocol.

Web services can be consumed by any application that understands how to parse an

XML-formatted data stream transmitted through a HTTP communications channel

(Thai & Lam 2003). A Web Services Description Language file is posted on the web

server that is hosting the web service. In this file is all the information required to

understand how to interact with the web service. It describes an interface’s method

calls and gives a list of the input and output parameters for the particular calls. This

file can be downloaded by a software developer designing an application to use the

service.

The machine that hosts the web service must have a web server application of some

description running on it. This is because the XML web service runs on top of

HTTP. This web server application can be any program that can process HTTP.

Page 28

Suitable alternatives are programs such as Apache and Microsoft’s Internet

Information Services. Figure 3.5 shows the basic components of an XML Web

Service.

Figure 3.5: An XML .NET Web Service
<www.west-
wind.com/presentations/dotnetwebservices/DotNetWebServicesData.asp >

3.8 Quality of Service of Real-Time Data

A major concern in transmitting real-time data over the Internet is in the quality of

service of the data. Real-time data, by nature, needs to be promptly delivered for it to

remain as real-time. With the unpredictable network loading of large networks,

transmission times cannot always be guaranteed. There are some methods that can be

applied to networks to improve the Quality of Service (QoS) of the real-time data.

The primary goal of these Qos techniques is to provide priority, including dedicated

bandwidth, to improve the loss characteristics and achieve the desired network delay

Page 29

required by the real-time data (Lee, Lee & Lee 2005). These techniques can

generally only be applied to the local area network as they require all nodes to

implement the same technologies in order for the techniques to be effective. This is

not possible on the Internet as most of the nodes are beyond the control of any one

person.

One method of improving the flow of real-time data over an Ethernet network is to

implement a Traffic Smoothing algorithm (Bello, Kaczynski & Mirabella 2005).

This technique is used to guarantee a statistical rather than temporal bound on packet

delivery times. The theory behind this system is that real-time (RT) packets from a

node experience delays due to contention with non-real-time (NRT) packets in the

source node and collision with both RT and NRT packets from other nodes.

To solve this issue and ensure that the network loading is at an acceptable level each

node on the network is assigned a limit on the amount of data that it can transmit at

any one time (Bello, Kaczynski & Mirabella 2005). Each packet to be transmitted

from a node is then marked using the Type of Service field in the IP header as either

RT or NRT. A piece of software called a Traffic Smoother is then used inserted

between the Network and Data Link layers in the OSI model. This traffic smoother

gives priority to the RT traffic. The station will transmit RT traffic first, then will

transmit its NRT traffic if the amount of RT data sent is below the stations limit. In

this way the flow of real-time data is not affected. This technique results in RT

traffic having priority over NRT traffic. It also reduces the number of collisions on

the network because the flow of NRT traffic has been smoothed.

Another approach to improving the flow of real-time data on an Ethernet network is

by the implementation of a Flexible Time-Triggered system as proposed by Pedreiras

Gai, Almeida & Giorgio, 2005. In this system, traffic on the bus is allocated using an

Elementary Cycle (EC). An EC is a fixed duration timeslot during which traffic is

transmitted on the network. At the beginning of the EC, a master node transmits a

trigger message to all nodes on the network. This message is used to synchronise all

Page 30

nodes on the network and tells them when and for how long they can transmit.

During each nodes timeslot it transmits first the RT packets and then NRT packets.

Using this method no collisions occur as each node is guaranteed to be the only node

transmitting at any one time.

It is possible to implement this technique on a network connected to the Internet via

an appropriate gateway (Pedreiras et al. 2005). With FFT all nodes on the network

must comply with the protocol. The use of a gateway that respects this protocol can

allow it to act as a filter for traffic coming into the network. In this way an FFT

optimised network can be integrated easily with other networks.

3.9 Communication Method Selected

After consideration of the information covered in this chapter the communication

method selected for the system developed for this project is an XML Web Service.

This was chosen for a number of reasons. The major reason is that the Web Service

uses HTTP and therefore port 80 to communicate. This port is left open on firewalls,

which therefore means that implementation is easier as ports do not have to be

individually configured by the network administrator. Another important reason is

that the system is easily scalable. The amount of data transmitted at any one time can

be easily increased without much additional programming. This ease of

implementation also extends to easy implementation of security measures such as

HTTPS. Finally, and importantly, XML Web Services are also platform independent.

All of these things add up to make an XML Web Service a good base for this

Internet based SCADA system.

Page 31

3.10 Chapter Summary

There are many considerations in the selection of a communication technique that is

to be used in an Internet based SCADA system. An XML Web Service is a good

choice as it brings with it many features, along with the benefits that come from

using a system that is easy to implement.

Page 32

Chapter 4

Design Methodology

4.1 Overview

There are a number of key issues that must be addressed in the design of an Internet

based SCADA system. Some of these issues can be addressed by the choice of

programming language and data communications technique, while others must be

dealt with in the consideration of the system design and integration.

4.2 Programming Language Considerations

The choice of programming language is instrumental in allowing the proposed

SCADA system to be developed efficiently and effectively. The language selected

must provide the necessary features needed to implement the desired

communications protocols. It must also be easy to learn and relatively easy to

program with. These last two requirements stem from a lack of programming

experience with any language beyond Matlab and basic C programming. The

languages C, C++, Java and Visual Basic .NET were considered because it was

Page 33

believed that these languages could be used to implement the desired

communications. These languages also have vast amounts of reference information

readily available to aid the software developer.

4.3 Programming in C

The C language was created in 1972 by Dennis Ritchie at the Bell Telephone

Laboratories (Jones & Aitken 2003). It was originally created to allow the design of

the Unix operating system. C is considered to be a procedural language.

 C is a powerful and flexible language (Jones & Aitken 2003). It is also modular and

fairly portable. These factors have led to C being a very popular language. With C

the source code is first compiled in to an object file, then linked to create an

executable.

4.4 Programming in C++

C++ is a superset of the C language (Jones & Aitken 2003). It is a high-level object-

oriented programming language. Object-oriented programming is a fast and efficient

way to write software (Snaith 1999). It treats both data and code as a single entity

called a class. The advantages of C++ are basically the same as for C with the

addition of object-oriented programming.

4.5 Programming in Java

Another object-oriented language is Java. This language was originally conceived by

a company called Sun Microsystems as a way to program a device called Star7 that

could control household appliances. A Java program is independent of the

architecture of the machine on which it is running because the Java bytecode runs in

Page 34

a runtime environment called the Java Virtual Machine (JVM) (Keogh 2004). It is

also a robust language and is designed for networked computing.

4.6 The .NET Framework

The .NET framework is a development framework that provides a programming

interface to Windows services and APIs (Thai & Lam 2003). It is a relatively recent

development by Microsoft with the version 1.1 being released in April 2003. The

.NET framework encompasses 15 languages.

The .NET Framework sits on top of the Windows operating system (Thai & Lam

2003). The most important feature of the framework is its Common Language

Runtime (CLR). This can be thought of as similar to the Java Virtual Machine.

