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Abstract 

The size and complexity of deregulated energy markets requires the use of simulators to 

assess how changes can affect the whole market. This dissertation presents the 

development of a MATLAB based energy market simulator based on the Australian 

National Electricity Market (NEM).  Background research was conducted on the NEM 

to gain an understanding of the organisation, management and the technology deployed 

within the network. Raw data on the NEM was analysed to understand demand and 

pricing and how different generation technologies are operated. This data was then used 

to create a generic simulator capable of analysing electrical supply systems. The 

simulator was then used to demonstrate the benefits and problems with market managed 

systems and the impacts intermittent renewables can have on electrical supply systems.   
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Definitions 

 

Availability factor The percentage of time a unit is capable of producing power. 

Reflects the need to shut down for maintenance    

Capacity factor the percentage of power produced from an electrical generator 

compared to the maximum possible 

CCGT  Combined Cycle Gas Turbine 

FOM  fixed operation and maintenance 

MO  market operator, responsible for the operation of an electricity 

market 

MP  market participant 

NEM  Refers to the Australian National Electricity Market the electrical 

supply system used in NSW, Queensland, Victoria, Tasmania and 

South Australia. 

OCGT  Open Cycle Gas Turbine 

POE probability of exceedance 

PV  photovoltaic 

Ramp Rate the rate of change in the power output from an electrical generator  

VOM  variable operational and maintenance 
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1 Introduction 

 

Electrical supply systems are used to generate and transmit electrical power to a wide 

range of consumers.  Electrical supply systems are complex systems that are constantly 

adapting to changes in technology, user demands and government policy. Electrical 

supply systems are managed in two main ways vertically integrated and market based 

systems. A vertical integrated system is a more traditional approach where a single 

entity operates the entire electrical supply system.  In a market based approach the 

electrical supply system is deregulated and opened up to allow several companies to 

compete to provide services to drive efficiency as companies focus on maximising 

profits. 

According to (J. Contreras 2002) there is a demand for Power Engineering Graduates to 

have a better understanding of theoretical and practical foundations of electrical 

markets. This is becoming increasingly important with the progressive sophistication of 

electricity grids due to the increase in ‘must run’ intermittent renewable power, 

incorporation of technology to create smart grids and the need for better efficiency due 

to rapidly escalating costs.   

Due to the size, complexity, cost and practicality of access to resources the best method 

to analysis aspects of electrical supply systems is to perform mathematical simulations.   

The aim of this project is to develop a flexible adaptable simulator for market based 

electrical supply systems. The simulator will incorporate concepts from the largest 

electrical supply system in Australia the Australian National Electricity Market (NEM).   

The development of the simulator required background research on the NEM including 

its organisation, management and the technology deployed within the network. 

Collection and analysis of NEM data to gain an understating of the key aspects 

including demand profiles and how different generation technologies are used.    

The simulator was developed using a rapid prototype methodology with the high level 

programing language and environment MATLAB. The inbuilt functions and the 

graphical layout editor in MATLAB were used to speed up development and to 

incorporate higher levels of functionality.   
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2 Literature Review 

 

There are extensive publications on software tools for research and analysis of electrical 

supply systems. The software tools range in functionality and design purposes. They 

also range in levels of complexity and realism from very basic to replicating real world 

systems. These tools can use game theory, price forecasting and market simulation to 

better understand the complexity of electricity supply systems. (M Widjaja 2001) 

concluded market simulation was the most effective due to its ability to capture the 

dynamic movements of markets. Game theory is limited to finding the market 

equilibrium and not suitable for dynamic analysis and price forecasting approaches 

employing time series methods. Using load demand trends will not reflect strategic 

bidding by generators.    

The design purpose sets the theme of the simulator and range in their application from 

educational demonstration tools to in depth simulators for real world applications. The 

design purpose also sets the complexity which ranges from multiple generators 

competing in a single pricing pool with a single load to more sophisticated models 

incorporating multiple load centres and the required transmission infrastructure. 

Different models also vary in their use of technical constraints and the audience they 

cater for.  

(J. Contreras 2002) and (Dejan Pavavan 2003) present simulators that allow a group of 

people to come together across a network to create an energy market with someone 

acting as the market operator (MO) and everyone else acting as market participants 

(MP) to simulate the multiple competitors. The simulator acts like a game with the 

winner being the person who earns the most profit and relies on the revenue of each MP 

being made public.  
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(J. Contreras 2002) educational market simulator for engineering students is based on 

the Spanish electrical supply system. Students are assigned five generators and their 

respective operational and cost characteristics and have no knowledge of the 

characteristics of their competitor’s generators. The simulator works in three steps. The 

class instructor operates as the market operator and broadcasts hourly loads to the 

students. The students derive a strategy and send production bids back to the market 

operator. The market operator clears the market and determines the market price and the 

revenue of each group. The students have access to a price forecasting tool and an 

optimisation tool to help maximise the profit of each generator. Constraints used include 

maximum and minimum output power, up and down ramp rates, minimum up time and 

revenue. The tool has shown to be a good learning tool as it encourages active 

participation.  

(Dejan Pavavan 2003) presents an educational day ahead energy market simulator 

which is used at the University of Ljubljana for teaching undergraduates and post 

graduates power trading systems and mechanisms. Again students compete with each 

other to maximise profits however the process uses a double sided auction mechanism 

allowing both production and consumption bids. The system was set up to allow 

students to explore market pricing concepts including withholding strategies where 

power is deliberately withheld from the market to increase prices Again, the experiment 

was received well by students as it requires active involvement to increase motivation 

and understanding in the area of electricity markets. 

(M Widjaja 2001) presents a simulator based on the Australian National Electricity 

Market (NEM)  it was designed to allow stakeholders in the industry to analyse market 

behaviours, formulate optimum bids, and to investigate different market structures. It 

includes a structure similar to the NEM of two inter-connected regions and includes 

calculations to model energy transmission between regions and the losses involved. It 

uses a load engine to generate demand forecasts in a similar manner to the NEM with 

10%, 50% and 90% probability of exceedence based on a normal distribution. The 

simulator demonstrates the fundamentals of the market in a very simplistic model using 

fictional data.  It provides a basic NEM simulator but there is a lot of potential to 

expand on the model and incorporate more accurate real world data.   
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(George Grozev 2007) present an agent based simulator for the NEM called NEMSIM 

to explore evolutionary pathways.  The simulator is highly complex and attempts to use 

historical data, technical infrastructure, agents and markets and environmental impacts. 

The agents are intelligent, adaptive and behave differently to pursue unique goal, make 

decisions on the basis of their own knowledge and adapt to in response to there and 

others experiences. The agents are used as equations are too static, aggregate or stylized 

to handle the complexity of long term energy market simulations. The simulator 

includes all key players in the NEM and includes a weather model covering the next 

100 years. 

The education energy market simulators examined provide a good demonstration of the 

operation of energy markets and supply demand fundamentals.  However the simulators 

would benefit from the incorporation of real world data on demand and technology 

constraints to enhance the learning experience.   Most simulators reviewed had a limited 

application to their design purpose and there would be benefits in creating a simulator 

that was broken down into component functions so it could be easily adapted to suit 

multiple purposes.     
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3 NEM Background Information  

  

Electricity is supplied through complex electrical supply systems that are broken down 

into generation, transmission, distribution and retail sectors.  Generation covers the 

production of the electricity, transmission is the high voltage transportation of 

electricity from the generation centres to the load centres. Distribution connects 

individual customers to the transmission system and the retail sector collects the 

revenue from customers. 

There are four main electrical supply systems in Australia. Two vertically integrated 

systems, NT Power (Northern Territory) and Water and Horizon Power (north Western 

Australia). There are two market based systems, Wholesale Electricity Market (WEM) 

covering south west Western Australia and the Australian National Electricity Market 

(NEM) covering Queensland, NSW, ACT, Victoria, Tasmania and South Australia.  

(Davidson 2010) 

The NEM is the largest electricity supply system in Australia generating 204 TWh and 

collected $7.4 billion in revenue from 9 million customers in the 2010/2011 financial 

year.  The NEM is made up of 305 large generators with an installed capacity of 49,110 

MW.  There are six transmission companies with 41,865 km of line, thirteen 

distribution companies with 754,462 km of line and 26 retail companies. The NEM has 

a record maximum summer demand of 35,551 MW and maximum winter demand of 

34,442 MW. The NEM supplies energy to several different types of customers from 

residential and commercial to heavy industry Figure 3.1 Electrical usage in the NEM 

Source: Energy Supply Association of Australia. (Australian Energy Regulator 2011)   

There are three main organisations in control of the NEM. The Australian Energy 

Market Commission (AEMC) write the rules. The Australian Energy Regulator (AER) 

enforces the rules and the Australian Energy Management Operator (AEMO) manages 

the market. 

The NEM is operated as a whole but is broken down into 5 regions based on the states 

that are priced separately.  The regions are connected with high capacity transmission 

lines called inter-connectors that allow energy to be traded between the regions. 

Transmission and distribution are supplied by monopolies due to the nature of the 

service, but there is competition in the retail and generation of power. 
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Energy is traded in the market by retailers and generators using financial mechanisms to 

hedge and trade around the spot market in order to manage their financial risks. This 

allows the market to offer firm contract prices to end user customers. Electricity is 

traded three ways (Davidson 2010).  

Bilateral contracts are used in the short term energy market and the balancing market. 

Bilateral contracts account for 95% of the energy traded in the NEM. They are contracts 

between retailers and generators.  

The STEM 4 market volume is a day ahead, half hourly open market that allows 

participants to buy and sell volumes of electricity to manage their bilateral portfolio.  

The Balancing Market accounts for 6% of market volume and is used to manage 

adjustments in traded volume (Davidson 2010) 

 

 

Figure 3.1 Electrical usage in the NEM Source: Energy Supply Association of Australia 
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3.2 Generators	 
 

Electricity is traditionally generated at large centralised installations using fossil fuels or 

hydro power. As well, energy generators generate revenue by providing ancillary 

services including reactive power and network frequency control. Different types of 

generators are used for maintaining grid stability and operational flexibility. Recently 

there has been a rapid increase in intermittent wind and solar power driven by large 

government incentives. 

Generators are classified into three groups:  

• Scheduled. (S) 

• Semi scheduled. (SS) 

• Non-scheduled. (NS) 

Non-scheduled generators are typically less than 30 MW and greater than 5MW 

producing less than 20 GWh per year and do not participate in the dispatch system. 

Semi scheduled generators have a name plate rating of 30 MW or more powered from 

an intermittent energy source such as wind or run of river hydro. This classification 

gives the market operator scope to limit power output. Scheduled generators are 30 MW 

or more and participate in a dispatching system where they submit bids and receive 

operating instructions at five minute intervals.   (Australian Energy Market Commission 

2012) 

 

3.2.1 Power	Generation	Technology 

 

Energy is typically generated at large centralised facilities. Most of the energy in the 

NEM is generated using two types of heat engine, the Rankin cycle and Brayton Cycle. 

Contributions also come from hydroelectricity, solar photovoltaic (PV) and wind power. 

Generators are rated in terms of their capacity for start-up time, maximum and 

minimum power levels and the rate at which their output levels can be changed (ramp 

rate). The majority of power in the NEM is generated in large centralised power stations 

that house several units. (Sharma 2012) (G Ramakrishnan 2010) 
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3.2.1.1 Hydroelectricity  

 

Hydro power is generated from the energy from falling/flowing water. Hydro is highly 

valuable to the market due to its ability to start up and shut down in seconds. However 

output from hydro facilities is severely affected by drought and can be seasonal. 

Development of Hydro capacity is almost completely halted due to environmental 

concerns preventing any substantial new dam development. (MORAN 2006)  

Hydro power is also used as grid scale energy storage to stabilise demand. Water is 

pumped up hill during periods of low demand to be stored as potential energy. During 

periods of high market prices the energy is extracted from the water. This occurs at 

facilities such as Wivenhoe Dam in Queensland where enough energy can be stored to 

produce 500MW for 10 hours (CS Energy 2011).  

 

3.2.1.2 Wind 

 

Energy is extracted from the wind using turbines of capacities up to 2.1 MW. They are 

generally grouped into wind farms comprising several turbines. Wind power can be 

highly intermittent but good weather models exist for predicting wind power output for 

several days ahead. 

The output from a wind turbine is in proportion to wind speed as illustrated in Figure 

3.2. The cut in speed is the minimum wind speed needed for the turbine to generate 

power. The cut out speed is the wind speed at which the turbine shuts down to prevent 

damage.   (PelaFlow Consulting 2012) 
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Figure 3.2 Wind turbine power output 

 

3.2.1.3 PV Solar Power. 

 

Solar photovoltaic (PV) systems use the photovoltaic effect to convert sunlight into 

electricity. Thousands of individual solar cells are connected together to generate high 

voltages and power is feed back into the grid by inverters. Solar PV systems are 

installed in the NEM as small distributed systems. The output from a solar PV system is 

shown in Figure 3.3 where the output is related to the solar irradiance and the 

temperature of the cells. 

 

 

Figure 3.3 Output from solar PV (Wholesale Solar 2012)  
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3.2.1.4 Rankine Cycle (Steam) 

 

The Rankine Cycle is a closed loop heat engine used to supply the majority of power 

around the world. It is capable of utilising any heat source including geothermal, coal 

and nuclear. The Rankine Cycle utilises an internal working fluid, typically water, but 

other chemicals can be used in an organic Rankine Cycle. The Rankine Cycle uses the 

difference in entropy between the gas and liquid states of its working fluid. Due to their 

size they can take hours to days to start up. They typically run for hundreds of days at 

time to reduce the need for expensive liquid fuel to start the boiler and to reduce stress 

and fatigue on the components.  Evaporative cooled units can use as much as four litres 

of water per KWh produced to reject the waste heat (National Water Commission 

2012). They require large volumes of water due to build ups of salt and silicon as the 

water evaporates.  Units are rated based on steam operating temperature as either sub 

critical or super critical. The higher the temperature, the higher the efficiency.   An 

example is the Toshiba units in NSW at Bayswater, Earring, Mount Piper and 

Munmorah. The units located at these power stations have a minimum capacity of 

270MW up to 660 MW and ramp rates of 140 MW/ minute.  

    

 

Figure 3.4 Schematic of the Rankine Cycle (MPEI 2012) 
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3.2.1.5 Brayton Cycle (Gas Turbine) 

 

The Brayton Cycle describes the operation of open cycle gas turbines (OCGT). OCGT 

use air as the working fluid. Air is compressed to a high pressure. Heat is then added by 

burning natural gas or light petroleum products to increase the volume of the air. The 

energy is then extracted from the air by expanding it though a turbine. OCGT are 

simpler than the Rankin Cycle due to a smaller number of parts and the smaller size. 

They require precision manufacturing and expensive alloys to resist the high 

temperatures. OCGT are typically used as peaking plants due to their low installation 

cost ability to start and ramp up very quickly. As much as 70% of the energy from the 

fuel used is lost as waste heat in the exhaust with another 10% lost through lubrication 

radiation (Sharma 2012). 

 

3.2.1.6 Combined Cycle Gas Turbine (CCGT) 

 

A CCGT uses the waste heat in the exhaust gasses of an OCGT to power a boiler 

combining the Brayton Cycle with the Rankine Cycle.  This approach results in very 

high thermal efficiency. Examples include the Tallawarra power station in NSW it has a 

240MW gas turbine and a 160 MW steam turbine coupled together to drive a single 

generator  (Alstom 2008).        

 

3.2.2 Generator	Properties	 
 

Depending on the type different generators have different technical properties that 

impact on the rest of the electricity network. This is important as they affect the 

electricity network to response to changing market conditions to change their output or 

start up or shut down. Other important properties include axillary loads, efficiency and 

the cost.  
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3.2.4 Technical	Properties 

 

Technical Properties cover the limitations of the different generation technologies 

including their technical limitations, life time and efficiency. 

The axillary load (aux load) represents the electrical power consumed at the power 

station to run the generator. Auxiliary loads in a coal fired plant can be as high as 20% 

as large motors are used to run the pulverising mills, the induced and forced draft fans 

on the boiler and the condenser pump as well as the station plant used to process water, 

handle the fuel and manage the ash and dust produced.  

A generator’s efficiency varies directly with its output as components are designed to 

operate most effectively at high output power levels. This is referred to as the part load 

performance/efficiency.   

