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ABSTRACT 

Timber piles often require rehabilitation and a more recent method of 

rehabilitation includes the use of a Fibre Reinforced Polymer (FRP) 

encasement which essentially confines the deteriorated or damaged pile.  A 

suitable filler material is required to infill the area between the FRP and 

timber pile and is required to transfer all vertical and lateral loads through 

axial compression and bending. 

 

This paper presents the mechanical properties and behaviours of both epoxy 

and vinylester polymer concrete as a filler material.  Different proportions of 

polymer resin and fly ash were mixed with 57% sand by volume and tested 

under an extensive experimental testing program.  At current there is no 

literature evident of a polymer concrete mix design of polymer resin, fly ash 

and sand.  The results from testing were analysed and then used to 

determine a trend of mechanical properties and behaviours of the two 

concrete types.   

 

Compression tests were undertaken at 7, 21 and 28 days to determine the 

compressive strength gain over a period of time.  The compression tests at 7 

days involved a stress-strain analysis using the platen to platen method.  

Split tensile and three point bending flexural tests were undertaken at 7 days 

to determine split tensile strength and flexural modulus respectively. 
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NOMENCLATURE 

Aav  = average cross-sectional area of concrete cylinder 

b  = width of specimen [m] 

d = depth of specimen [m]    

E = elastic modulus, modulus of elasticity or Young’s modulus 

Ef = flexural modulus 

f'c = compressive strength of a concrete cylinder 

f'c.max = maximum compressive strength of a concrete cylinder 

fct.sp = tensile strength obtained from a cylinder splitting test 

L  = span length[m] 

Lo  = original length 

∆L = change in length 

m = a gradient on a curve 

nc = number of cylinder specimens 

nf = number of flexural specimens 

Nmax  = maximum axial load from compression test 

Plat.max = maximum lateral load acting on tensile cylinder specimen 

V = a volume 

Vc  = volume of cylinder specimen 

Vf  = volume of flexural specimen 

Vm = volume ratio in mix design 

Wm = weight of a material of interest 

Wt = total weight of batch [kg] 

W%  = material percentage weight of concrete batch [kg] 

ε  = strain 
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ρm = density of a material of interest 

ρec = density of epoxy polymer concrete 

ρvc = density of vinylester polymer concrete  
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1 INTRODUCTION 

Timber piles are a common component of a structure subject to 

deterioration, particularly due to marine borers, fungal attack, termite attack, 

shrinkage, splitting, weathering and lateral impact loads causing structural 

damage (DMR, 2004).  The purpose of a timber pile is to transfer all axial 

and lateral loads to its foundation through axial compression and bending 

and is thus a crucial component of a complete structure.  Rehabilitation 

methods using traditional materials such as steel, concrete and timber have 

proved to be an effective solution in alleviating deteriorated and structurally 

damaged timber piles to some extent, however each attribute their own 

drawbacks. 

 

A more recent method of rehabilitation which has been implemented in the 

construction industry, uses Fiber Reinforced Polymer (FRP) shell technology 

to confine the deteriorated or damaged timber pile, where the area between 

the FRP and timber pile is in-filled with a filler material (refer figure 1.1 -

“grouting material”).  The FRP shell technology has provided to be a very 

effective solution against environmental attack, however the filler material 

lacks structural strength (Lopez-Anido et al, 2005). 

 
Figure 1.1 Typical design of FRP composite (Lopez-Anido et al, 2005) 
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This project aims to determine the behaviours and mechanical properties of 

filler materials such as epoxy and polymer concrete. This dissertation firstly 

presents a literature review and background information relating to polymer 

concrete and timber pile rehabilitation methods.  Secondly, the experimental 

program undertaken for compressive, tensile and flexural testing as part of 

the project is outlined.  The dissertation then goes on to define how to 

interpret the data to achieve the required mechanical properties of polymer 

concrete such as compressive strength, tensile strength, modulus of 

elasticity and flexural modulus.  The results are then presented followed by a 

summary and discussion of the results.  A conclusion then finalises the 

dissertation. 
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2 LITERATURE REVIEW / BACKGROUND 

An extensive literature review has been undertaken to evaluate and gain 

knowledge of the research that has already been completed in relation to 

polymer based filling materials and timber pile rehabilitation methods and 

techniques.  The review in particular, covers the classifications of concrete-

polymer composites, properties, behaviour and applications of polyester, 

vinylester and epoxy polymer concrete, chemistry of polymer types used in 

polymer concrete and timber pile rehabilitation methods. 

2.1 CONCRETE-POLYMER COMPOSITES 

Arnold (2003) describes that traditional concrete such as Portland cement 

concrete (cement concrete) typically consists of a composition of coarse and 

fine aggregates, water and Portland cement, where the purpose of the 

cement is to hydrate and bind the aggregates.  Ohama (2011) explains that 

concrete-polymer composites are materials that are made by replacing part 

of or all the cement component of cement concrete with a polymer.  Ohama 

(2011) then goes on to define that concrete-polymer composites are 

therefore classified into three types based on their production technique: 

 

Ø Polymer modified concrete 

Ø Polymer impregnated concrete 

Ø Polymer concrete 

 

Contrary to the concrete-polymer composite classifications given by Ohama 

(2011), Blagga & Beaudoin (1985b) define that concrete-polymer 

composites are broken into two groups, namely polymer cement concrete 

and polymer impregnated concrete.  Sirivivatnanon (2003) states that 

concrete-polymer composites are broken into three groups, namely polymer 

cement concrete, polymer impregnated concrete and polymer concrete.  
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Obviously, there is a lack of terminology for concrete-polymer composites, 

thus to set aside confusion, a set of terminology is to be adopted as such 

and as shown in figure 2.1 (Note that concrete mortar is the same as PPCC 

with the use of fine aggregates only) -: 

 

Ø Polymer cement concrete 

Ø Polymer impregnated concrete 

Ø Polymer concrete 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Classification of concrete-polymer composites (Guneri, 2005) 

2.1.1 POLYMER CEMENT CONCRETE 

Blagga & Beaudoin (1985b) explain that polymer cement concrete is 

produced by replacing part of the cement component of a cement concrete 

with a polymer (often in a latex form).  Sirivivatnanon (2003) states that there 

are two types of polymer cement concrete, which are defined by when the 

polymer is added to the concrete mix.  The first involves the addition of a 
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monomer system to the cement and aggregate components of a cement 

concrete before the initiation of the hydration process (i.e. addition of water 

to hydrate the cement and cure the concrete), and is commonly referred to 

as premix polymer cement concrete.  Following hydration of the cement, the 

monomer system remains within the structure.  The second type involves the 

addition of a dispersed polymer into the wet cement concrete (i.e. the 

hydration process has initiated) and is commonly referred to as polymer-

modified cement concrete.  Polymer cement concrete displays a drying 

shrinkage which is generally lower than cement concrete, however, largely 

depends on the water-cement ratio, cement content, polymer content and 

curing conditions (Sirivivatnanon 2003). 

 

 

 

Figure 2.2 Polymer cement concrete bridge deck overlay (Gomaco, 2011) 

2.1.2 POLYMER IMPREGNATED CONCRETE 

Miller (2005) desribes that one of the primary problems in cement concrete 

is the void content which potentially induces points of weakness and 

subsequently fracture propagation when the member subject to load.  

Blagga & Beaudoin (1985b) explain that polymer impregnated concrete is 
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produced by impregnating a low viscous monomer into a pre-cast cement  

concrete, where the monomer which can either be applied by surface 

application or full immersion of the concrete (Sirivivatnanon 2003) 

polymerizes to form a network in the pores and voids of the member.   

 

Mason (1981) and Blagga & Beaudoin (1985b) both mention that the 

impregnation process reduces the void percentage to almost nil, but also 

hugely improves the concretes tensile, compressive and impact strength.  

Mason (1981) also describes an improvement in the mechanical and 

durability properties of polymer concrete which are primarily due to the 

polymer filling the pores.  They suggest that the interaction between the 

cement matrix in the cast concrete and the polymer matrix could possibly be 

responsible for superior strength and durability.  Compared to cement 

concrete, polymer impregnated concrete has a notably improved resistance 

against freeze-thaw damage and chemical attack (Blagga & Beaudoin, 

1985b).  At higher temperatures, polymer impregnated concrete as 

described by Sirivivatnanon (2003) exhibits a higher resistance against 

creep than that for cement concrete, however possesses a decrease in 

flexural strength, flexural modulus and elastic modulus. 

 

 

Figure 2.3 Polymer impregnated concrete specimens (NWES, 2006) 

 



24 

 

2.1.3 POLYMER CONCRETE 

Polymer concrete, also known as synthetic resin concrete and plastic resin 

concrete is described by Blagga & Beaudoin (1985) as a composite material 

of fine and coarse aggregate mineral filler and polymer binder, containing no 

cement.  Due to its high strength properties, rapid setting times, better 

mechanical properties, lower water absorption and ability to withstand 

corrosive environments, polymer concrete is being used as a worthy 

alternative for cement concrete (Tegethoff et al, 2001) in a range of civil and 

structural applications such as construction, bridge decking, concrete crack 

repair, pavement overlays, waste water pipes and structural panels (Garas & 

Vipulanandan, n.d).  Compared to cement concrete, polymer concrete is 

three to five times lighter and three to five times stronger (Zijlstra 2007) 

which is a major advantage, particularly in structural applications. 

 

 

 

Figure 2.4 Polymer concrete after compressive testing 
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2.2 GENERAL PROPERTIES OF POLYMER CONCRETE 

2.2.1 FILLERS 

Miller (2005) describes that the filler component of polymer concrete should 

possess a solid form, be non-absorbent and have negligible moisture 

content.  Blagga & Beaudoin (1985) describe that the filler can generally be 

any dry, non-absorbent, solid material.  Coarse aggregates such as crushed 

stone, granite, gravel, limestone, chalk, quartz, slate, sandstone and clay are 

common types of mineral fillers used in polymer concrete.  Fine aggregates 

such as sand are also used as a mineral filler material in the concrete, 

however when used without coarse aggregates, the material is referred to as 

a polymer mortar (Blagga & Beaudoin, 1985a). 

 

Fillers used in polymer concrete extend beyond only mineral materials.  

Condensed silica fume and metallic fillers have been incorporated as a 

substitute filler material for coarse mineral aggregates.  Waste materials 

such as glass from recycled bottles and fly ash are also being utilized as a 

filler material in polymer concrete (Miller 2005).   

