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Abstract 

The aim of this project was to investigate the effect of Electrical Conductivity (EC) 

and increasing Pore Volumes (PV) on soils solid and solution chemical equilibrium 

by analysis of soil leachate. 

 

This is in order to understand: 

1. The effect of EC on the rate chemical equilibrium is attained. 

2. The number of PV’s required to reach chemical equilibrium in soils with 

vastly different properties. 

 

Three soils were studied by percolating solutions of varying EC (0.5, 1, 2, 4 and 8 

dS/m) through soil cores and collecting the leachate. The leachate was analysed 

using an AAS for sodium, magnesium and potassium concentrations, along with 

testing for EC and determining HC. 

 

From experimental investigation, it was observed that increasing the EC of the 

percolating solution increased the amount of cations replaced in the soil per PV. 

Furthermore, the rate of ion exchange generally decreases as the number of PV’s 

increases. 

 

Processes such as exchange models (diffusion or mass transfer), interlayer collapse 

from 2:1 clays, and macropore preferential flow Vs. micropore flow effects on 

exchange were considered, but require further investigation. 
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1.  Introduction 

As the demand for food and fibre increases, so too does the demand for irrigation 

water, which has seen a move towards the use of lower quality, saline-sodic waters to 

ensure food security (Ezlit et al. 2010). These waters have historically been avoided 

for irrigation, due to the potential of exacerbating salinity and sodicity within soil 

systems. Concerns for salinity effects are primarily related to plant salt toxicity levels 

and plant available water content, while sodicity concerns are related to reduction of 

soil hydraulic conductivity. However, Quirk and Schofield (1955) have shown that 

such waters can be used as irrigation water sources dependent on a soils threshold 

electrolyte concentration (TEC). The TEC is the required electrolyte concentration 

(directly proportional to electrical conductivity, EC) required to maintain a soil in a 

stable state at a given sodium adsorption ratio (SAR). 

 

It is usual to determine soil TEC in the laboratory environment, in order to subject 

soil columns to subsequent decreasing water qualities, allowing the threshold EC to 

be determined. This threshold EC is defined as an arbitrary decrease in soil relative 

hydraulic conductivity between 10 and 25% (Cook et al. 2006; McNeal and Coleman 

1966; Quirk and Schofield 1955). Bennett and Raine (2012) maintain soil columns at 

a range of ECs (0.5 to 8 dS/m) and subject them to ten consecutive solution 

applications of increasing SAR (0 to infinity). A major assumption of this method is 

that the soil ionic species composition of the cation exchange capacity (CEC) has 

equilibrated with the ionic species concentration of the percolating solution. If 

equilibrium has not been reached prior to application of the subsequent SAR 

solution, then it is possible that relative changes in soil hydraulic conductivity may 
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be underestimated. Thus the impact of sodic water on the permeability of soils would 

be similarly underestimated. 

1.1.  Project Aim and Objectives 

The aim of this project is to investigate the effect of Electrical Conductivity (EC) and 

increasing Pore Volumes (PV) on soils solid and solution chemical equilibrium by 

analysis of soil leachate. 

 

This is in order to understand: 

3. The effect of EC on the rate chemical equilibrium is attained. 

4. The number of PV’s required to reach chemical equilibrium in soils with 

vastly different properties. 

 

This will be achieved by conducting a literature review, designing an experimental 

methodology and analysing results obtained in order to understand the above 

objectives. 

 

The Project Specification can be found in Appendix A. 

 

1.2.  Dissertation Overview 

1.2.1.  Literature Review 

A literature review will be conducted in order to understand various processes and 

phenomenon that govern chemical equilibrium in soils. Firstly, the relationship 
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between salinity and sodicity will be introduced and then parameters to measure 

these will be discussed. Secondly, ion exchange processes will be investigated by 

exploring a modified Guoy-Chapman model of the Diffuse Double Layer (DDL) and 

the mechanics of ion exchange. Thirdly, the TEC will be discussed in more detail. 

Finally, factors affecting the kinetics of soil chemical processes, including clay 

mineralogy, ion charge and radius and temperature, will be explored and some 

literature investigating chemical equilibrium prediction will be introduced. 

 

1.2.2.  Experimental Methodology 

This section will detail soil selection, preparation and initial chemical analysis. It will 

then introduce how soil cores were prepared, how the CaCl2 solutions were prepared 

and how the experiment was set up to obtain the leachate in pore volumes (PV’s). 

Methods of analysis and instruments used will be discussed and statistical analysis 

methods detailed. 

 

1.2.3.  Results 

Results of ion exchange curves for sodium, magnesium and potassium, electrical 

conductivity (EC) and hydraulic conductivity (HC) will be presented in graphs. 

 

1.2.4.  Discussion 

The discussion will consider the effect of percolating solution strength on ion 

exchange, soil pre volumes required to leach to effect chemical equilibrium, the 

relationship between steady state hydraulic conductivity and chemical equilibrium 
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and the appropriateness of leachate electrical conductivity as an indicator for soil 

chemical equilibrium. Finally, recommendations for future work will be discussed. 

 

1.2.5.  Conclusions 

In this section, conclusions as to the effectiveness of this project compared to the 

initial aims and objectives will be made. 
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2.  Literature Review 

This literature review explores the various processes and phenomena that impact on 

the ionic exchange processes responsible for equilibrium between soil solid and 

liquid phases. Firstly, the concepts of salinity and sodicity will be introduced and 

various parameters used to define them will be defined. Secondly, the relationships 

between the soil and soil solution, and the process of adsorption will be discussed. 

Finally ion exchange processes and kinetics of soil chemical processes will be 

introduced in order to understand how soil solid and liquid phases equilibrate. 

 

2.1.  Salinity and sodicity 

Ghassemi et al. (1995) define salinity as the concentration of dissolved mineral salts 

in water and soil-water as a unit of volume or weight basis. In regions of Australia 

where the climate is semi-arid, insufficient precipitation percolating through soils can 

lead to decreased leaching of soluble salts from the soil. Sparks (2003) concludes 

that the majority of saline soils occur due to the presence of chloride (Cl
-
), sulfate 

(SO4
2-

) and/or nitrate (NO3
-
) in the soil aqueous phase. However, Rengasamy and 

Olsson (1991) attribute the majority of Australian salinity to high concentrations of 

sodium chloride (NaCl) within semi-arid environments. As soil salinity increases, so 

too does the potential for reduced plant growth and even plant death, due to increases 

in the soil solution osmotic potential (Tanji 1990). 

 

Traditionally, sodicity has been a term without any one agreed numeric threshold 

definition. Worldwide sodic thresholds have been defined as an exchangeable 
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sodium percentage (ESP) between 5 and 15 for Vertosols in India (Kadu et al. 2003), 

an ESP of 40 on the Indo-Gangetic Plains in India (Abrol and Fireman 1977) or an 

ESP of 15 suggested by the United States Department of Agriculture (Soil Survey 

Staff 1999). Within Australia, the most widely used sodic threshold definition used is 

that of Northcote and Skene (1972), who propose that a soil is sodic if it has an ESP 

greater than 6. This disparity of numeric definition is due to the many variables that 

factor into determination of the sodic nature of a soil. 

 

The main factors influencing soil sodicity are soil type (Quirk and Schofield 1955), 

clay type and content (Frenkel et al. 1978), pH of the soil solution (Suarez et al. 

1984; Sumner 1993), method of application of irrigation water (Ezlit 2009), initial 

water content of the soil (Dehayr and Gordon 2005) and organic matter (Nelson and 

Oades 1998). For the purpose of discussing sodicity in a global context, this literature 

review considers the non-numeric definition provided by Anon (1979) to be the most 

useful: “a non-saline soil containing sufficient exchangeable sodium to adversely 

affect crop production and soil structure under most conditions of soil and plant 

type”. Although, that is not to say a soil cannot be both saline and sodic. 

 

Soils that exhibit both sodic and saline properties are termed saline-sodic soils. 

Sumner (1993) suggests that saline-sodic soils are particularly difficult to manage as 

any leaching of salts can reduce the electrolyte concentration below a critical level 

(i.e. the TEC), making the soil prone to dispersion. Kemper et al. (1974) describe 

how in situations with low electrolyte concentrations in the soil solution, osmotic 

forces pull water into the diffuse layer of adsorbed ions, effectively increasing the 

thickness of the diffuse double layer (DDL) (discussed later in this review in section 
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2.4.1). The opposite occurs where there is a high electrolyte concentration: osmotic 

forces pull water into the soil solution, reducing the thickness of the DDL and 

helping to maintain a stable soil. 

 

Rengasamy et al. (1984a) and McKenzie and Murphy (2005) have illustrated that 

ESP and EC together produce a matrix of dispersion effects, rather than ESP being 

the single determinant of a soils dispersive behaviour. Figure 2.1 shows the matrix of 

effects, from dispersive soils to potentially dispersive soils to flocculated soils for a 

Red Brown Earth (Chromosol). If we consider an ESP of 20, an EC of 0 to 0.15 

dS/m will result in dispersion, whereas if the EC of the solution is increased to at 

least 1.6, the soil will remain flocculated and maintain its stable structure. If the EC 

is somewhere between 0.15 and 1.6 dS/m, the soil is classified as potentially 

dispersive dependant on other factors.  

 

 
 

Figure 2.1 Chart for dispersive soil classification, adapted from (Rengasamy et al. 1984b) to show EC 

and ESP rather than total cation concentration (TCC) and sodium adsorption ratio (SAR). 
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Importantly, the tolerance of soil stability to EC and sodium adsorption ratio (SAR) 

solutions differs between soils (Bennett and Raine 2012; Ezlit 2009; McNeal and 

Coleman 1966; Quirk and Schofield 1955), the extent to which depends on a 

threshold electrolyte concentration (TEC), discussed in further detail later in this 

review. Furthermore, Sumner (1993) states that even non-sodic soils have been 

known to disperse if the soil solution is sufficiently low in electrolytes, which is once 

again a function of the TEC of a particular soil.  

 

2.2.  Important sodicity and salinity parameters 

This section defines the important soil parameters and their equations that are used to 

measure and describe the effects of water salinity and sodicity on soil structural 

form. 

 

2.2.1.  Exchangeable Sodium Percentage (ESP) 

ESP is the measure of exchangeable Na
+
 in the cation exchange capacity (CEC) of 

the soil; i.e. it is the ratio of exchangeable Na
+
 adsorbed to a clay face with the clay 

faces total capacity to adsorb cations (Equation 2.1). 

 

     
[    ]

   
       Eq 2.1 

 

where CEC is the net negative charge of the clay exchange (cmolc.kg
-1

), which is 

approximately equal to the sum of base exchangeable cations: Naex
+
, Caex

2+
, Mgex

2+
, 

Kex
+
, and Alex

3+
 (Sumner 1993).  
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The importance of ESP to soil stability varies according to different soil 

mineralogies, electrolyte concentrations and organic carbon levels (Valzano 2000). 

 

2.2.2.  Sodium Adsorption Ratio (SAR) 

The SAR is the relative proportion of Na
+
 to the divalent ions (Ca

2+
 and Mg

2+
) in 

solution (Equation 2.2). 

 

     
[   ]

[         ]   
 Eq 2.2 

 

The cation concentrations are measured in mmolc.L
-1

 in the solution phase. 

 

SAR is used to describe the relative sodicity potential of irrigation water. ESP cannot 

be used to describe this because negatively charged exchange sites do not exist 

within solution. 

 

2.2.3.  ESP-SAR Relationship 

Soil ESP is influenced by the SAR of the soil solution and changes in the SAR cause 

changes in the ESP of the soil it is passing through (Valzano 2000). Relationships 

between ESP and SAR for a red-brown earth have been investigated by Rengasamy 

et al. (1984b); they showed that the relationship between ESP and SAR for a red-

brown earth using a 1:5 soil to water solution was described by (Equation 2.3): 
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                    Eq 2.3 

 

Relationships between soil ESP and SAR may change depending on the initial soil 

pH and the pH at which the cation exchange capacity is estimated (Valzano 2000). 

Sumner (1993) showed that the greater the differences in the pH values, the greater 

the difference between ESP and SAR. Studies by Johnston (1975) and Burrow et al. 

(1998), working with different soil types, have obtained very different relationships 

to the one above, proving that it is highly unlikely one rule can be used to define the 

relationship between ESP and SAR. 

 

2.3.  Ion exchange processes 

Ion exchange in soils is a reversible process in which cations and anions are 

exchanged between solid and liquid phases or solid and solid phases (if in close 

proximity to one another) (Sposito 1989). Ion exchange processes involve the 

adsorption of ions onto colloidal surfaces or desorption of ions from these surfaces 

(Toth 1964). Ion exchange influences various soil characteristics and behaviour, 

including swelling and shrinkage, leaching of electrolytes, weathering of minerals 

and adsorption of nutrients by plants (Wiklander 1964) and occurs almost entirely in 

the clay and silt fractions, as well as within the organic fraction (Valzano 2000).  

 

Ion exchange capacity is the sum of the CEC and the anion exchange capacity 

(AEC). The CEC is the amount of cations that can be adsorbed, in an exchangeable 

fashion, on the negative charge sites of the soil, whereas the AEC is the sum of total 

exchangeable anions that a soil can adsorb (Soil Science Society of America 1997). 
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The CEC of a soil determines the capacity of a soil to retain ions in a form available 

for plant uptake and not susceptible to leaching in the soil profile (Sparks 2003). 

 

2.3.1.  The diffuse double layer (DDL) 

The Guoy-Chapman DDL theory (or modifications of) is often used to describe the 

spatial distribution of counterions in the DDL (Valzano 2000). The DDL influences 

soil physical characteristics such as dispersion, flocculation and swelling. Figure 2.2 

illustrates the layout of the DDL, showing the negatively charged clay tactoid, the 

positively charged layer immediately adjacent to the clay tactoid and the 

exchangeable ions surrounded by water, further out from the negatively charged 

tactoid (Wiklander 1964). 

 

 
 

Figure 2.2 Diffuse electric double layer model according to Gouy (van Olphen 1977). 

 

The Gouy-Chapman DDL theory is far from perfect, as it is less applicable to more 

complicated processes such as ion to ion interactions, divalent or multivalent cations 

(McBride 1994), tactoids/quasi-crystals (Russo and Bressler 1977; Shainberg et al. 
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1971), the forces involved with clay swelling (Viani et al. 1983) or the impacts of 

hydration of the exchangeable cations (Pashley 1981; Sposito 1983). However for 

the purposes of this literature review, the Gouy-Chapman model will be considered 

adequate in explaining ion exchange processes. 

 

The distance at which counterions are located from a colloidal surface is inversely 

proportional to the soil solution concentration and to the square of the valency of the 

neutralising solution (Sposito 1989). This phenomena is partly predicted by the 

Schulze-Hardy rule, in that divalent ions have a greater propensity to be attracted to 

the particle surface than monovalent ions (Bolt 1955). Theoretically, this should 

result in a more compacted DDL, owing to the reduced number of cations needed to 

neutralise the negatively charged clay tactoid. 

 

The valency of cations in the DDL and the solution play an important role in the size 

of the DDL and structural stability of soils. Monovalent cations (Na
+
 and K

+
), require 

twice as many ions in the colloid exchange sites to neutralise the negative charge of 

the exchange sites, than divalent cations (Ca
2+

 and Mg
2+

). Sumner (1993), Narasimha 

and Mathew (1995), and Shainberg and Levy (2005) show that a Ca
2+

-dominated 

DDL will generally be more compressed than a Na
+
-dominated DDL, resulting in a 

soil that is more difficult to disperse, due to greater Coulombic attractive forces 

between adjacent colloidal particles. This concept is shown in Figure 2.3 using 

sodium and calcium as example exchangeable cations. 
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Figure 2.3 Behaviour of sodium and calcium attached to clay particles (Hanson et al. 1999). 

 

Another ionic property impacting on the size of the DDL is the hydrated radius of an 

ion in solution. A larger hydrated radius will result in a more diffused DDL to 

achieve the required electroneutrality (Sparks 2003). Table 2.1 below gives some 

details regarding the four main cations investigated in this project; Na
+
, K

+
, Ca

2+
 and 

Mg
2+

. From this data it can be seen that for monovalent cations, a hydrated 

potassium ion is larger than a hydrated sodium ion, while for divalent cations, a 

hydrated magnesium ion is larger than a hydrated calcium ion. 

Table 2.1 Ionic radii for selected cations of interest in this investigation  

(Evangelou and Phillips 2005). 

 Ionic radii (Å) 

Ion Not hydrated Hydrated 

Na
+
 0.98 7.9 

K
+
 1.33 5.32 

Mg
2+

 0.89 10.8 

Ca
2+

 1.17 9.6 
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The effects of valency and hydrated radius on ion exchange selectivity in soils is 

summarised in the lyotropic series. This is a measure of the relative ability of ions to 

replace one another during ionic exchange processes and is usually given as below 

for soils (Helfferich 1962): 

 

                     
      

 

From this series, it can be noted that if two cations have the same valence, the ion 

with the smallest hydrated radius is preferred, resulting in a soil that is less prone to 

dispersion. The differences in resistance to dispersion between calcium and 

magnesium dominated systems has been extensively researched (Dontsova and 

Norton 2002; Emerson and Chi 1977; Levy et al. 1988; Rengasamy et al. 1986). All 

these researchers have concluded that a magnesium-dominated soil is easier to 

disperse than a calcium-dominated soil, attributed to the larger hydrated radius of 

magnesium ions contributing to a larger DDL. 

 

2.3.2.  Mechanics of ion exchange 

Boyd et al. (1947) were the first to clearly show that ion exchange is diffusion 

controlled. They also discovered that the reaction rate is limited by mass-transfer 

phenomena that are either film diffusion (FD) or particle diffusion (PD) controlled. 

 

Specific transport processes in a soil-solution system, shown in Figure 2.4 below, 

include (1) transport in the soil solution, (2) transport across a liquid film at the 

particle/liquid interface (FD) (3) transport in liquid filled macropores (PD), (4) 
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diffusion of a sorbate at the surface of the solid (PD) (5) diffusion of a sorbate 

occluded in a micropore (PD) and (6) diffusion in the bulk of the solid (Aharoni and 

Sparks 1991). 

 
 

Figure 2.4 Transport processes in solid-liquid soil reactions (Aharoni and Sparks 1991). Arrows 

represent transport processes in a soil-solution system. 

 

2.4.  Threshold electrolyte concentration 

The threshold electrolyte concentration (TEC) is the electrolyte concentration (EC) at 

which a soil will remain stable subject to infiltration with a given SAR solution 

without practically limiting dispersion (Bennett and Raine 2012; McNeal and 

Coleman 1966; Quirk and Schofield 1955). The particular TEC boundary is 

somewhat arbitrary in that structural decline is induced to some extent as sodium 

increases in the soil system; i.e. there is no black and white boundary. Hence, a 

practically manageable percent decline in hydraulic conductivity is used to define the 
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TEC for a particular soil. Quirk and Schofield (1955) used a value of 10 to 15% 

reduction in permeability as the point at which the TEC had been reached, while 

McNeal and Coleman (1966) later suggested a value of 25% reduction in 

permeability. Another study, undertaken by Cook et al. (2006), proposed the 

adoption of a 20% reduction in permeability as the TEC value. Bennett and Raine 

(2012), using 20% reduction in saturated hydraulic conductivity (Ksat), showed that 

even soils within the same order, with similar properties, can have drastically 

different TEC curves (Figure 2.5). 

 

 
 

Figure 2.5 Comparison of the TEC (20% reduction in Ksat) curves for six soils (Bennett and Raine 

2012). Soils 1, 2 and 6 are Vertosols and 3, 4 and 5 are Chromosols. 

 

In preparing a soil for analysis to determine its TEC curve, soil cores are flushed 

with a calcium solution (CaCl2) pre-treatment to establish chemical equilibrium 

throughout the soil core before further experimentation takes place. In their recent 

research, Bennett and Raine (2012) used a pre-treatment volume of 1000 cm
3
 to 

obtain soil exchange equilibrium, prior to changing solution EC to obtain the TEC 

curves. 
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2.5.  Kinetics of soil chemical processes 

With the exception of some soil chemical reactions, ion exchange kinetics are usually 

very rapid, occurring on millisecond time scales (Sparks and Zhang 1988; Tang and 

Sparks 1993). The rates of these reactions are influenced by the type of soil 

component (Sparks 2003), ion charge and radius (Helfferich 1962) and temperature 

(Bunnett 1986). 

2.5.1.  Soil components 

Clay mineralogical composition is widely considered to be one of the most important 

factors affecting rates of ion exchange in soils (Sparks 1988; Sparks 2003). An 

example of this is sorption reactions on clay minerals such as kaolinite and smectite 

are often more rapid than on vermiculite and micaceous minerals (Sparks 2003). This 

is largely due to the differences in physical structures of the clays with Figure 2.6 

showing the differences between kaolinite, montmorillonite and vermiculite clays on 

the rate of potassium adsorption. 

 

 
 

Figure 2.6 Potassium adsorption versus time for kaolinite, montmorillonite and vermiculite clay 

minerals  (Jardine and Sparks 1984). 
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Rates of ion exchange processes on kaolinite and smectite are usually quite rapid. 

Kaolinite has readily available planar external surface sites due to the strong 

hydrogen bonding between adjacent tetrahedral clay sheets, allowing rapid exchange 

on the external sites (Sparks 1988; Sparks 2003). While with smectite, weaker bonds 

between sheets allow ions in solution to penetrate the interlayer space, promoting 

rapid exchange as the ions in solution can access exchange sites on the surfaces of 

the clay sheets (Sparks 1988; Sparks 2003). 

 

Vermiculite and micas have multiple exchange sites including planar, edge and 

interlayer sites (Sparks 2003) and rates of ion exchange are usually quite slow. With 

these clay components, ion exchange can involve 2 to 3 different reaction rates: high 

rates on external sites, intermediate rates on edge sites and low rates on interlayer 

sites (Comans and Hockley 1992; Jardine and Sparks 1984). Low exchange rates on 

interlayer sites are evidence of partial to total collapse of the space between clay 

sheets and as a consequence, sorption and desorption processes in this space are 

interparticle diffusion and mass transfer controlled (Sparks 2003). 

 

2.5.2.  Ion charge and radius 

The charge of an ion has a significant effect on diffusion rates through an ion 

exchanger such as a resin (Helfferich 1962). Generally, the rate of exchange 

decreases as the charge of the exchanging species increases (Sparks 1988). Sharma et 

al. (1970) studied the exchange rates of Cs
+
, Co

2+
 and La

3+
 in H

+
, Ca

2+
 and La

3+
 

systems, revealing that the interdiffusion coefficient decreased rapidly as the ionic 
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charge increased. Furthermore, it was observed that the interdiffusion coefficient 

decreased as the charge of the other ion increased. 

 

However Sparks (2003) writes that the exchange rates of monovalent ions such as 

K
+
, NH4

+
 and Cs

+
 are often slower than divalent ion such as Ca

2+
 and Mg

2+
. This is 

related to the smaller hydrated radius of the monovalent ions, allowing them to fit 

well in the interlayer spaces between clay sheets, causing partial or total interlayer 

collapse. This causes the ion exchange processes to slow down and interparticle 

diffusion and mass transfer to be the controlling exchange processes (Sparks 2003). 

 

2.5.3.  Temperature 

Increasing temperature usually causes a marked increase in reaction rate (Bunnett 

1986). Arrhenius observed the relationship (Equation 2.4) between temperature (T) 

and reaction rate constant (k) to be: 

 

     
  

  ⁄  Eq 2.4 

 

where A is a frequency factor, E is the energy of activation and R is the universal gas 

constant (Sparks 1988). 

 

Low E values usually indicate diffusion controlled processes whereas higher E 

values indicate chemical reaction processes (Sparks 1985; Sparks 1986). Huang et al. 

(1968) researched the effect of temperature on the rate of potassium release from 
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potassium-bearing minerals. They concluded that a 10 K rise in temperature during 

the reaction period resulted in a two to three-fold increase in the rate constant. 

 

Evans and Jurinak (1976) investigated the rate of phosphorous release as a function 

of temperature. During the initial four hours of the reaction, the effect of temperature 

was significant, although the rate increase was only slight as temperature increased 

from 11 to 40 ºC; at durations greater than four hours, the effect of temperature was 

insignificant. 

 

2.6.  Equilibrium Prediction 

Shackelford et al. (1999) investigated the factors affecting the applicability of EC 

breakthrough curves as an indicator of chemical equilibrium between effluent and 

influent solutions. EC breakthrough occurs when effluent EC is normalized with 

respect to influent EC (Shackelford and Redmond 1995). Their comparisons between 

theoretically predicted and measured breakthrough curves varied from good to 

excellent, with results indicating that chemical equilibrium cannot be attained before 

complete EC breakthrough is attained. 

 

Figure 2.7 shows the measured and predicted EC breakthrough curves comparing 

measured data from Shackelford and Redmond (1995) with theoretically predicted 

curves from Shackelford et al. (1999). The theoretical curves tend to slightly 

underpredict the measured curves because no exchangeable cations were measured in 

the effluent from the test and a formula that did not account for the electroneutrality 

constraint had to be used. 
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Figure 2.7 Measured and predicted EC breakthrough curves (Shackelford et al. 1999). 

