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Abstract

VoIP calls frequently suffer from echoes which degrade the quality of voice transmis-

sions. Traditional methods of using adaptive filters to cancel line echoes over the public

switched telephone network are not as effective when applied to VoIP channels. This

is because VoIP echo paths are generally longer due to longer network delays and

non-stationary due to dynamic de-jitter buffering. Also, non-linearities introduced by

dropped packets and lossy signal compression algorithms can reduce the performance

of the adaptive filters. This project researched the theory of digital adaptive filter al-

gorithms and their application to the echo cancellation problem in VoIP networks. A

VoIP, adaptive echo cancellation (AEC) simulation was designed and then implemented

in MATLAB. The simulation modeled an echo path which incorporated VoIP channel

characteristics and room acoustic effects. The simulation was used to test the echo can-

celling effectiveness of three different adaptive algorithm schemes: a normalised least

mean squares (NLMS) filter, a NLMS filter in Dual-H configuration and a recursive

least squares (RLS) filter. Echo cancellation performance was primarily determined by

measuring the loudness of echoes before and after they enter the system (represented by

an ERLE value). The Telecommunication Standardization Sector of the International

Telecommunications Union (ITU-T) G.131 echo objection rate gives the recommended

echo attenuation levels required by an echo canceller. The Dual-H NLMS AEC system

designed in this project achieved an ERLE of approximately 35 dB during simulations in

the VoIP environment which is above the ITU-T recommended level. This showed that

satisfactory echo cancellation performance in a VoIP environment could be achieved by

the use of this relatively simple AEC system.
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Chapter 1

Introduction

Voice over Internet Protocol (VoIP) applications enable voice communications to be

conducted over Internet Protocol (IP) networks such as the internet. They provide

several advantages over traditional public switched telephone network (PSTN) systems

such as the ability to consolidate separate data and voice networks and avoiding call

fees from telecommunication companies. They are becoming a popular solution for

large organisations and individual users alike to take advantage of the increasing speed

and capacity of new data networks such as the National Broadband Network (NBN).

However, the voice quality of VoIP calls is generally worse than PSTN calls due to IP

networks inherently suffering from variable network delay and packet loss. These can

be mitigated by buffering but this leads to increased signal delays (CISCO 2006). If

there is coupling between the microphone and speaker of the telephone at either end

(due to using a ‘hands-free’ phone for example) then these large delays can result in

annoying feedback echoes being heard on the line.

Reducing these acoustic echoes is generally attempted using echo cancelling systems

based on adaptive filters, a method that has successfully been applied to the removal

of electrical echoes in the PSTN (Haykin 1995, p. 56). The simplest adaptive filter

algorithm used for this purpose is the ubiquitous least mean squares (LMS) method

invented by Widrow and Hoff in 1959 (Widrow & Hoff 1960). However, certain inherent

characteristics of VoIP channels, such as high latencies and non-linearities, make LMS
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a less suitable choice for cancelling acoustic echoes in VoIP. Other, more complicated

methods such as the recursive least square (RLS) and affine projection (AP) algorithms

have been shown to perform better at the expense of increased computational cost and

implementation complexity (Huang & Goubran 2000).

Besides changing adaptive filter algorithms completely, there are a number of refine-

ments (such as the normalised version of LMS (NLMS)) that could be made to the algo-

rithm in an attempt to boost its echo cancellation performance. Also, extra functional

blocks may be added to the system (e.g. Double-Talk Detector (DTD), Dual-H Filter,

Non-Linear Processor). However, with each added refinement comes a corresponding

increase in system complexity and computational cost. Therefore the designer of the

system must weigh up any performance increase with these higher costs.

With this in mind, the initial adaptive echo cancellation (AEC) system developed in

this project was based on a basic adaptive filter algorithm (NLMS) and a simple system

design. This was implemented in MATLAB and its echo cancellation performance was

measured by simulation. The simulations used an echo path model which incorporated

both the VoIP channel and he acoustic effects of a typical small room. The performance

of this system was used as the baseline to compare with another, more complicated RLS-

based system, to assess whether or not the extra computational effort required by this

new system was worth any performance increase.

Since the performance of a particular AEC system is greatly influenced by its specific

operating conditions, various testing scenarios were used in the simulations to measure

the effects of variables such as ambient noise levels, acoustic environment, network

delay and packet loss. The real-world suitability of each AEC system was then able to

be determined by seeing whether or not it could attenuate echoes below the maximum

acceptable loudness level recommended by The Telecommunication Standardization

Sector of the International Telecommunications Union (ITU-T) (ITU-T 2003).
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1.1 Project Aim

To design and implement a digital adaptive filter system for the purpose of cancelling

echoes in VoIP transmissions.

1.2 Project Objectives

1. Research the background information on echo cancellation using digital adaptive

filters and the characteristics of VoIP channels.

2. Simulate an IP channel with variable parameters such as bandwidth, latency,

jitter and packet-loss.

3. Design and implement experiments to compare the effectiveness of various filter

algorithms in cancelling echoes in a VoIP setting.

4. Analyse the results from these experiments to determine the most effective algo-

rithms.

1.3 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 presents a background of the nature of telephony echoes and introduces

a basic echo cancelling system. A brief description of the important digital sig-

nal processing concepts used in the derivation of digital adaptive filters is then

presented.

Chapter 3 introduces a linear optimum filter called the Wiener Filter which is then

used as a basis to derive the Adaptive Filters used in this project.

Chapter 4 describes the general characteristics of VoIP channels and their likely im-

plications to echo cancellation.
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Chapter 5 outlines the methodology used to design and implement the computer

simulations used to test each AEC system n a VoIP environment.

Chapter 6 presents and discusses the results of the echo cancellation computer simu-

lations.

Chapter 7 presents the project conclusion and suggests areas of possible future re-

search.



Chapter 2

Echo Cancellation Theory

2.1 Chapter Overview

Understanding echo cancellation requires a knowledge of the source of echoes. This

chapter begins by explaining the nature of telephony echoes and then introduces the

AEC system used in this project. The relationship between echo loudness and network

delay on echo perception is then explained with reference to the ITU-T echo objection

rate curve, which is used to determine the level of echo attenuation required by an

AEC system. Lastly, the background digital signal processing concepts required to

derive adaptive filters are presented.

2.2 Echoes in Telephony Systems

The two most prevalent sources of echoes in telephony networks are:

• Electrical echoes

• Acoustic echoes
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2.2.1 Electrical Echoes

Electrical echoes are caused by signal reflections due to circuit imperfections and

impedance mismatches (Sondhi & Berkley 1980). A common source of impedance

mismatch in the PSTN is at the connection of the 2-wire local loop (used to connect

the subscriber to the local exchange) and the 4-wire circuit (used for long haul trans-

mission). This connection is made by an electrical device called a hybrid transformer.

Impedance mismatch between the two circuits causes some of the signal energy to be re-

flected back down the 2-wire circuit to the local subscriber. These unwanted reflections

are called hybrid echoes.

2.2.2 Acoustic Echoes

Suppose a far-end caller is speaking to a near-end receiver. The far-end voice transmis-

sion is played though the near-end telephone speaker and some of the sound emitted is

picked up by the near-end microphone and retransmitted to the far-end. The far-end

signal may directly pass from speaker to microphone (if they are poorly isolated) or

sound waves may be reflected a number of times around the room first. Since each

echo path has variable length and since every reflection attenuates the sound wave, the

retransmitted signal will contain decreasing, time-delayed images of the original far-end

signal. This unwanted retransmitted signal is termed acoustic echo.

Figure 2.1 shows the block diagram of a simplified speaker-phone telephone call. Note

that to aid clarity, only the discrete-time sampled speech signals are shown1. A far-

end input voice signal, x(n) is generated by the far-end talker and picked up by the

far-end microphone. This signal travels to the near-end via an IP network where it

is emitted through the speaker. H represents the unknown acoustic impulse response

of the near-end room and its output, d(n), is the acoustic echo of the far-end signal

picked up by the near-end microphone. s(n) represents the near-end speech picked up

by the microphone. It can be seen that the signal that travels back to the far-end is

1In reality, the analogue signal picked up by the microphones would be digitised using an ADC.

Also, the digital signals would be converted back to analogue by a DAC before being emitted from the

speakers. See Chapter 4 below for more detail of how this happens in a VoIP application.
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a combination of the near-end speech as well as the unwanted acoustic echoes. The

elimination of these echoes is the subject of the next section.

Figure 2.1: Acoustic echo diagram.

2.3 Adaptive Echo Cancellation (AEC)

Sondhi (1967) was the first to publish the idea of applying adaptive filters to echo

cancellation, although in his paper the author acknowledges J. L. Kelly Jr of Bell

Laboratories as having the original idea. Figure 2.2 shows the simple AEC system used

for echo cancellation in this project. W is a special type of filter called an Adaptive

Filter which is able to adjust its transfer function to mimic H (see Chapter 3 below

for details of its operation). The output of W is y(n) which is then subtracted from

s(n) + d(n) to give e(n). It can be seen that if y(n) is a good approximation of d(n)

then e(n) will be a good approximation of s(n) - the near-end speech less any acoustic

echoes as required.

Although the above explanation of AEC refers only to acoustic echoes it will be shown

in Chapter 4 that the system is also capable of cancelling any electrical echoes that

occur to the left of the adaptive filter input in Figure 2.2. This is a consideration when

deciding on the placement of the AEC system within the circuit.
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Figure 2.2: A simple AEC system.

2.4 Echo Measurement

Echo Return Loss (ERL) is a quantitative measure of echo loudness given by:

ERL =
Power Level of Original Signal

Power Level of Echo Signal
(2.1)

Echo Return Loss Enhancement (ERLE) is the measurement of the echo attenuation

by an adaptive filter given by:

ERLE =
Power Level of Echo Signal

Power Level of Residual Echo Signal
(2.2)

For example, the ERL of the AEC shown in Figure 2.2 would be:

ERL(dB) = 10log
x2(n)

d2(n)
(2.3)
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and its ERLE would be:

ERLE(dB) = 10log
d2(n)

e2(n)
(2.4)

Note that the ERL and ERLE formulae require that the signals, x(n), e(n) and d(n)

are able to be measured. It can be seen that x(n) and e(n) can be measured by taking

the near-end received and sent signals respectively. However, since d(n) represents the

echo signal before it enters the microphone it is not observable. The signal being picked

up by the microphone is observable and is made up of the echo and any near-end speech

(d(n)+s(n)). When there is no near-end speech s(n) = 0 and so this signal can be used

to calculate ERL and ERLE but these measurements will only be accurate under these

conditions. This was an important consideration when implementing these calculations

in the AEC computer simulations.

2.5 Echo Perception

The ITU-T gives the relationship between echo delay, loudness and listener annoyance

in terms of Talker Echo Loudness Rating (TELR)2. The TELR can be converted into the

ERL measurement (Ditech Networks 2011) and the resulting plot is shown in Figure 2.3

below. It shows that echoes become more noticeable (and annoying) as delay and

loudness increase. This plot shows the minimum level of echo attenuation that an echo

cancelling system will need to be able to achieve to be considered to be adequate.

2.6 Digital Signal Processing (DSP)

2.6.1 Discrete-Time Signals

In digital voice communications, continuous analogue signals are digitised before they

are transmitted. Suppose a continuous-time signal, x(t) is sampled every Ts time

2TELR is a measure of the echo loss perceived by a listener (ITU-T 2003).
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Figure 2.3: ITU-T G.131 echo objection rate (reproduced from http://www.

ditechnetworks.com/learningCenter/echoBasics.html).

periods (the so called sample period) then the digitised signal may be represented by

the sequence {x(0), x(Ts), x(2Ts), . . . , x(nTs), . . .}.

To facilitate computer processing, the section of the signal we are currently processing

inside a filter may be represented by the vector of length N:

x(n) = [x(n) x(n− 1) . . . x(n−N + 1)]T (2.5)

Throughout the rest of this document the boldfaced x(n) shall refer to such a vector

and the plain typed x(n) shall refer to the nth sample.

2.6.2 Expectation

The expectation value of a random variable x(n) at time n is equal to the mean value

of an ensemble of realisations of the variable (Poularikas & Ramadan 2006, p. 22) so

that:

Ê{x(n)} = lim
N→∞

{
1

N

N∑
n=1

x(n)

}
(2.6)

where Ê{.} is called the expectation operator. Since x(n) is a real-time speech signal

and we only have access to one realisation, it is assumed that the process is ergodic3.

3A stochastic process is said to be ergodic if its statistical properties can be calculated from one

sufficiently long realisation.

http://www.ditechnetworks.com/learningCenter/echoBasics.html
http://www.ditechnetworks.com/learningCenter/echoBasics.html
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Under this assumption an estimate of the expectation, E{.} can be calculated from the

sample mean of the last N samples according to:

E{x(n)} =
1

N

N−1∑
n=0

x(n) (2.7)

and this estimate shall be used for the remainder of this thesis.

2.6.3 Correlation

The cross correlation of two sampled signals x(n) and y(n) is given by:

R̂xy(k) = lim
N→∞

{
1

N

N∑
i=1

xi(n)yi(n− k)

}
(2.8)

where k is either a positive or negative lag value (Leis 2002, p. 124). Maintaining our

assumption that all signals are ergodic yields:

Rxy(k) =
1

N

N−1∑
n=0

x(n)y(n− k) (2.9)

The autocorrelation is simply the cross correlation of a signal with a lagged version of

itself:

Rxx(k) =
1

N

N−1∑
n=0

x(n)x(n− k) (2.10)

The relationship between the expectation operator and correlation function can be seen

if we take the expectation of the product of x(n) and y(n− k):

E{x(n)y(n− k)} =
1

N

N−1∑
n=0

x(n)y(n− k)

= Rxy(k)

(2.11)
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We now define the correlation matrix of x(n), Rx as:

Rx = E{x(n)x(n)T }

=


Rxx(0) Rxx(1) · · · Rxx(N − 1)

Rxx(−1) Rxx(0) · · · Rxx(N − 2)
...

...
. . .

...

Rxx(−N + 1) Rxx(−N + 2) · · · Rxx(0)


(2.12)

Finally, the cross correlation vector, pxy of x(n) and y(n) is defined as:

pxy = [Rxy(0) Rxy(1) . . . Rxy(N − 1)]T (2.13)

2.6.4 Stationary Signals

A stochastic process is one that creates signals which are indeterministic i.e. at any

instance in time it is not possible to exactly predict how the signal will evolve in the

future. In the derivation of the adaptive filters in this thesis, it is assumed that all

signals have the property of being wide-sense stationary (WSS). A stochastic process

is WSS if it meets the following criteria (Farhang-Boroujeny 1999, p. 37-38):

1. The expectations (mean values) of the signal are time invariant:

E{x(n)} = E{x(n+ k)} (2.14)

where k is an arbitrary lag value.

2. The autocorrelation function of the signal is time invariant:

Rxx(n) = Rxx(n+ k) (2.15)

where again k is an arbitrary lag value.
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2.6.5 Speech Signals

Figure 2.4 below shows a plot of Amplitude vs Time for a typical digitised speech

signal. It can clearly be seen that this signal is not WSS since its mean values vary

over the total time shown. However, it is common practise to assume that speech signals

show short term stationary behavior over intervals of about 30-40ms (Oppenheim &

Schafer 1989, p. 724) and that this is an adequate amount of time for the adaptive

filter to operate correctly.
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Figure 2.4: A typical digital speech signal.

2.6.6 Discrete-Time Systems

A discrete, linear, time-invariant (LTI) system is characterised by its response, h(n) to

the unit impulse function, δ(n) defined by:

δ(n) =


1 n = 0

0 n 6= 0

(2.16)

The output of the system, y(n) can then be calculated from the convolution of a given
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input, x(n) with h(n) (Poularikas & Ramadan 2006, p. 13):

y(n) = x(n) ∗ h(n)

=
∞∑

k=−∞
h(k)x(n− k)

(2.17)

To implement this with a computer with finite memory, it is necessary to reduce h(n)

to finite order rather than infinite length. Considering only causal systems, (systems

whose output depend only on past and present input values) the system output is now:

y(n) =

N−1∑
k=0

h(k)x(n− k) (2.18)

the so called Finite Impulse Response (FIR) filter4. The FIR filter structure is shown

in Figure 2.5 below. This is an example of a transversal filter or tapped delay-line filter

(Haykin 1995, p. 5). The unit delay operator z−1{.} has the effect of lagging the input

signal by one sample i.e. z−1{x(n)} = x(n− 1) so that each element of the filter input

vector x(n) is multiplied by the corresponding filter coefficient which is consistent with

Equation (2.18).

Figure 2.5 shows that the output of an FIR filter is determined using forward paths only

(this is expected since we have the requirement that the system is causal). It can be

shown that such filter structures lead to impulse responses that are finite in length and

so are inherently stable (Leis 2002, p. 117). It is also possible to use a filter structure

that includes both feed-forward and feed-back paths and in doing so creating an impulse

response that is infinitely long, a so called infinite impulse response (IIR) filter. IIR

filters generally require less taps than FIR filters and so use less computations to achieve

a similar result. However the the feed-back paths now introduce the possibility that

the output of an IIR filter can become unstable oscillations if care is not taken in the

choice of feed-back tap-weights. FIR filters are therefore simpler to design and will be

used as the basis for the adaptive filters in this project.

