University of Southern Queensland

Faculty of Engineering & Surveying

Simulation of Monolayer Distribution for Use in
Evaporation Reduction
A dissertation submitted by
Matthew du Preez
in fulfilment of the requirements of
ENG4112 Research Project

towards the degree of

Bachelor of Mechanical Engineering

Submitted: October, 2012

Abstract

The use of monolayers to reduce evaporation was originally developed in 1925 (Frenkiel
1965). The major problem with using monolayers is the difficulty associated with the
prediction and control of the distribution of the monolayer to the water surface. Full
scale experiments are not very successful due to difficulties quantitatively measuring the

evaporation resistance the monolayer provides to different areas of the water surface.

A simulation of the monolayer as it disperses and degrades on the water surface can be
used to predict the long term performance as well as a real time control system. The
model was created in MATLAB and simulates the behaviour of the monolayer based
on experimental results. The simulation selects the optimal application rate for each
individual applicator based on maximising the amount of money saved by comparing
the money gained from all possible permutations of applicator rates and applicator
positions. The money saved has two parts, the cost associated with distributing the
monolayer and the value of the water saved from evaporation. This comparison is
performed for each small time step. After the optimal permutation of rates has been

found, the optimal permutation of rates for the following time step is calculated.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the
risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled “Research Project” is to
contribute to the overall education within the student’s chosen degree program. This
document, the associated hardware, software, drawings, and other material set out in
the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof F Bullen
Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

MATTHEW DU PREEZ

0050101486

Signature

Date

Acknowledgments

I would like to thank Dr Andrew Wandel, my supervisor, for his assistance and guidance
throughout the duration of this project. I wish to thank my family for their support

and encouragement.
MATTHEW DU PREEZ

University of Southern Queensland

October 2012

Contents

Abstract i
Acknowledgments iv
List of Figures xiii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Design Requirements o L 2
1.2 Design Methodology Lo 3
1.3 Analysis and Performance 3
1.4 Overview of the Dissertation 4
Chapter 2 Literature Review 5
2.1 Introduction 5
2.2 Surfactants 6

2.3 Evaporation resistance Lo 7

CONTENTS vi

2.4 Monolayer Behaviours 0 oL 7
241 Movement L L 8
2.4.2 Relating evaporation resistance to windspeed 10
2.4.3 Monolayer losses due to shoreline interaction 11
2.4.4 Volitalisation L Lo 13
2.4.5 Monolayer submergence 14
2.4.6 Degradation due to biological attack 15

2.5 Calculating Evaporation oL 15

2.6 Conclusion 17

Chapter 3 Methodology 18

3.1 Introduction L L 18

3.2 Methodology 19
3.21 Overviewofmodel L 19
3.2.2 Sections of the program L. 20

3.3 Equations and essential features of the model 20
3.3.1 Movement of monolayer 20

3.3.2 Evaporation resistance of monolayer as a function of wind speed 21

3.3.3 Volatilisation 22

3.3.4 Degradation due to biological attack 23

3.3.5 Shoreline interaction e 23

CONTENTS vii
3.3.6 Monolayer submergence oL 23

3.4 Resource Requirements L L. 24
3.5 Consequential Effects o oL 25
3.5.1 Current Model 25

3.6 Conclusion 25
Chapter 4 Detailed Design 26
4.1 Introduction L 26
4.2 Overall Plan. 26
4.2.1 Movement of particles L L 27

4.3 Script and function design L oo 27
4.3.1 Representing monolayer as particles 27

4.3.2 Indexing matrices Lo 28

4.3.3 Finding permutations of applicator rates and applicators. 29

4.3.4 Calculating application rate for different wind speeds 30

4.3.5 Reducing the number of rates permutations to test 34

4.3.6 Finding the average values for each grid cell 39

4.3.7 Calculating the evaporation 39

4.3.8 Selecting an appropriate time step for each wind vector input . . 40

4.4 Conclusion 40

CONTENTS viii

Chapter 5 Sample Run 41
5.1 Imtroduction L 41
5.2 Samplerunof model oL 42

521 config.m 42
5.2.2 preallocate.m oL 42
5.2.3 Monolayer_Simulation.m 43
5.24 calcrates.m Lo 43
5.2.5 Monolayer_Simulation.m oL 44
5.2.6 calcmoveevapdollar.m oL oL 44
527 cfllm . . oL 45
5.2.8 movepart.m Lo e 46
5.2.9 degradation.m L L 46
5.2.10 movepart.m e 46
5.2.11 boundary.m 47
5.2.12 calcevapdollar.m 47
5.213 avg.m e 47
5.2.14 calcmoveevapdollar.m Lo 48
5.2.15 evap.m Lo e 48
5.2.16 dollarsaved.m Lo 48

5.2.17 Monolayer_Simulation.m L0 49

CONTENTS ix

5.3 Conclusion 50
Chapter 6 Results and discussion 51
6.1 Introduction 51
6.2 Code validation 51
6.2.1 Effect of smallercells. 53

6.2.2 Twenty four hour simulation 53

6.3 Codeextension 56
6.4 Conclusion 57
Chapter 7 Conclusions and Further Work 62
7.1 Achievement of Project Objectives 62

7.1.1 Research experiments to obtain data/ equations to describe be-

haviour of the monolayer 62

7.1.2 Create matrices to represent domain, boundaries and applicator

positions for simulation 63

7.1.3 Simulate monolayer movement and degradation over time, using

historical weather data asinput 63

7.1.4 Use an objective function to control application of monolayer . . 63

7.1.5 Validate model by comparing results of simulation to real exper-

7.1.6 Summary of achievements 64

7.1.7 Comparision with Brink’s model 64

CONTENTS X
7.2 Further Work o 65
7.2.1 Shoreline interaction L oL 65

7.2.2 Submergence 65

7.2.3 Effect of monolayer on temperature of water 67

7.2.4 Non-rectangular boundaries 67

7.2.5 Performance 68
References 69
Appendix A Project Specification 71
Appendix B Degradation Calculations 74
B.1 Imtroduction. 75
B.2 Vaporisation of monolayer oL 75
B.3 Biological degradation oL 76
Appendix C Source Code 78
Cl avg.m 78
C.2 boundary.m 79
C.3 calcAreal.m 79
Cd calcAreaZ.m 81
C.5 calcAreal3.m 85
C.6 calcAread.m i 86

CONTENTS xi

C.7 calcmoveevapdollar.m v v v it 87
C.8 calcrates.m vt e 88
C.9 cflom L e 91
Cl0config.m e 93
C.lldegradation.m 95
C.12 dollarsaved.m v v b e e 95
Cl3evap.m.o 96
C.14 Monolayer_Simulation.m 98
C.ldmovepart.mo e 100
C.l6npermutek.m oL e e 101
C.A7preallocate.m v v v vt i e 104
C.8 imputdata.txt 105
Appendix D Preliminary Ideas 108
D.1 Boundaries e 108
D.2 Grid e 110
D.3 Applicator information 110
D.3.1 Applicator Positions (AP) L. 110
D.3.2 Applicator Rates Combinations (ARC) 111

D4 Trial o 111

CONTENTS xii

D.4.2 Future weather oo oL 112
D.4.3 Monolayer Behaviour Functions 112
D.4.4 Percent coverage 113
D45 Savingo 113
D.4.6 Select best ARC for current timestep 114
D.4.7 Complete for all time values for AP simulation 114
D5 Results. 114

Appendix E Evaporation Model Equations 116

List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

The leading edge radius for different application rates with no wind.

Reproduced from Brink (2011).

Drift speed of monolayer for different application rates at various wind

speeds. Reproduced from Brink (2011).

Herzig et al. (2011) experimental results for C13OH and Brij78 in a water-
emulsion. (a) Effect of initial surface pressure on final surface pressure,
(b) Effect of application rate on surface pressure, (¢) Evaporation resis-

tance vs surface pressure and time.

Microbial degradation of C160H, C1gOH and C18E1 (Pittaway 2008).

The shape of the monolayer with no wind. Talcum power is used to
show the edge of the monolayer as it spread from the centre where it was

initially applied. Reproduced from Brink (2011, p.69).

The shape of the monolayer with a wind speed of 4.5 m/s. The monolayer
is continuously introduced from the left and forms a wedge shape. The
monolayer is present where there are no light reflections, which indicate

waves. Reproduced from Brink (2011, p.100).

The effect of wind speed on the evaporation resistance. Reproduced from

McJannet et al. (2008).

LIST OF FIGURES xiv

4.1 Application rates as a function of wind speed calculated using three

different equations based on an area of 1ha. Reproduced from Brink

4.2 Coverage map for Crow and Mitchell’s experiments on Lake Hefner. The

dark lines represent the distribution lines where the monolayer was ap-

plied. Reproduced from Crow and Mitchell (1975). 33
4.3 Logic diagram to discriminate between different calcArea cases. 35
4.4 calcArea 1. L 36
4.5 calcArea 2. 37
4.6 calcArea 3. 38
4.7 calcAread. 38

6.1 Position of applicators. The dam is 50x50 m, four applicators are placed
5m in from the corners of each boundary and a fifth is located at the

centre. L e e e e 52

6.2 Results of simulation over 6 h with dx = dy = 5m and np_cell = (a) 10,
(b) 50, (c¢) 150 and (d) 500. The results show that the large number of
particles can overcome the large spacing of 5m on a 50x50 m domain.
Another method that will yield similar results is to decrease the grid size

while keeping np_cell constant. 000 53

6.3 Scatter plot of simulation over 6h with dx = dy = 5m and np_cell = 10.
The size of the dam is 50x50m. 54

LIST OF FIGURES XV

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Contour plot of evaporation resistance (nr-m) after 6h with dx = dy
= 5m and np_cell = 500. The size of the dam is 50x50m. The main
disadvantage of using a large cell spacing can be seen in this plot - the
average values of mass are calculated for the grid spacing and this results
in drastic changes along the edges of the contour. The units for the
colour bar are mg/m?. The theoretical amount required to form a valid
monolayer is 2.3 mg/m2. The impact this has on the model is discussed
in Section 3.3.2: Evaporation resistance of monolayer as a function of

wind speed. L L 55

Results of simulation over 6 h with dx = dy = 1 m and np_cell = 20. This
is the same particle area density (number of particles per unit area) as

shown in Figure 6.5 (d). L. 56

Results of 24 h simulation showing position of particles after (a) 0h (b)
4h (c¢) 8h (d) 12h (e) 16h (f) 20h. The dark line around the edge is
the particles stopping after crossing the boundary. 58

Position of particles after (g) 24h. This series of images show how the
particles move with time. Each particle has it’s own effective mass (which

is modified due to degradation) and age. 59
Evaporation resistance provided by a single applicator located at the circle. 59

Position of applicators. The dam is 500x50 m, applicators are placed

50m apart from each other starting 5m in from the left hand boundary. 60

Results of simulation over 6h with dx = dy = 5m and np_cell = 24.
The size of the dam is 500x50 m.This shows that the model is capable of

modelling larger dams. Lo L L Lo 60

Scatter plot of simulation over 6h with dx = dy = 5m and np_cell = 24.
The size of the dam is 500x50m 61

LIST OF FIGURES xvi

B.1 Linear line of best fit for Stearyl biological degradation. The solid lines
are used to connect the error bars between each point. The y axis the
the fraction of monolayer remaining and the x axis is the number of days

that have elapsed since the monolayer was applied. 7

D.1 Grid showing how particles move between different grid squares. 110

D.2 Monolayer spreading under the influence of the wind. Each red arcs
represents a group of particles that were released at the same time. The
location of each particle can then be identified to a particular grid square
given the angle of spread and the speed. Once identified with a square
of the grid the particles can be summed with the representative point at

the centre of the square (See 2: Grid). 113

D.3 Layout for simulationcode 115

List of Tables

2.1

2.2

4.1

4.2

B.1

B.2

B.3

D1

D.2

Loss of monolayer material due to evaporation. Reproduced from Barnes

(2011). . . . 13
Values for indexing, where np_cell =50 28
Equations for indexing old particles which were used to find im3 29

Loss of monolayer material due to evaporation. Reproduced from Brink

(2011). . . . 75
Results of Stearyl equation 76
Loss of monolayer material due to biological degradation 76
Applicator Rates 111

Applicator Rates Combinations. The rates x1, xo and x3 are measured

inkg/s. ..o 111

Chapter 1

Introduction

Water evaporation in large dams is a significant problem, especially with unpredictable
weather patterns which make it challenging to forecast rainfall and wind. Monolayers
have proven effective at reducing evaporation during field tests for many years but their
long term behaviour has been difficult to predict (Schmidt & Scobie 2012 p.25). This

has limited their use for large dams, where they are most effective.

Schmidt and Scobie (2012) reviewed several different methods for reducing evaporation
in farm storage dams. They noted for monolayers that “frequent product application is
required given the effects of wind, waves, UV radiation, algae and bacteria on product
distribution and longevity” (p.22). The main advantages of monolayers over compet-

3

ing evaporation reduction products is “...the low initial setup cost. Additionally, the
product need be applied only when it is required, for example when the dam is full and

during periods of high evaporation” (p.22).

Another problem with the use of monolayers, especially during field trials is “monolayers
generally cannot be seen clearly by eye on the surface of a dam limiting confidence in
the technology. Increased water surface tension does allow detection under light wind
conditions through smoothing of surface wavelets. Various methods for monolayer
detection have been researched (Coop, Lamb, Fellows & Bradbury 2011) however no
commercially viable approach is available. Accurate quantification of water savings

is also a challenge” (Schmidt & Scobie 2012, p.24). It is also worth noting the long

1.1 Design Requirements 2

term performance of monolayers may be different from short trials. “McJannet et
al. (2008) highlight that long term trials of monolayers have not been conducted and
that suppression of evaporation will raise water temperature thereby limiting further

evaporation savings” (Schmidt & Scobie 2012 p. 24).

The aim of this project was to develop a simulation of the behaviour of a monolayer film
on the surface of a large dam. The model was then used to select optimal applicator
rates. This model should make it easier to predict the long term performance of the

monolayers for evaporation reduction.

The objectives of the project are:

e Research experiments to obtain data and equations to describe behaviour of the

monolayer.

e Create matrices to represent domain, boundaries and applicator positions for

simulation.

e Simulate monolayer movement and degradation over time, using historical weather

data as input.
e Use an objective function to control application of monolayer.

e Validate model by comparing results of simulation to real experiments.

If time permits:

e Use model to optimise location of applicators.

1.1 Design Requirements

The model needed to meet several critical design criteria. The most important aspect
of the model was that it needed to be written in a generic style so that it could easily
accommodate different monolayers, as well as make it easy to input the different forms

of degradation that a particular monolayer is susceptible to.

1.2 Design Methodology 3

The model needed to achieve the following performance requirements:

e Generic model

Accept a variety of different parameters to analyse performance with sufficient

detail

Be easily expanded for different forms of degradation

Facilitate plotting to show results of simulation graphically

The model was designed to simulate the movement of monolayer on the surface of
the water when subjected to varying wind speeds and directions. The major constraint
placed on the model is due to performance issues arising from simulating a large number
of combinations of application rates for each time step. The behaviour of the monolayer

was separated into different sections, which could be described by experiments.

1.2 Design Methodology

The model was developed in MATLAB because it is a high level programming language
that also has excellent graphing functions. The simulation optimises the application
rate for each individual applicator by testing all the permutations for each time step
and selecting the optimal rate based on the amount of money saved. The amount of
money saved is the value of water saved from evaporation minus the cost of applying
the monolayer to the water. This approach is better than making a judgement on how
much monolayer can be used to cover a given area of water for each time step because
it removes the possibility of different people making different decisions. This means

that given the same situation, the simulation will always make the same decision.

1.3 Analysis and Performance

The model is capable of selecting an optimal application rate but is currently limited

in its use to real world applications because it still requires some types of degradation

1.4 Overview of the Dissertation 4

of the monolayer to be quantified before they can be incorporated into the model.

1.4 Overview of the Dissertation

This dissertation is organised as follows:

Chapter 2 reviews the literature
Chapter 3 discusses the methodology behind the model

Chapter 4 discusses the detailed design of the model and why it has been written in
a particular manner. This chapter explains the major aspects of the important

scripts and functions used in the model.

Chapter 5 explains the purpose and background for each section of code. The chapter
shows the order and explains how the various scripts and functions are linked

together.
Chapter 6 discusses the results obtained from running the model.

Chapter 7 summarises the achievements of this research project and suggests further

work in the area of evaporation reduction using monolayers.

Chapter 2

Literature Review

2.1 Introduction

Monolayers were first used for evaporation reduction in 1925 (Frenkiel 1965). Monolay-
ers are chemical films that are one molecule thick and form a phase boundary between
the water and the air. There are two properties that make them useful for evaporation
reduction. Firstly, monolayers are insoluble in water which ensures that the monolayer
and water will remain as separate chemicals. This occurs because the head of the
molecule is attracted to water (hydrophilic) while the tail repels water (hydrophobic).
The second important property is that the molecules of the monolayer are anchored to

the water and are therefore unable to pile up on top of each other (Brink 2011).

The surface pressure, Il is defined as the reduction in surface tension due to the addition
of the monolayer to the water surface. It is the difference in surface tension of pure
water, ,,, on one side of the barrier and the film on the water on the other side, vy

(Barnes & Gentle 2011, Rastogi 2003).

=y, — 7 (2.1)

If the 2D film behaves as an ideal gas, then the perfect gas law is applicable, IIA = kT,
where II is 2D pressure, A is the area occupied by one molecule, k is the Boltzmann
constant and T is the temperature. Rastogi states that when II is low and the area

occupied is large, increasing II will compress the film. This means that ideal gas be-

2.2 Surfactants 6

haviour is no longer applicable and real gas behaviour should be used. A 2D monolayer
obeys a law similar to the van der Waals equation, (II + a/A?) + (A — 8) = kT where
« is a constant that describes the mutual attraction forces between the hydrocarbon
tails and [is the force of repulsion that acts in the cross sectional area of the molecule

in the adsorbed monolayer.

2.2 Surfactants

Surfactants are compounds that lower the surface tension of a liquid or the interfacial
tension between two liquids or between a liquid and a solid. Surfactants have many uses
including detergents, wetting agents, emulsifiers, foaming agents and dispersants. The
behaviour of surfactants can be explained by looking at the behaviour of the molecules.
Some molecules in surfactants prefer one phase and other molecules prefer another
phase. These materials concentrate at the interface and adsorb. An example is the
use of a detergent to disperse an oil in water, when usually water and oil are insoluble.
The resulting adsorbed layers are one molecule thick (1-3nm) and can be described as
nanofilms. This leads to methods of creating films that are one molecule thick using

the Langmuir-Blodgett technique for air-water interfaces (Barnes & Gentle 2011, p. 6).

Myer (2006, p.95) describes the two aspects of the performance regarding surfactants
that are needed in order to lower the surface tension of a solution: sufficient concentra-
tion of surfactant to produce a given surface tension, and maximum tension reduction

possible regardless of concentration of surfactant present.

Rastogi (2003) says that since the thickness of a monolayer is 10~7 cm, the system is
2D and the surface pressure II, can be expressed as dynes/cm as opposed to dynes/cm?
for a 3D system. The surface pressure of the monolayer is related to the area as shown
by Barnes and Gentle (2011, p. 112). There are four major monolayer phases: gaseous,
liquid expanded, liquid condensed and a solid phase. This agrees with the simplified
figure Rastogi (2003, p. 163) presented. Due to the narrow range of temperatures and

pressures used in practice, not all phases will be seen (Barnes & Gentle 2011).

2.3 Evaporation resistance 7

2.3 Evaporation resistance

Henry et al. (2010) describe the accessible area theory of evaporation resistance with

r— ;@(‘j—Q (2.2)

where A is the total surface area; a is the accessible area; « is the evaporation coefficient;

the following equation

M is the molar mass of water; R is the ideal gas constant; and 7" is the temperature. The
theory states that evaporation occurs at the same rate through holes in the monolayer
as a clean surface. This theory doesn’t account for the alkyl chain length or impurities,

which has a large effect, therefore this theory is not valid for use in large scale.

There are several reasons why it is difficult to correlate current theory and experimental
data (Langmuir 1998 cited in Barnes 2001). One reason that Langmuir proposes is
that equilibrium is not established when the area is small or the surface pressure is
high, and these conditions are not explained by surface pressure—area curves when they
were measured. The experimental results Barnes obtained supported his hypothesis
and explained the difference between the theory based on equilibrium and experiments
which do not have enough time to reach equilibrium. Detailed information regarding

the structure of Langmuir-Blodgett films have been described by Peng et al. (2001).

2.4 Monolayer Behaviours

The behaviours of the monolayer include:

e describing the movement under variety of wind speeds

e monolayer losses due to shoreline interaction

e evaporation of the monolayer itself

e monolayer submergence — monolayer sinks below surface and is lost

e degradation due to biological attack — bacteria breaks down the monolayer, re-

ducing effectiveness

2.4 Monolayer Behaviours 8

The main behaviours that have been simulated are the movement and degradation of

the monolayer due to biological attack and evaporation of the monolayer.

2.4.1 Movement

Brink (2011) observed two main shapes that the monolayer formed at different wind
speeds during experiments he conducted in a 6 m diameter tank. At low wind speeds,
the monolayer spreads in a circular manner, relatively unaffected by the wind. At
higher speeds the monolayer forms a sector of a circle (a portion of a circle that is
enclosed by two radii and an arc). Brink (2011) reported that Vines (1960), McArthur
(1962) and Crow and Mitchell (1975) agreed that wind-induced drift started to occur
at wind speeds of approximately 3.2km/h. At wind speeds below this, the spreading
rate can be considered to be purely a function of the surface tension gradient between

the monolayer and the water.