Intermediate Language Code that is written in a .NET language is compiled at

runtime by a Just-in-Time compiler.

The main advantage of the .NET framework is that it allows for easy implementation

of Web Services. It was designed from the ground up with networking in mind, with

XML Web Services and Distributed Applications development being a couple of its

main selling points. Through the use of Web Services it allows distributed

applications to be developed without the problems associated with the older DCOM

technology described previously (Thai & Lam 2003).

4.7 Programming Language Selection

The language selected to implement this system is Visual Basic .NET. This language

was chosen in order to take advantage of the benefits provided by the .NET

framework. It also has a large amount of reference material available to aid program

development. Unlike the other languages, this language is designed to allow the

programmer to concentrate on program functionality rather than the details of

Page 35

network connection implementation. This is a huge benefit to the inexperienced

programmer. The Integrated Development Environment used to write the Visual

Basic .NET code is Visual Studio .NET 2003 and is shown in Figure 4.1.

Figure 4.1: The Visual Studio .NET IDE

4.8 System Design Alternatives

In order to implement the proposed system there are a number of alternative designs

that can be used. These designs each have there strong and weak points with respect

to the issues identified and the resources available for program testing.

The first design considered consists of a windows client application polling a Web

Service for data at a fixed interval. The Web Service extracts the required data from

a database, which is continually updated with data from the control system. This

system has the advantage that it is easy to implement and can be tested with the

resources available. The disadvantage is that the system does not make efficient use

Page 36

of the available communication bandwidth. The most efficient way to transfer the

control system data is to do it on an exception report basis (Bailey 1990). This means

that only the data that has changed since the last update is sent rather than the entire

database. This is not easy to implement with the request/response architecture of the

Web Service. The client can also send information to the server using the same

technique to allow commands to be issued to the control system.

An improvement on this system is one in which two web servers are utilised. One

web server is on the client side and one on the server side conceptually. When the

client first starts it sends a start message to the server to indicate that it wishes to

establish a connection. The server then starts a thread dedicated to that client. When

data changes in the database, updates can be sent to the Web Service running on the

client. Similarly, control commands can be sent to the Web Service on the server as

per the previous design. This system has the advantage that full duplex

communication is established using Web Services, while reducing the use of

communication bandwidth through the implementation of an exception reporting

system. The disadvantage of this system with respect to this project is that it requires

two computers set up as Web Servers to test the design. These resources are not

available.

4.10 Chapter Summary

The resolution of the main issues in the design of an Internet based SCADA system

is accomplished by careful selection of programming language and appropriate

communication technologies. While not all practical issues can be resolved, an

appropriate compromise can be reached which provides the required functionality

while avoiding most of the problems.

Page 37

Chapter 5

System Development and Implementation

5.1 Overall Description

The system design is based around the first proposed design of the previous chapter.

A client/server architecture is adopted with a Windows application used as the client

of the system. This client polls an XML Web Service running on the server at fixed

intervals to obtain the required data from the control system. Both client application

and the web service are written in Visual Basic .NET. The machine used as a server

is running Windows 2000, therefore Internet Information Services is used as the web

server software for the web service to run on. A Microsoft Access database is used as

the control system data storage method on the server. This is to allow easy

simulation of the system.

5.2 Client-Server Interoperability

The purpose of a web service is to provide access to software components on another

machine across a network using a common communication protocol (Thai & Lam

2003). In this way distributed applications can be developed. Basically, a web

Page 38

service is a means of allowing an application to access an object on another machine

and call its methods as if it were a local object. This function is invisible to the client

application. The description of how the web service methods should be called and

used is contained in a file known as the Web Services Description Language file.

This file can be obtained from the web server hosting the service.

5.3 Server Program Function

The web service that comprises the server side of the system has two basic functions.

The first is to accept requests from clients on HTTP port 80 and to provide the

requested data in XML format. The second function is to connect to the control

system database to retrieve the required data for the request. The program listing is

contained in Appendix B.

The program begins by creating a namespace (http://Lynchy/JMLScada/PlantData).

Part of the namespace contains the name of the server computer, which is in this case

called Lynchy. This namespace is a way of creating a hierarchical structure of

classes so that the programmer does not have to be concerned that the name of a

class that he creates will clash with another class. The web service is then initialized.

The code is shown below.

 'This code creates an instance of the Web Service.
<System.Web.Services.WebService(Namespace:="http://Lynchy/JMLScada/P
lantData/", _
Description:="Live Plant Data")> _
Public Class Plant
 Inherits System.Web.Services.WebService

#Region " Web Services Designer Code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Web Services Designer.
 InitializeComponent()

 End Sub

Page 39

 'Required by the Web Services Designer
 Private components As System.ComponentModel.IContainer
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()

 End Sub

The next piece of code declares a function called GetDataSet which is called by the

Web Method of this web service. The GetDataSet function is passed an SQL query

as a string by the Web Method that called it. On completion it returns a dataset

containing the required data. The first step in this function is to connect to the

Microsoft Access database called TestDB which was created for this project to hold

the control system data. This connection is set up by the following code.

 'Create a connection to the Microsoft Access Database
 Dim PlantConnection As New OleDb.OleDbConnection("Jet
OLEDB:Global Partial Bulk Ops=2;Jet OLEDB:Registry Path=;Jet
OLEDB:Database L" & _
 "ocking Mode=1;Jet OLEDB:Database Password=;Data
Source=""C:\Documents and Setting" & _
 "s\jason\My Documents\Project\TestDB.mdb"";Password=;Jet
OLEDB:Engine Type=5;Jet O" & _
 "LEDB:Global Bulk
Transactions=1;Provider=""Microsoft.Jet.OLEDB.4.0"";Jet OLEDB:Sys" &
_
 "tem database=;Jet OLEDB:SFP=False;Extended
Properties=;Mode=Share Deny None;Jet " & _
 "OLEDB:New Database Password=;Jet OLEDB:Create System
Database=False;Jet OLEDB:Do" & _
 "n't Copy Locale on Compact=False;Jet OLEDB:Compact Without
Replica Repair=False;" & _
 "User ID=Admin;Jet OLEDB:Encrypt Database=False")

The SQL query passed to the function is then passed to a database command object

and the connection to the database is opened. Following that a data adapter is

declared and the SQL command passed to it. A data adapter uses the established

connection to the database to execute the SQL query passed to it. This code is shown

below.

'Create the command object and pass it the SQL string.
 Dim PlantRS As New OleDb.OleDbCommand(strSQL,
PlantConnection)

 PlantConnection.Open()

Page 40

 'Create the DataAdapter
 Dim PlantDataAdapter As New OleDb.OleDbDataAdapter
 PlantDataAdapter.SelectCommand = PlantRS

Next a dataset is declared and populated with the results of the data adapter query. A

dataset is a memory resident representation of a database that is disconnected from it

(Thai & Lam 2003). This dataset can be represented in XML format and is the data

returned to the client application that requested it. The file PlantData1.vb in

Appendix B is source code auto generated by Visual Studio .NET to set up the

structure of the dataset. This structure is described in the file PlantData1.xsd, also in

Appendix B. An XSD file is an XML Schema Description file that describes how an

XML file is structured. The function finishes by closing the connection to the

database and returning the dataset to the web service. The following code shows this

step.