 

Recent research from Reading et al. (2012) used EC, chemical analysis of leachate 

and hydraulic conductivity as means to predicting attainment of chemical 

equilibrium in a strongly sodic Vertosol from North Queensland. They used the 

constant head method to test when chemical equilibrium was attained by flushing a 

saturated gypsum solution through repacked soil cores at 2 bulk densities (1.3 g/cm
3
 

and 1.4 g/cm
3
). The EC trends were identical for both densities (Figure 2.8), in that 

the measured EC of the effluent matched that of the applied solution after 

approximately 15 pore volumes. The stable EC beyond the 15 pore volumes suggests 

that chemical equilibrium had been attained, as proposed by Shackelford et al. 

(1999). 
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Figure 2.8 Electrical conductivity of the leachate solution as a function of pore volumes, for two soil 

bulk densities where A-E represent replicate columns (Reading et al. 2012).  

 

In both tests, the sodium concentration in leachate solutions reduced from 1000 mg/L 

to less than 10 mg/L after 15 pore volumes and less than 2 mg/L after 25 pore 

volumes (Figure 2.9). After the high initial flushing rate of sodium, the calcium 

began to replace magnesium and the concentration of magnesium increased in the 

leachate (Figure 2.10). The magnesium concentration in the effluent approached 

minimal concentrations at around 50 pore volumes for all leachate solutions. 

Potassium was not considered in this study. 
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Figure 2.9 Sodium concentration in the leachate solutions as a function of pore volumes, for two soil 

bulk densities, where A-E represent replicate columns (Reading et al. 2012). 

 

 
 

Figure 2.10 Magnesium concentration in the leachate solutions as a function of pore volumes, for two 

soil bulk densities, where A-E represent replicate columns (Reading et al. 2012). 

 

Bulk density had a large impact on the number of pore volumes required for the 

hydraulic conductivity to approach steady state. The cores packed at 1.4 g/cm
3
 

approached a stable flow rate after 25 to 45 pore volumes had passed through over a 

period of 3 weeks (Figure 2.11). For the 1.3 g/cm
3
 cores, 150 to 250 pore volumes of 

solution were applied before the flow rate stabilized (Figure 2.12). 
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Figure 2.11 Hydraulic conductivity responses to the application of a saturated gypsum solution to soil 

columns packed to a bulk density of 1.4 g/cm3, as a function of pore volumes collected, where A-E 

represent replicate columns (Reading et al. 2012). 

 

 
Figure 2.12 Hydraulic conductivity responses to the application of a saturated gypsum solution to 

soil columns packed to a bulk density of 1.3 g/cm3, as a function of pore volumes collected where 

A-E represent replicate columns(Reading et al. 2012). 

Reading et al. (2012) concluded that a lower bulk density increased the accessibility 

of exchange surfaces, contributing to a greater proportion of the exchangeable 

cations, especially magnesium, in the soil being replaced by calcium from the 

applied solution. This resulted in the lower bulk density soil reaching chemical 

equilibrium at a faster rate. 
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2.7.  Conclusions 

Chemical equilibrium is a difficult phenomenon to predict in regards to soil 

chemistry. Ion exchange processes taking place in the DDL are complex and highly 

dependent on soil properties and the environmental conditions in which the reactions 

are taking place. Differences between soils and conditions, including clay 

mineralogy, charge of the exchanging ion, hydrated radius of the exchanging ion and 

temperature, are likely to impact on the rate at which soils attain chemical 

equilibrium. 

 

In order to fully understand the complete effects of low quality irrigation water on 

soil chemistry, TEC analysis must be performed. As part of this process the soil core 

must reach chemical equilibrium with the CaCl2 pre-treatment solution prior to 

flushing with NaCl. If this is not reached, the impact of the TEC analysis may be 

overestimated, hence underestimating the impact of low quality irrigation water on 

soil permeability. 
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3.  Experimental Methodology 

The purpose of this project was to understand the number of PV’s required to reach 

chemical equilibrium in soils with vastly different properties and to understand the 

effect of EC on the rate chemical equilibrium is attained. The entirety of this project 

was laboratory based, and the methodologies and procedures employed during this 

project are detailed in this section of the report. 

 

3.1.  Soil Selection 

Three soils were chosen to test the effects of increasing EC and PV on the rate of 

attainment of chemical equilibrium; a Red Ferosol, Black Vertosol and a Brown 

Tenosol. The three soils were chosen on the basis of differing properties and soil 

order. These soils are common to the Darling Downs. A further motivation is the 

interest in the use of such soils for land application of treated CSG water. 

 

A Black Vertosol is a fine structured soil with high 2:1 clay content. They tend to 

develop large cracks when dry and swell when wet (CSIRO 2007c). They are of 

particular interest to agriculture as they have high chemical fertility and water 

holding capacity, due to the mineralogical properties and high CEC. 

 

A Red Ferosol is a medium structured soil with high amounts of free iron oxide 

contained in their B2 horizon (CSIRO 2007a). They also have good agricultural 

potential due to their good structure, good chemical fertility and water holding 
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capacity. However, they are not dominated by a shrink swell capacity such as the 

Vertosol. 

 

A Brown Tenosol is a coarse textured soil with low clay content and high sand 

content (CSIRO 2007b). They are not of particular importance to agriculture with 

their low chemical fertility, poor structure and low water holding capacity. 

 

3.2.  Soil sampling and preparation 

Black Vertosol and Red Ferosol soil samples were collected from the top 100 mm of 

soil at their respective sites. The Brown Tenosol sample was obtained from the 

National Centre for Engineering in Agriculture (NCEA) soil library and consisted of 

0–400 mm depth soil. 

 

The Black Vertosol sample was collected from a dairy farm paddock at Yalangur, 

Queensland (27º 24; 58” S, 151º 49’ 27” E, 429 m elevation). Figure 3.1 shows a 

photo of the site where the sample was obtained and Figure 3.2 shows an image 

taken from Google Earth of the farm with the site the sample was taken. 

 

The Red Ferosol sample was collected near the University of Southern Queensland 

Dam Evaporation trial site (27º 36’ 36” S, 151º 55’ 53” E, 691 m elevation). Figure 

3.3 shows a Google Earth image of the site at the University showing where the 

sample was taken. 
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Figure 3.1 Photo of the site where the Black Vertosol sample was collected. 
 

 
 

Figure 3.2 Google Earth image of farm at Yalangur where Black Vertosol sample was obtained. The 

orange star shows the exact location where the sample was taken from and the orange arrow shows 

north. 
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Figure 3.3 Google Earth image of University of Southern Queensland dam evaporation trial site where 

the Red Ferosol sample was taken. Orange start shows sample location and orange arrow shows north. 

 

The Brown Tenosol was sampled from the Roma, Qld district during exploration for 

agricultural soils suitable to undergo irrigation with treated CSG water. 

 

The three soils were spread out on black plastic matting to a depth of no more than 

20 mm in an air-conditioned room to air dry. After a week of drying and periodic 

turning, the soil was crushed to pass a 2 mm sieve. Care was taken to not apply 

excessive energy during crushing so as to preserve soil structural form and reduce 

mechanical effects on soil dispersive potential. 
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3.3.  Initial soil chemical analysis 

The three soils were analysed to determine their chemical properties prior to 

leaching. Properties required for comparison include organic matter, EC, pH, CEC , 

exchangeable cations (Na
+
, K

+
, Ca

2+
, Mg

2+
) and total cations (Na

+
, K

+
, Ca

2+
, Mg

2+
). 

Results of analysis are presented in Table 3.1. Methodologies used to analyse soil 

samples are listed in Table 3.2. 

Table 3.1 Initial soil chemical analysis of Red Ferosol, Black Vertosol and Brown 

Tenosol.  

Measurement Units Ferosol Vertosol Tenosol 

Organic Matter % 3.9 3.2 0.9 

EC dS/m 0.09 0.06 0.03 

pH  7.86 7.42 6.55 

CEC meq/100g 18.87 48.2 5.47 

Exchangeable Na meq/100g 0.32 1.59 0.05 

Exchangeable K meq/100g 0.46 1.04 0.87 

Exchangeable Mg meq/100g 3.02 18.4 3.52 

Exchangeable Ca meq/100g 15 27.1 1.03 

Total Na mg/kg 300 533 47 

Total K mg/kg 767 1900 912 

Total Mg mg/kg 1767 5767 320 

Total Ca mg/kg 3667 6433 637 

Soil Moisture Content % 3.61 4.82 1.5 
 

Table 3.2 Initial soil chemical analysis methods.  

Measurement Units Testing method 

Organic Matter % R & L 6A1 

EC dS/m R &L 3A1 

pH  R & L 4A1 

CEC meq/100g R & L 15D3 

Exchangeable Na meq/100g R & L 15D3 

Exchangeable K meq/100g R & L 15D3 

Exchangeable Mg meq/100g R & L 15D3 

Exchangeable Ca meq/100g R & L 15D3 

Total Na mg/kg or % US EPA 3051 

Total K mg/kg or % US EPA 3051 

Total Mg mg/kg or % US EPA 3051 

Total Ca mg/kg or % US EPA 3051 

Soil Moisture Content % Black (1965) 
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R & L in the above table refers to soil testing methods found in Rayment and Lyons 

(2011). All testing procedures are further detailed in the following sections. 

3.3.1.  Method 6A1: Organic Carbon – Walkley & Black 

This method uses the heat of reaction to oxidise organic carbon (OC), however may 

not discriminate between finely dispersed charcoal and soil organic carbon (SOC) 

(Rayment and Lyons 2011). Heat of dilution in this method raises the temperature to 

110 – 120 ºC. The reaction is as follows: 

 

      
                            

 

In the absence of interference, the chromic ions (Cr3+) produced should be in 

reasonable proportion to the OC oxidised (Rayment and Lyons 2011). 

 

A series of standards was prepared for each set of analyses by dispensing 0, 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10 mL of the Standard Sucrose Solution into 250 mL conical beakers. 

These standards contain 0 to 50 mg of C (0 to 5% for a 1 g soil sample and 0 to 25% 

for one 0.2 g soil sample. The standards were then evaporated in an oven not greater 

than 65 ºC and subsequently cooled to room temperature. 

 

Samples of finely ground (< 0.5 mm), air-dry soil were weighed according to the 

expected C content. Soils were then transferred to 250 mL conical beakers. Either 10 

mL of 0.5 M sodium dichromate or 10 mL of chromium trioxide was added and 

swirled gently to ensure all particles were wet. After swirling occasionally for 10 

minutes, 20 mL of concentrated sulphuric acid was added over 10 to 15 seconds with 
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gentle swirling. After a further 30 minutes with occasional swirling, 170 mL of 

reagent water was added and swirled to mix thoroughly. The whole beaker was then 

set aside to cool and for particles to settle. 

 

After cooling, the samples were centrifuged if not already clear. Absorbance of the 

standards and samples was determined at 600 nm, with the reagent water set to zero. 

Samples were disposed of in an environmentally responsible manner, as Cr is a toxic 

heavy metal. 

 

3.3.2.  Method 3A1: EC of 1:5 soil/water extract 

This method determines the EC of a soil based on a 1:5 (w/v) soil/water extract with 

air-dry soil (Rayment and Lyons 2011). 

 

A 1:5 (w/v) soil/water suspension was prepared and mechanically shaken end-over-

end at 25 ºC in a closed system for 1 h. This was allowed to settle for a minimum of 

20 to 30 minutes. EC measurements were taken with a calibrated conductivity cell 

and meter and completed within 3 to 4 hours of shaking. Care was taken not to 

disturb the settled soil. 

 

3.3.3.  Method 4A1: pH of 1:5 soil/water suspension 

This method determines the pH based on a soil/water ratio of 1:5 at 25 ºC (Rayment 

and Lyons 2011). 
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A 1:5 soil/water suspension was prepared as described for Method 3A1 for 

determining EC. Subsequently, all measurements were made within 4 h of 

conclusion of settling time using a pH and temperature combined electrode.  

 

3.3.4.  Method 15D3: Exchangeable bases – 1M ammonium acetate at pH 7.0, 

rapid method with no pre-treatment for soluble salts 

10 g of air-dried, screened (< 2 mm) soil was placed into a 250mL extracting bottle 

and 100 mL of 1M NH4OAc at pH 7.0 was added. The bottle was gently shaken end-

over-end for approximately 30 min at 25 ºC.  

 

Within 30 min of completion of shaking, a portion of the extract was transferred into 

clean, dry tubes and centrifuged to obtain a clear supernatant. Any floating organic 

matter was removed from individual tubes following centrifugation during the 

filtration process.  

 

Exchangeable Ca
2+

, Mg
2+

, Na
+
 and K

+
 were determined using Inductively Coupled 

Plasma – Atomic Emission Spectrometry (ICP-AES).  

3.3.5.  US EPA Method 3051 – Microwave assisted digestion of sediments, 

sludges, soils and oils 

This method provides a rapid, multi-element acid leach digestion prior to analysis 

with an ICP-AES (USEPA 2007). 
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Samples, up to 0.5g, were digested in 10 mL of concentrated nitric acid for 10 min 

and heated to 175 ºC approximately 5.5 min into the process. The sample was then 

allowed to settle, centrifuged and filtered before analysis using an ICP-AES. 

 

3.3.6.  Black (1965): Soil moisture content 

Subsamples of each soil were taken to determine the gravimetric air-dry and oven-

dry moisture content of the soils prior to core preparation. The method used was 

consistent with Black (1965) and involved drying 1 to 100g soil samples in an oven 

between 100ºC and 110 ºC. Samples were allowed to remain in the oven for three 

days (72 h) with their lids removed. After three days, the samples were immediately 

weighed accurate to ±0.001g. The moisture content was calculated using (Equation 

3.1): 

 

     (
         
         

  )        Eq 3.1 

 

3.4.  Preparation of soil cores 

Stormwater pipe (75 mm long, 87.5 mm internal diameter), with 1 mm aperture 

fibreglass gauze tightly attached to one end, was filled to level with soil and weighed 

to determine the mass of soil contained. The core was then dropped three times from 

a height of 50 mm three times and the settlement was measured. The bulk density 

was calculated from the settled soil. This process was repeated three times for each 

soil type and averaged to obtain the bulk density used to repack each soil core. 
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A Whatman No.4 filter paper was placed in the bottom of each core. The soil was 

packed to a height of 50 mm at the required bulk density. This density was achieved 

by accurately weighing and compacting the soil in two 25 mm layers to ensure even 

compaction over the 50 mm height of the core. This was then covered with a further 

2 filter papers to avoid surface disturbance from the CaCl2 solution applied during 

experimentation. 

 

20 cores were made for each soil; with 4 replicates of 5 different EC values of the 

CaCl2 solution. 

 

3.5.  CaCl2 solution details 

Calcium Chloride (CaCl2) was chosen as the percolating solution due to its use as the 

pre-treatment solution in TEC analysis used by the NCEA (Bennett and Raine 2012). 

The use of calcium chloride ensured the soil doesn’t disperse and seal, reducing the 

hydraulic conductivity.Ca is a divalent ion that shows greater affinity to soil CEC 

sites than Na, Mg and K. The use of a homogenous ionic concentration with greater 

affinity to soil CEC than cations known to be contained on soil exchange sites 

provides for the greatest chance to analyse exchange phenomena. 

 

The solution was prepared by accurately weighing the mass of CaCl2, listed in Table 

3.3, for the desired concentration and diluting this with 20 L of water. 
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Table 3.3 Details of CaCl2 solution 

EC (dS/m) CaCl2 (g) per 20 L H2O mg.L
-1

 (Ca
2+

) mg per PV 

0.5 7.36 132.9 19.935 

1 14.72 265.8 39.87 

2 29.44 531.6 79.74 

4 58.88 1063.2 159.48 

8 117.76 2126.4 318.96 

 

3.6.  Leaching and leachate collection 

The prepared soil cores were placed into Buchner funnels held in place by a rack for 

leaching. A constant hydraulic head of between 1 cm and 5.7cm (depending on soil 

swelling extent) was achieved by supporting inverted 1250 cm
3
 bottles containing the 

respective CaCl2 solutions (EC 0.5, 1, 2, 4, 8 dS/m) above the soil cores. The 

constant hydraulic head was maintained throughout the entire leaching period. Plastic 

collection containers marked with the required pore volume were situated beneath 

the Buchner funnels to capture leachate in pore volumes (Figure 3.2). 
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Figure 3.4 Photograph of experimental setup. 

 

As each complete PV was collected from the soil, the time to collect it was recorded 

and the leachate was sealed to avoid the effects of evaporation and contamination of 

the samples prior to weighing, EC measurement and dilution for testing with an 

Atomic Absorption Spectrophotometer (AAS). 

 

3.7.  Soil leachate chemical analysis  

3.7.1.  EC 

Samples were tested for EC as a means of potentially determining if the soil core has 

reached chemical equilibrium. EC was determined directly from leachate using a 

TPS MC-84 EC meter. 
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3.7.2.  Soluble cation concentration determination 

Atomic adsorption spectrophotometry (AAS) was used to determine the soluble 

cation components (Na
+
, K

+
, Mg

2+
, Ca

2+
) of the leachate. The methods used were 

modified versions of Rayment and Higginson (1992) methods L1b, L2b, L3b and 

L4b. Modifications include no use of ionising suppressants and no use of a centrifuge 

or filter (samples were allowed to settle and diluted 1:100 for analysis). 

 

AAS testing was performed using a Shimadzu AA-7000 Atomic Absorption 

Spectrophotometer with a Shimadzu ASC-7000 Auto Sampler. Samples were diluted 

down to 1:100 in order to be within the instrument detection range. 

 

3.8.  Hydraulic conductivity 

Weighing of the leachate and timing of the duration required to obtain leachate 

enabled HC to be determined, allowing insight into whether or not complete 

chemical equilibrium is required to reach hydraulic conductivity steady state 

conditions. Saturated hydraulic conductivity for a vertical soil core under constant 

head is found by Equation 3.2 (Hillel 2004): 

 

      
  

   
 Eq 3.2 

Where V is the volume of solution (cm
3
), L is the length of the soil core (cm), A is 

the area of the soil core (cm
2
), H is the water head from base of core to top of 

solution (cm) and t is the time for V to flow through (h). The units for Ksat are cm/h. 
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The average mass of the container that the Brown Tenosol samples were collected in 

is 44.571 g. An average mass of water per PV of 140g was assumed for the Black 

Vertosol and Red Ferosol as no readings were taken of these. 

 

3.9.  Statistical Analysis 

Statistical analysis to determine significant differences between results was 

undertaken using Minitab V14 Student Edition. This was accomplished by 

performing a one-way ANOVA with a confidence interval of 95%. Where significant 

differences were detected, pairwise differences were determined by performing a 

Tukey’s Honest Significant Difference (HSD) analysis. 

 

3.9.1.  One-way ANOVA 

A one-way ANOVA analysis was performed using two different comparisons: 

between treatment and within treatment. 

 

Between treatment analysis was performed for the cation exchange curves presented 

in the results section. This is in order to determine if there is a significant difference 

between the concentrations of cations being removed between different treatments 

(in this project, different strength solutions). 
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Within treatment analysis was undertaken with all data presented to determine if 

there were significant differences between the total concentrations removed, 

electrical conductivity or hydraulic conductivity at different PV’s. 

 

3.9.1.1. Skew corrections 

Some data sets contained a certain degree of skew and were treated in the following 

manner to allow analysis, as suggested by Tabachnick and Fidell (2007) (Equations 

3.3 to 3.7). 

 

Moderately Positive 

 

      √  Eq 3.3 

 

Substantially Positive 

 

             Eq 3.4 

 

Substantially Positive (with zero values) 

 

           (   ) Eq 3.5 

 

Where C is a constant added to each score so that the smallest score is one 

(Tabachnick and Fidell 2007). 
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Moderately Negative 

 

      √    Eq 3.6 

 

Where K is a constant from which each score is subtracted so that the smallest score 

is one (usually equal to the largest score plus one) (Tabachnick and Fidell 2007). 

 

Substantially Negative 

 

           (   ) Eq 3.7 

 

3.9.2.  Tukey’s Honest Significant Difference (HSD) 

Tukey’s Honest Significant Difference (HSD) test is a method used in conjunction 

with an ANOVA to determine if means are significantly different from each other. 

The formula used to calculate Tukey’s HSD is (Equation 3.8): 

 

       (     )   √
   

 
 Eq 3.8 

 

Where q is a function of α, v and a and is determined from the Studentized Range 

Distribution, α is the confidence level the ANOVA was taken at, v is the degrees of 

freedom of the residual error, a is the number of means, MSE is the mean square 

error of the residual and n is the number of replicates. 
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4.  Results 

This section details the results of this project and highlights the major observations. 

For the three soils (Black Vertosol, Red Ferosol and Brown Tenosol) results for 

leachate sodium concentration (Na), magnesium concentration (Mg), potassium 

concentration (K), electrical conductivity (EC) and saturated hydraulic conductivity 

(HC) are presented. 

 

Statistical analysis was undertaken for leachate cation concentration (Na, Mg and K), 

however it was not utilised for EC and HC. For EC, the graphs presented in this 

section show a flat line over the duration of the experiments, while for HC, the data 

was too erratic to allow significant statistical analysis to take place. 

4.1.  Black Vertosol 

Leachate from the Black Vertosol was collected for 10 PV’s. 

 

AAS data can be found in Appendix B, Sections 1 to 5. 

EC data can be found in Appendix H. 

HC data can be found in Appendix E. 

Statistical data can be found in Appendix K, Section 1. 

 

4.1.1.  Sodium 

Sodium was observed to have been leached in majority from soil solution and 

colloidal exchange sites for EC 2, 4 and 8 dS/m solutions after 10 PV (Figure 4.1). 
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Both EC 8 dS/m and EC 4 dS/m solutions had reached this point at approximately 

PV 6 and the EC 2 dS/m treatment at PV 8.  

 
 

Figure 4.1 Cumulative concentration of sodium removed from Black Vertosol soil cores. Bars located 

at the top of the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. Tukey’s 

HSD values (α-0.05) for within treatment analysis: EC 0.5 dS/m (±27.49), EC 1 dS/m (±24.01), EC 2 

dS/m (±26.6), EC 4 dS/m (±52.12), EC 8 dS/m (±36.17). 

 

EC 0.5 and EC 1 dS/m solutions were not observed to reached this point at PV 10. 

By extrapolating the cation exchange curves for EC 0.5 and EC 1 dS/m solutions in a 

linear fashion, total Na exchange and leaching (503 mg/kg) occurs at PV 13 and at 

PV 17, respectively. 

 

4.1.2.  Magnesium 

After 10 PV, it was observed that only 18.6% of the total Mg contained in the soil 

(5767 mg/kg) was leached by the EC 8 dS/m solution. All other EC solutions leached 
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progressively less Mg as the electrolyte concentration of the percolating solution was 

reduced (Figure 4.2). Of particular note, the EC 0.5 dS/m solution leached two orders 

of magnitude less Mg than the EC 8 dS/m solution. 

 
 

Figure 4.2 Cumulative concentration of magnesium removed from Black Vertosol soil cores. Bars 

located at the top of the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. 

Tukey’s HSD values (α-0.05) for within treatment analysis: EC 0.5 dS/m (±7.41), EC 1 dS/m 

(±14.06), EC 2 dS/m (±18.26), EC 4 dS/m (±11.71), EC 8 dS/m (±9.43). 

 

The ion exchange curves for all EC solutions appear to follow a linear trend. While it 

is unlikely that a linear trend would continue to the point of complete removal of 

MG, without knowing the point at which an asymptote is approached, the use of 

linear extrapolation to predict total Mg removal from the soil is justified (Table 4.1). 

From these predictions, even at the strongest EC (8 dS/m), it will take 54 PV’s of 

percolating solution to leach all the Mg from the soil, while for the lowest EC (0.5 

dS/m) 889 PV would be required to leach all Mg. 
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Table 4.1 Predictions of PV when all Mg will be removed from Black Vertosol .  

Solution EC 

(dS/m) 

Concentration removed 

(mg/kg/PV) 

PV prediction 

0.5 6.5 889 

1 24.6 234 

2 55.6 104 

4 90.5 64 

8 107.4 54 

 

4.1.3.  Potassium 

At the strongest EC (8 dS/m), only 7.1% of the total K contained in the soil (1900 

mg/kg) was removed after leaching with 10 PV’s (Figure 4.3). In this case, EC 0.5 

dS/m leached K was one order of magnitude less than the EC 8 dS/m solution. 

 

 
 

Figure 4.3 Cumulative concentration of potassium removed from Black Vertosol. Bars located at the 

top of the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. Tukey’s HSD 

values (α-0.05) for within treatment analysis: EC 0.5 dS/m (±9.01), EC 1 dS/m (±8.29), EC 2 dS/m 

(±7.75), EC 4 dS/m (±19.24), EC 8 dS/m (±12.83). 
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Again, without knowing the point at which the concentration removed approaches an 

asymptote, or the curvature of the line approaching this point, a linear extrapolation 

is justified to predict total K leaching (Table 4.2). Depending on solution electrolytic 

strength total K leaching was predicted to occur after leaching with 144–659 PV’s of 

CaCl2 percolating solution. 