4An LTI system that is designed for a specific purpose, in our case modelling the acoustic echoes in

a room, is called a filter (Isen 2008a, p. 46).
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Figure 2.5: An FIR filter of order P-1.
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2.7 Chapter Summary

This chapter introduced the background information regarding the source of telephony

echoes and also the factors effecting echo perception to the listener. The digital filter

implemented in the AEC simulations, the FIR filter, was described as well as some

important digital signal processing formulae. It was also shown that discrete-time

speech signals, whilst not strictly stationary, were stationary in the wide sense. This

important assumption is maintained during the derivation of adaptive filters, the topic

of the next chapter.



Chapter 3

Adaptive Filters

3.1 Chapter Overview

The AEC system proposed in the previous chapter relies on the use of an adaptive

filter to mimic the unknown impulse response of a room. This chapter builds upon the

basic DSP theory of the previous chapter to mathematically derive the adaptive filters

used in the AEC simulation. These derivations provide insight into the operation of

adaptive filters which is essential in understanding the implementation and output of

the AEC simulations.

3.2 Wiener Filters

3.2.1 Mean Squared Error (MSE) Function

Wiener (1949) was the first to propose the filter system to recover a desired signal,

d(n) from an additive noise corrupted input, x(n) = d(n) +v(n) as shown in Figure 3.1

below. The goal is to find a filter with an input signal x(n) and output that is an
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estimate of the desired signal, d̂(n) such that the MSE function:

J = E{[d(n)− d̂(n)]2}

= E{e2(n))}
(3.1)

is minimised.

x(n)

+ +w

v(n)

d(n) d(n)

d(n)

e(n)
-

Figure 3.1: Wiener filter block diagram.

Let w(n) = [w(0) w(1) . . . w(N − 1)]T be the vector of coefficients for a N-1 order

transversal FIR filter and x(n) = [x(n) x(n− 1) . . . x(n−N + 1)]T be the input. The

output, d̂(n) is then given by the convolution of w(n) with x(n) as in Equation (2.18)

above:

d̂(n) =

N−1∑
k=0

w(k)x(n− k)

= wT (n)x(n)

(3.2)
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Substituting this result into Equation (3.1) gives:

J(w) = E{[d(n)− d̂(n)]2}

= E{[d(n)−wTx(n)]2}

= E{[d(n)−wTx(n)][d(n)−wTx(n)]}

= E{d2(n)−wTx(n)d(n)− d(n)wTx(n) + wTx(n)xT (n)w}

= E{d2(n)} − 2wTE{d(n))x(n)}+ wTE{x(n)xT (n)}w

= σ2d − 2wTpdx + wTRxw

(3.3)

where σ2d is the variance of d(n).

Equation (3.3) is therefore an N-dimensional quadratic surface with respect to the

coefficients of w - the so called mean squared error surface.

3.2.2 The Wiener Solution

The first derivative of J(w) with respect to the coefficients of w is:

∇J(w) =

[
∂

∂w0

∂

∂w1
. . .

∂

∂wN−1

]T (
σ2d − 2wTpdx + wTRxw

)
= 2Rxw − 2pdx

(3.4)

From Equation (3.1) it can be seen that the mean squared error surface will always

concave upwards and so its minimum point can be found by setting ∇J(w) to zero.

This optimal solution is given the symbol wo:

2Rxw
o − 2pdx = 0

wo = R−1x pdx

(3.5)
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3.2.3 Steepest Descent Algorithm

The optimal solution can also be found iteratively utilising the fact that −∇J(w)

points in the direction of steepest descent of the MSE surface. Starting with an esti-

mate of w(n), the next estimate equals this value plus a small step in the direction of

−∇J(w(n)):

w(n+ 1) = w(n)− µ̂∇J(w(n)) (3.6)

where µ̂ is a constant that must be kept small so that the algorithm does not become

unstable.

The main limitation in using a Wiener Filter for AEC is that calculating ∇J(w(n))

accurately requires prior knowledge of both Rx and pdx and so x(n) and d(n) must

be stationary signals. For a real-time AEC system, it is therefore necessary to find

approximations for Rx and pdx that do not require that x(n) and d(n) are stationary.

This is achieved in the Least Mean Squares algorithm described in the next section.

3.3 Least Mean Square (LMS) Adaptive Filter

The LMS algorithm is a widely used adaptive filter based on the Wiener Filter. Devel-

oped in 1959 by Widrow and Hoff, (Widrow & Hoff 1960) the LMS algorithm is able to

operate without the requirement of stationary signals (as in the Wiener Filter) though

this leads to a small error between the final solution and the optimal Wiener solution

as seen below.

Following on from the Wiener filter derivation, we introduce the instantaneous estimates

of Rx and pdx:

Rx ≈ x(n)xT (n)

pdx ≈ d(n)x(n)
(3.7)



3.3 Least Mean Square (LMS) Adaptive Filter 21

Substituting these into Equation (3.4) and Equation (3.6) gives the filter weight update

recursion;

w(n+ 1) = w(n)− 2µ̂x(n)(xT (n)w(n)− d(n))

= w(n) + 2µ̂x(n)(d(n)−wT (n)x(n))

= w(n) + µe(n)x(n)

(3.8)

where µ = 2µ̂ is called the step-size parameter usually chosen to so that 0 < µ < 1.

Equation (3.8) shows that the next filter weights depend on the current filter weights,

the current filter inputs and the current error signal value, e(n). The error signal is

fed-back into the filter which adjusts its tap weights to minimise this error. Such a

filter is called an adaptive filter and its block diagram is shown in Figure 3.2.

x(n)

+
d(n) e(n)

-

w

y(n)

h

Figure 3.2: Adaptive filter block diagram.

The fact that the calculated gradient is now a function of stochastic signals (x(n) and

e(n)) rather than the deterministic gradient (as in the Wiener steepest descent method)

leads the LMS algorithm to be categorised as a stochastic gradient algorithm. Whereas

the Wiener steepest descent method converges to the Wiener Solution, wo, the LMS

algorithm is convergent to an area around wo that can be made as small as we like by

making µ smaller. This type of convergence is called convergent in the mean square

and leads to there being a slight difference in the final solution that the LMS converges
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to and the Wiener solution. The measure of this error is called the misadjustment

(Haykin 1995, p. 365-367).

3.3.1 LMS summary

The LMS algorithm can be expressed as a set of steps that can be programmed into a

computer for simulation as follows:

Initialise the filter weights:

w(0) = 0 (3.9)

Then at each iteration calculate:

1. The adaptive filter output:

y(n) = wT (n)x(n) (3.10)

2. The estimation error:

e(n) = d(n)− y(n) (3.11)

3. The updated filter weights:

w(n+ 1) = w(n) + µe(n)x(n) (3.12)

It can be seen from the above summary that the LMS algorithm is simple to im-

plement and that, for an adaptive filter length of L, uses only L + 1 floating point

addition/subtraction operations and 2L + 1 multiplication/division operations per it-

eration. Therefore it has a linear time complexity (O(L)) which makes LMS a suitable

choice for implementations with large adaptive filter orders.

3.3.2 Choice of Step-Size Parameter µ

Although making µ smaller leads to a more accurate final solution it also increases the

number of iterations needed to reach it. Correspondingly, the convergence time (the
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time taken to reach the final solution) is increased. It is desireable for an adaptive filter

to have a small convergence time so that the AEC system can begin working effectively

as quickly as possible at the start of a conversation. A small convergence time is also

necessary for the adaptive filter to be able to track any changes in the room impulse

impulse that might occur during the course of the conversation e.g. people moving

within the room will alter the room impulse response.

The LMS algorithm derivation is based on the idea that the output from the adaptive

filter y(n) mimics the output from the room impulse filter d(n) which is solely made

up from the convolution of the input signal with the room impulse response, x(n) ∗ h

as in Figure 3.2. But what happens if the near-end speaker is talking at the same

time (the so called double talk condition) to create an added near-end signal s(n) as in

Figure 2.2? Now the adaptive filter tries to converge on a solution that gives an output

of d(n) + s(n) which now contains a random component since s(n) is uncorrelated to

x(n). The result is that the adaptive filter coefficients diverge from the optimal solution

and echo cancellation performance rapidly deteriorates. This happens at a faster rate

for a larger step-size and so µ is usually chosen to be small enough that divergence is

minimised during double talk. Therefore choice of µ is critical for LMS based AEC

systems and is chosen to balance convergence time and divergence during double talk.

3.4 Normalised Least Mean Square (NLMS) Adaptive Fil-

ter

The standard LMS algorithm updates filter weights by adding µe(n)x(n) to the previous

weights. This adjustment is proportional to the magnitude of x(n) and so will vary

as the values in x(n) vary resulting in undesirable gradient noise amplification. The

NLMS algorithm is a modification of LMS algorithm that attempts to normalise these

adjustments (Albert & Gardner 1967). The NLMS recursion is:

w(n+ 1) = w(n) +
µ

ε+ xT (n)x(n)
e(n)x(n) (3.13)
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where xT (n)x(n) represents the power of x(n) in the filter. ε is a small constant that

avoids division by a very small number when xT (n)x(n) is small.

3.4.1 NLMS summary

The NLMS algorithm summary is very similar to the LMS summary but uses the

normalised step size parameter:

Initialise the filter weights:

w(0) = 0 (3.14)

Then at each iteration calculate:

1. The adaptive filter output:

y(n) = wT (n)x(n) (3.15)

2. The estimation error:

e(n) = d(n)− y(n) (3.16)

3. The updated filter weights:

w(n+ 1) = w(n) +
µ

ε+ xT (n)x(n)
e(n)x(n) (3.17)

The above summary shows that the NLMS algorithm, for an adaptive filter length of

L, uses only L + 1 floating point addition/subtraction operations and 3L + 2 multi-

plication/division operations per iteration. This is L more multiplications than the

LMS algorithm but does not increase the time complexity order (it remains O(L)).

The increased stability of the NLMS algorithm is worth the extra computational cost

(Nagumo & Noda 1967) and so this algorithm was implemented in the AEC simulation.
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3.5 Recursive Least Squares (RLS) Adaptive Filter

This section introduces the other adaptive algorithm implemented in the AEC sim-

ulation, the RLS algorithm, a special case of the Kalman filter. The mathematics

behind RLS is significantly more complicated than LMS and so only a summary will

be given here. For more detail the accounts presented in (Haykin 1995, p. 562-569) or

(Sayed 2008, p. 492-495) are recommended.

Similar to the LMS algorithm which adjusts its filter coefficients in order to minimise a

cost function (the mean squared error function in Equation (3.1)), the RLS algorithm

recursively adjusts its filter coefficients in order to minimise a cost function called the

exponentially weighted linear least squares function:

C(n) =

n∑
i=1

λn−ie2(i) (3.18)

where λ is the forgetting factor parameter chosen so that 0 < λ < 1 (usually close to

1). It can be seen that the forgetting factor weights older samples exponentially less

than newer samples and that smaller values of λ give less weight to older samples than

larger values.

3.5.1 RLS Summary

The RLS algorithm summary is as follows:

Initialisations:

1. The filter weights:

w(0) = 0 (3.19)

2. The inverse input correlation matrix:

P (0) = δ−1I (3.20)

where δ is a small positive constant.
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Then at each iteration calculate:

1. The gain vector:

k(n) =
P (n− 1)x(n)

λ+ xT (n)P (n− 1)x(n)
(3.21)

2. The estimation error:

e(n) = d(n)−wT (n− 1)x(n) (3.22)

3. The updated filter weights:

w(n) = w(n− 1) + k(n)e(n) (3.23)

4. The updated inverse input correlation matrix:

P (n) = λ−1{P (n− 1)− k(n)[xT (n)P (n− 1)]} (3.24)

Due to the use of matrix as opposed to vector operations, the RLS algorithm uses

considerably more computations than LMS or NLMS. The above summary shows that

the RLS algorithm, for an adaptive filter length of L, uses 3L2 + L floating point

addition/subtraction operations and 4L2 + 5L multiplication/division operations per

iteration. Therefore it has a time complexity order of O(L2) and so runs in polynomial

time. This makes RLS a less suitable choice of algorithm as the adaptive filter order is

increased.

The RLS algorithm was chosen for the AEC simulations in this project because it

has been shown to be capable of achieving lower levels of misadjustment and lower

convergence times than NLMS (typically 10× the convergence rate of NLMS (Radecki,

Zilic & Radecka 2002)). Comparing the performance of RLS to NLMS will enable the

importance of both of these metrics to echo cancellation to be examined.

3.6 Dual-H Filter Configuration

The concept of double-talk was described and shown to be a potentially fatal problem

during AEC (see 3.3.2) and so some way of negating its effects must be found. The idea
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of setting a smaller step size is one way to slow down adaption and therefore divergence

during double-talk, however the major drawback is that adaption will also be slowed

during the rest of the time as well. A better approach is to detect when double-talk

is occurring and then halt adaption only during these periods. A functional block

that is capable of this is called a Double-Talk Detector (DTD) (Isen 2008b). There are

numerous DTDs operate by comparing the near-end signal level to some threshold (e.g.

Geigel detectors) but these methods are not effective when the loudness of near-end or

echo signals is varied (Gansler, Gay, Sondhi & Benesty 2000).

A more robust method of dealing with the double-talk (and the method implemented in

the AEC simulations) is the Dual-H filter configuration (Eriksson & Karlsen 2001). This

adds a second filter called the On-line filter (W ′) to the AEC system block diagram as

in Figure 3.3. The adaptive filter W is now called the Off-line filter and its purpose is to

converge towards the optimal solution as usual. The figure shows that echo cancellation

is performed by the On-line filter and that the error signal from the Off-line filter is now

only used to update its tap weights. The On-line filter is not adaptive but updates its

tap weights from the Off-line adaptive filter only if the Off-line ERLE is greater than

the On-line ERLE. That is, the On-line filter is only updated if the Off-line filter is

performing better at cancelling echoes. Since this performance will drop sharply during

periods of double-talk, the On-line tap weights are frozen during this time. The overall

effect is that the On-line filter behaves similar to an adaptive filter in normal operation

but switches to a static filter during double-talk.
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Figure 3.3: The Dual-H AEC system.
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3.7 Chapter Summary

This chapter introduced an important class of linear optimal filters, the Wiener Filter,

which was used as the mathematical basis for the adaptive filters used in this project.

A derivation of a basic adaptive filter algorithm, LMS, was given as well as the details

of the popular refined version, NLMS. A more sophisticated algorithm that promises

increased performance at the expense of increased computations, RLS, was then de-

scribed. A summary of the recursions for each algorithm was then given which were

used as the basis for the AEC computer simulations described in Chapter 5. These

summaries show that although the mathematical theory behind the adaptive filters is

fairly complex, the algorithms themselves are very simple to implement.



Chapter 4

Adaptive Echo Cancellation in

VoIP

4.1 Chapter Overview

The adaptive filters described in the previous chapter have a wide range of applications.

For example they have successfully been used for active noise cancellation, periodic

signal extraction, linear prediction and more. Implementing each of these applications

requires a knowledge the specific operating environment of the adaptive filter. In our

case the environment is a VoIP channel and so this chapter describes the characteristics

of a VoIP network and the consequences that they might have to AEC.

4.2 VoIP Networks

The term ‘VoIP’ refers to the technology that enables voice communications to be

conducted over IP networks such as the internet. Whilst the size and complexity of

a VoIP implementation can range from large, fully featured corporate networks to

single home phones, all will consist of the same basic signal flow shown in Figure 4.1.

The analogue signal from the telephone is first digitised into a pulse code modulation

(PCM) signal by a voice coder-decoder (codec). The PCM signal is then compressed
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and packetised before transmission over the IP network where it is decompressed and

converted back to an analogue signal (CISCO 2006).

Figure 4.1: End-to-end signal flow in a simplified VoIP transmission (repro-

duced from http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_

paper09186a00800a8993.shtml).

There are a variety of signaling protocols that might be used to control a VoIP session

such as H.323, IAX and Session Initiation Protocol (SIP). However, the choice of pro-

tocols is largely irrelevant to our AEC system since any DSP must take place on the

PCM signals which are common to any choice of protocol.

Figure 4.2 shows the signal flow for a far-end transmission with more detail. This is a

more general VoIP circuit in which the signal may travel over the PSTN before it is is

enters the packet network at a VoIP gateway. It shows that the speech signal generated

by the far-end analogue telephone travels to the PSTN on a 2-wire analogue circuit

before it is digitised (usually at a digital hybrid transformer at the local exchange) and

then packetised at the VoIP gateway. The packets travel over the network before a

reverse of the above process converts the packets back to a PCM signal then analogue

before it travels to the near-end telephone to be played over the speaker.

4.3 Difficulties of AEC over VoIP

There is much published research reporting the difficulties of AEC over VoIP (see

(Periakarruppan, Low, Azhar & Rashid 2006), (Benetti, Damiani & Houngue 2008),

(Ding, El-Hennawey & Goubran 2006) for example). The main focus of the research is

http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_paper09186a00800a8993.shtml
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_white_paper09186a00800a8993.shtml
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Figure 4.2: VoIP channel analogue/digital signals.

the fact that VoIP channels have certain characteristics that have a negative effect on

adaptive filter operation and make AEC difficult. These are:

• Large delays in packet networks.

• Variable delays due to dynamic de-jitter buffers.

• Dropped packets.

• Lossy compression/decompression algorithms introducing non-linearities.

4.3.1 Delay in Packet Networks

Delay in VoIP networks can be either be fixed (e.g. coder delay, packetisation delay)

or variable (e.g. queuing delay, network delay). Both types of delay are undesirable

because longer round trip delays increase echo perception and can lead to conversation

overlap. A generally accepted upper limit for a good quality connection is 200ms one

way delay (CISCO 2006).

