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Abstract

The understanding of animal behaviour in response to human development is vital

for sustainable management of ecosystems. Existing methods of monitoring wildlife

activity fall short in facets pertaining to accuracy, accessibility, cost and practicality.

To address this level of crudity, recent technological advances have led to the devel-

opment of electronic, autonomous wildlife monitoring solutions. Whilst these develop-

ments improve the overall experience in some areas, there is still much to be desired.

This dissertation aims to outline the development of an accessible, affordable, intelligent

vision-based technique which addresses limitations of existing monitoring methods.

A signal processing methodology was investigated, developed and implemented. The

development of this methodology included the investigation of two distinct facets of

computer vision - image segmentation and event classification.

The existing literature was explored, and several image segmentation techniques were

explored. Upon further investigation, the Gaussian Mixtures Model was selected in two

forms - per pixel modelling (Zivkovic 2004) and a compressive sensing based method

(Shen, Hu, Yang, Wei & Chou 2012). Each method was evaluated in terms of real time

capabilities and accuracy to provide basis for recommendation of the method presented

in the prototype.

Upon evaluation, it was discovered that the proposed compressive sensing based method

was a suitable prototype and recommendations regarding the implementation and com-

missioning of the system were made. Furthermore, possible avenues for further research

and development were explored.
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Chapter 1

Vision Systems for Wildlife

Monitoring

1.1 Introduction

At it’s essence, computer vision aims to augment the magic of human perception with

the autonomic nature of computation. The development of vision systems for use in

applications which rely upon human cognition and judgement for event classification

can have great advantages in efficiency and cost. Recent advancements in signal pro-

cessing techniques and potential target hardware has further enhanced the attraction

of vision systems as an effective platform for solution development.

For many centuries, scientists have been interested in the activities of wildlife within

their natural environments. With increasing human development, the preservation

of these habitats is an important challenge with respect to sustainable development

practices and for the future of our ecosystem. One of the biggest threats to animal

species is the development of roads which disturbs or segments their natural habitat.

This can lead to an increase in road kill, and has the potential to inflict significant

repercussions on the ecosystem. To allow animals to better cope with changes in their

environment, the development of fixed animal crossing structures, such as specifically

purposed road underpasses, has presented new challenges in research areas targeting
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the understanding of the impact of human development upon fauna.

The use of fixed-structure wildlife crossings has been well discussed in previous work.

Such examples have taken the form of wildlife bridges (Bond & Jones 2008) and tun-

nelling systems (Mata, Hervs, Herranz, Surez & Malo 2008) which provide a safe path

to surrounding areas and minimising the impact upon the ecosystem. The use of these

structures has formed a basis for the preservation of wildlife in newly developed areas

where a risk to the wildlife is involved (i.e. risk of injury or death due to contact with

traffic). In order to monitor the effectiveness of the implementations, road kill survey-

ing (Mata et al. 2008) (Bond & Jones 2008) in conjunction with activity monitoring

within the structures is employed to gauge an overview of the approximate usage statis-

tics. The road kill surveys performed provide a method of determining whether the

development of such structures has an effect in reducing the number of animals which

are killed or injured due to contact with traffic.

Figure 1.1: Wildlife crossing tunnels developed at Gap Creek Road, Pullenvale. Source:

Ashton Fagg

The primary objective of wildlife monitoring is the collection of data by means which

minimise disturbances to the surrounding environment. Non-autonomous methods have

been used exclusively for many years. In the context of fixed-structure wildlife crossings,

several methods are preferred. The use of a porous substrate, such as sand (Bond &

Jones 2008) or finely grained marble (Mata et al. 2008) to record footprints of species
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as they transition is a typical method. Other methods include the use of scat tracking

(Bond & Jones 2008) and hair sampling (Harris & Nicol 2010).

The methods proposed offers a limited level of accuracy in regards to quantitative

and categorical surveying. Whilst a broad overview of the species utilising the wildlife

crossings is available, it does not guarantee that the evidence of a present species will

be recorded or preserved. Nor does such a method provide a definite quantity of the

number of inhabitants of the area in question.

Perhaps the most obvious method which addresses these shortcomings is a manual

survey, which is high in cost and tedious. However, electronic monitoring methods

(such as small, low power cameras) are beginning to make an entrance into the field

in coexistence with “tried and true” methods such as footprint recording and hair

trapping.

The use of an electronic system aims to improve accuracy and reliability whilst still

alleviating the tediousness of the task by autonomously performing the survey with

little human interaction. Current electronic systems are not capable of distinguishing

between different types of motion, and can often record events which are not of interest

to the survey at hand. In order to keep monetary and power costs low, hardware

components are often not fast enough to adequately record fast-moving objects.

Thus, it is clear that the existing methods of animal monitoring and wildlife detection

may not be ideal or optimised for comparable performance with a manual survey. It

is believed that the development of an electronic, vision-based technique can provide

significant performance increases over existing methods. This project aims to explore

suitable methods and make recommendations for a prototypical vision system concept

for the purposes of autonomous & unsupervised wildlife monitoring. These limitations

will be investigated in detail in later chapters.
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1.2 Project Aim

The primary aim of this project is design, develop and implement of an unsupervised,

intelligent, prototypical software-based vision system which addresses the limitations

of existing wildlife monitoring systems. The project will involve the creation of image

processing software. The software system must also provide means for recording the

captured frames in a way which is easily accessible to the user. In the interests of

user accessibility, the system must be fully autonomous in operation once it has been

configured. The system must be capable of being deployed to relevant locations and be

able to work at a rate which is equal to or faster than real time.

This project aims to investigate, compare and recommend existing image processing

techniques and algorithms for use in this application. These techniques will involve the

development of test software and the evaluation and validation of algorithms by way of

existing ground truths, and the performance evaluated in terms of speed and accuracy.

Upon completion of the project, it is intended that the recommendations and pro-

totypical software can be further developed into a production system for installation

upon fixed wildlife crossing structures for the generation of knowledge and research in

ecological and biological fields.

1.3 Project Objectives

The project aim was assessed and broken into a number of deliverables for completion.

• Identification of limitations with existing monitoring methods.

• Investigation of image processing methods which address these shortcomings.

• Development of software prototypes which allow the performance of methods to

be compared and recommendations made for the prototype.

• Recommendations for supporting hardware & software systems.

• Analysis and evaluation of the system performance.
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1.4 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 discusses the target application and existing solutions to the target prob-

lem. Furthermore, shortcomings with existing systems are identified and defined

as a basis for development of the new system. Image and signal processing tech-

niques are discussed and evaluated in terms of suitability for the application.

Chapter 3 defines suitable methodologies for research and software development. This

chapter also includes a risk and hazard identification and classification and ap-

propriate mitigation strategies. Resources which are required for this project are

also identified and their attainability assessed.

Chapter 4 details the design, development and implementation of the software sys-

tem. This includes details of processing algorithms and the details of each system

component.

Chapter 5 identifies performance metrics, test and validation strategies used to qual-

ify the system. The outcomes of these tests were used to recommend the proto-

typical design for submission.

Chapter 6 summarises the work performed and identifies further avenues for research

and development.



Chapter 2

Literature Review

2.1 Chapter Overview

It is only in more recent times that electronic means have been used with this type

of application in mind. With technological advances made over the last couple of

decades, the implementation of a computer-based system to replace existing methods

has developed into a feasible, affordable and sensible option.

This chapters examines existing methods of wildlife monitoring, and their underlying

aims. The feasibility of an electronic system to perform this task is examined, and

existing literature which targets specific implementation challenges put forth by this

domain was analysed. This includes the exploration of image processing techniques

which aid in the extraction of meaningful data.

2.2 Wildlife Monitoring

As evidenced in previous work (Bond & Jones 2008), temporal trends in animal activity

can be significant to the research at hand. The use of methods outlined in Section 1.1

cannot provide adequate temporal data of sufficient granularity. Thus, it was necessary

to examine current solutions which offer the ability to place events on a temporal scale.
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2.2.1 Existing Autonomous Methods

The use of a small, low power wireless sensor network to monitor animal activity has

been proposed in a number of scenarios. Solutions used in previous studies have relied

upon the use of Passive Infra-red Detectors (PID). Such a system consists of small,

low power micro-controller boards equipped with a low power radio transceiver. The

individual sensor nodes communicate with a base node, which is typically acting as

a static data logger (Langbein, Scheibe, Eichhorn, Lindner & Streich 1996) or as a

gateway to an external storage medium (Mainwaring, Culler, Polastre, Szewczyk &

Anderson 2002). Additionally, environmental sensors may be included on the nodes to

provide a broader level of environmental awareness (Mainwaring et al. 2002).

The use of a sensor network, and the ideals behind remote monitoring via single point

data aggregation (Mainwaring et al. 2002) was considered to be a basis of design for

the vision system. However, the use of a PID for motion detection and data collection

does not offer the ability to detect the species, merely providing a quantitative count.

Some systems address this issue with the inclusion of a camera. The PID is used as a

trigger to signal the camera to record a still image (Brown & Gehrt 2009). The cameras

included in such systems are low power and infra-red sensitive to enable the use of the

equipment for monitoring of nocturnal species. The use of a trigger method allows

for temporally dynamic events to be captured in entirety. However such systems are

considered passive in that the camera is placed in a low power state, essentially limiting

the response time of the system and potentially allowing for missed events. The rate at

which the PID is polled can also have an effect on accuracy. The poll rate provides a

delicate balance between power saving and accuracy and incorrect sample rate decisions

can result in missed events or inefficient use of observation time (Langbein et al. 1996).

The reliance upon a PID presents a number of issues of reliability. Sources of infrared

radiation can pose interference risks, and subsequently can cause large numbers of

spurious triggers. For example, dense vegetation is able to trap heat, and subsequently

can present as a stimulus of the PID. Thus, a method which is able to minimise these

spurious events was considered highly advantageous, as less data is generated requiring

manual classification. Thus, the use of a PID as a primary means of event detection



2.2 Wildlife Monitoring 8

was discounted for the vision system. (Mainwaring et al. 2002)

Alternatively, camera based system have been used to take a still image at a given

interval (Ganick & Little 2009) and are therefore unaware of sources of motion. Such

systems are capable of generating large amounts of data, and require human interven-

tion to classify data as relevant. The system devised in (Ganick & Little 2009) presents

an almost real-time data retrieval and remote monitoring method which utilises an

Internet connection to deposit the retrieved data to a remote server, which is subse-

quently viewable by the user in a Web Browser. This is similar to the method discussed

in (Mainwaring et al. 2002) as it provides an accessible means of data retrieval and mon-

itoring for use in remote deployment locations. However, assuming that wildlife events

are temporally sparse, the generation of large amounts of data is undesirable due to

factors of bandwidth, storage and the labor requirements to review the collected data.

2.2.2 Vision System Requirements

With these findings in mind, it was defined that a suitable vision system was to be

able to cope with sparse animal activity across a wide range of environmental and

application conditions. The vision system was to be autonomous, unsupervised and

require minimal human intervention. Thus, a vision system which encompasses a static

camera and the hardware and software support to process the incoming frames was

required. The system was to only return data which is relevant and meaningful, and

subsequently required the ability to make an “intelligent” decision with respect to

the validity of the event. Thus, the requirement for an intelligent, autonomous and

unsupervised vision system was defined.

The advantage of an unsupervised, autonomous vision system is the facility to return

data in near real-time and the remote monitoring and configuration abilities. This was

considered to be an improvement over existing systems and methods in many facets.



2.3 Signal Processing for Wildlife Monitoring 9

2.3 Signal Processing for Wildlife Monitoring

With the need for a vision system identified, it was necessary to examine the existing

literature pertaining to suitable signal processing techniques.

To operate within a natural environment, the system was to be tolerant of a wide

variety of operational circumstances. The nature of this operation can be difficult to

define, as it is imperative that the method of operation makes as few assumptions

about the surrounding environment as possible. The lack of assumptions which can be

made allows for a more tolerant system, as the signal processing techniques must be

independent of any external stimuli. Thus, the system was to be designed in such a

way which made little assumption about the operational conditions it would face.

The natural environment presents several distinct challenges for many vision-based

systems. Perhaps the most important is the variability of illumination. Not only

must the system be able to operate successfully, independent of a guaranteed degree

of illumination, the system must also cope with the natural progression of lighting

throughout the day. Additionally, the natural environment offers a degree of image

noise which can corrupt incoming samples and create difficulty for processing methods.

The most detrimental noise to the purposes of this application, presents as spurious

motion caused by environmental factors (kinetic noise). A simple and relevant example

of kinetic noise is vegetation in motion due to wind. Whilst this is motion within

the frame, it is not a valid event. A vision system for wildlife monitoring relies upon

the introduction of new entities to the frame. With these considerations in mind, the

following aspects were identified for investigation:

1. Techniques which allowed the vision system to classify segments of the image in

terms of their degree of observational note.

2. Detection of motion and classification as relevant or irrelevant.

3. The introduction of a degree of tolerance to moderate amounts of kinetic noise.
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2.3.1 Image Segmentation

Image segmentation is the process of classifying parts of a digital image into segments

which represent significant components of an image. This may take the form of a

foreground-background segmentation or the identification of continuous regions which

have a common similarity. In essence, this process assigns each pixel component to a

set which share certain visual characteristics in order to create a representation of an

image which separates different classes of pixels.

Perhaps the most obvious method of subtraction is the use of a simple frame differencing

method. By taking a static image of the surroundings as a frame of reference and cal-

culating the pixel-wise difference between incoming frames, a crude form of background

subtraction is established. (Cheung & Kamath 2004) Frame differencing assumes that

the background of the frame remains constant over time. Obviously, frame differencing

is not a robust method of background subtraction for an application in an environment

with a dynamic background, and it was subsequently discounted as a suitable method.

(Cheung & Kamath 2004)

Frame differencing does not take into account factors posed by natural environments -

for example, the gradual changes in natural lighting which occur throughout the pro-

gression of the day. (Cheung & Kamath 2004) Additionally, frame differencing assumes

that all changes within the frame are of interest. Whilst this may be appropriate for

some applications, kinetic noise is not significant in the context of wildlife monitoring.

This also applies to noise generated by the camera sensors, which in some circumstances

which can be quite significant. Even if the static reference is updated for every new

session, there is significant potential for incorrect assumptions about the segmentation

of the image to be made. Thus, a more sophisticated method was required to cope with

varying lighting conditions and kinetic noise. (Cheung & Kamath 2004)

Many background subtraction methods rely upon the use of a histogram shaping mech-

anism to perform the pixel classification. One such method is the method proposed by

Otsu (Otsu 1979), which suggests that a planar grayscale image can be reduced to a

binary image given a threshold of intensity to classify each pixel. The Otsu threshold-

ing method suggests that this threshold be calculated in such a way that the intraclass
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variance is minimised. (Otsu 1979) These parameters can be calculated iteratively and

a minimisation expectation applied. (Otsu 1979)

To exhaustively minimise the intraclass variance, the weighted sum of variances of the

two classes can be represented according to:

σ2
w(t) = ω1(t)σ2

1(t) + ω2(t)σ2
2(t) (2.1)

ωi represents the weight of each mode, separated according to the threshold t and the

mode variances represented by σ2
i . (Otsu 1979)

As such, the minimisation of the intraclass variance is the equivalent of maximising the

interclass variance:

σ2
b (t) = σ2 + σ2

w)(t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]2 (2.2)

The mean of each class is notated as µi. The class probability can be calculated from

examining the histogram according to:

ω1 = Σt
0p(i) (2.3)

The class mean is derived from:

µ1(t) = Σt
0p(i)x(i) (2.4)

Where x(i) is the center of the ith histogram bin. The other class probability and mean

can be calculated in converse, by utilising the right side of the histogram starting with

bins which are greater than t.

The threshold is determined by way of an exhaustive search minimisation. (Otsu 1979)

The image is then separated into a bimodal histogram which allows for the output
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image to be used as a binary mask. Most commonly, the mask is represented by a

binary image - foreground as white, background as black.

Figure 2.1: An example of a segmentation mask calculated using Otsu thresholding

Whilst the Otsu method yields reasonable results, the classification accuracy is not

robust for applications which stipulate that the previous inputs to the system form

the basis of ground truths for following frames. The use of a single frame of reference

is a naive approach to image segmentation as the changes in the scene do not form

a historical basis for segmentation of future frames. This creates difficulty in setting

boundary conditions and thresholds in order to define rules which govern the detection

of events. Additionally, regions of noise are not effectively eliminated as the use of

only a small number of distributions for the entire image does not facilitate adequate

segmentation depth. The utilisation of an iterative model, which places lifetime con-

straints of the input, allows previous inputs be used in determining the classification of

the pixel components. Additionally, by segmenting the image according to the entire

frame, localised image features are able to affect the segmentation as a whole. This was

not considered to be desirable, as anomalies are required to be localised. In order to

localise anomalies, the segmentation model must encompass many sub-models which

segments the image according to local features, not the features of the neighbouring

regions.

The Effect of Locality

With these limitations in mind, it was noted that methods which rely solely upon

the current image did not present a suitable method of segmentation for use with this

application. As events in the foreground are assumed to be sparse, a method which does
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not rely upon absolute or “forced” segmentation was investigated. Clustering-based

methods assign pixel components to distinct clusters for which the distribution can be

modelled through the formulation of fitted distribution. Typical methods involving the

clustering do not assume that the image will always contain foreground. Models which

are mature and correctly configured will allow for greater accuracy.

The use of a mixtures model allows that the distribution of these clusters be modelled

according to a weighted mixture of components which are updated upon each new

sample to form an adaptive threshold for image segmentation. However, in the case

where events are considered local,, the use of a mixture of only a few components for the

entire image yields many of the same issues as the histogram based methods discussed

previously.

A localised method of mixture modelling calls for the image to be divided into a number

of regions. These regions can be as a small as a single pixel, or many encompass many

pixels. Modelling each of the regions as a separate mixture of Gaussian components

allows for local history to be preserved resulting in more accurate and robust segmen-

tation. By defining the local segmentation in terms of the history of local features,

this enables each part of the image to be considered independent from all others. This

enables the model to cope with gradual changes, and changes will not have bearing

upon any other locale.

The Gaussian Mixture Model

The Gaussian Mixture Model (GMM) provides a clustering means of estimating the

background and foreground distributions through a sum of weighted Gaussian distri-

butions. In essence, it provides a parametric probability density function describing

the distribution of pixel values against background and foreground. (Reynolds 2008)

The GMM can be described by the equation:

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (2.5)
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Where,

• x is a D-dimensional data vector (in this case, an image)

• The mixture weights are represented by wi, where i = 1, . . . ,M

• g(x|µi,Σi) represent the Gaussian component densities. Again, i = 1, . . . ,M .

(Reynolds 2008)

The Gaussian component densities are represented by a D-variate Gaussian function.

This function takes the form of:

g(x|µi,Σi) =
exp {−1

2(x− µi)′Σ−1
i (x− µi)}

(2π)D/2
√

(|Σi|)
(2.6)

Hence,

• µi is the mean vector, representing the mean for each component.

• Σi is the covariance vector

The mixture weights must satisfy the condition that their sum must add to one (i.e.∑M
i=1wi = 1). (Reynolds 2008)

The use of a GMM for background subtraction has been widely discussed. An imple-

mentation of a GMM with fixed parameters only has a limited scope of application

(Stauffer & Grimson 1999). A common application of the GMM, is to model the base

image (the background) and compare the error of incoming images with the established

model according to a fixed threshold across a fixed number of components. (Stauffer

& Grimson 1999). As changes in the background occur (such as a change in the in-

tensity or direction of shadows), a fixed parameter model will accumulate an error and

potentially allow for spurious event indicators (Stauffer & Grimson 1999).

In order for a system to be robust and not rely upon the user to follow a set of guide-

lines for its placement or make assumptions regarding the visual parameters of the
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environment, the system should be able to adapt to it’s surroundings. (Stauffer &

Grimson 1999). Variations of the GMM make use of adaptive parameter settings

(Stauffer & Grimson 1999) (Zivkovic 2004) (Dar-Shyang 2005) to adjust to gradual

scene changes in order to successfully model the background under varying lighting

conditions. Zivkovic (Zivkovic 2004) suggests a recursive method to adaptively select

the appropriate number of Gaussian components for each pixel. This method differs

from more common methods (Stauffer & Grimson 1999) as there is no fixed number

of Gaussian components. This employs the locality principle discussed in the previous

section, as all parts of the image are considered to be independent and uncorrelated.

To explain the implementation of the adaptive GMM in the algorithmic structure pro-

posed by Zivkovic, we assume that the value of a pixel at time t is denoted by ~x(t),

the pixel classification as foreground or background can be described as (Zivkovic &

van der Heijden 2006):

p(BG| ~x(t))

p(FG| ~x(t))
=
p(BG)p(BG| ~x(t))

p(FG)p(FG| ~x(t))
(2.7)

Assumptions surrounding the presentation of foreground objects cannot be made as

there is no information regarding how they are be presented, or when they will appear.

This concept is especially important in cases where relevant motion does not occur on

a spatially or temporally consistent basis. As such, a uniform distribution is applied to

the appearance of foreground objects. Thus, the classification decision can be described

as (Zivkovic & van der Heijden 2006):

p( ~x(t)|BG) > cthr (2.8)

cthr is the component threshold value and is described by:

cthr =
p(FG)p(FG| ~x(t))

p(BG)
(2.9)

(Zivkovic & van der Heijden 2006)
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The background model, p(BG| ~x(t)), is estimated according to a training set, χ (Zivkovic

& van der Heijden 2006). In the context of a system which processes data in or near

real-time, the training set refers to a stream of incoming frames (such as from a camera

or pre-recorded sequence). The training set is used to update the estimated model

and in turn to classify pixels as foreground or background. In practice, assumptions

cannot be made about the stability of the captured scene. It is assumed that the

sample inputs are independent, and that adjacent pixels are uncorrelated. (Zivkovic &

van der Heijden 2006). Realistically, consideration must given to the fact that objects

could be removed from the background or placed in the scene to become part of the

background. Thus, to ensure that the model eventually adapts to these changes, the

training set samples must have a limited lifespan. This is performed by discarding

samples which are older than a given interval (Zivkovic & van der Heijden 2006). This

time interval is determined by the adaptation period, T . The learning rate is therefore,

α = 1/T . (Zivkovic & van der Heijden 2006)

If we denote the overall model estimation as, p̂(~x|χτ , BG+FG), where at time t, χτ =

{x(t), . . . , x(t−T )}, referring to equation 1, an M component GMM can be represented

by:

p̂(~x|χτ , BG+ FG) =
M∑
m=1

wig(~x, ~µm, ~σm
2I) (2.10)

Where,

• ~µ1, . . . , ~µm are the estimated pixel means

• ~σ1, . . . , ~σm are the estimated variances of the Gaussian components

• I is the identity matrix

According to Titterington (Titterington 1984), the model can be updated recursively.

Given a new set of sample data, ~x(t), the components weights, pixel means and variances

can be updated according to:
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wm = wm + α(o(t)
m − wm) (2.11)

µ̂m = µ̂m + o(t)
m (α/wm) ~δm (2.12)

~σm
2 = ~σm

2 + o(t)
m (α/wm)( ~δm

τ ~δm − ~σm
2) (2.13)

Where,

~δm = ~x(t) − ~µm (2.14)

In the context of Titterington’s equations, α denotes an exponentially decaying window

used as a weighting for the data samples. (Titterington 1984) As discussed previously,

the learning rate is defined according to the adaptation period, and thus α in this

context can be assumed to have the same effect.

The ~om terms represent the ownership of a sample by an existing Gaussian component.

For new samples, this is initialised to 1 for the closest component with the most weight

(i.e largest value of wm). All other components are set to 0. (Zivkovic & van der

Heijden 2006).

To determine the ownership, the squared distance is calculated in terms of the mth

component by (Zivkovic & van der Heijden 2006):

D2
m(~x(t)) =

~δm
τ ~δm

~σm
2 (2.15)

The definition of close is determined by comparison against an arbitrary threshold.

(Zivkovic & van der Heijden 2006) If a component is not found within the bounds of

such a threshold, it is not considered close. In such cases a new component must be

initialised. The parameters of such a component are initialised according to the model

settings. A typical configuration is as follows:
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• wM+1 = α

• ~µM+1 = ~x(t)

• ~σM+1 = σ0, where σ0 is an appropriate value for initial variance.

(Zivkovic & van der Heijden 2006)

If the maximum number of components has been reached, the component with the least

weight (the smallest value of wm) is discarded.

The number of components can be determined according to the adjusted update equa-

tion (Zivkovic & van der Heijden 2006)

wm = wm + α(o(t)
m − wm)− αcτ (2.16)

If the GMM is initialised with a single component centred on the first sample, and

new components are added in accordance with the criterion defined by equation 2.11,

the component m is discarded when the weight, wm becomes negative. In essence,

components which are not supported by the incoming data are removed, and compo-

nents which are supported are added. (Zivkovic & van der Heijden 2006). The value

of cτ is used to discriminate against components which are not supported. For a given

adaptation period, a suitable interval to determine support levels is required. Assum-

ing an adaptation period of T , the level of support required for a component will be

determined against a given value of cτ . This will be an arbitrarily defined threshold

depending upon the level of sensitivity which is required. A smaller value of cτ dictates

that an entity must be consistently present for a longer interval in order to register as

a valid component. Likewise, larger values of cτ will depreciate the weighting of the

component and cause it to be discarded faster. (Zivkovic & van der Heijden 2006).