 'Populate the DataSet and close the connection

 Dim PlantDataSet As New DataSet
 PlantDataAdapter.Fill(PlantDataSet, "Data")
 PlantConnection.Close()

 'Return the DataSet
 Return PlantDataSet
 End Function

Once the dataset has been passed to the web service, the web service returns the

dataset to the client in XML format. The SQL query used in this simple system is a

SELECT query that selects all the data from the “Data” table in the specified

database. The WebMethod that is called by the client application has the simple

structure shown below.

'This Web Method returns the data from the database to the
 'client application
 <WebMethod()> Public Function GetPlantData() As DataSet
 Return GetDataSet("SELECT * FROM Data")
 End Function

As can be seen, the value of using Visual Basic .NET is in the simplicity of the code.

Most of the underlying complexities are taken care of by the .NET framework,

Page 41

leaving the programmer to concentrate on the functionality of the program rather

than the details of the language.

5.4 Client Program Function

The client program written to test this system is a simple Windows form. Its basic

function is to poll the web service at a fixed interval to obtain the control system

data. This interval can be input by the user. The form contains a datagrid and a

textbox control. A datagrid is a display control used to display data from a dataset. A

textbox control is a control used to accept text. In this case the datagrid displays the

data acquired from the web service while the text box accepts a user input for the

update time of the data from the web service. The application window is shown in

Figure 5.1.

Figure 5.1: The Client Application Window

Page 42

A program listing for the client is contained in Appendix C in the file Main.vb. The

client application begins by initialising the form then declaring the controls required

on the form. These controls include the datagrid and textbox as well as a label to

identify the text box and a timer to implement polling of the web service. After being

declared these controls are added to the form.

After this initialisation the form is loaded and a local representation of the class of

the web service called lynchy.Plant is declared. This local class that is connected to

the web service is called LocalData. The GetPlantData() method of this class is then

called once to obtain the initial data values from the Web Service and store them in a

dataset called LocalDS. As can be seen from the code below, the application calls

this method as if it were calling a method of a class on the local machine. The

polling timer is then set with an initial value of one second.

 'The following code initialises the form at startup
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Dim LocalData As lynchy.Plant = New lynchy.Plant
 Dim LocalDS As DataSet = LocalData.GetPlantData()
 DataGrid1.DataSource = LocalDS.Tables("Data").DefaultView
 Timer1.Interval = 1000

 End Sub

The program then simply executes a loop which checks the value the user has

entered in the textbox and uses this as the time interval for the loop. If the timer is set

at a value less than one second the program ignores this and continues polling at one

second intervals. This minimum polling interval was put in place to prevent

excessive network traffic. At the end of each time interval the GetPlantData()

method of the LocalData class is called to update the datagrid with fresh data from

the web service. If an error occurs at some point during this process and the method

call is not completed, the exception thrown by this error is reset and the web service

is polled again at the end of the next time interval. The code contained in this timer

loop is shown below.

Page 43

 'This code calls the Web Service after the timer interval has
 'elapsed.
 Private Sub Timer1_Elapsed(ByVal sender As System.Object, ByVal
e As System.Timers.ElapsedEventArgs) Handles Timer1.Elapsed
 If TextBox1.Text > 1000 Then
 Timer1.Interval = TextBox1.Text
 Else : Timer1.Interval = 1000
 End If
 'This code calls the Web Method on the Web Service
 Dim LocalData As lynchy.Plant = New lynchy.Plant
 Dim LocalDS As DataSet = LocalData.GetPlantData()
 'On an error the exception thrown is disabled so that
 'the program can retry
 On Error GoTo -1
 'The DataGrid is updated with the new values
 DataGrid1.DataSource = LocalDS.Tables("Data").DefaultView
 End Sub

The client application continues to poll the web service until it is closed. It should be

noted that the reference to the web service is created automatically by parameters

entered into a wizard in Visual Studio .NET. The source code for this reference is

given in Appendix C in the file Reference.vb. This reference is created from the Web

Service Description Language file downloaded from the web server hosting the web

service. The PlantData.wsdl file for the web service designed in this project is also

included in Appendix C.

5.5 Testing Process

The testing process involved three stages. The first stage was to test the server by

accessing the service through a web browser. The Visual Studio software used for

development permits this for a user on the local machine only. This test returns data

from the database in XML format and displays the text in the browser window. This

stage of testing allowed simple bugs in the server software to be worked out before

more complicated interactions with the client application compounded any errors.

The second stage of testing involved running the client application on the same

machine as the server. This test proved that the client and server software could

communicate properly without the complications introduced by a network. The test

Page 44

was conducted by starting the client application, then changing values in the database

using Microsoft Access. These changes were seen in the client application.

The final stage involved testing the complete system across a network. The test was

conducted as before with changes made to the database using Microsoft Access. The

client application was run on a Windows 98 machine initially, then later a Windows

XP machine was used. Although some problems were encountered during the tests,

these were resolved and effective communication was established between the client

application and the web service.

5.6 Problems Encountered

Two noteworthy problems were encountered during the testing and development

process. These issues were both resolved, though the second issue proved to be quite

difficult to find a solution for.

The first problem was encountered during the second stage of testing. The client

application was found to hang occasionally with an error message given that stated

that an error had occurred. No description of the error was given. This problem was

found to be a result of insufficient error handling for the case that communication

between the client and server failed. Code was implemented that forced the system to

retry until a connection was made. This fixed the problem of the software stalls.

The second problem occurred during the third stage of testing. The client program

was run on a Windows 98 Machine and the server program was set up on the

development machine that runs Windows 2000. The two computers were connected

via a switched Ethernet network. When the client application was executed it would

access the web service once but would not continue to update. The program did not

appear to hang and did not give an error messages. A detailed investigation was

conducted of both the program structure and of the known operating bugs of the

Page 45

.NET Framework. Neither of these revealed any answers. It was eventually decided

to try the software on a later model machine capable of running Windows XP. This

trial proved successful with no modification of the original software.

The solution to the issue caused by the failure of the software to run on the Windows

98 machine was not resolved. The same version of the .NET framework was used on

both machines and all documentation that could be found indicated that the .NET

framework was suitable to run on Windows 98.

5.7 Chapter Summary

The system developed is based around a Windows console application that polls an

XML Web Service at a fixed interval. The web service connects to an Access

database and returns the data to the client application. The client application then

displays the data.

Page 46

Chapter 6

Conclusions and Recommendations for Future Work

6.1 Achievement of Objectives

This project sought to design the communications backbone of an Internet based

SCADA system for use in transferring real-time data from industrial controllers to

clients across a network. This system was developed and proved to meet the

requirements of a flexible and scalable system suitable for widespread

implementation.

