

University of Southern Queensland

Faculty of Engineering and Surveying

Multicore Algorithms for Image

Alignment

A dissertation submitted by

Tristan James Ward

in fulfilment of the requirements of

Courses ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Software)

Submitted: October, 2011

 Multicore Algorithms for Image Alignment ii

ABSTRACT

Parallel processing is an emerging trend in modern computing. Traditional software

development paradigms often forsake parallelism in their approach to produce

algorithms. Applications developed then effectively relinquish any potential

performance benefits gained by using multi–core processing hardware that is

presently available. The fundamental idea of using parallel processing is applied to

medical research and the results are reported in this dissertation. Advancements in

technology within this field have the potential to greatly streamline processing,

thereby directing scientific attention back to research.

Advances in medical microscopy are presently being hindered by the substantial

time involved with the construction of panoramic imagery. The predominate

purpose and focus of the project is to investigate and develop the automation of

image alignment and noise reduction to a series of microscopy photographs, using

the performance advantages of multiple processor cores. The output of the

algorithms is the formation of a single microscopic panoramic image.

Pursuing the intention of parallelism, the implementation involves adaptation of

certain recognized algorithms. Alignment of the images is achieved by correlation, a

typical form of digital signal processing technique to measure the similarity

between images. Reducing the noise in the photographs is accomplished by a

computationally efficient median filter. The algorithms which were evaluated

provide a means of automated batch image construction without the need for user

intervention. This has the potential to save time by multi–threading on as many

processor cores as possible for the system that it executes on.

 Multicore Algorithms for Image Alignment iii

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 and ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept

any responsibility for the truth, accuracy or completeness of material contained

within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of

Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitled “Research

Project” is to contribute to the overall education within the student’s chosen degree

program. This document, the associated hardware, software, drawings, and other

material set out in the associated appendices should not be used for any other

purpose: if they are so used, it is entirely at the risk of the user.

Prof Frank Bullen

Dean

Faculty of Engineering and Surveying

 Multicore Algorithms for Image Alignment iv

CERTIFICATION

I certify that the ideas, designs and experimental work, results, analyses and
conclusions set out in this dissertation are entirely my own effort, except where
otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course or institution, except where specifically stated.

Tristan James Ward

Student Number 0050086907

 Signature

 Date

 Multicore Algorithms for Image Alignment v

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. John Leis for his ongoing support, expertise,

guidance and patience throughout the duration of this project. Without his

assistance and direction, this project would not have come to fruition. I would also

like to acknowledge the unconditional love and support of my family over this time.

It was much appreciated.

T. WARD

University of Southern Queensland

October 2011

 Multicore Algorithms for Image Alignment vi

CONTENTS

ABSTRACT ... ii

CERTIFICATION ... iv

ACKNOWLEDGEMENTS ... v

LIST OF FIGURES ... ix

LIST OF TABLES ... x

CHAPTER 1 INTRODUCTION ... 1

1.1 Context .. 2

1.2 Current System .. 3

1.3 Design Aims ... 4

1.4 Project Objectives .. 5

CHAPTER 2 LITERATURE REVIEW ... 6

2.1 Existing Technologies .. 6

2.2 Multi–COre Design .. 10

2.3 Image Stitching Algorithms ... 11

2.4 Noise reduction algorithms ... 13

2.5 Coding Style ... 15

2.6 File Formats ... 17

CHAPTER 3 METHODOLOGY .. 20

3.1 Research and Design ... 20

3.2 Programming Language ... 21

3.3 Hardware and Software Platforms .. 22

3.4 Performance Testing ... 23

CHAPTER 4 MULTI–CORE COMPUTING ... 25

4.1 Processes ... 25

 Multicore Algorithms for Image Alignment vii

4.2 Threading ... 29

4.3 Proposed Design .. 30

CHAPTER 5 IMAGE ALIGNMENT ... 33

5.1 Issues and Assumptions .. 34

5.2 Scale–Invariant Feature Transform ... 35

5.3 Correlation ... 37

5.4 The Design ... 39

CHAPTER 6 NOISE REDUCTION .. 44

6.1 Moving Average Filter ... 45

6.2 Median Filter ... 46

6.3 Assumed Design .. 48

CHAPTER 7 PROJECT LIMITATIONS ... 51

7.1 File Formats ... 51

7.2 Image Sequencing ... 52

7.3 File Paths ... 53

7.3 Graphical User Interface Expandability ... 53

7.4 Operating Systems and Compliation ... 54

CHAPTER 8 PERFORMANCE REVIEW .. 56

8.1 Testing Scenario .. 56

8.2 Results ... 59

8.3 Discussion .. 61

CHAPTER 9 CONCLUSIONS .. 67

9.1 Summary of Developments and Findings.. 67

9.2 Initial Research Objectives .. 69

9.3 Evaluation of The Algorithms .. 70

9.4 Implementation Objective .. 71

 Multicore Algorithms for Image Alignment viii

9.5 Review Objective ... 71

9.6 Further Work ... 73

LIST OF REFERENCES ... 75

APPENDIX A SPECIFICATIONS .. 83

APPENDIX B CODE LISTINGS.. 85

B1 Main.c .. 85

B2 alignment.h .. 88

B3 alignment.c .. 89

B4 axis.h .. 101

B5 axis.c .. 102

B6 bmp.h... 104

B7 bmp.c ... 106

B8 boolean.h ... 109

B9 error.h .. 110

B10 error.c .. 111

B11 fileIO.h ... 112

B12 fileIO.c .. 115

B13 noiseReduction.h ... 121

B14 noiseReduction.c ... 122

B15 threads.h.. 125

B16 threads.c .. 126

B17 tiff.h ... 130

B18 tiff.c .. 133

 Multicore Algorithms for Image Alignment ix

LIST OF FIGURES

2.1 Different styles of valid programming, with the opening

 parenthesis of the C language ..

16

2.2 Graphical distinction between the image file formats,

 including: JPEG; BMP; and GIF ...

18

4.1 Block representation of memory usage of two processes 28

4.2 Block representation of memory usage of two threads in a single

 process ...

29

5.1 Illustration of the mage alignment of two images, showing the

 join coordinate ...

33

5.2 Correlation surface plot of the same image, with dimensions

 100 × 100 pixels ...

38

5.3 Pseudo code instructions for the calculation of correlation 39

5.4 The approach to image alignment for similarity calculation for a

 dual core machine ...

40

5.5 Correlation surface plot of different images, with dimensions 100 ×

 100 pixels ...

42

6.1 An example of the moving average filter .. 45

6.2 An example of the median filter .. 47

6.3 Demonstration of median filtering for noise reduction on an image

 disrupted with ‘Salt ‘n Pepper’ style noise ..

50

7.1 Sample ordering of a 3 X 3 image set, illustrating one possible style

 of image referencing for entry on the command line

53

8.1 The two images used to stress the project .. 58

8.2 Graph of the result data of testing the project 61

8.3 The output panorama after executing the program, using the

 images from Figure 8.1 ..

66

 Multicore Algorithms for Image Alignment x

LIST OF TABLES

8.1 The hardware specifications used for testing the project 57

8.2 Results of executing the project. Time is in seconds to render the

 alignment of the test images ...

60

 Multicore Algorithms for Image Alignment 1

CHAPTER 1

INTRODUCTION

Shortly after the turn of the 21st century, the frequency of single core processors

had almost reached the maximum limit (Ramanathan 2006). Instead of increasing

performance of a processor by raising the frequency, processor manufacturer giants

Intel and AMD sought alternative measures to fulfil the escalating demands. The

solution to improve performance was to produce a multi–core processor, to cater

for the needs of running multiple process applications seemingly concurrently

(Ramanathan 2006). In the last couple of years, multi–core processing hardware has

become mainstream and drastically more affordable. With the advent of this

hardware advancement, which is evidently here for the indefinite future

(Ramanathan 2006), a shift in conventional programming paradigms is required to

accommodate the full potential of the hardware.

Medical and forensic sciences are fields which benefit considerably with

advancements in technology (Cooper, Huang & Ujaldon 2011). A specialisation of

this sector is the technical field of microscopy; a research area which encompasses

the use of microscopes to view small samples that would not otherwise be visible to

human eye (Cooper, Huang & Ujaldon 2011, Rankov et al. 2005). Without

computerised aid, microscopes offer a moderate insight into the sample. Physical

characteristics of microscopic lenses, larger sample sizes and the restricted extent

of human vision prevent the acquisition of even finer details. Digital photography is

instrumental in inspecting smaller particulars and as a means of providing records.

In the case of microscopy, digitised images are obtained from a camera mounted in

the optical path of the microscope.

 Multicore Algorithms for Image Alignment 2

1.1 CONTEXT

Traditionally, photographic images were produced as hardcopy items, making

panorama development difficult and restrictive. Since those times, digital cameras

have almost entirely replaced the mature analog film counterparts for the majority

of civil uses. Presently digital cameras are relatively inexpensive for resolutions

below approximately 20 megapixels. They moreover represent convenience with

the ease of transfer of imagery to other digital devices. However whilst still

performing the same role, extremely high resolution digital cameras remain

excessively expensive and for specific applications, may not exist. This facet

represents an impediment for science in general, which often necessitates larger

resolutions with specialised equipment to be effective.

Overcoming the exorbitant financial outlay and technical issues are managed

equivalently to the domestic solution; by using smaller resolution capture devices

and employing software to compensate (Rankov et al. 2005). The process of

creating a finely detailed photograph is accomplished with a series of logical steps.

Initially a sequence of images is taken at higher magnification using a lower

resolution camera. Well constructed imagery will contain a slight overlap on the

previous frame. These images are subsequently fed into image creation software,

which seeks the overlaps to generate the desired product (Rankov et al. 2005). The

result is known as a panorama and should closely resemble the output of high

resolution capturing devices.

Microscopy notably utilises the concept of panoramas (Cooper, Huang & Ujaldon

2011). Microscopy is becoming increasingly important in the society of today and

frequently plays an integral part in research projects of varying natures. The rapid

incline of cancer and other diseases present in the populace has seen the need for

detection of diseases and the formulation of cures escalate. A further instance

where the application of microscopy is practical is for examining plant and other

biological materials (Cooper, Huang & Ujaldon 2011). One such agency using

 Multicore Algorithms for Image Alignment 3

microscopy is the Australian governmental research group, the Commonwealth

Scientific and Industrial Research Organisation (CSIRO).

1.2 CURRENT SYSTEM

Distinctly different hardware and software setups exist between corporations and

perhaps between interrelated departments of the same company. The current

software that the CSIRO employs is the public domain system ImageJ. ImageJ was

developed by Wayne Rasband while employed by the United States National

Institutes of Health (NIH) (Collins 2007). Built on the Java runtime environment, the

software is platform independent making it choice for many researchers. Since

ImageJ furthermore provides mechanisms for expandability, the basic program can

be improved by adding specifically designed plug–ins (Collins 2007).

The ImageJ application is not without restrictions however. At the core there are

two fundamental limitations of foremost importance affecting the base program.

One is that without support, the product does not feature automated generation of

panoramas. Consequently manual involvement is required, directing time away

from critical research. The second issue faced is that although ImageJ is built on Java

for inter–platform compatibility, processing time cannot be accurately estimated

due to the approach Java utilises for execution. Limited thread control management

and the abstraction of the underlying Java binary code guarantees that the program

forfeits capturing the full potential of the hardware and operating system (OS)

(Moreira, Midkiff & Gupta 1998).

Although being reasonably precise, manual construction of panoramic imagery

takes a substantial amount of time to finish. Opening photographs and moving

them into the appropriate position in the final composition takes concentration in

addition to time. Some of the time however is not purely spent on photographic

arrangement. Delays due to the hardware and software combination consume

periods of time, even with the fastest hardware available (Cooper, Huang & Ujaldon

 Multicore Algorithms for Image Alignment 4

2011). Image transformation programs by their nature exhibit memory dominating

properties, notably having sizeable memory footprints when buffering high

resolution imagery (Xiong & Pulli 2010).

When delays occur in graphical user interfaces because of memory or processor

overloads, the system appears to the user as unresponsive. This unresponsiveness

has been experienced by the microscopy scientists working for the CSIRO.

Attempting simple operations such as image alignment becomes a challenging

ambition, particularly when it is amalgamated with the waiting of extensive periods

for computational intensive activities to be completed.

The choice of the Java language for programming moreover presents a unique

problem. Developing in the Java environment has the advantage of portability

among different operating systems and hardware configurations (Savitch 2010). The

software distributed is compiled into Java binary format; a format necessary to

function on the Java runtime environment. In this format, each instruction to be

performed is interpreted in real time into native machine binary commands for the

system that it is executing on (Savitch 2010). Evidently the real time translation

procedure costs valuable processor time. Conversely programming in lower level

languages facilitates the maximum processing speed to be achieved, at the cost of

requiring recompilation for each system that the application will be used on (Savitch

2010).

1.3 DESIGN AIMS

Essentially the design of the project intends to eliminate the predominate issues

associated with the existing system, namely task automation and the proper

utilisation of a multi–core system. Ultimately the project seeks to:

I investigate practical parallelisation methods of previous image alignment

and noise removal algorithms.

 Multicore Algorithms for Image Alignment 5

II implement the most efficient and proficient alignment and noise reduction

approaches, with the intent to decrease processing time.

III output the manufactured panoramic image to a suitable and compatible

format for the field of microscopy with minimal information loss.

IV evaluate the performance gains of successive cores on several differing

platforms.

1.4 PROJECT OBJECTIVES

Accomplishing the design aims of the project will be realised through the

subsequent objectives. The tasks the project will require include:

I research into existing image alignment techniques and how these can be

achieved through parallelisation.

II research and critical analysis of current noise removal algorithms and how

they can be implemented through parallelisation.

III investigate or otherwise evaluate the expected performance of the different

approaches to ascertain the most efficient technique or techniques.

IV design and implementation of a working prototype based on the best

processing scheme.

V review of the application performance on several differing types of

machines and observe sections for improvement and optimisation.

 Multicore Algorithms for Image Alignment 6

CHAPTER 2

LITERATURE REVIEW

Algorithms for image alignment or noise reduction are not new innovations. Xia &

Zhang (2010) acknowledge that composing a panorama from an image set has been

explored before, with varying results. Each panoramic algorithm has precise design

parameters that are to be considered when it is conceived, whether it be

portability, execution speed or accuracy for a specific type of image (Rankov 2005,

Szeliski 2006). The concept of multi–core based software development equally is

not original. Whilst this concept matured, two differing approaches were proposed

to take advantage of the hardware (Hughes & Hughes 2008). It is important to

establish the gaps with these two prior developments, to comprehend how the

multicore image alignment algorithm can be better applied microscopy.

2.1 EXISTING TECHNOLOGIES

There are numerous existing technologies boasting the faculty of automated

panorama construction. Some of these panorama tools are integrated into the

image editing program, whilst others are plug in packages to expand upon a base

application. One renowned image editor in the industry is the Adobe Photoshop

program. It features an automated panorama builder entitled Photomerge, which

quickly assembles the panorama and displays the result on screen (O’Donohue et al.

2008). Unfortunately like most commercial products, the algorithms are patented

and consequently the source code is not available to view (Adobe Systems

Incorporated 2011). Entirely contrary is the Adobe Photoshop competitor GIMP,

since in GIMP automated image stitching is processed only through dedicated

plugins and the source code is available for all GIMP modules (Koponen 2006).

 Multicore Algorithms for Image Alignment 7

TomoJ is an ImageJ software plugin that allows semi–automated or manual

panorama construction, working specifically with photographic imagery from

transmission electron tomography (TET). Messaoudii et al. (2007) described TET as:

“... an increasingly common three–dimensional electron microscopy

approach that can provide new insights into the structure of subcellular

components. [TET] fills the gap between high resolution structural methods

(X–ray diffraction or nuclear magnetic resonance) and optical microscopy.”

The statement by Messaoudii et al. gives an insight into the level of work conducted

by microscopy researchers at the CSIRO and worldwide. However in documenting

the TomoJ plugin, no mention is given of multicore algorithmic design. Without

reference to multicore development and with the limitations of ImageJ as

presented in the current system section (refer to 1.2), it can be assumed that the

software is based on a single core process design. Often software with this

capability will widely advertise this feature.

Searching online will result in the discovery of many panorama software

applications, not just for computers in general but also the Apple iPhone and

Android mobile phone markets. Of these products, two from large corporations are

striking, which are the Autodesk Stitcher Unlimited and ArcSoft Panorama Maker

Pro products. The interesting detail regarding these products is that they both claim

on the boxed feature list to make panoramas with little effort from the user and

have hardware optimisation algorithms (Autodesk Stitcher Unlimited 2011,

Panorama Maker 5 Pro 2011). These algorithms apparently take advantage of the

central processor unit (CPU) or graphics processor unit (GPU). With the CPU

processor, some form of multi–threading is expected to use multiple processor

cores simultaneously to decrease processing time. According to Zhang, Wang &

Chen (2010), the GPU processing is of interest as the GPU is greater than ten times

faster than CPU processing. The GPU is the hardware responsible for rendering the

graphics on the monitor. Offloading the image processing functionality to the GPU

 Multicore Algorithms for Image Alignment 8

logically will decrease the processing time for dedicated hardware (Zhang, Wang &

Chen 2010).

Several problems exist with utilising the GPU approach to panorama construction.

The first drawback is that the two leading GPU manufacturers, ATI and nVidia, have

different programming interfaces to develop with. As cited by Wang et al. (2009),

although nVidia has dubbed their technology Compute Unified Device Architecture

(CUDA) and ATI has named the hardware ATI Stream, the technologies are similar.

Development of GPU functions will be more challenging if two sets of interfaces

have to be maintained. Communication of instructions to and from the processor to

the GPU is already a complex task (Zhang & Wang & Chen 2010).

A second problem is the assumption that the computer systems utilised for

microscopy at the CSRIO and elsewhere have these hardware advancements.

Computers can and have been built without a dedicated graphics card for many

years (Blythe 2008). There is furthermore no guarantee that a researcher that has a

dedicated graphics card will support the CUDA or ATI Stream instruction sets. Yuffe

et al. (2011) reveals that Intel has recently released the CPU with an integrated GPU

on a single die, codenamed Sandy Bridge. This release introduces other issues, such

as developers needing to program for Intel GPU processing in addition to the

aforementioned technologies.

As cited by Blythe (2008), another issue with GPU rendering is the data transfer

cost. Transferring data between the processor and GPU is an expensive operation

and one which increases the overall processing time. Having the GPU close to the

CPU on the Intel solution reduces the latency when copying or sharing data. The

Intel product makes GPU processing more attractive and should be more feasible in

the future, however at the present time it is a new hardware device that needs

mainstream adoption.

The monetary cost of freeware applications is of significant consideration, as

finances can be employed for research instead of outlay on software tools. A

 Multicore Algorithms for Image Alignment 9

problem exists where freeware products oriented towards microscopy research or

fields of similar nature are not designed to take advantage of multi–core hardware.

Eytani & Ur (2004) implies that it is less difficult to implement and maintain singular

threaded applications and that developers occasionally use this excuse to avoid

spending time on producing multi–core algorithms. It is not uncommon for

freeware projects to rely on the support of volunteer developers or donations to

continue the expansion and improvement of particular programs (Cubranic & Booth

1999). This is one reason why features that are deemed unessential such as multi–

core algorithms are overlooked in freeware software.

Fogel (2006) implies that commercial applications do not have this limitation to the

same extent. Businesses have funding which they can spend on paying developer

salaries and on pioneering algorithms. The objective of corporations consuming

finances is that the expenses are expected to be redeemed in the profits from the

sale of the software. This financial backing has a benefit in that the developers are

generating income, so the design and implementation of innovative approaches

becomes a higher priority than it would otherwise.

The component that is absent between freeware and commercial applications is the

disclosure and distribution of designs for the purpose of education. Freeware

applications have the benefits of no monetary outlay for the users and can be

readily expended due to the availability of source code (Cubranic & Booth 1999).

Commercial products have the advantage of innovative and computationally

efficient designs. Presently researchers appear to favour freeware products, since

they utilise the freeware product ImageJ and its extension, TomoJ. It would appear

that not only the cost that is considered, but furthermore the specific functional

layout directed for scientific use. The intention of this project is to produce an

automated image stitching program that satisfies the combination of the former

advantages. This would benefit researchers in the technical field of microscopy.

 Multicore Algorithms for Image Alignment 10

2.2 MULTI–CORE DESIGN

Multi–core algorithm design is an integral concept of the project. The anticipated

efficiency of present multi–core algorithms undoubtedly is imperative in the

potential outcome of the project. The research of Liu et al. (2010) into the

performance of multicore hardware systems establishes valuable conclusions. Liu et

al. (2010) tested the decrease in processing time relative to the number of

hardware processors utilised. Throughout the trials, the algorithm used was the

Adaptive Differential Pulse Code Modulation (ADPCM). Yatsuzuka et al. (1998)

outlines that ADPCM has widespread usage in public telephone networks for

reducing the bandwidth required for both telephone conversations and internet

traffic. The results of Liu et al. determined that for large values of data, the

performance increase approached the number of cores. This conclusion is

understandable in that whilst it is acknowledged that there are processing

overheads in the creation of threads and assigning tasks (Silberschatz, Galvin &

Gagne 2009), these actions can be diminished when compared to a large overall

processing time. When the data is small, the algorithm is not as efficient.

Unlike the approximate double times increase observed with two threads and a

large data set, Liu et al. only obtained an almost triple improvement in processing

times with four threads. Data access contention is one explanation as to why

processing times do not reach theoretical values. Sun, Byna & Holmgren (2009)

describe memory access contention as a major performance bottleneck in

computing with multiple processors. Data access contentions occur when multiple

processors request the same resource, such as memory bandwidth or cache

memory. Only one competing processor can control a given resource at a time,

causing delays for the other processors requiring the resource. Another of the tests

conducted by Liu et al. on multicore algorithms was the impact of increased bus

width. Using the Global Standard for Mobile Communications (GSM) encoding

algorithm, the results concluded that higher bandwidth does increase the system

efficiency to a point. Since the project does not have control over the hardware

 Multicore Algorithms for Image Alignment 11

design and more specifically the bus width and memory layout, only the impacts of

the hardware on the execution performance are examined.

2.3 IMAGE STITCHING ALGORITHMS

Image stitching is the process of creating a panorama from a set of related images,

each with a slight overlap on the next. Xing & Miao (2007) defines image stitching to

produce a panorama as:

“... a technique to merge a sequence of images with limited overlapping area

into one blended picture.”

To accomplish this task, Hsieh (2003) describes the generic process of image

stitching as:

“... recovering the existing camera motion parameters between [the various]

images and then compositing them together.”

Hsieh (2003) essentially depicts the image stitching process as encompassing two

major steps. The first is image registration, which involves determining a point in

which to join the photographs either from the features in the images or from the

image similarities. Once this coordinate is known, the two photographs can be

merged into a single image. The process of finding the join point and merging is

then repeated for the number of images to be processed. In advanced algorithms,

any distortions, rotations or mild scaling errors are corrected before merging

(Szeliski 2006).

There are numerous image alignment schemes that are available. Xing & Miao

(2007) categorise image registration techniques under two broad types: direct

methods; and feature based methods. Direct methods often are the simplest to

develop, comparing the images pixel to pixel (Szeliski 2006). Exhaustively trying all

 Multicore Algorithms for Image Alignment 12

combinations of alignment locations is known as a full search. A full search will be

the most accurate of searches however it will incur a performance penalty for the

significant number of computations required (Chen 1998). The easiest approach for

utilising a direct method to image alignment is to shift one image relative to a

template image. At intervals the two images are evaluated to calculate the sum of

squared differences (SSD) (Szeliski 2006). Over all the movements of the shiftable

image, the sought after point is where the SSD function is at a minimum. The

median of absolute differences (MAD) is one direct based approach that follows this

methodology (Szeliski 2006).

Rankov et al. (2005) disclose Correlation as an example of a direct method that is

often used for image alignment and that differs in the approach taken. Although

correlation still iterates over all the shiftable locations, it relies on the discovery of

the cross product maximum of the two images. The Fourier transform based

alignment is another direct method. The Fourier technique operates on the detail

that the signal of the shiftable image has the same magnitude as the template

image, but with a linearly adjusting phase. This phase can detect the appropriate

join coordinate. Szeliski (2006) suggests that the Fourier Transform calculation can

additionally be utilised to estimate rotations and scaling differences in the images.

However since the Fourier Transform involves the calculation of the correlation

algorithm, the Fourier Transform approach is overlooked in this project due to

performance concerns.

The second category of image alignment algorithms is the feature detectors. Jia &

Tang (2008) list several common variants including: scale invariant feature

transform (SIFT); Harris corner detector; and random sample consensus (RANSAC).

The list presented by Jia & Tang is confirmed by Hua, Li & Li (2010), who outline the

same set of algorithms whilst exploring alternative means of image alignment.

Feature detection algorithms differ in the means of identifying what pixels

correspond to a feature. Ryu, Lee & Park (2011) mention some algorithms such as

the Harris corner detector which focus on the corners present in an image. Other

algorithms may attempt to identify edges or blobs within images. The SIFT approach

 Multicore Algorithms for Image Alignment 13

regularly is applied in systems due to its generic feature detection abilities and

library referencing (Hsieh 2003). After the features have been identified in all the

images, matching of these features must be performed.

Feature detection algorithms are advantageous over traditional direct methods

when there are image acquisition problems. Chen (1998) addresses some of the

typical image acquisition related issues including: variations in the light illumination;

contrast dissimilarities caused by reflections; movements in the scene between

shots; and general lens distortions. Rankov et al. (2005) expressed that image

capture issues aside, cross–correlation was the second fastest method they had

tested, after the principle axis method which was considerably less accurate.

Rankov et al. (2005) subsequently consider correlation as the preferred method. It

was discovered that the calculation time of correlation could be reduced by

directing the search points in the photographs to anticipated overlapping regions.