The use of the method proposed by (Zivkovic & van der Heijden 2006) ensures that

motion which adheres to some level of periodicity (i.e. breeze causing leaves to move)

or motion which is not deemed to be in the foreground of the image is eliminated

from the field of interest. This also allows for the background to change in situ, as
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elements which were previously registered as foreground will eventually be transformed

to a background component as observation time increases. This supports the need for

a locality aware segmentation method.

In much the same manner as the Otsu method, the output matrix can be used to

eliminate pixels which are not of observational interest.

Computational Performance Considerations

The method proposed in (Zivkovic 2004) offers the potential for a high level of ac-

curacy at the cost of a comparatively high computational complexity. On embedded

devices with low computational power, the use of this method could pose a significant

performance threat.

The reliance upon floating point arithmetic must also be taken into consideration. A

hardware floating point unit (FPU) would need to be present on the system, as emulated

floating point calculations will further degrade performance.

Compressive Sensing for Gaussian Mixture Models

The application of compressive sensing to background subtraction (Shen et al. 2012)

offers the potential for a significant performance increase whilst not limiting the ac-

curacy of the model output. The method proposed by (Shen et al. 2012) draws upon

similar concepts to that proposed in (Zivkovic 2004), again by modelling locales as in-

dividual mixtures model. The compressive sensing is applied by modelling each pixel in

terms of compressible vectors. These compressible vectors allow the reconstruction of

a dense vector from the sparse projection vector. By modelling the projection vectors,

the number of Gaussian components is reduced significantly. (Shen et al. 2012)

For compression purposes, let φ equal a ±1 Bernoulli matrix. (Shen et al. 2012) The

probability of the values of the matrix is computed using a symmetric Bernoulli distri-

bution, bounded between ±1. For optimal performance, the matrix must be balanced

in that the sum of each row in the matrix will be equal to zero.(Shen et al. 2012) The
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dimensions of φ will be dependant upon the size of the compressible vectors, and the

number of projections which are to be modelled.

The image need then be divided into N × N blocks. In order to model each of the

components as M projections, φ needs to be sized accordingly. The recommendations

put forward in (Shen et al. 2012) suggest a suitable value of M and N to be 8, as using

a block size of 64 pixels and modelling to 8 projections allows for an even balance

between performance and accuracy. To form compressible vectors, each of the blocks

is subsequently vectorised to form a N2 × 1 matrix.

The compression step involves a reduction in the number of components contained

within the modelled block. This is achieved by way of a simple matrix multiplication

between the compressible vector and φ. Note that the same φ is used for all blocks in

the image. Thus, if y is a projection vector, and x is a compressible vector:

y = φ× x (2.17)

y will be an M × 1 projection vector. The projections are then modelled using a

mixture of Gaussian distributions which greatly mimics the way in which it was applied

in (Zivkovic 2004). Given that x is compressible, given a constant value of φ and an

appropriate value of M , it is apparent that the value in y contains almost all of the

same information in x. (Shen et al. 2012) Thus, the projection vectors can be used to

determine which parts of the image are foreground.

The speed increase is achieved by the fact that number of components which are rep-

resented by the mixture of Gaussians is much less. Considering a traditional model,

consisting of three Gaussian components per pixel for a block of 64 pixels. This equates

to 192 Gaussian components. Using compressive sensing, the 64 pixel block is com-

pressed to a 8 projections. At 3 Gaussian components per projection, this equates to a

mere 24 total Gaussian components. The factor of eight reduction offers a great speed

advantage over traditional models. (Shen et al. 2012) The use of synthetic test sets sug-

gests that the addition of the compressive sensing offers a speed increase of 5 - 7 times.

(Shen et al. 2012) When comparing the performance of a traditional Gaussian Mixtures
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model to the compressive sensing method, an image of 320 × 240 passes through the

compressive sensing method in 56.6 ms, as opposed to the previous method in 280.88

ms. (Shen et al. 2012)

GMM Suitability

The Gaussian Mixtures Model presents a potentially suitable method of classifying

locales within the image. Hence, the Gaussian Mixtures Model was recommended as

the image segmentation method for incorporation into the design of the vision system.

The non-compressive and compressive sensing GMM were considered for suitability. It

was necessary to evaluate and compare the performance both techniques. The method-

ology and outcomes surrounding these tests will be discussed in a later section.

2.3.2 Motion Detection Using Optical Flow

The use of a background subtraction technique allows the system to be ignorant of any

parts of the image which are not deemed of observational importance. However those

parts which are deemed to be important must be observed for changes which indicate

an event has occurred.

Optical flow mathematically models the apparent motion of elements within an image,

in terms of relative motion between frames in a sequence of images. In essence, it is a

form of motion detection which aims to model the movements of an image in terms of

motion and velocity vectors. In some cases, this can be used to model and track the

motion of objects within the frame. For the purposes of this system, optical flow will

only be used to detect the presence of objects which are moving, and any information

collected regarding their trajectories will be disregarded. Thus, a method of optical flow

which localises motion to defined features in not suitable. Hence, a method assumes

that the features to be tracked are present in the frame a priori (sparse optical flow) is

not suitable for this application. Dense optical flow estimates the motion of the entire

frame, based upon the difference between sequential frames.
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The Farneback Method of Optical Flow

The Farneback Method of Optical Flow provides an estimation of dense optical flow

based on polynomial expansion. (Farneback 2003) For the purposes of explanation,

the polynomial which models the pixel neighbourhoods are assumed to be a simple

quadratic. (Farneback 2003) If A is a symmetric matrix, b is a vector and c is a scalar,

the local signal model can be expressed as:

f(x) = xTAx+ bTx+ c (2.18)

(Farneback 2003)

By defining two frames, f1(x) and f2(x), f2(x) is able to be represented as a global

displacement d of f1(x). (Farneback 2003)

As such:

f2(x) = f1(x+ d) (2.19)

Thus,

f2(x) = xTA1x+ (b1 + 2A1d)Tx+ dTA1d+ bT1 + c1 (2.20)

This can be simplified by equating the polynomial coefficients to incorporate the pre-

vious frame’s coefficients:

A2 = A1 (2.21)

b2 = b1 + 2A1d (2.22)

c2 = dTA1d+ bT1 + c1 (2.23)

(Farneback 2003)
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The global displacement, d is able to be calculated provided that at least the matrix A1

is non-singular. This observation will hold true for any level of signal dimensionality.

(Farneback 2003) As such:

2A1d = (b1 + b2) (2.24)

d =
1

2
×A−1

1 (b1 + b2) (2.25)

Each of the pixel neighbourhoods is thus tied to a motion constraint between the two

frames. (Farneback 2003) This would be especially useful should motion need to be

predicted, however for this project the use of an optical flow method was investigated

for the purposes of motion detection in relevant parts of the frame. Hence, motion is

present within the frame if motion vector components with a magnitude other than

zero is detected.

In terms of the vision system, the details of the optical flow method itself were not

considered to be important, as there is no need for a high level of accuracy. The

Farneback optical flow method was considered to be adequate and was recommended

for use in the prototype.

2.4 Chapter Summary

In this section, the literature surrounding current wildlife monitoring methods has been

identified. The shortcomings identified in current methods are a prime candidate for

improvement by the development of a suitable vision system. The need for an accurate

and reliable means of data collection can be greatly supplemented by the use of an

embedded system. Such a system must provide a higher level of accuracy in species

counting and tracking, and provide near-real time data return whilst still remaining

cost effective and minimising the impact on habitat and the environment.

The proposed camera system will include the use of a background subtraction method.

The Gaussian Mixtures Model provides an effective means of localised segmentation

and masking the areas which are not of observational note. The methods proposed by
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(Zivkovic 2004) and (Shen et al. 2012) are to be compared for suitability in terms of

performance and accuracy when utilising an embedded system.

When combined with an optical flow method, motion in the relevant sections of the

image can be detected. This project will investigate the method proposed in (Farneback

2003) for the purposes of event detection.



Chapter 3

Methodology

3.1 Chapter Overview

This chapter covers the research and development methodology utilised for the devel-

opment of the vision system and the evaluation of it’s performance. This chapter also

details risks and hazards and suggests suitable mitigation strategies for their minimi-

sation. Any resources which are required for the completion of each of the stages of

development are outlined in this chapter.

3.2 Research and Development Methodology

The research and development methodology contained herein was developed with an

understanding of how the deliverables would be achieved. This led to a logical break-

down of major tasks.

The development of the vision system called for the design and production of an unsu-

pervised and autonomous system which was able to process frames in real time. The

frame process was to be able to distinguish relevant motion from sample frames in or-

der to minimise spurious captures. The recording state was to be determined on a per

sample basis and be efficient in implementation so as to allow operation in real time
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on an embedded device.

The images recorded by the system were to be stored in static storage and be accessible

remotely. Thus, the project called for the development and implementation of a number

of distinct layers. These layers formed the basis of the system and encompassed both

hardware and software components.

At the hardware level, the system required a camera to capture the images and a

suitable interface to retrieve the images for processing. The camera was to be connected

to a suitable computer device with suitable support software for resource management,

networking and device control.

The hardware layer was to be supplemented by a software platform which implemented

a retrieval and buffering method. This layer was designed to feed frames from the

camera to the processing software. Finally, the software system was be able to be

“triggered” and store the recorded images in static storage. As such, several distinct

layers were identified:

• Camera control and buffering layer.

• Frame processing and triggering layer.

• Recording and storage layer.

The interactions between the software and the hardware layers can be illustrated by

the block diagram shown in Figure 3.1.

The evaluation of performance and validation of requirements required the definition

of performance metrics and the design of suitable testing methodologies and analysis

strategies. The outcomes of this step formed the recommendations for further enhance-

ments and suggestions of future research.

Due to the modularity of the project, an incremental development methodology was

adopted. This placed an emphasis on “test first” ideals, and encourages a more mod-

ular design with decreased dependencies. The modularity of the data structures and

algorithm implementations encouraged code reuse throughout the software base.
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Figure 3.1: System Block Diagram

3.3 Task Analysis

The project methodology was refined to the following major steps:

• Investigation of suitable target devices (embedded computer) and support soft-

ware and hardware.

• Investigation and implementation of possible suitable image processing techniques

and algorithms.

• Design and implementation of a suitable camera control and frame buffering layer.

• Design and implementation of a suitable recording and storage layer.

• Full system integration and testing.
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• Performance evaluation and recommendations of suitability, improvements and

recommendations of parameters.

• Delivery of a suitable software prototype.

These tasks were identified as milestones for system development and as indicators of

project progress. The following is an analysis of the details of each of the tasks and

identifies any resources which are required for their completion.

3.3.1 Camera Control and Buffering

The vision system required a software layer to control the camera and buffer frames.

The camera control layer must be able to interface with the camera and retrieve in-

coming frames from the internal buffers provided by Video4Linux. The camera control

mechanism was to include a method to set the frame size and desired frame (sample)

rate.

The buffering mechanism involved the development of a thread-safe (producer-consumer)

frame buffer which is self contained and provides suitable methods for adding and re-

trieving frames.

The resources required for this task were:

• Suitable camera

• Working driver and API to control camera and retrieve incoming frames

• An API which provides suitable thread safety mechanisms (condition variables,

mutexes)

3.3.2 Image Processing

The vision system required the implementation and development of suitable image

processing techniques and algorithms. This layer was also required to interface with
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the frame buffering mechanism described in the previous section. Incoming frames are

to be processed to determine if relevant motion is occurring. The frame processing

sequence was broken into four steps:

• Frame preprocessing

• Background subtraction

• Postprocessing

• Motion detection

To facilitate event detection, consideration was given to selection of a suitable sam-

pling rate. If the processing sequence is not able to be performed at a suitable speed,

successful segmentation of the background will not occur. An additional concern is the

detection of fast moving objects. A faster sampling rate will increase the chances of

detection of objects moving through the field. As such, the background modelling and

processing stages were to be computed by the Pandaboard at a speed which can be

considered greater than or equal to real time in order to ensure that buffer overflow

does not occur.

This layer was to also provide the means for user configurable parameters which affect

the output of background subtraction and motion detection. This was to be config-

urable by the user and must not require recompilation, as different use scenarios will

require that parameters be set accordingly to ensure optimal segmentation and detec-

tion.

The resources required for this task are:

• A source of input. This could take the form of the camera control and buffering

layer or a synthetic source.

• A library which provides the requisite data types and rudimentary routines for

preprocessing and postprocessing.
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3.3.3 Recording and Storage

Upon processing of frames, if an event has been detected the frame sequence is to be

recorded to a file and stored on a static medium for later use. If a suitable Internet

connection is available, these files will be synchronized to a remote server for retrieval.

To avoid large file sizes and facilitate rapid return of data, each file will contain only the

events of a single hour. Thus, this task called for the implementation of suitable output

measures, configuration of storage mediums and the production and modification of

support scripts to facilitate data return.

The resources required for this task include:

• A working buffering mechanism.

• Static storage medium of sufficient size.

• Support scripts to allow synchronisation of recordings to remote machine.

3.3.4 Testing, Evaluation and Benchmarking

To validate the performance of the system it was necessary to define ground truths

which allow a benchmark of performance to be determined. There are several data sets

which are openly available which provide such a benchmark. These test sets will be

used to validate the accuracy of detection and define boundary conditions for detection.

The aim of this task was to validate the algorithm and signal processing techniques.

The software system was also tested to ensure that it is able to operate as a complete,

self supervised system.

The resources required for this task are:

• All working components.

• Synthetic data sets annotated with existing ground truths.
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• Configured test hardware.

The selection of the test sets will be discussed in a later chapter.

3.4 Resource Stipulations

Due to cost factors and limitations of hardware and software availability, the project

requirements stipulated that several key pieces of hardware and software were be used.

3.4.1 Development & Deployment Hardware

A development workstation which is capable of running a similar environment to the

target device is required for ease of development. The GNU/Linux operating system

provides a free (open source) and robust UNIX-like environment whilst targeting many

devices. Such an environment is able to support the necessary tools suitable for use

with this software system.

The Ubuntu Linux distribution (Canonical Ltd. 2012) provides a simple package man-

agement system which allows a wide variety of software packages to be added to the

system easily. Ubuntu also provides precompiled binaries which target a wide variety

of architectures and a large repository of device drivers. The most recent Ubuntu re-

lease (Ubuntu 12.04) is a long-term support release, meaning that software updates will

be available for five years. Thus, Ubuntu was considered a suitable target operating

system for this project due to the steady development regime and it’s portability.

The use of Ubuntu Linux allowed the selection of standardised hardware for develop-

ment. The development workstation chosen for this project was a Dell Latitude E6410.

For the target device, consideration was given to price, power consumption, size, soft-

ware accessibility and computational performance. As image processing can be a com-

putationally expensive operation, this discounted many embedded devices as they sim-

ply do not provide sufficient computational ability for use with such a system. The
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target device selected for this project was to also feature an onboard Floating Point

Unit (FPU) in order to ensure sufficient floating point performance capabilities. Fur-

thermore, the target device was to support the standard software environment.

Due to cost limitations, and the availability of hardware, the Pandaboard (Pandaboard

2012) was selected as target device. The features provided by the Pandaboard include:

• Texas Instruments OMAP4430 system-on-chip. This includes a dual-core ARM

Cortex A9 CPU (with FPU).

• 1 gigabyte of RAM.

• 10/100 Ethernet.

• Bluetooth and WiFi connectivity.

• 2 x USB 2.0 ports.

• SD Card slot for operating system and local storage.

• 5W power consumption.

Figure 3.2: The Pandaboard
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(Pandaboard 2012)

The Pandaboard is well supported by the Ubuntu operating system. It is of note

that previous versions of Ubuntu do not support the Pandaboard’s onboard FPU,

merely providing emulated floating point computation. This significantly decreases

the floating point performance of the device and would render the Pandaboard an

unsuitable candidate. However, recent changes in the toolchain has led to the migration

to the “armhf” port of Ubuntu (as opposed to the previous “armel” builds which only

provide emulated floating point computation).

The final hardware component required was a suitable test camera. The camera was

to be weather proof and night vision capable. Due to cost limitations, the camera

selected is generic branded and little information is available. However, the following

specifications are available:

• 640 x 480 maximum resolution.

• 25 frames/sec (maximum).

• Minimum illumination: 0.5 Lux.

• Lens: f = 6mm, F = 2.4 (infrared)

• USB interface providing Y2C video signal.

The Video4Linux API (Linux TV 2011) provides a suitable USB Video Class (UVC)

driver interface to control the camera. This allowed the camera to be compatible with

a wide variety of software packages and libraries.

3.4.2 Software Development Tools

Due to the use of the Linux operating system, an emphasis was placed on the use of

open source software for development. The following software packages were added to

each of the Ubuntu systems.
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Figure 3.3: Test Camera

• build-essential - This package provides the GNU Compiler Collection, system

libraries and other development tools such as /usr/bin/make.

• vim - The vim editor (/usr/bin/vim).

• subversion - The Subversion source code management system (specifically, /usr/bin/svn).

The OpenCV Library

The OpenCV (Open Source Computer Vision) library (Bradski 2000) provides data

structures and algorithms for use in real time computer vision applications. Licensed

under the BSD license, the source code is freely available and is able to used as a basis

for building of vision-centred applications.

The OpenCV library provides a number of resources which were applicable to this

application:

• A rich C++ API

• Basic camera control, frame capture and recording classes

• Matrix data types with automatic allocation and deallocation of memory and

type conversion

• A wide selection of predefined image processing and vision algorithm
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• Methods for the creation of rich user interfaces, useful for debugging and data

collection

The OpenCV library is able to be linked to user code at compile time using the GNU

Compiler Collection. The data types and data handling routines provided by OpenCV

will be used as the core vision infrastructure for the system. The addition of specifically

written algorithms and classes will be used to extend the functionality provided by

OpenCV.

The utilisation of the OpenCV C++ API allowed the system to be portable to various

architectures should future requirements change. Many routines provided by OpenCV

include architecture specific performance enhancements, or make use of features pro-

vided by specific system. This was especially important for performance critical work,

whilst retaining portability. The use of a common API allowed the vision system to

be developed and tested on both the development workstation and the Pandaboard

without code changes.

The Boost C++ Libraries

Boost (Boost 2012) provides libraries which are intended to supplement and extend the

capabilities of the C++ programming language, and the standard template library. Of

particular relevance for this project, the Boost libraries provided:

• A runtime arguments parsing and handling library

• A rich threading library, built on POSIX threading paradigms and the provision

of thread synchronization types, such as mutexes and condition variables.

The Ubuntu Linux distribution provides packages which include the relevant devel-

opment files and prebuilt objects for linking with user code. Boost version 1.4.6 was

selected for this project.
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GNU Screen

GNU Screen (The GNU Project 2010) is a terminal multiplexer, which allows a console

session to contain many other console sessions. It can also be used to keep sessions

active even if there are no users logged into the system. This was a useful function for

the vision system to ensure that the vision software remains active on the system at all

times, and was selected to be used as part of the self supervision systems.

rsync

rsync (Tridgell, A. and Mackerras, P. 1996) is a network protocol and application

which can be used to synchronise directories and files on multiple machines over a local

network or the Internet whilst minimising the data transferred. Due to bandwidth and

cost considerations, the use of rsync is advantageous to the vision system, as under

deployment conditions the system could be reliant upon Internet connections which

are very costly when transferring large amounts of data.

OpenSSH

The OpenSSH (Secure Shell) protocol (The OpenBSD Project 2012) enables a secure

remote terminal to be opened on the machine via the Internet. This is useful to monitor

and administrate machines which are not local to the user but are able to be accessed

remotely. This was considered to be a useful feature for the vision system, as the

deployment site could be some distance from a convenient place of management.

Python

Python (Python Software Foundation 2012) is a high level, general purpose scripting

language. It supports a wide variety of standard library functions, many of which are

applicable to automation of tasks and machine administration. The Python language

was selected to form the basis of the self supervision tasks required by the vision system.
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3.4.3 Algorithm Verification Tools

The performance evaluation of the system was designed to demonstrate the suitability

of the signal processing techniques for the application. This task entailed the use of

synthetic test sets to be used as a ground truth for evaluation of the algorithms used

in the vision system.

To provide an accurate account of the target environment, considerations regarding

environmental and object variability were made. These considerations pertained to

parameters such as object size, shape, orientation, velocity and trajectory. Additionally,

environmental factors such as background topology, illumination and kinetic noise were

considered.

The consideration of these factors led to the selection of the “PETS2001” (Computational

Vision Group 2001) data set as the ground truth for evaluation and comparison.

Datasets 1, 2 and 3 were selected, each providing an increasing level of challenge to the

system. Dataset 1 was chosen to represent ideal conditions. Dataset 2 was selected to

represent typical conditions. The selection of Dataset 3 was to measure system per-

formance under worst case conditions, in order to place limitations and guarantees on

system performance.

3.5 Consequential Effects

3.5.1 Sustainability

The Institute of Engineers Australia (Engineers Australia 2000) provides a set of guide-

lines to form the basis of evaluation processes relating to environmental, socioeconomic

and cultural sustainability of projects over their lifetime.

The manufacturing of the equipment used in this project is outside the scope of control,

however the development of the vision system considered these sustainability strategies

and guidelines.
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3.5.2 Safety

Equipment used in the development of the vision system was required to conform

to relevant Australian and international safety standards. Where applicable, safety

precautions were taken to minimise the risk of exceptional circumstances which could

jeopardise safety.

3.5.3 Ethical Considerations

The Institute of Engineers Australia (Engineers Australia 2012) provides a code of

ethics which presents a list of guidelines for engineering practices. These guidelines

cover integrity, leadership, competence and sustainability. It is imperative that this

code of ethics be upheld at all times throughout the undertaking of this project. This

will ensure that the outcomes of this project are in line with the best interests of the

community, environment and sustainability.

3.6 Risk Assessment

The risks and hazards associated with this project have been carefully considered,

and strategies developed to minimise any impact to the ecosystem and any personnel

(including the designer and future users). Risks which also pose a risk to the progress

of the project have also been considered. Each risk has been categorised in terms of

importance and likelihood. For details of these risks and their rating see Appendix B.

3.7 Research Timeline

The tasks laid out in the previous section were fitted against a timeline. See Appendix

B.



3.8 Chapter Summary 39

3.8 Chapter Summary

In this chapter, the research and development methodologies to be used for the project

were identified. The project was divided into a set of deliverables, and a sequence

of tasks which were performed. The resources required for each of the tasks were

identified and a schedule for their completion was proposed. The risks undertaken in

the execution of this project have been outlined and strategies proposed to ensure that

risks were minimised during and after the completion of this project.



Chapter 4

Design & Implementation

4.1 Chapter Overview

This chapter provides details of the software design and implementation based upon the

requirements outlined in Chapter 3, and the existing methods and literature identified

in Chapter 2. The chapter will outline the signal processing methodology employed by

the vision system, and describe the software configuration and implementation.

4.2 Image Processing Methodology

In order to understand the implementation of the software system, it is necessary to

explore the methodology behind the image processing techniques selected for inves-

tigation. The implementation details of this image processing methodology will be

discussed in later sections.

As outlined in Section 3.3.2, the image processing routine was separated into four

stages:

• Preprocessing

• Background subtraction
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• Postprocessing

• Motion detection

4.2.1 Preprocessing

The frame preprocessing stage acquires incoming images from the frame buffer and

performs necessary formatting and type conversions. In order to remain compatible

with the background subtraction step, the incoming frames are converted to 8 bit

grayscale. Prior to background subtraction, a Gaussian blur filter is applied. The blur

filter element size is user configurable, so as to facilitate changes in sensitivity.

The blur filtering aims to accomplish two main tasks. The first is to remove noise

& artifacts introduced by the camera sensor, as well as modest amounts of ambient

noise. Additionally, by exaggerating the blur slightly, discernible detail within the

image is greatly reduced. The reduction of detail contained within the image, aims to

introduce a degree of tolerance to modest amounts of kinetic noise. It was hypothesised

that the amount of blur would have an effect on accuracy and sensitivity - too little

blur resulting in heightened sensitivity, and too greater blur resulting in missed events.

The two images shown in Figure 4.1 show the original frame (left) and the result of a

Gaussian blur with an element radius of 5 (right).

Figure 4.1: An example of Gaussian blur

It can be noted from the blurred frame that whilst the major details are still present,

the blur has obfuscated many of the finer details. For example, the trees in the blurred

frame have far less discernible features. By exploiting the fact that this application
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does not require the vision algorithm to be aware of the fine details of it’s surround-

ings, a degree of tolerance to the surrounding area can be introduced by deliberately

obfuscating the details of elements within the frame. However, noise which drastically

disrupts the pose of background objects will not be filtered. Thus, the use of a blur

filter imposed a limitation upon the amount of noise which can be tolerated.

The effect of the filtering element size upon the accuracy of the system was used as a

metric for evaluation in later sections.

