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Abstract 

Much flood destruction is due to humans’ desire to live near water. Accordingly, there 

is a need for accurate flood extent maps, so that we may be prepared for repeat flood 

events. The advent of the internet, coupled with the proliferation of GPS and camera-

equipped mobile devices has led to a marked increase in the production of volunteered 

information. Flood extent mapping may benefit from additional sources of data, which 

could be provided by these devices. 

 

This project developed the mapping of flood extents from volunteered photography and 

other available data. The specific objectives were to:  

 

 Research existing flood extent creation methods. 

 Collect private media featuring the 2011 Brisbane flood high-water mark. 

 Collect a topography Digital Elevation Model (DEM) of the target area. 

 Create a series of 3D points from the high-water marks. 

 Process collected points to create a TIN model; intersect this with topography 

TIN model to arrive at extent map. 

 Compare and document produced extent map to that released by the Surveying 

and Spatial Sciences Institute (SSSI). 

 

The online photography site flickr provided the majority of the flood imagery. Most of 

these marks were able to be collected using RTK GPS. Two topography models were 

obtained, and three Triangulated Irregular Network (TIN) models created from the 

collected points. A total of five extent maps were created. This study concluded that 

volunteered photographs were well suited as a source of additional data to create a flood 

extent map. It also found that the accuracy of the produced extent map is greatly 

influenced by the accuracy of the topography DEM used. For best results, the 

topography DEM should be at least as accurate as the collected data. Advances in 

photogrammetry software or mobile device-based GPS may greatly automate the 

collection of flood levels in the future. 
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Chapter 1 Introduction 

1.1 Project Background 

Floods are one of the most destructive natural disasters that threaten us. In recent 

decades, they have claimed more lives, destroyed more houses, and ruined more fertile 

land than any other natural hazard (Rodda & Crichton 2011). Many areas on Earth are 

vulnerable to flooding – anywhere that rain falls is potentially at risk, although rain is 

not the only cause of floods. 

Flooding occurs when water overflows or covers land that is usually dry (National 

Geographic 2011). There are a number of ways this can happen. The most common 

cause is excessive rain resulting in rivers or streams overflowing their banks. Coastal 

flooding occurs due to large storms or tsunamis causing the sea to rush inland (National 

Geographic 2011). 

A flood is classified according to its likelihood of occurring in a particular time period. 

Of particular interest are once in one hundred-year floods, as these are typically 

extremely large, destructive events. Statistically, these floods are expected to happen 

only once per century. In reality however, there is a 1% chance of them occurring in any 

given year. Recently, floods of this magnitude have been happening worldwide with 

concerning regularity (National Geographic 2011). 

Much flood destruction is as a result of humans’ desire to live near water – river valleys 

and coastal areas are often picturesque. As a result, there is an increasing need for 

accurate flood modelling and flood extent mapping for past flood events, so we may be 

prepared for future events. Presently, flood extent maps are created by analysing three 

sources of data: optical, radar, or river gauge. Optical data includes aerial photography 

and satellite imagery, on which the flood extent can be seen. Synthetic Aperture Radar 

uses satellite-mounted radar to distinguish between flooded and dry areas. River gauge 

water level data can be used to ‘flood’ a topography model to determine flood extent. 

With the advent of the internet, and in particular the widespread use of GPS-enabled 

mobile devices capable of taking photos, there has been a marked increase in the 

amount of volunteered information being produced. This presents a unique potential 
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source of data to create a flood extent map. Photos containing the high water mark could 

be used to create a flood model, and by extension an extent map. 

1.2 Project Aims and Objectives 

1.2.1 Project Aims 

This dissertation aims to develop the mapping of flood extents from volunteered 

photography and other available data. Using the photographic information and river 

gauge water levels, three flood surface models will be created.  A series of flood extent 

maps will be produced by intersecting the flood surface models with a topography 

model. These will then be compared to the official flood extent map produced by the 

Surveying & Spatial Sciences Institute (SSSI), and the results documented. 

 

1.2.2 Project Objectives 

The project’s objectives are as follows: 

(i) Research the methods of establishing flood extents including hydrological 

modelling and other techniques. 

(ii) Collect geo-referenced private media that features the flood high-water mark. 

(iii) Undertake appropriate fieldwork to connect each high-water mark to the 

Australian Height Datum (AHD) to create a series of 3D points. 

(iv) Collect topography Digital Elevation Model (DEM) of target area. 

(v) Process the series of points to create three Triangulated Irregular Network 

(TIN) models of flood surface and intersect these with topography DEM to 

arrive at flood extent maps. 

(vi) Compare and document the produced flood extent maps against that 

established officially by SSSI. 
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1.3 Scope of the Project 

This project does not set out to offer an alternate method of creating a flood extent map. 

Instead, it aims to assess the suitability of volunteered photographic information as a 

data source for an existing method. The methodology employed during the project is 

resource-inefficient relative to existing data-collection methods. Using river gauge data 

to ‘flood’ a topography model requires only the model, and river gauge water levels. 

The Floodwarn river height stations in Queensland provide water levels automatically 

on a regular basis. This project collects volunteered geo-referenced photos (photos taken 

from a known location, either due to metadata, or user-supplied captions), and uses GPS 

to derive a water level for each photo. It is conceivable that advances in online 

mosaicing software could automate collection and processing of volunteered 

information for this purpose. 

 

1.4 Justification 

Hingray et al. (2000) state that worldwide, urbanisation is a growing trend, therefore 

urban flood hazards are occurring increasingly frequently. Consequently, there is a need 

for accurate flood models and extent maps, such that cities can be prepared for flood 

events. The present data sources and methods of creating extent maps have a number of 

limitations. Optical data must be collected in daylight, and satellite-based images can 

only be collected whilst a satellite is overhead – this may not coincide with the peak of 

the flood. Synthetic Aperture Radar (SAR) is a side-mounted microwave radar satellite-

mounted system that precisely measures phase and Doppler shift. This allows creation 

of a synthetic aperture equivalent to the distance the antenna moves while a particular 

location remains in the beam (McCandless & Jackson n.d.). SAR also suffers the revisit 

time limitation, as well as being considerably more expensive than optical data. The 

third common data source/method - using a combination of topography Digital 

Elevation Models (DEMs) and river gauge tide data suffers from limited data. 

Volunteered photographic information could provide this last method with much more 

data. It is conceivable that software could be developed to automate the majority of the 

process. This project will assess the suitability of using this volunteered information in 

such a process. 
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The 3D coordinates collected during this project could be used to calibrate any future 

studies that apply a flood model to the January 2011 Brisbane flood. The project will 

also demonstrate a new application for volunteered information. 

 

1.5  Chapter Summary 

This project assesses how suitable volunteered photographic information is as input data 

to create a flood extent map. Present data sources for producing flood extent maps are 

limited; volunteered photographs may prove ideal to supplement existing sources for 

one method of extent map creation.  

The subsequent chapter is a literature review that examines the existing knowledge 

relevant to the areas of study for this paper. Key focus topics are: flood model 

validation and calibration, Digital Terrain Model (DTM) sources, methods for creating 

flood extent maps, and current sources/uses of volunteered information. This review 

will provide the necessary knowledge base for the study of volunteered photographic 

information as a data source to create a flood extent map. 
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Chapter 2 Literature Review 

2.1 History of Flooding in Queensland 

Most of the major floods in Queensland occur in summer or early autumn due to 

tropical cyclones or intense monsoonal depressions (Bureau of Meteorology n.d.). 