Brink (2011, p.64) reported that all previous work had been conducted on very small
surfaces (< 3m?), and for extremely short periods of time (< 5s). The monolayer
movement can be described using equations obtained by Brink (2011). The major
variable was the wind speed which controlled the drift speed and angle of spread of the
monolayer. Brink conducted experiments in a 6 m diameter tank and over 55s. The

eccentricity of the assumed shape of a circle was on average 2.0% (Brink 2011, p. 74).

Brink performed experiments with tank diameters 0.3, 2 and 6 m and with three dif-
ferent theoretical monolayer thicknesses: 1, 2 and 6 times the minimum theoretical
amount required to form a monolayer. The different thicknesses represent different
application rates that can be used. Brink (p. 76 , 2011) found that for short periods of
time, the spreading rate was a weak function of the application rate, for 1-6 x minimum
theoretical amount (see Fig. 2.1 on page 10). The error in ignoring the effect of the
application rate on the drift speed will be small, especially for short periods of time.
The variation between different application rates is very small across the range of ap-
plication rates for time less than 15s, which corresponds to a radius of approximately
1.0m. The average result from three experiments showed only 2.48 % variation for the

6 m tank. The equation of the curve for the 6 m tank with a 6x application rate was

2.4 Monolayer Behaviours 9

used for the model since it is the most applicable for large scale use.

Brink reported Vines (1960), McArthur (1962) and Crow & Mitchel (1975) discovered
that at a critical wind speed of 3.2km/h the shape of the monolayer changed from
a circle to a sector of a circle (wedge). The two equations which describe these two
cases are shown below. Both equations are for a 6 m tank with six times the minimum

theoretical application rate for a valid monolayer to form.

The equations below are for C13OH and Brij78 in a water-emulsion. Herzig et al. (2011)
described an emulsion as a liquid dispersed in liquid with the long-chain alcohols solid
at room temperature, but both Herzig and Brink melted the alcohols before mixing
with water. Emulsions are used because a liquid will have a greater spreading rate

compared to solid powder.

The following equation shows the drift speed of the monolayer as a function of time:
Udrift,circle = thn (23)

where kp = 0.1436; t is the elapsed time (s); and n = 0.7351. The equation Brink

found matches well with the generally accepted value of n = 0.75 (Brink 2011, p. 84).

The drift speed of the monolayer above the critical wind speed of 3.2km/h is
Udrift,wedge = 0.0459 Uyying — 0.0661 (2.4)

where ying is the wind speed (m/s). Brink (2011, p. 104) found that the drift speed of
the monolayer is a weak function of the application rate in the range of 17-53 mL/min
(see Fig. 2.2 on page 11). Ignoring the application rate will therefore not introduce

large errors into the model.

Herzig et al. (2011) described an experiment to determine how the spreading rates
are related to the evaporation rates for emulsified monolayers. Emulsified monolayers
aim to increase the spreading rates of monolayers at the cost of reduced evaporation
resistance. The final surface pressure is also dependant on the initial surface pressure
(Fig. 2.3a). At initial pressures greater than 15mN m~! any additional monolayer
added to the surface has no effect on the evaporation resistance as there is no increase

in surface pressure. The rate of application affects the surface pressure (Fig. 2.3b).

2.4 Monolayer Behaviours 10

—1x =—3x 6x

Radius (meters)
et %]
= in 8] i

=
i

D ¥ T T
0 5 10 15 20 25 30 35 40 45 50 55

Time (seconds)

Figure 2.1: The leading edge radius for different application rates with no wind. Repro-

duced from Brink (2011).

The resistance is a function of the surface pressure and time for this experiment, but

Herzig et al. did not consider the effect of wind (see Fig. 2.3c).

2.4.2 Relating evaporation resistance to windspeed

McJannet, Knight, Cook and Burns (2008) used a linear model to describe the relation-
ship between evaporation resistance and wind speed because they were unable to find
better data. This data showed a decrease in evaporation resistance with wind speed.

This places three constraints on the model:

e Wind speed is less than 6.71m/s

e Concentration of monolayer is greater than two times the minimum theoretical
amount to create a valid monolayer. This is to ensure that a monolayer has

definitely formed.

e Equation of the straight line to describe reduction in monolayer resistance at

higher wind speeds.

2.4 Monolayer Behaviours 11

“=4=3.7mfs -—E=52m/s 8.3m/s

0.4

0.35 T
03

0.25
0.2

. ._’_’_"_,_——l\.
-

0.1

L
t

Measured Drift Velocity (my/s)

0 10 20 30 40 50 60

Application Rate (ml/min)

Figure 2.2: Drift speed of monolayer for different application rates at various wind speeds.

Reproduced from Brink (2011).

Brink (2011) states that the consensus reached by many researchers is that at wind
speeds above 26.4 (+5) km/h it becomes impractical to apply monolayer. This is be-
cause the evaporation resistance at higher wind speeds approaches zero (McJannet et
al. 2008, p.6). It is however necessary to have a wind speed higher than zero and not
too high humidity in order to spread the monolayer across the surface of the dam in a

reasonable period of time (Gladyshev 2002 cited in Brink 2011, p.46).

2.4.3 Monolayer losses due to shoreline interaction

The effect of the shoreline is variable depending on the slope and material of the shore-
line. The slope of the shoreline will determine how easily the monolayer is deposited
on the shoreline and what proportion is reintroduced when the wind changes direction.
The type of shoreline (e.g.sand, soil, rock, vegetation) will also have an effect on the

rate and proportion of monolayer removed and returned to the surface of the water.

2.4 Monolayer Behaviours

12

45 =
o~ 40
E 35
=
E ap 4
o
S 254
@
=] 20 = Initial surface
o pressure (mN m 1]
o 15 A
& — 15
= 105 — 10
w 5 — —5
—20
D _I I LI I LEL L) I LIBLEL) I LILEL I LI I
0 4 -] 12 16 20
Time (minutes)
(a)
=
=
E
©
I
=]
7]
7]
g
o
[+H]
Q
2]
b=
=3
3]
Time (minutes)
(b)
45 9 v+ - *. M
|
E 35— - 'g,
% 30— | —— C.4OH + Brij 78 pressure N 2
Y || * C,,OH + Brij 78 resistance - S
5 25— —— CyOH + Tween 60 pressure | °
@ B G,OH + Tween 60 resistance [&
g 20 @
o - [
o 15— ul g
@ m " @
‘t 10+ u [@
= n -1 o
w n N
5] - 3,
- L -
g—{lm = - o
I LILEL I T T T I LILEL I LILEL I LI |
a 40 80 120 160

Time (minutes)

()

Figure 2.3: Herzig et al. (2011) experimental results for C;gOH and Brij78 in a water-

emulsion.

(a) Effect of initial surface pressure on final surface pressure, (b) Effect of

application rate on surface pressure, (¢) Evaporation resistance vs surface pressure and

time.

2.4 Monolayer Behaviours 13

Table 2.1: Loss of monolayer material due to evaporation. Reproduced from Barnes (2008).

Monolayer Surface pressure | Half life Half life
(II/mNm~1) (20°, t1/h) | (40° t1 /h)

Cetyl alcohol 35 48 1.3
Stearyl alcohol 35 > 200 9.6
Cetyl/stearyl mix, 33/67 | 35 - 3.2
Cetyl/stearyl mix, 67/33 | 35 - 1.9

Table 2.2: Loss of monolayer material due to evaporation. Reproduced from Brink (2011).

Monolayer Fractional loss (x 1076 s71)
5°C | 20°C' | 40°C
Myristyl C14OH | 20 | 58 | 1900

Cetyl CigOHI |1 | 4 150

Stearyl C1sOH | 0 0 20

2.4.4 Volitalisation

Volitalisation describes the evaporation of the monolayer. Barnes (2008) gave a reason
for the significant losses of monolayer material of hexadecanol over several days. Barnes
found an experiment conducted by Brooks and Alexander (1960) that proves that
evaporation of the monolayer into the atmosphere was the cause for these losses. The

results are reproduced in Table 2.1.

Brink (2011) also adapted a table from Brooks and Alexander (1960) which is shown
in Table B.1 on page 75. It shows that longer chained alcohols have a much lower
fractional loss rate. Mansfield (1959) cited in Brink (2011, p.23-4), developed Equation

2.5 to describe the losses due to volitalisation.

D,cqva
40c¢,

dF, = (2.5)

where dF, is the fractional loss by volatilisation (%), D, is the coefficient of diffusion

of the monolayer (cm? s71), ¢, is the concentration of vapour in equilibrium with the

2.4 Monolayer Behaviours 14

monolayer (g cm™3), vy is the wind speed (cm s™1), and ¢; is the surface concentration
of the monolayer (g cm~2). Mansfield applied empirical values to equation 2.5 for a

cetyl alcohol monolayer at 40 mN/m and introduced a correction for low wind speeds.

dF, = 6.8 x 107wy (2.6)

2.4.5 Monolayer submergence

The submergence of the monolayer occurs at higher wind speeds and during rainfall
(Brink 2011, p.45). Brink (2011, p.26) was only able to find two studies which inves-
tigated the effect of rain on the performance of monolayers. A study conducted by
Green and Houk (1979) found the effect to be significant and increased considerably
with drop size and rainfall intensity. A study by Bair (1972) found the opposite, but
Brink concludes that the likely cause for the discrepancy is the low concentration of
monolayer used by Green and Houk (1mg/m?), as well as the inadequate size of the

the tank used. Brink was unable to find research to quantify these results.

Brink (2011, p. 59) states that since emulsions are particles dispersed in water, submer-
gence will need to be considered. The purified C130OH and Brij78 in water emulsion
showed “...no evidence of submergence, however with unpurified C13OH (which was
used for all the experimental work in [Brink’s] thesis), 33 to 50 % of the C13OH was lost
to submergence.” Despite this significant loss, Brink and Herzig maintain that C;3OH
and Brij78 in water emulsion is still a practical means of applying monolayer to reduce
evaporation. Herzig et al. (2011, cited in Brink 2011) says the losses can be reduced by
“...ensuring the dispersed particles within the emulsion are kept as small as possible
and is gently applied to the water surface.” This may mean significant losses will occur
if the monolayer is applied above certain wind speeds, or if the emulsion separates over

time before it is applied to the water surface.

In order to investigate the use of monolayer products with large losses due to submer-
gence, it would be worth investing time to determine the losses as a function of time
and wind speed so it can be added to the model. This is a possibility for future work.
The effects of submergence will not be considered further for the current model due to

lack of appropriate experimental results.

2.5 Calculating Evaporation 15

2.4.6 Degradation due to biological attack

Barnes (2008, p. 349) cites laboratory experiments conducted by Chang et al. (1962)
who discovered that “Hexadecanol and octadecanol mixed with inorganic agar were
able to support the growth of colonies of Pseudomonas and Flavobacterium sp., but
not of other bacterial species commonly found in water storages. However some of these
other species were able to grow in association with Pseudomonas or Flavobacterium sp.
suggesting that they were able to feed on the breakdown products.” Barnes concluded
that after 3-4 days there was a “serious” decline in the evaporation resistance of the

monolayer.

Brink (2011) reported on a laboratory experiment conducted by Dr Pittaway at the
University of Southern Queensland as shown in Fig. 2.4. It appears that the decrease
in concentration of the monolayer can be approximated as linear — the use of another
function may imply a relationship which does not exist considering the limited number

of data points.

The following characteristics identified by Brink (2011) indicate a higher rate of bi-
ological activity and therefore a lower useful life for monolayer material: regular al-

gal blooms, high UV absorbance, dark brown water colour and a relatively high area

(< 1ha).

The concentration for 0, 2, 3 and 4 days was read from the graph and plotted on linear
axes. A linear line of best fit was plotted that was within the error bars (see Appendix

B for further details).

2.5 Calculating Evaporation

The rate of evaporation can be found using a modified Penman-Monteith (1965) equa-
tion which was presented by McJannet, Knight, Cook and Burn (2008). The equation
was originally designed to calculate the evaporation of water from plants. The equation

is:

(2.7)

1 <Aw (Q* — N) 4 86400p,C, (e}, — €q) / (1o + rm)>
A

E==-
Ay +7y

2.5 Calculating Evaporation 16

== C160H C180H —d— CIBE1

1.2
g e — A — - L
€ i - ———j
8
K
E 038 T
g
8 0s : T
5 L
_204 \
S .
0.2 2 2
0
0 2 3 4

Incubation (days)

Figure 2.4: Microbial degradation of C160H, C1;3OH and C18E1 (Pittaway 2008).

where

A is the latent heat of vaporisation (MJ kg™!)

A, is the slope of the temperature saturation water vapour curve at water temperature

(kPa/°C)
Q* is net radiation (MJ m~2 d~1)
N is change in heat storage in the water body (MJ m~2 d—1)
pa is density of air (kg m™3)
C, is specific heat of air (MJ kg=! K~1)
ey, is saturated vapour pressure at water temperature (kPa)
€q 18 vapour pressure at air temperature (kPa)
74 is aerodynamic resistance (s m~!)
Tm is monolayer resistance (s m~1)

7 is the psychometric constant (kPa °C~1)

This equation requires many different inputs which are satisfied with several seconday

equations. The full details have been presented by McJannet et al. (2008) and have

2.6 Conclusion 17

been used in the MATLAB code to evaluate the evaporation. A comparison for a small
area dx.dy can be made for the current monolayer resistance and no resistance. This
can be used to determine the volume of water saved from evaporation and ultimately
the profit gained for each small area dx.dy. This information has been used to select

the most profitable combination of application rates for each of the individual

2.6 Conclusion

There have been several experiments in the field of monolayers but unfortunately very
few of these experiments have produced results which can be used to quantify the
effects of the various behaviours that monolayers exhibit. Brink has been successful in
finding relationships to describe the movement of the monolayer. Pittaway has found a
relationship to describe the degradation of the monolayer due to biological attack as a
function of time.The losses associated with shoreline interaction and submergence have

not yet been quantified experimentally.

The evaporation can be found by applying the modified Penman-Montheith equation.
A comparison of the evaporation rate with and without the monolayer present can be

used to calculate the volume of water saved from evaporation.

Chapter 3

Methodology

3.1 Introduction

There have been many good reasons why monolayers have not been adopted for use in
large scale tests. The main reason is that the evaporation reduction arising from the
use of monolayers can be very difficult to predict. A computer model can be used to
achieve many of the results that experimental trials can achieve, but at a fraction of

the cost and risk.

The model has several objectives. Firstly, it must not be limited to a specific monolayer
since there are many different types of monolayers and there is yet to be a definitive
monolayer due to the complex combination of advantages and disadvantages that each
poses. The model must also be capable of running for long periods of time in order
to simulate a real life test. The major difficulty with monolayers is that the long
term performance is very unpredictable and this makes it difficult to perform large
scale experimental trials. A computer model can be used to gain an insight into the

behaviour of monolayers that cannot be gained with traditional experimental trials.

The model must also deal with dynamic weather conditions consisting of changing
wind speeds and directions. It should be able to accept data in the same form as it

is collected by weather stations. This will make it easy to assess long term effects for

3.2 Methodology 19

different locations. The model should also adequately represent the behaviour of the
monolayer by incorporating all the major effects that affect the performance of the
monolayer. Some of the effects that affect the monolayer have not yet be quantified by
experiment or computer model and therefore cannot be included in this current model,
but the program must be able to include these effects when they have been quantified

with minimal effort.

In summary, the main requirements of the model are:

e Not limited to specific monolayer

e Capable of modelling long periods of time
e Incorporate dynamic wind conditions

e Represent behaviour of monolayer

e Behaviour that has not yet been quantified can be easily added in the future.

3.2 Methodology

3.2.1 Overview of model

The model has been written in MATLAB which has excellent graphing facilities. This
will make it easy to visualise the results of the simulation. The model will attempt to

optimise the application rates of the applicators that are located on the dam.

At the beginning of each timestep, the wind conditions will determine the drift speed
and angle of spread of the monolayer. Particles will then be created at the applicator
locations to represent the continuous application of monolayer during the timestep.
The dam will be divided into small rectangles, dr x dy. If the number of particles is
sufficiently large enough for the size of this rectangle, then a continuous film can be
modelled as a large number of discrete particles. Each particle will be created at a

random fraction of the timestep, as well as at a random angle of spread.

3.3 Equations and essential features of the model 20

After several iterations of creating particles from the applicators, it will be necessary
to calculate average values for several important variables. These variables include:
mass, concentration, monolayer resistance and age of particles. The critical variable
will be the monolayer resistance which will be used to calculate the evaporation for
each area dx x dy in order to determine how effective the monolayer is on the dam.
The difference in evaporation rates with and without monolayer present will then be
calculated. By assigning a value to the water, a dollar saving can be found. The profit
gained by applying the monolayer will be calculated by subtracting the cost of applying

the monolayer to the dam from the value of the water saved from evaporation.

The highest profit for different combinations of application rates will be the optimal
combination of applicator rates. These above steps are repeated as the wind changes.
The pre-existing monolayer on the surface of the dam will also be modelled using

experimental data to describe the the different types of behaviour of the monolayer.

3.2.2 Sections of the program

The program has been broken into several functions and scripts. Each of these functions
and scripts has a specific purpose. Each function and script will be explained in greater

detail.

3.3 Equations and essential features of the model

3.3.1 Movement of monolayer

The monolayer has been modelled as particles. There are two terms that describe
their behaviour: a stochastic and a deterministic term. The stochastic term represents
the random nature of the particles. When the number of particles in a given area is
high enough, the effect of using random particles ceases to impact the results and the
simulation (with a finite number of particles) becomes a good approximation of the
continuous monolayer film. The deterministic term is from the experimental results

which describe the drift speed and the angle of attack of the monolayer.

3.3 Equations and essential features of the model 21

Figure 3.1: The shape of the monolayer with no wind. Talcum power is used to show

the edge of the monolayer as it spread from the centre where it was initially applied.

Reproduced from Brink (2011, p. 69).

The movement of the monolayer is characterised based on the angle of spread and the
drift speed. The shape of the monolayer is dependent of the wind speed. At wind
speeds lower than 3.2km/h the monolayer spreads in a circle (see Figure 3.1) and at

higher wind speeds is a sector of a circle (see Figure 3.2).

3.3.2 [Evaporation resistance of monolayer as a function of wind speed

The resistance of the monolayer depends not only on the concentration of the monolayer
(mg/m?), but also on the wind speed. Figure 3.3 shows the relationship between wind
speed and evaporation resistance can be treated as linear due to lack of available data.
It can be argued that the linear model is an average, since some parts of the monolayer
collapse and others are exposed due to the effect of the waves at higher wind speeds
(McJannet, Knight, Cook and Burn 2008). The model represented in the figure places

three constraints on the model:

e Speed < Upax

3.3 Equations and essential features of the model 22

Figure 3.2: The shape of the monolayer with a wind speed of 4.5m/s. The monolayer is
continuously introduced from the left and forms a wedge shape. The monolayer is present
where there are no light reflections, which indicate waves. Reproduced from Brink (2011,
p. 100).

e Concentration < 2x minimum theoretical amount to form a valid monolayer

e Equation of the straight line

The concentration is limited to at least 2x the minimum theoretical amount to en-
sure sufficient monolayer product is present (within each cell dz dy) to guarantee the

monolayer will inhibit evaporation.

3.3.3 Volatilisation

This is the evaporation of the monolayer. The fractional loss (degradation of mass due

to evaporation) is calculated using the
dme = dt x 0.073957 x O-14Temp » 10=6 (3.1)

where dt is the time step [s|] and Temp is the water temperature [°C]. Appendix B has

further details.

3.3 Equations and essential features of the model 23

350

3001 Im = -44.74U + 300, U <671 ms"

250 =0, U=671ms

200 A

150 +

r (sm™)

100

50 4

C_

Uims™

Figure 3.3: The effect of wind speed on the evaporation resistance. Reproduced from

McJannet et al. (2008).
3.3.4 Degradation due to biological attack
The monolayer degrades due to algae and bacteria on the water surface. This is mod-
elled by reducing the amount of effective mass of monolayer that is on the water surface

as the monolayer ages. The monolayer has a typical life of 8 days before it has com-

pletely degraded. See Appendix B for complete calculations.

3.3.5 Shoreline interaction

The effect of the shoreline will need experimental or CFD modelling to account for the

losses. See Chapter 7: Further Work.

3.3.6 Monolayer submergence

A proportion of the monolayer will be lost due to the action of the waves at high wind

speeds. This effect can be modelled by considering that a proportion of the effective

3.4 Resource Requirements 24

mass is lost (i.e. the model only keeps track of the effective mass of monolayer). There
has been no experimental results to date so this component will need to added to the

model in the future in order to account for this effect. See Chapter 7: Further Work.

3.4 Resource Requirements

The model will create particles from the applicators. As time progresses, the number
of particles could cause the computer to use all the available Random-access memory
(RAM) and will use the hard drive instead. This will cause significant slowdowns.

There are two ways to solve this problem:

e Use a computer with more RAM

e Write code to reduce the number of particles

The first solution will work up to a point. There will however be a maximum number of
particles that can fit into the RAM. There are several factors that influence the number
of particles in the simulation after a long period of time: the current time; the size of
the domain compared to dr and dy; and the number of particles created at each time
step. After long periods of time it may be difficult to ensure there is sufficient RAM

available while maintaining an acceptable level of accuracy.

An additional function could be written to reduce the density of the particles if they
exceed a set limit by either removing particles with very low mass compared to the other
particles, or combining particles that are very close together. This may be necessary if
the domain is very large and/or the period of time is very high. This is preferable to
simply using a computer which has more RAM as it reduces the number of computers
that can run the model and will have a limit on the complexity of the problem that

can be successfully modelled.