Table 4.2 Predictions of PV when all K will be removed from Black Vertosol .  

Solution EC 

(dS/m) 

Concentration removed 

(mg/kg/PV) 

PV prediction 

0.5 2.9 659 

1 4.7 408 

2 6.5 293 

4 9.3 204 

8 13.2 144 

 

4.1.4.  Electrical Conductivity 

From Figure 4.4, it can be noticed that there is a slightly elevated reading for the first 

PV, as would be expected in removing the soil inherent solute load. After this, the 

EC reaches a steady state. 
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Figure 4.4 EC of leachate from Black Vertosol. Tukey’s HSD values (α-0.05) for within treatment 

analysis: EC 0.5 dS/m (±0.031), EC 1 dS/m (±0.022), EC 2 dS/m (±0.029), EC 4 dS/m (±0.069), EC 8 

dS/m (±0.184). 

 

4.1.5.  Hydraulic Conductivity 

From Figure 4.5, it can be noted that the treatment with the strongest solution (EC 8 

dS/m) resulted in the highest HC while the weakest solution (EC 0.5 dS/m) produced 

the lowest HC. The HC of the other three treatments (EC 1, 2 and 4 dS/m) were 

between the strongest and weakest treatments, however there was not a trend of 

increasing HC as the EC of the treatment solution increased. 
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Figure 4.5 HC of Black Vertosol. Tukey’s HSD values (α-0.05) for within treatment analysis: EC 0.5 

dS/m (±3.64), EC 1 dS/m (±4.17), EC 2 dS/m (±2.62), EC 4 dS/m (±1.65), EC 8 dS/m (±3.12). 

 

Fitting of linear trend lines to the data in Figure 4.5, produces gradients (Table 4.3) 

that show there is a trend for decreasing hydraulic conductivity over time with the 

exception being the cores treated with solution with an EC of 2 dS/m which exhibits 

a very slight upward trend. 

Table 4.3 Linear trend line gradients for HC of Black Vertosol.  

Solution EC 

(dS/m) 

Linear trend line gradient 

(cm/h/h) 

0.5 -0.165 

1 -0.2314 

2 0.0028 

4 -0.0372 

8 -0.0616 
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4.2.  Red Ferosol 

The Red Ferosol was treated with 10 PV’s of CaCl2 solution also. 

 

AAS data can be found in Appendix C, Sections 1 to 5. 

EC data can be found in Appendix I. 

HC data can be found in Appendix F. 

Statistical data can be found in Appendix K, Section 2. 

 

4.2.1.  Sodium 

After being flushed with 10 PV’s of CaCl2 solution with EC’s of 4 and 8 dS/m, only 

18% of the total Na (300 mg/kg) contained in the soil core has been removed. The 

curved nature of the sodium exchange curve in Figure 4.6 suggests that total removal 

of Na may not be possible. This curvature makes it difficult to predict the point at 

which all Na is removed or an asymptote is reached. 

 

The nature of the lines suggest that it is a decaying function of the PV’s, however 

fitting lines to suit this data is beyond the scope of this project. However, if a linear 

trend from PV 10 is assumed, then a linear extrapolation can be used to predict total 

replacement of Na. As the concentrations are small and the gradients are similar, an 

average of the concentration removed in PV 10 will be used to predict total 

replacement, occurring at between 99 and 108 PV’s (Table 4.4).  
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Figure 4.6 Cumulative concentration of sodium removed from Red Ferosol. Bars located at the top of 

the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. Tukey’s HSD values (α-

0.05) for within treatment analysis: EC 0.5 dS/m (±6.33), EC 1 dS/m (±3.47), EC 2 dS/m (±11.19), 

EC 4 dS/m (±5.42), EC 8 dS/m (±9.46). 

 

Table 4.4 Predictions of PV when all Na will be removed from Red Ferosol.  

Solution EC 

(dS/m) 

Concentration removed 

(mg/kg/PV) 

PV prediction 

0.5 2.48 108 

1 2.48 105 

2 2.48 101 

4 2.48 99 

8 2.48 100 

 

4.2.2.  Magnesium 

The strongest leaching solution (8 dS/m) has only removed 15.4% of the total Mg 

contained in the soil after being treated by 10 PV’s of solution (Figure 4.7). The 

strongest solution (EC 8 dS/m) removed one order of magnitude more Mg than the 
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weakest solution (EC 0.5 dS/m). Percolating solutions removed progressively less 

Mg as the solution concentration decreased. 

 
 

Figure 4.7 Cumulative concentration of magnesium removed from Red Ferosol. Bars located at the 

top of the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. Tukey’s HSD 

values (α-0.05) for within treatment analysis: EC 0.5 dS/m (±1.79), EC 1 dS/m (±2.92), EC 2 dS/m 

(±5.10), EC 4 dS/m (±4.19), EC 8 dS/m (±8.21). 

 

Again, there is a very slight curvature to the lines, however for the purposes of 

further analysis in this project, they will be assumed to be linear and linear 

extrapolation will be utilised to predict an approximate PV when all Mg will be 

removed from the soil. . From the predictions in Table 4.5, it can be seen that it will 

take between 67 and 312 PV’s to completely replace all Mg contained in the soil 

depending on the percolating solution ionic concentration. 
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Table 4.5 Predictions of PV when all Mg will be removed from Red Ferosol.  

Solution EC 

(dS/m) 

Concentration removed per 

(mg/kg/PV) 

PV prediction 

0.5 5.68 312 

1 10.8 164 

2 15.2 117 

4 22.0 81 

8 26.5 67 

 

4.2.3.  Potassium 

Again, the strongest leaching solutions (EC 4 and 8 dS/m) have not completely 

replaced all K (767 mg/kg) contained in the soil, removing approximately 6.1% of 

the total K contained in the soil by the time 10 PV’s of CaCl2 solution have 

percolated (Figure 4.8). Interestingly, EC 4 and 8 dS/m, follow a highly similar 

leaching function over the 10 PV’s examined in this study. 

 
 

Figure 4.8 Cumulative concentration of potassium removed from Red Ferosol. Bars located at the top 

of the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. Tukey’s HSD values 

(α-0.05) for within treatment analysis: EC 0.5 dS/m (±6.82), EC 1 dS/m (±3.47), EC 2 dS/m (±11.19), 

EC 4 dS/m (±5.42), EC 8 dS/m (±9.46). 
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Again, there is a slight curvature of the data lines, suggesting a decay function. As 

for Mg, the relationship is assumed to be linear and extrapolation of the leaching 

function showed that the strongest solutions (EC’s of 8 and 4 dS/m) will require 

approximately 170 PV’s and the weakest solution (EC 0.5 dS/m) will require 318 

PV’s of treatment to leach all K from the soil (Table 4.6). 

Table 4.6 Predictions of PV when all K will be removed from Red Ferosol . 

Solution EC 

(dS/m) 

Concentration removed per 

(mg/kg/PV) 

PV prediction 

0.5 2.41 318 

1 2.93 262 

2 3.47 221 

4 4.54 169 

8 4.45 173 

 

4.2.4.  Electrical Conductivity 

Very few observations can be made from this graph (Figure 4.9), as the EC readings 

throughout the 10 PV’s appear to be in a steady state condition. 
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Figure 4.9 EC of leachate from Red Ferosol. Tukey’s HSD values (α-0.05) for within treatment 

analysis: EC 0.5 dS/m (±0.112), EC 1 dS/m (±0.184), EC 2 dS/m (±0.037), EC 4 dS/m (±0.095), EC 8 

dS/m (±0.106). 

 

4.2.5.  Hydraulic Conductivity 

As with the HC graphs for the Black Vertosol, there is a general trend of increasing 

HC as the EC of the leaching solution increases (Figure 4.10). The exception to this 

is EC 1 dS/m which is located between EC 4 and 8 dS/m. 
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Figure 4.10 HC of Red Ferosol. Tukey’s HSD values (α-0.05) for within treatment analysis: EC 0.5 

dS/m (±16.5), EC 1 dS/m (±7.63), EC 2 dS/m (±7.36), EC 4dS/m (±14.12), EC 8 dS/m (±13.48). 

 

Fitting of linear trend lines to the data in Figure 4.10, produces gradients (Table 4.7) 

that show there is a trend for decreasing HC over time. 

Table 4.7 Linear trend line gradients for HC of Red Ferosol.  

Solution EC 

(dS/m) 

Linear trend line gradient 

(cm/h/h) 

0.5 -6.5408 

1 -9.3283 

2 -8.2618 

4 -13.677 

8 -16.697 
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4.3.  Brown Tenosol 

Due to the behaviour represented by the Black Vertosol and Red Ferosol, the Brown 

Tenosol was treated with 30 PV’s of CaCl2 solution in order to find the point at 

which the soil will reach chemical equilibrium with the percolating solution. 

 

AAS data can be found in Appendix C, Sections 1 to 5. 

EC data can be found in Appendix J. 

HC data can be found in Appendix G. 

Statistical data can be found in Appendix K, Section 3. 

 

4.3.1.  Sodium 

The cation exchange curves for Na removal from the Brown Tenosol are shown in 

Figure 4.11. It can be seen that for both EC’s 4 and 8 dS/m, the total concentration 

removed from the soil actually surpassed the total Na (47 mg/kg) that is in the soil. 

This is due to errors in the readings from the Atomic Absorption Spectrophotometer 

(AAS). When concentrations in the sample are extremely low, the ‘zero’ of the 

machine tends to wander, resulting in higher readings than what are actually 

contained in the samples. 

 

As a result of this, statistical analysis was not undertaken. The results, while 

spurious, do provide some indication that Na might be expected to leach in majority 

from the soil within 30 PV. 
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Figure 4.11 Cumulative concentration of sodium removed from Brown Tenosol. 

 

4.3.2.  Magnesium 

55.4% of the total Mg has been removed by the strongest leaching solution (8 dS/m) 

by PV 30, compared to 36.4% by the weakest solution (0.5 dS/m). The behaviour of 

the cation exchange curves for Mg replacement in the Brown Tenosol display some 

interesting behaviour in that all lines approach parallel eventually (Figure 4.12). 

Another observation that can be made in the relationship between leaching functions 

for EC 2 dS/m and EC 4 dS/m. At approximately PV 10, they converge and follow 

essentially the same linear trend from the point of convergence. 
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Figure 4.12 Cumulative concentration of magnesium removed from Brown Tenosol. Bars located at 

the top of the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. Tukey’s HSD 

values (α-0.05) for within treatment analysis: EC 0.5 dS/m (±0.73), EC 1 dS/m (±0.58), EC 2 dS/m 

(±0.79), EC 4 dS/m (±1.56), EC 8 dS/m (±0.45). 

 

If we assume that this linear trend will continue until complete replacement of Mg 

from the soil has occurred, then we can extrapolate the lines in a linear fashion 

(Table 4.8).  

 

Table 4.8 Predictions of PV when all Mg will be removed from Brown Tenosol.  

Solution EC 

(dS/m) 

Concentration removed 

(mg/kg/PV) 

PV prediction 

0.5 0.76 297 

1 0.76 263 

2 0.76 241 

4 0.76 241 

8 0.76 217 

 

0

100

200

300

0 3 6 9 12 15 18 21 24 27 30

C
o

n
ce

n
tr

at
io

n
 r

e
m

o
ve

d
 (

m
g/

kg
) 

Pore volume (PV) 

EC 0.5

EC 1

EC 2

EC 4

EC 8

Total Mg (320)



59 

 

4.3.3.  Potassium 

After 30 PV’s of treatment with the strongest solution (8 dS/m), 18.8% of the total K 

has been removed, compared with 7.1% removed by the weakest solution (0.5 dS/m). 

As with Mg above, the behaviour of the lines for K approaches parallel (Figure 4.13). 

This enables linear extrapolation of these lines to potentially predict the point at 

which all K (912 mg/kg) will be removed from the soil (Table 4.9). 

 
 

Figure 4.13 Cumulative concentration of potassium removed from Brown Tenosol. Bars located at the 

top of the graph are Tukey’s HSD bars (α = 0.05) for between treatment ANOVA. Tukey’s HSD 

values (α-0.05) for within treatment analysis: EC 0.5 dS/m (±29.9), EC 1 dS/m (±46.11), EC 2 dS/m 

(±62.63), EC 4 dS/m (±81.9), EC 8 dS/m (±81.9). 

 

Table 4.9 Predictions of PV when all K will be removed from Brown Tenosol.  

Solution EC 

(dS/m) 

Concentration removed 

(mg/kg/PV) 

PV prediction 

0.5 1.2 735 

1 1.2 723 

2 1.2 714 

4 1.2 695 

8 1.2 647 
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4.3.4.  Electrical Conductivity 

As exhibited by the EC curves for the Black Vertosol, there is a slightly elevated 

reading for the first PV (Figure 4.14), as would be expected in flushing inherent soil 

solute load. After this the readings once again appear to reach a steady state leachate 

concentration. 

 
 

Figure 4.14 EC of leachate from Brown Tenosol. Tukey’s HSD values (α-0.05) for within treatment 

analysis: EC 0.5 dS/m (±0.033), EC 1 dS/m (±0.012), EC 2 dS/m (±0.062), EC 4dS/m (±0.083), EC 8 

dS/m (±0.082). 

 

4.3.5.  Hydraulic Conductivity 

An interesting observation that can be made about the HC data presented in Figure 

4.15 is that the HC of EC’s 4 and 8 dS/m are lower than EC’s 0.5, 1 and 2 dS/m.  
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Figure 4.15 HC of Brown Tenosol. Tukey’s HSD values (α-0.05) for within treatment analysis: EC 

0.5 dS/m (±3.97), EC 1 dS/m (±5.30), EC 2 dS/m (±6.48), EC 4dS/m (±4.69), EC 8 dS/m (±5.51). 

 

Fitting of linear trend lines to the data in Figure 4.15, produces gradients (Table 4.10) 

that show there is a general trend of decreasing HC over time. 

Table 4.10 Linear trend line gradients for HC of Brown Tenosol.  

Solution EC 

(dS/m) 

Linear trend line gradient 

(cm/h/h) 

0.5 -0.0591 

1 -0.0624 

2 -0.0037 

4 -0.1077 

8 -0.0002 
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5.  Discussion 

5.1.  The effect of percolating solution electrolytic strength on ion 

exchange 

In the majority of cases examined in this study, an increase in solution electrolytic 

strength has correlated to an increased rate of cation exchange. However this 

relationship is not linear in that a doubling of solution strength does not necessarily 

result in doubling the exchange rate, suggesting that both diffusion and mass transfer 

ion exchange processes are governing the exchange rates. 

 

The case that exhibited the fastest rate of exchange was that of Na replacement in the 

Black Vertosol, which approached equilibrium (near total replacement) within 10 PV 

with the 3 strongest solutions (8, 4 and 2 dS/m). For the Red Ferosol, the rate of Na 

exchange was markedly slower, with predictions of total Na replacement taking 

between 99 and 108 PV’s. Due to machine error for leachate measurements of the 

Brown Tenosol, it is difficult to know exactly when all Na was replaced but it is 

likely that the majority has been replaced within the 30 PV’s examined, even with 

the error. While unable to find any specific literature explaining the reasons for the 

much slower exchange of Na in the Red Ferosol, this may be attributed to 

oxidisations binding aggregates more strongly and reducing within aggregate 

permeability, not allowing sufficient access for the percolating solution and 

favouring preferential flow of macrospores (Bennett 2012), discussed in the next 

section. 
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The behaviour of Mg and K cation exchange curves for the Brown Tenosol exhibit 

two distinct reaction rates; a faster, curved exchange rate initially and a slower, linear 

rate after a certain number of PV’s. Beckett and Nafady (1967) propose that this is 

due to the specific (Gapon) and non-specific exchange sites. They attribute the 

curved section to the specific exchange sites located on edges of clay plates 

(diffusion controlled) and the linear section to the non-specific sites located on planar 

surfaces (mass-transfer controlled). Another possible explanation of these two 

different exchange rates is the location of the cations in the soil and the hydraulic 

pressure head. Under saturated flow, macropores are the dominant pores and present 

preferential flow paths. Micropores, on the other hand, contribute to a significantly 

smaller proportion of total hydraulic conductivity (Hillel 2004). Hence, the more 

rapid leaching of cations could be attributable firstly to the soil solution and then to 

ion exchange within preferential flow paths. This study suggests, for some soils and 

ionic species, that a seemingly constant cation concentration is leached, irrespective 

of solution concentration (i.e. cumulative leaching functions become parallel). 

Hence, cations that are located within aggregates or micro-pores may take 

substantially longer to exchange into the percolating solution.  

 

Mg replacement in the Black Vertosol exhibited the best linear relationship, enabling 

comparisons to be made between solutions of different electrolytic strengths. While a 

solution with an EC of 8 dS/m is twice as strong as one with an EC of 4 dS/m, it only 

replaced Mg 18.5% faster. At the opposite end of the spectrum, a solution with an 

EC of 1 dS/m replaced Mg 222% faster than the EC 0.5 dS/m solution did. This 

shows that there are factors outside the solution concentration having an impact on 

the exchange rates. 
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For the case of K exchange in the Red Ferosol, the exchange curves representing EC 

4 and 8 dS/m follow the same path over the 10 PV’s leached in this study. This 

behaviour suggests that the accessibility of exchange sites, rather than the strength of 

the percolating solution is having the biggest impact on the exchange rate. This may 

be due to the inability of the solution to flow through micro-pores as the HC of the 

soil is high, reducing the time for the solution to find the smaller pores. 

 

5.2.  Soil pore volumes required to leach to effect chemical 

equilibrium 

While the numbers of PV’s needed to reach chemical equilibrium presented in the 

Results section seem high, they are confirmed by the work of Reading et al. (2012) 

who conducted similar work concerned with gypsum Ca availability and exchange 

within a Vertosol. While the methodology may be slightly different, a comparison of 

results can be made and the nature of Na removal and PV’s required to fully replace 

Mg are similar. 

 

From the data obtained in this study, it can be hypothesised that there are many 

factors affecting the cation exchange curves for soils. Among these could be clay 

mineralogy and access of percolating solution to exchange sites, whether that be in 

micro-pores or if ions are locked inside aggregates or oxidisations. The biggest 

difference, from data accessible for this study, is the difference in clay mineralogy 

between the three soil types investigated; the Black Vertosol is high in 2:1 clays,  the 

Red Ferosol high in 1:1 clays and the Brown Tenosol a sandy soil. 
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The 2:1 clays have exchange sites located on the outside of the clay tactoids, on the 

edges and also within the clay sheets (Odom 1984). The slower exchange rate of K 

compared to Mg and Na may be attributed to the smaller hydrated radius of a K ion 

being able to fit in the smaller exchange sites located within the clay sheets, limiting 

access of the solution (Dolcater et al. 1968). Consequently it may take many PV’s to 

eventually make a soil high in 2:1 clays a homoionic system, due to the mass-transfer 

process that must take place to enable Ca ions to filter their way through the clay 

structure. While 1:1 clays do not have exchange sites located within the clay 

components, the Red Ferosol studied has a tendency to form oxidisations that may 

also limit access by the percolating solution, thus slowing down the reaction rate. 

 

Evidence of oxidisations potentially impacting on cation exchange rates are exhibited 

by all 3 measured cation replacement curves (Na, Mg and K) in the Red Ferosol. 

While predictions of attainment of chemical equilibrium have been made using a 

linear extrapolation, the general shape of these exchange curves suggest a decaying 

rate of exchange as the number of PV’s increase. However, by assuming a linear 

relationship, Mg will be totally replaced in 31 PV’s before Na replacement and 106 

PV’s before total K exchange. 

 

The effect of macro and micro pores on the accessibility of the percolating solution 

to the exchange sites cannot be underestimated. Due to their larger size, flow through 

the macro-pores will be preferred due to the larger energy requirement for the 

solution to flow through the micro-pores (Beven and Germann 1982). The preferred 

flow of the solution through the larger pores may likely result in less solution passing 

through the micro-pores, limiting the exchange rates of the cations contained and 
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exposed in these spaces. The increased exposure time of the top of the soil core may 

contribute to an increased rate of exchange at the top compared to the bottom and is 

likely to reach chemical equilibrium faster. With exception to the leaching of Na in 

the Vertosol, and potentially the Tenosol, the number of PV required to attain 

chemical equilibrium far exceeds the 10–30 PV in which chemical equilibrium was 

expected to have occurred (for the Vertosol higher concentration solutions 4 and 8 

dS/m) ; Tang and Sparks (1993) showed that exchange kinetics are normally rapid, 

occurring within milliseconds, with exception to interlayer exchanged K contained in 

2:1 clays.  

 

5.2.1.  Efficiency of exchange 

From the data presented in this study, the following efficiency measures can be 

estimated based on the charge composition of the CaCl2 solution before leaching and 

the leachate collected (Tables 5.1, 5.2 and 5.3). 

 

Table 5.1 Efficiency of total cation exchange for Black Vertosol, Red Ferosol and 

Brown Tenosol.  

PV EC 0.5 dS/m 

(%) 

EC 1 dS/m 

(%) 

EC 2 dS/m 

(%) 

EC 4 dS/m 

(%) 

EC 8 dS/m 

(%) 

 Black Vertosol 

1 1.01 1.57 2.29 3.08 3.72 

5 2.94 5.51 8.62 11.60 13.25 

10 5.15 9.40 13.90 18.34 20.90 

 Red Ferosol 

1 0.56 0.87 1.26 1.74 1.76 

5 2.32 3.68 5.05 7.14 7.73 

10 4.05 6.37 8.55 11.69 13.10 

 Brown Tenosol 

1 1.25 2.04 3.81 7.16 12.03 

5 4.65 8.06 13.78 17.88 23.76 

10 8.61 13.56 18.10 20.46 26.36 

30 17.29 20.36 23.04 25.06 31.24 
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The EC 8 dS/m consistently leaches a greater percentage of the total cations across 

all three soils in this study. If we assume a cation exchange efficiency of 100%, 

Table 5.4 predicts how long it will take to reach equilibrium for the three soils at the 

five solution concentrations. 

 

Table 5.2 PV predictions of chemical equilibrium based o n 100% exchange 

efficiency.  

Solution EC (dS/m) Black Vertosol 

(PV) 

Red Ferosol (PV) Brown Tenosol 

(PV) 

0.5 52.55 17.31 6.02 

1 26.27 8.66 3.01 

2 13.14 4.33 1.50 

4 6.57 2.16 0.75 

8 3.28 1.08 0.38 

 

The numbers contained in Table 5.4, assuming 100% exchange efficiency, show that 

any way to increase the efficiency of ion exchange in soils, whether it be through 

increased contact time or binding to an agent in the soil that does not leach through 

the soil will be beneficial to reclaiming sodic soils before they reach the point 

beyond which recovery is no longer possible. 

 

5.3.  The relationship between steady state hydraulic conductivity 

and chemical equilibrium 

The highly variable nature of HC results in this study does not allow for a definite 

relationship between steady state HC and chemical equilibrium to be proposed. From 

the linear trend lines fitted in the results, it is noted that there is a general trend for 

decreasing HC over time for the three soils tested. This is a contradiction to what the 

literature implies that removing Na, Mg and K from the soil and replacing it with Ca 
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should result in a flocculated soil state (stable and therefore maintaining HC), as well 

as potentially increasing HC through an osmotic effect provided the EC is 

sufficiently high 

 

The most notable changes in HC came from the Red Ferosol. The general trend is of 

faster decreasing HC as the EC of the percolating solution increases, suggesting that 

something beyond what is measured in this study is impacting on the HC, possibly 

the oxidisation bonds within aggregates are undergoing a breakdown process and 

settle more slowly than Vertosol and Tenosol soils. Another possible explanation is 

the gradual sealing of pores located toward the base of soil cores due to turbulent 

flow washing micro aggregates into percolating solution and subsequent entrainment 

of these in lower locations. However, the ratio of the core to the ponded solution was 

2:1 and turbulent flow was therefore unlikely. 

 

While the trend lines for the Black Vertosol and Brown Tenosol are decreasing, the 

slopes of the lines are very slight and a steady HC could be assumed. While, this is in 

contrast to the results of Reading et al. (2012), who showed that it may take up to 

100 PV’s to reach a steady state, the HC data in this study was highly variable and 

would benefit from further research. Therefore, in order to assess the importance of 

chemical exchange equilibrium on HC steady state, more experimentation will be 

required. 
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5.4.  The appropriateness of leachate electrical conductivity as an 

indicator for soil chemical equilibrium 

Reading et al. (2012) suggest that EC is a good measure of attainment of chemical 

equilibrium, however based on results obtained in this study, there is no direct 

correlation between EC and ionic exchange equilibrium. Apart from the slightly 

elevated reading for the first PV recovered for the Black Vertosol and Brown 

Tenosol, the EC readings appear to be at a steady state for the duration of the PV’s 

collected. 