However this required use of an automatic stage for capture to decrease acquisition

differences (Rankov et al. 2005). Since a motorised, automatic stage could not be

assumed in practical use with this project, the proposal is not of benefit.

2.4 NOISE REDUCTION ALGORITHMS

The term noise refers to imperfections in the original signal, such that certain

sections of the signal no longer represent the true value. Thangavel, Manavalan &

Aroquiaraj (2009) raise several distinctive types of noise found in images: Gaussian

noise; Speckle noise; Rician noise; and Poisson noise. Gaussian noise is a random

additive found in natural images, while Rician noise is image noise that affects

Magnetic Resonance Image (MRI) photographs. Speckle noise is otherwise known as

‘Salt ‘n’ Pepper’ noise (Leis 2011) and is often present in ultrasound images

(Thangavel, Manavalan & Aroquiaraj 2009). Poisson noise is the noise introduced by

the camera or capture equipment. Research by Srivastava (2010) returned the same

noise types present in microscopic imagery as Thangavel, Manavalan & Aroquiaraj

(2009), thereby confirming the various sorts. Furthermore Srivastava (2010)

 Multicore Algorithms for Image Alignment 14

confirms some of the factors producing noise, as briefly inspected for image

alignment. Srivastava (2010) outlines the factors that induce noise in fluorescence

microscopy photographs which include, but are not limited to:

I lens miss–focus.

II environmental factors.

III instrumental error.

IV dark current.

V electronic noise.

VI photon limited scientific charge–coupled device (CCD) cameras.

Since image capture recommendations are out of the scope of this project, noise

reduction techniques will have to be designed to remove as much noise from the

photographic files without reducing clarity. Thangavel, Manavalan & Aroquiaraj

(2009) describes numerous approaches to remove noise from images. In most

instances, the pixel and its neighbours are assessed to receive the noise reduction

result. This set of pixels is known as a window, with the centremost pixel being the

one to be replaced (Leis 2011). Each pixel of the image is evaluated, with the

window shifting relative to the pixel being considered. Some of the approaches

listed by Thangavel, Manavalan & Aroquiaraj (2009) and Leis (2011) include:

I the minimum filter. The lowest value in the window is taken as the selected

value for replacement. This darkens the overall image.

II the maximum filter. The highest value in the window is taken as the selected

value for replacement. This lightens the overall image.

III the moving average filter. The pixel values in the window are summed and

divided by the number of pixels in the window. It is simple to implement,

but the output image will be marginally blurry.

IV the median filter. The pixel values in the window are sorted and the centre

value selected.

V the midpoint filter. The midpoint between the highest and lowest values is

computed and selected for replacement. It is known that this approach has

 Multicore Algorithms for Image Alignment 15

shortcomings in that it: slightly blurs the image; is not robust against impulse

noise; and it does not keep the image borders.

VI high boost filter. Low frequency content is removed from the image. The

result is that the background detail is improved and the sharpness and

brightness of the image is enhanced.

VII trace means filter. The values on the diagonal of the window are summed

and divided by the number of pixels on the diagonal. It is not as

computationally expensive as the moving average filter.

VIII trace median filter. The values along the diagonal of the window are sorted

and the centre value selected. It is not as accurate or computationally

expensive as the median filter.

IX the correlation filter. The autocorrelation of an image is computed to

remove intense colour variations between pixels, which may correlate to

noise.

X the M3 filter. This filter is a hybrid scheme between the moving average and

median filters. The maximum of both filters is selected as the value for

replacement. High frequency components of the image are preserved,

making it suitable for ultrasound imagery.

From the selection of algorithms possible, Thangavel, Manavalan & Aroquiaraj

(2009) concluded that the M3 filter was the best on a performance basis. The

illustration provided however visually shows the M3 filter loses an arguably

significant amount of contrast and clarity. Without this filter, Leis (2011) suggests

the median filter as the preferred choice, as it produces fewer artefacts than the

moving average filter.

2.5 CODING STYLE

The coding style of the software developer has a sizeable impact on the

effectiveness of the project (Kemerer & Paulk 2009). Boogerd & Moonen (2008)

regards reliability, portability and maintainability as three desirable qualities that

 Multicore Algorithms for Image Alignment 16

software should be built upon. These qualities reduce the cost of code maintenance

and the number of faults associated with the system. Whilst there are various tools

to enforce the use of a particular standard in widespread use, no universal coding

standard exists. Research by Boogerd & Moonen (2008) reveals a reason that is

cited for not using the software is that the developers are bombarded with

warnings of non conformance. Kremenek et al. (2004) tested this claim and

observed that every software tool produced false positives when enforcing coding

conventions. The number of false positives recorded in the tests by Kremenek et al.

ranged from 30 % to 100 %. With no formal standard on how to write applications,

the style of the program that is composed is purely related to the opinions and

craftsmanship of the author (Fang 2001).

There are numerous programming manuals that endeavour to present guidelines on

common and accepted programming styles. Naming conventions, indentations and

commenting depth and frequency are just some of the guidelines these manuals

will attempt to have developers adhere to. Yet since these are merely guidelines

and not rules, a programmer can legitimately disregard such suggestions (Wang et

al. 2010). A classic example is where to place the opening { symbol in the C

language. Two accepted styles exist, but whichever technique is chosen it is

expected that the developer is consistent across all modules. Figure 2.1 shows the

differences in style with the parenthesis symbol, both of which are syntactically

valid.

(A)

(B)

Figure 2.1 Different styles of valid programming

(A) The opening parenthesis on the same line (B) The parenthesis on the proceeding line.

 Multicore Algorithms for Image Alignment 17

Using Figure 2.1 as an example, there are arguments for both versions. The

proponents of Figure 2.1 (A) state that one less line of code is used (Mark 2009),

whilst supporters of Figure 2.1 (B) claim that the code is more readable since it is

not as compressed (Mark 2009). In either case, the convention chosen by the

developer should be reflected throughout the differing type constructs and the

work in general for consistency and professional appearance.

2.6 FILE FORMATS

There are numerous file formats presently available for the storage of image data.

Work by Bell Laboratories in the late 1940’s began research into compression

methods, originally relating to textual communications. Salomon (2002) indicates

that there is currently two generic categories for image, video or audio files. The

first of these two categories is the lossless compression method, where the data is

the same at the decoder as it was originally at the encoder (Salomon 2002).

Between the encoder and decoder, the data may be stored in some form of

compressed state to reduce the file size or is otherwise stored as raw data.

According to Salomon (2002), the second category of compression is the lossy

format, whereby the data is different between the encoder and decoder. In an

effort to save storage space, some of the information in the original file is lost. The

lossy algorithm will remove information, with consideration such that the output of

the file visually or audibly appears the same as the original to the user (Xin 2009,

Salomon 2002).

Selection of the image file format is of importance for the project. Selecting an

inappropriate format to implement may result in rejection of the project as a whole.

According to Xin (2009) some of the popular image file formats include: Graphics

Interchange Format (GIF); Bitmap (BMP); Joint Photographic Experts Group (JPEG);

and Tagged Image File Format (TIFF). GIF and BMP image files are limited in their

scope for medical science as they often only have 8 bit colours, meaning that the

maximum number of different colours that can be referenced is 256 (Jackson &

 Multicore Algorithms for Image Alignment 18

Hannah 1993). Although both BMP and GIF are restricted to 8 bit colour, they

handle this limitation in dissimilar approaches as illustrated by Figure 2.2

(CompuServe Incorporated 1990). Another representation of the source image is

with the JPEG format, as displayed in Figure 2.2 (B). Neelamani et al. (2006)

indicates that JPEG is known as a lossy format and is utilised as such, even though it

is acknowledged that lossless JPEG algorithms exist. In the field of microscopy,

information loss in photographic files is unacceptable as researchers require as

much detail as possible to properly examine samples (Rankov et al. 2005). In this

context, lossy file formats are undesirable.

(A)

(B)

 Multicore Algorithms for Image Alignment 19

(C)

(D)

Figure 2.2 Differences in the output of image file formats (A) Original image, but also

representative of lossless algorithms (B) JPEG Image (C) BMP Image (D) GIF Image.

One of the other formats in circulation is TIFF. Available in lossy and lossless, TIFF is

a container for both. This makes TIFF prime for many uses, including the lossless

storage of microscopy imagery. ImageJ documentation (Collins 2007) however

reveals that the Digital Micrograph (DM3) format is format for microscopy research.

External correspondence with the CSIRO confirms the statement that DM3 is used

in microscopy. According to Jefferis (2004), unfortunately the DM3 format is a

proprietary algorithm from Gatan Incorporated and it is not known if this format is

universally supported by microscopy researchers. Since DM3 can be easily

converted into TIFF by at least ImageJ (Collins 2007), TIFF remains the choice of file

format so that the project is unanimously received.

 Multicore Algorithms for Image Alignment 20

CHAPTER 3

METHODOLOGY

At its core, this project is about the parallelisation of software tasks to entirely use

current hardware. On another level, the project involves the technology used by

microscopy researchers and how it can be improved as to direct the focus towards

scientific endeavours. Ultimately the automation of tasks and reductions in

processing time to produce panoramic imagery represent significant milestones.

The first stage of design and development entails background research, followed by

selection of certain design parameters.

3.1 RESEARCH AND DESIGN

Research is an imperative step in innovative design. In the context of algorithm

development, any existing technologies and algorithms in circulation will provide a

foundation to advance upon. Research was conducted in several areas (refer to 2.0),

with much of the research into existing technologies and algorithms either being

integrated into or influencing the final product. From this research, proposed

designs are fabricated and a prototype application developed in the chosen

language. The prototype serves two purposes: the most prominent being the

capacity to test the effectiveness of the implemented design; and the second is that

the project is a basis that could be improved upon if the application were to be

progressed further. Modules of the final product additionally can be reviewed for

use in different applications provided the programming language is known.

 Multicore Algorithms for Image Alignment 21

3.2 PROGRAMMING LANGUAGE

The selection of programming is crucial in the design of the project. Obviously use

of higher level languages would decrease the development time due to their

simpler syntax, allowing testing to commence more quickly. In various instances this

arrangement would be portable amongst different OS environments, as some high

level languages are written platform independent (Savitch 2010). A well known and

used example of this is Java. The issue with high level languages such as Java is that

the native compiled code is often not optimised as assembly (Moreira, Midkiff &

Gupta 1998). Execution speed is however forefront to the success of the project.

Similarly several high level languages including Java abstract the implementation

details from the developer, restricting certain imperative functions such as the

capability to fine tune multi–processing aspects.

For best executable performance, the project should be programmed in assembly

language (MacKenzie 1988). Unlike high level languages, assembly is dedicated to

specific hardware and is not rapidly portable. More crucially, programming in

assembly involves extensive knowledge of the intended hardware design layout and

substantial time to develop the appropriate program. Since this project is limited by

the development duration and it is known that the hardware used may vary,

assembly language is not the most suitable.

The optimal trade off between executable performance and development time is

attained with use of the programming language C. It is a well recognized

programming language with support in the majority of OS environments and

hardware configurations. Furthermore with a cooperative compiler, generic

assembly code optimisations can be performed without any intervention of the

developer (Moreira, Midkiff & Gupta 1998). Extensive instruction configuration is

incorporated into the design of the language. For these reasons, C is the language of

choice throughout the project.

 Multicore Algorithms for Image Alignment 22

3.3 HARDWARE AND SOFTWARE PLATFORMS

Originally the project started without any constraints on the hardware or software

utilised. As the design and development progressed, real restrictions on the

software became apparent. The development of the prototype is restricted to the

Microsoft Windows OS by a few Windows dependent Application Programming

Interface (API) function calls. Without amendments to these sections of code to be

more universal, the OS must be at least Microsoft Windows XP or capable of

running surrogate Windows instructions. This prerequisite reduces the software

requirements for testing significantly.

Hardware limitations are introduced by the obligation to run the project on

Windows compatible and capable systems. For Windows XP, the minimum

hardware system requirements are specified by Microsoft (2007):

“● Pentium 233-megahertz (MHz) processor or faster (300 MHz is

recommended)

 ● At least 64 megabytes (MB) of RAM (128 MB is recommended)

 ● At least 1.5 gigabytes (GB) of available space on the hard disk

 ● CD-ROM or DVD-ROM drive

 ● Keyboard and a Microsoft Mouse or some other compatible pointing

device

● Video adapter and monitor with Super VGA (800 x 600) or higher

resolution ... ”

Evidently these are the absolute minimum hardware specifications that the project

will operate on. However these requirements are obsolete by the unofficial

standards of present computers. To properly appreciate the performance

advantages of this project, a multi–core processor system is compulsory. All

computers powered by at least a dual core processor will be sufficiently adequate

to run the project application. Newer machines with faster frequency processors

 Multicore Algorithms for Image Alignment 23

and larger caches will clearly observe a greater benefit with condensed processing

times compared to older hardware.

3.4 PERFORMANCE TESTING

Performance testing is central to the evaluation and analysis of the designed

approaches for image alignment and noise reduction. Testing facilitates deductions

to be formed regarding the successfulness of the project. The test results of the

prototype project application must be recorded in suitable units and obtained with

a degree of accuracy to be of value. It is of no benefit to have the technical

representation of the results reported in the number of instructions processed, as it

is meaningless for assessments in its end use. Considering these rationales, time

was selected as the preferred unit for its relevance and understandable

comparisons in modern society.

There are numerous methods that could be used to gauge the duration of the

image alignment algorithm. Traditionally the counting of the seconds or minutes

passed is one approach that could be used without much deliberation. A

considerably better approximation is acquired with a stopwatch. A stopwatch could

be a mechanical or electronic device. Conveniently Microsoft Windows has a

reasonable clock that could be used for timing, since the computer must already be

on to execute the program. All of these approaches share a common oversight, in

that the tester must be concentrating on the computer until the tests have

terminated. Likewise the accuracy of the timing is relative to the human response

time, which accumulates an indeterminate amount twice for each test.

To counteract these shortcomings, variations to the anticipated calculation and

render time could be achieved by increasing or decreasing the number of files or file

dimensions. Clearly this solution is unacceptable in production, but moreover

discrete issues are produced in estimating the processing time. If the images used

as the test are sized too small, the outcomes will not be sufficiently invariant to

 Multicore Algorithms for Image Alignment 24

deduce conclusions and the human timer might not record adequate differences.

Similarly, small deviations in nominal execution such as a simple context switch mid

processing would obscure the result. Nevertheless if image sizes or the number of

files are set too high, the human timer would be spending large amounts of time

waiting. Because of this the timer may not be as responsive to halting the

stopwatch at the end of the test, again leading to the inaccuracies as described.

Rectifying the issue of accurate timing is resolved with an inbuilt counter in the

application. The time is recorded from the function clock() as an integer

representing the number of clocks of the hardware. Comparing the start and end

clock values divided by the number of clocks per second gives the time in seconds.

After each processing stage and at the conclusion of the program a timed value is

printed to the terminal screen. This value is as accurate as practically useable.

The tests are carried out on a set of separate hardware to ensure that different

combinations of processor frequencies, cache and software environments do not

drastically alter the results. Initially the project is started with one thread,

mimicking a single core machine. It is then gradually stepped up one thread at a

time to the maximum number of threads, which is equivalent to the total quantity

of hardware cores. At each thread count, the test is carried out on the same set of

images, the result recorded and the test repeated for consistency.

 Multicore Algorithms for Image Alignment 25

CHAPTER 4

MULTI–CORE COMPUTING

Before the advent of the multi–core processor, single core machines dominated

with persistently increasing frequencies (Ramanathan 2006). Once the multi–core

processor became mainstream, there was a delay in the development of software

applications to utilise the hardware entirely. Software continued to be designed on

previous generation models and programming languages that only considered the

now superseded hardware of the day. This led to sequential programming

approaches, much of which is still in existence (Bridges et al. 2007). Designing

programs for multi–core processors is not an automated, instinctive approach.

Rather careful design strategies contribute to a thoroughly efficient use of the

hardware (Bridges et al. 2007). Although some OS environments provide several

methods to accomplish multi–tasking, only two generic methods are considered

that are reasonably consistent across a diverse range of operating systems.

Processes and threads are the aforementioned mechanisms.

4.1 PROCESSES

In terms of computing, a process is defined by the Oxford Dictionary as:

“A series of actions or steps taken in order to achieve a particular end.”

In essence this is logically the intended outcome of a process. However this

definition better represents the notion of a program. A program is a passive entity

that often resides on non volatile storage as an executable file. Known to many as a

computer program or application, an executable file is merely a container for a list

of processor instructions (Silberschatz, Galvin & Gagne 2009). Since a program is not

 Multicore Algorithms for Image Alignment 26

allocated any hardware resources, the instructions form a series of steps that

provide a means to solve a problem if followed or run. The transition from the

definition of a program to a process follows after the program is loaded in memory,

ready for execution.

Considering the implementation in software, an amended classification to the

Oxford definition of a process can be altered to accommodate the impact on

memory and processors. A software process contains all resources required for

operation with an operating system. Examples of the types of resources a process

possesses and has control over are: the program counter; hardware processor

registers; a stack for temporary data; and a section for dynamic memory provision

known as the heap. All of these resources consume system memory and processor

time to perform the instructions imbedded in the process. Subsequently,

Silberschatz, Galvin and Gagne (2009) informally define the computing process as:

“... a program in execution ... [and which] is an active entity, with a program

counter specifying the next instruction to execute and a set of associated

resources.”

In practice, at least one process is essential for the program instructions to be

performed. Hughes and Hughes (2008) outline some of the primary reasons that

multiple processes are used in multi–core systems. The first beneficial rationale is

that each process comprises of a separate address space. Isolating a list of the

location of variables stored in memory is valuable as it provides a barrier between

rouge and badly programmed applications from modifying data that they should

not access (Hughes & Hughes 2008). Moreover, an impression of redundancy is

created in the circumstance of an errant process. In this instance, the other

processes might still be able to fulfil the functions successfully without the

problematic process crashing the entire program. Another motivation for

developing multi–process programs is for the expansion of memory allocations

(Hughes & Hughes 2008). Each process is assigned a limited quota of resources by

the OS. The amount of resources and files for prospective utilisation noticeably

 Multicore Algorithms for Image Alignment 27

increases relative to the number of processes active. Without otherwise resorting to

shared memory or other means to expand the maximum quantity of resources,

multi–process applications are an alternative.

The benefits of processes do not come without tradeoffs. The OS accordingly uses

the model of processes to manage hardware resource usage appropriately. Without

any form of context or relationship between several executing processes, typically

the OS will manage processor time by some form of pre–emptive time slicing and

will govern system memory by paging infrequently used memory to disk

(Silberschatz, Galvin & Gagne 2009). Whilst these forms of hardware management

can be effective in many circumstances, they are often inefficient in the context of

multi–core programming.

Dependant on the application, a developer is permitted to initiate multiple

processes to utilise the various hardware cores (Bridges et al. 2007). A direct

disadvantage of using multiple processes to utilise the available hardware is that

multiple processes take more computational power. Processes host referencing

data that is central for correct OS operation. When the OS decides that the process

has had enough time on the hardware, a context switch between multiple

processes occurs. When the OS reinstates hardware privileges, data from the

presently executing process such as register states have to be copied to storage so

that the process can continue execution (Bovet & Cesati 2006). Once complete, the

opposite is applied for the process about to begin operation. Data is transferred

from storage to the appropriate locations and the process continues from where it

was interrupted. Evidently context switching between processes is a timely feat.

Multiple processes unnecessarily duplicate information in memory. Using processes

in a multi–core system requires one process for every hardware core that is to be

utilised. In Microsoft Windows OS, each process can be forced on a specific

hardware processor by the SetProcessAffinityMask() API function (MSDN

2011). Similar API calls are available in most OS’s. However since each process

contains a unique set of resources, at least the instructional code of the process is

 Multicore Algorithms for Image Alignment 28

duplicated. Overlooking the situations where the data duplication of multi–process

could be tolerated, this type of design is inefficient, producing both slight

performance penalties and resource overheads. Figure 4.1 graphically illustrates the

issue of memory duplication on a dual core machine which requires two processes.

Figure 4.1 Representation of memory usage of two processes

This shortcoming is additionally compounded once consideration is given to the

image data stored for the specific application of this project. The simplest possibility

is that each process encompasses its own copy of the image data. Performance

would be degraded from the need to read the same file multiple times, according to

the number of processes. Similarly, the size of the image files and the amount of

data duplicated may exceed usable thresholds, leading to undesirable events such

as disk thrashing. An alternative possibility is to create a region of shared memory in

which to store the common image data. Shared memory would reduce duplication

and alleviate potential issues associated with the transfer and composition of the

panorama data between the various processes.

 Multicore Algorithms for Image Alignment 29

4.2 THREADING

One of the predominate resources a process includes is that of at least one thread.

A thread is defined by Akhter and Roberts (2006) as:

“... a discrete sequence of related instructions that is executed independently

of other instruction sequences.”

Threads are consequently a series of instructions, known as a function, which

executes on a hardware unit. The disparity between multiple threads and multiple

processes is that threads of the same process inherently share most of the common

process–wide resources. Threads are therefore a lighter–weight approach to

processes in that threads are less demanding on memory by eliminating the

majority of the code and resource duplication observed with processes. The

minimum resource requirement for threading includes data items such as the stack

(Hughes & Hughes 2008), where local variables and function pointers are situated.

Figure 4.2 exhibits the same dual core machine as Figure 4.1, although with multiple

threads.

Figure 4.2 Representation of memory usage of two threads in a single process

 Multicore Algorithms for Image Alignment 30

Employing threads in a multi–core system has several benefits. A paramount

advantage is that it is more computationally efficient for a changeover between

threads than a process context switch (Akhter & Roberts 2006). Threads of the

same process share the same distinguishing process attributes, so there is less

storage and retrieval of state information when the OS negotiates hardware

scheduling. Furthermore threads avert the need for contact between sibling threads

to the degree apparent with inter–process communications. Since a thread is

perceived to be merely a function, no inter–thread communication is required

besides the control of resources and timing. Most common resources are shared by

design in threads, so exchange of elements such as global variables are unnecessary

(Akhter & Roberts 2006). Savings in both execution and development time and

expenses are realistic.

4.3 PROPOSED DESIGN

Drafting of the multi–core method involved several distinct design choices. The

design commenced with the criteria for selecting the multi–core processing

technique. The criteria for the project was based on two elements, execution speed

and memory usage. The fundamental facet of the project is to have the time of

image stitching and construction reduced. Clearly the performance of the chosen

approach is a significant and influential factor. Likewise the memory overheads are

a consideration, as the extent of the resource used in the proceeding algorithms are

expected to be sizeable. The more resources used along with larger sized resources

will result in memory constraints on all modules, limiting the algorithms to the

minimum memory footprint feasible without disrupting routine operation. This is to

ensure that adequate processing potential was provided to a diverse range of

hardware. Evaluating the alternatives, threading was preferred as it was most

applicable for the aforementioned criteria. This approach follows current

development conventions and ideologies for multi–core systems. Subsequently, an

approach to thread invocation is required.

 Multicore Algorithms for Image Alignment 31

Conventionally threads are created and destroyed as required, however this

induces a performance penalty. Although this method is easier to produce (Lee et

al. 2011), each time a thread is created or destroyed an allocation or reclamation of

memory and system resources occurs respectively. These transactions consume

valuable processor time that could be productively used for processing. Instead the

project establishes the threads once at program initialisation. Threads are

suspended when in idle state and resumed when there is a task to process.

Generally initialisation of the threads is performed before the threads are used. The

threading function in the project prepares the number of threads according to

either the number of hardware cores or the input entered as an argument to the

process. If present, the input number of threads is capped at the number of

hardware cores. Each of the threads is given a dedicated hardware core to operate

on, which is unused by any other thread in the process. The rationale is that peak

performance is obtained if threads have separate cores and are not in direct

contention for equivalent processor resources. A thread will commence by making a

call to the OS API to suspend itself, as there are no tasks to process. The API is a set

of predefined methods that perform a tested sequence of instructions, without

having to develop anything from scratch.

When the point arrives in an algorithm for it to be multi–threaded, a function

named assignThreadFunction is called with five arguments. The purpose of this

method is to instigate another function to begin operation on one of the threads.

The arguments of assignThreadFunction comprise of:

I an integer representing a core on which the proceeding routine should

execute on.

II a pointer to a function to process. The method must have a prototype of

void functionName (IMAGE_LIMITS, IMAGE_LIMITS, char*)

III two IMAGE_LIMITS structures containing:

 Multicore Algorithms for Image Alignment 32

 A an integer indicative of the image to be operated on.

 B a pair of structures that encompass the minimum and maximum

coordinates that the processing algorithms can use for boundaries.

IV a pointer to a character array where output data will be stored, if applicable.

Verification that a thread is not formerly processing when it is called and the

synchronisation of multiple threads for a particular task involves the analogous

concept of a semaphore. Semaphores are an OS level construct that offers a

technique of autonomous mutual exclusion (Silberschatz, Galvin & Gagne 2009).

Essentially a semaphore is an ordinary variable owned by the OS, which is

incremented and decremented atomically. When the value of the semaphore is

zero, a process endeavouring to utilise the resource that the semaphore locks must

wait until the value of the semaphore is positive. In this project, the first use of the

semaphore is to be waited on when trying to task a thread as a precaution. The

thread cannot process two items simultaneously; therefore the lock supplies a

means of verification that only a singular function can process.

Synchronisation is the second use for the semaphore. Various algorithms require

that all threads accomplish their assignment before moving onto the next phase of

instructions. This can be illustrated in examples such as averaging across multiple

threads. It is evident that if the control thread did not wait until all threads were

adequately complete before progressing, an incorrect value for the average could

be attained. Even worse, some variables might not be created leading to a

segmentation fault. In the project, a dedicated semaphore exists for the number of

threads. As each thread is freed of its previous responsibilities, the

waitForAllCores function collects the semaphore of the thread. Once the

waitForAllCores function has decremented the semaphore count to zero, all

threads have completed their respective assignments and the waiting method can

continue.