Network delays (network jitter) are the largest source of variable delays and cause

packets to arrive out of order at the receiving end. A de-jitter buffer is used to hold
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incoming packets for an amount of time before passing them on in correct order. De-

jitter buffers therefore decrease the variable delay in the VoIP channel whilst increasing

the fixed delay.

It is important that the de-jitter buffer is of the correct length. If it is too long then

the delay increases too much. If it is too short then it will fail to eliminate jitter

resulting in dropped packets. Some de-jitter buffers are able to optimise their length

by dynamically adapting to changing levels of jitter on the network. This will have the

effect of constantly changing the length of the echo path and so the adaptive filter will

need to be able to track these changes quickly enough.

4.3.2 Variable Delay

It is important that the de-jitter buffer is of the correct length. If it is too long then

the delay increases too much. If it is too short then it will fail to eliminate jitter

resulting in dropped packets. Some de-jitter buffers are able to optimise their length

by dynamically adapting to changing levels of jitter on the network. This has the effect

of constantly changing the length of the echo path and so the adaptive filter will need

to be able to track these changes quickly enough.

4.3.3 Dropped Packets

Depending on the codec used, dropped packets could be substituted with some ap-

proximation of the transmitted signal. This approximation will not be perfect and the

sporadic nature of dropped packets means that the adaptive filter will find it difficult

to track these changes.

4.3.4 Codec Non-Linearities

Lossy compression/decompression algorithms introduce non-linearities to the echo path

which may not be able to be cancelled fully using a linear FIR adaptive filter.
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4.4 AEC System Placement in the VoIP Network

The AEC difficulties described in 4.3 are all based on phenomena which occur in the

packet network and so will only effect echo paths that incorporate the packet network.

Figure 4.3 shows that the obvious location to place an AEC system to cancel far-end

echo is at the far-end gateway. But this envelops the packet network and so leads to

the above difficulties. It is also a long path - the packet network has a typical one-way

delay of >80 ms as opposed to the PSTN which has typical one-way delay times of

<10 ms for local calls (usually the VoIP gateway is chosen to be within the local call

radius to save on call costs).

Figure 4.3: The natural AEC system placement to cancel far-end echo.

A better placement for the AEC system is at the near-end VoIP gateway as shown in

Figure 4.4. Echoes can only be created on the analogue sections of the circuit where

send and receive signals are transmitted as superimposed voltage waves on the 2-wire

loop. The analogue sections of the circuit are also where hybrid and acoustic echoes can

be generated. The digital portion of the circuit uses dedicated send and receive lines

so any electrical reflections generated there are not transmitted through the channel.

Far-end echoes that are generated at the far-end analogue section will not have a long

enough delay to be perceived by the listener as being echo - the signal will be masked
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by the side-tone signal generated in his telephone. Therefore the only section of the

VoIP channel that can generated unwanted echoes is the near-end analogue circuit

(tail-circuit) and so the AEC system should be placed at the near-end gateway. As

well as avoiding the undesirable effects of the packet network on the echo path, this

placement also drastically reduces the length of the echo path.

Figure 4.4: A superior AEC system placement to cancel far-end echo.
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4.5 Chapter Summary

This chapter presented the important characteristics of VoIP networks and their possi-

ble adverse effects to AEC. These were used as the basis of the testing scenarios used in

the AEC simulations. It was also shown that the placement of the AEC system in the

VoIP channel has the potential to greatly effect its echo cancellation performance and

that the best placement of the system for far-end echo cancellation was at the near-end

gateway.



Chapter 5

VoIP Adaptive Echo Cancellation

Simulation

5.1 Chapter Overview

The previous chapter described the important characteristics of VoIP networks and

the consequences this may have to AEC. These were used as the basis of the testing

scenarios used in the AEC simulations. This chapter explains how these scenarios were

implemented in the simulation and also explains the way in which the echo path was

modeled.

5.2 MATLAB Simulation Implementation

A VoIP channel AEC simulation was implemented in MATLAB as the script file

aec sim.m (see Appendix B for the full program listing). The simulation tests the

performance of three different adaptive algorithm schemes:

1. A NLMS adaptive filter.

2. A NLMS adaptive filter in a dual-H configuration.
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3. A RLS adaptive filter.

The simulated echo path is composed of two parts:

1. The acoustic effects of the near-end room (modeled by H in Figure 2.2).

2. The VoIP channel.

When the script is run the user is prompted to choose from a selection of experiments

that run the simulation under various adverse conditions (see 5.5) and enable the perfor-

mance of each adaptive algorithm scheme to be evaluated. In this way each experiment

manipulates an independent variable (the adverse condition) and measures its effect on

a dependent variable (one or more of the various performance metrics explained in 5.6

below).

5.3 Room Acoustic Model

The near-end room acoustic echo is created by convolving the far-end digital speech

signal with the rooms impulse response according to Equation (2.18). The room impulse

response vector was created using the MATLAB function rir.m1. Figure 5.1 shows a

room impulse response vector of the default configuration used in the simulations - a

3m × 3m × 3m room with the microphone separated from the speaker by 1m. This

models a hands free telephone or speaker-phone setup in a small room or office.

The figure shows the typical form of a room impulse response: a flat section at the start

before a maximum peak and then a rapidly decaying series of peaks. The flat initial

section and first spike represents the time taken for the sound waves to travel the 1m

from the speaker directly into the microphone. The next peaks are single reflections

of sound waves off the walls, floor and ceiling, attenuated as some of the sound wave

energy is absorbed by the solid surface. Finally there is a diminishing tail section,

caused by multiple reflection pathways from the speaker to the microphone.

1rir.m by Stephen G. McGovern uses the method of images to create the impulse response. It can

be freely downloaded along with supporting documentation from http://www.2pi.us/

http://www.2pi.us/


5.4 VoIP Channel Model 39

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

Filter coefficient

A
m

pl
itu

de

Figure 5.1: Room impulse response of a 3m×3m×3m room with the microphone separated

from the speaker by 1m.

5.4 VoIP Channel Model

Various VoIP channel parameters were incorporated so that the simulation could mea-

sure their effect on AEC performance. These are:

Network Delay

The simulation implements fixed delays by lagging the signals at each end of the

network.

Background Noise

White noise was added to the near-end signal to see the effects of noise.

Voice Compression

By compressing and decompressing the far-end input signal with a variety of

different CODECs and bitrates the effects of compression can be measured.

Dropped Packets

By removing packet-sized sections of the input signal the effects of dropped pack-

ets on AEC was able to be measured.
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5.5 Test Signals

There are three different speech conditions that the AEC system must be able to operate

in:

Far-end speech only

Here the adaptive filter is continuously adapting to the echo path as described in

Chapter 3 above.

Near-end speech only

Here the adaptive filter ceases adapting because x(n) = 0 and so w(n + 1) =

w(n) and the adaptive filter tap-weights do not change (see Equations (3.13) and

(3.23)).

Double-talk (simultaneous far-end and near-end speech)

Here the adaptive filter tries to adapt to the echo path with the added near-end

signal. As mentioned in 3.3.2 the result is that the adaptive filter sees a rapidly

changing stochastic echo path which causes the filter coefficients to diverge from

the optimal solution. An AEC system must have some way of recognising when

double-talk is occurring and halt adaptation when it does. This was accomplished

by the DTD inherent in the Dual-H NLMS implementation.

Therefore the input signals to the simulation were predominately short (≈ 10 s) digi-

tised speech signals which were chosen to included instances of each of the above when

required by the experiment. Speech signals were not appropriate for certain experi-

ments such as during convergence time measurements. In this case white Gaussian

noise was used in place of the far-end signal to ensure that filter adaptation was tak-

ing place during the entire duration being measured (if speech signals were used then

adaptation will stop during periods of silence and give inaccurate measurements).

The digitised speech signals were created by taking a high bit-rate wav file and re-

sampling it at 8 kHz sample rate and 8 bits/sample using ffmpeg2. This was done so

2ffmpeg is a freeware audio/video file transcoder with a large codec library. It can be freely down-

loaded from http://ffmpeg.org/

http://ffmpeg.org/
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that the signals resembled the PCM signals from the popular ITU-T voice codec G.711

which are also encoded at 8 kHz and 8 bits/sample. These signals were used in all

experiments apart from the experiment in 6.7 which used a variety signals encoded at

different bit-rates to examine the effects of codec compression.

5.6 AEC System Performance Metrics

5.6.1 ERLE

The performance of each AEC system was measured by calculating its Echo Return

Loss Enhancement (ERLE) value (see 2.4 above for the definition of ERLE). As well as

measuring the level of echo cancellation, the ERLE measurement implicitly incorporates

a number of other performance metrics (i.e. if the system is deficient in any of these

then it will be reflected in a poor ERLE score) and so is a good indicator of overall

performance. These are:

Rate of convergence

The speed in which the adaptive filter converges to the optimal solution in a

stationary environment. A fast rate is important so that echoes are not noticeable

during periods of convergence.

Misadjustment

The difference between the final solution that the adaptive filter converges to and

the Wiener solution (see 3.3 above).

Tracking

The ability of the adaptive filter to converge in a non-stationary environment.

As stated in 2.4 the ERLE calculation is inaccurate during double talk. This makes

calculation of ERLE highly dependent on the particular speech signals used and the

amount of double-talk that occurs. For this reason the Maximum ERLE value is used

as the performance metric and the test signals are made to be of a long enough duration

for the adaptive filter to converge. During testing the longest convergence time for any
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adaptive filter was found to be about 2s and so the 10s test signals had more than

adequate length.

As well as during the period when double talk is occurring, ERLE calculations are

inaccurate for a time just after double talk has finished. Since the ERLE formula

Equation (2.2) calculates the signal power levels in a buffer (chosen to be the same

length as the adaptive filter in the MATLAB implementation) the buffer will still

contain some of the near-end signal power until this time is reached, which gives an

inaccurate result. This has to be considered when analysing the output ERLE data

from the simulation.

5.6.2 Convergence Time

The convergence time is the time taken for an adaptive filters tap weights to reach

the final solution from the initial state (w(0) = 0). When this happens, ERLE will

be maximal (or nearly maximal). Therefore in this project the convergence time was

defined as the time taken from the start of the simulation to when the ERLE reaches

90% of the maximum ERLE.

5.6.3 Residual Error

The residual error signal e(n) is a composition of s(n), d(n) and y(n) according to:

e(n) = d(n) + s(n)− y(n) (5.1)

Removing s(n) gives the residual echo after cancellation less the near-end input:

e(n)− s(n) = d(n)− y(n) (5.2)

The smaller this error is the better the level of echo cancellation (for perfect echo

cancellation this quantity equals zero) and so it is useful to see how this quantity varies
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over time during the simulation. In the simulation the absolute value of this error is

shown on the output plots labeled as ‘|Error |’.

5.7 Testing Scenarios

5.7.1 Experiment 1: Adaptive Filter Length

Function File: exp1 filtlen.m

Aim: To investigate the effect of increasing the adaptive filter order on echo cancella-

tion performance and convergence rate.

Description: Using a far-end signal of Gaussian white noise, adaptive echo cancel-

lation was carried out using the adaptive filter lengths of 50, 100, 200, 500 and

1000.

Far-end Signal: 10 s of Gaussian white noise (80000 samples sampled at 8 kHz sample

rate)

Near-end Signal: No signal (80000 samples with zero amplitude)

Output: A plot of Maximum ERLE vs Filter Length and a plot Convergence Time vs

Filter Length.

5.7.2 Experiment 2: Double-Talk

Function File: exp2 dt.m

Aim: To investigate the effect of double-talk on echo cancellation performance.

Description: Using overlapping far-end and near-end speech signals to create double-

talk, adaptive echo cancellation was carried out using the adaptive filter lengths

of 100, 200 and 250.

Far-end Signal: 10 s of speech (sampled at 8kHz sample rate and 8 bits/sample).
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Near-end Signal: 10 s silence with 3 small sections of speech (sampled at 8 kHz

sample rate and 8 bits/sample).

Output: Plots of absolute residual error (residual echo) vs Sample Number and plots

of ERLE vs Sample Number for increasing adaptive filter lengths.

5.7.3 Experiment 3: Tail-Circuit Delay

Function File: exp3 delay.m

Aim: To investigate the effect of increasing the tail-circuit delay on echo cancellation

performance.

Description: A delay was added to the far-end signal by appending additional zero

valued tap weights to the start of the RIR filter. Adaptive echo cancellation was

then carried out using the adaptive filter lengths of 100, 200 and 250.

Far-end Signal: 10 s digitised of speech (sampled at 8 kHz sample rate and 8 bit-

s/sample)

Near-end Signal: 10 s of silence (zero amplitude signal)

Output: Plots of absolute residual error (residual echo) vs Sample Number and plots

of ERLE vs Sample Number for increasing adaptive filter lengths.

5.7.4 Experiment 4: RIR Filter

Function File: exp4 longrir.m

Aim: To investigate the effect of making the room impulse response filter length to

be longer than the adaptive filter length and increasing the reverberation time of

the room.

Description: The simulation was run for using room impulse response filter with 1000

coefficients using the adaptive filter lengths of 100, 200 and 250. The reverber-

ation time of of the room was increased by using increasing values of reflection

coefficient (R = 0.2, 0.4, 0.6, 0.8).
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Far-end Signal: 10 s digitised of speech (sampled at 8 kHz sample rate and 8 bit-

s/sample)

Near-end Signal: 10 s of silence (zero amplitude signal)

Output: Plots of absolute residual error (residual echo) vs Sample Number and plots

of Maximum ERLE vs Sample Number for increasing adaptive filter lengths and

values of R.

5.7.5 Experiment 5: Background Noise

Function File: exp5 noise.m

Aim: To investigate the effect of adding background noise to the near-end signal on

echo cancellation performance.

Description: The simulation was run using speech as the far-end signal and varying

levels of white Gaussian noise as the near-end signal. The adaptive filter lengths

of 100, 200 and 250 were tested for the following noise levels: 0.3%, 1%, 3%, 10%

and 30% (expressed as a percentage of the maximum signal level amplitude).

Far-end Signal: 10 s of Gaussian white noise (80000 samples sampled at 8 kHz sample

rate)

Far-end Signal: 10 s of Gaussian white noise of varying maximum amplitude (80000

samples sampled at 8 kHz sample rate)

Output: Plots of absolute residual error (residual echo) vs Sample Number for a vari-

ety of SNR values and plots of Maximum ERLE vs SNR for a variety of adaptive

filter lengths.

5.7.6 Experiment 6: Codec Compression

Function File: exp6 comp.m

Aim: To investigate the effects of varying the level of compression of the far-end signal

on echo cancellation performance.
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Description: The simulation was run using far-end speech that had been compressed

using the mp2 codec at various bit-rates before being decompressed to the stan-

dard 64 kbps PCM signal used in the other experiments. The adaptive filter

lengths of 100, 200 and 250 were tested for the following compression bit-rates:

8, 16, 32 and 64 kbps.

Far-end Signal: 10 s digitised of speech (encoded at varying levels of compression

(bit-rates) then decoded to a 8 kHz sample rate and 8 bits/sample)

Near-end Signal: 10 s of silence (zero amplitude signal)

Output: Plots of absolute residual error (residual echo) vs Sample Number for a va-

riety of bit-rate values and plots of Maximum ERLE vs bit-rate for a variety of

adaptive filter lengths.

5.7.7 Experiment 7: Dropped Packets

Function File: exp7 drop pack.m

Aim: To investigate the effect of bursts of dropped packets on echo cancellation per-

formance.

Description: The far-end signal of was made up of Gaussian white noise with sections

of the signal replaced by discrete lengths zeros to simulate dropped packets. The

packet sizes were calculated according to typical parameters used by the G.711

codec and dropped packet bursts occurred once every second. The simulation

was run for the adaptive filter lengths of 100, 200 and 250 and dropped packet

burst lengths of 5, 15, 25, 35 and 45.

Far-end Signal: 10 s of Gaussian white noise (80000 samples sampled at 8kHz sample

rate) with dropped packets replaced by zeros.

Near-end Signal: 10 s of silence (zero amplitude signal).

Output: Plots of absolute residual error (residual echo) vs Sample number for a variety

of Packet Loss Burst Size values, plots of ERLE vs Sample Number and plots of

Maximum ERLE vs Packet Loss Burst Size for a variety of adaptive filter lengths.
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5.7.8 Experiment 8: Complete Simulation

Function File: exp8 combo.m

Aim: To measure the echo cancellation performance of the Dual-H NLMS filter using

the full range of VoIP conditions.

Description: The simulation was run using a NLMS Dual-H filter with a length of 500

using a combined range of adverse conditions including double-talk, tail-circuit

delay, dropped packet bursts, compressed input signal and long RIR filter.

Far-end Signal: 10 s digitised of speech (encoded then decoded using the G.711 codec

to a 8 kHz sample rate and 8 bits/sample)

Near-end Signal: 10 s silence with three small sections of speech (sampled at 8 kHz

sample rate and 8 bits/sample). White Gaussian noise was then added.

Output: Plots of absolute residual error (residual echo) vs Sample number and a plot

of ERLE vs Sample Number.

5.7.9 Simulation User Instructions

• The program code for the simulation was written in MATLAB version R2007a

and so it is recommended that either this or a later version is used when running

the simulation to ensure compatibility.

• Ensure that the main script file aec sim.m and also the following experiment func-

tion files are in the current directory: exp1 filtlen.m, exp2 dt.m, exp3 delay.m,

exp4 longrir.m, exp5 noise.m, exp6 comp.m, exp7 drop pack.m and exp8 combo.m.

• Ensure that the following helper function files are in the current directory: rir.m,

fconv.m and mtit.m.m.