4.2.2 Background Subtraction

As discussed in Section 2.3.1, the use of an image segmentation method to determine

areas of observational interest can be used to further increase the tolerance of the system

to it’s surroundings. The introduction of the Gaussian Mixtures Model in Section 2.3.1

outlines two suitable methods for investigation and performance evaluation.

The Gaussian Mixtures Model accepts user-configurable initial parameters in order

to facilitate optimal segmentation. These parameters will vary depending upon the

setting, and as such they are provided to the user for modification in a manner which

does not require modifying source code or recompilation.

As two separate GMM methods were investigated, the implementation of each method

is modular and minimises modification to existing code in order to substitute for the

opposing method.

Upon initialisation, the GMM requires a settling time in order to achieve model con-

vergence. As such, a period of time which allows the model to settle was defined. Prior

to the settling time elapsing, the system will not check for motion and thus no events

can be recorded. The settling time selected was 100 samples.
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Expectation Maximisation Algorithm

The use of expectation maximisation for model maintenance is common to the im-

plementation of both the non-compressive and compressive sensing Gaussian Mixtures

model. This section aims to outline the implementation of the algorithm in broad

terms.

To begin the component update, the absolute deviation from the mean is calculated. If

p represents the pixel value and k the component index, the difference can be calculated

according to:

∆ = |image[p]− component[k]| (4.1)

A component is considered a match if the deviation from the mean is less than the

deviation threshold, multiplied by the standard deviation of the component (or the

minimum standard deviation, whichever is larger). Additionally, the weight of the

component must be greater than the maximum weight, i.e. for N components the

maximum weight is 1
N . If a component does not match, a new component is created

with initial parameters in place.

The update equations defined in equations 2.11, 2.12 & 2.13 are used to maintain the

Gaussian components. Finally, the component ranking is calculated. The component

ranking allows the components to be sorted according to their respective weights. The

component is set to active if the sum of the component weights (not including the

matching component) is greater than the background threshold.

User Parameters

Both GMM implementations require the following user modifiable parameters:

• α - model learning rate (input gain)

• Maximum Gaussian components (typically 3 - 5)
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• Initial standard deviation

• Minimum standard deviation

• Deviation threshold

• Percentage of background components across the image

• Complexity prior

4.2.3 Postprocessing

The postprocessing step aims to further reduce internal and external noise. It is worth

noting that the objects which the system will observe have a dense make up in that

they can be considered to be solid objects, albeit with non-rigid poses. This distinct

characteristic separates valid events from noise.

The behaviour of the GMM to kinetic noise was examined and the morphological struc-

ture of the output was studied. The details of this investigation is explained in Section

5.4. The frames in Figure 4.2 show the output of a GMM when introduced to a mod-

erate amount of kinetic noise and the respective input frame.

Figure 4.2: GMM Behaviour - Kinetic Noise

The kinetic noise produces a sparse pattern of morphologically independent compo-

nents, many of which consist of an area of only a few pixels. The introduction of a

valid event into the frame, results in a mixed pattern of dense areas combined with the

observed noise pattern (see Figure 4.3).

To extract valid regions within the mask, an assumption must be made regarding the

density of components in areas which are to be considered noise. This is achieved by
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Figure 4.3: GMM Behaviour - Mixed Event

a Morphological Erosion Filter. The MEF reduces the area of morphological regions

which are not consistent with a preset density. (Gonzalez & Woods 2006)

The process of the erosion utilises a structuring element of a set size to be iteratively

compared with parts of the image to observe how the shape fits within the morphology

of the binary image. The size of the structuring element dictates the smallest allowable

size for a region within the image. Pixels which do not adhere to this size threshold are

set to zero, and as such the calculated mask is reduced to only consist of regions which

were deemed to be sufficiently dense (see Figure 4.4). (Gonzalez & Woods 2006)

Figure 4.4: GMM Behaviour - Eroded Mask

To facilitate detection, regions which pass through the MEF can be exaggerated by

an Morphological Dilation Filter (MDF). An MDF operates in converse to the MEF,

employing a structuring element to dilate the area of regions which fall within the

element. (Gonzalez & Woods 2006)

The utilisation of morphological filters placed a situational limitation on how kinetic

noise generators will present post-segmentation. Thus, the successful operation of the

morphological filter is largely dependant upon the quality of image segmentation pro-
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vided by the GMM and the amount of kinetic noise present. This imposed limitation

was considered as a compromise, as it was assumed that most spurious events only

consist of mild to moderate changes in the calculated mask.

The level of noise tolerance provided by each of the image segmentation techniques was

selected as a metric for evaluation. It was hypothesised that the CSGMM would not

be as tolerant of noise, due to the reduction in the resolution of the locales modelled

by the mixture of Gaussians.

4.2.4 Motion Detection

The detection of motion in the calculated mask relies upon the calculation of the optical

flow, with reference to the current postprocessed mask and the previous mask. Thus,

the system was required to be aware of the previous frame. The optical flow calculation,

as described by the Farneback method in Section 2.3.2, produces a dense motion vector

field. The detection of motion is reliant upon the presence of motion vectors with a

magnitude other than zero.

4.3 System Configuration

This section describes the configuration of the development and runtime environments

and the software configuration management strategies employed.

4.3.1 Software Installation

Ubuntu Linux 12.04 was installed on both the workstation and the Pandaboard. For the

workstation, the standard amd64 image was selected. For the Pandaboard, the armhf

server image was selected as it features a kernel which supports preemptive scheduling.

The development environment on both machines was intended to be identical, however

cross compiling was not employed for this project. It was decided that all code which

was produced must be able to be compiled on both the workstation and the Pandaboard
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by merely changing compiler flags.

First, the GNU Compiler Collection, GNU Make and the relevant system libraries were

installed via the build-essential package. The OpenCV libraries were installed on

both machines by invoking the package manager with:

sudo apt-get install libcv* libopencv* libhighgui*

This installed OpenCV 2.3.1 and the necessary development header files to the system.

The Boost C++ Libraries (version 1.4.6) were then installed with:

sudo apt-get install libboost.*1.4.6.1 libboost.*1.4.6-dev

The following command was then used to install the OpenSSH daemon, rsync and the

Python interpreter:

sudo apt-get install openssh-server rsync python2.7

Upon installation, the linker was configured with the command, sudo ldconfig to

ensure that the newly installed libraries were able to be linked at compile time.

4.3.2 Configuration Management

The Subversion (SVN) system was selected as the configuration management system

for this project. Source code and documentation directories were created and added to

the CSIRO SensorNet SVN tree. This was used to maintain synchronisation between

the workstation and the Pandaboard and also to maintain revision history of source

code.

4.3.3 Compiler and Linker Flags

GNU Make was selected as the build system for the project. The prototypical Makefile

assumes that g++ is available on the system, along with all requisite libraries.

For compiling on the Pandaboard, the following flags were defined:
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-03 -Wall -Wextra -pedantic -std=c++0x ‘pkg-config --cflags opencv‘

-ffast-math -funroll-loops -mfloat-abi=hard -mfpu=neon -march=armv7-a

-mcpu=cortex-a9 -mtune=cortex-a9

These flags were necessary to ensure that floating point arithmetic was performed on the

hardware FPU and not in emulation. The -ffast-math and -funroll-loops options

were added for performance reasons. Flags specific to the ARM Cortex CPU were

added to ensure that optimisation for the architecture was performed by the compiler.

Of particular note is inclusion of the -mfpu=neon flag. The use of ARM NEON will be

discussed in a later section.

The linking flags were defined as:

-lboost_thread -lboost_program_options ‘pkg-config --libs opencv‘

All code presented in this document will compile without warnings when used with the

included Makefile. The entire Makefile is included in Appendix C.

4.4 Implementation

The following sections describe the software implementation of each of the vision system

components. Note that all code described here is listed in Appendix C unless otherwise

stated.

The working title of the prototypical vision software was “FurryCap”.

4.4.1 Frame Buffering

The first component that the system required was a frame buffer to queue incoming

frames. The frame buffer was implemented as a template class in order to interface

with the OpenCV cv::Mat type.
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The frame buffering mechanism is able to be accessed by multiple threads simultane-

ously. The class was designed with Mesa-style synchronization semantics in mind. The

synchronization objects (scoped locks & mutexes) are provided by the Boost library,

and are types boost::mutex::scoped lock & boost::mutex respectively.

template<typename T>

class ts_buffer

{

private:

std::queue<T> payload;

mutable boost::mutex m;

boost::condition_variable cond;

public:

void push ( T const& data );

bool is_empty ( void ) const;

bool try_get ( T& val );

void get( T& val );

};

Figure 4.5: Thread-safe Frame Buffer Class Prototype

Figure 4.5 shows the template class declaration with the details of the member functions

omitted. For a complete listing, see Appendix C. The push() & get() member func-

tions allow data to be pushed and retrieved from the buffer respectively. is empty()

indicates whether the buffer contains data.

4.4.2 Camera Control

The camera control layer was designed to interact with the Video4Linux API via the

cv::VideoCapture object. The VideoCapture object allows different cameras con-

nected to the system to be selected and settings regarding their capture stream to be
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retrieved and set. The constructor for the VideoCapture object allows for the camera

to be selected from the system’s device file system. When connected to the system,

UVC cameras will register as /dev/videoX, where X is the device number starting at

0. The VideoWriter constructor will accept this argument to differentiate between

cameras in cases where multiple devices are connected. As such, the camera control

layer was designed to accept this as an argument at run time.

Furthermore, the VideoCapture class enables parameters regarding the input stream

to be set. This includes frame size and sample rate. The frame size and sample rate is

to be configured by the user. A default frame size of 320×240 was selected. The frame

size can be set using the set() member functions. The prototypical software included

with this dissertation also offers the ability for the system to capture frames of sizes

160× 120 and 640× 480. This was added for the sake of complete customisability.

cv::VideoCapture cap;

cap.set(CV_CAP_PROP_FRAME_WIDTH, 320);

cap.set(CV_CAP_PROP_FRAME_HEIGHT, 240);

Figure 4.6: Setting frame size

A limitation with regards to frame rate was discovered in that Video4Linux does not

support any other frame rate other than the full frame rate supported by the camera.

The camera selected for the prototype system supports only 30 frames per second. As

such, to emulate lower sampling rates, a frame counter was configured to only place a

frame on the buffer if it conforms to the selected sampling rate. However, the assertion

is made that the sampling rate must be a factor of the actual frame rate. The frame

buffer declared for use with the capture routine is accessible by the frame processing

routine. Thus, the frame buffer instance was declared as a global variable. This routine

may require modification in cases where the camera is able to be correctly supported

by Video4Linux.

The capture control routine was encapsulated within the function cap main(). A full

source listing is available in Appendix C.
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4.4.3 Background Subtraction

In the interests of modularity, the background subtraction methods were each im-

plemented as interchangeable sets of functions and classes. Each Gaussian Mixtures

Modelling method included the use of expectation maximisation update algorithm to

maintain the components.

To aid speed, all memory was allocated upon initialisation of the models. The use of ex-

pectation maximisation for model maintenance required the use of hardware supported

floating point arithmetic for optimal performance. Emulated floating point arithmetic

is supported, however the use of such will reduce performance.

Non-compressive Gaussian Mixtures Model

The implementation of the Non-compressive Gaussian Mixtures Model consists of three

separate classes. The first class contains the user parameters. Upon instantiation,

model initial parameters can be set by the user and passed to a model object. The

architectural design for this model was inspired by the implementation presented by

(Parks, D. 2011).

The user parameters class structure consists of:

typedef struct GMM_User_Params

{

float low_thresh;

float high_thresh;

float bg_thresh;

float alpha;

float cp;

float var;

int max_components;

} GMM_User_Params;

Figure 4.7: GMM User Parameters Class
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Each of the Gaussian components is represented by the following class:

class GaussianComponent

{

private:

float R_mu, G_mu, B_mu, sigma, w;

public:

GaussianComponent();

void set_mu(float, float, float);

void set_w(float);

void set_sig(float);

float r_mu(void);

float g_mu(void);

float b_mu(void);

float weight(void);

float sig(void);

}

Figure 4.8: GMM Component Class

It is of note that this model is capable of working with 3 channel images. In the interests

of completeness, the implementation was designed with this capability. However, in the

interests of comparability, only grayscale planar images with be modelled. The use of

color need not be investigated, as in the case where the incoming frames have been

sensed from the infrared capabilities of the camera, no color information is discernible.

The final class contains the Gaussian Mixtures Model itself, complete with EM main-

tenance algorithm.
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class GaussianMixtures

{

private:

void setup(const cv::Mat);

void subtract(const RGB_Img&,

Mask&,

Mask&);

int pix_update(long,

const Pixel&,

int,

unsigned char&,

unsigned char&);

int calc_comp_pos(int,int);

bool fframe;

long framen;

float low_thresh, high_thresh, bg_thresh, alpha, cp, var;

int max_components, f_width, f_height, f_sz;

std::vector<GaussianComponent*> comp;

std::vector<int> comp_per_pixel;

IplImage *frame;

RGB_Img _frame, mod_bg;

Mask l_mask, h_mask;

static const int BG = 0;

static const int FG = 255;

public:

GaussianMixtures();

GaussianMixtures(const GMM_User_Params&);

void process(cv::Mat const&, cv::Mat&);

}

Figure 4.9: GMM Class
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The data types used for this model are not standard to OpenCV, however are merely

wrapper classes which provide easier pixel access than the legacy IplImage type. These

wrapper classes were developed during an early implementation of the design and have

been carried over to the final implementation. As a design improvement, the reliance

upon these abstract types could be alleviated by taking advantage of the features for

pixel-wise access provided by cv::Mat. These modifications would be merely cosmetic

and for stricter compliance with the latest OpenCV API. The wrapper classes are

included in Appendix C, under “type wrappers.hpp” and “type wrappers.cpp”.

Whilst the architecture is similar to the implementation presented by (Parks, D. 2011),

there are several key improvements which have been taken into account in the interests

of compatibility and best practices. The implementation presented in this dissertation

makes exclusive use of the standard library. Additionally, the model maintenance

routines were updated to make use of new features provided by the OpenCV library,

and some performance improvements.

The GaussianMixtures class provides a constructor which accepts a parameters struc-

ture. This constructor will set the internal parameters to the configuration defined in

the parameter structure.

The process() member function is the only user-accessible interface into the model.

This accepts the input frame (as a reference to a cv::Mat) and the reference to the

calculated mask. Internally, this function calls upon setup() (in the case of the initial

frame), and subsequently performs the necessary type conversions for the background

subtraction itself. As the GMM models upon a per-pixel basis, the subtract pix()

routine performs the EM component maintenance, orchestrated by subtract(). The

calc comp pos() function calculates the array indices of the GaussianComponent()

objects related to the current pixel.

The output returned from process() is a binary mask image of the calculated segmen-

tation. The model internally possesses a high and low threshold mask for use in the

next iteration.
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Compressive Sensing Gaussian Mixtures Model

The compressive sensing GMM operates in a similar manner to the standard GMM

discussed previously. The CSGMM implementation discussed here is largely based

upon the implementation used by (Shen et al. 2012). However, several modifications

have been made to ensure compatibility with this project and to enhance performance

on the ARM platform.

The initial implementation provided by (Shen et al. 2012) was written in pure C, and as

such, heap memory allocation was managed by calloc() and free(). In the interests

of compatibility and maintaining best practices, the implementation was modified to

make use of new and delete.

Additionally, extensive modification was made to the structure of the model by imple-

menting all associated functions and data structures inside a separate namespace. The

model structure is shown in Figure 4.10. The model was also extensively modified to

take advantage of the features offered by the ARM processor.

The namespace also includes the following functions for working with the CSGMM

model:

• init() - Initialise the model by passing user specified parameters

• destroy() - Deallocates the CSGMM

• process frame() - Performs the GMM update and compressive sensing projec-

tions

The process frame() interface accepts pointers to the data sections of the input

and output images, and byte steps describing their structure. For each frame, the

csProjection() function is called in order to extract block and perform the matrix

multiplication to reduce their dimensionality. The reference matrix is stored in static

memory as a member of the namespace, specifically, “csc”. The ARM platform allows

for matrix multiplications to be vectorized. This functionality is able to be utilised

by way of ARM NEON compiler intrinsics. If compiled for ARM, csProjection()
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will extract each block and perform each of the vector mutiply-accumulations as one

operation. The NEON intrinsics make available data type primitives representing the

slots of the NEON registers. (ARM 2012) The lookup matrix is defined as the int16 t

type, and as such the NEON intrinsic of interest is the int16x8 t type (ARM 2012).

This type represents a vector of eight signed 16 bit integers. In the interests of speed,

the lookup matrix is preallocated upon model initialisation.

Additionally, the use of the NEON intrinsics limits the number of projections to eight.

This is of no detriment, as the data presented by (Shen et al. 2012) suggest that a

projection size of eight presents an optimal balance between performance and accuracy.

After the projection is performed, the EM component maintenance routine is carried

out. This updates each component and sets up the mask for background. Background

refinement is performed by postProc(), and will transfer the projection outcomes to

pixels in the output mask image.
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typedef struct CSGMM_

{

uint32_t _width, _height;

uint16_t _numGau;

uint32_t * _rankIndex;

uint32_t _initWithImage;

uint32_t _numForegroundPixel;

float _df;

float _minStd;

float _bgGauTh;

float _alpha;

float _sdInit;

float * _weight;

float * _sd;

float * _rank;

float * _mean;

//Post processing variables

uint8_t _postProcTh;

uint8_t _postProcAlpha;

//Temp storage variables

uint8_t * _cIm; // the current planar intensity image

int16_t * _csr; // for storing compressive sensing output, width*heigh/8

uint8_t * _csmogr; // for storing mog output, width*heigh/8

uint8_t * _bkgnd; // background image;

uint8_t * _csm; // compressive sensing mask image

#ifdef __ARM_NEON__

int16x8_t neon_lookup[64];

#endif

} CSGMM;

Figure 4.10: CSGMM Model Structure
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GMM Performance Considerations

To enhance performance, the -funroll-loops compiler flag was added to the build

system to ensure that, where possible, repeated code compiles to sequential instructions

and minimises the use of branching.

Additionally, the -ffast-math flag was included to facilitate best-case floating point

performance. The decreased precision brought about by the use of this features was

not considered of detriment. (ARM 2012)

4.4.4 Postprocessing (Density Filtering)

The morphological erosion and dilation was performed via the cv::erode() and cv::dilate()

library functions. The structuring element size was defined as a local stack variable,

and instantiated with cv::getStructuringElement(). (Bradski 2000)

4.4.5 Motion Detection

The Farneback Optical Flow method was provided by the OpenCV library. The optical

flow between two frames can be calculated using the cv::calcOpticalFlowFarneback()

function. This function accepts the current frame and the reference frame, and returns

the vector field as a dual channel matrix. (Bradski 2000)

The cv::calcOpticalFlowFarneback() function also accepts the following parameters

which control the accuracy of the motion estimation:

• Number of iterations for polynomial fit refinement

• Neighbourhood window size

• Polynomial order to fit to motion

• Polynomial variance

• Pyramidal expansion scale
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(Bradski 2000)

The motion detection for this application does not rely on any information provided

by the vector field, other than the inclusion of non-zero motion vectors. The function

shown in Figure 4.11 calculates the optical flow between two frames, and places the

motion vectors into a user specified matrix. Upon calculation of the optical flow, the

flow field is selectively searched for the presence of non-zero components. The function

returns a Boolean to indicate the current trigger state.
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const float pyr_sc = 0.5;

const float levels = 3;

const float win_sz = 15;

const float iter = 3;

const float poly_order = 5;

const float poly_sigma = 1.2;

bool trig( cv::Mat& curr, cv::Mat& prev, cv::Mat& motion_vectors )

{

int i, j;

std::vector<cv::Mat> chans;

cv::calcOpticalFlowFarneback( prev, curr, motion_vectors,

pyr_sc, levels, win_sz, iter,

poly_order, poly_sigma , 0 );

cv::split(motion_vectors, chans);

// Test to see if there are non-zero motion vectors

for (i = 0; i < chans.at(0).rows; i++)

for (j = 0; j < chans.at(0).cols; j++)

{

if (chans.at(0).at<float>(i,j) != 0 || chans.at(1).at<float>(i,j) != 0)

return true;

}

return false;

}

Figure 4.11: Optical Flow Trigger Function
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4.4.6 Recording

To facilitate ease of data return and a logical organisation of collected data, the data

collected is separated into files based upon the hour in which they were collected.

OpenCV provides the VideoWriter class as an external interface for saving sequences

to files on disk within an AVI container. (Bradski 2000) The path where these files are

stored is able to be configured at runtime.

The EventRecorder class was developed to automatically configure the output file

based upon the hour and write frames to the file at the correct frame rate. The output

file is named according to the date and hour.

Object Velocity & System Response Considerations

To provide better context to the recordings, the PretrigBuffer class was developed to

hold a user configurable number of frames which are swapped out in a First-In-First-

Out manner. The context is provided by placing frames which do not contain an event

onto the pretrigger buffer, and subsequently placing the contents of this buffer into the

output file prior to later samples.

The experiment which led to the design of the pretrigger buffer is outlined in Section

5.4. The pretrigger buffer also provides a level of protection against delayed triggers.
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4.5 System Overview

The components of the system are illustrated according to the diagram in Figure 4.12.

Figure 4.12: System Component Interactions

4.5.1 Threading

Due to the need for real-time processing, each component of the system was separated

into threads. main() starts each component as a boost::thread object, and is added

to a boost::thread group object. (Boost 2012) All buffer objects are instantiated in

static memory in order to be accessible by multiple threads.

All configurable parameters are set through the use of runtime arguments, and are

either transferred to static variables or passed to each thread as an argument. The use

of runtime arguments allows for simple configuration by the user or scripted operations,

and eliminated the need for a configuration file and associated parsers.

The prototypical software presented in Appendix C accepts the following arguments:

• “help” - Displays the help message.
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• “c” - Set the capture device, i.e. /dev/video0 would be selected with “–c 0”. The

default device number was set to zero.

• “targ pb” - Sets the target device as the Pandaboard (frame size as 320× 240.

• “targ pc” - Sets the target device as a PC (frame size as 640× 280.

• “targ demo” - Sets the frame size to 160× 120.

• “pretrig t” - Sets the pretrigger buffer length.

• “rec t” - Sets the record time.

• “rec path” - Specified the subdirectory where the recording output is stored.

• “blur” - The blur filter element size. Defaults to 3.

• “f” - Set the frame (sample) rate. Defaults to 10 Hz.

• Gaussian Mixtures Model specific settings - learning rate, standard deviation,

background threshold, maximum components. As discussed in previous sections.

4.5.2 Frame Processing

The frame processing thread retrieves frames from the raw frame buffer (shared with the

capture thread), performs the image segmentation and motion classification operations

and subsequently operates the pretrigger buffer and the recording buffer.

A frame counter increases with each frame, and is used to calculate the end of the warm

up period (allowing the GMM to converge) and recording frame offsets. The suggested

time for the warm up period is 100 samples. The recording segment time is suggested

to be 5 seconds with a 5 second pretrigger buffer length.

The trigger state is managed by way of a state machine. The state machine will set

up the recording time offsets upon triggering, dump the pretrigger buffer and maintain

the recording buffer. Once the recording time has elapsed, the state is changed and the

cycle repeats.

The frame handling process is summarised in Figure 4.13.
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Figure 4.13: Frame Process Flow Chart
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4.6 Support Software

4.6.1 Self Supervision

The system is to be self supervised using the supervisor script (written in Python)

which is currently a part of CSIRO’s Sensornet deployment software base. The details

of the script will not be explored at length, however the script performs the following

operations:

• Configures system variables, cron jobs and maintains the system clock.

• Maintains connectivity to the CSIRO VPN.

• Starts pre-defined software in a GNU Screen session. This will also check to see

if a list of software is running and will be restarted in the event of a crash.

• Sets a crontab entry such that the supervisor script will be run automatically at

specified intervals.

The supervisor script was modified to suit the addition of the vision system software

and the rsync data synchronisation technique outlined in the following section. The

supervisor script was configured to run once every five minutes. This was considered

acceptable, such that in the event of a software crash, a maximum of five minutes

observation time is lost.

The supervisor script is included in the Appendix E.

4.6.2 Data Synchronisation

The data synchronisation for this application is provided by rsync (Tridgell, A. and

Mackerras, P. 1996) and is managed by the supervisor script. The supervisor script con-

figuration allows the recording path and the destination server (and associated creden-

tials) to be modified. The rsync command is placed into the cron table (/etc/crontab)

and synchronises the recording directories on both machines. This allows the output
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files to be collected from the remote server for later analysis. The rate at which the

cron job is run will be required to be varied depending upon the Internet connection

used in the field. The most likely candidate is a cellular modem, and as such this

interval should be kept as long as desirable due to increase bandwidth costs associated

with each synchronisation. The script configuration included with this document sets

the data return time to twice per hour.

4.7 Chapter Summary

This chapter has detailed the signal processing methodology used by the vision sys-

tem. The system configuration for the development and employment environment was

discussed. The implementation of the vision system in software was detailed, and the

support software base was designed and configured to allow autonomous operation of

the vision system.