2.2.1.1 Fly ash 

Fly ash (figure 3.6) which is commonly used as a filler material in polymer 

concretes (Roberto & Tarun, 2000) is a by-product of burning coal in energy 

production and is obtained as a finely divided residue resulting from the flue 

gases of combustion boilers (Wegian et al, 2011).  Roberto & Tarun (2000) 

explain that the purpose of using a waste material such as fly ash in polymer 

concrete is not only to alleviate environmental problems, but also to provide 

a cost effective engineering solution without compromising the concretes 

performance and structural integrity.  Fly ash enhances the surface 

aesthetics and mechanical properties, especially compressive and flexural 

strength (Rebeiz & Craft, 2002; Wegian et al, 2011). 
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2.2.2 POLYMERS 

Blagga & Beaudoin (1985) describe that there are two types of polymer 

binders used in polymer concrete, namely thermoplastic and more 

frequently, thermosetting plastic (thermoset).  Literature from Miller (2005) 

mentions that thermosets should be used as the polymer component in 

polymer concretes.  Blagga (1974) confirms that thermosets are the 

preferred polymers used in polymer concrete due to its enhanced strength 

and higher resistance to creep, thus enabling a more suitable material for 

civil engineering structures.  Literature from ENG8803 (2008) describes that 

thermoplastics see a very minimal usage in structural applications due not 

only to performance drawbacks, but high processing and material costs.  

Askeland & Phule (2008) describe that thermoplastics and thermosets are 

defined by how their molecules are synthesized and their molecular 

structure.  

2.3 THERMOPLASTIC POLYMERS 

Thermoplastics are composed of long polymer chains produced by joining 

together monomers and behave in a ductile manner (ENG8803, 2008). The 

bonding of the polymer chains in thermoplastics are strong, meaning that 

rotation and sliding of the chains is difficult.  This leads to high strength, 

stiffness and melting points (Askeland & Phule, 2008) which as mentioned 

above, largely increases production costs.  At room temperature 

thermoplastics behave as a solid material due to the entanglement of the 

polymer chains, however, under heat and pressure the chains slip thus 

allowing the material to be modified into a new shape (ENG8803, 2008; 

AMCA, 2004). 

 

The behaviour of thermoplastics is non-Newtonian but rather viscoelastic, 

meaning that the stress and strain of the material is non-linear for most part 

of loading, giving rise to extremely large elastic and plastic deformation.  

During loading, entire segments of polymer chains become distorted and on 
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removal of loading, the chains start to move back to their original position 

over a period of time.  Due to this viscoelastic behaviour, thermoplastics 

display large creep and stress relaxation characteristics (Askeland & Phule, 

2008), a major drawback for structural engineering applications. 

2.4 THERMOSETTING POLYMERS 

Thermosets begin as linear polymer chains in the form of a liquid resin or a 

low melting point solid (AMCA, 2004) and are cured into a permanent form 

by the use of low heat, low pressure, radiation, catalysts or a combination of 

these.  This activates the cross-linking process, thereby forming a three-

dimensional network structure (Askeland & Phule 2008) as seen in figure 

2.2.  The formation of cross-linking in a thermoset network results in a stiffer 

and stronger matrix than that of a thermoplastic network (ENG8803, 2008).  

Once cured, a thermoset cannot be remelted or reshaped because the 

polymer has undergone an irreversible chemical change (Askeland & Phule 

2008).   

 

 

 

 

 

 

 

 
 

 

 

Figure 2.5 Formation of 3-dimensional thermoset network in Phenolic Resin (ENG8803, 

2008) 
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The tightly cross-linked structure of thermosets prevents the molecules 

rotating or sliding, which provides hardness, strength at relatively high 

temperatures, insolubility, good rigidity, good heat and chemical resistance, 

and higher resistance to creep (Blagga, 1974; AMCA, 2004) which are 

advantages over thermoplastics for structural engineering applications.  

Thermosets also exhibit a superb resistance against a variety of chemical 

attacks such as acids, solvents and bases (ENG 8803, 2008). 

 

Guneri (2005) mentions that a major advantage over thermoplastics is that 

many thermosets can be formulated at ambient temperatures, thereby 

reducing processing costs and the overall cost towards a particular 

application.  Blagga (1974) mentions that when thermosets are heated they 

will not melt and flow like thermoplastics, but rather soften and retain their 

original shape and strength.  In fact, literature from ENG 8803 (2008) states 

that the heating of a thermoset composite material can promote further 

cross-linking and hence a more rigid material. 

2.5 CLASSES OF THERMOSETTING POLYMERS 

The most common thermosetting polymers used in the composites industry 

are unsaturated polyesters, epoxies, vinyl esters and phenolics (AMCA 

2004).  ENG8803 (2008) defines that there are four primary classes for 

thermosetting matrix polymers which are: 

 

Ø Unsaturated Polyester resins 

Ø Vinylester resins 

Ø Epoxy resins 

Ø Other resins 
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The first three classes of materials are of primary interest due to their current 

viability for civil engineering structures.  It should be noted however that 

‘other resins’ such as phenolics and polyurethanes are of interest as a future 

possibility to civil engineering composites as they possess characteristics 

such as excellent fire resistance and toughness respectively (ENG 8803 

2008). 

 

2.5.1 UNSATURATED POLYESTER RESINS 

Polyester covers the lower end of the performance spectrum, however, due 

to relatively low cost, polyester is the most widely used thermoset (Blagga & 

Beaudoin, 1985a; ENG8803, 2008) and is supplied in the form of 

unsaturated pre-polymer (Miller, 2005).  Due to ongoing development, 

polyesters have seen an increased usage in civil engineering structures 

(ENG8803, 2008). 

 

ENG8803 (2008) defines polyesters as polymers containing multiple ester 

groups along their molecular chain.  Polyester is formed by the reaction of a 

saturated dicarboxylic acid and unsaturated dicarboxylic acid with a 

difunctional alcohol such as ethylene glycol or propylene glycol 

(Encyclopedia Britannica, 2011), which is then co-reacted with an 

unsaturated vinyl crosslinking monomer to form the final thermoset network.  

The glycol, saturated acid, unsaturated acid and crosslinking monomer 

together form the four major components in creating polyester.  A variation 

of one of these components largely modifies the resulting performance in the 

polyester (ENG8803, 2008). 

2.5.2 VINYLESTER RESINS 

Vinylester in comparison to polyester and epoxy resins hold the middle of 

the performance spectrum and although not as cheap as polyester, 
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vinylester still provides a lower cost than epoxy resin (ENG8803, 2008).  

Peters (1998) mentions that vinylester resin combines inherit toughness with 

outstanding heat and chemical resistance and unlike other thermosets, 

vinylester does not have to sacrifice heat and chemical resistance to achieve 

a high resiliency and toughness.  Because vinylester possesses a low ester 

content and low saturation in comparison to polyester (Miller, 2005), 

vinylester exhibits a greater resistance to hydrolysis, low peak exotherms 

during cure and less shrinkage during cure (Peters, 1998). 

 

The formation of vinylester occurs from a reaction between epoxy resins with 

acrylic or methacrylic acid, whereby the resulting polymer chain network 

contains terminal unsaturation points which are able to cross-link with an 

unsaturated monomer such as styrene (ENG8803, 2008). 

2.5.3 EPOXY RESINS 

Epoxy resin is typically used in applications such as the aerospace industry 

(Ingenia, 2008), motor racing and racing yachts and takes the higher end of 

the performance spectrum.  Depending on the desired performance of a 

particular epoxy resin, prices range between $7/kg to $500/kg (ENG8803, 

2008).  Note that the aerospace industry uses the highest performance 

epoxy resin, where curing temperatures of the resin are at approximately 

180oC.  Some epoxies are cured at ambient temperatures, thus giving a 

reduction in production costs (ENG8803, 2008).  Such epoxy resins are of 

particular interest in structural engineering applications, due to their 

structural performance and durability (ENG8803, 2008). 

 

Epoxy resin has a molecular structure (figure 2.6) containing epoxide groups 

where the groups are in the form of a three element ring structure consisting 

of two carbon atoms and one oxygen atom (Peters, 1998).   
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Figure 2.6 Molecular structure of epoxy resin (DOW, 2010) 

 

The reactivity and final properties of the system are influenced by the 

location of the epoxide ring which can be located either terminally, cyclically 

or internally (Sirivivatnanon, 2003).  For the purposes of structural 

engineering applications, epoxies are reacted with catalysts to form a final 

structure which is rigid (ENG8803, 2008).  The most popular catalysts used 

in epoxy based polymer concrete are polyamines followed by pollyamides 

and polysulfides (Miller, 2005). 

2.6 BEHAVIOURS OF POLYMER CONCRETES 

An important behaviour in polymer concrete is workability which as stated in 

Cement & Concrete (2002), is the concretes ability to flow when in a plastic 

state.  Miller (2005) describes that enough resin should be added into the 

polymer concrete to produce the minimum workability required for its specific 

application.  This is due to the expensive cost of the polymer binder 

compared to the other components of polymer concrete.  Miller (2005) also 

describes that limiting the proportion of polymer binder in the concrete to that 

mentioned above, prevents any noticeable shrinkage during curing and 

reduces the amount of expansion and contraction in the hardened concrete 

when subject to a range of temperatures.  Blagga & Beaudoin (1985a) state 

that the amount of binder used is generally small, but depends on the size of 

the filler.  If coarse filler is used, typically 5 to 15 percent of binder is required 
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however if fine filler is used, up to but not limited to 30 percent of binder can 

be needed. 

 

Blagga & Beaudoin (1985a) report that polyester polymer concrete has good 

mechanical strength, relatively good adhesion to other materials and good 

chemical and freeze-thaw resistance.  Some setbacks of polyester polymer 

concrete are however, its large setting and post-setting shrinkage (up to ten 

times greater than Portland cement concrete) (Blagga & Beaudoin, 1985a). 

Miller (2005) mentions that post-shrinkage values of between 0.3 - 0.5% in 

length have been quoted.  Ohama (2011) reports that a particular polyester 

polymer concrete under outdoor conditions in Japan endured a 10% 

decrease in compressive strength in the first year, followed by a constant 

strength retention for approximately eight years under outdoor exposure. 

 

Sirivivatnanon (2003) states that vinylester polymer concretes have a better 

chemical resistance, are tougher and more resilient that most polyesters.  

Additionally, a higher full cure time of seven days is typically required 

compared to four to seven days for polyesters. Sirivivatnanon (2003) also 

states that with respect to polyester and epoxy polymer concretes, the 

compressive strength range and coefficient of thermal expansion of 

vinylester is lower. 

 

Miller (2005) explains that epoxy polymer concrete has superior chemical 

resistance, excellent structural ability, good adhesion to a variety of surfaces 

and exhibits a minimal degree of shrinkage during curing.  Blagga & 

Beaudoin (1985a) state that in addition to the abovementioned properties, 

epoxy based polymer concrete also inherits good creep and fatigue 

resistance and low water absorption.  Blagga & Beaudoin (1985a) and Miller 

(2005) both agree that a high degree of chemical resistance is achieved in 

epoxy polymer concrete when a polyamine catalyst is used.  Blagga & 

Beaudoin (1985a) also mention that polyamide cured epoxies have better 
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heat resistance, reduced chalking tendency in outdoor exposure and greater 

flexibility.  The use of polysulfide cured epoxies produces a polymer 

concrete with even greater flexibility.  Miller (2005) also states that epoxy 

polymer concrete showcases a flexural strength up to ten times greater than 

that in cement concrete, superb for structural engineering applications. 