• Ensure that the following sound files are in the current directory: karl10s mp2 8 dec.wav,

karl10s mp2 16 dec.wav, karl10s mp2 32 dec.wav, karl10s mp2 64 dec.wav,

karl10s 8kHz 8bit.wav, karl10s 8kHz 8bit mulaw.wav and ricky10s 8kHz 8bit.wav.

• Start MATLAB and navigate to the current directory.
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• At the command line type ‘aec sim’ and then press ‘ENTER’ to start the simula-

tion.

• Follow the instructions to run the desired experiments.



5.8 Chapter Summary 49

5.8 Chapter Summary

This chapter gave a detailed account of the methodology behind the AEC simulations.

It also described the various performance metrics measured during the simulations and

how these should be interpreted to assess the echo cancelling effectiveness of each each

of the algorithms tested.



Chapter 6

Results and Discussion

6.1 Chapter Overview

The results and analysis of the AEC experiments are presented in this chapter. The first

seven experiments investigate the effect of altering a single independent variable (such

as dropped packets or noise levels) on the echo cancellation performance. Measurements

of various adaptive filter performance metrics were taken during each experiment and

then plotted for analysis. The final experiment simulates a real-world VoIP AEC sce-

nario in which all of the adverse conditions of the previous experiments are applied

simultaneously.

6.2 Experiment 1: Adaptive Filter Length

Figure 6.1 shows that for a filter length of L, the maximum ERLE rose proportionally

to log10L (note the base 10 logarithmic scale on the x-axis). This demonstrates that

increasing the number of tap-weights in the adaptive filter leads to increased echo

cancellation performance but that the performance gain drops off the higher you go.

It also shows that the rate of increase is practically the same for both NLMS and

RLS. Considering that NLMS is O(L) and RLS is O(L2) this shows that NLMS is able

to achieve a similar level of performance as RLS at a reduced level of computational
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effort, particulary as the filter length increases. This makes NLMS a better choice of

algorithm for large adaptive filters.
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Figure 6.1: Experiment 1: Maximum ERLE vs Adaptive filter length.

Figure 6.2 shows that convergence time rose linearly with the length of the adaptive

filter. The NLMS algorithm increased at a rate of approximately 1.2 ms per additional

filter weight and the RLS algorithm increased at a rate of approximately 0.13 ms

per additional filter weight. This shows that RLS is able to converge roughly 10 times

faster than NLMS which would make it the better choice of algorithm in non-stationary

environments such as in a room where people were moving around.

6.3 Experiment 2: Double-Talk

Figure 6.3 shows error plots for each algorithm during 10 s of far-End speech overlapped

with three short sections of near-End speech causing double-talk. The topmost plot

shows when the double-talk occurred during the simulation. It can clearly be seen that

the Dual-H filter design is very effective during double-talk and that echo cancellation

performance does not drop.

The NLMS and RLS algorithms are not able function correctly as shown by the large
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Figure 6.2: Experiment 1: Convergence Time vs Adaptive filter length.
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Figure 6.3: Experiment 2: Double-talk error plots.

residual errors during the double-talk periods. This is due to the adaptive filter di-

verging away from the correct solution as it tries to adapt to the near-End input which

acts as noise to the system (see 3.3.2). This effect is shown in Figure 6.4 where the

top plot shows the adaptive filter coefficients the off-line filter of the Dual-H system (a

regular NLMS adaptive filter). At the beginning of the simulation the adaptive filter
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is operating as required and the coefficients quickly converge from initial values of zero

to the correct solution. However the coefficients diverge markedly during the three

sections of double talk. The bottom plot shows that the on-line Dual-H filter is able to

maintain the correct weights throughout the double-talk.
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Figure 6.4: Diverging adaptive filter weights during double-talk.

6.4 Experiment 3: Tail-Circuit Delay

Figure 6.5 is a plot of maximum ERLE vs tail-circuit delay. It shows that there is

a linearly decreasing relationship between maximum ERLE and tail-circuit delay and

that the rate that maximum ERLE drops is approximately 0.9 dB/ms. The apparently

poor performance of each algorithm can be explained by the fact that the RIR tail

length was left longer than the adaptive filter length (rather than truncating the RIR

to match the adaptive filter length) for this experiment and this degrades performance

(see Experiment 4 below). This was done because the delay was implemented by

inserting a vector of zeros to the start of the RIR filter. If the RIR was truncated then

this would remove the tail section, leading to less non-zero elements in the RIR filter.

The result would be that longer delays would reduce the number of non-zero elements

in the optimal solution leading to an undesirable artificially increased adaptive filter

performance.
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Figure 6.5: Experiment 3: Maximum ERLE vs Tail-circuit delay when the adaptive filter

order is 250.

Figure 6.6 (adaptive filter length = 100) and Figure 6.7 (adaptive filter length = 250)

compare the error plots when the tail-circuit delay is set to 5 ms. They show that in-

creasing the adaptive filter length increases performance if a tail-circuit delay is present.

|Error| plot: Tail circuit delay = 5 ms, Adaptive Filter Order = 100
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Figure 6.6: Experiment 3: Error plot when the tail-circuit delay is 5ms and the adaptive

filter order is 100.
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|Error| plot: Tail circuit delay = 5 ms, Adaptive Filter Order = 250
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Figure 6.7: Experiment 3: Error plot when the tail-circuit delay is 5ms and the adaptive

filter order is 250.

6.5 Experiment 4: RIR Filter

This experiment examined how echo cancellation performance was effected by setting

the RIR filter to be longer than the adaptive filter length and then increasing the

reverberation in the room, making it more prone to echoes. This was done by using a

RIR with length of 1000 and running simulations for adaptive filter lengths up to 250

for a range of room reflection coefficient values (R).

Figure 6.8 shows two RIR filters created using different values of room reflection coef-

ficients with the top plot using R = 0.4 and the bottom plot R = 0.8. The dispersion

time of the bottom plot is clearly longer due in this more echoic environment and in-

creases the loudness of the echoes outside of the range of the adaptive filter thereby

reducing its effectiveness.

Figure 6.9 is a plot of maximum ERLE vs R for an adaptive filter length of 50. It

shows that there is a linearly decreasing relationship between maximum ERLE and R

and that the rate that maximum ERLE drops is approximately 5 dB per 0.1 increase

in R value.
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Figure 6.8: Increasing reverberation by increasing the room reflection coefficient, R.
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Figure 6.9: Experiment 4: Maximum ERLE vs R for an adaptive filter order of 50.

In Figure 6.10 the adaptive filter length is increased to 250. It shows the same linearly

decreasing relationship between maximum ERLE and R and that the rate that max-

imum ERLE drops is approximately 6 dB per 0.1 increase in R value. It also shows

that the maximum ERLE values have increased which demonstrates that increasing

the adaptive filter length gives better performance in echoic rooms.
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Figure 6.10: Experiment 4: Maximum ERLE vs R for an adaptive filter order of 250.

6.6 Experiment 5: Background Noise

This experiment examined the effects of using increasing levels of white Gaussian as

the near-End input. Figure 6.11 (SNR = 40.7) and Figure 6.12 (SNR = 11.1) show

error plots during a simulation when the adaptive filter length was 250. They show

that for low levels of noise all of the algorithms were capable of removing the far-End

echo but they performed poorly as the noise levels increased.

Figure 6.13 and Figure 6.14 show that at SNRs above approximately 20 dB, echo

cancellation performance is relatively constant but below this level performance rapidly

declines. The figures also show that increasing the adaptive filter length has negligible

effect on the performance in this noisy environment.

6.7 Experiment 6: Codec Compression

This experiment looked at the effects of codec compression on echo cancellation per-

formance. Figure 6.15 (adaptive filter length = 100) and Figure 6.16 (adaptive filter

length = 250) show the performance of each adaptive algorithm when the far-End signal
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|Error| during additive noise, Adaptive Filter Order = 250, SNR = 40.6613dB
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Figure 6.11: Experiment 5: Error when SNR = 40.7 dB.

|Error| during additive noise, Adaptive Filter Order = 250, SNR = 11.1189dB
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Figure 6.12: Experiment 5: Error when SNR = 11.1 dB.

was compressed and then decompressed at various bit-rates, a process which results in

information being lost from the original signal. The figures show that there is negligible

a performance difference between the various compression rates and this is due to the

placement of the AEC system in the near-end VoIP gateway as opposed to the far-end

gateway (see 4.4).
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Figure 6.13: Experiment 5: Maximum ERLE vs SNR for an adaptive filter order of 100
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Figure 6.14: Experiment 5: Maximum ERLE vs SNR for an adaptive filter order of 250

6.8 Experiment 7: Dropped Packets

This experiment examined the effects of dropped packet bursts on echo cancellation

performance. In this experiment multiple consecutive packet-sized segments of the far-

End signal were replaced with silence (zero amplitude signal) to simulate a burst of
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Figure 6.15: Experiment 6: Maximum ERLE vs Bit-rate for an adaptive filter order of 100
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Figure 6.16: Experiment 6: Maximum ERLE vs Bit-rate for an adaptive filter order of 250

dropped packets which was repeated once every second. Figure 6.17 shows that the

maximum ERLE of each adaptive algorithm is not effected by the dropped packets

although the overall convergence time is increased. This is explained by Figure 6.18

which is a plot of ERLE vs sample number for an extreme case in which roughly 90%

of the signal consists of dropped packet silence. It shows that the adaptive filters stop
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converging during the silence periods because w(n + 1) = w when x(n) = 0 (see the

adaptive filter update formulas in 3.4.1 and 3.5.1). During the periods in between

the silence they are able to converge as normal and will eventually reach the optimal

solution given enough time. In reality the slowing convergence times probably would

not be observed since it requires such an extreme rate of drop packets to notice the

effect. In this situation the degradation of the speech signal by the missing packets

would make it indiscernible.
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Figure 6.17: Experiment 7: Maximum ERLE vs Packet loss burst size for an adaptive filter

order of 250

6.9 Experiment 8: Complete Simulation

During this experiment the simulation was run using a NLMS Dual-H filter under the

following conditions:

• An adaptive filter order of 500

• A tail-circuit delay of 10 ms

• A dropped packet burst of 5 packets every second
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Figure 6.18: Experiment 7: ERLE plot for a large packet loss burst size and an adaptive

filter order of 250

• The far-end speech signal was compressed/decompressed using the G.711 codec

(64kbps)

• A near-end speech signal to produce double-talk

• A RIR filter of order 3050

• Gaussian white noise added to the near-end signal with a SNR of 35 dB

The error plot of the simulation is shown in Figure 6.19. It shows that whilst most of

the echo was able to be removed, a moderate amount of residual echo still remained.

This was confirmed during subjective listening tests of the residual error signal where

the some background echo was still noticeable though the near-end speech was clearly

distinguishable.

Figure 6.20 shows the ERLE plot during the simulation, note the erroneous peaks

coinciding with the dropped packets. It shows that the NLMS Dual-H filter was able

to achieve approximately 35 dB of ERLE during the simulation which is an adequate

figure for an echo-canceller. For example if the echo on a phone line had an an ERL

of 10 dB then after echo-cancellation the ERL becomes 10+35=45 dB. Referring to
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Figure 6.19: Experiment 8: Error plot for complete VoIP simulation.

Figure 2.3 this would be able to attenuate echoes to an acceptable level for one-way

delays of up to 300 ms which is a more than adequate level of performance since above

approximately 200 ms talker-overlap becomes a more annoying problem.
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Figure 6.20: Experiment 8: ERLE plot for complete VoIP simulation.
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6.10 Chapter Summary

The results of the VoIP AEC simulation experiments were presented as output plots

which were then analysed and the effects of the various VoIP channel characteristics on

echo cancellation performance was assessed. The results of the final experiment, which

incorporated a combination of all of these characteristics, showed that a reasonable

level of echo cancelling performance could be achieved using a Dual-H NLMS filter

configuration. Table 6.1 shows a summary of the findings from the experiments:
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Table 6.1: Summary of experiment results.

Experiment Summary

1 Both NLMS and RLS showed increased performance and

convergence times as the adaptive filter length was increased.

RLS had markedly lower convergence times than NLMS.

2 Without a DTD double-talk is extremely detrimental to echo

cancellation performance. The Dual-H filter configuration is

very effective at AEC during double-talk conditions.

3 Performance decreases as the tail-circuit delay increases.

Increasing the adaptive filter length increases performance

when a delay was present.

4 Performance decreases as the room is made more echoic.

Increasing the adaptive filter length is an effective way to

increase performance in echoic conditions.

5 Both NLMS and RLS showed decreased performance when

background noise was added. Increasing the adaptive filter

length did not improve performance in these conditions.

6 Codec compression had negligible effect on performance due

to the placement of the AEC system at the near-end gateway

of the VoIP channel.

7 Increasing the rate of dropped packets had negligible effect

on performance but increased convergence times. Although

this effect is minimal using realistic packet loss rates.

8 The Dual-H NLMS filter design was able to cancel echoes

effectively in the simulated VoIP environment.



Chapter 7

Conclusions and Further Work

7.1 Achievement of Project Objectives

The following objectives have been addressed:

Research the background AEC theory

The results of this research are shown in Chapter 2 which explains the nature

of telephony echoes and describes an AEC system. The background literature

on adaptive filter theory was also researched and used to give the mathematical

derivations of the NLMS and RLS algorithms which are presented in Chapter 3.

Research the characteristics of VoIP channels

Evidence of this research is shown in Chapter 4 where the important character-

istics of VoIP networks is presented as well as the likely impacts that these will

have on AEC.

Design and implement AEC VoIP experiments

An AEC VoIP computer simulation was able to be successfully designed and

implemented during this project. Chapter 5 describes the methodology used to

design the simulation experiments and explains how the VoIP channel and room

acoustics were modeled. It lists the various performance metrics used and explains

how these were interpreted to assess effectiveness of each AEC system. The
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MATLAB implementation is described in this chapter as well as in the program

listing in Appendix B.

Analyse the results from these experiments

Chapter 6 gives a detailed discussion of the results of the simulations. They

show that the simulation is capable of modeling the important characteristics of

a VoIP channel as well as room acoustic effects. A summary of the findings from

the simulations is given in Table 6.1. An important result of the project was

that one of the AEC systems that was tested by simulation, the Dual-H NLMS

system, was shown to be capable of adequate echo cancelling performance in a

VoIP environment.

7.2 Further Work

Although all of the major objectives of the project were achieved successfully, time did

not permit the completion of the optional objectives which were:

• Design and implement a real-time VoIP simulation environment.

• Investigate the use of more than one microphone for increasing echo cancellation

performance.

Both of these would be good candidates for future research. In particular, a real-time

simulation environment would be very useful and could be used to verify whether or

not the computational and memory requirements of the AEC systems in this project

are realistic.

Perhaps even more useful would be a real-world implementation rather than a simu-

lation environment. This could be done either in software running on a PC or on a

dedicated DSP board. This would be useful to verify the legitimacy of the VoIP channel

and room acoustic models used in this project.

One concern I had during the project was that each of the various VoIP channel param-

eters that was implemented in the simulation had the effect of degrading the adaptive
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filter performance to some extent. Did the simulation account for all the important pa-

rameters? A real-world simulation incorporating a real VoIP channel and room acoustic

effects would be the most thorough way to test each AEC system in this respect.

Lastly, more adaptive algorithms could be tested. This project only considered two

different algorithms but there are a myriad of alternatives to choose from. Implementing

a new algorithm could be achieved with a reduced effort by modifying the pre-existing

MATLAB functions created for this project.
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4. Analyse the results from these experiments to determine the most effective algorithms.
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B.1 The aec sim.m MATLAB Script

aec sim.m is the main script file for the AEC simulation. After running the script the

user is prompted to select from one of the eight different AEC experiments to run. See

5.7.9 for user instructions and lists of input sound files and function files necessary for

correct operation.

Listing B.1: The main script file for the AEC simulation.

