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Abstract 

Joule, in 1842, discovered the magnetostrictive effect, also referred as the Joule 

effect, where a material will change its physical length when subjected to an induced 

magnetic field. Magnetostrictive transducers convert magnetic energy into 

mechanical energy.  That is, nickel can use an oscillating magnetic field to produce 

oscillating mechanical energy or sound energy.  The magnetostrictive effect was 

used extensively in World War 2 for sonar transducers. More recent uses include 

dentistry, ultrasonic cleaning, plastic welding and improved metal refining. 

This project involves the implementation of procedures by IEC 60782 and Petošić, 

Svilar and Ivančević  to examine magnetostrictive transducers. Results were variable, 

mainly due to the function generators inability to supply the relative high currents. 

But with persistence some useable data was obtained.  

Results include the confirmation of the resonant frequency of the transducer via 

mechanical vibration analysis and related to the physical design of the transducer. 

The transducers respond as an almost pure inductor, resulting in a measured power 

factor in the vicinity of 0.09. Under ultrasonic conditions an electroacoustic efficient 

was calculated around 30 per cent. 

Limited investigation were then performed on cavitation which provided some 

interesting results such as the electrocavitation effiency being around 3.82 per cent 

with a cavitation resonant frequency differing from the ultrasonic resonant 

frequency. 
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Chapter 1 – Introduction 

 

1.1 Introduction 

One of the properties of nickel is the ability to resist various forms of corrosion. This 

property allows nickel to be used in harsh and toxic environments, such as the ocean 

or with industrial chemicals. Another special property of nickel is that it is 

magnetostrictive.  Joule, in 1842 [1], discovered the magnetostrictive effect, also 

referred to as the Joule effect, where a material will change its physical length when 

subjected to an induced magnetic field. Magnetostrictive transducers convert 

magnetic energy into mechanical energy.  That is, nickel can use an oscillating 

magnetic field to produce oscillating mechanical energy.  The magnetostrictive effect 

was used extensively in World War 2 for sonar transducers. More recent uses include 

dentistry, ultrasonic cleaning, plastic welding and improved metal refining.  

 

1.2 Project Aim 

This project aims to investigate the magnetostrictive properties of nickel. The nickel, 

with its magnetostrictive effect, will be used as an ultrasonic transducer. Including 

detailed operation of the transducer with the aim of optimising transducer design. 

 

1.3 Outline of Study 

The outline of this study is to research the magnetostrictive properties of almost pure 

nickel (99.5%). Magnetostriction is a complicated effect so some further explanation 

is required. The details start with the properties of nickel, a definition of 

magnetostriction leading to a current theory of „Classical Magnetostriction‟. The 

study progresses to the primary use of magnetostrictive transducers. The primary use 

is the generation of acoustic energy and cavitation. A nickel magnetostrictive 

transducer will then be tested. With the combination of theory and practical results 
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the nickel magnetostrictive transducer will be optimised to produce the maximum 

amount of acoustic energy compared to the electrical input power.  

 

1.4 The Problem 

This project has many parts that require separate and detailed investigations to get a 

full understanding on how acoustic energy is created by a nickel magnetostrictive 

transducer. Magnetostrictive transducers can be defined as the conversion of 

electrical energy into mechanical energy and the conversion of that mechanical 

energy into acoustic energy [2]. Niemczewski [3] takes it one step further with the 

conversion of acoustic energy into cavitation. 

 

1.5 Research Objectives 

This project is divided into five primary sections and three secondary sections. The 

primary sections were designed to get a full appreciation of the research process and 

an in-depth understanding to magnetostriction. 

The primary sections are: 

 Research magnetostriction including the interaction of magnetic flux and 

mechanical action; 

 Develop a power electronic system to accurately drive the magnetostrictive 

effect of the transducer;  

 Design an electromagnetic simulation of a known transducer; 

 Investigate the electrical method of determining mechanical output; and 

 Optimise the power electronic design to suit standard mains supply. 

A further three sections will be attempted if time permits. The secondary sections are 

designed to use advance simulation methods to gain a better understanding of the 

primary sections. 
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The secondary sections are: 

 Simulate the magnetostrictive effect of different materials. 

 Simulate the magnetostrictive effect on different physical transducer designs. 

 Investigate the mechanical wave pattern produced by different transducer 

designs. 
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Chapter 2 – Literature Review 

 

2.1 Nickel 

Nickel is an abundant metallic element found in the earth. Nickel makes up 

approximately three per cent of the earths crust and can be found in many large ore 

deposits around the world. Refined nickel has the appearance of a silvery white metal 

which can have a high polish. It has been used for tools and coins since 4 000 BC 

although mistakenly thought of as silver or iron.  

The name nickel was from the first recognised ore body in Germany called 

„Kupfernickel‟. The uses of nickel have increased since the process of refining was 

developed by A.F. Cronstedt in the mid-18
th

 century [4].  

Nickel is used in producing alloys because of its high melting temperature and high 

resistance to corrosion. The magnetic properties of nickel have been known for some 

time, but have only been exploited since the 20
th

 century.  

 

2.2 Magnetostriction 

Magnetostriction was first investigated by J.P. Joule in 1842 [1], where he was 

approached by Mr F.D. Arstal to investigate a potentially new form of electromagnet 

engine.  Joule investigated the effects of magnetism on copper and iron and 

confirmed iron does indeed increase its length when subjected to an external 

magnetic field. When the magnetic field is removed the iron resumes its original 

length. This effect was not witnessed in copper. The measured increase in length is in 

the order of 1/720 000 or approximately a 0.000 139 per cent increase. 
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Neelakanta [5] p316, best describes magnetostriction.  

When a ferromagnetic material is magnetised, changes in the physical 

dimensions, in general occur. This is known as magnetostriction. The 

dimensional change occurring along the direction of induced magnetic 

field is called the Joule effect magnetostriction. The converse of 

magnetostriction is known as the Villari effect. 

Magnetostriction is only in ferromagnetic material. Magnetostriction is where the 

physical dimension of a ferromagnetic material will change when it is subjected to an 

external magnetic field.  

 

2.2.1 Inverse Magnetostriction 

While this definition is not required for this dissertation it is useful in the 

understanding of magnetostriction. 

Inverse magnetostriction is known as the Villari effect.  The Villari effect is where 

the magnetic flux density (T) and magnetic field intensity (A.m
-1

) of a material 

change when subjected to a physical force.   

 

2.3 Theories on Magnetostriction 

Magnetostriction can be explained by the magnetic domain theory. As the 

ferromagnetic material is solidified from a molten state, many crystalline structures  

grow at different rates. Each crystalline structure has its own unique magnetic 

intensity and direction. By combining the individual crystalline states, an overall 

magnetic intensity and density can be identified. When an external magnetic field is 

induced on the ferromagnetic material the internal magnetic domain realign 

themselves with the external magnetic field as shown in figure 1. In the process of 

realigning, the physical dimensions of the ferromagnetic material change, thus 

creating mechanical movement as shown in figure 2 and 3. 
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Figure 1. Magnetic Domain Structure. 

 

 

 

 

 

Figure 2. Extension Magnetostriction. 
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Magnetic     
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Figure 3. Compression Magnetostriction. 

 

In figures 2 and 3 l represents the length of the material and Δl is the change in the 

length. 

There have been many theories about the relationship between magnetic flux and 

mechanical action in magnetostrictive materials. With most initial theories limited by 

technology they focused on the electromagnetic properties of the material [6-9]. It 

was not until the 20
th

 century that the physical properties of the materials, such as 

stress, strain, and elastic values, were included in magnetostriction theories [2, 10-

13]. It was not until the mid 20
th

 century that Kapitza [14] identified three modern 

theories of magnetostriction. They are 

 Atomic magnetostriction, 

 Thermal magnetostriction and  

 Classical magnetostriction. 

 

2.3.1 Atomic Magnetostriction 

Atomic magnetostriction is beyond the scope of this dissertation, but a brief 

explanation is provided for the benefit of the reader. 

Atomic magnetostriction is based on the disturbance caused by the induced magnetic 

field upon the atoms in the crystalline structure. The details of the crystalline 

l 

Δl 
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structure and the electron shells composition of the elements are required to 

accurately measure the magnetostrictive effect. Buschow & De Boer [15], Huston et 

al [16] and Brabers et al [17] have explored the atomic theories on magnetostriction. 

An example on the complexities of the atomic magnetostrictive theory can be best 

shown by Buschow and De Boer [15] magnetostrictive equation: 

 

  

 
 

 

 
       

   
    

   
    

   
  

 

 
            

                                   (1) 

 

where λ100 is crystalline structure in the y direction (λyxz), λ111 is crystalline structure 

in the direction of y, x and z (λyxz), αx, αy and  αz are the alpha constants in the x, y and 

z direction, βx, βy and  βz are the beta constants in the x, y and z direction. 

 

2.3.2 Thermal Magnetostriction 

It is commonly known that metals expand when their temperature increase. Thermal 

magnetostriction theory uses thermal expansion to explain the change on length. 

When an induced magnetic field is applied to the magnetostrictive material the 

internal crystalline structures attempt to realign. This realignment or small physical 

movement within each crystal causes internal heating thereby creating thermal 

expansion. 

Nizhankovskii [18] has been investigating thermal magnetostriction at temperatures 

of 4 Kelvin where the Hysteresis effect appears to not exist.  
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2.3.3 Classical Magnetostriction 

As science and technology increase their abilities, various formulas attempt to 

explain classical magnetostriction. Classical magnetostriction broadly relies on the 

physical properties of the material and the induced magnetic field. 

In 1930 Smith [9, 19] attempted to explain magnetostriction by the Villari effect. His 

proposed formulas are: 

             (2) 

              (3) 

where     is the alternating driving force,   is the alternating mechanical strain,   is 

the magnetic field intensity,    is the alternating magnetisation produced by the 

Villari effect and   and    are Smiths constants (in phase). 

Smith theories were improved with the assistance of Butterworth [8, 12] in 1931 with 

the following theory: 

             (4) 

             (5) 

where    is the alternating driving force,   is the alternating mechanical strain,    is 

the magnetomotive force,   is the alternating magnetic flux density,   and   is 

Butterworth and Smith‟s constants (in phase). 

Kikuchi [12, 20] in 1940 proposed more theories that incorporated Young‟s modulus 

of the magnetostrictive material. 

              (6) 

              (7) 

 with  

     
  

  

 
 

  
        (8) 
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Where    is the alternating driving force,   is the alternating mechanical strain,    is 

the magnetomotive force,   is Young‟s modulus,   is magnetic flux density,   and 

   is Kikuchi constants (complex). 

The magnetomotive force can be determined by 

    ,       (9)            

where   is the peak current and   is the number of turns in the winding. 

 

2.4 Ultrasonic Energy 

The human hearing range is approximately between 10 Hz and 20 kHz. This is 

commonly referred to as the sonic region, where humans are able to hear sound 

energy. The sonic range, generally, decrease for humans as they age to the extent 

where frequencies above 15 kHz cannot normally be heard by adults.   The ultrasonic 

region is defined as the frequency above the human hearing range. This can be 

generalised as frequencies above 20 kHz.  

As with all signals, Fourier analysis can be applied to ultrasonic frequencies. Fourier 

analysis is where the signal is converted from the time domain into the frequency 

domain. 

 

2.5 Transducer Design 

The physical process of creating sonic and ultrasonic energy can be attributed to the 

design of the transducer where the resonant frequency is determined by the physical 

dimensions of the transducer. The resonant frequency is where there is a maximum 

efficiency of output energy as compared to input energy. 