 

 

 

 

 

 

Figure 3.5 Part load performance of OCGT (Energy and Environmental Analysis 2008) 

 

 

 

 

 

 

 

Figure 3.6 Hydro power part load efficiency (Intelligent Energy Systems 2008) 
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Table 3-1 Comparison of Generator Properties 
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(Vuorinen 2007) (Ihle 2003) (M.W. Coneya 2004) (H.I. Onovwiona 2004) (Chalmers 

2010) 

 

3.2.5 Generator	Costs 
 

The costs of electricity produced by a generator can be broken down into several 

components including capital costs, fuel costs and environmental costs. Costs that don’t 

change with unit energy output are referred to as fixed costs. Variable costs vary based 

on the amount of energy produced. The life cycle costs vary significantly between 

different generation technologies Figure 3.7.    
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Figure 3.7 Life cycle cost estimate (Australian Energy Regulator 2009)  

 

3.2.5.1 Capital Costs 

 

The capital cost relates to the costs of building or buying a generator and the associated 

financing costs. This cost is spread out over all the output energy so unit capacity plays 

a big part in calculating finance costs per MW. 

Table 3-2 Capital cost for different generation technologies 

Technology Black coal Brown coal OCGT CCGT Wind 

Capital Cost 

($/kw) 
2348 2583 1010 1402 2588 

(ACIL Tasman Pty Ltd 2010) 

 

3.2.5.2 Fuel Costs 

 

The fuel cost is a large component of total costs for generators and can vary based on 

the current world prices and on location as shown in Table 3-3. Fuel quality varies 

considerably between sources and can have considerable flow on effects. For example 

coal moisture and sulphur content have an impact on the cost of operating a plant. High 

moisture reduces plant efficiency and high sulphur levels increase compliance costs.   

Fuel prices vary significantly between geographical locations.  Across Queensland coal 

fuel costs vary from 0.80 $/GJ at Kogan Creek to 2.45 $/GJ at Collinsville (Appendix 

E).  
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Table 3-3 Generator fuel costs  

Technology Black coal Brown coal OCGT 
(natural gas) 

CCGT 
(natural gas) 

Wind 

Fuel Costs 
($/GJ) 

1.68 NSW -
1.26 QLD 

0.08 0.61 VIC 7.9 NSW – 
5.24 VIC 

5.32 SA – 
4.19 VIC 

0 

(ACIL Tasman Pty Ltd 2010) 

 

3.2.5.3 Operation and Maintenance 

 

Operation and maintenance costs are calculated based on fixed and variable 

components. Factors influencing maintenance costs include hours running, ramp rates 

and the number of unit restarts.  

Variable operations and maintenance (VOM) includes consumables such as chemicals, 

oils and energy used in auxiliaries and incremental running costs.  

Fixed operation and maintenance (OM) cost includes servicing costs that do not vary 

with unit output this includes major periodic maintenance (bearings and valves), wages, 

insurance and overheads. 

The maintenance costs of OCGT are typically high due to their operation as peaking 

plant where they only operate for short periods of time and are under extra stress due to 

continual starts and stops and high speed ramping. 

Table 3-4 Generation operation and maintenance costs  

Technology Black coal Brown coal OCGT CCGT Wind 

Fixed 
Maintenance 
costs 
($/installed 
Mw/year) 

51691 59229 14000 33384 22076 

Variable 
Maintenance 
costs ($/Mwh) 

$1.29 $1.29 $8.08 $1.13 $1.89 

(ACIL Tasman Pty Ltd 2010) 
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3.2.5.4 Environmental Costs 

 

Government policies are in place to charge power generators based on the impact on the 

environment. This includes the Federal Government’s Carbon Pollution Reduction 

Scheme, initially charging $23 per ton of equivalent carbon dioxide emissions.  

However there is a $6.1 billion Electricity Sector Adjustment Scheme for the electricity 

industry from the Federal Government to compensate for the effects of the carbon tax. 

The bulk of the funding will go to the brown coal generators as the equation used to 

determine compensation heavily favours generators with the most emissions 

(Department of climate change and energy efficency 2012) .  

Table 3-5 Power generation lifecycle greenhouse gas emission 

Technology t 
co2e/MWH Mean Min Max 

Brown Coal 1.05 0.79 1.37 

Black Coal 0.89 0.76 1.31 

Oil 0.73 0.55 0.94 

Natural Gas 0.5 0.36 0.89 

Solar PV 0.09 0.01 0.73 

Nuclear 0.03 0.02 0.13 

Hydroelectricity  0.03 0.02 0.24 

Wind 0.03 0.01 0.12 
(World Nuclear Association 2012) 

There are also state based emissions taxes such as the NSW Load Based Licence (LBL) 

implemented in 2000. It uses a formula to calculate emissions pricing that combines the 

total weigh of pollutants emitted, a weighting factor based on the hazard level of the 

pollutant and a weighting based on the location of the emissions.   Pollutant weighting 

include 9x for nitrous oxide, 2.2x for sulphur oxides and 125x for fine particles. This 

tax is to encourage the use of technology to reduce these emissions including bag 

houses for dust and better boiler controls for NOx. The fuel quantity and technology 

deployed has the greatest impact on this cost as shown in Table 3-5. (NSW EPA 2003) 
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Table 3-6 Variation in environmental loads between coal power stations  

 Plant 1 Plant 2 Plant 3 Plant 4 

Efficiency 
(HHV) 

35 32 39 30 

Nitrous oxides 
(kg/MWH) 

4.22 2.89 3.02 3.48 

Sulphur 
oxides 

(kg/MWH) 
2.69 4.05 2.53 4.64 

Particulate 
matter 10 

micrometres 
or less 

(kg/MWH) 

0.68 0.13 0.15 0.03 

(J. C. DINIZ DA COSTA 2006) 

 

Table 3-7 2011 LBL Emissions tax for Eraring Power Station 

Pollutant Total Emission's (kg) Cost 
Selenium - Estuarine 67 $2,718.19 

Total suspended solids - Estuarine 43,895.000 $3,286.63 

Benzo(a)pyrene 0.328 $38.59 

Fine Particulates 1,232,189.000 $867,155.35 

Fluorides 643,630.000 $372,026.67 

Salt - Estuarine 0.000 $0.00 

Arsenic 67.000 $17,363.88 

Coarse Particulates 12,446.000 $908.88 

Lead 87.000 $3,882.55 

Sulphur oxides 34,326,112.000 $306,374.28 

Nitrogen Oxides 28,077,930.000 $2,050,418.92 

Mercury 84.000 $48,787.04 

Administrative fee: $45,360.00 

Load based fee: $3,627,600.98 

 

In 2011 Eraring generated 13,971 GWH for a total LBL cost of $0.26 per Mwh with 

greenhouse gas emission of 0.843 tonnes of co2e/mwh (Eraring Energy 2011) 

(Environment NSW 2011) 
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3.3 Transmission 
 

Transmission is the distribution of electricity at very high voltages, typically from 220 

kV up to 500 kV. In the NEM this service is performed by Transmission Network 

Service Providers (TNSPs) who operate as large monopolies within each region e.g. 

Transgrid NSW and Powerlink Queensland. TNSPs are responsible for the high 

capacity transmission from the generator centres to the load centres. As TNSPs operate 

as monopolies their revenues are regulated by the AER under rules determined by the 

AEMC.  

TNSPs also operate high capacity transmission lines between the NEM regions called 
interconnectors described below in  

Table 3-8.  This allows for better utilisation of generation equipment, enhanced 

competition in the NEM, an increased ability for the gird to handle contingencies and a 

smaller regional generation capacity. Typically there is little transmission congestion 

within regions and some congestion between regions.  

There are two types of interconnectors in the NEM, regulated and unregulated. 

Unregulated interconnectors generate income by buying energy in a cheaper priced 

region and selling it in the higher priced region. Regulated interconnectors receive a 

fixed income based on the asset value of the inter-connector. This is collected from 

consumers as part of network charges.  Basslink the interconnector connecting Victoria 

and Tasmania is currently the only unregulated inter-connector in the NEM (AEMO 

2012). 

While most transmission in the NEM is done using HVAC there are also some HVDC 

interconnectors. HVDC is used due to lower cost, higher efficiency and the greater 

control over power flow and eliminating frequency issues.  
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Figure 3.8 NEM transmission requirements 

 

Table 3-8 NEM interconnectors 

Inter 
connector 
name 

Description Export 
capacity 
(MW) 

Import 
capacity 
(MW) 

Inter region transfers 
week ending 4 August 
2012 (Mwh) 

VIC1-NSW1  330kV, 220kV AC 
Victoria to NSW 

1620 1260 30,365 to NSW 
11,008 to Vic 
1,118 loss 

Heywood 275kV AC Victoria to 
South Australia 

420 460 52,023 to SA 
1,244 to VIC 
3,348 loss 

Murrylink 180km Bipolar 150KV DC 
Victoria to South Australia 

220 190 4,098 to SA 
1,142 to VIC 
710 loss 

Directlink Three circuits of 59km 160 
kV bipolar DC NSW to 
QLD 

100 250 0 to QLD 
13,911 to NSW 
736 loss 

QNI 557km double circuit 330 
kV and 275 kV AC 
transmission lines from 
NSW to Queensland.  

520 1080 183 to QLD 
72,564 to NSW 
404 loss 

Basslink 370 km 400 KV submarine 
cable  DC VIC to TAS 

600 480 59,466 to VIC 
3,460 to TAS 
2,451 loss 

(ESAA 2012) (AEMC 2010) 
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3.4 Distribution 

 

Distribution Network Service Providers (DNSPs) are monopolies that are responsible 

for the deployment and maintenance of the infrastructure that takes power from the 

transmission system and delivers it to the consumers. This area has been a significant 

driver in increased electricity prices due to substantial investment in this part of the 

network.  

Table 3-9 DNSPs in the NEM 

 

(Australian Energy Regulator 2011) 

 

3.5 Retail 
 

There are several retail companies that compete for consumers in the NEM. Each retail 

service provider consolidates all of the costs associated with generating and transmitting 

energy and collects the money from consumers.  Several tariff structures are available to 

consumers including fixed pricing and Time of Use (ToU) pricing. Fixed pricing costs 

are passed on as a fixed tariff on energy consumed. Recently ToU is being used to better 

reflect the costs of supplying electricity where the price of electricity varies based on the 

time of day and if it is a business day. There are also different tariffs for scheduled loads 

such as off peak hot water systems.  
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Retailers use financial mechanisms to hedge variable market prices in order to manage 

financial risk and allowing them to offer firm contract prices for end users. Prices for 

regulated electricity is set through independent pricing tribunals like Independent 

Pricing and Regulatory Tribunal of NSW. 

Figure 3.9 shows a breakdown of the cost components for the Aurora distribution 

network. The largest cost component for consumers in the Aurora network is the cost of 

the transmission and distribution with around 40% of a consumers bill paying for 

generation.  

 

 

 

Figure 3.9 Residential bill cost breakdown for Aurora network. (Aurora Energy 2011) 

 

 

3.6 Network	losses 

 

Losses account for approximately 10% of the sent out electricity generated in the NEM. 

Around 2.5 - 4.5% of the losses occur in the HV transmission network the rest in the LV 

distribution network. These losses are of significant monetary value and are accounted 

for in the NEM using a Distribution loss factor (DLF), a Marginal loss factor (MLF) 

and inter region loss factor. DLF and MLF values are static values calculated and fixed 

annually to simplify the scheduling and settlement process. While due to the dynamic 

nature of the interconnectors a dynamic loss factor is calculated during unit dispatch for 

the inter regional losses. (AEMO 2012) 
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To deal with losses in the NEM the transmission network is broken down into 

transmission connection points (TCP) and distribution connection points (DCP). With 

the DCPs allocated to a single TCP, the NEM rules also allow for virtual connection 

points if multiple TCPs are available. All loads and generators are allocated to a single 

TCP or DCP. A single TCP is chosen in each region and is known as the regional 

reference node (RRN). Regional demand and the spot price are then calculated at the 

RRN.  The loss factors are then used as multipliers to get the spot price at each TCP and 

DCP in the network.   

The DLF is used to account for the losses in the distribution system. The DLF is a static 

value calculated from the volume weighted losses in the network based on the previous 

year’s data. Results are updated and published by AEMO each year. 

Losses in the transmission network are calculated using a marginal loss calculation. The 

marginal loss factor reflects the increase in demand at the RRN based on an increase in 

demand at each TCP. The MLF is calculated from historic network flows from the 

previous financial year. This marginal calculation means the MLFs can be less than one 

if local generation is less than local demand i.e. energy flows away from the RRN.   

Losses on interconnectors are calculated dynamically using a pre-determined loss flow 

relationship based on the demand in each region and the flow on the interconnector. It is 

done this way because flows and losses on the interconnector can be highly variable and 

can change significantly from year to year. 

To take losses into account the spot price at each node is calculated as the price at the 

RRN multiplied by the MLF and DLF if applicable. Each generator submits bids 

offering electricity referenced to their TCP so their bids are multiplied by their MLF to 

get their bids at the RRN. During periods were the inter-connector system is 

unconstrained the entire NEM is calculated as a single pricing pool with the price 

difference between two regions based on the interregional loss factor. During periods 

where the interconnector system is constrained each region is considered a separate 

pricing pool and electricity prices between regions can vary dramatically.       
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3.7 Market	Management 
 

AEMO was established in 2009 as an independent organisation to operate the 

Australian NEM and the natural gas market. AEMO also publishes information to assist 

market participants to make appropriate business decisions. AEMO publishes 

information including pre dispatch data, short term and medium term forecasts, 

expected demand and required reserve levels. Under the rules AEMO is required to 

manage the NEM to a reliability standard of 0.002% unserved energy over a 10 year 

average (AEMO 2011).  

AEMO operates several services to ensure adequate operation of the NEM  

• Active Energy – Main product of the NEM supplied through a bidding system, 

generators receive dispatch instructions every five minutes, worth billions each 

year. 

• Network Control Ancillary Service – Manages the voltage of the grid primarily 

through the control of reactive power levels. AEMO enters into contracts with 

generators to control reactive power levels, total value of the contracts is around 

$34 million per annum. 

• Frequency Control Ancillary Service (FCAS) – Supplied by a bidding system 

used in between the energy dispatches and used to maintain the grid at 50 Hz 

and deal with forced outages. Worth around $34.8 million per annum. 

• System Restart Ancillary Service – AEMO has contracts with several generators 

that have the capability of performing a black start of their generators. This 

function is essential for restoring power in case of a catastrophic blackout in the 

NEM. Worth around $37.7 million per annum. 
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Figure 3.10 Operation of the NEM (Engineers Australia 2010) 

 

 

  

Figure 3.10 shows the operation of the NEM for the bidding based services. Generators 

submit supply offers to AEMO detaining price and production levels. AEMO uses the 

supply offers to dispatches generators to meet the demands of the NEM. Even though 

generators and retailers make off market contracts all energy is still traded through 

AEMO with compensation being paid between generators and retailers when the market 

spot price varies from the contract price. 

 

 

3.7.1 Forecasting 

 

Forecasting is an important tool used in the NEM. It is used to forecast electricity 

demand and the adequacy of generation and transmission infrastructure over the short to 

long term. This is becoming increasingly difficult with the growing penetration of 

intermittent wind power and small scale distributed solar photovoltaic power. Long 

term forecasts are used to predict areas in the NEM that will require an increase in 

generation/ transmission capacity. AEMO publishes the forecasts and supplies tool to 

allow operators in the NEM to make appropriate business decisions.  
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Load forecasting is provided by Itrons MetrixIDR system. It uses an automated system 

that continual updates important data on large industrial loads, power station auxiliary 

loads and uses the latest weather forecasts to calculate demand in across each region. 

The system is integrated with AEMO wind generation forecasting system to accurately 

predict the impact of wind generation. The algorithm uses a ‘neural network and 

regression model specifications, designed to capture linear and nonlinear interactions 

between load, weather and calendar information’. A Proprietary Dynamic learning 

algorithm ensures the forecasts are continuously tuned to most recent loads. (Itron 2011)  

  

 

3.7.1.1 Short term projected assessment of system adequacy ST PASA. 

 

The ST PASA provides half hourly demand forecasts for the next seven days. The 

algorithm is run and results updated every two hours. It provides a benchmark for 

AEMO to intervene in the market to commit extra capacity and provide information on 

expected demand to the market participants. The algorithm uses data on plant 

availability and network outages and calculates expected power demand giving a 10, 50 

and 90 per cent Probability of Exceedence (POE). The 50% POE is the most likely load 

curve with 10% POE used to assess impacts of low generation capacity. 90% POE is 

used to assess the impacts of low demand.   Scaling factors are varied to represent 

changes in the market that vary over season, week, day and peak/ off-peak time. 

(AEMO 2012) 
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Figure 3.11 ST PASA process.  

 

3.7.1.2 Medium Term Projected assessment of system adequacy (MT PASA)  

 

MT Pasa is used to ensure sufficient generation capacity is available to satisfy demand 

over the next 24 month period. It is used by market participants to schedule 

maintenance.   In cases were inadequate supply is available it is expected market 

participant will reschedule planned outages to take advantage of high market prices due 

to reduced supply. The results are based on a 10% POE and only includes units that can 

be made available within 2 hours.   