Chapter 5

Performance Evaluation

5.1 Chapter Overview

This chapter aims to explore the performance of the proposed vision system. The

methodology and performance measures for each component have been defined. This

chapter also includes the results yielded from the performance evaluation and recom-

mendations drawn from this analysis.

5.2 Performance Metrics and Methodology

The performance evaluation of system was designed to demonstrate the suitability of the

proposed technique. The evaluation consisted of two major components - the real time

capabilities of the system and the effectiveness of the detection system. Additionally,

the capabilities provided by the vision system for self supervision were also evaluated.

The real time capabilities of the system were demonstrated by the timing of the each

stage within the frame handling process.

The evaluation of the detection systems aimed to place a performance guarantee on the

system’s ability to detect events. To achieve best performance, the initial parameters
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provided for background subtraction were suitably selected.

Additionally, the tests performed aimed to provide a demonstration of “worst case”

performance, in order to place a guarantee on the performance of the system. This

consisted of a benchmark of processing performance and detection rate under varied

conditions.

5.3 Processing Speed Evaluation

5.3.1 Methodology & Metrics

The prototypical software was modified to allow time measurements of the processing al-

gorithm to be taken. The time was estimated by the use of the cv::getTickFrequency()

and cv::getTickCount() functions provided by OpenCV. The former measures the

number of CPU clock ticks which occur in a second. The latter returns the count on

the free-running clock. Thus, in order to estimate the time taken for each step, assume

that:

• ∆t is the number of clock ticks per second

• x is the clock value a priori

• y is the clock value a posteriori

As such, the frame rate (∆f
∆t ) can be calculated according to:

∆f

∆t
=

∆t

y − x
(5.1)

Thus, the time for each processing step (t), in milliseconds:

t =
1000

∆f
∆t

(5.2)
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The stages of processing which were evaluated for performance were:

• Background subtraction step - this was selected as the main metric for evaluation

of processing speed.

• An estimate of total frame processing time: Frame retrieval from the incoming

frame buffer to the setting of the trigger bit after motion detection. This was

compared for both of the background subtraction methods.

Both the compressive and non-compressive background subtraction methods were com-

pared for performance. The same parameters were utilised for both models to provide

an accurate comparison of performance.

To simulate deployment conditions, the tests were performed on the Pandaboard with

the software configuration that would be deployed on a production system.

As a starting point, a sample rate of 10 Hz was selected. This sample rate was selected

as a usable target for real-time performance.The camera was connected to the system

and the average time, best & worst time for each step was collected over 1000 frames.

The proposed background subtraction methods were each tested with the initial pa-

rameters defined in the previous section.

It is of note that the performance of the frame processing algorithm is dependant upon

a number of factors. A Gaussian Mixture Model in it’s infancy will result in slower

performance, as the Gaussian components are yet to be matured and require constant

re-computation. However, upon model maturity it can be expected that performance

will increase. Additionally, the introduction of a large number of foreground compo-

nents into the frame will result in a similar performance drop.

The performance goal of the frame processing algorithm is that it will operate at or

faster than the sampling rate under nominal conditions. Ideally, the frame process

time should provide for some overhead to allow the system to “catch up” in cases

where throughput decreases. This deviation should be no more than two sampling

periods.
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5.3.2 Performance Measurement

The following tables display the results of the speed measurement testing as described

above.

Time: Average (ms) Best Case (ms) Worst Case (ms)

Background Subtraction 208.333 204.082 243.9

Total Process Time 231.24 216.43 278.97

Table 5.1: Frame Process Timing: Non-compressive

Time: Average (ms) Best Case (ms) Worst Case (ms)

Background Subtraction 59.172 55.249 62.112

Total Process Time 71.428 66.667 100.705

Table 5.2: Frame Process Timing: Compressive

5.3.3 Results Discussion

The results shown in Table 5.1 indicate that the non-compressive Gaussian Mixtures

Model is too slow for this application. Using such a method would result in an overall

frame processing rate of less than 5 frame/sec. Hence, the performance goal was not

met. The compressive sensing Gaussian Mixtures Model was therefore recommended

for use whilst the application is still reliant upon the Pandaboard. The use of the non-

compressive GMM may be considered in the case where the target hardware provides

greater computational abilities.

The compressive sensing Gaussian Mixtures Model (as shown in Table 5.2) provides an

average throughput of 16.89 frame/sec. The total processing time offers a worst case of

9.93 frame/sec which is still within acceptable limits and should enable the system to

operate without detriment. It is of note that the worst case time was observed whilst

the Gaussian Mixture Model was maturing in both cases. Upon model convergence,

the performance was shown to be closer to that of the average measurements in each

case.
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5.4 Preliminary Processing Algorithm Verification

The methodology behind the segmentation and detection testing was developed with

the outcomes of two precursor trials which were carried out during the incremental

development of the system. To better understand this methodology, a description of

such tests and respective outcomes has been provided.

The aim of these tests was to demonstrate the ability of the system to isolate events

occurring within the frame and to gain an understanding of the segmentation behaviour

when presented with noise. The preliminary test involves placing the camera in an

outdoor setting and allowing the model to converge. Upon convergence, the detection

system was tested by introducing a moving object into the frame at a variety of distances

and trajectories.

The initial test revealed a 100% detection rate with no false positives. The kinetic noise

did not seem to have an effect on the detection, and it can be noted in the resulting

output that there are slight variations in natural lighting over the length of the test.

Although the detection rate was acceptable, it was noted that some objects did not

register immediately. Thus, the implementation of the pretrigger frame buffer was

designed as per Section 4.4.6, in order to assist in the recording of events under the

occurrence of detection latency.

The results from this test can be viewed via the Internet. See Appendix F, Section F.1.

Additionally, the scene was adjusted to allow for a test which exposes the system to

a higher degree of kinetic noise. This was achieved by shifting the scene slightly to

exaggerate the shadows cast by trees moving in the breeze. This would be considered

an unideal operating condition. As with the above test, objects were introduced into

the field of view at varying distances.

Whilst the system showed motion on 100% of the desired events, there were three

events which could be deemed spurious. It is of note that the spurious triggers occurred

during Gaussian Mixture Model infancy, which led to the implementation of a “warm

up” period, as discussed in the previous chapter.
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The results from this test can be viewed via the Internet. See Appendix F, Section F.2.

The outcomes of these tests identified a need to evaluate the system against a set of

known testing conditions to place limitations upon the detection system. However,

whilst both tests provided a preliminary validation of the signal processing strategies

applied, further testing was applied to challenge the limits of the system operation.

The outcomes of these tests also shaped the development of the foreground density

filtering methodology outlined in Section 4.2.3. The tests showed the valid objects

registered as dense clusters of foreground components, whilst noise events were more

sparse and were largely represented by areas of smaller dimensionality than valid events.

5.5 Extended Processing Algorithm Verification

The aim of this evaluation experiment was to validate the processing algorithm across

a variety of conditions.

5.5.1 Methodology, Metrics & Ground Truths

The ground truth for these experiments was provided by the use annotated test sets

which encompasses the target domain of the system. To provide an accurate account

of the target environment, considerations regarding variability in significant events

were made. These considerations pertained to object variability and environmental

ambiance. Object variability encompasses parameters such as size, shape, orientation,

velocity and trajectory. The environmental ambiance encompasses parameters such as

background topology, illumination, kinetic noise and external interference (i.e. CCD

sensor noise).

The consideration of these parameters led to the selection of the “PETS2001” dataset

(Computational Vision Group 2001). Although the target application is the monitor-

ing of wildlife, the PETS2001 test set provided comparable segmentation and detection

challenges. The variability in object size, shape, trajectory, visibility and colour con-
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trast mimics the variability potentially encountered in the target application.

Three datasets were selected for use; specifically, Dataset 1, Dataset 2 and Dataset 3.

The single camera portion was selected for use from each dataset. Each dataset provides

an increasing level of difficulty in processing. Dataset 1 and Dataset 2 were consid-

ered to be ideal and typical (respectively) operating conditions in that they provide

reasonably consistent lighting conditions and limited amounts of environmental noise.

Additionally, detection of events is aided by the introduction of comparatively large

objects. Both test sets contain events featuring people and vehicles. The trajectory,

distance and speed of all objects were highly variable across the test sets.

Figure 5.1: An example frame from Dataset 1

Dataset 3, however, is designed to challenge detection systems. In addition to the

introduction of smaller objects (no vehicular events), there was a significant degree of

lighting variability and kinetic noise. Dataset 3 was selected to demonstrate system

performance under less than ideal circumstances in order to provide an account of worst

case performance.

The specifications of each ground truth included an analysis of the events which present

as positive events within the sample frames, and an exact notation of their motions

throughout the sequence. As such, the test annotations were analysed and the events

were classified as an acceptable or rejectable event. These classifications were made on

merits of usefulness of their detection. Rejectable events could be considered noise as

their detection would not provide useful data regarding their occurrence (i.e. hidden be-

hind an object and subsequently would not be easily observed). The event annotations

are provided in Tables 5.3, 5.3 & 5.5.
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Figure 5.2: Example frames from Dataset 3 showing a significant degree of illumination

change

Time Event Description Classification

0:02 - 0:12 Person hiding behind car Reject (not useful)

0:03 - 0:26 Person with red shirt, from left Accept

0:17 - 0:27 Blue car, from right Accept

0:26 - 0:39 White van, from left Accept

0:32 - 0:44 Man with backpack, from left Accept

0:36 - 0:51 Man from blue car Accept

0:52 - 1:14 Two men, near white van Accept

1:03 - 1:18 White van reverse Accept

1:13 - 1:31 Man, far back Accept

1:20 - 1:42 Lady, bottom right Accept

1:25 - 1:47 Station wagon entry Accept

1:39 - 1:47 White van drives away Accept

Table 5.3: Dataset 1 Event Annotation
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Time Event Description Classification

0:02 - 0:17 Blue car enters Accept

0:10 - 0:13 Black car drive by Accept

0:14 - 0:17 Black car drive by Accept

0:15 - 1:08 Person, blue shirt, from right Accept

0:18 - 0:33 Person, black jumper, from right Accept

0:20 - 1:24 Person with backpack, from right Accept

0:26 - 0:42 Person, white clothes, far back Accept

0:29 - 0:56 Person on bicycle Accept

0:39 - 0:59 Person, black pants, far back Accept

0:59 - 1:52 Person on bicycle Accept

1:02 - 1:15 Person, white shirt, far back Accept

1:04 - 1:52 Two people, from right Accept

1:14 - 1:26 Person, dark clothes, far back Accept

1:22 - 1:40 Person, from right Accept

1:27 - 1:33 Person, from blue car Accept

1:28 - 1:32 Dark car drive by Accept

1:35 - 1:52 Person with plank, near buildings Reject (obfuscated)

1:46 - 1:52 Two people, far back Accept

1:48 - 1:52 Red car drive by Accept

Table 5.4: Dataset 2 Event Annotation
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Time Event Description Classification

0:15 - 0:42 Rapid lighting change Reject (noise)

0:41 - 2:03 Two people, from bottom Accept

0:51 - 1:12 Person, with briefcase from side Accept

0:56 - 1:30 Two people, from building at rear Accept

1:10 - 1:24 Person, on path behind building Accept

1:13 - 2:21 Man, white shirt, from bottom Accept

1:21 - 3:10 Cluster, 11 people Accept

1:46 - 2:05 Rapid lighting change Reject (noise)

1:54 - 2:23 Man on bicycle Accept

1:58 - 3:07 Man with backpack Accept

2:12 - 2:56 Man, black shirt Accept

2:20 - 2:46 Man on bicycle Accept

2:20 - 3:03 Rapid lighting change Reject (noise)

2:25 - 3:33 Man, at rear Accept

2:46 - 3:33 Two men with backpacks Accept

3:24 - 3:33 Man, from bottom left Accept

Table 5.5: Dataset 3 Event Annotation

In the case of Dataset 3, some events were recognised as multiple events. This was

limited to the cluster of 11 people which eventually separates into multiple, distinct

groups. Thus, the total events (acceptable and rejectable) for Dataset 3 was considered

to be 21. In addition to the noise events listed in the annotation table, there is almost

constant vegetation motion in various portions of the frame.

In order to place measures upon the effectiveness of the system, the event annotations

were used to qualify detected events as a True Positive (TP), True Negative (TN), False

Positive (FP) and False Negative (FN). An event was considered to have been detected

if at any time during it’s presence within the frame, the motion vector neighbourhood

surrounding it was shown to be active. Conversely, if an event was not detected, the

motion vector neighbourhood should remain inactive. This was considered realistic, as

the design goals did not dictate that events must be captured in their entirety.
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From these measures, the following metrics were defined:

Accuracy =
tp + tn

tp + tn + fp + fn
(5.3)

Precision =
tp

tp + fp
(5.4)

Sensitivity =
tp

tp + fn
(5.5)

Specificity =
tn

tn + fp
(5.6)

The accuracy and precision for each test was graphed to show the relation with the

blur filter settings. The sensitivity and specificity can be represented according to a

Receiver Operating Characteristic (ROC) analysis. ROC models the probability of

event detection against the probability of a false alarm (Shen et al. 2012) (Hand 2009).

This shows the system specificity in terms of the sensitivity, and subsequently provides

a measure of system performance as a guaranteed level of detection with the chance of

false triggers. (Hand 2009)

Sensitivity, Specificity & Detector Intelligence

The ROC plot compares system sensitivity with inverse specificity. The horizontal axis

consists of a plot of 1−Specificity, with the vertical axis being sensitivity. (Hand 2009)

The detector can be considered “intelligent” if the detection outcomes are better than

that provided by a random, uniformly distributed classification. In essence, random

classification can be represented by a 1:1 relationship between sensitivity and inverse

specificity. (Hand 2009) Thus, detections which are superior to this random classifica-

tion fall above this relationship on the ROC plot.
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Detector Testing Methodology

As a comparison of performance, both the non-compressive and compressive sensing

image segmentation methods were compared. The parameter which was used to tune

the accuracy of the system was the element size used in the Gaussian blur filtering

step. Varying this size enabled the sensitivity of the event detection algorithm to be

increased (smaller values) or decreased (larger values). The filter size was varied from

1 through 19, in odd increments. A control run without blur filtering applied was also

performed.

The morphological filtering parameters were set to a “common sense” value, and were

kept consistent throughout the testing. In all cases, the erosion filter element size was

set to 4, and complimented with a dilation element size of 4.

To keep image segmentation consistent, the parameters selected for the Gaussian Mix-

tures Model were applied to both image segmentation methods. These parameters

were selected after consideration of the results put forward by (Shen et al. 2012), which

suggest that the use of a Gaussian Mixtures model consisting of three Gaussian dis-

tributions per component allows for approximation of 99.9% of the pixel components.

Their use of PETS2001 is also utilising three Gaussian components. Thus, the system

was tested with a maximum Gaussian component limit of three.

The Gaussian Mixtures Model requires a sufficient learning rate such that objects which

enter and remain in view are eventually regarded as background. However, making this

allowance too great can result in false positives. As such, given a sufficient sampling

rate a value of α as 0.1 for foreground refinement is typical to this type of application.

(Shen et al. 2012)

As the Gaussian Mixtures Model relies upon initialisation with parameters which have

been estimated a priori, in order to facilitate best case segmentation with parameters

refined a posteriori the initial parameters must provide a reasonable estimate for the

scenario.

The following parameter estimates were used for use with the test data sets:
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• Initial standard deviation - 50

• Minimum standard deviation - 15

• Deviation threshold for block detection - 3 times the standard deviation

• Assumed proportional background - 70%

• Initial Gaussian component weighting - 0.01

• Postprocessing threshold - 10

(Shen et al. 2012)

The output of each test was recorded, showing the input frame, calculated mask, post-

processed mask and the optical flow field. The optical flow field was rendered graphi-

cally using the function listed in Figure 5.4.

Each output was recorded to a video file and analysed manually (see Figure 5.3).

Figure 5.3: Test Output Example
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void draw_flow_map(const cv::Mat& flow, cv::Mat& cflowmap, int step,

double, const cv::Scalar& color)

{

cv::Mat log_flow, log_flow_neg;

cv::log(cv::abs(flow)*3 + 1, log_flow);

cv::log(cv::abs(flow*(-1.0))*3 + 1, log_flow_neg);

const float scale = 64.0;

const float offset = 128.0;

float max_flow = 0.0;

for(int y = 0; y < cflowmap.rows; y += step)

{

for(int x = 0; x < cflowmap.cols; x += step)

{

const cv::Point2f& fxyo = flow.at<cv::Point2f>(y, x);

cv::Point2f& fxy = log_flow.at<cv::Point2f>(y, x);

const cv::Point2f& fxyn = log_flow_neg.at<cv::Point2f>(y, x);

if (fxyo.x < 0) {

fxy.x = -fxyn.x;

}

if (fxyo.y < 0) {

fxy.y = -fxyn.y;

}

cv::Scalar col = cv::Scalar(offset + fxy.x*scale,

offset + fxy.y*scale, offset);

cv::line(cflowmap, cv::Point(x,y), cv::Point(cvRound(x+fxy.x),

cvRound(y+fxy.y)), color);

cv::circle(cflowmap, cv::Point(x,y), 0, col, -1);

if (fabs(fxy.x) > max_flow) max_flow = fabs(fxy.x);

if (fabs(fxy.y) > max_flow) max_flow = fabs(fxy.y);

}

}

}

Figure 5.4: Optical Flow Render Function
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5.5.2 Dataset 1 Results

The results of the detection tests against Dataset 1 are shown in Table 5.6. The results

are shown graphically in Figure 5.5. The output of each test can be viewed individually

- see Appendix F.3.1.

Figure 5.5: Dataset 1 Results

The ROC plot for Dataset 1 is shown in Figure 5.6.

Figure 5.6: Dataset 1 ROC
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Compressive Non-Compressive Compressive Non-Compressive

No Blur Blur Size: 11

TP 12 12 12 12

TN 1 1 1 1

FP 9 0 7 1

FN 0 0 0 0

Accuracy 0.59 1 0.65 0.93

Precision 0.57 1 0.63 0.92

Sensitivity 1 1 1 1

Specificity 0.1 1 0.125 0.5

Blur Size: 1 Blur Size: 13

TP 12 12 11 12

TN 1 1 1 1

FP 5 0 12 2

FN 0 0 1 0

Accuracy 0.72 1 0.48 0.867

Precision 0.706 1 0.478 0.857

Sensitivity 1 1 0.917 1

Specificity 0.167 1 0.077 0.33

Blur Size: 3 Blur Size: 15

TP 12 12 10 12

TN 1 1 1 1

FP 0 0 17 2

FN 0 0 2 0

Accuracy 1 1 0.367 0.867

Precision 1 1 0.37 0.857

Sensitivity 1 1 0.83 1

Specificity 1 1 0.056 0.33

Blur Size: 5 Blur Size: 17

TP 12 12 10 11

TN 1 1 1 1

FP 5 0 17 2

FN 0 0 2 1

Accuracy 0.72 1 0.367 0.8

Precision 0.706 1 0.37 0.847

Sensitivity 1 1 0.83 0.917

Specificity 0.167 1 0.056 0.33

Blur Size: 7 Blur Size: 19

TP 12 12 10 10

TN 1 1 1 1

FP 6 0 18 2

FN 0 0 2 2

Accuracy 0.68 1 0.355 0.73

Precision 0.67 1 0.357 0.833

Sensitivity 1 1 0.833 0.833

Specificity 0.143 1 0.0526 0.33

Blur Size: 9

TP 12 12

TN 1 1

FP 7 1

FN 0 0

Accuracy 0.65 0.929

Precision 0.632 0.923

Sensitivity 1 1

Specificity 0.125 0.5

Table 5.6: Dataset 1 Detection Outcomes
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5.5.3 Dataset 2 Results

The results of the detection tests against Dataset 2 are shown in Table 5.7. The results

are shown graphically in Figure 5.7. The output of each test can be viewed individually

- see Appendix F.3.2.

Figure 5.7: Dataset 2 Results

The ROC plot for Dataset 2 is shown in Figure 5.8.

Figure 5.8: Dataset 2 ROC
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Compressive Non-Compressive Compressive Non-Compressive

No Blur Blur Size: 11

TP 20 20 19 16

TN 1 1 1 1

FP 12 3 6 0

FN 0 0 0 4

Accuracy 0.636 0.875 0.778 0.81

Precision 0.952 0.952 0.952 0.941

Sensitivity 1 1 1 0.8

Specificity 0.077 0.25 0.143 1

Blur Size: 1 Blur Size: 13

TP 20 20 18 15

TN 1 1 1 1

FP 7 3 7 0

FN 0 0 2 5

Accuracy 0.75 0.875 0.679 0.762

Precision 0.952 0.952 0.947 0.938

Sensitivity 1 1 0.9 0.75

Specificity 0.125 0.25 0.125 1

Blur Size: 3 Blur Size: 15

TP 20 20 18 15

TN 1 1 1 1

FP 0 0 7 0

FN 0 0 2 5

Accuracy 1 1 0.679 0.762

Precision 0.952 0.952 0.947 0.938

Sensitivity 1 1 0.9 0.75

Specificity 1 1 0.125 1

Blur Size: 5 Blur Size: 17

TP 20 20 17 14

TN 1 1 1 1

FP 4 0 7 0

FN 0 0 3 6

Accuracy 0.84 1 0.643 0.714

Precision 0.952 0.952 0.9444 0.9333

Sensitivity 1 1 0.85 0.7

Specificity 0.2 1 0.125 1

Blur Size: 7 Blur Size: 19

TP 20 18 16 14

TN 1 1 1 1

FP 5 0 8 2

FN 0 2 4 6

Accuracy 0.808 0.905 0.586 0.714

Precision 0.95 0.947 0.94 0.93

Sensitivity 1 0.9 0.8 0.7

Specificity 0.167 1 0.1 1

Blur Size: 9

TP 20 16

TN 1 1

FP 6 0

FN 0 4

Accuracy 0.78 0.81

Precision 0.952 0.941

Sensitivity 1 0.8

Specificity 0.1439 1

Table 5.7: Dataset 2 Detection Outcomes
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5.5.4 Dataset 3 Results

The results of the detection tests against Dataset 3 are shown in Table 5.8. The results

are shown graphically in Figure 5.9. The output of each test can be viewed individually

- see Appendix F.3.3.

Figure 5.9: Dataset 3 Results

The ROC plot for Dataset 3 is shown in Figure 5.10.

Figure 5.10: Dataset 3 ROC
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Compressive Non-Compressive Compressive Non-Compressive

No Blur Blur Size: 11

TP 19 19 18 15

TN 0 4 0 3

FP 109 3 12 3

FN 3 0 4 6

Accuracy 0.145 0.793 0.529 0.667

Precision 1 0.826 1 0.83

Sensitivity 0.864 0.864 0.82 0.714

Specificity 0 0.57 0 0.5

Blur Size: 1 Blur Size: 13

TP 19 19 17 15

TN 1 4 0 3

FP 66 2 13 3

FN 3 3 5 6

Accuracy 0.225 0.821 0.486 0.762

Precision 0.95 0.826 1 0.83

Sensitivity 0.864 0.864 0.773 0.714

Specificity 0.015 0.667 0 0.5

Blur Size: 3 Blur Size: 15

TP 19 19 17 14

TN 2 5 0 2

FP 36 1 13 5

FN 3 3 5 7

Accuracy 0.35 0.857 0.486 0.57

Precision 0.905 0.792 1 0.875

Sensitivity 0.864 0.864 0.773 0.667

Specificity 0.053 0.833 0 0.286

Blur Size: 5 Blur Size: 17

TP 19 18 16 14

TN 1 5 0 2

FP 38 1 16 5

FN 3 4 6 7

Accuracy 0.328 0.821 0.421 0.571

Precision 0.95 0.783 1 0.875

Sensitivity 0.864 0.818 0.727 0.167

Specificity 0.026 0.833 0 0.286

Blur Size: 7 Blur Size: 19

TP 18 17 16 13

TN 1 4 0 2

FP 12 2 17 5

FN 4 5 6 8

Accuracy 0.543 0.75 0.41 0.536

Precision 0.947 0.8095 1 0.867

Sensitivity 0.82 0.77 0.73 0.62

Specificity 0.077 0.667 0 0.286

Blur Size: 9

TP 18 15

TN 0 4

FP 12 2

FN 4 6

Accuracy 0.529 0.704

Precision 1 0.789

Sensitivity 0.82 0.71

Specificity 0 0.667

Table 5.8: Dataset 3 Detection Outcomes
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5.5.5 Detection Test Discussion

The tests show a degree of consistency between the methods and datasets which was

in agreement with initial theories. The experiments utilising Datasets 1 and 2 show

similarity between both image segmentation methods in terms of noise tolerance and

detection accuracy. The test results show that both methods are able to be configured to

completely reject all spurious events and observe all desired events. For both methods, a

blur setting of three yielded optimum results. Lower blur settings yielded false positives.

In converse, higher blur settings yielded a mixture of false positives and false negatives.