 

EC is a measure of the charge in the solution and if electroneutrality is maintained in 

the soil, theoretically, apart from the first PV when the soil solution soluble load is 

flushed out, the EC readings of the leachate should remain at a steady state, 

approximately equal to the EC of the percolating solution (Sparks 2003; Sposito 

2008). Therefore, based on the results obtained, EC is not a good measure for 

chemical equilibrium. 

 

5.5.  Future recommendations 

After reflecting on the methodology and the aims of this study, there are a number of 

changes that could be made or variables introduced to obtain a better understanding 

of the rate that chemical equilibrium is attained in soils. 

 

From the work presented by Reading et al. (2012), it appears that bulk density has an 

impact on all facets used to measure chemical equilibrium, leachate ionic 

concentration, EC and HC. Further research could be undertaken to assess whether 
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bulk density has an impact on all soil types or just the Vertosol presented by Reading 

et al. (2012). It is noted that this project originally intended to assess the effects of 

bulk density on ion exchange, but had to be removed from the scope due to time 

constraints. 

 

Results obtained in this study suggest that for some cations up to 889 PV may of the 

percolating solution be required to reach the point where total ion replacement has 

occurred, making the soil a purely Ca based system. While this may not be practical, 

leaching of a solution with an EC of 2 dS/m for 300 PV, for example, may give an 

indication of the long term behaviour of a soil subject to sustained leaching, possible 

in a hot climate using poor quality irrigation water. 

 

This study only considered the use of a Ca dominated percolating solution. Further 

work may need to be undertaken on the effects of percolation with either Mg or K 

dominated solutions or even a binary solution (Ca-Mg or Mg-K).  

 

After a soil has reached a homoionic status (Either Ca, Mg or K), subsequent 

flooding with a Na (or Mg or K, depending on the initial cation) based solution and 

measuring how many PV’s it takes to completely replace all the ions, may give an 

indication of just how long it actually takes for poor quality irrigation water to 

irreversibly damage a soil. This is similar to the work performed by the NCEA to 

assess TEC and would provide further insight into these processes. 

 

Finally, this study should be repeated with a greater soil core to ponded head ratio 

and highly controlled hydraulic environment to determine the significance of total 
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ion exchange to soil HC steady state conditions. After all, if steady state is achieved 

prior to full ionic exchange, then further leaching with the same percolating solution 

will not provide any further meaningful data for TEC analysis. 
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6.  Conclusions 

The aim of this study was to investigate how many PV’s of solutions of varying EC’s 

were required to pass through a soil core to attain chemical equilibrium. This was in 

order to understand the effect of EC on the rate chemical equilibrium is attained and 

the number of PV’s required to reach chemical equilibrium. 

 

From experimental investigation, it was observed that increasing the EC of the 

percolating solution increased the amount of cations replaced in the soil per PV. 

Furthermore, the rate of ion exchange generally decreases as the number of PV’s 

increases. Throughout all PV, EC was observed to be in a steady state condition, with 

exception to PV 1 where soil solution solute loads contributed to a higher than initial 

leachate EC. On this basis, EC was identified as a poor indicator of chemical 

equilibrium. 

 

While chemical equilibrium was not reached for any soil in study over the 10–30 PV, 

it was shown through extrapolation that the number of PVs required to obtain 

complete ionic equilibrium was up to 889. Processes such as exchange models 

(diffusion or mass transfer), interlayer collapse from 2:1 clays, and macropore 

preferential flow Vs. micropore flow effects on exchange were considered, but 

require further investigation. The effect of chemical equilibrium on HC steady state 

could not be attained due to highly variable HC data. This is an important 

relationship that needs to be further investigated to fully understand the effects of 

ionic exchange on current TEC methodologies. 
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8.1.  Appendix A: Project Specification 
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University of Southern Queensland 

Faculty of Engineering and Surveying 

ENG4111/ENG4112 Undergraduate Research Project 

Project Specification 

Student: Travis Wieck 

Topic:  Assessing impacts of coal seam gas amended water application: soil 

chemistry equilibrium as influenced by solution volume and time 

Supervisor: Dr John Bennett 

Aim:  To assess how many pore volumes of water are required to pass 

through a soil core to attain soil chemical equilibrium. Factors such as bulk density, 

electrolyte concentration and required pore volumes will be assessed. 

Program: Issue B, 10 April 2012 

1. Research background information relating to sodicity, salinity, soil chemistry, 

threshold electrolyte concentration (TEC) and ionic exchange phenomena. 

2. Design experimental methodology and procedure for 2 experiments. 

a. Experiment 1 

i. Aim: Investigate the effect of electrolyte concentration and 

increasing pore volume on a soil’s solid and solution chemical 

equilibrium by analysis of soil leachate. 

ii. This will be performed on 2 to 3 soils to start with, and 

pending results in this experiment and in experiment 2 and 

available time, this may be extended to more soils. 

b. Experiment 2 

i. Aim: Investigate changes in soil chemical properties with 

increasing pore volumes of a CaCl2 solution of a known 

concentration by increasing bulk density. 

ii. Caveat: The need for this experiment is contingent on results 

from experiment 1. 

iii. If results from experiment 1 are inconclusive, experiment 2 

must be performed for at least 1 soil using at least 1 electrolyte 

concentration. 
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3. Analyse data to determine effects of electrolyte concentration, pore volumes 

and bulk density on soil chemical equilibrium. 

 

Agreed 

Student      Supervisor 

______________________   ______________________ 

Date      Date 

______________________   ______________________ 
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8.2.  Appendix B: Black Vertosol AAS Data 

8.2.1.  EC 0.5 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 38.59 129.24 46.86 9.07 

Rep1-2 6.82 75.00 13.98 4.45 

Rep1-3 3.29 85.46 12.86 4.56 

Rep1-4 1.18 57.44 12.32 4.56 

Rep1-5 5.88 56.19 12.55 4.78 

Rep1-6 0.94 58.07 14.48 5.00 

Rep1-7 7.61 55.15 12.07 5.61 

Rep1-8 7.84 55.75 16.06 5.00 

Rep1-9 0.94 75.41 23.96 5.55 

Rep1-10 2.12 40.38 16.34 5.61 

Rep2-1 45.65 123.96 53.52 13.52 

Rep2-2 9.18 63.80 20.34 10.33 

Rep2-3 7.29 59.25 19.59 9.62 

Rep2-4 12.47 100.69 14.69 7.26 

Rep2-5 13.88 55.46 14.41 7.04 

Rep2-6 16.47 48.26 12.05 6.43 

Rep2-7 9.41 57.63 14.30 7.20 

Rep2-8 8.94 95.65 17.51 10.00 

Rep2-9 13.88 52.07 14.68 7.04 

Rep2-10 25.65 71.10 13.75 6.93 

Rep3-1 36.00 121.24 51.79 11.32 

Rep3-2 5.88 65.95 15.66 9.45 

Rep3-3 6.35 62.16 13.40 6.82 

Rep3-4 3.29 66.28 13.80 7.20 

Rep3-5 10.82 60.60 13.18 6.98 

Rep3-6 4.94 63.54 12.96 7.09 

Rep3-7 1.65 64.48 13.11 7.42 

Rep3-8 4.00 64.86 13.35 9.62 

Rep3-9 3.53 62.96 13.95 8.74 

Rep3-10 5.65 79.58 15.64 8.63 

Rep4-1 55.30 148.71 50.13 8.63 

Rep4-2 18.35 77.58 21.33 4.78 

Rep4-3 15.06 105.87 15.18 4.73 

Rep4-4 16.94 64.19 14.33 6.54 

Rep4-5 13.88 64.86 15.04 5.55 

Rep4-6 11.77 65.68 14.11 5.22 

Rep4-7 11.77 61.20 14.81 5.17 

Rep4-8 10.59 59.83 14.66 5.66 

Rep4-9 9.88 59.18 14.00 5.77 

Rep4-10 11.06 55.92 16.71 8.41 
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AVG-1 43.89 130.79 50.57 10.64 

AVG-2 10.06 70.58 17.83 7.26 

AVG-3 8.00 78.19 15.26 6.43 

AVG-4 8.47 72.15 13.78 6.39 

AVG-5 11.12 59.28 13.80 6.09 

AVG-6 8.53 58.89 13.40 5.94 

AVG-7 7.61 59.61 13.57 6.35 

AVG-8 7.84 69.02 15.39 7.57 

AVG-9 7.06 62.40 16.65 6.77 

AVG-10 11.12 61.75 15.61 7.39 

 

8.2.2.  EC 1 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 92.24 220.27 84.69 13.74 

Rep1-2 51.30 171.98 56.77 10.94 

Rep1-3 58.36 115.36 41.27 6.93 

Rep1-4 96.01 83.53 42.29 8.24 

Rep1-5 100.71 86.86 36.45 8.02 

Rep1-6 62.59 135.58 44.77 7.37 

Rep1-7 58.36 95.87 53.92 7.91 

Rep1-8 64.24 102.13 59.66 11.54 

Rep1-9 72.24 70.35 82.28 12.26 

Rep1-10 83.06 32.65 84.04 9.01 

Rep2-1 80.01 181.69 86.89 13.80 

Rep2-2 36.00 120.23 57.70 9.62 

Rep2-3 35.06 166.80 43.54 13.47 

Rep2-4 36.00 117.65 50.71 9.84 

Rep2-5 46.83 145.41 46.80 12.64 

Rep2-6 46.36 95.75 50.97 13.52 

Rep2-7 48.94 79.05 61.69 10.83 

Rep2-8 56.71 61.44 74.12 11.10 

Rep2-9 61.18 43.95 74.72 14.95 

Rep2-10 66.12 29.35 72.79 14.24 

Rep3-1 

    Rep3-2 

    Rep3-3 

    Rep3-4 

    Rep3-5 

    Rep3-6 

    Rep3-7 

    Rep3-8 

    Rep3-9 

    Rep3-10 
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Rep4-1 79.30 189.33 85.96 18.30 

Rep4-2 38.36 172.51 53.77 9.45 

Rep4-3 37.65 123.14 44.35 12.97 

Rep4-4 38.36 124.37 54.97 10.11 

Rep4-5 39.77 120.37 47.23 9.89 

Rep4-6 40.71 105.36 48.26 12.53 

Rep4-7 48.94 88.28 55.12 11.05 

Rep4-8 52.00 64.84 59.76 10.77 

Rep4-9 58.59 48.81 73.39 10.99 

Rep4-10 60.24 34.07 70.30 11.43 

AVG-1 83.85 197.10 85.84 15.28 

AVG-2 41.89 154.91 56.08 10.00 

AVG-3 43.69 135.10 43.05 11.12 

AVG-4 56.79 108.52 49.32 9.40 

AVG-5 62.44 117.55 43.49 10.19 

AVG-6 49.89 112.23 48.00 11.14 

AVG-7 52.08 87.73 56.91 9.93 

AVG-8 57.65 76.14 64.52 11.14 

AVG-9 64.00 54.37 76.80 12.73 

AVG-10 69.81 32.02 75.71 11.56 

 

NB: Results from replicate 3 were discarded due to contamination. 

8.2.3.  EC 2 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 154.36 241.11 157.30 17.97 

Rep1-2 88.01 188.66 100.22 15.28 

Rep1-3 97.65 220.73 114.86 15.77 

Rep1-4 121.19 151.26 110.52 13.52 

Rep1-5 116.71 130.93 123.90 13.96 

Rep1-6 132.95 82.74 133.67 14.57 

Rep1-7 137.66 49.61 149.56 16.05 

Rep1-8 141.42 24.77 159.75 15.55 

Rep1-9 147.78 15.64 147.58 16.05 

Rep1-10 149.66 9.32 150.86 16.65 

Rep2-1 179.31 283.54 148.80 18.96 

Rep2-2 129.42 191.07 101.43 11.21 

Rep2-3 125.42 193.48 118.46 14.73 

Rep2-4 132.24 179.74 111.02 11.49 

Rep2-5 176.01 122.49 106.46 10.44 

Rep2-6 144.95 121.84 128.36 12.64 

Rep2-7 150.36 57.44 140.17 13.74 

Rep2-8 158.60 31.20 157.30 14.07 
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Rep2-9 201.90 13.08 140.27 11.60 

Rep2-10 221.66 7.08 115.73 12.92 

Rep3-1 160.01 282.21 144.77 22.70 

Rep3-2 127.07 209.45 117.14 13.69 

Rep3-3 132.95 185.84 104.14 13.30 

Rep3-4 155.07 154.08 101.91 13.08 

Rep3-5 134.60 134.37 115.74 14.90 

Rep3-6 146.13 97.20 142.29 19.40 

Rep3-7 146.13 65.95 139.49 15.39 

Rep3-8 151.78 46.96 145.57 16.27 

Rep3-9 174.84 21.83 133.55 16.98 

Rep3-10 204.72 9.73 127.46 16.32 

Rep4-1 150.13 264.77 144.00 18.03 

Rep4-2 102.60 240.29 120.92 15.28 

Rep4-3 105.42 184.42 109.04 14.62 

Rep4-4 111.54 157.05 123.63 15.23 

Rep4-5 119.30 126.90 135.30 17.42 

Rep4-6 138.36 86.23 131.62 16.38 

Rep4-7 133.19 55.05 136.15 19.35 

Rep4-8 145.42 35.06 142.39 19.51 

Rep4-9 146.60 21.71 145.23 17.09 

Rep4-10 150.36 16.65 160.73 17.59 

AVG-1 160.95 267.91 148.72 19.42 

AVG-2 111.77 207.37 109.93 13.86 

AVG-3 115.36 196.11 111.63 14.61 

AVG-4 130.01 160.53 111.77 13.33 

AVG-5 136.66 128.67 120.35 14.18 

AVG-6 140.60 97.00 133.98 15.75 

AVG-7 141.83 57.01 141.34 16.13 

AVG-8 149.30 34.50 151.25 16.35 

AVG-9 167.78 18.06 141.66 15.43 

AVG-10 181.60 10.70 138.69 15.87 

 

8.2.4.  EC 4 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 313.43 297.44 208.87 24.57 

Rep1-2 272.49 272.19 200.05 25.06 

Rep1-3 295.55 209.79 200.34 23.80 

Rep1-4 330.61 148.85 204.00 23.25 

Rep1-5 381.20 84.38 195.39 22.32 

Rep1-6 344.26 48.55 214.26 28.80 

Rep1-7 328.73 20.70 223.50 26.49 

Rep1-8 339.08 11.32 219.59 26.88 
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Rep1-9 331.08 7.16 221.04 25.78 

Rep1-10 348.50 6.65 221.34 30.29 

Rep2-1 325.91 383.79 213.98 21.55 

Rep2-2 259.78 320.57 198.30 17.97 

Rep2-3 315.32 238.84 193.46 15.55 

Rep2-4 320.26 144.88 199.50 16.76 

Rep2-5 407.09 73.32 189.14 12.81 

Rep2-6 343.55 42.53 213.73 15.77 

Rep2-7 309.67 17.37 213.70 16.49 

Rep2-8 323.55 9.37 216.61 21.77 

Rep2-9 315.08 6.43 217.24 17.75 

Rep2-10 368.26 4.55 222.34 21.33 

Rep3-1 319.55 349.24 216.18 24.29 

Rep3-2 281.67 263.08 187.70 16.05 

Rep3-3 268.02 244.43 203.38 19.02 

Rep3-4 286.61 166.80 210.04 20.39 

Rep3-5 308.02 94.57 215.10 19.68 

Rep3-6 348.73 34.14 210.00 21.55 

Rep3-7 311.08 16.31 221.92 19.46 

Rep3-8 371.56 8.34 199.99 17.59 

Rep3-9 321.20 7.66 221.84 19.29 

Rep3-10 341.67 5.88 215.63 18.63 

Rep4-1 314.85 361.58 211.17 26.71 

Rep4-2 268.73 262.75 203.30 23.96 

Rep4-3 280.02 194.90 199.77 25.45 

Rep4-4 308.49 132.66 207.82 23.58 

Rep4-5 323.32 78.35 210.49 25.89 

Rep4-6 323.79 47.97 213.37 21.99 

Rep4-7 333.67 25.06 216.16 23.36 

Rep4-8 318.85 12.82 213.28 21.82 

Rep4-9 333.20 9.35 219.29 27.15 

Rep4-10 348.50 5.90 221.84 22.98 

AVG-1 318.43 348.01 212.55 24.28 

AVG-2 270.67 279.65 197.34 20.76 

AVG-3 289.73 221.99 199.24 20.96 

AVG-4 311.49 148.30 205.34 21.00 

AVG-5 354.91 82.65 202.53 20.17 

AVG-6 340.08 43.30 212.84 22.03 

AVG-7 320.79 19.86 218.82 21.45 

AVG-8 338.26 10.46 212.37 22.01 

AVG-9 325.14 7.65 219.85 22.49 

AVG-10 351.73 5.75 220.28 23.30 
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8.2.5.  EC 8 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 598.40 399.14 247.81 31.11 

Rep1-2 550.39 328.96 247.08 34.19 

Rep1-3 595.57 196.32 248.71 27.65 

Rep1-4 749.94 87.87 243.95 28.20 

Rep1-5 868.30 31.15 238.53 20.78 

Rep1-6 679.34 18.82 249.66 33.36 

Rep1-7 674.87 11.59 250.96 28.58 

Rep1-8 691.58 9.35 249.55 32.21 

Rep1-9 720.05 10.07 248.90 36.77 

Rep1-10 734.64 9.40 243.32 31.93 

Rep2-1 680.99 429.60 250.23 40.07 

Rep2-2 621.93 338.16 251.51 32.92 

Rep2-3 656.75 210.44 249.79 31.60 

Rep2-4 752.29 106.23 250.34 34.96 

Rep2-5 815.35 43.71 249.18 34.08 

Rep2-6 841.71 19.71 248.51 27.59 

Rep2-7 724.52 9.47 253.22 30.56 

Rep2-8 805.00 6.34 253.62 29.57 

Rep2-9 881.48 6.14 247.10 27.32 

Rep2-10 866.65 6.58 247.68 31.00 

Rep3-1 648.52 440.63 250.44 36.00 

Rep3-2 578.39 351.82 245.70 25.06 

Rep3-3 577.45 222.77 248.86 28.75 

Rep3-4 620.99 106.33 251.88 29.79 

Rep3-5 705.93 41.92 249.16 27.87 

Rep3-6 688.99 16.46 247.80 26.93 

Rep3-7 679.58 8.05 250.91 24.73 

Rep3-8 679.11 6.58 250.31 30.94 

Rep3-9 716.52 5.81 249.73 26.44 

Rep3-10 756.76 5.06 246.63 30.78 

Rep4-1 642.63 417.16 252.74 36.50 

Rep4-2 576.51 347.22 249.36 36.22 

Rep4-3 616.04 196.49 249.35 37.16 

Rep4-4 652.05 107.92 251.23 31.16 

Rep4-5 670.40 51.32 253.14 35.45 

Rep4-6 655.58 24.72 252.69 29.79 

Rep4-7 679.11 16.65 249.94 32.98 

Rep4-8 730.64 13.37 250.29 29.13 

Rep4-9 773.00 13.16 247.81 33.86 

Rep4-10 775.82 12.31 245.25 30.29 

AVG-1 642.63 421.63 250.31 35.92 

AVG-2 581.81 341.54 248.41 32.10 
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AVG-3 611.46 206.50 249.18 31.29 

AVG-4 693.81 102.09 249.35 31.03 

AVG-5 765.00 42.03 247.50 29.54 

AVG-6 716.40 19.93 249.67 29.42 

AVG-7 689.52 11.44 251.26 29.21 

AVG-8 726.58 8.91 250.94 30.46 

AVG-9 772.76 8.79 248.38 31.10 

AVG-10 783.47 8.34 245.72 31.00 
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8.3.  Appendix C: Red Ferosol AAS Data 

8.3.1.  EC 0.5 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 62.15 15.09 14.61 6.74 

Rep1-2 61.33 11.34 17.84 6.28 

Rep1-3 71.21 10.87 19.15 5.87 

Rep1-4 69.56 11.94 13.35 5.74 

Rep1-5 57.62 9.02 12.52 5.57 

Rep1-6 55.15 7.19 12.17 5.45 

Rep1-7 60.09 6.83 12.29 5.45 

Rep1-8 62.56 6.83 16.99 6.86 

Rep1-9 63.39 6.54 16.88 5.91 

Rep1-10 61.74 6.31 11.21 5.62 

Rep2-1 118.13 17.22 15.01 8.28 

Rep2-2 119.36 13.42 13.64 5.12 

Rep2-3 121.01 6.63 14.65 6.78 

Rep2-4 105.78 6.75 12.12 4.62 

Rep2-5 107.43 6.64 11.69 4.45 

Rep2-6 113.19 3.98 11.21 4.20 

Rep2-7 108.66 6.33 11.31 4.28 

Rep2-8 108.66 3.39 12.11 4.83 

Rep2-9 112.37 3.22 10.87 6.24 

Rep2-10 110.72 5.30 10.73 4.28 

Rep3-1 77.38 11.02 14.34 5.87 

Rep3-2 70.80 8.82 12.51 7.40 

Rep3-3 78.62 7.85 12.53 5.45 

Rep3-4 60.09 5.89 12.44 6.99 

Rep3-5 76.56 5.25 11.28 6.95 

Rep3-6 75.73 4.53 8.62 4.95 

Rep3-7 76.97 3.36 11.12 6.20 

Rep3-8 81.36 2.51 10.69 4.33 

Rep3-9 71.21 4.81 13.54 4.78 

Rep3-10 88.49 5.40 11.52 4.78 

Rep4-1 66.68 14.85 17.10 7.57 

Rep4-2 72.03 11.44 16.17 6.53 

Rep4-3 70.38 8.57 15.53 6.28 

Rep4-4 73.68 7.96 15.47 5.99 

Rep4-5 70.38 7.14 15.19 7.28 

Rep4-6 70.38 5.96 14.87 5.32 

Rep4-7 66.68 5.25 13.42 5.28 

Rep4-8 72.85 4.84 12.48 5.08 

Rep4-9 76.15 4.66 12.86 5.08 

Rep4-10 75.73 4.60 12.61 5.20 
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AVG-1 81.09 14.54 15.27 7.11 

AVG-2 80.88 11.26 15.04 6.33 

AVG-3 85.30 8.48 15.47 6.09 

AVG-4 77.28 8.13 13.35 5.83 

AVG-5 78.00 7.01 12.67 6.06 

AVG-6 78.62 5.41 11.72 4.98 

AVG-7 78.10 5.44 12.03 5.30 

AVG-8 81.36 4.39 13.07 5.27 

AVG-9 80.78 4.81 13.54 5.50 

AVG-10 84.17 5.40 11.52 4.97 

 

8.3.2.  EC 1 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 199.63 16.90 38.25 10.69 

Rep1-2 180.69 13.35 35.09 9.36 

Rep1-3 189.75 14.33 28.86 7.11 

Rep1-4 199.63 10.15 27.83 6.78 

Rep1-5 214.44 8.60 25.96 6.86 

Rep1-6 181.93 9.66 23.20 7.70 

Rep1-7 186.46 9.14 21.28 6.28 

Rep1-8 218.56 7.19 27.65 7.74 

Rep1-9 192.22 6.25 24.89 5.82 

Rep1-10 214.44 6.20 19.62 6.61 

Rep2-1 213.62 15.39 28.21 7.70 

Rep2-2 228.03 11.59 29.65 6.86 

Rep2-3 223.09 14.06 27.72 6.20 

Rep2-4 225.97 12.62 25.61 6.32 

Rep2-5 225.15 7.96 30.03 8.32 

Rep2-6 231.73 6.45 22.46 5.91 

Rep2-7 226.38 7.02 25.43 5.03 

Rep2-8 240.79 5.13 26.17 5.16 

Rep2-9 255.60 6.63 22.75 5.12 

Rep2-10 249.02 4.39 24.25 6.49 

Rep3-1 184.40 18.55 29.71 7.90 

Rep3-2 170.40 12.18 29.22 9.40 

Rep3-3 200.04 10.25 31.38 7.03 

Rep3-4 190.16 8.78 25.83 6.74 

Rep3-5 176.58 6.52 25.00 6.12 

Rep3-6 198.80 6.31 22.66 6.45 

Rep3-7 190.57 5.05 22.82 7.90 

Rep3-8 185.63 3.93 27.78 6.53 

Rep3-9 202.10 4.28 21.18 6.07 

Rep3-10 204.15 3.56 18.57 5.70 
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Rep4-1 141.18 18.64 28.65 8.61 

Rep4-2 136.24 14.20 27.33 7.78 

Rep4-3 144.88 12.00 26.30 8.07 

Rep4-4 146.94 10.52 25.91 7.65 

Rep4-5 143.65 8.75 23.65 7.07 

Rep4-6 157.23 8.02 23.51 7.24 

Rep4-7 163.82 7.70 21.93 6.91 

Rep4-8 153.12 5.89 19.81 6.03 

Rep4-9 154.35 5.58 19.61 6.28 

Rep4-10 160.11 5.36 19.79 6.16 

AVG-1 184.71 17.37 31.21 8.73 

AVG-2 178.84 12.83 30.32 8.35 

AVG-3 189.44 12.66 28.56 7.10 

AVG-4 190.67 10.52 26.30 6.87 

AVG-5 189.95 7.96 26.16 7.09 

AVG-6 192.42 7.61 22.96 6.82 

AVG-7 191.81 7.23 22.87 6.53 

AVG-8 199.52 5.54 25.35 6.36 

AVG-9 201.07 5.69 22.10 5.82 

AVG-10 206.93 4.88 20.56 6.24 

 