3.5 Consequential Effects 25

3.5 Consequential Effects

The model can be used to further develop control mechanisms for the application of
monolayer to large dams with complex shorelines. The two aspects that the model can
help optimise are the application rates of the individual applicators and the location of
the applicators. It is important that the model can be used for large lams and for long
periods of time. Once the model has sufficient detail to represent the real situation it

can be validated by comparing the results to real experiments.

3.5.1 Current Model

The current model can handle multiple applicators with different application rates
within a rectangular boundary. The model needs to be expanded to include as many of
the different monolayer behaviours with sufficient depth to ensure the model represents

real experiments. It also needs to cope with non-rectangular boundaries.

3.6 Conclusion

This chapter introduced the requirements for the model and some the behaviours that
have been modelled to get a performance indicator of the monolayer for use in evapo-
ration reduction. The fundamental goals and the methodology to achieve these goals

was also discussed.

Chapter 4

Detailed Design

4.1 Introduction

This chapter explains the each function and script used in the program as well as

methodology to use to extend the model.

4.2 Overall Plan

The model will use an explicit solution. This means the model will need to satisfy
the Courant-Friedrichs-Lewy condition which ensures that particles do not move more
than one grid square per time step in order to ensure stability of the system. It specifies
the maximum time step that can be used given a speed and grid size. The equation for

the one dimensional case is:

U At
<
AL — Cma.’x

where Uy, is the speed in the L direction, At is the time step and Cj,qz is 1 for the
explicit method. The CFL condition must be satisfied for each dimension since the grid
is two dimensional. The limiting case will be either in the x or the y direction. This is

because the limit for the CFL condition requires the use of the larger of either AUEZ or

4.3 Script and function design 27

AULyy. Rearranging for At yields:

Crmaz AL

At <
= UL

4.2.1 Movement of particles

The monolayer is a continuous one molecule thick film. One approach to represent the
film in a computer program is through the use of discrete particles. The movement of
the monolayer is stochastic, that is it has a deterministic and random element. The
deterministic element is the equation which describe the speed and angle of spread.
The random element is the use of random numbers to generate particle locations which

are required to approximate a continuous film using discrete particles without bias.

There are two different ways that the particles move in the model: creation of particles
from the applicators, and movement thereafter. The particles originating from the
applicators are specified by a random radial position and a random angle. The radial
position is between zero and the smaller of dx or dy, while the angle is a combination
of the wind direction and a random angle within the angle of spread, which is based

on the wind speed.

4.3 Script and function design

4.3.1 Representing monolayer as particles

The monolayer film is represented as a large number of discrete particles. The number
of particles needs to be large enough so that the individual position of each particle is
not important and only the overall properties of a group of particles. The particles are

created in a rectangle at the applicator with dimensions dz by dy.

4.3 Script and function design 28

Iteration Applicator
1 2 3
1 1:50 51:100 | 101:150
2 151:200 | 201:250 | 251:300
3 301:350 | 351:400 | 401:450

Table 4.1: Values for indexing, where np_cell = 50

4.3.2 Indexing matrices

It is necessary to specify which values of the matrix will be modified to prevent dynamic
memory allocation occurring. Dynamic memory allocation is significantly (10 to 100
times) slower than using preallocated matrices. This time penalty is unacceptable when
dealing with large arrays that are modified often as is the case with the majority of the
variables that the model calculates. The index has two components: a start and a final

value. There are two different indices required to move the particles.

The old particles start a one and finish at the last particle that has been created. The
value of this last particle is given by the following expression, which was found by

considering the pattern in Table 4.2:
im3 = (cc — 1) x n_app X np_cell + k x np_cell + tc X n_app x np_cell (4.1)

where cc is the current counter (number of iterations), tc is the total counter (sum of all
previous current counters/iterations), n_app is the number of applicators and np_cell is
the number of particles in a cell (dz by dy). The expression for indices for the random

angles (theta old) in the cosine and sine functions are:

to(1 : im3) = windDirection(windloop) + (0.5 — rand(1,im3)) x angleSpread (4.2)

The new particles indices were also found by considering a similar pattern. The follow-

ing two expressions are for the start and final index respectively:

lhs =14 (cc — 1) X ngpp X np_cell + (k — 1) x np_cell + tec x n_app x np_cell (4.3)

rhs = (cc — 1) X n_app x np_cell + k x npcell + tc X n_app x np_cell (4.4)

4.3 Script and function design 29

Iteration Applicator
(cc) 1 2
1 np_cell k x np_cell
2 (ce-1) x np_cell x n_app | (cc-1) x np_cell x n_app +
k x np_cell
3 (ce-1) x np_cell x n_app + | (cc-1) x np_cell X n_app +
k x np_cell + k x np_cell +
tc X n_app x np-_cell tc X n_app X np_cell

Table 4.2: Equations for indexing old particles which were used to find im3

where k is the index of the applicator where the particles are being created from. The
expression for indices for the random angles (theta new) in the cosine and sine functions

are:

tn(1 : np_cell) = windDirection(windloop) + (0.5 — rand(1, np_cell)) x angleSpread
(4.5)

4.3.3 Finding permutations of applicator rates and applicators

It is necessary to use an array of all possible applicator rates as an input to the model.
The model selects the most profitable combination of application rates based on the
money saved. The model needs all possible combinations in order to select the most
profitable combination. A function developed by Matt Fig and available from the
Mathworks file exchange was used since there was no suitable inbuilt MATLAB func-
tion. The function is available from http://www.mathworks.com/matlabcentral/
fileexchange/11462. The function npermutek.m takes two arguments: an array of
rates and the number of applicators. For example, the function outputs the following
matrix given the rates as [0 1] and the number of applicators as three. Each row is a

different permutation and the columns are the individual applicators.

http://www.mathworks.com/matlabcentral/fileexchange/11462
http://www.mathworks.com/matlabcentral/fileexchange/11462

4.3 Script and function design 30

0 00
0 01
010
011
1 00
1 01
1 10
1 11

It can be seen in the above matrix, the number of combinations to test grows very
quickly with increasing number of applicators. The next section will discuss how the

number of permutations to test can be reduced given the right wind conditions.

4.3.4 Calculating application rate for different wind speeds

There are several different methods of calculating the application rates. The current
model only considers two different rates due to the large number of permutations that
would result otherwise. One of these rates must be zero, since at high wind speeds, the
product will either be lost to submergence or a large proportion will be washed ashore.
The other rate will be the highest of the rates calculated by previous researchers because
it will ensure that a film is formed. Higher concentrations of monolayer have also been
shown to reduce the amplitude of waves formed by the wind, reducing the amount of

monolayer that is lost to submergence.

Brink (2011) identified several different equations developed by different researchers to
find the application rate as shown in Figure 4.1. The application rate is a function of the
wind speed. The most important factor in determining application rates is to consider
“...the loss by wave action and submergence. Since the film can only be effective if it
exists at the surface layer on top of the water, it is necessary to add sufficient material
to dampen the waves and prevent ‘drowning’ of the alcohol by wave action® (Reiser
cited in Brink 2011). Reiser found that at up to a wind speed of 27 mph it is possible

to maintain a smooth surface by applying a sufficient amount of monolayer. At wind

4.3 Script and function design 31

——=Crow (1963) =—Fitzgerald (1964) Reiser (1969) =Crow & Mitchell (1975)

2000
1800
1600
1400
1200
1000
800
600
400

an B

0 ——

Application Rate (grams/hour)

0 5 10 15 20 25 30

Wind Speed (km/h)

Figure 4.1: Application rates as a function of wind speed calculated using three different

equations based on an area of 1ha. Reproduced from Brink (2011).

speeds above 9mph the suppression of the waves is important by ensuring there is
enough monolayer present to dampen the waves the reduce the amount of monolayer

that is submerged.

Reiser determined an equation the application rate [Ib / h| for each range of wind

speeds. At less than 9 mph:

b /h _5
———— =29x107°VM 4.6
100 ft of shore . (4.6)
and at wind speeds above 9 mph:
Ib / h
/ =32x10"°ViM (4.7)

100 ft of shore

where V' is the wind velocity [mph] and M is the molecular weight of the monolayer

per hydrophilic group.

Crow found an equation based on experiments on two ponds (30.5 x 36.6 x 2.1m). The
application rate is the minimum amount needed to maintain a continuous film on the

surface at various wind speeds. Crow’s empirical equation is:

R =9.3U%0%x 107° (4.8)

4.3 Script and function design 32

where R is the application rate [Ib/h/ft of distribution line] and U is the wind speed

[mph].

Fitzgerald’s equation is based purely on the monolayer drift. The ratio of monolayer
speed to wind speed starts at 0.03 and rises to 0.045 at wind speed 19.8km/h and
higher in a linear manner. This shows that Crow and Reiser’s equation only consider
the effect of the monolayer drift, which is not enough to ensure that enough monolayer

is applied, as none of the forms of degradation are considered.

Crow and Mitchell’s equation for the application rates is:
R=1.18U"8 x 107 (4.9)

where R is the rate [Ib/hr/ft of distribution line|] and U is the wind speed [mph]. Crow

and Mitchell’s equation has been expressed in SI units in the following equation:

n_ dist_line x 3.2808399 x 453.592
- 3600

3600 181 A
1.1 —_) 10~ 4.1
* 1.18 % (1609.344 * qud) * 10 (4.10)

where dist_line is the length of the equivalent distribution line [m], and uWind(windloop)
is the wind speed [m/s]. Crow and Mitchell’s equation has been used for the model cur-
rently as the equation was developed from an experiment on a large lake, which is the
only size of water body where monolayers are economically viable. Crow and Mitchell
(1975) found an application rate 6.5 to 8 times greater than previously reported using
a similar pond and application system. During the trial on Lake Hefner in Oklahoma
in 1965-66 evaporation savings of 11.5% were found. This is significantly less than
than expected from experiments on smaller ponds and it is due to “serious operation
problems caused by wind, which proved to be the major obstacle to maintaining a

continuous film covering the lake” (Crow & Mitchell, 1975 p.493).

Brink (2011, p. 31) explains the reasons for the discrepancies between Crow and Mitchell’s

results and Crow and Reiser’s equations. These reasons are:

e Wind speed measured at 2m, where it is 28% higher than on the water surface.

4.3 Script and function design 33

WORTR (HSTRIMENT STATIN —=

\ .
fe— :{:—i/j L/_;_‘>

Cote B 0-68 Time 300
Caver 54% Bote DO0AE | bHe Y

—
! SOUTH INSTRUSERT JTAMON

Wird 7 Toph Die (50° LA R

WORTE IMSTAUMENT STATION

DETRIBUTHIA LATER

Dete 8-5-55 Timg 1400
Coves 53% ot D00S3 LEAFL
Wed L mph Do 1607

—~
SONTH IMSTRUNENT STATION
)

Figure 4.2: Coverage map for Crow and Mitchell’s experiments on Lake Hefner. The dark
lines represent the distribution lines where the monolayer was applied. Reproduced from

Crow and Mitchell (1975).

e Large distance (234.4m) between shore and applicator means that additional
monolayer was required to suppress capillary wave action between the shore and

the applicator, see Fig 4.2.

e Spacing between applicators caused the monolayer applied from separate appli-

cators to merge.

The monolayer merging from different individual applicators can be included in the
model by simulating multiple application rates (in addition to different permutation of
individual applicators) and selecting the most profitable for each time step. The current
model only includes a single application rate (Crow and Mitchell 1975) because not all
the different forms of degradation have been accounted for, (namely submergence and

shoreline interaction,) and this would effect which application rates are used.

4.3 Script and function design 34

4.3.5 Reducing the number of rates permutations to test

The number of permutations of application rates that need to be tested is m™ where m
is the number of different rates and n is the number of applicators. There are only two
different rates that are tested in the model: zero and a rate found using Equation 4.10,
Crow & Mitchells equation. The number of permutations, even for only two rates, is
very large. For five applicators, there are 2° = 32 different permutations to test. This
number can be greatly reduced by considering the proportion of monolayer that each
applicator applies that will remain on the water, and not leave the domain. If the
proportion of monolayer applied from an applicator that will cover the water inside
the boundary is low compared to the total area covered, it is unlikely to be profitable
to utilise that applicator for those conditions and it is probably not worth the extra

computational time to solve.

Four different conditions were identified which were used to identify when particular

applicators were not suited to the current weather conditions:

Angle of spread equals 27

One Out

Both Out

e Corner

The logic diagram in Figure 4.3 shows how the four cases can be identified. This dia-
gram can be written as pseudo MATLAB code:
if angleSpread == 2*pi

@

else if P1 && P2 out

@

else

if sum([out_xmax out_xmin out_ymax out_ymin]) ==

©

else

4.3 Script and function design 35

AngleSpread > 2*pi
VS E— =2*pi
< 2*pi l l
-
Both out? AngleSpread =2*pi
(P1&2& P2)
CASE]
p. oy
No
Yes
Y
OnCorner? One Out
CASE2

Yes No l

Corner Both Out

CASE3 CASE4

Figure 4.3: Logic diagram to discriminate between different calcArea cases.

@

end
end

end

The figures for the first two cases, CalcAreal and CalcArea2, correspond to the num-

bering in the source code. See Appendix C: Source code for these two cases.

Case 1

The first case is when the angle of spread is 27, which occurs when the wind speed is
below 3.2km/h. There are eight possible sub-cases — either on one of the four corners
or on one of the four boundaries. The area outside the boundary is calculated using the
symbolic toolbox in MATLAB. The double integral is found using the intersection of

the circle with boundaries as the limits of integration. The four extremes of the circle

4.3 Script and function design 36

_
~

DOT
oala

Figure 4.4: calcArea 1.

(0,75, Trand%”) are used to identify the method to use to find the integral and which
limits to use. The equation of the circle is broken into two parts: the upper and lower

section. Each section is represented symbolically in the form of:
_ 2 2y.
eqyp = b+ sqrt(r® — (x — a)?);

eqym = b — sqrt(r? — (z — a)?);

where eqyp is the equation of y for the positive (upper) section and eqym is the nega-
tive (lower) section. A switch statement is used to select the case that was identified
previously and the double integral is found to calculate the area. Where the circle is
on the corner of the boundaries, two double integrals are evaluated. The limits for the

integration where determined using Figure 4.4.

Case 2

The second case is when one of the two points that represent the extremes of the angle
of spread at the edge of the monolayer (at the maximum calculated distance) is outside
the boundary. Figure 4.5 shows all 16 cases. The first point is the point at the end of
the straight line inside the boundary, and the second point is numbered on the figure.
The method is similar to the previous case but instead of comparing the extremes of

the circle to the boundary; this script compares the position of the two extremes of

4.3 Script and function design 37

7 8 6 5
LN/ AVARR
L] [
9 3
10 4
12 2
1 1
| L~
VAN AN,
13 14 16 15

Figure 4.5: calcArea 2.

the angle of spread at the maximum fetch (the maximum distance that the monolayer

travels) to the boundaries.

Case 3

The third case is when both points are outside the boundary, but only one boundary
and not over a corner. The area inside the boundary is simply a triangle and is found

with the following equation:

arealnside = /s(s — a)(s — b)(s — ¢) (4.11)

where a,b and c are the three lengths of the triangle and s is the semi-perimeter,
s = %(a + b+ ¢). The lengths of the triangle are found by solving the equations of the

two lines which define the two extremes of the angle of spread and the boundary.

Case 4

The fourth case is when the monolayer extends over one of the four corners of the

boundary. The area is calculated using the quadrilateral formula:

1
arealnside = i\ﬁx q] (4.12)

4.3 Script and function design 38

Figure 4.6: calcArea 3.

Figure 4.7: calcArea 4.

where p and ¢ are the diagonals of the quadrilateral. The diagonals are defined in
terms of the four vectors that form the sides of the quadrilateral. If the vectors are
arranged so that a + b+é+d= 0, then p = b+ & and qg=a-+ b. The corner where
the product crosses the boundary can be found by comparing the x and y distances
of the applicator from the upper and lower z and y boundaries. After the correct
corner has been identified, the intercepts of the lines that define the extremes of the
angle of spread with the boundary can be calculated. These points are used to find the
four vectors d, l;, ¢ and d that define the quadrilateral and to calculate the area using

Equation (4.12).

4.3 Script and function design 39

Reducing CPU time by simulating fewer permutations

If the area covered inside the boundary for a given applicator is less than the user-
defined proportion (currently set at 0.50), then the applicator is declared unfavourable.
This means it is probably not profitable and therefore shouldn’t be operated. It is
therefore necessary to modify the original rates matrix to reflect this by removing the
column (where the entires are zero) that corresponds to the unfavourable applicator.
This modified rates matrix can now be used to find the rates of each individual appli-
cator that is worth modelling. This modified rates matrix can be significantly smaller
than the original matrix where all applicators are considered. This has the potential
(depending of wind vector and applicator position relative to the boundary) to save a

large proportion of the central processing unit (CPU) time.

4.3.6 Finding the average values for each grid cell

For each different weather condition it is necessary to check how effective each permu-
tation of applicator rates was at maximising the profit. This is achieved by finding an
average value for each grid cell. The first step is to find which cells the particles are
in. After the cells have been identified, the average mass, concentration, and age can
be calculated. The main purpose of finding the average of the cells is to determine the

average resistance that the monolayer provides for each cell.

4.3.7 Calculating the evaporation

The overall aim of the model is to find the evaporation with and without the monolayer.
In order to find the evaporation with the monolayer, the resistance that the monolayer
provides is required. After this resistance has been found, the evaporation can be

calculated. The full details of the equation are in Appendix E.

4.4 Conclusion 40

4.3.8 Selecting an appropriate time step for each wind vector input

The time between wind inputs can have a large effect on the results that the model
outputs. It is necessary to ensure that the time step is small enough to ensure that low
to moderate wind speeds will not cause the majority of the monolayer to be applied
outside the boundary. If the timestep is too large and the user defined proportion of
area inside the boundary is too high, the model may not apply any product to the

surface. A small timestep will not have a negative effect on the model.

4.4 Conclusion

This chapter outlined the reasons behind the code and how it was developed. The

important sections of this chapter are:

e indexing particle locations in memory,
e finding the application rate for different wind speeds,

e reducing the number of combinations of rates to test by considering the area

covered by each applicator,

e and using the average values for each cell to calculate the evaporation.

Chapter 5

Sample Run

5.1 Introduction

This chapter describes the program that implements the model. The program has been
separated into several different scripts that each perform a component of the program.
The overall objective of the program is to select the most profitable permutation of

applicator rates. The major components of this objective are:

e Read variables and constants.
e Allocate space for large matrices.
e Calculate array of permutations application rates for individual applicators.

e Add particles at applicator locations; calculate position and mass of individual

particles move due to wind.

e Find the average mass for each grid cell after a predetermined amount of time

(e.g. time between wind vector readings).
e Use average mass to find the evaporation rates.
e Calculate the amount of money saved.

e Determine most profitable permutation of applicator rates for each wind vector.

5.2 Sample run of model 42

5.2 Sample run of model

5.2.1 config. m

The main script is Monolayer_Simulation.m. The first script that is called is config.m.

This script configures the program. It is where all the important variables are modified.

UWINDMIN Minimum wind speed before shape of monolayer is sector of circle and

not circular [m/s]
time_combo Time between weather data readings [s]
np_cell Number of particles per cell (dx by dy)
dx, dy Grid spacing in the x & y directions [m)]
X_max,x_min,y_max,y min Limits for rectangular boundary [m]
uWind Row vector of wind speeds [m/s]

windDirection Row vector of wind directions measured from the positive x axis in

an anti-clockwise direction [rad]
Temp Temperature for calculation of evaporation of monolayer, dme in degradation.m
applicators The location of the applicators [x1,y1;x2,y2] etc.

n_app The number of applicators

5.2.2 preallocate.m

The next script is preallocate.m. This script file preallocates space for the large
arrays to decrease the time spent dynamically allocating memory as the size of the

arrays change.

nX_max,nY_max,nX_min,nY _min Limits of boundary in number of nodes based

on boundary size and grid spacing.

5.2 Sample run of model 43

tc Total counter
cc Combination counter
totalmass Total mass applied during simulation [g]

P_SIZE The size of all the large arrays: X,Y,mass,particle active flag

The loop on lines 16-23 finds the value of P_SIZE. The size of the arrays was calcu-
lated by realising that for each time step (as defined in cf1.m) the maximum number
of particles created is the product of the particles per cell and the total number of
applicators. The while time < time_combo loop finds the number of particles created
for a single wind vector. The for windloop = 1:length(uWind) loop finds the total

number of particles for all the wind vectors.

The remaining code preallocates the X,Y, mass, age, partact, to,tn,dmb and dm arrays
using the value of P_SIZE as the limit of the array. The reason for preallocating memory
for these matrices is to prevent dynamic memory allocation and is explained further in

Section 4.3.2 Indexing matrices.

5.2.3 Monolayer_Simulation. m

Control returns to the Monolayer_Simulation.m script where the program enters the
outer for loop, for windloop = 1:size(uWind,2) which loops through all the wind vectors,

selecting the optimal combination of rates for each.

s=rng(’shuffle’); This re-seeds the random number generator to ensure that different

random numbers are used for each wind vector.

5.2.4 calcrates. m

Control passes to the calcrates.m script to find the number of permutations that need
to be evaluated in the following while combo <= combo_max loop. The calcrates.m

script contains alot of code that is aimed at reducing the number of permutations

5.2 Sample run of model 44

that need to be evaluated by checking if the proportion of area of monolayer applied
from each applicator is above a user defined constant, PROPINSIDE. If the proportion
of area inside the boundary is low the effect that the monolayer will have on the
overall evaporation resistance will be low and therefore that particular case is not
worth evaluating. The area is calculated based on the position of the two points that
define the furtherest fetch and the two extremes of the angle of spread in relation to

the boundary.