Such an outcome is intuitive, as applying a significant amount of blurring to an image

can potentially reduce the impact of events. Conversely, applying too little blur can

lead to noise events being detected. The results yielded in all of the tests support this

hypothesis. As evidenced in the graphs for accuracy and precision, there is a definite

relationship between the amount of blur applied and the outcomes of detection. The

accuracy and precision graphs for each of the three datasets show similar relationships

for each of the methods. For both models, the accuracy and precision peaked with a

setting of 3. Under ideal conditions, the non-compressive GMM showed a higher, and

more steady level of precision and accuracy over the CSGMM. However, under typical

circumstances, the findings presented by these experiments support the statements

regarding in the literature (Shen et al. 2012). In fact, under typical and ideal conditions,

the CSGMM demonstrated a higher degree of precision. In terms of accuracy, the

GMM presented a more stable and predictable relationship, whilst the CSGMM was

more varied.

Whilst the results from Datasets 1 and 2 show a comparable level of tolerance, the

results from Dataset 3 show that the compressive sensing GMM has a significantly de-

creased level of tolerance to environmental noise. The non-compressive GMM was able

to successfully operate with minimal spurious triggers, however the changes in environ-

mental conditions caused events which would be otherwise detected to be obfuscated.

Similar to previous tests, the optimum performance was achieved utilising a blur filter

element size of three. This yielded one false positive coupled with three false negatives.

The best case put forward by the compressive sensing model was 12 false positives, 1

true negative and no false positives or negatives. Again, this was achieved with a blur
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filter setting of 3.

Datasets 1 and 2 both offered accuracy and precision for both models in the order

of 90%. However, for both models, Dataset 3 showed an expected reduction in these

results.

The ROC plots show that the system is able to intelligently classify events. However,

with incorrect tuning or challenging conditions, the system is no more accurate than a

random classification. As such, the tuning of these parameters will be required to be

an ongoing process upon commissioning at a site. Even in cases where large amounts

of spurious events were detected (Dataset 3), the compressive sensing model demon-

strated greater capacity for detecting valid events over the non-compressive model.

However, under the conditions presented by Dataset 3, both systems lost the ability to

intelligently discern events.

Both models operated with similar performance in the case of gradual lighting changes.

However, large lighting changes which caused the Gaussian components to invert sud-

denly were responsible for many of the false events detected. This was particularly

prevalent in the compressive sensing model. Throughout each of the datasets, the level

of kinetic noise (represented by patches of vegetation moving in the breeze) varied and

gradually increased. Dataset 3 was the most challenging in this regard, as there was

a high level of wind with mobile vegetation centred directly in frame. By observing

the test data, it was determined that whilst the compressive sensing GMM does offer

a degree of tolerance, the non-compressive GMM provided a higher level of tolerance

given the correct blur filtering parameters. However, under challenging circumstances,

the GMM is more prone to missing valid events.

In all tests, some events did not trigger immediately or experienced periods where the

detection suddenly ceased. This was largely due to distant objects which were not well

defined, or objects which were surrounded by regions of similar intensity (essentially

blending in to the background). An increase in sensitivity to small objects, by alter-

ing the morphological density filter settings, could result in an increase in undesired

events. However, the use of the three datasets showed that a consistent density fil-

ter setting enabled the frame processor to conservatively discern valid events from the
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incoming frames. Intuitively, the detection latency and consistency on objects which

were comparatively closer to the camera surpassed that of objects which were not close.

Intuitively, the results show that there was a degree of correlation in this regard with

respect to small objects. The range for reliable detection of small objects was decreased

when compared with larger objects. The outcomes of the tests performed on Dataset

2 illustrate that whilst people were detected, the detection process certainly favoured

vehicles and people which were situated closer to the camera. Objects which were fur-

ther away from the camera were not registered in the optical flow field as quickly, or

were registered sporadically.

The use of a Gaussian Mixtures Model which relies upon only planar intensity rather

than individual colour channels is advantageous with respect to speed, however, this

performance increase is a trade off with sensitivity. As expected, some objects did not

register well when juxtaposed with background regions of similar intensity. This was

not detrimental to the detection of objects under these test conditions, however under

some circumstances these phenomena may allow for events to be missed, partially or in

their entirety. As a further enhancement, the extension of the GMM implementations

to accommodate multichannel images may aid more effective segmentation.

From the results presented and analysed, it can be noted that both methods are prime

candidates for use in the target application. The non-compressive GMM provided a

high level of event rejection, which in some cases rejected acceptable events. The CS-

GMM provided a superior detection rate, with acceptable rejection rates under nominal

conditions.

5.6 System Integration Test

5.6.1 Methodology

As a final test, it was necessary to ensure the operation of the system under deployment

conditions. To simulate a deployment, the vision software was amalgamated with the

configured supervisor script. The aim of this test was not to determine the effectiveness
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of the supervisor script, but to ensure that the entire system would operate effectively

in a headless manner. The system was started and was successfully managed by the

supervisor software. The recorded outcomes were also successfully transferred to a

remote machine via rsync.

To recreate the scenario of a software crash, the vision software was manually stopped

and the system observed to ensure that the supervisor script successfully restarted the

system. The network connection monitoring capabilities of the script were also tested.

The remote administration capabilities provided by OpenSSH were also tested.

5.6.2 Outcomes

Overall, the outcomes of this test were successful. However, the tuning of the timing

parameters used to schedule the automatic supervision script may require adjustment

as deemed appropriate for deployment.

The rsync method for synchronising the output files worked well, and data was returned

quickly and efficiently. The system was able to be remotely administrated via OpenSSH.

In addition, the supervisor script performed well. The vision software was automat-

ically started upon system boot, and a VPN connection was successfully established.

The vision software was also successfully restarted on the next supervisor check upon

manually stopping the vision software.

Hence, the system operation was deemed satisfactory.

5.7 Chapter Summary

In this chapter, the performance of the two background subtraction methods were

compared for speed and accuracy. Additionally, the system operation was tested under

self-supervision and was deemed to be successful. The outcomes of the tests recom-

mended that the compressive sensing GMM be included with the software prototype.
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Conclusion

6.1 Chapter Overview

This chapter outlines the recommendations for further research and the continuity of

work outside the scope of this project.

6.2 Recommendations

The proposed design for a vision system was deemed a suitable candidate for use in

wildlife monitoring applications. The evaluation results showed that the use of a com-

pressive sensing Gaussian Mixtures Model provides detection rates and event rejection

in line with reasonable expectations. The system was shown to operate well as an

autonomous entity.

The outcomes of the performance evaluation indicated that superior performance can

be achieved by utilising the compressive sensing GMM. Although the non-compressive

GMM offers superior event rejection, it was deemed too performance intensive to be

successfully operated on the Pandaboard. The performance offered by the compressive

sensing GMM under ideal and nominal conditions was deemed a sufficient compromise

for the performance offered under worst case operating conditions. Thus, it was rec-
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ommended that the software prototype be delivered with the CSGMM as the selected

image segmentation method. Alternatively, the GMM could be considered should the

target device be substituted for a more powerful unit.

Thus, the prototypical software presented in this dissertation was recommended as the

configuration for a field trial, pending necessary funding and appropriate permissions.

Overall, the goals of this project were met and a suitable prototype was delivered. The

source code of the final prototype is enclosed within Appendix C.

6.3 Future Research & Development

The completion of this project leaves the potential for further research and development.

The use of a field trial and an eventual site deployment aim to further qualify the

design of the system. Pending funding and success of trials further development into a

commercial system remains a possibility.

Prior to commercialisation, several improvements which were considered outside the

scope of this project may be investigated. The development of a database driven, web

browser interface for remote management of the system would increase the accessibility

of the system to users. This would require the development of a Remote Procedure Call

stack and provide means to monitor and configure the system, as well as providing the

incoming data. The system configuration could be further developed in such a way that

allows the user to select a level of sensitivity, rather than tuning individual parameters.

Furthermore, the parameter selection for parts of the model may be able to (at least

in part) be performed automatically.

The ability of the selected hardware and software to be integrated into CSIRO’s existing

field deployment kit was not explored as part of this project. It is expected that no

modification to the system will be required, as the field deployment kit offers standard

rail voltages and Internet connectivity via Ethernet. Prior to field trials and eventual

site commissioning, the system will be require integration into the field deployment kit

and the operational performance tested. Although this was listed as a minor project

goal, due to accessibility restrictions this was not explored in depth.
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Additionally, recognition of animals within the frame may further eliminate spurious

captures. This would entail the development of datasets and a learning mechanism

which adds another layer of perception to the system. This would be a very specific

targeted outcome and would not be suitable for general surveillance applications. The

generalised approach presented in this dissertation could be applied to many other

surveillance applications which require motion to be filtered.

Some cosmetic enhancements may also be considered to further improve the user expe-

rience offered by the system. The output files, whilst time stamped in their filenames,

do not offer an accurate time for each event. Thus, the addition of the ability to time

stamp individual frames would be an advantageous feature for extension of the system.

Further research work may also entail the expansion of the system to support multiple

cameras, configured as a master-slave node network, similar to the sensor networks

discussed within the literature. This would entail the development of further software

to manage the system, but would still utilise the base vision system to perform the

observational tasks.

6.4 In Summary

This dissertation proposes a prototypical method for autonomous wildlife monitoring

encompassing the use of computer vision and sensor network ideals. It is hoped that

the outcomes presented in this thesis provide basis for further development and com-

missioning at sites of interest.

The process of development of the vision system involved the investigation of current

literature surrounding wildlife monitoring. Upon identification of limitations of current

methods, suitable signal processing techniques were investigated. The suitability of a

Gaussian Mixtures Model, configured to perform segmentation at a locality level. The

potential speed increase offered by exploiting the compressibility within these localities

was explored and deemed to offer suitable performance in terms of speed and accuracy.

The signal processing methodology outlined demonstrates the system is able to perform

the task intelligently, and provides a significant degree of improvement in terms of
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accessibility, user experience, performance and expandability over existing monitoring

methods.

Overall, the goals and aims for the project were suitably satisfied.
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B.1 Project Timeline

Task Description Projected Completion Date

Topic definition 7 March 2012

Formulation of specifications 21 March 2012

Investigation of possible solutions 30 April 2012

Literature review 30 April 2012

Project preliminary report 23 May 2012

Test implementation of processing software

(C++)

1 August 2012

Implementation and testing support software,

full system integration

11 August 2012

Partial draft dissertation 12 September 2012

Project presentation Mid-semester break, September 2012

Final performance evaluations 1 October 2012

Final dissertation 25 October 2012

Table B.1: Research timeline
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B.2 Risk Assessment

The following table defines levels for possibility of risk occurence:

Level Code Description

0 Highly Unlikely May only occur under exceptional circum-

stances.

1 Unlikely May occur at some point, but quite unlikely.

2 Moderate Likely Statistically should occur at some point.

3 Likely Will probably occur at some point.

4 Highly Likely Is expected to occur under most circumstances.

Table B.2: Hazard occurrence likelihood

The following table defines levels for risk severity rating:

Level Code Description

0 Insignificant Very low impact to personnel, progress or envi-

ronment.

1 Minor Minor impact to personnel, progress or environ-

ment.

2 Moderate Moderate impact to personnel, progress or envi-

ronment.

3 Major Critical level of impact to personnel, progress or

environment.

4 Catastrophic Such an occurrence would result in catastrophic

health effects, environmental effects or total

breakdown of project progress.

Table B.3: Hazard consequence levels

B.2.1 Hazard Identification: Project Execution

The following risks have been identified as risks to personnel, environment or progress

during the completion of the project.
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1. Occupation Overuse Syndrome

• Risks: Extended use of a personal computer can lead to conditions such as

tendinitis, Carpal Tunnel Syndrome and other repetitive strain injuries.

• Mitigation: A correctly set up computer workstation with ergonomically

enhanced peripherals shall be used to ensure comfort and safety. During

development, regular breaks shall be taken for several minutes and must

include standing and walking.

2. Unsuitable Working Conditions

• Risks: An incorrectly set up workstation can lead to eye strain, headaches

and impede productivity.

• Mitigation: Ensure that the development environment has an appropriate

level and type of lighting, and correctly positioned furniture and computer

peripherals.

3. Unrelated personal illness, injury or other unforeseen exceptional circumstances

• Risks: Unexpected bouts of illness, injury or other unforeseen circumstances

may lead to a decrease in productivity. A decrease in productivity can lead

to stress, and in turn this can cause other conditions.

• Mitigation: Create a reasonable schedule and adhere where possible to allow

for some spare time if needed.

4. Stress

• Risks: Long hours caused by an unreasonable schedule can cause stress to

the operator, which can lead to illness or other conditions.

• Mitigation: Formulation of a reasonable schedule, healthy diet and exercise,

sufficient sleep and regular breaks.

5. Heavy Lifting

• Risks: Computer equipment can be heavy, and pose a risk to the operator’s

health if not handled correctly.

• Mitigation: Follow correct lifting procedures at all times. Always lift with a

straight back and seek assistance where required.
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6. Radiation Exposure

• Risks: Electronic equipment can emit small levels of radiation. This is

governed by a set of standards to minimise the dose that the user can be ex-

posed to. However, equipment which is damaged or faulty has the potential

to emit larger doses which would be considered a health risk to those in the

immediate surroundings.

• Mitigation: Ensure that damaged equipment is not used. Keep potential

emitters away from users and ensure that they are not kept in an active

state when not necessary.

7. Electric Shock

• Risks: Electrical equipment can cause electric shock in a number of scenarios.

This can pose a varying level of risk to the user if not dealt with correctly.

• Mitigation: Ensure that damaged equipment is not used. Keep electrical

equipment dry. Do not dismantle equipment unless qualified to do so safely.

Ensure that all cables are in serviceable condition.

8. Equipment Failure or Loss

• Risks: Equipment failure or loss can cause significant risk to project progress.

• Mitigation: Ensure that all documentation is kept in case required by a

warranty or insurance claim.

9. Data Loss

• Risks: Data loss can cause significant impedance to the progress of the

project should critical sections of source code or documentation be lost.

• Mitigation: Use a source code management system (such as git or Subver-

sion) to keep track of changes to the code base. Ensure that proper back

ups of the workstation are kept in multiple locations. This should include

daily differential backups and weekly snapshots of home directories.
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B.2.2 Hazard Identification: Post-Completion

After the completion of the project, the hazards identified include those which have

been identified previously. However, in the interests of sustainability it is important to

consider the risks to the environment and community in the deployment and eventual

disposal of the equipment.

1. Environmental Contamination

• Risks: As the equipment will contain potentially hazardous materials (such

as lead), contamination could occur if batteries are punctured or disposed

of incorrectly.

• Mitigation: Ensure that all equipment is disposed of correctly once no longer

required. The field deployment kit should be designed to ensure that it is

durable as possible to minimise potential damage should a leak occur.
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B.2.3 Risk Summary

The hazards identified in the previous sections have been ranked according to likelihood

and severity. See the risk matrix in Table 3.3.

Hazard Likelihood Severity

Occupational Overuse Syndrome 2 2

Unsuitable Working Conditions 2 2

Unrelated Circumstances 1 3

Stress 4 2

Heavy Lifting 1 4

Radiation Exposure 1 3

Electric Shock 0 4

Equipment Loss or Failure 1 3

Data Loss 2 4

Environmental Contamination 1 4

Table B.4: Risk matrix
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Source Code Listing - Vision

Software

The following is the source code listing of the vision software. This code will control the

camera and perform the necessary operations to manipulate the images and establish

if recording is to commence. It is written in C++, and assumes that OpenCV 2.3.1

and Boost C++ 1.4.6 is available on the system. This is the complete prototype,

and includes the Compressive Sensing Mixture of Gaussians modelling method. The

included Makefile will build for ARM only.

C.1 Makefile

# Make f i l e f o r f u r r y cap − Pandaboard on l y

# Ashton Fagg ( ash . f a g g@c s i r o . au )

CPP = g++

CPPFLAGS = −03 −Wall −Wextra −pedant ic −std=c++0x ‘ pkg−c on f i g −−c f l a g s opencv ‘ −f f a s t−math −

f u n r o l l−l oops −mfloat−abi=hard −mfpu=neon −march=armv7−a −mcpu=cortex−a9 −mtune=cortex−a9

TARG = furrycap

SRC = main . cpp \

f r ame proce s s th r ead . cpp \

p r e t r i g . cpp \

record . cpp \

r e co rd thread . cpp \

cs mog . cpp

OBJS = $ (SRC : . cpp=.o )

LDFLAGS = −l b oo s t th r ead −l boos t program opt ions ‘ pkg−c on f i g −− l i b s opencv ‘

$ (TARG) : $ (OBJS)
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$ (CPP) $ (CPPFLAGS) −o $ (TARG) $ (OBJS) $ (LDFLAGS)

main . o : t s b u f f e r . hpp

f rame proce s s th r ead . o : t s b u f f e r . hpp p r e t r i g . hpp cs mog . hpp

p r e t r i g . o : p r e t r i g . hpp

record . o : record . hpp

reco rd thread . o : record . hpp p r e t r i g . hpp t s b u f f e r . hpp

cs mog . o : cs mog . hpp

PHONY clean :

/ bin /rm $ (OBJS) $ (TARG)

i n s t a l l :

/ bin /cp . / fur rycap / usr / bin / furrycap

/ bin /cp . . / s c r i p t s / supe rv i s o r . py / usr / bin / supe rv i s o r . py

/ bin /cp . . / s c r i p t s / conf . py / usr / bin / conf . py

/ usr / bin /python / usr / bin / supe rv i s o r . py

/ usr / bin /make c l ean

C.2 main.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ main . cpp − main and cap tu r e / b u f f e r l a y e r imp lementa t ion

∗ Re l i e s on OpenCV and Boost l i b r a r i e s ( program op t i on s and t h r e ad s )

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − May 2012

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <iostream>

#include <s t r ing>

#include <algorithm>

#include <vector>

#include <c s td io>

#include <ca s s e r t >

#include <boost / program options . hpp>

#include <boost / thread . hpp>

#include <highgui . h>

#include <cv . h>

#include ” t s b u f f e r . hpp”

using std : : cout ;

using std : : endl ;

using std : : s t r i n g ;

using std : : vec tor ;

namespace po = boost : : program options ;

extern int proces s main compres s ive ( bool ) ;

extern int rec main ( int , int ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Capture t h r ead parameters ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ These are s e t to g i v e t h e b e s t ba l ance between ∗

∗ frame r a t e and s e n s i t i v i t y . The sma l l e r t h e ∗

∗ frame , t h e l e s s s e n s i t i v e i t w i l l be . ∗

∗

∗ These are a d j u s t e d acco rd ing to t h e t a r g e t ∗

∗ hardware . S e l e c t which one us ing t h e t a r g e t s ∗

∗ d e f i n e d in t h e Make f i l e . ∗

∗ ∗
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∗ The s u g g e s t e d parameters are : ∗

∗ For Pandaboard , 320 x 240 ∗

∗ For PC, 640 x 480 ∗

∗ Turbo mode , 160 x 120 . Not recommended f o r ∗

∗ produc t i on use . Good f o r demos on the PB bu t ∗

∗ won ’ t be as s e n s i t i v e . ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int FR SIZE W ;

int FR SIZE H ;

int FRAME RATE = 30 ;

// I n i t i a l i s e t h e frame b u f f e r

t s b u f f e r <cv : : Mat> raw f rame bu f f e r ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ cap main ( ) − This i s t h e cap tu r e t h r ead i t s e l f

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int cap main ( int cap dev , int f p s )

{

cout << ” [CAP] Sta r t i ng up . . . \ n” ;

a s s e r t ( FRAME RATE % fps == 0 ) ;

int idx = FRAME RATE / fps ;

long f r = 0 ;

// Se t up th e cap tu r e d e v i c e

cv : : VideoCapture cap ( cap dev ) ;

i f ( ! cap . isOpened ( ) )

{

f p r i n t f ( s tder r , ” [CAP] Error ! Can ’ t open capture dev i ce !\n” ) ;

return 1 ;

}

cap . s e t ( CV CAP PROP FRAME WIDTH, FR SIZE W ) ;

cap . s e t ( CV CAP PROP FRAME HEIGHT, FR SIZE H ) ;

cout << ” [CAP] Startup OK! Now captur ing !\n” ;

cout << ” [CAP] Capture Frame S i z e : ” << cap . get ( CV CAP PROP FRAME WIDTH )

<< ” x ” << cap . get ( CV CAP PROP FRAME HEIGHT ) << ”\n” ;

cv : : Mat frame ( FR SIZE W , FR SIZE H , CV 8U ) ;

// Spin u n t i l we g e t t o l d to s t op

while ( true )

{

cap >> frame ;

i f ( f r++ % idx == 0 )

raw f rame bu f f e r . push ( frame . c lone ( ) ) ;

}

frame . r e l e a s e ( ) ;

return 0 ;

}

#ifde f ARM NEON

// This pu t s t h e Cortex ch i p i n t o r u n f a s t mode . Linux shou l d b r i n g t h i s up

// a u t oma t i c a l l y bu t b e s t t o doub l e check .

void enab l e run f a s t ( )

{

stat ic const unsigned int x = 0x04086060 ;

stat ic const unsigned int y = 0x03000000 ;

int r ;

asm volat i le

(

” fmrx %0, f p s c r \n\ t ”
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”and %0, %0, %1\n\ t ”

” or r %0, %0, %2\n\ t ”

” fmxr fpsc r , %0\n\ t ”

: ”=r ” ( r )

: ” r ” (x ) , ” r ” (y )

) ;

}

#endif

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ main ( ) ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ These are t h e v a r i o u s parameters f o r t h e model . ∗

∗ Rather than us ing a c o n f i g f i l e , we can use t h e ∗

∗ s u p e r v i s o r s c r i p t t o c on f i g u r e e v e r y t h i n g a u t oma t i c a l l y ∗

∗ and v e r i f y t h a t e v e r y t h i n g i s OK wi th Python , so we can ∗

∗ t r u s t t h a t t h e s e are v a l i d parameters . ∗

∗ ∗

∗ r e c p a t h − path to s t o r a g e f o r r e c o r d i n g s . ∗

∗ r e c t − Tr i gge r o b s e r v a t i o n t ime ∗

∗ p r e t r i g t − Pr e t r i g g e r b u f f e r l e n g t h ∗

∗ f p s − frame r a t e ∗

∗ cam − cap tu r e dev i c e , i . e . / dev / videoX ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

std : : s t r i n g rec path ;

int r e c t ;

int p r e t r i g t ;

int f p s ;

int cam ;

bool targ pb ;

bool ta rg pc ;

bool targ demo ;

int b l u r s z ;

// GMM params

int csmog n ;

f loat csmog bgauth ;

f loat csmog df ;

f loat csmog alpha ;

f loat c smog sd in i t ;

f loat csmog minstd ;

int main ( int argc , char∗ argv [ ] )

{

#ifde f ARM NEON

enab l e run f a s t ( ) ;

#endif

try

{

// Parse t h e command l i n e op t i o n s

po : : o p t i o n s d e s c r i p t i o n desc ( ”Runtime Options ” ) ;

desc . add opt ions ( )

( ” help ” , ”Show help message” )

( ”c” , po : : value<int>( &cam )−>d e f a u l t v a l u e ( 0 ) ,

” Set the capture dev i ce . ” )

( ” targ pb ” ,

po : : value<bool>( &targ pb )−> i m p l i c i t v a l u e ( 1 )−>d e f a u l t v a l u e ( 0 ) ,

”Enable Pandaboard mode . ” )

( ” ta rg pc ” ,

po : : value<bool>( &targ pc )−> i m p l i c i t v a l u e ( 1 )−>d e f a u l t v a l u e ( 0 ) ,

”Enable PC mode . ” )
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( ” targ demo ” ,

po : : value<bool>( &targ demo )−> i m p l i c i t v a l u e ( 1 )−>d e f a u l t v a l u e ( 0 ) ,

”Enable demo mode . ” )

( ”gmm alpha” , po : : value<f loat >( &csmog alpha )−>d e f a u l t v a l u e ( 0 .05 f ) ,

”Gaussian Mixture Model , alpha ( l e a rn i ng ra t e ) ” )

( ”gmm bg” , po : : value<f loat >( &csmog bgauth )−>d e f a u l t v a l u e ( 0 .7 f ) ,

”Gaussian Mixture Model , background thre sho ld ” )

( ”gmm var” , po : : value<f loat >( &csmog sd in i t )−>d e f a u l t v a l u e ( 18 .0 f ) ,

”Gaussian Mixture Model , i n i t i a l var iance ” )

( ”gmm minvar” , po : : value<f loat >( &csmog minstd )−>d e f a u l t v a l u e ( 3 .0 f ) ,

”Gaussian Mixture Model , minimum var iance ” )

( ”gmm comps” , po : : value<int>( &csmog n )−>d e f a u l t v a l u e ( 3 ) ,

”Gaussian Mixture Model , number o f components” )

( ” rec path ” , po : : value<std : : s t r i ng >( &rec path )−>d e f a u l t v a l u e ( ”/tmp/” ) ,

” Recording s to rage path” )

( ” p r e t r i g t ” , po : : value<int>( &p r e t r i g t )−>d e f a u l t v a l u e ( 5 ) ,

” P r e t r i g g e r b u f f e r l ength . ” )

( ” b lur ” , po : : value<int>( &b l u r s z )−>d e f a u l t v a l u e ( 3 ) ,

” Blur f i l t e r element s i z e ( must be odd ) ” )

( ” r e c t ” , po : : value<int>( &r e c t )−>d e f a u l t v a l u e ( 5 ) ,

”Event obse rvat ion time . ” )

( ” f ” , po : : value<int>( &fps )−>d e f a u l t v a l u e ( 10 ) ,

” Set the sample ra t e ( frame/ sec ) ” ) ;

po : : p o s i t i o n a l o p t i o n s d e s c r i p t i o n p ;

po : : var iab les map vm;

po : : s t o r e ( po : : command l ine parser ( argc , argv ) .

opt ions ( desc ) . p o s i t i o n a l ( p ) . run ( ) , vm ) ;

po : : n o t i f y ( vm ) ;

i f ( vm. count ( ” help ” ) )

{

cout << ”Usage : fur rycap [ opt ions ]\n” ;

cout << desc ;

return 0 ;

}

}

catch ( std : : except ion& e )

{

cout << e . what ( ) << ”\n” ;

return 1 ;

}

// I f we have no mode se t , assume t h i s i s f o r t h e Pandaboard

i f ( targ pb == fa l se && targ pc == fa l se && targ demo == fa l se )

{

targ pb = true ;

}

else i f ( targ pb == true && targ pc == true )

{

std : : cout << ” Inva l i d t a r g e t c o n f i g u r a t i o n !\n” ;

return 1 ;

}

else i f ( ( targ pb == true && targ demo == true ) | |

( ta rg pc == true && targ demo == true )

)

{

std : : cout << ”Well , that ’ s odd . The ta rg e t setup i s c o n f l i c t i n g . ”

<< ”So I ’m going to go ahead and ove r r i d e to demo mode . ”

<< ”To avoid th i s , check which t a r g e t s you have s e t . ”

<< ”Run ./ fur rycap −−help f o r i n f o .\n\n” ;

targ pb = fa l se ;

t a rg pc = fa l se ;
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targ demo = true ;

}

// Conf i gure t h e frame s i z e

i f ( targ pb ) FR SIZE W = 320 , FR SIZE H = 240 ;

i f ( ta rg pc ) FR SIZE W = 640 , FR SIZE H = 480 ;

i f ( targ demo ) FR SIZE W = 160 , FR SIZE H = 120 ;

cout << ”\nFurryCap v1 . 0 − By Ashton Fagg ( ash . fagg@cs i ro . au )\n\n” ;

cout << ”−−−−−−−−−−−−−−Context Information−−−−−−−−−−−−−−−−−−\n\n” ;

cout << ”Target Device : ” ;

i f ( targ pb ) cout << ”Pandaboard\n” ;

i f ( ta rg pc ) cout << ”PC\n” ;

i f ( targ demo ) cout << ”Demo Mode\n” ;

cout << ”Sample Rate : ” << f p s << ” Hz\n” ;

cout << ” Recorder s to rage : ” << r ec path <<”\n\n” ;

cout << ”\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n” ;

// Thread c o n t r o l

boost : : thread group threads ;

boost : : thread ∗cap = new boost : : thread ( &cap main , cam , fp s ) ;

threads . add thread ( cap ) ;

boost : : thread ∗proc main = new boost : : thread(&process main compress ive , fa l se ) ;

threads . add thread ( proc main ) ;

boost : : thread ∗ r main = new boost : : thread ( &rec main , fps , FRAME RATE ) ;

threads . add thread ( r main ) ;

threads . j o i n a l l ( ) ;

return 0 ;

}

C.3 ts buffer.hpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ t s b u f f e r . hpp − Thread−s a f e b u f f e r imp lementa t ion

∗ This i s used as a t emp l a t e c l a s s f o r t h e v a r i ou s b u f f e r s needed .

