
3

University of Southern Queensland

Faculty of Engineering and Surveying

Optimum Strut-and-Tie Model for a Cantilever

Curved Wall

A dissertation submitted by

Nathaniel Caleb Veenstra

in the fulfilment of the requirements of

Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering (Civil)

Submitted: October, 2011

4

ABSTRACT

Topology optimization can be used as a tool for the development of optimized

reinforcement configurations within concrete members. Topology optimization is

the process of optimizing the distribution of material within a design domain, so as

to increase the efficiency with which the material used. This project will focus on

the optimized design of a curved cantilever wall, made of concrete and reinforced

through the traditional method of placing reinforcing steel.

Sigmund (2001) published the paper, A 99 line topology optimization code written in

Matlab, detailing the process of modelling and optimizing a domain to determine the

load transfer path within the member. This code employs a finite element analysis

operation, this being dependant on the use of square elements.

The current code prepared by Andreassen et al only consider domains constructed of

square, uniform finite elements, thus having limited capabilities in modelling

structures. The overall aim of this project is to modify and make additions to the

code to extend its capabilities in modelling domains constructed of non-square

quadrilateral elements with non-uniform geometry and volume.

A curved domain was arbitrarily formed and loaded with a single point load. One

boundary along its least dimension was fixed. A finite element mesh was created for

this domain and was used as the input for the modified optimization code. This code

successfully optimized the topology of the given domain, producing results that

showed the possibility of developing an optimized strut-and-tie model.

Whilst the optimization program functioned, the mesh used to define the domain was

too coarse, proving the results unusable for the development of an objective,

optimized topology. The formation of a closed form truss structure, required for a

strut-and-tie model, was seen to be forming, but a producing a strut-and-tie model

from such would have been highly subjective and inefficient. A refinement of the

finite element mesh, allowing for a lower minimum member size will allow for the

development of an objective topology optimization. In doing so, an efficiently

designed strut-and-tie model can be produced.

5

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &

ENG4112 Research Project Part 2

LIMITATIONS OF USE

The Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying, and the staff of the University of Southern Queensland, do not accept

any responsibility for the truth, accuracy or completeness of material contained

within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of

Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitled “Research

Project” is to contribute to the overall education within the student's chosen degree

program. This document, the associated hardware, software, drawings, and other

material set out in the associated appendices should not be used for any other

purpose: if they are so used, it is entirely at the risk of the user.

Professor Frank Bullen

Dean

Faculty of Engineering and Surveying

6

CERTIFICATION

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Student Name:

Student Number:

Signature

Date

7

ACKNOWLEDGEMENTS

I would greatly and most sincerely thank my supervisor, Dr Kazem Ghabraie.

Without his unyielding support, expertise, patience and ever-willingness to help, the

completion of this project would not have been possible. Throughout the entirety of

this project he was an invaluable source of wisdom and support, continuing to

encourage and push for the work to be completed to the highest standard.

Particular thanks goes to my girlfriend Erin for her encouraging me to be continually

pushing forward, ensuring that timelines were met and work was continually being

undertaken.

I would also like to acknowledge the continual, quietly encouraging support that my

family has been throughout the process of completing this work.

8

CONTENTS
Abstract .. 4

Limitations of Use .. 5

Certification.. 6

Acknowledgements .. 7

List of Figures .. 10

1 Introduction .. 11

2 Objectives ... 13

3 Literature Review ... 15

3.1 Strut-And-Tie Modelling .. 16

3.2 Topology Optimization ... 18

3.3 Finite Element Analysis .. 20

4 The Element Stiffness Matrix .. 25

4.1 Element Mapping .. 27

4.2 Jacobian Matrix... 29

5 Creating The Elements ... 30

5.1 Cantilever Domain .. 31

5.2 Domain Discretization .. 32

5.3 MATLAB Implementation ... 34

6 Element Stiffness Matrices .. 40

6.1 Mesh Plotting .. 41

6.2 Matrix Organisation .. 42

6.3 Element Stiffness matrix Calculation ... 43

7 Cantilever Optimization ... 46

7.1 TOPW – Topology Optimization ... 47

7.2 FE – Finite Element Analysis ... 48

7.3 KE – Element Stiffness Matrices .. 48

7.4 Program Output... 49

7.5 Required program Inputs .. 51

8 Results and Discussion ... 52

 8.1 Results .. 53

8.2 Discussion ... 56

8.2.1 Topology Optimization Usability ... 56

9

8.2.2 Domain Discontinuity ... 59

8.2.3 Suggested Modifications ... 60

9 Conclusion ... 63

9.1 Work Completed ... 64

9.2 Future Work .. 64

10.0 Reference List .. 66

Appendices ... 69

A.1 99 Line Code .. 70

A.2 coords.m ... 72

A.3 Element Stiffness Matrices .. 74

A.4 Modified Topology Optimization Code... 77

A.5 Specifications ... 79

10

LIST OF FIGURES
Figure 4.1: Element Mapping .. 28

Figure 5.1: Curved Cantilever Wall (all dimensions in millimetres) 31

Figure 5.2: Cosine Rule, as applied to cantilever geometry 32

Figure 5.3: Matrix CC structure ... 37

Figure 5.4: Nodal coordinate interpolation .. 37

Figure 6.1: Plotted Finite Element Mesh ... 41

Figure 7.1 Optimised topology for a curved cantilever: volfrac = 0.3, penal = 1.0. .. 50

Figure 8.1 Optimised topology for a curved cantilever: .. 53

volfrac = 0.3, penal = 1.0. .. 53

Figure 8.2 Optimised topology for a curved cantilever: .. 53

volfrac = 0.3, penal = 2.0. .. 53

Figure 8.4 Optimised topology for a curved cantilever: .. 54

volfrac = 0.5, penal = 2.0. .. 54

Figure 8.3 Optimised topology for a curved cantilever: .. 54

volfrac = 0.5, penal = 1.0. .. 54

Figure 8.6 Optimised topology for a curved cantilever: .. 55

volfrac = 0.7, penal = 2.0. .. 55

Figure 8.5 Optimised topology for a curved cantilever: .. 55

volfrac = 0.7, penal = 1.0. .. 55

Figure 8.7 Compressive regions shown by black elements, tension regions left void

 .. 56

Figure 8.8 Half-simply supported beam: 120 x 60 elements 57

Figure 8.9 The optimized topology showing the connectivity of elements at the

height of the cantilever ... 58

Figure 8.10 Two topologies identical except for rmin; the left has an rmin of 1.0, the

right has an rmin of 0.5 .. 60

Figure 8.11 Optimized Topology with volfrac being 0.2 and rmin 1.5 61

11

1 INTRODUCTION

1 INTRODUCTION INTRODUCTION

12

Currently there exists several numerical techniques which can be used as a

preliminary design tool in the distribution or placement of reinforcing steel in

structural concrete members. More specifically, the use of strut-and-tie modelling

identifies the load paths within a concrete member and the actions of the loadings

present, allowing for the optimized placement of reinforcement.

When considering the non-linear behaviour of concrete and the concrete-

reinforcement interaction, followed by employing a Finite Element model that is

optimized, models can become complicated. Adopting a simple linear-elastic model

for the concrete and the concrete-steel interaction allows for the load path through

the member to be determined using Finite Element and optimized in a less

complicated manner.

For this project, it is required that a preliminary reinforcement design for a non-

standard curved cantilever reinforced concrete wall be determined, of which the form

and loading conditions are arbitrarily determined. The optimization of the curved

cantilever will be undertaken through the modification of a current topology

optimization code created by Ole Sigmund (2001). Currently, this code only works

for members of uniform geometry employing the use of square finite elements. This

necessitates the code be modified with additions to be included allowing for the non-

uniform geometry of a curved member to be modelled.

Combining the results gained from the topology optimization code and the methods

given by strut-and-tie modelling, the reinforcement of the curved cantilever will be

designed. The topology optimization will indicate the optimum load transfer paths

through the loaded structure. Nominating service conditions of the curved cantilever

and translating these onto a strut-and-tie model, of which is generated by the results

from the topology optimization, will allow for the reinforcement configuration to be

designed.

Whilst the geometry and loading conditions of the wall will be arbitrarily nominated,

they will be selected such that they represent something close to normally expected

loadings.

13

2 OBJECTIVES

2 OBJECTIVES OBJECTIVES

14

In completion of this research project, it is aimed that the following objectives be

completed;

1. A literature review on finite element analysis, topology optimization and the

use of strut-and-tie modelling in reinforced concrete design.

2. Formulation of a specific, two-dimensional design case of a curved cantilever

wall.

3. Discretise curved cantilever wall for application of finite element analysis,

including determination of element stiffness matrix from element geometry

and material properties.

4. Modify existing 99-line code to perform optimization on curved domain

approximated with quadrilateral elements.

5. Design optimum Strut-and-Tie model based from optimized topology.

Time permitting

6. Change design case from two-dimensional cantilever curved wall to three-

dimensional curved cantilever beam.

15

3 LITERATURE REVIEW

3.1 STRUT-AND-TIE MODELLING LITERATURE REVIEW

16

3.1 STRUT-AND-TIE MODELLING

Strut and tie modelling is used to represent the load transfer mechanisms within a

crack concrete structure at its ultimate load limit state. Strut-and-tie modelling is

formed from a progression of the plastic truss analogy, originally developed by

Ritter (1899). Ritter found that a beam that failed and cracked in such a way that it

could be represented by a parallel chord truss.

More specifically, the inclined shear cracking seen in the failed beam indicated the

direction of the principle stress trajectories. By aligning compressive struts along

these load paths, or the regions bounded by the shear cracking, the principle stresses

are resisted (MacGregor et al.). Providing addition struts and ties between the nodes

of the original struts ensured that transverse equilibrium within the member was

satisfied, thus forming a steel structure that held resemblance to a traditional truss

frame.

Schlaich et al. (1987) extended the standard truss model such that it could be used on

beams where the strain distribution is non-linear. Introducing the concept of D and

B regions, the beam could be segmented into regions where the strain distribution is

linear, in which the region is labelled a B region or that where the strain distribution

is non-linear, named D regions.

A D region is formed by any of the following acting on a concrete structure, that

being a point or distributed load, supports or discontinuity in geometry. Warner et

al. (2007) and Liang (2005) further show that discontinuous regions exist in design

features such as corners of members, corbels, and at the column-footing connection.

The D regions are further broken down into D1 and D2 regions. The region D2 is the

region of discontinuity whilst D1 is the transmission region between D2 and B.

Warner et.al (2007) suggests that the size of these regions is variable, dependant on

the region of discontinuity and of length varying from being equal to the height of

the discontinuous section through to 1.5 times the height of the discontinuous

section. This is shown to apply to both the D1 and D2 regions.

Liang (2005) simply outlines how the load path is determined;

 Determine the loading and reactions on each region;

 Finding the centroid of the stress distribution; and

 Linking the each centroid of the stress distributions, remembering that the

loads transfer through the path of minimum deflection.

The above steps are the same as suggested by Ritter; linking the load paths with

further struts and tie provides transverse equilibrium. It is common practice that in

the design process for several strut and tie models to be generated. This is achieved

3.1 STRUT-AND-TIE MODELLING LITERATURE REVIEW

17

forme mostly because the centroids of the stress distributions can be linked in

different configuration.

Schlaich (1987) proposed that the optimum strut and tie model be selected is based

upon the principle of minimum strain energy. Mathematically, it is expressed as the

following;

∑

where N is the total number of elements, Fi is the force, l is the length and ε is the

mean strain, all of the ith member. This model is applied to the truss formed of

struts and ties, thus the reference to the length, strain and force of each member.

This sum is of all struts and ties in each model, with the model with the minimum

sum being that most suitable.

In literature, what is heavily agreed upon is the subjective nature with which the strut

and tie model is formed. As said, for any geometric structure, several strut-and-tie

models can be formed. As is often the case, a design formed by trial and error,

whilst being able to offer a structurally sound design that meets all loading

conditions, is one such that undue forces are placed upon the structure, simply

because of and over engineered or sub-optimum strut and tie configuration. Whilst

the strut and tie model can be useful in the way that it allows the designer to specify

a load path so as to allow for a certain design requirement, it is also highly possible

and likely that an inefficient design is produced (Liang).

In the present day, the use of Finite Element Analysis identifies the principles and

the directions of for a loaded structure, outputting the results in a visual form. Liang

(2005) mentions that these methods are still reliant on the ability of the designer to

interpret the visualized stresses and ascertain the appropriate location of struts and

ties.

 It is this subjective nature in which the strut and tie models are formulated that

increases the need for a more efficient production of a strut-and-tie model.

3.2 TOPOLOGY OPTIMIZATION LITERATURE REVIEW

18

3.2 TOPOLOGY OPTIMIZATION

Considering any structure, the location and distribution of material within that

structure can greatly affect its structural performance. In the optimization of a

structure, Bendsoe et al. (2004) outlines three characteristics can be addressed; the

size, shape and topology. Size optimization refers to finding the optimum thickness

distribution of a linear elastic plate or the optimum member cross sectional area.

This aims to reduce the peak stress and deflection within the structure and its

members whilst external design constraints such as nodal locations and design

domain remain constant through the optimization process. In a similar manner,

shape optimization addresses the shape of existing voids and members whilst

minimizing the peak stress and deflection.

Liang (2002) describes that topology optimization is where by the locations of voids,

their geometric properties and occurrence within the design domain under the given

loading is determined and, how these voids are interconnected to the design domain.

The final form of the structure, known as the layout is defined by the process of

optimizing the size shape and topology of the structure.