There are four cases. See Section 4.3.5 for further details and Appendix C: Source Code

for the complete source code.

5.2.5 Monolayer_Simulation. m

Control passes back to Monolayer_Simulation.m where the mass_app variable is set
to zeros. The combo_max variable contains the number of different combinations that
need to be simulated, which is size (rates, 1), where rates was found in calcrates.m.
The bestprofit variable is initialsed with a large negative number to ensure it isn’t
used. The following while loop is where the majority of the time is spent.

combo = 1

while combo <= combo_max

5.2.6 calcmoveevapdollar. m

Control passes to calcmoveevapdollar.m which calculates the movement of the par-
ticles, the evaporation with and without the particles and finally the dollar saving
associated with the application of the monolayer for a given combination of applicator
rates. The calcmoveevapdollar.m script loads the the random number seed, rng(s).
The ‘current* arrays for X,Y,mass, pact and totalmass are assigned to X,Y,mass, pact
and totalmass. The ‘current‘ arrays store the optimal state of the simulation so far.
The next step is to set the current counter cc and the time to zero. The time variable

only stores the time within the while combo <= combo_max loop. The global time is

5.2 Sample run of model 45

called time_overall. The next loop in the calcmoveevapdollar.m is very important
since it is where the position, mass and age of the particles is modified. The loop is:
while time < time_combo

cc = cct+l;

cfl

movepart

end

5.2.7 cfl.m

The scripts cf1.m and movepart.m are described below. cfl.m finds the uDrift and
angleSpread given the wind vector (speed and direction), time and time_combo. The
script first checks whether the wind speed is below the minimum wind speed to form
a sector of a circle shape. If the wind speed is below, the shape is circular and is
approximated using an experimental function based on the experiments conducted by
Brink (2011 p.77). Otherwise the drift speed is a function of the wind speed and the

shape is a sector of a circle.

The following is the same for both shapes.The value of courantn must be less than 1
to ensure that the model is stable. The variable represents the Courant number. The
definition of the Courant number is rearranged to find an expression for the value of

dt.

Both shapes then compare the sum of dt and the current value of time to the time_combo.

If the sum is large, dt is set as the difference between time_combo and time.

The angle of spread for the circular shape is 2 7w and for the sector of a circle it is an
equation based on fitting a trend line to the data Brink collected from the experiments

conducted.

5.2 Sample run of model 46

5.2.8 movepart. m

This is the most important script in the model as it modifies the position of the particles
and also calculates the mass of the particles due to different types of degradation. The

script starts by finding the index for the old particles, which is
(cc — 1) x n_app * np_cell + k x np_cell + tc * n_app x np_cell (5.1)

where k = n_app for the above equation. The degradation is found next in degradation.m.

5.2.9 degradation. m

The degradation of the monolayer is expressed as a fraction, where 1 is all lost and
0 is no loss. The evaporation of the monolayer is found using Equation 3.1 described
in Section 3.3.3. The degradation as a result of biological attack is function of age
and is found using Equation B.2 in Section B.3. The sum of all the different forms of

degradation is called dm and is the output of this script.

5.2.10 movepart. m

The movement of the particles can be broken down into two parts: old particles and
new particles. Old particles are particles which were created in a previous time step
while new particles are created in the current time step. The test for old particles is
cc > 1 || tc =0. The old particles are moved if either the current counter is greater

than one or the total counter is not zero. The new position of the old particles is:

new position = old position + pact. xrand x dt * speed x trig(rand within wind + spread)

(5.2)
where pact is the particle active flag (modified in boundary.m), rand is a random
number between 0 and 1, speed is uDrift, and trig() is the cosine and sine function for
the X and Y coordinates respectively. The age of the particles is the old age plus dt,
and the mass is the old mass times (1-dm) where dm is fractional degradation found

in degradation.m.

5.2 Sample run of model 47

The new particles X and Y position is equal to:

position = applicator position + rand * dt * speed * trig(rand within wind + spread)
(5.3)

The age of the particles is dt and the mass is:

dt x rates(combo, k)
np_cell

) X (1 —dm) (5.4)
The total mass is the sum of all the masses applied:

totalmass = totalmass + (dt * rates(combo, k) /np_cell)

After the old and new particles positions and properties (mass, age) have been updated,

the boundary.m script is executed.

5.2.11 boundary. m

This script checks if each particle is inside the boundary. If it is not, the pact flag
(particle active) is set to false. The index required is the same as the index for the
old particles, Equation 5.1. The logic for the script is as follows: the particle is active
(true) if it is inside both the x and y boundaries. The particle is inside the boundary

if it is above the minimum and below the maximum.

5.2.12 calcevapdollar. m
Control passes back to calcevapdollar.m after the while time j time_combo loop ends,

where the avg.m script is executed. This script finds the average mass, age and evap-

oration resistance.

5.2.13 avg.m

The script starts by finding the nodes that the particles (X,Y) are closest to denoted by

nX and nY. The unique values of nX and nY are grouped together into a matrix by the

5.2 Sample run of model 48

MATLAB function unique. An array for the average evaporation resistance, average

mass, average age, average concentration and an index array, cond is preallocated.

A for loop is entered, starting at one and ending at the last unique combination of nX
and nY values. The variable cond contains a logical array used to identify the particles
that are within each node (nX, nY). This is used to find an average mass for each
node. This average mass is divided by the area of the node to find the concentration.
The average age is a weighted average of the age using the average mass. The most
important quantity that is found using the avg.m script is the average evaporation for
each node. If the wind speed is greater than 6.71m/s and the concentartion is greater
than twice the theoretical concentration, then it is highly probable that a monolayer
film has formed that will provide some resistance to the evaporation. The amount of

resistance offered by the monolayer is dependant on the wind speed.

5.2.14 calcmoveevapdollar. m

Control passes back to the calcmoveevapdollar.m script where the evaporation is

found in the evap.m function and the dollar saving in calculated in dollarsaved.m.

5.2.15 evap.m

The first section declares all the constants required for the equations. Some of the
constants can be replaced as variables. For example, the radiation, K_.down needs
to be a function of the the day of the year, J. The equations are from the modified
Penman—Montheith equation developed by McJannet et al. (2008). The difference in
evaporation is calculated by taking the difference between the evaporation calculated

with and without the monolayer present.

5.2.16 dollarsaved. m

This script finds the profit arising from applying the monolayer for a particular permu-

tation of applicator rates. The amount of water saved is calculated from the area of the

5.2 Sample run of model 49

water, time and the difference in evaporation found in the evap.m function. The saving
is the value of the water per cubic meter times the amount of water saved in cubic
metres. The cost is the amount of monolayer applied ($/g) plus a running cost. The
running cost includes everything other than the cost of buying the monolayer. This is
the cost of buying, installing and maintaining the applicators as well as refilling them.

The profit is the difference between the cost and the savings.

5.2.17 Monolayer_Simulation. m

After the profit has been found for each combination, the profit is compared to the
bestprofit so far for the same wind conditions. The bestprofit variable is initialised
with a large negative number to ensure that it isn’t used. If a combination is either
the first or more profitable than the previous best, all the key variables are stored in
variables with the same name but with a p suffix. The counter for the combination is
incremented. After all combinations have been simulated for a given weather condition,
the most profitable combination with variables with a suffix p are saved as the current
variables. These are the base conditions that all future combinations start at, and are

denoted by variables with a c¢ suffix.

After all the wind conditions have been simulated, the best profit for each wind con-
dition is selected. The total profit is the sum of of the best profits for each wind

condition.

Any required variables can be saved and graphed. There are two graphs that show
how effective the monolayer is at reducing evaporation. The first is a xy scatter of
the position of the particles and the second is a contour plot showing the average
evaporation for each node. A video of the particles movement is made by taking frames

of xy scatter plots over time to show how the particles move in the model.

5.3 Conclusion 50

5.3 Conclusion

This chapter explained how the code is executed. The complete code can be found
in Appendix C: Source Code. The equations used to write the evap.m script are

reproduced in Appendix E: Evaporation Model Equations.

Chapter 6

Results and discussion

6.1 Introduction

This chapter describes how the model is validated by performing a convergence test.
This is necessary to ensure that the results obtained from the model are correct and can
be trusted. A convergence test is used to compare the results of different realisations
and to see the amount of variation that exists between each realisation. As the number
of particles per cell, np_cell, increases and grid spacing , dzdy, decreases the model will

approach the real value.

6.2 Code validation

The random nature of the model can cause different realisations (result of executing the
program with the same input but different random numbers due to different seeds for
the random number generator function) to produce different results. This limitation
has been overcome by plotting the profit vs weather reading for different realisations.
When the difference between the realisations is 'small’ then the result is independent
of the random number generator seed and the model has converged on a solution. The
model will give acceptable values when the combination of grid spacing and number of

particles per cell exceed a certain number of particles per unit area. The results of the

6.2 Code validation 52

180 |

140 F

130 F

metres
|

120

Mot

100 F

1 1 | 1 | |
100 110 120 130 140 150
metres

Figure 6.1: Position of applicators. The dam is 50x50 m, four applicators are placed 5m in

from the corners of each boundary and a fifth is located at the centre.

model cannot be used before it has been confirmed that the current settings permit

convergence to occur.

The model (shown in Figure 6.1 !) was run with the same values in the config.m file
several times, where each run is a realisation. The grid spacing is dr = dy = 5m. The
only variable that was varied for the 50x50 m dam was the number of particles per cell,

nPeeyr- The values of np.ey is 10, 50, 100 and 500.

The cost savings were calculated in the dolllarsaved.m script. The value of water
was set at $1000 per cubic meter and the cost of the monolayer was $0.01 per gram or

$10 per kilogram. The running cost was set at $0 per timestep (600s).

I'Note that Zmin and Ymin are both 100. This is to ensure that the areas (calculated using a series
of double integrals) in calcArea.m are positive. This limitation can be removed by using the abs()
function in MATLAB on each double integral in the calcArea scripts — however both methods will

produce the same results.

6.2 Code validation

53
0.1
= 0.08
£ 008
&
“ 004
0.02 : : : oozb : : :
a 10 20 30 40 a 10 20 30 40
YWieather reading Wieather reading
(a) (b)
. M . f:ﬁ-;@
—. 0.03) £ 1 . 008) f
TALS 2%
£ 006 E 00} f
& ! & {
“noaf/ 1 7 ooatf
0.0z . : . 0.02 . . .
a 10 20 30 40 a 10 20 30 40
YWeather reading YWeather reading
(c) (d)

Figure 6.2: Results of simulation over 6 h with dx = dy = 5m and np_cell = (a) 10, (b) 50,
(c) 150 and (d) 500. The results show that the large number of particles can overcome the

large spacing of 5m on a 50x50 m domain. Another method that will yield similar results

is to decrease the grid size while keeping np_cell constant.

6.2.1 Effect of smaller cells

The use of a smaller cell (dz dy) produces a more accurate solution than using a larger
cell (when the number of particles per unit area is the same for both cases). The
penalty for this increased accuracy is the time taken to find the average properties (in

avg.m, specifically line 17) for each cell also increases.

6.2.2 Twenty four hour simulation

The program was also used to visualise how the the particles move over time. This test
is mainly to show that the model behaves as expected. The model will need to be run

for much longer than one day to get an indication of long term performance.

6.2 Code validation 54

150

145

140

135

130

125

120

1145

11a

ma o ome 1o Mse 1200 125 1300 135 1400 145 150

Figure 6.3: Scatter plot of simulation over 6h with dx = dy = 5m and np_cell = 10. The

size of the dam is 50x50 m.

A video was made by taking a screenshot of a scatter plot every ten minutes (the time

between weather readings). The video consists of three sections of code:

config.m Lines 41-68 (comment out lines 70-73), and lines 107-109.
Monolayer_Simulation.m Lines 81-96

Monolayer_Simulation.m Line 128

The first point reorganised the wind vectors so each vector is repeated ten times. This
makes the video smoother since a frame is taken every minute instead of every ten.
Lines 107-109 open the video file and prepare it for writing. Lines 81-96 plot the points

and save the graph as a frame in the video. Finally the video file is closed.

Figures 6.6 and 6.7 shows the movement of the particles with time. Each figure is

taken 4 hours apart. The line of particles around the outside have stopped because

6.2 Code validation 55

Contour
T T T T -"-1-
ok -
a4+ - 3.5
521 -
Fq3
a0 F -
4a 1 4 r 424
=
]
= AB -
S
44 F -
42+ i 1.5
40 F -
1
il -
40 45 a0 a5 05
i

Figure 6.4: Contour plot of evaporation resistance (nr_m) after 6h with dx = dy = 5m and
np_cell = 500. The size of the dam is 50x50m. The main disadvantage of using a large
cell spacing can be seen in this plot - the average values of mass are calculated for the grid
spacing and this results in drastic changes along the edges of the contour. The units for
the colour bar are mg/m?2. The theoretical amount required to form a valid monolayer is
2.3mg/m2. The impact this has on the model is discussed in Section 3.3.2: Evaporation

resistance of monolayer as a function of wind speed.

they have passed outside the boundary. There is currently no code to take into account
any shoreline effects (where the particles may be reintroduced onto the water surface

when the wind direction changes.

Figure 6.8 shows the evaporation resistance provided by a single applicator. The size
of the cell (dx dy) determines the resolution and accuracy of the contour (provided the
number of particles per cell is also high enough to negate the effects of the random

particles).

6.3 Code extension 56

10"
25 T T T T T T T

241 .

23 .

2.2 .

Saving (5)

2.1 .

19 | | | 1 | | |
a

YWieather reading
(c)

Figure 6.5: Results of simulation over 6 h with dx = dy = 1 m and np_cell = 20. This is

the same particle area density (number of particles per unit area) as shown in Figure 6.5

(d).

6.3 Code extension

A larger sized dam was tested to demonstrate that the code is capable of larger domains,
since this is where monolayers are more suited for evaporation control compared to
competing solutions. The 500x50m dam was run with a grid spacing of 5m and 24
particles per cell. The applicators were located in along the length of the domain in
the centre, spaced 50 m apart. The applicators were placed only in the centre because
the size of the number of rates to calculate grows very quickly, significantly increasing

solution times (see Section 4.3.5).

Figures 6.5 and 6.10 shows how the average of several realisations converge as the num-
ber of particles per cell is increased while keeping the grid spacing constant. Another

method to check for convergence is to decrease the size of the grid spacing while keeping

6.4 Conclusion 57

the number of particles per cell constant. Figures 6.3 and 6.11 show the scatter plots for
the two different dam sizes. Each dot represents a particle which has an independent

mass and age.

If the model is to used for real time control purposes, (as opposed to simulation and
prediction for site selection and anticipated cost savings prior to deployment,) then the
np_cell and dzx,dy values will need to be used from the prediction phase. This involves
testing different values of np_cell and grid spacing to determine a compromise between
a good approximation and a fast solution. This will need to assessed over a long period
of time in order to determine the critical values (of np_cell and grid spacing) for a

particular site.

6.4 Conclusion

The results show that the model is able to converge with a reasonable particle density
and give usable results which can be indicative of real monolayer performance. The

methodology to ensure that the results can be trusted is to follow these steps:

1. The cell size dx by dy should be relatively small.

2. A number of realisations should be calculated to ensure the difference between
different realisations is small. This indicates that the model has converged on a

solution that is independent of the random numbers used.

3. Several different plots can be produced to see if the results make sense including
scatter (X vs Y), line (money saved vs weather reading) and contour plots (nr_m).
The first plot shows the location of the particles, the second shows if there are any
differences between multiple realisations and the third shows where the monolayer

is reducing the evaporation of the water (and the concentration of the monolayer).

The following chapter summaries the current achievements and offers suggestions for

future work.

6.4 Conclusion 58
Paticles Sl
150 120t
(a) (b)
170 - 130k
170 - 1t
1l - 130
8 150 - E 150
E — E
140 - 140
1= - ;|
120! (1] 3 —‘
1 1oE
‘;U 120 130 140 160 1.3‘;] 1}0 1ED 1‘;:, 110 1, i 140 150 1E0 e 1= =
meires finedr e
Patizles Faticle:
150 150
(c) (d)
1FD - 1FD -
LR L LR o HE Y e e :ﬂ-“l..“‘ *
17I-) G L 170 - 3 gt ATE et e i
g i
1l - 160 - R
2 isl - E il - -
E E
- 140 - . ;
1A - 1= - R +4!
. . T P
10 120 y ek }
* L * "|..|.r -
10 1
0 120 13 140 150 160 170 1ED 130 a 120 1% 140 1 @) 17 1ED0 130
meines meies
Fatliches
a0} e (f)
130 130}
o = 1t
1 H u
150 : 30
i
By B 150
e | :
1anf i 1adf
i
13} . 130
10 120k
Har 1ok
11'|: 1"a:| |'3:| 1i|:| |'5:| 1D 1?II: 1EII:I = ngotA 3 e 15 JEl WE 1=# 1
neh-as et

Figure 6.6: Results of 24 h simulation showing position of particles after (a) Oh (b) 4h (c)
8h (d) 12h (e) 16h (f) 20h. The dark line around the edge is the particles stopping after

crossing the boundary.

6.4 Conclusion 59

Partticles
190 -

(g)

180 -

170 -

160 -

180 +

meires

140 -

130 -

1201

110

T

110 120 130 140 150 180 170 180 190
1] metres

Figure 6.7: Position of particles after (g) 24h. This series of images show how the parti-
cles move with time. Each particle has it’s own effective mass (which is modified due to

degradation) and age.

i

Figure 6.8: Evaporation resistance provided by a single applicator located at the circle.

6.4 Conclusion 60

180 {

140 H

130

metres
||
[|
|]
|]
|]
|]
|]
|]
[|
|]

120 {

10

100

1 1 1 1 1 1 1 1 1 1 1
o0 150 200 250 300 350 400 450 500 550 GO0
metres

Figure 6.9: Position of applicators. The dam is 500x50 m, applicators are placed 50 m apart

from each other starting 5m in from the left hand boundary.

05 T T T T T T T

045 i

0.4F .

035 .

03f .

0.25

Saving (B

015 .

0.05F .

Weather reading

Figure 6.10: Results of simulation over 6h with dx = dy = 5m and np_cell = 24. The size
of the dam is 500x50 m.This shows that the model is capable of modelling larger dams.

6.4 Conclusion 61

180 F
140 F e f
+ %
2
130 F
o
z
o
=
120 F
110k ! s P ,t‘
100 F
| & .y, be i Nl N L PP T T |
100 180 200 250 300 350 400 450 &00 S50 GO0

metres

Figure 6.11: Scatter plot of simulation over 6h with dx = dy = 5m and np_cell = 24. The
size of the dam is 500x50 m

Chapter 7

Conclusions and Further Work

7.1 Achievement of Project Objectives

7.1.1 Research experiments to obtain data/ equations to describe be-

haviour of the monolayer

The experiments conducted by Brink (2011) provided the equations that were used to
describe the movement of the monolayer - both the angle of spread and the drift speed.
The relationship between the evaporation resistance and wind speed was based on Mc-
Jannet et al. (2008). The degradation aspect of the model was separated into shoreline
interaction, volatilisation, submergence and biological attack. No experimental data
was available for either the shoreline interaction or submergence components and this

has been identified as further work in sections 7.2.1 and 7.2.2.

The volatilisation effect have been previously reviewed by Brink. This research was
able to obtain an approximate equation based on experimental work by Brooks and
Andrews (1960). The biological effects were accounted for using experimental results

from Pittaway (2008).

7.1 Achievement of Project Objectives 63

7.1.2 Create matrices to represent domain, boundaries and applicator

positions for simulation

The matrices for the major variables are preallocated in the model and it permits an
array of wind vectors to be used as input. The model also allows the applicators to
be placed anywhere on the water surface. The boundaries are rectangular, but this

restraint can be removed in the future.

7.1.3 Simulate monolayer movement and degradation over time, using

historical weather data as input

The model simulates the permutations of the applicator rates and positions in order
to identify the optimal applicator rate for each applicator. The model uses particles
to represent the monolayer film. Each particle moves independently of each other and
degrades over time due to volatilisation and biological degradation. Weather data is in

the form of a list of wind vectors (speed and direction).

7.1.4 Use an objective function to control application of monolayer

The permutations of applicator rates and positions are compared against each other
by calculating the amount of money saved. The amount of money saved is simply the
difference between the value of the water saved from evaporation due to the presence

of the monolayer and the cost associated with applying the monolayer.

7.1.5 Validate model by comparing results of simulation to real ex-

periments

No suitable experiments were identified during the literature review. This is due to the
difficulty in measuring effectiveness (evaporation resistance) of monolayers over large
areas. This difficulty with getting detailed experimental results was the main reason

for this research project. The lack of detailed experimental results makes it difficult

7.1 Achievement of Project Objectives 64

to validate the model further than ensuring convergence as shown in Chapter 6. It is
hoped that this model can be improved upon and used to predict the effectiveness of

monolayers.

7.1.6 Summary of achievements

A model has been created that can predict the cost savings due to the reduction in
evaporation from applying a monolayer to the water surface. The model allows the user
to specify the locations of the applicators, the dimensions of the rectangular water body,
and a wind vector. The user must specify the size of the grid which is used to average
the properties of the particles to determine how effective each of the permutations of
the application rate is at generating the most profit. The permutation with the best
profit is then used as the starting position for the next wind vector. This is repeated

until all the optimal application rates have been found for all the wind vectors.

7.1.7 Comparision with Brink’s model

There are unfortunately no experimental results available to compare the model against.
The model that Brink (2011) developed has very different objectives compared with
the model this research has achieved. Brink’s model cannot be compared against this
model because the purpose of Brink’s model is to find the amount of monolayer applied
and the coverage map for a single wind vector and mass application rate. This static
model has limited real world applications. The model from this research project is
dynamic since it can accept an array of wind vectors and find the optimal application

rate.