 Multicore Algorithms for Image Alignment 33

CHAPTER 5

IMAGE ALIGNMENT

Image alignment is the process of engineering a common coordinate system that is

shared among a set of interrelated photographs (Hsieh 2003). It is a technique of

calculating the similarities in two images and devising a position based system

relative to both images. Presently the image alignment algorithms in use consume a

tremendous amount of time to complete, as they are a computationally intensive

task involving a calculation for nearly every pixel (Chen 1998). In this project, image

alignment is employed not purely to formulate a coordinate structure, but to

discover alignment points between all of the images. Figure 5.1 shows the point of

join with two images. After the points have been resolved, the algorithm must join

the images at the predetermined location. Lowering the time the image alignment

algorithms take to complete the task can be achieved through multi–processing on

a multi–core system.

Figure 5.1 Image alignment of two images showing the join coordinate.

Comprehensive image alignment is a complex exercise and is influenced by

numerous factors which are out of control of the developer. Brown (1992) suggests

that the photographs could be taken at varied times and from different sensors or

 Multicore Algorithms for Image Alignment 34

viewpoints. Although this is feasible, in actuality photos that are intended for

producing panoramic images are often taken successively, with only a slight

variation in the viewpoint. The intent is for no deficiencies to emerge between each

shot, though problems arising are inevitable. Alignment of one image to the next is

certainly an arduous task, since even small variations in the capture parameters of

the image can misguide the alignment position.

5.1 ISSUES AND ASSUMPTIONS

Ideally the panoramic photograph would be captured on a single camera and

through a wide angle lens, to negate the time and capital involved in constructing a

panorama. Clearly acquiring or obtaining access to high resolution camera

technology equipment is not practical in the majority of situations. The next best is

to have the simultaneous acquisition of two overlapping photographs, with no

differentiation in perspectives or with any form of distortion. Whilst technically this

is not impossible, it is just as improbable as the former proposition. Consequently it

is acknowledged that some deformation will be present in the images input into the

alignment algorithm. The specific application of this project pertaining to image

alignment facilitates several assumptions regarding the input files to be made.

Image alignment related issues include (Szeliski 2006):

I the parallax error in each image. Derived from the Greek meaning alteration,

parallax error relates to the difference between the perceivable inclinations

of an object at varying viewpoints (Zeilik & Gregory 1998). These viewports

are the images in the set to be joined. As a capture device sweeps around,

objects nearby tend to appear moving with respect to the distant

background. If the parallax error occurs on entities that are to be blended in

the overlap, the join stem in the resultant panorama will be blurry. Szeliski

(2006) suggested 2D optical flow motion estimation as a method to

compensate for radial distortion and parallax. Radial distortion is another

similar issue that can have origins with the CCD orientations in the camera.

 Multicore Algorithms for Image Alignment 35

Radial distortion is the curvature of the edges of an image so that a

rectangular image warps in a circular profile (Szeliski 2006). Both of these

are presumed to be negligible in the images produced by microscopy, as the

device is particularly close to the object and the microscope lenses should

have low parallax tolerances. No parallax compensation is accounted for in

the project.

II the rotations of any image. Unless the images are taken with a tripod or

similar apparatus that is absolutely level, some rotations will be introduced.

In domestic photography, the rotation might not be enough to be

conspicuous and would probably go unnoticed. With medical imagery

however, rotations may represent a large issue with the diagnosis.

Misaligned images in a panorama could perceivably be misleading to the

identification and analysis of the object. Without any prior medical

qualification and since image rotations are a per image attribute, applying

an autocorrecting rotation to each image is out of the scope of this project.

III the perspective and distortion found in images. Objects that are skewed in

the 3D plane can be repaired by affine transformation. Affine transformation

is the mathematical properties that allow the vectors of the image in all

dimensions to be rotated and skewed as to reproduce the non skewed

version. The microscope is nominally calibrated to capture images on a

horizontal surface that is parallel to the microscope camera device. Because

of this, it is extremely implausible that affine transformations will occur and

need to be accounted for.

5.2 SCALE–INVARIANT FEATURE TRANSFORM

Scale–invariant feature transform is a type of object recognition system with a wide

range of applications. Developed by Lowe in 1999, SIFT is one of many feature

 Multicore Algorithms for Image Alignment 36

detection algorithms available that can depict or outline various details within a

photograph. The Oxford Dictionary defines a feature as:

“... a distinctive characteristic of a linguistic unit ... that serves to distinguish

it from others of the same type.”

By this definition, a feature is in essence a point of interest. Whilst being direct in

that a feature must be a differentiating component, it is unclear from the

description of the exact specifics of what constitutes such a distinction. Due to

varied applications where feature detection is utilised (Lowe 1999), many unique

forms of feature detection algorithms have been developed. Some such systems

include: feature description; edge detection; corner detection; and blob detection.

Each algorithm plays a considerable role in the field for which it originates. The SIFT

algorithm is part of the set of feature descriptors.

The SIFT algorithm begins by first extracting key points from a collection of

reference images (Lowe 1999). These key vector points are stored in a library. When

an image is input into the algorithm to have its features identified, the algorithm

cycles each pixel generating feature map. The feature map is the vectors of interest

which are compared to the library. If a matching candidate is found, the key vectors

in the input image are classified and indexed accordingly. The principle benefit of

this approach is that overall, detection is invariant with respect to image: scaling;

orientation; position; and with minimal effect, noise and slight distortions (Lowe

1999, Hua, Li & Li 2010). Key features are based on an array of vector points and are

scrutinised under these attributes. Positive matches discovered are transferred for

subsequent analysis which seeks to discard outlier vector objects. The vectors

remaining relate to detectable characteristic.

Xing & Miao (2007) state in research on the SIFT algorithm that it is a complex

technique. Xing & Miao outline their steps to perform the SIFT calculation and

merge the images of the panorama:

 Multicore Algorithms for Image Alignment 37

“I Choose an image as referenced one.

 II Find the feature matched in the neighboring images.

 III Calculate the homography H of the two images.

 IV Apply H to warp and project the image 2 to the same coordinate

system as the image 1, and then process image 2 and stitch them

seamlessly.”

A substantial issue with the SIFT approach and all equivalent subsets is that the

features present in the images for alignment have not always been identified. The

technical field in science of microscopy researches into both existing and

undiscovered substances. In the context of this project, the SIFT algorithm is not

practical. Maintaining reliable library records to ensure accurate image alignment

joins is not convenient, as it leads to microscopy researchers again focusing on

technology rather than science. Likewise updating the catalogue of items every time

a new object is found would slow progress down in this application.

5.3 CORRELATION

Correlation is a commonly used digital signal processing technique to filter noise

from electrical and audio signals (Leis 2011). Noise refers to disturbances in the

original signal, such that certain parts of the signal no longer represent the true

value. For a number of reasons, signals often gather noise through transmission

mediums. Comparing a signal buried in noise with the original will conclude with a

negative result. Correlation forms an output waveform based on two inputs, which

are the known original signal, and an acquired signal that contains noise (Leis 2011).

The correlation algorithm then strives to repair the corrupted signal so that the best

waveform that resembles the original is produced. Notably the technique of

correlation can be applied to image alignment.

Using correlation for image alignment involves a marginally adapted methodology.

With images, one image is arbitrarily selected as being stationary and the second

 Multicore Algorithms for Image Alignment 38

image is shifted relative to the first (Rankov et al. 2005). The shiftable image is

incremented from a one pixel overlap in the top left corner of the stationary image,

to a one pixel overlap in the bottom right corner of the stationary image. At each

increment, the similarity of the overlap of the two images is calculated. It is

noteworthy that all computations are only performed on the overlap region of the

two images, dubbed the viewport. After all calculations are performed, the

algorithm seeks the highest peak in output waveform. The coordinate offset with

this highest similarity is selected as the point to join (Rankov et al. 2005). The plot in

Figure 5.2 displays the highest peak in the output, which is appropriately positioned

at offset (0,0) since the diagram is the correlation of the same image.

Figure 5.2 Surface plot of the correlation of the same image with dimensions 100 100

pixels.

 Multicore Algorithms for Image Alignment 39

Figure 5.3 Pseudo code instructions for the calculation of correlation

The calculation of correlation is performed in a number of stages. The sequence for

evaluation of the correlation is presented as a codified list of pseudo code

instructions in Figure 5.3.

The correlation algorithm has several benefits over SIFT. A significant advantageous

factor is that no library scheme is mandatory. The requirement to have existing

items in storage for comparisons against in conjunction with maintenance time

necessary for library upkeep, increases the prerequisites of the SIFT algorithm.

Eliminating these founding prerequisites saves both time and capital. Another

advantage of the correlation algorithm is that it is relatively easy to implement in

the chosen development environment.

5.4 THE DESIGN

Composition of the image alignment algorithm involved numerous phases. The

initial phase was to select the appropriate algorithm to ascertain a suitable join

point. Correlation was selected for this purpose. However the correlation algorithm

disclosed in Figure 5.3 is expected to be iterated repeatedly for every horizontal and

vertical position that the shifting image can take. Conventionally this is performed

through a nested loop, which begins with the top–leftmost location and concludes

with the bottom–rightmost (Rankov et al. 2005). Figure 5.4 (A) illustrates this aspect

 Multicore Algorithms for Image Alignment 40

diagrammatically. The looping construct consequently requires modification to

utilise a multi–threaded programming procedure.

(A)

(B)

Figure 5.4 Image alignment approach for similarity calculation

(A) Traditional single–core type (B) Division for a dual core machine.

A solution to this problem is illustrated in Figure 5.4 (B). In the case of the dual core

machine, the boundary of movement is halved. The moving image is now restricted

from shifting across all horizontal and vertical combinations of the static image, to

being able to move up to the vertical line. What this means for processing is that

essentially the processing time theoretically is halved. The first thread executing on

the first hardware core would process all the correlation calculations on the left side

of the static image. Likewise the second thread operating on the second core would

process the right half. In a perfect arrangement, both threads would start

concurrently with no initialisation overhead and would complete simultaneously. A

prime gain of applying this approach for the division of threading tasks is that it is

scalable. Any quantity of threads can equally execute segments of the image

 Multicore Algorithms for Image Alignment 41

alignment algorithm. This is in contrast to the many existing implementations that

are hardcoded.

The multi–core alignment methodology developed falls short when the algorithm

offers two offsets as the join point; one offset for each thread. This issue is

overcome by the controlling thread saving all the calculated values from each

thread in an array. Once all threads complete the computations, the control thread

selects the highest correlation value from the array and uses the corresponding

horizontal and vertical offset as the join point. At this point, the offset for this image

combination is stored in a separate array. This second array which contains all of

the offset values is subsequently normalised, so that one image will start with either

a horizontal or vertical offset of zero. Negative offsets will cause corruption when

the images are compiled into a single panorama, as the location is used directly for

its position in the final image. Undoubtedly image files cannot have negative

dimensions. The cycle of calculating similarities on multiple threads, determining

the largest and storing the offset result, repeats until all image files are processed.

In spite of the multi–threaded algorithm for correlation evaluation, the calculations

remain computationally intensive. Further reductions in the processing time are

fulfilled by regulating the number of calculations that the processor performs.

Instead of evaluating the similarity at every increment of the moveable image, the

default is calibrated to every third. This is configurable on the command line with

the switch --align-step=value. At every third increment, the processing time

for this function is theoretically reduced by 66%. Having the step size set at every

third increment nonetheless introduces its own issues. In the example presented in

Figure 5.2, the offset value of (0,0) is only obtainable when the step size coincides

with zero horizontal and vertical coordinates. The default maximum offset error is

±3, but this could be higher if a larger increment size is chosen.

 Multicore Algorithms for Image Alignment 42

Figure 5.5 Surface plot of the correlation of different images with dimensions 100 100

pixels.

Figure 5.5 graphically represents the step size problem. When referring to two

different images it is common for there to be several crests in the output plot. In

any given image, there can only be one peak that is classified by the algorithm as

being the highest. If the increment size is set too high in order to save processing

time, the genuine highest peak may not be selected as the join point. To rectify this

exception, the correlation function repeats itself over the range between the value

it has selected as the highest and the neighbours of this selected point. Every

increment between both neighbours of the designated peak is calculated with the

optimism that any higher peaks could be valid in this range. In the instance of Figure

5.5, if the crest on the right side were to be determined as the highest and the step

size sufficiently large, the authentic ultimate peak would be detected during the

second iteration.

After obtaining the image alignment coordinates for all images the next phase of

the algorithm is proceeded. Preparations begin on compiling the final panorama.

Using the information in the array on the offsets of the images and the height and

 Multicore Algorithms for Image Alignment 43

width of each image, the output image dimensions are ascertained. Local memory is

allocated according to this size. Utilising the same approach used for division of the

image alignment task, the activities of image compilation and the transfer of local

data is multi–processed. The output image data is transferred to a location of

choice; namely the output structure in memory that is written to disk.

A deficiency of the image compilation method is the lack of blending. Initially the

designs included fading between images. Merges were calculated using relative

coordinates to the second image and blending was performed in the correct

direction. This functionality was removed late in the development due to the

routine being incapable to perform the operation consistently and without

disturbance to general image compilation.

 Multicore Algorithms for Image Alignment 44

CHAPTER 6

NOISE REDUCTION

Noise refers to the amount of errors or imperfections that are enclosed in an image

compared to what is present in the original exposure. Stroebel and Zakia (1993)

describe image noise as:

“... random variations, associated with detection and reproduction systems,

that limit the sensitivity of detectors and the fidelity of reproductions ...”

There are numerous reasons why noise exists in images. Some examples of the

causes include: dust or particles developed between the camera and the object;

light reflections across the lens introducing graininess; or transmission errors

altering the intended values (Srivastava 2010). Indeed combinations of these issues

are probable which further compounds the incapacity of a photograph to perfectly

represent the subject. The challenge of noise reduction ideally is to remove all of

these indicated defects and improve clarity in an image.

Various algorithms have been developed to resolve noise affected images, each

with differing objectives and benefits. The type of noise, its frequency and the

context of the image all contribute to the diverse assortment of algorithms

developed. Defining what parts of an image constitute noise is the prevalent

problem. Developing an algorithm based on a limited subset of images is likely not

to be as effective or precise as diminishing the noise on a dissimilar style of image.

Only some of the common approaches for noise reduction will be discussed in this

section.

 Multicore Algorithms for Image Alignment 45

6.1 MOVING AVERAGE FILTER

The moving average filter is a particularly straightforward noise reduction

algorithm. Every pixel of the image is iterated and the mean of the neighbouring

pixels are calculated (Mather 2004). Harnessing a 3 3 pixel window size, a single

pixel around each extremity of the centremost pixel is summated, including the

value of the centremost pixel itself. The centre pixel is the pixel designated for noise

reduction. It is subsequently substituted with the mean.

(A)

(B)

Figure 6.1 Moving average filter (A) Original window (B) Window after filtering.

Usage of the moving average filter with a 3 3 pixel window is illustrated with an

example in Figure 6.1. It is worth noting that greyscale images are generally

represented in files as numbered quantities, therefore this depiction is apt. In this

instance, the square for noise reduction is listed as holding the value of 200. Amid

the context of the surrounding pixels, it can be perceived that the number 200 is

out of perspective. Conveniently, the majority of all noise encountered in this

project follows a similar nature to this, with pixel values either being too high or too

low for the region. Calculation of the mean results in a slightly more appropriate

figure of approximately 25, as visible in Figure 6.1 (B).

One of the disadvantages associated with the moving average filter is the

effectiveness of the noise reduction (Leis 2011). The size of the window plays a

 Multicore Algorithms for Image Alignment 46

significant role in the amount of noise removed. The performance of the filter is

restricted to approximately O . Whilst a smaller window size will increase the

throughput of the algorithm, too small a window size results in the noise not being

thoroughly removed. Conversely, window dimensions that are too large yield poor

comparative performance and inferior image clarity. Incidentally, testing seemingly

demonstrated that the 3 3 pixel window offers the best ratio of performance to

noise removal accuracy.

Window sizing is not the only limiting factor on the effectiveness of the moving

average filter. The approach to filtering tends towards instability when the noise is

vastly different to the anticipated value. Figure 6.1 displays such a case. It could be

supposed that the expected value to be replaced in Figure 6.1 would be no higher

than perhaps ten, as apparent by those adjacent to it. Any pixels that are vastly

opposing to the predicated will not have noise entirely reduced and will in effect

contribute to incongruous values applied in the mean of neighbouring squares. The

image thus becomes visually blurry to the viewer (Leis 2011). It is acknowledged

that successive revisions of the algorithm will gradually reduce noise, at the

expense of the loss of image clarity and perceived blurriness. Likewise the

ubiquitous issue arises as with all image filters, which lies in the definition of noise.

In this circumstance, it is not clear what actual value should replace the 200 of

Figure 6.1, if any. If the algorithm were to be adapted to suit this characteristic, it is

very unlikely to be a fitting attribute of all images.

6.2 MEDIAN FILTER

Median filtering follows many of the same processes that encompass the moving

average filter to reduce the noise in images. The window based system remains, as

does the need to iterate through every pixel of the image. Equivalently the result is

stored in the centre pixel, which is the pixel designated for noise reduction. The

distinction of the median filter lies in how the replacement value is designated.

Instead of summating and calculating a mean, all of the pixels of the window grid

 Multicore Algorithms for Image Alignment 47

are sorted in ascending order (Thangavel, Manavalan & Aroquiaraj 2009).

Sequencing the grid degrades performance moderately to O (Sedgewick

1978). The median filter however is affected by the window sizing for exactly the

same rationale as the moving average filter.

(A)

(B)

Figure 6.2 Median filter (A) Original window (B) Window after filtering.

Figure 6.2 exhibits the same test case as Figure 6.1 however with the median filter

methodology. As in the former example, the value of 200 appears to be inconsistent

in the context. The median of the nine cells of the window is the number four,

which once more replaces the original value in Figure 6.2 (B). One leading

motivation for using the median filter over the moving average filter is that it

lessens the undesirable effects present in the latter filter (Leis 2011). Since the

median filter ranks the neighbouring pixels rather than averaging them, a more

precise result is formed. The outcome is as what was expected in the moving

average filter; that is a value below ten. With this approach, much of the detail is

preserved in both the replaced square and neighbouring pixels. Since the

neighbouring pixels of the image are not adversely affected, the image retains its

sharpness and clarity. In addition, an added benefit is that since the median filter is

nonlinear, no setting of a threshold is necessary in an attempt to filter noise

frequencies and thereby produce better results (Leis 2011).

 Multicore Algorithms for Image Alignment 48

6.3 ASSUMED DESIGN

Design aspects of the noise reduction filter build upon those constructed in the

image alignment algorithm (refer to 5.4). Resembling the alignment algorithm, the

choice of noise reduction algorithm was the foremost decision. The median filter

was opted for as it offers satisfactory performance and of the options, provides the

most precision reduction without adversely affecting the overall image clarity. The

pixel values that constitute the window are gathered into local memory, with one

array for each of the red, green and blue colour channels. The integrated Quicksort

algorithm in C is utilised to sort the pixels in ascending order. The median of each of

the arrays after sorting is complete and overwrites the existing values held for the

image. Therefore alterations are immediate and global for all proceeding

operations. Division among threads and consequently cores were conducted

identically to the distribution for image alignment, whereby the vertical divider is

calculated according to the number of cores. Each thread is given boundaries which

it can process within.

Upon commencing development of the median filter algorithm, several issues are

encountered. One issue confronted is the computation of the median filter around

the edges of the image. In the example of the extreme leftmost side, three pixels

down the left column of the median window are not accounted for. Three schemes

intend to solve this, including:

I avoiding the boundaries. This is achieved by commencing calculation at the

first complete window. In the case of a larger 5 5 pixel window, the first

complete window is formed at horizontal and vertical pixel 3.

Computationally this is the fastest option, however the trade off is that the

boundary does not have noise removed.

II shrinking the window at the boundaries. This involves gradually reducing of

the window dimensions as it approaches the boundary, until the boundary is

hit. At the edge, the window is condensed to a singular pixel. When this

 Multicore Algorithms for Image Alignment 49

occurs, the median filter reduces to option I as there is only one pixel in the

array. No noise can be reduced when there are not at least two values; a

noisy one and a valid one.

III fetching values from elsewhere to fill the window. Entries on the horizontal

or vertical wrap around are prime targets. In the case of filtering the

leftmost side, values on the rightmost side may be selected. Visibly this is

only favourable when the images are to some extent palindromic at the

edges. Otherwise the two sides may exhibit absolutely no similarity to each

other and this could distort the output.

Taking into account that the end use is for medical science, the former of these

options was desired. Primarily no inadvertent colourations or textures are

introduced by blending two edges of an image together. Any peculiar patterns

induced by the algorithm could potentially impair: the correct diagnosis; or the

discovery of new materials. Clearly noise on the boundaries of the images is more

acceptable to human users than discoloured or disfigured photographs. Conversely

as Figure 6.3 (C) illustrates, often not all noise will entirely be removed by the filter

across the image. Noise remnants remain in regions of high noise and will not be

removed as the median of the window may in fact be noise itself. Overall the image

preserves much of the clarity of the original image, found in Figure 6.3 (A).

A disadvantage for the preference of the second option is that it is not the most

computationally efficient of the alternatives. Efficiency is highly esteemed in this

project as the various processes consume copiousness amounts of time. This facet is

particularly applicable when it is considered that unlike image alignment, reductions

in time cannot be developed by skipping iterations. Accuracy of the noise reduction

in the images however takes precedence over the processing speed. Without

accuracy, the project is not useful for its purpose. A direct advantage of not skipping

computations is that it is not necessary to pass back over the samples to ensure the

proper outcome.

 Multicore Algorithms for Image Alignment 50

(A)

(B)

(C)

Figure 6.3 Median filtering for noise reduction (A) Original image (B) Image disrupted with

‘Salt ‘n Pepper’ style noise (C) Result of image after median filtering.

 Multicore Algorithms for Image Alignment 51

CHAPTER 7

PROJECT LIMITATIONS

It is a given that the majority of projects constructed will have functional, design or

logistical limitations. The time involved in preparation, research and design are

often critical factors restricting the overall outcome of the project. Breadth of the

project scope and the extent of innovative developments furthermore add

complexity to the project. Without exception, this project comprises several

limitations. Constrained development time coupled with the concentration of the

project relating to the parallelisation of image alignment and noise reduction left

various prospective features overlooked. The major limitations are detailed below.

7.1 FILE FORMATS

It is evident that the algorithms developed will expect that the data acquired from

the image files be in a universal arrangement in memory, so that the data can be

readily accessed for manipulation. Whilst there are two types of acceptable input

and output file formats developed throughout the project, only one is considered

viable for quality and compatibility reasons. The foremost file type used is the

Tagged Image File Format (TIFF). Designed in 1986 by Aldus Corporation, the

purpose of TIFF was to have a unified format for images amongst different

manufacturers (Adobe Developers Association 1992). It is informally known for the

capability to house lossless photographic information in a common format, thereby

leading to applications where quality loss is intolerable. There have been no major

updates to the TIFF specification since 1992 and presently the TIFF format is widely

supported by image manipulation programs and internet browsers alike.

Nevertheless TIFF files can accommodate an almost unbounded number of

compositions, making support for this type overly complex. The design of the TIFF

 Multicore Algorithms for Image Alignment 52

module in this project is such that only selected configuration options are available.

Restrictions include, but are not limited to:

I uncompressed, interlaced image data.

II greyscale or red–green–blue colour interpretations.

III 8 bits per colour channel.

IV fourth and subsequent colour channels ignored.

Simple modifications of the file input–output module would permit further third

party file modules to be integrated. Provided that the additional file input–output

module satisfies the functional conditions below, there should be no difficulties. A

file format module must have methods to:

I read an image, given an open file pointer.

II write an image, given an open file pointer and an image object.

III return the width and height of the image.

V get and set a pixel at a given coordinate.

VII resize the image to given dimensions.

7.2 IMAGE SEQUENCING

The image alignment algorithm capitalises on the order the photographs are input

to acquire additional performance. The path to each of the images is entered as

separate arguments on the command line when the application is run. One

photograph must be distinctively related to the next in the sequence entered, over

any edge. Vast reductions in the amount of processing are to be reclaimed as the

project does not have to compute the correlation for every combination of images.

Inputting in a logical order results in performance of O , whereas the

project would be penalised with a performance of O to produce the image

arrangement automatically. Figure 7.1 provides guidance on prospective ordering of

 Multicore Algorithms for Image Alignment 53

a nine set of images. Note the arrangement of the centre row relative to the first

and last rows.

Figure 7.1 Sample ordering of a 3 X 3 image set

7.3 FILE PATHS

The path to files entered into the application represents a limitation. As the file

paths are input on the command line with the --input=file switch, any spaces in

the file path will be considered by the parser as multiple separate arguments. A file

with two spaces in the file path will be registered by the parser as three arguments

and so on. The program will therefore not accept files will spaces in the file path

and will complain with a file not found error if present.

7.3 GRAPHICAL USER INTERFACE EXPANDABILITY

The project presently relies on the command line to interface with the user.

Verbose status updates and errors are printed on the text console by default, unless

deactivated with the ––quiet option. Original intentions were to have an

incorporated graphical user interface (GUI) to preview the output and make any

 Multicore Algorithms for Image Alignment 54

fine adjustments before saving the panorama. Unfortunately there are no methods

currently designed for implementing a GUI layer.

7.4 OPERATING SYSTEMS AND COMPLIATION

The implementation of the project application is restricted by a few isolated OS

dependent function calls. Until further development redefines these OS dependant

methods, it is mandatory that the operating system be Microsoft Windows XP or

greater, or capable of running surrogate Windows instructions. It is also expected

that the compiler be C standards compliant and evidently able to compile Windows

executables. This limitation is acceptable in this setting since there are several free

and compatible compilers and that Windows is installed on the majority of

machines.