8.3.3.  EC 2 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 414.89 19.89 50.16 9.28 

Rep1-2 470.46 16.84 51.88 9.15 

Rep1-3 436.71 11.53 42.86 9.19 

Rep1-4 436.30 11.74 39.59 6.99 

Rep1-5 457.29 10.67 37.66 7.40 

Rep1-6 413.25 6.54 35.86 6.57 

Rep1-7 470.46 6.27 32.26 7.57 

Rep1-8 480.34 7.05 31.63 6.24 

Rep1-9 419.01 6.40 26.74 5.99 

Rep1-10 506.68 6.20 31.25 6.74 

Rep2-1 410.37 26.70 57.12 13.23 

Rep2-2 458.93 19.40 49.84 9.78 

Rep2-3 482.40 15.16 51.14 9.65 

Rep2-4 479.93 12.06 40.55 9.11 

Rep2-5 484.87 11.99 38.25 9.44 

Rep2-6 468.40 11.85 33.43 9.86 

Rep2-7 492.27 10.61 37.43 7.24 

Rep2-8 498.45 8.91 30.67 8.40 

Rep2-9 503.39 8.37 33.02 7.07 

Rep2-10 502.56 7.95 28.33 6.86 
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Rep3-1 422.30 22.26 49.17 10.98 

Rep3-2 466.34 17.48 47.18 10.65 

Rep3-3 428.06 12.09 36.97 7.24 

Rep3-4 499.68 10.91 30.52 8.86 

Rep3-5 426.83 9.08 28.94 6.74 

Rep3-6 405.02 7.36 33.89 6.61 

Rep3-7 425.18 7.22 34.61 6.07 

Rep3-8 474.99 4.92 27.77 6.32 

Rep3-9 513.68 4.40 40.15 6.41 

Rep3-10 498.86 5.72 29.90 6.32 

Rep4-1 246.96 20.20 40.24 11.19 

Rep4-2 291.83 16.21 39.84 10.94 

Rep4-3 326.81 14.33 39.97 11.19 

Rep4-4 274.13 11.53 31.35 9.36 

Rep4-5 330.52 11.03 33.80 9.61 

Rep4-6 325.16 9.87 31.57 9.11 

Rep4-7 317.34 8.19 29.23 8.03 

Rep4-8 314.87 7.20 27.33 7.82 

Rep4-9 335.87 6.98 27.40 7.86 

Rep4-10 326.81 6.05 24.37 7.20 

AVG-1 373.63 22.26 49.17 11.17 

AVG-2 421.89 17.48 47.18 10.13 

AVG-3 418.50 13.28 42.73 9.32 

AVG-4 422.51 11.56 35.50 8.58 

AVG-5 424.87 10.69 34.66 8.30 

AVG-6 402.96 8.90 33.69 8.04 

AVG-7 426.32 8.07 33.38 7.23 

AVG-8 442.16 7.02 29.35 7.20 

AVG-9 442.99 6.54 31.83 6.83 

AVG-10 458.73 6.48 28.46 6.78 

 

8.3.4.  EC 4 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 908.40 22.66 69.93 13.23 

Rep1-2 986.61 19.24 66.70 13.27 

Rep1-3 961.50 15.60 58.27 13.02 

Rep1-4 1051.23 12.92 60.34 10.90 

Rep1-5 1008.01 13.36 54.25 10.77 

Rep1-6 1054.52 11.37 49.32 11.23 

Rep1-7 1005.95 11.55 46.57 9.36 

Rep1-8 1061.93 9.26 42.83 8.57 

Rep1-9 968.91 8.10 35.19 8.07 

Rep1-10 954.09 8.04 32.82 8.03 
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Rep2-1 958.21 27.09 94.59 14.73 

Rep2-2 968.09 18.66 85.24 13.02 

Rep2-3 983.31 14.39 77.05 14.43 

Rep2-4 1036.82 13.38 68.80 11.27 

Rep2-5 1013.36 9.26 64.59 10.86 

Rep2-6 1076.75 8.10 54.50 9.65 

Rep2-7 1046.70 6.42 51.01 11.02 

Rep2-8 1032.29 5.25 48.87 8.86 

Rep2-9 1073.87 5.24 46.75 10.15 

Rep2-10 1088.68 6.16 43.11 11.02 

Rep3-1 836.78 27.62 63.13 14.10 

Rep3-2 779.57 17.68 65.75 11.40 

Rep3-3 852.84 15.94 57.43 11.44 

Rep3-4 953.68 13.27 50.25 10.03 

Rep3-5 966.85 11.32 48.61 10.52 

Rep3-6 916.22 9.44 44.36 8.11 

Rep3-7 979.61 8.37 40.61 9.48 

Rep3-8 934.33 6.93 45.58 8.57 

Rep3-9 935.16 6.16 40.17 6.86 

Rep3-10 1021.59 5.90 37.10 7.70 

Rep4-1 601.76 27.23 67.84 15.56 

Rep4-2 646.62 21.94 63.94 14.56 

Rep4-3 616.99 17.16 58.21 13.44 

Rep4-4 617.81 14.23 52.27 11.90 

Rep4-5 680.79 12.91 51.77 11.98 

Rep4-6 577.06 9.97 41.39 9.73 

Rep4-7 565.95 8.84 36.50 9.03 

Rep4-8 657.33 8.61 40.68 11.11 

Rep4-9 717.42 8.28 38.56 9.73 

Rep4-10 660.21 6.57 35.38 9.98 

AVG-1 826.29 26.15 73.87 14.40 

AVG-2 845.22 19.38 70.41 13.06 

AVG-3 853.66 15.77 62.74 13.08 

AVG-4 914.89 13.45 57.91 11.02 

AVG-5 917.25 11.71 54.81 11.03 

AVG-6 906.14 9.72 47.39 9.68 

AVG-7 899.55 8.79 43.67 9.72 

AVG-8 921.47 7.51 44.49 9.28 

AVG-9 923.84 6.94 40.17 8.70 

AVG-10 931.14 6.67 37.10 9.18 

 

8.3.5.  EC 8 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 
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Rep1-1 1699.50 25.70 104.58 14.93 

Rep1-2 1955.93 22.14 107.17 14.60 

Rep1-3 1915.59 17.83 88.36 14.81 

Rep1-4 1988.03 14.44 81.85 14.14 

Rep1-5 2070.35 11.59 75.09 13.52 

Rep1-6 2181.48 10.91 71.08 11.77 

Rep1-7 2086.40 10.49 68.15 11.27 

Rep1-8 2146.91 8.35 65.11 11.27 

Rep1-9 2172.43 6.89 57.24 10.73 

Rep1-10 2093.81 5.87 52.15 9.11 

Rep2-1 2081.88 21.57 90.21 12.81 

Rep2-2 2180.25 18.01 89.80 12.06 

Rep2-3 2111.51 13.97 72.47 10.94 

Rep2-4 2182.31 10.93 73.29 10.11 

Rep2-5 2141.56 10.84 58.96 10.44 

Rep2-6 2158.85 8.37 51.66 10.11 

Rep2-7 2220.59 9.59 50.97 8.57 

Rep2-8 2196.71 7.19 46.49 7.40 

Rep2-9 2087.23 6.45 41.26 6.91 

Rep2-10 2141.97 5.86 39.59 7.16 

Rep3-1 1688.80 22.22 68.85 12.19 

Rep3-2 2069.94 19.16 79.99 13.15 

Rep3-3 1735.72 12.98 49.59 9.90 

Rep3-4 1985.97 13.64 54.87 11.59 

Rep3-5 1570.67 7.46 49.09 9.07 

Rep3-6 1981.03 8.70 44.12 8.90 

Rep3-7 1934.52 7.32 34.97 8.57 

Rep3-8 1953.05 6.76 43.60 7.57 

Rep3-9 1592.07 5.75 59.79 6.57 

Rep3-10 2195.48 5.61 52.20 8.65 

Rep4-1 2018.08 32.48 37.28 19.80 

Rep4-2 2025.08 25.39 42.99 16.89 

Rep4-3 1773.18 22.14 69.07 13.19 

Rep4-4 1787.58 15.56 73.04 10.52 

Rep4-5 1647.64 11.87 61.06 10.15 

Rep4-6 2036.60 11.06 66.03 9.82 

Rep4-7 1798.28 7.11 49.05 8.24 

Rep4-8 1992.15 6.16 48.92 8.65 

Rep4-9 1682.21 3.78 80.86 7.24 

Rep4-10 1804.87 3.75 64.87 7.57 

AVG-1 1872.06 25.49 75.23 14.93 

AVG-2 2057.80 21.18 79.99 14.17 

AVG-3 1884.00 16.73 69.87 12.21 

AVG-4 1985.97 13.64 70.76 11.59 

AVG-5 1857.55 10.44 61.05 10.79 

AVG-6 2089.49 9.76 58.22 10.15 
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AVG-7 2009.95 8.63 50.78 9.16 

AVG-8 2072.20 7.12 51.03 8.73 

AVG-9 1883.49 5.72 59.79 7.86 

AVG-10 2059.03 5.27 52.20 8.12 
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8.4.  Appendix D: Brown Tenosol AAS Data 

8.4.1.  EC 0.5 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 77.06 12.86 13.09 10.89 

Rep1-2 55.97 7.66 9.63 9.74 

Rep1-3 55.97 7.06 15.42 9.05 

Rep1-4 43.80 15.60 16.00 8.99 

Rep1-5 51.91 6.61 16.70 12.68 

Rep1-6 56.78 7.32 10.16 12.39 

Rep1-7 62.46 7.46 17.13 11.93 

Rep1-8 51.10 7.80 16.65 10.72 

Rep1-9 73.00 7.97 16.53 9.97 

Rep1-10 73.81 7.80 10.01 9.39 

Rep1-11 55.97 1.67 15.70 3.00 

Rep1-12 51.10 2.09 17.25 5.13 

Rep1-13 45.42 1.58 17.33 4.32 

Rep1-14 45.42 1.55 17.68 3.05 

Rep1-15 65.70 1.92 13.69 3.05 

Rep1-16 65.70 1.86 11.79 2.82 

Rep1-17 53.53 2.06 12.81 2.31 

Rep1-18 69.76 1.98 14.57 1.10 

Rep1-19 72.19 1.84 15.10 1.79 

Rep1-20 69.76 2.26 14.85 1.38 

Rep1-21 89.22 1.70 10.48 4.03 

Rep1-22 92.47 1.61 10.86 4.03 

Rep1-23 81.92 1.81 9.40 3.92 

Rep1-24 102.20 1.89 7.07 3.86 

Rep1-25 100.58 1.86 6.92 3.57 

Rep1-26 85.17 1.89 5.79 3.52 

Rep1-27 100.58 2.03 4.76 3.52 

Rep1-28 104.63 2.03 4.14 3.46 

Rep1-29 86.79 2.09 3.54 3.40 

Rep1-30 99.77 1.86 2.76 3.46 

Rep2-1 67.32 9.07 12.01 21.50 

Rep2-2 43.80 6.24 9.91 15.85 

Rep2-3 55.16 6.47 9.18 9.85 

Rep2-4 50.29 6.19 10.16 14.47 

Rep2-5 45.42 8.19 11.39 9.28 

Rep2-6 48.67 6.39 9.05 13.49 

Rep2-7 55.16 6.39 11.16 12.33 

Rep2-8 61.64 15.57 8.88 9.97 

Rep2-9 47.04 6.58 14.02 8.30 

Rep2-10 64.89 6.33 9.00 9.80 
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Rep2-11 42.99 2.32 11.86 6.57 

Rep2-12 47.86 2.01 10.03 6.05 

Rep2-13 73.00 2.29 14.75 5.42 

Rep2-14 50.29 2.12 15.05 4.55 

Rep2-15 54.34 2.26 10.48 6.45 

Rep2-16 78.68 2.37 14.77 3.46 

Rep2-17 73.81 2.68 13.52 3.00 

Rep2-18 54.34 2.32 9.78 2.59 

Rep2-19 60.02 2.85 12.36 2.54 

Rep2-20 73.81 2.66 12.19 3.52 

Rep2-21 95.71 2.03 11.41 4.15 

Rep2-22 95.71 2.15 10.96 4.03 

Rep2-23 96.52 2.12 10.56 3.92 

Rep2-24 85.17 2.23 9.40 3.98 

Rep2-25 95.71 2.26 7.97 3.92 

Rep2-26 96.52 2.29 6.90 3.92 

Rep2-27 98.96 2.35 6.07 3.46 

Rep2-28 102.20 2.26 5.14 3.69 

Rep2-29 101.39 2.63 5.27 3.52 

Rep2-30 113.56 3.98 5.67 3.69 

Rep3-1 73.81 9.78 24.22 

 Rep3-2 34.88 5.68 13.29 

 Rep3-3 30.82 4.18 12.09 

 Rep3-4 35.69 3.90 12.31 

 Rep3-5 33.26 3.53 12.94 

 Rep3-6 41.37 3.62 12.69 

 Rep3-7 53.53 4.58 11.86 

 Rep3-8 42.99 3.79 12.46 

 Rep3-9 51.10 4.13 11.66 

 Rep3-10 51.10 4.38 12.89 

 Rep3-11 51.10 3.76 13.14 

 Rep3-12 62.46 3.45 14.87 

 Rep3-13 78.68 3.79 15.25 

 Rep3-14 63.27 3.70 15.55 

 Rep3-15 62.46 4.07 10.58 

 Rep3-16 79.49 3.98 14.82 

 Rep3-17 65.70 3.93 10.43 

 Rep3-18 68.13 4.07 14.39 

 Rep3-19 84.36 4.13 9.28 

 Rep3-20 77.87 4.18 9.35 

 Rep3-21 35.69 2.01 11.74 

 Rep3-22 42.18 1.98 8.73 

 Rep3-23 51.10 2.06 8.33 

 Rep3-24 53.53 2.40 7.25 

 Rep3-25 79.49 2.20 6.42 

 Rep3-26 57.59 2.85 6.87 
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Rep3-27 60.83 2.54 5.69 

 Rep3-28 88.41 2.80 4.74 

 Rep3-29 76.25 3.08 4.31 

 Rep3-30 62.46 2.97 3.06 

 Rep4-1 90.03 9.78 20.29 18.61 

Rep4-2 51.91 6.27 10.81 15.33 

Rep4-3 51.91 4.49 15.77 13.54 

Rep4-4 58.40 4.21 12.09 8.18 

Rep4-5 46.23 3.98 17.08 11.24 

Rep4-6 60.02 5.03 12.04 7.26 

Rep4-7 61.64 5.00 11.91 6.92 

Rep4-8 55.16 5.17 13.07 8.53 

Rep4-9 68.13 4.41 13.09 6.51 

Rep4-10 57.59 5.26 18.68 6.92 

Rep4-11 52.72 1.44 13.19 5.13 

Rep4-12 33.26 0.93 19.28 4.67 

Rep4-13 34.07 1.89 18.13 4.26 

Rep4-14 47.04 2.60 17.91 2.88 

Rep4-15 29.20 1.53 10.63 4.84 

Rep4-16 47.04 1.53 11.96 2.94 

Rep4-17 25.14 1.86 14.14 3.46 

Rep4-18 42.18 2.74 7.75 3.40 

Rep4-19 44.61 3.14 11.18 3.00 

Rep4-20 41.37 2.46 9.50 3.28 

Rep4-21 69.76 0.93 6.82 2.88 

Rep4-22 85.98 0.71 6.90 2.71 

Rep4-23 89.22 0.73 4.11 2.65 

Rep4-24 92.47 0.90 3.08 2.54 

Rep4-25 91.66 1.27 4.49 2.54 

Rep4-26 91.66 1.02 2.51 2.88 

Rep4-27 94.09 1.07 2.83 2.94 

Rep4-28 90.85 1.64 1.55 2.42 

Rep4-29 94.90 1.64 1.81 2.48 

Rep4-30 91.66 1.41 1.18 2.88 

AVG-1 77.06 10.37 17.40 17.00 

AVG-2 46.64 6.46 10.91 13.64 

AVG-3 48.46 5.55 13.12 10.82 

AVG-4 47.04 7.47 12.64 10.55 

AVG-5 44.21 5.58 14.53 11.06 

AVG-6 51.71 5.59 10.98 11.05 

AVG-7 58.20 5.86 13.02 10.39 

AVG-8 52.72 8.08 12.76 9.74 

AVG-9 59.82 5.77 13.82 8.26 

AVG-10 61.85 5.94 12.65 8.70 

AVG-11 50.69 2.30 13.47 4.90 

AVG-12 48.67 2.12 15.36 5.28 
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AVG-13 57.79 2.39 16.36 4.67 

AVG-14 51.51 2.49 16.54 3.50 

AVG-15 52.93 2.44 11.35 4.78 

AVG-16 67.73 2.44 13.33 3.07 

AVG-17 54.55 2.63 12.73 2.92 

AVG-18 58.60 2.78 11.62 2.36 

AVG-19 65.29 2.99 11.98 2.44 

AVG-20 65.70 2.89 11.47 2.73 

AVG-21 72.59 1.67 10.11 3.69 

AVG-22 79.08 1.61 9.36 3.59 

AVG-23 79.69 1.68 8.10 3.50 

AVG-24 83.34 1.86 6.70 3.46 

AVG-25 91.86 1.90 6.45 3.34 

AVG-26 82.73 2.01 5.52 3.44 

AVG-27 88.61 2.00 4.84 3.30 

AVG-28 96.52 2.18 3.89 3.19 

AVG-29 89.83 2.36 3.73 3.13 

AVG-30 91.86 2.56 3.17 3.34 

 

Note: Potassium measurements for Replicate 3 have been omitted due to bad 

readings from the AAS. 

8.4.2.  EC 1 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 63.27 9.61 32.32 28.53 

Rep1-2 42.18 5.48 38.02 16.42 

Rep1-3 48.67 5.00 35.79 16.54 

Rep1-4 85.17 4.61 34.73 15.56 

Rep1-5 123.29 4.55 30.64 15.39 

Rep1-6 137.89 10.77 33.00 13.43 

Rep1-7 156.55 4.58 26.81 10.78 

Rep1-8 144.38 5.31 25.88 9.22 

Rep1-9 180.88 4.55 24.12 7.55 

Rep1-10 192.23 4.89 25.60 6.92 

Rep1-11 150.06 2.77 17.38 13.02 

Rep1-12 176.01 2.66 15.87 14.58 

Rep1-13 153.30 2.77 14.04 10.03 

Rep1-14 165.47 2.97 9.55 9.05 

Rep1-15 167.90 3.00 8.45 8.36 

Rep1-16 168.71 2.94 6.82 9.51 

Rep1-17 175.20 3.02 5.22 6.86 

Rep1-18 193.05 2.91 4.34 7.26 
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Rep1-19 176.82 2.97 3.81 6.97 

Rep1-20 181.69 3.39 3.18 6.11 

Rep1-21 188.18 0.34 3.24 1.84 

Rep1-22 193.86 0.71 2.13 2.19 

Rep1-23 159.79 0.62 1.60 2.13 

Rep1-24 173.58 1.38 1.53 2.42 

Rep1-25 171.96 0.99 1.38 1.73 

Rep1-26 171.96 1.07 1.20 1.79 

Rep1-27 178.45 0.99 1.63 1.84 

Rep1-28 180.07 1.33 0.95 3.05 

Rep1-29 188.99 1.27 0.85 2.02 

Rep1-30 184.93 1.47 0.78 2.02 

Rep2-1 115.18 10.62 31.42 31.35 

Rep2-2 117.61 4.21 35.86 16.37 

Rep2-3 123.29 4.21 35.38 15.79 

Rep2-4 132.21 4.38 26.98 11.99 

Rep2-5 137.08 3.33 24.07 12.62 

Rep2-6 137.89 4.86 23.05 10.66 

Rep2-7 134.65 3.62 22.22 9.16 

Rep2-8 159.79 4.24 22.87 7.38 

Rep2-9 159.79 4.44 19.64 6.40 

Rep2-10 144.38 5.09 25.00 6.51 

Rep2-11 141.95 2.12 19.21 15.96 

Rep2-12 142.76 3.08 19.08 9.97 

Rep2-13 180.07 2.20 14.14 12.62 

Rep2-14 154.11 2.18 10.16 8.99 

Rep2-15 168.71 2.54 9.13 8.41 

Rep2-16 200.35 2.74 7.25 9.62 

Rep2-17 199.53 2.32 5.27 7.66 

Rep2-18 176.01 2.71 4.56 6.97 

Rep2-19 171.96 2.43 3.84 6.80 

Rep2-20 173.58 2.80 3.24 6.57 

Rep2-21 183.31 1.44 1.81 2.71 

Rep2-22 184.93 1.61 1.50 2.88 

Rep2-23 188.18 1.81 1.30 2.71 

Rep2-24 187.37 1.81 0.83 2.77 

Rep2-25 165.47 1.95 1.10 2.77 

Rep2-26 186.56 1.95 0.75 2.71 

Rep2-27 231.17 2.06 1.05 2.82 

Rep2-28 199.53 2.26 0.68 2.59 

Rep2-29 196.29 2.06 0.93 2.54 

Rep2-30 216.57 2.26 0.93 2.48 

Rep3-1 121.67 15.71 41.33  

Rep3-2 97.33 11.16 33.50  

Rep3-3 101.39 8.48 44.26  

Rep3-4 107.88 10.54 33.98  
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Rep3-5 111.93 8.50 31.45  

Rep3-6 120.86 8.17 29.37  

Rep3-7 124.10 7.80 28.76  

Rep3-8 158.17 8.25 27.48  

Rep3-9 139.51 7.91 26.28  

Rep3-10 173.58 11.87 28.76  

Rep3-11 163.03 1.89 17.43  

Rep3-12 147.62 1.81 17.48  

Rep3-13 176.82 2.09 13.09  

Rep3-14 154.92 2.03 7.65  

Rep3-15 179.26 2.18 6.34  

Rep3-16 184.93 2.15 3.29  

Rep3-17 190.61 2.32 2.66  

Rep3-18 194.67 2.26 2.51  

Rep3-19 199.53 2.29 1.53  

Rep3-20 161.41 2.63 1.25  

Rep3-21 227.92 2.29 1.20  

Rep3-22 198.72 2.49 1.15  

Rep3-23 206.83 2.51 1.13  

Rep3-24 227.11 2.63 0.93  

Rep3-25 227.11 2.54 0.65  

Rep3-26 228.73 2.68 0.88  

Rep3-27 235.22 2.68 0.78  

Rep3-28 226.30 2.74 0.75  

Rep3-29 231.17 2.57 0.78  

Rep3-30 231.98 2.54 0.78  

Rep4-1 141.95 9.32 46.32 15.68 

Rep4-2 123.29 3.56 39.70 14.47 

Rep4-3 130.59 4.80 39.30 10.49 

Rep4-4 142.76 2.77 38.07 16.37 

Rep4-5 143.57 2.88 34.46 13.20 

Rep4-6 141.95 2.18 27.31 11.81 

Rep4-7 154.92 2.77 32.20 6.86 

Rep4-8 162.22 3.05 31.07 7.38 

Rep4-9 167.09 3.42 22.22 5.71 

Rep4-10 172.77 2.49 26.38 4.32 

Rep4-11 129.78 3.48 20.89 5.99 

Rep4-12 106.26 3.28 16.33 3.52 

Rep4-13 121.67 3.11 11.81 3.86 

Rep4-14 132.21 3.05 10.23 3.57 

Rep4-15 128.97 3.36 7.62 4.15 

Rep4-16 138.70 3.39 4.04 3.80 

Rep4-17 162.22 3.50 4.84 2.94 

Rep4-18 143.57 3.81 4.04 3.34 

Rep4-19 136.27 3.48 3.56 2.59 

Rep4-20 155.73 3.67 3.49 2.94 
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Rep4-21 219.00 2.83 0.93 3.00 