7.2 Further Work 65
7.2 Further Work

7.2.1 Shoreline interaction

The losses associated with the monolayer interacting with the shoreline will need to be
investigated. The important aspects to investigate include the rate of degradation of
the monolayer while it is in contact with the shoreline and the rate that the monolayer
is reintroduced to the water surface when the wind direction changes. The rate of
bio-degradation will also be different when the monolayer is not in contact with the

water.

It will be difficult to get good results numerically so it would be necessary to perform a
series of experiments. The experiments would be used to find the relationship between
the important parameters that define the shoreline. The parameters include (but not

limited to):

Material Examples include rock, soil, vegetation. Care must also be taken to take
into account how easy it would be to identify which material is on the shoreline
for large dams - is it possible to identify from satellite images, aerial photographs
or from the ground. The longer it takes to identify, the higher the cost and this

dramatically lowers how useful the model is.

Geometry The geometry of the shoreline is dependent on the material. The geometry
(shape and size) of a rock is very different to that of vegetation (e.g. trees and
reeds) and this must be investigated. The geometry should be split into simple
categories that can easily be identified from satellite or aerial photographs, if

possible.

7.2.2 Submergence

Submergence is the loss of monolayer due to waves which are large at higher wind speeds
accounts for up to between 33 and 50% of the monolayer to be lost (see Section 2.4.5).

It would be better if this can be performed numerically as opposed to experimentally

7.2 Further Work 66

since this will make it easy to repeat the simulation for different monolayers to compare
their performance. A Computational Fluid Dynamics (CFD) simulation would be best
suited to investigate this aspect of the monolayer’s behaviour. Once the methodology
of the CFD has been validated, it can be easily modified to find the relationship for
different monolayers between the wind vectors, time and the fractional mass lost. The

simulation can be used to investigate both the steady state and transient response.

The steady state response entails several steps of increasing difficulty. Firstly, investi-
gate the fraction of mass that is submerged at a constant wind speed and direction. If
possible, investigate the minimum water depth that the relationship between a variety

of wind speeds and fractional mass loss is valid.

The transient response is significantly more difficult to investigate because the number
of different test cases can easily get too large to test if the methodology is not carefully
thought out. The important parameters that will need to be investigated include the
effect of time when changing wind vectors - how long does it take for the rate of
fractional loss to move from steady state, through the transient phase and back to
steady state? If this period of time is significant, it can be accounted for in the current
model by reducing the time_combo variable. Further explanation of how this can be

modified (without manually re-entering the wind vectors) can be found in Section 6.2.2.

The transient response modelling efforts will need to investigate how changing the wind
vector suddenly (since the wind data is currently available in ten minute averages)
effects the response. It may be necessary to ‘smooth‘ the data so the wind vectors do

not have sudden large changes to direction and speed, since this is not realistic.

The effect of rain can also be investigated using this CFD model.

Submergence model and application rate

The submergence model (using CFD) may also help better identify optimal application
rates, since existing equations are for applying product from a long distribution line,
and these are not well suited for point application. It would be ideal if the submergence

model could identify a set of application rates that provide coverage at different wind

7.2 Further Work 67

speeds. This information could then be used to calculate a single application rate as
a function of wind speed. This could replace the application rate calculated in the
variable R in calcrates.m. The use of a single rate (as opposed to using two or three
different rates that need to be tested) would keep the simulation running as fast as
possible. The current model uses a single application rate (for best performance),
and each applicator either applies this rate or no product at all (see lines 176-189 in

calcrates.m for details).

7.2.3 Effect of monolayer on temperature of water

Crow and Mitchell (1975) state that the “temperatures of film-covered water surfaces
may become 5°F warmer than nonfilm areas. If the film cover is removed, evaporation
occurs at a higher than normal rate until equilibrium conditions are reached. The
consequences of interrupted film application may be serious. In an experimental pond,
Crow (1961) found that evaporation reduction was lowered from 25 to 6.5% as a result
of alternate 12-hour interruptions in film application.” The temperature of the water
surface will need to be modelled and change as the monolayer covers or exposes a

section (dzdy) of the water.

7.2.4 Non-rectangular boundaries

It would be good if the model could be expanded so that it can simulate non-rectangular
boundaries. The domain of the dam can either be broken into a large number of small
rectangles which can approximate the curves of a dam, or straight and curved lines can
be used to define the boundary. Both solutions will need to consider the end use of the
model which is to be used for large dams. It is important to remove as much manual
data entry as possible. Appendix D.1: Boundaries offers several different methods. The
use of GPS coordinates appears to be the easiest to implement for large dams. The
difficulty with this method is writing code that calculates where the boundary lies from

the GPS points.

The use of non-rectangular boundaries will require modifications to the calcArea and

7.2 Further Work 68

boundary scripts. It may be easier to replace the calcArea scripts with a simpler
numerical method (as opposed to the current method which involves evaluating a series

of double integrals). The difference in performance should also be considered.

7.2.5 Performance

The performance of the model will need to be monitored to ensure it is fast enough to
give useful results for large bodies of water with a reasonable number of applicators and
different possible applicator rates. The current model uses the calcAreal.m through
calcArea4d.m to reduce the number of calculations that need to be performed. It might
be worth investigating the use of an alternative language such as C, C++4 or FORTRAN

if better performance is desired.

References

Barnes, G. T. (2001), ‘The equilibrium penetration of monolayers: is equilibrium really

established?’, Colloids and Surfaces A 190, 145-151.

Barnes, G. T. (2008), ‘The potential for monolayers to reduce the evaporation of water

from large water storages’, Agricultural Water Management 95(4), 339-353.

Barnes, G. T. & Gentle, 1. R. (2011), Interface science: an introduction, Oxford Uni-

versity Press, New York.

Brink, G. N. (2011), Universal design framework for optimal application of chemical
monolayer to open water surfaces, PhD thesis, University of Southern Queensland,

Toowoomba, Australia.

Crow, F. R. & Mitchell, A. L. (1975), ‘Wind effects on chemical films for evaporation

suppression at lake hefner’, Water Resources Reseach 11(3), 493.

Frenkiel, J. (1965), ‘Evaporation reduction: physicical and chemical principles and

review of experiments’.

Henry, D. J., Dewan, V. 1., Prime, E. L., Qiao, G. G., Solomon, D. H. & Yarovsky, I. L.
(2010), ‘Monolayer structure and evaporation resistance: a molecular dynamics

study of octadecanol on water’, 114(11), 3869-3878.

Herzig, M., Barnes, G. & Gentle, 1. (2010), ‘Improved spreading rates for monolayers
applied as emulsions to reduce water evaporation’, Journal of Colloid and Interface

Science 357, 239-242.

McJannet, D. L., Cook, F., Knight, J. & Burn, S. (2008), Evaporation reduction by

REFERENCES 70

monolayers: overview, modelling and effectiveness, Technical report, Urban Water

Security Research Alliance.

McJannet, D. L., Webster, 1., Stenson, M. P. & Sherman, B. S. (2008), Estimating
open water evaporation for the murray-darling basin, Technical report, CSIRO

murray-darling basin sustainable yields project.

Myers, D. (2006), Surfactant science and technology, 3rd edn, John Wiley and Sons,

New Jersey.

Peng, J. B., Barnes, G. T. & Gentle, I. R. (2001), ‘The structures of langmuir-blodgett
films of fatty acids and their salts’, Advances in Colloid and Interface Science

91, 163-219.

Rastogi, M. C. (2003), Surface and interface science: applications to engineering and

technology, Narosa Publishing House, India.

Schmidt, E. & Scobie, M. (2012), Improving irrigation efficiency by identifying methods
to reduce evaporation losses from on-farm storages in the Granite Belt, Technical

report, National Centre for Engineering in Agriculture.

Appendix A

Project Specification

For:
Topic:

Supervisors:

Sponsorship:

Project Aim:

Program:

ENG 4111/2 Research Project

Project Specification

Matthew du Preez

Simulation of Monolayer for use in Evaporation Reduction
Dr Andrew Wandel

Faculty of Engineering & Surveying

This project seeks to simulate monolayer movement on a
dam to enable the calculation of the distribution of the
monolayer over time, and select appropriate applicator rates

to satisfy an objective function.

1. Research experiments to obtain data/ equations to describe behaviour of the

monolayer.

2. Create matrices to represent domain, boundaries and applicator positions for

simulation.

3. Simulate monolayer movement and degradation over time, using historical weather

data as input.

4. Use an objective function to control application of monolayer.

5. Validate model by comparing results of simulation to real experiments.

As time and resources permit:

1. Use model to optimise location of applicators.

Agreed:

73

Student Name:
Date:

Supervisor Name:

Date:

Examiner/Co-Examiner:

Date:

Appendix B

Degradation Calculations

B.1 Introduction 75
B.1 Introduction

This appendix details how the equations for the vaporisation and biological degradation

were calculated as summarised in Chapter 2.

B.2 Vaporisation of monolayer

The most complete data that was found was Table B.1 and is reproduced below.

Table B.1: Loss of monolayer material due to evaporation. Reproduced from Brink (2011).

Monolayer Fractional loss (x 1076 s71)
5°C' | 20°C | 40°C
Myristyl C14OH | 20 | 58 | 1900

Cetyl C1gOHI |1 | 4 150

Stearyl C1sOH | 0 0 20

Only the Myristyl and Cetyl monolayers had enough information to produce useful
equations of best fit.

Yyristyl = 7-3713e0-132%
YCetyl = 0.36270-1452t

where y is the fractional loss and t is the time elapsed [s]. Since there is insufficient data
to produce a line of best fit for Stearyl, (which was used by Brink to experimentally
determine the spreading rates,) the exponent was selected as a rough average of the
exponents of Myristyl and Cetylthe. This yielded the equation of the line for Stearyl y =
Ce%14 At the only known data point (40,20), 20 = Ce 1440 vielding C = 0.073957.

The equation that describes the fractional loss of monolayer due to volitalisation is
y = 0.073957e% 1 % 1076571 (B.1)

This equation was used to find the values in table B.2. The equation fits the data well,

but it is limited due to the low number of data points.

B.3 Biological degradation 76

Table B.2: Results of Stearyl equation

t |5 20 40

y | 0.149 | 1.216 | 19.999

B.3 Biological degradation

Table B.3 is the data read from Pittaway’s graph (see figure 2.4 on page 16), showing

decreasing concentration with time due to biological attack.

Table B.3: Loss of monolayer material due to biological degradation

Incubation Time

(d)
Point (mM) 0 2 3 4

Max error bar 1.02 | 0.89 | 0.68 | 0.55

Measured value | 0.93 | 0.82 | 0.59 | 0.48

Min error bar 0.85 | 0.74 | 0.51 | 0.40

Fig. B.1 shows that the line of best fit between the error bars can be used to determine
the equation of the line. This equation shows the fractional loss of the monolayer where
the monolayer was initially at one, and when no more monolayer remains is at zero.
The working below shows how this equation was found, where y represents the fraction
of monolayer remaining and ¢ is the time that has elapsed since the monolayer was

applied.

0.52 — 1.01
= T 100
y i—o0 't

where t has the units of days.
y = —0.1225¢ + 1.00

when { =0, and y =1

y = —0.1225 + 10.00,

t
3600 x 24

B.3 Biological degradation 7T

11

[

°.q - iiin B s

T e i i
0.8 T \‘___7 i ™~
0.7 + i s
™~ g e |
= s 2

b - \\\\ ‘ g

°.5 - \‘\\
=

% - \\\
0.3

0.2
0.1

o i 2 3 &

Figure B.1: Linear line of best fit for Stearyl biological degradation. The solid lines are
used to connect the error bars between each point. The y axis the the fraction of monolayer

remaining and the x axis is the number of days that have elapsed since the monolayer was

applied.
where t has the units of seconds.

y = —1.41782x 107% /s (B.2)

Eq. B.2 shows the rate at which the monolayer reduces in concentration, from an
initial value of 1 to 0. This means that if biological degradation is the only form of

degradation the monolayer has a maximum useful life of approximately 8 days.

10

15

20

25

Appendix C

Source Code

C.1

This

avg.m

script calculates the average properties of the particles so that the evaporation

resistance can be found.

Listing C.1: avg script.

% avg

nX (1
nY (1

:im3) = int8(ceil ((X(1:im3)—dx/2) / dx)+1);
:im3) = int8(ceil ((Y(1:im3)—dy/2) / dy)+1);

unXY = unique ([nX(1:im3)’ nY(1:im3)’], 'rows’);
% unique values of nX, nY in ascending order nX then nY.

nr_m

= zeros(length (unXY (:,2)) ,length (unXY (:,1)));

nmass=zeros (1,size (unXY,1));

nage

=zeros (1,length (unXY));

nconcentration=zeros(1,length (unXY));
cond=zeros (1,size (unXY,1));

for

k=1:size (unXY,1)
% get indexr where unique (x,y) matches all particles

% following line takes majority of time for avg script

cond = find((nX = wXY(k,1)) & (nY = wXY(k,2)));

% add all particles at same (z,y) position

nmass (k) = sum(mass(cond));

nmass (unXY (k,2)+nX min ,unXY (k,1)+nY _min)=nmass (k) ;

nconcentration (unXY (k,2)+nX_min,unXY(k,1)+nY min)=...
nmass (unXY (k,2)+nX_min,unXY(k,1)+nY _min) /(dx*dy);

% weighted average age
nage (unXY (k,2)+nX min ,unXY (k,1)+nY _min)=...
sum((age(cond).xmass(cond)) /...
nmass (unXY (k,2)+nX min,unXY(k,1)+nY_min));

30

35

10

15

20

25

C.2 boundary.m 79

Jor-m: uWind<6.71 & concentration>2zr (where 1x=2.3mg/m"2)...
% * eq. of line
nr-m (unXY (k,2)+nX_min ,unXY(k, 1)—|—nY min) =
(qund(w1nd100p)<UW]NDMAX) * .
(nconcentration (unXY (k, 2)+nX min ,unXY (k,1)+nY min) >2%2.3e —3)*...
((=5. O/UW]NDMAX)*qud(Wlndloop)+5)
end

C.2 Dboundary.m

This script calculates whether the particles are inside or outside a rectangular boundary.

Listing C.2: boundary script.

% boundary
% Rectangular boundary. Sets pact flag to ’false’
% when particle passes outside boundary.

% Are the particles active? (true/false)

% index for boundary
ibl = 1+windloop*np_cellxkx*(cc—1);

%ib2 = windloopxnp_cellxkxcount;

ib2= im3;

% Are particles < xz_max

pact_x1(1:ib2) = (X(1:ib2) <x_max);

% Are particles > xz_min

pact_x2 (1:ib2) = (X(1:ib2) >x_min);

% Are both pact_zl and pact_xz2 true

pact_x (1:1b2) = (pact_x1(1:ib2) & pact_x2(1:1b2));
% Are particles < y_mazx

pact_yl (1:ib2) = (Y(1:ib2) <y_-max);

% Are particles > y_min

pact_y2 (1:ib2) = (Y(1:ib2) >y_min);

% Are both pact_yl and pact_y2 true

pact_y (1:i1b2) = (pact_yl(1:ib2) & pact_y2(1:ib2));

% Are both part_xz and part_y true
pact (1:1b2) = (pact_x(1:ib2) & pact_y (1:1b2));

C.3 calcAreal.m

This script calculates the proportion of area covered by the monolayer for case 1.

Listing C.3: calcAreal script.
% calcAreal

10

15

20

25

30

40

45

50

55

60

C.3 calcAreal.m 80

% when angleSpread == 2xpi
% finding areaOQOutside

% There are 8 possible cases to test for.
% After testing evaluate double integral over limits to get area.

69696969696 % %%
% Identify case

% make matlab think warning is actually error —> can now use try..

% block to handle warning as it defined as error.

state = warning(’error’, ’symbolic:sym:int :notFound’);
warning (’error’, ’'symbolic:sym:int :notFound’);

try

cl = atr;

c2 = btr;

c3 = a—r1;

c4d = b—r;

% identify case, numbering from pos x axis in an anti—clockwise

% (positive) direction

if (cl>x_max && (c2<y-max && c4>y_min))
areaCasel = 1; % mid right

elseif (c3<x_min && (c2<y_max && c4>y_min))
areaCasel = 5; % mid left

elseif (c2>y_max && (cl<x_max && c¢3>y_min))
areaCasel = 3; % mid top

elseif (cd<y_min && (cl<x_max && c3>y_min))
areaCasel = 7; % mid bottom

elseif (cl>x_max && c2>y_max)
areaCasel = 2; % top right

elseif (c3<x_min && c2>y_max)
areaCasel = 4; % top left

elseif (cl>x_max && c¢2>y_min)
areaCasel = 8; % bottom right

elseif (cl>x_min&&c3<x_min && c2>y min&&c3<y_min)
areaCasel = 6; % bottom left

else
break

end

syms X y

% Equation for a circle

% (z—a)°2 + (y=b)"2 = r"2

eqyp = b + sqrt(r"2—(x—a)"2); % y=
eqym = b — sqrt(r"2—(x—a)"2); % y=
Y%eqrp = a + sqrt(r 2—(y=b)"2); % x=
%eqzm = a — sqrt(r°2—(y=b)"2); % z=

% Solve for limits
%[limz1 | limyl]=solve (eqyp—y,x-maz—z);
%[limz2 , limy2]=solve (eqym—y,x-maz—z);

% Find area
% area=double (int(int(1,z= eq(lower),z= eq(upper)),
% xlim (lower), zlim (upper)))

% numbered in an anti—clockwise direction starting at mid right.
switch areaCasel

catch

70

80

90

95

100

10

C.4 calcArea2.m 81

case 1
areaOutside = double(int (int (1,eqym,eqyp),x-max,cl));
case 2
[limx1,limyl]=solve (eqyp—y,y_-max—y);
areaOutside = double(int (int (1,eqym,eqyp),x-max,cl))+...
double (int (int (1,y_max,eqyp),limx1(1),x max));
case 3
[limx1 ,limyl]=solve (eqyp—y,y-max—y);
areaOutside = double(int (int (1,y-max,eqyp),limx1(1),limx1(2)));
case 4
[limx1,limyl]=solve (eqyp—y,y-max—y);
areaOutside = double(int (int (1,eqym,eqyp),c3,x-max))+...
double (int (int (1,y-max,eqyp),x-max,limx1(2)));
case b
areaOutside = double(int (int (1,eqym,eqyp),c3x-max));
case 6
[limx1,limyl]=solve (eqyp—y,y.-min—y);
areaOutside = double(int (int (1,eqym,eqyp),c3 ,x-max))+...
double (int (int (1,eqym,y_-min),x_max,limx1(2)));
case 7
[limx1,limyl]=solve (eqym—y,y_-min—y);
areaOutside = double(int (int (1,eqym,y-min),limx1(1),limx1(2)));
case 8

[limx1,limyl]=solve (eqym—y,y_min—y);
areaOutside = double(int (int (1,eqym,y-min),limx1(1),x_max))+...
double(int (int (1,eqym,eqyp),x_-max,cl));
otherwise
areaOutside = Inf; % doesn’t match a case
end
catch
% cannot find integral — cannot exclude from future checks —

end

% ie make areaOutside small.
areaOutside = 1E-9;

%set warning back to previous state.
warning (state)

C.4

calcArea2.m

This script calculates the proportion of area covered by the monolayer for case 2.

Listing C.4: calcArea2 script.

% calcArea?2
% one out
% finding areaoutside

% There are 16 possible cases to test for.
% After testing evaluate double integral over limits to get area.