Primarily there are three OS dependant functions that prevent the software from

being portable. The first developed function with the Windows OS limitation is the

getNumberOfProcessorCores() method. The purpose of this function is to

return the number of hardware cores, so that the corresponding number of threads

can be initialised. In Windows to retrieve the number of cores, the

dwNumberOfProcessors attribute of the SYSTEM_INFO structure must be

accessed (SYSTEM_INFO structure 2011). In Linux, the corresponding command to

list the number of processor cores is:

cat /proc/cpuinfo|grep processor|wc -l

Notably this instruction could be dissimilar on variants of Linux, however the

concept remains. The final OS dependant function calls are found in the method

createThreadOnCore(). Threads and semaphores for control are created with

the Windows versions rather than using POSIX modules. Whilst calling POSIX

modules is similar to the Windows counterparts and POSIX components are

portable across OS’s, Windows versions were selected since they were easier to

 Multicore Algorithms for Image Alignment 55

read and maintain. Portability was deliberated extensively, but the prior limitation

with the number of cores meant that portability was already constrained and as

such POSIX threads were not necessary in this context.

 Multicore Algorithms for Image Alignment 56

CHAPTER 8

PERFORMANCE REVIEW

The overall performance of the prototype built in this project is a major factor in the

effectiveness for use in a production situation. Besides reliability and consistency,

comparative execution duration is the only measurable assessment for the

realisation of the project objectives. As reasoned in the methodology (refer to 3.4),

time is the unit selected for assessing the performance of the algorithms. The

general populace can often relate to time in modern society. This makes

comparison of performance straightforward for those outside of the fields of

computers and electronics and thereby do not appreciate technical jargon.

8.1 TESTING SCENARIO

The performance of the project will be tested on various computer systems. In the

practical performance testing of this system, only Windows Vista and Windows 7

machines could be utilised. There was no access to machines running older versions

of the Windows OS to test. Periodically computer systems get updated and it

becomes harder to find machines that continue to employ older software versions.

Each system experimented on features an Intel processor and chipset, as

unfortunately there were no AMD processors that could be tried for reference,

since the majority of AMD chips are in low end machines (Burgess et al. 2011).

Likewise, all systems had different levels of system memory size, frequency, latency

and processor cache, so no direct conclusions can be drawn from the results

concerning which of these hardware attribute confers the best processing times.

This is acceptable since testing intends to demonstrate the performance benefits of

multi–core algorithms on multi–core hardware, rather than provide an in depth

overview of which hardware characteristics are the most advantageous.

 Multicore Algorithms for Image Alignment 57

Table 8.1 outlines the hardware used to test the project. Of note is the core counts

row of Table 8.1 that displays the difference in hardware architectures. The newer

Intel processors have the technology known as Hyper–Threading (HT). Essentially

HT is hardware multi–threading. Within Windows, the core count returned is eight

cores for System 1, as Windows does not make a discernable distinction between

hardware processor cores and hardware threads.

Table 8.1 Hardware utilised for testing the project.

 System 1 System 2 System 3 System 4

Processor
Intel Core i7

930 @ 4.0 GHz

Intel Core i5
2400 @
3.1 GHz

Intel Core i3
M330 @
2.1 GHz

Intel Core 2
Duo T9300 @

2.5 GHz

Core Counts
4 Processors

8 Threads
4 Processors

4 Threads
2 Processors

4 Threads
2 Processors

2 Threads

Memory 12 GB 4 GB 4 GB 2 GB

OS Windows 7 Windows 7 Windows 7 Windows Vista

The test used two specifically modified images to repeatedly stress the algorithm

and the hardware. The images both measure 250 250 pixels in dimension and as

seen in Figure 8.1, the two arcs should combine to form a semicircle. This is ideal for

testing of the project, as output errors are immediately obvious in the final

panorama.

 Multicore Algorithms for Image Alignment 58

(A)

(B)

Figure 8.1 The two images used to stress the algorithm (A) The first arc (B) The second arc.

The procedure for testing the project is as follows:

I select the hardware to on which to perform the trials. The machine must

have at least Microsoft Windows XP OS or better as discussed in the

methodology (refer to 3.3). The only other requirement is that the test

system must have a multi–core processor, lest the system not be able to

properly assess the performance advantages.

II copy the binary program and image files to the test system. Placing the

image files in the same directory as the binary file is recommended. The

directory must not have spaces in the filename.

III call the software with the appropriate arguments. The appropriate call is

appname --input=arc1.tiff --input=arc2.tiff --threads=x

 where

A appname is the application name. This will depend on the settings in

the compiler when producing the binary file.

 Multicore Algorithms for Image Alignment 59

B --input=x is the image files to process. In this example, the files

are named arc1.tiff and arc2.tiff. Each image file must be

entered separately with a --input= preceding the filename.

C --threads=x is the number of threads to create. Replace x with

the numeral of the desired value.

IV begin with a value of one for the number of threads. Record the time in

seconds printed on the terminal at the end of processing.

V repeat the sequence III to IV various times to confirm consistency.

VI increment the amount of threads by one. Repeat the entire sequence III to

V until the four threaded test is completed.

VII calculate the mean for each set of threads after all trials have been

performed.

8.2 RESULTS

Table 8.2 is the tabulated data from testing the project over five iterations of each

of the thread counts. Avoiding skewing the final conclusions, system 4 was not

included in the mean time in the final row of Figure 8.3. The reason system 4 was

not tested for three and four threads was that the computer was a dual core item

and as such could not run the extra threads without conflicts in scheduling. The

times for system 4 are included for reference.

 Multicore Algorithms for Image Alignment 60

Table 8.2 Time in seconds to render the alignment of the test images.

 Time (Seconds)

 1 Thread 2 Threads 3 Threads 4 Threads

System 1

137.108 92.442 92.866 67.752

137.347 100.386 92.914 69.501

135.542 100.418 92.442 66.376

136.664 100.387 93.068 67.168

135.919 100.403 93.040 68.583

System 2

166.340 118.030 109.528 104.104

165.491 119.608 112.245 105.211

163.169 120.378 109.548 105.599

163.893 119.585 109.717 105.370

164.317 118.634 110.577 104.191

System 3

274.686 209.496 184.766 131.059

273.409 206. 714 183.915 131.252

274.089 207.408 184.085 129.331

274.196 207.279 184.805 129.711

273.800 207.028 183.774 129.432

System 4

246.382 157.700 – –

244.834 156.359 – –

246.016 156.127 – –

245.231 158.642 – –

245.097 156.322 – –

Mean
(No System 4)

191.731 137.249 129.153 100.976

 Multicore Algorithms for Image Alignment 61

Figure 8.2 Graph of the tabulated data from Table 8.2.

8.3 DISCUSSION

The times that were drawn from the project application running on the test

hardware were predicable. Adding successive threads to the program furnishes

performance accelerations, thereby reducing the overall processing time.

Unsurprisingly, the increases in processing times were disproportionate to the

number of threads used. Table 8.2 illustrates that two threads delivered the largest

divergence between threads, yielding 28.4 % faster processing time over one core.

This translates to approximately 1.4 times the performance; not exactly the double

that is instinctively thought would occur when using two cores. It is not until four

threads are utilised that double performance is realised and the render time almost

halves. Primarily the processing time is not linear and corresponding to the number

of threads due to overheads. Nearly all of these are from initialisation practices.

Some of these overheads include, but are not limited to:

I calculating the boundaries of a thread. A thread is not called until the range

of values that the thread can process up to is determined. For simplicity, a

0

40

80

120

160

200

1 2 3 4

Ti
m

e
 (

 S
ec

o
n

d
s

)

Threads

Mean Total Processing Time

 Multicore Algorithms for Image Alignment 62

starting value is assumed and an increment computed. The increment is the

division of the task over the number of threads. The initial thread takes

these parameters. Subsequent thread bounds are found by taking the

previous bounds and adding the increment. This means that there is a delay

between when the first threads are called and the latter threads are

summoned.

II obtaining access to task a thread. Each thread is protected with a

semaphore to prevent multiple functions attempting to be executed on the

same thread concurrently. The semaphore creates a performance penalty by

blocking the second and subsequent functions and making each wait. The

time to signal the semaphore or set the semaphore to a blocking state

moreover takes processor cycles.

III resuming or suspending a thread. During times where multiple threads are

not utilised, the threads are suspended to save wasting processor cycles in

idle. The OS scheduler will consequently pass over these threads, allowing

processor allocations to be better managed for the other processes or

threads. When the time comes to assign a function to evaluate, the thread

must be resumed. The call to resume the thread consumes time.

IV the allocation of function resources. Each function that is multi–threaded

requires a separate memory space to operate in. Local variables that are

exclusive to the function must be duplicated for every thread, so that each

thread does not overwrite the values of another thread. Time is used to

perform variable creation and destruction of dynamic variables and

verification that the construction of dynamic variables succeeds

(Silberschatz, Galvin & Gagne 2009). The calling of the multi–threaded

function from the threading module similarly increases the execution time.

The cost in execution time of requesting the function, passing the

parameters and managing the semaphores and other control variables all

accumulates.

 Multicore Algorithms for Image Alignment 63

The results of testing the project permit inferences to be developed regarding the

performance advantages of multi–core systems with high levels of processors. From

previous annotations, it is reiterated that there will be an absolute minimum

processing time that could be attained due to initialisation overheads. Considering

the worst case of one pixel images, this inhibits the maximum useful thread count

to one. With more threads than one, the results of all threads will be same. In this

circumstance, the graph of the results would become horizontally linear for any

amount of threads. The value of the line would be consistent with the absolute

minimum processing time. Predicably this principle could be applied to hardware

containing high levels of processing cores. Once the number of hardware cores

exceeds the number of pixels in the image, no performance benefits can

indisputably be obtained with the multi–threading algorithms presented in this

project.

Adding further hardware cores moreover exhibits economies of scale. As

established, two cores are faster than one. Depending on the application, four cores

should have a lower processing time than one. The difference in the processing

times of the additional cores progressively decreases, as observed with the

processing times extracted from Figure 8.2. There becomes a point where whilst the

further cores will decrease the processing times, the comparative time saving

coupled with an escalation in hardware expenses does not justify the outgoings.

The computationally intensive image alignment task established some seemingly

logical results concerning the hardware most appropriate to the fabrication of a

panorama with the project. Whilst there are a number of different variables that

contribute to the performance findings, all tests exhibited a decrease in processing

time that was consistent with an increase in the processor frequency. For a known

processor bound algorithm, this inference is reasonably sensible to conclude. Yet

this deduction is rather speculation, as the fastest clocked processor in system 1 in

the test moreover sported: the largest processor cache; the largest memory size;

 Multicore Algorithms for Image Alignment 64

and the lowest memory timings and latency. Any of these variables or combinations

of them could respectively contribute to a decrease in the processing time.

The last computer listed in Table 8.2 as system 4, demonstrated a divergence from

the results of the other machines. System 4 ran an approximate 10% improvement

from one core to two than the next slowest system, system 3. It is unfortunate that

the two machines do not share the same chipset and processor set, so that

deductions could be made. In any case, it could be proposed that the choice of

Windows OS may vary the render times. The hardware and software of system 4 is

older, yet with both limitations the computer managed a better difference in

processing times for the multi–core algorithm.

Untested is the impact of large image sizes on the performance of the application.

Unless the hardware used has an abundance of physical memory, the memory

allocations needed for the images in the algorithms will quickly exceed the amount

of physical memory available. When this occurs, some of the data stored in memory

will be paged to disk by the OS, decreasing system wide performance. The larger

the images are and the more images used will increase the probability of exceeding

physical memory. Evidently the algorithm has yet to consider these aspects. A

conceivable approach to resolving low memory is to perform all functions

progressively; however this alteration will influence algorithm performance

negatively.

Time furthermore is not the best measurement for performance. As discussed in

the methodology (refer to 3.4), time is the real world measurement with which the

users of the project will judge the performance. The duration of the application is

captured by the internal counter of the program for accuracy; however this counter

is a simple utility. The counter does not account for the time where the OS

scheduler has selected another process to operate the hardware. The result is that

when the project spends periods of time not processing, the counter continues

totalling the timing. In addition, the amount of time to process the same

 Multicore Algorithms for Image Alignment 65

instructions in the project repeatedly will vary dependant on a number of factors.

These factors include, but are not limited to:

I the instructions available to the processor. Hardware is unique and the

architecture of the processor and memory subsystems is significant. Running

a certain combination of software on specific hardware might produce

different results than expected. The arrangement of particular series of

commands or the use of a particular assembly routine might either aid or

hinder performance on two analogous systems. Each hardware chipset has

its own set of instructions. To achieve a typical function, some programming

may be more efficient. If the system has hardware assistance for the

commands to be utilised, the developer would instantaneously reduce the

number of processor cycles to complete the same task, without further

input.

II the number of actively competing processes and threads. The more

processes waiting for time on the hardware, the slower the project will

perform. The OS scheduler will reduce the allocated time permitted on the

hardware for each thread according to the number of prepared and waiting

processes or threads (Silberschatz, Galvin & Gagne 2009). Reducing the

amount of active processes enables all processes to spend more processor

cycles on the hardware and this is returned to the user by faster image

alignment times.

III the effectiveness of the OS process scheduler. A scheduler that consistently

has to fetch instructions paged on disk or that switches between processes

too often will provide an environment that is relatively inefficient

(Silberschatz, Galvin & Gagne 2009). In this instance, the overall

performance of the project would not be equal to a system with a fast

scheduler. Sections that are not properly optimised in the project will have

the inefficiencies amplified in slower systems. These inefficiencies in both

the OS scheduler and the project will detrimentally affect the processing

 Multicore Algorithms for Image Alignment 66

time of the program. Observably these impacts will be more prevalent and

recognisable in slower systems.

A marginal increase in performance is achieved by eliminating the inter–image

blending module. Aesthetically the final panorama warrants such a feature, as the

definitive contour around select images is visually unappealing. Furthermore

differences in the light intensity or slight pattern mismatches may make the overlap

seem rigid and abrupt. Due to compatibility issues, the project is void of such

blending between photographs. Figure 8.3 displays the output from the tests. It is

worth noting the non smooth semicircle particularly to the left of centre, as the two

arcs join slightly off the midpoint. Blending in this situation would be beneficial. The

advantage of not having such a feature is that execution time is slightly reduced.

Figure 8.3 The output panorama after executing the program.

 Multicore Algorithms for Image Alignment 67

CHAPTER 9

CONCLUSIONS

Ultimately the project intended to resolve the issues associated with the existing

system, which included the need to manually construct panoramas and the existing

software not properly utilising multi–core processing capabilities of the hardware.

In a generic sense, the project has satisfied the objectives. Throughout the duration

of the design of the project, a potential solution has been developed to automate

image alignment on multiple hardware processors. Furthermore the devised

algorithms performed expectantly, contributing a reduction in the processing times

for each additional thread. On a more thorough level, each of the objectives was

completed to differing degrees.

9.1 SUMMARY OF DEVELOPMENTS AND FINDINGS

The design of the project is based on several computing concepts. The first

component necessary for a multi–core panorama creation system is an approach to

utilise the hardware processors. For this objective, there are two typical models:

processes and threads. As outlined in the multi–core computing chapter, a process

is a stream of instructions coupled with the resources to complete a task. Of the

resources that a process contains, is at least one thread. A thread is a set of

interrelated instructions known as a function, which performs a precise task. The

instructions of a thread run on a singular hardware processor.

To utilise the performance advantages of multiple hardware processors, either

multiple threads or multiple processes must be programmed. For a number of

performance associated reasons, the project is multi–threaded. The scheme

designed included using one thread per processor and dividing the computations of

 Multicore Algorithms for Image Alignment 68

the algorithms equivocally across the threads. A theoretical acceleration close to a

factor of the number of threads could be assumed by this approach; however

research by Liu et al. (2010) concluded that initialisation overheads severely

reduced the performance on small data sets. It is notable that the use of multi–

threading is compliant with present programming ideologies.

The next component of the microscopy image stitching application was the decision

of which algorithm to use for image alignment. The preferred algorithm was

correlation, which numerically measures the similarity between two images. It was

chosen out of the necessity for a self–contained calculation to determine similarity

between two images without reliance on exterior resources. Accomplishment of the

correlation function is done in three sections. First the correlation workload is

divided, by taking the size of the images and dividing by the number of threads.

Following this is the distribution of the task to each of the threads, which

individually execute the correlation algorithm and return a result. Finally the best

location is determined from all the responses of the threads and the images are

collated into a single panoramic image.

The final component of the multi–core panoramic program is the noise reduction

function. Noise relates to any variations between the captured pixels and the

original subject. Obviously this component needs to be performed before any of the

images enter the image alignment method and are collated. For noise reduction,

the median filter algorithm was chosen over the moving average filter due to its

clarity. The median filter operates by taking a window of pixels and arranging them

in ascending order. The centre value is then selected to replace the designated

pixel. Similar to the image alignment algorithm, the median filter is composed of a

couple of sections. First the median filter workload is divided amongst the various

threads. The tasks are subsequently distributed to all threads, which execute the

respective assignment.

The results of the project are fitting according to prior work, as examined in the

literature review (refer to 2.0). The trials of the application were carried out on

 Multicore Algorithms for Image Alignment 69

varying hardware, but with the same two images. Nearly double the speed in

processing time was found when utilising four threads compared to one. In this

case, the average processing time decreased from approximately 192 seconds to

101 seconds, with no adjustments to the images. Two cores yielded a mere 28.4 %

improvement in processing time over one core.

The performance difference between one core and two, confirmed the concept of

overheads particularly with regard to the initialisation of functions. When a function

starts, storage space in memory has to be allocated, costing valuable processing

time. This cost can be perceived where the fastest acceleration in processing time

was experienced with two cores over one. Multi–threading algorithms therefore do

not produce performance advantages exactly equivalent to the number of

hardware processors.

The results of the project displayed some fundamental characteristics of multi–core

processing hardware and the associated algorithms. Programs that are designed

with multi–threaded algorithms generate practical performance advantages on

multi–core hardware over single–threaded algorithms. Moreover, the performance

advantages can be gained without additional expenditure, whether it is hardware,

software or monetary outgoings. This is the most noticeable benefit. The

shortcoming of multi–threaded algorithms is however that the performance

increase is by no means equal to the number of processors that the computer

system has. In the days where processor accelerations were obtained by increasing

the clock frequency, the software benefits were much more profound.

9.2 INITIAL RESEARCH OBJECTIVES

The first two objectives encompassed the research and investigation into existing

image alignment and noise reduction algorithms. These objectives stated:

 Multicore Algorithms for Image Alignment 70

“I research into existing image alignment techniques and how these can

be achieved through parallelisation.

II research and critical analysis of current noise removal algorithms and

how they can be implemented through parallelisation.”

The research conducted into these existing techniques was adequate however it

lacked the comprehensiveness of a full algorithmic review. The sheer number of

approaches meant that not every technique was covered in detail, primarily due to

time and page constraints. Both the image alignment and noise reduction

algorithms were to be multi–threaded, so devising an approach to adapt these

algorithms to achieve parallelisation was essential. Techniques that restricted the

ability of the algorithm to be multi–threaded or were known to be not as

computationally efficient as counterparts were excluded from contention in the

project. Whilst these decisions enabled development of a prototype to commence

earlier, the elimination process may have left some potential candidates

overlooked.

9.3 EVALUATION OF THE ALGORITHMS

In a similar manner to the first two objectives, the third objective was realised. This

objective listed the evaluation of the performance of the researched approaches,

stating:

“III investigate or otherwise evaluate the expected performance of the

different approaches to ascertain the most efficient technique or

techniques.”

The performance of the algorithms shortlisted for development was outlined briefly

in relation to the big–O notation. Big–O notation is a recognised system to

approximate the number of repetitions in an algorithm, thus being a representative

for the performance of the approach. The algorithms developed ultimately were

 Multicore Algorithms for Image Alignment 71

not compared with other approaches in the same programming language, as time

and resources were prohibitive. Nevertheless the algorithm designs could have

been evaluated in this manner for the best results.

9.4 IMPLEMENTATION OBJECTIVE

The accomplishment of the fourth objective is somewhat subjective. The fourth

objective was to design and implement a working prototype:

“IV design and implementation of a working prototype based on the best

processing scheme.”

Undoubtedly a functional prototype was designed and compiled, allowing results to

be gathered and analysed. In this regard the objective is realised. The

subjectiveness is presented when considering the degree to which the prototype

satisfies the current software practices. With no formal standard on how to write

applications, the style of the program that is composed is purely related to the

opinions of the author (refer to 2.5). The accomplishment of the coding of the

project is deemed to be appropriate and complete. Programming constructs such as

the placement of the opening { symbol in the C language are consistently coded

throughout all the modules in the project. The project likewise is intended to

preserve other respectable programming practices, such as minimising the code

duplication.

9.5 REVIEW OBJECTIVE

The final objective of the project was to review the performance of the program on

several computers:

 Multicore Algorithms for Image Alignment 72

“V review of the application performance on several differing types of

machines and observe sections for improvement and optimisation.”

Evidently the Intel processor hardware and the Microsoft Windows 7 OS were

thoroughly tested. AMD processor hardware and Microsoft Windows XP were

furthermore not tested at all. Unfortunately there were no AMD processors that

could be tried for reference, since the majority of AMD chips are in low end

machines. Windows XP was not trialled since computer systems are periodically

updated and it becomes harder to find machines that continue to employ older

software versions.

One prominent area to improve upon was the algorithm for image alignment.

Whilst the alignment algorithm chosen fairly accurately determined the position of

the two images, the performance of the algorithm was only satisfactory. The image

alignment function was the most time consuming operation of the project when

executing. Development of a custom algorithm dedicated to microscopy image

alignment was desired, to reduce the total processing time. However this would

require a longer timeframe for designing the algorithm and specific background

knowledge of the subjects being researched at the CSIRO.

Although areas for improvement in the coding of the project can be clearly seen

from the testing done, additional trails on more platforms could have revealed

further sections for development. One of the points that may have been discovered

is whether certain functions were dependant on hardware, software or a

combination of both. Increased performance would have been achieved with a

program written in assembly language.

A specially crafted algorithm suiting the alignment of specific images to hone the

image join location could have been built. The purpose of such an algorithm would

be to consume less processor cycles than the current implementation. Out of all

functions developed, the image alignment algorithm is the most expensive in terms

of computations. Any variations in this method will significantly alter the processing

 Multicore Algorithms for Image Alignment 73

time. However as noted in the literature review (refer to 2.3), this outcome could

only be accomplished with limited or zero error between captures. The simplest

way of reducing the error is with an automated, motorised stage for image

acquisition. Image acquisition recommendations however are beyond the scope of

this project.

9.6 FURTHER WORK

Several aspects of the project could be developed further to enhance the

application, enrich the experience for the user and contribute to pioneering

research. Prevailing topic sections are outlined as follows.

I Fabrication of a GUI. As distinguished by the user, the addition of a GUI is

paramount. It is anticipated that many computer users will fail to familiarise

with a text based program. Usability of the project relies on the acceptance

of the interface by the user and with a straightforward layout the project

should complement the objectives of the consumer. Conversely the

appendage of a GUI might degrade specific attributes of the project, in

particular the overall efficiency of the program. Rendering graphics in real

time on the monitor to display a preview of the panorama will produce

memory and processor overheads, slowing the processing time accordingly.

II Refinements of algorithms. The alignment and noise reduction algorithms

devised are a synthesis and evolution of recognised approaches that have

been used for many years. Remodelling these algorithms or developing

replacements to achieve faster processing times or a smaller memory size

would prove beneficial. The correlation algorithm particularly consumes

large periods of time. Performance improvements in this section will

decrease the processing time considerably.

 Multicore Algorithms for Image Alignment 74

III Support for more file formats. This is advantageous if the image was not in a

compatible format for this project. With more file format support,

photographic data would not have to be transformed elsewhere before use

in the project, thereby saving time. Besides convenience, commercially the

project could be better positioned in the marketplace since it would be more

flexible in the workflow of a diverse clientele.

 Multicore Algorithms for Image Alignment 75

LIST OF REFERENCES

Ramanathan, R 2006, Intel Multi–Core Processors: Making the Move to Quad–Core

and Beyond, Intel Corporation, United States, accessed 27 August 2011,

<http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf>.

Cooper, L, Huang, K & Ujaldon, M 2011, ‘Parallel Automatic Registration of Large

Scale Microscopic Images on Multiprocessor CPUs and GPUs’, 2011 IEEE

International Parallel & Distributed Processing Symposium, 16–20 May, pp. 1367–

1376.

Collins, T 2007, ‘ImageJ for microscopy’, BioTechniques, vol. 43, no. 1, pp. 25–30.

Moreira, J, Midkiff, S & Gupta, M 1998, ‘A Comparison of Java, C/C++, and FORTRAN

for Numerical Computing’, IEEE Antennas and Propagation Magazine, vol. 40, no. 5,

pp. 102–105.

Xiong, Y & Pulli, K 2010, ‘Fast Image Stitching and Editing for Panorama Painting on

Mobile Phones’, 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition Workshops, 13–18 June, pp. 47–52.

Savitch, W 2010, Absolute Java, 4th edn, Pearson Education Incorporated, New

Jersey, United States.

Oxford University Press 2010, ‘process’, Oxford Dictionaries, United States, accessed

24 August 2011,

<http://oxforddictionaries.com/definition/process?rskey=kAayIh&result=1>.

Xia, Q & Zhang, Y 2010, ‘A Roust Algorithm of Constructing Panorama’, 2010 2nd

International Conference on Networking and Digital Society, vol. 2, 30–31 May, pp.

143–146.

http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf

 Multicore Algorithms for Image Alignment 76

Rankov, V, Locke, R, Edens, R, Barber, P & Vojnovic, B 2005, ‘An algorithm for image

stitching and blending’, Proceedings of SPIE, vol. 5701, March, pp. 190-199.