In relation to a Finite Element Analysis, topology optimization can be focused on the

design of an isotropic material and the optimum placement of material within the

design domain, in particular finding what elements should be allocated as solid

material or void space. Liang (2005) suggests that this process can be simply

represented as the black and white rendering of an image; where colours of various

scale existed, they are replaced by either black or white. This process of selection

between the colours black and white, or rather elements being found to be solid or

void is the process known as filtering.

Filtering of elements is done by either density analysis (Liang, 2005 & Sigmund,

2001). Briefly considering the process of a FEA, the global stiffness matrix is given

by the multiplication of the global force vector with the inverse of the global

displacement vector (this process is defined in Section 3.3). Modifying the global

stiffness matrix to find each element stiffness matrix allows for the density of each

element to be determined. By employing a density filter, uneconomical elements can

be removed in part of the optimization process.

This whole optimization process can be group into three sections; pre-processing,

optimization and post-processing (Bendsoe). Pre-processing involves;

 Selection of the ground structure including nodal coordinates and boundary

conditions;

 Definition of design points or those elements within the domain that are to

remain void or solid; and

3.2 TOPOLOGY OPTIMIZATION LITERATURE REVIEW

19

 Construction of the FE mesh such that it can define the ground structure and

all design points.

Optimization involves;

 Designing an original design including the homogenous distribution of the

material over the design domain;

 Starting the iterative loop, perform a FEA on the domain;

 Calculate the compliance of the density distribution, comparing to the

compliance of the previous density distribution. In this first iteration, this

step is passed over. If the difference is negligible, the iteration stops with the

current density distribution being selected;

 Computing the updated density variable, whilst also ending the iterative

loop; and

 Repeat the iteration.

Post processing simply involves analysing a visual output of the optimized structure.

3.3 FINITE ELEMENT ANALYSIS LITERATURE REVIEW

20

3.3 FINITE ELEMENT ANALYSIS

Finite element analysis is used to determine the reactions of a solid state body under

defined conditions, of which affect the physical state of the body. Hutton (2004)

describes that a finite element analysis (FEA) seeks to determine the distribution of

some field variable, like the displacement in a stress analysis, within a defined body

under governing conditions.

FEA was first used to in stress analysis, in which the displacements of a body under

applied conditions where determined. The knowledge of how the body displaced

allows for the determination of the stresses within the body, as dictated by the

materials properties.

Hutton states that the behaviour of a structure is dependent on the geometry or

domain of the system, the property of the material…, and the boundary, initial and

loading conditions. More specifically, the behaviour of a cantilever wall will be

dependent on the geometrical shape of the wall, the properties of the material

(concrete) from which the wall is made, how the wall is fixed to the surrounding

environment (namely how the movement of the wall is or isn‟t restricted), the state

of stresses or actions external or internal to wall before analysis and the path and

magnitude of loadings placed onto the wall.

A FEA generally is undertaken by the following, as given by Hutton;

 The geometry of the domain is modelled.

 The domain is discretised or meshed.

 Material properties of the body are specified.

 Boundary, initial and loading conditions specified.

The process of discretization is by which the domain is broken down into a series of

smaller geometric domains, of which are defined by a minimum of three nodes. The

connection of these nodes forms an element. By discretising a large domain into a

larger number of smaller elements, the complexity associated with the solution of a

large domain is reduced; it is easier to determine the solution for a large number of

simply defined, smaller domains, of which form a larger domain, rather than

determine the solution for a single domain, of which is equal to that formed from a

number of elements.

Commonly, elements are defined by either three of four nodes giving triangular or

rectangular elements. Whilst triangular elements can represent a curved or inclined

surface with greater originality, the accuracy of the solution determined is of lesser

accuracy than that obtained with rectangular elements. The shape of rectangular

elements however, restricts their use to domains with perpendicular bounds.

3.3 FINITE ELEMENT ANALYSIS LITERATURE REVIEW

21

The introduction of a quadrilateral element allows for curved or inclined boundaries

to be modelled without losing significant accuracy (Hutton & Liu). Thus, for the

modelling of a cantilever wall, quadrilateral elements are to be used.

For all calculation, the field variables are determined at the nodes. For all nonnodal

points, the determination of the field variables is by interpolation. Generally, Hutton

shows that the field variable at the nonnodal point of (x,y) is equal to;

 () () () () ()

where N1, N2, N 3 and N4 are the interpolation functions and Ø1, Ø 2, Ø 3 and Ø 4 at

the nodes.

For a quadrilateral element (Hutton & Liu);

 ()

()()

 ()

()()

 ()

()()

 ()

()()

where r and s represent the coordinates of natural coordinates, namely the point at

which the field variable is to be determined.

Liu et al. (2003) gives the statics system equations for a structure as;

where K is the global stiffness matrix, U is the nodal displacement vector and F is

the nodal force vector. Liu et al. states that the process of assembly is one of simply

adding up the contributions from all the elements connected at a node. For a given

structure, sections of the nodal force and displacement vector can be known.

Nodes along the domain or structures boundary can either be fixed in their

movement, limited in some actions or free. Numerically, the nodal displacement

vector can be represented by;

[

]

3.3 FINITE ELEMENT ANALYSIS LITERATURE REVIEW

22

where u denotes the horizontal displacement and v denotes the vertical displacement.

For a node where the displacement is known, either by a set displacement or being

fixed (given a value of 0), the displacements can be stated, i.e. u = 0, v = 0 being the

displacement is known to be fixed.

Similarly, for the nodal force vector, it can be defined at which nodes and in which

direction the loadings can be placed. The transposition of point loads onto a finite

element mesh can be simply achieved by locating the point load onto the nearest

node or mesh intersection point. Loadings can only by placed on nodes and cannot

be placed at any point on the mesh between two nodes. Thus, for a distributed

loading, the equivalent loading upon each node on which the distributed load acts

must be determined.

 As given by Hutton, the element stiffness matrix for the quadrilateral element e is;

[()] ∫[] [][]| |

The matrix [D] is the elastic property matrix and is defined by Liu as;

[]

()()
[

]

E is the Young‟s modulus and v is the Poisons ratio for the solid body‟s material.

The matrix [D] is dependent on whether a Plain Strain or Plane Stress approach is

used. Hutton identifies the use of the Plane Stress approach for situations in solid

mechanics where the body under analysis adheres to the following conditions;

1. When considering a three-dimensional body, defined by x, y and z axes,

the z axis represents the thickness of the body and is less than one-tenth

of the smallest dimension in the x-y plane.

2. Loading only occurs within the x-y plane.

3. The material of the body is linearly elastic, isotropic and homogeneous.

The Plain Strain approach is used when in comparison; the dimension in the z axis is

larger than in those in the x-y plane. Hutton proposes the following mathematical

relationship defining whether the Plain Strain approach is to be used;

Considering the above further explains the assumptions of the Plain Strain approach.

The normal strain generated within the z axis is due to the effects of Poisons ratio

and is such that its small size proves it negligible. Furthermore, because loading

occurs only within the x-y plane, only small shearing strains are experienced and are

3.3 FINITE ELEMENT ANALYSIS LITERATURE REVIEW

23

again disregarded. For the design of the cantilever wall, the length of the wall is

assumed to be greater than the thickness and height, thus a Plain Strain approach is

used.

 For the stiffness matrix relationship, t is the constant element thickness. For the

cantilever, the thickness relates to the length of the wall. Thus, a constant wall

length will result in a constant t and for this case of design can be assumed to be

equal to unity (1).

The matrix [J] is named the Jacobian Matrix, of which the determinate is the

Jacobian and is given by Hutton to be equal to;

[] [

] [

] | | []

For matrix [B], Hutton gives its definition by the following;

[] [][]

where

[]

| |
[

]

and

[]

[

]

The calculation of the above matrices allows for the nodal stiffness matrix to be

determined, from which the Global Stiffness matrix can be compiled.

For a quadrilateral element made from four nodes, of which each has two degrees of

freedom, the size of the stiffness matrix is the product of the number of nodes and

the degrees of freedom for each node, thus forming an 8x8 matrix. Consider the

following arbitrary matrix, ke;

3.3 FINITE ELEMENT ANALYSIS LITERATURE REVIEW

24

[

]

To assemble the Global Stiffness matrix, element-by-element addition is undertaken.

The Global Stiffness matrix is a square matrix, of magnitude equal to the product of

the number of elements and the degrees of freedom of each element. The matrix is

filled by the respective entry from each of the nodes connecting at that node, i.e;

[]

where the series of number m through to n represent all elements intersection at a

common node and k is the element stiffness matrix for node m/n. This completes the

calculation of the unknown constants and allows for the unknown displacements to

be calculated.

Consider the following simple representation of a Finite element solution;

[

] [

] [

]

If it is established that the subscript denotes those fixed degrees of freedom, it shows

that Uq is equal to zero. Thus the above equations reduce to;

Knowing Fp and Kpp, Up can be calculated, thus determining all unknown nodal

displacements. From this, all unknown nodal forces, as denoted by Fq, can also be

calculated.

25

4 THE ELEMENT STIFFNESS MATRIX

4 THE ELEMENT STIFFNESS MATRIX THE ELEMENT STIFFNESS MATRIX

26

The 99-Line MATLAB code, as written by Ole Sigmund uses the finite element

method to determine element stresses so as to optimise the given domain. This

method involves calling a constant element stiffness matrix for use on square finite

elements. The code written by Sigmund uses a constant element size throughout

with every domain being called using a one-by-one finite element. This allows for a

generic element stiffness matrix to be written and called (Lines 91-100).

This code however, as previously discussed is only for the use on square finite

elements; the modification of this code for the use on quadrilateral elements, the

basis for this project, is required. Subsequently, this stiffness matrix must be

adjusted accordingly. As given by Hutton, the element stiffness matrix for any

quadrilateral element is;

[()] ∫[] [][]| |

Where the matrix [D] is the elastic property matrix and is defined by Liu as;

[]

()()
[

]

For matrix [B], Hutton gives its definition by the following;

[] [][]

where

[]

| |
[

]

and

[]

[

]

Also required is the Jacobian Matrix, [J], as given by Hutton to be equal to;

4.1 ELEMENT MAPPING THE ELEMENT STIFFNESS MATRIX

27

[] [

] [

] | | []

For any four-sided, four node element, the above relationships hold. The elastic

property matrix ([D]) will remain unchanged, independent of the element geometry

but dependant on the material properties of the domain or element.

The matrix [P], as shown in the above form is that for an element of size unity. This

matrix is that which Sigmunds‟ code uses, remaining constant throughout. For the

solution of a finite element problem using quadrilateral elements, this matrix must be

changed with each element size. This change of element geometry will be

undertaken using a process of element mapping, relating the irregular geometry of

the actual element to an imaginary, „parent‟ element of regular size.

4.1 ELEMENT MAPPING

The mapping of the quadrilateral element will be represented by the shift shown in

Figure 4.1. The irregular element is shown on the left, the geometry as defined by

nodes 1-4. The „mapped‟ element is on the left, its coordinates such that it has a

centroid at the location (0,0) and the area is four square units. The interpolation

functions, as given by Hutton for any quadrilateral element, irregular or regular are

such that at the centroid of the element;

 ()

()()

 ()

()()

 ()

()()

 ()

()()

These interpolation functions are given for an element of the same geometry as the

parent element (right, Figure 4.1), as per Hutton. Further, Hutton states that the

values of r and s are dependant on the order of the interpolation functions. Since the

interpolatons functions are simple quadratic functions, the values for r and s are;

√

4.1 ELEMENT MAPPING THE ELEMENT STIFFNESS MATRIX

28

Figure 4.1: Element Mapping

 Thus, the matrix [P] can be explicity derived, as follows.

The partial derivatives of the element [P] are as follows;

()()

()

()()

()

()()

()

()()

()

()()

()

()()

()

()()

()

()()

()

Hutton shows that, using the given values of r and s as the range for integration (an

approximation of), the previously given solution of the element stiffness matrix is

equal to;

[()] ∑

∑[] [][]| |

The inputs for this sum will thus be;

4.2 JACOBIAN MATRIX THE ELEMENT STIFFNESS MATRIX

29

() (
√

√

)

() (
√

 √

)

() (
 √

√

)

() (
 √

 √

)

Taking the sum of the calculation between the four integration points gives the

element stiffness matrix for the particular set of four nodes.

4.2 JACOBIAN MATRIX

In a similar manner to the matrix [P] being dependant on the element geometry, so is

the Jacobian matrix also dependant on the nodal coordinates of each individual

element. As previously stated, Hutton gives the Jacobian matrix to be equal to;

[] [

] [

]

Considering the element in its natural coordinates (Figure 4.1), Hutton shows that

the above components of the Jacobian matrix expand to;

 ∑

[() () () ()]

 ∑

[() () () ()]

 ∑

[() () () ()]

 ∑

[() () () ()]

This gives all entries within the Jacobian matrix, completing the matrix [G] and

allowing for the element stiffness matrix to be determined; taking the sum of the

substitutions between (r1,s1) to (r2,s2) gives the required values of the Jacobian.

30

5 CREATING THE ELEMENTS

5.1 CANTILEVER DOMAIN CREATING THE ELEMENTS

31

5.1 CANTILEVER DOMAIN

The cantilever wall to be modelled (approximated by quadrilateral elements) is as

shown in Figure 5.1. The curve of the wall is modelled and represented by the use of

a parabola. The thickness was made to be 500 millimetres, with a total height of

5500 millimetres. To perform the finite element analysis of the wall, the domain

shown must be discretised by a series of elements. The minimum dimension of the

wall is clearly seen to be the base, thus the number of elements will be an

approximated function of this width.

The width of 500 millimetres is chosen to be broken into five elements of an equal

width of 100 millimetres. This allows for the domain to be broken into a series of

smaller domains, 100 millimetres in width and extending along the largest dimension

of the wall.