W00 %6%6%6%
% Identify case

% make matlab think warning is actually error —> can now use try.. catch

15

20

25

30

35

40

45

50

55

60

65

70

75

C.4 calcArea2.m 82

% block to handle warning as it defined as error.

state = warning(’error’, ’symbolic:sym:int:notFound’);
warning (’error ’, ’'symbolic:sym:int:notFound’);
try

% identify case
% Starting numbering from bottom right and moving around
% in an anti—clockwise direction.

if ((xI>x_min&&xl<x_max)&&(yl<b) &&...
(x2>x_max)&&(y2<y_max&d&y2<b));

areaCase2=1;

elseif ((xI>x_min&&xl<x max)&&(yl<b) &&...
(x2>x_max)&&(y2<y_max&&y2>b));
areaCase2=2;

elseif ((xI>x_mind&xl<x max)&&(yl>b) &&...
(x2>x_max)&&(y2<y_-max&&ey2>b));
areaCase2=3;

elseif ((xI>x_min&&xl<x max)&&(yl>b) &&...
(x2>x_max)&&(y2<y_max&d&y2<b));
areaCase2=4;

elseif ((xl>a)&&(yl<y-max) &&...
(x2>aldx2<x_max)&&(y2>y_max));
areaCase2=5;

elseif ((xl>a)&&(yl<y-max) &&...
(x2<alldx2<x_max)&&(y2>y_max));
areaCase2 =06;

elseif ((xl<a)&&(yl<y-max) &&...
(x2<aldx2<x_max)&&(y2>y_max));
areaCase2=7;

elseif ((xl<a)&&(yl<y-max) &&...
(x2>a8dx2<x_max)&&(y2>y_max));
areaCase2=S8;

elseif ((x1>x_min)&&(yl>b) &&...
(x2<x_min)&&(y2>b));
areaCase2=9;

elseif ((xI>x_min)&&(yl>b) &&...
(x2<x_min)&&(y2<b));
areaCase2=10;

elseif ((xI>x_min)&&(yl<b) &&...
(x2<x_min)&&(y2<b));
areaCase2=11;

elseif ((x1>x_min)&&(yl<b) &&...
(x2<x_min)&&(y2>b));
areaCase2=12;

elseif ((xI>x_min&d&xl<a)&&(yl>x_min) &&...
(x2<a)&&(y2<b));
areaCase2=13;

elseif ((xI>x_min&&xl<a)&&(yl>x_min) &&...
(x2>a)&&(y2<b));

80

85

90

95

100

105

110

115

120

125

130

135

C.4 calcArea2.m 83

areaCase2=14;

elseif ((xI>x_min&&xl>a)&&(yl>x_min) &&...
(x2>a)&&(y2<b));
areaCase2=15;

elseif ((xI>x_min&&xl>a)&&(yl>x_min) &&...
(x2<a)&&(y2<b));
areaCase2=16;
else
error ('cannot._select ._case._for._calcArea2’)
end

% now get 3 equation of line (for wedge) between
% (a,0)8(xl,yl), (x1,y1)8(x2,y2), (22,y2)&(a,b)
v or

% equation of circle for angleSpread=2xpi

syms X y

% y= mz+b % m= gradient, b=y intercept

ml = (yl-b)/(x1a);

bl = b—mlx*a;

eql = mlxx + bl; % z is wvariable, eql=y coord
eqll = (y-bl)/ml; % eqll =z

% y= ma+b % m= gradient, b=y intercept

m2 = (b-y2)/(a—x2);

b2 = y2—-m2xx2;

eq2 = m2xx + b2; % x is wariable, eq3=y coord

eq22 = (y-b2)/m2; % eq22 =z

% (r—a)"2 + (y=b)"2 =1r"2

eqyp = b + sqrt(r'2—(x—a)"2); % y=
eqym = b — sqrt(r"2—(x—a)"2); % y=
eqxp = a + sqrt(r"2—(y-b)"2); % z=
eqxm = a — sqrt(r"2—(y-b)"2); % z=

% Solve for limits
%[limz1 | limyl]=solve (eqyp—y,z-maz—z1);
%[limz2 , limy2]=solve (eqym—y,x-maz—x) ;

% Find area
% area=double (int (int(1,z= eq(lower),z= eq(upper)),xlim(lower),

switch areaCase?2

zlim (upper

% bottom s

,xmax,x2))+... % left of t

case 1
areaOutside=double (int (int (1,eqym,eq2),x max,x2));
case 2
areaOutside = double(int (int (1,eqym,b),x_max,a+r))+...
double (int (int (1,b,eq22)
double (int (int (1,b,eqyp),x2,a+r)); % right of top
case 3
areaOutside=double (int (int (1,eq2,eqyp),x-max,x2));
case 4
)

areaQOutside = double(int (int (1,b,eqyp),x max,a+r))+...
double(int (int (1,eq2,b),x max,x2))+... %
double (int (int (1,eqym,b) ,x2, a+r));
case b

% top secti
left of boi

% right of botton

[limx1,limyl]=solve (y-max—y,eq2—y); % straight line and intersect
[limx2 ,limy2]=solve (eqyp—y,y-max—y); % top of circle and y_-max

140

145

150

160

165

170

175

185

190

195

C.4 calcArea2.m 84

end

areaOutside=double (int (int (1,y-max,eq2),limxl ,x2))+...
double (int (int (1,y-max,eqyp),x2,limx2(2)));
case 6
[limx1,limyl]=solve (y.max—y,eq2—y); % straight line and y-max
[limx2 ,limy2]=solve (eqyp—y,y-max—y); % top of cirlce and y_-max
areaQOutside=double (int (int (1,eq2,eqyp),x2,limx1))+...
double (int (int (1,y-max,eqyp),limx1l,limx2(2)));
case 7
[limx1,limyl]=solve (y-max—y,eq2—y); % straight line and intersect
[limx2 ,limy2]|=solve (eqyp—y,y-max—y); % top of circle and y-mazx
areaOutside=double (int (int (1,y-max,eqyp),limx2(1),x2))+...
double (int (int (1,y-max,eq2),x2,limx1));
case 8
[limx1 ,limyl]=solve (y-max—y,eq2—y); % straight line and y_-max
[limx2 ,limy2]=solve (eqyp—y,y-max—y); % top of circle and y_-max
areaOutside=double (int (int (1,y-max,eqyp),limx2(1),limx1))+...

double (int (int (1,eq2,eqyp),limxl ,x2));
case 9
areaOutside=double (int (int (1,eq2,eqyp),x2,x2));
case 10

areaOutside = double(int (int (1,b,eqyp),a—r,x_min)+... % top sectic
int (int (1,eqym,b),a—r ,x2)+... % left of bottom
int (int (1,eq2,b),x2,xmin)); % right of bottom
case 11
areaOutside=double (int (int (1,eqym,eq2),x2,x min));
case 12
areaOutside = double(int (int (1,eqym,b),a—r,x_min))+... % bottom s.
double (int (int (1,b,eqyp),a—r,x2))+... % left of top
double (int (int (1,b,eq2),x2,x-min)); % right of top

case 13
[limx1 ,limyl]=solve (y_min—y,eq2—y); % straight line and intersect
[limx2 ,limy2]=solve (eqym—y,y_min—y); % bottom of cirlce and y_mir

areaOutside=double (int (int (1,eqym,y-min),limx2(1),x2))+...
double (int (int (1,eq2,y_-min),x2,limx1));
case 14
[limx1 ,limyl]=solve (y_min—y,eq2—y); % straight line and intersect
[limx2 ,limy2]=solve (eqym—y,y-min—y); % bottom of cirlce and y-mi
areaOutside=double (int (int (1,eqym,y_-min),limx2(1),limx1))+...
double(int (int (1,eq2,y-min),limx1,x2));

case 15
[limx1,limyl]|=solve (y_.min—y,eq2—y); % straight line and intersect
[limx2 ,limy2]=solve (eqym—y ,y_-min—y); % bottom of cirlce and y-mi

areaOutside=double (int (int (1,eq2,y-min),limx1 ,x2))+...
double (int (int (1,eqym,y-min) ,x2,limx2(2)));

case 16
[limx1 ,limyl]=solve (y_min—y,eq2—y); % straight line and intersect
[limx2 ,limy2]=solve (eqym—y,y_min—y); % bottom of cirlce and y_mir

areaOutside=double (int (int (1,eqym,eq2),x2,limx1))+...
double (int (int (1,eqym,y_min) , limx1 ,limx2 (2)));
otherwise
break ;

catch

end

% cannot find integral
areaQOutside = 1E-9;

%set warning back to previous state.

10

15

20

25

30

35

40

C.5 calcArea3.m

warning (state)

C.5 calcArea3.m

This script calculates the proportion of area covered by the monolayer for case 3.

Listing C.5: avg calcArea3.
% calcAread

% both out (but only on one of the four boundaries ie not corner)

% finding arealnside — triangle

syms X y

% y= mx+b % m= gradient, b=y intercept

ml = (yl-b)/(xl-a);

bl = b-mlx*a;

eql = mlxx + bl; % z is wvariable, eql=y coord

% y= mx+b % m= gradient, b=y intercept

m2 = (b—y2)/(a—x2);

b2 = y2-m2xx2;

eq2 = m2xx + b2; % x is wvariable, eq3=y coord

% four possible sub—cases (for each boundary)

% find points where boundary intesects wedge
if out_xmax

limx1 ,limyl]=solve (eql—y,x max—x);

limx2 ,limy2]=solve (eq2—y,x-max—x);
elseif out_xmin
limx1 ,limyl]=solve)3
limx2 ,limy2|=solve
elseif out_ymax

(
(eql—y,x_-min—x
(
limx1,limyl]=solve(
(e
(

eq2—y,x_min—x);

ql—y,YInaX—Y);

limx2 ,limy2]=solve (eq -y);
else %out_ymin

limx1 ,limyl]=solve (eql—y,y_-min—y);

limx2 ,limy2]=solve (eq2—y,y_-min—y);

end

% Calculate area wusing Heron’s Forumula

% arealnside = sqrt(s(s—a)(s—b)(s—c)) where s=0.5«(a+b+c)
% arealnside = sqrt(stx(st—sl)x(st—s2)x(st—s3)) where

% st=0.5%(s1+s2+s3)

sl= sqrt ((limxl—a)"24(limyl—b) " 2);

s2= sqrt ((limx2—-a)"2+4+(limy2-b)"2);

s3=sqrt ((limx1-1limx2)" 24+ (limyl—-limx2)"2);

st=0.5xsum([sl s2 s3]);

arealnside = sqrt(st*(st—sl)*(st—s2)x(st—s3));

10

15

20

25

30

40

50

C.6 calcAread.m

C.6

This script calculates the proportion of area covered by the monolayer for case 4.

calcAread.m

Listing C.6: calcAread script.

% calcAreay

% corner

% finding arealnside — quadrilateral

% given a quadrilateral made of 4 wvectors so that:
% a+ b+ c+d=0;

% then the diagonals are: p = b + ¢ and ¢ = a + b
% area = (1/2) % norm((cross(p,q))

% where norm is the ’size of’ matlab
syms X y

% y= mx+b % m= gradient, b=y intercept

ml = (yl-b)/(x1-a);

bl = b-mlxa;

eql = mlxx + bl; % z is wvariable, eql=y coord

% y= mx+b % m= gradient, b=y intercept

m2 = (boy2)/(a—x2);

b2 = y2—m2xx2;

eq2 = m2xx + b2; % z is wvariable, eq3=y coord

% find the corner
if (x-max—a)<(a—x_min)

if (y_max—b)<(b—y_min)
areaCased = 1; %top right

else

end
else

areaCased = 2; % bottom right

if (y-max—b)<(b—y_min)

else

end
end

areaCased = 3; % top

areaCased = 4; % bottom

switch areaCase4

case

case

case

case

1
pxl,pyl
px2,py2
corner
2

pxl, pyl
px2, py2
corner
3

pxl,pyl
px2,py2
corner
4

pxl,pyl
px2,py2
corner

otherwise

left
left

=solve (eql—y,y max—y);
=solve (eq2—y,x-max—x);
[x_max y_max |;

=solve(eql—y,y-min—y);
=solve (eq2—y,x_-max—x);
[x_max y_min];

=solve (eql—y,x_min—x);
=solve (eq2—y,y_max—y);
[x-min y_max];

=solve(eql—y,y min—y);

=solve (eq2—y,x_-min—x);
[x_min y_max];

func.

60

65

10

20

25

30

C.7 calcmoveevapdollar.m 87

error ('Could_not._calc_points_of_intercept._for._calcAread’)
end

% get 4 wvectors to define quadrilateral

va = double ([pxl—a pyl-b]);

vb = double ([corner(1)—pxl corner(2)—py2]);
vc = double ([px2—corner (1) py2—corner (2)]);
% don’t need vd to find diagonals

% get diagonal wvectors
p = vb 4+ vc;
q = va + vb;

% calc area (need 3dim to wuse cross)
arealnside = (1/2)*norm(cross ([p 1],[q 1]));

C.7 calcmoveevapdollar.m

This script calculates calls the movepart.m, avg.m and dollarsaved.m scripts inorder
to calculate amount of money saved based on the movement of the monolayer from the
initial “current arrays that are used so that different permutations of applicator rates
can be compared.

Listing C.7: calcmoveevapdollar script.
% calcmoveevapdollar

o7

% Load rand seed

rng (s)

07

% Load current arrays

X = Xc; Y = Yc; mass = massc;
pact = pactc; age=agec;

pact_x=pact_xc;pact_xl=pact_xlc;pact_x2=pact_x2c;
pact_y=pact_yc;pact_yl=pact_ylc;pact_y2=pact_y2c;
totalmass = totalmass_c;

(A

% Loop through time for each rates combination
cc=0; % combination counter
time=0;

while time < time_combo
cc=cc+1;
cfl
movepart

end

o7

% Find average mass (and age) for each cell
avg

(A

G

10

15

20

25

30

35

C.8 calcrates.m 88

% Find evap with and without product

% € Find $, save index for best combo so far
[E_diff] = evap(nr.m);

dollarsaved

C.8 calcrates.m

This script finds the permutations of mass application rates and applicators. It also
calls the four calcArea scripts in order to reduce the amount of permutations that are
simulated. The permutations are not simulated if the amount of area covered by an
applicator is less than a user defined constant PROPINSIDE which is the proportion of

area inside the boundary that the monolayer will cover for each individual applicator.

Listing C.8: calcrates script.

% calcrates :

% At the start of each new windspeed and windDirection (windloop),

% find the matrixz containing the application rates to be tested (combos)
% Each ’combo’ consists of a unique permutation of rates.

% appl app?2 appn

% combo rate rate rate

if uWind(combo) > UWINDMAX
% don’t apply since it will have no effect on evap resistance
rates = zeros(1,size(applicators ,1));

else

%preallocate
unfavourableApp=zeros(1,size(applicators ,1));

% crow and mitchell
%R = (1.18U°1.81)e—4, R[Ib/h/ft], Ulmi/h]

% for dist_line ft, per second, grams, wind in m/s

% [m] length of distribution line (spacing between applicators)
dist_line = 50;

% [g/s/m] = [3.28 m =ft] [hr to s] [b to 453¢9] [m/s to 3600/1609 mi/h]
R = dist_line*3.2808399%(1/3600)%453.592x
1.18%(3600/1609.344+«uWind (windloop)) " 1.81 %10" —4;

% get list of apps with un—favourable conditions
%(ie greater than xz% area inside boundary)

r = uDriftxtime_combo;

t1 = windDirection (windloop) + angleSpread /2;

t2 = windDirection (windloop) — angleSpread /2;
totalArea = angleSpreadxr "~ 2;

% Loop through all apps and determine if area inside boundary is
% greater than PROPINSIDE, which is the minimum acceptable
% proportion of area inside the boundary.

C.8 calcrates.m 89

% This is determine if it is worthwhile to simulate the applicator,
% or if it is just wasting CPU time for mo gain.

for k= 1:size(applicators , k1)

50

55

60

65

70

75

80

85

90

100

% get info to select areaCase

T000606000006060%

arealnside=0; areaOutside=0;

% start by getting points

a = applicators(k,1);

b = applicators (k,2);

xl = a + rxcos(tl);

yl = b + rxsin(tl);

% get third point for wedge (pl = p2 for circle)
x2 = a + rxcos(t2);

y2 = b + rxsin(t2);

% check if any point is outside boundary
% boundary: z_min,x_mazx,y_-min ,y_max

out_xminl = (xl<x_min);

out_xmin2 = (x2<x_min);

out_xmin = out_xminl || out_xmin2;
out_xmaxl = (x1>x_max);

out_xmax2 = (x2>x_max

)
|
)
)
out_xmax = out_xmaxl || out_xmax2;
out_yminl = (yl<y_min)
out_ymin2 = (y2<y.min)
out_ymin = out_yminl |
out_ymaxl = (yl>y_-max)
out_ymax2 = (y2>y_max)

?
)
)
)
)
I

out_ymin?2;

out_ymax = out_ymaxl || out_ymax2;
out = out_xmin || out_xmax || out_ymin || out_ymax;
W% %%%6%%

% Find which case it is:
% 1: angleSpread == 2% pi
% 2: one out
% 3: both out

% 4: corner

if out
if angleSpread = 2xpi
areaCase = 1;
else
if (((x1>x_min&&xl<x_max)&&(yl<b) &&...

(x2>x_max)&&(y2<y_max&y2<b)) ||...

((xI>x_min&&xl<x_max)&&(yl<b) &&...

(x2>x_max)&&(y2<y_max&&ey2>b)) ||...

((x1>x_min&&xl<x_max)&&(yl>b) &&...

(x2>x_max)&&(y2<y_max&&y2>b)) ||...

((x1>x_-min&&xl<x_max)&&(yl>b) &&...

(x2>x_max)&&(y2<y_max&&y2<b

((x1>a)&&(yl<y-max) &&...

((x1>a)&&(yl<y-max) &&...

)
(x2>alddx2<x_max)&&(y2>y_max)) |]|...
)

(x2<aldx2<x_max)&&(y2>y_max

105

110

115

120

125

130

135

140

145

155

C.

8 calcrates.m

90

(

(

NN NN RN RN RER

((xl<a)&&(yl<y-max) &&...

(x2<adlex2<x_max)&&(y2>y_max)) |]...

(xl<a)&&(yl<y-max) &&...

(x2>a&&x2<x,max)&&(y2>y,max)) ...

((x1>x_min)&&(y1>b) &&..

(
(x2<x_ mln)&&(y2>b)) |]...
(x1>x_min)&&(y1>b) &
(X2<X,min)&:&:(y2<)) |]...
((xI>x-min)&&(yl<b) &
(X2<X,min)&&(y2<b)) |]...
(x1>x_min)&&(yl<b) &
((x2<x_min)&&(y 2>b))
(

(
(X2<a)&&(y2<b)() ...

x1>x_minddxl<a)&&(yl>x_min) &&...

(x2>a)&&(y2<b)) |]...
(xI>x_min&&x1>a)&&(y1>x_min) &&...
(x2>a)&&(y2<b) ||...

(x1>x_min&&x1>a)&&(yl>x_min) &&...

(x2<a)&&(y2<b)))

x1>x_minddxl<a)&&(yl>x_min) &&...

if “(...% if NOT (pi & p2 outside boundary)

(out_xminl €6 out_zmin2 €6 “out_ymin €6 “out_ymaz)
(out_zmazxl &6 out_zmaz2 €6 “out_ymin & “out_ymax)
(out_yminl €€ out_ymin2 €6 “out_zmin €€ “out_xmaz)
(out_ymazxl &6 out_ymaz2 €6 “out_zmin & “out_zmax)
“out_zmazl)) €6 (out_xmin2
“out_ymazxl)) €6 (out_xmazx?2
“out_ymazl)) €6 (out_ymaz?2
“out_-zmaxl)) €6 (out_xmin2

((out_ymazxl &€ (“out_zminl &€

((out_xminl &6 (“out_yminl &€

((out_zmazxl & (“out_yminl &€

((out_yminl &€ (“out_zminl &€
below left

% left
% right
% below
% above
669 (“out_yn
€969 (" out_xr
669 (Tout_xm
E€9 (“out_yn

if sum([out_-xmaxl&&out_xmax2 out_xminl&&out_xmin2 ...
out_ymax1l&&out_ymax2 out_yminl&&out_ymin2]) = 1
% only out on one boundar

)
areaCase = 2;
else
areaCase = 3;
else
areaCase = 4;
end
end
end
W00 %% %6%6%

% Now find the area corresponding to the position of the wedge

% relative to the boundary.

switch areaCase
case 1
calcAreal
case 2
calcArea?2
case 3
calcArea3

C.9 cfl.m 91

case 4
calcAread
otherwise
error ('Error_selecting._areaCase’)
165 end
We6%6%6%676060606%

%Calculate if area outside is too large in comparison to total area
% minimum proportion of insideArea for acceptable applicator

170 PROPINSIDE = .50;
if arealnside = 0
propArea = (totalArea—areaOutside)/totalArea;
else
propArea = arealnside/totalArea;
175 end

if double(propArea) < PROPINSIDE
unfavourableApp (k)=k;
end
end
150 end

0800 e e e e e e e e 6660606
% loop through list of unfavouable apps and remove
% from list of combos to be tested
185 rates = logical (npermutek ([0,1],size(applicators ,1)));
for k = 1:size(applicators 1)
if unfavourableApp (k)
% select rows to remove

row = (rates (:,unfavourableApp(k)) = 0);
190 % delete unfavourable app rates from rates matriz
rates = rates(row,:);
end
end
195 % set mass app rate
rates = ratesxR;
end
C.9 cfl.m

This script finds the timestep using the Courant-Fredrichs-Lewy condition to ensure
that the model is stable. The value of uWind(windloop) determines the shape of the
monolayer spread. The script also calculates the angleSpread (angle of spread) and
uDrift (drift speed) based on the wind speed.

Listing C.9: cfl script.

% cfl
% CFL finds uDrift and the angleSpread given
% wind speed, time & time_combo.

5 if uWind(windloop) < UWINDMIN

C.9 cfl.m 92

% circular shape, without wind stress
% k-D = power trend line fit to experimetal data constant

% dt = time elapsed (s)
% n = scaling exponent (dimensionless)

10 kD = 0.1436; % from 6m tank with 6z monolayers p77 Brink
n= 0.7351; % from 6m tank with 6z monolayers p77 Brink

% get speed for Courant number by estimating uDrift
LTIME = 10; % large time wvalue (s)
15 STIME = 1; % small time wvalue (s)
DIFFTIME = LTIME — STIME; %diff
uDrift = (k. D«LTIME"n — k_D%STIME n)/DIFFTIME;

courantn = 0.99;
20 dt= (min(dx,dy)*courantn)/uDrift;
% highest wvalue of time for this step

time = time + dt;
if time > time_combo
25 dt = dt — (time—time_combo);
time = time_combo;
end
angleSpread = 2xpi;

30 else
% non—circular segment shape, with wind stress
% Turbulence. Above what uWind is it turbulent?
% uWindpart = uWind + normrnd (0,0.05xuWind, 1,PARTICLES);
uDrift = 0.0459%uWind(windloop) — 0.0661; % (m/s) p106 Brink
35

if uDrift < 0 % stop speed being negative

kD = 0.1436; % from 6m tank with 6x monolayers p77 Brink
n= 0.7351; % from 6m tank with 6z monolayers p77 Brink
10 % get speed for Courant number by estimating uDrift

LTIME = 10; % large time wvalue (s)

STIME = 1; % small time wvalue (s)

DIFFTIME = LTIME — STIME; %diff

uDrift = (k. D«LTIME"n — k_D%STIME n)/DIFFTIME;
45 end

courantn = 0.99;
dt= (min(dx,dy)*courantn)/uDrift;
% highest wvalue of time for this step

50
time = time + dt;
if time > time_combo
dt = dt — (time—time_combo);
time = time_combo;
55 end

% angleSpread = 446.29xuWind "1.419; % degrees
angleSpread = (pi/180)% 446.29xuWind(windloop) " (—1.419); % radians
end

10

20

25

30

35

40

45

50

C.10 config.m

C.10 config.m

This script inputs user defined variables that control the simulation. The script is

explained in 5.2.1.