 

To ensure the market will be able to satisfy the reliability standard AEMO calculates a 

minimum reserve level (MRL) on top of the MT PASA. The MRL is calculated using a 

Monte Carlo simulation of weather and subsequent demand levels and probable forced 

outage patterns to ensure enough generation capacity is available so the reliability 

standard can be met (Equation 3.2).  

Generation	 
 	import	  	demand	 
 	MRL		Equation 3.1 Reliability standard criteria 

MRL		 �

	minimum	local	generation	 


	interconnector	support	– 	10%	POE	demand	adjusted	for	demand	side	participation	
Equation 3.2 Minimum Reserve Level 
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The reliability standard is at risk during periods of a reserve deficit when supply is less 

than the MT PASA forecast plus the minimum reserve level (Equasion 3.1). If AEMO 

detects a reserve deficit, market forces will encourage generators to bring make more 

capacity available, if this does not occur  AEMO can intervene in the market. 

 

 

Figure 3.12 NSW supply outlook MT PASA 11/9/2012 (AEMO 2012) 
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3.7.3 Frequency	Control	Ancillary	Service 

 

The FCAS system is used in the NEM to maintain the frequency of the grid and manage 

the spinning reserve in the system.  The FCAS system operates in between the five 

minute energy dispatches and allows both generators and large loads to bid into the 

system to rapidly increase or decrease energy availability. The FCAS system operates 

under a causer pays model where consumers pay around 60% of the costs and 

generators paying the remainder.  Generators occur FCAS costs due to forced outages, 

not complying with market instructions and if they deviate from a linear ramp between 

two dispatches. 

FCAS is used to maintain the system frequency using a regulation product for fine 

frequency adjustments and contingency products during a large frequency deviation 

caused by forced outages. During a contingency FCAS relies on the inertia of large 

generators to maintain system frequency for the first several seconds.  AEMO then uses 

fast ramp rate generators to change their output levels to respond to the interruption.   If 

system frequency drops below 49 Hz AEMO will begin under frequency load shedding 

(ufls) and begin dropping load. Load shedding is done using a pain sharing policy where 

demand is dropped from each region in proportion to total regional demand until the 

frequency can be stabilised. If the frequency continues to drop, AEMO will begin 

isolating sections of the NEM in an attempt to contain the frequency issue. The NEM is 

required to operate to the frequency standard of 49.85 – 50.15 Hz for 99% of the time, 

contain a multiple contingency to 47 – 52Hz and stabilise the frequency to 49.5 – 50.5 

Hz within 2 minutes and recover to 49.85 – 50.15 Hz within 10 minutes (Australian 

Energy Market Commission 2009, p. 15). 

Regulation raise and lower are used for continuous correction of small frequency 

deviations. Required reserve levels are set on a trial and error basis where each month 

the performance is assessed and levels modified. 

FCAS regulation categories 

• Regulation raise 

• Regulation lower  
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Contingency raise and lower are used in the event of unplanned outages in the NEM. 

Required levels are set based on the largest generator and largest load block that could 

fail plus an allowance for load relief. 

FACS Contingency products  

• Raise 6s – arrest a large frequency deviations and load shedding 
• Lower 6s –  
• Raise 60s – stabilise and begin correction of frequency  
• Lower 60s 
• Raise 5 min – return system to normal frequency band 
• Lower 5 min 

 

Due to financial constraints the FCAS system is designed around the largest single 

contingency as this is the most practical method. Although as events on the 2nd of July 

2009 showed there have been large multiple contingency events that the system 

adequately handled. On 2nd July 2009 a fault in the switch yard at Bayswater Power 

Station caused all four BW units to trip instantly. This then resulted in several 

transmission line trips and four other generator units from Victoria to Queensland to 

trip. The NEM lost a total of 3,205 MW of generation within a few minutes. With the 

aid of load sheading of some large industrial, commercial and residential consumers the 

FCAS system was able to maintain grid stability and recover from the fault. (ESOPP 

2011)     

 

 

Figure 3.13 Under frequency load sheading containment. As frequency deviates from 

50Hz FCAS response escalates. 



30 
 

3.7.4 Generator	Dispatch	 
 

The core operation of AEMO is to run the energy market. By Midday one day ahead 

generators submit energy and FCAS bids to AEMO for every hour of the next day. The 

bid for each product can have up to ten blocks where each block details a price and 

production volume. Generators are able to change their bids up to 5 minutes before 

dispatch but they can only change the production volume, not the price.   

At five minute intervals AEMO runs there Scheduling, Pricing and Dispatch algorithm 

(SPD) to calculate the instructions to send to generators. The SPD combines the bids 

into a merit order list and dispatches the lowest cost generation capacity until all 

demand is satisfied. The price of the highest accepted bid is then used to set the market 

price. The SPD algorithm uses a linear problem solver to find a solution to the problem 

ensuring all market supply security constraints are met. The SPD algorithm is set to 

minimise the total value of electricity purchased across the entire NEM not on a region 

by region basis. This includes generation capacity and ramp rate limits as well as 

transmission limits across the network. If an adequate solution cannot be found the SPD 

algorithm begins relaxing constraints until a solution is found (AEMO 2010, p. 52).  

 

3.8 Future	of	the	NEM 
 

The NEM is under constant change as demand fluctuates, government policy 

intervention, new generation and transmission capacity is installed and aging generators 

are retired. AEMO has considered plausible futures for the NEM that cover several 

scenarios including a slow rate of change, a fast rate of change, oil shock and adaption 

and a decentralised world where it becomes cheaper to generate power at the load 

centres.  

 

3.8.1 Aging	Infrastructure 

 

As power stations are designed with a limited life there is a need to replace existing 

power stations. Several power stations are expected to be retired in the next few years 

and will need to be replaced.  There are long lead times for replace large power plants. 

Listed below are the candidates for retirement over the coming years. 
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Table 3-10 NEM retirements 

Fixed retirement candidates 

Candidate  

Region  By year  

Callide A  QLD 2015/16 

Mackay  QLD 2016/17 

Swanbank B (2 & 4)  QLD 2010/11 

Swanbank B (1)  QLD 2011/12 

Swanbank B (3)  QLD 2012/13 

Munmorah  NSW 2014/15 

Playford1  SA 2016/17 

 

As the power stations are retired and demand continues to grow there is considerable 

uncertainty in what they will be replaced with.  

 

Figure 3.14 Potential growth in NEM generation infrastructure (National Water 

Commission 2012) 
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3.8.3 Renewable	Energy	Targets	 
 

Along with several other countries around the world the Australian Federal Government 

has set a target that at least 20% of Australia’s electrical energy should come from 

renewable sources by 2020. This is designed to drive innovation and investment in 

green energy and propel Australia to a clean energy future. It is expected by 2020 green 

technologies to be providing 45,000 gigawatt- hours of energy. The scheme has been 

broken down into a Large scale Renewable Energy Target (LRET) and a Small scale 

Renewable energy scheme (SRES). LRET is to drive large scale projects including wind 

farms and large solar thermal facilities. SRES is to incentivise solar PV panels and solar 

water heaters. (Department of Climate Change and Energy Efficiency 2012) 

This will have a significant impact on the NEM. One problem with high levels of 

renewable generation is the inertia in the system used to maintain system frequency 

during the first 6 seconds of the FCAS response. In order to ensure system stability 

minimum levels of inertia are needed. This means a minimum number of thermal 

generation plants need to be in operation at all times. In the case of South Australia 

which has the greatest instalment of wind energy, 500 MW of synchronous generation 

has been recommended.    (ACIL Tasman Pty Ltd 2010) 
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4 NEM Operation 

 

To aid in the design of the simulator, data from several sources was collected and 

analysed to gain a greater understating of the operation of the NEM. Data from several 

sources including AEMO dispatch data, CSIRO solar irradiance data and temperature 

data was analysed in MATLAB. This helped to quantify relationships and better 

understand demand, pricing and how different generation technologies are deployed in 

the NEM.  

 

4.1 NEM	Demand 

 

The demand in the NEM sets the requirements for the installed generation capacity and 

transmission infrastructure as electrical energy can’t be easily stored. The power 

generated must equal the demand at all times for the grid to remain within frequency 

limits. The NEM must also have enough spare capacity to deal with any forced outages 

that can credibly occur.    

 

Figure 4.1 Weekly average demand in the NEM (oz-energy-analysis 2012) 

 

 

 

 



34 

Demand in the NEM has a summer and winter peak and a low during the Christmas 

New Year period. Summer/winter and spring/autumn demands averages are similar 

across the NEM.  The MP PASA shows there is a reduction in generation capacity 

during autumn and spring as plants are shut down due to the surplus of generation 

capacity and plants that are taken off line for maintenance during these low demand 

periods. Figure 4.1 also indicates demand has been falling in the NEM recently and 

peaked in 2008/2009. 

 

 

Figure 4.2 Average daily temperature vs. demand 

 

Figure 4.2 shows the clear link between demand and average daily temperature in the 

NEM.  Demand will be at a minimum when the daily average temperature is between 18 

oC – 20oC and demand will increases the further the temperature is from this point. 

Although there is a strong link between temperature and demand there is still a large 

variation in demand at each of the daily average temperatures making forecasting 

expected demand challenging. There is a significant difference in demand between 

business days and weekends and public holidays with demand on weekend and public 

holiday typically varying more than on weekdays.  
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Figure 4.3  2012/2011 summer demand duration 

 

Figure 4.4 2012/2011 winter demand duration 

The demand duration curve provides information on the length of time different levels 

of generation capacity are required.  Electricity supply systems need to be sized for peak 

demand and the demand duration curves show there is significant excess capacity on top 

of peak demand. The peak is the most expensive power to supply as facilities that 

supply peaking power only run for a small part of the year. As most steam and CCGT 

plants run continuously there is a minimum demand needed to prevent shutting down of 

the units. In recent years peak demand has been growing faster than total consumption 

(Deliotte 2012, p. 4). The marginal cost of supplying peak power is estimated at 

$200,000 MW as it is only needed for a very small amount of time (Deliotte 2012, p. 

20). Demand is greatest in summer for the Queensland, South Australia and Victoria 

and in winter for New South Wales and Tasmania.   The summer demand profile is 

similar in the three large states NSW, Queensland and Victoria but Queensland’s winter 

demand is relatively lower than the other states. 
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Figure 4.5 Average summer day demand profile.  

 

Figure 4.6 Mean winter daily load profile 

 

The NEM has a minimum demand around 3:00 to 4:00 am (AEST) in the morning. In 

summer there is a flat demand throughout the day and peaks around 4pm in the 

afternoon. In winter there are two significant demand peaks each day one in the 

morning around 9am and one in the evening at 6 pm. The disadvantage of the north 

south grid in Australia is clearly shown with all regions peak at the same time of the day 

with the exception of SA.  The effect of controlled loads e.g. hot water heating is clearly 

visible as large jumps in demand between 10pm and 1 am.  
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4.1.1 New	South	Wales 

 

This section looks at the variation in the demand profiles. 

 

 

Figure 4.7 Summer demand in NSW 

 

 

Figure 4.8 Winter demand in NSW 

 

NSW is the region with the highest demand in the NEM and has a summer peak at 4pm 

and winter peak at 6pm. The variance in demand is typically small but can vary 

significantly, on extreme weather days there is an extra 3000 MW of generation 

capacity needed on top of the mean demand.   
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4.1.2 South	Australia 

 

 

Figure 4.9 Summer demand in South Australia 

 

 

Figure 4.10 Winter demand in South Australia 

South Australia has the second smallest demand in the NEM. There is a steep increase 

in demand at 11pm as there is only a single distribution network and all controlled loads 

being turned on at the same time results in a large increase in demand. The summer 

peak demand is almost twice the mean demand.  

 

 



39 

 

Figure 4.11 Inter region electricity flows 

 

Figure 4.11 displays the interregional flows of electricity in the NEM as a function of 

time. New South Wales has the highest demand for imported power with Queensland 

exporting the most.  Victoria has the most variance due to its central location in the 

NEM. There is only a small amount of time that the transmission lines between regions 

are pushed to their maximum limits.  

 

4.1.3 Installed	Generation 

 

Table 4-1 Installed generation capacity in the NEM (winter) 

 

S
team

 

O
C

G
T

 

C
C

G
T

 

W
ind 

S
olar 

H
yd

ro 

R
eciprocating 

E
ngine 

N
on 

scheduled 

Total 

(MW) 

QLD 64.78 13.86 12.15 0.09 3.19 4.97 0.98 2.4 13,399 

NSW 66.83 8.58 3.35 1.57 2.58 15.8 1.18 4 17,841 

VIC 56.23 15.41 0 7.08 2.33 18.5 0.41 4.45 12,358 

TAS 0 6.3 7.37 4.96 0.43 80.78 0.17 9 2,823 

SA 39.1 17.45 12.55 22.95 5.09 0.05 2.8 15.3 5242 

Total 

(MW) 

29,60

3 
6,390 3,090 2,510 1,455 8,071 544.6 2,381 51,665 

(AEMO 2012) 
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Generation and transmission limits in the NEM have a lower value in summer than in 

winter as the higher atmospheric temperature reduces the ability to reject waste heat and 

effect thermal efficiencies. Electricity generation in the NEM is dominated by steam 

power plants fuelled by coal. The market is experiencing a rapid increase in the 

installation of wind and solar power. The non-scheduled capacity in the NEM several 

smaller generators made up of 1,113 MW of wind, 544 MW of reciprocating engines 

and 417 MW of hydro. SA is the leader in intermittent renewable energy and is highly 

reliant on the inter connecter system with Victoria. Generators can exceed their 

registered capacity for short periods if high market prices justify the added cost.  For 

example Eraring Power Station is registered with a capacity of 720 MW and a 

maximum capacity of 750 MW.  

 

4.2 Market	Prices 

 

The spot market prices in the NEM are set every half hour as the average of the 6 

previous 5 minute dispatches. The NEM is limited to a current floor price of negative 

$1000 MWh during periods of excess generation capacity and a market cap of $12,500 

MWh where the demand is greater than supply.  A cumulative price limit also applies so 

the average price over a seven days period in a single region can’t exceed $558 MWh. 

Most electricity is sold through off market contracts with compensation being paid 

between retailers and generators when the spot price varies from the contract price. 

(AEMO 2012) 

 

Figure 4.12 Market prices 2011 (negative prices ignored).  



41 

 

Table 4-2 Average energy price in the NEM 

Year NSW QLD SA TAS VIC 

2008-2009 38.85 34.00 50.98 58.48 41.82 

2009-2010 44.19 33.30 55.31 29.37 36.28 

2010-2011 36.74 30.97 32.58 29.45 27.09 

2011-2012 29.67 29.07 30.28 32.58 27.28 

2012-2013 60.31 58.25 69.25 51.03 63.68 

(AEMO 2012) 

Queensland had a high number of price spikes in 2011 but across the NEM the price 

typically trades in tight bands.  Drought in 2009 resulted in very high prices in 

Tasmanian due to their heavy reliance on hydroelectricity (Bureau of Meteorology 

2009). The energy price in the NEM has generally been falling due to reduced demand 

with the exception of 2012 – 2013 following the introduction of carbon pricing.  

Prices vary each day with demand in tight bands as shown in Figure 4.13. The extreme 

ends of the price scale only occur for small periods of time but as the market pricing cap 

allows a 500x increase in price they can still have an effect on the average market 

prices. High priced periods are caused during supply short falls as the price moves from 

the cost of generating the electricity to the cost of not having the electricity.  

 

 

Figure 4.13 Cumulative histogram of market prices 2011 

 



42 

Table 4-3 Average and volume weighted energy prices in the NEM 

 NSW QLD VIC SA TAS 

2011-2012 Average 

Price 
29.67 29.07 27.28 30.28 32.58 

2012-2013 Average 

Price 
63.10 60.48 66.84 74.00 55.25 

      

2011-2012 Volume 

Weighted Price 
30.56 30.07 28.30 32.11 32.94 

2012-2013 Volume 

Weighted Price 
66.13 63.27 71.39 80.26 58.22 

 (2012-2013 July and August only) 

Table 4-3 shows that as more electricity is needed the price of electricity goes up. Post 

carbon pricing, Tasmania has the cheapest power due to its large hydro generating 

capacity where Victoria and South Australia had the largest price increases due to their 

reliance on the emissions intensive brown coal. Indicating the carbon tax compensation 

may not be being passed on to consumers.  

 

4.3 Forecast	Accuracy	 
 

 

Figure 4.14 Forecast  accuracy 
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Short term forecasts in the NEM are typically accurate to within 1% of actual demand 

for 95% of the time, however there can be a large errors due to failures in the network. 