Szeliski, R 2006, ‘Image Alignment and Stitching: A Tutorial’, Foundations and Trends

in Computer Graphics and Vision, vol. 2, no. 1, January, pp. 1–104.

O’Donohue, D, Mills, S, Kingham, S, Bartie, P & Park, D 2008, ‘Combined Thermal–

LIDAR Imagery for Urban Mapping’, 23rd International Conference on Image and

Vision Computing New Zealand, 26–28 November, pp. 1–6.

Adobe Systems Incorporated 2011, Photoshop CS3 End User License Agreement,

Adobe Systems Incorporated, United States, accessed 20 July 2011,

<http://labs.adobe.com/technologies/eula/photoshopcs3.html>.

Koponen, T 2006, ‘Evaluation Framework for Open Source Software Maintenance’,

International Conference on Software Engineering Advances, October, pp. 52.

Messaoudii, C, Boudier, T, Sánchez–Sorzano, C & Marco, S 2007, ‘TomoJ: new tools

for electron tomography’, Proceedings of the Conference on ImageJ, pp. 151–161.

ArcSoft Incorporated 2011, Panorama Maker 5 Pro, ArcSoft Incorporated, United

States, accessed 15 April 2011,

<http://www.arcsoft.com/estore/software_title.asp?ProductCode=PMK5PRO>.

Autodesk Incorporated 2011, Autodesk Stitcher Unlimited, Autodesk Incorporated,

United States, accessed 15 April 2011,

<http://usa.autodesk.com/adsk/servlet/pc/index?id=11390049&siteID=123112>.

Zhang, N & Wang, J & Chen, Y 2010, ‘Image Parallel Processing Based on GPU’,

2010 2nd International Conference on Advanced Computer Control, vol. 3, 27–29

March, pp. 367–370.

 Multicore Algorithms for Image Alignment 77

Wang, B & Wu, T & Yan, F & Li, R & Xu, N & Wang, Y 2009, ‘RankBoost Acceleration

on both NVIDIA CUDA and ATI Stream Platforms’, 2009 15th International

Conference on Parallel and Distributed Systems (ICPADS), 8–11 December, pp. 284–

291.

Blythe, D 2008, ‘Rise of the Graphics Processor’, Proceedings of the IEEE, vol. 96,

no.5, May, pp.761–778.

Yuffe, M, Knoll, E, Mehalel, M, Shor, J & Kurts, T 2011, ‘A fully integrated multi–CPU,

GPU and memory controller 32nm processor’, 2011 IEEE International on Solid-

State Circuits Conference Digest of Technical Papers, 20–24 February, pp. 264–266.

Eytani, Y & Ur, S 2004, ‘Compiling a benchmark of documented multi-threaded

bugs’, Proceedings of the 18th International Parallel and Distributed Processing

Symposium, 26–30 April, pp. 266.

Cubranic, D & Booth, K 1999, ‘Coordinating Open–Source Software Development’,

Proceedings of the IEEE 8th International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, pp.61–66.

Fogel, K 2006, Producing Open Source Software: How to Run a Successful Free

Software Project, O’Reilly Media Incorporated, United States.

Liu, T, Ji, Z, Wang, Q & Zhu, S 2010, ‘Research on Efficiency of Signal Processing on

Embedded Multicore System’, 2010 First International Conference on Pervasive

Computing Signal Processing and Applications, 17–19 September, pp. 907-911.

Yatsuzuka, Y, Hosoda, K, Iizuka, S, Kawaguchi, S & Shinbo, A 1988, ‘High–

performance ADPCM codec for voice and voiceband data and its application to

DCME’, IEEE International Conference on Communications, vol. 1, 12–15 June,

pp.400–407.

 Multicore Algorithms for Image Alignment 78

Sun, X, Byna, S & Holmgren, D 2009, ‘Modeling Data Access Contention in Multicore

Architectures’, 2009 15th International Conference on Parallel and Distributed

Systems, 8–11 December, pp. 213–219.

Xing, J & Miao, Z 2007, ‘An Improved Algorithm on Image Stitching based on SIFT

features’, 2nd International Conference on Innovative Computing, Information and

Control, 5–7 September, pp. 453.

Hsieh, J 2003, ‘Fast Stitching Algorithm for Moving Object Detection and Mosaic

Construction’, Proceedings of the 2003 International Conference on Multimedia, vol.

1, 6–9 July, pp. 85–8.

Chen, C 1998, ‘Image Stitching - Comparisons and New Techniques’, Technical

Report CITR-TR-30, Computer Science Department, The University of Auckland, New

Zealand.

Jia, J & Tang, C 2008, ‘Image Stitching Using Structure Deformation’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 4, April, pp.

617–631.

Hua, Z, Li, Y & Li, J 2010, ‘Image Stitch Algorithm Based on SIFT and MVSC’, 2010

Seventh International Conference on Fuzzy Systems and Knowledge Discovery, vol. 6,

10–12 August, pp. 2628–2632.

Ryu, J, Lee, C & Park, H 2011, ‘Formula for Harris corner detector’, Electronics

Letters, vol. 47, no. 3, February 3, pp. 180–181.

Thangavel, K, Manavalan, R & Aroquiaraj, L 2009, ‘Removal of Speckle Noise from

Ultrasound Medical Image based on Special Filters: Comparative Study’, ICGST-GVIP,

vol. 9, no. 3, June, pp. 25–32.

 Multicore Algorithms for Image Alignment 79

Srivastava, R 2010, ‘Restoration of fluorescence microscopic images using a

nonlinear PDE based filter’, 2010 Annual IEEE India Conference, 17–19 December,

pp. 1–4.

Kemerer, C & Paulk, M 2009, ‘The Impact of Design and Code Reviews on Software

Quality: An Empirical Study Based on PSP Data’, IEEE Transactions on Software

Engineering, vol. 35, no. 4, July–August, pp. 534–550.

Boogerd, C & Moonen, L 2008, ‘Assessing the value of coding standards: An

empirical study’, IEEE International Conference on Software Maintenance, 28

September–4 October, pp. 277–286.

Kremenek, T, Ashcraft, K, Yang, J & Engler, D 2004, ‘Correlation Exploitation in Error

Ranking’, Proceedings of the 12th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, vol. 29, no. 6, November, pp. 83–93.

Wang, Y, Wang, S, Li, X, Li, H & Du, J 2010, ‘Identifier Naming Conventions and

Software Coding Standards: A Case Study in One School of Software’, 2010

International Conference on Computational Intelligence and Software Engineering,

10–12 December, pp. 1–4.

Fang, X 2001, ‘Using a coding standard to improve program quality’, Proceedings of

the 2nd Asia–Pacific Conference on Quality Software, pp. 73–78.

Mark, D 2009, Learn C on the Mac, Springer–Verlag, New York, United States.

Salomon, D 2002, A Guide to Data Compression Methods, Springer–Verlag, New

York, United States.

Xin, C 2009, ‘Music and Image Applications of Mobile Phone Serious Game’,

International Conference on Environmental Science and Information Application

Technology, vol. 2, 4–5 July, pp. 510–513.

 Multicore Algorithms for Image Alignment 80

Jackson, D & Hannah, S 1993, ‘Comparative Analysis of Image Compression

Techniques’, Proceedings of the Twenty-Fifth Southeastern Symposium on System

Theory, 7–9 March, pp. 513–517.

Neelamani, R, de Queiroz, R, Fan, Z, Dash, S & Baraniuk, R 2006, ‘JPEG Compression

History Estimation for Color Images’, IEEE Transactions on Image Processing, vol. 15,

no. 6, pp. 1365–1378.

Jefferis, G 2004, DM3 Image Format, National Institutes of Health, United States,

accessed 5 Semptember 2011,

<http://rsbweb.nih.gov/ij/plugins/DM3Format.gj.html>.

CompuServe Incorporated 1990, GRAPHICS INTERCHANGE FORMAT, World Wide

Web Consortium (W3C), United States, accessed 14 July 2011,

<http://www.w3.org/Graphics/GIF/spec-gif89a.txt>.

MacKenzie, S 1988, ‘A structured approach to assembly language programming’,

IEEE Transactions on Education, vol. 31, no. 2, pp. 123–128.

Microsoft Support 2007, System requirements for Windows XP operating systems,

Microsoft Corporation, United States, accessed 4 July 2011,

<http://support.microsoft.com/kb/314865>.

Microsoft Developer Network 2011, clock, Microsoft Corporation, United States,

accessed 10 September 2011, <http://msdn.microsoft.com/en-

us/library/4e2ess30%28v=vs.71%29.aspx>.

Bridges, M, Vachharajani, N, Zhang, Y, Jablin, T & August, D 2007, Revisiting the

Sequential Programming Model for Multi-Core, Princeton University, United States,

accessed 7 July 2011, <liberty.princeton.edu/Publications/micro40_scale.pdf>.

 Multicore Algorithms for Image Alignment 81

Silberschatz, Galvin and Gagne (2009), Operating System Concepts, 8th edn, John

Wiley & Sons Incorporated, Jefferson City, United States.

Hughes, C & Hughes, T 2008, Professional multicore programming: Design and

implementation for C++ developers, Wiley Publishing, United States.

Bovet, D & Cesatí, M 2006, Understanding the Linux Kernel, 3rd edn, O’Reilly Media

Incorporated, United States.

Microsoft Developer Network 2011, SetProcessAffinityMask function, Microsoft

Corporation, United States, accessed 16 June 2011,

<http://msdn.microsoft.com/en-us/library/windows/desktop/ms686223%28v=vs.8

5%29.aspx>.

Akhter, S & Roberts, J 2006, Multi-core programming: Increasing performance

through software multithreading, Intel Corporation, United States.

Lee, K, H, Pham, Kim, H, Youn, H & Song, O 2011, ‘A Novel Predictive and Self–

Adaptive Dynamic Thread Pool Management’, 2011 IEEE 9th International

Symposium on Parallel and Distributed Processing with Applications, 26–28 May

2011, pp. 93–98.

Brown, LG 1992, ‘A Survey of Image Registration Techniques’, ACM Computing

Surveys, voI. 24, no. 4, December, pp. 325–376.

Zeilik, M & Gregory, S 1998, Introductory Astronomy and Astrophysics, Saunders

College Publishing, United States.

Lowe, D 1999, ‘Object Recognition from Local Scale–Invariant Features’, The

Proceedings of the Seventh IEEE International Conference on Computer Vision, vol.

2, pp. 1150–1157.

 Multicore Algorithms for Image Alignment 82

Stroebel, L & Zakia, R 1993, The Focal Encyclopedia of Photography, 3rd edn,

Butterworth–Heinemann, Woburn, United States.

Mather, P 2004, Computer processing of remotely sensed images: an introduction,

John Wiley & Sons Incorporated, West Sussex, England.

Sedgewick, R 1978, ‘Implementing Quicksort programs’, Communications of the

ACM, vol. 21, no. 10, October, pp. 847–857.

Leis, J 2011, Digital Signal Processing Using MATLAB for Researchers and Students,

John Wiley & Sons Incorporated, New Jersey, United States.

Adobe Developers Association 1992, TIFF Revision 6.0, Adobe Systems Incorporated,

United States, accessed 1 August 2011,

<http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf>.

Microsoft Developer Network 2011, SYSTEM_INFO structure, Microsoft Pty Ltd,

United States, accessed 5 October 2011,

<http://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.8

5%29.aspx>.

Burleson, D 2002, Oracle9i High–Performance Tuning with STATSPACK, McGraw–

Hill/Osborne, California, United States.

Burgess, B, Cohen, B, Denman, M, Dundas, J, Kaplan, D & Rupley, J 2011, ‘Bobcat:

AMD's Low-Power x86 Processor’, IEEE Micro, vol. 31, no. 2, pp. 16–25.

http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

 Multicore Algorithms for Image Alignment 83

APPENDIX A

SPECIFICATIONS

 Multicore Algorithms for Image Alignment 84

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG4111 / ENG4112 Research Project

PROJECT SPECIFICATION

FOR: TRISTAN WARD

TOPIC: MULTICORE ALGORITHMS FOR IMAGE ALIGNMENT

SUPERVISORS: Dr. John Leis

PROJECT AIM: This project seeks to investigate and implement the

parallelising of image alignment and noise removal algorithms

on a multicore CPU, for the purpose of forming prompt

microscopy panoramic images.

PROGRAMME: Issue A, 10th March 2011

1. Research image alignment techniques and how these can be achieved

through parallelisation; using a multicore processor.

2. Research and critically investigate existing noise removal algorithms and

how they can be implemented through parallelisation.

3. Evaluate the performance of the different approaches to determine the

most efficient process.

4. Design and implement a working prototype based on the best processing

technique.

5. Review the performance of the application on several differing types of

machines, and observe areas for improvement and optimisation.

As time permits:

6. Design a simple user interface to manually adjust the image alignment if

processing is not exact or fails.

AGREED:

_______________ (Student) _______________ (Supervisor)

___ / ___ / ___ ___ / ___ / ___ .

 Multicore Algorithms for Image Alignment 85

APPENDIX B

CODE LISTINGS

B1 MAIN.C

//---

// Description: Multicore microscopy panorama image processing

//--

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include "alignment.h"

#include "boolean.h"

#include "error.h"

#include "fileio.h"

#include "noisereduction.h"

#include "threads.h"

//---

int main(int argc, char* argv[]) {

//---

 unsigned short numberOfThreads = 100;

 unsigned short processorOffset = 0;

 short alignmentStep = -1;

 short alignmentTolerance = -1;

 short noiseFilterSize = -1;

 unsigned short argIterator = 1;

 unsigned short numberOfInputs = 0;

 BOOLEAN_TYPE outputFileSet = FALSE;

 clock_t startProgram = clock();

 clock_t startSection;

 char statusBuffer[100];

 // Start the program with verbose output

 Multicore Algorithms for Image Alignment 86

 setVerboseMode(TRUE);

 setFileOutput("compiled_image.tiff");

 // Determine which command line arguments are given and process them

 if (argc >= 2) {

 while (argIterator < argc) {

 if (strncmp(argv[argIterator], "--help", 6) == 0) {

 argc = 0;

 }

 else if (strncmp(argv[argIterator], "--input=", 8) == 0) {

 if (setFilePath(strndup(argv[argIterator] + 8, 1024))) {

 numberOfInputs++;

 }

 }

 else if (strncmp(argv[argIterator], "--output=", 9) == 0) {

 setFileOutput(strndup(argv[argIterator] + 9, 1024));

 outputFileSet = TRUE;

 }

 else if (strncmp(argv[argIterator], "--threads=", 10) == 0) {

 numberOfThreads = atoi(strndup(argv[argIterator] + 10, 5));

 }

 else if (strncmp(argv[argIterator], "--offset=", 9) == 0) {

 processorOffset = atoi(strndup(argv[argIterator] + 9, 5));

 }

 else if (strncmp(argv[argIterator], "--align-step=", 13) == 0) {

 alignmentStep = atoi(strndup(argv[argIterator] + 13, 5));

 }

 else if (strncmp(argv[argIterator], "--tolerance=", 12) == 0) {

 alignmentTolerance = atoi(strndup(argv[argIterator] + 12, 5));

 }

 else if (strncmp(argv[argIterator], "--filter-size=", 14) == 0) {

 noiseFilterSize = atoi(strndup(argv[argIterator] + 14, 5));

 }

 else if (strcmp("--quiet", argv[argIterator]) == 0) {

 setVerboseMode(FALSE);

 }

 else {

 sprintf(statusBuffer, "Unknown argument \"%s\". Ignoring...\n",

 argv[argIterator]);

 warning(statusBuffer);

 }

 argIterator++;

 }

 Multicore Algorithms for Image Alignment 87

 }

 // Display help if requested or no files input

 if (argc < 3 || numberOfInputs < 2) {

 warning(" \nUsage: app --input=file --input=file\n");

 warning(" Manatory arguments:");

 warning(" --input=file The image \"file\" to process.\n");

 warning(" Optional arguments:");

 warning(" --output=file Save the image output as \"file\".");

 warning(" --threads=x Limit the number of threads to x.");

 warning(" --offset=x Offset the first thread by x "

 "processors.");

 warning(" --align-step=x Adjust the increment between alignment "

 "tests to x pixels.");

 warning(" --tolerance=x Apply the tolerance of x pixels to "

 "record as valid.");

 warning(" --filter-size=x Set the noise reduction filter to x "

 "pixels.");

 warning(" --help Show this usage help.\n");

 return 0;

 }

 // Setup threads

 startSection = clock();

 status("Setting up core features...");

 createMultipleThreads(numberOfThreads, processorOffset);

 sprintf(statusBuffer, "Core setup complete in %g seconds.\n",

 (double)(clock() - startSection) / CLOCKS_PER_SEC);

 status(statusBuffer);

 // Read in and buffer images

 startSection = clock();

 status("Starting read of image files...");

 readAllImageFiles();

 sprintf(statusBuffer, "Image imports complete in %g seconds.\n",

 (double)(clock() - startSection) / CLOCKS_PER_SEC);

 status(statusBuffer);

 // Remove noise from the images

 if (noiseFilterSize != 0) {

 startSection = clock();

 status("Initiating image noise reduction...");

 reduceNoise(noiseFilterSize);

 sprintf(statusBuffer, "Noise reduction complete in %g seconds.\n",

 (double)(clock() - startSection) / CLOCKS_PER_SEC);

 status(statusBuffer);

 Multicore Algorithms for Image Alignment 88

 }

 // Begin to align the images

 startSection = clock();

 status("Commencing alignment of images...");

 alignImages(alignmentStep, alignmentTolerance);

 sprintf(statusBuffer, "Alignment of images complete in %g seconds.\n",

 (double)(clock() - startSection) / CLOCKS_PER_SEC);

 status(statusBuffer);

 // Save the finished file

 startSection = clock();

 status("Exporting compiled output image...");

 writeImageFile();

 sprintf(statusBuffer, "Saving output complete in %g seconds.\n",

 (double)(clock() - startSection) / CLOCKS_PER_SEC);

 status(statusBuffer);

 // Return the status

 sprintf(statusBuffer, "All functions complete in %g seconds.",

 (double)(clock() - startProgram) / CLOCKS_PER_SEC);

 status(statusBuffer);

 return 0;

}

B2 ALIGNMENT.H

//---

// alignment.h - header file for detecting and positioning images

//---

#ifndef ALIGNMENT_H

#define ALIGNMENT_H

//---

void alignImages(int stepping, int toleranceSize);

// Description: Finds the alignment point and compiles all of the images

// Inputs: The size of the increment steps between correlation calculation

// amount of tolerance to record a specific value

// Returns: None

#endif

 Multicore Algorithms for Image Alignment 89

B3 ALIGNMENT.C

//---

// alignment.c - implementation file for detecting and positioning images

//---

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include "alignment.h"

#include "axis.h"

#include "fileio.h"

#include "threads.h"

#include "boolean.h"

#include "error.h"

#define DEFAULT_TOLERANCE 10

#define DEFAULT_STEP_SIZE 3

#define INDEX_BASE 0

#define INDEX_SHIFT 1

//---

// Structures

//---

typedef struct {

 COORDINATE offset;

 double matchQuality;

}

MATCH_COORDINATE;

typedef struct {

 GENERIC_RGB* imageData;

 unsigned long imageHeight;

 unsigned long imageWidth;

 COORDINATE overlap;

 unsigned long xOverlaps;

 unsigned long yOverlaps;

 COORDINATE base;

}

 Multicore Algorithms for Image Alignment 90

LOCAL_IMAGE;

//---

// Global Variables

//---

static LOCAL_IMAGE localImage;

static int steppingSize;

static int tolerance;

//---

double average(GENERIC_RGB value) {

//---

 return (double)(value.red + value.green + value.blue) / 3;

}

//---

void seekOffset(IMAGE_LIMITS base, IMAGE_LIMITS shift, char* resultData) {

//---

 MATCH_COORDINATE bestMatchPoint;

 char* bestMatchPointPtr = (char*)&bestMatchPoint;

 RECTANGLE viewport;

 LIMITS loopLimits;

 unsigned long height[2] = {getFileHeight(base.imageIndex),

 getFileHeight(shift.imageIndex)};

 unsigned long width[2] = {getFileWidth(base.imageIndex),

 getFileWidth(shift.imageIndex)};

 unsigned long xOverlaps = 0;

 unsigned long yOverlaps = 0;

 unsigned long viewportSize;

 short stepSize = steppingSize;

 double baseMean;

 double baseMeanDeviation;

 double* baseDeviation;

 double shiftMean;

 double shiftMeanDeviation;

 double* shiftDeviation;

 double meanDeviation;

 // Allocate the arrays

 baseDeviation = malloc(height[INDEX_BASE] * width[INDEX_BASE] *

 sizeof(double));

 Multicore Algorithms for Image Alignment 91

 shiftDeviation = malloc(height[INDEX_BASE] * width[INDEX_BASE] *

 sizeof(double));

 if (baseDeviation == NULL || shiftDeviation == NULL) {

 errorAndTerminate("Insufficient memory to allocate for alignment "

 "buffers.", INSUFFICIENT_MEMORY);

 }

 // Initialise variables

 bestMatchPoint.matchQuality = 0;

 bestMatchPoint.offset.x = 0;

 bestMatchPoint.offset.y = 0;

 loopLimits.min.x = shift.limits.min.x;

 if (abs(loopLimits.min.x) == width[INDEX_SHIFT]) {

 loopLimits.min.x++;

 }

 loopLimits.min.y = shift.limits.min.y;

 if (abs(loopLimits.min.y) == height[INDEX_SHIFT]) {

 loopLimits.min.y++;

 }

 loopLimits.max.x = base.limits.max.x;

 if (loopLimits.max.x == width[INDEX_BASE]) {

 loopLimits.max.x--;

 }

 loopLimits.max.y = base.limits.max.y;

 if (loopLimits.max.y == height[INDEX_BASE]) {

 loopLimits.max.y--;

 }

 for (short depth = 0; depth < 2; depth++) {

 for (long lineX = loopLimits.min.x; lineX < loopLimits.max.x;

 lineX += stepSize) {

 // Determine the number of overlaps in the x axis

 xOverlaps = width[INDEX_SHIFT];

 viewport.upperLeft.x = 0;

 viewport.lowerRight.x = width[INDEX_BASE] - 1;

 if (lineX < 0) {

 xOverlaps = width[INDEX_SHIFT] + lineX;

 viewport.lowerRight.x = xOverlaps;

 }

 else if (width[INDEX_SHIFT] + lineX > width[INDEX_BASE]) {

 xOverlaps = width[INDEX_BASE] - lineX;

 viewport.upperLeft.x = lineX;

 }

 for (long lineY = loopLimits.min.y; lineY < loopLimits.max.y;

 Multicore Algorithms for Image Alignment 92

 lineY += stepSize) {

 // Determine the number of overlaps in the y axis

 yOverlaps = height[INDEX_BASE];

 viewport.upperLeft.y = 0;

 viewport.lowerRight.y = height[INDEX_BASE] - 1;

 if (lineY < 0) {

 yOverlaps = height[INDEX_SHIFT] + lineY;

 viewport.lowerRight.y = yOverlaps;

 }

 else if (height[INDEX_SHIFT] + lineY > height[INDEX_BASE]) {

 yOverlaps = height[INDEX_BASE] - lineY;

 viewport.upperLeft.y = lineY;

 }

 // Calculate the mean of the current overlap region

 baseMean = 0;

 shiftMean = 0;

 for (long x = viewport.upperLeft.x;

 x < viewport.lowerRight.x; x++) {

 for (long y = viewport.upperLeft.y;

 y < viewport.lowerRight.y; y++) {

 // Sum the base image

 baseMean += average(getPixel(base.imageIndex, x, y));

 // Sum the shiftable image

 shiftMean += average(getPixel(shift.imageIndex,

 x - lineX, y - lineY));

 }

 }

 // Divide by the size of the viewport to obtain the mean

 viewportSize = (viewport.lowerRight.x - viewport.upperLeft.x) *

 (viewport.lowerRight.y - viewport.upperLeft.y);

 baseMean /= viewportSize;

 shiftMean /= viewportSize;

 // Evaluate the mean absolute deviation

 baseMeanDeviation = 0;

 shiftMeanDeviation = 0;

 for (long x = viewport.upperLeft.x; x < viewport.lowerRight.x;

 x++) {

 for (long y = viewport.upperLeft.y;

 y < viewport.lowerRight.y; y++) {

 long arrayOffset = (y - viewport.upperLeft.y) *

 xOverlaps + x - viewport.upperLeft.x;

 Multicore Algorithms for Image Alignment 93

 baseDeviation[arrayOffset] = average(getPixel(

 base.imageIndex, x, y)) - baseMean;

 baseMeanDeviation += baseDeviation[arrayOffset] *

 baseDeviation[arrayOffset];

 shiftDeviation[arrayOffset] = average(getPixel(

 shift.imageIndex, x - lineX, y - lineY)) - shiftMean;

 shiftMeanDeviation += shiftDeviation[arrayOffset] *

 shiftDeviation[arrayOffset];

 }

 }

 baseMeanDeviation = sqrt(baseMeanDeviation / viewportSize);

 shiftMeanDeviation = sqrt(shiftMeanDeviation / viewportSize);

 // Compare the similarity of the mean deviations

 meanDeviation = 0;

 if (baseMeanDeviation * shiftMeanDeviation > tolerance) {

 for (long x = viewport.upperLeft.x;

 x < viewport.lowerRight.x; x++) {

 for (long y = viewport.upperLeft.y;

 y < viewport.lowerRight.y; y++) {

 long arrayOffset = (y - viewport.upperLeft.y) *

 xOverlaps + x - viewport.upperLeft.x;

 meanDeviation += (baseDeviation[arrayOffset] *

 shiftDeviation[arrayOffset]) /

 (baseMeanDeviation * shiftMeanDeviation);