% aec sim .m
%
% ∗ Adaptive Echo C a n c e l l a t i o n over VoIP s i m u l a t i o n s c r i p t
%
% ∗ C a l l s v a r i o u s AEC exper iments based on the user input from command
% prompt
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ LMS implementat ion adapted from adechosp .m by J . Leis
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ Requires the f o l l o w i n g f u n c t i o n f i l e s in the curren t d i r e c t o r y :
% e x p 1 f i l t l e n .m, e x p 2 d t .m, e x p 3 d e l a y .m, e x p 4 l o n g r i r .m, e x p 5 n o i s e .m,
% exp6 comp .m, exp7 drop pack .m and exp8 combo .m
%
% ∗ Requires the f o l l o w i n g input sound f i l e s in the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

go = 1 ;

while go==1

close a l l
c lc

%−−−−−−−−−−
disp ( ’################################’ )
disp ( ’# AEC Simulator by Shane Kmita #’ )
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disp ( ’################################’ )
disp ( ’ ’ )
disp ( ’ Experiment #1 = Var iab le adapt ive f i l t e r l ength ’ )
disp ( ’ Experiment #2 = Double t a l k cond i t i on ’ )
disp ( ’ Experiment #3 = Tail−c i r c u i t de lay ’ )
disp ( ’ Experiment #4 = RIR f i l t e r ’ )
disp ( ’ Experiment #5 = Background no i s e ’ )
disp ( ’ Experiment #6 = Codec compress ion ’ )
disp ( ’ Experiment #7 = Dropped packet bur s t s ’ )
disp ( ’ Experiment #8 = Combined e f f e c t adverse c o n d i t i o n s ’ )
disp ( ’ Experiment #0 = No experiment − qu i t s imu la tor ’ )
disp ( ’ ’ )
experiment = input ( ’ Enter the experiment number you wish to run and pre s s ENTER: ’ , ’ s ’ ) ;

switch experiment
case ’ 1 ’

clc
disp ( ’ Experiment #1 = Var iab le adapt ive f i l t e r l ength ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
e x p 1 f i l t l e n ( )

case ’ 2 ’
clc
disp ( ’ Experiment #2 = Double t a l k cond i t i on ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
exp2 dt ( )

case ’ 3 ’
clc
disp ( ’ Experiment #3 = E f f e c t s o f adding a t a i l−c i c u i t de lay ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
exp3 de lay ( )

case ’ 4 ’
clc
disp ( ’ Experiment #4 = E f f e c t s o f changing the RIR ’ )
disp ( ’A great cho ice , t h i s i s a good one ! ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
e x p 4 l o n g r i r ( )

case ’ 5 ’
clc
disp ( ’ Experiment #5 = E f f e c t s o f adding background no i s e ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
exp5 no i s e ( )

case ’ 6 ’
clc
disp ( ’ Experiment #6 = E f f e c t s o f codec compress ion ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
exp6 comp ( )

case ’ 7 ’
clc
disp ( ’ Experiment #7 = E f f e c t s o f dropped packet bur s t s ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
exp7 drop pack ( )

case ’ 8 ’
clc
disp ( ’ Experiment #8 = Combined e f f e c t adverse c o n d i t i o n s ’ )
disp ( ’ P lease wait a minute whi l e s imu la tor i s running . . . ’ )
exp8 combo ( )

case ’ 0 ’



B.1 The aec sim.m MATLAB Script 77

clc
go = −1;
disp ( ’ Quit t ing s imu la tor − s ee you l a t e r ! ’ )

o therw i se
fpr intf ( 1 , ’ I n v a l i d input !\ nPress a key to try again . . . \ n ’ ) ;
pause

end
end
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B.2 The exp1 filtlen.m MATLAB function

The function exp1 filtlen.m runs Experiment 1 (see 5.7.1) and is called by the main

script file for the AEC simulation, aec sim.m.

Listing B.2: The AEC Experiment 1 function file.

function [ ] = e x p 1 f i l t l e n ( )
% e x p 1 f i l t l e n .m
%
% ∗ Experiment #1 = Var iab l e a d a p t i v e f i l t e r l e n g t h
%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Creates p l o t s o f ERLE and Convergence time vs a d a p t i v e f i l t e r l e n g t h
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned f o r o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
N = 80000; Fs = 8000 ; x = randn(N, 1 ) ; % 10 s o f Gaussian whi te no i se

% Near−End ( ne ) s i g n a l
s = zeros ( length ( x ) , 1 ) ; % no ne speech

% Leve l s h i f t to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;

N = min( length ( x ) , length ( s ) ) ;
x = x ( 1 :N) ;
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s = s ( 1 :N) ;

% v e c t o r o f a d a p t i v e f i l t e r l e n g t h s
t e s t l e n g t h = [ 5 0 , 100 , 2 0 0 ] ;

for next = 1 : length ( t e s t l e n g t h )

L = t e s t l e n g t h ( next ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
r =−0.5; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b=r i r ( Fs , mic , n , r , rm , s r c ) ;
b = b ( 1 : L ) ; % t r u n c a t e impulse response to a d f i l t e r l e n g t h

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0

d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

r = s + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0

% NLMS
mu2 = 1 ; % NLMS s t e p s i z e
wNLMS = zeros (L , 1 ) ; % NLMS a d a p t i v e f i l t e r w e i g h t s
yNLMS = zeros (N, 1 ) ; % NLMS a d a p t i v e f i l t e r o t p u t ( e s t i m a t e o f d )
eNLMS = zeros (1 , N) ; % NLMS r e s i d u a l e r ro r

% RLS
lambda = 0 . 9 ; % RLS f o r g e t t i n g f a c t o r
% RLS v a r i a b l e s
wRLS = zeros (L , 1 ) ; % RLS f i l t e r w e i g h t s
x f i l t e r = zeros (L , 1 ) ; % input s i g n a l in f i l t e r
P = eye (L ) ; % i n v e r s e input c o r r e l a t i o n matrix
i n t= zeros (L , 1 ) ; % i n t e r m e d i a t e c a l c u l a t i o n s t e p = P(n−1)∗x (n)
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gain = zeros (L , 1 ) ; % gain v e c t o r
yRLS = zeros (N, 1 ) ; % RLS a d a p t i v e f i l t e r output
eRLS = zeros (1 , N) ; % RLS r e s i d u a l e r ror s i g n a l

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
epNLMS = 0 ; % power o f eNLMS in ERLE v e c t o r
epRLS = 0 ; % power o f eRLS in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s to p l o t
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s to p l o t
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLE NLMS = zeros (N, 1 ) ; % saves the NLMS ERLE f o r p l o t t i n g
ERLE RLS = zeros (N, 1 ) ; % saves the RLS ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE to p l o t
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% RLS
%
x f i l t e r (1)=x ( k ) ;
i n t = P∗ x f i l t e r ;

% 1. c a l c u l a t e gain v e c t o r
gain = (1/( lambda+dot ( x f i l t e r , i n t ) ) )∗ i n t ;

% 2. c a l c u l a t e e s t i m a t i o n erro r
yRLS( k ) = 0 ; % a d a p t i v e f i l t e r output
for n = 0 :L−1

i f ( (k−n) > 0)
yRLS( k ) = yRLS( k ) + (wRLS(n+1) ∗ x (k−n ) ) ;

end
end
eRLS( k ) = r ( k)−yRLS( k ) ;

% 3. update f i l t e r w e i g h t s
wRLS = wRLS + gain ∗eRLS( k ) ;

% 4. update i n v e r s e matrix
P = (1/ lambda )∗ (P − gain ∗ ( ( x f i l t e r ’ ) ∗P ) ) ;

% g e t next input v e c t o r
for j=L:−1:2

x f i l t e r ( j )= x f i l t e r ( j −1);
end
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%
% NLMS Dual−H, NLMS
%

% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;
yNLMS( k ) = 0 ;
for n = 0 :L−1

i f ( (k−n) > 0)
yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;
yNLMS( k ) = yNLMS( k ) + (wNLMS(n+1) ∗ x (k−n ) ) ;
yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;

end
end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;
eNLMS( k ) = r ( k ) − yNLMS( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L

xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) − eNLMS(k−ERLE L)∗eNLMS(k−ERLE L ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) − eRLS(k−ERLE L)∗eRLS(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) ;

end

% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;
ERLE NLMS( k ) = 10∗ log10 (dp / (epNLMS − s ( k ) + d e l t a ) ) ;
ERLE RLS( k ) = 10∗ log10 (dp / (epRLS − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H ope ra t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1

i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;
wNLMS(n+1) = wNLMS(n+1) + mu2 / ( xp + d e l t a )∗eNLMS( k )∗x (k−n ) ;

end
end



B.2 The exp1 filtlen.m MATLAB function 82

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)

wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end

%
% c a l c u l a t e p l o t t i n g data
%

% Dual−H NLMS output
Len ( next ) = L ; % current f i l t e r l e n g t h
plotmaxDH( next ) = max(ERLE ON) ; % f i n d dual−H NLMS max ERLE
convDH = find (ERLE ON(L : length (ERLE ON) ) > 0 .9∗plotmaxDH( next ) ) ; % f i n d v e c t o r o f i n d i c e s when

% ERLE > 90% max ERLE
conv timeDH ( next ) = convDH(1)/ Fs ∗1000 ; % f i n d s the time to 90% max (ms)

% NLMS output
plotmaxNLMS( next ) = max(ERLE NLMS) ; % f i n d NLMS max ERLE
convNLMS = find (ERLE NLMS(L : length (ERLE NLMS) ) > 0 .9∗plotmaxNLMS( next ) ) ; % f i n d v e c t o r o f i n d i c e s when

% ERLE > 90% max ERLE
conv timeNLMS ( next ) = convNLMS(1)/ Fs ∗1000 ; % f i n d s the time to 90% max (ms)

% RLS output
plotmaxRLS ( next ) = max(ERLE RLS ) ; % f i n d RLS max ERLE
convRLS = find (ERLE RLS(L : length (ERLE RLS) ) > 0 .9∗ plotmaxRLS ( next ) ) ; % f i n d v e c t o r o f i n d i c e s when

% ERLE > 90% max ERLE
conv timeRLS ( next ) = convRLS (1)/ Fs ∗1000 ; % f i n d s the time to 90% max (ms)
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end

%
% output p l o t s
%
f igure (1 )
semilogx ( Len , plotmaxDH , ’ x ’ , Len , plotmaxNLMS , ’ ∗ ’ , Len , plotmaxRLS , ’+’ , ’ LineWidth ’ , 2 , . . .

’ MarkerSize ’ , 1 0 ) ;
t i t l e ( ’Maximum ERLE vs F i l t e r Length ’ , ’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’ Adaptive F i l t e r Length ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’Maximum ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 2 ) ;

f igure (2 )
plot ( Len , conv timeDH , ’ x ’ , Len , conv timeNLMS , ’ ∗ ’ , Len , conv timeRLS , ’+’ , ’ LineWidth ’ , 2 , . . .

’ MarkerSize ’ , 1 0 ) ;
t i t l e ( ’ Convergence time vs F i l t e r Length ’ , ’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’ Adaptive F i l t e r Length ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’ Convergence time (ms) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 2 ) ;

disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause

B.3 The exp2 dt.m MATLAB function

The function exp2 dt.m runs Experiment 2 (see 5.7.2) and is called by the main script

file for the AEC simulation, aec sim.m.

Listing B.3: The AEC Experiment 2 function file..

function [ ] = exp2 dt ( )
% e x p 2 d t .m
%
% ∗ Experiment #2 = Double t a l k c o n d i t i o n
%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Creates p l o t s o f ERLE and | Error | f o r a range o f a d a p t i v e f i l t e r
% l e n g t h s
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
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% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
[ x Fs ] = wavread( ’ T e s t s i g n a l s \ ka r l 10 s 8kHz 8b i t . wav ’ ) ;

% Near−End ( ne ) s i g n a l
[ s Fs ] = wavread( ’ T e s t s i g n a l s \ r i cky10 s 8kHz 8b i t . wav ’ ) ;

% Leve l s h i f t to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;
s = 0 .8∗ s /(max(abs ( s ) ) ) ;

N = min( length ( x ) , length ( s ) ) ;
x = x ( 1 :N) ;
s = s ( 1 :N) ;

% v e c t o r o f a d a p t i v e f i l t e r l e n g t h s
t e s t l e n g t h = [100 , 200 , 2 5 0 ] ; % a d a p t i v e f i l t e r order

for next = 1 : length ( t e s t l e n g t h )

L = t e s t l e n g t h ( next ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
r =−0.5; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b=r i r ( Fs , mic , n , r , rm , s r c ) ;
b = b ( 1 : L ) ; % t r u n c a t e impulse response to a d f i l t e r l e n g t h

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0
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d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

r = s + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0

% NLMS
mu2 = 1 ; % NLMS s t e p s i z e
wNLMS = zeros (L , 1 ) ; % NLMS a d a p t i v e f i l t e r w e i g h t s
yNLMS = zeros (N, 1 ) ; % NLMS a d a p t i v e f i l t e r o t p u t ( e s t i m a t e o f d )
eNLMS = zeros (1 , N) ; % NLMS r e s i d u a l e r ro r

% RLS
lambda = 0 . 9 ; % RLS f o r g e t t i n g f a c t o r
% RLS v a r i a b l e s
wRLS = zeros (L , 1 ) ; % RLS f i l t e r w e i g h t s
x f i l t e r = zeros (L , 1 ) ; % input s i g n a l in f i l t e r
P = eye (L ) ; % i n v e r s e input c o r r e l a t i o n matrix
i n t= zeros (L , 1 ) ; % i n t e r m e d i a t e c a l c u l a t i o n s t e p = P(n−1)∗x (n)
gain = zeros (L , 1 ) ; % gain v e c t o r
yRLS = zeros (N, 1 ) ; % RLS a d a p t i v e f i l t e r output
eRLS = zeros (1 , N) ; % RLS r e s i d u a l e r ror s i g n a l

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
epNLMS = 0 ; % power o f eNLMS in ERLE v e c t o r
epRLS = 0 ; % power o f eRLS in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s f o r p l o t t i n g
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s f o r p l o t t i n g
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLE NLMS = zeros (N, 1 ) ; % saves the NLMS ERLE f o r p l o t t i n g
ERLE RLS = zeros (N, 1 ) ; % saves the RLS ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE f o r p l o t t i n g
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% RLS
%
x f i l t e r (1)=x ( k ) ;
i n t = P∗ x f i l t e r ;

% 1. c a l c u l a t e gain v e c t o r
gain = (1/( lambda+dot ( x f i l t e r , i n t ) ) )∗ i n t ;

% 2. c a l c u l a t e e s t i m a t i o n erro r
yRLS( k ) = 0 ; % a d a p t i v e f i l t e r output
for n = 0 :L−1

i f ( (k−n) > 0)
yRLS( k ) = yRLS( k ) + (wRLS(n+1) ∗ x (k−n ) ) ;

end
end
eRLS( k ) = r ( k)−yRLS( k ) ;

% 3. update f i l t e r w e i g h t s
wRLS = wRLS + gain ∗eRLS( k ) ;

% 4. update i n v e r s e matrix
P = (1/ lambda )∗ (P − gain ∗ ( ( x f i l t e r ’ ) ∗P ) ) ;

% g e t next input v e c t o r
for j=L:−1:2

x f i l t e r ( j )= x f i l t e r ( j −1);
end

%
% NLMS Dual−H, NLMS
%

% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;
yNLMS( k ) = 0 ;
for n = 0 :L−1

i f ( (k−n) > 0)
yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;
yNLMS( k ) = yNLMS( k ) + (wNLMS(n+1) ∗ x (k−n ) ) ;
yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;

end
end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;
eNLMS( k ) = r ( k ) − yNLMS( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L
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xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) − eNLMS(k−ERLE L)∗eNLMS(k−ERLE L ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) − eRLS(k−ERLE L)∗eRLS(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) ;

end

% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;
ERLE NLMS( k ) = 10∗ log10 (dp / (epNLMS − s ( k ) + d e l t a ) ) ;
ERLE RLS( k ) = 10∗ log10 (dp / (epRLS − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H ope ra t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1

i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;
wNLMS(n+1) = wNLMS(n+1) + mu2 / ( xp + d e l t a )∗eNLMS( k )∗x (k−n ) ;

end
end

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)

wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
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WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% smooth output us ing moving average
for i =1:N−500

ERLE ON( i ) = mean(ERLE ON( i : i +500)) ;
ERLE NLMS( i ) = mean(ERLE NLMS( i : i +500)) ;
ERLE RLS( i ) = mean(ERLE RLS( i : i +500)) ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure ( next )
subplot ( 4 , 1 , 1 ) ;
plot ( d t p l o t / 2 0 ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ Double t a l k f l a g ’ ) ;
legend ( ’ Double t a l k : ON = 1 , OFF = 0 ’ , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 4 , 1 , 2 ) ;
plot (abs (eON − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 4 , 1 , 3 ) ;
plot (abs (eNLMS − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 4 , 1 , 4 ) ;
plot (abs (eRLS − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
xlabel ( ’ Sample Number ’ ) ;
legend ( [ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 1 ) ;

% Put a main t i t l e above the s u b p l o t t i t l e s
m a i n t i t l e = [ ’ | Error | during Double ta lk , Adaptive F i l t e r Order = ’ ,num2str(L ) ] ;
mtit ( m a i n t i t l e , ’ x o f f ’ ,− .1 , ’ y o f f ’ , . 0 2 5 , ’ f o n t s i z e ’ , 1 4 ) ;

f igure ( next+length ( t e s t l e n g t h ) )
plot ( 1 :N, [ abs (ERLE ON) , abs (ERLE NLMS) , abs (ERLE RLS) , d t p l o t ] ) ;
t i t l e ( [ ’ERLE during Double ta lk , Adaptive F i l t e r Order = ’ ,num2str(L ) ] , ’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’ Sample Number ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , ’ Double t a l k : ON=20, OFF=0 ’ , 2 ) ;
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end

disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause

B.4 The exp3 delay.m MATLAB function

The function exp3 delay.m runs Experiment 3 (see 5.7.3) and is called by the main

script file for the AEC simulation, aec sim.m.