The small size of demand in South Australia means any failures in the network causes a 

big variation in the forecast.  

 

4.4 NEM	Illustration 

 

Data from different regions in the NEM was compiled to examine the relationship 

between generator production from different technologies, interconnector support, price 

and demand during a week of high demand. Queensland was chosen as it has a small 

installation of intermittent renewables and is a large power exporter. Whereas South 

Australia is the opposite, importing large volumes of electricity and has a large 

deployment of intermittent renewables.  

 

4.4.1 Queensland 

 

During periods of high demand it can be seen that when demand tests the available 

capacity there is a price spike as shown in Figure 4.15. 

 

Figure 4.15 Week of maximum demand Queensland summer 2012 
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Figure 4.16 shows the relationship between demand and generation technology.  As 

demand increases the more expensive technologies are brought online to satisfy the 

increased demand. 

 

Figure 4.16 Relationship between demand and generation technology Queensland 

 

A drop in availability and simultaneous price spike on Friday has likely occurred due to 

a forced outage. On Monday demand tests availability and there is a resulting price 

spike. On Thursday a drop in availability triggers a price spike which in turn brings 

significant capacity online, the excess capacity then crashes the price. Wivenhoe 

pumped storage recharges during low demand Thursday morning. OCGT and hydro are 

only used to cover the demand peaks.   

 

Figure 4.17 Price, demand and available generation capacity week of maximum demand 

Queensland winter 2012 
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Figure 4.18 Relationship between demand and generation technology Queensland 

 

Figure 4.17 shows a large difference between availability and demand on Tuesday, 

Wednesday and Thursday resulting in unstable prices. With winter demand in 

Queensland being lower than summer demand there are no price spikes due to excess 

generating capacity.  

 

4.4.2 South	Australia 

 

 

Figure 4.19 Week of maximum demand South Australia 2012 
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Figure 4.20 Relationship between demand and generation technology South Australia 

 

In South Australia available generation capacity is typically less than demand, 

interconnector flow from Victoria is used extensively to cover peaks. On windy days a 

large amount of power is generated from the wind turbines with the interconnector used 

to export excess power to Victoria. On days with high demand there is typically little 

power generated from wind farms. When there is a high output from the wind farms the 

market prices is usually lower than on days with low wind power generation. 

 

 

Figure 4.21  Week of maximum demand South Australia winter 2012 
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Figure 4.22 Relationship between demand and generation technology South Australia. 

 

Figure 4.22 shows the interconnector usage was preferred over OCGT until the power 

limits of the interconnectors are reached and the OCGT are used to cover the extra 

demand.  On Friday morning low demand, interconnector congestion and high wind 

generation sent the price negative for a significant period of time. Again there is 

minimal wind generation during times of peak demand.    

 

4.5 Unit	Bidding	Strategies		 
 

NSW is the only state with significant generation capacity across the range of large 

scale generation types.  This section describes how different generation technologies are 

operated in the market.  

Table 4-4 shows coal fired steam and CCGT generators are running most of the time 

and are run with high capacity factors. OOGT are only run for small amounts of time 

and for high market prices. The difference between SHPUMP and SHGEN the 

Shoalhaven pumped storage system show it is only around 75% efficient and operates 

on a large difference in energy pricing. The other hydro system UPPTUMUT is only for 

around half the time but for high market prices. The wind farms have a capacity factors 

from 23 – 39% but are producing power for 50% of the time. Wind power also receives 

the lowest earnings out of all the technologies. The Solar PV system has a very low 
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capacity factor but receives a higher level of earnings than wind indicating the energy it 

produces is of higher value to the market.     

 

Table 4-4 NEM generator operation 

Power Station Capacity 
Factor (%) 

Tine Units 
generating 
power (%) 

2011/2012 
Volume 
weighted 
earnings 
($/MWh) 

2012 July 
August 
Volume 
weighted 
earnings 
($/MWh) 

Bayswater (Black 

Coal Steam 

4×660MW) 

73.19 93.29 30.45 65.99 

Tallawarra 

(1×460MW CCGT) 
61.01 87.19 31.24 67.86 

Colongra (4×181MW 

OCGT) 
0.53 1.07 63.87 133.58 

SHPUMP (40MW×6) 

pumped storage 
3.4 8.68 25.98 55.24 

SHGEN (2×40MW + 

2×80) Hydro  
2.56 4.98 47.51 90.58 

UPPTUMUT 

(82MW×4 + 

4×72MW) Hydro 

17.78 38.95 35.45 65.84 

Solar 29.7 KW system 

near Canberra ACT 
16.01 45.65 31.58 91.69 

Capital wind farm 

(wind) 
23.09 58.24 29.76 60.39 

WOODLWN1 (wind) 30.7 47.4 29.5 60.8 

NBHWF1 (wind SA) 39.44 74.45 25.58 63.36 

 

The next section compares the frequency of unit output and market prices for the 

financial year before carbon pricing and the first two months with carbon pricing. The 

colour bar displays the log of the probability. The x axis displays the spot market price 

the left hand value is $0 MWh and below, the right hand value is $100 MWh and above.  
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4.5.1 Base	Load 

 

 

Figure 4.23 Unit BW02 2011/2012 operation 

 

Figure 4.24 Unit BW02 2012/2013 operation 

 

Unit 2 Bayswater is a subcritical coal fired steam plant operating in base load. The base 

load unit is running most of the time to minimise unit restarts and increase its capacity 

factor.  The unit is typically generating near maximum power during high priced market 

periods and reduces power at low priced periods. During times the unit is offline there 

are very few high priced periods. It appears that the unit has a marginal cost around 

$66/67 MWh.  BW2 also appears to do some load following spending time in between 

its maximum and minimum outputs.  There is also a hard minimum output limit that is 

only crossed during start up and shutdown of the unit.  
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Figure 4.25 Unit Talwa1 2011/2012 operation 

 

Figure 4.26 Unit Talwa1 2012/2013 operation 

 

Tallawarra is a base load 400MW CCGT it is run at low output during low prices and  

high output during high prices. Tallawarra spends very little time offline during periods 

of high prices and spends most of its time at full power or minimum power indicating it 

is run to minimise start-ups and at maximum efficiency.   



51 

4.5.2 Peaking	Plants 

 

 

Figure 4.27 Unit CG2 2011/2012 Operation 

 

Figure 4.28 Unit CG2 2012/2013 Operation 

 

Colongra unit 2 is an OCGT that runs for a very small amount of time. OCGTs appear 

to only be run at high outputs for high efficiencies spending most of the time offline. If 

the unit is started it runs close to full power to maximise part load efficiency. With 

minimal points between zero and full power showing the unit is able to ramp quickly. 

OCGT typically run for very high price $100 MWh and above. 
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4.5.3 Hydro 

 

 

Figure 4.29 Upper Tumut 2011/2012 operation 

 

Figure 4.30 Upper Tumut 2012/2013 operation 

 

Upper Tumut is a 616 MW hydroelectricity facility and is operated at levels around the 

turbine sizes showing that hydro facilities are run at maximum efficiency. Most of the 

generation is done around market price averages and they don’t appear to increase 

output to take advantage of high market prices.  
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Figure 4.31 NEM pumped storage store 

 

 

Figure 4.32 NEM pumped storage generate 

 

SHGEN and SHPUMP is a pumped storage facility in NSW. The pumps move water 

uphill to store energy during low price periods. The generators run during high price 

periods. The storage facility is run strictly around unit sizes to maximise efficiency. The 

pumps can also be used as dispatchable load to consume energy during periods when 

there is an oversupply in the market. 
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4.5.4 Intermittent	Renewables 

 

 

Figure 4.33 Capital wind farm generation 

 

As the power output from wind farms is dependent on the wind speed it is only a price 

taker and can only depress market prices as it displaces fossil fuel generation. Figure 

4.33 shows Capital Wind Farm does not produce much power at times of high demand 

so receives mainly low prices for the electricity it produces. Capital Wind Farm spends 

most of the time not producing any power and the rest of the time is only producing low 

levels of power. With the renewable energy target rapidly increasing installation of 

intermittent renewable generation capacity other generators will need to reduce output 

to accommodate the must run renewable power from the intermittent sources.   

 

Figure 4.34 NSW wind power generation summer 
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Figure 4.35 NSW wind power generation winter 

 

 

Figure 4.36 SA summer wind generation 
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Figure 4.37 SA winter wind generation 

 

Table 4-5 Covariance matrix of NEM wind generation  

 NSW VIC TAS SA 

NSW 0.0745 0.0215 0.0202 0.0139 

VIC 0.0215 0.0674 0.0317 0.0301 

TAS 0.0202 0.0317 0.0891 0.0119 

SA 0.0139 0.0301 0.0119 0.0474 

 

 

Figure 4.38 Inter region NEM wind generation 
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As expected SA the region with the highest installation of wind capacity has the lowest 

variation. Where TAS with only one SS wind farm has the highest variation.  All 

covariances are small but positive, indicating as wind power increases in one region 

there is an increase in the other region.   

Even with large distributed wind installations in South Australia and NSW, wind 

generation has the potential to be at a maximum output or minimum output at any 

period during the day. The dip in mean South Australian wind production during the 

day when power is needed the most and higher production at night during low prices 

periods leads wind power to being of lower value to the grid. As the wind power output 

drops to zero in each region it indicates wind power needs to be entirely backed up by 

storage or fossil fuel plants.   

 

 

Figure 4.39 Mean summer output from renewable sources 
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Figure 4.40 Mean winter power from renewable generation 

 

Hydro has the highest value as it is able to be dispatched to match demand.  

Solar works well in summer but still has a low output during afternoon peak demand.   

It also has limited capacity during winter and has zero output for the winter evening 

peak. 

High output of wind power during times of low demand will impact the ability for fossil 

fuel generators to stay online at night.  The daily profile for wind power output doesn’t 

match well with the demand daily profile. 
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5 Simulator Design 

 

The market simulator was developed and programed in MATLAB using a rapid 

prototype methodology. It was designed to be flexible, scalable and easily modifiable 

tool able to simulate the generation and transmission side of electrical supply systems.  

An electrical supply system is created as a network of inter connected nodes. Each node 

is then allocated a generation capacity and a maximum power demand reference.  

An energy market is established by setting up a single market operator (MO) and many 

market participants (MP). The MO designs the network of nodes, there interconnection 

and sets the MPs generation capacity and demand reference of each node. MPs then 

register with the MO. Upon successful registration the MO allocates several generation 

units to each MP and where there generation units are located. 

After all MP have registered the simulation begins. The MO generates a forecast for the 

demand at each node and broadcasts it to all the MPs. MPs then assess the forecast and 

submit energy production bids for each of their generators.  Once all MPs have 

submitted their bids to the MO, the MO ‘runs the round’ to execute the dispatch 

algorithm to calculate the power outputs from each generator and the subsequent 

electricity price. The MO then broadcasts the results of the simulation to the MPs. The 

process is then repeated from the forecasting step until the simulation objectives have 

been accomplished with each MP trying to earn larger profits than their competitors.                      

 

  

Figure 5.1 Flowchart of simulator operation 
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5.1 Simulation	Parameters 
 

The simulator creates an electrical supply system by establishing a network of 

interconnected nodes. Each node represents a demand or load centre with the 

interconnections the transmissions system. The simulator allows any network topology 

to be created and allows for several parameters to be varied.   

At the beginning of each simulation the person acting as the MO sets the number of 

nodes and the transmission links between them. The simulation can be set up so that 

each node represents an entire region or each node represents a transmission connection 

point of an intra-regional network.   

The Simulation Parameters that can be varied are 

• The number of nodes in the network to be simulated 
• The price on carbon emissions 

• How the demand at each node is calculated  
• If the market price is determined by the bid pool of each node or all bids across 

the entire network  

The Parameters of each node  

• Installed generation capacity – the total installed dispatchable generation 
capacity in MW of each MP 

• Generation mix – how the generation capacity is split between different  
generation technologies 

• Generation efficiency – the peak sent out efficiency of the different generation 
technologies. This redraws the predefined part load efficiency curve for each 
generator so it peaks at the supplied value.  

• Generator minimums – The minimal production level of each generator 
• Emissions – the emissions factor from each form of generation technology, 

specified in terms of tonnes of CO2 per GJ of fuel consumed. 
• Fuel Costs – the cost of fuel for each generation technology in dollars per 

Gigajoule of fuel 
• Renewables – the extra installed capacity of hydroelectricity, wind and solar PV 

power. 
• Demand diversity – the variation in time of peak demand between each node.     

Node Interconnection 

• The transmission links in the network 
• The capacity of the link between two nodes (MW) 
• The static efficiency of the transmission link between two nodes 



61 
 

5.2 Generation	Forecast			 
 

Each day of operation is broken down into a number of simulation rounds the default is 

24, one round per hour (in the NEM this is 288). A forecast for the demand at each node 

is generated for the day ahead and is based on a fixed demand value either entered 

manually or calculated based on the total installed dispatchable generation at the node. 

Demand is calculated as a percentage of this fixed value at each node using two separate 

methods either a manually entered vector input or from cumulative distribution 

functions (CDFs) calculated from NEM data. 

 

5.2.1 Vector	Input	Mode 

 

In the vector input mode, an N length vector representing a daily load profile is imputed 

into the simulation. Each value of the vector is typically a number between 0 and 1. A 

daily variation factor is then calculated for each day of the simulation. The daily 

variation factor is calculated as a random number between 0.7 and 1.1 with a uniform 

distribution.  The forecast is then calculated as the fixed demand value multiplied by the 

daily load profile and the daily variation factor. 

It is calculated in this manner as a review of NEM data showed the daily load profile is 

well defined based on the time of year. There is a smooth transition over the course of a 

day and the magnitude of the daily demand profile can change significantly from day to 

day with little change in shape.    
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5.2.3 File	Input	Mode 

 

To make the demand profile more realistic real world demand data collected from 

AEMO for each of the NEM regions.  This data for the last 18 months was grouped 

based on average daily temperature and if it was a business or week end/ public holiday.  

It was found that by grouping the business day data into four average daily temperature 

groups of < 11oC, 11 to 15oC, 16 to 20oC > 20oC there was a sample size of around 80 

days in each group for the NSW and SA data. The data in each group was then used to 

calculate a cumulative distribution function for the demand in each region for every 

hour of the day.  The demand in each region was then divided by the total installed 

dispatchable generation capacity in each region to get a percentage value. This created 

eight CDFs for each region, four for each temperature category over the business days 

and the weekend/ holidays.  Figure 5.2 shows how the daily demand profile changes 

with average daily temperature. In colder times of their year there is a double peak in 

warmer parts there is a single peak.    

To generate the forecast, a file with the CDFs is loaded and the temperature range 

selected. A daily variation factor is calculated for each day of the simulation as a 

random number between 0 – 1 with a uniform distribution. The daily variation factor 

and the time of day is then used to find the demand capacity percentage (y axis value of 

Figure 5.2). The demand capacity percentage is then multiplied by the fixed demand 

value to get the demand at each node. 

Again the daily variation factor is only updated one per day as there is little high 

frequency variation in NEM demand. 
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Figure 5.2 Temperature vs. daily demand profiles NSW 2011 – 2012  

 

 

Figure 5.3 CDFs used to calculate NSW Daily load profile for average daily 

temperatures greater than 20
o

C.  

 

Figure 5.3 shows the CDFs for NSW demand on days with average temperatures greater 

than 20oC. The daily variation factor is matched to a colour in the colour bar, the colour 

is then used to look up the y axis values to calculate the demand percentage for the 

entire day. Figure 5.3 shows there is little variation in demand in the early hours of the 

morning but a high variation in demand during the afternoon peak. Day time demand is 

mostly flat on the high temperature days.    
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5.3 Bidding 
 

The forecast for each region is broadcast to the MPs. The MPs assess the forecast and 

submit bids for each generator back to the MO for each round of the next day. Each bid 

can have up to four blocks for each generator with the price offered referenced to the 

local node. The available generation capacity for each round is updated as bids are 

submitted and the updated availability data is transmitted back to MPs. The market 

participants need to continually assess the forecast and market conditions to ensure they 

are using an optimum bidding strategy.   

 

5.4 Running	a	round 
  

Once all MPs have submitted their bids, the MO will proceed to run a round. This 

executes the code to compute the power generated by the renewable technologies and is 

used to calculate the actual demand. After the actual demand has been calculated the 

dispatch algorithm will be run calculating the required production levels from each of 

the generators and the power flows across the network. As the simulation progresses the 

MO can choose to update several of the simulation parameters including changes in the 

transmission network and the type of demand profile.   

 

5.4.1 Actual	Demand 

 

As demand forecasts are never perfect the actual demand is calculated from the forecast 

using Equation 5.1. This is done using the addition of a small forecast error and the 

addition of a contingency load to simulate the effect of a sudden loss of a generator or 

load block.  