These systems are capable of producing extreme quantities of rainfall in short periods of 

time. At Bellenden Ker in North Queensland, tropical cyclone “Peter” caused 1,947mm 

of rain in January 1979 during a 48 hour period. In 1999 cyclone “Rona” produced 

1,870mm in 48 hours at the same location (Bureau of Meteorology n.d.).  

Prior to 1860 three major floods were reported for the Brisbane/Ipswich regions, with 

the January 1841 flood having the highest recorded level of 8.43m at Brisbane (Bureau 

of Meteorology 2010a). A further five major floods inundated Brisbane and Ipswich 

between 1885 and 1900. In 1891 the Brisbane River peaked at 8.3m, and the Bremer 

River at 24.5m – its highest recorded level (Centre for the Government of Queensland 

n.d.). The Bremer River experienced an additional nine major floods between 1900 and 

1972. It was not until 1974 however, that Brisbane and Bremer Rivers flooded to 5.45m 

and 20.7m respectively – the highest levels since 1893 (Bureau of Meteorology 

2010b,c). A summary of these flood levels can be found in Figure 2.1 below. 

 

Figure 2.1: Highest Annual Flood Peaks, Brisbane River at City Gauge (BoM 2011b, p. 4) 
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A couple of photos from the 1974 floods are featured in Figures 2.2-2.3 below. 

 

Figure 2.2: Brisbane City, Monday 28 January 1974 (Sunday Mail 1974) 

 

 

Figure 2.3: University of Queensland, St Lucia, January 1974 (John Oxley Library 1974) 



7 

 

 

2.2 Early Warning Systems 

“An early warning system is a set of procedures designed to protect human lives and 

minimise damages to be expected from a flood which exceeds a certain critical level” 

(Plate 2007). It is made up of a series of related and connected parts: forecasting, 

turning the forecast into a warning, transmission of the warning to the threatened 

population, and conversion of the warning into remedial action (UN/ISDR 2004). 

Floods can be forecast because of the lag between rainfall and transformed flow (which 

is sensitive to the size of the basin), if the river flow at some point is known in 

conjunction with a hydrologic model (Hossain & Katiyar 2006). Once an extreme event 

is forecast, a warning must be generated. This must be in a format appropriate for the 

threatened population. Once generated, the warning needs to be transmitted in a manner 

that reaches the target audience. The duly alerted population should then take the 

necessary remedial action. 

The Queensland flood warning network derives its data from a series of rainfall and 

river height stations (Bureau of Meteorology 2011a). There are two types of rainfall 

station in use by the Bureau of Meteorology (BoM): Floodwarn and Daily Reporting. 

The Floodwarn rainfall stations are automated systems designed specifically for flood 

warning purposes. They are classified either ‘manual’, reporting every 25 or 50mm of 

rainfall, or ‘automatic’, reporting every 1mm of rainfall. Daily reporting rainfall stations 

consist of manual and automatic stations that report the rainfall received in a 24 hour 

period to 9am each day (Bureau of Meteorology 2011a). Finally, Floodwarn river height 

stations have both manual and automatic varieties. They report river levels whenever 

the water reaches a threshold height, and at regular intervals thereafter.  

The Bureau of Meteorology’s Flood Warning Centre receives the data provided by these 

stations, and uses it in hydraulic models to produce river height predictions (Bureau of 

Meteorology 2010b). In the event of an expected flood, the Flood Warning Centre 

issues warnings to radio stations, Councils, emergency services and various other 

agencies involved in flood response activities (Bureau of Meteorology 2010b). This 

enables threatened persons to take appropriate action and minimise risk and hazard. 
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2.3 Types of Flooding 

A flood is ‘the temporary covering by water of land not normally covered by water’ 

(EU Floods Directive 2007, p. 29). Various flood types include: flash floods, coastal 

floods, urban floods, river floods and pluvial floods. A flash flood is “a flood that rises 

and falls quite rapidly with little or no advance warning, usually as the result of intense 

rainfall over a relatively small area” (American Meteorological Society 2000). A coastal 

flood occurs when the coast is flooded by the sea. This is usually caused by severe 

storms whose wind creates high waves (FLOODsite Consortium 2008). Urban areas can 

be inundated by flash floods, coastal floods, or river floods, however urban flooding is 

also a specific flood type. It occurs when high intensity rainfall causes drainage and 

sewerage systems to overflow. Pluvial floods are also referred to as ponding. Merriam-

Webster (2011) defines pluvial as ‘resulting from the action of rain’. A pluvial flood 

therefore, occurs when more rainwater enters a water system than can be managed and 

controlled. They are similar to urban floods, but without the sewage systems, and in 

more rural areas (FLOODsite Consortium 2008). ‘Riverine flooding occurs when heavy 

rainfall causes relatively high water levels in rivers or creeks to overtop the banks’ 

(Northern Territory Government 2007). The primary focus of this study relates to 

riverine flooding in urban areas. 

 

2.4 Urban Flood Modelling 

There has been a significant amount of research done towards the creation of flood 

models, and associated topics. Much of the work between 1999 and 2005 focused on 

creating models that were tested in rural areas (Ervine & Macleod 1999; Bates & 

DeRoo 2000; Bates & Horritt 2001). A number of these models were later utilised to 

predict flood inundation levels in urban areas (Bates & DeRoo, 2000; Yu & Lane 2006). 

A 1D model measures flood levels in the channel, whereas a 2D model measures flood 

depth for the extent of the floodplain. 

Gallati and Braschi (cited in Haider et al. 2003, pg. 129) undertook pioneering work in 

1990 by applying a simplified 2D depth-averaged model to the Florence flood. The 

obtained results were close to the available data, with the model showing good 

behaviour (Gallati et al. cited in Soulis 1992, p. 632). 
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Haider et al. (2003) felt that in the face of an increase in the incidence of floods, there 

was a need to apply the most recent hydraulic models to the problem of urban flooding. 

It was found that a 2D model provided water levels close to measurements. Mignot, 

Pacquier and Haider (2006) found that with calibration, for the city of Nimes, France, a 

2D model could predict flood levels with a standard deviation of about 50cm. A coupled 

dynamic 1D-2D model (ESTRY-TUFLOW) was compared to a simplified 1D-2D 

model (LISFLOOD-FP) using data from the 2005 Carlisle flood. It was found that the 

dynamic model was more robust, with changes in calibration values resulting in less 

deviation from actual water levels (Fewtrell et al. 2011). 

One limit to raster-based flood models is the resolution of cells used in the model – if 

they are too small the computational requirements became restrictive (Haider et al. 

2003). Yu and Lane (2006) investigated the effect of model cell size for models applied 

to urban areas, and concluded that even small variations in model resolution have 

significant effects on inundation extent. Accordingly, as processing power increases, 

using progressively smaller cell sizes will be a viable option. 

 

2.5 Flood Model Validation / Calibration  

Bates (2004) noted that ‘until recently’, primarily bulk flow measurements made up the 

validation data for hydraulic models. Many models can be made to fit this data, giving 

good results, but with a wide range of input values for common parameters. Therefore, 

lack of distributed validation data is the cause of equifinality. Finally, remotely sensed 

data is one possible solution to this problem.  

Henry et al. (2006) focused on the new capabilities of the ASAR sensor of the Envisat 

(Environmental Satellite). It was found that the data allowed flood damage maps to be 

promptly produced, often hours after data acquisition. These could then be used for 

flood model validation. 

Di Baldassarre, Schumann and Bates (2009) compared two resolutions of remotely 

sensed imagery to produce flood extent maps, which were then used as validation data 

for a raster-based inundation model. They encountered equifinality and concluded that 

there is a need to move from binary, i.e. wet/dry maps, to uncertain flood extent maps or 

‘possibility of inundation maps’.  
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Another source of calibration data for flood models is distributed flood water levels. 