Rep4-22 231.17 3.00 1.03 3.28 

Rep4-23 227.11 3.31 1.00 7.95 

Rep4-24 232.79 3.19 0.85 3.75 

Rep4-25 232.79 3.05 0.75 2.77 

Rep4-26 219.00 3.25 0.53 2.71 

Rep4-27 231.17 3.45 0.70 2.71 

Rep4-28 229.55 3.70 0.68 2.59 

Rep4-29 224.68 3.53 0.78 2.65 

Rep4-30 234.41 3.36 0.95 2.88 

AVG-1 110.51 11.32 37.85 25.18 

AVG-2 95.10 6.10 36.77 15.75 

AVG-3 100.98 5.62 38.68 14.27 

AVG-4 117.00 5.57 33.44 14.64 

AVG-5 128.97 4.82 30.16 13.74 

AVG-6 134.65 6.49 28.18 11.97 

AVG-7 142.55 4.69 27.50 8.93 

AVG-8 156.14 5.21 26.83 7.99 

AVG-9 161.82 5.08 23.06 6.55 

AVG-10 170.74 6.08 26.44 5.92 

AVG-11 146.20 2.56 18.73 11.66 

AVG-12 143.16 2.71 17.19 9.36 

AVG-13 157.96 2.54 13.27 8.84 

AVG-14 151.68 2.56 9.40 7.20 

AVG-15 161.21 2.77 7.89 6.97 

AVG-16 173.17 2.80 5.35 7.65 

AVG-17 181.89 2.79 4.50 5.82 

AVG-18 176.82 2.92 3.86 5.86 

AVG-19 171.15 2.79 3.18 5.46 

AVG-20 168.10 3.12 2.79 5.21 

AVG-21 204.60 1.72 1.79 2.52 

AVG-22 202.17 1.95 1.45 2.79 

AVG-23 195.48 2.06 1.26 4.26 

AVG-24 205.21 2.25 1.03 2.98 

AVG-25 199.33 2.13 0.97 2.42 

AVG-26 201.56 2.24 0.84 2.40 

AVG-27 219.00 2.30 1.04 2.46 

AVG-28 208.86 2.51 0.76 2.75 

AVG-29 210.28 2.36 0.83 2.40 

AVG-30 216.97 2.41 0.86 2.46 

 

8.4.3.  EC 2 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 
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Rep1-1 249.82 14.44 89.15 44.66 

Rep1-2 257.94 7.35 81.98 30.08 

Rep1-3 287.95 6.70 63.07 27.72 

Rep1-4 323.64 5.76 58.58 22.42 

Rep1-5 362.57 5.85 40.32 16.77 

Rep1-6 390.15 5.93 38.29 12.79 

Rep1-7 410.43 6.47 23.92 10.03 

Rep1-8 378.79 6.33 16.40 6.92 

Rep1-9 425.03 6.89 10.13 5.99 

Rep1-10 442.87 7.46 8.30 6.40 

Rep1-11 366.62 2.94 4.06 5.94 

Rep1-12 399.88 2.80 3.66 5.47 

Rep1-13 418.54 3.00 2.88 5.19 

Rep1-14 392.58 2.71 2.26 4.67 

Rep1-15 424.21 2.85 2.01 4.50 

Rep1-16 443.68 2.77 3.24 4.32 

Rep1-17 369.06 3.08 1.98 3.86 

Rep1-18 442.06 2.57 1.88 3.92 

Rep1-19 419.35 1.36 1.63 3.57 

Rep1-20 429.08 1.95 2.23 3.57 

Rep1-21 475.31 3.81 0.95 3.11 

Rep1-22 493.97 3.76 0.93 3.00 

Rep1-23 434.76 3.70 0.65 2.94 

Rep1-24 459.09 4.15 0.80 2.88 

Rep1-25 468.83 4.13 1.03 2.94 

Rep1-26 468.01 3.96 0.88 2.94 

Rep1-27 421.78 4.01 0.65 2.77 

Rep1-28 463.15 4.35 0.78 2.48 

Rep1-29 446.11 4.01 0.73 3.05 

Rep1-30 450.98 4.63 0.88 3.00 

Rep2-1 240.09 13.93 65.33 31.98 

Rep2-2 258.75 8.17 64.40 28.64 

Rep2-3 322.82 5.48 58.08 23.11 

Rep2-4 316.34 5.96 42.71 25.88 

Rep2-5 361.76 6.89 47.45 16.02 

Rep2-6 277.40 7.01 27.01 13.66 

Rep2-7 390.15 5.99 27.21 11.93 

Rep2-8 330.94 4.72 14.57 8.76 

Rep2-9 401.50 5.99 10.63 6.05 

Rep2-10 403.13 5.26 6.34 6.69 

Rep2-11 386.90 1.38 4.24 6.45 

Rep2-12 419.35 1.33 3.81 6.05 

Rep2-13 435.57 1.47 3.11 5.30 

Rep2-14 434.76 1.47 2.61 5.13 

Rep2-15 440.44 1.44 2.61 4.78 

Rep2-16 395.01 1.55 2.33 4.32 
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Rep2-17 391.77 1.72 2.23 4.32 

Rep2-18 408.80 1.70 2.31 4.15 

Rep2-19 424.21 1.61 2.36 3.75 

Rep2-20 440.44 1.92 1.98 4.09 

Rep2-21 446.11 4.27 0.83 3.34 

Rep2-22 468.01 4.21 0.75 3.28 

Rep2-23 431.51 4.78 0.73 2.94 

Rep2-24 476.13 4.58 0.90 3.28 

Rep2-25 460.71 4.41 0.73 3.17 

Rep2-26 467.20 4.66 0.78 3.23 

Rep2-27 493.97 4.80 0.88 3.11 

Rep2-28 447.74 4.89 0.88 3.00 

Rep2-29 462.34 4.52 0.83 3.23 

Rep2-30 467.20 4.63 0.78 3.00 

Rep3-1 229.55 25.80 84.71  

Rep3-2 257.94 9.41 85.19  

Rep3-3 253.07 7.37 75.46  

Rep3-4 235.22 8.05 56.75  

Rep3-5 317.96 8.50 54.57  

Rep3-6 322.01 8.08 31.22  

Rep3-7 367.44 8.73 17.40  

Rep3-8 365.81 8.02 10.31  

Rep3-9 292.81 8.87 6.29  

Rep3-10 377.17 9.47 4.71  

Rep3-11 344.72 1.64 6.02  

Rep3-12 322.82 1.78 4.04  

Rep3-13 295.25 1.44 3.49  

Rep3-14 344.72 1.72 2.76  

Rep3-15 335.80 1.95 2.08  

Rep3-16 351.21 1.84 1.96  

Rep3-17 360.14 2.32 1.66  

Rep3-18 407.99 2.20 1.96  

Rep3-19 386.09 2.12 1.76  

Rep3-20 374.74 2.51 2.08  

Rep3-21 417.73 1.30 4.29  

Rep3-22 426.65 0.93 2.43  

Rep3-23 392.58 0.65 2.81  

Rep3-24 408.80 0.99 1.88  

Rep3-25 415.29 0.82 2.01  

Rep3-26 396.64 3.08 2.78  

Rep3-27 397.45 1.02 2.01  

Rep3-28 410.43 1.38 2.26  

Rep3-29 395.82 1.24 1.81  

Rep3-30 411.24 1.75 1.78  

Rep4-1 280.65 11.47 84.86 44.61 

Rep4-2 289.57 4.41 67.06 33.60 
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Rep4-3 289.57 4.10 64.32 21.78 

Rep4-4 339.86 4.58 60.06 16.94 

Rep4-5 331.75 3.48 51.61 14.00 

Rep4-6 373.11 3.62 35.08 10.60 

Rep4-7 416.91 3.90 24.12 7.61 

Rep4-8 401.50 3.28 11.86 5.82 

Rep4-9 453.41 3.73 8.25 5.30 

Rep4-10 414.48 3.67 5.34 4.38 

Rep4-11 398.26 4.10 4.66 5.53 

Rep4-12 390.96 4.18 4.14 4.96 

Rep4-13 425.84 4.04 3.01 4.67 

Rep4-14 413.67 4.41 3.54 3.98 

Rep4-15 399.88 4.32 3.31 3.69 

Rep4-16 425.84 4.27 2.86 3.40 

Rep4-17 383.66 4.55 2.33 3.17 

Rep4-18 341.48 4.83 3.11 2.88 

Rep4-19 413.67 4.49 2.96 3.05 

Rep4-20 413.67 4.83 2.91 3.17 

Rep4-21 355.27 0.14 3.84 6.74 

Rep4-22 407.99 0.31 1.45 4.96 

Rep4-23 357.70 0.54 1.28 5.71 

Rep4-24 378.79 0.73 1.23 4.96 

Rep4-25 382.85 0.79 0.98 5.71 

Rep4-26 323.64 1.38 0.88 5.42 

Rep4-27 401.50 1.41 0.98 5.30 

Rep4-28 420.16 1.55 0.63 4.96 

Rep4-29 366.62 1.58 0.48 5.53 

Rep4-30 436.38 1.78 3.79 5.01 

AVG-1 250.03 16.41 81.01 40.42 

AVG-2 266.05 7.33 74.66 30.77 

AVG-3 288.35 5.91 65.23 24.20 

AVG-4 303.76 6.09 54.52 21.75 

AVG-5 343.51 6.18 48.49 15.60 

AVG-6 340.67 6.16 32.90 12.35 

AVG-7 396.23 6.27 23.17 9.85 

AVG-8 369.26 5.59 13.28 7.17 

AVG-9 393.19 6.37 8.83 5.78 

AVG-10 409.41 6.46 6.18 5.82 

AVG-11 374.13 2.51 4.75 5.97 

AVG-12 383.25 2.52 3.91 5.49 

AVG-13 393.80 2.49 3.12 5.05 

AVG-14 396.43 2.58 2.79 4.59 

AVG-15 400.08 2.64 2.50 4.32 

AVG-16 403.94 2.61 2.60 4.01 

AVG-17 376.16 2.92 2.05 3.78 

AVG-18 400.08 2.83 2.31 3.65 
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AVG-19 410.83 2.39 2.18 3.46 

AVG-20 414.48 2.80 2.30 3.61 

AVG-21 423.61 2.38 2.48 4.40 

AVG-22 449.16 2.30 1.39 3.75 

AVG-23 404.14 2.42 1.37 3.86 

AVG-24 430.70 2.61 1.20 3.71 

AVG-25 431.92 2.54 1.18 3.94 

AVG-26 413.87 3.27 1.33 3.86 

AVG-27 428.68 2.81 1.13 3.73 

AVG-28 435.37 3.04 1.13 3.48 

AVG-29 417.73 2.84 0.96 3.94 

AVG-30 441.45 3.20 1.81 3.67 

 

8.4.4.  EC 4 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 527.23 17.89 167.99 71.40 

Rep1-2 579.95 8.93 129.60 42.70 

Rep1-3 680.53 7.57 74.86 34.29 

Rep1-4 715.40 7.26 46.42 20.98 

Rep1-5 792.46 7.60 19.33 12.33 

Rep1-6 837.07 7.43 9.76 10.26 

Rep1-7 812.74 7.77 5.84 7.72 

Rep1-8 751.09 7.69 5.34 6.86 

Rep1-9 844.37 7.60 3.94 6.11 

Rep1-10 820.04 7.54 3.86 4.73 

Rep1-11 811.12 2.80 3.13 4.38 

Rep1-12 814.36 3.02 3.01 4.21 

Rep1-13 841.13 2.94 2.68 3.75 

Rep1-14 852.48 3.02 3.01 3.52 

Rep1-15 780.29 3.05 2.81 2.94 

Rep1-16 740.55 3.25 3.01 2.94 

Rep1-17 721.89 2.74 2.61 2.88 

Rep1-18 850.86 3.25 2.21 2.71 

Rep1-19 848.43 3.22 2.68 2.77 

Rep1-20 719.46 3.42 2.36 2.77 

Rep1-21 851.67 2.29 2.53 3.05 

Rep1-22 870.33 1.78 2.11 2.94 

Rep1-23 745.42 1.95 2.06 3.00 

Rep1-24 546.69 2.03 2.51 2.77 

Rep1-25 821.66 2.09 2.06 2.88 

Rep1-26 744.61 2.09 1.43 2.82 

Rep1-27 694.32 2.12 2.08 2.71 

Rep1-28 788.41 2.29 1.93 2.94 
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Rep1-29 841.94 2.66 2.13 2.77 

Rep1-30 790.03 2.54 1.66 2.82 

Rep2-1 455.04 20.34 142.51 115.09 

Rep2-2 585.63 7.26 99.91 64.43 

Rep2-3 668.36 7.32 60.29 34.75 

Rep2-4 480.99 6.78 46.29 43.22 

Rep2-5 672.42 6.64 16.70 21.84 

Rep2-6 785.16 6.30 10.56 10.49 

Rep2-7 811.12 6.72 5.69 8.41 

Rep2-8 691.88 6.44 3.76 9.62 

Rep2-9 870.33 5.93 2.71 6.92 

Rep2-10 792.46 6.58 2.48 5.94 

Rep2-11 738.93 5.20 3.94 5.13 

Rep2-12 811.12 4.83 3.24 4.73 

Rep2-13 822.47 5.37 2.83 4.32 

Rep2-14 809.49 5.06 3.11 3.80 

Rep2-15 859.78 5.23 2.93 3.63 

Rep2-16 768.94 5.28 2.96 3.23 

Rep2-17 790.03 5.26 3.01 3.17 

Rep2-18 828.15 5.54 2.91 3.05 

Rep2-19 825.72 5.31 3.13 3.34 

Rep2-20 779.48 5.45 2.71 3.11 

Rep2-21 829.77 0.68 2.11 3.23 

Rep2-22 798.95 1.67 2.28 3.17 

Rep2-23 568.59 2.18 2.66 2.82 

Rep2-24 842.75 1.61 1.86 3.11 

Rep2-25 756.77 2.06 2.36 3.11 

Rep2-26 788.41 2.01 2.18 2.94 

Rep2-27 816.79 1.22 1.88 2.94 

Rep2-28 758.39 1.50 2.23 3.00 

Rep2-29 814.36 1.27 0.90 3.11 

Rep2-30 736.49 1.24 1.43 3.17 

Rep3-1 472.07 29.92 153.15  

Rep3-2 440.44 9.52 105.80  

Rep3-3 592.12 7.83 79.09  

Rep3-4 671.60 6.92 33.35  

Rep3-5 685.39 6.87 11.94  

Rep3-6 635.10 8.00 6.72  

Rep3-7 710.54 7.54 5.39  

Rep3-8 745.42 7.37 4.24  

Rep3-9 783.54 7.91 3.86  

Rep3-10 629.43 8.65 3.86  

Rep3-11 931.97 1.36 3.66  

Rep3-12 921.43 1.30 1.83  

Rep3-13 925.48 1.64 2.01  

Rep3-14 869.52 1.55 1.25  
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Rep3-15 721.08 1.92 1.30  

Rep3-16 811.93 1.86 1.20  

Rep3-17 929.54 1.67 1.05  

Rep3-18 870.33 2.23 0.90  

Rep3-19 882.50 1.78 0.75  

Rep3-20 751.91 2.01 0.88  

Rep3-21 567.78 1.75 0.95  

Rep3-22 684.58 1.86 2.21  

Rep3-23 756.77 2.06 1.53  

Rep3-24 819.23 1.89 2.53  

Rep3-25 543.45 2.32 2.81  

Rep3-26 712.16 2.03 2.08  

Rep3-27 644.84 2.15 1.91  

Rep3-28 760.02 2.54 2.26  

Rep3-29 812.74 1.89 0.93  

Rep3-30 741.36 2.12 1.78  

Rep4-1 530.47 19.83 136.27 67.25 

Rep4-2 507.76 6.44 98.53 40.63 

Rep4-3 720.27 4.44 70.87 29.68 

Rep4-4 848.43 4.75 26.63 17.40 

Rep4-5 921.43 4.69 9.86 10.60 

Rep4-6 856.54 4.78 5.99 7.15 

Rep4-7 805.44 4.44 4.09 6.51 

Rep4-8 794.89 4.92 3.66 5.07 

Rep4-9 938.46 4.83 2.71 4.78 

Rep4-10 896.28 4.80 2.53 4.55 

Rep4-11 853.29 2.03 1.20 4.32 

Rep4-12 807.06 2.06 1.25 4.09 

Rep4-13 914.94 1.92 1.15 3.57 

Rep4-14 791.65 2.01 1.05 3.57 

Rep4-15 893.85 2.23 0.90 2.88 

Rep4-16 914.13 2.20 0.83 3.17 

Rep4-17 849.24 2.18 0.85 2.65 

Rep4-18 855.73 2.20 0.73 2.82 

Rep4-19 893.04 2.46 0.85 2.59 

Rep4-20 896.28 2.68 0.75 2.54 

Rep4-21 736.49 1.84 2.06 6.34 

Rep4-22 588.06 1.78 2.03 6.17 

Rep4-23 708.10 2.09 1.93 5.59 

Rep4-24 760.83 2.26 1.81 6.45 

Rep4-25 726.76 2.03 1.76 6.22 

Rep4-26 669.17 2.18 1.68 5.53 

Rep4-27 745.42 2.20 1.68 5.88 

Rep4-28 825.72 2.18 1.68 5.82 

Rep4-29 837.88 2.20 1.76 5.99 

Rep4-30 752.72 3.02 2.06 6.34 
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AVG-1 496.20 22.00 149.98 84.58 

AVG-2 528.44 8.04 108.46 49.25 

AVG-3 665.32 6.79 71.28 32.91 

AVG-4 679.11 6.43 38.17 27.20 

AVG-5 767.92 6.45 14.46 14.93 

AVG-6 778.47 6.63 8.26 9.30 

AVG-7 784.96 6.62 5.25 7.55 

AVG-8 745.82 6.60 4.25 7.18 

AVG-9 859.18 6.57 3.30 5.94 

AVG-10 784.55 6.89 3.18 5.07 

AVG-11 833.83 2.85 2.98 4.61 

AVG-12 838.49 2.80 2.33 4.34 

AVG-13 876.01 2.97 2.17 3.88 

AVG-14 830.79 2.91 2.11 3.63 

AVG-15 813.75 3.11 1.99 3.15 

AVG-16 808.89 3.15 2.00 3.11 

AVG-17 822.68 2.96 1.88 2.90 

AVG-18 851.27 3.31 1.69 2.86 

AVG-19 862.42 3.19 1.86 2.90 

AVG-20 786.78 3.39 1.67 2.80 

AVG-21 746.43 1.64 1.91 4.21 

AVG-22 735.48 1.77 2.16 4.09 

AVG-23 694.72 2.07 2.04 3.80 

AVG-24 742.37 1.95 2.18 4.11 

AVG-25 712.16 2.13 2.24 4.07 

AVG-26 728.59 2.08 1.84 3.77 

AVG-27 725.34 1.92 1.89 3.84 

AVG-28 783.13 2.13 2.03 3.92 

AVG-29 826.73 2.01 1.43 3.96 

AVG-30 755.15 2.23 1.73 4.11 

 

8.4.5.  EC 8 

Rep#-PV# Ca (ppm) Na (ppm) Mg (ppm) K (ppm) 

Rep1-1 1382.95 16.25 243.20 180.55 

Rep1-2 894.66 5.23 126.89 140.44 

Rep1-3 1711.46 3.28 36.16 44.66 

Rep1-4 1610.07 3.62 11.41 24.49 

Rep1-5 776.24 3.59 6.19 21.15 

Rep1-6 1348.08 3.76 5.22 11.35 

Rep1-7 1419.45 3.81 3.76 8.47 

Rep1-8 1384.58 4.01 3.39 8.13 

Rep1-9 1469.74 4.46 2.11 6.28 

Rep1-10 1678.20 4.61 2.56 4.55 
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Rep1-11 1906.12 5.71 3.61 5.94 

Rep1-12 1929.65 5.79 3.06 5.65 

Rep1-13 1906.94 5.74 3.46 5.30 

Rep1-14 1898.82 6.24 3.29 4.67 

Rep1-15 1942.62 5.88 3.13 4.61 

Rep1-16 1923.16 6.30 3.21 4.73 

Rep1-17 1950.74 6.36 3.08 4.61 

Rep1-18 1969.39 6.19 3.21 4.32 

Rep1-19 1670.09 7.12 3.41 4.38 

Rep1-20 1992.10 6.33 2.96 4.09 

Rep1-21 4531.71 0.99 2.21 2.19 

Rep1-22 3400.20 1.16 1.63 2.48 

Rep1-23 4022.33 0.93 1.58 2.42 

Rep1-24 4026.38 1.16 1.10 2.36 

Rep1-25 2585.03 0.54 1.25 2.48 

Rep1-26 2658.84 1.05 1.03 2.48 

Rep1-27 2564.75 0.96 1.00 2.48 

Rep1-28 2400.09 0.85 1.25 2.48 

Rep1-29 2600.44 0.42 1.00 2.42 

Rep1-30 2496.62 0.85 1.18 2.59 

Rep2-1 1292.92 26.70 267.70 201.59 

Rep2-2 1681.44 8.56 124.83 124.13 

Rep2-3 1821.77 8.05 24.98 62.30 

Rep2-4 1892.34 7.35 9.98 37.06 

Rep2-5 1852.59 7.18 5.34 17.52 

Rep2-6 1942.62 8.22 4.56 14.06 

Rep2-7 2124.31 8.14 3.74 10.72 

Rep2-8 1931.27 8.93 3.89 8.76 

Rep2-9 1850.97 8.14 2.31 8.59 

Rep2-10 1783.65 8.39 2.76 8.59 

Rep2-11 1969.39 3.79 4.79 6.80 

Rep2-12 1547.61 3.93 2.56 5.36 

Rep2-13 2166.49 3.73 2.41 5.47 

Rep2-14 1980.75 3.79 2.13 4.55 

Rep2-15 1507.87 3.76 1.86 4.32 

Rep2-16 1819.33 3.93 2.13 4.55 

Rep2-17 2286.54 4.04 2.03 4.44 

Rep2-18 1413.78 4.44 2.18 3.98 

Rep2-19 1361.86 4.35 2.01 4.15 

Rep2-20 1774.72 4.55 1.86 3.52 

Rep2-21 6037.95 1.19 1.18 2.31 

Rep2-22 3435.08 1.13 1.30 3.23 

Rep2-23 2713.19 1.13 1.40 2.82 

Rep2-24 3699.50 0.37 0.95 2.31 

Rep2-25 2607.74 0.48 1.35 2.54 

Rep2-26 2591.52 0.37 1.50 2.59 
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Rep2-27 2729.41 0.00 1.35 2.31 

Rep2-28 2313.30 0.20 1.43 2.48 

Rep2-29 2627.21 0.14 1.50 2.36 

Rep2-30 3142.27 0.51 2.48 2.65 

Rep3-1 858.16 29.02 259.25 0.00 

Rep3-2 1009.84 8.65 154.90 0.00 

Rep3-3 1248.31 7.09 41.98 0.00 

Rep3-4 1228.03 7.83 15.32 0.00 

Rep3-5 1054.45 7.97 8.28 0.00 

Rep3-6 1496.51 8.73 5.64 0.00 

Rep3-7 1073.11 8.90 4.87 0.00 

Rep3-8 1063.37 8.90 4.59 0.00 

Rep3-9 1450.28 8.05 4.29 0.00 

Rep3-10 1153.41 7.85 4.81 0.00 

Rep3-11 1726.06 4.63 4.74 0.00 

Rep3-12 1305.90 4.83 2.96 0.00 

Rep3-13 1463.25 5.00 1.88 0.00 

Rep3-14 1929.65 4.83 1.63 0.00 

Rep3-15 1761.75 4.92 2.03 0.00 

Rep3-16 1576.00 5.03 1.93 0.00 

Rep3-17 2334.39 4.92 2.23 0.00 

Rep3-18 2440.65 5.37 1.58 0.00 

Rep3-19 1160.71 5.28 2.28 0.00 

Rep3-20 2269.50 5.23 2.21 0.00 

Rep3-21 1890.71 1.16 3.08 0.00 

Rep3-22 1421.89 1.38 2.91 0.00 

Rep3-23 1441.35 1.70 2.93 0.00 

Rep3-24 1534.63 1.64 2.41 0.00 

Rep3-25 1773.10 1.44 2.26 0.00 

Rep3-26 1653.06 1.70 2.53 0.00 

Rep3-27 1891.52 1.86 2.26 0.00 

Rep3-28 1282.38 1.98 2.43 0.00 

Rep3-29 1611.69 1.98 2.53 0.00 

Rep3-30 1580.06 2.18 3.46 0.00 

Rep4-1 1326.18 15.43 230.86 126.61 

Rep4-2 1667.66 7.06 140.61 79.53 

Rep4-3 1962.09 5.99 43.91 45.99 

Rep4-4 1994.54 6.39 12.86 22.07 

Rep4-5 1039.04 5.76 6.82 17.29 

Rep4-6 1500.57 6.05 4.29 9.80 

Rep4-7 1943.44 6.10 3.84 8.30 

Rep4-8 1938.57 6.39 3.31 7.15 

Rep4-9 1464.07 6.56 3.08 6.80 

Rep4-10 1616.56 6.47 2.63 5.47 

Rep4-11 1309.95 4.35 4.51 4.26 

Rep4-12 1826.63 3.90 3.18 4.55 
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Rep4-13 1344.83 4.21 2.81 4.15 