The details of many transducer designs are commercially confidential but Kikuchi 

[12] and Gooberman [2] provide some fundamental information. It is widely known 

that the United States Navy has many designs on magnetostrictive transducers. These 

designs are based on the manufactured material Terfenol-D. Terfenol-D can provide 

an order up to 3 600 × 10
-6

 [4, 21] when operated at resonance. Another 
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commercially available material is Nitinol which can have an order of 60 000 × 10
-6

 

[21].  

 

2.6 Uses for Magnetostrictive Transducers 

Magnetostrictive transducers can be defined as the conversion of electromagnetic 

energy into mechanical energy and the conversion of mechanical energy into 

acoustic energy [2]. Niemczewski [3] takes it one step further with the conversion of 

acoustic energy into cavitation. Magnetostrictive transducers are used where sonic 

and ultrasonic energy is required. 

Magnetostrictive transducers have two major advantages over its main competitor 

peizo-electric transducers. They are the ability to operate with more electrical power 

and reliance on current, not voltage for its electromagnetic source. The physical 

dimensions of the magnetostrictive material can be large enough to operate at many 

kilowatts. 
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Chapter 3 – Properties of Nickel 

 

3.1 Electromagnetic Properties of Nickel 

Although the electrical properties are not required for this research it is important to 

realise that electrical properties and magnetic properties are interrelated as defined by 

Maxwell‟s Laws. 

 

3.1.1 Permittivity  

Permittivity is the property of the material to attract or repel electric fields as 

compared to free space (vacuum). 

           (10) 

Where ε0 is the permittivity of free space 1/(36π) × 10
-9

 Farad per metre (F.m
-1

) and 

εr is the permittivity ratio of the material. The permittivity of the material is ε.  

Nickel is a solid conductive metal thereby having a permittivity ratio of infinite, ∞. 

The permittivity of nickel is infinite, ∞. 

 

3.1.2 Permeability 

Permeability is the property of the material to attract or repel magnetic fields. An 

example of a permeable material can be found in an in the core of an electrical 

transformer. A magnetic field is produced by the primary winding and is conducted 

through the core to the secondary windings.  The core material can attract or repel 

the magnetic field. In the case of an electrical transformer it is desired to attract the 

magnetic field. 

The value of attraction or repulsion of a magnetic field is known as permeability. 

Permeability is referenced to the magnetic field in free space (vacuum) by the 

following equation 



 Page 13 

           (11) 

where µ0 is the permeability of free space 4π × 10
-7

 Henry per metre (H.m
-1

) and µr is 

the permeability ratio of the material. The permeability of the material is µ.  

The electromagnetic values of nickel are displayed in table i.  

 

Table i. Electromagnetic Properties of Nickel. 

Electromagnetic Properties of Nickel 

Property Symbol Value 

Permittivity   ∞ F.m
-1

 

Permeability   753.98 ×10
-6

 H.m
-1

 

 

 

3.2 Magnetic Materials 

The ability of the material to attract or resist an induced magnetic field is the primary 

method that classifies the magnetic properties of the material. This is referred to as 

the permeability ratio of the material. The permeability ratio of the material is 

attributed  to the spin and orbital spin of electrons around the nucleus of the atom and 

incomplete inner electron shells [22].   

 

3.2.1 Diamagnetic Material 

A diamagnetic material exhibits negative magnetism [5]. A diamagnetic material 

repels an external magnetic field by producing a smaller internal magnetic field in 

opposite polarity. The external magnetic field will conduct around the diamagnetic 

material, rather than through the diamagnetic material. The permeability of 

diamagnetic material is less than one and negative. 
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3.2.2 Paramagnetic Material 

A paramagnetic material has the permeability of less than one.  That is the magnetic 

field can conduct through the paramagnetic material although the magnetic field will 

experience less resistance by conducting around the paramagnetic material. An 

external magnetic field may tend to polarize the random moments by creating 

thermal agitations causing only a very small (partial) magnetism [5]. 

 

3.2.3 Ferromagnetic Material 

Ferromagnetic materials are a refined material that has the ability to conduct higher 

magnetic flux compared to free space. Ferromagnetic materials have a permeability 

greater than one and therefore attract magnetic flux compared to free space. The 

three ferromagnetic elements are iron, cobalt and nickel. 

Soft ferromagnetic material have high permeability and will return to its natural state 

when the induced magnetic field is removed. Soft ferromagnetic materials are used in 

transformers where the magnetic flux changes direction every cycle. 

Nickel is classed as a soft ferromagnetic material. 

Hard ferromagnetic materials have high permeability and will attempt to retain its 

induced magnetised state. Hard ferromagnetic materials are ideal permanent 

magnets. 

 

3.2.4 Anti-ferromagnetic Material 

Antiferromagnetic material relies on temperature to become permeable.  The 

temperature that allows maximum permeability is known at the Neel Temperature. 

The permeability of antiferromagnetic material is usually less than 1. 
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3.2.5 Ferrimagnetic Material 

Naturally found materials, such as iron ore and nickel ore, that have an overall 

magnetic flux are known as ferrimagnetic. 

 

3.2.6 Curie Temperature 

The curie temperature is the temperature where the stable magnetic properties of the 

material change due to the extra energy provided by heat. Ferromagnetic materials 

become paramagnetic when the temperature is above the curie temperature [5]. 

When the magnetic properties of the material change, this also changes the 

permeability of the material. 

A description of all magnetic materials is provided in table ii.  

 

Table ii. Magnetic Materials [5]. 

Magnetic Material Susceptibility to induced 

Magnetic Field 

Permeability Example 

Diamagnetic Negative and Small     Cu, Ag, Au 

Paramagnetic Positive and Small    Mg, Li 

Ferromagnetic Positive and very large    Fe, Ni 

Anti-ferromagnetic Positive and small    NiO 

Ferrimagnetic Positive and Large    Fe2O3 

 

 

3.3 Mechanical Properties of Nickel 

Original theories of magnetostriction relied upon the mechanical properties of the 

ferromagnetic material. The following provides a description of the some of the 

physical properties. 
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3.3.1 Modulus of Elasticity  

The modulus of elasticity can be any type of force acting on a material that causes 

temporary deformation. In the case of a transducer, repetitive temporary deformation 

is ideal. Permanent deformation will lead to a broken transducer. 

 

3.3.2 Young’s Modulus 

The initial linear section of the ratio of stress and strain of the material is referred to 

as Young‟s Modulus. Young‟s Modulus is used as the basis for the amount of elastic 

deformation. Elastic deformation can be repetitive and will not provide permanent 

deformation to the material. The definition of Young‟s Modulus is provided in 

figure 4. 

 

 

Figure 4. Young‟s Modulus. 

 

Young‟s Modulus is   

  
 

 
      (12) 

where   is the tensile stress and   is the tensile strain. 

Stress (σ) 

Strain (ε) 

Gradient =  

Young's Modulus (E) 
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Tensile stress can be further explained by 

   
 

 
      (13) 

where   is the force applied and   is the cross sectional area. 

Tensile strain can be further explained by 

   
  

 
     (14) 

where    is the change in length and   is the original length. 

This results in Young‟s Modulus being  

  
 

 
  

 

   
  

     
                                                                                             (15) 

 

3.3.4 Poisson’s Ratio 

Poisson‟s ration is the ratio of force inflicted on the material to the resulting 

perpendicular force displayed by the material. 

 

Figure 5. Poisson‟s Ratio. 

 

 

Δεy 

Δεx 
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Poisson‟s Ratio is 

                   (16) 

where     is the transverse strain and     is the longitudinal or axial strain. 

While Poisson‟s ratio can be used to explain magnetostriction, it is also important for 

the design of the transducer face. Most MSTs are designed with the nickel 

transferring the acoustic (mechanical) energy to the transducer face plate by direct 

connection. The face plate should be highly resistant to corrosion and have a low 

Poisson‟s ratio as the face plate should transfer the acoustic energy in the desired 

direction. 

 

3.3.5 Creep 

Creep is the process where permanent deformation occurs due to repetitive stress    

[4, 21]. The susceptibility of creep increases as the operating temperature increases. 

A method to reduce the effects of creep deformation is to operate the material below 

the homologous temperature. The homologous temperature is usually half the 

absolute melting temperature of the material [4]. 

 

3.3.6 Nickel Mechanical Properties 

The mechanical properties of nickel are listed in table iii. The transducer will be 

designed to operate below 100°C.  Due to this temperature limitation the melting and 

homologous temperature (creep) will not be a factor.  

As the output of the transducer is sound energy, the speed of sound in nickel is also 

provided in table iii. 
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Table iii. Mechanical Properties of Nickel. 

Mechanical Properties of Nickel 

Mechanical Properties Symbol  

Bulk Modulus K 180GPa 

Young‟s Modulus E 206GPa 

Poisson‟s Ratio µ 0.30 

Melting Temp Tm 1455 K (1182°C) 

Curie Temp Tc 626K (353°C) 

Homologous Temp 

(Creep) 

Th 727.5K (454.5°C) 

Speed of Sound vs 4 900 m.s
-1
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Chapter 4 – Magnetism 

 

4.1 Generation of Magnetic Fields 

A magnetic field is created by the flow of current.  If the current is flowing in a coil 

the magnetic field is concentrated in the centre of the coil. If the centre of the coil is a 

ferromagnetic material, that attracts the magnetic field, then the magnetic field 

intensity and density can be increased. Figure 6 shows the concentration of the 

magnetic field in a coil of wire. The generation of the magnetic field in a MST is 

created by a wire coil or winding.  

 

Figure 6. Magnetic Field Created by a Coil. 

 

 

A magnetic field is defined by two parameters, being magnetic field intensity ( ) 

and magnetic flux density ( ). The following equation state the relationship of 

magnetic field intensity and magnetic flux density, 

 

      
 

 
           (17) 

I 
N S 
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where   is the magnetic field intensity (A.m
-1

) and   is the magnetic flux 

density (T),. 

The magnetic flux can be determined  by, 

               (18) 

where   is the magnetic flux (Wb) and   is the cross sectional area (m
2
) with the 

cross sectional area being the area inside the windings.  

 

Due to the high intensity and density of magnetic flux in the centre of the windings 

miniscule currents are produced. These currents are known as eddy currents. To 

reduce the effect of eddy currents the centre core is usually made up of laminations 

of the ferromagnetic material.  As the core is made of many laminations a stacking 

factor is usually incorporated in the cross sectional area of the core material.  A 

stacking factor takes into account the space between the laminations in the centre 

core material.  

 

4.1.2 Hysteresis 

There are limits to the amount of magnetic flux density (B) that the material can 

withstand. If the magnetic field intensity (H) is increased beyond the saturation level 

(Hsat) the magnetic flux density will not increase beyond the saturation level for 

magnetic flux density. As the magnetic field intensity is determined by the current 

and the number of turns, there is a maximum current and a maximum number of 

turns in achieving the saturation level of magnetic flux density.  

These limits can be shown as a hysteresis curve as shown in figure *7*. Hysteresis 

also shows the different generation and degeneration of the magnetic flux as 

experienced in an alternating current source.  
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Figure 7. Magnetic Hysteresis. 

 

Nickel has a saturation magnetic flux density (Bsat) of 0.617 T [4]  and a permeability 

of 7.54 × 10-7 H.m
-1

 leading to a saturation magnetic field intensity (Hsat) of 818.3 

A.m
-1

.   

 

4.1.3 Inductance 

Faraday‟s Law states 

     
  

  
       (19) 

where   is volts,    is the number of turns,    is magnetic flux (Wb) and   is time. 

Inductance and current can be extracted from Faradays Law as Webers are 

equivalent to henry.amps. Equation (20) is Faraday's law converted to henrys and 

amps. 

  

   
  

  
       (20) 

 

-Hsat 

 

Bsat 

Hsat 

-Bsat 

H 

B 
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with   being volts   being inductance and   and   being current and time 

respectively.  