Werner, Blazkova and Petr (2005) determined that constraining model uncertainties 

using distributed floodplain level observations allows for greatly improved reliability of 

flood inundation modelling in urban areas. Mason, Bates and Dall’ Amico (2009) found 

that using water surface elevations along flood boundaries as calibration data afforded 

faster production of flood extent maps due to restricting the input parameters. However 

upon evaluation, the modelled uncertainty map was found to be significantly different to 

the observed flood extent. This was attributed to the simplicity of the flood model 

employed. 

A large series of distributed water levels were collected for the flood of Carlisle, UK, in 

January 2005. This afforded a unique opportunity for flood model validation. Neal et al. 

(2009) capitalised on this, and assessed the LISFLOOD-FP model. They noted a root 

mean squared error (RMSE) value of 0.28m for maximum water level. 

 

2.6 DTM Sources 

Urban flood modelling requires digital terrain models (DTMs) of high resolution and 

accuracy (Mason et al. 2007). DTMs can be produced from a number of different data 

sources. These include: 

 Elevation contour maps 

 GPS survey 

 Interferometric synthetic aperture radar (IfSAR) 

 Light detection and ranging (LiDAR) 

 

Casas et al. (2006) analysed the effects of DTM data sources on the reliability of a 1D 

hydraulic flood model. It was found that a DTM derived from a 5m contour map was 

the least accurate, in the order of 50% error for estimation of the area of inundated 

floodplain. The GPS-based and laser-based (LiDAR) models allowed for significantly 

more accurate results with errors of 8% and 1% respectively. Sanders (2006) drew 

similar conclusions upon analysing a series of on-line DEMs: LiDAR provided the most 

accurate results, followed by IfSAR. One point to note is that airborne IfSAR based data 

is really a digital surface model (DSM) rather than a DTM, so that features such as 
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buildings and bridges are resolved. Therefore, further processing is required to produce 

a DTM. IfSAR DEMs may also be prone to radar speckle contamination, adding noise 

or undulations to surfaces that would otherwise be flat (Sanders, 2006).  

LiDAR data collected for the purposes of flood modelling was found to have a vertical 

accuracy of between 7 and 14cm RMSE, dependent on post-processing method (Gomes 

Pereira & Wicherson 1999). Horizontal accuracy was found to be +/- 5cm 

(Environmental Agency, cited in Marks & Bates 2000). 

Sanders (2006) noted that IfSAR data had a horizontal and vertical accuracy of 3m and 

+/-2.5m (RMSE) respectively. Casas (2006) made the observation that with GPS, ‘the 

final data quality achieved depends on the accuracy of the survey equipment and the 

density and distribution of measured points.’ A similar concept is of course true for 

elevation contour maps. The contour interval and scale of the map will determine its 

accuracy. 

A method for producing a DTM suitable for urban flood modelling using fused LiDAR 

and digital map data was outlined by Mason et al. (2007). 

 

2.7 Creating Actual Flood Extent Maps 

The primary goal of flood mapping is to identify areas that are flooded or not flooded. 

This process consists of two steps – (1) determining wet/dry areas before and during a 

flood event, and (2) comparing these areas to determine which areas were flooded. 

Three main data sources are used to map flood extents: optical data, radar data, and 

topographic and river gauge data (Wang 2002a).  

Optical data include aerial photographs and satellite data (such as from a Landsat 

Thematic Mapper (TM) sensor). Thanks to different reflectance responses of dry and 

wet or water surfaces, aerial photographs and TM data can easily distinguish between 

surfaces (Wang 2002a). Wang (2002a) also concluded that using TM data for flood 

extent mapping is:  

1) Reliable and accurate; 

2) Simply applied: geo-reference two TM images, identify wet/dry areas, and 

compare before/after imagery; 
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3) Efficient and cost-effective. 

There are limitations to using TM data however. As a satellite has a fixed orbit pattern, 

its revisit time (the time taken between subsequent collection of data from the same 

location) may mean data is collected long after a flood has receded. The revisit time for 

the Landsat 7 satellite is 16 days (Satellite Imaging Corporation n.d.). The limited 

spatial resolution of TM data may be too coarse for identifying small flooded areas, 

particularly in vegetated, commercial, or residential areas. Additionally, the TM sensor 

does not penetrate vegetation well, so flooding may not be reliably detected under the 

canopy (Wang 2002b). Finally, both TM data and aerial photography must be collected 

during the day and will not penetrate cloud cover. 

The same basic principle to determine flood extent i.e. detection and comparison of 

wet/dry surfaces before and during a flood applies also to extent mapping when using 

radar data. The key advantage in using SAR data over optical data is the ability of radar 

microwave to penetrate cloud cover and forest canopies (depending on wavelength) 

(Wang 2002a). Because current SAR sensors are satellite-mounted, this system suffers 

from the same revisit time limitation as TM data. In addition, the data is expensive – in 

the order of 5-8 times more than TM data covering the same area (Wang 2002a). 

Finally, using topography DEMs and river gauge data is perhaps the simplest of the 

three methods. It involves getting river levels before a flood, and during its peak for 

each gauge, and then flooding a DEM – once with the pre-flood levels, and once with 

peak levels. The inundated areas can then be compared to determine existing bodies of 

water, and flood extent (Wang 2002a). Advantages of using this data include: 1) Data is 

reliable and accurate, 2) Methodology is simple, efficient, and economical, and 3) The 

data is easily updated. Its limitations include: only being able to map areas that have 

flood gauges, and it is sensitive to the accuracy of the input DEM (Wang 2002a). 
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2.8 Volunteered Information/Social Networking 

Goodchild (2007) defines volunteered geographic information (VGI) as spatial 

information collected voluntarily by private citizens. Geo-tagged images submitted by 

individuals to the web may therefore be considered VGI. Goodchild (2007) outlines 

some popular examples of VGI, including: Wikimapia <http://wikimapia.org>, Flickr 

<http://www.flickr.com/>, and OpenStreetMap < http://www.openstreetmap.org/>. 

Wikimapia lets anyone with an internet connection select an area of the Earth’s surface, 

and provide it with a description. Flickr allows users to upload photos and tag them with 

a latitude and longitude. Finally, OpenStreetMap is ‘an editable map of the whole 

world, which is being built largely from scratch, and released with an open content 

license’ OpenStreetMap (2011). 

Social networking also played a major role in keeping people informed during the 

Brisbane January 2011 flood. Ushahidi are a non-profit tech company that specialises in 

developing free and open source software for information collection, visualisation and 

interactive mapping (Ushahidi 2011). Crowdmap is an on online interactive mapping 

service, based on the Ushahidi platform (Crowdmap 2011). It offers the ability to collect 

information from cell phones, news and the web, aggregate that information into a 

single platform, and visualise it on a map and timeline. The Australian Broadcasting 

Corporation launched QLD FLOOD CRISIS MAP – a crowdmap of the Queensland 

floods in January 2011 (ABC 2011). This crowdmap allowed individuals to send flood-

related information via email, text message, Twitter, or via the website itself (ABC 

2011). This information was then available to anyone with an internet connection. The 

Courier Mail also provided a similar service, but only allowing people to submit photos, 

via email (Courier Mail 2011). 