To allow for easy integration of this new domain into the existing MATLAB code,

the number of element in each of these long, slender domains must be equal.

A line was considered along the centre of the wall, parallel to sides of its longest

dimension. This line was used as a reference point from which to start discretising

the domain of the wall. Whilst not possible for the element dimensions to be exactly

equal, they must be of a similar scale such that the accuracy of the finite element

solution is not compromised; an element with one dimension far greater than the

other will produce discrepancies within the solution and is not desirable.

Figure 5.1: Curved Cantilever Wall

(all dimensions in millimetres)

5.2 DOMAIN DISCRETIZATION CREATING THE ELEMENTS

32

This central line through the domain, one not representing the location of nodes,

serves the purpose of creating an „average‟ element dimension. The width, as given

previously, of each element is equal to 100 millimetres (at the base of the structure).

Thus, an average height for each element of 100 millimetres was also assumed.

5.2 DOMAIN DISCRETIZATION

Figure 5.2 shows a segment of this central line, Line IJ. The point K is an assumed

„centre‟ of the Line IJ, and all successive sections of this line, collectively forming

the central parabolic line through the curved cantilever. Line IJ is a straight line,

approximating a segment of the central parabolic line. The lines KI and KJ are

vectors, representing the distances between point K and I, and K and J, respectively.

The angle formed between the line KI and KJ is set to equal delta theta. James‟ et al

definition of the cosine rule states that;

 ()()

The equation for this central line, being parabolic in nature and represented by a

quadratic equation, can be determined through the use of three known points. If the

point K is assumed to be a central location for the parabola (not in any manner either

of the foci for the parabola), then this point can also be assumed to have the

coordinates of (1500, 0). Therefore, the turning point of parabola representing the

central line will be (1500, 5250), with the points were the line intersects the line of y

= 0 being equal to (250, 0) and (2750, 0), since symmetry of the parabola will hold.

Using a set of simultaneous equations, the following can be formed, being based

upon the general form of a parabolic equation;

For the three points, (1500, 5250), (250, 0) and (2750, 0)

Figure 5.2: Cosine Rule, as applied to cantilever

geometry

5.2 DOMAIN DISCRETIZATION CREATING THE ELEMENTS

33

Entering these into matrix form gives;

[

] [

] [

]

Solving for the matrix of coefficients;

[

]

[

] [

] [

]

[

]

[

] [

]

[

]

Thus giving;

[

] [

]

Therefore, the equation of this central line is;

With reference to Figure 5.2, the coordinates for point K are known, and remain

constant. The point of I is known, if it assumed that the process of determining the

coordinates for J is an iterative process; since the coordinates for points I and K are

known, similarly the length of IJ (assumed to equal 100 millimetres), the coordinates

of point J can be determined, this allows for the determination of angle delta theta.

This process is based upon the construction of a circle with the centre at point I, and

a radius of 100 millimetres. The point J is the intersection of this point. Whilst there

will also be a second intersection point, the correct, or required point is easily

determined; both components of the coordinates must be greater than the centre of

the circle, or x2 must be greater than x1, and y2 must also be greater than y1.

The equation of a circle, again is given by James as;

() ()

The constants a and b are the centre of the circle, with r being the radius of the

circle. Arranging this function in terms of y gives, making y the subject;

 √ ()

The next step in determining the coordinates of J is to make the functions of the

parabolic and circular functions of the notations given by Figure 5.2. Considering

the equation of a circle;

5.3 MATLAB IMPLEMENTATION CREATING THE ELEMENTS

34

 √ ()

Again, considering the parabola, leaving the coefficients as given by A, B and C;

Having two equations defining y2 as a function of x2, they can be equated, giving the

coordinate x2. This is as follows;

 √ ()

 ()
 [

 ()]

Expanding the squares;

 [
 ()][

 ()]

 ()

 ()
 () () ()

 []
 []

 [()]
 [()]

 [()
]

[]
 []

 [()]
 [()]

 [()

]

This quartic equation is able to be solved, giving the value for x2, dependant on the

coordinates of x1. Similarly, the coordinate y2 can also be determined through use of

the quadratic equation defining the central line. The coefficients A, B and C are as

previously defined.

5.3 MATLAB IMPLEMENTATION

Appendix A.2 contains the MATLA code „coords.m’, the script used to calculate

the coordinates x2 and y2 along the central line in increments where the vector IJ has

a length of 100 millimetres. The first three lines (1-3) exist to clear all previous data

and variables, tables and windows within the MATLAB program. Line (5) defines

the range of x-variables allowable for the given cantilever domain; from x = 0 to x =

1500. Line (6) defines the matrix int1_r, the known x-coordinates for the central

parabolic line, and the matrix int2_r, the known y-coordinates for the same line.

Line (7) contains the calculation for the matrix cr, the coefficients for the central

line as also previously given. Line (8) contains the calculation of all y-coordinates

for the central line within the given range (line (5)). Line (9) lists coefficients again,

equating them to A, B and C, for easy calling further in the script. Line (11) creates

5.3 MATLAB IMPLEMENTATION CREATING THE ELEMENTS

35

the matrix cord, a 56 by 3 matrix into which the coordinates of x2 and y2 are placed

(first and second columns respectively). The contents of the third column and its

relevance will be discussed later. Line (12) defines the first coordinates within the

matrix cord, being equal to the x and y coordinates of the central line at the point

(250, 0). Line (13) defines these columns (1 and 2) as x and y, again for easy

identification and manipulation. Line (14) gives the numerical value for pi (π).

Line (15)-(25) contain the for loop used to determine all coordinates for the point

J. Line (15) starts the loop, an i counter starting at 2, running through to the length

of the matrix cord. The counter starts at i = 2; the first coordinates for I, x1 and y1

are already known. Thus, the current coordinates that needs calculation is at (x2, y2).

Line (17) names the variables r1, r2, r3, r4, and r5. These variables are

assigned as the coefficients of the above quartic equation. They contain the constant

coefficients of A, B and C (the coefficients for the equation of the central line) and

the variables that change with each iteration; (x2, y2). Line (18) lists the matrix R,

containing the variables or quartic coefficients. Line (19) contains the calculation of

the roots for the quartic equation, using the in-built roots calculator within

MATLAB, outputting the results into the matrix r. This matrix contains four

constants, since the equation is quartic. However, due to there only being two

intersection points between the parabola and the circle, two of these points area

imaginary. Also, the new coordinates, (xi, yi) must be greater than the coordinates

of the previous iteration, (xi-1, yi-1). Thus, from visual inspection, the real coordinates

for xi is taken as the third entry in the matrix r. Using the equation for the central

parabolic line the coordinate for yi is also determined.

Briefly refereeing again to Figure 5.2, the cosine rule enables the angle delta theta

can be determined. The terms IJ, KI and KJ are determined as follows;

 ()
 ()

 () ()

 () ()

Therefore,

 √()

 √()

Thus, solving for delta theta,

 ()()

5.3 MATLAB IMPLEMENTATION CREATING THE ELEMENTS

36

For the incremental value of delta theta that is required, the above relationship is

continued;

 ()()

Referring again to the script coords.m, line (23) contains the calculation of IJ
2
, KI

2

and KJ
2
. Line (24) contains the calculation of delta theta, notated by dt. The value

for dt at the iteration i is then stored within the matrix cord. Line (25) terminates

the loop. Line (26) states the coordinates of the turning point for the central line, or

the point at which the domain discontinues. If the iteration loop was continued

beyond 56 iterations, the sum of the angle delta theta would exceed 90 degrees.

From visual inspection, it was limited to 56 iterations, with the 56 value being set to

equal that at the turning point. The turning point will be entered, as with all other

coordinates of the central parabolic line, into the matrix cord.

Lines (28)-(39) are those that define the equations for all other long parabolic lines,

breaking the domain into five, 100 millimetre wide sections (as measured at the base

of the cantilever). For each line, a similar process is followed to that used to

determine the equation of the central line. For each parabolic line (representing a

discretization in the length of the cantilever), a matrix of points is formed, containing

the values of x for the known locations. Similarly, a vector of coordinates (y) is also

formed. These are int1_(i) and int2_ (i), where i is the parabolic line

represented. The following line (29, 31, 33, 35, 37, 39) creates and calculates the

vector containing the coefficients each parabolic line (listed as cr (i), where i is

the parabolic line represented).

Line (41) creates and fills the matrix c; a matrix of zeroes to be filled with the

coefficients of all parabolic lines forming the curved cantilever, a total of six lines

with three coefficients each. The following entries on line (41) then assigned to each

column of c with the respective vector of coefficients, calculated in lines (29, 31, 33,

35, 37, 39). Line (42) similarly creates the matrix of zeroes, CC. This matrix is

contains all coordinates of nodes, eventually forming the finite element mesh. This

mesh is formed from six parabolic lines, each with an x and y coordinates. Thus, CC

has twelve columns. The number of rows is assigned as 56, the same number of

entries within the matrix cord. Lines (43)-(48) then fill the starting points of the

parabolic lines, the intersection points they have with the y axis, or the points at the

base of the cantilever. These points provide the start of the iterations that enable all

other points along the parabola to be determined. A visual representation of the

matrix CC follows (Figure 5.3).

5.3 MATLAB IMPLEMENTATION CREATING THE ELEMENTS

37

Figure 5.4: Nodal coordinate interpolation

Line

1

Line

1

Line

2

Line

2

Line

3

Line

3

Line

4

Line

4

Line

5

Line

5

Line

6

Line

6
x co

o
rd

in
at

es

y co
o
rd

in
at

es

x co
o
rd

in
at

es

y co
o
rd

in
at

es

x co
o
rd

in
at

es

y co
o
rd

in
at

es

x co
o
rd

in
at

es

y co
o
rd

in
at

es

x co
o
rd

in
at

es

y co
o
rd

in
at

es

x co
o
rd

in
at

es

y co
o
rd

in
at

es

 Lines (49)-(62) contain the calculation of each x and y coordinate for the nodes

along the first defining parabolic line. An identical process is undertaken in lines

(63)-(76), (77)-(90), (91)-(104), (105)-(118) and (119)-(132) for the second, third,

fourth, fifth and sixth parabolic lines, respectively. For each parabolic line (1-6,

Figure 5.4), the nodal coordinates of the finite element mesh along each parabola

must be determined. To form a clear and geometrically neat mesh, the elements are

designed such they are similar in geometry. From the previous steps outlined, the

central line was broken into segments approximating its length, each a total of 100

millimetres long. For each coordinate defining these segments, the angle between

the tangent and the „centre‟ and the previous point (from the immediately previous

iteration) was determined.

Consider the line shown in Figure 5.4 between the centre and (xi, yi). This line is a

straight line, represented by the following;

This equation is easily attainable. The slope m is the slope of the line and is

measured respective to the horizontal. For the current iteration, or point i, the angle

∆θi is equal to the sum of ∆θ1 through to ∆θi. Therefore, knowing the angle between

this line and the horizontal, the slope is equal to;

Figure 5.3: Matrix CC structure

5.3 MATLAB IMPLEMENTATION CREATING THE ELEMENTS

38

 (∑

)

Since all lines of i pass through the centre (1500, 0), the constant c will be discrete

and calculable, as follows;

 (∑

)

Therefore, rearranging for c gives;

 (∑

)

Thus, the equation for any line passing through the centre (1500, 0) will be;

 (∑

) (∑

)

In constructing the elements, the assumption was made that each element across the

width of the cantilever will align with its neighbouring elements; all elements‟ nodes

will align/connect to another with no nodes existing at any point along the mesh

aside from the corners of an element. Taking a similar approach as used to

determine the coordinates along the central parabolic line, the intersection point of

the central tangent (the line between the centre (1500, 0) and (xi, yi)) and the

parabola will be determined through letting their equations equal each other.

Taking the equation for the central tangent and making it in terms of xi and yi gives;

 (∑

) (∑

)

Taking the equation of any parabolic line as well and performing the same

transformation;

Letting the two equations be equal gives;

 (∑

) (∑

)

5.3 MATLAB IMPLEMENTATION CREATING THE ELEMENTS

39

Arranging into the form of a quadratic equation gives;

()
 ((∑

)) ((∑

))

Through nature of the tangent of the angle delta theta, the above equation was

modelled in the following manner to give required results;

()
 ((∑

)) ((∑

))

Thus, considering any line, the nodes for the finite element mesh and elements

contained can be determined. Referring again to the script coords.m, Line (50)

starts the iterative counter, ranging from 2 through to 56, the total number of nodes

along any one parabola. Line (51) calculates the angle theta, listed as th, for the

current iteration. This was shown to be equal to the sum of all values for theta

previous and including the current iteration. Line (52) names and calls the

coefficients of the parabolic line; here they are called as Aa, Bb and Cc, referring to

A, B and C, respectively. They are all called from the previously defined vector c.

Lines (53)-(55) define the coefficients of the modified quadratic equation, as shown

above containing the equations of the parabolic line and the respective central

tangent; these are named as j1, j2 and j3. Line (56) names and creates the vector

J, containing the coefficients j1, j2 and j3. Line (57) names and creates the

vector j, containing the roots, or intersection points of the parabola and the central

tangent.

 Line (58) assigns the correct intersection point (confirmed by visual analysis) as the

second entry of the vector j, then allowing for the corresponding y coordinate to be

determined (line (59)). Line (60) stores the value for xi and yi in the matrix

containing all coordinates (CC). Whilst not required to be part of the loop, line (61)

contains the definition of last nodal point (or turning point of the parabola).