Each of the objectives defined in Chapter 1 have been addressed. Comprehensive

research was conducted into SCADA systems to determine the key functionalities

required for such a system. These functions were identified with respect to their

impact on the requirements of the system and were considered in its design.

Current Web-based implementations of SCADA systems were investigated. The

strengths and weaknesses of each of these systems were examined in order to avoid

the same pitfalls with the implementation designed for this project. The main issues

identified were the unpredictable nature of network traffic on the Internet, security of

data, scalability of the system and ease of implementation.

Page 47

Different methods of communicating data across the Internet were examined in

Chapter 3. The OSI model for open communication networks was presented. This

was used to explain the purpose of different protocols in a communication system. A

comparison of older technologies with newer ones was also conducted to identify

how older networking issues had been resolved and to identify the perceived benefits

of these new technologies. An XML Web Service was chosen as the most suitable

alternative.

The system was then designed and implemented. The system designed allowed live

data in a database to be transferred to a client across a network. This was tested by

simulation using Microsoft Access to change values in the database.

The Internet based SCADA system designed provides a flexible and scalable

solution to the problem of transferring data from an industrial control system using

open Internet protocols. It has the ability to be modified quite easily to solve some of

the more difficult issues that still require resolution. These are issues such as security

and Quality of Service of the real-time data.

6.2 Future Work

This project has covered only a small portion of the design of a fully functional

Internet based SCADA system. There are several areas where future work should be

conducted to improve the functionality of the system. Several of these areas have

been identified in previous chapters.

One important area that requires further work is the area of security. This is a major

concern for industry and business in general. An Internet based SCADA system will

require a relatively impenetrable security system before it is widely accepted.

Page 48

The implementation of a Quality of Service system to improve the flow of real-time

traffic across a network that is shared with non-real-time traffic is also an area that

should be researched further. Some systems were briefly examined in this project but

their implementation was beyond the scope of the project. These systems will

improve the functionality of Web-based SCADA immensely and help increase its

performance.

The implementation of ASP.NET web pages that can access the web service

developed here would also be beneficial. By using these web pages to access the data

rather than a dedicated client application, the SCADA graphics could be viewed in a

standard web browser.

There also exists scope for this system to be developed further to allow mobile

devices to access the web service. This would involve investigation into the

implementation of technologies such as ASP.NET mobile controls on the web

service. By implementing these controls devices such as web enabled mobile phones

would be able to readily access the data, giving true remote access in every sense of

the word.

Page 49

References

Bailey, 1990, Bailey Infi-90 Open – An Overview

Bailey, 1994, Bailey semAPI Manual

Bello, LL, Kaczynski, GA & Mirabella, O 2005, ‘Improving the Real-Time
Behaviour of Ethernet Networks Using Traffic Smoothing’, IEEE Transactions on
Industrial Informatics, Vol. 1, No. 3, August.

Bentek Systems, (n.d.), Internet and Web-based SCADA, viewed on 15 October
2005, <www.scadalink.com/technotesIP.htm>

e-scada.com, 2002, viewed on 15 October 2005, <www.e-scada.com/why.html>

HowStuffWorks, 2005, How OSI Works, viewed on ,
<http://computer.howstuffworks.com/osi1.htm>

Industrial Control Links, 2002, viewed on 15 October 2005. <www.iclinks.com>

Jones, BL & Aitken, P 2003, Teach Yourself C in 21 Days, 6th edn., Sams
Publishing, USA.

Keogh, J, 2004, Java Demystified, McGraw-Hill, Emeryville, California.

Lee, KC, Lee, S & Lee, MH 2005, ‘QoS-Based Remote Control of Networked
Control Systems Via Profibus Token Passing Protocol’, IEEE Transactions of
Industrial Informatics, Vol. 1, No. 3, August.

Luo, RC & Chen, TM 2000, ‘Development of a Multibehaviour-Based Mobile Robot
for Remote Supervisory Control Through the Internet’, IEEE/ASME Transactions on
Mechatronics, Vol. 5, No. 4, December.

McClanahan, R,H 2003, ‘SCADA AND IP: Is Network Convergence Really Here?’,
IEEE Industry Applications Magazine, March/April.

Page 50

http://www.scadalink.com/technotesIP.htm
http://www.e-scada.com/why.html
http://www.iclinks.com/

Makitron, 2005, (n.d.), viewed on 15 October 2005, <www.makitron.com/tutorial>

Nolte, T, Nolin, M & Hansson, HA 2005, ‘Real-Time Server-Based Communication
With CAN’, IEEE Transactions of Industrial Informatics, Vol. 1, No. 3, August.

Pedreiras, P, Gai, P, Almeida, L & Buttazzo, GC 2005, ‘FTT-Ethernet: A Flexible
Real-Time Communication Protocol That Supports Dynamic QoS Management on
Ethernet-Based Systems’, IEEE Transactions of Industrial Informatics, Vol. 1, No.
3, August.

Qiu, B & Gooi, HB 2000, ‘Web-Based SCADA Display Systems (WSDS) for
Access via Internet’, IEEE Transactions on Power Systems, Vol. 15, No. 2, May.

Qiu, B, Hoay, BG, Yilu, L & Eng KC 2002, ‘Internet-Based SCADA Display
System’, IEEE Computer Applications in Power, January.

RAD Data Communications, 2003, viewed on 15 October 2005, The Seven Layers
Model, <http://www.rad2.com/networks/1994/osi/layers.htm>

Snaith, P 1999, The Complete Idiots Guide to C++, Que Corporation, USA.

Thai, T & Lam, HQ 2003, .NET Framework Essentials, 3rd edn., O’Reilly &
Associates, Sebastopol, California.

Tech Target, 2004, viewed on 15 October 2005, <http://whatis.techtarget.com>

Webopedia, 2005, viewed on 15 October 2005,
<www.webopedia.com/TERM/D/DCOM.html>

Webopedia, 2005, viewed on 15 October 2005,
<www.webopedia.com/TERM/C/Component_Object_Model.html>

Webopedia, 2005, viewed on 15 October 2005,
<www.webopedia.com/R/RPC.html>

<www.west-
wind.com/presentations/dotnetwebservices/DotNetWebServicesData.asp>, viewed
on 18 August 2005.

Wikipedia, 2005, viewed on 15 October 2005, HyperText Transfer Protocol,
<http://en.wikipedia.org/wiki/HTTP>

Page 51

http://www.makitron.com/tutorial

Appendix A

Project Specification

Page 52

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project

PROJECT SPECIFICATION

FOR: Jason Michael Lynch
TOPIC: AN INTERNET BASED SCADA SYSTEM
SUPERVISOR: Dr Peng (Paul) Wen

PROJECT AIM: To design a Supervisory Control And Data Acquisition system

that enables a piece of plant to be remotely monitored and
controlled via the Internet.