The social networking service Twitter <www.twitter.com> allowed people to post and 

receive short text based updates about the flood in real time. Photos and videos were 

also able to be attached to these updates. Similarly, the website Facebook 

<www.facebook.com> allowed groups such as the Queensland Police Service to 

provide flood information updates to anyone who browsed to their Facebook page 

(Queensland Police Service 2011). Finally, YouTube <www.youtube.com> provided a 

forum for people to connect and inform through the use of user-generated and 

contributed videos.  

http://wikimapia.org/#lat=-27.4513137&lon=153.010025&z=12&l=0&m=b
http://www.flickr.com/
http://www.openstreetmap.org/
http://www.twitter.com/
http://www.facebook.com/
http://www.youtube.com/
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Chapter 3 Methodology 

3.1 Introduction 

To assess the suitability of volunteered photos to create a flood extent map, it was 

necessary to separate this project’s study into three main sections of work. These are: 

data collection, data processing, and results analysis. Firstly, the data collection stage 

was broken down into three tasks: obtaining geo-referenced private media featuring the 

flood high-water mark, collecting 3D coordinates for each mark, and obtaining 

topography DEM of target area. Secondly, the data processing stage involved 

processing the series of coordinates to obtain a TIN of the flood surface, and 

extrapolating this onto the topography DEM to derive a series of extent maps. Finally, 

the resulting maps were compared to the one produced by the SSSI. 

 

3.2 Study Area 

The chosen study area was located in the lower Brisbane River and Oxley catchments 

and bounded by the extent of the collected river gauge and photographic data. These 

catchments cover a combined area of 1,453km
2
. Their dominant land uses are urban, 

native bush, grazing and rural residential. They are highly modified, urbanised 

catchments with riparian vegetation having been cleared from most waterways. There is 

a large volume of stormwater runoff into the waterways during and after storm events, 

and population growth is a major pressure on both catchments (Healthy Waterways 

2011a, b). 

The study area covers an area of 159.54km
2
. This area was selected as it offered the 

highest concentration of suitable flood imagery. Figure 4, overleaf, shows the area in 

detail. 
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Figure 3.1: Study Area (adapted from (Healthy Waterways 2011a)) 
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3.3 Data Collection 

3.3.1 Collect private media featuring the flood high-water mark. 

The first step of the data collection stage was to obtain private media that clearly feature 

the high-water mark of the January 2011 Brisbane flood. It was a requirement that these 

media be geo-referenced, so that their location could be readily identified. The flood 

peaked at 4am on the 13
th

 of January 2011. Some areas experienced non-riparian peaks 

due to local rainfall before this time. Consequently, in order to ensure the media features 

the peak flood levels, they will need to have been produced after 4:00am on the 13
th

. 

This was established from Exif metadata time-stamps. Where Exif tags were not present 

(or it was clear they were incorrect) only photos that did not feature bodies of 

floodwater were selected. 

The vast majority of media was obtained from the online photography website flickr 

http://www.flickr.com.  The social networking site Facebook http://www.facebook.com 

also provided useful results. Finally, one image was sourced from Picasa Web 

http://picasaweb.google.com/. tumblr http://www.tumblr.com, photobucket 

http://photobucket.com, and the image search functionality of Google 

http://www.google.com.au, Bing http://www.bing.com, AltaVista 

http://au.altavista.com, and Yahoo http://search.yahoo.com were also searched, but did 

not provide any useable images not already discovered with flickr and Facebook. In 

order to produce a TIN with enough detail for any patterns to be evident, it was 

determined a minimum of 30 points would need to be collected. Therefore, a minimum 

of 30 photos showing the high-water mark were required. A total of 51 geo-referenced 

images were collected. After discounting duplicate shots of the same scene, 43 unique 

images remained. Three sets of before and after photos can be found in Figures 3.2-3.7. 

The remainder of photos can be found in Appendix B. 

http://www.flickr.com/
http://www.facebook.com/
http://picasaweb.google.com/
http://www.tumblr.com/
http://photobucket.com/
http://www.google.com.au/
http://www.bing.com/
http://au.altavista.com/
http://search.yahoo.com/
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Figure 3.2: McIlwraith Croquet Club, Auchenflower, January 2011 (Bannerman 2011a) 

 

 

Figure 3.3: McIlwraith Croquet Club, Auchenflower, July 2011 
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Figure 3.4: Munro St, St Lucia, January 2011 (Sparshott 2011b) 

 

Figure 3.5: Munro St, St Lucia, July 2011 
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Figure 3.6: Agars Rd, Baroona, January 2011 (McIntosh 2011) 

 

Figure 3.7: Agars Rd, Baroona, July 2011 
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3.3.2 Undertake fieldwork to connect each mark to the AHD. 

A Trimble R8 GPS receiver with TSC2 controller and TDL 3G cellular modem utilising 

VRS corrections was used in RTK mode to collect 3D coordinates for each high-water 

mark. This equipment can be seen in Figure 3.8 below. 

 

Figure 3.8: GPS Equipment 

VRS or Virtual Reference System provides real-time network modelled corrections to 

RTK roving receivers. The VRS corrections employed for this study were using the 

CMR (Compact Measurement Record) protocol, broadcast via NTRIP (Networked 

Transport of RTCM via Internet Protocol). The NTRIP protocol is designed to stream 

GNSS data over the internet. Ultimate Positioning provided access to their VRS 

network corrections. A test using two permanent marks (PM) with known coordinates 

showed the system was operating with sub-centimetre accuracy in the horizontal, and 

within 0.13m in the vertical. This vertical difference can be attributed to variations in 

the employed geoid models. See Appendix C for details. 

This GPS setup was used to successfully collect a total of 31 points including the two 

PMs. A list of these and their coordinates appears in Table 3.1. 
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Table 3.1: High-water mark coordinates

Name Northing Easting Elevation Feature Code

NetR5 50 6964864.734 504105.535 14.033 Base

knm-10443 6956657.563 494542.643 51.531 2

knm-55918 6956692.724 493841.907 60.906 2

auc-bowls 6960701.098 499612.955 2.212 50

bell-pharm 6951233.266 488999.706 11.838 50

city-coro 6960407.65 499791.196 3.757 50

ffield-7-11 6957269.814 502445.219 5.014 50

jin 6954191.314 493555.141 13.46 50

mil-eagle 6961416.475 499977.1 4.651 50

mil-heu 6962087.368 500670.584 6.049 50

mil-qmas 6962176.94 500833.422 7.747 50

nfm-153syd 6961933.881 504987.215 2.264 50

nfm-colespk 6961913.862 504666.323 3.041 50

nfm-ferry 6962335.441 505017.039 3.03 50

nfm-liquid 6961771.777 504599.393 2.876 50

nfm-welsby 6961978.965 504774.58 2.498 50

rock-650 6952507.502 502033.69 9.215 50

rock-hjs 6951693.511 501636.286 9.051 50

rock-pub 6952465.061 501995.453 5.38 50

ros-agars 6961913.052 499687.255 5.262 50

ros-nash 6962060.96 499685.89 6.083 50

sher-chancellor 6954924.998 498782.679 8.038 50

sher-hall 6954737.027 498558.463 9.174 50

sth-corv2 6960810.475 501570.115 4.201 50

sth-qpac 6961016.392 502018.53 5.298 50

stl-bellevue 6958832.248 499602.131 11.269 50

stl-eric 6959061.569 501189.672 5.797 50

stl-munro 6958932.462 500595.09 3.893 50

tar-per-sign 6959133.1 498968.429 7.035 50

tar-shell 6959116.408 499400.33 6.797 50

tar-sir-fred 6958802.643 500237.53 7.044 50

tar-west 6958670.401 498933.558 6.018 50  

 

A number of locations were unsuitable for GPS collection – the receiver was unable to 

gain or maintain initialisation for the selected collection time of 5 minutes. In a number 

of cases, reconstruction efforts meant that the high-water marks were no longer 

accessible, or the surface in question had been demolished. For 15 of the points, a total 

station was utilised to transfer a level to a location that could be reliably collected with 
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GPS. The horizontal displacement of the furthest point was approximately 15m. The 

levels were transferred to locations with a ground level below the high-water mark, such 

that the resulting points would not be underground. This was only done in locations 

where there was minimal vertical elevation change in the area, to avoid possible 

variations in water heights. 