 

Table 2.1 shows a comparison of the mechanical properties of polyester, 

vinylester and epoxy polymer concrete, with a range of typical values shown 

for polyester and epoxy.  Due to the lack of literature relating to mechanical 

properties for vinylester polymer concrete, values have been sourced on a 

particular type of vinylester concrete, namely Novolak Vinylester Polymer 

Concrete No. 465 (Sauereisen, 1996). 

 

 

Binder Density 
(t/m3) 

Compressive 
Strength 

(MPa) 

Tensile 
Strength 

(MPa) 

Flexural 
Modulus 

(GPa) 

Modulus 
of 

Elasticity 
(GPa) 

Polyester 2-4 50-150 8-25 15-45 20-40 

Vinylester 2.3 83.4 7 15.3 36.8 

Epoxy 2-4 50-150 8-25 15-50 20-40 
 

Table 2.1  Mechanical properties of polymer concretes (Miller, 2005; Sauereisen, 1996). 
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2.7 CIVIL ENGINEERING APPLICATIONS OF POLYMER 

CONCRETE 

Blagga & Beaudoin (1985a) state that polyester polymer concrete due to its 

relatively low cost is commonly used in various pre-cast and in-situ 

applications in construction works, public and commercial buildings, floor 

tiles, sewer pipes and stairs.  A report sponsored by the Nevada Department 

of Transportation and prepared by O’Connor (1991) outlines that polyester 

polymer concrete provides a good material for pavement overlays over 

cement concrete bridge decks due to its durability, high wear resistance, 

bonding between the bridge deck and low water and chloride permeability’s.  

The report also states that polyester polymer concrete provides effective 

protection for cement concrete bridge decks, particularly against corrosion of 

the steel reinforcing bars. 

 

A report by Milosheva (n.d) outlines that polyester polymer concrete is ideal 

for heavy exploited applications such as new runways and runway repairs, 

highways, bridge decks and tunnels because of its high strength gain 

properties.  The polyester matrix systems can cure within 15 – 20 minutes, 

even at temperatures as low as -12o, thus allowing the polymer concrete to 

be fully trafficable or used according to its purpose in a short period of time, 

making polyester very attractive in civil engineering. 

 

Vinylester polymer concrete is also used as an overlay on concrete bridge 

decks as mentioned by Raina (1996), however compared to polyester 

overlays, the vinylester polymer concrete is more costly, harder to handle, 

exhibits deterioration due to thermally-induced cracks and bond failure 

between the concrete and overlay.  Note that there seems to be a lack of 

literature relating to civil engineering applications of vinylester polymer 

concrete. 
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Blagga & Beaudoin (1985a) state that epoxy polymer concretes are mainly 

used in special applications, including skid-resistant overlays in highways, 

use in mortar for industrial flooring, resurfacing of deteriorated structures and 

epoxy plaster for exterior walls.  Further investigation of the behaviour of 

epoxy polymer concrete will determine more viable structural engineering 

applications, in particular timber pile rehabilitation. 

2.8 TIMBER PILE REHABILITATION 

The Timber Bridge Maintenance Manual (DRM, 2005) describes that bridge 

rehabilitation is the process of restoring a bridge structure to ‘as new’ 

condition, excluding the strengthening of a bridge to withstand loads greater 

than originally designed for.  This description of rehabilitation and 

rehabilitation methods outlined by DRM (2005) may also be employed for 

jetties, wharves, piers and other timber structures.  The manual describes 

that a timber pile is a substructure member that transfers all vertical and 

lateral loads into its foundation through shear and bending, and therefore 

serves as an extremely important component of a complete structure.  

Figure 2.7 shows a group of severely deteriorated timber piles supporting a 

harbor pier. 

 
Figure 2.7 Severely deteriorated timber piles (FHWA, 2006) 
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Timber piles typically fail in compression when the piles cross-section 

reduces and cannot withstand the axial forces and in bending where lateral 

loads such as flood debris act on the pile.  Due to the age of some timber 

structures, many piles have become severely deteriorated and require 

rehabilitation.   

 

Steel and concrete are typical materials used for rehabilitating timber piles 

and have effectively provided sufficient load carrying abilities, however both 

attribute drawbacks such as high installation and maintenance costs.  The 

use of timber also provides an effective solution in some cases, however 

comes under the environmental attack of marine borers in oxygenated zones 

(DMR, 2005).  Fiber Reinforced Polymer (FRP) shells are a more recent 

material used for rehabilitating timber piles and have provided a very 

effective solution against environmental attack, however also have 

drawbacks such as a lack of load transfer between the shell and filler 

material and lack of structural strength of the filler material (Lopez-Anido et 

al, 2005). 

2.8.1 STEEL 

Section 11.2 of the Timber Bridge Maintenance Manual (DMR, 2005) 

outlines the use of either unpainted or galvanised steel piles (UB or UC) as 

an option for replacing timber piles (refer to figure 2.8) and is used in 

situations where deterioration is evident over the length of the pile.  The 

typical layout and headstock connection details of figure 2.8 show that the 

steel piles can either fully replace the timber pile or butt up against the 

existing timber pile.  In both cases, the new steel pile is connected to the 

headstock and effectively withstands the axial and lateral loading, thus 

reducing or eliminating the stress on the timber pile.  The downside to using 

steel, whether corrosion protected or not is that steel will electrochemically 

corrode with time and reduce in strength (Askeland & Phule, 2008; Lopez-

Anido et al, 2005).  The Bridge Inspection Manual (DMR, 2004) describes 
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other defects that they have found to have commonly occurred on steel 

sections-: 

 

Ø Corrosion 

Ø Permanent Deformations 

Ø Cracking 

Ø Loose connections 

 
Figure 2.8  Typical design of steel sections used for rehabilitating timber piles (DMR, 2005) 

2.8.2 CONCRETE 

Section 11.3 of the Timber Bridge Maintenance Manual (DMR, 2005) 

outlines the use of concrete piles as an option for rehabilitation of 

deteriorated existing concrete piles and timber piles and is used in situations 

where deterioration is localised on the pile.  In particular, the method is to 

encase the deteriorated section of the pile with reinforced concrete (see 

figure 2.9), whereby the axial and lateral loads at this point are transferred 

through the concrete.  The report by FWHA (2006) mentions that concrete 

encasement is only moderately useful for reducing the rate of deterioration.  

Spalling is common in concrete members which in more severe cases, 

exposes the internal steel reinforcing to corrosion and subsequently a 

reduction in strength (DMR, 2005; Lopez-Anido et al, 2005). The Bridge 
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Inspection Manual (DMR, 2004) describes other defects that they have 

found to have commonly occurred on concrete sections-: 

 

Ø Carbonation 

Ø Alkali-Silica Reaction (ASR) 

Ø Cracking 

Ø Surface Defects 

Ø Delamination 

 

 
Figure 2.9 Typical design of concrete encasement to rehabilitate timber piles (DMR, 

2005) 

2.8.3 TIMBER 

Lopez-Anido et al (2005) outlines the rehabilitation method of timber splicing 

with steel bolts.  This involves cutting an S shape (splice) below the 

deteriorated section of the timber pile and connecting a new timber pile with 

the steel bolts (see figure 2.10).  Note that there are other methods not 

discussed. The Bridge Inspection Manual (DMR, 2004) describes defects 

that they have found to have commonly occurred on timber sections-: 
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Ø Fungal attack (rotting) 

Ø Termites 

Ø Marine organisms (marine borers) 

Ø Corrosion of fasteners 

Ø Shrinkage and splitting 

Ø Fire damage 

Ø Weathering 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Typical design of timber splicing (Lopez-Anido et al, 2005) 

2.8.4 FIBER REINFORCED POLYMER 

Lopez-Anido et al (2004) outlines the use of a prefabricated FRP composite 

shell which encases the timber pile and is filled with a structural cement 

mortar or polymer mortar (see figure 1.1).  The cement mortar had spalling 

issues similar to that of normal concrete and thus potentially lost shear 

strength between the interface of the mortar, pile and shell.  The polymer 

mortar was made out of expanding polyurethane which had excellent 

workability, pumpability and below water application properties, however had 

no structural capacity. 
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3 EXPERIMENTAL PROGRAMME 

An extensive experimental program as outlined in this section was 

undertaken to determine the behaviour and mechanical properties of epoxy 

and vinylester polymer concretes such as-: 

 

Ø Compressive Strength 

Ø Modulus of Elasticity 

Ø Tensile Strength 

Ø Flexural Modulus 

 

 
 

Figure 3.1 Typical failure after tensile testing 

 

These properties are extremely important factors in determining the 

suitability of polymer concrete for the infilling of fibre composite shells.  

Compressive strength is a property which exhibits the axial compressive 

load a material can withstand before failing and for the purposes of timber 

pile rehabilitation, the polymer concrete must be able to transfer the load 

from the timber pile through to the foundation.  Modulus of elasticity is a 

property which exhibits the stress-strain relationship of the concrete and how 
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the concrete deforms under load.  Tensile strength is a property which 

exhibits the polymer concretes tensile strength and hence whether or not the 

concrete can resist the tensile forces in the structure.  Flexural modulus is a 

property which exhibits the ability of the concrete to resist bending forces 

imposed laterally. 

 

In order to analyse these properties, a set of experimental tests were 

established as shown in table 3.1: 

Test Behaviour analysed Standard 
Compressive Compressive Strength, f’c ASTM D 695 M-91 

Compressive platen to 
platen method Modulus of Elasticity, E ASTM D 695 M-91 

Tensile Tensile Strength, fct.sp ASTM 496 

Flexural Flexural Modulus, Ef ISO 178:1993 
 

Table 3.1 Testing summary 

3.1 PREPARATION WORK 

3.1.1 MATERIALS 

There were six materials used for the mix designs of polymer concrete as 

shown in table 3.2 and further discussed in section 3.2: 

Material Description 
Epoxy Resin Kinetix R246TX 

Epoxy Catalyst Kinetix H160 Hardener 

Vinylester Resin FGI Vinylester SPV6003 Promthix F01302 

Vinylester Catalyst Norox MEKP-925H 

Sand Wagners CFT 

Fly Ash Wagners CFT 
 

Table 3.2 Material types used for mix designs 
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3.1.1.1 Resin & catalyst 

The resin as shown in figure 3.2 was the main binding material for the 

polymer concrete and was required to be mixed with a catalyst.  The 

purpose of incorporating the catalyst (figure 3.3) was to chemically start the 

curing process of the resin and hence harden the mix into a polymer 

concrete.  It was important that the catalyst and resin were fully mixed 

together to ensure that the molecular structure of the mixture was uniform 

and that the resin would cure. 
 