∗

∗ Ashton Fagg ( ash ton@fagg . i d . au ) − May 2012

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#ifndef TS BUFFER H

#define TS BUFFER H

#include <queue>

#include <boost / thread . hpp>

template<typename T>

class t s b u f f e r

{

private :

s td : : queue<T> payload ;

mutable boost : : mutex m;

boost : : c o n d i t i o n v a r i a b l e cond ;

public :

void push ( T const& data )

{

boost : : mutex : : s coped lock lock ( m ) ;

payload . push ( data ) ;

l ock . unlock ( ) ;

cond . no t i f y one ( ) ;
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}

bool i s empty ( void ) const

{

boost : : mutex : : s coped lock lock ( m ) ;

return payload . empty ( ) ;

}

bool t r y g e t ( T& val )

{

boost : : mutex : : s coped lock lock ( m ) ;

i f ( payload . empty ( ) )

return fa l se ;

va l = payload . f r on t ( ) ;

payload . pop ( ) ;

return true ;

}

void get ( T& val )

{

boost : : mutex : : s coped lock lock ( m ) ;

while ( payload . empty ( ) )

{

cond . wait ( l ock ) ;

}

va l = payload . f r on t ( ) ;

payload . pop ( ) ;

}

} ;

#endif

C.4 frame process thread.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ f r ame p r o c e s s t h r e a d . cpp − frame p r o c e s s i n g t h r ead and suppor t f u n c t i o n s .

∗ Performs the p r o c e s s i n g and motion d e t e c t i o n in con junc t i on wi th main ta in ing

∗ t h e Gaussian Mix tures Model .

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − May 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <iostream>

#include <ctime>

#include ”cv . h”

#include ” cxcore . h”

#include ”opencv2/ highgui / h ighgui . hpp”

#include ”opencv2/ imgproc/ imgproc . hpp”

#include ” t s b u f f e r . hpp”

#include ”motion . hpp”

#include ” p r e t r i g . hpp”

#include ” record . hpp”

#include ”cs mog . hpp”

using std : : cout ;

using std : : endl ;

extern t s b u f f e r <cv : : Mat> raw f rame bu f f e r ;

extern t s b u f f e r <cv : : Mat> r e c b u f f e r ;

extern int FR SIZE W ;

extern int FR SIZE H ;

extern int FRAME RATE;

extern int rec main ( int , int ) ;
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#define WARM UP FRAMES 100

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Recording parameters ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ r e c t − t o t a l r e c o r d i n g time , inc p r e t r i g g e r ( seconds ) ∗

∗ p r e t r i g t − p r e t r i g g e r b u f f e r i n g t ime ( seconds ) ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

extern int r e c t ;

extern int p r e t r i g t ;

extern int FR SIZE W ;

extern int FR SIZE H ;

// This dumps th e p r e t r i g g e r b u f f e r .

void pre t r i gge r bu f f e r dump ( Pr e t r i gBu f f e r& buff , t s b u f f e r <cv : : Mat>& rec )

{

cv : : Mat f r ;

while ( bu f f . s l o t s u s e d ( ) > 0 )

{

f r = bu f f . get ( ) ;

r ec . push ( f r ) ;

}

f r . r e l e a s e ( ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Farneback o p t i c a l f l ow parameters ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

const f loat pyr sc = 0 . 5 ;

const f loat l e v e l s = 3 ;

const f loat win sz = 15 ;

const f loat i t e r = 3 ;

const f loat po ly o rde r = 5 ;

const f loat poly s igma = 1 . 2 ;

// This check s to see i f t h e r e i s motion w i t h i n t h e cu r r en t frame wi th r e s p e c t

// to t h e p r e v i o u s frame . We don ’ t care about any o t h e r in f o rma t i on t h i s may

// t e l l us , we on l y worry about non−z e ro p i x e l v e l o c i t i e s .

bool t r i g ( cv : : Mat& curr , cv : : Mat& prev , cv : : Mat& mot ion vector s )

{

int i , j ;

s td : : vector<cv : : Mat> chans ;

cv : : ca lcOpticalFlowFarneback ( prev , curr , mot ion vectors ,

pyr sc , l e v e l s , win sz , i t e r ,

po ly order , po ly s igma , 0 ) ;

cv : : s p l i t ( mot ion vectors , chans ) ;

// Test to see i f t h e r e are non−z e ro motion v e c t o r s

for ( i = 0 ; i < chans . at ( 0 ) . rows ; i++)

for ( j = 0 ; j < chans . at ( 0 ) . c o l s ; j++)

{

i f ( chans . at ( 0 ) . at<f loat >( i , j ) != 0 | | chans . at ( 1 ) . at<f loat >( i , j ) != 0)

return true ;

}

return fa l se ;

}

// /////////////////////////////////////////////////////////////////////////

// Frame p ro c e s s o r parameters

extern int csmog n ;

extern f loat csmog bgauth ;
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extern f loat csmog alpha ;

extern f loat c smog sd in i t ;

extern f loat csmog minstd ;

extern f loat csmog df ;

extern int b l u r s z ;

// /////////////////////////////////////////////////////////////////////////

// This frame p ro c e s s o r u t i l l i s e s t h e compres s i v e Gaussian Mix tures model

int proces s main compres s ive ( bool verbose )

{

a s s e r t ( b l u r s z % 2 != 0 ) ; // b l u r s i z e must be odd

cv : : Mat in , i n c s , cs out , eroded , d i l a t ed , prev , mvecs ;

P r e t r i gBu f f e r p t b u f f ( p r e t r i g t ∗ 10 ) ;

double dt = cv : : getTickFrequency ( ) ;

long s t a r t t i c k s , j i f f i e s ;

long t e s t t i c k s ;

double t o t a l j i f f i e s = 0 ;

long f r = 0 ;

long s t o p f r = 0 ;

bool t r i g g e r = fa l se ;

// Se t up th e d e n s i t y f i l t e r s

cv : : Mat erode e lem = cv : : getStructur ingElement ( cv : :MORPH RECT,

cv : : S i z e (4 , 4) ,

cv : : Point (3 , 3 ) ) ;

// I n s t a n t i a t e t h e Compress ive Sens ing MoG.

CSMOG: :CSGMM ∗mog = new CSMOG: :CSGMM;

i f ( !CSMOG: : i n i t ( FR SIZE W , FR SIZE H , csmog n ,

csmog bgauth , csmog df , csmog alpha ,

csmog sd in i t , csmog minstd , mog ) )

{

std : : cout << ” [PROC] CSMOG I n i t Error !\n” ;

return 1 ;

}

// Se t up th e ma t r i c e s

i n c s . c r e a t e ( cv : : S i z e (FR SIZE W , FR SIZE H ) , CV 8U ) ;

c s ou t . c r e a t e ( cv : : S i z e (FR SIZE W , FR SIZE H ) , CV 8U ) ;

in . c r e a t e ( cv : : S i z e (FR SIZE W , FR SIZE H ) , CV 8U ) ;

while ( true )

{

raw f rame bu f f e r . get ( in ) ;

s t a r t t i c k s = cv : : getTickCount ( ) ;

cv : : cvtColor ( in , i n c s , CV BGR2GRAY ) ;

cv : : GaussianBlur ( i n c s , i n c s , cv : : S i z e ( b lu r s z , b l u r s z ) , 5 ) ;

i f ( CSMOG: : proce s s f rame ( ( u i n t 8 t ∗) i n c s . data , 1 , FR SIZE W ,

( u i n t 8 t ∗) c s ou t . data , 1 , FR SIZE W , mog ) )

{

cv : : erode ( cs out , eroded , erode e lem ) ;

cv : : d i l a t e ( eroded , d i l a t ed , erode e lem ) ;

i f (++f r < WARM UP FRAMES)

{

t r i g g e r = fa l se ;

}

else i f ( f r >= WARM UP FRAMES)
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{

i f ( f r == WARM UP FRAMES) std : : cout << ” [PROC] Now motion f i l t e r i n g .\n” ;

t e s t t i c k s = cv : : getTickCount ( ) ;

i f ( ! t r i g g e r ) t r i g g e r = t r i g ( d i l a t ed , prev , mvecs ) ;

t e s t t i c k s = cv : : getTickCount ( ) − t e s t t i c k s ;

// s t d : : cou t << d t / ( doub l e ) t e s t t i c k s << s t d : : end l ;

}

// This i s t h e frame c on t r o l s t a t e machine . I f t h e r e i s no motion we

// s imp ly p l a c e t h e frame on the p r e t r i g g e r b u f f e r . I f not , c o n t r o l t h e

// r e c o r d i n g t ime and p l a c e frames on the r e c o r d i n g b u f f e r .

switch ( t r i g g e r )

{

case fa l se : p t b u f f . put ( in ) ;

break ;

case true : i f ( s t o p f r == 0 )

{

s t o p f r = r e c t ∗ 10 + f r ;

p r e t r i gge r bu f f e r dump ( pt bu f f , r e c b u f f e r ) ;

}

r e c b u f f e r . push ( in ) ;

i f ( f r == s t o p f r )

{

t r i g g e r = fa l se ;

s t o p f r = 0 ;

}

break ;

}

j i f f i e s = cv : : getTickCount ( ) − s t a r t t i c k s ;

t o t a l j i f f i e s += ( dt / (double ) j i f f i e s ) ;

i f ( f r % 100 == 0 )

{

double tmp = (double ) t o t a l j i f f i e s / 100 ;

std : : cout << ” [PROC] 100 Frame Average FPS : ” << tmp << std : : endl ;

t o t a l j i f f i e s = 0 ;

}

}

else

{

std : : cout << ” [PROC] Frame proce s s e r r o r !\n” ;

return 1 ;

}

prev = d i l a t e d . c lone ( ) ;

}

in . r e l e a s e ( ) ;

i n c s . r e l e a s e ( ) ;

c s ou t . r e l e a s e ( ) ;

return 0 ;

}

C.5 record thread.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ r e c o r d t h r e a d . cpp − Recorder t h r ead .

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − Ju l y 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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#include ”cv . h”

#include ” highgui . h”

#include ” record . hpp”

#include ” p r e t r i g . hpp”

#include ” t s b u f f e r . hpp”

#include <boost / thread . hpp>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Recording parameters ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ r e c t − t o t a l r e c o r d i n g time , inc p r e t r i g g e r ( seconds ) ∗

∗ p r e t r i g t − p r e t r i g g e r b u f f e r i n g t ime ( seconds ) ∗

∗ r e c p a t h − path to t h e r e c o r d i n g s t o r a g e ∗

∗ r e c b u f f e r − r e c o r d i n g b u f f e r ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

extern int r e c t ;

extern int p r e t r i g t ;

extern int FR SIZE W ;

extern int FR SIZE H ;

extern std : : s t r i n g rec path ;

t s b u f f e r <cv : : Mat> r e c b u f f e r ;

extern boost : : b a r r i e r r e c ba r ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int rec main ( int fps , int ac tua l )

{

int i ;

int idx ;

a s s e r t ( ac tua l % fps == 0 ) ;

idx = actua l / fp s ;

// I n i t i a l i s e t h e ev en t r e co rd e r

EventRecorder r e co rde r ( actual , cv : : S i z e ( FR SIZE W , FR SIZE H ) ,

rec path , true ) ;

cv : : Mat frame ;

std : : cout << ” [REC] Started and ready !\n” ;

while ( true )

{

r e c b u f f e r . get ( frame ) ;

for ( i = 0 ; i < idx ; i++ )

i f ( ! r e co rde r . r ec f rame ( frame ) )

{

std : : cout << ” [REC] Recorder Error ! Ex i t ing !\n” ;

return 1 ;

}

frame . r e l e a s e ( ) ;

}

return 0 ;

}

C.6 record.hpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ r ecord . hpp − r ecord h e l p e r s t r u c t u r e s

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − Ju l y 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <cv . h>

#include <highgui . h>
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#ifndef RECORDER H

#define RECORDER H

#define CODEC CV FOURCC( ’D ’ , ’ I ’ , ’V ’ , ’X ’ )

class EventRecorder

{

public :

EventRecorder ( int , cv : : S ize , std : : s t r ing , bool ) ;

bool r ec f rame ( cv : : Mat& ) ;

private :

bool f i r s t f r a m e ;

std : : s t r i n g path , f i l ename ;

std : : s t r i n g curr date , cur r hour ;

int f p s ;

bool i s c o l o u r ;

cv : : S i z e f rame sz ;

cv : : VideoWriter wr i t e r ;

void con f i gu r e ( void ) ;

void v e r i f y p a t h ( void ) ;

const std : : s t r i n g g e t c u r r d a t e ( void ) ;

const std : : s t r i n g ge t cu r r hou r ( void ) ;

} ;

#endif

C.7 record.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ r e co rd e r . cpp − Recorder suppor t f u n c t i o n s

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − Ju l y 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include ” record . hpp”

#include ” p r e t r i g . hpp”

#include <cv . h>

#include <highgui . h>

#include <time . h>

EventRecorder : : EventRecorder ( int fp s , cv : : S i z e f rame sz ,

std : : s t r i n g path , bool i s c o l o u r )

{

f p s = f p s ;

i s c o l o u r = i s c o l o u r ;

path = path ;

f rame sz = f rame sz ;

f i r s t f r a m e = true ;

}

const std : : s t r i n g EventRecorder : : g e t c u r r d a t e ( void )

{

t ime t now = time ( 0 ) ;

struct tm t s t r u c t ;

char buf [ 8 0 ] ;

t s t r u c t = ∗( l o c a l t ime ( &now ) ) ;

s t r f t i m e ( buf , s izeof ( buf ) , ”%Y−%m−%d” , &t s t r u c t ) ;

return buf ;

}
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// Return the cu r r en t hour

const std : : s t r i n g EventRecorder : : g e t cu r r hou r ( void )

{

t ime t now = time ( 0 ) ;

struct tm t s t r u c t ;

char buf [ 8 0 ] ;

t s t r u c t = ∗( l o c a l t ime ( &now ) ) ;

s t r f t i m e ( buf , s izeof ( buf ) , ”%H” , &t s t r u c t ) ;

return buf ;

}

// S t r i p s any t r a i l i n g / from the path

void EventRecorder : : v e r i f y p a t h ( void )

{

std : : s t r i n g : : i t e r a t o r i t ;

i t = path . end ( ) − 1 ;

i f ( ∗ i t == ’ / ’ ) path . e ra s e ( i t ) ;

}

// This c o n f i g u r e s t h e VideoWriter c l a s s a u t oma t i c a l l y to

// put hou r l y segments i n t o co r r e spond ing s e p e r a t e f i l e s .

void EventRecorder : : c on f i gu r e ( void )

{

i f ( f i r s t f r a m e )

{

cu r r da t e = EventRecorder : : g e t c u r r d a t e ( ) ;

cur r hour = EventRecorder : : g e t cu r r hou r ( ) ;

EventRecorder : : v e r i f y p a t h ( ) ;

f i l ename . append ( path ) ;

f i l ename . append ( ”/FURRYCAP ” ) ;

f i l ename . append ( cu r r da t e ) ;

f i l ename . append ( ” ” ) ;

f i l ename . append ( curr hour ) ;

f i l ename . append ( ” . av i ” ) ;

wr i t e r . open ( f i l ename , CODEC, fps , f rame sz , i s c o l o u r ) ;

}

else

{

// Check to make sure we want to w r i t e to t h e same f i l e .

std : : s t r i n g tmp date , tmp hour ;

tmp date = EventRecorder : : g e t c u r r d a t e ( ) ;

tmp hour = EventRecorder : : g e t cu r r hou r ( ) ;

i f ( tmp date != cur r da t e | | tmp hour != curr hour )

{

// Recon f i gure t h e VideoWriter c l a s s

cu r r da t e = tmp date ;

cur r hour = tmp hour ;

f i l ename . c l e a r ( ) ;

f i l ename . append ( path ) ;

f i l ename . append ( ”/FURRYCAP ” ) ;

f i l ename . append ( cu r r da t e ) ;

f i l ename . append ( ” ” ) ;

f i l ename . append ( curr hour ) ;

f i l ename . append ( ” . av i ” ) ;

wr i t e r . open ( f i l ename , CODEC, fps , f rame sz , i s c o l o u r ) ;

}

}

f i r s t f r a m e = fa l se ;

}

bool EventRecorder : : r e c f rame ( cv : : Mat& f )

{
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EventRecorder : : c on f i gu r e ( ) ;

i f ( ! w r i t e r . isOpened ( ) ) return fa l se ;

w r i t e r . wr i t e ( f ) ;

return true ;

}

C.8 pretrig.hpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ p r e t r i g . hpp − Pre−t r i g g e r b u f f e r d e f i n t i o n .

∗

∗ This b u f f e r i s used to s t o r e t h e l a s t N raw frames , such t h a t we can append

∗ them to th e f r o n t o f a f i l e in t h e even t o f a t r i g g e r . Add i t i o n a l l y , t h i s

∗ a l s o s t o r e s t h e co r r e spond ing frame r e f e r e n c e numbers .

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − Ju l y 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#ifndef PRETRIG H

#define PRETRIG H

#include ”cv . h”

#include <u t i l i t y >

#include <queue>

class Pre t r i gBu f f e r

{

public :

expl ic i t Pre t r i gBu f f e r ( int ) ; // Bu f f e r w i th N s l o t s

˜ Pr e t r i gBu f f e r ( ) ;

void put ( const cv : : Mat& ) ; // Bu f f e r frame and frame number

cv : : Mat get ( void ) ; // Re t r i e v e t h e frame

void d i s ca rd ( void ) ; // Discard

int s l o t s u s e d ( void ) ;

int s i z e ( void ) ;

void r e s e t ( void ) ; // Reset

bool i s f u l l ( void ) ; // Check i f t h e r e ’ s more room

private :

int s l o t s ;

int u s e d s l o t s ;

int ge t i dx ;

int put idx ;

std : : queue<cv : : Mat> frames ;

} ;

#endif

C.9 pretrig.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ p r e t r i g . c − Pr e t r i g g e r b u f f e r c l a s s imp lementa t ion

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − Ju l y 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include ” p r e t r i g . hpp”

#include <queue>



C.9 pretrig.cpp 123

Pre t r i gBu f f e r : : P r e t r i gBu f f e r ( int s l o t s )

{

i f ( s l o t s <= 0 ) s l o t s = 5 ;

else s l o t s = s l o t s ;

u s e d s l o t s = 0 ;

}

Pre t r i gBu f f e r : : ˜ P r e t r i gBu f f e r ( void )

{

Pre t r i gBu f f e r : : r e s e t ( ) ;

}

void Pre t r i gBu f f e r : : d i s ca rd ( void )

{

frames . pop ( ) ;

u s ed s l o t s −−;

}

void Pre t r i gBu f f e r : : put ( const cv : : Mat& f r )

{

i f ( u s e d s l o t s < s l o t s )

{

frames . push ( f r . c l one ( ) ) ;

}

else

{

Pre t r i gBu f f e r : : d i s ca rd ( ) ;

frames . push ( f r . c l one ( ) ) ;

}

u s e d s l o t s ++;

}

cv : : Mat Pr e t r i gBu f f e r : : get ( void )

{

cv : : Mat r e t = frames . f r on t ( ) . c l one ( ) ;

P r e t r i gBu f f e r : : d i s ca rd ( ) ;

return r e t ;

}

bool Pre t r i gBu f f e r : : i s f u l l ( void )

{

i f ( u s e d s l o t s == s l o t s ) return true ;

else return fa l se ;

}

int Pre t r i gBu f f e r : : s l o t s u s e d ( void )

{

return u s e d s l o t s ;

}

int Pre t r i gBu f f e r : : s i z e ( void )

{

return s l o t s ;

}

void Pre t r i gBu f f e r : : r e s e t ( void )

{

while ( P r e t r i gBu f f e r : : s l o t s u s e d ( ) > 0 )

Pr e t r i gBu f f e r : : d i s ca rd ( ) ;

}



C.10 cs mog.hpp 124

C.10 cs mog.hpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ cs mog . hpp − Compress ive Sens ing Mixture o f Gauss ians .

∗ Modi f i ed f o r use w i th ARM and C++ s p e c i f i c f e a t u r e s .