This process was then repeated for the second, third, fourth, fifth and sixth parabolas,

each coordinate being set into the correct placed within the matrix CC. This gave a

complete set of coordinates representing the finite element mesh approximating the

design domain.

Once all lines and their approximating coordinates were calculated and saved within

the matrix CC, the matrix was saved to allow for future use. This operation is shown

in lines (134)-(136).

40

6 ELEMENT STIFFNESS MATRICES

6.1 MESH PLOTTING ELEMENT STIFFNESS MATRICES

41

The script coords.m calculated and stored the coordinates of the finite element

mesh under the filename coords.mat. The new script ke.m takes these nodal

coordinates, organises them and calculates the element stiffness matrix for each

element within the cantilever domain. This chapter explains the process of

calculating the element stiffness matrix for each element, refereeing to the script

ke.m. This script is found in Appendix A.3, complete with line numbering.

6.1 MESH PLOTTING

The script start with clearing and closing all previous data through lines (1)-(3).

Line (5) imports and loads the coordinates calculated in the script coords.m and

returns them as the file coords.mat. Figure 5.3 shows the structure of the matrix

CC. It is such that the coordinates for the first parabola are given in the first and

second columns (x and y respectively), with subsequent lines being found in the

proceeding columns. Lines (7)-(11) plot the finite element mesh; line (7) creates the

figure, Line (8) plots each point along each respective parabola, creating them as

black dots, ('k.'). Line (10) ensures that the axis are scaled equally and print the

correct parabola form, while line (11) defines the limits of the plot.

Figure 6.1: Plotted Finite Element Mesh

6.2 MATRIX ORGANISATION ELEMENT STIFFNESS MATRICES

42

Figure 6.1 is the plotted finite element mesh. The horizontal plane is defined by the

number of elements in the x-direction. The existing code defines the domain by

calling the number of elements in the horizontal and vertical direction, calling them

nelx and nely. Referring to Figure 6.1, the nodes in the horizontal direction are

consequently represented by nelx and the nodes in the vertical direction by nely.

This mesh is what approximately represents the six parabolic line used to define the

curved cantilever wall and lies on the parabolic lines calculated in the script

coords.m; explained in Section 5.1 and 5.2.

6.2 MATRIX ORGANISATION

Lines (13) through to (39) reorganise the nodal coordinates of the mesh, as given by

the matrix CC, into a form more easily used for the calculation of the element

stiffness matrices.

Line (13) defines the number of elements in the horizontal (nelx) and vertical

directions (nely). Whilst already known to the user, they are numerically defined

here as a function of the matrix CC, allowing for future modification or streamlining

of the current codes. Line (14) creates the three-dimensional matrix eCx, used to

store the x-coordinates of each element within the domain. This matrix contains

275, four element matrices; 275 elements each represented by four x-coordinates.

Line (15) contains a similar calculation, creating the matrix eCy, used to store the y-

coordinates of each element within the domain. Considering the element n, the entry

in matrix eCx(:,:,n) contains the x-coordinates for this element, while the entry

in the matrix eCy(:,:,n) contains the y-coordinates for the same element. Line

(16) contains an unused function, creating a matrix used to defined nodal

coordinates. This line has been left for possible future use.

Lines (18)-(39) contain the loop organising the element coordinates, taking them

from the matrix CC and organising them into the matrices eCx and eCy. Line (18)

initiates the loop, creating a counter ranging from 1 to 55; the total number of

element in the vertical direction, nely.

Lines (19)-(20) organise the x-coordinates for the element i. The ordering of the

nodes for each element is as shown in Figure 4.1; the first at the lower left hand

corner (where nelx and nelx are smallest) and proceeding anti-clockwise in

increasingly higher order. Consider the following extract of lines (19) and (20).

19 eCx(1,1,i) = CC(i,1); eCx(2,1,i) = CC(i+1,1);

20 eCx(1,2,i) = CC(i,3); eCx(2,2,i) = CC(i+1,3);

If the counter i is made to equal 2, this refers to the second element in the mesh.

Thus, eCx(1,1,i)refers to the first entry in the first row of the second element.

In the global system this would be element 2. This is made to equal CC(i,1); the

x-coordinate of the node along line 1, the first parabolic line, thus why it called from

6.3 ELEMENT STIFFNESS MATRIX CALCULATION ELEMENT STIFFNESS MATRICES

43

the first column of the matrix CC. Lines (21)-(22) perform the same operation,

except for the y-coordinates of element i.

Lines (23) to (38), while performing the same operation as in (19)-(22), differ

slightly to account for the variance in size of the matrices eCx and eCy and CC.

Where the matrix CC is a 12 -by-56 matrix, the matrices eCx and eCy are both three

dimensional 2 by 2 by 275 matrices. The coordinates are taken from the required

row (given by the ith entry) and column (dependant on the parabolic line used to

defined the coordinate) of the matrix CC. They again are entered into the correct

location in the matrix (eCx or eCy) by defining the „third‟ dimension of the

respective matrix. Particularly note the notation of this third dimension; it is

determined by adding to the counter i, R*(length(CC)-1), where R+1

represents the parabolic line used to defined the coordinates in question. It is

essentially used to locate the coordinates and reorganise them from a matrix with

twelve columns into another with only two columns. This process is that used for

lines (23)-(28), filling the matrices eCx and eCy.

6.3 ELEMENT STIFFNESS MATRIX CALCULATION

The matrices eCx and eCy contain the x and y-coordinates of the cantilever

domain, containing some zero elements. One step undertaken in calculating the

element stiffness matrix for each element involves calculating the determinant of the

Jacobian matrix. Due to the arrangement and ordering of the element nodes, this

cannot be performed while zero elements in the domain exist; the determinant can

only be determined when their exists only non-zero entries within the two-by-two

matrix. Lines (41) to (58) contain two loops in which these zero entries are replaced

by a value approximately equal to zero. Lines (41) to (49) perform the calculation

for the x-coordinates, looping over all entries within the matrix eCx, replacing them

with the value of 1x10
-7

. Below is an extract containing lines (41) to (49), showing

this operation for the matrix eCy.

41 for i = 1:nelx*nely

42 for j = 1:2

43 for k = 1:2

44 if eCy(j,k,i)<=0

45 eCy(j,k,i) = 0.0000001;

46 end

47 end

48 end

49 end

Line (41) starts the loop, passing over each two by two entry in the matrix. Line (42)

and (43) count over each entry within the two-by-two matrix, containing the y-

coordinates of the element i. Lines (44)-(46) then examine the coordinates,

replacing the entry with 1x10
-7

 if it is equal to zero. If this statement is false, then

6.3 ELEMENT STIFFNESS MATRIX CALCULATION ELEMENT STIFFNESS MATRICES

44

the loop passes over the entry to the next. The loop is then terminated in lines (47)-

(49). This same operation is performed for the matrix eCx in lines (50)-(58).

The statement of material variables is done in lines (60) and (61), while the element

elastic property matrix ([D]) is calculated in line (62). Line (63) gives the

integration points r and s. Line (64) creates the matrix to contain the final

compilation of the element stiffness matrices, while line (65) creates the 4 matrices

used to store the four integrations done in calculating the element stiffness matrices.

The four integrations are completed between the following points;

() (
√

√

)

() (
√

 √

)

() (
 √

√

)

() (
 √

 √

)

The steps used are described in reference to lines (67) to (85), integrating between

the points (r1, s1). Line (67) starts the counter looping over all elements. Lines (86)

to (71) calculate the partial derivatives of the interpolation functions, between the

points r1 and s1. Line (72) and (73) list the entries of the partial derivatives into the

matrix [P]. Lines (74) and (75) call the required x and y-coordinates for the element

i from the matrix eCx and eCy. Lines (76)-(79) calculate the entries for the

Jacobian matrix, calling on the coordinates for element i. The Jacobian matrix is

created from the partial derivatives calculated in lines (76)-(79) in line (80), these

entries then being used to fill the matrix [G] in lines (81) and (82). The matrix [B],

the product of [G] and [P], is calculated in line (83). Line (84) is then used to fill all

entries in the matrix storing the integration between points r1 and s1, taking the

product of; the transpose of [B], the elastic property matrix [D], the matrix [B] and

the determinant of the Jacobian, [J]. The loop is then terminated in line (85). This

same process (as in lines (67)-(85)) is followed in lines (87)-(105), (107)-(125) and

(127)-(145) for the integration between points (r1,s2), (r2,s1) and (r2,s2), respectively.

Lines (147) to (149) collate all entries in the matrices listed in line (65), starting a

loop in line (147), looping over and taking the sum of each entry in line (148) and

terminating in line (149). Lines (151) save the matrix KE, containing all element

stiffness matrices, as a data file called ‘stiff.mat’. Lines (152) and (153) save

the matrices eCx and eCy into the files ‘xcoords.mat’ and ‘ycoords.mat.

6.3 ELEMENT STIFFNESS MATRIX CALCULATION ELEMENT STIFFNESS MATRICES

45

Lines (155)-(161) manipulate and re-save the data in matrices eCx and eCy into a

format usable for use with the MATLAB function, ‘patch’. This function will be

used later to plot the optimised topology of the cantilever. The current format of the

matrices eCx and eCy is such that there are 275, two-by-two matrix entries. The

‘patch’ function requires three entries; two vectors to plot against each other, and

a third containing data specifying the colour to be plotted for each entry in the two

preceding vectors. These two vectors are, for the case of a four-node element, are

sized such that each element represents a row (thus 275 in total), each column having

four rows, each containing either the x or y-coordinates for the element.

Line (155) creates the two vectors, X and Y, used as the entry in the ‘patch’

function. Line (157) and (158) organises the entries in matrices eCx and eCy and

places them into the required place in the matrices X and Y. The loop is ended in

line (159), with the two matrices being each saved into a data file in lines (160) and

(161). This ends the file ke.m.

46

7 CANTILEVER OPTIMIZATION

7.1 TOPW – TOPOLOGY OPTIMIZATION CANTILEVER OPTIMIZATION

47

This chapter outlines the sections of the original topology optimization code top.m

(Appendix A.1) that underwent modification in order to model and optimize the

topology of the curved cantilever (Figure 5.1).

Two sections of this code underwent no modification; the Optimality Criteria Update

and the Mesh-Independency Filter. The code performing the optimality criteria

update is in lines (38) to (49) of the original code, with the mesh-independency filter

being performed in lines (50) to (65).

Lines (3) to (37) of top.m list the main function, it calling on other functions within

the program to complete the optimization process. This section demanded additions,

calling the required data and function files, as well as new variables defining the

varying element stiffness matrices.

Lines (66) to (86) perform the finite element analysis on the domain, including the

definition of loading support conditions. Only slight modification will be required;

no major changes will be made to the way in which function operates. The

definition of the load and support conditions changes, in addition to the calling of the

density distribution (x) and the penalty factor (penal).

Lines (87) to (100) contain the calculation of the element stiffness matrix. Whilst

the element stiffness matrices have been previously calculated in the script ke.m,

they have been recalculated in another, internal function file. The purpose of

calculating them in the file ke.m, was to enable checking of the solution and speed

the computation time. The calculation of the stiffness matrices in the function file

LK, (line 102, Appendix A.4) is also done in a more streamlined manner than in the

script ke.m.

7.1 TOPW – TOPOLOGY OPTIMIZATION

The section details the workings of the function topw. This main function is

contained in lines (4) to (32) of the script topw. It calls on sub-functions throughout

and subsequent sections of this chapter describe them further. While previously the

user had to define the variables nelx, nely, volfrac, penal and rmin, they

have been explicitly stated at the start of the script, so as to improve usability for this

select case.

Line (6) starts with an initial density distribution over the design domain, with

counters started in lines (7) and (8). Lines (10) through to (12) import the required

data files; ‘xcoords.mat’, ‘ycoords.mat’, ‘nodes.mat’,

‘coords.mat’, ‘X.mat’ and ‘Y.mat’, also defining the new variables names

to each; X, Y, nodes, CC, xx and yy, respectively.

The main loop starts in line (13) and continues through to line (46), remaining

virtually unchanged. Small additions are made, starting in line (24), giving a counter

to select the required element stiffness matrix. Line (28) defines which element is

7.2 FE – FINITE ELEMENT ANALYSIS CANTILEVER OPTIMIZATION

48

being selected, with the correct element stiffness matrix variable (KE0) being set in

the calculation of the objective function of the element in line (29). Line (30)

calculates the compliance of the element. Lines (33) to (42) print the same variables

at each iteration, remaining unchanged from the original script.

 The lines (43) through to (45) have changed, those being required to plot the curved

cantilever with the optimized topology. Line (44) starts with the calculation of the

element density, rho, being equal as to what is shown. This subtraction is

performed to ensure that the optimized elements are shown as black, with voids as

white. Other entries in line (44) remain unchanged, except for the inclusion of the

patch function.

This function calls the vectors xx and yy, those loaded and made to equal the

vectors X and Y from the script ke.m. The vectors xx and yy are 4-by-275 vectors,

able to be programed into the patch function. The final entry for the patch

function is the transpose of the vectors of element density ratios rho, entered in a

form compatible with the vectors xx and yy.

Following the printing of the optimised topology, the loop is ended in line (46).

7.2 FE – FINITE ELEMENT ANALYSIS

The finite element analysis remains largely unchanged, with only small adjustments

required for the definition of loadings on the cantilever and its support conditions.

Line (77) initiates the function, calling the required inputs previously defined. Line

(78) calls the element stiffness function (KE) , while the number of elements is

defined in line (79). Lines (80) through to (91) again remain almost unchanged, with

only one addition in line (88) being made. This calls the explicit element stiffness

matrix, the counter being defined in line (84). Line (89) is modified to accommodate

the change of the name of element stiffness matrix.