As the transducer relies on the generation of a magnetic field i.e. an inductor, the 

electrical response of the transducer should be similar to the electrical response of an 

inductor. Equation (20) can be rearrange for inductance, 

Inductance in a long solenoid can also be calculated by 

   
    

 
       (21) 

where     is the calculated inductance,     is the length of the linductor,     is the 

permeability,     is the number of turns in the winding and    is the cross sectional 

area. 

 

4.2 Interaction of Magnetic Flux and Mechanical Action. 

As magnetic flux density and intensity is determined by the number of turns, cross 

sectional area and the current through the coil, the output power (mechanical action) 

of the magnetostrictive effect can be simulated via an electrical equivalent circuit. 

Petošić et al [23] has provided a method on the electromechanical properties of the 

transducer to determine the mechanical output of a piezoceramic transducer. By 

using Petošić et al as a basis for circuit design a conversion between the electric 

properties of the piezoceramic with the magnetic properties of a magnetostrictive 

transducer will produce an equivalent RLC electrical circuit for magnetostrictive 

transducers. 
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Figure 8. Peizoceraminc Equivalent RLC Electrical Circuit. 

 

Petošić et al piezoceramic power formulas are given by, 

      
      

              
,     (22) 

     
      

              
,      (23) 

where      and      are the mechanical and radiation resistance,    is the input 

voltage and      and      are the mechanical and radiated power. 

 

The input to a magnetostrictive device is electrical with the produced output being 

mechanical action. By this description a magnetostrictive transducer is similar to an 

electric motor where the input is also electrical and the output is mechanical action, 

although a motor provides rotating mechanical action. Figure 9 shows the 

magnetostrictive equivalent RLC electrical circuit, which has similarities to an 

equivalent RLC circuit to an electrical motor. 

 

I IL 

IR0 ICO 

R0 CO 

LL 

CL 

RL = Rmec + Rrad 
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Figure 9. Magnetostrictive Equivalent RLC Electrical Circuit. 

 

Magnetostrictive power formulas are given by 

       
              

    

         
,     (24) 

       
     ,       (25) 

       
              

    

         
,     (26) 

       
                                                                                        (27) 

where      and      are the mechanical and radiation resistance,    is the load 

current voltage and      and      are the mechanical and radiated power. 

The current passing through the load (IL) will be in terms of rms, as the current will 

be in various waveforms. Where IL is derived by  

                       (28) 

 

4.3 Resonant Frequency 

The resonant frequency of the transducer is the frequency of operation where the 

transducer has maximum output power as compared to the input power. The resonant 

frequency for the UMST will differ when the transducer is vibrating in air as 

compared to vibrating in a medium as the medium provides more physical resistance 

to the vibrating transducer. 

I IL IO 

R0 LO 

LL 

CL 

RL = Rmec + Rrad 
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4.3.1 Harmonics 

The transducer is primarily designed around the average magnetic conducting path. 

If the average magnetic conduction path is one wavelength of 20 kHz, then the 

transducer will also be efficient in the full harmonics of 20 kHz, being 40 kHz, 

60 kHz, 80 kHz, etc. 

 

4.4 Magnetostrictive Transducer Design 

It is desirable to design a transducer to operate in the ultrasonic region. This will 

allow testing without an audible tone being heard.  20 kHz is the chosen frequency 

which also aligns with some industry standards.  For ease of manufacturing a 

lamination design will be used for the transducer.  

Kikuchi [12] recommends the average conducting path needs to be in terms of whole 

wave length of the desired operating frequency. Goobeman [2] also supports this 

theory but describes the transducer length being one half-wavelength long.  With the 

desired frequency being 20 kHz and the speed of sound in nickel being 4 900 m.s
-1

 

will produce a wavelength of 0.245 m and the length of the transducer to be 

approximately 0.122 5 m. 
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Chapter 5 – Uses of Ultrasonic Energy 

 

5.1 Introduction 

A transducer is any device that converts an input power of one form into an output 

power of a different form [24]. In the case of magnetostrictive transducers the input 

energy is in the form of a magnetic field and the output is mechanical energy. The 

mechanical energy can be used to produce acoustic energy.  

 

5.2 Uses of Ultrasonic Transducers 

Ultrasonic transducers operate in the range of sound above human hearing 

(>20 kHz).  Acoustic energy has the ability to pass through a medium and/or reflect 

back from a medium [2, 25-28], and if the concentration of acoustic energy is enough 

it can penetrate and disrupt the cells or crystalline structure of the medium[2, 3, 29]. 

Therefore acoustic transducers can be separated into four distinct fields being 

detection, sonification, destruction and cavitation. 

 

5.3 Detection Ultrasonic Transducers 

Detection ultrasonic transducers are used to provide information without damaging 

the subject such as medical ultrasound imaging or surveying the world oceans with 

sonar. Detection involves a known ultrasonic frequency to be transmitted into a 

medium. Some of the transmitted energy is reflected when the energy meets the 

boundary of two different densities. An example would be bone and organs in the 

human body or sand and water in the ocean. The reflected energy is then received. 

The time difference between the transmitted signal and the return signal determines 

the distance where the speed of sound of the medium is known. Several receiving 

transducers can be used to triangulate the direction of the return signal thereby 

producing direction and distance of the reflecting target.   
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Another increasing field is non-destructive testing of materials. This is where sound 

energy is used to test materials for quality of production without destroying them. 

Detection ultrasonic transducers can identify hairline fractures in solid materials that 

cannot be seen by the human eye. 

 

5.4 Sonification Ultrasonic Transducer  

Sonification is the process of using sound energy as the method of transporting 

information over distance. This is commonly known in humans as speaking. It is well 

known that whales and dolphins use sonic and ultrasonic energy transmitted through 

water to communicate. The sound energy contains the signal in sonification as 

compared to the distance and direction of the reflected signal in detection ultrasonic 

transducers. 

 

5.5 Destructive Ultrasonic Transducers 

Destructive ultrasonic transducers are used in the cleaning of equipment, sterilisation 

or de-gassing of liquids. With the use of cavitation, ultrasonic transducers are able to 

pit or damage solid metals. Powerful ultrasonic energy can be used in the continuous 

washing of textiles [30] and create and improve materials [31]. 

Gooberman [2] provides other uses for ultrasonically induced cavitation 

 Produce dispersions of normally indispersable materials such as mercury in 

nitrobenzene. 

 Shatter high molecular weight molecules such as polymers, proteins and 

viruses. 

 Remove grease and dirt from surfaces. 

 Degas liquids. 

 Pit the surface of metals. 

 Increase the rate of chemical reactions. 
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5.6 Cavitation 

Cavitation is caused by the rapid physical movement by the transducer face creating 

very small vacuum bubbles.  Due to the pressure surrounding the vacuum bubble it is 

forced to implode or collapse. The imploding bubble results in a micro-jet of the 

medium. The micro-jet is the energy that encourages chemical reactions, cleaning 

and pitting of metallic surfaces. The micro-jet is not frequency dependant as the size 

of the vacuum bubble can differ in the medium. 

Figure 10 shows the creation process of cavitation and figure 11 shows a magnified 

image of a bubble imploding resulting in a micro-jet.  

 

 

Figure 10. Process of Creating Cavation. 

 

 

Figure 11. Microjet Creation from a Vaccum Bubble [32]. 

Micro bubbles 
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Gooberman [2] informs when the acoustic pressure is increased causing cavitation 

the physical and chemical effect of ultrasonics becomes apparent. Cavitation creates 

sound by the harmonic and sub harmonics of the operating frequency [33], 

encourages degradation of macroscopic molecules [13] and can result in the pitting 

of metallic surfaces [34]. 

Niemczewski [3] has found the temperature, air content of water and the depth of the  

transducer from the surface affects the intensity of cavitation when produced from 

the same source. 

5.6.1 Sono-Chemistry  

Another increasing field of ultrasonics is the sono-chemistry. Similar to the 

definition of destructive ultrasonic transducers, sono-chemistry focuses on 

encouraging chemical reactions. This is performed by the decrease in pressure of the 

vacuum where gaseous states of the medium are present and the high pressure caused 

by the imploding vacuum bubble.   Sono-chemistry  improves the ratios of chemicals 

need for the chemical reaction and decreases the time required for the chemical 

reaction. 
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Chapter 6 – Safety 

 

Chapter 7 outlines various procedures in determining the operating conditions of a 

magnetostrictive transducer. Some UMST can require up to 1000 Volts and 100 

Amps for normal operation. The combination of high power and a medium, usually 

water, can cause a potentially dangerous and life threatening environment. The 

following precautions were enforced, but not limited to: 

  

 The use of over current circuit breakers and RCDs. 

o Extra care should be taken to avoid electrical shocks as RCDs have a trip 

time around 5–20 ms equating to 100–400 cycles of a 20 kHz, 100 VPP 

waveform.  

 The use of hearing protection. Especially when the transducer is operating the 

human hearing range (approximately 10 Hz to 20 kHz). 

 No unsupervised experiments should be performed due to dangerous voltages 

and frequencies involved. 

 When cavitation is present, no part of the human body is to come in contact with 

the transducer or the medium. 

 Environmental effects should be considered. As mentioned earlier marine 

animals use sonic and ultrasonic energy in communicating (sonification). It is 

also well known that sound energy can travel for many kilometres through the 

world oceans.  
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Chapter 7 – Methodology 

 

7.1 Introduction 

IEC 60782 [35] provides a comprehensive procedure in identifying the properties of 

an ultrasonic magnetostrictive transducer (UMST), Petosic et al [23, 36] provides an 

increase in the analysis of UMST. 

Although Petosic et al was primarily researching piezoceramic ultrasonic 

transducers, their knowledge can be combined with of IEC 61847 [37] and IEC 

61088 [38]. This combination will increase the analysis of UMST. 

 IEC 60782 and Petosic et al use a pure sinusoidal voltage waveform as the supply 

for the ultrasonic transducer. The research conducted will use the sinusoidal as a 

primary voltage supply but also investigate alternate voltage waveform supplies as 

outlined in section 7.2. 

The reader should also be reminded that an UMST relies on the induced magnetic 

field produced by current. The selection of the voltage waveform produces a 

differing current waveform. Both the voltage and current waveform will be analysed 

in relation to the UMST. 

 

7.2 Supply Voltage Waveforms 

The voltage supply will be no more than ±50 V, with a maximum peak to peak range 

of 100 V.  Three different voltage waveforms will be investigated. They are the 

sinusoidal, triangular and square waveform. The following sections provide more 

details on the properties of the waveforms.  
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7.2.1 Principle Waveforms 

The principle waveforms are the sinusoidal, triangular and square. Initial testing of 

the UMST had a peak to peak voltage of 15 V and a DC offset of 0 V. Figures 12, 13 

and 14 displays the principle waveform, all approximately 20 kHz with a 15V peak 

to peak and a DC offset of 0V. 

 

 

Figure 12. Principle Sinusoidal Waveform. 
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Figure 13. Principle Sqaure Waveform. 

 

 

 

Figure 14. Principle Triangular Waveform. 
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7.2.2 DC Biased Waveforms 

A pure square waveform has an average voltage of 0 V. When a constant voltage is 

added to a pure square waveform the average voltage is increased to equal the bias 

voltage. The DC bias can be increased till the whole square waveform is in the 

positive or negative volts. Figures 15 and 16 display a positive and a negative DC 

biased square waveforms. DC Biasing can be applied to all waveform including 

sinusoidal and triangular.  

 

 

Figure 15. Positive DC Biased Sqaure Waveform. 
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Figure 16. Negative DC Biased Sqaure Waveform. 
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7.2.3 Duty Cycle Biased Waveforms 

The duty cycle of a waveform is the ratio of time of high in the one period of the 

waveform to the time of one complete cycle. Figure 17 display a five per cent duty 

cycle of a square waveform. Waveforms like figure 17 are also known a pulse 

waveforms. Figure 18 display the 95 per cent duty cycle of a square waveform.  