PROGRAMME: Issue A, 21 March 2005

1. Research existing SCADA systems to determine their key components and
functions.

2. Investigate current Web-based implementations of SCADA systems.

3. Investigate different methods of communicating data across the Internet.

4. Design a system to allow a local server connected to a PLC to communicate

data to a remote server across the Internet.

5. Implement and test the system by simulation.

As time permits:

6. Test the system under real conditions with PLC hardware.

AGREED:

____________________ (Student) ____________________ (Supervisor)

 ___/___/___ ___/___/___

Page 53

Appendix B

Server Program Listing

Page 54

PlantData.asmx.vb

Imports System
Imports System.Data
Imports System.Data.OleDb
Imports System.Web.Services

'This code creates an instance of the Web Service.
<System.Web.Services.WebService(Namespace:="http://Lynchy/JMLScada/P
lantData/", _
Description:="Live Plant Data")> _
Public Class Plant
 Inherits System.Web.Services.WebService

#Region " Web Services Designer Code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Web Services Designer.
 InitializeComponent()

 End Sub

 'Required by the Web Services Designer
 Private components As System.ComponentModel.IContainer
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()

 End Sub

 Protected Overloads Overrides Sub Dispose(ByVal disposing As
Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

#End Region

'This function retrieves the data from the database and returns it
'as a dataset.
 Private Function GetDataSet(ByVal strSQL As String) As DataSet

 'Create a connection to the Microsoft Access Database
 Dim PlantConnection As New OleDb.OleDbConnection("Jet
OLEDB:Global Partial Bulk Ops=2;Jet OLEDB:Registry Path=;Jet
OLEDB:Database L" & _
 "ocking Mode=1;Jet OLEDB:Database Password=;Data
Source=""C:\Documents and Setting" & _
 "s\jason\My Documents\Project\TestDB.mdb"";Password=;Jet
OLEDB:Engine Type=5;Jet O" & _

Page 55

 "LEDB:Global Bulk
Transactions=1;Provider=""Microsoft.Jet.OLEDB.4.0"";Jet OLEDB:Sys" &
_
 "tem database=;Jet OLEDB:SFP=False;Extended
Properties=;Mode=Share Deny None;Jet " & _
 "OLEDB:New Database Password=;Jet OLEDB:Create System
Database=False;Jet OLEDB:Do" & _
 "n't Copy Locale on Compact=False;Jet OLEDB:Compact Without
Replica Repair=False;" & _
 "User ID=Admin;Jet OLEDB:Encrypt Database=False")

 'Create the command object and pass it the SQL string.
 Dim PlantRS As New OleDb.OleDbCommand(strSQL,
PlantConnection)

 PlantConnection.Open()

 'Create the DataAdapter
 Dim PlantDataAdapter As New OleDb.OleDbDataAdapter
 PlantDataAdapter.SelectCommand = PlantRS

 'Populate the DataSet and close the connection
 Dim PlantDataSet As New DataSet
 PlantDataAdapter.Fill(PlantDataSet, "Data")
 PlantConnection.Close()

 'Return the DataSet
 Return PlantDataSet
 End Function

 'This Web Method returns the data from the database to the
 'client application
 <WebMethod()> Public Function GetPlantData() As DataSet
 Return GetDataSet("SELECT * FROM Data")
 End Function

End Class

Page 56

PlantData1.vb

'---

' <autogenerated>
' This code was generated by a tool.
' Runtime Version: 1.1.4322.2032
'
' Changes to this file may cause incorrect behavior and will be
' lost if the code is regenerated.
' </autogenerated>
'---

Option Strict Off
Option Explicit On

Imports System
Imports System.Data
Imports System.Runtime.Serialization
Imports System.Xml

<Serializable(), _
 System.ComponentModel.DesignerCategoryAttribute("code"), _
 System.Diagnostics.DebuggerStepThrough(), _
 System.ComponentModel.ToolboxItem(true)> _
Public Class PlantData1
 Inherits DataSet

 Private tableData As DataDataTable

 Public Sub New()
 MyBase.New
 Me.InitClass
 Dim schemaChangedHandler As
System.ComponentModel.CollectionChangeEventHandler = AddressOf
Me.SchemaChanged
 AddHandler Me.Tables.CollectionChanged, schemaChangedHandler
 AddHandler Me.Relations.CollectionChanged,
schemaChangedHandler
 End Sub

 Protected Sub New(ByVal info As SerializationInfo, ByVal context
As StreamingContext)
 MyBase.New
 Dim strSchema As String = CType(info.GetValue("XmlSchema",
GetType(System.String)),String)
 If (Not (strSchema) Is Nothing) Then
 Dim ds As DataSet = New DataSet
 ds.ReadXmlSchema(New XmlTextReader(New
System.IO.StringReader(strSchema)))
 If (Not (ds.Tables("Data")) Is Nothing) Then
 Me.Tables.Add(New DataDataTable(ds.Tables("Data")))
 End If
 Me.DataSetName = ds.DataSetName

Page 57

 Me.Prefix = ds.Prefix
 Me.Namespace = ds.Namespace
 Me.Locale = ds.Locale
 Me.CaseSensitive = ds.CaseSensitive
 Me.EnforceConstraints = ds.EnforceConstraints
 Me.Merge(ds, false, System.Data.MissingSchemaAction.Add)
 Me.InitVars
 Else
 Me.InitClass
 End If
 Me.GetSerializationData(info, context)
 Dim schemaChangedHandler As
System.ComponentModel.CollectionChangeEventHandler = AddressOf
Me.SchemaChanged
 AddHandler Me.Tables.CollectionChanged, schemaChangedHandler
 AddHandler Me.Relations.CollectionChanged,
schemaChangedHandler
 End Sub

 <System.ComponentModel.Browsable(false), _

System.ComponentModel.DesignerSerializationVisibilityAttribute(Syste
m.ComponentModel.DesignerSerializationVisibility.Content)> _
 Public ReadOnly Property Data As DataDataTable
 Get
 Return Me.tableData
 End Get
 End Property

 Public Overrides Function Clone() As DataSet
 Dim cln As PlantData1 = CType(MyBase.Clone,PlantData1)
 cln.InitVars
 Return cln
 End Function

 Protected Overrides Function ShouldSerializeTables() As Boolean
 Return false
 End Function

 Protected Overrides Function ShouldSerializeRelations() As
Boolean
 Return false
 End Function

 Protected Overrides Sub ReadXmlSerializable(ByVal reader As
XmlReader)
 Me.Reset
 Dim ds As DataSet = New DataSet
 ds.ReadXml(reader)
 If (Not (ds.Tables("Data")) Is Nothing) Then
 Me.Tables.Add(New DataDataTable(ds.Tables("Data")))
 End If
 Me.DataSetName = ds.DataSetName
 Me.Prefix = ds.Prefix
 Me.Namespace = ds.Namespace
 Me.Locale = ds.Locale
 Me.CaseSensitive = ds.CaseSensitive