Lines (92) to (99) define the loading and support conditions. Line (93) governs that

the load is placed at the last degree of freedom with an arbitrary load of negative one

being placed. Line (94) defines that all nodes along the horizontal axis, were x is

equal to zero, are fixed in both degrees of freedom. The remaining lines through to

(99) remain unchanged.

7.3 KE – ELEMENT STIFFNESS MATRICES

The function for calculating the element stiffness matrices is started in line (102),

followed by a listing of the required domain constraints in line (103). Again, the

data files ‘xcoords.mat’, ‘ycoords.mat’ are called, line (104), with the

creation of a zeros matrix KE in line (105). The element elastic property matrix [D],

is calculated in line (106) with the integration points r and s being given in line

(107).

7.4 PROGRAM OUTPUT CANTILEVER OPTIMIZATION

49

The three-part nestled loop is started in (108), looping through each element (line

(108)) and taking the required integration points (counters in line (109) and (110)).

The vector x is filled in line (111), calling the required entries from the matrix eCx,

with the same process used in line (112) for filling the vector y. Two vectors

containing the partial derivatives of the interpolation functions are calculated in lines

(113) and (114), filling the matrix [P] in lines (115)-(118). The Jacobian matrix is

then calculated in Line (119), while lines (120) through to (122) fill the matrix [G]

with terms from the Jacobian.

Line (123) calculates the matrix [B], while the element stiffness matrix calculation is

completed in line (124). The loop is terminated in lines (125)-(127). The matrix KE

is that which now contains all elements stiffness matrices, available for calling in

previous functions.

7.4 PROGRAM OUTPUT

The program, completed for the optimization of the curved cantilever shown in

Figure 4.1, gives the following output. The results shown (Figure 7.1) are with an

input of the volume fraction (volfrac) being equal to 0.3 and the penalty factor

(penal) being equal to 1.

7.4 PROGRAM OUTPUT CANTILEVER OPTIMIZATION

50

Figure 7.1 Optimised topology for a curved cantilever: volfrac = 0.3, penal =

1.0.

7.5 REQUIRED PROGRAM INPUTS CANTILEVER OPTIMIZATION

51

7.5 REQUIRED PROGRAM INPUTS

The program (Appendix A.4) has been completed to state that meets the

specification 5, Section 2.0. This required that the code originally written by Ole

Sigmund (Appendix A.1) be modified such that a curved domain, represented by

quadrilateral could be optimized. The code in A.4 can perform this operation

meeting this objective with only minor inputs. Within the code, it is required that the

volume fraction, penalisation factor, minimum member size be defined, in addition

to the number of elements used to model the domain.

The code also requires the input of two data files, containing the coordinates of the

nodes defining the finite element mesh. Each data file contains either the x or y-

coordinates of all nodes within the domain. Whilst the nodes for this cantilever were

defined by another MATLAB script, future users can chose which process is used to

determine the nodes for any domain. The format of the data files called however

must remain in the same format without necessitating changes to the script.

52

8 RESULTS AND DISCUSSION

8.1 RESULTS RESULTS AND DISCUSSION

53

This chapter contains the results obtained from the optimization of the curved

cantilever under various design constraints. The loading and minimum member size

remained constant throughout testing, with variation occurring only to the volume

fraction and penalty factor.

The volume fraction is fraction of the volume that will remain at the end of the

optimization. This remains constant throughout the optimization process, with

variation in the number of elements being accounted for through a variation of their

density, changed in the variation of the element density distribution. The following

figures are those obtained from the optimization. Six images are included, showing

the use of three volume fractions and two penalty factors.

 8.1 RESULTS

Figure 8.1 Optimised topology for a curved cantilever:

volfrac = 0.3, penal = 1.0.

Figure 8.2 Optimised topology for a curved cantilever:

 volfrac = 0.3, penal = 2.0.

8.1 RESULTS RESULTS AND DISCUSSION

54

Figure 8.3 Optimised topology for a curved cantilever:

volfrac = 0.5, penal = 1.0.

Figure 8.4 Optimised topology for a curved cantilever:

volfrac = 0.5, penal = 2.0.

8.1 RESULTS RESULTS AND DISCUSSION

55

Figures 8.1-8.6 show the six optimized topologies for the curved cantilever under

varying design constraints. Figures 8.1, 8.3 and 8.5 show the topology when the

volume fraction is changed in increments of 0.2 from 0.3 to 0.7, run with a constant

penalisation factor of 1. Figures 8.2, 8.4 and 8.6 represent that same incremental

change in the volume fraction, but with a penalisation factor of 2. The network of

black elements represents the optimized load transfer path through the domain, and

can be seen to vary with varying design inputs.

As expected with any cantilevers member, regions of compression and tension are to

exist. Referring to Figure 8.7, it is by convention that the compressive forces will

exist in the region shaded by the black elements. Different loading conditions will

produce variations of this, but for all cases where the single point load is placed on

the lower, right-hand extremity (last element), it is to be expected that the

compressive forces will exist in the inner regions of the curved cantilever, whilst

tensile forces will act in the outer regions of the same domain, left void.

Figure 8.5 Optimised topology for a curved cantilever:

volfrac = 0.7, penal = 1.0.

Figure 8.6 Optimised topology for a curved cantilever:

volfrac = 0.7, penal = 2.0.

8.2 DISCUSSION RESULTS AND DISCUSSION

56

Since the cantilever is fixed along the bottom boundary, no deflection can occur

along this boundary. Similarly, it is at this location that the greatest bending

moments are expected to occur, being the greatest distance from the point of loading.

8.2 DISCUSSION

8.2.1 TOPOLOGY OPTIMIZATION USABILITY

The filtering of densities during the optimization process is undertaken by means of

calculating the compliance of the domain and making comparison with the

compliance of the domain from the previous iteration. This compliance is relative to

the element stiffness and displacement matrices at each iteration, summed to

calculate the domains compliance. The optimization process is terminated when the

comparison of compliances (current and previous) converges towards a constant,

different for each variation in design variables.

The selection of elements, in the way of those selected for the optimized load path, is

also, in crude terms a comparison of elements, determining which have a greater

deflection or stress and thus distributing to the element a higher density. Figure 8.1

and 8.2 both clearly show that varying densities can experienced, thus also indicating

that stresses within these elements can vary.

Figure 8.7 Compressive regions shown by

black elements, tension regions left void

8.2 DISCUSSION RESULTS AND DISCUSSION

57

Figure 8.8 Half-simply supported beam: 120 x 60 elements

Considering again the expectation of greater bending stresses within the lower

section of the cantilever, this is somewhat proven (in the case of this example) by

considering the density distribution of the elements in Figure 8.1. The outer tensile

region is shown by the colouring of elements; progressing from the fixed boundary

up the cantilever shows a lightening of element colouring, or in physical terms, a

lessening of the density distribution, also indicating less stresses within the structure.

From Section 2.0, the fifth objective was to design an optimum strut-and-tie model,

based upon the results obtained from the topology optimization of the cantilever.

The development of a strut-and-tie model requires that a truss-like structure be

presented in the topology optimization process, as shown by Ritter (1899). Figure

8.8 shows a half-section of a simply supported beam, optimized with the following

input;

top(120,40,0.5,3,1.5)

The topology is such that it does represent a parallel chord truss, and presents a

closed-form structure in which transverse equilibrium is held. The support

conditions allow for the static solution and through the application of a truss

analysis, all forces within the assumed members can be determined, in turn allowing

for a strut-and-tie model to be developed.

Consider the solutions shown in Figure 8.1-8.6; none exhibit a closed form solution

with transverse equilibrium. Whilst all shown connectivity to the boundary

conditions, this is expected and also irrelevant. It is the cantilevered end that

presents a problem in regards to obtaining a truss-like structure. In all plots (Figure

8.1-8.6) the compressive region extends through to the point of loading. This

compressive member is not however, connected to any other. If this structure was

taken, assuming all black elements to indicate the alignment the structures‟

members, this member connected to the point loading would act in compression and

bending.

8.2 DISCUSSION RESULTS AND DISCUSSION

58

Figure 8.9 The optimized topology showing the

connectivity of elements at the height of the cantilever

This solution is not acceptable for two reasons. The first is due to a contradiction in

principles behind the solution of static truss analysis. All members are connected

with pin joints; compression and tensile forces are transferred whilst the pin

connection does not allow for any bending forces to be generated or transferred.

Further, a cantilever cannot be supported by a pin connection. The presence of a

cantilever member would require a fixed connection, meaning the truss would not be

statically determinate.

A finite element analysis could be undertaken, determining all internal stresses, but it

is still not an acceptable solution in regards to producing a strut-and-tie model. Liang

(2005) requires that all nodes are connected so as to provide transverse equilibrium

between struts-and-ties. If a cantilever member exists within the optimized

topology, then this requirement proposed by Liang is not met.

Looking at the variation in plots, an increasing volume fraction shows an increase in

the number of elements allocated as solid material, given a density greater than one.

Similarly, a larger penalisation factor for this case also shows a greater connectivity

between the tensile and compressive regions within the domain. Figure 8.6 (volfrac

= 0.7, penal = 2.0) shows the greatest similarity towards a closed-form structure,

allowing for the generation of a strut-and-tie model.

8.2 DISCUSSION RESULTS AND DISCUSSION

59

The outer tensile and compressive regions are shown, with additional elements

within the domain indicating the location of possible struts or ties. Towards to the

top of the cantilever, elements with a low density can be seen to be forming,

connecting the outer tensile region to the compressive region.

Figure 8.9 shows a plot, used to see what effects exist when a higher volume fraction

is used. This number, from pure visual inspection, can also be seen to be greater

than those shown in Figure 8.6, indicating that a closed truss structure can be

developed. The topology shown in Figure 8.9 cannot however be used for the

derivation of a strut-and-tie model as explained in further detail.

The truss structure formed is only achieved through use of a high volume fraction.

This high fraction, whilst producing a somewhat usable and solvable truss structure,

does not produce an objectively analysable form. The aim of topology optimization

is to remove the subjectivity in which strut-and-tie models are formed, resulting in a

more efficient design not inducing unnecessary stresses within the designed member

and using materials more efficiently. Developing a strut-and-tie model from an

optimized topology such as in Figure 8.9 allows for unnecessary freedom when

assuming the alignment of member.

Remembering that along the fixed boundary, the width of an element is 100

millimetres, also being the mean element dimension. The optimized topology shown

in Figure 8.9 at times extends to the full thickness of the member. Even at the

thinnest point, the optimized topology can be up to 200 millimetres. Whilst

representing a truss, this thickness allows for too much freedom when aligning

tensile or compressive reinforcement. Further considering that the width is only 500

millimetres, this effectively allows for a 40% variation in the placement of the

reinforcement within the domain.

This large variation in possible reinforcement locations introduces high subjectivity

in regards to an „optimized‟ design. The assumption of placing the reinforcement at

the outermost location is valid, but still allows for unnecessary stresses to be

introduced in regions of high discontinuity. The designer is required to assume or

make an educated guess as to at what point the connection between the tensile

regions is made. A wide, pixelated curve, as in Figure 8.9, allows for significant

variation in the definition of the alignment of the reinforcement placed and

consequent inaccuracies and inefficiencies.

8.2.2 DOMAIN DISCONTINUITY

The results given in Figures 8.2, 8.4 and 8.6 lean to suggest that a region of high

shear stress exists within the cantilever, approximately in the middle third of the

member. Figure 8.9, shown with a higher volume fraction but the same penalisation

factor, shows the distribution of a higher density over the elements within this same

region.

8.2 DISCUSSION RESULTS AND DISCUSSION

60

Figure 8.10 Two topologies identical except for rmin; the left has an rmin of 1.0,

the right has an rmin of 0.5

It is within this same, approximate region that the elements have a reasonably

inconsistent geometry. Whilst it could be assumed that this higher density

distribution exists because of errors produce with irregular element geometries, it is

possibly only one factor, another being because of discontinuity within the stress

distributions.

The highest region of geometry discontinuity exists at the end, or top of the

cantilever. At this point however, the tensile and bending stresses induced within the

structure due to bending are minimal, due to their close proximity to the point of

loading. The region showing a higher element density distribution exist within at a

point, balanced between being further from the loading, thus having greater stresses,

and where the discontinuity is greater, there being a greater curvature of the domain.

These two factors; distance producing greater stresses and curvature in domain

producing discontinuity, result in a region where the density distribution is required

to be greater than other regions. It may also be suggested that in this region, higher

shear stresses, in addition to tensile and compressive forces, may be experienced

when contrasted to other regions within the domain.

8.2.3 SUGGESTED MODIFICATIONS

To produce an optimized topology that can be classed as closed-form truss, a

redistribution of material is required. A high volume fraction is undesirable since

high subjectivity is introduced into the interpretation of results. To allow for a

greater distribution of material, whilst maintaining the same process of distributing

the density, a reduction in the minimum member size is required.

8.2 DISCUSSION RESULTS AND DISCUSSION

61

Figure 8.10 shows the optimized topology for two domains, identical except for a

variation in the minimum member size (rmin) used. This shows that any further

reduction in the minimum member size for this domain is to no effect. Further, this

also shows that the discretization of the domain with the given mesh cannot be used

to effectively develop an objectively analysable strut-and-tie model.

Figures 8.1 and 8.2 show an incomplete truss formation. The members existing by

representation through black elements exist as separately acting cantilevers that

cannot be used to construct an optimized strut-and-tie model. Figures 8.3 to 8.6

show a volume fraction too high, resulting in a subjectively placed reinforcement

layout, again resulting in a less-than-optimal strut-and-tie model.