Listing B.4: The AEC Experiment 3 function file..

function [ ] = exp3 de lay ( )
% e x p 3 d e l a y .m
%
% ∗ Experiment #3 = E f f e c t s o f round−t r i p d e l a y
%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Creates p l o t s o f | Error | f o r v a r i o u s v a l u e s one−way network d e l a y
% and a d a p t i v e f i l t e r l e n g t h . Also p l o t s Max ERLE vs d e l a y .
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
N = 20000; Fs = 8000 ; x = randn(N, 1 ) ; % N Gaussian whi te no i se samples

% Near−End ( ne ) s i g n a l
s = zeros (N, 1 ) ; % no ne speech

% Leve l s h i f t f e to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
r =−0.5; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b1=r i r ( Fs , mic , n , r , rm , s r c ) ;

% v e c t o r o f a d a p t i v e f i l t e r l e n g t h s
t e s t l e n g t h = [100 , 200 , 2 5 0 ] ; % a d a p t i v e f i l t e r order

% v e c t o r o f one−way d e l a y s
tde l ay range = [ 5 , 10 , 1 5 ] ; % one−way t a i l c i r c u i t d e l a y (ms)

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for next = 1 : length ( t e s t l e n g t h )

L = t e s t l e n g t h ( next ) ;

for tde l ay nex t = 1 : length ( tde l ay range )

tde lay = tde l ay range ( tde l ay nex t ) ; % d e l a y in ms
tdelay samp = f loor ( tde lay ∗Fs /1000) ; % d e l a y in samples
b = [ zeros ( tdelay samp , 1 ) ; b1 ] ; % add d e l a y to r i r
%b = b ( 1 : L ) ; % t r u n c a t e impulse response to a d f i l t e r l e n g t h

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0

d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

r = s + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
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wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0

% NLMS
mu2 = 1 ; % NLMS s t e p s i z e
wNLMS = zeros (L , 1 ) ; % NLMS a d a p t i v e f i l t e r w e i g h t s
yNLMS = zeros (N, 1 ) ; % NLMS a d a p t i v e f i l t e r o t p u t ( e s t i m a t e o f d )
eNLMS = zeros (1 , N) ; % NLMS r e s i d u a l e r ro r

% RLS
lambda = 0 . 9 ; % RLS f o r g e t t i n g f a c t o r
% RLS v a r i a b l e s
wRLS = zeros (L , 1 ) ; % RLS f i l t e r w e i g h t s
x f i l t e r = zeros (L , 1 ) ; % input s i g n a l in f i l t e r
P = eye (L ) ; % i n v e r s e input c o r r e l a t i o n matrix
i n t= zeros (L , 1 ) ; % i n t e r m e d i a t e c a l c u l a t i o n s t e p = P(n−1)∗x (n)
gain = zeros (L , 1 ) ; % gain v e c t o r
yRLS = zeros (N, 1 ) ; % RLS a d a p t i v e f i l t e r output
eRLS = zeros (1 , N) ; % RLS r e s i d u a l e r r or s i g n a l

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
epNLMS = 0 ; % power o f eNLMS in ERLE v e c t o r
epRLS = 0 ; % power o f eRLS in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s f o r p l o t t i n g
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s f o r p l o t t i n g
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLE NLMS = zeros (N, 1 ) ; % saves the NLMS ERLE f o r p l o t t i n g
ERLE RLS = zeros (N, 1 ) ; % saves the RLS ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE f o r p l o t t i n g
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% RLS
%
x f i l t e r (1)=x ( k ) ;
i n t = P∗ x f i l t e r ;

% 1. c a l c u l a t e gain v e c t o r
gain = (1/( lambda+dot ( x f i l t e r , i n t ) ) )∗ i n t ;

% 2. c a l c u l a t e e s t i m a t i o n erro r
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yRLS( k ) = 0 ; % a d a p t i v e f i l t e r output
for n = 0 :L−1

i f ( (k−n) > 0)
yRLS( k ) = yRLS( k ) + (wRLS(n+1) ∗ x (k−n ) ) ;

end
end
eRLS( k ) = r ( k)−yRLS( k ) ;

% 3. update f i l t e r w e i g h t s
wRLS = wRLS + gain ∗eRLS( k ) ;

% 4. update i n v e r s e matrix
P = (1/ lambda )∗ (P − gain ∗ ( ( x f i l t e r ’ ) ∗P ) ) ;

% g e t next input v e c t o r
for j=L:−1:2

x f i l t e r ( j )= x f i l t e r ( j −1);
end

%
% NLMS Dual−H, NLMS
%

% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;
yNLMS( k ) = 0 ;
for n = 0 :L−1

i f ( (k−n) > 0)
yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;
yNLMS( k ) = yNLMS( k ) + (wNLMS(n+1) ∗ x (k−n ) ) ;
yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;

end
end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;
eNLMS( k ) = r ( k ) − yNLMS( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L

xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) − eNLMS(k−ERLE L)∗eNLMS(k−ERLE L ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) − eRLS(k−ERLE L)∗eRLS(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) ;

end
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% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;
ERLE NLMS( k ) = 10∗ log10 (dp / (epNLMS − s ( k ) + d e l t a ) ) ;
ERLE RLS( k ) = 10∗ log10 (dp / (epRLS − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H oper a t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1

i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;
wNLMS(n+1) = wNLMS(n+1) + mu2 / ( xp + d e l t a )∗eNLMS( k )∗x (k−n ) ;

end
end

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)

wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% c a l c u l a t e p l o t t i n g data
%
tde lay plot DH ( tde lay next , : ) = [ tde l ay range ( tde l ay nex t ) , max( real (ERLE ON ) ) ] ;
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tdelay plot NLMS ( tde lay next , : ) = [ tde l ay range ( tde l ay nex t ) , max( real (ERLE NLMS ) ) ] ;
tde lay p lot RLS ( tde lay next , : ) = [ tde l ay range ( tde l ay nex t ) , max( real (ERLE RLS ) ) ] ;

% smooth output us ing moving average
for i =1:N−500

ERLE ON( i ) = mean(ERLE ON( i : i +500)) ;
ERLE NLMS( i ) = mean(ERLE NLMS( i : i +500)) ;
ERLE RLS( i ) = mean(ERLE RLS( i : i +500)) ;

end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure ( tde l ay nex t +10∗next )
subplot ( 3 , 1 , 1 ) ;
plot (abs (eON − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 2 ) ;
plot (abs (eNLMS − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 3 ) ;
plot (abs (eRLS − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
xlabel ( ’ Sample Number ’ ) ;
legend ( [ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 1 ) ;

% Put a main t i t l e above the s u b p l o t t i t l e s
m a i n t i t l e = [ ’ | Error | p lo t : Ta i l c i r c u i t de lay = ’ , . . .

num2str( tde l ay range ( tde l ay nex t ) ) , . . .
’ ms , Adaptive F i l t e r Order = ’ ,num2str(L ) ] ;

mtit ( m a i n t i t l e , ’ x o f f ’ ,− .1 , ’ y o f f ’ , . 0 2 5 , ’ f o n t s i z e ’ , 1 4 ) ;
end
figure ( tde l ay nex t +1+10∗next )
plot ( tde lay plot DH ( : , 1 ) , tde lay plot DH ( : , 2 ) , ’ x ’ , tdelay plot NLMS ( : , 1 ) , tdelay plot NLMS ( : , 2 ) , . . .

’ ∗ ’ , tde lay p lot RLS ( : , 1 ) , tde lay p lot RLS ( : , 2 ) , ’+ ’ , ’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 1 0 ) ;

t i t l e ( [ ’Max ERLE vs Ta i l C i r c u i t Delay : Adaptive F i l t e r Order = ’ ,num2str(L ) ] , . . .
’ f o n t s i z e ’ , 1 4 ) ;

xlabel ( ’ Ta i l C i r c u i t Delay (ms) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’Max ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 3 ) ;
end

disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause
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B.5 The exp4 longrir.m MATLAB function

The function exp4 longrir.m runs Experiment 4 (see 5.7.4) and is called by the main

script file for the AEC simulation, aec sim.m.

Listing B.5: The AEC Experiment 4 function file..

function [ ] = e x p 4 l o n g r i r ( )
% e x p 4 l o n g r i r .m
%
% ∗ Experiment #4 = E f f e c t s o f a RIR f i l t e r l o n g e r than the a d a p t i v e f i l t e r
% and changing the room r e f l e c t i o n c o e f f i c i e n t , R.
%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Creates p l o t s o f | Error | f o r v a r i o u s v a l u e s o f R (room r e f l e c t i o n c o e f f . )
% and RIR f i l t e r l e n g t h . Also p l o t s Max ERLE vs R.
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
[ x Fs ] = wavread( ’ ka r l 10 s 8kHz 8b i t . wav ’ ) ;
N = length ( x ) ;

% Near−End ( ne ) s i g n a l
s = zeros (N, 1 ) ; % no ne speech

% Leve l s h i f t f e to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;
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N = min( length ( x ) , length ( s ) ) ;
x = x ( 1 :N) ;
s = s ( 1 :N) ;

% v e c t o r o f r e f l e c t i o n c o e f f i c i e n t s
R range = [ 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 ] ;

% v e c t o r o f a d a p t i v e f i l t e r l e n g t h s
t e s t l e n g t h = [100 , 200 , 2 5 0 ] ;

RIR order = 1000 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for next = 1 : length ( t e s t l e n g t h )

L = t e s t l e n g t h ( next ) ;

for R next = 1 : length ( R range )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
R = R range ( R next ) ; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b=r i r ( Fs , mic , n , R, rm , s r c ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0

d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

r = s + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0



B.5 The exp4 longrir.m MATLAB function 97

% NLMS
mu2 = 1 ; % NLMS s t e p s i z e
wNLMS = zeros (L , 1 ) ; % NLMS a d a p t i v e f i l t e r w e i g h t s
yNLMS = zeros (N, 1 ) ; % NLMS a d a p t i v e f i l t e r o t p u t ( e s t i m a t e o f d )
eNLMS = zeros (1 , N) ; % NLMS r e s i d u a l e r ror

% RLS
lambda = 0 . 9 ; % RLS f o r g e t t i n g f a c t o r
% RLS v a r i a b l e s
wRLS = zeros (L , 1 ) ; % RLS f i l t e r w e i g h t s
x f i l t e r = zeros (L , 1 ) ; % input s i g n a l in f i l t e r
P = eye (L ) ; % i n v e r s e input c o r r e l a t i o n matrix
i n t= zeros (L , 1 ) ; % i n t e r m e d i a t e c a l c u l a t i o n s t e p = P(n−1)∗x (n)
gain = zeros (L , 1 ) ; % gain v e c t o r
yRLS = zeros (N, 1 ) ; % RLS a d a p t i v e f i l t e r output
eRLS = zeros (1 , N) ; % RLS r e s i d u a l e r r or s i g n a l

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
epNLMS = 0 ; % power o f eNLMS in ERLE v e c t o r
epRLS = 0 ; % power o f eRLS in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s f o r p l o t t i n g
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s f o r p l o t t i n g
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLE NLMS = zeros (N, 1 ) ; % saves the NLMS ERLE f o r p l o t t i n g
ERLE RLS = zeros (N, 1 ) ; % saves the RLS ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE f o r p l o t t i n g
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% RLS
%
x f i l t e r (1)=x ( k ) ;
i n t = P∗ x f i l t e r ;

% 1. c a l c u l a t e gain v e c t o r
gain = (1/( lambda+dot ( x f i l t e r , i n t ) ) )∗ i n t ;

% 2. c a l c u l a t e e s t i m a t i o n erro r
yRLS( k ) = 0 ; % a d a p t i v e f i l t e r output
for n = 0 :L−1

i f ( (k−n) > 0)
yRLS( k ) = yRLS( k ) + (wRLS(n+1) ∗ x (k−n ) ) ;

end
end
eRLS( k ) = r ( k)−yRLS( k ) ;

% 3. update f i l t e r w e i g h t s
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wRLS = wRLS + gain ∗eRLS( k ) ;

% 4. update i n v e r s e matrix
P = (1/ lambda )∗ (P − gain ∗ ( ( x f i l t e r ’ ) ∗P ) ) ;

% g e t next input v e c t o r
for j=L:−1:2

x f i l t e r ( j )= x f i l t e r ( j −1);
end

%
% NLMS Dual−H, NLMS
%

% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;
yNLMS( k ) = 0 ;
for n = 0 :L−1

i f ( (k−n) > 0)
yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;
yNLMS( k ) = yNLMS( k ) + (wNLMS(n+1) ∗ x (k−n ) ) ;
yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;

end
end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;
eNLMS( k ) = r ( k ) − yNLMS( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L

xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) − eNLMS(k−ERLE L)∗eNLMS(k−ERLE L ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) − eRLS(k−ERLE L)∗eRLS(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) ;

end

% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;
ERLE NLMS( k ) = 10∗ log10 (dp / (epNLMS − s ( k ) + d e l t a ) ) ;
ERLE RLS( k ) = 10∗ log10 (dp / (epRLS − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H oper a t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
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ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1

i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;
wNLMS(n+1) = wNLMS(n+1) + mu2 / ( xp + d e l t a )∗eNLMS( k )∗x (k−n ) ;

end
end

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)

wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% c a l c u l a t e p l o t t i n g data
%
R plot DH ( R next , : ) = [R, max( real (ERLE ON ) ) ] ;
R plot NLMS ( R next , : ) = [R, max( real (ERLE NLMS ) ) ] ;
R plot RLS ( R next , : ) = [R, max( real (ERLE RLS ) ) ] ;

% smooth output us ing moving average
for i =1:N−500

ERLE ON( i ) = mean(ERLE ON( i : i +500)) ;
ERLE NLMS( i ) = mean(ERLE NLMS( i : i +500)) ;
ERLE RLS( i ) = mean(ERLE RLS( i : i +500)) ;

end
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure ( R next+10∗next )
subplot ( 3 , 1 , 1 ) ;
plot (abs (eON − s ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 2 ) ;
plot (abs (eNLMS − s ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 3 ) ;
plot (abs (eRLS − s ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
xlabel ( ’ Sample Number ’ ) ;
legend ( [ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 1 ) ;

% Put a main t i t l e above the s u b p l o t t i t l e s
m a i n t i t l e = [ ’ | Error | p lo t : RIR Order = ’ ,num2str( RIR order ) , . . .
’ , Adaptive F i l t e r Order = ’ ,num2str(L ) , . . .
’ , R = ’ ,num2str(R ) ] ;
mtit ( m a i n t i t l e , ’ x o f f ’ ,− .1 , ’ y o f f ’ , . 0 2 5 , ’ f o n t s i z e ’ , 1 5 ) ;

end
figure ( R next+1+10∗next )
plot ( R plot DH ( : , 1 ) , R plot DH ( : , 2 ) , ’ x ’ , R plot NLMS ( : , 1 ) , R plot NLMS ( : , 2 ) , . . .

’ ∗ ’ , R plot RLS ( : , 1 ) , R plot RLS ( : , 2 ) , ’+ ’ , ’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 1 0 ) ;

t i t l e ( [ ’Max ERLE vs R: RIR Order = ’ ,num2str( RIR order ) , . . .
’ , Adaptive F i l t e r Order = ’ ,num2str(L ) ] , ’ f o n t s i z e ’ , 1 4 ) ;

xlabel ( ’R ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’Max ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 1 ) ;
end

disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause

B.6 The exp5 noise.m MATLAB function

The function exp5 noise.m runs Experiment 5 (see 5.7.5) and is called by the main

script file for the AEC simulation, aec sim.m.
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Listing B.6: The AEC Experiment 5 function file..

function [ ] = exp5 no i s e ( )
% e x p 5 n o i s e .m
%
% ∗ Experiment #5 = E f f e c t s o f background noi se
%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Creates p l o t s o f | Error | f o r v a r i o u s v a l u e s o f SNR and a d a p t i v e f i l t e r
% l e n g t h . Also p l o t s Max ERLE vs SNR.
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
N = 20000; Fs = 8000 ; x = randn(N, 1 ) ; % N Gaussian whi te no i se samples

% Near−End ( ne ) s i g n a l
s = randn(N, 1 ) ; % N Gaussian whi te no i se samples

% Leve l s h i f t f e to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;

% Leve l s h i f t ne to 100% maximum
s = s /(max(abs ( s ) ) ) ;

N = min( length ( x ) , length ( s ) ) ;
x = x ( 1 :N) ;
s = s ( 1 :N) ;

% v e c t o r o f no i se m u l t i p l i e r s − s e t s maximum noise ampl i tude
n o i s e r a n g e = [ 0 . 0 0 3 , 0 . 01 , 0 . 03 , 0 . 1 , 0 . 3 ] ;

% v e c t o r o f a d a p t i v e f i l t e r l e n g t h s
t e s t l e n g t h = [100 , 200 , 2 5 0 ] ; % a d a p t i v e f i l t e r order
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for next = 1 : length ( t e s t l e n g t h )

L = t e s t l e n g t h ( next ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
r =−0.5; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b=r i r ( Fs , mic , n , r , rm , s r c ) ;
b = b ( 1 : L ) ; % t r u n c a t e impulse response to a d f i l t e r l e n g t h

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0

d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

for nr = 1 : length ( n o i s e r a n g e )

% Leve l s h i f t by n o i s e r a n g e m u l t i p l i e r
s new = n o i s e r a n g e ( nr )∗ s ;

r = s new + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )

SNR = 10∗ log10 ( sum(d .∗d) / (sum( s new .∗ s new )+0.0000001) ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0

% NLMS
mu2 = 1 ; % NLMS s t e p s i z e
wNLMS = zeros (L , 1 ) ; % NLMS a d a p t i v e f i l t e r w e i g h t s
yNLMS = zeros (N, 1 ) ; % NLMS a d a p t i v e f i l t e r o t p u t ( e s t i m a t e o f d )
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eNLMS = zeros (1 , N) ; % NLMS r e s i d u a l e r ror

% RLS
lambda = 0 . 9 ; % RLS f o r g e t t i n g f a c t o r
% RLS v a r i a b l e s
wRLS = zeros (L , 1 ) ; % RLS f i l t e r w e i g h t s
x f i l t e r = zeros (L , 1 ) ; % input s i g n a l in f i l t e r
P = eye (L ) ; % i n v e r s e input c o r r e l a t i o n matrix
i n t= zeros (L , 1 ) ; % i n t e r m e d i a t e c a l c u l a t i o n s t e p = P(n−1)∗x (n)
gain = zeros (L , 1 ) ; % gain v e c t o r
yRLS = zeros (N, 1 ) ; % RLS a d a p t i v e f i l t e r output
eRLS = zeros (1 , N) ; % RLS r e s i d u a l e r r or s i g n a l