Page 58

 Me.EnforceConstraints = ds.EnforceConstraints
 Me.Merge(ds, false, System.Data.MissingSchemaAction.Add)
 Me.InitVars
 End Sub

 Protected Overrides Function GetSchemaSerializable() As
System.Xml.Schema.XmlSchema
 Dim stream As System.IO.MemoryStream = New
System.IO.MemoryStream
 Me.WriteXmlSchema(New XmlTextWriter(stream, Nothing))
 stream.Position = 0
 Return System.Xml.Schema.XmlSchema.Read(New
XmlTextReader(stream), Nothing)
 End Function

 Friend Sub InitVars()
 Me.tableData = CType(Me.Tables("Data"),DataDataTable)
 If (Not (Me.tableData) Is Nothing) Then
 Me.tableData.InitVars
 End If
 End Sub

 Private Sub InitClass()
 Me.DataSetName = "PlantData1"
 Me.Prefix = ""
 Me.Namespace = "http://www.tempuri.org/PlantData1.xsd"
 Me.Locale = New System.Globalization.CultureInfo("en-AU")
 Me.CaseSensitive = false
 Me.EnforceConstraints = true
 Me.tableData = New DataDataTable
 Me.Tables.Add(Me.tableData)
 End Sub

 Private Function ShouldSerializeData() As Boolean
 Return false
 End Function

 Private Sub SchemaChanged(ByVal sender As Object, ByVal e As
System.ComponentModel.CollectionChangeEventArgs)
 If (e.Action =
System.ComponentModel.CollectionChangeAction.Remove) Then
 Me.InitVars
 End If
 End Sub

 Public Delegate Sub DataRowChangeEventHandler(ByVal sender As
Object, ByVal e As DataRowChangeEvent)

 <System.Diagnostics.DebuggerStepThrough()> _
 Public Class DataDataTable
 Inherits DataTable
 Implements System.Collections.IEnumerable

 Private columnTagname As DataColumn

 Private columnValue As DataColumn

Page 59

 Friend Sub New()
 MyBase.New("Data")
 Me.InitClass
 End Sub

 Friend Sub New(ByVal table As DataTable)
 MyBase.New(table.TableName)
 If (table.CaseSensitive _u62 ?
table.DataSet.CaseSensitive) Then
 Me.CaseSensitive = table.CaseSensitive
 End If
 If (table.Locale.ToString <>
table.DataSet.Locale.ToString) Then
 Me.Locale = table.Locale
 End If
 If (table.Namespace <> table.DataSet.Namespace) Then
 Me.Namespace = table.Namespace
 End If
 Me.Prefix = table.Prefix
 Me.MinimumCapacity = table.MinimumCapacity
 Me.DisplayExpression = table.DisplayExpression
 End Sub

 <System.ComponentModel.Browsable(false)> _
 Public ReadOnly Property Count As Integer
 Get
 Return Me.Rows.Count
 End Get
 End Property

 Friend ReadOnly Property TagnameColumn As DataColumn
 Get
 Return Me.columnTagname
 End Get
 End Property

 Friend ReadOnly Property ValueColumn As DataColumn
 Get
 Return Me.columnValue
 End Get
 End Property

 Public Default ReadOnly Property Item(ByVal index As
Integer) As DataRow
 Get
 Return CType(Me.Rows(index),DataRow)
 End Get
 End Property

 Public Event DataRowChanged As DataRowChangeEventHandler

 Public Event DataRowChanging As DataRowChangeEventHandler

 Public Event DataRowDeleted As DataRowChangeEventHandler

 Public Event DataRowDeleting As DataRowChangeEventHandler

Page 60

 Public Overloads Sub AddDataRow(ByVal row As DataRow)
 Me.Rows.Add(row)
 End Sub

 Public Overloads Function AddDataRow(ByVal Tagname As
String, ByVal Value As Integer) As DataRow
 Dim rowDataRow As DataRow = CType(Me.NewRow,DataRow)
 rowDataRow.ItemArray = New Object() {Tagname, Value}
 Me.Rows.Add(rowDataRow)
 Return rowDataRow
 End Function

 Public Function FindByTagname(ByVal Tagname As String) As
DataRow
 Return CType(Me.Rows.Find(New Object()
{Tagname}),DataRow)
 End Function

 Public Function GetEnumerator() As
System.Collections.IEnumerator Implements
System.Collections.IEnumerable.GetEnumerator
 Return Me.Rows.GetEnumerator
 End Function

 Public Overrides Function Clone() As DataTable
 Dim cln As DataDataTable =
CType(MyBase.Clone,DataDataTable)
 cln.InitVars
 Return cln
 End Function

 Protected Overrides Function CreateInstance() As DataTable
 Return New DataDataTable
 End Function

 Friend Sub InitVars()
 Me.columnTagname = Me.Columns("Tagname")
 Me.columnValue = Me.Columns("Value")
 End Sub

 Private Sub InitClass()
 Me.columnTagname = New DataColumn("Tagname",
GetType(System.String), Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnTagname)
 Me.columnValue = New DataColumn("Value",
GetType(System.Int32), Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnValue)
 Me.Constraints.Add(New UniqueConstraint("Constraint1",
New DataColumn() {Me.columnTagname}, true))
 Me.columnTagname.AllowDBNull = false
 Me.columnTagname.Unique = true
 End Sub

 Public Function NewDataRow() As DataRow
 Return CType(Me.NewRow,DataRow)
 End Function

Page 61

 Protected Overrides Function NewRowFromBuilder(ByVal builder
As DataRowBuilder) As DataRow
 Return New DataRow(builder)
 End Function

 Protected Overrides Function GetRowType() As System.Type
 Return GetType(DataRow)
 End Function

 Protected Overrides Sub OnRowChanged(ByVal e As
DataRowChangeEventArgs)
 MyBase.OnRowChanged(e)
 If (Not (Me.DataRowChangedEvent) Is Nothing) Then
 RaiseEvent DataRowChanged(Me, New
DataRowChangeEvent(CType(e.Row,DataRow), e.Action))
 End If
 End Sub

 Protected Overrides Sub OnRowChanging(ByVal e As
DataRowChangeEventArgs)
 MyBase.OnRowChanging(e)
 If (Not (Me.DataRowChangingEvent) Is Nothing) Then
 RaiseEvent DataRowChanging(Me, New
DataRowChangeEvent(CType(e.Row,DataRow), e.Action))
 End If
 End Sub

 Protected Overrides Sub OnRowDeleted(ByVal e As
DataRowChangeEventArgs)
 MyBase.OnRowDeleted(e)
 If (Not (Me.DataRowDeletedEvent) Is Nothing) Then
 RaiseEvent DataRowDeleted(Me, New
DataRowChangeEvent(CType(e.Row,DataRow), e.Action))
 End If
 End Sub

 Protected Overrides Sub OnRowDeleting(ByVal e As
DataRowChangeEventArgs)
 MyBase.OnRowDeleting(e)
 If (Not (Me.DataRowDeletingEvent) Is Nothing) Then
 RaiseEvent DataRowDeleting(Me, New
DataRowChangeEvent(CType(e.Row,DataRow), e.Action))
 End If
 End Sub