  

 

 

Figure 17. Duty Cycle of 5 per cent. 
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Figure 18. Duty Cycle of 95 per cent. 

 

7.3 Methodology by IEC 60782 

IEC 60782 provides a detailed procedure in the obtaining the classical properties of 

an UMST. The UMST is classed as a category P magnetostrictive transducer. All 

procedures will be determined by the availability of electrical test equipment.  

Some procedures state the UMST should operate in the linear region. The linear 

region is defined as the sinusoidal voltage and sinusoidal current waveforms should  

be regular during the operation of the UMST.  The medium for the UMST is 

recommended to be tap water unless otherwise stated. 

 

7.3.1 Input Electrical Power 

The input electrical power will be determined by impedance method. The impedance 

method will initially use a sinusoidal voltage supply, then with the square and 

triangular voltage waveforms. All three voltage supply waveforms will be used to 

compare results as well as assist further procedures. 
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The impedance method requires the voltage across the transducer (VT) and the 

current passing through the transducer (IT). Precautions are taken to ensure the volt 

meter and amp meter satisfies the frequency, voltage and current demands required 

for the transducer. If VT, IT and     are known then the phase angle can be calculated 

by using  

                  (29) 

 converting to  

      
   

    
.                (30) 

 

Figure 19. IEC60782 Basic Impedance Circuit. 

 

If a current meter is not available then a known series resistor can be included in the 

circuit where the current can be calculated by  

IT  =  RSVR     (31) 

 allowing 

                 .      (32) 

 

A circuit with an introduce known resistance is shown in figure 20. 

 

ZT = RT + XT 

(Transducer) 

VT 

IT 
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Figure 20. IEC60782 Basic Impedance Circuit with Additional Series Resistance. 

 

7.3.2 Resonant Frequency 

The resonant frequency of the transducer is the frequency of operation where the 

transducer has maximum output power as compared to the input power. The resonant 

frequency for the UMST will differ when the transducer is vibrating in air as 

compared to vibrating in a medium as the medium provides more physical resistance 

to the vibrating transducer. 

The maximum power method will be used in determining the resonant frequency of 

the UMST submerged in the medium (loaded) and in air (unloaded). The maximum 

power method uses the impedance method as described in section 7.3.1 with the 

frequency of operation changing.  

 

7.3.3 Bandwidth (Δf) and mechanical Quality (Q) Factor 

The bandwidth and quality factor of the UMST are determined by the resonant 

frequency whilst transmitting into the medium. Using the plot generated by section 

7.3.1, a range of frequencies can be selected where the output power is greater than 

half the maximum output power.  This range of frequencies will be symmetrical 

around the resonant frequency with the bandwidth being half the range of these 

frequencies.  

The quality factor is calculated by the following formulae 

RS 

(Known Value) 

IT = VR/RS 

ZT = RT + XT 

(Transducer) 

VR 

 

VT 
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        (33) 

where      is the resonant frequency and    is the bandwidth. 

 

7.3.4 Electrical Impedance at Resonance 

The electrical impedance at resonance is determined by impedance method described 

in section 7.3.1. The electrical impedance values are calculated by determining total 

supplied power (Pin), supplied current (IT) and voltage across the transducer (VT). 

These values are calculated with the operating frequency at the resonant frequency. 

The electrical impedance (  ) can be calculated by 

    
  

  
.       (34) 

The phase angle ( ) can be calculated by the following formula 

     
   

    
.       (35) 

 

7.3.5 Electrical Impedance Outside of Resonance 

The electrical impedance outside of resonance are similar to the impedance method 

detailed on section 7.3.1 The frequencies between the resonant frequency minus the 

bandwidth, and the resonant frequency plus the bandwidth should not be used.   

The electrical impedance values outside of resonance are calculated by determining 

total supplied power (   ), supplied current (IT) and voltage across the transducer 

(VT). These values are calculated with the operating frequency at the resonant 

frequency. The electrical impedance (  ) can be calculated by 

    
  

  
.       (36) 

The phase angle ( ) can be calculated by the following formula 

     
   

    
.       (37) 
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7.3.6 Electroacoustic Efficiency 

The method for electroacoustic efficiency is the ratio of output power over the input 

power. The losses associated with the transducer can be explained by figure 21. The 

input power to the transducer is the electrical input power. The electrical losses are 

the losses associated by stray and magnetisation loss of the winding. The mechanical 

loss is the losses caused by the magnetic field interacting with the nickel. The 

acoustic losses are cause by the interaction of the transducer face and the transmitting 

medium. Figure 22 goes one step further with the losses cause by the transfer of 

acoustics energy into cavitation. 

 

 

 

Figure 21. Electroacoustic Efficiency Diagram. 
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Figure 22. Electrocavitation Efficiency Diagram. 

 

7.4 Methodology Improved with Petošić et al[23] 

IEC60782 provides a basic electrical circuit for the UMST but a detailed electrical 

circuit would be more beneficial in simulating an UMST. Petosic et al, although 

based on piezoceramic transducers, provides an improved method on obtaining a 

more realistic electrical circuit where impedances are separated into resistance, 

inductance and capacitance. 

Petošić et al,  equivalent RLC electrical circuit of a piezoceramic transducer is 

provided in figure 23. 

 

Figure 23. Peizoceramic Equivalent RLC Electrical Circuit. 

 

A piezoceramic transducer produces physical vibrations caused by an oscillating 

electric field, where magnetostrictive transducers produce physical vibrations caused 

by an oscillating magnetic field. 
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Figure 24 is the equivalent RLC electrical circuit of a magnetostrictive transducer. 

 

 

Figure 24. Magnetostrictive Equivalent RLC Electrical Circuit. 

 

 

By combining the methods provided in IEC60782 and Petošić et al the values of the 

magnetostrictive RLC components can be defined. 

7.4.1 Energizing Impedance 

R0 and L0 are the real and imaginary components from ZT as provided by section 7.3 

with a phase angle  , as provided by section 7.3. R0 and L0 can be define by 

                 (38) 

                 (39) 

 and  

   
  

      
      (40) 

where fres is the resonant frequency of the unloaded transducer.  

 

I IL IO 

R0 LO 

LL 

CL 

RL = Rmec + Rrad 
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7.4.2 Transducer Impedance 

If the transducer is operated unloaded at the unloaded resonant frequency it is 

assumed that the acoustic energy is poorly radiated there by Rrad ≈ 0 and RL ≈ Rmec. A 

generalised formula can be deduced with LL and CL for the unloaded resonant 

frequency. Petošić et al assumed L0 and R0 have negligible effect on the unloaded 

resonant frequency therefore the unloaded resonant frequency can found by  

             
 

       
.      (41) 

Unloaded resonant frequency (            ) can be identified by section 7.3.2. 

LL and CL are the load inductance and load capacitance which are unknown at this 

stage. 

Using 

   
      

         
,      (42) 

     can be deduced to   

     
    

       
.      (43) 

The transducer is loaded with the medium and operated at the loaded resonant 

frequency. RL can be defined by 

   
                

                
      (44) 

 resulting in 

              .      (45) 

A generalised formula can be deduced with LL, L0 and CL for the loaded resonant 

frequency is 

 

           
 

  
 

       

      
      (46) 
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where LL and CL can found by solving simultaneously  (41) and (46) as            and 

L0 are previously determined. 

 

7.4.3 Electroacoustic Efficiency 

Electroacoustic efficiency can be defined as acoustic power output divided by the 

electrical power input. This is represented as 

    
    

     
.     (47) 

Petosic et al use the equivalent RLC circuit analysis to defined acoustic power output 

as 

     
      

                        
 

   
 
      (48) 

  and since the transducer is operating at resonance then (47) can be simplified to 

     
      

              
.     (49) 

 

Electrical power input is Prad +  Pmec + PR0 where, 

     
      

                        
 

   
 
  ,     (50) 

 is simplified to  

     
      

              
 ,     (51) 

 and  

   
 

  

  
 ,     (52) 

 

 leading to the electroacoustic efficiency of 
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.     (53) 

 

Relating to the acoustic efficiency diagram (figure 21)       is the output power,  

     is the mechanical and acoustic loss and    
 is the electrical loss. A modified 

electroacoustic efficiency diagram is shown in figure 25. 

 

 

Figure 25. Petošić et al Electroacoustic Efficiency Diagram. 

 

Since the supply voltage squared (V
2
) is common to (48), (50) and (51), the 

electroacoustic efficiency can be refined to (53) as the values of   ,      and       

are calculated in sections 7.4.1 and 7.4.2.  

    
    

              
             

 

  

    (54) 

 

7.5 Electromagnetic Simulation 

Gooberman [2] provides a detailed design of an equivalent electrical circuit based on 

an ideal transformer which is shown in figure 26. Gooberman uses the complex 

impedance to show the resonance of the transducer. 
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Figure 26. Gooberman [2] Magnetostrictive Equivalent RLC Electrical Circuit. 

 

Petošić et al [23] provides a more agreeable equivalent RLC electrical circuit. 

Although this circuit is based on a piezoceramic transducer, it allows the 

identification of the transducers natural resonance frequency with LL and CL. Figure 

27 has the electrical losses by R0 and C0.  

 

 

Figure 27. Piezoceramic Equivalent RLC Electrical Circuit. 

 

An equivalent RLC electrical circuit for a magnetostrictive transducer can designed 

by combining an electrical motor circuit and Petošić et al circuit. Figure 28 is the 

resultant magnetostrictive equivalent RLC electrical circuit.  
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Figure 28. Magnetostrictive Equivalent RLC Electrical Circuit. 

 

7.5.1 Calculating the values of the magnetostrictive equivalent RLC 

electrical circuit 

Values of the RLC components in the equivalent electrical circuit will be calculated 

by two different methods. A critical piece of information to a transducer is its 

resonant frequency. The resonant frequency is the optimum frequency for energy 

transfer. The resonant frequency can be measured by obtaining an input power and 

frequency plot.  Where the input power is at maximum the corresponding frequency 

is called its resonant frequency (IEC 60782:1984). 

 

7.5.2 IEC 60782 – Measurements of Ultrasonic Magnetostrictive 

Transducers [39] 

The electrical impedance of the transducer at resonance will be calculated by the 

wattmeter method. 

R0 and L0 can be calculated when the transducer is operating outside of its resonant 

frequency thereby the load, represented by LL, CL and RL, will provide an almost 

open circuit. R0 and L0 were calculated when the transducer was operating at 10 kHz. 

The value of I0 was also calculated by  

      
    

,     (55) 

 where  

I IL IO 

R0 LO 

LL 

CL 

RL = Rmec + Rrad 
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, and      (56) 

   
 

 

  
.     (57) 

The overall supply current can be calculated by  

             (58) 

where the supply current (Is) will be found by the impedance method when the 

transducer is operating at its resonant frequency.  

Rearranging equation 58 for IL gives 

        .     (59) 

 

7.5.3 Petošić et al [23] 

R0 and L0 can be calculated when the transducer is operating outside of its resonant 

frequency there by the load represented by LL, CL and RL will provide and almost 

open circuit. R0 and L0 were calculated when the transducer was operating at 10 kHz. 

Petošić et al [23] identifies LL as the effective mass of the vibrating transducer, CL 

represents the effective elasticity of the vibrating transducer with RL being a 

combination of mechanical resistance (Rmec) and radiated resistance (Rrad). 