������	�	
��� = ��	����	�	
���	 × ��	����	����� + �������	��� −�	�	����		�	�	������  Equation 5.1 
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The contingency load is important as faults can be common in electrical supply systems 

and there needs to be procedures in place to ensure the network is capable of dealing 

with any likely faults while maintaining the integrity of the entire system. The 

contingency load can be negative to represent the loss of a load block or positive for the 

loss of generation capacity. 

The forecast error is calculated randomly using a normal distribution with a variance 

specified during program run time. The magnitude of the error is calculated for each 

round independently. Over short time durations the forecast error in the NEM is typical 

only small.   

 

5.4.1.1 Renewable Generation 

 

The renewable generation at each node is generated in a similar manner to demand 

using cumulative probability functions calculated from real world data. The CDFs are 

also split based on average daily temperatures and business days/ holidays and 

weekends. Renewable generation is calculated at each node independent of renewable 

generation in other parts of the network. Only wind, solar PV and hydroelectricity 

technologies have been included as they are the only renewable technology’s deployed 

at scale in the NEM. There are also large sources of data available for Wind, solar PV 

and hydro generation to analyse their real world operation. However AEMO does use a 

wind generation forecasting tool to forecast power production from these intermittent 

sources.  
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5.4.1.1.2 Solar Photovoltaic  

 

With no large scale solar PV power stations in the NEM intraday solar PV production 

data was downloaded from pvoutput.org. Pvoutput.org is a website that allows 

individuals to upload production figures from there solar PV systems to the internet. 

Data from several systems from geographically diverse locations was combined to 

reduce the impact of any dubious data and reflect the distributed nature of solar PV 

systems. The systems were then grouped based on which states they were located. Each 

solar system was divided by its capacity to give each system equal weighting in the 

calculation of the CDF.  

To generate solar PV production levels at each node an output factor is calculated as a 

random number between 0 and 1 with a uniform distribution. The output factor is then 

used to find the location in the CDF and the corresponding production level. The 

production level is then multiplied by the installed solar PV capacity to calculate the 

reduction in demand. The output factor is calculated for each round as the Pvoutput data 

shows that the output from individual system can change rapidly throughout the day.  

Table 5-1 Sources used to generate solar PV probability function 

Pvoutput 

System id 

Size (watts) System details Location 

(Post code) 

312 29,700 

North orientation, low shade 25.0 

Degrees tilt. Orientation is about 20 

degrees West of North. 

2603 

25 9,400 

22 panels at 5 deg elev & 9 deg Az, 9 

panels at 15 deg elev & 9 deg Az, 9 

panels at 28 deg elev and 279 Az. 

2229 

1562 20,000 North no shade 20 degree tilt 2358 

793 9,690 
orientation slightly west of north low 

shade tilt 30 degrees 
2620 

453 30,40 North orientation, 30.0 Degrees tilt 2018 

Source pvoutput.org 
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Figure 5.4 NSW average solar PV output with average temperature 

 

Figure 5.4 shows solar PV output is linked to average daily temperature and is lower in 

the cooler parts of the year. The length of time solar PV generated power is also reduced 

with the shorter day lengths in the cooler parts of the year. Figure 5.4 also shows that 

while the output from individual systems can vary significantly throughout the day the 

combined output of several systems reduces the erratic behaviour.     

 

5.4.1.1.3 Hydroelectricity 

 

AEMO production data for each of the large hydroelectricity generators in the NEM 

was collected and combined to calculate the total power generated in each NEM region. 

This regional dataset was then used to calculate the CDFs for hydro power outputs at 

hourly intervals for different times of the day.  The values in NSW appear low in terms 

of capacity factor for hydro due to extremely large installation Tumut 3 in the Snowy 

Hydro Scheme. Tumut 3 is capable of generating 1500 MW but due to limited water it 

is very rarely run near this limit. 
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The same process to calculate solar PV output is used for hydro with the exception that 

the same daily variation factor used to calculate demand is used for hydro. This is to 

reflect the ability for hydro to be dispatched according to market conditions. A potential 

fault with the hydro CDFs is that a large part of the data used was taken from 2011. 

With 2011 being one of the wettest years on record for NSW the hydro output data is 

most likely higher than average (Bureau of Meteorology 2011). 

 

Figure 5.5 NSW Hydroelectricity generation day profile vs average daily temperature 

 

Figure 5.5 shows hydroelectricity has a clear ability to follow the demand profile as 

power production is low at times of low demand but high at times of high demand. The 

figure also indicates that water is saved during days with low demand so it can be used 

for days when there is high demand.  

 

5.4.1.1.4 Wind 

 

As the power output from wind farms is not directly related to time of day a different 

approach was used for calculating wind generation. AEMO data was used to sum the 

power output from all the large wind farms in each NEM region and grouped based on 

average daily temperature, business day or weekend/holiday. The data was then used to 

calculate the hourly change in the output from wind farms in each region. This was then 

used to calculate the CDFs for each hour of the day for use in the simulation.   
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To generate the wind power output at each region a random number between 0 and 1 

with a uniform distribution is calculated. The point is found in the cumulative histogram 

Figure 5.6 this is a number between -1 and 1. This value is then added to a tracking 

variable with limits of 0 and 1. The wind output is then calculated as the tracking 

variable multiplied by the installed capacity.  

It was decided this method was more realistic than the procedure used for solar PV and 

hydro as wind power output is not strictly related to the time of day. The solar PV 

method ether resulted in to either too many or not enough rapid changes of wind power 

output. This method allows realistic changes in wind power generation as it can move 

from one extreme to the other quickly but typically floats around expected values.        

 

Figure 5.6 Mean wind generation vs. average daily temperature 

 

 

Figure 5.7 NSW Wind generation CDF 
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Figure 5.6 shows in South Australia where there is the largest instalment of wind power 

that wind power output is lowest during days of high temperatures and subsequent high 

demand. Wind power on average is also lower during times of high demand. Figure 5.7 

shows how the wind CDF is calculated with the change in percentage of installed 

capacity. Although very rare, wind has the capability to have a change in power output 

of up to a 60% increase and 35% decrease in a single hour but typical varies less than 5-

10%. 

 

5.4.2 Generator	Dispatch	and	Pricing 

 

The aim of the dispatch algorithm is to minimise the value of the electricity purchased 

across the whole network while ensuring supply security constraints are met. The 

dispatch algorithm calculates generator production levels using linear optimisation with 

the objective function   


��∑ ∑ ∑ ��,�,�∙
��,�,�

��
���

��
���

�	
���  Equation 5.2 Objective function 

 

nR number of nodes 

nG number of generators   

Nb number of energy blocks offered by each generator 

x is the power level offered at price p of generator i block j in region k 

 

Under the equality that the total demand at each node must be met 

 

∑ ∑ �� ∙ ��,�,�
��
���

��
��� + ∑ �� ∙ ��,�,��

�

��� + ∑ ��,�,��

�

��� = �� Equation 5.3 Regional supply 

capacity 

 

nL number of transmission lines connected to the node 

l interconnector n with power flowing in and out of node k 

ri is generator loss factor 

rn is transmission loss factor of the transmission line 

�� demand in region k 

 



71 
 

These calculations are also subject to the constraints 

���� < ∑��,�,� < ���� Equation 5.4 Generator loading constraint 

 

Generator I must be dispatched above its minimum stable load and less than its 

maximum registered load 

��∑ ��,���
��� � − ∑����� ≤ �� Equation 5.5 Ramp rate constraint 

 

The change in output from any generator cannot exceed the maximum ramp rate xr. The 

transmission line L must be used within its minimum and maximum power flow limits 

0 < 	  �� <  ��� , 0 > 	  �� > − ��� Equation 5.6 interconnector limitations 

 

The market price at each node is then calculated from either a pricing pool of all of the 

generator bids (intra-region mode) or from separate pricing pool from generator bids at 

each node (interregional mode).    The market price is then set as the highest accepted 

bid in each pricing pool from a generator that is not constrained by a ramp rate or at it 

minimum stable load.  

 

����	���	��
= 
�

�
max��,�,�� 			�����	�	��	�	�����	��,�,� > 0	 	���,�,���

���

> ��,���	 �����,���

���

�−��	
��� ≤ � 	 											
−1000							 ��ℎ������

 

 

Equation 5.7 Node Price Calculation 

 

Should the program be unable to satisfy all of the constraints the dispatch algorithm is 

re-run with the minimum stable load constraints removed in the hope that a solution can 

be found and the users notified that there was an error with the simulation.   
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5.4.4 Generator	Profit	 
 

To calculate the profit of each MP the cost of each generator is calculated using the 

current simulation values for fuel and emissions costs and other generator costs 

preprogramed into the simulation. The preprogramed data for each generator includes 

the capital cost, FOM and VOM costs and the base part load efficiency curve, new 

generators can easily be added to the simulator by adding new data to generatos.m. 

To calculate the costs from each generator the thermal efficiency of is calculated at their 

dispatched power level. This is done using linear interpolation of the base part load 

efficiency curve matched to the specified peak generator efficiency. The finance cost of 

each generator is then calculated using   

�����	 ���� =

������� ���� × 0.05
(1 + 0.05)���� �������!

365.25 × "# 	Equation 

5.8 Generator Finance Cost 

 

The finance cost is calculated at a 5% interest rate compounded annually with the 

capital paid back over the lifetime of the generator. A 5% interest rate was used as it the 

approximate interest rate for long term government bonds. The finance cost is split 

evenly over the entire year and N the number of simulation periods per day.   

The Fuel load in GJ is then calculated using the estimated generators efficiency value 

and the dispatched load of the generator. 

�	�	 ��� = �	�	�����	 ���	 × 24 "$ × 3.6 	%%��	���$  Equation 5.9 Fuel quantity 

calculation 

 

Emissions costs are calculated based on the fuel load and the emissions factor. 

�
�������	���� = �	�	 ���	 × �
�������	�����	 × �
�������	���� Equation 
5.10 Emissions cost calculation 
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The total cost of each generator  

�	�	�����	���� = �����		���� + �	�	 ��� × �	�	���� + �
�������	���� +&'(	���� × �	�	�����	 ���	 × 24 "$ + '(	����
365.25 × "$  Equation 5.11 Total 

generator cost 

 

The income for each generator is then calculated  

)���
	 = �	�	�����	 ���	 × "��		
��*	�	����	 Equation 5.12 

 

The profit of each MP is then calculated as the sum of profits from all there generators  

�����	+��%�� = )���
	 − �	�	�����	���� Equation 5.13 

,����	+��%�� = 	∑ �����	+��%�� Equation 5.14 

 

 

 

5.4.5 Simulator	Outputs 
 

At the end of the simulation run the details and settings can be saved to an Excel file for 

review and analysis. The excel file contains the details on the demand, renewable 

generation and price at each node, the power flows on each of the transmission links, 

generator production levels, MP bid details and the emissions and costs for each of the 

generators. 
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5.5 Simulation	Implementation 
  

The simulator is implemented as an event drive GUI program developed using 

MATLAB GUIDE. Events are triggered by user inputs and the responses are listed in 

Table 5-2 for the MO interface and Table 5-3 for the MP interface. There is also a timer 

in each program executing code at fixed intervals.   

Table 5-2 Events triggering code execution in MO software 

Event  Response 

Load Default 

button pressed 

After choosing the number of nodes to be in the network for 

the simulation the load default button will correctly setup the 

simulations settings panel with default values.   

Start button 

pressed 

This triggers the timer to start generating forecasts. The MO 

also begins polling the chosen port listing for MPs attempting 

to transmitting data. If the start button is pressed again the 

timer and port polling will stop until it is pressed again. 

Output button 

pressed 

The program will request a file name from the user and will 

collate the simulation data and export it to an excel file. 

Reset button 

pressed 

This resets the simulation to round 1 and all data is deleted. 

The MO will begin telling MPs to reset until the start button is 

pressed down again. MO can now change all the simulation 

settings. 

Run Round 

pressed 

The triggers the code to calculate actual demand and run the 

dispatch and pricing algorithm. The forecast will be updated 

and results transmitted to the MPs. 

MPs allocated 

node modified in 

the results table 

The MO is able to change the node location of each of the MPs 

throughout the simulation in the results table.. 

 

Timer Function At fixed intervals the timer will update the forecast and the 

results table update results table. 
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Table 5-3 Events triggering code execution in MP software 

Event Response 

Register button pressed After setting the IP address and port number of 

the MO this registers the MP with the MO. If this 

was successful the MP will be allocated several 

generators. This also starts the timer that begins 

downloading forecast and market information. 

Bid (MP) button pressed The bid details for the currently selected round in 

the bidding window will be sent to the MO.   

Select a generator in the 

generator  panel 

After a MP has register with the MO the details 

of each of the allocated generators can be looked 

at one a time. This code updates the generators 

window as the MP goes through each generator. 

Changes selected generator 

in the bid window 

This retrieves the bidding data saved for each 

generator. The total offered energy value is also 

recalculated 

Modify the values of a bid If the edit boxes are modified in the bid panel the 

values will be sorted and stored.  The total 

offered energy value is also recalculated 

Copy previous bid button The bids from the previous round for each 

generator will be copied to the currently selected 

round. 

Submit bid button The bids for each generator for the currently 

selected round will be submitted to the MO, if 

this was successful a tick will appear in the 

checkbox. 

Timer Interrupt code The timer runs a block of code at a fixed interval 

that requests the latest data from the MO for 

either the results panel, network panel or the 

forecast panel. 
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Figure 5.8 Market Operator  MATLAB files 
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Table 5-4 Market Operator files and functions 

File name Description 

Market_Operator.m This is the main file that handles the MO GUI calls backs, it’s 

from here that all other code is executed.  Contains the port 

polling code for communications. 

MO_rec.m This implements the server socket that listen for MP 

communication attempts, it is continuously called from the 

market_operator.m code and awaits a fixed period listing to the 

chosen port for communication attempts from MPs. 

MO_Process.m Once a message has been received by a MP this code generates 

the appropriate return message  

forecast1.m Generates the forecast for the day ahead  

Run_round.m Calculates the actual demand, collects and prepares the bidding 

and constraints data for input into the market clearing algorithm.  

Stores the output from the market clearing algorithm and 

calculates the profits of each MP.  

Update_results Updates the results table in the MO interface 

Calc_demand.m Uses the specified CDFs to calculate the demand at each node.  

Renew_gen.m Uses the specified CDFs to calculate the output percentage for the 

wind, hydro and solar PV generation sources. 

Generator_Cost.m Calculates the cost of each generator 

Mk_clear.m The market clearing algorithm, it uses a linear optimiser to 

calculate generator loads, interconnector flows and market prices. 

Add_new_MP.m This code executes each time a new team registers with the MO. 

It allocates the location of each new MP and the appropriate 

generators. 

Load_settings.m This is called each time data needs to be retrieved on the 

simulation settings. 

Generators.m Stores the part load efficiency, finance and maintenance costs for 

each type of generator in the simulation. 

 



78 
 

 

Figure 5.9 Market Participant matlab files 

 

 

Table 5-5 Market Participant functions and scripts 

File Description 

Market_Participant.m Main MP code that handles the call-backs from the MP 

interface.    

Tx_data.m The message to be sent and the MOs IP address and port 

number are imputed. This code attempts to transmit the 

message to the MO.  

MP_process.m This code processes the response from the MO after a 

message has successfully been transmitted. The return 

message is used to update the MP interface. 

Process_bid_window.m Processes user inputs to the bid panel. This code is used to 

sort, check and store each of the bids and updates the bid 

panel when the selected generator or round is changed.  
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5.5.2 Communication 

 

Several MPs are able to connect to the MO to transmit and retrieve data but only in a 

one to one configuration. This allows for the forecast, simulation settings and bidding 

data to be transmitted between the MO and MPs.  

 

5.5.2.1 Network Communication 

 

Data is transmitted between the MO and the MPs using text strings on top of a TCP/IP 

socket. All communication is initiated by the MPs and only one user can connect to the 

MO at a time. After a MP successfully registers with the MO a timer starts that 

periodically requests the latest data from the MO.  The MO continuously polls a chosen 

port waiting for a MP to connect. When a MP connects to the MO a single text string is 

read in and processed. The MO then transmits a single return text string to the MP with 

the appropriate response. The connection is then closed and the MO returns to polling 

the port to allow the next MP to connect. This communication is done using the 

protocol set out in Appendix C. 

 

The code uses java sockets and the implementation uses a DataReader function written 

in java by (Thomson 2009). The DataReader function reads the entire communicated 

message in one function call instead of the inbuilt function that requires multiple calls 

as it only reads in one byte at a time.  This significantly increases execution speeds 

allowing for better functionality.    