 Public Sub RemoveDataRow(ByVal row As DataRow)
 Me.Rows.Remove(row)
 End Sub
 End Class

 <System.Diagnostics.DebuggerStepThrough()> _
 Public Class DataRow
 Inherits DataRow

 Private tableData As DataDataTable

 Friend Sub New(ByVal rb As DataRowBuilder)

Page 62

 MyBase.New(rb)
 Me.tableData = CType(Me.Table,DataDataTable)
 End Sub

 Public Property Tagname As String
 Get
 Return CType(Me(Me.tableData.TagnameColumn),String)
 End Get
 Set
 Me(Me.tableData.TagnameColumn) = value
 End Set
 End Property

 Public Property Value As Integer
 Get
 Try
 Return
CType(Me(Me.tableData.ValueColumn),Integer)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot_u103 ?et
value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableData.ValueColumn) = value
 End Set
 End Property

 Public Function IsValueNull() As Boolean
 Return Me.IsNull(Me.tableData.ValueColumn)
 End Function

 Public Sub SetValueNull()
 Me(Me.tableData.ValueColumn) = System.Convert.DBNull
 End Sub
 End Class

 <System.Diagnostics.DebuggerStepThrough()> _
 Public Class DataRowChangeEvent
 Inherits EventArgs

 Private eventRow As DataRow

 Private eventAction As DataRowAction

 Public Sub New(ByVal row As DataRow, ByVal action As
DataRowAction)
 MyBase.New
 Me.eventRow = row
 Me.eventAction = action
 End Sub

 Public ReadOnly Property Row As DataRow
 Get
 Return Me.eventRow
 End Get
 End Property

Page 63

 Public ReadOnly Property Action As DataRowAction
 Get
 Return Me.eventAction
 End Get
 End Property
 End Class
End Class

Page 64

PlantData1.xsd

<?xml version="1.0" standalone="yes"?>
<xs:schema id="PlantData1"
targetNamespace="http://www.tempuri.org/PlantData1.xsd"
xmlns:mstns="http://www.tempuri.org/PlantData1.xsd"
xmlns="http://www.tempuri.org/PlantData1.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:element name="PlantData1" msdata:IsDataSet="true"
msdata:Locale="en-AU">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Tagname" type="xs:string" />
 <xs:element name="Value" type="xs:int" minOccurs="0"
/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="Constraint1" msdata:PrimaryKey="true">
 <xs:selector xpath=".//mstns:Data" />
 <xs:field xpath="mstns:Tagname" />
 </xs:unique>
 </xs:element>
</xs:schema>

Page 65

Appendix C

Client Program Listing

Page 66

Main.vb

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Data
Imports System.Timers
Imports System.Web.Services
Imports JMLScadaClient.lynchy

Public Class Main
 Inherits System.Windows.Forms.Form

#Region " Windows Form Designer code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As
Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 Private components As System.ComponentModel.IContainer

 'The following code sets the controls required on the form

 Friend WithEvents DataGrid1 As System.Windows.Forms.DataGrid
 Friend WithEvents Timer1 As System.Timers.Timer
 Friend WithEvents TextBox1 As System.Windows.Forms.TextBox
 Friend WithEvents Label1 As System.Windows.Forms.Label
 <System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
 Me.DataGrid1 = New System.Windows.Forms.DataGrid
 Me.Timer1 = New System.Timers.Timer
 Me.TextBox1 = New System.Windows.Forms.TextBox
 Me.Label1 = New System.Windows.Forms.Label
 CType(Me.DataGrid1,
System.ComponentModel.ISupportInitialize).BeginInit()
 CType(Me.Timer1,
System.ComponentModel.ISupportInitialize).BeginInit()
 Me.SuspendLayout()
 '
 'This code sets up the DataGrid1 control

Page 67

 '
 Me.DataGrid1.AlternatingBackColor =
System.Drawing.Color.Silver
 Me.DataGrid1.BackColor = System.Drawing.Color.White
 Me.DataGrid1.CaptionBackColor = System.Drawing.Color.Maroon
 Me.DataGrid1.CaptionFont = New System.Drawing.Font("Tahoma",
8.0!)
 Me.DataGrid1.CaptionForeColor = System.Drawing.Color.White
 Me.DataGrid1.CaptionText = "JMLScada Plant Data"
 Me.DataGrid1.DataMember = ""
 Me.DataGrid1.Font = New System.Drawing.Font("Tahoma", 8.0!)
 Me.DataGrid1.ForeColor = System.Drawing.Color.Black
 Me.DataGrid1.GridLineColor = System.Drawing.Color.Silver
 Me.DataGrid1.HeaderBackColor = System.Drawing.Color.Silver
 Me.DataGrid1.HeaderFont = New System.Drawing.Font("Tahoma",
8.0!)
 Me.DataGrid1.HeaderForeColor = System.Drawing.Color.Black
 Me.DataGrid1.LinkColor = System.Drawing.Color.Maroon
 Me.DataGrid1.Location = New System.Drawing.Point(160, 8)
 Me.DataGrid1.Name = "DataGrid1"
 Me.DataGrid1.ParentRowsBackColor =
System.Drawing.Color.Silver
 Me.DataGrid1.ParentRowsForeColor =
System.Drawing.Color.Black
 Me.DataGrid1.PreferredColumnWidth = 90
 Me.DataGrid1.SelectionBackColor =
System.Drawing.Color.Maroon
 Me.DataGrid1.SelectionForeColor = System.Drawing.Color.White
 Me.DataGrid1.Size = New System.Drawing.Size(220, 152)
 Me.DataGrid1.TabIndex = 0
 '
 'This code sets up the Timer1 control
 '
 Me.Timer1.Enabled = True
 Me.Timer1.Interval = 5000
 Me.Timer1.SynchronizingObject = Me
 '
 'This code sets up the TextBox1 control
 '
 Me.TextBox1.Location = New System.Drawing.Point(120, 184)
 Me.TextBox1.Name = "TextBox1"
 Me.TextBox1.TabIndex = 1
 Me.TextBox1.Text = "5000"
 '
 'This code sets up the Label1 control
 '
 Me.Label1.Location = New System.Drawing.Point(8, 184)
 Me.Label1.Name = "Label1"
 Me.Label1.TabIndex = 2
 Me.Label1.Text = "Data Collection Interval"
 Me.Label1.TextAlign =
System.Drawing.ContentAlignment.MiddleCenter
 '
 'This code adds the controls to the form
 '
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(544, 381)

Page 68

 Me.Controls.Add(Me.Label1)
 Me.Controls.Add(Me.TextBox1)
 Me.Controls.Add(Me.DataGrid1)
 Me.Name = "Main"
 Me.Text = "MAIN"
 CType(Me.DataGrid1,
System.ComponentModel.ISupportInitialize).EndInit()
 CType(Me.Timer1,
System.ComponentModel.ISupportInitialize).EndInit()
 Me.ResumeLayout(False)