Rmec is calculated by assuming there is no radiated power when the transducer is 

operating at resonant frequency in air. RL is calculated when the transducer is loaded 

at resonant frequency. It is assumed 

             ,      (60) 

 with RL and Rmec known 

             .      (61) 

 



 Page 51 

7.6 Mechanical Vibration Analysis 

To reinforce the results of the electrical testing of the UMST, mechanical vibration 

analysis will be conducted. An accelerometer is secured to the transducer face. The 

acceleration of the transducer face will be recorded with the three different voltage 

waveforms at the various operating frequencies. The transducer will also operate in 

the loaded and unloaded states.  

Vibration analysis will be used to calculate the mechanical output power of the 

transducer. 

Using an accelerometer the force emitted by the transducer can be calculated by 

                (62) 

where   is force (newtons),   is mass (kg) and   is acceleration (m.s
-2

). 

The mass will not be the mass of the transducer lamination but the mass of the 

medium (water) the transducer face vibrates into. The mass of the water is calculated 

by the following assumptions 

 the overall pressure of medium is constant; 

 the mass of the medium is constant; 

 the pressure in the direction of the gravity is the same as the pressure in any 

direction within the medium; and  

 thereby the mass of medium pressing transducer face is equivalent to the area 

of the transducer face multiplied by the average depth. 

The transducer has a face area of 75 × 10
-6

 m
2
 (0.075 m × 0.000 1 m) with an average 

depth of 0.01 m producing a volume of 750 × 10
-9 

m
3
. When the medium is water 

with a density of 1 kg per 0.001 m
3
, the mass of water pressing on the transducer face 

is 75 × 10
-6

 kg. 

The power of the transducer is calculated by 

         ,       (63) 

 or  

          ,      (64) 
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where      is the mechanical output power of the transducer and   is the velocity of 

the transducer face.  
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Chapter 8 – Required Resources 

 

8.1 Transducer Analysis 

Two different nickel laminations were provided by New Wave Leather Pty. Ltd. 

Four different windings were produced to examine the effect of magnetostriction. 

 

8.1.1 Nickel Laminations 

To conduct the testing as outlined in chapter seven one requires magnetostrictive 

material that is nickel. Appendix B is contains the dimensions of the nickel 

transducers. Both laminations are made of nickel 201 which is made of 99.5% nickel 

and 0.01% Carbon with the other 0.49% consisting of other impurities [40]. Both 

transducers were operated in an 'open' state, where magnetic field did not have a 

closed path. This was chosen to allow for the easy exchange of different windings.  

As outlined in section 4.4 the average conducting magnetic path for the transducer 

should be 0.245 m for a 20 kHz operating frequency. Table  iv outline the average 

magnetic path for the small and large transducer. 

 

Table iv. Transducers Optimum Operating Frequencies. 

Lamination Average Magnetic  

Path (m) 

Optimum Frequency 

(kHz) 

Ideal 0.245 20.000 

Small (append B.1) 0.230675 18.831 

Large (append B.2) 0.26135 21.335 

 

 

The dimensions of the small and large transducers are provided in figures 29 and 30. 

Both transducers should have a resonant frequency at approximately 20 kHz.  
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The average magnetic path assumes the whole path being within the nickel 

lamination. For ease of manufacturing the whole magnetic path is not within the 

nickel so the optimum frequencies will differ slightly. Calculation of the average 

magnetic path of the small and large transducers with the open end of the transducer 

would require three dimensional modelling. Due to time restraints and financial cost 

three dimensional modelling was not performed. 

 

 

 

Figure 29. Small Transducer Design. 
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Figure 30. Large Transducer Design. 

 

Figure 31 is the actual nickel lamination used. 

 

Figure 31. Supplied Nickel Laminations from New Wave Leather on an A4 Sheet of Paper. 



 Page 56 

8.1.2 Windings 

Two different windings were produced manually for both the small and large 

lamination. The windings comprise of various diameter copper conductor with an 

enamelled coating for electrical insulation. Details of the windings are listed in 

table v followed by the current capacity of each windings in table vi. 

 

Table v. Continuous Current Rating of Produced Windings [41]. 

Lamination Small Large 

No. of Turns 249 643 96 115 

Wire Diameter (mm) 0.8 0.3 1 0.8 

Conductor Size (mm
2
) 0.503 0.071 0.784 0.503 

Length of Winding (mm) 45 45 45 45 

Cross Sectional Area (mm
2
) 301.5 30.1.5 605 605 

Average Radius Distance (mm) 9.796 9.796 13.877 13.877 

 

 

Table vi. Continuous Current Rating of Produced Windings [41]. 

Lamination Small Large 

No. of Turns 249 643 96 115 

Wire Diameter (mm) 0.8 0.3 1 0.8 

Conductor Size (mm
2
) 0.503 0.071 0.784 0.503 

Number of Layers 4 4 4 4 

Current Capacity (A) 0.5 0.5 7.5 0.5 

De-rating Factor 0.4 0.4 0.4 0.4 

Continuous Current Rating (A) 0.2 0.2 3 0.2 

 

 

The continuous current rating provided in table vi does not take into account the 

added benefit of the transducer being in water. A water de-rating factor is included in 

table vii adjusting the continuous current rating only when the transducer is 

submerged in the medium. 
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Table vii. Adjusted Continiuos Current Rating of Produced Windings. 

Lamination Small Large 

No. of Turns 249 643 96 115 

Old Continuous Current (A) 0.2 0.2 3 0.2 

Water De-rating Factor 10 10 10 10 

Submerged Continuous 

Current Rating (A) 

2 2 30 2 

 

Figure 32 is the actual produced windings used under testing. 

 

 

Figure 32. Produced Windings by W.A. McHugh on an A4 Sheet of Paper. 
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8.1.3 Transducer Properties 

As described in section 4.1, nickel has a saturation magnetic flux density (Bsat) of 

0.617Wb.m
-2

 [5], a permeability of 7.54 × 10
-7

 H.m
-1

and a saturation magnetic field 

intensity (Hsat) of 818.3 A.m
-1

.   

Using the Hsat value of 818.3A.m
−1

 the maximum current can be determined for each 

winding of the transducer by the solenoid equation, 

     
     

       
  

 
 

,            (65) 

rearranged to  

             
     

  

 
 

   
,          (66) 

where      is the maximum current,   is the average radius distance inside the 

winding,   is the number of turns and   is the length of the winding. 

Table viii shows the maximum current for each winding. 

 

Table viii. Maximum Load Current per Transducer Combination. 

 Small Large 

No. of Turns 249 643 96 115 

Maximum Current (A) 3.584 1.388 11.28 9.419 

 

By combining  

  
       

 
           (67) 

where    is inductance,   is material permeability,   is the number of turns,   is the 

core cross sectional area and   is the length of the winding with (65) an equation for 

magnetic field intensity can be deduced to, 
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           (68)   

but  

 
   

  
 
 

                                                                  

therefore  

               (69) 

or 

   
 

  
          (70) 

where   is the supply peak voltage and     is the characteristic impedance of the 

winding at the resonant frequency. 

Figure 33 shows the Ultrasonic Magnetostrictive Transducer as the combination of 

the nickel lamination and the winding. 

 

Figure 33. Produced Magnetostrictive Transducer by W.A. McHugh on an A4 Sheet of Paper. 
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8.2 Function Generators 

Certified calibration was not provided on all function generators.  

Three different function generators were used during the testing on the UMST. An 

IGBT was then used as the power source for the creation of cavitation.  

 

8.2.1 Tektronic AFG 3022B 

The Tektronic 3022B Arbitrary Function Generator was able to satisfy all 

requirements for testing of the UMST. Table ix provide a basic characteristics of the 

Tektronic 3022B.  

 

Table ix. Characteristics of Tektronic AFG 3022B. 

Property Value 

Output Voltage Volts (peak to peak) 10 V 

 DC offset ± 2.5 V 

Sinusoidal Waveform Min 1 × 10
-6

 Hz 

 Max 25 MHz 

Square Waveform Min 1 × 10
-6

 Hz 

 Max 12.5 MHz 

Triangular Waveform Min 1 × 10
-6

 Hz 

 Max 250 kHz 

 

 

A Tektronic AFG 3022B was initially used to create the various voltage supply 

waveforms. The Tektronic 3022B has a maximum voltage range of ±10 Volts. Upon 

inspection of the voltage waveforms it was decided the 3022B could not produce a 

stable voltage waveform with the required current output. This was evident 

particularly in the square waveform where the voltage decreased during the high 

period and increased during the low period of the waveform. The deformation of the 

voltage waveform is caused by the relative high current demand during the voltage 
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cycle. The sonic output of the transducer was barely audible between the frequencies 

of 1 to 15 kHz. Figure 34 shows the unstable square waveform voltage supply. 

 

 

 

Figure 34. Unstable Sqaure Waveform for Tektronic AFG 3022B. 

 

8.2.2 HAMEG HM 8030–4  Function Generator 

The HAMEG HM8030–4 Function Generator was able to satisfy all requirements for 

testing of the UMST. Table x provide a basic characteristic of the HAMEG HM 

8030–4.  

 

Table x. Characteristics of HAMEG HM 8030–4. 

Property Value 

Output Voltage Volts (peak to peak) 10V 

 DC offset ±2.5V 

Sinusoidal Waveform Min 0.3 Hz 
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 Max 3 MHz 

Square Waveform Min 0.3 Hz 

 Max 3 MHz 

Triangular Waveform Min 0.3 Hz 

 Max 3 MHz 

 

 

The HAMEG HM 8030–4 function generator was then used to provide the various 

voltage waveforms. Upon inspection of the voltage waveforms it was decided the 

HAMEG 8030–4 could not produce a stable voltage waveform with the required 

current output. This was evident particularly in the square waveform where the 

voltage decreased during the high period and increased during the low period of the 

waveform. The deformation of the voltage waveform is caused by the relative high 

current demand during the voltage cycle. The sonic output of the transducer was 

barely audible between the frequencies of 1 to 15 kHz. Figure 35 shows the unstable 

square waveform voltage supply. 

 

 

Figure 35. Unstable Sqaure Waveform from HAMEG HM8030-4. 
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8.2.3 BWD 160A Function Generator 

The BWD 160A  Function Generator was able to satisfy all requirements for testing 

of the UMST. Table xi provide a basic characteristic of the BWD 160A.  

 

Table xi. Characteristics of BWD 160A. 

Property Value 

Output Voltage Volts (peak to peak) 40 V 

 DC offset ±10 V 

Sinusoidal Waveform Min 0.02 Hz 

 Max 2 MHz 

Square Waveform Min 0.02 Hz 

 Max 2 MHz 

Triangular Waveform Min 0.02 Hz 

 Max 2 MHz 

 

A BWD 160A function generator was then used to provide the various voltage 

waveforms. Upon inspection of the voltage waveforms, the BWD 160A could not 

produce a stable voltage waveform with the required current output. This was evident 

particularly in the square waveform where the voltage decreased during the high 

period and increased during the low period of the waveform. The deformation of the 

voltage waveform is caused by the relative high current demand during the voltage 

cycle. The BWD 160A was able to provide enough current to produce audible tones 

between the frequencies of 1 to 15 kHz.  Figure 36 shows the unstable square 

waveform voltage supply. 

The BWD 160A was chosen as the preferred function generator as it had a voltage 

supply range of ±20 Volts and appeared to have similar deformation as the Tektronic 

3022B. The BWD 160A provided the highest audible tones. 
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Figure 36. Unstable Sqaure Waveform for BWD 160A. 

 

Supply of an amplifier was investigated but due to the unique operating frequencies 

being between 3 and 30 kHz it was not financially viable. Audio amplifiers that 

operate in the sonic region are readily available but they are not able to provide the 

required frequency range. 