 

Figure 3.2 Binding materials: Vinylester resin 

 

 

 

Figure 3.3 Binding materials: Vinylester catalyst 
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For epoxy polymer concrete, a volume percentage of 20% (1:5 parts) 

catalyst to resin was used.  For vinylester polymer concrete, a volume 

percentage of 1.73% (1.73:100 parts) catalyst to resin was used.  The 

volume percentages were based on the manufacturers specifications as 

printed on the containers. 

3.1.1.2 Sand 

The sand stockpile contained a lot of impurities such as coarse aggregate, 

sticks, etc and contained moisture.  It was vital that all impurities and 

moisture were removed from the sand.  The sand was therefore baked in an 

oven at 110o for approximately 24 hours (see figure 3.4) in accordance with 

standard ASTM C128 to remove all moisture and was then passed through a 

430 micron sieve to remove any impurities (see figure 3.5).  Referring to 

figure 3.5, it can be seen that the sand is fine and without and impurities.  

Passing the sand through the sieve also ensured that the mix was uniform 

for each batch. 

 

 

Figure 3.4 Preparation of sand for sieving 
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Figure 3.5 430 micron sieved sand (LHS) 

3.1.1.3 Fly ash 

Preparation work of the fly ash supplied by Wagners CFT included breaking 

down large clumps into a fine powder and ensuring that there were no 

impurities in the storage drum.  Figure 3.6 shows a typical sample of fly ash. 

 

 

 

Figure 3.6 Fly ash (AAERC, 2011) 
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3.1.2 MOULDS 

There were two types of moulds used, namely cylinder moulds for the 

compressive and tensile specimens (figure 3.7) and flat rectangular shaped 

moulds for the flexural specimens (figure 3.8).  All moulds were waxed to 

ensure that the cured concrete could be removed from the mould easily and 

without impurities.  Each mould was individually labeled to ensure that the 

correct batch mix design could be identified after the curing process when 

required for testing. 

 

Figure 3.7 Cylinder moulds for compressive and tensile specimens 

 

 

Figure 3.8 Rectangular moulds for tensile specimens 
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The size of the specimens required for testing in accordance with the 

specification outlined in table 3.1 are outlined in table 3.3: 

 

Test specimen Length (mm) Depth (mm) Width 
(mm) 

Diameter 
(mm) 

Compressive 100 - - 50 

Tensile 100 - - 50 

Flexural 144 span 9 16 - 
 

Table 3.3 Geometric dimensions of test specimens 

3.1.3 MIX DESIGNS 

The mix designs for the polymer concrete specimens were determined 

based on different proportions of resin and fly ash with a constant of 57% 

sand.  Figure 3.9 shows the concrete mixing bowl in which each mix design 

batch was mixed. 

 

 

Figure 3.9 Concrete mixing bowl 



47 

 

Previous experimental work by Sirimanna et al (2010) determined that the 

sand supplied by Wagners CFT contained a volume void ratio of 43%.  The 

proportions of resin, sand and fly ash also determined by Sirimanna et al 

(2010) are represented in table 3.4 as volume percentage/ratio-: 

 

Volume percentage/ratio (Vm) Resin 
Type 

Sample 
Identification 

(Batch) Sand Resin + 
Catalyst Fly ash 

S57E43 57 43 0 

S57E40F3 57 40 3 

S57E30F13 57 30 13 

S57E22F21 57 22 21 

Epoxy 

S57E20F23 57 20 23 

S57V43 57 43 0 

S57V40F3 57 40 3 

S57V30F13 57 30 13 

S57V22F21 57 22 21 

Vinylester 

S57V20F23 57 20 23 
 

Table 3.4   Mix design batches by percentage volume 

 

 

Referring to table 3.4, the sample identification represents the volume 

percentages of sand, resin + catalyst and fly ash.  For example, S57E40F3 

represents a batch mix design of 57% sand, 40% epoxy resin and 3% fly 

ash. 
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The densities for each of the materials in table 3.2 were required to be 

evaluated so that the weight of the materials in each mix design batch could 

be calculated.  A cylinder mould measuring a volume of 1.9635 x 10-4 m3 

was filled with each material individually and the weight measured.  The 

weight of the mould was first measured and subtracted from the total 

measured weight.  The densities for each material were calculated using 

(3.1).   

        (3.1) 

where  ρm is density [kg/m3] 

Wm is weight [kg] 

Vc is volume [m3] 

 

which may be simplified to: 

 

       (3.2) 

 

The densities for each material are shown in table 3.5. 

 

Material Volume (m3) Weight (kg) Density (kg/m3) 

Vinylester Resin 1.9635 x 10-4 0.2525 1286 

Vinylester Catalyst 1.9635 x 10-4 0.2656 1353 

Epoxy Resin 1.9635 x 10-4 0.2695 1373 

Epoxy Catalyst 1.9635 x 10-4 0.2310 1176 

Sand 1.9635 x 10-4 0.3525 1795 

Fly Ash 1.9635 x 10-4 0.2065 1052 
Table 3.5   Density of materials 
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Figure 3.10 Preparing batches of polymer concrete 

 

For ease of preparing the different mix design batches in the laboratory 

(figure 3.10), the volume percentages for the total amount of specimens as 

presented in table 2.7 were converted to weight using (3.3) and incorporated 

a 30% contingency: 

 

     (3.3) 

 

which may be simplified to: 

 

     (3.4) 



50 

 

 

where  W is weight [kg] 

Vc is volume of cylinder specimen [m3] 

Vf is volume of flexural specimen [m3] 

Vm is volume ratio in mix design [m3] 

nc is number of cylinder specimens 

nf is number of flexural specimens 

ρm is density of material of interest [kg/m3] 

 

and results shown in table 3.6: 

 

Weight per batch (g) 
Batch ID 

Sand (g) Resin (g) Catalyst  
(g) 

Fly Ash   
(g) Total (g) 

S57E43 3026 1396 299 0 4722 
S57E40F3 3026 1299 278 93 4697 
S57E30F13 3026 974 209 404 4614 
S57E22F21 3026 714 153 653 4547 
S57E20F23 3026 650 139 715 4531 
  15132 5034 1079 1866 23111 
S57V43 3026 1608 29 0 4663 
S57V40F3 3026 1495 27 93 4642 
S57V30F13 3026 1122 20 404 4573 
S57V22F21 3026 823 15 653 4517 
S57V20F23 3026 748 14 715 4503 
  15132 5795 105 1866 22899 
SUBTOTAL 30265 10829 1184 3733 46010 
 

Table 3.6  Mix design batches by weight 
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The weight (Wm) values from table 2.6 were then converted to weight 

percentages of the batch (W%) using (3.5): 

 

 

        (3.5)  

 

 

where  W% is material percentage weight of concrete batch [kg] 

Wm is weight of material of interest [kg] 

Wt is total weight of batch [kg] 

 

and results shown in table 3.7:  

 

Actual % by weight 
Batch ID 

Sand Resin                   Catalyst              Fly Ash              

S57E43 64.09 29.57 6.34 0.00 

S57E40F3 64.43 27.66 5.93 1.99 

S57E30F13 65.60 21.12 4.52 8.76 

S57E22F21 66.56 15.71 3.37 14.36 

S57E20F23 66.80 14.34 3.07 15.79 
  

S57V43 64.90 34.47 0.63 0.00 

S57V40F3 65.19 32.21 0.59 2.01 

S57V30F13 66.18 24.53 0.45 8.84 

S57V22F21 67.00 18.21 0.33 14.46 

S57V20F23 67.21 16.60 0.30 15.89 
 

Table 3.7  Mix design batches by weight percentage 
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3.1.4 BATCH MIXING 

Using the calculated weight values from table 3.6, the batches were then 

mixed together and casted into their corresponding moulds.  The process for 

mixing the batches was undertaken as outlined below: 

 

1. Measure weight of all materials 

2. Mix together the dry materials in mixing bowl (i.e. sand and fly ash) 

3. Mix together wet materials in container (i.e. resin and catalyst) 

4. Add wet materials to dry materials in mixing bowl 

5. Incorporate all materials well until the mix looked uniform 

6. Cast into moulds 

3.1.5 CASTING AND CURING 

The mix design batches were cast into the correctly labeled mould and 

allowed to cure in a temperature controlled room of 24oC (figure 3.11).   

 

 

Figure 3.11 Curing room controlled at 24oC 
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The specimens were then left in their moulds until required for testing (figure 

3.12 and 3.13 shows cylinder specimens). 

 

 

Figure 3.12 Initial curing of cylinder specimens 

 

 

Figure 3.13 Curing of cylinder specimens after period of time 
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The flexural moulds were a large rectangular shape of 16mm thick and 

approximately 180mm square, larger than the required size as shown in 

table 3.3.  This allowed the sample to be clamped in order to cut at least five 

(5) specimens per sample with a diamond cutting machine.  Figure 3.14 

shows the cured polymer concrete specimens ready for cutting. 

 

 

Figure 3.14 Flexural samples cured and ready for cutting into specimens 

 

3.1.6 POST CURING 

On completion of the required curing period for the specimens, the final 

preparation work was undertaken.  Figures 3.15 and 3.16 show the finally 

prepared specimens ready for testing. 
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3.1.6.1 Tensile & Compressive specimens (cylinders) 

The cylinders upon required the following preparation upon curing: 

 

Ø Removal of concrete specimens from moulds 

Ø Sanding of specimen due to shrinkage.  This was done on a sanding 

machine and it was ensured that the ends be perpendicular to the 

cylinders length.  For compressive testing, this ensured that the load 

would be evenly distributed against its cross-sectional area.  For 

tensile testing, sanding was not as important but was still done to 

ensure a smooth end surface. 

Ø Labeling of specimen according to its batch identification 

Ø Measurement of diameter at both ends 

Ø Measurement of length 

 

 

Figure 3.15 Cylinder specimens ready for testing 
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3.1.6.2 Flexural specimens 

The cylinders required the following preparation upon curing: 

 

Ø Removal of concrete specimens from moulds 

Ø Cutting of specimens 9mm thick with diamond cutting wheel  

Ø Sanding of specimens to remove any sharp edges or hanging 

material 

Ø Labeling of specimen according to its batch identification 

Ø Measurement of thickness at one location 

Ø Measurement of width at both ends 

 

 

 

Figure 3.16 Flexural specimen ready for testing 
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3.2 TESTING 

On completion of the preparation work outlined in section 3.1, it was then 

necessary to determine a testing plan.  Based on a review of literature, it 

was determined that polymer concrete gains approximately 90% of its 

strength at an age of seven (7) days (Sirimanna et al, 2010).  The concrete 

then gains its almost full strength over a period of greater than 28 days.  It 

was therefore decided that testing was undertaken in accordance with the 

plan presented in table 3.8: 

 

Specimen Age (days) Test 
7 days 21 days ≥ 28 days Total 

Compressive 5 2 3 10 

Tensile 3 0 0 3 

Flexural 5 0 0 5 
 

Table 3.8 Testing samples required for different specimen ages 

 

In total there were ten (10) batches casted and based on the test 

requirements shown in table 3.8, a total number of tests as shown in table 

3.9 were required.  Note that flexural testing was undertaken at 21 days due 

to lack of time on seven (7) days with tensile and compressive testing. 