All figures show the requirement for the refinement of the mesh used to discretise

the domain. A refinement in mesh requires a reduction in the size of the elements

used within the domain. To maintain consistency, an increase in the number of

elements in both the horizontal and vertical direction is needed. Combining this with

a small volume fraction will also be of benefit, producing results similar to that

shown in Figure 8.11.

This domain is under loadings and supports identical to those in Figure 8.8. The

input given to produce the topology was;

top(100,40,0.2,2,1.5)

This topology gives clear indication as to the placement of reinforcement within the

domain. It is unknown whether compressive reinforcement is needed, but if

required, little choice or variance is allowed. Similarly, little variation is given in the

placement of the tensile reinforcement. To allow for similar results to be obtained

for the cantilever structure, further work must be undertaken; refining the mesh,

reducing the mean element size and reducing the minimum member size. This

process will have one major benefit; a closed-form truss will be developed allowing

Figure 8.11 Optimized Topology with volfrac being 0.2 and rmin 1.5

8.2 DISCUSSION RESULTS AND DISCUSSION

62

for a strut-and-tie model to be formed. Another subsequent benefit may also include

greater accuracy within the solution. By using a finer finite element mesh, the

approximation made of the domain by using quadrilateral elements will converge on

a more accurate approximation, thus also increasing the accuracy of the finite

element solution. In turn, this could be expected to provide an optimized topology

greater representing the actual conditions of the loaded cantilever.

63

9 CONCLUSION

9.1 WORK COMPLETED CONCLUSION

64

9.1 WORK COMPLETED

It has been demonstrated to certain detail the process in which research and design

work was undertaken to complete the initial objectives (Section 2.0). Through using

topology optimization, the researcher aimed to design an optimized strut-and-tie

model for a curved cantilever wall, loaded by a single point load at its cantilevered

end.

The optimization process was to make use of a previously written optimization code.

The limitations of this code meant that without modification, only rectangular

domains discretised by square elements could be optimized. Use of this code to

approximate and model a curved domain would be both difficult to interpret and

inaccurate with respect to producing a solution that closely represented physical

loadings and resultant internal structural stresses and deformations.

Taking the existing code and remodelling for use with quadrilateral elements

allowed for the curved domain to be closely and accurately modelled. The topology

optimization code (Appendix A.1) performs a finite element analysis, of which was

the main section requiring modification for use on quadrilateral elements. The

derivation of an element stiffness matrix for a quadrilateral element can be found in

Section 6.3, and it was this derivation that was used and programmed into the

modified code (Appendix A.4).

This code (A.4) made slight modifications to the existing one, with additions being

made to the input parameters, additional data files being produced, a new finite

element analysis function being written and case specific design variables being

permanently programmed into it.

The results obtained (Section 8.1) showed that the optimization process was valid

with several different design situations being tested meeting the requirements of

specification 4, Section 2.0. They also showed, however that the mesh used to

discretise the domain was too coarse; accuracy was sufficient but the large elements

used defined member locations and sizes too large to allow for a strut-and-tie model

to be objectively developed. This resulted in the final objective (5) not being met.

Whilst the code and all preluding work met all objectives previous, including the

optimization of a curved cantilever wall, the results obtained resulted in this

objective (6) not being met. This objective can however be met by undertaking and

completing the steps outlined in the following section.

9.2 FUTURE WORK

In order to meet this final objective of developing an objective, optimized strut-and-

tie model, a revision of the finite element mesh must be undertaken. This is

primarily focused on increasing the number of elements within the domain and

reducing the minimum allowable member size. In doing this, a revision of other

internal processes within the script will also be required, mainly small compilation

9.2 FUTURE WORK CONCLUSION

65

functions used to construct matrices used in the computation process. This process

may not be required to be undertaken under the circumstance that futures users may

choose to use a method different to MATLAB programming to produce the finite

element mesh.

In increasing the number of elements used to discretise the domain, it is to be

expected that an increase in computation time and decrease in computation speed

will be experienced. As results of this, the 88-line code produce by Andreassen et al

could be modified in a similar manner to the earlier written 99-line code (A.1). The

99-line code was written to perform the same function, but was streamlined into the

88-line code to produce faster computation speeds. By adapting this code to perform

an optimization on the curved cantilever, a more accurate solution can be achieved in

a faster time than that when using the modified code in Appendix A.4.

By reducing the minimum allowable member size and introducing more elements, an

optimized topology will be produce with similar results as in Figure 8.11, allowing

for a reinforcement design that is designed objectively from the optimized topology.

A low volume fraction with a small minimum member size will allow for a topology

optimization that can be used for a practical application in designing reinforcement

configurations for curved members, approximated by quadrilateral elements. In

doing so, the reinforcement configuration will be one in which the most efficient use

of materials is made whilst not introducing unnecessary stresses through inefficiently

placing reinforcement members.

66

10.0 REFERENCE LIST

10 REFERENCE LIST REFERENCE LIST

67

Andreassen, E, Clausen, A, Schevenels, M, Lazarov, BS & Sigmund, O 2010,

Efficient topology optimization in MATLAB using 88 lines of code, education article,

TopOpt Research Group, viewed 15 March 2011, <

http://www.springerlink.com/content/j321pp130q82g87h/>.

Bendsoe, MP & Sigmund, O 2004, Topology Optimization: Theory, Methods

and Applications, Springer, Germany.

Chessa, A 2002, 'Programming the Finite Element Method with Matlab', educational

article, Northwestern University, Chicago.

Ghabraie, K 2011, 'On the finite elements parts of the 99 and 88-line Matlab codes

for topology optimization', educational article, University of Southern Queensland,

Toowoomba.

Hartmann F. & Katz, C 2007, Structural Analysis with Finite Elements ,

Springer, New York.

Hutton, DV 2004, Fundamentals of Finite Element Analysis , McGraw-Hill, New

York.

James, G, Burley, D, Clements, D, Dyke, P & Searl, J 2007, Modern Engineering

Mathematics,4
th

 edn, Pearson Prentice Hall, Australia.

Kattan, PI 2003, MATLAB Guide to Finite Elements: An Interactive Approach ,

Springer, Germany.

Liang, QQ 2005, Performance-based Optimization of Structures: Theory,

Methods and Applications, Spon Press, Oxon.

Liang, QQ, Brian, U & Steven, GP 2002, 'Performance-Based Optimization for

Strut-Tie Modelling of Structural Concrete', Journal of Structural Engineering,

June, pp. 815-23.

Liang, QQ, Xie, YM & Steven, GP 2001, Generating Optimal Strut-and-Tie Models

in Prestressed Concrete Beams by Performance-Based Optimization', ACI

Structural Journal, March-April, pp. 226-32.

Liu, GR & Quek, SS 2003, The Finite Element Method, Butterworth-Heinemann,

London.

MacGregor, JG & Wight, JK 2005, Reinforced Concrete: Mechanics and

Design, Pearson Prentice Hall, United States of America.

Sigmund, O 2001, 'A 99 line topology optimization code written in Matlab',

Structural and Multidisciplinary Optimization , vol. 21, pp. 120-27.

10 REFERENCE LIST REFERENCE LIST

68

Warner, RF, Foster, SJ & Kilpatrick, AE 2007, Reinforced Concrete Basics:

Analysis and design of reinforced concrete structures , Pearson Australia,

Sydney.

69

APPENDICES

A.1 99 LINE CODE APPENDICES

70

A.1 99 LINE CODE

1 %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%%

2 %%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%%

3 function top(nelx,nely,volfrac,penal,rmin);

4 % INITIALIZE

5 x(1:nely,1:nelx) = volfrac;

6 loop = 0;

7 change = 1.;

8 % START ITERATION

9 while change > 0.01

10 loop = loop + 1;

11 xold = x;

12 % FE-ANALYSIS

13 [U]=FE(nelx,nely,x,penal);

14 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

15 [KE] = lk;

16 c = 0.;

17 for ely = 1:nely

18 for elx = 1:nelx

19 n1 = (nely+1)*(elx-1)+ely;

20 n2 = (nely+1)* elx +ely;

21 Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

22 c = c + x(ely,elx)^penal*Ue'*KE*Ue;

23 dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue;

24 end

25 end

26 % FILTERING OF SENSITIVITIES

27 [dc] = check(nelx,nely,rmin,x,dc);

28 % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD

29 [x] = OC(nelx,nely,x,volfrac,dc);

30 % PRINT RESULTS

31 change = max(max(abs(x-xold)));

32 disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...

33 ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...

34 ' ch.: ' sprintf('%6.3f',change)])

35 % PLOT DENSITIES

36 colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);

37 end

38 %%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 function [xnew]=OC(nelx,nely,x,volfrac,dc)

40 l1 = 0; l2 = 100000; move = 0.2;

41 while (l2-l1 > 1e-4)

42 lmid = 0.5*(l2+l1);

43 xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));

44 if sum(sum(xnew)) - volfrac*nelx*nely > 0;

45 l1 = lmid;

46 else

47 l2 = lmid;

48 end

49 end

50 %%%%%%%%%% MESH-INDEPENDENCY FILTER %%

51 function [dcn]=check(nelx,nely,rmin,x,dc)

52 dcn=zeros(nely,nelx);

53 for i = 1:nelx

54 for j = 1:nely

55 sum=0.0;

56 for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)

57 for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)

58 fac = rmin-sqrt((i-k)^2+(j-l)^2);

59 sum = sum+max(0,fac);

60 dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);

61 end

62 end

63 dcn(j,i) = dcn(j,i)/(x(j,i)*sum);

64 end

65 end

66 %%%%%%%%%% FE-ANALYSIS %%%

67 function [U]=FE(nelx,nely,x,penal)

68 [KE] = lk;

69 K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));

70 F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);

71 for elx = 1:nelx

72 for ely = 1:nely

73 n1 = (nely+1)*(elx-1)+ely;

A.1 99 LINE CODE APPENDICES

71

74 n2 = (nely+1)* elx +ely;

75 edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];

76 K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;

77 end

78 end

79 % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)

80 F(2,1) = -1;

81 fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);

82 alldofs = [1:2*(nely+1)*(nelx+1)];

83 freedofs = setdiff(alldofs,fixeddofs);

84 % SOLVING

85 U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);

86 U(fixeddofs,:)= 0;

87 %%%%%%%%%% ELEMENT STIFFNESS MATRIX %%

88 function [KE]=lk

89 E = 1.;

90 nu = 0.3;

91 k=[1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

92 -1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];

93 KE = E/(1-nu^2)*[k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

94 k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

95 k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

96 k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

97 k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

98 k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

99 k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

100 k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

101 %

102 %%

103 % This Matlab code was written by Ole Sigmund, Department of Solid %

104 % Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark. %

105 % Please sent your comments to the author: sigmund@fam.dtu.dk %

106 % %

107 % The code is intended for educational purposes and theoretical details %

108 % are discussed in the paper %

109 % "A 99 line topology optimization code written in Matlab" %

110 % by Ole Sigmund (2001), Structural and Multidisciplinary Optimization, %

111 % Vol 21, pp. 120--127. %

112 % %

113 % The code as well as a postscript version of the paper can be %

114 % downloaded from the web-site: http://www.topopt.dtu.dk %

115 % %

116 % Disclaimer: %

117 % The author reserves all rights but does not guaranty that the code is %

118 % free from errors. Furthermore, he shall not be liable in any event %

119 % caused by the use of the program. %

120 %%

A.2 COORDS.M APPENDICES

72

A.2 COORDS.M

1 clear all

2 close all

3 clc

4

5 x = (0:100:1500);

6 int1_r=[250^2 250 1; 2750^2 2750 1; 1500^2 1500 1]; int2_r =

[0;0;5250];

7 cr = inv(int1_r)*int2_r

8 yr = cr(1).*(x.^2)+(cr(2).*x) + cr(3);

9 A = cr(1); B = cr(2); C = cr(3);

10

11 cord = zeros(56,3);

12 cord(1,1) = 250; cord(1,2) = 0;

13 x = cord(:,1); y = cord(:,2);

14 pi = 3.141592654;

15

16 for i = 2:length(cord);

17 r1=A^2; r2=2*A*B; r3=(2*A*(C-y(i-1)))+(B^2)+1; r4=(2*B*(C-y(i-1)))-(2*x(i-1));

r5=((C-y(i-1))^2)-(100^2)+(x(i-1).^2);

18 R = [r1; r2; r3; r4; r5];

19 r = roots(R);

20 x(i) = r(3);

21 y(i) = A*(x(i).^2)+(B*x(i)) + C;

22 cord(i,1) = x(i); cord(i,2) = y(i);

23 IJs(i) = (x(i)-x(i-1))^2+(y(i)-y(i-1))^2; KIs(i) = (x(i-1)-1500)^2+(y(i-1)-0)^2;

KJs(i) = (x(i)-1500)^2+(y(i)-0)^2;

24 dt(i) = pi-(acos((IJs(i)-KIs(i)-KJs(i))/(2*sqrt(KIs(i))*sqrt(KJs(i)))));

cord(i,3) = dt(i);

25 end

26 cord(56,1) = 1500; cord(56,2) = 5250;

27

28 int1_1=[0^2 0 1; 3000^2 3000 1; 1500^2 1500 1]; int2_1 = [0;0;5500];

29 c1 = inv(int1_1)*int2_1;

30 int1_2=[100^2 100 1; 2900^2 2900 1; 1500^2 1500 1]; int2_2 =

[0;0;5400];

31 c2 = inv(int1_2)*int2_2;

32 int1_3=[200^2 200 1; 2800^2 2800 1; 1500^2 1500 1]; int2_3 =

[0;0;5300];

33 c3 = inv(int1_3)*int2_3;

34 int1_4=[300^2 300 1; 2700^2 2700 1; 1500^2 1500 1]; int2_4 =

[0;0;5200];