 

8.2.4 IGBT Semikron AN–8005 

The Semikron AN–8005 was connected as the power supply for  the transducer to 

achieve cavitation. The AN–8005 was connected as a half controlled „H‟ bridge. The 

AN–8005 was supplied by two Topward 6303A Dual Tracking DC Power Supplies 

connected in series which enable up to 90V DC. 60V DC was used as the preferred 

peak to peak voltage. This minimised the current demand place on the two Topward 

6303A DC supplies while still achieve cavitation. The square waveform produced 

from the AN–8005 is shown in figure 37. 
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Figure 37. Sqaure Waveform from the Semikron AN-8005. 

 

The half controlled H bridge was triggered by either the BWD 160A or by Siemens 

Simatic S7-200 PLC (Programmable Logic Controller). These enabled the frequency 

of switching for the half controlled H bridge. After many tests the S7-200 PLC was 

chosen to be the primary switching source. 

An example of a half controlled H bridge is provided in figure 38. 

 

 

Figure 38. Circuit Diagram for Half Controlled H Bridge. 
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8.3 Recording equipment 

Initial testing involved electrical measurements where digital oscilloscopes were 

required. Upon inspection of the electrical data it was decided more testing was 

required. Also in accordance with IEC 6072, mechanical measurements were taken 

with the use of a vibration meter. A LCR meter and a Gauss  meter were then used to 

confirm the inductance and the magnetic flux density values of the transducers. 

 

8.3.1 Digital Oscilloscope 

Certified calibration was not provided on all oscilloscopes. 

Two oscilloscopes were used to record the operating parameter of the transducer. 

They were the Tektronic TDS 1002B (1002B) and the Tektronic TDS 5034B 

(5034B). A current probe was connected to the 5034B.  The 5034B was able to 

calculate the rms power value and the phase difference between the supply voltage 

and supply current. 

 

8.3.2 Vibration Meter 

Certified calibration was not provided on vibration equipment. 

The data acquisition was performed by a LMS type SCM05 with a PCB U333A32 

being the one dimension accelerometer. The accelerometer was used to measure the 

mechanical output power of the transducer. The SCM05 was able to record a 

maximum of 51 200 data points per second. When used with Fourier analysis and 

Nyquist theorem a maximum frequency of 25.6 kHz is extracted.  

The SCM05 records a value in gravity and with an increased sensitivity of 1 000 000. 

When the data was extracted it is required to be converted in acceleration and have 

the sensitivity decreased. The sensitivity was increased to allow more significant 
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figures. The acceleration data was then converted to meters per second squared, then 

integrated by the trapezoidal method to produce velocity in meters per second. 

Fast Fourier Transform (FFT) was performed on the acceleration data that enabled a 

frequency spectrum up to 25.6 kHz.  

 

8.3.3 LCR Meter 

A Tenma 72-8155 LCR meter was used to measure the inductance of all windings 

with and without the nickel lamination. The Tenma 72-8155 was calibrated as it was 

less than 12 months old. 

 

8.3.4 Gauss Meter 

Certified calibration was not provided on Gauss meter. 

A Lakeshore 455 DSP Gauss meter was used to measure the magnetic flux density of 

the windings with and without the nickel lamination. All measurement were taken in 

Tesla's (T).  
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Chapter 9 – Results and Discussion 

 

9.1 Introduction 

All function generators provided unstable voltage waveforms. Section 8.3 shows the 

unstable waveforms from all three function generators. Due to the unstable voltage 

waveforms it was decided to only use the 643 turn small transducer.  The 643 

provided maximum impedance and therefore a minimum demand for current. The 

minimal load current will produce a more reliable voltage waveform.  The 

BWD 160A was chosen as it supplied more current at lower frequencies as compared 

to the other two function generators. The BWD 160A also had an operating voltage 

range of ±20V.  

After many tests the BWD 160A was discarded as the results could not be duplicated 

and confirmed. 

The Tektronic 3022B was then selected as the preferred function generator. All 

experiments were repeated. The results from the testing were able to be repeated and 

duplicated using the Tektronic 3022B. 

In all tests the function generators were able to operate the UMST in the linear region 

where the voltage waveform was sinusoidal.  

With the combination of unstable waveforms and wide frequency measurements, all 

data is considered as approximate. No „lines of best fit‟ or other forms of 

interpolation are incorporated in the data. The lack of interpolation is to reduce the 

errors and assumptions. 
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9.2 Input Electrical Power 

The transducer consisted of the small lamination and the 643 turns winding. The 

5034B was used as the impedance method outlined in Section 7.3.1. The 5034B was 

able to measure the supply voltage and supply current. The electrical resonance test 

was conducted under the unloaded and loaded condition. The unloaded condition is 

referred to the transducer operating in air and the loaded condition is where the 

transducer is operating in a medium. Tap water was the medium used in all loaded 

experiments.  

The three different voltage waveforms are compared in figures 39  and 40 over the 

frequency spectrum of 3 to 35 kHz. The voltage supply is maintained to 10 Volts 

peak to peak. 

 

 

Figure 39. Unloaded Electrical Input Power. 
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Figure 40. Loaded Electrical Input Power. 

 

It can be seen that the square waveform provide the most power in the unloaded and 

loaded state. This can be easily explained as the transducer is primarily an inductor. 

An inductor can also be known as an integrator, where the amount of current is 

determined by the duration and magnitude of the voltage. The greater duration and 

magnitude of voltage will increase the magnitude of current, also reflected in (20). 

 

9.3 Electrical Resonance 

The transducer consisted of the small lamination and the 643 turns winding. The 

5034B was used as the impedance method outlined in section 7.3.2. The 5034B was 

able to measure the supply voltage and supply current. The electrical resonance test 

was conducted under the unloaded and loaded conditions.  
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9.3.1 Unloaded Electrical Resonance 

The small transducer was used with the 643 turn winding with the 3022B function 

generator as its power supply. All voltage waveforms were set to 10 Volts (peak to 

peak). Figure 41 shows the electrical input power as compared to the frequency. 

 

 

Figure 41. Unloaded Electrical Resonance. 

 

In the unloaded state, a resonant frequency cannot be found by the wide frequency 

sweep conducted by the three different waveforms. 
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9.3.2 Loaded Electrical Resonance 

The small transducer was used with the 643 turn winding with the 3022B function 

generator as its power supply. All voltage waveforms were set to 10 Volts (peak to 

peak). Figure 42 shows the electrical input power as compared to the frequency. 

 

 

Figure 42. Loaded Electrical Resonance. 

 

In the loaded state, a resonant frequency cannot be found in the wide frequency 

sweep conducted by the three different waveforms. 

The square voltage waveform requires the most electrical input power in both the 

loaded and unloaded state of the transducer. 
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9.4 Mechanical Resonance 

The transducer consisted of the small lamination and the 643 turns winding. Due to 

the unreliable power supplies and the inability to locate an electrical resonant 

frequency it was decided to find the resonant frequency via mechanical resonance. 

The UMST was again tested in the loaded and unloaded state, with the three different 

voltage supply waveform, at various frequencies.  

 

9.4.1 Unloaded Mechanical Resonance 

The UMST transducer was operated in an unloaded state with an accelerometer 

attached to the conducting face. Figure 43 show the results of a wide frequency 

sweep. It can be seen that all three waveforms have a greater magnitude of 

acceleration around the 20 kHz region. The square waveform produces the most 

acceleration compared to sinusoidal, with triangular producing the least.  Individual 

graphs of the sinusoidal, square and triangular waveform are provided in appendix E. 

 

 

Figure 43. Unloaded Mechancial Resonance. 
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Due to the wide frequency sweep approximate resonant frequencies can only be 

deduced. Table xii shows the approximate unloaded resonant frequencies for the 

three voltage waveforms. 

 

Table xii. Approximate Unloaded Resonant Frequencies. 

 Resonant Frequency 

(kHz) 

Ideal 20.000 

Small Transducer 

(append B.1) 

18.831 

Sinusoidal 20.164 

Square 19.668 

Triangular  19.722 

 

 

9.4.2 Loaded Mechanical Resonance 

The UMST transducer was operated in a loaded state with an accelerometer attached 

to the conducting face. Figure 44 show the results of a wide frequency sweep. It can 

be seen that all three waveforms have a greater magnitude of acceleration around the 

20 kHz region. The sinusoidal waveform produces the most acceleration compared to 

the square waveform, with triangular waveform producing the least.  Individual 

graphs of the sinusoidal, square and triangular waveform are provided in appendix F. 
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Figure 44. Loaded Mechanical Resonance. 

 

Due to the wide frequency sweep, approximate resonant frequencies can only be 

deduced. Table xiii shows the approximate loaded resonant frequencies for the three 

voltage waveforms. 

 

Table xiii. Approximate Loaded Resonant Frequencies. 

 Resonant Frequency (kHz) 

Ideal 20.000 

Small Transducer (append B.1) 18.831 

Sinusoidal 20.439 

Square 20.087 

Triangular  20.045 
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9.5 Bandwidth (Δf) and Mechanical Quality (Q) Factor 

The transducer consisted of the small lamination and the 643 turns winding. Each of 

the three different voltage waveforms were individually examined. The bandwidth 

and quality factor of each waveform differs significantly. Due to the unstable voltage 

waveforms and wide frequency measurements, interpolation of data is not 

performed.   

 

9.5.1 Sinusoidal Bandwidth and Mechanical Quality Factor 

Figure 45 provides a magnified view of the acceleration versus frequency with a 

sinusoidal voltage waveform. 

 

 

Figure 45. Bandwidth and Quality Factor for Sinusoidal Waveform (Loaded). 

 

Using half acceleration is equivalent to half power then the following information 

can be approximated in table xiv. 
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Table xiv. Sinusoidal Bandwidth and Quality Factor (approx). 

Sinusoidal Bandwidth and Quality Factor (approx) 

Resonant Frequency (kHz) 20.439 

Lower Half Acceleration Limit (kHz) 19.1 

Upper Half Acceleration Limit (kHz) 20.8 

Bandwidth (kHz) 0.85 

Quality Factor 24.0459 

 

 

9.5.2 Square Bandwidth and Mechanical Quality Factor 

Figure 46 provides a magnified view of the acceleration versus frequency with a 

square voltage waveform. 

 

 

Figure 46. Bandwidth and Quality Factor for Square Voltage Waveform (Loaded). 
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Using half acceleration is equivalent to half power then the following information 

can be approximated in table xv. 

 

Table xv. Square Bandwidth and Quality Factor (approx). 

Square Bandwidth and Quality Factor (approx) 

Resonant Frequency (kHz) 20.087 

Lower Half Acceleration Limit (kHz) 19.1 

Upper Half Acceleration Limit (kHz) 20.5 

Bandwidth (kHz) 0.7 

Quality Factor 28.696 

 

9.5.3 Triangular Bandwidth and Mechanical Quality Factor 

Figure 47 provides a magnified view of the acceleration versus frequency with a 

triangular voltage waveform. 

 

 

Figure 47. Bandwidth and Quality Factor for Triangular Voltage Waveform (Loaded). 
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Using half acceleration is equivalent to half power then the following information 

can be approximated in table xvi. 

 

Table xvi. Triangular Bandwidth and Quality Factor (approx). 

Triangular Bandwidth and Quality Factor (approx) 

Resonant Frequency (kHz) 20.045 

Lower Half Acceleration Limit (kHz) 18.5 

Upper Half Acceleration Limit (kHz) 20.8 

Bandwidth (kHz) 1.15 

Quality Factor 12.149 

 

 

9.6 Electrical Impedance at Resonance 

The transducer consisted of the small lamination and the 643 turns winding. The 

electrical impedance at resonance was carried out with the sinusoidal, square and 

triangular waveforms while the transducer was unloaded.  

 

9.6.1 Sinusoidal Electrical Impedance at Resonance 

The sinusoidal voltage waveform has a VT of 3.511V and a IT of 0.0868A. Using 

(34), the impedance (  ) of the transducer can be calculated at the resonant 

frequency of 20.439 kHz to be 

    
  

  
  

     

      
        .      