Listing C.10: config script.
% config

% Minimum speed before circular segment shape (m/s)
UWINDMIN = 3.2 /3.6;
% Max wind speed evaporation resistance is effected

% by monolayer application
UWINDMAX = 6.71;

% time between weather data readings (s)
time_combo = 600;

% time_overall is ’time between wind reading = x
% 'no. of wind readings’ x time_combo

np_cell = 20; % number of particles in cell
% Grid

dx = 1;

dy = 1;

x_max = 150;
x_min = 100;
y-max = 150;
y-min = 100;
% dx = 5;

% dy = 5;

% x_-max = 600;
% x_min = 100;
% y-max = 150;
% y-min = 100;

% get data from
% "HMO01X _Data_040082_.30492615860123. txt ’

% wind vector

load input

uWind = uWind (73:108) ’;

windDirection = windDirection (73:108) ’;

numb = 144; % 144 readings = 24hr

% get in another format for movie
tempa=uWind ’;

tempb=windDirection ’;
clear uWind

clear windDirection
uWind=[]; windDirection =[];

NN NN RN RN K

for i=I1:numb

windDirection = [windDirection ,repmat(tempb(i),1,10)/;
end
Y%uWind = uWind ’;

NN R R

uWind = [uWind, repmat (tempa(i),1,10)]; % 10 from 600/60 = 10

55

60

65

70

75

80

85

90

95

100

105

C.10 config.m 94

Y%windDirection = windDirection ’;

% take selection of readings
uWind = uWind (360:720);
windDirection = windDirection (360:720);

% Wind (m/s) row wvector
GuWind =(1/3.6)%[8,5,5,11,11,8,8,8,2,4.,8,9,9,13,11,13,18,15,11,4,5,9,8,0]

N NNN X

% [0,.., 2«pi] where 0 = Pos X. anticlockwise = pos. (row wvector)
% Imported data is from true north.

Y%windDirection = 90+[170,150,110,40,40,30,40,360,330,180,260,250,270,...
% 260,270,260,270,270,280,280,260,260,270,0];

windDirection = 90+ windDirection; % measured from mnorth

% Get direction < 360 deg

windDirection (windDirection >360) = windDirection (windDirection >360)—360;
windDirection = (pi/180)*windDirection;

Temp = 15; % for evaporation of monolayer (degC)

% Applicators — one per row (z,y)
% From pl46 config 8.5 a

applicators = [105,105;
105,145;
145,105
145.145:
125,125];

% applicators = [105,125;

% 155,125;

% 205,125

% 255,125

% 305,125

% 355,125

% 405,125;

% 455,125;

% 505,125;

% 555,125];

n_app = size(applicators ,1);

% Rates, ’app rate’ based on column, ’combo’ based on row (mg/s,

% rates = [50,50;

% 100,100;

% 150,150

% ;

% initialse movie

%

% movv = VideoWriter ("monolayer2’, '"MPEG—4’);

% movv. FrameRate=15;
% open (movv)

10

10

20

C.11 degradation.m 95

C.11 degradation.m

This script finds the fractional degradation that has occurred during the time step.
This is where future types of degradation can be added (due to submergence, shoreline
interaction etc.) to include them in the model. The index im3 is the latest particle

that has been added to the simulation.

Listing C.11: degradation script.

% degradation
% fractional mass loss where
% 1 = all lost and 0 = no loss

% evaporation of monolayer
dme = dt*0.073957+exp(0.14*Temp)*10" —6;
% biological degradation

% need different degradation for each particle since each has
% different age
dmb = age(1,1:im3).%1.41782%10" —6;

% total
dm(1,1:im3) = dme + dmb(1,1:im3);

C.12 dollarsaved.m

This script finds the amount of money saved by the application of monolayer for each
permutation of applicator rates. The most profitable permutation of rates is the optimal
set of application rates.

Listing C.12: dollarsaved script.
% dollar saved

o7

% Find savings for each combination of rates

(/4

% saving = $/amount of water x amountsaved

% saving = 500/MLx no. of ML %% t = t for this step %%%

% E_diff/(1e3%x3600%x24) — from mm/day to m/s
%E_diff(rate, m/s) % time(s) x area(m”2) = volume (m"3)
amountsaved = E_diff/(1e3%3600%24)*time_combox (dxxdy);

%$ during timestep t
saving (windloop ,combo) = sum(sum(1le3 * amountsaved/le3));

% cost = amount applied *($/g) + running cost
cost (windloop ,combo) = sum(mass_app (combo,:))x10e—2 + 0;

10

15

20

30

35

40

C.13 evap.m 96

% $ during timestep t
profit (windloop ,combo) = saving (windloop ,combo) — cost (windloop ,combo);

C.13 evap.m

This function finds the evaporation with and without the monolayer present on the
water surface. It uses the equations developed by McJannet, Webster, Stenson and
Sherman (2008) presented in Appendix E: Evaporation Model Equations.

Listing C.13: evap function.

function [E_diff] = evap(nr.m)

% FEvaporation Model for monolayer savings
% McJannet, Webster, Stenson, Sherman 2008
% Appendix B: Model algorithm — Penman—Monteith equation

% Format convention :
% variable , variable_sub/superscript, wvariable_superscript_subscript

% Input
% Constants

albedo = 0.08; % albedo of water, MJ. kg —1

C.a = 0.001013; % specific heat of air, MJ. kg —1.K —1

Cw = 0.004185; % specific heat of water, MJ. kg —1.K—1

rho_,a = 1.2; % density of air, kg.m"—3

rho.w = 1000; % density of water, kg.m —38

sigma = 4.8E—-9; % Stefan—Boltzmann constant, MJ.m " —2.K —4.d"—1
T_w0 = 20; % temperature of water at previous time step
% Variables

A= 0.01; % water body area, km~ 2

K_down = 12; % total daily incoming short wave radiation , MJ.m" "—2.d"—1
T.a = 20; % mean daily air temperature, degC

U_.10 = 3; % mean daily wind speed at 10m, m.s —1

T_air = 25;

% vapour pressure at air temp, kPa — antoine equation,

% wikipedia , water 1—>100degC
e.a = (107 (8.07131 —(1730.63/(T air +233.426))))*(101.325/760):;

Z = 15; % water body depth, m
psi = 50 % water body altitude , m
phi = 23xpi/180;% water body latitude , radians

J = 11; % day of the year
Jor-m = 0; % monolayer resistance , s.m’—I1
r-m = nr.m;

% Calculations

% latent heat of wvaporisation, MJ.kg"—1 (eq 8)
lambda = 2.501—-T_a%x2.361E—3,;

% psychometric constant, kPa.degC"—1 (eq 9)
gamma = C_a%x100/0.622xlambda;

% wind function , MJ.m"—2.d"—1.kPa"—1 (eq 11)

45

50

60

65

70

75

80

85

90

95

100

C.13 evap.m 97

fu = ((5/A)"0.05)%(3.804+1.57«U_10);
% aerodynamic resistance, s.m"—1 (eq 10)
r.a = (rho_axC_.a)/(gammaxfu /86400);

% Get LDOWN
% inverse relative distance FEarth—Sun (eq 21)
d.r = 140.033%cos (2xpixJ/365);
% solar decimation (eq 20)
delta = 0.409xsin (2xpixJ/365—1.39);
% x—factor (eq 19)
X =1- ((tan(phi)) " 2)*((tan(delta))"2);
% sunset hour angle (eq 18)
omega_s = pi/2 — atan(—tan(phi)xtan(delta)/sqrt(X));
% extraterrestrial short wave radiation, MJm"—2.d"—1 (eq 17)
K_et = (24%60/pi)*0.082xd_r*(omega_s*xsin(phi)xsin(delta)+...
cos(phi)xcos(delta)xsin(omega_s));
% clear sky short wave radiation , MJ.m " —2.d"—1 (eq 16)
K_clear = (0.754+2E—5+psi)*xK_et;
% ratio of incoming short wave to clear sky short wave radiation (eq 15)
K_ratio = K.down/K_clear
% fraction of cloud cover (0——>1) (eq 14)
if K_ratio < 0.9
Cftf = 1.1 —K_ratio;
else
C_f = 2«(1—K_ratio);
end
% incoming long wave radiation , MJ.m "—2.d"—1 (eq 13)
L.down = (C_f+(1-C_f)*(1—(0.261*exp(—7.77TE—4xT_a"2)))) *...
sigmax(T_a+273.15)"4;

% Get L.UP
% dew point temperature, degC (eq 26) (remember log(xz) = In(z) in matlab)
T.d = (116.9+237.2xlog(e_a))/(16.78 —log(e_a));
% wet bulb temperature, degC (eq 25)
Ton = (0.00066%100%T_a-+(4098%e_a /(T.d+237.3)"°2)+T.d) /...
(0.00066%x100+(4098*e_a /(T-d+237.3)"2));
% outgoing long wave radiation at wet bulb temp, MI.m"2.d"—1 (eq 29)
L_up.n = sigmax(T_a+273.15) 4+ (4xsigmax(T_a+273.15)"3)*«(Tn—T_a);
% net radiation at wet bulb temp, MJ.m"—2.d"—1 (eq 28)
Q_asterisk_.n = K_.downx(l—albedo)+(L_down—L_up_n);
% slope of the temperature saturation water vapour curve at...
% wet bulb temp, kPa.degC"—1 (eq 27)
delta.n = (4098%(0.6108*exp(17.27«Tn/(Tn+237.3)))) / ((T-n+237.3)"2);
% equilibrium temperature, degC (eq 24)
T.e = Tn + Q_asterisk_n/(4xsigmax(Tn+273.15)"3+fux(delta_n+gamma));
% time constant, d
tau = (rho_wxC_wxZ)/(4xsigma*(Tn+273.15) "3+ fux(delta_n+gamma));
% water temperature, degC (eq 23)
Tw = T.e + (T-w0-T_e)xexp(—1/tau);
% outgoing long wave radiation at water temp, MJ.m" —2.d"—1 (eq 22)
Loup = 0.97«sigmax*(T-w+273.15)"4;

% net radiation , MJ.m"—2.d"—1 (eq 12)
Q-asterisk = K.downx(l—albedo)+(L_down—L_up);

n

% change in heat storage in water body, MJ.m —2.d"—1

105

110

115

10

15

20

25

30

35

C.14 Monolayer_Simulation.m 98

N = rho - wxC_wxZx(T_-w—T_w0);
% saturated vapour pressure at water temp, kPa (eq 32)
e_asterisk_.w = 0.6108*exp(17.27«T_w/(Tw+237.3));

% slope of the temperature saturation water vapour curve at water temp, ...

% kPa.degC —1
delta.w = (4098%(0.6108x«exp(17.27«T_w/(T-w+237.3)))) / ((T-w+237.3)"2);

% evaporation , mm.d"—1 (eq 7)

E_with = (1/lambda)*((delta_wx(Q_asterisk—N)+86400«rho_axC_ax...
(e_asterisk_ w—e_a)/r_a+rm)/(delta_w+gamma));

E_without = (1/lambda)x((delta_wx(Q_asterisk—-N)4+86400«xrho_axC_ax...
(e_asterisk_w—e_a)/r_a+0)/(delta_w+gamma));

E_diff = abs(E_without—E_with);

end

C.14 Monolayer Simulation.m

This script is the main file from which all the other scripts and functions are called.

Listing C.14: Monolayer_Simulation script.

% Monolayer Simulation

clear, clc

tic

config

preallocate

%location=0;

% Loop through all wind speeds(and directions)

% comment out to make sure different rand numbers are used
%s = rng(’default ’);
disp('preallocated ,_.starting._simulation’)

for windloop = 1:size(uWind,2)
combo=1;
% Reseed rand based on current time, and save state

% comment out to test effect of warying dx,dy or np_cell
s = rng(’ 'shuffle’);

% find rates size to find combo max

calcrates

mass_app = zeros(size(rates,l),size(rates ,2));
combo_max = size (rates ,1);

% Initialise bestprofit with large negative number to ensure
% it isn 't used
bestprofit = —1e6;

% Loop through different applicator rates

while combo <= combo_max
calcmoveevapdollar

% Check if this combo is the best so far
if combo==1 || (profit(windloop,combo) >bestprofit)
% Store best profit

40

45

60

65

70

75

80

85

90

95

C.14 Monolayer_Simulation.m 99

NN NN RN TR R RN RN K

bestprofit = profit (windloop, combo);
% Set most profitable arrays (p)

Xp = X;

Yp =Y;

massp = Imass;

pactp = pact;

agep = age;

pact_xp = pact_x;

pact_x1lp = pact_x1;

pact_x2p = pact_x2;

pact_yp = pact_y;

pact_ylp = pact_yl;

pact_y2p = pact_x2;

totalmass_p = totalmass;

if windloop = size (uWind,2) % if last wind condition
nrom_p = nr-m; % average coverage

end

end

combo=combo+1;
end

%keep tc counter for next iteration
tc=tc+cce;

% Save best arrays(p) as current (c¢). Ezport any data
Xc = Xp;

Yc = Yp;

massc = massp;

pactc = pactp;

agec = agep;

pact_xc = pact_xp;
pact_xlc = pact_xlp;
pact_x2c = pact_x2p;
pact_yc = pact_yp;
pact_ylc = pact_ylp;
pact_y2c = pact_x2p;
totalmass_c = totalmass_p;
time_overall = time_overall + time;

disp (windloop)

o7
U
% Make o Mouwvie!
(/4

U

2

% fullscreen = get (0, ScreenSize ’);

figure%(’Position ’,[0 0 560 420])

handle = scatter (Xe,Ye,’. 7, "blue ’); title (’Particles’), % m

hold on

% Plot applicators

scatter (applicators (:,1),applicators (:,2),’s’, filled 7 ,...
"sizeData ’,10"°2)

hold on
% Plot rectangle to show boundary
rectangle ("Position ', [x_min,y_min ,z_maz,y_mazx])

set(gca, 'XLim’, [z-min—5 x-maz+5]), xlabel (metres’)
set(gca, 'YLim’, [y-min—5 y-maz+5]), ylabel (’metres’)

set(gcf, Renderer’, zbuffer ’);
write Video (movv, getframe (gef));
close

R

100

105

110

115

120

125

10

C.15 movepart.m 100

end

% Total profit: sum of best profits for each windloop

bestprofit = max(profit ,[],2);
totalprofit = sum(max(profit ,[],2));
toc

%graph

Y%scatter (Xe,Ye,’.), axis ([z-min—30 30+x_max y-min—5 5+y_-mazx])
%disp ("total profit: '), disp(totalprofit)
% contour(nr_m_p, linspace (0, 10e—3, 10))

% save output

%
% b403 = bestprofit;
% n403 = nr_m_p;

% Xc408 = Xe;

% Yc408 = Ye;

% save(’results403.mat’ ...

% 04037, 'nd03°, "Xci037, Yel037)

% Close this mouvie
Y%close (movv);

C.15 movepart.m

This script calculates the positions, age and mass (due to degradation) of the new and
old particles. Old particles are particles that were created on a previous time step and
new particles originate from the applicator positions. The boundary script checks if
any particles have crossed the boundary and if so sets pact (particle active) to false to
prevent any movement in the future. The shoreline script will need to set pact to true
for the respective particles after it calculates which particles will return to the surface

of the water.

Listing C.15: movepart script.

% movepart

%

% Move particles

%

% r =a+ (b—a).xrand(n,1);

% r= random number

% a,b = interval from 0.5 to —0.5

% r =205+ (—0.5-0.5).«xrand(np_cell ,1)

15

20

25

30

40

45

50

55

C.16 npermutek.m 101

% r = 0.5 — rand(np_cell ,1)

% index for old particles
k = n_app;
im3 = (cc—1)xn_appxnp_cell + kxnp_cell + tcxn_appxnp_cell;

degradation

% old particles
% if old particles exist
if ce>1 || tc™=0
% theta old
to(1:im3) = windDirection (windloop) + (0.5—rand(1,im3)) =xangleSpread;

% new position = old position + pact .x randxdtxspeed x
% trig (rand within wind+spread)

X(1,1:im3)= X(1:im3) + pact(1,1:im3) .* rand(1l,im3)xdtxuDrift .=x...
cos(to(1:im3));

Y(1,1:im3)= Y(1:im3) + pact(1,1:im3) .* rand(1l,im3)xdtxuDrift .x...
sin(to (1:im3));

age(1,1:im3) = age(1,1:im3)+dt;

mass (1,1:im3) = mass(1,1:im3) .* (1—dm(1,1:im3));

end

% new particles
for k=1:n_app
%theta new
if rates(combo,k)"=0 % don’t move particles if they have mno mass
tn(l:np_cell) = windDirection (windloop) +...
(0.5—rand(1,np_cell)) xangleSpread;
lhs = 1 4+ (cc—1)xn_appxnp-_cell + (k—1)xnp_cell ...
+ tckn_app*np_cell;
rhs = (cc—1)*n_app*np_cell + kkxnp_cell + tcxn_appxnp_cell;

X(1, lhs:rhs) = applicators(k,1) + rand(1l,np_cell)xdtxuDrift ...
.k cos(tn);

Y(1, lhs:rhs) = applicators(k,2) + rand(1,np_cell)xdtxuDrift ...
k sin(tn);

age (1, lhs:rhs) = dt;

mass (1, lhs:rhs) = (dtxrates(combo,k)/np_cell) .x...
(1—dm(1,lhs:rhs));

totalmass = totalmass + (dtxrates(combo,k)/np_cell);

end
end

boundary

C.16 npermutek.m

This function was written by Matt Fig and is available from http://www.mathworks.
com/matlabcentral/fileexchange/11462. The function calculates a matrix contain-

ing the all the possible permutations. There are two required inputs; firstly the mass

 http://www.mathworks.com/matlabcentral/fileexchange/11462
 http://www.mathworks.com/matlabcentral/fileexchange/11462

10

15

20

25

30

35

40

45

50

55

C.16 npermutek.m 102

rates (e.g. [0 1]), and secondly the number of applicators.

Listing C.16: npermutek function.

function [Matrix,Index] = npermutek (N,K)

JNPERMUTEK Permutation of elements with replacement/repetition .

% MAT = NPERMUTEK(N,K) returns all possible samplings of length K from
% vector N of type: ordered sample with replacement.

% MAT has size (length (N) K)—by—K, where K must be a scalar.

% [MAT, IDX] = NPERMUIEK(N,K) also returns IDX such that MAT = N(IDX).
% N may be of class: single, double, or char. If N is single or double,
?both MAT and IDX will be of the same class.

0

% For N = 1:M, for some integer M>1, all(MAT(:)==IDX(:)), so there is no
benefit to calling NPERMUTEK with two output arguments.

AN

Examples :
MAT = npermutek ([2 4 5],2)

5

O Ot GrPS AR 0 0 0
A 0O A 2 Ui Do

NPERMUTEK also works on characters.

MAT = npermutek ([’a’ b7 ’¢’],2)

See also perms, nchoosek
0

% Also on the web:
% http://mathworld. wolfram.com/BallPicking . html
% See the section on Enumerative combinatorics below:
% http://en.wikipedia.org/wiki/Permutations_and_combinations
% Author: Matt Fig
% Contact: popkenai@yahoo.com

NN AN NN AN AN AN AR AR AR AR AR AT R AT AT AT AN AN AN AN AN AN N NN R N AN R R R ¥

if nargin "= 2
error ('NPERMUTEK_requires _two_arguments..See_help. ")
end

if isempty(N) || K= 0,

60

65

70

75

80

85

95

105

110

115

C.16 npermutek.m

103

Matrix = [];

Index = Matrix;

return
elseif floor (K) =K || K0 |
error ('Second_argument._should_be_a_real _positive_integer._See_help.

end

LN = numel (N);

if K==1

end

CLS =

Matrix = N(:);
Index = (1:LN).

o This one

return

elseif LN==1

Index = ones(K,1);
Matrix = N(1,Index);
return

class (N);

if ischar (N)

end

CLS =

"double’; % We will

| “isreal (K)

1s easy to calculate.

deal with this

|| numel (K) =1

% Used in calculating the Matriz and Indezx.

at the end.

L =1ILNK; % This is the number of rows the outputs will have.

Matrix = zeros(L,K,CLS);

% Preallocation .

D = diff(N(1:LN)); % Use this for cumsumming later.

LD

Matrix (: ,K) = TMP(:); % We don’t need to do two these

Matrix (1:LN"(K—1):L,1) = VL; % The first column is the simplest.

VL =

len
[—s

gth(D); % See comment on LN.

um (D) D].’; % These values will be put into Matriz.
% Now start building the matriz.
TMP = VL(:,ones(L/LN,1,CLS));

if nargout==1
% Here we only have to build Matriz the rest of the way.

else

for

end

ii = 2:K-1
ROWS = 1:LN"(ii —1):L;

% Instead of repmatting.

% Indices

TMP = VL(: , ones (length (ROWS)/(LD+1),1,CLS));

Matrix (ROWS,K—ii-+1) = TMP(:);

?

% Build it up,

% Here we have to finish Matriz and build Index.
Index = zeros(L,K,CLS);

VL2

VI2(1) = 1-LN;

= ones(size (VL) ,CLS);

TMP2 = VL2(:,ones(L/LN,1

for

end

ii = 2:K-1
ROWS = 1:LN"(ii —1):L;

% Preallocation .
% Follow the logic in VL above.