 

Specimen Age (days) Test 
7 days 21 days ≥ 28 days Total 

Compressive 50 20 30 100 

Tensile 30 0 0 30 

Flexural 0 50 0 50 
 

Table 3.9 Total testing samples required for different specimen ages  
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3.2.1 MACHINE SETUP AND OPERATION 

Due to the workplace health and safety requirements of University of 

Southern Queensland (USQ), Toowoomba, it was required that trained 

technical staff set up and operate the testing equipment.  A 500kN capacity 

AVERY testing machine (figure 3.17) was used for compressive and tensile 

testing and a 100kN capacity MTS testing machine (figure 3.18) was used 

for flexural testing.   

 

 

Figure 3.17 500kN AVERY machine for compressive and tensile testing 

 

 

Figure 3.18 100kN MTS machine for flexural testing 
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The set up of the MTS machine was more tedious in that a two (2) point 

bending cell was required (figure 3.19).  The span as seen in figure 3.19 was 

spaced to 144mm as per the requirements in table 3.3. 

 

 

Figure 3.19 Two (2) point loading cell for three (3) point flexural testing 

 

The set up of both machines required computer input of constraints such as 

loading rate, test type, standard and data output.  Figure 3.20 shows a visual 

output of the data during testing. 

 

 

Figure 3.20 Data output from testing 
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3.2.2 LOADING RATE 

A loading rate (cross-head speed rate) of 2mm/min was used for 

compressive testing which allowed the specimen to deform under loading 

without a dynamic loading effect, thus giving more accurate results. A 

loading rate of 1mm/min was used for flexural testing as it was estimated 

that the loading capacity of the specimens would be a maximum of 1kN and 

that deflection would be between maximum of 2.5mm.  

3.2.3 DATA OUTPUT 

Data was output for the entire testing time and consisted of the following: 

 

Ø Load (kN) 

Ø Deformation (mm) 

Ø Time (secs) 

 

The data was then evaluated as presented in section 4. 

3.2.4 COMPRESSIVE TESTING 

Compressive testing was undertaken in accordance with the technical 

requirements outlined in standard ASTM D 695 M-91.  Specimens were 

tested for compressive strength at 7, 21 and 28 days and modulus of 

elasticity at 7 and 28 days using the uni-axial platen to platen compression 

method.  The methodology for compressive testing consisted of the following 

steps: 

 

7. Initial machine setup as per section 3.2.1 

8. Specimen was placed centrally in platen (figure 3.21) 



61 

 

9. The bottom platen was raised until the top platen just touched the top 

of the specimen 

10. The safety Perspex panel was lowered 

11. The specimen was loaded as per section 3.2.2 until failure (figure 

3.22) 

12. The specimen was removed from the machine 

13. The machine was then wiped down with a rag to remove all debris 

14. Repeat steps 2 to 7 until all specimens were tested 
 

 

Figure 3.21 Compressive testing of specimen 

 

 

Figure 3.22 Compressive specimen after failure 
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3.2.5 TENSILE TESTING 

Tensile testing was undertaken in accordance with the technical 

requirements outlined in standard ASTM 496.  Specimens were tested for 

tensile strength at 7 the split tensile method.  The methodology for tensile 

testing consisted of the following steps: 

 

1. Initial machine setup as per section 3.2.1 

2. Specimen was placed centrally in platen (figure 3.23) 

3. The bottom platen was raised until the top platen just touched the top 

of the specimen 

4. The safety Perspex panel was lowered 

5. The specimen was loaded as per section 3.2.2 until failure (figure 

3.24) 

6. The specimen was removed from the machine 

7. The machine was then wiped down with a rag to remove all debris 

8. Repeat steps 2 to 7 until all specimens were tested 
 
 

 

Figure 3.23 Tensile testing of specimen 
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Figure 3.24 Tensile specimen after failure 

3.2.6 FLEXURAL TESTING 

Tensile testing was undertaken in accordance with the technical 

requirements outlined in standard ISO 178:1993.  Specimens were tested for 

flexural modulus at 21 days using the three (3) point bending method.  The 

methodology for flexural testing consisted of the following steps: 

 

1. Initial machine setup as per section 3.2.1 

2. The specimen was placed centrally over the two point spanning cell 

(figure 3.23) 

3. The top loading cell was lowered until it touched top of specimen 

4. The specimen was loaded as per section 3.2.2 until failure (figure 

3.24) 

5. The specimen was removed from the machine 

6. The machine was then wiped down with a rag to remove all debris 
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7. Repeat steps 2 to 6 until all specimens were tested 
 

 
Figure 3.25 Flexural testing of specimen 

 

 

Figure 3.26 Flexural specimen mid test 

144mm 

Reaction (P/2) Load (P) Reaction (P/2) 
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4 DATA ANALYSIS 

Subsequent to the testing program presented in section 3.2, the data output 

presented in section 3.2.3 was then collaborated and used to determine the 

mechanical properties and behaviours of the two polymer concrete types.  

Section 4.1 through 4.4 presents the methods used to convert the data 

output. 

4.1 COMPRESSIVE STRENGTH 

The compressive strength for each specimen was determined based on the 

data output from compressive testing and required that the maximum axial 

load be converted to a stress (compressive strength) which was calculated 

using (4.1).  

 

 

       (4.1) 

 

 

where  f’c.max is maximum compressive strength of concrete cylinder 

[MPa] 

Nmax is maximum axial load from compression test [kN] 

Aav is average cross-sectional area of concrete cylinder [m2] 

 

 

Tables 10.1 to 10.8 show the geometrical dimensions of the vinylester and 

epoxy polymer concrete compressive specimens respectively.  The 

compressive strength results are shown in section 5.1 to 5.4. 
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4.2 MODULUS OF ELASTICITY 

The modulus of elasticity (Young’s modulus) for each specimen was 

determined based on the data output from the same compressive tests used 

for compressive strength (section 4.1) and is the gradient of the linear 

portion of the stress-strain curve (4.2): 

 

       (4.2) 

 

where  E is Young’s modulus [GPa] 

ε is strain [m/m] 

 

and can be seen in figure 4.1. 

 

 

Figure 4.1 Young’s modulus analysis 
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To achieve the gradient, compressive strength values using (4.1) were 

plotted against strain values which were calculated using (4.3): 

 

 

        (4.3)
 

  

 

where   Lo is original length [m] 

   ∆L is change in length [m] 

 

 

The linear portion of the stress-strain curves for all cylinder tests were not 

exactly ‘linear’, but contained a linear trend.  Therefore a linear regression 

analysis in Microsoft Excel®  was used which analysed all data points within 

the chosen data region and essentially found a line of best fit within the set 

of data.  The theory of (4.2) still applied in that two points (ε1,f’c.1) and (ε2,f’c.2) 

were extruded from the linear regression line (figure 4.1) to calculate 

Young’s modulus.   

 

Stress-strain curves were translated to the left when machine adjusting at 

initial loading was evident as shown in figure 4.1.  The curve has a constant 

compressive stress of 2MPa up to 0.4% strain and was thus translated 0.4% 

strain to the left. The stress at the origin was then taken as zero.  Young’s 

modulus results are shown in sections 5.5 and 5.6.  
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4.3 TENSILE STRENGTH 

The split tensile strength for each specimen was determined based on the 

data output from the split tensile tests and required that the maximum load 

acting laterally against the specimen be converted to a stress (tensile 

strength) which was calculated using (4.4): 

 

 

      
(4.4) 

  

 where   fct.sp is the split tensile strength [MPa] 

   P = Plat.max is the maximum transverse load [kN] 

   L is length [m] 

   D is diameter [m] 

 

and may be simplified to 

 

      (4.5) 

 

 

Table 10.9 and 10.10 show the geometrical dimensions of the vinylester and 

epoxy polymer concrete tensile specimens respectively.  Split tensile 

strength results are shown in sections 5.7 and 5.8. 
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4.4 FLEXURAL MODULUS 

 

The flexural modulus for each specimen was determined based on the data 

output from the three point bending tests and required that the maximum 

load acting midspan against the specimen be converted to a modulus which 

was calculated using (4.6): 

 

 

 

        
(4.6) 

 

 

 

where   Ef is flexural modulus [MPa] 

m is gradient of linear portion of the load-deflection curve 

[N/mm] 

   L is span length[m] 

   d is depth of specimen [m] 

   b is width of specimen [m] 

 

 

Split tensile strength results are shown in section 5.9. 
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5 RESULTS 

This section presents the final results as determined from the data output 

analysis outlined in section 4.  For bar graphs, blue represents the 

specimens tested, green represents an average value of the specimens 

tested and red represents specimens that were considered outliers and were 

thus not taken into account for the average.  For each mechanical property, 

the values for each batch of each polymer concrete type are plotted against 

%resin by volume and %fly ash by weight, both on the x-axis to show a trend 

of the analysed results. 

5.1 7 DAY COMPRESSIVE STRENGTH 

The results show the 7 day compressive strengths for all batches of polymer 

concrete. 

5.1.1 VINYLESTER PC 

 
(a) 
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(b) 

 

 

(c) 
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(d) 

 

(e) 
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(f) 

Figure 5.1 7 Day Compressive Strengths (Vinylester PC): (a)S57V43, (b)S57V40F3, 

(c)S57V30F13, (d)S57V22F21, (e)S57V20F23, (f)Comparison all vinylester PC 

batches 

5.1.2 EPOXY PC 

 
(a) 
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(b) 

 

 

(c)  
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(d) 

 

 

(e) 
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(f) 

Figure 5.2 7 Day Compressive Strengths (Epoxy PC): (a)S57E43, (b)S57E40F3, 

(c)S57E30F13, (d)S57E22F21, (e)S57E20F23, (f)Comparison all epoxy PC 

batches 

 

 

Figure 5.3 7 Day Compressive Strengths (comparison) 
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5.2 21 DAY COMPRESSIVE STRENGTH 

The results show the 21 day compressive strengths for all batches of 

polymer concrete. 

5.2.1 VINYLESTER PC 

 
(a) 

 

 

 

(b) 
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(c) 

 

 

 

(d) 
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(e) 

 

 

(f)  

Figure 5.4 21 Day Compressive Strengths (Vinylester PC): (a)S57V43, (b)S57V40F3, 

(c)S57V30F13, (d)S57V22F21, (e)S57V20F23, (f)Comparison all vinylester PC 

batches 
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5.2.2 EPOXY PC 

 
(a)  

 

 

(b)  
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(c)  

 

 

 

(d)  
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(e) 

 

 

(f)  

Figure 5.5 21 Day Compressive Strengths (Epoxy PC): (a)S57E43, (b)S57E40F3, 

(c)S57E30F13, (d)S57E22F21, (e)S57E20F23, (f)Comparison all epoxy PC 

batches 
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Figure 5.6 21 Day Compressive Strengths (comparison) 
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5.3 28 DAY COMPRESSIVE STRENGTH 

The results show the 28 day compressive strengths for all batches of 

polymer concrete. 