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
epNLMS = 0 ; % power o f eNLMS in ERLE v e c t o r
epRLS = 0 ; % power o f eRLS in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s f o r p l o t t i n g
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s f o r p l o t t i n g
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLE NLMS = zeros (N, 1 ) ; % saves the NLMS ERLE f o r p l o t t i n g
ERLE RLS = zeros (N, 1 ) ; % saves the RLS ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE f o r p l o t t i n g
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% RLS
%
x f i l t e r (1)=x ( k ) ;
i n t = P∗ x f i l t e r ;

% 1. c a l c u l a t e gain v e c t o r
gain = (1/( lambda+dot ( x f i l t e r , i n t ) ) )∗ i n t ;

% 2. c a l c u l a t e e s t i m a t i o n erro r
yRLS( k ) = 0 ; % a d a p t i v e f i l t e r output
for n = 0 :L−1

i f ( (k−n) > 0)
yRLS( k ) = yRLS( k ) + (wRLS(n+1) ∗ x (k−n ) ) ;

end
end
eRLS( k ) = r ( k)−yRLS( k ) ;

% 3. update f i l t e r w e i g h t s
wRLS = wRLS + gain ∗eRLS( k ) ;

% 4. update i n v e r s e matrix
P = (1/ lambda )∗ (P − gain ∗ ( ( x f i l t e r ’ ) ∗P ) ) ;
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% g e t next input v e c t o r
for j=L:−1:2

x f i l t e r ( j )= x f i l t e r ( j −1);
end

%
% NLMS Dual−H, NLMS
%

% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;
yNLMS( k ) = 0 ;
for n = 0 :L−1

i f ( (k−n) > 0)
yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;
yNLMS( k ) = yNLMS( k ) + (wNLMS(n+1) ∗ x (k−n ) ) ;
yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;

end
end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;
eNLMS( k ) = r ( k ) − yNLMS( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L

xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) − eNLMS(k−ERLE L)∗eNLMS(k−ERLE L ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) − eRLS(k−ERLE L)∗eRLS(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) ;

end

% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;
ERLE NLMS( k ) = 10∗ log10 (dp / (epNLMS − s ( k ) + d e l t a ) ) ;
ERLE RLS( k ) = 10∗ log10 (dp / (epRLS − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H oper a t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1
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i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;
wNLMS(n+1) = wNLMS(n+1) + mu2 / ( xp + d e l t a )∗eNLMS( k )∗x (k−n ) ;

end
end

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)

wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% c a l c u l a t e p l o t t i n g data
%
SNR plot DH ( nr , : ) = [SNR, max( real (ERLE ON ) ) ] ;
SNR plot NLMS ( nr , : ) = [SNR, max( real (ERLE NLMS ) ) ] ;
SNR plot RLS ( nr , : ) = [SNR, max( real (ERLE RLS ) ) ] ;

% smooth output us ing moving average
for i =1:N−500

ERLE ON( i ) = mean(ERLE ON( i : i +500)) ;
ERLE NLMS( i ) = mean(ERLE NLMS( i : i +500)) ;
ERLE RLS( i ) = mean(ERLE RLS( i : i +500)) ;

end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure ( nr+10∗next )
subplot ( 3 , 1 , 1 ) ;
plot (abs (eON − s new ’ ) ) ;
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ylim ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 2 ) ;
plot (abs (eNLMS − s new ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 3 ) ;
plot (abs (eRLS − s new ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
xlabel ( ’ Sample Number ’ ) ;
legend ( [ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 1 ) ;

% Put a main t i t l e above the s u b p l o t t i t l e s
m a i n t i t l e = [ ’ | Error | during a d d i t i v e no i se , Adaptive F i l t e r Order = ’ ,num2str(L) , . . .

’ , SNR = ’ ,num2str(SNR) , ’dB ’ ] ;
mtit ( m a i n t i t l e , ’ x o f f ’ ,− .1 , ’ y o f f ’ , . 0 2 5 , ’ f o n t s i z e ’ , 1 5 ) ;

end
figure ( nr+1+10∗next )
plot ( SNR plot DH ( : , 1 ) , SNR plot DH ( : , 2 ) , ’ x ’ , SNR plot NLMS ( : , 1 ) , SNR plot NLMS ( : , 2 ) , . . .

’ ∗ ’ , SNR plot RLS ( : , 1 ) , SNR plot RLS ( : , 2 ) , ’+ ’ , ’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 1 0 ) ;

t i t l e ( [ ’Max ERLE vs SNR, Adaptive F i l t e r Order = ’ ,num2str(L ) ] , ’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’SNR (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’Max ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 4 ) ;
end

disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause

B.7 The exp6 comp.m MATLAB function

The function exp6 comp.m runs Experiment 6 (see 6.7) and is called by the main script

file for the AEC simulation, aec sim.m.

Listing B.7: The AEC Experiment 6 function file..

function [ ] = exp6 comp ( )
% exp6 comp .m
%
% ∗ Experiment #6 = E f f e c t s o f codec compression
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%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Creates p l o t s o f | Error | f o r v a r i o u s v a l u e s o f input s i g n a l b i t r a t e and
% a d a p t i v e f i l t e r l e n g t h . Also p l o t s Max ERLE vs b i t r a t e .
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
% f e i n p u t s compressed / decompressed by mp2 codec at d i f f e r e n t b i t−r a t e s
[ x1 Fs ] = wavread( ’ kar l10s mp2 8 dec . wav ’ ) ; % 8 kbps
[ x2 Fs ] = wavread( ’ kar l10s mp2 16 dec . wav ’ ) ;% 16 kbps
[ x3 Fs ] = wavread( ’ kar l10s mp2 32 dec . wav ’ ) ;% 32 kbps
[ x4 Fs ] = wavread( ’ kar l10s mp2 64 dec . wav ’ ) ;% 64 kbps
x array = [ x1 , x2 , x3 , x4 ] ;

N = length ( x ar ray ) ;

% Near−End ( ne ) s i g n a l
s = zeros (N, 1 ) ; % no ne speech

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
r =−0.5; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b1=r i r ( Fs , mic , n , r , rm , s r c ) ;

% v e c t o r o f b i t r a t e s
br range = [ 8 , 1 6 , 3 2 , 6 4 ] ;
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% v e c t o r o f a d a p t i v e f i l t e r l e n g t h s
t e s t l e n g t h = [100 , 200 , 2 5 0 ] ; % a d a p t i v e f i l t e r order

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for next = 1 : length ( t e s t l e n g t h )

L = t e s t l e n g t h ( next ) ;
b = b1 ( 1 : L ) ; % t r u n c a t e impulse response to a d f i l t e r l e n g t h

for br next = 1 : length ( br range )

br = br range ( br next ) ;
x = x array ( : , br next ) ;
% Leve l s h i f t f e to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0

d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

r = s + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0

% NLMS
mu2 = 1 ; % NLMS s t e p s i z e
wNLMS = zeros (L , 1 ) ; % NLMS a d a p t i v e f i l t e r w e i g h t s
yNLMS = zeros (N, 1 ) ; % NLMS a d a p t i v e f i l t e r o t p u t ( e s t i m a t e o f d )
eNLMS = zeros (1 , N) ; % NLMS r e s i d u a l e r ro r

% RLS
lambda = 0 . 9 ; % RLS f o r g e t t i n g f a c t o r
% RLS v a r i a b l e s
wRLS = zeros (L , 1 ) ; % RLS f i l t e r w e i g h t s
x f i l t e r = zeros (L , 1 ) ; % input s i g n a l in f i l t e r
P = eye (L ) ; % i n v e r s e input c o r r e l a t i o n matrix
i n t= zeros (L , 1 ) ; % i n t e r m e d i a t e c a l c u l a t i o n s t e p = P(n−1)∗x (n)
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gain = zeros (L , 1 ) ; % gain v e c t o r
yRLS = zeros (N, 1 ) ; % RLS a d a p t i v e f i l t e r output
eRLS = zeros (1 , N) ; % RLS r e s i d u a l e r r or s i g n a l

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
epNLMS = 0 ; % power o f eNLMS in ERLE v e c t o r
epRLS = 0 ; % power o f eRLS in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s f o r p l o t t i n g
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s f o r p l o t t i n g
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLE NLMS = zeros (N, 1 ) ; % saves the NLMS ERLE f o r p l o t t i n g
ERLE RLS = zeros (N, 1 ) ; % saves the RLS ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE f o r p l o t t i n g
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% RLS
%
x f i l t e r (1)=x ( k ) ;
i n t = P∗ x f i l t e r ;

% 1. c a l c u l a t e gain v e c t o r
gain = (1/( lambda+dot ( x f i l t e r , i n t ) ) )∗ i n t ;

% 2. c a l c u l a t e e s t i m a t i o n erro r
yRLS( k ) = 0 ; % a d a p t i v e f i l t e r output
for n = 0 :L−1

i f ( (k−n) > 0)
yRLS( k ) = yRLS( k ) + (wRLS(n+1) ∗ x (k−n ) ) ;

end
end
eRLS( k ) = r ( k)−yRLS( k ) ;

% 3. update f i l t e r w e i g h t s
wRLS = wRLS + gain ∗eRLS( k ) ;

% 4. update i n v e r s e matrix
P = (1/ lambda )∗ (P − gain ∗ ( ( x f i l t e r ’ ) ∗P ) ) ;

% g e t next input v e c t o r
for j=L:−1:2

x f i l t e r ( j )= x f i l t e r ( j −1);
end

%
% NLMS Dual−H, NLMS
%
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% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;
yNLMS( k ) = 0 ;
for n = 0 :L−1

i f ( (k−n) > 0)
yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;
yNLMS( k ) = yNLMS( k ) + (wNLMS(n+1) ∗ x (k−n ) ) ;
yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;

end
end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;
eNLMS( k ) = r ( k ) − yNLMS( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L

xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) − eNLMS(k−ERLE L)∗eNLMS(k−ERLE L ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) − eRLS(k−ERLE L)∗eRLS(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) ;

end

% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;
ERLE NLMS( k ) = 10∗ log10 (dp / (epNLMS − s ( k ) + d e l t a ) ) ;
ERLE RLS( k ) = 10∗ log10 (dp / (epRLS − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H oper a t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1

i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;
wNLMS(n+1) = wNLMS(n+1) + mu2 / ( xp + d e l t a )∗eNLMS( k )∗x (k−n ) ;

end
end

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)
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wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% c a l c u l a t e p l o t t i n g data
%
br plot DH ( br next , : ) = [ br , max( real (ERLE ON ) ) ] ;
br plot NLMS ( br next , : ) = [ br , max( real (ERLE NLMS ) ) ] ;
br plot RLS ( br next , : ) = [ br , max( real (ERLE RLS ) ) ] ;

% smooth output us ing moving average
for i =1:N−500

ERLE ON( i ) = mean(ERLE ON( i : i +500)) ;
ERLE NLMS( i ) = mean(ERLE NLMS( i : i +500)) ;
ERLE RLS( i ) = mean(ERLE RLS( i : i +500)) ;

end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure ( br next +10∗next )
subplot ( 3 , 1 , 1 ) ;
plot (abs (eON − s ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 2 ) ;
plot (abs (eNLMS − s ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
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legend ( [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 3 ) ;
plot (abs (eRLS − s ’ ) ) ;
yl im ( [ 0 2 ] )
ylabel ( ’ | Error | ’ ) ;
xlabel ( ’ Sample Number ’ ) ;
legend ( [ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 1 ) ;

% Put a main t i t l e above the s u b p l o t t i t l e s
m a i n t i t l e = [ ’ | Error | p lo t : B i t r a t e = ’ ,num2str( br ) , . . .
’ kbps , Adaptive F i l t e r Order = ’ ,num2str(L ) ] ;
mtit ( m a i n t i t l e , ’ x o f f ’ ,− .1 , ’ y o f f ’ , . 0 2 5 , ’ f o n t s i z e ’ , 1 5 ) ;

end
figure ( br next+1+10∗next )
plot ( br plot DH ( : , 1 ) , br plot DH ( : , 2 ) , ’ x ’ , br plot NLMS ( : , 1 ) , br plot NLMS ( : , 2 ) , . . .

’ ∗ ’ , br plot RLS ( : , 1 ) , br plot RLS ( : , 2 ) , ’+ ’ , ’ LineWidth ’ , 2 , . . .
’ MarkerSize ’ , 1 0 ) ;

t i t l e ( [ ’Max ERLE vs B i t r a t e : Adaptive F i l t e r Order = ’ ,num2str(L ) ] , . . .
’ f o n t s i z e ’ , 1 4 ) ;

xlabel ( ’ B i t r a t e ( kbps ) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’Max ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 4 ) ;
end

disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause

B.8 The exp7 drop pack.m MATLAB function

The function exp7 drop pack.m runs Experiment 7 (see 5.7.7) and is called by the

main script file for the AEC simulation, aec sim.m.

Listing B.8: The AEC Experiment 7 function file..

function [ ] = exp7 drop pack ( )
% exp7 drop pack .m
%
% ∗ Experiment #7 = E f f e c t s o f dropped packe t b u r s t s
%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Creates p l o t s o f | Error | f o r v a r i o u s s i z e d b u r s t s o f dropped p a c k e t s and
% a d a p t i v e f i l t e r l e n g t h . Also p l o t s Max ERLE vs b u r s t s i z e .
%
% ∗ Compares performance o f the f o l l o w i n g a d a p t i v e a l g o r i t h m s :
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% NLMS
% NLMS in dual−H c o n f i g u r a t i o n
% RLS
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
N = 20000; Fs = 8000 ; x = randn(N, 1 ) ; % N Gaussian whi te no i se samples

% Near−End ( ne ) s i g n a l
s = zeros (N, 1 ) ; % no ne speech

% Leve l s h i f t f e to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
r =−0.5; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b1=r i r ( Fs , mic , n , r , rm , s r c ) ;

% v e c t o r o f a d a p t i v e f i l t e r l e n g t h s
t e s t l e n g t h = [100 , 200 , 2 5 0 ] ; % a d a p t i v e f i l t e r order

% v e c t o r o f packe t l o s s b u r s t l e n g t h s
p l range = [ 5 , 1 5 , 2 5 , 3 5 , 4 5 ] ; % packe t l o s s b u r s t s ( c o n s e c u t i v e p a c k e t s l o s t )

vp = 20 ; % v o i c e pay load (ms) (160 d e f a u l t f o r G.711)
br = 64000; % b i t r a t e ( bps ) (64000 f o r G.711)
bd = 8 ; % b i t depth (8 f o r G.711)
vpp = vp/1000∗ br/bd ; % v o i c e pay load ( samples per packe t )
p l range2 = f loor ( p l r ange ∗vpp ) ; % packe t l o s s b u r s t s ( c o n s e c u t i v e samples l o s t )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for next = 1 : length ( t e s t l e n g t h )

L = t e s t l e n g t h ( next ) ;
b = b1 ( 1 : L ) ; % t r u n c a t e impulse response to a d f i l t e r l e n g t h

for p l nex t = 1 : length ( p l r ange )

p l = p l range2 ( p l nex t ) ;
p l p l o t = zeros (N, 1 ) ; % = 10 during packe t l o s s , 0 o t h e r w i s e

%
% remove 1 packe t b u r s t from input s i g n a l every second
%
for k = Fs : Fs :N

x (k−pl +1:k ) = zeros ( pl , 1 ) ;
p l p l o t (k−pl +1:k ) = 10 ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0

d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

r = s + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0

% NLMS
mu2 = 1 ; % NLMS s t e p s i z e
wNLMS = zeros (L , 1 ) ; % NLMS a d a p t i v e f i l t e r w e i g h t s
yNLMS = zeros (N, 1 ) ; % NLMS a d a p t i v e f i l t e r o t p u t ( e s t i m a t e o f d )
eNLMS = zeros (1 , N) ; % NLMS r e s i d u a l e r ro r

% RLS
lambda = 0 . 9 ; % RLS f o r g e t t i n g f a c t o r
% RLS v a r i a b l e s
wRLS = zeros (L , 1 ) ; % RLS f i l t e r w e i g h t s
x f i l t e r = zeros (L , 1 ) ; % input s i g n a l in f i l t e r
P = eye (L ) ; % i n v e r s e input c o r r e l a t i o n matrix
i n t= zeros (L , 1 ) ; % i n t e r m e d i a t e c a l c u l a t i o n s t e p = P(n−1)∗x (n)
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gain = zeros (L , 1 ) ; % gain v e c t o r
yRLS = zeros (N, 1 ) ; % RLS a d a p t i v e f i l t e r output
eRLS = zeros (1 , N) ; % RLS r e s i d u a l e r r or s i g n a l

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
epNLMS = 0 ; % power o f eNLMS in ERLE v e c t o r
epRLS = 0 ; % power o f eRLS in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s f o r p l o t t i n g
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s f o r p l o t t i n g
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLE NLMS = zeros (N, 1 ) ; % saves the NLMS ERLE f o r p l o t t i n g
ERLE RLS = zeros (N, 1 ) ; % saves the RLS ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE f o r p l o t t i n g
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% RLS
%
x f i l t e r (1)=x ( k ) ;
i n t = P∗ x f i l t e r ;

% 1. c a l c u l a t e gain v e c t o r
gain = (1/( lambda+dot ( x f i l t e r , i n t ) ) )∗ i n t ;

% 2. c a l c u l a t e e s t i m a t i o n erro r
yRLS( k ) = 0 ; % a d a p t i v e f i l t e r output
for n = 0 :L−1

i f ( (k−n) > 0)
yRLS( k ) = yRLS( k ) + (wRLS(n+1) ∗ x (k−n ) ) ;

end
end
eRLS( k ) = r ( k)−yRLS( k ) ;