 

5.6 Simulator	Operation 
 

As described the simulator is broken down into a Market Operator with several Market 

Participants. Each user has their own interface allowing several MPs to compete with 

one another. A standalone file can be specified that adds dummy MPs who will compete 

with themselves and any people acting as MPs. The simulator can be run on an 

individual PC or on multiple PCs across a network. 
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5.6.1 Market	Operator 

 

The MO interface is broken down into several panels that control the simulator. Settings 

are specified in the settings panel (MO 6) with the simulation controlled from the 

communications panel (MO 1) and the simulation panel (MO 2). 

 

 

 

Figure 5.10 Market Operator Interface 

 

MP 1 communication and master control panel – Displays the IP address of the 

computer the MO is running on, allows user to select the communications port and start 

or reset the simulation. The start button is a toggle button only when it is down are the 

forecasts being updated and the MO responding to MPs communication requests. The 

output button will save simulation results to an excel file. 

MO 2 Simulation control – The main simulation parameters and is used to set the 

variation in demand from the forecast, add the contingency load and execute the 

dispatch algorithm to run a round. 

MO 3 Market History Panel. Displays the results for the last 24 simulations including 

the actual regional demand (solid line left y axis) and the market price (dashed line right 

hand y axis) for each node. The x axis indicates which round the simulation results are 

from. Each node is allocated a separate colour that is consistent across the history and 

forecast panel.   

MO 1 

MO 2 

MO 3 

MO 4 

MO 5 

MO 7 MO 6 
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MO 4 Forecast panel – Displays the forecast for the day ahead (solid line) and the 

available generation capacity (dot dashed line) for each node. Along with the history 

panel it is updated with new availability data each time the timer runs its interrupt 

function. The graphics step from left to right in one round increments, each time a 

simulation round is run the history and forecast panel move one round to the right.   

MO 5 – Displays outcome of the previous simulation, OK means the dispatch algorithm 

successfully ran and a solution was found. Error indicated the dispatch algorithm was 

unable to find a solution and began dropping constraints so a solution could be found. 

MO 6 settings panel. The settings for the simulation set here in accordance with Table 

5-6 

Table 5-6 Simulation Parameters 

Simulation 

Parameter with 

example input 

Description Modifiable 

after the 

first round 

of 

simulation 

Number of Nodes = 3 The number of nodes in the network to 

be simulated 

No 

 

Inter Region Mode (-

1 for off) = 1 

Specifies if there is to be a pricing pool 

at each node or one pricing pool for the 

whole network. 

Yes 

Max Node Demand (-

1 for auto) = [-1 1000 

-1] 

The demand reference used for 

calculating the demand at each node. -1 

the reference will be calculated from the 

installed generation capacity otherwise 

it will be from the specified value (entry 

for each node). 

Yes 

MP Capacity = [1000 

1000 1000] 

 

 

 

 

The total generation capacity allocated 

to each MO (entry for each node). 

No 
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Demand and Renew 

Gen Probability File 

= 'nsw20112012.txt' 

File with the probability distributions 

used to calculate the demand and 

renewable generation power output. 

Each row has a cumulative probability 

distribution.  

Yes 

Dummy Teams File = 

'standalone' 

An m file that contain artificial MPs and 

their bids, can manual set the node they 

are located at or let it be assigned 

randomly. 

Yes 

Fixed Demand Input 

File = '' 

Use if pre calculated demand values are 

to be used. Once column for each node 

and a row for each simulation round use 

with max node demand. 

Yes 

Fixed Renew Gen 

Input File = 

Predetermined renewable generation 

data in percentage of installed capacity. 

One column containing a string that 

describes a vector for each node for 

each renewable technology.  

Yes 

Node Generation 

Details 

The format for specifying details at each 

node from here is done as columns for 

each parameter and a row for each node 

 

Gen Split (steam, 

CCGT, OCGT) = [0.8 

0.05 0.15;0.8 0.05 

0.15;0.8 0.05 0.15] 

How a MPs generation capacity will be 

split over the different generation 

technologies (each row should add to 1).   

No 

Peak Sent Out 

efficiency (steam, 

CCGT, OCGT) = 

[0.338 0.5 0.22;0.338 

0.5 0.22;0.338 0.5 

0.22] 

 

 

 

The peak sent output thermal efficiency 

for each of the generators.  

Yes 
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gen minimum levels 

(steam, CCGT, 

OCGT) = [0.4 0.4 

0;0.4 0.4 0;0.4 0.4 0] 

Minimum stable outputs for each of the 

generators as a percentage of maximum 

generator output. 

Yes 

Emissions t CO2e per 

GJ of fuel (steam, 

CCGT, OCGT) = 

[0.08 0.03 0.04;0.08 

0.03 0.04;0.08 0.03 

0.04] 

Emissions factor for each generator in 

tonnes of CO2e per GJ of fuel used. 

Suggested values Natural gas 0.02 – 

0.05, black coal 0.06 – 0.1, brown coal 

0.9 – 0.15  

No 

ramp rate MW/ round 

(steam, CCGT, 

OCGT) = [400 1000 

4000;400 1000 

4000;400 1000 4000] 

The ramp rate of each generator in MW 

change per turn  

Yes 

Installed Renewable 

Capacity (hydro, 

solar PV, wind) = [0 

0 0; 0 0 0; 0 0 0]  

Installed renewable generation at each 

node 

Yes 

Intra region losses = 

[1 1 1] 

Efficiency of power distribution within 

each node.  

Yes 

Regions connected = 

[1 2;2 3] 

The transmission system that connect 

each of the nodes. Each row describes a 

single link and has a single starting node 

and a single finishing node 

Yes 

Inter region losses = 

[0.9 0.9;0.9 0.9] 

The efficiency of the transmission link 

in each direction 

Yes 

Inter node 

transmission capacity 

= [200 200] 

 

 

 

 

The maximum power flow of each of 

the transmission links (MW) 

Yes 
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Demand mode (0 - 4) 

= 0 

Sets the mode used to calculate demand. 

0 – Vector Input 

1 – File input temperature < 11 

2 – File Input temperature 11 – 15 

3 – File input temperature 16-20 

4 – File Input temperature > 20 

Yes 

Fuel cost $/GJ 

(steam,CCGT,OCGT) 

= [1.36 4.73 5;1.36 

4.73 5;1.36 4.73 5] 

The cost of fuel for each generation 

technology at each node 

Yes 

Carbon Price ($ tonne 

CO2e)= 23 

The emissions tax applied across the 

entire network 

Yes 

Inter region diversity 

= [1 0 -1] 

The difference in rounds between the 

peak demand at each node (whole 

numbers only)   

Yes 

 
MO7 Results Table – displays the register MPs and the success of their bidding strategy 

by showing their total profit, displays where each team is located (this can be changed at 

run time). If the waiting for bid checkbox is ticked it means that MP is yet to submit a 

bid for the next round. 
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5.6.3 Market	Participant 
 

The MP interface runs in a separate instance of MATLAB and controls the actions of 

each of the MPs. 

 

 

 

Figure 5.11 Market Participant interface  

 

 

 

 

 

MP 1 The registration panel. This is where the MP enters a team name and adds the IP 

address and port of the MO.  The MP then selects the ‘Register with Market Operator’ if 

this is successful the generator’s panel, results and forecast graphs will fill with data 

from the MO. The team name is the key identifier used across the simulation to 

discriminate between MPs.   

MP 2. The bidding panel. Used to enter the bids for each of the MPs generators, the bids 

can have up to four blocks each with a separate price and volume. Each MP needs to 

enter a bid for each of their generators for each round of the simulation. The four edit 

boxes in the left hand column are for the bid prices. The edit boxes in the right hand 

column are for the production volumes.  The submit button is used to send the bid for 

the currently selected round to the MO. If the bid was successfully received by the MO 

MP 1 

MP 2 

MP 3 

MP 4 MP 5 

MP 6 
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a tick will appear in the check box. The drop down box selects the generator that the bid 

is for. 

MP 3 Generator panel. Shows the details of each of the generators allocated to the MP 

one at a time selected through the radio buttons. The panel displays the minimum and 

maximum production levels, the ramp rate, emissions factor and the part load efficiency 

of the selected generator. 

MP 4 Details the simulation settings including a description of the network, installed 

renewable generation capacity at each node, and the current fuel and emissions costs.  

MP 5 Results window, displays the results from last round run by the MO. Includes the 

profit made, the current power output level of each generator and how the MP ranks in 

terms of total profit compared to their competition.  

MP6 shows the day ahead forecast and the results from the previous day of simulation 
rounds. This is identical to the graphics shown in the MO window. 
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5.8 Steps	to	use	Simulator	 
 

Table 5-7 Typical Simulation steps 

Step Action 

1 The person acting as the MO modifies the values in the settings panel 

to set up the simulator as required. 

The best approach is to set the number of nodes and use the load 

default button to load the default setting and ensure the panel is set up 

correctly before editing any other values.   

2 The MO then selects the port to use and presses the start button. When 

this is done the forecasts will be calculated and the TCP 

communication server will start. The MO then gives out there IP 

address and the port number to use to all the MP.  

3 The MO then waits for all MPs to register and to begin submitting 

bids. 

4 Each MP starts their own instance of the MP program and enters a 

team name and the MOs IP address and the port number and pushes 

the register button. This sends a registration request to the MO.   

5 MO receives MP registration request and randomly assigns the MP to 

a single node in the network. The MP is then allocated three generation 

units based on the settings of the node they are assigned to. 

6 The MO software automatically updates the forecasts and broadcasts 

the data to the MPs.  

7 The MPs assess the generation units they have been allocated and the 

market conditions from the forecast.  They use this information to 

create bids which they submit to the MO. 

8 Once all bids have been received the MO presses the ‘run round’ 

button to calculate generators loads and compute the profit and loss of 

each MP. The forecast and history panel automatically updates and 

move one round to the right. Results from the round are then broadcast 

to the MPs.   

9 Steps 7 and 8 are repeated for as long as required 

10 The MO can then choose to output the data from the simulation to an 

excel file or uses the reset button to begin a new simulation  
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6 Results 

 

The simulator is a flexible test bed capable of simulating many scenarios faced in 

market managed electrical supply systems. Several scenarios have been constructed to 

demonstrate the capabilities of the simulator and key concepts of electricity supply 

systems. The scenarios show the marginal cost of generating electricity, advantages and 

disadvantages of market managed electricity supply systems and the impacts of 

intermittent renewable generation.   

6.1 Marginal	Cost	of	Energy	Generation 
 

This example reviews the cost of power generation in the NEM from different 

generation technologies. It compares cost structures between coal fired steam across 

QLD, NSW and VIC, natural gas fired OCGT & CCGT and wind generation. The 

capital cost data used was from Table 13 (ACIL Tasman 2008, p. 46) and a capacity 

weighted average for the other costs using AEMO data (Appendix E). An annual 

interest rate of 5% was applied to capital costs with the costs spread over the life of the 

plant. All power produced was calculated at a single ‘sent out’ efficiency value.  

 

Table 6-1 NEM cost data (Appendix E) 

 Fuel 

Cost 

($/GJ) 

Sent out 

efficiency 

%(HHV) 

Carbon 

emissions 

CO2e per 

GJ of 

Fuel 

Fixed 

O&M 

($/MW 

p.a.) 

Variable 

O&M 

($/MWh) 

Capital 

Cost $ 

million / 

MW 

QLD Coal 1.36 35.4 0.0923 50,186 1.21 1.6 

NSW Coal 1.51 34.91 0.0897 50,073 1.26 1.6 

VIC Coal 0.31 25.1 0.0931 59,229 1.45 1.6 

CCGT 
(Natural 

Gas) 

3.77 46.9 0.06 30,482 1.34 0.962 

OCGT 
(Natural 

Gas) 

4.73 27.6 0.07 13,000 8.89 0.714 
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Up to 36% of emissions from natural gas fired plants are fugitive emissions.  South 

Australian coal fired power was ignored in the simulation due to its small size and high 

cost as fuel costs around $1.52 GJ and generators have Victorian coal efficiencies. Cost 

for liquid fuels used for unit start up and in some OCGT is estimated at $30 GJ.  Coal 

costs range from $0.08/GJ at Hazelwood to $2.13 at Collinsville. 

The marginal cost of coal fired steam generation in the three large states and natural gas 

fired CCGT and OCGT across all regions has been deduced from the raw data and is set 

out below. 

 

Figure 6.1 Cost breakdown of NSW coal 

 

The capacity factor is a measure of productivity of power stations and is calculated as 

total energy generated / maximum possible generated energy, taking into account plant 

availability. It has a significant impact on the cost of power produced at a power station 

as the greater the amount of power produced the more the fixed costs for capital and 

FOM can be spread. With fixed ‘sent out’ efficiency the emissions cost, VOM and fuel 

costs remain constant while capital costs and FOM are significantly reduced as the cost 

is spread over more energy. With typical capacity factors of coal fired power stations at 

0.75 the largest costs are emissions taxes and fuel costs.  At low capacity factors the 

finance costs dominate, at high capacity factors fuel and emission costs dominate. 
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Figure 6.2 Marginal cost of generating electricity in the NEM 

 

 

Figure 6.3 Marginal cost of generating electricity in the NEM with a $23 per tonne 
carbon price 

 

Marginal cost of generating electricity in the NEMFigure 6.2 shows coal is used for 

base load as it is cheapest at high capacity factors while OCGT are used as peaking 

plants as they are cheapest for low capacity factors.  Figure 6.2 confirms power from 

QLD and VIC is imported into NSW due to the lower generation costs. Due to the 

introduction of the carbon tax Victorian brown coal generation costs have risen steeply. 

While compensation currently addresses the issue, the compensation arrangements will 

eventually come to an end.  
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CCGT operating as base load have been given a significant financial advantage from the 

introduction of the carbon tax. It would take a doubling of the carbon tax for OCGT to 

become a cheaper alternative compared to coal for base load power.  

Pre carbon tax wind was only marginally cost effective around a 0.35 to 0.4 capacity 

factor with a renewable energy certificate priced at $38.39 in 2011 and $35.24 in 2012 

(Clean Energy Regulator 2012). Figure 6.2 also highlights the importance of site 

selection and the needed for a high capacity factor for wind power to be competitive.  
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6.2 Competition	Effectiveness 

 

Shown below is a demonstration of the operation of a market based electrical supply 

system. Two identical coal generators in a single region compete with one another on a 

winter base load profile. Each generator has a minimum load of 800MW and a 

maximum load of 2000MW. Generator 1 submits a bid offering power at 65$/MWh, 

Generator 2 offers power at 66 $/MWh.   

 

Figure 6.4 Generator Profit and market price 

 

Figure 6.5 Generator outputs and demand 

 

The result after a single day is Generator 1 has a capacity factor of 91% and a total 

profit of $945,331. Generator 2 has a capacity factor 47% and a total profit of $67,578.  
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During the time, Generator 2 is in a constrained dispatch situation at its minimum 

output of 800 MW, so its bids are dismissed. Due to the capacity factor and the impact 

of part load efficiency at $65 MWh Generator 2 is losing money were generator 1 is 

making money. When Generator 1 is at maximum load the price moves to $66 kwh. As 

generator 1 is at full load it receives the greatest benefit from the higher price. 

Within this example with limited competition there is nothing stopping generator 2 from 

bidding up to the market price cap to make super profits. However, if this occurs 

generator 1 will still be the largest beneficiary from higher prices.   This is the main 

benefit from market based electrical supply systems, generators are rewarded for 

bidding lower than their competitors. As generators underbid each other this drives the 

cost of electricity down. Market based systems will only work if there is enough 

competition so no lone company can control the prices.  
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6.3 Interconnector	Savings 

 

In this example there are two identical regions with a large diversity in demand. Each 

region has an installed capacity of 1000 MW. The two regions are connected by a 90% 

efficient 200 MW interconnector. Each region has a 900MW coal plant and a 100 MW 

OCGT. The coal generators are bid in blocks of 25% of their capacity priced at $40, 

$50, $60, $70 MWh. The OCGT bid in blocks of 25% capacity at $100, $110, $120 , 

$130 MWh. 

 

 

Figure 6.6 Results with no interconnector 

 

Figure 6.7 Results with 200 MW interconnector 
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The average price across the two regions without the interconnector is $66.63 but with 

the interconnector the average price is $63.28. Energy flows in both directions across 

the interconnector and despite losses, cheaper electricity is available in the adjacent 

region. Without the interconnector the OCGTs are needed to satisfy demand which 

raises the price to $100MW/hr. With the interconnector there is no need for the OCGT 

to start and the price in both regions is also depressed when there is low load in one 

region but high load in the other.  

Therefore despite the losses in the interconnector it receives heavy use as the energy 

price is optimised over the whole network. The OCGT aren’t needed with an 

interconnector allowing for a reduction in local installed generation capacity. The 

interconnector adds extra competition to both the regions. 