5.3.1 VINYLESTER PC 

 
(a) 

 

 (b) 
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(c) 

 

 

 

(d) 
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(e) 

 

 

(f)  

Figure 5.7 28 Day Compressive Strengths (Vinylester PC): (a)S57V43, (b)S57V40F3, 

(c)S57V30F13, (d)S57V22F21, (e)S57V20F23, (f)Comparison all vinylester PC 

batches 
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5.3.2 EPOXY PC 

 
(a)  

 

 

(b)  
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(c)  

 

 

 

(d)  
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(e) 

 

 

(f)  

Figure 5.8 28 Day Compressive Strengths (Epoxy PC): (a)S57E43, (b)S57E40F3, 

(c)S57E30F13, (d)S57E22F21, (e)S57E20F23, (f)Comparison all epoxy PC 

batch es 
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5.4 COMPRESSIVE STRENGTH COMPARISON 

 

 

Figure 5.9 28 Day Compressive Strengths (comparison) 
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Figure 5.10 Compressive strength comparisons for all batches 
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Figure 5.11 Compressive Strength vs Age (Vinylester PC) 
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] 

Figure 5.12 Compressive Strength vs Age (Epoxy PC) 
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5.5 MODULUS OF ELASTICITY 

The results show the modulus of elasticity for all batches of polymer 

concrete. 

5.5.1 S57V43 

 
(a) 

 

(b) 
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(c)  

 

 

(d)  

 

Figure 5.13 Stress-Strain Curves (S57V43) 
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Figure 5.14 Modulus of Elasticity (S57V43) 

5.5.2 S57V40F3 

Due to inconsistencies with data output, the modulus of elasticity could not 

be determined.  The data output recorded for analysis was not saved 

properly after each test and hence did not record the data properly. 

5.5.3 S57V30F13 

 
(a) 
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(b) 

 

 

 

(c)  
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(d)  

Figure 5.15 Stress-Strain Curves (S57V30F13) 

 

 

 

Figure 5.16 Modulus of Elasticity (S57V30F13) 



99 

 

5.5.4 S57V22F21 

 

 

(a) 

 

(b) 
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(c)  

 

 

 

(d)  

Figure 5.17 Stress-Strain Curves (S57V22F21) 



101 

 

 

Figure 5.18 Modulus of Elasticity (S57V22F21) 

5.5.5 S57V20F23 

 

 

(a) 
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(b) 

 

 

(c)  
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(d)  

 

Figure 5.19 Stress-Strain Curves (S57V20F23) 

 

 

 

Figure 5.20 Modulus of Elasticity (S57V20F23) 
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5.5.6 S57E43 

 
(a) 

 

 

(b) 
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(c)  

 

 

(d)  

Figure 5.21 Stress-Strain Curves (S57E43) 
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Figure 5.22 Modulus of Elasticity (S57E43) 

5.5.7 S57E40F3 

 
(a) 
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(b) 

 

 

(c)  
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(d)  

Figure 5.23 Stress-Strain Curves (S57E40F3) 

 

 

 

Figure 5.24 Modulus of Elasticity (S57E40F3) 
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5.5.8 S57E30F13 

 

 

(a) 

 

 

(b) 
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(c)  

 

 

 

(d)  
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(e)  

 

Figure 5.25 Stress-Strain Curves (S57E30F13) 

 

\ 

 

Figure 5.26 Modulus of Elasticity (S57E30F13) 
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5.5.9 S57E22F21 

 
(a) 

 

 

 

(b) 
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(c)  

 

 

 

 

(d)  

Figure 5.27 Stress-Strain Curves (S57E22F21) 
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Figure 5.28 Modulus of Elasticity (S57E22F21) 

5.5.10 S57E20F23 

 
(a) 

 



115 

 

 

(b) 

 

 

 

 

(c)  
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(d)  

 

 

(e)  

 

Figure 5.29 Stress-Strain Curves (S57E20F23) 
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Figure 5.30 Modulus of Elasticity (S57E20F23) 
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5.6 MODULUS OF ELASTICITY COMPARISON  

Figure 5.31 shows the averaged modulus of elasticity results plotted against 

a combination of % fly ash and % resin on the x-axis.  Figure 5.32 and 5.33 

shows optimized stress strain curves of each batch of polymer concrete 

which correspond to the average of all specimens tested for each batch.   

 

 

 

 

 

 

 

 

Figure 5.31 Modulus of Elasticity versus fly ash and resin 
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Figure 5.32 Stress-Strain Curves (Vinylester PC) 

 

 

Figure 5.33 Stress-Strain Curves (Epoxy PC) 
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Figure 5.34 Comparison of Stress-Strain Curves (Vinylester and Epoxy PC) 
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5.7 TENSILE STRENGTH 

The results show the split tensile strengths for all batches of polymer 

concrete. 

5.7.1 VINYLESTER PC 

 

 

Figure 5.35 Tensile Strength (S57V43) 

 

 

Figure 5.36 Tensile Strength (S57V40F3) 
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Figure 5.37 Tensile Strength (S57V30F13) 

 

 

 

 

Figure 5.38 Tensile Strength (S57V22F21) 
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Figure 5.39 Tensile Strength (S57V20F23) 

5.7.2 EPOXY PC 

 

 

 

Figure 5.40 Tensile Strength (S57E43) 
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Figure 5.41 Tensile Strength (S57E40F3) 

 

 

 

 

 

Figure 5.42 Tensile Strength (S57E30F13) 
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Figure 5.43 Tensile Strength (S57E22F21) 

 

 

 

 

 

 

Figure 5.44 Tensile Strength (S57E20F23) 
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5.8 TENSILE STRENGTH COMPARISON 

 

 

Figure 5.45 Tensile Strength Comparison 
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5.9 FLEXURAL MODULUS 

Due to inconsistencies with data output from the testing machine, the 

flexural modulus could not be determined. 
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6 DEVELOPING AN EQUATION FOR 
MODULUS OF ELASTICITY 

The development of an equation for the modulus of elasticity is presented for 

both vinylester and epoxy polymer concrete.  It was required that 

mathematical models be developed to separately fit both trends of data 

represented in figure 5.31.  It was decided that a polynomial curve fitting 

technique be employed to achieve this (James, 2007). 

 

Polynomial curve fitting involves finding n roots of polynomial of order j.  A 

second order polynomial was chosen for vinylester and epoxy data and thus 

required finding 3 roots, represented thus-: 

 

 

       (6.1) 

 

 

where  A, B and C are roots 

 F is volume percentage of fly ash ≤ 23% 

 

 

where 

 

       (6.2) 

 

        (6.3) 
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However due to workability issues, 

% 

 

thus, 

        (6.4) 

 

Using the data points from figure 5.31 and Microsoft Excel® software, roots 

A, B and C were determined as shown in table 6.1: 

 

Root Vinylester Epoxy 

A -0.0247 0.0188 

B 1.5781 -0.0219 

C 28.6000 45.6640 

 

Table 6.1 Polynomial roots for equation 6.1 

 

Inputting the values from table 6.1 into (6.1), the following equations were 

derived: 

 

For vinylester polymer concrete: 

     (6.5) 

 

For epoxy polymer concrete: 

    (6.6) 
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Using (6.5) and (6.6) where fly ash volume percentage is within the limits of 

0% ≤ F ≤ 23%, the elastic modulii were plotted against the experimental data 

as shown in figure 6.1. 

 

 

Figure 6.1 Experimental versus analytical (Modulus of elasticity) 

 

 

Vinylester PC Epoxy PC 
% Resin % FA 

Experimental Analytical % Diff. Experimental Analytical % Diff. 

43 0 45.66 45.34 -0.71 28.50 28.60 0.35 

40 3 45.77 47.27 3.18 33.30 33.11 -0.57 

30 13 48.56 52.55 7.60 44.70 44.94 0.54 

22 21 53.49 55.51 3.63 51.30 50.85 -0.89 

20 23 55.11 56.07 1.72 51.50 51.83 0.64 

 

Table 6.2 Experimental versus analytical variation 
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7 SUMMARY 

7.1 COMPRESSIVE STRENGTH 

Tables 7.1, 7.2 and 7.3 summarise the compressive strength results 

presented in section 5 for all batches at 7, 21 and 28 days respectively. 

 

7 day Resin FA Vinylester PC 
% 

Difference 
(V & E) 

Epoxy PC 

7 43 0 105.84 -33% 71.37 
7 40 3 105.34 -31% 72.85 
7 30 13 83.61 -13% 72.81 
7 22 21 84.19 -9% 76.31 
7 20 23 75.01 7% 80.48 

 

Table 7.1 Summary of 7 day compressive results 

 

For 7 day, the results show that there is a decrease in compressive strength 

for mix designs where fly ash content is less than 21% when comparing a 

corresponding batch for vinylester and epoxy polymer concrete.   

 

A difference of 33% decrease from vinylester to epoxy polymer concrete is 

evident when fly ash content is zero, whereas an increase of 7% 

compressive strength is evident at maximum fly ash content of 23%.  

 

This trend shows that vinylester polymer concrete at 7 days exhibits greater 

compressive strength than epoxy polymer concrete when the resin content is 

increased and fly ash decreased. 
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21 
day Resin FA Vinylester PC 

% 
Difference 

(V & E) 
Epoxy PC 

21 43 0 109.07 -29% 77.60 
21 40 3 97.76 -14% 83.88 
21 30 13 95.70 -9% 87.31 
21 22 21 95.76 -8% 87.85 
21 20 23 82.25 13% 93.22 

 

Table 7.2 Summary of 14 day compressive results 

 

 

Similarly for 21 days, the results show that there is a decrease in 

compressive strength for mix designs where fly ash content is less than 21% 

when comparing a corresponding batch for vinylester and epoxy polymer 

concrete.   

 

A difference of 29% decrease from vinylester to epoxy polymer concrete is 

evident when fly ash content is zero, whereas an increase of 13% 

compressive strength is evident at maximum fly ash content of 23%.  This 

equates to an increase of approximately 3.5MPa and 7.5MPa at F=0.  An 

increase of approximately 7.2MPa and 13MPa is evident at F=23 for 

vinylester and epoxy polymer concrete respectively. 

 

This trend also shows that vinylester polymer concrete at 21 days exhibits 

greater compressive strength than epoxy polymer concrete when the resin 

content is increased and fly ash decreased.   

 

These results also show that when the age of the concrete increases, the 

percentage increase in strength for epoxy polymer concrete is greater than 

that for vinylester polymer concrete.  For example, the increase in strength 
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over a 14 day period for vinylester and epoxy polymer concrete is 2.96% and 

8.03% respectively when fly ash content equals zero. 