The collected data was imported into Trimble Geomatics Office (TGO), checked for 

consistency, and then exported to an AutoCAD DWG file. 

This data was then supplemented with peak water level records from Queensland Flood 

Warning River Height Stations for the January flood period. AHD heights of the 

stations were obtained from the Bureau of Meteorology website at 

http://www.bom.gov.au/hydro/flood/qld/networks/section6.shtml. Water heights were 

then added to these AHD levels to arrive at final water levels. This data was then 

exported to another AutoCAD DWG file. 

A third AutoCAD DWG file containing only the river gauge data was also exported. 

 

3.3.3 Collect topography DEM of target area. 

The target area was determined from the coverage afforded by the series of coordinates 

collected during the previous task. An initial comparison was completed using the South 

East Queensland 25m digital elevation model (DEM) sourced from the Department of 

Environment and Resource Management (DERM). Two excerpts from the metadata 

state:  

 

“ANUDEM version 4.6.2 was used to produce a 25 metre floating point 

grid. Source digital data were contours and drainage (scanned repromats) 

from AUSLIG 1:100000 mapsheets with a 20 metre contour interval for 

most areas. Drainage lines were pointed in the direction of flow. A hillshade 

of the DEM was used to identify errors in source drainage and contour data 

that were previously missed. The errors, including wrongly directed 

drainage and wrongly labelled contours, were fixed though some errors may 

remain.” “The accuracy of this DEM depends on the accuracy of the source 

data and the error of ANUDEM`s interpolation. The average accuracy of 

http://www.bom.gov.au/hydro/flood/qld/networks/section6.shtml
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AUSLIG's 1:100000 source data is + or - 25 metres in the horizontal 

position of well defined detail and + or - 5 metres in elevation for most 

mapsheets” (Department of Environment and Resource Management 

2010a). 

 

The accuracy for mapsheet 9543 (Brisbane) was not specifically noted. The dataset that 

obtained useful results was a 10m contour map. The metadata states:  

 

“This data is extracted from a dataset covering 90% of Queensland that 

consists of contour features generated from the Space Shuttle Radar Terrain 

Model (SRTM) 3 second DEM with a ten metre contour interval. The radar 

used by the SRTM does not penetrate thick vegetation and in such areas the 

contours generated represent the top of the canopy rather than bare earth 

while in lightly vegetated areas the contours represent bare earth. In a worst 

case scenario, the accuracy in heavily vegetated areas may be +-16m in the 

vertical, while in open areas it may be as good as +-5m. This data is suitable 

for use in 1:50000 mapping and seamlessly integrated with the 10 metre 

contours generated from the orthophotography DEMs and the 5 contours 

captured by photogrammetry, form a continuous dataset of 10 metre 

contours across the entire state” (Department of Environment and Resource 

Management 2010b). 

 

 This dataset was sourced from the Queensland Government Information Service 

(QGIS) and is based on AHD. 
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3.4 Data Processing 

3.4.1 Create extent maps from TIN models created from collected 

points. 

ArcCatalog 10 was used to assign GDA94/MGA zone 56 coordinate systems to the 

AutoCAD files. A new project was created in ArcMap 10, and four triangulated 

irregular network (TIN) models created – one from the 10m contour topography data, 

one from the river gauge data, one from combined river gauge and GPS data, and one 

from only the river gauge data. ArcMap’s surface difference function was then used to 

compute where the two TINs intersected. This process was undertaken for each of the 

three flood TIN/topography TIN pairs. These then formed a series of extent maps.  

 

3.5 Results Analysis 

3.5.1 Compare and document produced flood extent maps to SSSI 

map. 

The SSSI extent map was created using aerial flood imagery that was flown over a 

number of days between the 13th to 15th January and pre-flood aerial imagery 

(Department of Environment and Resource Management 2011). 

“This line was verified against digital elevation models and contours 

(LiDAR). It was measured against 1000 observed flood points taken from 

aerial photography and 100 surveyed debris marks. The line was captured 

by Spatial Information Officers using MapInfo GIS software. The 

completeness of the data is dependent on image quality and the ability to 

identify feature detail. Inaccuracies may exist particularly in the Brisbane 

CBD area due to high rise buildings, areas of heavy vegetation along the 

river banks and also low lying flat areas such as near the mouth of the 

Brisbane River” (Department of Environment and Resource Management 

2011). 

Each of the produced extent maps and the official one were rasterised with a 5m grid. 

The raster datasets were then reclassified such that the inundated areas stored a value of 

1, and the dry areas had a null data value. The total number of cells in each of the 
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produced maps was noted. The SSSI extent map was then used as a baseline to 

determine the accuracy of the other maps. A raster minus operation was calculated 

between the SSSI map and each of the produced maps to determine the common area 

between each pair. The non-common area was then also calculated. The ratio between 

the number of non-common and common cells in each pair gave a quantifiable metric 

that allowed for simple selection of the most accurate map. 

3.6 Summary 

This section has outlined the methods that were undertaken to successfully assess how 

suitable volunteered photographic information is to derive a flood extent map for a 

recent flood. A series of photos were found, coordinates collected, and a number of 

flood surface models created. These surface models were then intersected with two 

topography models, and processed to form raster maps. The raster maps were 

differenced, and the results compared to the SSSI flood extent map. These results may 

be found in the following chapter. 
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Chapter 4 Results 

4.1 Introduction 

A series of flood extent maps were created as per the steps outlined in the previous 

chapter. These extent maps were then compared to the SSSI map. The 25m topography 

DEM heights were compared to the reported river gauge heights. Finally, the 10m 

topography DEM was checked for accuracy using the collected GPS points. The results 

of these comparisons appear here. 

 

4.2 25m DEM 

The first TIN intersection was undertaken between a 25m DEM of South East 

Queensland, and the TIN compiled from only the river gauge data. The resulting extent 

map can be seen in Figure 4.1, below: 

 

 

Figure 4.1: 80,000:1 25m River Gauge Extent Map 
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This initial result can be seen to grossly underestimate the inundation extent. The river 

gauge data covers an area of 4,589,182 cells. A raster difference with the official extent 

map reveals that within this area, 1,300,333 cells were inundated, or approximately 

30%. The river gauge data suggests that 142,956 cells or 3% were inundated. In 

addition, Figure 4.1, above, shows that the reportedly inundated area is also quite 

inaccurate. The correctly modelled area was made up of 23,485 cells. Therefore, only 

16.43% of the inundated cells were correctly identified, or 83.57% were reportedly wet 

when they were in fact dry. In order to determine the cause of these poor results, a 

comparison of elevations of the river gauges with elevations of the same horizontal 

locations on the DEM was undertaken. The results can be seen in Table 4.1, below. 