 In this example the interconnector saves $3.35 per MWh for the day across all energy 

sold in the system. These savings amount to a significant value over the life time of the 

interconnector providing a significant incentive to invest in the interconnector link if 

there is a favourable cost benefit analysis.     
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6.4 Market	Efficiency 
 

This simulation looks at the efficiency of a market based electrical supply system.  An 

eight node network with three generation centres and five load centres was established 

as shown in Figure 6.8 and detailed in Table 6-2 Table 6-3.   

 

  

 

 

 

 

 

 

 

 

 

Figure 6.8 Eight node simulation network 

 

Table 6-2 Node details 

Node Generation Peak Demand 

Gen1 2000 MW steam Generator 0 MW 

Gen 2 2000 MW steam Generator 0 MW 

Gen 3 2000 MW steam Generator 0 MW 

Load 1 0 MW 500 MW 

Load 2 0 MW 500 MW 

Load 3 0 MW 1000 MW 

Load 4 0 MW 2500 MW 

Load 5 0 MW 1500 MW 

 

Load 1 

Load 3 

Gen 3 

Load 4 

Load 5 

Gen 1 

Gen 2 Load 2 



97 
 

Table 6-3 Inter node transmission links 

Transmission link Capacity (MW) 
Static Efficiency 

(MW) 

Gen1 – Gen 2 2000 0.95 

Gen1 – Load 4 3000 0.94 

Gen1 – Load 5 1500 0.93 

Gen 2 – Load 2 500 0.95 

Gen 2 – Load 3 2000 0.94 

Gen 3 – Load 3 2000 0.97 

Gen 3 – Load 4 2000 0.98 

Load 3 – Load 1 500 0.9 

Load 4 – Load 5 1000 0.96 

 

The three generation centres were identical and the impact of different bidding 

strategies was tested. 

• Same fixed price - all generators are bid in at $50 MWh, the generators will be 

dispatched to minimise losses in the network.   

• Different fixed price – generator 1 bid in at $53 MWh, generator 2 bid in at $50 

MWh, generator 3 at $56 MWh. This simulates the generators bidding in at 

different cost due to varying fuel prices. 

• Staggered pricing  - each generator places a staggered bid to ensure they will 

produce above minimum output to boost their capacity factor.  

Generator 1 has 50% capacity $54, 25% capacity $60, 25% capacity $65 

Generator 2 has 50% capacity $46, 25% capacity $50, 25% capacity $55 

Generator 3 has 50% capacity $60, 25% capacity $65, 25% capacity $70  

• Half transmission losses – the losses in the transmission network were halved to 

assess the impact losses play in the cost of generation capacity. Generators bid 

in at the different fixed price bidding strategy.  
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Table 6-4 Simulation results 

Simulation description Total Energy 

Generated 

(MWh) 

Total Cost of 

generated 

energy ($) 

Total 

Emissions 

(tonnes CO2) 

Generators submit the 

same bids 

25,978,591.1 

 

1,262,736,334 

 

25,440,994.6 

 

Generators submit 

different fixed price 

26,391,023.3 

 

1,271,976,077 

 

25,659,407.8 

 

Generators Staggered 

bidding  

26,309,881.9 

 

1,271,532,487 

 

25,650,791.8 

 

Half transmission losses 25,186,931 1.24E+09 24,987,499 

  

With generators submitting the same bids, the dispatch algorithm finds the solution that 

will minimise the total electricity produced, accounting for all transmission losses. This 

results in the lowest quantity of energy generated, cheapest cost for generating 

electricity and produces the least emissions.  

With different fixed price, the generator with the cheapest offered electricity will be run 

up to full power before the others. This results in the greatest amount of power needing 

to be generated making it the most expensive practice and results in the most emissions. 

Transmission losses are high in the network, under the different fixed price bidding 

strategies. Losses account for approximately $64 million in extra costs and 1,343,817 

tonnes of CO2. 

Therefore in this example by dispatching generators, based on maximising efficiency 

instead of production cost, results in a cost saving of 1.56% and an emissions reduction 

of 0.85%. So bidding strategies have a direct impact on the cost of electricity and due to 

losses, the cheapest produced is not necessarily the lowest cost option for the network. 
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6.5 Renewable	generation 
 

Continued increase in the capacity of intermittent solar pv and wind generation installed 

in the NEM can potential have a big impact on the NEM. This example looks at the 

effect the different renewable technologies can have on an electrical supply system. 

In this example there is a single region with an installed capacity of 14,000 MW made 

up of four coal generators at 2,975MW each, one 700MW CCGT and four 350 MW 

OCGT.  The dispatchable generators are bid in at the different fixed prices. 

Each renewable technology is simulated as a reduction in demand and it is assumed the 

renewable power must be accepted by the market. The different renewable technologies 

were tested using the same dataset over the period of one year to assess the impacts of 

different levels of penetration.  This simulation required a total of 76,435,612.24 MWh 

to be generated to meet demand.  The dataset was generated based on the NSW data file 

for demand and renewable generation capacity. 

Table 6-5 Renewable generation simulation results 

 

Cost 
increase of 
remaining 
electricity 
($.MWh) 

Emissions 
reduction (%) 

Renewable 
generation 

(%) 

Market 
Earnings 

($) 

Market 
errors 

No 

Renewables 

49.8408 

$/MWh 

0.9512 tonnes 

/ CO2 
0 0 0 

1400MW 

hydro 
100.8578% 1.0462% 1.6918% 79,471,420 0 

1400 MW 

solar PV 
101.9161% 2.2300% 3.6466% 156,571,030 0 

1400 MW 

wind 
103.6693% 3.6774% 6.4030% 244,379,562 10 

8275 MW 

hydro 
105.5450% 6.2049% 10.00% 397,545,730 14 

3839 MW 

solar PV 
105.6929% 6.0471% 10.00% 376,675,117 27 

2186 MW 

wind 
106.2066% 5.4677% 10.00% 363,831,675 149 
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A market error indicates there is excess generation capacity in the market. i.e. no 

solution can be found to satisfy all market constraints.  If this occurs the minimum 

generation capacity constraint is dropped allowing power generation output to fall to 

zero at coal and CCGT power stations.   The ability for hydro to be dispatched is 

reflected in the error count as even at very high levels of installed capacity there is a 

minimum number of errors. Winds ability to generate at full power during periods of 

low demand result in it producing the greatest number of errors approximately 1.7% of 

the total simulation steps at 10% generation capacity. Solar PV also causes a significant 

amount of market errors particularly on days with winter type load profiles with low 

demand in the middle of the day. The impact of a market error sending the price to -

1000 $/MWh has a severe impact on the revenue in the simulation. 

On a capacity installed basis, wind is the most beneficial as it has the highest capacity 

factor of 40% followed by solar PV 22.7% with hydroelectricity having the lowest 

10.54%. This means you only need to install half as much wind as solar PV and a 

quarter if hydro to achieve renewable targets and emissions reductions. However due to 

winds ability to generate power at all times of the day and periods of low demand it has 

the most trouble integrating into the market. 

On an energy generated basis hydroelectricity is the most beneficial renewable 

technology, it has the lowest impact on the increase in cost to generate the remaining 

electricity by minimise the reducing in part load efficiency of fossil fuel plants. The 

means Hydro also has the greatest emissions reduction and by generating during periods 

of high demand it generates the most revenue from the market. With Wind and Solar 

PV not following the demand curve they force thermal units into the very low region of 

the part load efficiency curves pushing up the cost to produce the remaining electricity 

and have a lower impact on emissions.  

This simulation shows emission reduction are not linearly linked with the quantity of 

renewable power generation as fossil fuel generators are moved up and down their part 

load efficiency curves. It appears to be more beneficial in terms of carbon emissions for 

renewable generation to be at times of high demand. As well as the cost of installing 

renewable generation capacity there is also an increase in the cost fossil fuel fired 

generation due to a reduction in part load efficiency’s and reducing the capacity factor 

of fossil fuel generators.  
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6.5.1 Business	day	demand	reduction 

 

As supply must equal demand, using data from the previous simulations this section 

looks at the quantity of fossil fuel generation that can be displaced by renewable 

generation sources on business days under the 10% renewable energy generation 

scenarios. By creating the demand duration curves for summer and winter it is clear to 

see how the renewables displace fossil fuel generation. 

  

 

Figure 6.9 Winter business day demand duration 

 

Figure 6.9 shows hydroelectricity is the only technology to significantly reduce the peak 

demand and the need for backup fossil fuel generation. Solar PV contributes nothing to 

the winter peak and displaces very little fossil fuel generation at high demand time in 

winter. Wind only reduces peak demand by 2.5% but does displace a reasonable amount 

of fossil generation capacity during high demand times indicating it could be used with 

grid scale energy storage. All technologies significantly reduce the minimum demand 

levels potential requiring a shutting down of base load fossil fuel generation and may 

cause issues with system inertia requirements. 
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Figure 6.10 Summer Demand Duration  

 

Again only hydro is able to impact peak demand significantly but typically generates 

most of its energy in cooler parts of the year. Due to the time of the day Solar PV 

contributes to the peak and displaces a large amount of generation capacity at high 

demand levels in summer. In this example Solar PV is outputting at approx. 32% of 

capacity during the demand peak. Again all renewables push minimum demand lower 

potentially destabilising the market.  Wind only has a minimal impact on peak demand 

and is producing power across all demand levels.  

As drought may significantly affect hydro generation it along with all forms of 

renewable generation seem to need to be backed up by fossil fuel generation capacity to 

ensure that both the summer and winter demand peak can be met. 

  



103 
 

Table 6-6 Renewable power demand reductions 

Demand 0% of time 5% of time 
50% of 

time 

95% of 

time 

100% of 

time 

Winter Results 
Demand – 

hydro 
output 

11.92% 10.11% 14.86% 12.86% 31.55% 

Demand – 
Solar PV 
Output 

0.07% 0.49% 8.49% 4.72% 7.21% 

Demand – 
Wind 
output 

2.53% 5.33% 9.42% 16.01% 29.94% 

Summer Results 
Demand – 

hydro 
output 

18.15% 13.14% 14.97% 6.63% 26.08% 

Demand – 
Solar PV 
Output 

6.99% 9.07% 10.54% 3.22% 27.12% 

Demand – 
Wind 
output 

3.78% 4.27% 10.91% 19.28% 35.01% 

 

Hydro power has the lowest capacity factor but it is capable of producing the highest 

reduction in peak demand, particular in summer where Hydro flattens out peak demand 

completely. It also has most of its output in the higher demand times were market price 

will be the highest and it will generate the most revenue. 

Solar power does not provide and support during winter demand peaks but does reduce 

peak summer demand by 7 – 9%. Solar PV also provides most of its output during 

higher demand times. 

Despite Wind having the highest capacity factor it gives the least support to peak 

demand across the year indicating it needs to be fully backed up. It also has the greatest 

reduction of minimum demand potential destabilising the grid.     
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7 Conclusion 

 

Background information was collected on the NEM to understand its construction and 

organisation. This quantified the cost and the operational limits of the generation 

technology used in the NEM. Raw NEM operational data was collected and processed 

in MATLAB to gain an understanding of demand, pricing and how the different 

generators are operated. 

This data was then used to design and develop a MATLAB based energy market 

simulator. The simulator includes realistic data and makes the simulation as realistic as 

possible by using probability functions generated from the NEM data.     

The simulator was then used to illustrate the operation of a market based electrical 

supply system. It shows how important accurate demand and availability forecasting is 

to ensure reliable operation of an electrical supply system. It also shows that energy 

markets provide an effective method to manage electrical supply systems provided there 

is an adequate transmission system and there is significant competition. A market 

managed electrical supply system may not necessarily provide the most efficient 

solution as the lowest cost energy producer is not necessarily the best option for 

reducing emissions and total system cost. 

The simulator also showed the continued growth in the instalment of renewable power 

generation technologies will upset traditional base load generators. There are significant 

cost and emissions savings differences between the renewable technologies based on 

installed capacity and power generated. Without energy storage, renewable technologies 

also need to be heavily backed up by traditional fossil fuel generation.    
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8 Future Work 

 

In the renewable simulation the capacity factor for solar PV was around 22%. A review 

of solar data on pvoutput.org showed real systems seem to have a capacity factor 

between 15-19% indicating a potential problem with the CDF functions used in the 

simulator.   

In the simulator, attempts were made to make the demand and renewable generation 

outputs as realistic as possible. This was done using CDFs calculated using real world 

data. Due to limited time and the extent of the publicly available data the real world data 

was taken from a relatively short period of 18 months. To ensure these values weren’t 

affected by any short term economic or weather influences it would prudent to obtain 

data over a longer time period. 

Only a very basic procedure was used to generate the outputs from the intermittent 

renewable energy sources. It would be beneficial to develop a more advanced method 

that better reproduces any relationship between demand and the output from the 

intermittent renewable energy sources.  

The demand and renewable energy output is calculated at each node independently of 

the demands at adjacent nodes. It would be beneficial to research the relationships that 

would exist between different sub regions in the NEM so this could be included in the 

simulator. This would allow an examination of how generation resources can be better 

shared across the NEM. 
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10 Appendix A: Project Specifications 

 

University of Southern Queensland 

Faculty of Engineering and Surveying 

 

ENG4111/4112 Research Project 

Project Specification 

Chris Flynn 0061009752 

Topic:   Electricity Market Simulation using MATLAB 

Supervisior:  Tony Ahfock 

Enrolment:  ENG 4111 – S1, External, 2012 

  ENG 4112 – S2, External, 2012 

 

Project Aim:  The aim of this project is to develop a MATLAB based electricity 

market simulator that can be used as a teaching tool. The simulator will 

include the main features of the Australian National Electricity Market.  

 

1. Research the technology and infrastructure used in the Australian National 
Electectricity Market. 

2. Research the management and operation of the Australian National Electricity 
Market. 

3. Design and develop a simulator for demonstration and analysis of market 
managed electrical supply systems. 

 

Chris Flynn 21/3/2012 
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11 Appendix B: Files Included with Submission 

Table 11-1 Data files submitted with assignment 

Data file Description 

NEM_dispatches.zip The raw 5 minute AEMO dispatches used in the study of the 

NEM. Contains data on the demand and price in each region, 

the interconnector flows and NEM constraints. 

Generator 

dispatches.zip 

Raw 5 minute AEMO data on the power production levels at 

the different AEMO generators.  

Generator_outputs.zip Processed data from NEM_gereator_outputs.zip. Collects the 

data from each of the 5 minute dispatches for each generation 

unit giving each generator its own file. The file is a tab 

delimited with a column for a MATLAB datenum time and a 

generator output level (MW). 

NEM_hydro_data.txt A tab delimited text file the combines the total hydro outputs in 

the NEM for each region. The column structure of the file is 

[datenum time, new south wales outputs, victoria outputs, 

Tasmanian outputs] 

NEM_wind_data.txt A tab delimited text file the combines the total wind outputs in 

the NEM for each region. The column structure of the file is 

[datenum time, new south wales outputs, victoria outputs, 

Tasmanian outputs, south Australian outputs] 

Nswsolardata.txt A tab delimited text file with the combined solar PV pvoutput 

data. The column structure [datenum time, solar output]  

Nswtempdata.txt A tab delimited text file with the temperature data used in 

nswtempdem2.m. The column structure [datenum time, 

tempreture] 

NEM demand.txt Tab delimited file with the output from 

Regional_dispatch_results.m for  regional demand in the NEM 

at the 5 minute dispatch interval. Column structure [datenum 

time,  nsw,qld, vic, tas, sa] 
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NEM price.txt Tab delimited file with the output from 

Regional_dispatch_results.m for  regional spot market price in 

the NEM at the 5 minute dispatch interval. Column structure 

[datenum time,  nsw,qld, vic, tas, sa] 

NEM available 

generation.txt 

Tab delimited file with the output from 

Regional_dispatch_results.m for available generation in the 

NEM at the 5 minute dispatch interval. Column structure 

[datenum time,  nsw,qld, vic, tas, sa] 

NEM inter region 

reliance.txt 

Tab delimited file with the output from 

Regional_dispatch_results.m for  interregionly energy transfers 

in the NEM at the 5 minute dispatch interval. Column structure 

[datenum time,  nsw,qld, vic, tas, sa] 

 

Table 11-2 MATLAB files not used in simulator included with submission 

MATLAB File Description 

Generator_stats.m Calculates the capacity factor, available factor and 

volume weighted earnings of generators in the NEM for 

before and after the introduction of carbon pricing. Need 

to specify the unit, its capacity and which NEM region it 

is in. 