Rep4-14 1387.82 4.46 2.41 3.80 

Rep4-15 882.50 4.49 2.36 4.15 

Rep4-16 1551.67 4.52 2.53 4.09 

Rep4-17 1615.74 4.58 2.91 4.09 

Rep4-18 1089.33 5.23 2.51 3.98 

Rep4-19 1206.13 5.40 2.28 3.86 

Rep4-20 1369.98 5.31 2.61 3.86 

Rep4-21 1434.87 1.75 7.37 1.73 

Rep4-22 1366.73 1.86 2.21 1.73 

Rep4-23 1336.72 1.78 2.48 1.90 

Rep4-24 1361.86 2.03 2.13 1.90 

Rep4-25 1008.22 2.35 2.18 2.13 

Rep4-26 1401.61 2.35 1.93 2.19 

Rep4-27 1514.35 2.09 1.55 2.36 

Rep4-28 1134.75 2.37 1.98 2.31 

Rep4-29 1361.05 2.63 1.96 2.13 

Rep4-30 1424.32 2.74 2.86 2.36 

AVG-1 1215.05 21.85 250.25 169.59 

AVG-2 1313.40 7.37 136.81 114.70 

AVG-3 1685.91 6.10 36.76 50.98 

AVG-4 1681.24 6.29 12.39 27.87 

AVG-5 1180.58 6.12 6.66 18.65 

AVG-6 1571.94 6.69 4.93 11.74 

AVG-7 1640.08 6.74 4.05 9.16 

AVG-8 1579.45 7.06 3.79 8.01 

AVG-9 1558.76 6.80 2.95 7.22 

AVG-10 1557.95 6.83 3.19 6.20 

AVG-11 1727.88 4.62 4.41 5.67 

AVG-12 1652.45 4.61 2.94 5.19 

AVG-13 1720.38 4.67 2.64 4.98 

AVG-14 1799.26 4.83 2.36 4.34 

AVG-15 1523.68 4.76 2.34 4.36 

AVG-16 1717.54 4.94 2.45 4.46 

AVG-17 2046.85 4.97 2.56 4.38 

AVG-18 1728.29 5.30 2.37 4.09 

AVG-19 1349.70 5.54 2.50 4.13 

AVG-20 1851.58 5.35 2.41 3.82 

AVG-21 3473.81 1.27 3.46 2.07 

AVG-22 2405.97 1.38 2.01 2.48 

AVG-23 2378.40 1.38 2.10 2.38 

AVG-24 2655.60 1.30 1.65 2.19 

AVG-25 1993.52 1.20 1.76 2.38 

AVG-26 2076.26 1.36 1.75 2.42 

AVG-27 2175.01 1.23 1.54 2.38 

AVG-28 1782.63 1.35 1.77 2.42 
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AVG-29 2050.10 1.29 1.75 2.31 

AVG-30 2160.81 1.57 2.50 2.54 
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8.5.  Appendix E: Black Vertosol Hydraulic Conductivity Data 

 Time (h) for PV to flow through 

Rep#-PV# EC 0.5 EC 1 EC 2 EC 4 EC 8 

Rep1-1 0.378 0.369 0.397 0.494 0.314 

Rep1-2 0.336 0.322 0.353 0.453 0.261 

Rep1-3 0.356 0.319 0.356 0.469 0.281 

Rep1-4 0.417 0.239 0.339 0.422 0.236 

Rep1-5 0.367 0.225 0.369 0.364 0.197 

Rep1-6 0.469 0.347 0.383 0.467 0.292 

Rep1-7 0.403 0.356 0.372 0.461 0.303 

Rep1-8 0.414 0.369 0.389 0.469 0.289 

Rep1-9 0.386 0.364 0.381 0.519 0.289 

Rep1-10 0.383 0.344 0.383 0.472 0.269 

Rep2-1 0.389 0.300 0.419 0.425 0.308 

Rep2-2 0.336 0.289 0.381 0.367 0.275 

Rep2-3 0.328 0.289 0.392 0.319 0.275 

Rep2-4 0.314 0.319 0.414 0.328 0.261 

Rep2-5 0.336 0.286 0.350 0.264 0.247 

Rep2-6 0.306 0.311 0.447 0.350 0.283 

Rep2-7 0.361 0.336 0.439 0.372 0.306 

Rep2-8 0.364 0.311 0.450 0.369 0.269 

Rep2-9 0.353 0.317 0.361 0.383 0.264 

Rep2-10 0.300 0.314 0.297 0.356 0.269 

Rep3-1 0.372 

 

0.389 0.431 0.325 

Rep3-2 0.331 

 

0.281 0.319 0.247 

Rep3-3 0.386 

 

0.297 0.333 0.289 

Rep3-4 0.411 

 

0.261 0.389 0.269 

Rep3-5 0.450 

 

0.311 0.375 0.286 

Rep3-6 0.453 

 

0.333 0.353 0.289 

Rep3-7 0.453 

 

0.353 0.400 0.306 

Rep3-8 0.447 

 

0.361 0.325 0.283 

Rep3-9 0.503 

 

0.317 0.383 0.322 

Rep3-10 0.486 

 

0.283 0.381 0.294 

Rep4-1 0.522 0.369 0.361 0.286 0.297 

Rep4-2 0.515 0.325 0.306 0.256 0.253 

Rep4-3 0.565 0.331 0.308 0.278 0.274 

Rep4-4 0.568 0.338 0.328 0.251 0.249 

Rep4-5 0.633 0.340 0.322 0.242 0.256 

Rep4-6 0.674 0.357 0.379 0.238 0.264 

Rep4-7 0.729 0.376 0.367 0.278 0.261 

Rep4-8 0.868 0.401 0.346 0.272 0.275 

Rep4-9 0.742 0.368 0.353 0.269 0.282 

Rep4-10 0.783 0.383 0.351 0.268 0.276 

AVG-1 0.415 0.346 0.392 0.409 0.311 
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AVG-2 0.380 0.312 0.330 0.349 0.259 

AVG-3 0.409 0.313 0.338 0.350 0.280 

AVG-4 0.427 0.299 0.335 0.348 0.254 

AVG-5 0.447 0.284 0.338 0.311 0.247 

AVG-6 0.475 0.338 0.386 0.352 0.282 

AVG-7 0.486 0.356 0.383 0.378 0.294 

AVG-8 0.523 0.361 0.386 0.359 0.279 

AVG-9 0.496 0.350 0.353 0.389 0.289 

AVG-10 0.488 0.347 0.329 0.369 0.277 
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8.6.  Appendix F: Red Ferosol Hydraulic Conductivity Data 

 

Time (h) for PV to flow through 

Rep#-PV# EC 0.5 EC 1 EC 2 EC 4 EC 8 

Rep1-1 0.044 0.065 0.053 0.053 0.064 

Rep1-2 0.044 0.057 0.051 0.047 0.061 

Rep1-3 0.047 0.063 0.056 0.046 0.065 

Rep1-4 0.051 0.065 0.053 0.047 0.063 

Rep1-5 0.046 0.067 0.058 0.051 0.065 

Rep1-6 0.050 0.069 0.061 0.058 0.068 

Rep1-7 0.050 0.064 0.057 0.061 0.065 

Rep1-8 0.050 0.063 0.058 0.064 0.068 

Rep1-9 0.049 0.071 0.064 0.064 0.072 

Rep1-10 0.051 0.078 0.064 0.058 0.075 

Rep2-1 0.060 0.058 0.067 0.060 0.044 

Rep2-2 0.063 0.050 0.058 0.053 0.044 

Rep2-3 0.058 0.056 0.061 0.056 0.047 

Rep2-4 0.061 0.056 0.067 0.060 0.050 

Rep2-5 0.064 0.061 0.068 0.075 0.046 

Rep2-6 0.065 0.067 0.071 0.065 0.057 

Rep2-7 0.060 0.069 0.069 0.065 0.053 

Rep2-8 0.065 0.064 0.068 0.067 0.050 

Rep2-9 0.065 0.067 0.063 0.067 0.053 

Rep2-10 0.069 0.067 0.058 0.067 0.056 

Rep3-1 0.083 0.049 0.049 0.050 0.040 

Rep3-2 0.092 0.046 0.046 0.044 0.040 

Rep3-3 0.092 0.047 0.049 0.046 0.042 

Rep3-4 0.097 0.050 0.054 0.046 0.044 

Rep3-5 0.100 0.050 0.050 0.047 0.046 

Rep3-6 0.103 0.054 0.057 0.054 0.050 

Rep3-7 0.106 0.056 0.058 0.050 0.046 

Rep3-8 0.106 0.054 0.056 0.051 0.049 

Rep3-9 0.114 0.056 0.060 0.050 0.049 

Rep3-10 0.113 0.058 0.056 0.053 0.047 

Rep4-1 0.072 0.060 0.042 0.061 0.058 

Rep4-2 0.069 0.058 0.039 0.057 0.063 

Rep4-3 0.079 0.065 0.038 0.060 0.061 

Rep4-4 0.078 0.065 0.039 0.067 0.064 

Rep4-5 0.090 0.067 0.036 0.065 0.067 

Rep4-6 0.083 0.068 0.040 0.075 0.075 

Rep4-7 0.081 0.079 0.040 0.076 0.069 

Rep4-8 0.082 0.075 0.040 0.069 0.075 

Rep4-9 0.086 0.082 0.054 0.081 0.078 

Rep4-10 0.092 0.069 0.039 0.076 0.072 

AVG-1 0.065 0.058 0.052 0.056 0.052 
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AVG-2 0.067 0.053 0.049 0.050 0.052 

AVG-3 0.069 0.058 0.051 0.052 0.054 

AVG-4 0.072 0.059 0.053 0.055 0.055 

AVG-5 0.075 0.061 0.053 0.060 0.056 

AVG-6 0.075 0.065 0.057 0.063 0.063 

AVG-7 0.074 0.067 0.056 0.063 0.058 

AVG-8 0.076 0.064 0.056 0.063 0.060 

AVG-9 0.078 0.069 0.060 0.065 0.063 

AVG-10 0.081 0.068 0.054 0.064 0.063 
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8.7.  Appendix G: Brown Tenosol Hydraulic Conductivity Data 

 Time (h) for PV to flow through 

Rep#-PV# EC 0.5 EC 1 EC 2 EC 4 EC 8 

Rep1-1 0.179 0.125 0.133 0.154 0.150 

Rep1-2 0.167 0.113 0.108 0.133 0.129 

Rep1-3 0.163 0.113 0.117 0.142 0.133 

Rep1-4 0.158 0.113 0.113 0.133 0.133 

Rep1-5 0.163 0.113 0.117 0.142 0.133 

Rep1-6 0.167 0.113 0.113 0.138 0.143 

Rep1-7 0.171 0.117 0.117 0.138 0.136 

Rep1-8 0.183 0.117 0.117 0.142 0.133 

Rep1-9 0.179 0.113 0.113 0.146 0.133 

Rep1-10 0.183 0.113 0.113 0.150 0.133 

Rep1-11 0.175 0.113 0.113 0.138 0.138 

Rep1-12 0.175 0.117 0.117 0.150 0.133 

Rep1-13 0.179 0.121 0.121 0.150 0.142 

Rep1-14 0.175 0.121 0.121 0.154 0.142 

Rep1-15 0.179 0.121 0.121 0.150 0.138 

Rep1-16 0.179 0.129 0.129 0.150 0.133 

Rep1-17 0.171 0.125 0.125 0.146 0.133 

Rep1-18 0.175 0.121 0.121 0.146 0.138 

Rep1-19 0.171 0.125 0.108 0.146 0.175 

Rep1-20 0.183 0.125 0.113 0.154 0.138 

Rep1-21 0.175 0.117 0.108 0.146 0.142 

Rep1-22 0.179 0.121 0.112 0.146 0.138 

Rep1-23 0.175 0.125 0.117 0.154 0.138 

Rep1-24 0.188 0.125 0.113 0.150 0.142 

Rep1-25 0.175 0.121 0.175 0.150 0.154 

Rep1-26 0.179 0.129 0.117 0.154 0.138 

Rep1-27 0.179 0.113 0.096 0.150 0.138 

Rep1-28 0.179 0.129 0.104 0.175 0.142 

Rep1-29 0.183 0.121 0.113 0.150 0.142 

Rep1-30 0.179 0.125 0.117 0.150 0.142 

Rep2-1 0.171 0.150 0.147 0.175 0.283 

Rep2-2 0.133 0.133 0.132 0.129 0.263 

Rep2-3 0.146 0.133 0.121 0.133 0.258 

Rep2-4 0.146 0.129 0.129 0.133 0.254 

Rep2-5 0.138 0.129 0.125 0.138 0.250 

Rep2-6 0.142 0.138 0.125 0.133 0.238 

Rep2-7 0.154 0.138 0.133 0.138 0.254 

Rep2-8 0.146 0.146 0.133 0.138 0.246 

Rep2-9 0.146 0.146 0.125 0.142 0.242 

Rep2-10 0.142 0.146 0.129 0.142 0.242 

Rep2-11 0.154 0.142 0.129 0.138 0.246 
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Rep2-12 0.154 0.142 0.129 0.142 0.229 

Rep2-13 0.150 0.146 0.142 0.150 0.238 

Rep2-14 0.154 0.142 0.146 0.146 0.242 

Rep2-15 0.154 0.142 0.142 0.146 0.242 

Rep2-16 0.150 0.138 0.138 0.142 0.250 

Rep2-17 0.163 0.138 0.142 0.158 0.250 

Rep2-18 0.150 0.142 0.142 0.154 0.225 

Rep2-19 0.158 0.142 0.138 0.150 0.242 

Rep2-20 0.154 0.142 0.142 0.146 0.238 

Rep2-21 0.150 0.142 0.146 0.154 0.242 

Rep2-22 0.150 0.142 0.133 0.154 0.258 

Rep2-23 0.154 0.150 0.158 0.146 0.246 

Rep2-24 0.146 0.142 0.121 0.150 0.233 

Rep2-25 0.146 0.138 0.138 0.150 0.250 

Rep2-26 0.154 0.129 0.138 0.150 0.258 

Rep2-27 0.146 0.138 0.142 0.138 0.242 

Rep2-28 0.158 0.138 0.146 0.142 0.250 

Rep2-29 0.150 0.142 0.142 0.208 0.233 

Rep2-30 0.158 0.142 0.146 0.150 0.258 

Rep3-1 0.208 0.221 0.254 0.246 0.221 

Rep3-2 0.183 0.188 0.217 0.225 0.200 

Rep3-3 0.200 0.192 0.217 0.217 0.192 

Rep3-4 0.167 0.188 0.217 0.221 0.200 

Rep3-5 0.183 0.188 0.208 0.213 0.200 

Rep3-6 0.183 0.179 0.225 0.225 0.208 

Rep3-7 0.188 0.188 0.221 0.221 0.204 

Rep3-8 0.196 0.188 0.225 0.225 0.204 

Rep3-9 0.183 0.192 0.221 0.221 0.200 

Rep3-10 0.188 0.188 0.217 0.217 0.200 

Rep3-11 0.183 0.188 0.233 0.217 0.204 

Rep3-12 0.192 0.183 0.204 0.221 0.204 

Rep3-13 0.192 0.188 0.221 0.221 0.204 

Rep3-14 0.188 0.188 0.221 0.221 0.204 

Rep3-15 0.200 0.183 0.217 0.225 0.196 

Rep3-16 0.196 0.183 0.213 0.204 0.204 

Rep3-17 0.196 0.192 0.238 0.242 0.221 

Rep3-18 0.192 0.192 0.221 0.225 0.204 

Rep3-19 0.200 0.192 0.217 0.225 0.208 

Rep3-20 0.192 0.183 0.225 0.221 0.208 

Rep3-21 0.188 0.183 0.221 0.233 0.208 

Rep3-22 0.200 0.192 0.225 0.221 0.208 

Rep3-23 0.208 0.200 0.217 0.217 0.213 

Rep3-24 0.200 0.192 0.225 0.225 0.204 

Rep3-25 0.204 0.188 0.225 0.221 0.208 

Rep3-26 0.196 0.196 0.217 0.221 0.204 

Rep3-27 0.192 0.188 0.217 0.221 0.208 
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Rep3-28 0.196 0.187 0.225 0.217 0.200 

Rep3-29 0.192 0.196 0.217 0.225 0.208 

Rep3-30 0.196 0.192 0.212 0.221 0.208 

Rep4-1 0.133 0.229 0.213 0.263 0.163 

Rep4-2 0.121 0.196 0.188 0.238 0.138 

Rep4-3 0.125 0.200 0.183 0.229 0.142 

Rep4-4 0.129 0.192 0.183 0.221 0.138 

Rep4-5 0.129 0.188 0.188 0.233 0.133 

Rep4-6 0.121 0.196 0.179 0.217 0.138 

Rep4-7 0.129 0.204 0.175 0.225 0.138 

Rep4-8 0.129 0.200 0.183 0.221 0.154 

Rep4-9 0.125 0.200 0.188 0.225 0.154 

Rep4-10 0.129 0.196 0.179 0.217 0.142 

Rep4-11 0.129 0.192 0.179 0.279 0.146 

Rep4-12 0.125 0.200 0.179 0.171 0.138 

Rep4-13 0.146 0.196 0.188 0.225 0.133 

Rep4-14 0.129 0.196 0.179 0.225 0.138 

Rep4-15 0.129 0.188 0.183 0.225 0.133 

Rep4-16 0.125 0.179 0.188 0.225 0.138 

Rep4-17 0.129 0.196 0.175 0.225 0.138 

Rep4-18 0.133 0.192 0.196 0.225 0.142 

Rep4-19 0.133 0.196 0.179 0.233 0.142 

Rep4-20 0.125 0.196 0.183 0.221 0.142 

Rep4-21 0.129 0.192 0.188 0.225 0.154 

Rep4-22 0.129 0.208 0.188 0.217 0.142 

Rep4-23 0.129 0.196 0.183 0.221 0.142 

Rep4-24 0.129 0.208 0.192 0.225 0.138 

Rep4-25 0.129 0.192 0.183 0.225 0.146 

Rep4-26 0.129 0.192 0.187 0.221 0.150 

Rep4-27 0.117 0.196 0.183 0.221 0.138 

Rep4-28 0.146 0.196 0.188 0.221 0.138 

Rep4-29 0.133 0.188 0.196 0.221 0.138 

Rep4-30 0.129 0.196 0.183 0.217 0.137 

AVG-1 0.173 0.181 0.187 0.209 0.204 

AVG-2 0.151 0.157 0.161 0.181 0.182 

AVG-3 0.158 0.159 0.159 0.180 0.181 

AVG-4 0.150 0.155 0.160 0.177 0.181 

AVG-5 0.153 0.154 0.159 0.181 0.179 

AVG-6 0.153 0.156 0.160 0.178 0.182 

AVG-7 0.160 0.161 0.161 0.180 0.183 

AVG-8 0.164 0.163 0.165 0.181 0.184 

AVG-9 0.158 0.163 0.161 0.183 0.182 

AVG-10 0.160 0.160 0.159 0.181 0.179 

AVG-11 0.160 0.158 0.164 0.193 0.183 

AVG-12 0.161 0.160 0.157 0.171 0.176 

AVG-13 0.167 0.163 0.168 0.186 0.179 
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AVG-14 0.161 0.161 0.167 0.186 0.181 

AVG-15 0.166 0.158 0.166 0.186 0.177 

AVG-16 0.163 0.157 0.167 0.180 0.181 

AVG-17 0.165 0.163 0.170 0.193 0.185 

AVG-18 0.163 0.161 0.170 0.188 0.177 

AVG-19 0.166 0.164 0.160 0.189 0.192 

AVG-20 0.164 0.161 0.166 0.185 0.181 

AVG-21 0.160 0.158 0.166 0.190 0.186 

AVG-22 0.165 0.166 0.165 0.184 0.186 

AVG-23 0.167 0.168 0.169 0.184 0.184 

AVG-24 0.166 0.167 0.163 0.188 0.179 

AVG-25 0.164 0.159 0.180 0.186 0.190 

AVG-26 0.165 0.161 0.165 0.186 0.188 

AVG-27 0.158 0.158 0.159 0.182 0.181 

AVG-28 0.170 0.163 0.166 0.189 0.182 

AVG-29 0.165 0.161 0.167 0.201 0.180 

AVG-30 0.166 0.164 0.165 0.184 0.186 

 

 Mass of water (g) 

Rep#-PV# EC 0.5 EC 1 EC 2 EC 4 EC 8 

Rep1-1 148.900 145.906 141.126 139.857 146.123 

Rep1-2 142.666 145.700 139.712 140.845 145.872 

Rep1-3 140.779 149.984 148.866 148.532 147.503 

Rep1-4 140.912 150.536 142.146 142.490 147.295 

Rep1-5 142.893 150.500 148.378 145.575 147.954 

Rep1-6 142.329 148.328 142.603 143.459 150.087 

Rep1-7 145.444 148.689 144.512 140.847 146.263 

Rep1-8 148.587 147.125 142.522 141.515 148.489 

Rep1-9 144.918 145.831 140.380 150.164 146.531 

Rep1-10 144.522 146.852 140.759 149.980 147.717 

Rep1-11 142.392 142.764 140.541 141.780 147.124 

Rep1-12 142.312 146.270 138.462 145.919 149.536 

Rep1-13 145.227 142.977 139.958 142.007 150.717 

Rep1-14 146.796 143.069 141.156 144.945 147.242 

Rep1-15 144.115 143.708 146.832 144.051 146.800 

Rep1-16 147.141 153.738 146.800 142.744 146.595 

Rep1-17 141.532 146.428 160.142 140.797 145.839 

Rep1-18 143.761 151.156 167.027 142.610 146.908 

Rep1-19 142.938 142.685 151.502 141.111 146.226 

Rep1-20 151.351 142.947 149.430 144.723 153.063 

Rep1-21 143.141 138.514 149.175 140.810 144.171 

Rep1-22 147.960 144.033 157.691 140.660 144.674 

Rep1-23 144.541 142.884 140.833 149.637 143.416 

Rep1-24 146.560 145.630 145.201 145.521 148.974 

Rep1-25 146.331 139.900 147.946 142.222 161.959 
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Rep1-26 144.532 142.246 145.975 141.858 146.549 

Rep1-27 148.978 147.626 161.788 142.985 146.939 

Rep1-28 146.454 149.049 147.390 152.218 145.401 

Rep1-29 149.957 151.454 143.854 145.642 148.249 

Rep1-30 144.159 148.490 148.319 145.986 149.024 

Rep2-1 152.224 146.396 154.237 164.611 145.021 

Rep2-2 138.478 147.261 159.880 141.479 146.197 

Rep2-3 150.465 145.993 144.408 145.020 148.067 

Rep2-4 147.373 143.429 145.744 150.109 144.813 

Rep2-5 140.949 145.338 143.818 144.697 146.303 

Rep2-6 144.863 142.493 145.099 143.677 144.863 

Rep2-7 151.678 141.708 151.183 145.420 146.984 

Rep2-8 147.962 145.065 143.534 147.877 144.658 

Rep2-9 145.347 149.693 145.593 150.653 143.294 

Rep2-10 144.235 144.491 142.100 149.315 144.351 

Rep2-11 145.520 143.622 143.573 143.349 143.405 

Rep2-12 148.426 147.195 145.339 146.158 140.269 

Rep2-13 139.844 148.077 146.937 148.091 139.590 

Rep2-14 143.097 149.247 152.269 145.730 145.255 

Rep2-15 145.625 144.008 144.955 144.543 143.613 

Rep2-16 153.342 140.775 145.493 140.736 148.310 

Rep2-17 149.263 146.266 144.883 158.574 143.085 

Rep2-18 145.490 142.564 145.539 143.612 144.558 

Rep2-19 148.536 145.172 144.432 144.924 147.380 

Rep2-20 150.186 142.943 149.278 144.544 146.352 

Rep2-21 145.096 144.786 147.755 147.915 144.070 

Rep2-22 146.876 145.847 140.119 153.175 154.431 

Rep2-23 148.864 151.369 149.823 148.371 148.033 

Rep2-24 145.121 145.120 143.220 142.710 149.590 

Rep2-25 147.122 145.234 144.053 146.687 149.708 

Rep2-26 158.427 143.058 148.396 147.941 143.592 

Rep2-27 152.103 143.419 145.730 142.881 152.259 

Rep2-28 150.611 152.997 153.695 146.213 145.934 

Rep2-29 148.249 143.945 141.592 151.774 143.625 

Rep2-30 149.500 147.244 149.485 140.874 145.433 

Rep3-1 143.968 142.966 141.319 140.020 139.841 

Rep3-2 147.380 143.840 141.594 144.366 142.216 

Rep3-3 143.590 144.722 143.981 140.717 141.198 

Rep3-4 145.933 143.602 142.980 141.595 145.273 

Rep3-5 141.513 143.088 140.963 139.451 144.873 

Rep3-6 144.188 140.992 148.346 144.808 149.787 

Rep3-7 146.046 144.755 145.952 141.212 144.937 

Rep3-8 148.245 145.720 149.044 144.968 144.370 

Rep3-9 141.751 150.103 147.989 140.246 145.038 

Rep3-10 143.746 145.668 142.461 139.462 143.868 

Rep3-11 143.700 146.380 142.754 143.433 147.022 
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Rep3-12 143.442 142.033 142.143 138.543 142.693 