 

Its also interesting to note that there is a 7.58 MPa decrease for vinylester 

polymer concrete S57V40F3 between 7 days and 21 days.  This may be due 

to an inconsistency of testing data of this batch which was tested separately 

to all other batches. 

 

28 
day Resin FA Vinylester PC 

% 
Difference 

(V & E) 
Epoxy PC 

28 43 0 113.84 -19% 91.97 
28 40 3 100.85 -8% 92.92 
28 30 13 98.22 -5% 92.85 
28 22 21 94.98 8% 102.91 
28 20 23 93.48 10% 102.95 

 

Table 7.3 Summary of 28 day compressive results 

 

For 28 days, the results show that there is a decrease in compressive 

strength for mix designs where fly ash content is less than approximately 

15% when comparing a corresponding batch for vinylester and epoxy 

polymer concrete.   

 

A difference of 19% decrease from vinylester to epoxy polymer concrete is 

evident when fly ash content is zero, whereas an increase of 8% and 10% 

compressive strength is evident at fly ash contents of 21% and 23% 

respectively.  This equates to an increase of approximately 4MPa and 

13MPa at F=0.  An increase of approximately 11MPa and 10MPa is evident 

at F=23 for vinylester and epoxy polymer concrete respectively. 
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This trend shows that vinylester polymer concrete at 28 days exhibits greater 

compressive strength than epoxy polymer concrete when the resin content is 

increased and fly ash decreased.   

 

These results also show that when the age of the concrete increases, the 

percentage increase in strength for epoxy polymer concrete is greater than 

that for vinylester polymer concrete.  For example, the increase in strength 

over a 7 day period for vinylester and epoxy polymer concrete is 15.62% and 

4.19% respectively when fly ash content equals zero. 

 

 

7 days 21 days 28 days 

PC 
F=0 F=23 

% 
Diff 

F=0 F=23 
% 

Diff 
F=0 F=23 

% 
Diff 

Vinyl 105 75 -29 109 82 -25 114 93 -18 

Epoxy 71 80 13 79 83 5 92 103 12 
 

Table 7.4 Summary of compressive results between F=0 and F=23 

 

Table 7.4 shows the percentage differences of compressive strengths of 

vinylester and epoxy polymer concrete between minimum and maximum fly 

ash contents. 

 

In summary, a maximum compressive strength of 114 MPa was showcased 

for vinylester polymer concrete which was at F=0.  A maximum compressive 

strength of 103 MPa was showcased for epoxy polymer concrete which was 

at F=23.  The 28 day compressive strength point of intersection as shown on 

figure 5.10 for vinylester and epoxy polymer concrete is at a mix design of 
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approximately S57R27F16, where the compressive strength is 

approximately 97MPa.  

7.2 MODULUS OF ELASTICITY 

For vinylester polymer concrete, the results show that there is a slight 

increase in elastic modulus between 0 – 13% fly ash, then a sudden 

increase from approximately 47GPa to 57GPa up to 21% fly ash and finally 

reduces to approximately 55GPa at maximum fly ash content.   

 

For epoxy polymer concrete, the results show that there is a curvilinear 

increase in elastic modulus between 0 – 23% fly ash, corresponding to an 

increase from approximately 29GPa up to 51GPa.   

 

Both polymer concrete types show an increase in elastic modulus when 

increasing the fly ash content and reducing the resin content.  In 

comparison, vinylester showcases a higher elastic modulus for all mix 

designs, however shows a smaller total increase between 0 – 23% fly ash.   

 

Vinylester exhibits a 17.54% total increase in elastic modulus whilst epoxy 

exhibits a 43.13% total increase which in comparison is 2.46 times greater 

than vinylester. 

 

The stress strain curves in figures 5.32 and 5.33 highlight the fact that as the 

fly ash content decreases and subsequently resin content increases, the 

elastic moduli decreases.  This suggests that the mechanical properties of 

the resin in both polymer concrete types allows the concrete to deform in a 

ductile manner without sudden failure, hence the more resin the more ductile 

the concrete.   
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This is also evident in that the strain rate is greater when the resin content is 

increased.  The curves for both polymer concrete types also show that the 

stress strain ratio decreases as the resin content increases meaning that the 

concrete can better withstand load over larger deformations.  This again 

reinforces the fact that an increase in resin content allows the concrete to act 

in a more ductile manner.  Batches S57E40F3 and S57E43 (low fly ash 

content) in particular showcase a very low stress strain ratio and during 

testing did not fail, but rather showed typical 45o shear planes.  

7.3 TENSILE STRENGTH 

The split tensile strengths for vinylester and epoxy polymer concretes are 

very similar.  Referring to figure 5.45, both concrete types show a decrease 

in split tensile strength when fly ash is increased and subsequently resin is 

decreased.   

 

The maximum tensile strength for vinylester polymer concrete is 

approximately 15.2MPa and decreases to approximately 10.8MPa, equating 

to a decrease of 28.95%.  The maximum tensile strength for epoxy polymer 

concrete is approximately 14.8MPa and decreases to approximately 

12.5MPa, equating to a decrease of 15.54%. 

 

Resin FA Vinylester PC % Difference (V & E) Epoxy PC 

43 0 15.20 -3% 14.80 
40 3 15.20 -7% 14.10 
30 13 14.00 -4% 13.50 
22 21 11.95 4% 12.40 
20 23 10.80 16% 12.50 

 

Table 7.5 Summary of tensile strength results between F=0 and F=23 
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Similar to the behaviour of the compressive strength for both concrete types, 

epoxy polymer concrete shows a greater tensile strength than that for 

vinylester polymer concrete with an increase in fly ash as can be seen in 

table 7.5.  The split tensile strength point of intersection as shown on figure 

5.45 for vinylester and epoxy polymer concrete is at a mix design of 

approximately S57R26.5F16.5, where the split tensile strength is 

approximately 12.8MPa. 

 

Table 7.6 shows a comparison of the tensile and compressive strengths for 

all batches of polymer concrete at 7 days.  The results show for vinylester 

polymer concrete that the tensile strength is constant at approximately 

14.5% of its corresponding compressive strength.  The 16.75% for batch 

S57V30F13 is high due to the low corresponding compressive strength 

value.  The tensile strength of 14MPa at S57V30F13 appears to be 

consistent with respect to other batches of concrete.  The results show for 

epoxy polymer concrete that the tensile strength relative to its corresponding 

compressive strength gradually increases as the fly ash content decreases.  

Values of between 15% - 21% are evident for epoxy polymer concrete. 

 

Vinylester PC Epoxy PC 
Resin FA 

f'c (MPa) f'ct.sp (MPa) f'ct.sp/f'c 
(%) f'c (MPa) f'ct.sp (MPa) f'ct.sp/f'c 

(%) 
43 0 105.84 15.20 14.36% 71.37 14.80 20.74% 

40 3 105.34 15.20 14.43% 72.85 14.10 19.36% 

30 13 83.61 14.00 16.75% 72.81 13.50 18.54% 

22 21 84.19 11.95 14.19% 76.31 12.40 16.25% 

20 23 75.01 10.80 14.40% 80.48 12.50 15.53% 

 

Table 7.6 Summary of tensile strength results between F=0 and F=23 
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8 CONCLUSION  

In conclusion, the behaviour and mechanical properties of filler materials 

including vinylester and epoxy polymer concrete have been determined and 

found to be excellent.  Both vinylester and epoxy polymer concretes 

exhibited excellent mechanical properties with respect to traditional cement 

based concrete, where compressive strengths up around 100MPa were 

showcased.  Typically, traditional cement based concrete exhibits 

compressive strengths of around 30-40MPa, less than half that of strengths 

offered by polymer concrete.  The modulus of elasticity for vinylester and 

epoxy polymer concrete exhibited values of up to between 50 - 57GPa, 

almost twice that of traditional cement based concrete.  Tensile strengths 

between 10-15MPa were commonly seen for both polymer concrete types, 

3-5 times that of traditional cement based concrete.  Unfortunately, the 

flexural modulus was unable to be determined due to problems with data 

output. 

 

With a combination of excellent mechanical properties, low water absorption, 

ability to withstand environmental conditions, chemical attack and freeze-

thaw degradation and ability to adhere to other materials, polymer concrete 

with a mix designs of sand, fly ash and resin provides an excellent material 

for many structural engineering applications including timber pile 

rehabilitation. 

 

Further work required to determine the materials’ suitability for infilling fibre 

composite tubes includes the following: 

 

ü Bonding strength between the interface of FRP and pile 

ü Underwater application 

ü Shrinkage 
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Ø Properties 

Ø Behaviours 

Ø Applications 

 

2. Research current and traditional methods of timber bridge pile 

rehabilitation 

 

3. Test epoxy and vinylester polymer concrete with different proportions of 

resin, fly ash and sand at different ratios for compressive strengths at     

7, 21 and 28 days 

 

4. Test epoxy and vinylester polymer concrete with different proportions of 

resin, fly ash and sand at different ratios for tensile strengths at 7 days 

 

5. Test epoxy and vinylester polymer concrete with different proportions of 

resin, fly ash and sand at different ratios for flexural modulus at 7 days 

 

6. Undertake a 7 day modulus of elasticity analysis on all composite mix 

design ratios and propose an equation for the modulus of elasticity of 

epoxy and vinylester polymer concrete 

 

7. Compare compressive strength, tensile strength, flexural modulus and 

modulus of elasticity results of epoxy, vinylester and polyester polymer 

concrete 
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11 APPENDIX B - GEOMETRICAL SPECIMEN 
DATA 

 

ID  Batch L           
(mm) 

D1       
(mm) 

D2        
(mm) 

Dav        
(mm) 

Area         
(mm2) 

Load       
(kN) 

Age         
(days) 

1 S57V43 104.40 51.88 51.90 51.89 2114.74 230.28 7 

2 S57V43 100.81 51.96 51.89 51.93 2117.59 220.98 7 

3 S57V43 100.62 52.03 52.01 52.02 2125.35 221.58 7 

4 S57V40F3 91.53 52.25 52.70 52.48 2162.69 226.06 7 

5 S57V40F3 92.71 52.26 52.76 52.51 2165.58 229.62 7 

6 S57V40F3 91.35 52.28 52.26 52.27 2145.83 233.93 7 

7 S57V40F3 92.37 52.33 52.35 52.34 2151.58 215.37 7 

8 S57V40F3 89.48 52.19 52.23 52.21 2140.90 229.13 7 

9 S57V30F13 52.16 52.26 52.21 52.24 2140.90 176.97 7 

10 S57V30F13 52.44 51.77 52.11 51.94 2132.30 173.98 7 

11 S57V30F13 101.45 52.42 52.10 52.26 2145.01 182.78 7 

12 S57V30F13 102.80 52.36 52.61 52.49 2163.52 181.37 7 

13 S57V30F13 99.96 52.63 52.09 52.36 2153.22 182.46 7 

14 S57V22F21 108.64 52.53 52.12 52.33 2150.35 187.33 7 

15 S57V22F21 104.21 52.91 52.18 52.55 2168.47 189.71 7 

16 S57V22F21 102.62 52.35 52.15 52.25 2144.19 177.04 7 

17 S57V22F21 99.69 52.77 52.07 52.42 2158.16 171.80 7 

18 S57V22F21 100.30 52.08 51.82 51.95 2119.63 209.50 7 

19 S57V20F23 100.27 52.26 52.60 52.43 2158.98 119.63 7 
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20 S57V20F23 104.02 52.90 52.21 52.56 2169.29 158.79 7 