 }

 }

 // Store the offsets if a greater match than existing

 if (bestMatchPoint.matchQuality < meanDeviation){

 bestMatchPoint.matchQuality = meanDeviation;

 bestMatchPoint.offset.x = lineX;

 bestMatchPoint.offset.y = lineY;

 }

 }

 }

 }

 // Adjust parameters to search around the best point for a better match

 loopLimits.min.x = bestMatchPoint.offset.x - stepSize + 1;

 if (loopLimits.min.x < 0) {

 loopLimits.min.x = 0;

 }

 loopLimits.min.y = bestMatchPoint.offset.y - stepSize + 1;

 Multicore Algorithms for Image Alignment 94

 if (loopLimits.min.y < 0) {

 loopLimits.min.y = 0;

 }

 loopLimits.max.x = bestMatchPoint.offset.x + stepSize - 1;

 if (loopLimits.max.x > width[INDEX_BASE]) {

 loopLimits.max.x = width[INDEX_BASE];

 }

 loopLimits.max.y = bestMatchPoint.offset.y + stepSize - 1;

 if (loopLimits.max.y > height[INDEX_BASE]) {

 loopLimits.max.y = height[INDEX_BASE];

 }

 stepSize = 1;

 if (depth == 0) {

 status("Potential alignment region found.");

 }

 }

 // Copy the results

 for (short size = 0; size < sizeof(MATCH_COORDINATE); size++) {

 resultData[size] = bestMatchPointPtr[size];

 }

 // Free dynamic memory

 free(baseDeviation);

 free(shiftDeviation);

}

//---

void compile(IMAGE_LIMITS base, IMAGE_LIMITS shift, char* reserved) {

//---

 long xMin[2] = {base.limits.min.x, shift.limits.min.x};

 long xMax[2] = {base.limits.max.x, shift.limits.max.x};

 long yMin[2] = {base.limits.min.y, shift.limits.min.y};

 long yMax[2] = {base.limits.max.y, shift.limits.max.y};

 for (long x = xMin[INDEX_SHIFT]; x < xMax[INDEX_SHIFT]; x++) {

 for (long y = yMin[INDEX_SHIFT]; y < yMax[INDEX_SHIFT]; y++) {

 long arrayOffset = (y + abs(localImage.overlap.y)) *

 localImage.imageWidth + (x + abs(localImage.overlap.x));

 // Copy the image data blocks

 localImage.imageData[arrayOffset] = getPixel(shift.imageIndex,x,y);

 }

 }

 Multicore Algorithms for Image Alignment 95

}

//---

void transferLocalData(IMAGE_LIMITS base, IMAGE_LIMITS shift, char* reserved) {

//---

 unsigned long height = getFileHeight(shift.imageIndex);

 unsigned long width = getFileWidth(shift.imageIndex);

 // Sanity check the bounds

 if (shift.limits.min.x < 0 || shift.limits.min.y < 0 ||

 shift.limits.max.x < 0 || shift.limits.max.y < 0 ||

 shift.limits.min.x > width || shift.limits.min.y > height ||

 shift.limits.max.x > width || shift.limits.max.y > height) {

 return;

 }

 // Copy the image data

 for (long x = shift.limits.min.x; x < shift.limits.max.x; x++) {

 for (long y = shift.limits.min.y; y < shift.limits.max.y; y++) {

 setPixel(shift.imageIndex, x, y,

 localImage.imageData[y * localImage.imageWidth + x]);

 }

 }

}

//---

void fillAndSmooth(COORDINATE* orderedOffsets, int numberInArray) {

//---

 unsigned short numberOfThreads = getNumberOfAvailableThreads();

 GENERIC_RGB* imageData;

 COORDINATE overlap;

 unsigned long xOverlaps;

 unsigned long yOverlaps;

 unsigned long imageHeight;

 unsigned long imageWidth;

 COORDINATE baseIncrement;

 COORDINATE shiftIncrement;

 IMAGE_LIMITS base;

 IMAGE_LIMITS shift;

 char statusBuffer[100];

 // Calculate the dimensions of the output image

 imageHeight = getFileHeight(INDEX_BASE);

 Multicore Algorithms for Image Alignment 96

 imageWidth = getFileWidth(INDEX_BASE);

 for (short offset = 0; offset < numberInArray; offset++) {

 if (imageWidth < orderedOffsets[offset].x + getFileWidth(offset)) {

 imageWidth = orderedOffsets[offset].x + getFileWidth(offset);

 }

 if (imageHeight < orderedOffsets[offset].y +

 getFileHeight(offset)) {

 imageHeight = orderedOffsets[offset].y + getFileHeight(offset);

 }

 }

 // Prepare the local image for writing new data

 imageData = (GENERIC_RGB*)malloc((imageHeight + 1) * (imageWidth + 1) *

 sizeof(GENERIC_RGB));

 if (imageData == NULL) {

 sprintf(statusBuffer, "Insufficient memory to allocate %d bytes for "

 "image contruction.", imageHeight*imageWidth*sizeof(GENERIC_RGB));

 errorAndTerminate(statusBuffer, INSUFFICIENT_MEMORY);

 }

 // Set the image to all black

 memset(imageData, 0, imageHeight * imageWidth * sizeof(GENERIC_RGB));

 // Gather the data to be globally available

 localImage.imageData = imageData;

 localImage.imageHeight = imageHeight;

 localImage.imageWidth = imageWidth;

 status("Constructing the final image.");

 for (int file = 0; file < numberInArray; file++) {

 overlap = orderedOffsets[file];

 if (file > 0) {

 // Determine the number of overlaps in the x axis

 xOverlaps = getFileWidth(file);

 if (overlap.x < orderedOffsets[file - 1].x) {

 xOverlaps = getFileWidth(file) + overlap.x;

 }

 else if (overlap.x + getFileWidth(file) >

 getFileWidth(file - 1) + orderedOffsets[file - 1].x) {

 xOverlaps = getFileWidth(file - 1) - overlap.x;

 }

 // Determine the number of overlaps in the y axis

 yOverlaps = getFileHeight(file);

 if (overlap.y < orderedOffsets[file - 1].y) {

 yOverlaps = getFileHeight(file) + overlap.y;

 }

 Multicore Algorithms for Image Alignment 97

 else if (overlap.x + getFileHeight(file) >

 getFileHeight(file - 1) + orderedOffsets[file - 1].y) {

 yOverlaps = getFileHeight(file - 1) - overlap.y;

 }

 // Gather the data to be globally available

 localImage.overlap = overlap;

 localImage.xOverlaps = xOverlaps;

 localImage.yOverlaps = yOverlaps;

 localImage.base.x = orderedOffsets[file].x -

 orderedOffsets[file - 1].x;

 localImage.base.y = orderedOffsets[file].y -

 orderedOffsets[file - 1].y;

 // Assign the threads to compile the image

 base.imageIndex = file - 1;

 resetLimit(&base,&baseIncrement);

 shift.imageIndex = file;

 resetLimit(&shift,&shiftIncrement);

 }

 else {

 // Gather the data to be globally available

 localImage.overlap = orderedOffsets[file];

 localImage.xOverlaps = 0;

 localImage.yOverlaps = 0;

 localImage.base.x = 0;

 localImage.base.y = 0;

 // Reset the limits

 base.imageIndex = file;

 resetLimit(&base,&baseIncrement);

 shift = base;

 shiftIncrement = baseIncrement;

 }

 // Add the image to the panorama

 for (short thread = 0; thread < numberOfThreads; thread++) {

 assignThreadFunction(thread, &compile, base, shift, NULL);

 incrementLimit(&base,baseIncrement);

 incrementLimit(&shift,shiftIncrement);

 }

 waitForAllCores();

 }

 // Resize the last image to transfer the data

 setFileSize(numberInArray - 1, imageHeight, imageWidth);

 // Assign the threads to transfer the local compiled image

 Multicore Algorithms for Image Alignment 98

 shift.imageIndex = numberInArray - 1;

 resetLimit(&shift, &shiftIncrement);

 status("Transferring the local image buffer to output.");

 for (short threads = 0; threads < numberOfThreads; threads++) {

 assignThreadFunction(threads, &transferLocalData, shift, shift, NULL);

 incrementLimit(&shift,shiftIncrement);

 }

 waitForAllCores();

 // Free the dynamic memory

 free(imageData);

}

//---

void normaliseOffsets(COORDINATE* coordinateArray, unsigned int numberInArray) {

//---

 COORDINATE minOffset = {0};

 // Find the minimum values for both axis

 for (short offset = 0; offset < numberInArray; offset++) {

 if (minOffset.x > coordinateArray[offset].x) {

 minOffset.x = coordinateArray[offset].x;

 }

 if (minOffset.y > coordinateArray[offset].y) {

 minOffset.y = coordinateArray[offset].y;

 }

 }

 // Add the minimum value to all values to ensure positive offsets

 for (short offset = 0; offset < numberInArray; offset++) {

 coordinateArray[offset].x += abs(minOffset.x);

 coordinateArray[offset].y += abs(minOffset.y);

 }

}

//---

void alignImages(int stepping, int toleranceSize) {

//---

 unsigned short numberOfThreads = getNumberOfAvailableThreads();

 MATCH_COORDINATE match[numberOfThreads];

 COORDINATE alignments[getNumberOfFiles()] = {0};

 COORDINATE increment;

 COORDINATE incrementOffset;

 unsigned long height[2];

 Multicore Algorithms for Image Alignment 99

 unsigned long width[2];

 IMAGE_LIMITS base;

 IMAGE_LIMITS shift;

 short bestMatch = 0;

 char statusBuffer[100];

 // Define the agressiveness of the filters by the size

 tolerance = toleranceSize;

 if (toleranceSize < 3) {

 tolerance = DEFAULT_TOLERANCE;

 }

 else if (toleranceSize > 25) {

 tolerance = 25;

 }

 steppingSize = stepping;

 if (stepping < 2) {

 steppingSize = DEFAULT_STEP_SIZE;

 }

 else if (stepping > 10) {

 steppingSize = 10;

 }

 for (short fileIndex = 1; fileIndex < getNumberOfFiles(); fileIndex++) {

 // Initialise the match coordinate variables

 for (short thread = 0; thread < numberOfThreads; thread++) {

 match[thread].offset.x = 0;

 match[thread].offset.y = 0;

 match[thread].matchQuality = 0;

 }

 // Get the dimensions of the images

 height[INDEX_BASE] = getFileHeight(fileIndex - 1);

 height[INDEX_SHIFT] = getFileHeight(fileIndex);

 width[INDEX_BASE] = getFileWidth(fileIndex - 1);

 width[INDEX_SHIFT] = getFileWidth(fileIndex);

 // Prepare the nonstandard limits

 increment.x = ceil((double)(width[INDEX_BASE] +

 width[INDEX_SHIFT]) / numberOfThreads);

 increment.y = height[INDEX_BASE] + height[INDEX_SHIFT];

 incrementOffset.x = 0 - width[INDEX_SHIFT];

 incrementOffset.y = 0 - height[INDEX_SHIFT];

 resetLimitPreCalculated(&shift, increment, incrementOffset);

 increment.y = 0;

 base = shift;

 Multicore Algorithms for Image Alignment 100

 // Split up the workload by coordinates

 base.imageIndex = fileIndex - 1;

 shift.imageIndex = fileIndex;

 // Assign the threads to seek appropriate overlap coordinates

 status("Seeking the alignment poisiton.");

 for (short thread = 0; thread < numberOfThreads; thread++) {

 assignThreadFunction(thread, &seekOffset, base, shift,

 (char*)&match[thread]);

 incrementLimit(&base, increment);

 incrementLimit(&shift, increment);

 }

 // Wait until all threads complete and update the status

 waitForAllCores();

 sprintf(statusBuffer, "Matching analysis complete for images %d "

 "and %d.", fileIndex, fileIndex + 1);

 status(statusBuffer);

 // Select the best match quality

 for (short thread = 0; thread < numberOfThreads; thread++) {

 if (match[bestMatch].matchQuality < match[thread].matchQuality) {

 bestMatch = thread;

 }

 }

 // Add the best match position to the image alignment array

 alignments[fileIndex].x = match[bestMatch].offset.x +

 alignments[fileIndex - 1].x;

 alignments[fileIndex].y = match[bestMatch].offset.y +

 alignments[fileIndex - 1].y;

 normaliseOffsets(alignments, getNumberOfFiles());

 // Update the status

 sprintf(statusBuffer, "Image selected for joining at (%d,%d).",

 alignments[fileIndex].x, alignments[fileIndex].y);

 status(statusBuffer);

 }

 // Join all of the images

 fillAndSmooth(alignments, getNumberOfFiles());

 status("All images joined.");

}

 Multicore Algorithms for Image Alignment 101

B4 AXIS.H

//---

// axis.h - header file for axis, coordinate and geometric based activities

//---

#ifndef AXIS_H

#define AXIS_H

//---

//---

// Structures

//---

typedef struct {

 long x;

 long y;

} COORDINATE;

typedef struct {

 COORDINATE upperLeft;

 COORDINATE lowerRight;

} RECTANGLE;

typedef struct {

 COORDINATE min;

 COORDINATE max;

} LIMITS;

typedef struct {

 short imageIndex;

 LIMITS limits;

} IMAGE_LIMITS;

//---

// Functions

//---

COORDINATE calculateIncrement(short imageIndex);

// Description: Divides the given image into an incremental range for the

// number of threads

// Inputs: Index to the image file

 Multicore Algorithms for Image Alignment 102

// Returns: The incremenation structure with the values inserted

//---

void resetLimit(IMAGE_LIMITS* image, COORDINATE* incrementor);

// Description: Resets variables to start processing again

// Inputs: A pointer to the image limits structure,

// a pointer for the coordinates of the incrementor

// Returns: None

//---

void resetLimitPreCalculated(IMAGE_LIMITS* image,

 const COORDINATE incrementor,

 const COORDINATE offset);

// Description: Resets variables to start processing again using the

// precalculated incrementor and offset

// Inputs: A pointer to the image limits structure,

// a pointer for the coordinates of the incrementor,

// a coordinate offset amount to start the limit with

// Returns: None

//---

void incrementLimit(IMAGE_LIMITS* image, COORDINATE incrementor);

// Description: Adds a fixed incremented value to the image limits structure

// Inputs: A pointer to the image limits structure,

// the increment structure containing the values to add

// Returns: None

#endif

B5 AXIS.C

//---

// axis.c - implementation for axis, coordinate and geometric based activities

//---

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "axis.h"

#include "fileio.h"

 Multicore Algorithms for Image Alignment 103

#include "threads.h"

//---

COORDINATE calculateIncrement(short imageIndex) {

//---

 COORDINATE increment;

 increment.x = ceil((double)getFileWidth(imageIndex) /

 getNumberOfAvailableThreads());

 increment.y = getFileHeight(imageIndex);

 return increment;

}

//---

void resetLimit(IMAGE_LIMITS* image, COORDINATE* incrementor) {

//---

 *incrementor = calculateIncrement(image->imageIndex);

 image->limits.min.x = 0;

 image->limits.min.y = 0;

 image->limits.max = *incrementor;

 // Assure that the increments are not total dimension of the image

 if (incrementor->x == getFileWidth(image->imageIndex)) {

 incrementor->x = 0;

 }

 if (incrementor->y == getFileHeight(image->imageIndex)) {

 incrementor->y = 0;

 }

}

//---

void resetLimitPreCalculated(IMAGE_LIMITS* image,

 const COORDINATE incrementor,

 const COORDINATE offset) {

//---

 image->limits.min.x = offset.x;

 image->limits.min.y = offset.y;

 image->limits.max.x = offset.x + incrementor.x;

 image->limits.max.y = offset.y + incrementor.y;

}

//---

void incrementLimit(IMAGE_LIMITS* image, COORDINATE incrementor) {

 Multicore Algorithms for Image Alignment 104

//---

 image->limits.min.x += incrementor.x;

 image->limits.max.x += incrementor.x;

 image->limits.min.y += incrementor.y;

 image->limits.max.y += incrementor.y;

 // Ensure that the maximum size of image is not exceeded

 if (image->limits.max.x > getFileWidth(image->imageIndex)) {

 image->limits.max.x = getFileWidth(image->imageIndex);

 }

 if (image->limits.max.y > getFileHeight(image->imageIndex)) {

 image->limits.max.y = getFileHeight(image->imageIndex);

 }

}

B6 BMP.H

//---

// bmp.h - header file for reading and writing bitmap files

//---

#ifndef BMP_H

#define BMP_H

//---

//---

// Structures

//---

typedef struct {

 unsigned int fileSize;

 short reserved, reserved2;

 unsigned int offsetToData;

} BITMAP_FILE_HEADER;

typedef struct {

 unsigned int headerSize;

 unsigned int width;

 unsigned int height;

 unsigned short numberOfPlanes;

 unsigned short bitsPerPixel;

 unsigned int compressionType;

 Multicore Algorithms for Image Alignment 105

 unsigned int imageSize;

 unsigned int xPixelsPerMeter;

 unsigned int yPixelsPerMeter;

 unsigned int numberOfColours;

 unsigned int numberOfImportantColours;

} BITMAP_INFO_HEADER;

typedef struct {

 unsigned char blue;

 unsigned char green;

 unsigned char red;

} BITMAP_RGB;

typedef struct {

 BITMAP_FILE_HEADER fileHeader;

 BITMAP_INFO_HEADER infoHeader;

 BITMAP_RGB* imageData;

} BITMAP;

//---

// Functions

//---

BITMAP readBitmap(FILE* imageFile);

// Description: Reads the BITMAP structure from disk

// Inputs: A FILE pointer to a previously opened file

// Returns: The bitmap structure containing the file data

//---

void writeBitmap(FILE* imageFile, BITMAP bitmap);

// Description: Writes the BITMAP structure to disk

// Inputs: An open FILE pointer,

// a BITMAP image to write to disk

// Returns: None

//---

BITMAP_RGB getBitmapPixel(BITMAP* bitmap, int x, int y);

// Description: Returns the pixel at the point x,y

// Inputs: A pointer to the image data to be read,

// coordinates of a point

// Returns: The RGB structure correlating to the coordinate

//---

 Multicore Algorithms for Image Alignment 106

void setBitmapPixel(BITMAP* bitmap, int x, int y, BITMAP_RGB value);

// Description: Sets the pixel at the point x,y

// Inputs: A pointer to the image data to be read,

// coordinates of a point,

// the value to save

// Returns: None

//---

unsigned int getBitmapWidth(BITMAP* bitmap);

// Description: Returns the width of the bitmap

// Inputs: A pointer to the image data to be assessed

// Returns: Width of the image

//---

unsigned int getBitmapHeight(BITMAP* bitmap);

// Description: Returns the height of the bitmap

// Inputs: A pointer to the image data to be assessed

// Returns: Height of the image

//---

void setBitmapSize(BITMAP* bitmap, unsigned long width, unsigned long height);

// Description: Sets the size of the bitmap

// Inputs: A pointer to the image data to be read,

// the new width of the image,

// the new height of the image

// Returns: None

#endif

B7 BMP.C

//---

// bmp.c - implementation file for reading and writing bitmap files

//---

#include <stdio.h>

#include <stdlib.h>

#include "bmp.h"

#include "boolean.h"

 Multicore Algorithms for Image Alignment 107

#include "error.h"

//---

BITMAP readBitmap(FILE* imageFile) {

//---

 BITMAP bitmap;

 char statusBuffer[100];

 // Read the file headers

 if (fread((char *)&bitmap.fileHeader, sizeof(BITMAP_FILE_HEADER), 1,

 imageFile) == 0) {

 errorAndTerminate("Unable to read image file header.", IMAGE_IO_ERROR);

 }

 if (fread((char *)&bitmap.infoHeader, sizeof(BITMAP_INFO_HEADER), 1,

 imageFile) == 0) {

 errorAndTerminate("Unable to read image info header.", IMAGE_IO_ERROR);

 }

 status("Acquired the bitmap headers.");

 // Check the compression status

 if (bitmap.infoHeader.compressionType != 0) {

 errorAndTerminate("Bitmap compression unsupported.", UNSUPPORTED_TYPE);

 }

 // Prepare to read the bitmap image data

 fseek(imageFile, bitmap.fileHeader.offsetToData, SEEK_SET);

 bitmap.imageData = (BITMAP_RGB*)malloc(bitmap.infoHeader.imageSize);

 if (bitmap.imageData == NULL) {

 errorAndTerminate("Insufficient memory to allocate for bitmap image "

 "data.", INSUFFICIENT_MEMORY);

 }

 // Notify of status and read bitmap image data

 sprintf(statusBuffer, "Beginning read of %d bytes.",

 bitmap.infoHeader.imageSize);

 status(statusBuffer);

 if (fread(bitmap.imageData, bitmap.infoHeader.imageSize, 1,

 imageFile) == 0) {

 errorAndTerminate("Unable to read image data.", IMAGE_IO_ERROR);

 }

 status("Successfully buffered image data.");

 return bitmap;

}

//---

 Multicore Algorithms for Image Alignment 108

void writeBitmap(FILE* imageFile, BITMAP bitmap) {

//---

 char statusBuffer[100];

 // Write the file headers

 if (fwrite("BM", sizeof(char)*2, 1, imageFile) == 0) {

 errorAndTerminate("Image signature not written.", IMAGE_IO_ERROR);

 }

 if (fwrite((char *)&bitmap.fileHeader, sizeof(BITMAP_FILE_HEADER), 1,

 imageFile) == 0) {

 errorAndTerminate("Image file header not written.", IMAGE_IO_ERROR);

 }

 if (fwrite((char *)&bitmap.infoHeader, sizeof(BITMAP_INFO_HEADER), 1,

 imageFile) == 0) {

 errorAndTerminate("Image info header not written.", IMAGE_IO_ERROR);

 }

 status("Written image headers.");

 // Write the bitmap image data

 fseek(imageFile, bitmap.fileHeader.offsetToData, SEEK_SET);

 if (fwrite(bitmap.imageData, bitmap.infoHeader.imageSize, 1,

 imageFile) == 0) {

 errorAndTerminate("Image data not written.", IMAGE_IO_ERROR);

 }

 status("Written image data.");

}

//---

BITMAP_RGB getBitmapPixel(BITMAP* bitmap, int x, int y) {

//---

 return bitmap->imageData[(bitmap->infoHeader.height - y - 1) *

 bitmap->infoHeader.width + x];

}

//---

void setBitmapPixel(BITMAP* bitmap, int x, int y, BITMAP_RGB value) {

//---

 bitmap->imageData[(bitmap->infoHeader.height - y - 1) *

 bitmap->infoHeader.width + x] = value;

}

//---

unsigned int getBitmapWidth(BITMAP* bitmap) {

 Multicore Algorithms for Image Alignment 109

//---

 return bitmap->infoHeader.width;

}

//---

unsigned int getBitmapHeight(BITMAP* bitmap) {

//---

 return bitmap->infoHeader.height;

}

//---

void setBitmapSize(BITMAP* bitmap, unsigned long width, unsigned long height) {

//---

 bitmap->infoHeader.width = width;

 bitmap->infoHeader.height = height;

 // Readjust the image size in memory

 bitmap->imageData = (BITMAP_RGB*)realloc(bitmap->imageData,

 width * height * sizeof(BITMAP_RGB));

 if (bitmap->imageData == NULL) {

 errorAndTerminate("Insufficient memory to reallocate for bitmap image "

 "data.", INSUFFICIENT_MEMORY);

 }

}

B8 BOOLEAN.H

//---

// boolean.h - header file for boolean definition type

//---

#ifndef BOOLEAN_H

#define BOOLEAN_H

//---

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN_TYPE;

#endif

 Multicore Algorithms for Image Alignment 110

B9 ERROR.H

//---

// error.h - header file for errors encountered

//---

#ifndef ERROR_H

#define ERROR_H

//---

#define UNKNOWN_ERROR 1

#define THREAD_ERROR 2

#define SEMAPHORE_ERROR 3

#define IMAGE_IO_ERROR 4

#define UNSUPPORTED_TYPE 5

#define INSUFFICIENT_MEMORY 6

void warning(char message[]);

// Description: Outputs the passed message to the terminal

// Inputs: The string error message

// Returns: None

//---

void errorAndTerminate(char message[], int failStatus);

// Description: Outputs the passed error to the terminal and terminates the

// program

// Inputs: The string error message,

// the status relating to the perceived issue

// Returns: None

//---

void status(char message[]);

// Description: Outputs the passed message if verbose output wanted

// Inputs: The string text of the current status

// Returns: None

//---

void setVerboseMode(int verboseOnOff);

// Description: Sets the verbose mode toggle

// Inputs: A boolean representing whether the verbose output is shown

// Returns: None

 Multicore Algorithms for Image Alignment 111

#endif

B10 ERROR.C

//---

// error.c - implementation file for errors encountered

//---

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "error.h"

//---

// Global Variables

//---

static int verboseMode;

static HANDLE hOutputSemaphore;

//---

void warning(char message[]) {

//---

 // If output semaphore not previously used, attempt creation

 if (hOutputSemaphore == NULL) {

 hOutputSemaphore = CreateSemaphore(NULL, 1, 1, "output");

 if (hOutputSemaphore == NULL) {

 errorAndTerminate("Output semaphore creation failed.",

 SEMAPHORE_ERROR);

 }

 }

 // Wait for previous output to finish, then proceed to output

 if (WaitForSingleObject(hOutputSemaphore, INFINITE) == WAIT_OBJECT_0) {

 printf("%s\n", message);

 fflush(stdout);

 ReleaseSemaphore(hOutputSemaphore, 1, NULL);

 }

 else {

 errorAndTerminate("Unable to obtain semaphore access to task thread.",

 SEMAPHORE_ERROR);

 Multicore Algorithms for Image Alignment 112

 }

}

//---

void errorAndTerminate(char message[], int failStatus) {

//---

 char statusBuffer[512];

 sprintf(statusBuffer, "Error: %.511s", message);

 warning(statusBuffer);

 exit(failStatus);

}

//---

void status(char message[]) {

//---

 if (verboseMode) {

 warning(message);