The phase angle was determined by the 5034B to be 88.707° 
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9.6.2 Square Electrical Impedance at Resonance 

The square voltage waveform has a VT of 4.605 V and a IT of 0.085 A. Using (34), 

the impedance (  ) of the transducer can be calculated at the resonant frequency of 

20.087 kHz to be 

    
  

  
  

     

      
        .      

The phase angle (φ) was determined by the 5034B to be 85.399°. 

 

9.6.3 Triangular Electrical Impedance at Resonance 

The triangular voltage waveform has a VT of 2.867 V and a IT of 0.091 A. Using (34), 

the impedance (  ) of the transducer can be calculated at the resonant frequency of 

20.045 kHz to be 

    
  

  
  

     

      
        .      

The phase angle (φ) was determined by the 5034B to be 88.740°. 

 

9.7 Electrical Impedance Outside of Resonance 

The transducer consisted of the small lamination and the 643 turns winding. The 

electrical impedance outside of resonance was carried out with the sinusoidal, square 

and triangular voltage waveforms while the transducer was unloaded. The outside of 

resonance frequency was set to 10.000 kHz. 

 

9.7.1 Sinusoidal Electrical Impedance Outside of Resonance 

The sinusoidal voltage waveform has a VT of 3.456 V and a IT of 0.080 A. Using 

(36), the impedance (  ) of the transducer can be calculated at the frequency of 

10.000 kHz to be 
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        .      

The phase angle (φ) was determined by the 5034B to be 80.957°. 

 

9.7.2 Square Electrical Impedance Outside of Resonance 

The square voltage waveform has a VT of 4.272 V and an IT of 0.080 A. Using (36), 

the impedance (  ) of the transducer can be calculated at the frequency of 10.000 

kHz to be 

    
  

  
  

     

      
        .      

The phase angle (φ) was determined by the 5034B to be 80.199°. 

 

9.7.3 Triangular Electrical Impedance Outside of Resonance 

The triangular voltage waveform has a VT of 2.850 V and an IT of 0.084 A. Using 

(36), the impedance (  ) of the of the transducer can be calculated at the frequency 

of 10.000 kHz to be 

    
  

  
  

     

      
        .      

The phase angle (φ) was determined by the 5034B to be 84.308°. 

 

Table xvii is a comparison of all results from sections 9.6 and 9.7. 

 

Table xvii. Transducer Impedance and Phase Angle. 

Waveform Frequency 

(kHz) 

Absolute 

Impedance (    ) 

Phase 

Angle (φ) 

Sinusoidal 20.493 41.289 88.707 

 10.000 43.590 80.957 
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Square 20.087 49.590 85.399 

 10.000 51.302 80.199 

Triangular 20.045 32.766 88.470 

 10.000 35.304 84.308 

 

 

9.8 Mechanical Output Power (Vibration Analysis) 

The transducer consisted of the small lamination and the 643 turns winding. The 

accelerometer was fixed to the transducer to record the acceleration. Using section 

7.6 to determine the mass of the water and (64) the mechanical output power of the 

transducer was determined with all three waveforms. 

 

9.8.1 Sinusoidal Voltage Mechanical Output Power 

The transducer was operated with a sinusoidal voltage waveform at the resonant 

frequency of 20.493 kHz. The acceleration data was provided by the SCM05. 

MatLab scripting was used to calculate the velocity of the transducer face and the 

mass of medium against the transducer face was previously calculated to be 

75 × 10
−6

 kg.  This results in the output real power (Pout) of the transducer to be 

0.065 1 Watts.   

 

9.8.2 Square Voltage Mechanical Output Power 

The transducer was operated with a square voltage waveform at the resonant 

frequency of 20.087 kHz. The acceleration data was provided by the SCM05. 

MatLab scripting was used to calculate the velocity of the transducer face and the 

mass of medium against the transducer face was previously calculated to be 

75 × 10
−6

 kg.  This results in the real output power (Pout) of the transducer to be 

0.131 5 Watts.   
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9.8.3 Triangular Voltage Mechanical Output Power 

The transducer was operated with a sinusoidal voltage waveform at the resonant 

frequency of 20.045 kHz. The acceleration data was provided by the SCM05. 

MatLab scripting was used to calculate the velocity of the transducer face and the 

mass of medium against the transducer face was previously calculated to be    

75 × 10
−6

 kg.  This results in the real output power (Pout) of the transducer to be 

0.083 1 Watts.   

 

9.8.4 Comparison of Mechanical Output Power 

A comparison of the output mechanical power from the three principle waveforms is 

shown in table xviii. 

 

Table xviii. Mechancial Output Power. 

Voltage Waveform Output Power (W) 

Sinusoidal 0.065 

Square 0.132 

Triangular 0.083 

 

 

9.9 Electroacoustic Efficiency 

With the output power determined by section 9.8 and the input electrical power 

determined by section 9.2 at corresponding mechanical resonant frequency, the 

electroacoustic efficiency of the transducer can be determined without the detail of 

section 7.3.6.  
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9.9.1 Sinusoidal Voltage Electroacoustic Efficiency 

The loaded input electrical power of the transducer operating at the resonant 

frequency of 20.493 kHz was 0.319 Watts with 0.065 Watts as the real output power 

of the transducer.  Therefore the electroacoustic efficiency is 

 

    

   
  

      

      
               

 

 

Figure 48 shows the electroacoustic efficiency for the sinusoidal voltage waveform. 

 

 

Figure 48. Electroacoustic Efficiency Diagram for Sinusoidal Voltage Waveform. 
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9.9.2 Square Voltage Electroacoustic Efficiency 

The loaded input electrical power of the transducer operating at the resonant 

frequency of 20.087 kHz was 0.421 Watts with 0.132 Watts as the real output power 

of the transducer.  Therefore the electroacoustic efficiency is 

 

    

   
  

      

      
                

 

Figure 49 shows the electroacoustic efficiency for the square voltage waveform. 

 

 

Figure 49. Electroacoustic Efficiency Diagram for Square Voltage Waveform. 
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9.9.3 Triangular Voltage Electroacoustic Efficiency 

The loaded input electrical power of the transducer operating at the resonant 

frequency of 20.045 kHz was 0.260 Watts with 0.083 Watts as the real output power 

of the transducer.  Therefore the electroacoustic efficiency is 

 

    

   
  

      

      
               

 

Figure 50 shows the electroacoustic efficiency for the triangular voltage waveform. 

 

 

Figure 50. Electroacoustic Efficiency Diagram for Triangular Voltage Waveform. 
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9.9.4 Comparison of Electroacoustic Efficiency 

A comparison of electroacoustic values are shown in table xix.  

 

Table xix. Comparison of Electroacoustic Efficiency for all Three Voltage Waveforms. 

Waveform Electroacoustic 

Efficiency (%) 

Sinusoidal 20.38 

Square 31.21 

Triangular 31.95 

 

 

9.10 Equivalent RLC Electrical Circuit 

The transducer consisted of the small lamination and the 643 turns winding.  With 

the measurements taken from sections 9.2 to 9.8 and the procedure outlined in 

section 7.5 an equivalent electrical circuit can be obtained for all three principle 

voltage waveforms. 

  

9.10.1 Sinusoidal Voltage Equivalent RLC Electrical Circuit 

ZT is previous calculated to be 43.363 Ω with a phase angle of 80.957° when the 

transducer is operated outside of the resonant frequency. This results in 

                                         

                                          

 making 

                  ,       

 leading to  

   
  

   
  

      

         
               .      
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LL and CL are calculated by the using equations 7.19 and 7.24. 

Solving simultaneously, LL is approximately 22.423 × 10
-6

 H  (22.423 μH) and CL is 

approximately 2.778 × 10
-6 

F (2.778 μF ). 

RL is calculate by the following,  

    
  

    
  

      

      
               

 allowing  

     
    

       
 

              

             
            

 and  

                                     .   

  

The resultant equivalent RLC electrical circuit for the sinusoidal voltage input is 

shown in figure 51. 

 

Figure 51. Sinusoidal Voltage Supply Equivalent RLC Electrical Circuit. 
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9.10.2 Square Voltage Equivalent RLC Electrical Circuit 

ZT is previous calculated to be 51.302 Ω with a phase angle of 80.199° when the 

transducer is operated outside of the resonant frequency. This results in 

                                         

                                         

 making 

                         

 leading to  

   
  

   
  

      

         
               .      

 

LL and CL are calculated by the using equations 41 and 46. 

Solving simultaneously, LL is approximately 34.646 × 10
-6

 H   (34.646 μH) and CL is 

approximately 1.89 × 10
-6 

F (1.89 μF). 

RL is calculate by the following,  

    
  

    
  

      

      
               

 allowing  

     
    

       
 

              

             
            

 and  

                                     .   

  

The resultant equivalent RLC electrical circuit for the square voltage input is shown 

in figure 52. 
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Figure 52. Square Voltage Supply Equivalent RLC Electrical Circuit. 

 

 

9.10.3 Triangular Voltage Equivalent RLC Electrical Circuit 

ZT is previous calculated to be 35.304 Ω with a phase angle of 84.308° when the 

transducer is operated outside of the resonant frequency. This results in 

 

                                         

                                         

 making 

                           

 leading to  

   
  

      
  

      

         
               .      

 

LL and CL are calculated by the using (41)  and (46). 

Solving simultaneously, LL is approximately 18.464 × 10
-6

 H (18.464 μH)   and CL is 

approximately 3.527 × 10
-6 

F (3.527 μF). 

RL is calculate by the following  

I IL IO 

8.733 Ω  

 

804.580 μH 

 

34.646 μH 

 

1.89 μF 

 161.263 Ω 

(152.030 + 9.233) 
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 allowing  

     
    

       
 

             

            
            

 and  

                                    .   

  

The resultant equivalent RLC electrical circuit for the triangular voltage input is 

shown in figure 53. 

 

 

Figure 53. Triangular Voltage Supply Equivalent RLC Electrical Circuit. 
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9.11 Inductance Results  

Three different methods were discussed in section 7 in determining the overall 

inductance of the transducers. The following sub sections provide the results of 

measured inductance. 

 

9.11.1 Calculated Inductance 

Using (20) the calculated inductance is 

   
    

 
  

                       

                        

where  ,  , and   are provided by the design of magnetostrictive transducer. The 

permeability of the core is assume to be equal to air where   is        . 

 

9.11.2 Measured Inductance via LCR Meter 

All windings were measured with and without a nickel lamination for their inherent 

inductance values. The values are shown in table xx. 

 

Table xx. Measured Inductance Values of all Tranducers. 

Transducer Size No. of 

Turns 

Inductance with 

nickel lamination 

(mH) 

Inductance without 

nickel lamination 

(mH) 

Small 249 0.563 0.470 

 643 3.71 3.05 

Large 96 0.231 0.205 

 115 0.476 0.410 
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9.11.3 Calculated Inductance via Measure Peak Current 

Due to the unstable power supply the peak to peak current and the peak to peak 

voltage is an approximation and only the small transducer with 643 turns was tested. 

The peak to peak current and voltage were measured when the transducer was loaded 

and operating at the resonant frequency of the various voltage waveforms. Using (20) 

the inductance can be calculated as shown in Table xxi.   

 

 

Table xxi. Calculated Inductance via Peak Current Values. 

Waveform No. of 

Turns 

Peak 

Voltage 

Peak 

Current 

Resonant 

Frequency 

 Rise Time 

 (µs) 

Inductance 

(mH) 

Sinusoidal 643 9.987 0.125 20 493 24.399 1.949 

Square 643 10.007 0.121 20 087 24.892 2.059 

Triangular 643 9.961 0.128 20 045 24.944 1.941  

 

 

9.11.4 Calculated Inductance via RLC Equivalent Electrical Circuit  

The calculated inductance values is provided by    as CL and LL cancel each other 

when the circuit is operating at the resonant frequency. The values of circuit 

inductance are provided by section 9.10 and differ dramatically from the inductance 

values determined by LCR meter and peak current method and .   