 

Table 4.1: 25m DEM vs. River Gauge Heights 

Gauge No Water DEM Delta

40812 17.87 15.505 2.365

540192 12.9 22.025 -9.125

540071 9.33 41.4 -32.07

540274 9.27 37.35 -28.08

540198 4.455 19.55 -15.095

540130 2.73 15.59 -12.86

540286 2.75 12.9 -10.15

540132 3.27 25.12 -21.85

540129 1.28 10.2 -8.92  

 

Only at one of the river gauges did the recorded water level lie above the topography 

model’s elevation. It was concluded that the 25m DEM was not of sufficient accuracy to 

provide meaningful results from the river gauge data.  
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Another TIN intersection (see Figure 4.2) was completed using combined river gauge 

and GPS data to see if there would be any significant differences. This data covered an 

area of 6,372,241 cells. A total of 156,867 cells were modelled to be inundated. Of 

these, only 42,170 were actually under water during the January flood event. This 

equates to an error of 73.12%, or 26.88% of cells being correctly identified. Whilst this 

is a markedly improved result over the river gauge data, it is still much worse than 

expected. 

 

 

Figure 4.2: 80,000:1 25m Combined Extent Map 
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4.3 10m DEM / River 

The second round of modelling undertaken with 10m contour data provided much better 

results. The river gauge-based TIN intersected with a TIN based on 10m contours 

produced an extent map as seen below in Figure 4.3:  

 

 

Figure 4.3: 80,000:1 10m River Gauge Extent Map 

 

While offering markedly improved results, it can be seen that the map only shows any 

inundation for approximately half the area for which there is data. An inspection of 

elevations at common locations between the two TIN models reveals the lowest 

elevation in the topography TIN model is 10m. This is because the lowest contour in the 

dataset is at 10m. All the river gauge peak water levels in the North-East half of the 

model fall below a height of 10m; therefore, none of this area shows as inundated. 
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Figure 4.4: 40,000:1 10m River Gauge Extent Map 

 

The 40,000:1 map in Figure 4.4 shows the inundation extent in greater detail. It can be 

seen that the modelled inundation extent is largely coincident with that of the official 

extent. The river gauge inundation extent raster contained 294,303 cells. 31,919 of these 

were located in dry areas, resulting in an overestimated inundation area of 10.85%. 

Additionally, it can be seen that the computed map underestimates inundation extent in 

some locations.  
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4.4 10m DEM / GPS 

The extent map created using a TIN model derived from only the collected GPS points 

also suffered from limited coverage due to insufficient accuracy of the topography 

DEM, as can be seen in Figure 4.5. Its coverage is slightly reduced compared to the 

river gauge extent map: 270,500 cells vs. 294,303. This is because the data extents are 

different between the two flood surface TIN models. The inundation extents also 

accordingly cover different areas.  

 

 

Figure 4.5: 50,000:1 10m GPS Extent Map 
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There were 24,918 cells incorrectly inundated, resulting in an error of 9.21%. The GPS-

based extent map also underestimates the inundation extent relative to the SSSI extent, 

as can be seen in greater detail in Figure 4.6 below. 

 

 

Figure 4.6: 40,000:1 10m GPS Extent Map 
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4.5 Combined /10m 

Finally, the river gauge and GPS data was combined to create another TIN model, and 

through intersection with the topography TIN, another extent map was produced. The 

results of this are shown in Figure 4.7.  

 

 

Figure 4.7: 80,000:1 10m Combined Extent Map 

 

It too suffers from limited coverage due to insufficiently accurate topography data. Of 

the three extent maps that were based on 10m contour topography data, the combined 

data shows the largest inundation extent. It consists of 359,090 inundated cells, 

compared to 270,500 for the GPS map, and 294,303 for the river gauge map.  
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Figure 4.8: 40,000:1 10m Combined Extent Map 

 

Figure 4.8 above, shows more clearly the modelled inundation extent. It both over and 

underestimates the inundation extent in differing areas. A total of 316,720 / 359,720 

cells were correctly identified as inundated. This corresponds to an error of 11.80%. 
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4.6 10m / Comparison 

Figure 4.9, overleaf, shows the three computed extent maps overlaid onto the SSSI one. 

The differences in coverage are apparent. The GPS map covers the least area, followed 

by the river gauge map, and the combined map has the most coverage. These 

differences can largely be accounted for by the location of the collected data points. The 

GPS points bounded the smallest physical area where the topography had an elevation 

of more than 10m. As can be seen in Figure 4.9, overleaf, the combined data has the 

outermost extents.  

For areas of common coverage, there is little in the way of differences, except in the 

western half of the image. Both the GPS and the combined maps slightly underestimate 

the extent relative to the river gauge map. The other large variation between the GPS 

and combined extent maps is the presence of a large inundated area in the South-East of 

the GPS map that does not appear in the combined map. This is due to the river gauge 

point at the northern tip of this area. It has an elevation of 9.27m, which means that in 

the combined TIN model, the whole area falls below the 10m limit of the topography 

DTM. It was expected that adding more data to the flood surface model would give a 

better result; however this was not the case, due to insufficiently accurate topography 

data. Without access to topography data with similar accuracy to that of the collected 

points, it is not possible to properly assess the suitability of the data beyond a proof of 

concept level. 

Even without accounting for the topography data induced differences in inundation 

extent between the maps, the combined extent map still shows the greatest inundation 

extent. If the large aforementioned area in the GPS extent map were included in the 

combined map, the difference in inundation extents would be even greater. 
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Figure 4.9: 40,000:1 10m Compiled Extent Maps 

 

In terms of absolute accuracy, the GPS-based extent map gives the best result, with the 

inundation extent overestimated by 9.21%. The river gauge-based map is the next most 

accurate, with an error rate of 10.85%. Finally, the combined extent map showed the 

least accurate result, with an error of 11.80%. It is difficult to draw conclusions about 

the suitability of each source of data from the differences in overestimation of 

inundation extent, because these differences are largely due to the limited accuracy of 

the topography data. 
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4.7 Accuracy Assessment of 10m Topography DEM 

The topography levels at the collected points can be determined with knowledge of the 

antenna heights used during GPS collection. The expected accuracy of these levels is 

+/-0.1m as this is the observed accuracy of the GPS system used. Table 4.2, below, 

shows a comparison of collected topography heights vs. DEM topography heights for 

common locations. The expected accuracy of the topography DEM ranges from +/-5m 

in open areas, to +/-16m in heavily vegetated areas (Department of Environment and 

Resource Management 2011). 

 

Table 4.2: Collected vs. Topography DEM Heights 

 Feature Topography Feature "Antenna" Ground Delta

bell-pharm 20 11.838 4.007 7.831 -12.169

jin 20.81 13.46 1.5 11.96 -8.85

rock-hjs 10 9.051 0.42 8.631 -1.369

rock-650 10 9.215 0 9.215 -0.785

rock-Pub 10 5.38 3.91 1.47 -8.53

sher-hall 12.11 9.174 1.6 7.574 -4.536

ffield-7-11 10 5.014 1.335 3.679 -6.321

stl-eric 10 5.797 1.955 3.842 -6.158

stl-munro 10 3.893 3.337 0.556 -9.444

tar-sir-fred 13.22 7.044 0.17 6.874 -6.346

tar-west 20 6.018 1.13 4.888 -15.112

tar-shell 10 6.797 2.07 4.727 -5.273

tar-per-sign 10 7.035 1.17 5.865 -4.135

city-coro 10 3.757 2.965 0.792 -9.208

auc-bowls 10 2.212 3.374 -1.162 -11.162

mil-eagle 10 4.651 2.555 2.096 -7.904

ros-nash 10 6.083 0.405 5.678 -4.322

ros-agars 12.35 5.26 0.755 4.505 -7.845

mil-heu 15.48 6.049 0 6.049 -9.431

sth-cordelia 10 4.201 1.077 3.124 -6.876

sth-qpac 10 5.298 0.46 4.838 -5.162

nfm-liquid 10 2.876 0.6 2.276 -7.724

nfm-colespk 10 3.041 0.135 2.906 -7.094

nfm-welsby 10 2.498 0.31 2.188 -7.812

nfm-153syd 10 2.264 0.795 1.469 -8.531

nfm-ferry 10 3.03 0.046 2.984 -7.016  

 

 



38 

 

 

 

Figure 4.10: 10m Topography Height Errors 

 

A histogram of the topography height error values, see Figure 4.10, shows the majority 

of values fall within the 6-9m range. The least accurate value showed an error of 

15.112m. This is consistent with the expected accuracy of the model.  