 }

}

//---

void setVerboseMode(int verboseOnOff) {

//---

 verboseMode = verboseOnOff;

}

B11 FILEIO.H

//---

// fileio.h - header file for reading and writing image files

//---

#ifndef FILEIO_H

#define FILEIO_H

//---

#include "boolean.h"

//---

// Structures

 Multicore Algorithms for Image Alignment 113

//---

typedef struct {

 unsigned char red;

 unsigned char green;

 unsigned char blue;

 unsigned char reserved;

} GENERIC_RGB;

//---

// Functions

//---

BOOLEAN_TYPE setFilePath(char pathToFile[]);

// Description: Assigns the path to a vacant position in the image input array

// Inputs: A path to a valid file

// Returns: Whether the operation completed successfully

//---

BOOLEAN_TYPE setFileOutput(char pathToFile[]);

// Description: Outputs the passed message to the terminal

// Inputs: The string error message

// Returns: Whether the operation completed successfully

//---

void readImageFile(int indexOfFile);

// Description: Reads the selected file from disk

// Inputs: The index of the file in the image input array

// Returns: None

//---

BOOLEAN_TYPE readAllImageFiles(void);

// Description: Reads all of the files from disk

// Inputs: None

// Returns: Whether the operation completed successfully

//---

void writeImageFile(void);

// Description: Write the output file to disk

// Inputs: None

// Returns: None

//---

 Multicore Algorithms for Image Alignment 114

GENERIC_RGB getPixel(int indexOfFile, int x, int y);

// Description: Returns the pixel at the coordinate x,y

// Inputs: The index of the image,

// the x,y coordinate of the point

// Returns: The structure relating to the colour at the coordinate

//---

void setPixel(int indexOfFile, int x, int y, GENERIC_RGB value);

// Description: Sets the pixel at the coordinate x,y

// Inputs: The index of the image, coordinates of the point and the value

// to save

// Returns: None

//---

unsigned int getNumberOfFiles(void);

// Description: Returns the number of files presently read in

// Inputs: None

// Returns: Number of files

//---

unsigned long getFileWidth(int indexOfFile);

// Description: Returns the width of file

// Inputs: The index of the image

// Returns: Given file width

//---

unsigned long getFileHeight(int indexOfFile);

// Description: Returns the height of file

// Inputs: The index of the image

// Returns: Given file height

//---

void setFileSize(int indexOfFile, unsigned long height, unsigned long width);

// Description: Sets the width and height properties of the selected image

// Inputs: The index of the image,

// the new file height,

// the new file width

// Returns: None

#endif

 Multicore Algorithms for Image Alignment 115

B12 FILEIO.C

//---

// fileio.c - implementation file for reading and writing image files

//---

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "fileio.h"

#include "bmp.h"

#include "boolean.h"

#include "error.h"

#include "tiff.h"

#define MAX_FILES 50

//---

// Structures

//---

enum FILE_TYPE {NO_FORMAT, BITMAP_FORMAT, TIFF_FORMAT};

typedef struct {

 char* path;

 enum FILE_TYPE fileType;

 BITMAP bitmap;

 TIFF tiff;

} IMAGE_FILE;

//---

// Global Variables

//---

static IMAGE_FILE imageFiles[MAX_FILES + 1];

static char* outputImagePath;

static unsigned short numberOfFiles;

static char* numberOfFilesPtr;

//---

 Multicore Algorithms for Image Alignment 116

BOOLEAN_TYPE setFilePath(char pathToFile[]) {

//---

 if (numberOfFilesPtr == NULL) {

 numberOfFilesPtr = (char*)&numberOfFiles;

 numberOfFiles = 0;

 }

 // Ensure that the passed path is not NULL

 if (pathToFile == NULL) {

 return FALSE;

 }

 // Allocate the appropriate amount of memory and store the path

 imageFiles[numberOfFiles].path = (char*)malloc(sizeof(char) *

 (strlen(pathToFile) + 1));

 if (imageFiles[numberOfFiles].path == NULL) {

 errorAndTerminate("Insufficient memory to allocate for file path.",

 INSUFFICIENT_MEMORY);

 }

 strcpy(imageFiles[numberOfFiles].path, pathToFile);

 numberOfFiles++;

 return TRUE;

}

//---

BOOLEAN_TYPE setFileOutput(char pathToFile[]) {

//---

 // Ensure that the passed path is not NULL

 if (pathToFile == NULL) {

 outputImagePath = NULL;

 return FALSE;

 }

 // Allocate the appropriate amount of memory and store the path

 outputImagePath = (char*)malloc(sizeof(char) * (strlen(pathToFile) + 1));

 if (outputImagePath == NULL) {

 errorAndTerminate("Insufficient memory to allocate for file path.",

 INSUFFICIENT_MEMORY);

 }

 strcpy(outputImagePath, pathToFile);

 return TRUE;

}

//---

void readImageFile(int indexOfFile) {

 Multicore Algorithms for Image Alignment 117

//---

 FILE* imageFile;

 unsigned char fileSignature[] = "\0\0\0\0\0";

 char statusBuffer[300];

 // Open the file for reading in binary mode

 imageFile = fopen(imageFiles[indexOfFile].path, "rb");

 if (!imageFile) {

 sprintf(statusBuffer, "Image file \"%.256s\" not available for "

 "reading.", imageFiles[indexOfFile].path);

 errorAndTerminate(statusBuffer, IMAGE_IO_ERROR);

 }

 sprintf(statusBuffer, "Attempting to read the file \"%.256s\".",

 imageFiles[indexOfFile].path);

 status(statusBuffer);

 // Read the file header and assign the appropriate loader for the image

 imageFiles[indexOfFile].fileType = NO_FORMAT;

 fread((char *)&fileSignature, sizeof(char), 2, imageFile);

 if (strcmp(fileSignature, "BM") == 0){

 imageFiles[indexOfFile].fileType = BITMAP_FORMAT;

 imageFiles[indexOfFile].bitmap = readBitmap(imageFile);

 }

 else if (strcmp(fileSignature, "MM") == 0){

 // Double check that the next two magic numbers match

 fread((char *)&fileSignature[2], sizeof(char), 2, imageFile);

 if (strcmp(fileSignature, "MM\0*") != 0) {

 errorAndTerminate("Unsupported file type.", UNSUPPORTED_TYPE);

 }

 imageFiles[indexOfFile].fileType = TIFF_FORMAT;

 imageFiles[indexOfFile].tiff = readTIFF(imageFile, TRUE);

 }

 else if (strcmp(fileSignature, "II") == 0) {

 // Double check that the next two magic numbers match

 fread((char *)&fileSignature[2], sizeof(char), 2, imageFile);

 if (strcmp(fileSignature, "II*\0") != 0) {

 errorAndTerminate("Unsupported file type.", UNSUPPORTED_TYPE);

 }

 imageFiles[indexOfFile].fileType = TIFF_FORMAT;

 imageFiles[indexOfFile].tiff = readTIFF(imageFile, FALSE);

 }

 else {

 errorAndTerminate("Unsupported file type.", UNSUPPORTED_TYPE);

 Multicore Algorithms for Image Alignment 118

 }

 sprintf(statusBuffer, "Reading of file \"%.256s\" done.",

 imageFiles[indexOfFile].path);

 status(statusBuffer);

 // Close the open file

 fclose(imageFile);

}

//---

BOOLEAN_TYPE readAllImageFiles(void) {

//---

 for (int fileNumber = 0; fileNumber < numberOfFiles; fileNumber++) {

 readImageFile(fileNumber);

 }

 return TRUE;

}

//---

void writeImageFile(void) {

//---

 FILE* imageFile;

 unsigned char fileSignature[] = "\0\0\0\0\0";

 char statusBuffer[300];

 // Open the file for writing in binary mode

 imageFile = fopen(outputImagePath, "wb");

 if (!imageFile) {

 sprintf(statusBuffer, "Image file \"%.256s\" not available for "

 "writing.", outputImagePath);

 errorAndTerminate(statusBuffer, IMAGE_IO_ERROR);

 }

 sprintf(statusBuffer, "Attempting to write the file \"%.256s\".",

 outputImagePath);

 status(statusBuffer);

 // Determine the appropriate saver for the image

 if (imageFiles[numberOfFiles - 1].fileType == BITMAP_FORMAT) {

 writeBitmap(imageFile, imageFiles[numberOfFiles - 1].bitmap);

 }

 else if (imageFiles[numberOfFiles - 1].fileType == TIFF_FORMAT) {

 writeTIFF(imageFile, imageFiles[numberOfFiles - 1].tiff);

 }

 // Close the open file

 Multicore Algorithms for Image Alignment 119

 fclose(imageFile);

}

//---

GENERIC_RGB getPixel(int indexOfFile, int x, int y) {

//---

 GENERIC_RGB colours;

 BITMAP_RGB bitmapRGB;

 TIFF_RGB tiffRGB;

 if (imageFiles[indexOfFile].fileType == BITMAP_FORMAT) {

 bitmapRGB = getBitmapPixel(&imageFiles[indexOfFile].bitmap, x, y);

 // Setup RGB colour parameters

 colours.red = bitmapRGB.red;

 colours.green = bitmapRGB.green;

 colours.blue = bitmapRGB.blue;

 }

 else if (imageFiles[indexOfFile].fileType == TIFF_FORMAT) {

 tiffRGB = getTIFFPixel(&imageFiles[indexOfFile].tiff, x, y);

 // Setup RGB colour parameters

 colours.red = tiffRGB.red;

 colours.green = tiffRGB.green;

 colours.blue = tiffRGB.blue;

 }

 else {

 // Setup RGB colour parameters

 colours.red = 0;

 colours.green = 0;

 colours.blue = 0;

 }

 return colours;

}

//---

void setPixel(int indexOfFile, int x, int y, GENERIC_RGB value) {

//---

 BITMAP_RGB bitmapRGB;

 TIFF_RGB tiffRGB;

 if (imageFiles[indexOfFile].fileType == BITMAP_FORMAT) {

 // Setup RGB colour parameters

 bitmapRGB.red = value.red;

 Multicore Algorithms for Image Alignment 120

 bitmapRGB.green = value.green;

 bitmapRGB.blue = value.blue;

 // Set the bitmap colours

 setBitmapPixel(&imageFiles[indexOfFile].bitmap, x, y, bitmapRGB);

 }

 else if (imageFiles[indexOfFile].fileType == TIFF_FORMAT) {

 // Setup RGB colour parameters

 tiffRGB.red = value.red;

 tiffRGB.green = value.green;

 tiffRGB.blue = value.blue;

 // Set the TIFF colours

 setTIFFPixel(&imageFiles[indexOfFile].tiff, x, y, tiffRGB);

 }

}

//---

unsigned int getNumberOfFiles(void) {

//---

 return numberOfFiles;

}

//---

unsigned long getFileWidth(int indexOfFile) {

//---

 // Check that index in range

 if (indexOfFile < 0) {

 indexOfFile = 0;

 }

 else if (indexOfFile > numberOfFiles) {

 indexOfFile = numberOfFiles - 1;

 }

 // Return the width

 if (imageFiles[indexOfFile].fileType == BITMAP_FORMAT) {

 return (unsigned long)getBitmapWidth(&imageFiles[indexOfFile].bitmap);

 }

 else if (imageFiles[indexOfFile].fileType == TIFF_FORMAT) {

 return (unsigned long)getTIFFWidth(&imageFiles[indexOfFile].tiff);

 }

 return 0;

}

//---

 Multicore Algorithms for Image Alignment 121

unsigned long getFileHeight(int indexOfFile) {

//---

 // Check that index in range

 if (indexOfFile < 0) {

 indexOfFile = 0;

 }

 else if (indexOfFile > numberOfFiles) {

 indexOfFile = numberOfFiles - 1;

 }

 // Return the height

 if (imageFiles[indexOfFile].fileType == BITMAP_FORMAT) {

 return (unsigned long)getBitmapHeight(&imageFiles[indexOfFile].bitmap);

 }

 else if (imageFiles[indexOfFile].fileType == TIFF_FORMAT) {

 return (unsigned long)getTIFFLength(&imageFiles[indexOfFile].tiff);

 }

 return 0;

}

//---

void setFileSize(int indexOfFile, unsigned long height, unsigned long width) {

//---

 if (imageFiles[indexOfFile].fileType == BITMAP_FORMAT) {

 setBitmapSize(&imageFiles[indexOfFile].bitmap, width, height);

 }

 else if (imageFiles[indexOfFile].fileType == TIFF_FORMAT) {

 setTIFFSize(&imageFiles[indexOfFile].tiff, width, height);

 }

}

B13 NOISEREDUCTION.H

//---

// noisereduction.h - header file for reducing noise in image files

//---

#ifndef NOISEREDUCTION_H

#define NOISEREDUCTION_H

//---

void reduceNoise(int sizeOfFilter);

 Multicore Algorithms for Image Alignment 122

// Description: Filters out noise in all of the input images

// Inputs: Filter size relating to the aggressiveness of filtering to use

// Returns: None

#endif

B14 NOISEREDUCTION.C

//---

// noisereduction.c - implementation file for reducing noise in image files

//---

#include <stdio.h>

#include <stdlib.h>

#include "noisereduction.h"

#include "axis.h"

#include "error.h"

#include "fileio.h"

#include "threads.h"

#define DEFAULT_FILTER_SIZE 3

//---

// Global Variables

//---

unsigned int filterSize;

//---

int channelIsLessThan(const void* channelA, const void* channelB) {

//---

 return (*(unsigned char*)channelA - *(unsigned char*)channelB);

}

//---

void medianFilter(IMAGE_LIMITS noisyImage,

 IMAGE_LIMITS reserve,

 char* reserved) {

//---

 COORDINATE min;

 Multicore Algorithms for Image Alignment 123

 COORDINATE max;

 unsigned long arrayOffset;

 GENERIC_RGB pixelAtPoint;

 unsigned long filterSizeSquared = filterSize * filterSize;

 unsigned int center = filterSize / 2;

 unsigned char viewportRedChannel[filterSizeSquared];

 unsigned char viewportGreenChannel[filterSizeSquared];

 unsigned char viewportBlueChannel[filterSizeSquared];

 // Establish the coordinate limits

 min.x = noisyImage.limits.min.x == 0 ? center : noisyImage.limits.min.x;

 min.y = noisyImage.limits.min.y == 0 ? center : noisyImage.limits.min.y;

 max.x = noisyImage.limits.max.x == getFileWidth(noisyImage.imageIndex) ?

 noisyImage.limits.max.x - center : noisyImage.limits.max.x;

 max.y = noisyImage.limits.max.y == getFileHeight(noisyImage.imageIndex) ?

 noisyImage.limits.max.y - center : noisyImage.limits.max.y;

 // Reduce the noise for every pixel excluding boundaries

 for (unsigned long x = min.x; x < max.x; x++) {

 for (unsigned long y = min.y; y < max.y; y++) {

 // Gather the viewport values

 arrayOffset = 0;

 for (long viewportY = 0; viewportY < filterSize; viewportY++) {

 for (long viewportX = 0; viewportX < filterSize; viewportX++) {

 //arrayOffset = filterSize * viewportY + viewportX;

 pixelAtPoint = getPixel(noisyImage.imageIndex,

 x + viewportX - center, y + viewportY - center);

 viewportRedChannel[arrayOffset] = pixelAtPoint.red;

 viewportGreenChannel[arrayOffset] = pixelAtPoint.green;

 viewportBlueChannel[arrayOffset] = pixelAtPoint.blue;

 arrayOffset++;

 }

 }

 // Sort the cached values

 qsort(viewportRedChannel, filterSizeSquared,

 sizeof(char), channelIsLessThan);

 qsort(viewportGreenChannel, filterSizeSquared,

 sizeof(char), channelIsLessThan);

 qsort(viewportBlueChannel, filterSizeSquared,

 sizeof(char), channelIsLessThan);

 // Save the appropriate value

 arrayOffset = filterSize * center + center;

 pixelAtPoint.red = viewportRedChannel[arrayOffset];

 Multicore Algorithms for Image Alignment 124

 pixelAtPoint.green = viewportGreenChannel[arrayOffset];

 pixelAtPoint.blue = viewportBlueChannel[arrayOffset];

 setPixel(noisyImage.imageIndex, x, y, pixelAtPoint);

 }

 }

}

//---

void reduceNoise(int sizeOfFilter) {

//---

 COORDINATE baseIncrement;

 IMAGE_LIMITS base;

 char statusBuffer[100];

 // Define the agressiveness of the filter by the size

 filterSize = sizeOfFilter;

 if (sizeOfFilter < 3) {

 filterSize = DEFAULT_FILTER_SIZE;

 }

 else if (sizeOfFilter > 15) {

 filterSize = 15;

 }

 for (short fileIndex = 0; fileIndex < getNumberOfFiles(); fileIndex++) {

 // Split up the workload by coordinates

 base.imageIndex = fileIndex;

 resetLimit(&base,&baseIncrement);

 // Assign the threads to reduce the noise by median filter

 for (short thread = 0; thread < getNumberOfAvailableThreads();

 thread++) {

 assignThreadFunction(thread, &medianFilter, base, base, NULL);

 incrementLimit(&base,baseIncrement);

 }

 // Wait until all threads complete and update the status

 waitForAllCores();

 sprintf(statusBuffer, "Finished noise reduction on image %d.",

 fileIndex);

 status(statusBuffer);

 }

}

 Multicore Algorithms for Image Alignment 125

B15 THREADS.H

//---

// threads.h - header file for creation and modification of treads

//---

#ifndef THREADS_H

#define THREADS_H

//---

#include "axis.h"

void createMultipleThreads(int numberOfThreads, int processorOffset);

// Description: Forms the number of threads corresponding to the number of CPU

// cores to utilize and appropriate

// Inputs: Number of cores to use

// Returns: None

//---

short getNumberOfAvailableThreads(void);

// Description: Returns the number of available threads on each of the CPUs

// Inputs: None

// Returns: Number of threads

//---

void assignThreadFunction(int core,

 void (*function)(IMAGE_LIMITS,IMAGE_LIMITS,char*),

 IMAGE_LIMITS image1,

 IMAGE_LIMITS image2,

 char* output);

// Description: Assigns the function to a thread to execute

// Inputs: The pointer to the function to execute,

// the bounds of the first image structure to operate on,

// the bounds of the second image structure to operate on,

// the reference to where return values are to be stored

// Returns: Status of whether the method succeeded

//---

void waitForAllCores(void);

// Description: Waits until all created threads are all freed from tasks

// Inputs: None

// Returns: None

 Multicore Algorithms for Image Alignment 126

#endif

B16 THREADS.C

//---

// threads.c - implementation file for creation and modification of threads

//---

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <windows.h>

#include "threads.h"

#include "axis.h"

#include "error.h"

#define MAX_THREADS 32

//---

// Structures

//---

typedef struct {

 HANDLE hThread;

 HANDLE hIsProcessing;

 void (*functionPtr)(IMAGE_LIMITS,IMAGE_LIMITS,char*);

 IMAGE_LIMITS image1;

 IMAGE_LIMITS image2;

 char* output;

} THREAD_PROPERTIES;

//---

// Global Variables

//---

static THREAD_PROPERTIES threadTable[MAX_THREADS];

static HANDLE hFreeThreadSemaphore;

static int numberOfAvailableThreads;

 Multicore Algorithms for Image Alignment 127

//---

void processThreadTasks(int coreNumber) {

//---

 while (TRUE) {

 if (threadTable[coreNumber].functionPtr != NULL) {

 // Begin processing

 threadTable[coreNumber].functionPtr(

 threadTable[coreNumber].image1,

 threadTable[coreNumber].image2,

 threadTable[coreNumber].output);

 // Cleanup after function facilities ready for the next task

 threadTable[coreNumber].functionPtr = NULL;

 ReleaseSemaphore(threadTable[coreNumber].hIsProcessing, 1, NULL);

 }

 else {

 if (SuspendThread(threadTable[coreNumber].hThread) == -1) {

 errorAndTerminate("Thread refusing to suspend.", THREAD_ERROR);

 }

 }

 }

}

//---

short getNumberOfProcessorCores(void) {

//---

 SYSTEM_INFO systemInfo;

 GetSystemInfo(&systemInfo);

 return (int)systemInfo.dwNumberOfProcessors;

}

//---

void createThreadOnCore(int core) {

//---

 char statusBuffer[100];

 // Verify that no thread already exists on the core, then create a new one

 if (threadTable[core].hThread != NULL) return;

 threadTable[core].hThread = CreateThread(NULL, 0,

 (LPTHREAD_START_ROUTINE)processThreadTasks,

 (void*)core, 0, NULL);

 sprintf(statusBuffer, "isThreadAvailable%d", core);

 Multicore Algorithms for Image Alignment 128

 threadTable[core].hIsProcessing = CreateSemaphore(NULL, 1, 1,

 statusBuffer);

 if (threadTable[core].hThread == NULL) {

 errorAndTerminate("Thread creation failed.", THREAD_ERROR);

 }

 if (SetThreadAffinityMask(threadTable[core].hThread,

 (DWORD_PTR)pow(2, core)) == 0) {

 warning("Setting thread core affinity failed.");

 }

 // Update the status

 sprintf(statusBuffer, "Produced thread on core %d.", core);

 status(statusBuffer);

}

//---

void createMultipleThreads(int numberOfThreads, int processorOffset) {

//---

 short numberOfProcessors = getNumberOfProcessorCores();

 // Ensure that at least one core is selected

 if (numberOfThreads <= 0) {

 numberOfThreads = 1;

 }

 else if (numberOfThreads > numberOfProcessors) {

 numberOfThreads = numberOfProcessors;

 }

 if (numberOfThreads > MAX_THREADS) {

 numberOfThreads = MAX_THREADS;

 }

 // Setup a semaphore for free thread availability and assignment

 hFreeThreadSemaphore = CreateSemaphore(NULL, numberOfThreads,

 numberOfThreads, "availableThread");

 if (hFreeThreadSemaphore == NULL) {

 errorAndTerminate("Semaphore creation failed.", SEMAPHORE_ERROR);

 }

 status("Free thread semaphore now available.");

 // Ensure that the processor offset is not greater than the number of CPUs

 if (numberOfThreads + processorOffset > numberOfProcessors) {

 processorOffset = numberOfProcessors - numberOfThreads;

 }

 for (int coreNumber = processorOffset;

 coreNumber < numberOfThreads + processorOffset; coreNumber++) {

 Multicore Algorithms for Image Alignment 129

 createThreadOnCore(coreNumber);

 }

 numberOfAvailableThreads = numberOfThreads;

}

//---

short getNumberOfAvailableThreads(void) {

//---

 return numberOfAvailableThreads;

}

//---

void assignThreadFunction(int core,

 void (*function)(IMAGE_LIMITS,IMAGE_LIMITS,char*),

 IMAGE_LIMITS image1,

 IMAGE_LIMITS image2,

 char* output) {

//---

 char statusBuffer[100];

 if (hFreeThreadSemaphore == NULL) {

 createMultipleThreads(1000, 0);

 }

 // Wait for a thread to become avialable or free its tasks

 if (WaitForSingleObject(threadTable[core].hIsProcessing, INFINITE) ==

 WAIT_OBJECT_0) {

 if (threadTable[core].hThread != NULL){

 threadTable[core].functionPtr = function;

 threadTable[core].image1 = image1;

 threadTable[core].image2 = image2;

 threadTable[core].output = output;

 }

 }

 else {

 errorAndTerminate("Unable to obtain semaphore access to task thread.",

 SEMAPHORE_ERROR);

 }

 if (ResumeThread(threadTable[core].hThread) == -1) {

 sprintf(statusBuffer,

 "Thread on processor %d not awaking from suspend.", core);

 errorAndTerminate(statusBuffer, THREAD_ERROR);

 }

 Multicore Algorithms for Image Alignment 130

}

//---

void waitForAllCores(void) {

//---

 if (hFreeThreadSemaphore == NULL) {

 createMultipleThreads(1000, 0);

 }

 // Otain semaphores as cores are freed then release all when done

 for (int core = 0; core < numberOfAvailableThreads; core++) {

 if (WaitForSingleObject(threadTable[core].hIsProcessing,

 INFINITE) != WAIT_OBJECT_0) {

 errorAndTerminate("Unable to obtain semaphore access for threads.",

 SEMAPHORE_ERROR);

 }

 }

 for (int core = 0; core < numberOfAvailableThreads; core++) {

 ReleaseSemaphore(threadTable[core].hIsProcessing, 1, NULL);

 }

}

B17 TIFF.H

//---

// tiff.h - header file for reading and writing TIFF files

//---

#ifndef TIFF_H

#define TIFF_H

//---

//---

// Structures

//---

typedef struct {

 unsigned short numberOfTags;

 unsigned long newSubfileType;

 unsigned long imageWidth;

 unsigned long imageLength;

 unsigned short* bitsPerSample;

 Multicore Algorithms for Image Alignment 131

 unsigned short compression;

 unsigned short photometric;

 unsigned long* stripOffsets;

 unsigned long stripsPerImage;

 unsigned short samplesPerPixel;

 unsigned long rowsPerStrip;

 unsigned long* stripByteCounts;

 unsigned long xResolution[2];

 unsigned long yResolution[2];

 unsigned short resolutionUnit;

 unsigned long offsetToNextIFD;

} TIFF_IMAGE_FILE_DIRECTORY;

typedef struct {

 unsigned short tagID;

 unsigned short dataType;

 unsigned int numberOfValues;

} TIFF_BASIC_TAG;

typedef struct {

 unsigned char red;

 unsigned char green;

 unsigned char blue;

 unsigned char reserved;

} TIFF_RGB;

typedef struct {

 TIFF_IMAGE_FILE_DIRECTORY ifd;

 TIFF_RGB* imageData;

} TIFF;

//---

// Functions

//---

TIFF readTIFF(FILE* imageFile, int fileIsLittleEndian);