Demanddayprofile.m Uses the NEM data to calculate the average daily load 

profiles for each NEM region 

Demandhistogram.m Code to display the summer and winter cumulative 

demand profile of all NEM regions 

 

 

Hydroall.m calculates the hydroelectricity generated in each region 

of the NEM  

Nswtempdem2.m Calculates the probability function from NEM data to 

use in the simulator 

Probs.m 

 

 

Calculates the probability functions for demand, hydro 

and solar capacity at 1 hour intervals throughout the day 
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Probs2.m Calculates the probability functions for wind power at 1 

hour intervals throughout the day 

 

 

Nempricehistogram.m Plot spot NEM prices using oz energy analysis data and 

plot histograms of market prices 

Pribfiletest.m Tests the probability functions used to calculate demand, 

solar and wind generator in the simulator 

Generator_loads.m Script used to combine the data from thousands of 5 the 

minute AEMO dispatched files of generator loads into a 

single file for each generator   

Regional_dispatch_results.m Compiles the data from thousands of 5 minute individual 

AEMO dispatches for individual parameters into a 

single file. Used to get the Price, demand and available 

generation in each NEM region  

QLD_price_demand_avail.m This code fines the week of highest demand in QLD and 

plots the relationship between demand, price and 

availability plot region data from summer and winter 

week of max demand 

SA_price_demand_avail.m This code fines the week of highest demand in SA and 

plots the relationship between demand, price and 

availability plot region data from summer and winter 

week of max demand 

Qld_genstack.m Shows how demand is covered by the different 

generation types in weeks of high demand in 

Queensland 

SA_genstack.m Shows how demand is covered by the different 

generation types in weeks of high demand in south 

Australia 

Pv_output.m Downloads the intraday solar PV output data from 

pvoutput.org   

Tempreture_data.m 

 

 

Downloads intraday temperature data from weather 

underground. 
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Solarjoin.m Combines the data from several individual solar system 

downloaded with pv_output.m into a file with 5 minute 

time steps. 
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12 Appendix C: Communication Strings Format 

Table 12-1 Communication messages between MPs and the MO 

Message type Sent from MP MO response 

Register add new 

MP to simulation 

'type=reg,id=%s,name=%s' 

 

The id is the ip address of 

the MP, name is used the 

string used to identify each 

MP. 

‘Type=gens 

gen1=%s,max=%.0f,min=%.0f,ramp=%i

,aux=%.3f,co2=%.3f,eff=%s 

gen2=%s,max=%.0f,min=%.0f,ramp=%i

,aux=%.3f,co2=%.3f,eff=%s 

gen3=%s,max=%.0f,min=%.0f,ramp=%i

,aux=%.3f,co2=%.3f,eff=%s’ 

 

If registration successful MO responds 

by allocating 3 generators to the MP 

Update network 

data – retrieves data 

on the node details, 

fuel prices and 

transmission 

network 

'type=networkdata,team=%

s,round=%i' 

'type=networkdata,%s'  

 

A single is returned which is copied 

directly into the appropriate edit box 

Market data – 

retrieve the forecast 

and history data 

'type=mkdata,id=%s,name

=%s' 

 

'type=mkdata,round=%i,forcast=%s,avl=

%s,demand=%s,price=%s' 

 

A string is returned for demand, 

available, forecast and price. Eval is use 

to convert the string into a matrix which 

is then plotted in each axis. 
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Market instructions 

– Request the 

results from last 

market round and 

current team 

ranking 

'type=mkinst,team=%s,rou

nd=%i' 

 

type=mkinst,Round = %d \nYour in the 

%s node\n\nGen 1 Load = %.0f \nGen 2 

Load = %.0f \nGen 3 Load = %.0f 

\nRound Profit = %.0f \n Total Profit = 

%.0f \n Rank = %d\n' 

and '\ninterc %i flow %.0f' 

 

Creates a string that can be copied 

straight into the edit box 

Reset mode – used 

to reset the MP 

Any message when MO in 

reset mode 

'msg=reset’ 

Tells the MP software to delete all data 

and have the MP re register 

 

Bid – update MPs 

bid with MO 

'type=bid,name=%s,rnd=%

i,bid1=%s,bid2=%s,bid3=

%s' 

The bid for each unit is a 2 

column by 4 row matrix. 

Where each row is a block 

the MP can chose to use  

type=bid,stat=received 

 

MO acknowledges the bid 
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13 Appendix D: Market Operator Data Structure 

 

Table 13-1 Data structure used by MO software 

Structure Breakdown  Purpose 

simpram.round Stores the current round of the simulation. 

simpram.forcast_mul_update Vector containing the multiplication factors used to 

calculate demand in. each region 

simpram.resetmode Flag used to respond to MPs with a reset message. 

Set by the reset button, cleared by the start button. 

simpram.act_demand Stores the matrix of actual demand values plotted in 

the history axis. Vector for each node. 

simpram.old_prices Stores the matrix of old market prices values plotted 

in the history axis. Vector for each node. 

simpram.wind_gen Vector used to store the output percentage of wind 

generation capacity from the last round. 

simpram.last_round Flag used to tell the forecast code if it needs to 

update values. 

simpram.forcast_demand Stores the matrix of the forecast values plotted in the 

forecast axis. Vector for each node. 

simpram.available_capacity Stores the matrix of available capacity values plotted 

in the forecast axis. Vector for each node. 

simpram.node Stores the actual demand and market price matrixes 

from each simulation round. 

simpram.team Stores the details on each team. Including the name, 

total profit and the node they are located at. Also 

simpram.team{}.gens which holds the cost 

efficiency and other details on each of the generators 

allocated to the team. 

simpram.rnddetails Stores the bids for each generator and the results 

from running the simulation for each round. 

Simoram.rnds{} Holds the cost and emissions results for each round 

of the simulation and if the simulation was 

successful without dropping constraints.   
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14 Appendix E: AEMO NEM Generator Data 

Station Name Plant type Fuel type 

Thermal 
efficiency 
HHV (%) 
sent-out 

Auxiliaries 
(%)  

FOM 
($/MW/year) 
for 2009-10 

VOM 
($/MWh 
sent-out) 
for 2009-
10  

Combustion 
emission 
factor 
(kg CO2-e/GJ 
of fuel)  

Fugitive 
emission 
factor 
(kg CO2-
e/GJ of fuel) 

Capacity 
(MW) 
2012 

Fuel 
Cost 

$/GJ2012 

Bayswater Subcritical pf Black coal 35.9% 6.0% 49,000 1.19 90.2 8.7 2720 1.23 

Blowering Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 80 0.00 
Capital Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 140 0.00 

Colongra GT OCGT Natural gas 32.0% 3.0% 13,000 9.98 51.3 14.2 664 8.16 
Cullerin Range Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 30 0.00 

Eraring Subcritical pf Black coal 35.4% 6.5% 49,000 1.19 89.5 8.7 2877 1.69 

Guthega Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 60 0.00 

Hume (NSW) Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 29 0.00 

Hunter Valley OCGT Liquid fuel 28.0% 3.0% 13,000 9.61 69.7 5.3 50 30.00 

Liddell Subcritical pf Black coal 33.8% 5.0% 52,000 1.19 92.8 8.7 2100 1.23 

Mt Piper Subcritical pf Black coal 37.0% 5.0% 49,000 1.32 87.4 8.7 1320 1.75 

Munmorah Subcritical pf Black coal 30.8% 7.3% 55,000 1.19 90.3 8.7 600 1.70 

Redbank Subcritical pf Black coal 29.3% 8.0% 49,500 1.19 90.0 8.7 150 1.01 

Shoalhaven Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 240 0.00 

Smithfield Cogen Natural gas 41.0% 5.0% 25,000 2.40 51.3 14.2 176 4.18 

Tallawarra CCGT Natural gas 50.0% 3.0% 31,000 1.05 51.3 14.2 410 3.79 

Tumut 1 Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 330 0.00 

Tumut 2 Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 286 0.00 

Tumut 3 Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 1500 0.00 

Uranquinty OCGT Natural gas 32.0% 3.0% 13,000 9.98 51.3 14.2 664 6.37 

Vales Point B Subcritical pf Black coal 35.4% 4.6% 49,000 1.19 89.8 8.7 1320 1.70 
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Wallerawang C Subcritical pf Black coal 33.1% 7.3% 52,000 1.32 87.4 8.7 1000 1.75 

Barcaldine CCGT Natural gas 40.0% 3.0% 25,000 2.40 51.3 5.4 55 6.62 

Barron Gorge Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 60 0.00 

Braemar OCGT Natural gas 30.0% 2.5% 13,000 7.93 51.3 5.4 504 2.67 

Braemar 2 OCGT Natural gas 30.0% 2.5% 13,000 7.93 51.3 5.4 504 2.89 

Callide B Subcritical pf Black coal 36.1% 7.0% 49,500 1.19 95.0 2.0 700 1.34 

Callide Power Plant Supercritical pf Black coal 38.0% 4.8% 49,500 1.19 95.0 2.0 810 1.34 

Collinsville Subcritical pf Black coal 27.7% 8.0% 65,000 1.32 89.4 2.0 190 2.13 

Condamine CCGT Natural gas 48.0% 3.0% 31,000 1.05 51.3 2.0 140 0.95 

Darling Downs CCGT Natural gas 46.0% 6.0% 31,000 1.05 51.3 2.0 630 3.41 

Gladstone Subcritical pf Black coal 35.2% 5.0% 52,000 1.19 92.1 2.0 1680 1.58 

Kareeya Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 81 0.00 

Kogan Creek Supercritical pf Black coal 37.5% 8.0% 48,000 1.25 94.0 2.0 750 0.76 

Mackay OCGT Liquid fuel 28.0% 3.0% 13,000 9.05 69.7 5.3 34 30.00 

Millmerran Supercritical pf Black coal 37.5% 4.5% 48,000 1.19 92.0 2.0 850 0.86 

Mt Stuart OCGT Liquid fuel 30.0% 3.0% 13,000 9.05 69.7 5.3 418 30.00 

Oakey OCGT Natural gas 32.6% 3.0% 13,000 9.61 51.3 5.4 282 4.22 

Roma OCGT Natural gas 30.0% 3.0% 13,000 9.61 51.3 5.4 80 4.30 

Stanwell Subcritical pf Black coal 36.4% 7.0% 49,000 1.19 90.4 2.0 1440 1.41 

Swanbank B Subcritical pf Black coal 30.5% 8.0% 55,000 1.19 90.4 2.0 480 1.90 

Swanbank E CCGT Natural gas 47.0% 3.0% 31,000 1.05 51.3 5.4 385 3.47 

Tarong Subcritical pf Black coal 36.2% 8.0% 49,500 1.43 92.1 2.0 1400 1.02 

Tarong North Supercritical pf Black coal 39.2% 5.0% 48,000 1.43 92.1 2.0 443 1.02 

Townsville CCGT Natural gas 46.0% 3.0% 31,000 1.05 51.3 5.4 240 4.03 

Windy Hill Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 12 0.00 

Wivenhoe Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 500 0.00 

Yarwun Cogen Cogen Natural gas 34.0% 2.0% 25,000 0.00 51.3 5.4 168 3.55 
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Angaston Reciprocating Engine Liquid fuel 26.0% 2.5% 13,000 9.61 67.9 5.3 50 30.00 
Cathedral Rocks Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 66 0.00 

Clements Gap Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 57 0.00 

Dry Creek OCGT Natural gas 26.0% 3.0% 13,000 9.61 51.3 18.6 156 4.69 

Hallett OCGT Natural gas 24.0% 2.5% 13,000 9.61 51.3 18.6 180 6.64 

Hallett 1 Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 95 0.00 

Hallett 2 Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 71 0.00 

Hallett 4 Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 132.3 0.00 

Ladbroke Grove OCGT Natural gas 30.0% 3.0% 13,000 3.60 51.3 18.6 80 4.91 

Lake Bonney 2 Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 159 0.00 

Lake Bonney 3 Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 39 0.00 
Lake Bonney Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 80.5 0.00 

Mintaro OCGT Natural gas 28.0% 3.0% 13,000 9.61 51.3 18.6 90 6.64 
Mt Millar Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 70 0.00 

Northern  Subcritical pf Brown coal 34.9% 5.0% 55,000 1.19 91.0 0.9 530 1.52 

Osborne CCGT Natural gas 42.0% 5.0% 25,000 5.09 51.3 18.6 180 4.12 

Pelican Point CCGT Natural gas 48.0% 2.0% 31,000 1.05 51.3 18.6 485 3.96 

Playford Subcritical pf Brown coal 21.9% 8.0% 70,000 3.00 91.0 0.9 240 1.52 

Port Lincoln OCGT Liquid fuel 26.0% 8.0% 13,000 9.61 67.9 5.3 50 30.00 

Quarantine OCGT Natural gas 32.0% 5.0% 13,000 9.61 51.3 18.6 216 6.00 

Snowtown Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 99 0.00 

Snuggery OCGT Liquid fuel 26.0% 3.0% 13,000 9.61 67.9 5.3 63 30.00 

Starfish Hill Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 34.5 0.00 

Torrens Island A Steam Turbine Natural gas 27.6% 5.0% 40,000 2.25 51.3 18.6 480 4.02 

Torrens Island B Steam Turbine Natural gas 30.0% 5.0% 40,000 2.25 51.3 18.6 800 4.02 

Waterloo Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 111 0.00 
Wattle Point Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 90.75 0.00 
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Bastyan Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 79.9 0.00 

Bell Bay Three OCGT Natural gas 29.0% 2.5% 13,000 7.93 51.3 5.8 105 5.54 

Cethana Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 85 0.00 

Devils Gate Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 60 0.00 

Fisher Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 43.2 0.00 

Gordon Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 432 0.00 

John Butters Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 144 0.00 

Lake Echo Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 32.4 0.00 

Lemonthyme_Wilmot Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 81.6 0.00 

Liapootah_Wayatinah_Catagunya Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 170 0.00 

Mackintosh Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 79.9 0.00 

Meadowbank Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 40 0.00 

Poatina Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 300 0.00 

Reece Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 231.2 0.00 

Tamar Valley CCGT CCGT Natural gas 48.0% 3.0% 31,000 1.05 51.3 5.8 200 5.54 

Tamar Valley OCGT OCGT Natural gas 29.0% 2.5% 13,000 9.61 51.3 5.8 58 6.63 

Tarraleah Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 90 0.00 

Trevallyn Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 80 0.00 

Tribute Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 82.8 0.00 

Tungatinah Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 125 0.00 
Woolnorth Bluff Point Wind 
Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 140 0.00 

Anglesea Subcritical pf Brown coal 27.2% 10.0% 81,000 1.19 91.0 0.3 160 0.39 

Bairnsdale OCGT Natural gas 34.0% 3.0% 13,000 2.26 51.3 5.8 92 4.29 

Bogong Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 140 0.00 

Dartmouth Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 158 0.00 

Eildon Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 120 0.00 

Energy Brix Complex Subcritical pf Brown coal 24.0% 15.0% 60,000 1.19 99.0 0.3 195 0.59 
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Hazelwood Subcritical pf Brown coal 22.0% 10.0% 84,030 1.19 93.0 0.3 1640 0.08 

Hume (Vic) Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 29 0.00 

Jeeralang A OCGT Natural gas 22.9% 3.0% 13,000 9.05 51.3 5.8 228 3.88 

Jeeralang B OCGT Natural gas 22.9% 3.0% 13,000 9.05 51.3 5.8 255 3.88 

Laverton North OCGT Natural gas 30.4% 2.5% 13,000 7.93 51.3 5.8 312 4.10 

Loy Yang A Subcritical pf Brown coal 27.2% 9.0% 79,000 1.19 91.5 0.3 2180 0.08 

Loy Yang B Subcritical pf Brown coal 26.6% 7.5% 51,200 1.19 91.5 0.3 1050 0.37 

McKay Creek Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 160 0.00 

Mortlake OCGT Natural gas 32.0% 3.0% 13,000 8.50 51.3 5.8 550 5.62 

Murray 1 Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 950 0.00 

Murray 2 Hydro Hydro 100.0% 1.0% 52,000 6.15 0.0 0.0 550 0.00 

Newport Steam Turbine Natural gas 33.3% 5.0% 40,000 2.25 51.3 5.8 500 4.08 

Somerton OCGT Natural gas 24.0% 2.5% 13,000 9.61 51.3 5.8 160 4.11 

Toora Wind Farm Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 21 0.00 

Valley Power OCGT Natural gas 24.0% 3.0% 13,000 9.61 51.3 5.8 300 3.87 
Waubra Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 192 0.00 

West Kiewa Hydro Hydro 100.0% 1.0% 52,000 7.15 0.0 0.0 62 0.00 
Wonthaggi Wind Farm 

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 12 0.00 

Yallourn Subcritical pf Brown coal 23.5% 8.9% 82,400 1.19 92.5 0.3 1480 0.09 
Yambuk Wind Farm  

Wind Wind 100.0% 0.0% 20,500 1.75 0.0 0.0 30 0.00 

 

Source file: http://www.aemo.com.au/planning/0410-0029.zip 
 

 