% 3. update f i l t e r w e i g h t s
wRLS = wRLS + gain ∗eRLS( k ) ;

% 4. update i n v e r s e matrix
P = (1/ lambda )∗ (P − gain ∗ ( ( x f i l t e r ’ ) ∗P ) ) ;

% g e t next input v e c t o r
for j=L:−1:2

x f i l t e r ( j )= x f i l t e r ( j −1);
end

%
% NLMS Dual−H, NLMS
%
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% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;
yNLMS( k ) = 0 ;
for n = 0 :L−1

i f ( (k−n) > 0)
yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;
yNLMS( k ) = yNLMS( k ) + (wNLMS(n+1) ∗ x (k−n ) ) ;
yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;

end
end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;
eNLMS( k ) = r ( k ) − yNLMS( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L

xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) − eNLMS(k−ERLE L)∗eNLMS(k−ERLE L ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) − eRLS(k−ERLE L)∗eRLS(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;
epNLMS = epNLMS + eNLMS( k )∗eNLMS( k ) ;
epRLS = epRLS + eRLS( k )∗eRLS( k ) ;

end

% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;
ERLE NLMS( k ) = 10∗ log10 (dp / (epNLMS − s ( k ) + d e l t a ) ) ;
ERLE RLS( k ) = 10∗ log10 (dp / (epRLS − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H oper a t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1

i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;
wNLMS(n+1) = wNLMS(n+1) + mu2 / ( xp + d e l t a )∗eNLMS( k )∗x (k−n ) ;

end
end

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)
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wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% c a l c u l a t e p l o t t i n g data
%
pl plot DH ( pl next , : ) = [ p l r ange ( p l nex t ) , max( real (ERLE ON ) ) ] ;
pl plot NLMS ( pl next , : ) = [ p l r ange ( p l nex t ) , max( real (ERLE NLMS ) ) ] ;
p l p lot RLS ( p l next , : ) = [ p l r ange ( p l nex t ) , max( real (ERLE RLS ) ) ] ;

% smooth output us ing moving average
for i =1:N−500

ERLE ON( i ) = mean(ERLE ON( i : i +500)) ;
ERLE NLMS( i ) = mean(ERLE NLMS( i : i +500)) ;
ERLE RLS( i ) = mean(ERLE RLS( i : i +500)) ;

end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure ( p l nex t +10∗next )
subplot ( 3 , 1 , 1 ) ;
plot (abs (eON − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 2 ) ;
plot (abs (eNLMS − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
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legend ( [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot ( 3 , 1 , 3 ) ;
plot (abs (eRLS − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
xlabel ( ’ Sample Number ’ ) ;
legend ( [ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 1 ) ;

% Put a main t i t l e above the s u b p l o t t i t l e s
m a i n t i t l e = [ ’ | Error | p lo t dropped packets : Burst s i z e = ’ , . . .

num2str( p l r ange ( p l nex t ) ) , . . .
’ packets , Adaptive F i l t e r Order = ’ ,num2str(L ) ] ;

mtit ( m a i n t i t l e , ’ x o f f ’ ,− .1 , ’ y o f f ’ , . 0 2 5 , ’ f o n t s i z e ’ , 1 4 ) ;
end
figure ( p l nex t +1+10∗next )
plot ( 1 :N, [ abs (ERLE ON) , abs (ERLE NLMS) , abs (ERLE RLS) , p l p l o t ] ) ;
t i t l e ( [ ’ERLE during packet l o s s , Adaptive F i l t e r Order = ’ ,num2str(L ) ] , ’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’ Sample Number ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , ’ Packet l o s s : ON=10, OFF=0 ’ , 4 ) ;
end
figure ( p l nex t +2+10∗next )

plot ( pl plot DH ( : , 1 ) , p l plot DH ( : , 2 ) , ’ x ’ , pl plot NLMS ( : , 1 ) , pl plot NLMS ( : , 2 ) , . . .
’ ∗ ’ , p l p lot RLS ( : , 1 ) , p l p lot RLS ( : , 2 ) , ’+ ’ , ’ LineWidth ’ , 2 , . . .

’ MarkerSize ’ , 1 0 ) ;
t i t l e ( [ ’Max ERLE vs Packet l o s s burst s i z e ’ ] , . . .

’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’ Burst s i z e ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’Max ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , [ ’NLMS, \mu =’ ,num2str(mu2 ) ] , . . .

[ ’RLS, \ lambda =’ ,num2str( lambda ) ] , 3 ) ;

disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause

B.9 The exp8 combo.m MATLAB function

The function exp8 combo.m runs Experiment 8 (see 5.7.8) and is called by the main

script file for the AEC simulation, aec sim.m.

Listing B.9: The AEC Experiment 8 function file..

function [ ] = exp8 combo ( )
% exp8 combo .m
%
% ∗ Experiment #8 = Combined adverse c o n d i t i o n s
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%
% ∗ Function f i l e c a l l e d by AEC s i m u l a t o r ( aec sim .m)
%
% ∗ Measures the echo c a n c e l l a t i o n performance o f the Dual−H NLMS f i l t e r
% us ing the f u l l range o f VoIP c o n d i t i o n s .
%
% ∗ Creates p l o t s o f | Error | and ERLE vs Sample Number
%
% ∗ Experiment des i gned as par t o f the f i n a l year e n g i n e e r i n g p r o j e c t ’ Echo
% C a n c e l l a t i o n in VoIP ’ f o r ENG4111/2 U n i v e r s i t y o f Southern Queensland
%
% ∗ Adapted from adechosp .m by J . Le is
%
% ∗ Room impulse response f i l t e r c r e a t e d us ing r i r .m and fconv .m
% ( Copyright 2003 Stephen G. McGovern)
%
% ∗ The main s c r i p t aec . sim .m r e q u i r e s the f o l l o w i n g input sound f i l e s in
% the working d i r e c t o r y :
% kar l10s mp2 8 dec . wav kar l10s mp2 16 dec . wav ,
% kar l10s mp2 32 dec . wav kar l10s mp2 64 dec . wav ,
% k a r l 1 0 s 8 k H z 8 b i t . wav r i c k y 1 0 s 8 k H z 8 b i t . wav
% k a r l 1 0 s 8 k H z 8 b i t m u l a w . wav
%
% ∗ Requires the f o l l o w i n g h e l p e r f u n c t i o n s in the working d i r e c t o r y :
% r i r .m, fconv .m and mt i t .m
%
% Shane Kmita , Oct 2011

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Input sound v e c t o r s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Far−End ( f e ) s i g n a l
[ x Fs ] = wavread( ’ kar l10s 8kHz 8bit mulaw . wav ’ ) ;

% Near−End ( ne ) s i g n a l
[ s Fs ] = wavread( ’ r i cky10 s 8kHz 8b i t . wav ’ ) ;

N = min( length ( x ) , length ( s ) ) ;
x = x ( 1 :N) ;
s = s ( 1 :N) ;

% Leve l s h i f t fe , ne to 80% maximum
x = 0.8∗ x /(max(abs ( x ) ) ) ;
s = 0 .8∗ s /(max(abs ( s ) ) ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Create ne room impulse response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rm=[3 3 3 ] ; % room dimensions [ L W H] in metres
mic =[2.5 4 0 . 9 ] ; % mic p o s i t i o n
s r c =[2.5 4 1 . 9 ] ; % source p o s i t i o n
r =−0.5; % r e f l e c t i o n c o e f f i c i e n t (−1<r<1)
n=24;
b1=r i r ( Fs , mic , n , r , rm , s r c ) ;

L = 500 ; % a d a p t i v e f i l t e r order

tde lay = 10 ; % one−way t a i l c i r c u i t d e l a y (ms)
no i s e = 0 . 0 1 ; % noise m u l t i p l i e r ( percentage o f f u l l s c a l e )
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pl = 5 ; % number o f p a c k e t s in dropped packe t b u r s t

tdelay samp = f loor ( tde lay ∗Fs /1000) ; % d e l a y in samples
b = [ zeros ( tdelay samp , 1 ) ; b1 ] ; % add d e l a y to r i r

%
% add ne no i se
%
s1 = randn(N, 1 ) ; % N Gaussian whi te no i se samples
s1 = s1 /(max(abs ( s1 ) ) ) ; % l e v e l s h i f t ne no i se to 100% maximum
s1 = no i s e ∗ s1 ; % reduce no i se l e v e l accord ing to m u l t i p l i e r
s = s1 + s ; % add noi se to ne s i g n a l

%
% dropped packe t b u r s t
%
vp = 20 ; % v o i c e pay load (ms) (160 d e f a u l t f o r G.711)
br = 64000; % b i t r a t e ( bps ) (64000 f o r G.711)
bd = 8 ; % b i t depth (8 f o r G.711)
vpp = vp/1000∗ br/bd ; % v o i c e pay load ( samples per packe t )
pl = f loor ( p l ∗vpp ) ; % number o f samples in dropped packe t b u r s t

%
% remove 1 packe t b u r s t from input s i g n a l every second
%

for k = Fs : Fs :N
x (k−pl +1:k ) = zeros ( pl , 1 ) ;
p l p l o t (k−pl +1:k ) = 10 ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Echo d e l a y ne s i g n a l
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d = zeros (N, 1 ) ; % echo de layed f e s i g n a l , (∗ not∗ o b s e r v a b l e )
for k = 1 :N

for i = 0 : length (b)−1
i f k−i > 0

d( k ) = d( k ) + b( i +1)∗x (k−i ) ;
end

end
end

r = s + d ; % ne s i g n a l + f e echo ( o b s e r v a b l e )
SNR = 10∗ log10 ( sum(d .∗d) / (sum( s1 .∗ s1 )+0.0000001) ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i s e v a r i a b l e s / s e t parameters
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Dual−H NLMS
mu = 1 ; % NLMS s t e p s i z e
wON = zeros (L , 1 ) ; % ONline a d a p t i v e f i l t e r w e i g h t s
wOFF = zeros (L , 1 ) ; % OFFline a d a p t i v e f i l t e r w e i g h t s
yON = zeros (N, 1 ) ; % ONline a d a p t i v e f i l t e r output
yOFF = zeros (N, 1 ) ; % OFFline a d a p t i v e f i l t e r o t p u t
eON = zeros (1 , N) ; % ONline r e s i d u a l e r ror
eOFF = zeros (1 , N) ; % OFFline r e s i d u a l e r ror
d e l t a = 0 .000001 ; % NLMS/ERLE cons tant to avoid d i v i s i o n by 0

% ERLE v a r i a b l e s
ERLE L = L ; % order o f ERLE c a l c u l a t i o n v e c t o r s
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ERLE ONdh = 0 ; % current ONline f i l t e r (ERLE e s t i m a t e )
ERLE OFFdh = 0 ; % current OFFline f i l t e r (ERLE e s t i m a t e )
dp = 0 ; % power o f d in ERLE v e c t o r
xp = 0 ; % power o f x in ERLE v e c t o r
epON = 0 ; % power o f eON in ERLE v e c t o r
epOFF = 0 ; % power o f eOFF in ERLE v e c t o r
ERLEdh best = 0 ; % b e s t ERLE ( dual−H e s t i m a t e ) found so f a r

% P l o t t i n g v a r i a b l e s − o t h e r w i s e not necessary f o r s i m u l a t i o n
WON = zeros (L , N) ; % saves the ONline a d a p t i v e w e i g h t s f o r p l o t t i n g
WOFF = zeros (L , N) ; % saves the OFFline a d a p t i v e w e i g h t s f o r p l o t t i n g
ERLE ON = zeros (N, 1 ) ; % saves the ONline ERLE f o r p l o t t i n g
ERLE OFF = zeros (N, 1 ) ; % saves the OFFline ERLE f o r p l o t t i n g
ERLEdh best plot = zeros (N, 1 ) ; % saves the curren t b e s t ERLE f o r p l o t t i n g
d t p l o t = zeros (N, 1 ) ; % double−t a l k f l a g (0 i f f e only , 1 i f d t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% AEC Simulat ion
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k = 1 :N

%
% NLMS Dual−H
%

% c a l c u l a t e the ONline and OFFline f i l t e r output :
yON( k ) = 0 ;
yOFF( k ) = 0 ;

for n = 0 :L−1
i f ( (k−n) > 0)

yOFF( k ) = yOFF( k ) + (wOFF(n+1) ∗ x (k−n ) ) ;

yON( k ) = yON( k ) + (wON(n+1) ∗ x (k−n ) ) ;
end

end

% c a l c u l a t e the ONline and OFFline e rro r :
% e rro r s i g = r ( s i g+echo ) − y ( e s t echo )
% = e s t o f s i g
eON( k ) = r ( k ) − yON( k ) ;
eOFF( k ) = r ( k ) − yOFF( k ) ;

% f i n d power o f d and e in ERLE b u f f e r ( f o r ERLE c a l c u l a t i o n below )
% adds next v a l u e and s u b t r a c t s l a s t v a l u e r a t h e r than recomputing
% whole b u f f e r each time
i f k > ERLE L

xp = xp + x ( k )∗x ( k ) − x (k−ERLE L)∗x (k−ERLE L ) ;
dp = dp + d( k )∗d( k ) − d(k−ERLE L)∗d(k−ERLE L ) ;
epON = epON + eON( k )∗eON( k ) − eON(k−ERLE L)∗eON(k−ERLE L ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) − eOFF(k−ERLE L)∗eOFF(k−ERLE L ) ;

else
xp = xp + x ( k )∗x ( k ) ;
dp = dp + d( k )∗d( k ) ;
epON = epON + eON( k )∗eON( k ) ;
epOFF = epOFF + eOFF( k )∗eOFF( k ) ;

end
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% c a l c u l a t e t r u e ERLE (dB) f o r p l o t t i n g
ERLE ON( k ) = 10∗ log10 (dp / (epON − s ( k ) + d e l t a ) ) ;
ERLE OFF( k ) = 10∗ log10 (dp / (epOFF − s ( k ) + d e l t a ) ) ;

% c a l c u l a t e es t imated ERLE (dB) f o r dual−H ope ra t i on
ERLE ONdh = 10∗ log10 (dp / (epON + d e l t a ) ) ;
ERLE OFFdh = 10∗ log10 (dp / (epOFF + d e l t a ) ) ;

% update the OFFline a d a p t i v e f i l t e r c o e f f ( Dual−H NLMS, NLMS)
for n = 0 :L−1

i f ( (k−n) > 0)
wOFF(n+1) = wOFF(n+1) + mu / ( xp + d e l t a )∗eOFF( k )∗x (k−n ) ;

end
end

% update the ONline f i l t e r c o e f f wi th the OFFline c o e f f i f the
% OFFline ERLE i s l a r g e r than the b e s t ERLE found so f a r
i f ( k < 10∗L)

wON = wOFF;
ERLEdh best = ERLE OFFdh ;

e l s e i f (ERLE OFFdh >= ERLEdh best )
wON = wOFF;
ERLEdh best = ERLE OFFdh ;

end

% update b e s t ERLE i f ONline ERLE i s l a r g e r
i f (ERLE ONdh >= ERLEdh best ) && (k>ERLE L)

ERLEdh best = ERLE ONdh;
end

% update the OFFline f i l t e r c o e f f wi th the ONline c o e f f i f the
% ONline ERLE i s l a r g e r than the OFFline ERLE
i f (ERLE ONdh > (ERLE OFFdh+3)) && (k>ERLE L)

wOFF = wON;
end

% update b e s t ERLE p l o t t i n g v a r i a b l e
ERLEdh best plot ( k ) = ERLEdh best ;

% reduce ERLEdh best a t a r a t e o f 5dB/ s
ERLEdh best = ERLEdh best − 5/Fs ;

% update p l o t t i n g v a r i a b l e s
WON( : , k ) = wON;
WOFF( : , k ) = wOFF;

i f (abs (d( k ) ) > d e l t a ) && (abs ( s ( k ) ) > d e l t a ) % doub le t a l k
d t p l o t ( k ) = 20 ;

else % not doub le t a l k
d t p l o t ( k ) = 0 ;

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%
% c a l c u l a t e p l o t t i n g data
%

% smooth output us ing moving average
for i =1:N−500

ERLE ON( i ) = mean(ERLE ON( i : i +500)) ;
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ERLE OFF( i ) = mean(ERLE OFF( i : i +500)) ;
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure (1 )
plot (abs (eON − s ’ ) ) ;
yl im ( [ 0 1 ] )
ylabel ( ’ | Error | ’ ) ;
legend ( [ ’ Dual−H NLMS, \mu =’ ,num2str(mu) ] , 1 ) ;
t i t l e ( [ ’ | Error | plot , Adaptive F i l t e r Order = ’ ,num2str(L ) ] ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f igure (2 )
plot ( 1 :N, [ abs (ERLE ON) , abs (ERLE OFF) , abs ( ERLEdh best plot ) ] ) ;
t i t l e ( [ ’ERLE vs Sample Number , Adaptive F i l t e r Order = ’ ,num2str(L ) ] , ’ f o n t s i z e ’ , 1 4 ) ;
xlabel ( ’ Sample Number ’ , ’ f o n t s i z e ’ , 1 2 ) ;
ylabel ( ’ERLE (dB) ’ , ’ f o n t s i z e ’ , 1 2 ) ;
legend ( ’ ONline f i l t e r ’ , ’ OFFline f i l t e r ’ , ’ Best ERLE ’ , 4 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
disp ( ’##########################################################################’ )
disp ( ’ Experiment f i n i s h e d ! ’ )
fpr intf ( 1 , ’ Save f i g u r e s i f nece s sa ry then pre s s ENTER to run a new experiment . . . ’ ) ;
pause
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