 

4.8 Conclusion 

This chapter has provided an overview of the comparisons between the two topography 

models and the three generated flood surface models, as well as an assessment of the 

accuracy of the 10m model. The initial comparisons found that using the 25m 

topography DEM provided results much worse than expected. Subsequent comparisons 

using a 10m DEM gave vastly improved results. Using the 10m topography model the 

three produced flood surface models showed similar error levels. The topography model 

was still found to be the limiting factor however. This will be discussed further in the 

following chapter. 
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Chapter 5 Discussion  

5.1 Introduction 

The results of this study raised one large issue, namely, the impact of the accuracy of 

the topography DEM relative to that of collected data when creating an extent map. The 

impacts of future technology improvements should also be considered. These points are 

discussed in this chapter. 

 

5.2 Resource Limitations 

The greatest limiting factor for this study was the accuracy of the topography data. The 

most accurate freely available topography data covering the study area was composed of 

10m contours generated from the SRTM 3 second DEM collected between December 

2008 and March 2010. The vertical accuracy of this data ranged from +-5m to +-15m in 

heavily vegetated areas. The most significant limitation of the data was the lowest 

contour being at 10m. As a result, the collected high-water marks with heights below 

this level do not model as inundated, when they should have. This problem affected 

approximately 80% of the data collected.  

Significantly more accurate LiDAR-derived topography data that covers the study area 

is available. Whilst the expected accuracy of the data is not published on the DERM 

product webpage, the data is available as 0.25m contours. LiDAR-based products 

typically have vertical accuracies of +-0.1m (AAM n.d.). LiDAR-based topography data 

would have been ideal; however coverage of the required area is priced at 

approximately $1300. Budget limitations prevented purchase of the data. 

The more accurate topography data would have provided much more useful results. 

Firstly, all the collected high-water mark data would have registered as being above the 

topography, so a significantly greater area could have been assessed. Additionally, the 

full forty collected data points would have provided results, rather than the 

approximately eight that formed the TIN over the reportedly inundated area. This would 

have allowed concrete conclusions to be drawn about the reasons for the differences in 

results for common areas between the three produced extent maps. Without having 
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topography data that is at least as accurate and precise as the collected points, it is 

difficult to know the full effect of adding additional points to the flood surface TIN 

model. If the topography model is not of sufficient precision to capture small changes in 

elevation within an area, then there will be no benefit to adding additional flood surface 

points to that area as the resulting extent map will not differ. With topography data of 

such low accuracy relative to that of the collected points, this study to a large extent 

ends up assessing the accuracy of the topography data. 

Using more accurate LiDAR-based topography data would have allowed for a much 

better assessment of the suitability of the high-water mark data to create a flood extent 

map. It is difficult to quantify any possible improvement in results without having 

access to the data, however comparing the results from using the 25m DEM to those 

from using 10m contours may provide some indication. Using the 25m DEM 

topography data resulted in errors of 83.57% and 73.12% for the river gauge, and 

combined data respectively. Using the topography data composed of 10m contours 

resulted in errors of 10.85% and 11.80% respectively. This is a markedly improved 

result. 

The other majorly limited resource was geo-referenced photos featuring the high-water 

mark. Approximately forty-five hours were spent searching for imagery. This yielded 

forty suitable photos. Many photos that featured what may have been the high-water 

mark were either taken in an unspecified location, or it could not be verified they were 

taken after the flood peak. Difficulties were encountered when attempting to collect 

points at approximately one third of the photo locations. Access to a number of 

construction sites was denied, which prevented data collection. One of the photos 

featured a high-water mark on the UQ Aquatic Centre. This building had been 

demolished before collection could be undertaken. Lastly, a number of locations were 

not suited to GPS collection owing mostly to overhead vegetation or buildings. Where 

the surrounding topography had little to no vertical variation, points were collected 

where the GPS could maintain initialisation. For locations where there was significant 

vertical variation, it was planned that a PM search would be undertaken, and the points 

collected with a total station. For the locations that were searched, there were very few 

PMs with both heights and accurate coordinates. Time limitations prevented connecting 

to these as they were mostly a considerable distance from the photo locations, in areas 

with limited parking. 
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5.3 Future Improvements 

Currently, iPhone 3GS A-GPS is only accurate to on average +/-9m RMSE in the 

horizontal and +-10.6m in the vertical in ideal conditions (Zandbergen 2009). Other 

GPS implementations in mobile cellular devices offer similar levels of accuracy. This is 

of insufficient accuracy to model flood surface heights. It is possible that in the future, 

vertical accuracies of mobile phone-based GPS may improve to the point where flood 

surface heights may be able to be captured directly within a reasonable margin. This 

seems unlikely however; as there is little demand for sub 0.1m vertical accuracy in a 

consumer mobile cellular device. 

The other possibility for automated collection of flood surface heights from volunteered 

data is to use photos as in this study, but to import them into photo mosaicing software 

like Microsoft Photosynth. The Synth functionality of this application is ‘good for 

capturing different sides or details of an object’ (Microsoft 2011). Photosynth works by 

analysing multiple photos of the same area. An interest point detection and matching 

algorithm is applied to each photograph. Specific features are identified by this process. 

The program can determine which face of an object a photo belongs on by analysing the 

position of matching features within each photo. Bundle adjustment is the process of 

identifying the 3D position of a series of features, as well as the angle and position from 

which each photo was captured. This is accomplished by analysing the differences in 

the relationships between the features (distance, angle, etc.). The process is extremely 

computationally intensive, but only needs to be performed once on each set of photos. A 

3D point cloud is the output of this first stage. A 3D model may then be generated from 

this point cloud. 

Assuming adequate Photosynth coverage of the subject area of a volunteered photo, it 

could be integrated into the Photosynth model, and 3D coordinates for the high-water 

mark could then be derived. Some LiDAR systems include a digital camera that will 

map a colour to each point. This LiDAR imagery may be suitable for use as input into a 

Photosynth-style system such that coverage of large areas could be obtained at 

reasonable cost. Conventional aerial photography could also potentially be used for this 

purpose. If an image is geo-referenced, then its approximate location within the imagery 

is known, and it could be integrated into the model. 
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5.4 Summary 

To conclude, the accuracy of the topography DEM is of great importance when creating 

a flood extent map via the methods used in this study. Future improvements in either 

mobile phone-based GPS, or advances in photogrammetry software, may allow the 

collection of flood surface heights to become greatly automated. 
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Chapter 6 Conclusions  

6.1 Conclusions 

All of this project’s objectives were successfully achieved. The methods of establishing 

flood extents including hydrological modelling and other techniques were researched. 

Flood extents are typically established using optical data, SAR data, or ‘flooding’ a 

topography DEM with water levels. 51 geo-referenced private photos featuring the 

flood high-water mark were successfully collected. After discounting multiple photos of 

the same location, 43 photos remained. 29 of these proved suitable for collection via 

GPS, and were connected to the AHD. Two topography DEMs of differing accuracy 

were obtained from DERM. Both the DEMs and the GPS points were processed to 

create a series of TIN models. Each flood surface model was then intersected with the 

topography models to create a number of extent maps. These were then compared to the 

official extent map produced by SSSI. 