35 c4 = inv(int1_4)*int2_4;

36 int1_5=[400^2 400 1; 2600^2 2600 1; 1500^2 1500 1]; int2_5 =

[0;0;5100];

37 c5 = inv(int1_5)*int2_5;

38 int1_6=[500^2 500 1; 2500^2 2500 1; 1500^2 1500 1]; int2_6 =

[0;0;5000];

39 c6 = inv(int1_6)*int2_6;

40

41 c = zeros(3,6); c(:,1) = c1; c(:,2) = c2; c(:,3) = c3; c(:,4) = c4; c(:,5) = c5;

c(:,6) = c6;

42 CC = zeros(56,12);

43 CC(1,1) = 0; CC(1,2) = 0;

44 CC(1,3) = 100; CC(1,4) = 0;

45 CC(1,5) = 200; CC(1,6) = 0;

46 CC(1,7) = 300; CC(1,8) = 0;

47 CC(1,9) = 400; CC(1,10) = 0;

48 CC(1,11) = 500; CC(1,12) = 0;

49 % Line 1

50 for i = 2:length(CC);

51 th = sum(cord(1:i,3));

52 Aa = c(1,1); Bb = c(2,1); Cc = c(3,1);

53 j1=Aa;

54 j2=Bb+(tan(th));

55 j3=Cc-(1500*tan(th));

56 J = [j1 j2 j3];

57 j = roots(J);

58 x(i) = abs(j(2));

59 y(i) = ((Aa*x(i).^2)+(Bb*x(i))+(Cc));

60 CC(i,1) = x(i); CC(i,2) = y(i);

61 CC(length(CC),1) = 1500; CC(length(CC),2) = 5500;

62 end

63 % Line 2

A.2 COORDS.M APPENDICES

73

64 for i = 2:length(CC);

65 th = sum(cord(1:i,3));

66 Aa = c(1,2); Bb = c(2,2); Cc = c(3,2);

67 j1=Aa;

68 j2=Bb+(tan(th));

69 j3=Cc-(1500*tan(th));

70 J = [j1 j2 j3];

71 j = roots(J);

72 x(i) = abs(j(2));

73 y(i) = ((Aa*x(i).^2)+(Bb*x(i))+(Cc));

74 CC(i,3) = x(i); CC(i,4) = y(i);

75 CC(length(CC),3) = 1500; CC(length(CC),4) = 5400;

76 end

77 % Line 3

78 for i = 2:length(CC);

79 th = sum(cord(1:i,3));

80 Aa = c(1,3); Bb = c(2,3); Cc = c(3,3);

81 j1=Aa;

82 j2=Bb+(tan(th));

83 j3=Cc-(1500*tan(th));

84 J = [j1 j2 j3];

85 j = roots(J);

86 x = abs(j(2));

87 y = ((Aa*x^2)+(Bb*x)+(Cc));

88 CC(i,5) = x; CC(i,6) = y;

89 CC(length(CC),5) = 1500; CC(length(CC),6) = 5300;

90 end

91 % Line 4

92 for i = 2:length(CC);

93 th = sum(cord(1:i,3));

94 Aa = c(1,4); Bb = c(2,4); Cc = c(3,4);

95 j1=Aa;

96 j2=Bb+(tan(th));

97 j3=Cc-(1500*tan(th));

98 J = [j1 j2 j3];

99 j = roots(J);

100 x = abs(j(2));

101 y = ((Aa*x^2)+(Bb*x)+(Cc));

102 CC(i,7) = x; CC(i,8) = y;

103 CC(length(CC),7) = 1500; CC(length(CC),8) = 5200;

104 end

105 % Line 5

106 for i = 2:length(CC);

107 th = sum(cord(1:i,3));

108 Aa = c(1,5); Bb = c(2,5); Cc = c(3,5);

109 j1=Aa;

110 j2=Bb+(tan(th));

111 j3=Cc-(1500*tan(th));

112 J = [j1 j2 j3];

113 j = roots(J);

114 x = abs(j(2));

115 y = ((Aa*x^2)+(Bb*x)+(Cc));

116 CC(i,9) = x; CC(i,10) = y;

117 CC(length(CC),9) = 1500; CC(length(CC),10) = 5100;

118 end

119 % Line 6

120 for i = 2:length(CC);

121 th = sum(cord(1:i,3));

122 Aa = c(1,6); Bb = c(2,6); Cc = c(3,6);

123 j1=Aa;

124 j2=Bb+(tan(th));

125 j3=Cc-(1500*tan(th));

126 J = [j1 j2 j3];

127 j = roots(J);

128 x = abs(j(2));

129 y = ((Aa*x^2)+(Bb*x)+(Cc));

130 CC(i,11) = x; CC(i,12) = y;

131 CC(length(CC),11) = 1500; CC(length(CC),12) = 5000;

132 end

133

134 savefile = 'coords.mat';

135 p = CC;

136 save(savefile, 'p');

A.3 ELEMENT STIFFNESS MATRICES APPENDICES

74

A.3 ELEMENT STIFFNESS MATRICES

1 clc

2 clear all

3 close all

4

5 CC = importdata('coords.mat');

6

7 figure

8 plot(CC(:,1),CC(:,2),'k.',CC(:,3),CC(:,4),'k.',CC(:,5),CC(:,6),'k.',...

9 CC(:,7),CC(:,8),'k.',CC(:,9),CC(:,10),'k.',CC(:,11),CC(:,12),'k.')

10 axis equal

11 axis([0 1500 0 5500]);

12

13 nelx = min(size(CC))/2-1; nely = length(CC)-1;

14 eCx = zeros(2,2,nelx*nely);

15 eCy = zeros(2,2,nelx*nely); % element Coordinates

16 % aCC = zeros(nelx*nely,2);

17

18 for i = 1:length(CC)-1

19 eCx(1,1,i) = CC(i,1); eCx(2,1,i) = CC(i+1,1);

20 eCx(1,2,i) = CC(i,3); eCx(2,2,i) = CC(i+1,3);

21 eCy(1,1,i) = CC(i,2); eCy(2,1,i) = CC(i+1,2);

22 eCy(1,2,i) = CC(i,4); eCy(2,2,i) = CC(i+1,4);

23 eCx(1,1,i+length(CC)-1) = CC(i,3); eCx(2,1,i+length(CC)-1) = CC(i+1,3);

24 eCx(1,2,i+length(CC)-1) = CC(i,5); eCx(2,2,i+length(CC)-1) = CC(i+1,5);

25 eCy(1,1,i+length(CC)-1) = CC(i,4); eCy(2,1,i+length(CC)-1) = CC(i+1,4);

26 eCy(1,2,i+length(CC)-1) = CC(i,6); eCy(2,2,i+length(CC)-1) = CC(i+1,6);

27 eCx(1,1,i+2*(length(CC)-1)) = CC(i,5); eCx(2,1,i+2*(length(CC)-1)) = CC(i+1,5);

28 eCx(1,2,i+2*(length(CC)-1)) = CC(i,7); eCx(2,2,i+2*(length(CC)-1)) = CC(i+1,7);

29 eCy(1,1,i+2*(length(CC)-1)) = CC(i,6); eCy(2,1,i+2*(length(CC)-1)) = CC(i+1,6);

30 eCy(1,2,i+2*(length(CC)-1)) = CC(i,8); eCy(2,2,i+2*(length(CC)-1)) = CC(i+1,8);

31 eCx(1,1,i+3*(length(CC)-1)) = CC(i,7); eCx(2,1,i+3*(length(CC)-1)) = CC(i+1,7);

32 eCx(1,2,i+3*(length(CC)-1)) = CC(i,9); eCx(2,2,i+3*(length(CC)-1)) = CC(i+1,9);

33 eCy(1,1,i+3*(length(CC)-1)) = CC(i,8); eCy(2,1,i+3*(length(CC)-1)) = CC(i+1,8);

34 eCy(1,2,i+3*(length(CC)-1)) = CC(i,10);

eCy(2,2,i+3*(length(CC)-1)) = CC(i+1,10);

35 eCx(1,1,i+4*(length(CC)-1)) = CC(i,9); eCx(2,1,i+4*(length(CC)-1)) = CC(i+1,9);

36 eCx(1,2,i+4*(length(CC)-1)) = CC(i,11);

eCx(2,2,i+4*(length(CC)-1)) = CC(i+1,11);

37 eCy(1,1,i+4*(length(CC)-1)) = CC(i,10);

eCy(2,1,i+4*(length(CC)-1)) = CC(i+1,10);

38 eCy(1,2,i+4*(length(CC)-1)) = CC(i,12);

eCy(2,2,i+4*(length(CC)-1)) = CC(i+1,12);

39 end

40

41 for i = 1:nelx*nely

42 for j = 1:2

43 for k = 1:2

44 if eCy(j,k,i)<=0

45 eCy(j,k,i) = 0.0000001;

46 end

47 end

48 end

49 end

50 for i = 1:nelx*nely

51 for j = 1:2

52 for k = 1:2

53 if eCx(j,k,i)<=0

54 eCx(j,k,i) = 0.0000001;

55 end

56 end

57 end

58 end

59

60 v = 0.3;

61 E = 1.;

62 D = (E/((1+v)*(1-2*v)))*[1-v, v, 0; v, 1-v, 0; 0, 0, (1-2*v)/2;];

63 r = [sqrt(3)/3, -sqrt(3)/3]; s = r;

64 KE = zeros(8,8,nelx*nely);

65 Ke1 = zeros(8,8,nelx*nely); Ke2 = zeros(8,8,nelx*nely); Ke3 = zeros(8,8,nelx*nely);

Ke4 = zeros(8,8,nelx*nely);

66

67 for i = 1:nelx*nely

68 n1r = (s(1)-1)/4; n1s = (r(1)-1)/4;

A.3 ELEMENT STIFFNESS MATRICES APPENDICES

75

69 n2r = (1-s(1))/4; n2s = -(1+r(1))/4;

70 n3r = (s(1)+1)/4; n3s = (r(1)+1)/4;

71 n4r = -(1+s(1))/4; n4s = (1-r(1))/4;

72 P = [n1r, n2r, n3r, n4r, 0, 0, 0, 0; n1s, n2s, n3s, n4s, 0, 0, 0, 0;...

73 0, 0, 0, 0, n1r, n2r, n3r, n4r; 0, 0, 0, 0, n1s, n2s, n3s, n4s;];

74 x1 = eCx(1,1,i); x2 = eCx(1,2,i); x3 = eCx(2,2,i); x4 = eCx(2,1,i);

75 y1 = eCy(1,1,i); y2 = eCy(1,2,i); y3 = eCy(2,2,i); y4 = eCy(2,1,i);

76 nxr = ((s(1)-1)*x1+(1-s(1))*x2+(s(1)+1)*x3-(1+s(1))*x4)/4;

77 nyr = ((s(1)-1)*y1+(1-s(1))*y2+(s(1)+1)*y3-(1+s(1))*y4)/4;

78 nxs = ((r(1)-1)*x1-(1+r(1))*x2+(1+r(1))*x3+(1-r(1))*x4)/4;

79 nys = ((r(1)-1)*y1-(1+r(1))*y2+(1+r(1))*y3+(1-r(1))*y4)/4;

80 J = [nxr, nyr; nxs, nys];

81 G = [J(2,2), -J(2,2), 0, 0; 0, 0, -J(2,2), J(2,2);...

82 -J(2,2), J(2,2), J(2,2), -J(2,2)]/det(J);

83 B = G*P;

84 Ke1(:,:,i) = B.'*D*B*det(J);

85 end

86

87 for i = 1:nelx*nely

88 n1r = (s(2)-1)/4; n1s = (r(1)-1)/4;

89 n2r = (1-s(2))/4; n2s = -(1+r(1))/4;

90 n3r = (s(2)+1)/4; n3s = (r(1)+1)/4;

91 n4r = -(1+s(2))/4; n4s = (1-r(1))/4;

92 P = [n1r, n2r, n3r, n4r, 0, 0, 0, 0; n1s, n2s, n3s, n4s, 0, 0, 0, 0;...

93 0, 0, 0, 0, n1r, n2r, n3r, n4r; 0, 0, 0, 0, n1s, n2s, n3s, n4s;];

94 x1 = eCx(1,1,i); x2 = eCx(1,2,i); x3 = eCx(2,2,i); x4 = eCx(2,1,i);

95 y1 = eCy(1,1,i); y2 = eCy(1,2,i); y3 = eCy(2,2,i); y4 = eCy(2,1,i);

96 nxr = ((s(2)-1)*x1+(1-s(2))*x2+(s(2)+1)*x3-(1+s(2))*x4)/4;

97 nyr = ((s(2)-1)*y1+(1-s(2))*y2+(s(2)+1)*y3-(1+s(2))*y4)/4;

98 nxs = ((r(1)-1)*x1-(1+r(1))*x2+(1+r(1))*x3+(1-r(1))*x4)/4;

99 nys = ((r(1)-1)*y1-(1+r(1))*y2+(1+r(1))*y3+(1-r(1))*y4)/4;

100 J = [nxr, nyr; nxs, nys];

101 G = [J(2,2), -J(2,2), 0, 0; 0, 0, -J(2,2), J(2,2);...

102 -J(2,2), J(2,2), J(2,2), -J(2,2)]/det(J);

103 B = G*P;

104 Ke2(:,:,i) = B.'*D*B*det(J);

105 end

106
107 for i = 1:nelx*nely

108 n1r = (s(1)-1)/4; n1s = (r(2)-1)/4;

109 n2r = (1-s(1))/4; n2s = -(1+r(2))/4;