Rep3-13 142.503 143.484 144.783 141.195 142.671 

Rep3-14 144.680 144.075 143.596 141.323 144.612 

Rep3-15 146.823 141.491 144.001 143.560 140.683 

Rep3-16 151.657 145.172 154.583 146.860 144.900 

Rep3-17 144.801 144.139 145.330 144.489 154.335 

Rep3-18 144.296 149.235 145.199 142.478 146.671 

Rep3-19 146.702 145.352 145.911 144.907 145.105 

Rep3-20 144.127 141.945 147.986 144.355 147.714 

Rep3-21 144.673 143.250 145.733 149.821 146.234 

Rep3-22 151.694 146.293 148.018 144.525 145.841 

Rep3-23 155.294 152.264 143.137 140.911 149.272 

Rep3-24 148.453 146.037 148.200 142.232 142.715 

Rep3-25 155.410 146.299 150.283 143.065 147.157 

Rep3-26 146.852 152.130 142.445 141.566 143.875 

Rep3-27 143.694 145.386 145.529 144.893 144.105 

Rep3-28 143.191 144.427 146.898 146.667 141.644 

Rep3-29 142.239 153.670 145.548 143.268 148.860 

Rep3-30 144.842 148.747 145.022 142.865 146.742 

Rep4-1 143.373 144.734 148.353 145.873 145.431 

Rep4-2 143.771 142.013 146.876 150.606 145.908 

Rep4-3 145.625 146.996 148.713 144.596 149.746 

Rep4-4 148.372 143.942 145.481 142.164 148.239 

Rep4-5 148.892 145.571 146.881 147.857 145.997 

Rep4-6 142.976 145.238 143.910 139.528 146.332 

Rep4-7 146.103 150.766 141.875 143.995 144.086 

Rep4-8 145.516 148.206 143.531 140.787 161.053 

Rep4-9 145.509 150.990 152.061 142.923 165.242 

Rep4-10 148.538 146.607 141.938 140.693 147.617 

Rep4-11 146.792 143.558 142.884 147.578 150.874 

Rep4-12 144.614 146.942 142.594 143.098 148.270 

Rep4-13 167.339 145.752 147.216 144.115 143.129 

Rep4-14 144.144 147.706 145.445 142.707 147.619 

Rep4-15 149.847 140.948 142.218 144.224 141.875 

Rep4-16 143.315 142.876 147.901 143.783 144.961 

Rep4-17 147.110 143.991 142.786 144.316 145.062 

Rep4-18 153.785 146.836 146.502 143.270 148.554 

Rep4-19 152.966 145.452 142.723 153.037 152.251 

Rep4-20 144.803 145.669 141.300 141.405 151.155 

Rep4-21 147.521 146.006 145.126 148.194 165.454 

Rep4-22 147.006 154.025 142.698 141.724 144.571 

Rep4-23 145.393 144.611 140.478 142.538 150.835 

Rep4-24 142.775 156.728 149.636 147.011 141.952 

Rep4-25 154.611 143.025 141.841 146.457 157.021 

Rep4-26 146.161 142.449 148.018 142.542 156.412 

Rep4-27 153.071 146.962 139.292 144.408 145.658 
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Rep4-28 147.054 145.678 145.276 145.002 144.776 

Rep4-29 147.641 143.028 150.615 144.739 148.680 

Rep4-30 151.524 143.952 140.318 140.711 143.766 

AVG-1 147.116 145.001 146.259 147.590 144.104 

AVG-2 143.074 144.704 147.016 144.324 145.048 

AVG-3 145.115 146.924 146.492 144.716 146.629 

AVG-4 145.648 145.377 144.088 144.090 146.405 

AVG-5 143.562 146.124 145.010 144.395 146.282 

AVG-6 143.589 144.263 144.990 142.868 147.767 

AVG-7 147.318 146.480 145.881 142.869 145.568 

AVG-8 147.578 146.529 144.658 143.787 149.643 

AVG-9 144.381 149.154 146.506 145.997 150.026 

AVG-10 145.260 145.905 141.815 144.863 145.888 

AVG-11 144.601 144.081 142.438 144.035 147.106 

AVG-12 144.699 145.610 142.135 143.430 145.192 

AVG-13 148.728 145.073 144.724 143.852 144.027 

AVG-14 144.679 146.024 145.617 143.676 146.182 

AVG-15 146.603 142.539 144.502 144.095 143.243 

AVG-16 148.864 145.640 148.694 143.531 146.192 

AVG-17 145.677 145.206 148.285 147.044 147.080 

AVG-18 146.833 147.448 151.067 142.993 146.673 

AVG-19 147.786 144.665 146.142 145.995 147.741 

AVG-20 147.617 143.376 146.999 143.757 149.571 

AVG-21 145.108 143.139 146.947 146.685 149.982 

AVG-22 148.384 147.550 147.132 145.021 147.379 

AVG-23 148.523 147.782 143.568 145.364 147.889 

AVG-24 145.727 148.379 146.564 144.369 145.808 

AVG-25 150.869 143.615 146.031 144.608 153.961 

AVG-26 148.993 144.971 146.209 143.477 147.607 

AVG-27 149.462 145.848 148.085 143.792 147.240 

AVG-28 146.828 148.038 148.315 147.525 144.439 

AVG-29 147.022 148.024 145.402 146.356 147.354 

AVG-30 147.506 147.108 145.786 142.609 146.241 
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8.8.  Appendix H: Black Vertosol Electrical Conductivity Data 

 Electrical Conductivity (dS/m) 

Rep#-PV# EC 0.5 EC 1 EC 2 EC 4 EC 8 

Rep1-1 1.009 1.606 2.506 4.24 7.59 

Rep1-2 0.57 1.096 1.979 3.71 6.81 

Rep1-3 0.542 1.052 1.931 3.6 6.78 

Rep1-4 0.539 1.052 1.938 3.6 6.78 

Rep1-5 0.547 1.052 1.915 3.66 6.74 

Rep1-6 0.532 1.052 1.936 3.58 6.71 

Rep1-7 0.525 1.035 1.908 3.57 6.71 

Rep1-8 0.531 1.035 1.925 3.56 6.73 

Rep1-9 0.531 1.037 1.927 3.58 6.75 

Rep1-10 0.527 1.043 1.932 3.58 6.78 

Rep2-1 1.118 1.602 2.585 4.34 7.54 

Rep2-2 0.589 1.077 1.984 3.64 6.9 

Rep2-3 0.542 1.035 1.936 3.59 6.79 

Rep2-4 0.541 1.035 1.93 3.58 6.9 

Rep2-5 0.533 1.019 1.943 3.58 6.76 

Rep2-6 0.526 1.025 1.921 3.6 6.75 

Rep2-7 0.533 1.015 1.927 3.56 6.73 

Rep2-8 0.525 1.02 1.911 3.56 6.8 

Rep2-9 0.525 1.024 1.924 3.55 6.82 

Rep2-10 0.525 1.022 1.94 3.57 6.8 

Rep3-1 1.073 0 2.584 4.29 7.48 

Rep3-2 0.584 0 1.983 3.66 6.76 

Rep3-3 0.555 0 1.94 3.6 6.68 

Rep3-4 0.552 0 1.933 3.63 6.68 

Rep3-5 0.547 0 1.926 3.57 6.59 

Rep3-6 0.536 0 1.916 3.58 6.53 

Rep3-7 0.53 0 1.924 3.56 6.52 

Rep3-8 0.533 0 1.917 3.58 6.56 

Rep3-9 0.531 0 1.943 3.56 6.54 

Rep3-10 0.531 0 1.943 3.56 6.53 

Rep4-1 1.091 1.594 2.538 4.15 7.44 

Rep4-2 0.587 1.083 1.992 3.69 6.83 

Rep4-3 0.542 1.038 1.933 3.64 6.75 

Rep4-4 0.546 1.029 1.933 3.56 6.73 

Rep4-5 0.523 1.029 1.917 3.52 6.84 

Rep4-6 0.507 1.029 1.918 3.6 6.65 

Rep4-7 0.53 1.027 1.911 3.57 6.74 

Rep4-8 0.521 1.022 1.908 3.57 6.75 

Rep4-9 0.526 1.027 1.914 3.56 6.7 

Rep4-10 0.523 1.027 1.916 3.56 6.77 

AVG-1 1.073 1.601 2.553 4.255 7.513 
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AVG-2 0.583 1.085 1.985 3.675 6.825 

AVG-3 0.545 1.042 1.935 3.608 6.750 

AVG-4 0.545 1.039 1.934 3.593 6.773 

AVG-5 0.538 1.033 1.925 3.583 6.733 

AVG-6 0.525 1.035 1.923 3.590 6.660 

AVG-7 0.530 1.026 1.918 3.565 6.675 

AVG-8 0.528 1.026 1.915 3.568 6.710 

AVG-9 0.528 1.029 1.927 3.563 6.703 

AVG-10 0.527 1.031 1.933 3.568 6.720 
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8.9.  Appendix I: Red Ferosol Electrical Conductivity Data 

 Electrical Conductivity (dS/m) 

Rep#-PV# EC 0.5 EC 1 EC 2 EC 4 EC 8 

Rep1-1 0.63 1.315 2.354 4.31 8.11 

Rep1-2 0.601 1.289 2.33 4.25 8.21 

Rep1-3 0.581 1.27 2.296 4.3 8.07 

Rep1-4 0.565 1.254 2.302 4.3 8.19 

Rep1-5 0.562 1.243 2.299 4.3 8.25 

Rep1-6 0.552 1.232 2.291 4.32 8.25 

Rep1-7 0.555 1.228 2.281 4.29 8.28 

Rep1-8 0.547 1.195 2.281 4.3 8.28 

Rep1-9 0.553 1.223 2.276 4.3 8.28 

Rep1-10 0.541 1.22 2.277 4.28 8.2 

Rep2-1 0.626 1.121 2.344 4.3 8.19 

Rep2-2 0.608 1.105 2.327 4.3 8.1 

Rep2-3 0.596 1.097 2.297 4.24 8.23 

Rep2-4 0.571 1.082 2.289 4.085 8.2 

Rep2-5 0.561 1.082 2.31 4.29 8.23 

Rep2-6 0.553 1.052 2.31 4.3 8.21 

Rep2-7 0.547 1.048 2.295 4.31 8.24 

Rep2-8 0.542 1.056 2.252 4.24 8.28 

Rep2-9 0.54 1.054 2.289 4.28 8.26 

Rep2-10 0.539 1.052 2.291 4.29 8.13 

Rep3-1 0.776 1.343 2.378 4.31 8.17 

Rep3-2 0.718 1.289 2.306 4.28 8.2 

Rep3-3 0.701 1.274 2.293 4.27 8.22 

Rep3-4 0.678 1.253 2.309 4.31 8.25 

Rep3-5 0.661 1.238 2.273 4.28 8.25 

Rep3-6 0.647 1.228 2.276 4.31 8.24 

Rep3-7 0.644 1.4 2.269 4.28 8.28 

Rep3-8 0.638 1.223 2.274 4.4 8.24 

Rep3-9 0.634 1.214 2.278 4.31 8.24 

Rep3-10 0.632 1.214 2.273 4.31 8.28 

Rep4-1 0.727 1.35 2.316 4.27 8.16 

Rep4-2 0.695 1.286 2.276 4.3 8.2 

Rep4-3 0.685 1.262 2.287 4.24 8.04 

Rep4-4 0.671 1.258 2.276 4.3 8.21 

Rep4-5 0.667 1.243 2.347 4.28 8.14 

Rep4-6 0.644 1.249 2.296 4.21 8.25 

Rep4-7 0.637 1.226 2.27 4.27 8.12 

Rep4-8 0.633 1.229 2.289 4.22 8.19 

Rep4-9 0.634 1.226 2.239 4.27 8.26 

Rep4-10 0.632 1.219 2.266 4.25 8.13 

AVG-1 0.690 1.282 2.348 4.298 8.158 
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AVG-2 0.656 1.242 2.310 4.283 8.178 

AVG-3 0.641 1.226 2.293 4.263 8.140 

AVG-4 0.621 1.212 2.294 4.249 8.213 

AVG-5 0.613 1.202 2.307 4.288 8.218 

AVG-6 0.599 1.190 2.293 4.285 8.238 

AVG-7 0.596 1.226 2.279 4.288 8.230 

AVG-8 0.590 1.176 2.274 4.290 8.248 

AVG-9 0.590 1.179 2.271 4.290 8.260 

AVG-10 0.586 1.176 2.277 4.283 8.185 
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8.10.  Appendix J: Brown Tenosol Electrical Conductivity Data 

 Electrical Conductivity (dS/m) 

Rep#-PV# EC 0.5 EC 1 EC 2 EC 4 EC 8 

Rep1-1 0.729 1.285 2.160 3.850 7.090 

Rep1-2 0.571 1.109 2.044 3.770 7.140 

Rep1-3 0.562 1.096 2.038 3.760 7.110 

Rep1-4 0.558 1.088 2.022 3.740 7.090 

Rep1-5 0.556 1.081 2.014 3.730 7.080 

Rep1-6 0.557 1.078 2.004 3.730 7.070 

Rep1-7 0.565 1.074 2.002 3.720 7.090 

Rep1-8 0.581 1.071 2.012 3.720 7.090 

Rep1-9 0.579 1.062 2.002 3.720 7.070 

Rep1-10 0.573 1.061 1.998 3.710 7.050 

Rep1-11 0.570 1.059 2.001 3.710 7.040 

Rep1-12 0.569 1.056 2.001 3.710 7.040 

Rep1-13 0.567 1.054 2.012 3.760 7.030 

Rep1-14 0.567 1.052 2.012 3.810 7.050 

Rep1-15 0.566 1.054 2.020 3.810 7.070 

Rep1-16 0.571 1.061 2.027 3.830 7.100 

Rep1-17 0.565 1.054 2.018 3.820 7.050 

Rep1-18 0.564 1.050 2.020 3.800 7.040 

Rep1-19 0.563 1.050 2.023 3.820 7.050 

Rep1-20 0.571 1.054 2.026 3.810 7.030 

Rep1-21 0.562 1.049 2.014 3.800 7.030 

Rep1-22 0.563 1.052 2.024 3.810 7.040 

Rep1-23 0.565 1.054 2.022 3.830 7.070 

Rep1-24 0.566 1.054 2.033 3.830 7.090 

Rep1-25 0.565 1.054 2.027 3.820 7.040 

Rep1-26 0.567 1.054 2.024 3.820 7.070 

Rep1-27 0.572 1.054 2.346 3.830 7.070 

Rep1-28 0.569 1.058 2.039 3.850 7.070 

Rep1-29 0.576 1.060 2.053 3.850 7.130 

Rep1-30 0.584 1.062 2.066 3.900 7.260 

Rep2-1 0.721 1.271 2.164 3.820 7.190 

Rep2-2 0.571 1.095 2.041 3.750 7.250 

Rep2-3 0.561 1.085 2.028 3.740 7.200 

Rep2-4 0.559 1.081 2.020 3.720 7.170 

Rep2-5 0.555 1.075 2.009 3.710 7.160 

Rep2-6 0.554 1.075 2.004 3.710 7.160 

Rep2-7 0.554 1.067 2.001 3.710 7.180 

Rep2-8 0.556 1.070 2.020 3.740 7.230 

Rep2-9 0.549 1.057 1.998 3.710 7.170 

Rep2-10 0.546 1.052 1.990 3.710 7.110 

Rep2-11 0.544 1.052 1.988 3.690 7.110 
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Rep2-12 0.554 1.052 1.996 3.690 7.100 

Rep2-13 0.563 1.050 2.007 3.740 7.090 

Rep2-14 0.563 1.048 2.007 3.770 7.090 

Rep2-15 0.563 1.049 2.009 3.770 7.110 

Rep2-16 0.564 1.056 2.031 3.820 7.190 

Rep2-17 0.566 1.053 2.019 3.790 7.150 

Rep2-18 0.562 1.048 2.009 3.770 7.110 

Rep2-19 0.561 1.048 2.007 3.770 7.090 

Rep2-20 0.562 1.048 2.006 3.770 7.090 

Rep2-21 0.560 1.046 2.003 3.760 7.090 

Rep2-22 0.562 1.046 2.008 3.770 7.100 

Rep2-23 0.562 1.052 2.015 3.820 7.160 

Rep2-24 0.554 1.058 2.029 3.830 7.190 

Rep2-25 0.541 1.056 2.016 3.820 7.170 

Rep2-26 0.535 1.053 2.011 3.810 7.140 

Rep2-27 0.535 1.052 2.011 3.780 7.110 

Rep2-28 0.533 1.050 2.011 3.770 7.120 

Rep2-29 0.539 1.050 2.019 3.770 7.120 

Rep2-30 0.558 1.061 2.014 3.780 7.140 

Rep3-1 0.847 1.323 2.238 4.030 7.310 

Rep3-2 0.618 1.109 2.072 3.870 7.220 

Rep3-3 0.601 1.091 2.053 3.850 7.210 

Rep3-4 0.592 1.082 2.039 3.830 7.170 

Rep3-5 0.587 1.077 2.027 3.820 7.160 

Rep3-6 0.584 1.074 2.025 3.810 7.160 

Rep3-7 0.583 1.067 2.024 3.820 7.180 

Rep3-8 0.592 1.067 2.042 3.850 7.220 

Rep3-9 0.581 1.064 2.028 3.820 7.160 

Rep3-10 0.574 1.052 2.014 3.780 7.120 

Rep3-11 0.570 1.049 2.009 3.780 7.110 

Rep3-12 0.567 1.050 2.007 3.770 7.090 

Rep3-13 0.564 1.050 2.006 3.780 7.080 

Rep3-14 0.563 1.047 2.003 3.770 7.070 

Rep3-15 0.564 1.048 2.004 3.780 7.090 

Rep3-16 0.566 1.056 2.024 3.840 7.140 

Rep3-17 0.565 1.056 2.018 3.820 7.190 

Rep3-18 0.561 1.048 2.007 3.770 7.100 

Rep3-19 0.562 1.046 2.006 3.770 7.070 

Rep3-20 0.560 1.046 2.007 3.760 7.090 

Rep3-21 0.557 1.046 2.003 3.760 7.070 

Rep3-22 0.560 1.046 2.009 3.760 7.090 

Rep3-23 0.564 1.084 2.012 3.820 7.130 

Rep3-24 0.569 1.056 2.030 3.840 7.180 

Rep3-25 0.564 1.054 2.015 3.810 7.150 

Rep3-26 0.565 1.067 2.009 3.800 7.110 

Rep3-27 0.563 1.049 2.009 3.780 7.110 
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Rep3-28 0.562 1.049 2.007 3.770 7.110 

Rep3-29 0.563 1.065 2.007 3.770 7.110 

Rep3-30 0.572 1.061 2.023 3.780 7.150 

Rep4-1 0.845 1.314 2.232 4.030 7.320 

Rep4-2 0.615 1.111 2.072 3.870 7.220 

Rep4-3 0.599 1.092 2.058 3.850 7.190 

Rep4-4 0.597 1.083 2.041 3.820 7.170 

Rep4-5 0.589 1.077 2.031 3.820 7.160 

Rep4-6 0.589 1.071 2.026 3.810 7.150 

Rep4-7 0.587 1.073 2.020 3.820 7.170 

Rep4-8 0.587 1.066 2.036 3.840 7.220 

Rep4-9 0.578 1.073 2.026 3.830 7.170 

Rep4-10 0.571 1.050 2.013 3.780 7.130 

Rep4-11 0.567 1.050 2.012 3.780 7.140 

Rep4-12 0.565 1.050 2.013 3.760 7.110 

Rep4-13 0.561 1.054 2.011 3.770 7.090 

Rep4-14 0.562 1.048 2.006 3.770 7.090 

Rep4-15 0.562 1.050 2.007 3.770 7.110 

Rep4-16 0.564 1.061 2.028 3.830 7.190 

Rep4-17 0.565 1.056 2.020 3.830 7.170 

Rep4-18 0.562 1.055 2.011 3.780 7.110 

Rep4-19 0.558 1.049 2.003 3.770 7.090 

Rep4-20 0.558 1.054 2.001 3.770 7.110 

Rep4-21 0.560 1.053 2.001 3.760 7.090 

Rep4-22 0.560 1.052 2.003 3.770 7.090 

Rep4-23 0.562 1.052 2.006 3.770 7.130 

Rep4-24 0.565 1.065 2.030 3.830 7.190 

Rep4-25 0.564 1.054 2.018 3.820 7.170 

Rep4-26 0.562 1.052 2.011 3.780 7.140 

Rep4-27 0.562 1.049 2.006 3.770 7.120 

Rep4-28 0.560 1.048 2.006 3.760 7.120 

Rep4-29 0.562 1.050 2.004 3.760 7.120 

Rep4-30 0.565 1.057 2.012 3.770 7.160 

AVG-1 0.786 1.298 2.199 3.933 7.228 

AVG-2 0.594 1.106 2.057 3.815 7.208 

AVG-3 0.581 1.091 2.044 3.800 7.178 

AVG-4 0.577 1.084 2.031 3.778 7.150 

AVG-5 0.572 1.078 2.020 3.770 7.140 

AVG-6 0.571 1.075 2.015 3.765 7.135 

AVG-7 0.572 1.070 2.012 3.768 7.155 

AVG-8 0.579 1.069 2.028 3.788 7.190 

AVG-9 0.572 1.064 2.014 3.770 7.143 

AVG-10 0.566 1.054 2.004 3.745 7.103 

AVG-11 0.563 1.053 2.003 3.740 7.100 

AVG-12 0.564 1.052 2.004 3.733 7.085 

AVG-13 0.564 1.052 2.009 3.763 7.073 



132 

 

AVG-14 0.564 1.049 2.007 3.780 7.075 

AVG-15 0.564 1.050 2.010 3.783 7.095 

AVG-16 0.566 1.059 2.028 3.830 7.155 

AVG-17 0.565 1.055 2.019 3.815 7.140 

AVG-18 0.562 1.050 2.012 3.780 7.090 

AVG-19 0.561 1.048 2.010 3.783 7.075 

AVG-20 0.563 1.051 2.010 3.778 7.080 

AVG-21 0.560 1.049 2.005 3.770 7.070 

AVG-22 0.561 1.049 2.011 3.778 7.080 

AVG-23 0.563 1.061 2.014 3.810 7.123 

AVG-24 0.564 1.058 2.031 3.833 7.163 

AVG-25 0.559 1.055 2.019 3.818 7.133 

AVG-26 0.557 1.057 2.014 3.803 7.115 

AVG-27 0.558 1.051 2.093 3.790 7.103 

AVG-28 0.556 1.051 2.016 3.788 7.105 

AVG-29 0.560 1.056 2.021 3.788 7.120 

AVG-30 0.570 1.060 2.029 3.808 7.178 

 

  



133 

 

8.11.  Appendix K: Tukey’s Honest Significant Difference (HSD) 

Values (α = 0.05) 

8.11.1.  Black Vertosol 

PV Na Mg K 

1 21.828 3.416 2.514 

2 36.030 4.667 4.551 

3 40.478 4.831 7.280 

4 41.721 8.568 8.984 

5 43.657 15.793 12.628 

6 42.983 15.576 14.324 

7 42.643 16.501 16.865 

8 43.265 16.937 17.886 

9 43.545 17.640 20.113 

10 43.209 23.543 21.884 

 

EC Na Mg K 

0.5 1.026 0.266 0.168 

1 0.601 0.268 0.152 

2 0.478 0.212 0.168 

4 1.660 0.059 1.404 

8 0.715 0.033 1.645 

 

8.11.2.  Red Ferosol 

PV Na Mg K 

1 2.767 13.205 1.691 

2 4.366 24.734 2.588 

3 5.898 29.843 3.383 

4 6.797 33.952 3.822 

5 7.687 38.274 4.488 

6 8.727 41.458 5.225 

7 9.437 46.831 5.679 

8 10.301 50.549 6.579 

9 10.795 49.677 7.440 

10 11.136 50.177 7.848 

 

EC Na Mg K 
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0.5 6.819 1.794 0.050 

1 4.009 3.371 0.153 

2 11.193 5.097 0.246 

4 5.419 4.191 0.129 

8 9.463 8.212 0.526 

 

8.11.3.  Brown Tenosol 

PV Na Mg K 

1 

 

8.287 2.083 

2 

 

13.362 3.086 

3 

 

15.723 2.981 

4 

 

18.529 3.407 

5 

 

20.081 3.432 

6 

 

21.200 3.412 

7 

 

21.298 3.427 

8 

 

21.971 3.478 

9 

 

22.254 3.478 

10 

 

22.899 3.538 

11 

 

23.260 3.673 

12 

 

23.615 3.819 

13 

 

23.615 3.949 

14 

 

23.790 4.045 

15 

 

23.878 4.130 

16 

 

23.703 4.220 

17 

 

23.703 4.291 

18 

 

23.790 4.346 

19 

 

23.965 4.426 

20 

 

24.138 4.486 

21 

 

24.224 4.361 

22 

 

24.224 4.270 

23 

 

24.309 4.045 

24 

 

24.395 3.939 

25 

 

24.480 3.859 

26 

 

24.565 3.794 

27 

 

24.649 3.718 

28 

 

24.734 3.668 

29 

 

24.901 3.613 

30 

 

24.985 3.558 

 