21 S57V20F23 102.89 52.94 52.31 52.63 2175.07 160.42 7 

22 S57V20F23 100.87 52.27 51.90 52.09 2130.67 164.18 7 

23 S57V20F23 101.11 52.34 51.92 52.13 2134.35 162.31 7 
 

Table 10.1 7 day Compressive specimen data (Vinylester PC) 

 

 

ID Batch L           
(mm) 

D1       
(mm) 

D2        
(mm) 

Dav        
(mm) 

Area         
(mm2) 

Load       
(kN) 

Age         
(days) 

15 S57E43 104.80 52.71 52.59 52.65 2177.14 159.79 7 

16 S57E43 102.90 52.73 52.57 52.65 2177.14 151.40 7 

17 S57E43 103.80 53.08 52.53 52.81 2189.98 155.85 7 

18 S57E40F3 102.67 52.83 52.43 52.63 2175.49 162.57 7 

19 S57E40F3 98.28 53.11 52.53 52.82 2191.22 160.25 7 

20 S57E40F3 103.93 52.60 52.81 52.71 2181.69 154.19 7 

21 S57E30F13 103.21 52.84 52.47 52.66 2177.55 101.33 7 

22 S57E30F13 103.41 52.85 52.46 52.66 2177.55 159.48 7 

23 S57E30F13 103.33 52.95 52.47 52.71 2182.11 156.02 7 

24 S57E30F13 102.44 53.10 52.50 52.80 2189.56 161.34 7 

25 S57E22F21 102.35 53.18 52.44 52.81 2190.39 174.22 7 

26 S57E22F21 102.49 52.63 52.47 52.55 2168.88 160.85 7 

27 S57E22F21 104.81 52.75 52.49 52.62 2174.66 163.58 7 

28 S57E20F23 108.79 52.42 53.19 52.81 2189.98 170.22 7 

29 S57E20F23 97.01 53.10 52.53 52.82 2190.81 182.36 7 
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30 S57E20F23 104.30 52.71 52.56 52.64 2175.90 126.17 7 

31 S57E20F23 103.02 52.93 52.50 52.72 2182.52 148.33 7 
 

Table 10.2 7 day Compressive specimen data (Epoxy PC) 

 

ID Batch L           
(mm) 

D1       
(mm) 

D2        
(mm) 

Dav        
(mm) 

Area         
(mm2) 

Load       
(kN) 

Age         
(days) 

32 S57V43 97.69 52.60 52.16 52.38 2154.87 237.00 21 

33 S57V43 91.35 52.40 52.30 52.61 2173.83 235.13 21 

34 S57V40F3 98.61 52.23 52.24 52.24 2142.96 211.56 21 

35 S57V40F3 97.50 52.54 52.37 52.46 2161.04 209.20 21 

36 S57V30F13 94.51 52.53 52.19 52.36 2153.22 202.84 21 

37 S57V30F13 99.39 52.15 52.62 52.39 2155.28 209.50 21 

38 S57V22F21 102.75 52.79 52.17 52.48 2163.10 212.41 21 

39 S57V22F21 102.63 52.37 52.22 52.30 2147.88 200.45 21 

40 S57V20F23 97.16 52.88 52.28 52.58 2171.36 185.12 21 

41 S57V20F23 99.77 52.85 52.33 52.59 2172.18 172.15 21 

 

Table 10.3 21 day Compressive specimen data (Vinylester PC) 

 

ID Batch L           
(mm) 

D1       
(mm) 

D2        
(mm) 

Dav        
(mm) 

Area         
(mm2) 

Load       
(kN) 

Age         
(days) 

42 S57E43 105.74 52.86 52.55 52.71 2181.69 165.28 21 

43 S57E43 105.01 52.96 52.63 52.80 2189.15 173.89 21 

44 S57E40F3 105.01 52.91 52.45 52.68 2179.62 182.62 21 
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45 S57E40F3 105.16 52.57 53.10 52.84 2192.47 184.09 21 

46 S57E30F13 108.30 52.41 52.92 52.67 2178.38 190.20 21 

47 S57E22F21 102.43 52.47 52.96 52.72 2182.52 182.60 21 

48 S57E22F21 102.78 52.53 52.08 52.31 2148.70 197.75 21 

49 S57E20F23 102.70 53.13 52.57 52.85 2193.71 204.49 21 
 

Table 10.4 21 day Compressive specimen data (Epoxy PC) 

 

ID  Batch L           
(mm) 

D1       
(mm) 

D2        
(mm) 

Dav        
(mm) 

Area         
(mm2) 

Load       
(kN) 

Age         
(days) 

50 S57V43 99.93 52.36 52.13 52.25 2143.78 244.25 28 

51 S57V43 103.24 52.73 52.09 52.41 2157.34 242.41 28 

52 S57V43 101.01 52.48 52.09 52.29 2147.06 247.37 28 

53 S57V40F3 94.27 52.12 52.15 52.14 2134.76 216.63 28 

54 S57V40F3 96.84 52.02 52.13 52.08 2129.85 212.99 28 

55 S57V40F3 96.63 52.1 52.31 52.21 2140.49 216.36 28 

56 S57V30F13 106.35 52.69 52.3 52.50 2164.34 216.40 28 

57 S57V30F13 105.87 52.13 52.63 52.38 2154.87 214.47 28 

58 S57V30F13 106.02 52.71 52.18 52.45 2160.22 205.55 28 

59 S57V22F21 107.34 52.79 52.26 52.53 2166.82 212.77 28 

60 S57V22F21 107.90 52.87 52.17 52.52 2166.40 197.69 28 

61 S57V22F21 107.62 52.88 52.17 52.53 2166.82 206.91 28 

62 S57V20F23 106.35 52.31 52.67 52.49 2163.93 204.35 28 

63 S57V20F23 107.12 52.79 52.22 52.51 2165.17 201.83 28 
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64 S57V20F23 107.34 53.06 52.17 52.62 2174.25 201.77 28 

 

Table 10.5 28 day Compressive specimen data (Vinylester PC) 

 

 

 

ID Batch L           
(mm) 

D1       
(mm) 

D2        
(mm) 

Dav        
(mm) 

Area         
(mm2) 

Load       
(kN) 

Age         
(days) 

65 S57E43 104.77 53.14 52.58 52.86 2194.54 199.63 28 

66 S57E43 105.07 52.56 52.69 52.63 2175.07 200.40 28 

67 S57E43 104.79 52.46 52.13 52.30 2147.88 199.31 28 

68 S57E40F3 105.73 52.93 52.49 52.71 2182.11 199.23 28 

69 S57E40F3 105.62 52.59 52.93 52.76 2186.25 197.89 28 

70 S57E40F3 105.08 52.52 52.89 52.71 2181.69 211.49 28 

71 S57E30F13 107.42 53.00 52.41 52.71 2181.69 204.35 28 

72 S57E30F13 106.51 52.86 52.42 52.64 2176.31 201.83 28 

73 S57E30F13 106.19 53.15 52.45 52.80 2189.56 201.77 28 

74 S57E22F21 107.93 52.80 52.46 52.63 2175.49 217.12 28 

75 S57E22F21 102.25 53.11 52.51 52.81 2190.39 228.58 28 

76 S57E22F21 107.26 52.69 52.47 52.81 2190.39 229.02 28 

77 S57E20F23 106.99 52.44 53.08 52.76 2186.25 228.20 28 

78 S57E20F23 107.34 52.51 52.97 52.74 2184.59 223.47 28 

79 S57E20F23 107.24 52.43 53.06 52.75 2185.01 223.28 28 
 

Table 10.6 28 day Compressive specimen data (Epoxy PC) 
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Batch L      
(mm) 

D1       
(mm) 

 D2 
(mm) 

Dav  
(mm) 

Load  
(kN) 

Age       
(Days) 

S57V43 94.45 52.43 52.15 52.29 112.8 7 

S57V43 88.99 52.31 52.12 52.22 113.8 7 

S57V43 99.20 52.09 52.37 52.23 129.1 7 

V40F3 98.86 52.23 52.31 52.27 124.0 7 

V40F3 97.13 52.09 52.12 52.11 137.8 7 

V40F3 98.77 52.18 52.04 52.11 124.4 7 

S57V30F13 98.47 52.46 52.07 52.27 56.2 7 

S57V30F13 103.01 52.09 52.51 52.30 122.1 7 

S57V30F13 102.97 52.67 52.07 52.37 115.1 7 

S57V22F21 108.37 52.68 52.15 52.42 113.7 7 

S57V22F21 108.82 52.72 52.21 52.47 110.1 7 

S57V22F21 104.44 52.74 52.17 52.46 91.5 7 

S57V20F23 103.00 52.29 53.38 52.84 49.1 7 

S57V20F23 100.29 52.68 52.19 52.44 86.8 7 

S57V20F23 101.69 52.30 52.76 52.53 91.0 7 

 

Table 10.7 Tensile specimen data (Vinylester PC) 
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Batch L      
(mm) 

D1       
(mm) 

 D2 
(mm) 

Dav  
(mm) 

Load  
(kN) 

Age      
(Days) 

S57E43 97.69 53.34 52.58 52.96 123.8 7 

S57E43 94.35 52.79 52.55 52.67 111.5 7 

S57E43 102.57 53.09 52.57 52.83 123.2 7 

S57E40F3 101.85 53.13 52.56 52.85 128.7 7 

S57E40F3 96.40 52.77 52.43 52.60 117.1 7 

S57E40F3 103.18 52.86 52.46 52.66 110.5 7 

S57E30F13 104.02 53.13 52.48 52.81 108.9 7 

S57E30F13 103.40 52.80 52.46 52.63 123.0 7 

S57E30F13 104.10 53.09 52.46 52.78 85.1 7 

S57E22F21 102.33 52.77 52.42 52.60 101.7 7 

S57E22F21 102.65 53.13 52.22 52.68 107.5 7 

S57E22F21 104.34 52.49 53.01 52.75 85.9 7 

S57E20F23 103.91 52.77 52.45 52.61 98.9 7 

S57E20F23 104.00 52.79 52.42 52.61 100.5 7 

S57E20F23 109.42 52.99 52.51 52.75 128.6 7 

 

Table 10.8 Tensile specimen data (Epoxy PC) 