 End Sub

#End Region

 'The following code initialises the form at startup
 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Dim LocalData As lynchy.Plant = New lynchy.Plant
 Dim LocalDS As DataSet = LocalData.GetPlantData()
 DataGrid1.DataSource = LocalDS.Tables("Data").DefaultView
 Timer1.Interval = 1000

 End Sub

 Private Sub DataGrid1_Navigate(ByVal sender As System.Object,
ByVal ne As System.Windows.Forms.NavigateEventArgs)

 End Sub

 'This code calls the Web Service after the timer interval has
 'elapsed.
 Private Sub Timer1_Elapsed(ByVal sender As System.Object, ByVal
e As System.Timers.ElapsedEventArgs) Handles Timer1.Elapsed
 If TextBox1.Text > 1000 Then
 Timer1.Interval = TextBox1.Text
 Else : Timer1.Interval = 1000
 End If
 'This code calls the Web Method on the Web Service
 Dim LocalData As lynchy.Plant = New lynchy.Plant
 Dim LocalDS As DataSet = LocalData.GetPlantData()
 'On an error the exception thrown is disabled so that
 'the program can retry
 On Error GoTo -1
 'The DataGrid is updated with the new values
 DataGrid1.DataSource = LocalDS.Tables("Data").DefaultView
 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TextBox1.TextChanged

 End Sub

 Private Sub Label1_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Label1.Click

 End Sub

Page 69

 Private Sub Label2_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs)

 End Sub
End Class

Page 70

Reference.vb

Option Strict Off
Option Explicit On

Imports System
Imports System.ComponentModel
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization

'
'This code creates a local reference to the Web Service
'
Namespace lynchy

 <System.Diagnostics.DebuggerStepThroughAttribute(), _
 System.ComponentModel.DesignerCategoryAttribute("code"), _

System.Web.Services.WebServiceBindingAttribute(Name:="PlantSoap",
[Namespace]:="http://Lynchy/JMLScada/PlantData/")> _
 Public Class Plant
 Inherits
System.Web.Services.Protocols.SoapHttpClientProtocol

 Public Sub New()
 MyBase.New
 Me.Url = "http://lynchy/JMLScada/PlantData.asmx"
 End Sub

<System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://L
ynchy/JMLScada/PlantData/GetPlantData",
RequestNamespace:="http://Lynchy/JMLScada/PlantData/",
ResponseNamespace:="http://Lynchy/JMLScada/PlantData/",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wra
pped)> _
 Public Function GetPlantData() As System.Data.DataSet
 Dim results() As Object = Me.Invoke("GetPlantData", New
Object(-1) {})
 Return CType(results(0),System.Data.DataSet)
 End Function

 Public Function BeginGetPlantData(ByVal callback As
System.AsyncCallback, ByVal asyncState As Object) As
System.IAsyncResult
 Return Me.BeginInvoke("GetPlantData", New Object(-1) {},
callback, asyncState)
 End Function

 Public Function EndGetPlantData(ByVal asyncResult As
System.IAsyncResult) As System.Data.DataSet
 Dim results() As Object = Me.EndInvoke(asyncResult)

Page 71

 Return CType(results(0),System.Data.DataSet)
 End Function
 End Class
End Namespace

Page 72

PlantData.wsdl

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://Lynchy/JMLScada/PlantData/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://Lynchy/JMLScada/PlantData/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
targetNamespace="http://Lynchy/JMLScada/PlantData/">
 <s:import namespace="http://www.w3.org/2001/XMLSchema" />
 <s:element name="GetPlantData">
 <s:complexType />
 </s:element>
 <s:element name="GetPlantDataResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
name="GetPlantDataResult">
 <s:complexType>
 <s:sequence>
 <s:element ref="s:schema" />
 <s:any />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>
 <wsdl:message name="GetPlantDataSoapIn">
 <wsdl:part name="parameters" element="tns:GetPlantData" />
 </wsdl:message>
 <wsdl:message name="GetPlantDataSoapOut">
 <wsdl:part name="parameters" element="tns:GetPlantDataResponse"
/>
 </wsdl:message>
 <wsdl:portType name="PlantSoap">
 <wsdl:operation name="GetPlantData">
 <wsdl:input message="tns:GetPlantDataSoapIn" />
 <wsdl:output message="tns:GetPlantDataSoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PlantSoap" type="tns:PlantSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
 <wsdl:operation name="GetPlantData">
 <soap:operation
soapAction="http://Lynchy/JMLScada/PlantData/GetPlantData"
style="document" />

Page 73

 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="Plant">
 <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Live
Plant Data</documentation>
 <wsdl:port name="PlantSoap" binding="tns:PlantSoap">
 <soap:address location="http://lynchy/JMLScada/PlantData.asmx"
/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Page 74

	Abstract
	Acknowledgements
	Contents
	Table of Figures

	Chapter 1
	Introduction
	1.1 Project Objectives
	1.2 Dissertation Layout
	1.3 Chapter Summary

	Chapter 2
	SCADA and Web-based SCADA Systems
	2.1 An Industrial Control System
	2.2 SCADA System Description
	2.3 SCADA System Functions
	2.4 Commercial SCADA Systems
	2.5 SCADA System Evolution and IP Convergence
	2.6 Web-Based Implementations
	2.7 Key Issues for an Internet Based SCADA System
	2.8 Chapter Summary

	Chapter 3
	Communication over the Internet
	3.1 Overview
	3.2 The Seven Layer OSI Model
	3.3 Sockets and TCP/IP
	3.4 Distributed Component Object Model (DCOM)
	3.5 Hyper Text Transfer Protocol (HTTP)
	3.6 Simple Object Access Protocol (SOAP)
	3.7 XML Web Services
	3.8 Quality of Service of Real-Time Data
	3.9 Communication Method Selected
	3.10 Chapter Summary

	Chapter 4
	Design Methodology
	4.1 Overview
	4.2 Programming Language Considerations
	4.3 Programming in C
	4.4 Programming in C++
	4.5 Programming in Java
	4.6 The .NET Framework
	4.7 Programming Language Selection
	4.8 System Design Alternatives
	4.10 Chapter Summary

	Chapter 5
	System Development and Implementation
	5.1 Overall Description
	5.2 Client-Server Interoperability
	5.3 Server Program Function
	5.4 Client Program Function
	5.5 Testing Process
	5.6 Problems Encountered
	5.7 Chapter Summary

	Chapter 6
	Conclusions and Recommendations for Future Work
	6.1 Achievement of Objectives
	6.2 Future Work

	References
	Appendix A
	Project Specification

	Appendix B
	Server Program Listing
	PlantData.asmx.vb
	PlantData1.vb
	PlantData1.xsd

	Appendix C
	Client Program Listing
	Main.vb
	Reference.vb
	PlantData.wsdl

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