This project set out to assess the suitability of volunteered information to create a flood 

extent map, or supplement existing data to create one. It found that volunteered 

photographs featuring the high-water mark could be used as data source, and offered a 

level of accuracy limited by the accuracy of the system used to collect the data. Finding 

sufficient suitable photos however, is a very time consuming process not guaranteed to 

produce results. Moreover, not all photo locations were suited to GPS collection, which 

would have necessitated additional time and resources to capture the data. There is also 

one major caveat. The accuracy and precision of the topography DEM should be similar 

to that of the system used to collect the coordinates of each high water mark. If this is 

not adhered to, the results are likely to be misleading.  

 

6.2 Further work 

It is recommended that the surface models from this study be intersected with a more 

accurate topography model, such as one based on LiDAR data. Results from this would 

allow for a better assessment of the suitability of volunteered photographs to create a 

flood extent map. 
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Future advances in photogrammetry systems may make the GPS-based coordinate 

collection stage unnecessary, allowing for coordinates to be derived directly from 

submitted geo-referenced photos. It is also possible that photos may even become 

unnecessary, as mobile phone-based GPS systems mature, allowing great enough 

accuracy to be able to directly capture flood levels to within reasonable margins. 
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Appendix B – High-water Mark Photos 

Following are a series of original flood photos, followed by the same scenes at the time 

of data collection, with the exception of the Coronation Drive point, which was 

collected in July 2011, but not photographed until October 2011. 

 

Figure B.1: UQ Aquatic Centre, University of Queensland, St Lucia, January 2011 (Agamid 2011b) 

 

Figure B.2: UQ Aquatic Centre, University of Queensland, St Lucia, July 2011 
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Figure B.3: Cnr Blackwood & Hall St, Sherwood, February 2011 (Prior 2011b) 

 

 

Figure B.4: Cnr Blackwood & Hall St, Sherwood, July 2011 
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Figure B.5: Eagle Tce, Milton, January 2011 (Palmer 2011b) 

 

 

Figure B.6: Eagle Tce, Milton, July 2011 
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Figure B.7: Merthyr Ferry Terminal, Merthyr Rd, New Farm, January 2011 (Jacques 2011b) 

 

 

Figure B.8: Merthyr Ferry Terminal, Merthyr Rd, New Farm, July 2011 
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Figure B.9: Sydney St, New Farm, January 2011 (Jacques 2011a) 

 

 

Figure B.10: Sydney St, New Farm, July 2011 
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Figure B.11: Westerham St, Taringa, January 2011 (daisy.meow 2011) 

 

Figure B.12: Westerham St, Taringa, July 2011 
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Figure B.13: Heussler St, Milton, January 2011 (Palmer 2011a) 

 

 

Figure B.14: Heussler St, Milton, July 2011 
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Figure B.15: Q-Masters, Milton, January 2011 (Wack the barn pimp 2011) 

 

Figure B.16: Q-Masters, Milton, July 2011 
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Figure B.17: 893 Brunswick St, New Farm, January 2011 (Surplice 2011b) 

 

 

Figure B.18: 893 Brunswick St, New Farm, July 2011 
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Figure B.19: Welsby St, New Farm, January 2011 (Storm Jury 2011) 

 

 

Figure B.20: Welsby St, New Farm, July 2011 
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Figure B.21: Nash St, Rosalie, January 2011 (Palmer 2011c) 

 

 

Figure B.22: Nash St, Rosalie, July 2011 
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Figure B.23: Johnstone St, Sherwood, January 2011 (Prior 2011c) 

 

 

Figure B.24: Johnstone St, Sherwood, July 2011 
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Figure B.25: Eric Freeman Boathouse, UQ, St Lucia, January 2011 (Agamid 2011c) 

 

 

Figure B.26: Eric Freeman Boathouse, UQ, St Lucia, July 2011 
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Figure B.27: Bellevue Terrace, St Lucia, January 2011 (Agamid 2011a) 

 

 

Figure B.28: Bellevue Terrace, St Lucia, July 2011 
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Figure B.29: Sir Fred Schonell Drive, St Lucia, January 2011 (Sparshott 2011a) 

 

 

Figure B.30: Sir Fred Schonell Drive, St Lucia, July 2011 
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Figure B.31: Shell, Gailey Rd, Taringa, January 2011 (Brisbane Area Flood Photos & Info 2011) 

 

 

Figure B.32: Shell, Gailey Rd, Taringa, July 2011 



71 

 

 

 

Figure B.33: Bellbowrie Pharmacy, Bellbowrie, January 2011 (Prior 2011a) 

 

Figure B.34: Terry White chemists (formerly Bellbowrie Pharmacy), July 2011 
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Figure B.35: Arrabri Ave, Jindalee, January 2011 (Clifford 2011) 

 

 

Figure B.36: Arrabri Ave, Jindalee, July 2011 
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Figure B.37: Hungry Jacks, Granard Rd, Rocklea, January 2011 (Kenneth Au 2011) 

 

 

Figure B.38: Hungry Jacks, Granard Rd, Rocklea, July 2011 
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Figure B.39: Beaudesert Rd, Rocklea, January 2011 (Tang 2011b) 

 

 

Figure B.40: Beaudesert Rd, Rocklea, July 2011 
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Figure B.41: Tramore St Pub, Rocklea, January 2011 (Tang 2011a) 

 

 

Figure B.42: Tramore St Pub, Rocklea, July 2011 
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Figure B.43: Fairfield Rd, Fairfield, January 2011 (Manchester 2011) 

 

 

Figure B.44: Fairfield Rd, Fairfield, July 2011 



77 

 

 

 

Figure B.45: Cordelia St, South Brisbane, January 2011 (Fish Fidler 2011) 

 

Figure B.46: Cordelia St, South Brisbane, July 2011 
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Figure B.47: QPAC, Southbank, January 2011 (Giant Rider 2011) 

 

 

Figure B.48: QPAC, Southbank, July 2011 
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Figure B.49: Coles car park, Merthyr Rd, New Farm, January 2011 (Surplice 2011a) 

 

 

Figure B.50: Coles car park, Merthyr Rd, New Farm, July 2011 
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Figure B.51: Perrin Park, Josling St, Toowong, January 2011 (Bannerman 2011c) 

 

 

Figure B.52: Perrin Park, Josling St, Toowong, July 2011 



81 

 

 

 

 

Figure B.53: Coronation Drive, Brisbane City, January 2011 (Bannerman 2011b) 

 

 

Figure B.54: Coronation Drive, Brisbane City, October 2011 
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Appendix C – GPS Accuracy Check 

Table C.1 PM vs. GPS Coordinates 

Point Easting Northing Elevation

knm-10443 494542.643 6956657.563 51.531

knm-55918 493841.907 6956692.724 60.906

PM-10443 494542.649 6956657.565 51.395

PM-55918 493840 6956692 60.78

ΔEasting ΔNorthing ΔElevation

PM-10443 -0.006 -0.002 0.136

PM-55918 1.907 0.724 0.126  

 

PM 10443 confirmed the horizontal accuracy to within 0.01m and vertical accuracy to 

approximately 0.13m as seen in Table C.1. The vertical accuracy was slightly lower 

than expected, so PM 55918 was also checked. It showed similar vertical accuracy, so 

the differences were attributed to differing geoid models. The horizontal accuracy of 

PM 5591 is poor because its coordinates were scaled from a digitised map. 

 

 

Figure C.1: PM 10443 Coordinate Details 
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Figure C.2: PM 55918 Coordinate Details 

 