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − August 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#ifndef CS MOG H

#define CS MOG H

#include <c s td in t>

#ifde f ARM NEON

#include <arm neon . h>

#endif

#define MOGNUMGAU 3

#define MOGBGGAUTH 0.7 f

#define MOG DF 3.0 f

#define MOG ALPHA 0.05 f

#define MOG SDINIT 18 .0 f

#define MOG MINSTD 3.0 f

#define MOG WEIGHTINIT 0.01 f

#define MOG CBCRTH 60

#define MOG OUTPUT 255 //1 or 255

#define POSTPROCTH 15

#define POSTPROCALPHA 4

#ifndef MIN

#define MIN(x , y ) ( ( x)<(y ) ? (x ) : ( y ) )

#define MAX(x , y ) ( ( x)>(y ) ? (x ) : ( y ) )

#endif

#ifndef SUB

#define SUB(x , y ) ( ( x)−(y ) )

#define ADD(x , y ) ( ( x)+(y ) )

#define MULT(x , y ) ( ( x )∗ ( y ) )

#define DIV(x , y ) ( ( x )/( y ) )

#endif

namespace CSMOG

{

typedef struct CSGMM

{

u in t32 t width , h e i gh t ;

u i n t 16 t numGau ;

u in t32 t ∗ rankIndex ;

u in t 32 t initWithImage ;

u i n t 32 t numForegroundPixel ;

f loat d f ;

f loat minStd ;

f loat bgGauTh ;

f loat a lpha ;

f loat s d I n i t ;

f loat ∗ weight ;

f loat ∗ sd ;

f loat ∗ rank ;

f loat ∗ mean ;

// Post p r o c e s s i n g v a r i a b l e s

u i n t 8 t postProcTh ;

u i n t 8 t postProcAlpha ;
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//Temp s t o r a g e v a r i a b l e s

u i n t 8 t ∗ cIm ; // the cu r r en t p l anar i n t e n s i t y image

i n t 1 6 t ∗ c s r ; // f o r s t o r i n g compres s i v e s en s i n g output , w id th ∗ he i g h /8

u i n t 8 t ∗ csmogr ; // f o r s t o r i n g mog output , w id th ∗ he i g h /8

u i n t 8 t ∗ bkgnd ; // background image ;

u i n t 8 t ∗ csm ; // compres s i v e s en s i n g mask image

#ifde f ARM NEON

int16x8 t neon lookup [ 6 4 ] ;

#endif

} CSGMM;

i n t 1 6 t i n i t d e f a u l t ( u in t 32 t width , u in t 32 t height , CSGMM ∗ mog ) ;

i n t 1 6 t i n i t ( u i n t 32 t width , u in t 32 t height , u i n t 32 t numGau,

f loat bgGauTh , f loat df , f loat alpha ,

f loat sd In i t , f loat minStd , CSGMM ∗ mog ) ;

i n t 1 6 t proce s s f rame ( u i n t 8 t ∗ iPtr , i n t 3 2 t i IStep , i n t 3 2 t iJStep ,

u i n t 8 t ∗ aPtr , i n t 3 2 t aIStep , i n t 3 2 t aJStep ,

CSGMM ∗ mog ) ;

void dest roy (CSGMM ∗ mog ) ;

void c sP ro j e c t i on ( u i n t 8 t ∗ iPtr , u i n t 32 t width , u in t 32 t height , i n t 1 6 t ∗ aPtr , CSMOG: :CSGMM ∗mog ) ;

void postProc ( u i n t 8 t ∗ csmogr , u i n t 8 t ∗ cIm , u i n t 8 t ∗ bkgnd , u in t 32 t width ,

u in t 32 t height , u i n t 8 t th , u i n t 32 t alpha ,

u i n t 8 t ∗ aPtr , u i n t 32 t aIStep , u in t 32 t aJStep ) ;

void conver tToIntens i ty ( u i n t 8 t ∗ iPtr , u i n t 32 t i IStep , u in t32 t iJStep ,

u in t 32 t width , u in t 32 t height , u i n t 8 t ∗ oPtr ) ;

// This i s t h e B e r n ou l l i l ookup matr ix

const i n t 1 6 t c sc [ 5 1 2 ] = {

1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,

1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,

1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,

1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,

−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,

1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,

−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,

−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,1 ,1 ,

−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,

−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,

−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,1 ,−1 ,

1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,

−1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,

1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,

1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,1 ,−1 ,1 ,1 ,−1 ,

−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,1 ,1 ,1 ,−1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,−1 ,1 ,−1 ,−1 ,−1 ,1 ,−1

} ;

#ifde f ARM NEON

void setup neon lookup (CSGMM ∗mog ) ;

#endif

}

#endif

C.11 cs mog.cpp
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ cs mog . cpp − Compress ive Sens ing Mixture o f Gauss ians

∗

∗ The compres s i v e s en s i n g MOG w i l l t a k e advantage o f t h e

∗ f e a t u r e s p ro v i d ed by an ARM CPU i f a v a i l a b l e .

∗

∗ Compile w i th −march=armv7−a −mf loa t−ab i = hard −mfpu=neon

∗ −mcpu=cor t ex−a9 −mtune=cor t ex−a9

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − August 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include <iostream>

#include <c s td io>

#include <c s td l i b >

#include <c s td in t>

#include <cmath>

#include <ctime>

#include <c s t r i ng >

#include <ca s s e r t >

#include ”cs mog . hpp”

#ifde f ARM NEON

#include <arm neon . h>

#endif

// //////////////////////////////////////////////////////////////////////////////

// i n i t d e f a u l t ( ) − I n i t i a l i s e s a CSGMM ob j e c t w i th t h e d e f a u l t parameters

// o u t l i n e d in cs mog . hpp .

// //////////////////////////////////////////////////////////////////////////////

i n t 1 6 t CSMOG: : i n i t d e f a u l t ( u in t 32 t width , u in t 32 t height , CSMOG: :CSGMM ∗ mog)

{

u in t32 t i =0;

a s s e r t ( he ight % 8 == 0 && width % 8 == 0 ) ;

u in t 32 t eims = he ight ∗ width ∗8/64;

mog−> width = width ;

mog−> he i gh t = he ight ;

mog−> numGau = MOGNUMGAU;

mog−> bgGauTh = MOGBGGAUTH;

mog−> d f = MOG DF;

mog−> a lpha = MOG ALPHA;

mog−> s d I n i t = MOG SDINIT;

mog−> minStd = MOG MINSTD;

mog−> postProcTh = POSTPROCTH;

mog−> postProcAlpha = POSTPROCALPHA;

mog−> in itWithImage = 0 ;

mog−> numForegroundPixel =0;

f loat initW = ( 1 . 0 f / ( f loat ) mog−> numGau ) ;

mog−> weight = new f loat [ eims ∗ mog−> numGau ] ( ) ;

i f ( ! mog−> weight ) return 0 ;

mog−> sd = new f loat [ eims ∗ mog−> numGau ] ( ) ;

i f ( ! mog−> sd ) return 0 ;

mog−> mean = new f loat [ eims ∗ mog−> numGau ] ( ) ;

i f ( ! mog−> mean ) return 0 ;

mog−> rank = new f loat [ mog−> numGau ] ( ) ;
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i f ( ! mog−> rank ) return 0 ;

mog−> rankIndex = new u in t32 t [ mog−> numGau ] ( ) ;

i f ( ! mog−> rankIndex ) return 0 ;

mog−> cIm = new u i n t 8 t [ width ∗ he ight ] ( ) ;

i f ( ! mog−> cIm ) return 0 ;

mog−> c s r = new i n t 1 6 t [ eims ] ( ) ;

i f ( ! mog−> c s r ) return 0 ;

mog−> csmogr = new u i n t 8 t [ eims ] ( ) ;

i f ( ! mog−> csmogr ) return 0 ;

mog−> bkgnd = new u i n t 8 t [ width ∗ he ight ] ( ) ;

i f ( ! mog−> bkgnd ) return 0 ;

mog−> csm = new u i n t 8 t [ width ∗ he ight / 64 ] ( ) ;

i f ( ! mog−> csm ) return 0 ;

for ( i =0; i< eims ∗(mog−> numGau ) ; i++)

{

mog−> mean [ i ] = 0 . 0 ;

mog−> weight [ i ] = initW ;

mog−> sd [ i ] = mog−> s d I n i t ;

}

#ifde f ARM NEON

setup neon lookup (mog ) ;

#endif

return 1 ; // OK

}

// ///////////////////////////////////////////////////////////////////////////////////

// i n i t ( ) − I n i t i a l i s e s a CSGMM wi th custom parameters .

// ///////////////////////////////////////////////////////////////////////////////////

i n t 1 6 t CSMOG: : i n i t ( u i n t 32 t width , u in t 32 t height , u i n t 32 t numGau,

f loat bgGauTh , f loat df , f loat alpha ,

f loat sd In i t , f loat minStd , CSMOG: :CSGMM ∗ mog)

{

u in t32 t i =0;

mog−> width = width ;

mog−> he i gh t = he ight ;

a s s e r t ( width % 8 == 0 && height % 8 == 0 ) ;

mog−> numGau = numGau ;

mog−> bgGauTh = bgGauTh ;

mog−> d f = df ;

mog−> a lpha = alpha ;

mog−> s d I n i t = s d I n i t ;

mog−> minStd = minStd ;

mog−> in itWithImage = 0 ;

mog−> numForegroundPixel = 0 ;

mog−> postProcTh = POSTPROCTH;

mog−> postProcAlpha = POSTPROCALPHA;

u in t32 t eims = he ight ∗ width ∗8/64;

f loat initW = ( 1 . 0 f / ( f loat ) mog−> numGau ) ;

mog−> weight = new f loat [ eims ∗ mog−> numGau ] ( ) ;

i f ( ! mog−> weight ) return 0 ;

mog−> sd = new f loat [ eims ∗ mog−> numGau ] ( ) ;

i f ( ! mog−> sd ) return 0 ;
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mog−> mean = new f loat [ eims ∗ mog−> numGau ] ( ) ;

i f ( ! mog−> mean ) return 0 ;

mog−> rank = new f loat [ mog−> numGau ] ( ) ;

i f ( ! mog−> rank ) return 0 ;

mog−> rankIndex = new u in t32 t [ mog−> numGau ] ( ) ;

i f ( ! mog−> rankIndex ) return 0 ;

mog−> cIm = new u i n t 8 t [ width ∗ he ight ] ( ) ;

i f ( ! mog−> cIm ) return 0 ;

mog−> c s r = new i n t 1 6 t [ eims ] ( ) ;

i f ( ! mog−> c s r ) return 0 ;

mog−> csmogr = new u i n t 8 t [ eims ] ( ) ;

i f ( ! mog−> csmogr ) return 0 ;

mog−> bkgnd = new u i n t 8 t [ width ∗ he ight ] ( ) ;

i f ( ! mog−> bkgnd ) return 0 ;

mog−> csm = new u i n t 8 t [ width ∗ he ight / 64 ] ( ) ;

i f ( ! mog−> csm ) return 0 ;

for ( i =0; i<eims∗mog−> numGau ; i++)

{

mog−> mean [ i ] = 0 .0 f ;

mog−> weight [ i ] = initW ;

mog−> sd [ i ] = mog−> s d I n i t ;

}

#ifde f ARM NEON

setup neon lookup (mog ) ;

#endif

return 1 ; // OK

}

// /////////////////////////////////////////////////////////////////////////

// This p r o c e s s e s t h e incoming frames and ou t pu t s t h e c a l c u l a t e d f o r eg round

// mask .

//

// Parameters : iP t r −> Poin t e r to i npu t image data ( from cv : : Mat )

// i I S t e p −> Inpu t h o r i z o n t a l b y t e s t e p

// i JS t e p −> Inpu t v e r t i c a l b y t e s t e p

// aPtr −> Poin t e r to ou tpu t image data ( from cv : : Mat )

// a IS t ep −> Output h o r i z o n t a l b y t e s t e p

// aJStep −> Output v e r t i c a l b y t e s t e p

//

// This c a l l s some o t h e r f u n c t i o n s which are o u t l i n e d be low .

// /////////////////////////////////////////////////////////////////////////

i n t 1 6 t CSMOG: : proce s s f rame ( u i n t 8 t ∗ iPtr , i n t 3 2 t i IStep , i n t 3 2 t iJStep ,

u i n t 8 t ∗ aPtr , i n t 3 2 t aIStep , i n t 3 2 t aJStep ,

CSMOG: :CSGMM ∗ mog)

{

f loat ∗ wPtr = mog−> weight ;

f loat ∗ sPt r= mog−> sd ;

f loat ∗ mean = mog−> mean ;

f loat ∗ rank = mog−> rank ;

f loat in i tWeight = (double ) (MOG WEIGHTINIT) ;
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u in t32 t numGau = mog−> numGau , he i gh t= mog−> he ight ,

width= mog−> width , wh = mog−> he i gh t ∗ mog−> width ;

u in t 32 t mog length = width∗ he i gh t /8 , wh 64 = wh/64 ;

f loat d f = mog−> df , bgGauTh = mog−> bgGauTh , a lpha = mog−> alpha , s d I n i t = mog−> s d I n i t ;

f loat p = 0 .0 , minStd = mog−> minStd ;

u in t 32 t ∗ rankIndex = mog−> rankIndex ;

u in t 32 t m = 0 , i = 0 , j = 0 ,k = 0 ;

u in t 32 t ∗ nfp = & (mog−> numForegroundPixel ) ;

i n t 1 6 t ∗ c s r = mog−> c s r , ∗ c s rPt r = mog−> c s r ;

u i n t 8 t ∗ csmogr = mog−> csmogr , ∗csmogrPtr = mog−> csmogr ;

u i n t 8 t ∗ cIm = mog−> cIm ;

u i n t 8 t ∗ bkgnd = mog−> bkgnd ;

u i n t 8 t ∗ csm = mog−> csm ;

unsigned int matchIndex ;

int minWIndex , tempRankIndex , match ;

f loat d i s t , maxW, sumW, minW, tempRank , d i f , lumVal ;

conver tToIntens i ty ( iPtr , i IStep , iJStep , width , he ight , cIm ) ;

c sP ro j e c t i on ( cIm , width , he ight , c s r , mog ) ;

i f ( ! mog−> in itWithImage )

{

for ( i =0; i<mog length ; i++)

{

mean [ 0 ] = ( f loat ) (∗ c s rPt r ) ;

∗csmogrPtr = 0 ;

mean += numGau ;

c s rPt r ++;

csmogrPtr ++;

}

memcpy( bkgnd , cIm , s izeof ( u i n t 8 t )∗wh ) ;

mog−> in itWithImage = 1 ;

return 1 ;

}

// update gau s s i an components f o r each p i x e l

for ( i =0; i<mog length ; i++)

{

matchIndex = −1;

minWIndex = 0 , tempRankIndex = 0 , match = 0 ;

d i s t = −1.0 f , maxW = −1.0 f , sumW = 0.0 f , minW = 0.0 f ;

tempRank = 0.0 f , d i f = 0 .0 f , lumVal = 0 .0 f ;

lumVal= ( f loat ) (∗ c s rPt r ) ;

// f i r s t match t h a t has t h e h i g h e s t we i gh t

for ( k=0;k< numGau ; k++)

{

d i f = abs ( lumVal − mean [ k ] ) ;

i f ( d i f< d f ∗MAX( sPtr [ k ] , minStd ) && wPtr [ k]>maxW)

{

match = 1 ;

matchIndex = k ;

maxW = wPtr [ k ] ;

d i s t = d i f ;

}

}

i f ( match==1)

{
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for ( k=0;k< numGau ; k++)

{

wPtr [ k ] = ( matchIndex == k ) ? (1− a lpha )∗ wPtr [ k ] + alpha : wPtr [ k ] ∗ (1− a lpha ) ;

i f ( matchIndex == k && d i s t < d f ∗ sPt r [ k ] )

{

p = alpha / wPtr [ k ] ;

mean [ k ] = (1−p)∗ mean [ k ] + p∗ lumVal ;

sPt r [ k ] = sq r t ((1−p )∗ ( sPt r [ k ] ) ∗ ( sPt r [ k ] ) +

p∗( lumVal − mean [ k ] ) ∗ ( lumVal − mean [ k ] ) ) ;

}

sumW += wPtr [ k ] ;

}

// Ca l c u l a t e t h e component rank ing

for ( k=0;k< numGau ; k++)

{

wPtr [ k ] /=sumW;

rank [ k ] = wPtr [ k ] / sPt r [ k ] ;

rankIndex [ k ] = k ;

}

// Sor t t h e component ranks

for ( k=1;k< numGau ; k++)

{

for (m=0;m<k ;m++)

{

i f ( rank [ k ] > rank [m] )

{

tempRank = rank [m] ;

rank [m] = rank [ k ] ;

rank [ k ] = tempRank ;

tempRankIndex = rankIndex [m] ;

rankIndex [m] = rankIndex [ k ] ;

rankIndex [ k ] = tempRankIndex ;

}

}

}

sumW = 0 . 0 ;

for ( k=0;k< numGau ; k++)

{

i f ( rankIndex [ k ] == matchIndex ) break ;

sumW += wPtr [ rankIndex [ k ] ] ;

}

∗csmogrPtr = MOG OUTPUT ∗(sumW>= bgGauTh ) ;

}

else

{

minW = 1000;

for ( k=0;k< numGau ; k++)

{

i f ( wPtr [ k]<minW)

{

minW = wPtr [ k ] ;

minWIndex = k ;

}

}

mean [ minWIndex ] = lumVal ;

sPt r [ minWIndex ] = s d I n i t ;

wPtr [ minWIndex ] = in i tWeight ;

∗csmogrPtr = MOG OUTPUT;

}

wPtr += numGau ;

sPt r += numGau ;

mean += numGau ;
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c s rPt r ++;

csmogrPtr ++;

}

//now we have csmogr , t h e ou t p t o f mog , de termine which b l o c k s have changed .

u i n t 8 t ∗ csmPtr = csm ;

csmogrPtr = csmogr ;

memset ( csm , 0 , s izeof ( u i n t 8 t )∗ wh 64 ) ;

for ( i =0; i<wh 64 ; i++)

{

for ( j =0; j <8; j++)

{

csmPtr [ i ] = ( csmogrPtr [ j ] >0);

}

csmogrPtr+=8;

}

// Convert t h i s to an ou tpu t image .

CSMOG: : postProc ( csm , cIm , bkgnd , width , he ight ,

mog−> postProcTh , mog−> postProcAlpha ,

aPtr , aIStep , aJStep ) ;

return 1 ;

}

// //////////////////////////////////////////////

// d e s t r o y ( ) − Dea l l o c a t e s a CSGMM ob j e c t

// //////////////////////////////////////////////

void CSMOG: : dest roy (CSMOG: :CSGMM ∗ mog)

{

delete mog−> weight ;

delete mog−> mean ;

delete mog−> sd ;

delete mog−> rank ;

delete mog−> rankIndex ;

delete mog−> cIm ;

delete mog−> c s r ;

delete mog−> csmogr ;

delete mog−> bkgnd ;

delete mog−> csm ;

mog−> in itWithImage = 0 ;

}

// //////////////////////////////////////////////////////////////////////////////////////

// The f o l l o w i n g are i n t e r n a l r o u t i n e s which are used to perform the compres s i v e

// s en s i n g p r o j e c t i o n and update t h e Mixture o f Gauss ians . Don ’ t c a l l t h e s e

// e x p l i c i t l y .

// //////////////////////////////////////////////////////////////////////////////////////

// c sP r o j e c t i o n ( ) − This per forms the Compress ive Sens ing p r o j e c t i o n i t s e l f . This t a k e s

// advantage o f ARM’ s NEON i f we ’ re running on the Pandaboard .

// //////////////////////////////////////////////////////////////////////////////////////

void CSMOG: : c sP ro j e c t i on ( u i n t 8 t ∗ iPtr , u i n t 32 t width , u in t 32 t height , i n t 1 6 t ∗ aPtr , CSMOG: :CSGMM ∗mog )

{

i n t 1 6 t ∗ c s r e s u l t = new i n t 1 6 t [ width∗he ight /64∗8 ] ;

i n t 1 6 t ∗ c s r e s u l t p t r= c s r e s u l t ;

u i n t 32 t i Index = 0 , csIndex = 0 ;

#ifde f ARM NEON

// Se t up th e NEON array s
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i n t 16x8 t proj0 , proj1 , proj2 , proj3 , proj4 , proj5 , proj6 , pro j7 ;

i n t 16x8 t res0 , res1 , res2 , res3 , res4 , res5 , res6 , r e s7 ;

i n t 1 6 t p0 [ 8 ] , p1 [ 8 ] , p2 [ 8 ] , p3 [ 8 ] , p4 [ 8 ] , p5 [ 8 ] , p6 [ 8 ] , p7 [ 8 ] ;

i n t 1 6 t r0 [ 8 ] , r1 [ 8 ] , r2 [ 8 ] , r3 [ 8 ] , r4 [ 8 ] , r5 [ 8 ] , r6 [ 8 ] , r7 [ 8 ] ;

unsigned int csy , csx , csk , i ;

i n t 1 6 t cs temp ;

for ( csy = 0 ; csy < he ight ; csy += 8)

{

for ( csx = 0 ; csx < width ; csx += 8 )

{

cs temp = 0 ;

for ( csk = 0 ; csk < 8 ; csk++)

{

// Se t t h e p o i n t e r to t h e b l o c k to t h e f i r s t p i x e l o f t h e f i r s t row

i Index = csy ∗ width + csx ;

// For each o f t h e 8 p r o j e c t i o n s , we e x t r a c t t h e cu r r en t b l o c k and

// mu l t i p l y i t by t h e l ookup

// Copy the data to t h e NEON array s

p0 [ 0 ] = ( i n t 1 6 t ) iPt r [ i Index + 0 ] ;

p0 [ 1 ] = ( i n t 1 6 t ) iPt r [ i Index + 1 ] ;

p0 [ 2 ] = ( i n t 1 6 t ) iPt r [ i Index + 2 ] ;

p0 [ 3 ] = ( i n t 1 6 t ) iPt r [ i Index + 3 ] ;

p0 [ 4 ] = ( i n t 1 6 t ) iPt r [ i Index + 4 ] ;

p0 [ 5 ] = ( i n t 1 6 t ) iPt r [ i Index + 5 ] ;

p0 [ 6 ] = ( i n t 1 6 t ) iPt r [ i Index + 6 ] ;

p0 [ 7 ] = ( i n t 1 6 t ) iPt r [ i Index + 7 ] ;

pro j0 = vld1q s16 ( p0 ) ;

p1 [ 0 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 0 ] ;

p1 [ 1 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 1 ] ;

p1 [ 2 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 2 ] ;

p1 [ 3 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 3 ] ;

p1 [ 4 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 4 ] ;

p1 [ 5 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 5 ] ;

p1 [ 6 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 6 ] ;

p1 [ 7 ] = ( i n t 1 6 t ) iPt r [ width + i Index + 7 ] ;

pro j1 = vld1q s16 ( p1 ) ;

r e s0 = vmulq s16 ( proj0 , mog−>neon lookup [ csk ∗8 ] ) ;

v s t1q s16 ( r0 , r e s0 ) ;

p2 [ 0 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 0 ] ;

p2 [ 1 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 1 ] ;

p2 [ 2 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 2 ] ;

p2 [ 3 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 3 ] ;

p2 [ 4 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 4 ] ;

p2 [ 5 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 5 ] ;

p2 [ 6 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 6 ] ;

p2 [ 7 ] = ( i n t 1 6 t ) iPt r [2∗width + i Index + 7 ] ;

pro j2 = vld1q s16 ( p2 ) ;

r e s1 = vmulq s16 ( proj1 , mog−>neon lookup [ csk ∗8+1] ) ;

v s t1q s16 ( r1 , r e s1 ) ;

p3 [ 0 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 0 ] ;

p3 [ 1 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 1 ] ;

p3 [ 2 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 2 ] ;

p3 [ 3 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 3 ] ;

p3 [ 4 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 4 ] ;

p3 [ 5 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 5 ] ;
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p3 [ 6 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 6 ] ;

p3 [ 7 ] = ( i n t 1 6 t ) iPt r [3∗width + i Index + 7 ] ;

pro j3 = vld1q s16 ( p3 ) ;

r e s2 = vmulq s16 ( proj2 , mog−>neon lookup [ csk ∗8+2] ) ;

v s t1q s16 ( r2 , r e s2 ) ;

p4 [ 0 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 0 ] ;

p4 [ 1 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 1 ] ;

p4 [ 2 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 2 ] ;

p4 [ 3 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 3 ] ;

p4 [ 4 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 4 ] ;

p4 [ 5 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 5 ] ;

p4 [ 6 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 6 ] ;

p4 [ 7 ] = ( i n t 1 6 t ) iPt r [4∗width + i Index + 7 ] ;

pro j4 = vld1q s16 ( p4 ) ;

r e s3 = vmulq s16 ( proj3 , mog−>neon lookup [ csk ∗8+3] ) ;

v s t1q s16 ( r3 , r e s3 ) ;

p5 [ 0 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 0 ] ;

p5 [ 1 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 1 ] ;

p5 [ 2 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 2 ] ;

p5 [ 3 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 3 ] ;

p5 [ 4 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 4 ] ;

p5 [ 5 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 5 ] ;

p5 [ 6 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 6 ] ;

p5 [ 7 ] = ( i n t 1 6 t ) iPt r [5∗width + i Index + 7 ] ;

pro j5 = vld1q s16 ( p5 ) ;

r e s4 = vmulq s16 ( proj4 , mog−>neon lookup [ csk ∗8+4] ) ;

v s t1q s16 ( r4 , r e s4 ) ;

p6 [ 0 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 0 ] ;

p6 [ 1 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 1 ] ;

p6 [ 2 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 2 ] ;

p6 [ 3 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 3 ] ;

p6 [ 4 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 4 ] ;

p6 [ 5 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 5 ] ;

p6 [ 6 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 6 ] ;

p6 [ 7 ] = ( i n t 1 6 t ) iPt r [6∗width + i Index + 7 ] ;

pro j6 = vld1q s16 ( p6 ) ;

r e s5 = vmulq s16 ( proj5 , mog−>neon lookup [ csk ∗8+5] ) ;

v s t1q s16 ( r5 , r e s5 ) ;

p7 [ 0 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 0 ] ;

p7 [ 1 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 1 ] ;

p7 [ 2 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 2 ] ;

p7 [ 3 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 3 ] ;

p7 [ 4 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 4 ] ;

p7 [ 5 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 5 ] ;

p7 [ 6 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 6 ] ;

p7 [ 7 ] = ( i n t 1 6 t ) iPt r [7∗width + i Index + 7 ] ;

pro j7 = vld1q s16 ( p7 ) ;

r e s6 = vmulq s16 ( proj6 , mog−>neon lookup [ csk ∗8+6] ) ;

v s t1q s16 ( r6 , r e s6 ) ;

r e s7 = vmulq s16 ( proj7 , mog−>neon lookup [ csk ∗8+7] ) ;

v s t1q s16 ( r7 , r e s7 ) ;

cs temp += ( r0 [ 0 ] + r0 [ 1 ] + r0 [ 2 ] + r0 [ 3 ] + r0 [ 4 ] + r0 [ 5 ] + r0 [ 6 ] + r0 [ 7 ] ) ;
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cs temp += ( r1 [ 0 ] + r1 [ 1 ] + r1 [ 2 ] + r1 [ 3 ] + r1 [ 4 ] + r1 [ 5 ] + r1 [ 6 ] + r1 [ 7 ] ) ;

cs temp += ( r2 [ 0 ] + r2 [ 1 ] + r2 [ 2 ] + r2 [ 3 ] + r2 [ 4 ] + r2 [ 5 ] + r2 [ 6 ] + r2 [ 7 ] ) ;

cs temp += ( r3 [ 0 ] + r3 [ 1 ] + r3 [ 2 ] + r3 [ 3 ] + r3 [ 4 ] + r3 [ 5 ] + r3 [ 6 ] + r3 [ 7 ] ) ;

cs temp += ( r4 [ 0 ] + r4 [ 1 ] + r4 [ 2 ] + r4 [ 3 ] + r4 [ 4 ] + r4 [ 5 ] + r4 [ 6 ] + r4 [ 7 ] ) ;

cs temp += ( r5 [ 0 ] + r5 [ 1 ] + r5 [ 2 ] + r5 [ 3 ] + r5 [ 4 ] + r5 [ 5 ] + r5 [ 6 ] + r5 [ 7 ] ) ;

cs temp += ( r6 [ 0 ] + r6 [ 1 ] + r6 [ 2 ] + r6 [ 3 ] + r6 [ 4 ] + r6 [ 5 ] + r6 [ 6 ] + r6 [ 7 ] ) ;

cs temp += ( r7 [ 0 ] + r7 [ 1 ] + r7 [ 2 ] + r7 [ 3 ] + r7 [ 4 ] + r7 [ 5 ] + r7 [ 6 ] + r7 [ 7 ] ) ;