// Description: Reads the TIFF structure from disk

// Inputs: A FILE pointer to a previously opened file

// Returns: The bitmap structure containing the file data

//---

void writeTIFF(FILE* imageFile, TIFF tiff);

 Multicore Algorithms for Image Alignment 132

// Description: Writes the TIFF structure to disk

// Inputs: An open FILE pointer and a TIFF image to write to disk

// Returns: None

//---

TIFF_RGB getTIFFPixel(TIFF* tiff, int x, int y);

// Description: Returns the pixel at the point x,y

// Inputs: A pointer to the image data to be read, and coordinates of a

// point

// Returns: The RGB structure correlating to the coordinate

//---

void setTIFFPixel(TIFF* tiff, int x, int y, TIFF_RGB value);

// Description: Sets the pixel at the point x,y

// Inputs: A pointer to the image data to be read, coordinates of a point

// and the value to save

// Returns: None

//---

unsigned long getTIFFWidth(TIFF* tiff);

// Description: Returns the width of the TIFF file

// Inputs: A pointer to the image data to be assessed

// Returns: Width of the image

//---

unsigned long getTIFFLength(TIFF* tiff);

// Description: Returns the length of the TIFF file

// Inputs: A pointer to the image data to be assessed

// Returns: Height of the image

//---

void setTIFFSize(TIFF* tiff, unsigned long width, unsigned long length);

// Description: Sets the size of the TIFF file

// Inputs: A pointer to the image data to be read,

// the new width of the image,

// the new height of the image

// Returns: None

#endif

 Multicore Algorithms for Image Alignment 133

B18 TIFF.C

//---

// tiff.c - implementation file for reading and writing TIFF files

//---

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "tiff.h"

#include "boolean.h"

#include "error.h"

#define STRIP_SIZE 8192

//---

// Structures

//---

typedef enum {

 UNSIGNED_SHORT = 3,

 UNSIGNED_LONG = 4,

 UNSIGNED_RATIONAL = 5,

 SIGNED_SHORT = 8,

 SIGNED_LONG = 9,

 SIGNED_RATIONAL = 10

} DATA_TYPES;

typedef enum {

 SHORT_SIZE = 2,

 LONG_SIZE = 4,

 HEADER_SIZE = 8,

 TAG_SIZE = 12

} DATA_SIZES;

typedef enum {

 NEW_SUBFILE_TYPE = 254,

 IMAGE_WIDTH = 256,

 IMAGE_LENGTH = 257,

 BITS_PER_SAMPLE = 258,

 Multicore Algorithms for Image Alignment 134

 COMPRESSION = 259,

 PHOTOMETRIC = 262,

 STRIP_OFFSETS = 273,

 SAMPLES_PER_PIXEL = 277,

 ROWS_PER_STRIP = 278,

 STRIP_BYTE_COUNT = 279,

 X_RESOLUTION = 282,

 Y_RESOLUTION = 283,

 RESOLUTION_UNIT = 296,

 LAST_TAG

} TAG_IDS;

//---

// Global Variables

//---

static short convertEndianness;

//---

int machineIsLittleEndian(void) {

//---

 int endiannessInteger = 1;

 return *(char*)&endiannessInteger;

}

//---

void swapEndianness(unsigned char* dataPointer, unsigned int numberOfBytes) {

//---

 unsigned int lowerSection = 0;

 unsigned int upperSection = numberOfBytes - 1;

 unsigned int swapTemp;

 if (dataPointer != NULL && convertEndianness) {

 while (lowerSection < upperSection) {

 swapTemp = dataPointer[lowerSection];

 dataPointer[lowerSection] = dataPointer[upperSection];

 dataPointer[upperSection] = swapTemp;

 lowerSection++;

 upperSection--;

 }

 }

 Multicore Algorithms for Image Alignment 135

}

//---

unsigned long readUnsignedLong(FILE* imageFile, unsigned int numberOfBytes) {

//---

 unsigned long tagValue = 0;

 if (fread((unsigned long*)&tagValue, numberOfBytes, 1, imageFile) == 0) {

 errorAndTerminate("Tag value unreadable.", IMAGE_IO_ERROR);

 }

 swapEndianness(&tagValue, numberOfBytes);

 return tagValue;

}

//---

unsigned char* readTagProperties(FILE* imageFile, TIFF_BASIC_TAG* tag) {

//---

 unsigned char* dataPointer;

 unsigned long* longPointer;

 unsigned short* shortPointer;

 unsigned short readInSize = 0;

 if (imageFile == NULL || tag == NULL) {

 return NULL;

 }

 // Organise the data type and move to the position where the data is stored

 switch(tag->dataType) {

 case UNSIGNED_LONG:

 case SIGNED_LONG:

 readInSize = LONG_SIZE;

 if (tag->numberOfValues > 1) {

 fseek(imageFile, readUnsignedLong(imageFile, LONG_SIZE),

 SEEK_SET);

 }

 break;

 case UNSIGNED_SHORT:

 case SIGNED_SHORT:

 readInSize = SHORT_SIZE;

 if (tag->numberOfValues > 2) {

 fseek(imageFile, readUnsignedLong(imageFile, LONG_SIZE),

 SEEK_SET);

 }

 Multicore Algorithms for Image Alignment 136

 break;

 default:

 return NULL;

 }

 // Allocate the storage size

 dataPointer = (unsigned char*)malloc(tag->numberOfValues * readInSize);

 if (dataPointer == NULL) {

 errorAndTerminate("Insufficient memory to allocate for properties.",

 INSUFFICIENT_MEMORY);

 }

 longPointer = dataPointer;

 shortPointer = dataPointer;

 // Read the values

 for (int value = 0; value < tag->numberOfValues; value++) {

 switch(tag->dataType) {

 case UNSIGNED_LONG:

 case SIGNED_LONG:

 longPointer[value] = readUnsignedLong(imageFile, readInSize);

 break;

 case UNSIGNED_SHORT:

 case SIGNED_SHORT:

 shortPointer[value] = readUnsignedLong(imageFile, readInSize);

 }

 }

 return dataPointer;

}

//---

void writeUnsignedLong(FILE* imageFile,

 unsigned long tagValue,

 unsigned int numberOfBytes) {

//---

 if (fwrite((char *)&tagValue, numberOfBytes, 1, imageFile) == 0) {

 errorAndTerminate("Tag value not written.", IMAGE_IO_ERROR);

 }

}

//---

void writeBasicTag(FILE* imageFile, TIFF_BASIC_TAG* tag) {

//---

 if (fwrite((char *)tag, sizeof(TIFF_BASIC_TAG), 1, imageFile) == 0) {

 errorAndTerminate("Tag header properties not written.",IMAGE_IO_ERROR);

 Multicore Algorithms for Image Alignment 137

 }

}

//---

TIFF readTIFF(FILE* imageFile, int fileIsLittleEndian) {

//---

 TIFF tiff;

 TIFF_BASIC_TAG tag;

 unsigned long filePosition;

 unsigned long dataPosition = 0;

 TIFF_RGB* imageDataStrip;

 int offsetToFirstIFD;

 unsigned short readInSize;

 unsigned long* longData;

 unsigned short* shortData;

 char statusBuffer[100];

 // Assess the endianness of the current machine and modify bytes if needed

 convertEndianness = !(machineIsLittleEndian() ^ fileIsLittleEndian);

 // Read the file header and the first image file directory

 if (fread((char*)&offsetToFirstIFD, LONG_SIZE, 1, imageFile) == 0) {

 errorAndTerminate("Unable to read image file header.", IMAGE_IO_ERROR);

 }

 swapEndianness((char*)&offsetToFirstIFD, sizeof(int));

 fseek(imageFile, offsetToFirstIFD, SEEK_SET);

 if (fread((short*)&tiff.ifd.numberOfTags,

 sizeof(short), 1, imageFile) == 0) {

 errorAndTerminate("Unable to read image file directory properties.",

 IMAGE_IO_ERROR);

 }

 swapEndianness((char*)&tiff.ifd.numberOfTags,sizeof(tiff.ifd.numberOfTags));

 // Individually read each tag and sort the contents

 for (int tagNumber = 0; tagNumber < tiff.ifd.numberOfTags; tagNumber++) {

 if (fread((char *)&tag, sizeof(TIFF_BASIC_TAG), 1, imageFile) == 0) {

 errorAndTerminate("Unable to read tag properties.",IMAGE_IO_ERROR);

 }

 swapEndianness((char*)&tag.tagID, sizeof(tag.tagID));

 swapEndianness((char*)&tag.dataType, sizeof(tag.dataType));

 swapEndianness((char*)&tag.numberOfValues, sizeof(tag.numberOfValues));

 // Store the current position in the file

 filePosition = ftell(imageFile);

 // Read values based on data type

 Multicore Algorithms for Image Alignment 138

 switch(tag.tagID) {

 case NEW_SUBFILE_TYPE:

 if (tag.dataType == UNSIGNED_LONG ||

 tag.dataType == SIGNED_LONG) {

 tiff.ifd.newSubfileType =

 readUnsignedLong(imageFile, LONG_SIZE);

 }

 break;

 case IMAGE_WIDTH:

 if (tag.dataType == UNSIGNED_LONG ||

 tag.dataType == SIGNED_LONG) {

 tiff.ifd.imageWidth =

 readUnsignedLong(imageFile, LONG_SIZE);

 }

 else if (tag.dataType == UNSIGNED_SHORT ||

 tag.dataType == SIGNED_SHORT) {

 tiff.ifd.imageWidth =

 readUnsignedLong(imageFile, SHORT_SIZE);

 }

 break;

 case IMAGE_LENGTH:

 if (tag.dataType == UNSIGNED_LONG ||

 tag.dataType == SIGNED_LONG) {

 tiff.ifd.imageLength =

 readUnsignedLong(imageFile, LONG_SIZE);

 }

 else if (tag.dataType == UNSIGNED_SHORT ||

 tag.dataType == SIGNED_SHORT) {

 tiff.ifd.imageLength =

 readUnsignedLong(imageFile, SHORT_SIZE);

 }

 break;

 case BITS_PER_SAMPLE:

 tiff.ifd.samplesPerPixel = tag.numberOfValues;

 tiff.ifd.bitsPerSample = readTagProperties(imageFile, &tag);

 break;

 case COMPRESSION:

 if (tag.dataType == UNSIGNED_SHORT ||

 tag.dataType == SIGNED_SHORT) {

 tiff.ifd.compression =

 readUnsignedLong(imageFile, SHORT_SIZE);

 }

 Multicore Algorithms for Image Alignment 139

 break;

 case PHOTOMETRIC:

 if (tag.dataType == UNSIGNED_SHORT ||

 tag.dataType == SIGNED_SHORT) {

 tiff.ifd.photometric =

 readUnsignedLong(imageFile, SHORT_SIZE);

 }

 break;

 case STRIP_OFFSETS:

 tiff.ifd.stripsPerImage = tag.numberOfValues;

 tiff.ifd.stripOffsets = readTagProperties(imageFile, &tag);

 break;

 case SAMPLES_PER_PIXEL:

 if (tiff.ifd.samplesPerPixel != readUnsignedLong(imageFile,

 SHORT_SIZE)) {

 errorAndTerminate("Conflict in pixel sampling tags.",

 UNSUPPORTED_TYPE);

 }

 break;

 case ROWS_PER_STRIP:

 if (tag.dataType == UNSIGNED_LONG ||

 tag.dataType == SIGNED_LONG) {

 tiff.ifd.rowsPerStrip =

 readUnsignedLong(imageFile, LONG_SIZE);

 }

 else if (tag.dataType == UNSIGNED_SHORT ||

 tag.dataType == SIGNED_SHORT) {

 tiff.ifd.rowsPerStrip =

 readUnsignedLong(imageFile, SHORT_SIZE);

 }

 break;

 case STRIP_BYTE_COUNT:

 if (tiff.ifd.stripsPerImage != tag.numberOfValues) {

 errorAndTerminate("Incorrect tag offset value.",

 IMAGE_IO_ERROR);

 }

 tiff.ifd.stripByteCounts = readTagProperties(imageFile, &tag);

 break;

 case X_RESOLUTION:

 if (tag.dataType == UNSIGNED_RATIONAL ||

 tag.dataType == SIGNED_RATIONAL) {

 // Move to the position where the data is stored and read

 Multicore Algorithms for Image Alignment 140

 fseek(imageFile, readUnsignedLong(imageFile, LONG_SIZE),

 SEEK_SET);

 tiff.ifd.xResolution[0] =

 readUnsignedLong(imageFile, LONG_SIZE);

 tiff.ifd.xResolution[1] =

 readUnsignedLong(imageFile, LONG_SIZE);

 }

 break;

 case Y_RESOLUTION:

 if (tag.dataType == UNSIGNED_RATIONAL ||

 tag.dataType == SIGNED_RATIONAL) {

 // Move to the position where the data is stored and read

 fseek(imageFile, readUnsignedLong(imageFile, LONG_SIZE),

 SEEK_SET);

 tiff.ifd.yResolution[0] =

 readUnsignedLong(imageFile, LONG_SIZE);

 tiff.ifd.yResolution[1] =

 readUnsignedLong(imageFile, LONG_SIZE);

 }

 break;

 case RESOLUTION_UNIT:

 if (tag.dataType == UNSIGNED_SHORT ||

 tag.dataType == SIGNED_SHORT) {

 tiff.ifd.resolutionUnit =

 readUnsignedLong(imageFile, SHORT_SIZE);

 }

 break;

 }

 // Move file pointer to the position for the next tag

 fseek(imageFile, filePosition + 4, SEEK_SET);

 }

 if (fread((short *)&tiff.ifd.offsetToNextIFD, SHORT_SIZE, 1,

 imageFile) == 0) {

 errorAndTerminate("Unable to read image file directory properties.",

 IMAGE_IO_ERROR);

 }

 // Check the compression status and colour types

 status("Acquired the TIFF headers.");

 if (tiff.ifd.compression != 1) {

 errorAndTerminate("TIFF compression unsupported.", UNSUPPORTED_TYPE);

 }

 if (!(tiff.ifd.photometric == 1 || tiff.ifd.photometric == 2)) {

 Multicore Algorithms for Image Alignment 141

 errorAndTerminate("Unsupported TIFF colour space.", UNSUPPORTED_TYPE);

 }

 if (tiff.ifd.samplesPerPixel < 1){

 errorAndTerminate("Unsupported TIFF sampling per pixel.",

 UNSUPPORTED_TYPE);

 }

 if (tiff.ifd.bitsPerSample == NULL ||

 tiff.ifd.stripByteCounts == NULL ||

 tiff.ifd.stripOffsets == NULL){

 errorAndTerminate("Incomplete TIFF header properties.",

 UNSUPPORTED_TYPE);

 }

 for (short sample = 0; sample < tiff.ifd.samplesPerPixel; sample++) {

 if (tiff.ifd.bitsPerSample[sample] != 8){

 errorAndTerminate("TIFF pixel bitrate unsupported.",

 UNSUPPORTED_TYPE);

 }

 }

 // Notify of status and read bitmap image data

 sprintf(statusBuffer, "Beginning read of %d bytes.",

 tiff.ifd.imageWidth * tiff.ifd.imageLength * sizeof(TIFF_RGB));

 status(statusBuffer);

 tiff.imageData = (TIFF_RGB*)malloc(tiff.ifd.imageWidth *

 tiff.ifd.imageLength * sizeof(TIFF_RGB));

 if (tiff.imageData == NULL) {

 errorAndTerminate("Insufficient memory to allocate for image data.",

 INSUFFICIENT_MEMORY);

 }

 for (int strip = 0; strip < tiff.ifd.stripsPerImage; strip++) {

 // Move to the strip and read

 fseek(imageFile, tiff.ifd.stripOffsets[strip], SEEK_SET);

 while (dataPosition < tiff.ifd.stripByteCounts[strip] /

 tiff.ifd.samplesPerPixel) {

 tiff.imageData[dataPosition].red = getc(imageFile);

 if (tiff.ifd.samplesPerPixel >= 2) {

 tiff.imageData[dataPosition].green = getc(imageFile);

 }

 else {

 tiff.imageData[dataPosition].green =

 tiff.imageData[dataPosition].red;

 }

 Multicore Algorithms for Image Alignment 142

 if (tiff.ifd.samplesPerPixel >= 3) {

 tiff.imageData[dataPosition].blue = getc(imageFile);

 }

 else {

 tiff.imageData[dataPosition].blue =

 tiff.imageData[dataPosition].red;

 }

 // If more than three samples, skip the rest

 if (tiff.ifd.samplesPerPixel >= 4) {

 fseek(imageFile, ftell(imageFile) +

 (tiff.ifd.samplesPerPixel - 3), SEEK_SET);

 }

 dataPosition++;

 }

 if (strip > 0) {

 tiff.ifd.stripByteCounts[0] += tiff.ifd.stripByteCounts[strip];

 }

 }

 tiff.ifd.samplesPerPixel = 3;

 // Merge into one strip

 if (tiff.ifd.stripsPerImage > 1) {

 tiff.ifd.stripsPerImage = 1;

 tiff.ifd.rowsPerStrip = tiff.ifd.imageLength;

 }

 status("Successfully buffered image data.");

 return tiff;

}

//---

void writeTIFF(FILE* imageFile, TIFF tiff) {

//---

 TIFF_BASIC_TAG tag;

 unsigned short numberOfTags = 13;

 unsigned long offsetAfterTags = (numberOfTags + 1) * TAG_SIZE + HEADER_SIZE;

 unsigned long filePosition;

 unsigned long stripTagOffset;

 short movePosition = FALSE;

 unsigned long dataPosition = 0;

 char fileSignature[5];

 // Write the preliminary file constructs

 strcpy(fileSignature, machineIsLittleEndian() ? "II*\0" : "MM\0*");

 Multicore Algorithms for Image Alignment 143

 if (fwrite(fileSignature, 4, 1, imageFile) == 0) {

 errorAndTerminate("Image signature not written.", IMAGE_IO_ERROR);

 }

 filePosition = 8;

 if (fwrite((char *)&filePosition, LONG_SIZE, 1, imageFile) == 0) {

 errorAndTerminate("First IFD pointer not written", IMAGE_IO_ERROR);

 }

 fseek(imageFile, filePosition, SEEK_SET);

 if (fwrite((char *)&numberOfTags, SHORT_SIZE, 1, imageFile) == 0) {

 errorAndTerminate("Number of tags property not written.",

 IMAGE_IO_ERROR);

 }

 // Individually determine each tag and write the contents

 for (int tagNumber = 0; tagNumber < LAST_TAG; tagNumber++) {

 movePosition = TRUE;

 filePosition = ftell(imageFile);

 // Write the tags based on the tag ID

 tag.tagID = tagNumber;

 tag.numberOfValues = 1;

 switch(tagNumber) {

 case NEW_SUBFILE_TYPE:

 tag.dataType = UNSIGNED_LONG;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.newSubfileType,LONG_SIZE);

 break;

 case IMAGE_WIDTH:

 tag.dataType = UNSIGNED_LONG;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.imageWidth, LONG_SIZE);

 break;

 case IMAGE_LENGTH:

 tag.dataType = UNSIGNED_LONG;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.imageLength, LONG_SIZE);

 break;

 case BITS_PER_SAMPLE:

 tag.dataType = UNSIGNED_SHORT;

 tag.numberOfValues = tiff.ifd.samplesPerPixel;

 writeBasicTag(imageFile, &tag);

 if (tag.numberOfValues > 2) {

 writeUnsignedLong(imageFile, offsetAfterTags, SHORT_SIZE);

 // Move to where the data is to be written

 Multicore Algorithms for Image Alignment 144

 fseek(imageFile, offsetAfterTags, SEEK_SET);

 // Increment the position after the tags for the image data

 offsetAfterTags += tag.numberOfValues * SHORT_SIZE;

 }

 for (int data = 0; data < tag.numberOfValues; data++) {

 writeUnsignedLong(imageFile, tiff.ifd.bitsPerSample[data],

 SHORT_SIZE);

 }

 break;

 case COMPRESSION:

 tag.dataType = UNSIGNED_SHORT;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.compression, SHORT_SIZE);

 break;

 case PHOTOMETRIC:

 tag.dataType = UNSIGNED_SHORT;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.photometric, SHORT_SIZE);

 break;

 case STRIP_OFFSETS:

 tag.dataType = UNSIGNED_LONG;

 tag.numberOfValues = tiff.ifd.stripsPerImage;

 writeBasicTag(imageFile, &tag);

 stripTagOffset = ftell(imageFile);

 break;

 case SAMPLES_PER_PIXEL:

 tag.dataType = UNSIGNED_SHORT;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.samplesPerPixel,

 SHORT_SIZE);

 break;

 case ROWS_PER_STRIP:

 tag.dataType = UNSIGNED_LONG;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.rowsPerStrip, LONG_SIZE);

 break;

 case STRIP_BYTE_COUNT:

 tag.dataType = UNSIGNED_LONG;

 tag.numberOfValues = tiff.ifd.stripsPerImage;

 writeBasicTag(imageFile, &tag);

 if (tag.numberOfValues > 1) {

 writeUnsignedLong(imageFile, offsetAfterTags, LONG_SIZE);

 Multicore Algorithms for Image Alignment 145

 // Move to where the data is to be written

 fseek(imageFile, offsetAfterTags, SEEK_SET);

 // Increment the position after the tags for the image data

 offsetAfterTags += tag.numberOfValues * LONG_SIZE;

 }

 for (int data = 0; data < tag.numberOfValues; data++) {

 writeUnsignedLong(imageFile,

 tiff.ifd.stripByteCounts[data], LONG_SIZE);

 }

 break;

 case X_RESOLUTION:

 tag.dataType = UNSIGNED_RATIONAL;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, offsetAfterTags, LONG_SIZE);

 // Move to where the data is to be written and write

 fseek(imageFile, offsetAfterTags, SEEK_SET);

 writeUnsignedLong(imageFile, tiff.ifd.xResolution[0],

 LONG_SIZE);

 writeUnsignedLong(imageFile, tiff.ifd.xResolution[1],

 LONG_SIZE);

 // Increment the position after the tags for the image data

 offsetAfterTags += 2 * LONG_SIZE;

 break;

 case Y_RESOLUTION:

 tag.dataType = UNSIGNED_RATIONAL;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, offsetAfterTags, LONG_SIZE);

 // Move to where the data is to be written and write

 fseek(imageFile, offsetAfterTags, SEEK_SET);

 writeUnsignedLong(imageFile, tiff.ifd.yResolution[0],

 LONG_SIZE);

 writeUnsignedLong(imageFile, tiff.ifd.yResolution[1],

 LONG_SIZE);

 // Increment the position after the tags for the image data

 offsetAfterTags += 2 * LONG_SIZE;

 break;

 case RESOLUTION_UNIT:

 tag.dataType = UNSIGNED_SHORT;

 writeBasicTag(imageFile, &tag);

 writeUnsignedLong(imageFile, tiff.ifd.resolutionUnit,

 SHORT_SIZE);

 break;

 Multicore Algorithms for Image Alignment 146

 default:

 movePosition = FALSE;

 }

 // Move in the file to the position for the next tag

 if (movePosition) {

 fseek(imageFile, filePosition + TAG_SIZE, SEEK_SET);

 }

 }

 writeUnsignedLong(imageFile, 0, LONG_SIZE);

 // Return to write the next available location for the image data strip

 fseek(imageFile, stripTagOffset, SEEK_SET);

 writeUnsignedLong(imageFile, offsetAfterTags, LONG_SIZE);

 status("Written image headers.");

 // Write the TIFF image data

 fseek(imageFile, offsetAfterTags, SEEK_SET);

 while (dataPosition < tiff.ifd.imageWidth * tiff.ifd.imageLength) {

 fputc(tiff.imageData[dataPosition].red, imageFile);

 fputc(tiff.imageData[dataPosition].green, imageFile);

 fputc(tiff.imageData[dataPosition].blue, imageFile);

 dataPosition++;

 }

 status("Written image data.");

}

//---

TIFF_RGB getTIFFPixel(TIFF* tiff, int x, int y) {

//---

 // Sanity check first

 if (tiff->imageData == NULL) {

 TIFF_RGB newTIFF;

 return newTIFF;

 }

 if (x > tiff->ifd.imageWidth) {

 x = tiff->ifd.imageWidth;

 }

 if (y > tiff->ifd.imageLength) {

 y = tiff->ifd.imageLength;

 }

 return tiff->imageData[y * tiff->ifd.imageWidth + x];

}

//---

 Multicore Algorithms for Image Alignment 147

void setTIFFPixel(TIFF* tiff, int x, int y, TIFF_RGB value) {

//---

 // Sanity check first

 if (tiff->imageData == NULL) {

 return;

 }

 if (x > tiff->ifd.imageWidth) {

 setTIFFSize(tiff, x, tiff->ifd.imageLength);

 }

 if (y > tiff->ifd.imageLength) {

 setTIFFSize(tiff, tiff->ifd.imageWidth, y);

 }

 tiff->imageData[y * tiff->ifd.imageWidth + x] = value;

}

//---

unsigned long getTIFFWidth(TIFF* tiff) {

//---

 return tiff->ifd.imageWidth;

}

//---

unsigned long getTIFFLength(TIFF* tiff) {

//---

 return tiff->ifd.imageLength;

}

//---

void setTIFFSize(TIFF* tiff, unsigned long width, unsigned long length) {

//---

 // Change the general size of the image and data

 tiff->ifd.stripByteCounts[0] = (width * length * tiff->ifd.samplesPerPixel);

 tiff->ifd.imageWidth = width;

 tiff->ifd.imageLength = length;

 tiff->ifd.rowsPerStrip = tiff->ifd.imageLength;

 tiff->imageData = (TIFF_RGB*)realloc(tiff->imageData,

 width * length * sizeof(TIFF_RGB));

 if (tiff->imageData == NULL) {

 errorAndTerminate("Insufficient memory to allocate for TIFF image "

 "data.", INSUFFICIENT_MEMORY);

 }

}