A comparison is provided in the following subsection. 
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9.11.5 Comparison of Calculated and Measured Inductance  

A comparison of inductance result are shown in table xxii. 

 

Table xxii. Comparison of Calculated Inductance. 

Waveform No. of 

Turns 

Inductance 

from (20) 

(mH) 

Inductance 

from LCR 

meter 

(mH) 

Inductance 

from Peak 

Current 

(mH) 

Inductance from 

Equivalent RLC 

Circuit (mH) 

Sinusoidal 643 3.263 3.71 1.949 0.682 

Square 643 3.263 3.71 2.059 0.805 

Triangular 643 3.263 3.71 1.941 0.559 

 

The difference between the LCR meter and the peak current method can be attributed 

to the function generators not suitable to the demands of the transducer. The 

increased errors associated with the equivalent RLC circuit are also cause by the 

unsuitable function generator but are compounding due to the mathematic involved 

in determining the values in equivalent RLC circuit. 

Inductance values could also be affected due to the low power supplied to the 

transducer. Even though it was minimised by the selection of only the small 

lamination with the 643 turn winding. 

 

9.12 Variations of the Square Voltage Waveform 

All of the previous tests were performed on principle waveforms. Variation in DC 

offset and duty cycle of a square waveform were examined.  

It can be determined that a 5 VPP square waveform with a DC offset of -2.5 V and a 

duty cycle of 25 per cent will supply more electrical input power. 
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9.12.1 Variations in the DC Offset 

Three different DC offsets were tested to confirm that more electrical power could be 

supplied to the transducer. The three different DC offset are −2.5 V, 0.0 V and 

+2.5 V. The three different DC offset produced an rms voltage of 3.535 V, 2.5 V and 

3.535 V respectively. Figure 54 shows the expected result of the −2.5 V and +2.5 V 

DC offset being similar in power rating as the rms voltage is the same, and the 0.0 V 

DC offset providing less power as compared to the −2.5 V and +2.5 V DC offset.    

 

 

Figure 54. Variations of DC Offset for a 20kHz Square Voltage Waveform. 
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Expanding from the DC offset tests in section 9.12.1 the duty cycle of the square 

voltage waveform was then adjusted from 5 per cent to 95 per cent. Figure 55 shows 
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offset  is changed on the square voltage waveform. The confirmation of −2.5 V and 

+2.5 V DC offset providing similar electrical power is not supported. This 
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disagreement is believed to be caused by the design of the transducer lamination, 

where there is more nickel at one end as compared to the open end. 

 

 

Figure 55. Variations of Duty Cycle for a 20kHz Square Voltage Waveform. 
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The reverse connection was to confirm the correct operation of the windings and 

transducer and to prove or disprove the results in section 9.12.2.  The North end of 

the winding was determined by the right hand rule where the right fingers represent 

the current flow in the winding and the right thumb points to the North end. Figure 

56 confirms that the direction of the windings does not have any effect on the 

transducer due the voltage source being alternating. Leaving the results obtained in 

section 9.12.2 being unresolved. 
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Figure 56. Variations of Polarity for a 20kHz Square Voltage Waveform (including DC offset). 

 

9.13 Cavitation 

As identified in section 9.3 and 9.4, the square voltage waveform provides the most 

electrical power, produces the most mechanical power and has a relative high 

electroacoustic efficiency. The square waveform was then examined to produce 

cavitation. No other voltage waveforms were investigated in the creation of 

cavitation. All other possible transducer combination were briefly tested for 

cavitation with only the small transducer and the 643 turns winding producing 

cavitation.   

Through a frequency sweep it was visually and audibly determined that cavitation 

was present at 5.525 kHz. The average input electrical power was measured at 
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Cavitation can be confirmed by the presence of a cavitation cloud. A cavitation cloud 

is where micro-bubble are suspended in the medium and gather in a generalised area 

giving the appearance of a cloud. Figure 57 shows a cavitation cloud suspended in 

the medium.  

 

 

Figure 57.Creation of Cavitation Cloud.. 

 

Mechanical output power was measure by the SCM05. A FFT was performed on the 

acceleration data resulting in the frequencies spectrum shown in figure 58 for the 

5.525 kHz transmitted frequency. The mechanical output power was calculated to be 

0.108W. 
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Figure 58. Frequency Spectrum of 5.255 kHz at Cavatition. 

 

Even though the transmitted frequency was 5.525 kHz there is a major frequency 

component around the 11 kHz region. 

With the input and output power known the electroacoustic efficiency can be 

calculated, as shown in table xxiii. 

 

Table xxiii. Cavitation at 5.525 kHz Electroacoustic Effiency. 

Cavitation at 5.525kHz 

Input Electrical Power 18.713 W 

Output Mechanical Power 0.108 W 

Electroacoustic Efficiency 0.577% 

 

Using (20) the value of inductance of the transducer can be calculated by 

   
  

  
    

        

   
         .     
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This is comparable to the measured inductance of 3.71 mH and calculate inductance 

of 3.263 mH. It is also evident that the increase in current during the on-time of the 

cycle and the decrease in current during the off-time of the cycle are linear, as to be 

expected of an inductor. 

A large magnitude of acceleration was identified around the 11  kHz region in figure 

58 leading to a sweep around that frequency. Visual and audible confirmation of 

cavitation was identified at 11.013 kHz. Figure 59 is an image of the supply voltage 

waveform, current waveform and resultant power waveform.  

 

 

Figure 59. Input Electrical Power Waveforms at 11.013 kHz Producing Cavatition. 

 

From figure 59 and using (65) the magnetic field intensity was 308.64A.m
−1

 where 

the number of turns is 643 and the peak current is 0.480 A. This is approximately one 

third the of the saturated magnetic field intensity of the transducer. 
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A FFT was performed on the acceleration data resulting in the frequencies spectrum 

shown in figure 60 for the 11.013 kHz transmitted frequency. 

 

 

Figure 60. Frequency Spectrum of 11.013 kHz at Cavatition. 

 

In a separate test the input power was measured to be 14.659 W and the mechanical 

output power was calculated to be 0.560 W. With the input and output power known 

the electroacoustic efficiency can be calculated, as shown in table xxiv and figure 61. 

 

Table xxiv. Cavitation at 11.013 kHz Electroacoustic Effiency. 

Cavitation at 11.013 kHz 

Input Electrical Power 14.659 W 

Output Mechanical Power 0.560 W 

Electroacoustic Efficiency 3.82% 
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Figure 61. Electro-cavitation Efficiency Diagram at 11.013 kHz. 

 

Using (20) the value of inductance of the transducer can be calculated 

 

   
  

  
     

         

    
              

 

This is comparable to the measured inductance of 3.71 mH and calculate inductance 

of 3.263 mH.  It is also evident that the increase in current during the on-time of the 

cycle and the decrease in current during the off-time of the cycle are linear as to be 

expected of an inductor. 

The 16.5 kHz and 22 kHz (harmonics of 5.525 kHz and 11.013 kHz) regions were 

then examined but cavitation could not be confirmed, so no results are discussed.  

 

  

10.084 W 

Electrical and Mechanical Loss 

0.560 W 

14.659 W 

4.015 W Cavitation Loss 
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Chapter 10 – Conclusion 

10.1 Achievement of Project 

Overall the project was a success although with some limitation. The ability of the 

function generators hampered the results but with persistence was able to provide 

some useable data. The procedure provided by IEC 60782 [35] and Petošić et al [23] 

provided a large benefit in examining the magnetostrictive transducer. Limited 

investigation was then performed on cavitation which provided some interesting 

results. 

The research of magnetostriction was performed including the interaction of 

Magnetic Flux and mechanical action by various methods. The research involved the 

implementation of procedures provided by IEC60782 [35] and Petošić et al [23]. 

The development of a power electronic system to accurately drive the 

magnetostrictive effect of the transducer was mainly determined by the efficiencies 

associated with the principle waveforms. It was determined that a square waveform 

with a 25 per cent duty cycle and negative DC offset provided the most electrical 

input power. The electroacoustic efficiency of the square waveform is similar in 

values to the best performing efficiency provided by the Triangular waveform. In a 

power electronic system the square voltage waveform happens to be the easiest to 

produce as compared to the sinusoidal and triangular waveforms. But due to the 

nature of the magnetostrictive transducer relative high current can be required which 

may affect the voltage waveform. 

An equivalent RLC circuit was produced for all principle waveforms. The details of 

the equivalent RLC circuit are not reliable due the unstable waveforms supplied by 

the function generators. 

Determining the mechanical output from the electrical input was investigated, with 

results being unsatisfactory. An alternative method to determine output mechanical 

power was provided by mechanical vibration analysis. 

Optimisation of the power electronic design to suit standard mains supply was 

indirectly discussed as a square voltage waveform was proven to supply more input 
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electrical power. A power supply providing a square voltage waveform is easier to 

adapt to main power as compared to the sinusoidal and triangular voltage waveforms.   

The magnetostrictive effect was investigated on different transducer designs when 

used to create cavitation. With only the 643 turn small transducer producing 

cavitation. Results for the other transducer combination were not recorded as they 

did not produce cavitation. 

Other ferromagnetic materials were not investigated. 

The wave pattern produced from the transducer were not investigated.  

Cavitation was additionally investigated with results confirming there are losses 

associated with the transfer of ultrasonic energy to cavitation. It was also witnessed 

that the resonant frequency associated with cavitation (11 kHz) is approximately half 

the resonant frequency of ultrasonic energy (20 kHz). It appeared the transducer was 

operating with minimal input power to achieve cavitation at the preferred frequency 

of 11 kHz.  The current required to produce minimal cavitation was approximately 

one third of the maximum current for the 643 turn transducer to achieve magnetic 

field intensity saturation.  

So to achieve conclusive cavitation with the small lamination and 643 turn winding, 

the winding would have to contain approximately 1800 turns or be supplied with 600 

VPP. This reinforces equations  

               

or  

   
 

  
   .       

10.2 Project Limitation 

Most of the data gather was provided from test equipment that was uncalibrated, 

therefore the accuracy of the data cannot be classed as reliable.  

The major limitation was the inability of the function generators to provide adequate 

relative current with the various voltage waveforms. This resulted in only one of the 
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four possible transducers being examined. Results improved when the supply power 

was increase to the transducer via the Half controlled H bridge. 

The maximum detectable frequency was 25.6 kHz with the mechanical vibration 

analysis. While the mechanical vibration analysis frequency range was similar to the 

frequency range under investigation a higher detectable frequency would have been 

beneficial. 

  

10.3 Further Research Recommendations 

The results provided in this project are not conclusive and should be confirmed. 

The results obtained by this project were determined by large discrete increments, for 

example the frequency sweep was recorded in 500 Hz increments. Improved 

accuracy will be obtained with smaller discrete increments. 

The interest shown by industry suggests further research can conducted on 

cavitation. Confirmation of definitive cavitation where the magnetic field intensity is 

818.3 A.m
−1

 with the small nickel lamination with either increased number of turns 

or increased voltage.  
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Appendices 

Appendix A. Project Specification. 
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Appendix B. Transducer Design. 

B.1. Small Transducer Design.
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B.2. Large Transducer Design. 
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Appendix C. Unloaded UMST. Various Voltage Waveforms. 
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Appendix D. Loaded UMST. Various Voltage Waveforms. 
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Appendix E. Vibration Analysis of Unloaded UMST. Various Voltage Waveforms. 
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Appendix F. Vibration Analysis of Loaded UMST. Various Voltage Waveforms. 
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