,CLS))

% Indices

% These are the drops for cumsum.

in loop.

into the rows for this col.
% Match dimension .

insert values.

% Instead of repmatting.
Index (: ,K) = TMPQ() 7 We don’t need to do two these in loop.
Index (1:LN"(K—-1):L,1) =

F = ones(length (ROWS)/(LD+1),1,CLS); % Don’t
T™MP = VL(:,F); % Match dimensions.

TMP2 = VL2(:,F);

Matrix (ROWS,K—ii+1) = TMP(:);

Index (ROWS,K—ii +1) =

TMP2(:) ;

?
)

% Build them wup,

into the rows for this col.

do it twice!

insert values.

")

120

125

130

10

15

20

25

30

35

C.17 preallocate.m 104

Index (1,:) = 1; % The first row must be 1 for proper cumsumming.
Index = cumsum(Index); % This is the time hog.
end

Matrix (1,:) = N(1); % For proper cumsumming.

Matrix = cumsum(Matrix); % This is the time hog.
if ischar (N)
Matrix = char(Matrix); % char was implicitly cast to double above.
end
% Matt Fig

% 19 Jun 2006 (Updated 11 May 2009)
% http ://www. mathworks.com/matlabcentral/fileexchange /11462

C.17 preallocate.m

This script preallocates memory for the large matrices required for the simulation,

drastically reducing the time required to run the model.

Listing C.17: preallocate script.
% preallocate

% Initialize wvariables

nX_max = ceil ((x.max—dx/2) / dx)+1;
nY_max = ceil((y-max—dy/2) / dy)+1;
nX_min = ceil((x.min—dx/2) / dx)+1;
nY_min = ceil((y-min—-dy/2) / dy)+1;
tc = 0; % total counter
cc = 0; % combination counter
totalmass = 0;
% Calc size of arrays
P_SIZE=0: a=0:
for windloop = 1:length (uWind)
time=0;
a=a+1;
while time < time_combo
cfl
P_SIZE = P_SIZE + np_cells*n_app;
end
end
% combo=1;

% calcrates
% profit=zeros(a,size(rates ,1));

% reset time
time = 0;
time_overall =0;

%Preallocate arrays
Xc = ones(1,P.SIZE); % create Xc & Yc outside boundary
Yc = ones(1,P_SIZE);

40

45

50

10

15

20

25

C.18 inputdata.txt 105

massc = zeros(1,P_SIZE);
agec = zeros(1,P_SIZE);
pact_xc = false (1,P_SIZE);
pact_x1lc false (1,P_SIZE);
pact_x2c false (1,P_SIZE)
pact_yc = false (1,P_SIZE);
pact_ylc false (1,P_SIZE);
pact_y2c false (1,P_SIZE)
pactc = true(1,P_SIZE);
totalmass_c = 0;

to=zeros (1,P_SIZE);
tn=zeros (1,np_cell);

dmb = zeros(1,P_SIZE);
dm = zeros(1,P_SIZE);

C.18 inputdata.txt

This is the data used for the simulations. It is the first 144 values from HMO1X Data
040082 30492615860123.txt (see line 33 in config.m) where each reading is taken
every 10 minutes giving a total of 24h. The first column is the wind speed [m/s] and

the second column is the direction in degrees from north in an anti-clockwise direction.

Listing C.18: inputdata text file.

ot
)
NG
0
Nej

266.
.603 249.
2122 259.
.216 247.
.4002 255.
785 264
.3082 237.
.0272 240.
7273 252,
7672 231.
.9488 227.
.736 288.
.0827 229
260.
L7887 234.
L9173 261.
.0185 254.
L1885 239.
.0487 243.
.3242 260.
0732 265.
.328 246.
.0878 251.
L7255 262.
4422 258.
.0828 251.
3.059 243
2.5278 250.
2.0803 238

QOO s QO U W s UTCO DD W s b QO QO W QO s U s
=)
-3
J
o
B O RRENOOHEJOWUTO O JUTFRFWHFW W RN

C.18 inputdata.txt 106

L7525 183.
.75517 157.
66217 148.

30 1.6777 248.7
1.5685 259.7
1.3668 247.7
1.583 249.9
1.5067 244.7

35 1.6492 240.2
1.8235 244.9
1.2929 237.7
1.0343 193.6
1.3812 175.3

w0 1.6945 215.6
1.729 191.8
0.70633 160.4
0.37817 153.2
0.539 175.4

45 0.45233 225.1
0.66067 216.9
2.122 296
1.7732 243.6
1.051 110.8

so0 1.1952 176.3
0.78867 196.6
0.93417 180.5
1.2958 243.4
0.66383 127.4

55 0.49533 218.5
0.62367 127.1
0.54783 207.6
0.91317 180
1.2512 170

60 1.5377 173.8
0.76517 172.2
0.61133 152.2
0.4855 153.5
0.61383 173

s 0.70833 253
0.47167 156.2
0.55683 162.6
0.85033 208.7
0.719 167.9

70 0.48883 174.8
0.41067 114.5
0.40917 143.4
0.70083 174.8
0.847 188.3

s 0.6785 178.4
0.48017 155.3
0.4375 233.3
0.43733 221.5
0.38483 236.6

so 0.836 269.7
0.73017 208.4
0.60333 256.4
1.523 278.8
1.1555 286.8

s 1.457 320.2
1.731 320.2
1.5608 304.1
1.6727 298.4
1.5402 295.4

90 1.3078 305
0.985 301.4
0.85133 209
0 7
0 4
0 7

95

105

110

115

120

125

130

140

C.18 inputdata.txt

107

HEPERRRERRPEREROROOOO00000O0OO0OHROO0OO0O0O0O0O0O0OO0O0OOHFHHHEFFOOOOOOODODDODOODOODOODOOoO0O

62517
.84467
.78367
.81867
.66933
.50633
.0115
.00183
.05817
42633
.0235
07517
697
.036
.9292
.947
.2323
.72183
729
04717
43717
.45083
46117
62517
.03067
43533
.38033
07017
L2727
.06467
4185
.45
.501067
4575
.83083
09333
778
.79983
.0402
.88783
.3507
.8875
.1547
.3272
2477
.0367
L2857
.2262
.1443

143.
205.
198.
187.
193.
195.
143.

136

141.
123.
142.
218.
316.
324.
318.
297.
244.

177

166.
176.
257.
305.
257.
306.
312.
257.
296.
248.
320.

251

229.
280.

325

299.
281.
225.
125.
117.
130.

110

107.
121.
156.

112

145.
246.
137.
133.
180.

OWHI [0l (Ne) YT QO W~ S Ot NP WONNPREOND—W VOTTJWHUTOY — N OO0

Appendix D

Preliminary Ideas

This document was prepared at the start of the project was used as a starting point. It
also has ideas for extending the project further. Please note that this document does
not reflect the final project - see Chapter 5: Sample Run for a walk through of the code
in Appendix C: Source Code.

D.1 Boundaries

There are several possible ways to input the boundaries:

e Satellite photographs. Need to stitch together photos, convert to b & w, filter
noise, take coordinates of the edge, and calculate scale. Processing, filtering and

stitching together photos is too difficult.

e GPS. Enter coordinates and convert to 2D. Overlay a grid. Possible to have North

direction vector making it easier to add the weather data.

e Graphically pick points. Clink on boundaries on a) photo b) generic grid. Both
a) and b) require an image to be imported and then a list of coordinates is created
based on the position of the mouse click. The data then needed to be scaled and

a grid created.

D.1 Boundaries 109

e Enter list of points using keyboard; create grid

e Use equations to describe boundaries and then points are extracted based on the

resolution required.

The two best ways are GPS for real world locations and a list of points entered via

keyboard for testing purposes.

To convert form geodetic to ECEF (Cartesian) the following equations are required:

X = (N(¢) + h)cospcos) (D.1)
Y = (N(¢) + h)cospsinA (D.2)
Z = (N(¢)(1 — €*) + h)sin\ (D.3)

where
N(¢)= —— 2 (D.4)

1 — e2sin?¢
and a = semi major axis

e?= square to the first numerical eccentricity of ellipsoid

. . 2
first eccentricity, e = \/_7272

ECEF has the following axes, with the origin in the centre of the planet. X is defined
as the intersection of the Greenwich meridian and the equator; Z is the mean spin axis

of the planet positive to the north; and the Z axis completes the right hand system.

The Aerospace toolbox in Simulink provides blocks to convert from geodetic to ECEF
and back again but it is easy to convert from geodetic to ECEF as it involves direct

substitution.

One way to import the GPS coordinates into a 2D grid for MATLAB:

e Convert from geodetic to ECEF

D.2 Grid 110

*r—o—9o—» .
* o ¢ 4 .

& & .
s o o .
[& L L &

Figure D.1: Grid showing how particles move between different grid squares.

e Convert 3D collection of points into a 2D system by:

— Create a plane using any random 3 points

— Move the points on the plane by using a vector between the origin and the

point.

— Rotate the plane so that there are only (x,y) coordinates.

D.2 Grid

The red circle represents the average value for the area in the square. This assumption
requires that the area is small compared to the overall area and the time step of the

simulation is small.

D.3 Applicator information

D.3.1 Applicator Positions (AP)

These are the different ways that the applicators can be positioned on the water. The
simulation will compare the different positions and it will then be possible to try to

identify trends that can be used to place the applicators.

D.4 Trial

111

Applicator Position

1

2

Table D.1: Applicator Rates

D.3.2 Applicator Rates Combinations (ARC)

The applicator rates combinations are evaluated for each time step to determine which

combination has the best $ savings. The combination that offers the highest saving is

then used for that time step and is used to modify the mesh for the next time step.

Each column in the table represents a different simulation.

D.4 Trial

Each trail will represent a different time e.g. different weeks in a year when the different

applicator positions are investigated. Each trail is a repeat of all the possible applicator

positions.

Applicator | Simulation

11213

1 X1 | Xo | X3

2 X1 | X1 | X1

3 X1 | X1 | X1

4 X1 | X1 | X1

) X1 | X1 x1

Table D.2: Applicator Rates Combinations. The rates x1, X2 and x3 are measured in kg/s.

D.4 Trial 112

D.4.1 Current weather

The current weather is the result of the Monte Carlo Simulation during the previous

time step.

D.4.2 Future weather

This is the result of the current Monte Carlo Simulation. This function will use a
probability density table and a random number to find the weather conditions. The
weather conditions include wind speed and direction as well as rainfall. It is necessary
to use the weather conditions for the different applicator rates (since they all occur at

the same time) as well as the applicator positions in order to provide a fair comparison.

Different weather conditions will be achieved in different trials.

D.4.3 Monolayer Behaviour Functions

No. 2-5 act to reduce the concentration.

Movement of Monolayer- direction and distance

There will a smaller time step used to calculate the movement of the monomer.

Shoreline Absorption

Volatilisation

This is the evaporation of monolayer.

D.4 Trial 113

| r—— p,

/ N\
/ \
[\
l !

WIND DIRECTION

Figure D.2: Monolayer spreading under the influence of the wind. Each red arcs represents
a group of particles that were released at the same time. The location of each particle can
then be identified to a particular grid square given the angle of spread and the speed. Once
identified with a square of the grid the particles can be summed with the representative

point at the centre of the square (See 2: Grid).

Submergence

Submergence is the loss of the monolayer due to it breaking up and sinking below the

surface of the water. This is caused by waves and rainfall.

Biological degradation - aging

D.4.4 Percent coverage

The percent coverage is calculated at the end of each time step for each ARC

D.4.5 Saving

The saving = value of water saved - (cost of chemical + fixed costs)

D.5 Results 114

D.4.6 Select best ARC for current time step

The ARC with the best saving is then saved and used for the next time step by modify

the grid. The other results are discarded.

D.4.7 Complete for all time values for AP simulation

Continue to solve for applicator positions. Once completed solve for next possible

applicator position until all positions have been evaluated.

D.5 Results

The results can then be used to identify trends to aid in the placement of the applicators.

The following information will be required:

e The application rates (kg/s), % coverage and $ saving for each applicator position
e The applicator positions

e A method of comparing the two above points.

The easiest way to compare the different applicator positions is to find the position
that saves the most money per year. This involves simulating a variety of weather
conditions that are representative of best, worst case and average conditions. It will
also be important to ensure the simulations are run for long enough to ensure the
applicator positions are adequate for all these conditions since it is impractical to have

different positions for different seasons.

D.5 Results 115

Boundaries
Y
Grid
¥
Applicator Position «--- «{ Applicator rates combinations
7 P
Trial

!

Current Weather
Future Weather

‘ Monolayer Behaviour }—,

Percent Coverage

¥

Dollar Savings

¥

Choose ARC with highest savings

Y
Step through until cur-

rent AP sim is complete

Repeat for all other AP us-

ing same weather data
Y

Compare different AP and identify trends

Figure D.3: Layout for simulation code

Appendix E

Evaporation Model Equations

Source: McJannet, DL Webster, I'T Stenson, MP Sherman, BS 2008, Estimating open
water evaporation for the murray-darling basin: Appendix B: Model algorithms, CSIRO

murray-darling basin sustainable yields project.

10 Appendix B: Model algorithms

Evaporation (E in mm d'l) from a water body can be estimated using the Penman-Monteith equation (Monteith,
1965):

E= 1 Aw Q* —-N)+8640Cpaca(q’;v _ea)/ra Equation 7
A Aty

where 0, is density of air (kg m’3) and Ca is specific heat of air (MJ kg’1 °K’1).

Latent heat of vaporisation, A (MJ kg), at air temperature, Ta (), is calculated as follows:
A= 2501‘Ta 2361x 10_3 Equation 8

The psychometric constant,) (kPa C ’1) is calculated from:

_ Ca100 Equation 9
0.6224

Aerodynamic resistance, I, (s m'l), is calculated using the following equation (Calder and Neal, 1984):

X
° y((0)B640Q

Equation 10

The wind function, f(U) (MJ m?d™ kPa™), is calculated from wind speed at 10 m, U, (m s™), and area, A

(kmz), (Sweers, 1976):

509
f(u)= (Xj (380+1.5U,,) Equation 11

Net radiation, Q (MJ m? d'l), is calculated using solar radiation inputs, K | (MJ m d’l), as follows:

Q* =K1l @-a)+(Lt-L1) Equation 12
Incoming long-wave radiation, L | (MJ m d’l), is calculated from the equations of Oke (1987) and Idso and
Jackson (1969):

L1=(C, +(1-C,)(1- (0.261expf 7.7% IOT2))T(+ 273.7% Equaion1s

Equations 14 though 21 are used to calculate Lt . Fraction of cloud cover (value from 0 to 1 with 1 being 100%
cover) is calculated using the following equation (Jegede et al., 2006):

E tion 14
If KRalio < 0.9 then use Cf =11- KRatio quation

© CSIRO 2008 Estimating open water evaporation across the Murray-Darling Basin = 45

If KRaIio > 0.9 then use Cf = 2(1— KRaIio)
Ratio of incoming short-wave radiation to clear sky short-wave radiation (KRaﬁo) is calculated from:

K = Equation 15

Clear sky short-wave radiation (K in MJ m? d'l) is calculated using water body altitude (l// in m) as follows

Clear

(Allen et al., 1998):

Ko = (075+ 2x10°¢)K Equation 16

Clear
Extraterrestrial short-wave radiation (KEr in MJ m? d™) is calculated using latitude (@ in radians) as follows:

Ker =220 ooap at, sint)sint ¥ cost xosg)sin) cauaton 17

Sunset hour angle, Uy, is calculated from:

ws = 7_T— arda —_ tan¢)tan(a_) Equation 18
2 X 05
The X-factor, X , is calculated from:
X = F (tan@)y (tan©))’ Equation 19
Solar decimation, O , is calculated using the day of the year, J , as follows:
(2 _
0= 040%in —J-139 Equation 20
365
The inverse relative distance Earth-Sun, dr , is calculated using:
2r _
dr = ¥ 00303 —J Equation 21
365

Outgoing long-wave radiation at water temperature (L T in MJ m d'l) is calculated using the Stefan-Boltzmann
constant, @ (MJ m?°K™*d™, as follows:

Lt=092T,+ 27315)4 Equation 22

Equations 23 through 29 are used to calculate L 1 . Water temperature, TW (C), is calculated from the following

equation (de Bruin, 1982):

Tw = Te + (rwo _Te) eXp(— 1k) Equation 23

46 = Estimating open water evaporation across the Murray-Darling Basin © CSIRO 2008

Equilibrium temperature, Te (), is calculated from the following equation (d e Bruin, 1982):

=T + Q n Equation 24

T o, + 273197 + T (U)(B, +Y)

Wet-bulb temperature, Tn (C), is calculated using vapour pressure, €, (kPa), as follows (Jensen et al., 1990):

000066 100, + @098, /T, + 2373)%)T,

n = Equation 25
000066 108 @098, /T, + 2373)?)
Dew point temperature, Td (), is calculated from:
_ 1169+ 2373Ln(e,) _
= Equation 26

d 1678-Ln(e,)

Slope of the temperature saturation water vapour curve at wet bulb temperature, An (kPa C '1), is calculated

from:

409 0.6108)@;{17'%‘)]

A = (T, +237.3
" (T, +237.3}

Equation 27

Net radiation at wet-bulb temperature, Q*n (MJ m? d™), is calculated using albedo, @ , as follows:

Q*n =K (1—0') +(L ! —-L Tn) Equation 28

Outgoing long-wave radiation at wet-bulb temperature, L 1 n(MJ m* d'l), is calculated from:

L1,=0 T, + 27315/ + 4 T, + 27315°*(T, -T,) Equation 29

The time constant (7 in days) is calculated using the density of water (O, in kg m'3), specific heat of water (CW

in MJ kg °k™), and depth of water (Z in m) as follows (de Bruin, 1982):

£.C.2Z :
= Equation 30
@ T, +27315° + F(U)(A, +)
Change in heat storage in the water body, N (MJ m d%), is calculated from:
N = 0 C Z(T -T) Equation 31
ww w w0

© CSIRO 2008 Estimating open water evaporation across the Murray-Darling Basin = 47

Saturated vapour pressure at water temperature, €, (kPa), is calculated from:

Equation 32

e, =0.6108x ex;ELWW?J

T, +237.

Slope of the temperature saturation water vapour curve at water temperature, AW (kPa T ™), is calculated from:

17.27,
4098 0.610& e pm)] Equation 33
A = 3
w (T, +237.3f

48 = Estimating open water evaporation across the Murray-Darling Basin © CSIRO 2008

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter Introduction
	Design Requirements
	Design Methodology
	Analysis and Performance
	Overview of the Dissertation

	Chapter Literature Review
	Introduction
	Surfactants
	Evaporation resistance
	Monolayer Behaviours
	Movement
	Relating evaporation resistance to windspeed
	Monolayer losses due to shoreline interaction
	Volitalisation
	Monolayer submergence
	Degradation due to biological attack

	Calculating Evaporation
	Conclusion

	Chapter Methodology
	Introduction
	Methodology
	Overview of model
	Sections of the program

	Equations and essential features of the model
	Movement of monolayer
	Evaporation resistance of monolayer as a function of wind speed
	Volatilisation
	Degradation due to biological attack
	Shoreline interaction
	Monolayer submergence

	Resource Requirements
	Consequential Effects
	Current Model

	Conclusion

	Chapter Detailed Design
	Introduction
	Overall Plan
	Movement of particles

	Script and function design
	Representing monolayer as particles
	Indexing matrices
	Finding permutations of applicator rates and applicators
	Calculating application rate for different wind speeds
	Reducing the number of rates permutations to test
	Finding the average values for each grid cell
	Calculating the evaporation
	Selecting an appropriate time step for each wind vector input

	Conclusion

	Chapter Sample Run
	Introduction
	Sample run of model
	config.m
	preallocate.m
	Monolayer_Simulation.m
	calcrates.m
	Monolayer_Simulation.m
	calcmoveevapdollar.m
	cfl.m
	movepart.m
	degradation.m
	movepart.m
	boundary.m
	calcevapdollar.m
	avg.m
	calcmoveevapdollar.m
	evap.m
	dollarsaved.m
	Monolayer_Simulation.m

	Conclusion

	Chapter Results and discussion
	Introduction
	Code validation
	Effect of smaller cells
	Twenty four hour simulation

	Code extension
	Conclusion

	Chapter Conclusions and Further Work
	Achievement of Project Objectives
	Research experiments to obtain data/ equations to describe behaviour of the monolayer
	Create matrices to represent domain, boundaries and applicator positions for simulation
	Simulate monolayer movement and degradation over time, using historical weather data as input
	Use an objective function to control application of monolayer
	Validate model by comparing results of simulation to real experiments
	Summary of achievements
	Comparision with Brink's model

	Further Work
	Shoreline interaction
	Submergence
	Effect of monolayer on temperature of water
	Non-rectangular boundaries
	Performance

	References
	Appendix Project Specification
	Appendix Degradation Calculations
	Introduction
	Vaporisation of monolayer
	Biological degradation

	Appendix Source Code
	avg.m
	boundary.m
	calcArea1.m
	calcArea2.m
	calcArea3.m
	calcArea4.m
	calcmoveevapdollar.m
	calcrates.m
	cfl.m
	config.m
	degradation.m
	dollarsaved.m
	evap.m
	Monolayer_Simulation.m
	movepart.m
	npermutek.m
	preallocate.m
	inputdata.txt

	Appendix Preliminary Ideas
	Boundaries
	Grid
	Applicator information
	Applicator Positions (AP)
	Applicator Rates Combinations (ARC)

	Trial
	Current weather
	Future weather
	Monolayer Behaviour Functions
	Percent coverage
	Saving
	Select best ARC for current time step
	Complete for all time values for AP simulation

	Results

	Appendix Evaporation Model Equations