110 n3r = (s(1)+1)/4; n3s = (r(2)+1)/4;

111 n4r = -(1+s(1))/4; n4s = (1-r(2))/4;

112 P = [n1r, n2r, n3r, n4r, 0, 0, 0, 0; n1s, n2s, n3s, n4s, 0, 0, 0, 0;...

113 0, 0, 0, 0, n1r, n2r, n3r, n4r; 0, 0, 0, 0, n1s, n2s, n3s, n4s;];

114 x1 = eCx(1,1,i); x2 = eCx(1,2,i); x3 = eCx(2,2,i); x4 = eCx(2,1,i);

115 y1 = eCy(1,1,i); y2 = eCy(1,2,i); y3 = eCy(2,2,i); y4 = eCy(2,1,i);

116 nxr = ((s(1)-1)*x1+(1-s(1))*x2+(s(1)+1)*x3-(1+s(1))*x4)/4;

117 nyr = ((s(1)-1)*y1+(1-s(1))*y2+(s(1)+1)*y3-(1+s(1))*y4)/4;

118 nxs = ((r(2)-1)*x1-(1+r(2))*x2+(1+r(2))*x3+(1-r(2))*x4)/4;

119 nys = ((r(2)-1)*y1-(1+r(2))*y2+(1+r(2))*y3+(1-r(2))*y4)/4;

120 J = [nxr, nyr; nxs, nys];

121 G = [J(2,2), -J(2,2), 0, 0; 0, 0, -J(2,2), J(2,2);...

122 -J(2,2), J(2,2), J(2,2), -J(2,2)]/det(J);

123 B = G*P;

124 Ke3(:,:,i) = B.'*D*B*det(J);

125 end

126

127 for i = 1:nelx*nely

128 n1r = (s(2)-1)/4; n1s = (r(2)-1)/4;

129 n2r = (1-s(2))/4; n2s = -(1+r(2))/4;

130 n3r = (s(2)+1)/4; n3s = (r(2)+1)/4;

131 n4r = -(1+s(2))/4; n4s = (1-r(2))/4;

132 P = [n1r, n2r, n3r, n4r, 0, 0, 0, 0; n1s, n2s, n3s, n4s, 0, 0, 0, 0;...

133 0, 0, 0, 0, n1r, n2r, n3r, n4r; 0, 0, 0, 0, n1s, n2s, n3s, n4s;];

134 x1 = eCx(1,1,i); x2 = eCx(1,2,i); x3 = eCx(2,2,i); x4 = eCx(2,1,i);

135 y1 = eCy(1,1,i); y2 = eCy(1,2,i); y3 = eCy(2,2,i); y4 = eCy(2,1,i);

136 nxr = ((s(2)-1)*x1+(1-s(2))*x2+(s(2)+1)*x3-(1+s(2))*x4)/4;

137

138

139

140

141

142

143

144

 nyr = ((s(2)-1)*y1+(1-s(2))*y2+(s(2)+1)*y3-(1+s(2))*y4)/4;

 nxs = ((r(2)-1)*x1-(1+r(2))*x2+(1+r(2))*x3+(1-r(2))*x4)/4;

 nys = ((r(2)-1)*y1-(1+r(2))*y2+(1+r(2))*y3+(1-r(2))*y4)/4;

 J = [nxr, nyr; nxs, nys];

 G = [J(2,2), -J(2,2), 0, 0; 0, 0, -J(2,2), J(2,2);...

 -J(2,2), J(2,2), J(2,2), -J(2,2)]/det(J);

 B = G*P;

 Ke4(:,:,i) = B.'*D*B*det(J);

A.3 ELEMENT STIFFNESS MATRICES APPENDICES

76

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

end

for i = 1:nelx*nely

 KE(:,:,i) = Ke1(:,:,i)+Ke2(:,:,i)+Ke3(:,:,i)+Ke4(:,:,i);

end

savefile = 'stiff.mat'; p = KE; save(savefile, 'p');

savefile = 'xcoords.mat'; p = eCx; save(savefile, 'p');

savefile = 'ycoords.mat'; p = eCy; save(savefile, 'p');

X = zeros(4,nelx*nely); Y = zeros(4,nelx*nely);

for i = 1:nelx*nely

 X(1,i) = eCx(1,1,i); X(2,i) = eCx(1,2,i); X(3,i) = eCx(2,2,i); X(4,i) =

eCx(2,1,i);

 Y(1,i) = eCy(1,1,i); Y(2,i) = eCy(1,2,i); Y(3,i) = eCy(2,2,i); Y(4,i) =

eCy(2,1,i);

end

savefile = 'X.mat'; p = X; save(savefile, 'p');

savefile = 'Y.mat'; p = Y; save(savefile, 'p');

A.4 MODIFIED TOPOLOGY OPTIMIZATION CODE APPENDICES

77

A.4 MODIFIED TOPOLOGY OPTIMIZATION CODE

1 %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%%

2 %%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%%

3 %%%% CODE MODIFIED FOR CURVED CANTILEVER, November 2011, BY NATHANIEL VEENSTRA %%%

4 function topw; nelx = 5; nely = 55; volfrac = 0.7; penal = 1; rmin = 1;

5 % INITIALIZE

6 x(1:nely,1:nelx) = volfrac;

7 loop = 0;

8 change = 1.;

9 % LOAD MESH

10 X = importdata('xcoords.mat'); Y = importdata('ycoords.mat');

11 nodes = importdata('nodes.mat'); CC = importdata('coords.mat');

12 xx = importdata('X.mat'); yy = importdata('Y.mat');

13 % START ITERATION

14 while change > 0.01

15 loop = loop + 1;

16 xold = x;

17 % FE-ANALYSIS

18 [U]=FE(x,penal);

19 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

20 [KE] = LK;

21 c = 0;

22 for ely = 1:nely

23 for elx = 1:nelx

24 i = nely*(elx-1)+ely;

25 n1 = (nely+1)*(elx-1)+ely;

26 n2 = (nely+1)* elx +ely;

27 Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);

28 KE0(1:8,1:8) = KE(:,:,i);

29 c = c + x(ely,elx)^penal*Ue'*KE0*Ue;

30 dc(ely,elx) = -penal*x(ely,elx,1)^(penal-1)*Ue.'*KE0*Ue;

31 end

32 end

33 % FILTERING OF SENSITIVITIES

34 [dc] = check(nelx,nely,rmin,x,dc);

35 % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD

36 [x] = OC(nelx,nely,x,volfrac,dc);

37 % PRINT RESULTS

38 change = max(max(abs(x-xold)));

39 disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...

40 ' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...

41 ' ch.: ' sprintf('%6.3f',change)...

42 ' U: ' sprintf('%6.4f',U(2*(nely+1)*(nelx+1)))])

43 % PLOT DENSITIES

44 rho = 1-x(:); colormap(gray); caxis([0 1]); patch(xx,yy,rho');

45 axis equal; axis tight; axis off;pause(1e-6);

46 end

47

48 %%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

49 function [xnew]=OC(nelx,nely,x,volfrac,dc)

50 l1 = 0; l2 = 100000; move = 0.2;

51 while (l2-l1 > 1e-4)

52 lmid = 0.5*(l2+l1);

53 xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));

54 if sum(sum(xnew)) - volfrac*nelx*nely > 0;

55 l1 = lmid;

56 else

57 l2 = lmid;

58 end

59 end

60 %%%%%%%%%% MESH-INDEPENDENCY FILTER %%

61 function [dcn]=check(nelx,nely,rmin,x,dc)

62 dcn=zeros(nely,nelx);

63 for i = 1:nelx

64 for j = 1:nely

65 sum=0.0;

66 for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)

67 for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)

68 fac = rmin-sqrt((i-k)^2+(j-l)^2);

69 sum = sum+max(0,fac);

70 dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);

71 end

72 end

73 dcn(j,i) = dcn(j,i)/(x(j,i)*sum);

A.4 MODIFIED TOPOLOGY OPTIMIZATION CODE APPENDICES

78

74 end

75 end

76 %%%%%%%%%% FE-ANALYSIS %%%

77 function [U]=FE(x,penal)

78 [KE] = LK; % Calculates and stores stiffness matrix of sinlge element

79 nelx = 5; nely = 55;

80 K = zeros(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));

81 F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);

82 for elx = 1:nelx

83 for ely = 1:nely

84 e = nely*(elx-1)+ely;

85 n1 = (nely+1)*(elx-1)+ely;

86 n2 = (nely+1)* elx +ely;

87 edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];

88 KE0(1:8,1:8)=KE(:,:,e);

89 K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE0;

90 end

91 end

92 % DEFINE LOADS AND SUPPORTS

93 F(2*(nelx+1)*(nely+1),1) = -1;

94 fixeddofs =

union([1:2*(nely+1):2*(nely+1)*nelx+1],[2:2*(nely+1):2*(nely+1)*nelx+2]);

95 alldofs = [1:2*(nely+1)*(nelx+1)];

96 freedofs = setdiff(alldofs,fixeddofs);

97 % SOLVING

98 U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);

99 U(fixeddofs,:)= 0; % disp(U(2*(nely+1)*(nelx+1)))

100

101 %%%%%%%%%% ELEMENT STIFFNESS MATRIX %%

102 function KE=LK

103 nelx = 5; nely = 55; E = 1.; v = 0.3;

104 eCx = importdata('xcoords.mat');eCy = importdata('ycoords.mat');

105 KE = zeros(8,8,nelx*nely);

106 D = (E/(1-v^2))*[1, v, 0; v, 1, 0; 0, 0, (1-v)/2];

107 r = [sqrt(3)/3, -sqrt(3)/3]; s = r;

108 for e = 1:nelx*nely

109 for i = 1:2

110 for j = 1:2

111 x= [eCx(1,1,e);eCx(1,2,e);eCx(2,2,e);eCx(2,1,e)];

112 y= [eCy(1,1,e);eCy(1,2,e);eCy(2,2,e);eCy(2,1,e)];

113 dNdr= [s(j)-1, 1-s(j), 1+s(j), -1-s(j)]/4;

114 dNds= [r(i)-1, -1-r(i), 1+r(i), 1-r(i)]/4;

115 P = [dNdr(1),0,dNdr(2),0,dNdr(3),0,dNdr(4),0;

116 dNds(1),0,dNds(2),0,dNds(3),0,dNds(4),0;

117 0,dNdr(1),0,dNdr(2),0,dNdr(3),0,dNdr(4);

118 0,dNds(1),0,dNds(2),0,dNds(3),0,dNds(4)];

119 J = [dNdr*x, dNdr*y; dNds*x, dNds*y];

120 G = [J(2,2), -J(1,2), 0, 0;

121 0, 0, -J(2,1), J(1,1);

122 -J(2,1), J(1,1), J(2,2), -J(1,2)]/det(J);

123 B = G*P;

124 KE(:,:,e) = KE(:,:,e) + B'*D*B*det(J);

125 end

126 end

127 end

128 %%

129 % This Matlab code was written by Ole Sigmund, Department of Solid %

130 % Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark. %

131 % Please sent your comments to the author: sigmund@fam.dtu.dk %

132 % %

133 % The code is intended for educational purposes and theoretical details %

134 % are discussed in the paper %

135 % "A 99 line topology optimization code written in Matlab" %

136 % by Ole Sigmund (2001), Structural and Multidisciplinary Optimization, %

137 % Vol 21, pp. 120--127. %

138 % %

139 % The code as well as a postscript version of the paper can be %

140 % downloaded from the web-site: http://www.topopt.dtu.dk %

141 % %

142 % Disclaimer: %

143 % The author reserves all rights but does not guaranty that the code is %

144 % free from errors. Furthermore, he shall not be liable in any event %

145 % caused by the use of the program. %

146 %%

147 %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%%

A.5 SPECIFICATIONS SPECIFICATIONS

79

A.5 SPECIFICATIONS

Due to unexpected oversight, the Project Specifications were not included as

Appendix A.1 and are herein included. Apologies are extended for this oversight.

University of Southern Queensland

A.5 SPECIFICATIONS SPECIFICATIONS

80

FACULTY OF ENGINEERING AND SURVEYING

ENG 4111/4112 Research Project

Project Specification

FOR: Nathaniel Veenstra

TOPIC: Optimum Strut-and-Tie model for a Cantilever Curved

Wall.

SUPERVISORS: Kazem Ghabraie

ENROLMENT: ENG4111 – S1, 2011
 ENG4112 – S2, 2011

PROJECT AIM: Strut-and-tie modelling in combination with Finite Element analysis

allows for the load paths within concrete members to be determined

and optimized. By adopting a simple linear-elastic model to

represent the concrete behaviour and the concrete-steel interaction,

the strut-and-tie method can be used as a preliminary design tool in

the placement of reinforcing steel. This project aims to investigate

the use of this method in the case-specific example of a cantilever

curved wall verified through comparison of a simply supported

beam, of which an intuitive and modelled design are physically

tested.

PROGRAMME: ISSUE A. 21
th

 March 2011

1. A literature review on finite element analysis, topology optimization and the

use of strut-and-tie modelling in reinforced concrete design.

2. Formulation of a specific, two-dimensional design case of a curved cantilever

wall.

3. Discretise curved cantilever wall for application of finite element analysis,

including determination of element stiffness matrix from element geometry

and material properties.

4. Modify existing 99-line code to perform optimization on curved domain

approximated with quadrilateral elements.

5. Design optimum Strut-and-Tie model based from optimized topology.

Time permitting

6. Change design case from two-dimensional cantilever curved wall to three-

dimensional curved cantilever beam.

A.5 SPECIFICATIONS SPECIFICATIONS

81

AGREED:

__________________ (Student) __________________ (Supervisor)

 ___/___/___ ___/___/___