∗ c s r e s u l t p t r = cs temp ;

c s r e s u l t p t r ++;

}

}

}

#else

unsigned int csy , csx , csm , csk , c s j ;

i n t 1 6 t cs temp , cs temp2 ;

for ( csy =0; csy<he ight ; csy+=8)

{

for ( csx =0; csx<width ; csx+=8)

{

csIndex = 0 ;

for ( c s j =0; c s j <8; c s j++)// each o f t h e 8 p r o j e c t i o n s

{

cs temp= 0 ;

for ( csk =0; csk <8; csk++)// b l o c k v e r t i c a l

{

for ( csm=0;csm<8;csm++)// b l o c k h o r i z o n t a l

{

cs temp2 = ( i n t 1 6 t ) iPt r [ i Index ] ;

cs temp+=(i n t 1 6 t ) ( cs temp2 ∗ CSMOG: : c sc [ csIndex ] ) ;

i Index++, csIndex++;

}

i Index+=(width−8);

}

∗ c s r e s u l t p t r = cs temp ;

c s r e s u l t p t r ++;

i Index+=(−width ∗8 ) ;

}

i Index +=8;

}

i Index+=(width ∗7 ) ;

}

#endif

for ( csx =0; csx<width∗he ight /64∗8; csx++)

{

aPtr [ csx ] = ( i n t 1 6 t ) c s r e s u l t [ csx ] ;

}

delete c s r e s u l t ;

}

// ///////////////////////////////////////////////////////////////////////////////////

// pos tProc ( ) − This c on v e r t s t h e ou tpu t from the CS p r o j e c t i o n and GMM to a

// u s a b l e c a l c u l a t e d f o r eg round mask .

// ///////////////////////////////////////////////////////////////////////////////////

void CSMOG: : postProc ( u i n t 8 t ∗ csmogr , u i n t 8 t ∗ cIm , u i n t 8 t ∗ bkgnd , u in t 32 t width ,

u in t32 t height , u i n t 8 t th , u i n t 32 t alpha ,

u i n t 8 t ∗ aPtr , u i n t 32 t aIStep , u in t 32 t aJStep )

{

// note a l pha i s t h e l o g i c a l s h i f t , so i f a l pha = 3 , a l pha i s e f f e c t i v e 1/8
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int csk = 0 , csm = 0 ;

unsigned int csx= 0 , csy =0;

u i n t 8 t ∗ csmogrPtr = csmogr ;

u i n t 8 t ∗ cImPtr = cIm ;

u i n t 8 t ∗ bkgndPtr = bkgnd ;

u i n t 8 t d i f ;

u i n t 32 t co e f = (1<<alpha )−1;

u in t 32 t he i ght 8 = he ight /8 , width 8 = width /8 ;

u i n t 8 t ∗aXPtr = aPtr , ∗aYPtr = aPtr ;

for ( csy =0; csy<he i ght 8 ; csy++)

{

for ( csm=0; csm<8; csm++)

{

aXPtr = aYPtr ;

for ( csx =0; csx<width 8 ; csx++)

{

for ( csk =0; csk <8; csk++)// b l o c k v e r t i c a l

{

i f ( csmogrPtr [ csx ]>0)// i f t h e p i x e l i s in a b l o c k t h a t i s f l a g g e d

{// compare i t t o t h e background

d i f = abs ( ( i n t 3 2 t ) (∗ bkgndPtr ) − ( i n t 3 2 t )∗ ( cImPtr ) ) ;

i f ( d i f>=th )

{

// yes t h i s p i x e l has changed

∗aXPtr =MOG OUTPUT;

}

else

{

// update t h e background o f t h i s p i x e l

∗aXPtr = 0 ;

∗bkgndPtr = ( u i n t 8 t ) ( ( ( ( u in t32 t ) (∗ bkgndPtr )∗ co e f )+(( u in t32 t ) (∗ cImPtr)))>>alpha ) ;

}

}

else

{

∗aXPtr = 0 ;

∗bkgndPtr = ( u i n t 8 t ) ( ( ( ( u in t32 t ) (∗ bkgndPtr )∗ co e f )+(( u in t32 t ) (∗ cImPtr)))>>alpha ) ;

}

cImPtr ++;

bkgndPtr ++;

aXPtr += aIStep ;

}

}

aYPtr += aJStep ;

}

csmogrPtr += width 8 ;

}

}

// /////////////////////////////////////////////////////////////////////////////////

// c on v e r tTo In t e n s i t y ( ) − This v e c t o r i s e s t h e incoming frame .

// ////////////////////////////////////////////////////////////////////////////////

void CSMOG: : conver tToIntens i ty ( u i n t 8 t ∗ iPtr , u i n t 32 t i IStep , u in t32 t iJStep ,

u in t 32 t width , u in t 32 t height , u i n t 8 t ∗ oPtr )

{

int l ength = width ∗ he ight ;

i f ( i I S t ep == 1 && iJStep == width )

{

memcpy( oPtr , iPtr , l ength ∗ s izeof ( u i n t 8 t ) ) ;

return ;
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}

int i = 0 ;

u i n t 8 t ∗ i P t r = iPt r ;

for ( i =0; i < l ength ; i++)

{

oPtr [ i ] = ∗ i P t r ;

i P t r += i IS t e p ;

}

}

#ifde f ARM NEON

// ////////////////////////////////////////////////////////////////////////////////

// s e t u p n eon l o o kup ( ) − Se t s up th e l ookup chunks f o r use w i th NEON i n t r i n s i c s .

// ////////////////////////////////////////////////////////////////////////////////

void CSMOG: : setup neon lookup (CSGMM ∗mog)

{

i n t 1 6 t c0 [ 8 ] , c1 [ 8 ] , c2 [ 8 ] , c3 [ 8 ] , c4 [ 8 ] , c5 [ 8 ] , c6 [ 8 ] , c7 [ 8 ] ;

int i , p = 0 ;

for ( i = 0 ; i < 8 ; i++)

{

c0 [ 0 ] = CSMOG: : c sc [ p ] ;

c0 [ 1 ] = CSMOG: : c sc [ p+1] ;

c0 [ 2 ] = CSMOG: : c sc [ p+2] ;

c0 [ 3 ] = CSMOG: : c sc [ p+3] ;

c0 [ 4 ] = CSMOG: : c sc [ p+4] ;

c0 [ 5 ] = CSMOG: : c sc [ p+5] ;

c0 [ 6 ] = CSMOG: : c sc [ p+6] ;

c0 [ 7 ] = CSMOG: : c sc [ p+7] ;

mog−>neon lookup [8∗ i ] = v ld1q s16 ( c0 ) ;

c1 [ 0 ] = CSMOG: : c sc [ p+8] ;

c1 [ 1 ] = CSMOG: : c sc [ p+9] ;

c1 [ 2 ] = CSMOG: : c sc [ p+10] ;

c1 [ 3 ] = CSMOG: : c sc [ p+11] ;

c1 [ 4 ] = CSMOG: : c sc [ p+12] ;

c1 [ 5 ] = CSMOG: : c sc [ p+13] ;

c1 [ 6 ] = CSMOG: : c sc [ p+14] ;

c1 [ 7 ] = CSMOG: : c sc [ p+15] ;

mog−>neon lookup [8∗ i +1] = vld1q s16 ( c1 ) ;

c2 [ 0 ] = CSMOG: : c sc [ p+16] ;

c2 [ 1 ] = CSMOG: : c sc [ p+17] ;

c2 [ 2 ] = CSMOG: : c sc [ p+18] ;

c2 [ 3 ] = CSMOG: : c sc [ p+19] ;

c2 [ 4 ] = CSMOG: : c sc [ p+20] ;

c2 [ 5 ] = CSMOG: : c sc [ p+21] ;

c2 [ 6 ] = CSMOG: : c sc [ p+22] ;

c2 [ 7 ] = CSMOG: : c sc [ p+23] ;

mog−>neon lookup [8∗ i +2] = vld1q s16 ( c2 ) ;

c3 [ 0 ] = CSMOG: : c sc [ p+24] ;

c3 [ 1 ] = CSMOG: : c sc [ p+25] ;

c3 [ 2 ] = CSMOG: : c sc [ p+26] ;

c3 [ 3 ] = CSMOG: : c sc [ p+27] ;

c3 [ 4 ] = CSMOG: : c sc [ p+28] ;

c3 [ 5 ] = CSMOG: : c sc [ p+29] ;

c3 [ 6 ] = CSMOG: : c sc [ p+30] ;

c3 [ 7 ] = CSMOG: : c sc [ p+31] ;

mog−>neon lookup [8∗ i +3] = vld1q s16 ( c3 ) ;

c4 [ 0 ] = CSMOG: : c sc [ p+32] ;

c4 [ 1 ] = CSMOG: : c sc [ p+33] ;
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c4 [ 2 ] = CSMOG: : c sc [ p+34] ;

c4 [ 3 ] = CSMOG: : c sc [ p+35] ;

c4 [ 4 ] = CSMOG: : c sc [ p+36] ;

c4 [ 5 ] = CSMOG: : c sc [ p+37] ;

c4 [ 6 ] = CSMOG: : c sc [ p+38] ;

c4 [ 7 ] = CSMOG: : c sc [ p+39] ;

mog−>neon lookup [8∗ i +4] = vld1q s16 ( c4 ) ;

c5 [ 0 ] = CSMOG: : c sc [ p+40] ;

c5 [ 1 ] = CSMOG: : c sc [ p+41] ;

c5 [ 2 ] = CSMOG: : c sc [ p+42] ;

c5 [ 3 ] = CSMOG: : c sc [ p+43] ;

c5 [ 4 ] = CSMOG: : c sc [ p+44] ;

c5 [ 5 ] = CSMOG: : c sc [ p+45] ;

c5 [ 6 ] = CSMOG: : c sc [ p+46] ;

c5 [ 7 ] = CSMOG: : c sc [ p+47] ;

mog−>neon lookup [8∗ i +5] = vld1q s16 ( c5 ) ;

c6 [ 0 ] = CSMOG: : c sc [ p+48] ;

c6 [ 1 ] = CSMOG: : c sc [ p+49] ;

c6 [ 2 ] = CSMOG: : c sc [ p+50] ;

c6 [ 3 ] = CSMOG: : c sc [ p+51] ;

c6 [ 4 ] = CSMOG: : c sc [ p+52] ;

c6 [ 5 ] = CSMOG: : c sc [ p+53] ;

c6 [ 6 ] = CSMOG: : c sc [ p+54] ;

c6 [ 7 ] = CSMOG: : c sc [ p+55] ;

mog−>neon lookup [8∗ i +6] = vld1q s16 ( c6 ) ;

c7 [ 0 ] = CSMOG: : c sc [ p+56] ;

c7 [ 1 ] = CSMOG: : c sc [ p+57] ;

c7 [ 2 ] = CSMOG: : c sc [ p+58] ;

c7 [ 3 ] = CSMOG: : c sc [ p+59] ;

c7 [ 4 ] = CSMOG: : c sc [ p+60] ;

c7 [ 5 ] = CSMOG: : c sc [ p+61] ;

c7 [ 6 ] = CSMOG: : c sc [ p+62] ;

c7 [ 7 ] = CSMOG: : c sc [ p+63] ;

mog−>neon lookup [8∗ i +7]= vld1q s16 ( c7 ) ;

}

}

#endif



Appendix D

Source Code Listing -

Non-compressive Mixture of

Gaussians

This appendix contains the non-compressive Mixture of Gaussians class and modified

frame processing function. This can be used as a substitute with the corresponding

files in Appendix C.

D.1 type wrappers.hpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ t y p e wrappe r s . hpp − Wrapper c l a s s e s f o r OpenCV Ip l Image f o r e a s i e r a c c e s s

∗ t o image data . Based on code found here :

∗ h t t p ://www. cs . i i t . edu /˜agam/ cs512 / l e c t−no t e s / opencv−i n t r o / opencv−i n t r o . html

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − May 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#ifndef TYPE WRAPPERS H

#define TYPE WRAPPERS H

#include <cv . h>

#include <cxcore . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ p i x e l c l a s s d e f i n i t i o n

∗ This c l a s s models each p i x e l in terms o f red , green and b l u e .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

class Pixe l
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{

public :

P ixe l ( ){ ; } // Don ’ t need t h i s one

Pixe l ( unsigned char , unsigned char , unsigned char ) ;

P ixe l& operator=(const Pixe l &);

in l ine unsigned char& operator ( ) ( const int ch )

{

return ch [ ch ] ;

}

in l ine unsigned char operator ( ) ( const int ch ) const

{

return ch [ ch ] ;

}

unsigned char ch [ 3 ] ;

} ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ RGB Img c l a s s d e f i n i t i o n

∗

∗ This c l a s s h o l d s an RGB image . This i s wrapped around the Ip l Image d e f i n t i o n

∗ in order to p r o v i d e some nice , easy a c c e s s to t h e image data and perform a l l

∗ o f t h e nec e s s a r y p o i n t e r a r i t hme t i c a u t oma t i c a l l y .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

class RGB Img

{

public :

RGB Img( IplImage∗ ) ;

RGB Img( void ) ;

˜RGB Img( void ){ i f ( payload != NULL ) cvReleaseImage ( &payload ) ; }

// Le t s us yank t he raw Ip l Image out i f we need to

IplImage∗ ex t ra c t ( void ) ;

const IplImage∗ ex t ra c t ( void ) const ;

void r e s e t ( void ) ; // Reset to a l l z e r o s i f needed

void operator=( IplImage∗ ) ; // Treat t h e s e o b j e c t s t h e same as Ip l Image

const unsigned char& operator ( ) ( const int row ,

const int col ,

const int chan ) const

{

int i = row ∗ payload−>widthStep + co l ∗ payload−>nChannels + chan ;

return (unsigned char &) payload−>imageData [ i ] ;

}

unsigned char& operator ( ) ( const int row ,

const int col ,

const int chan )

{

int i = row ∗ payload−>widthStep + co l ∗ payload−>nChannels + chan ;

return (unsigned char &) payload−>imageData [ i ] ;

}

Pixe l& operator ( ) ( const int row , const int co l )

{

int i = row ∗ payload−>widthStep + co l ∗ payload−>nChannels ;

return ( P ixe l &) payload−>imageData [ i ] ;

}

const Pixe l& operator ( ) ( const int row , const int co l ) const

{

int i = row ∗ payload−>widthStep + co l ∗ payload−>nChannels ;
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return ( P ixe l &) payload−>imageData [ i ] ;

}

private :

IplImage ∗payload ;

} ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Mask c l a s s d e f i n i t i o n

∗ This h o l d s a mask showing t h e p i x e l s which are members o f t h e f o r e g round

∗ or background . This w i l l be a b ina ry image so t h e r e ’ s no need to have

∗ channe l s p e c i f i c o p e r a t i o n s .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

class Mask

{

public :

Mask( IplImage ∗ ) ;

Mask ( ) { ; }

˜Mask( void ) { ; }

void d e a l l o c ( bool ) ;

void r e s e t ( void ) ;

IplImage∗ ex t ra c t ( void ) ;

const IplImage∗ ex t ra c t ( void ) const ;

void operator=( IplImage∗ ) ;

in l ine unsigned char& operator ( ) ( const int row , const int co l )

{

int index = row ∗ payload−>widthStep + co l ;

return (unsigned char &) payload−>imageData [ index ] ;

}

in l ine const unsigned char& operator ( ) ( const int row ,

const int co l ) const

{

int index = row ∗ payload−>widthStep + co l ;

return (unsigned char &) payload−>imageData [ index ] ;

}

protected :

IplImage ∗payload ;

bool release mem ;

} ;

#endif

D.2 type wrappers.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ t y p e wrappe r s . cpp − Wrapper c l a s s imp l emen ta t i ons as per t yp e wrappe r s . hpp

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) − May 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include ” type wrappers . hpp”

#include <cv . h>

#include <cxcore . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ P i x e l c l a s s imp lementa t ion

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// This s hou l d be obv ious , bu t t h i s j u s t s e t s up a p i x e l w i t h t h e v a l u e s
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// s p e c i f i e d as R, G and B.

Pixe l : : P ixe l ( unsigned char r , unsigned char g , unsigned char b )

{

ch [ 0 ] = r ;

ch [ 1 ] = g ;

ch [ 2 ] = b ;

}

// Make t h i s e qua l t o ano ther p i x e l

Pixe l& Pixe l : : operator=( const Pixe l& a )

{

ch [ 0 ] = a . ch [ 0 ] ;

ch [ 1 ] = a . ch [ 1 ] ;

ch [ 2 ] = a . ch [ 2 ] ;

return ∗ this ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ RGB Img c l a s s imp lementa t ion

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

RGB Img : : RGB Img( )

{

payload = NULL;

}

RGB Img : : RGB Img( IplImage ∗a )

{

payload = a ;

}

void RGB Img : : operator=( IplImage ∗a )

{

// i f ( pay load != NULL ) cvRe leaseImage ( &pay load ) ;

payload = a ;

}

void RGB Img : : r e s e t ( void )

{

cvZero ( payload ) ;

}

IplImage∗ RGB Img : : ex t r a c t ( void )

{

return payload ;

}

const IplImage∗ RGB Img : : ex t r a c t ( void ) const

{

return payload ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Mask c l a s s imp lementa t ion

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

Mask : : Mask( IplImage ∗a = NULL )

{

payload = a ;

release mem = true ;

}
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void Mask : : d e a l l o c ( bool a )

{

release mem = a ;

}

void Mask : : r e s e t ( void )

{

cvZero ( payload ) ;

}

void Mask : : operator=( IplImage ∗a )

{

payload = a ;

}

IplImage∗ Mask : : ex t r a c t ( void )

{

return payload ;

}

const IplImage∗ Mask : : ex t r a c t ( void ) const

{

return payload ;

}

D.3 gmm.hpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ gmm. hpp − Gaussian Mixture Model c l a s s d e f i n i t i o n s

∗

∗ See gmm. cpp f o r imp lementa t ion d e t a i l s .

∗

∗ Ashton Fagg ( ash ton@fagg . i d . au ) − May 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#ifndef GMMH

#define GMMH

#include ” type wrappers . hpp”

#define RED 0

#define GREEN 1

#define BLUE 2

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// S t r u c t to ho l d t h e user s p e c i f i e d GMM parameters .

typedef struct GMM User Params

{

f loat l ow thresh ;

f loat h igh thre sh ;

f loat bg thresh ;

f loat alpha ;

f loat cp ;

f loat var ;

int max components ;

} GMM User Params ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// Gaussian components f o r t h e GMM. There w i l l be M o f t h e s e per p i x e l .

class GaussianComponent
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{

public :

GaussianComponent ( )

{

R mu = 0 ; G mu = 0 ; B mu = 0 ;

w = 0 ;

sigma = 0 ;

}

void set mu ( f loat r , f loat g , f loat b )

{

R mu = r ; G mu = g ; B mu = b ;

}

void set w ( f loat w ) { w = w ; }

void s e t s i g ( f loat s ) { sigma = s ; }

f loat r mu ( void ) { return R mu ; }

f loat g mu( void ) { return G mu; }

f loat b mu( void ) { return B mu ; }

f loat weight ( void ) { return w; }

f loat s i g ( void ) { return sigma ; }

private :

f loat R mu, G mu, B mu , sigma , w;

} ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// This i s t h e GMM i t s e l f .

class GaussianMixtures

{

public :

GaussianMixtures ( )

{

f f rame = true ;

framen = 0 ;

}

GaussianMixtures ( const GMM User Params& usr par )

{

f f rame = true ;

framen = 0 ;

low thresh = usr par . l ow thresh ;

h i gh thr e sh = usr par . h i gh th r e sh ;

alpha = usr par . alpha ;

max components = usr par . max components ;

bg thresh = usr par . bg thresh ;

cp = usr par . cp ;

var = usr par . var ;

}

// Proce s s e s incoming frames

void proce s s ( cv : : Mat const& , cv : : Mat& ) ;

private :

void setup ( const cv : : Mat ) ;

void subt rac t ( const RGB Img&, Mask&, Mask& ) ;

int pix update ( long , const Pixe l &, int ,

unsigned char&, unsigned char& ) ;

int ca lc comp pos ( int , int ) ;

bool f f rame ;

long framen ;

f loat low thresh , h igh thresh , bg thresh , alpha , cp , var ;

int max components ;

int f width , f h e i gh t , f s z ;

std : : vector<GaussianComponent∗> comp ;

std : : vector<int> comp per p ixe l ;

IplImage ∗ frame ;

RGB Img frame ;

RGB Img mod bg ;
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Mask l mask ;

Mask h mask ;

stat ic const int BG = 0 ;

stat ic const int FG = 255;

} ;

#endif

D.4 gmm.cpp

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ gmm. cpp −> Gaussian Mix tures Model imp lementa t ion

∗

∗ Model update code i s based upon code by Donovan Parks :

∗ h t t p :// dparks . w i k i d o t . com/ source−code

∗

∗ The f u n c t i o n s in t h i s f i l e are ordered in terms o f a b s t r a c t i o n , w i th h i g h e r

∗ l e v e l i n t e r f a c e s towards t h e top . These f u n c t i o n s i n c l u d e t h e user−f a c i n g

∗ p r o c e s s i n g rou t ine , s e t up r o u t i n e s and Mixture Model update and background

∗ s u b t r a c t i o n r o u t i n e s .

∗

∗ Ashton Fagg ( ash . f a g g@c s i r o . au ) , May 2012

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include ”gmm. hpp”

#include ”cv . h”

#include ” type wrappers . hpp”

using std : : cout ;

using std : : endl ;

/∗ This p r o c e s s e s t h e incoming frames and s e t s up a few more t h i n g s i f

∗ t h e frame i s t h e f i r s t one .

∗/

void GaussianMixtures : : p roce s s ( cv : : Mat const &in , cv : : Mat &out )

{

i f ( in . empty ( ) ) return ;

// Perform the t ype conv e r s i on s

frame = new IplImage ( in ) ;

f rame = frame ;

// I f t h i s i s t h e f i r s t frame , s e t up some s t u f f .

i f ( f f rame )

{

GaussianMixtures : : setup ( in ) ;

l mask = cvCreateImage ( cvS ize ( f width , f h e i g h t ) , IPL DEPTH 8U , 1 ) ;

l mask . ex t r a c t ()−> o r i g i n = IPL ORIGIN BL ;

h mask = cvCreateImage ( cvS i ze ( f width , f h e i g h t ) , IPL DEPTH 8U , 1 ) ;

h mask . ex t ra c t ()−> o r i g i n = IPL ORIGIN BL ;

mod bg = cvCreateImage ( cvS i ze ( f width , f h e i g h t ) , IPL DEPTH 8U , 3 ) ;

mod bg . ex t ra c t ()−> o r i g i n = IPL ORIGIN BL ;

}

GaussianMixtures : : subt rac t ( frame , l mask , h mask ) ;

cv : : Mat fg ( h mask . ex t ra c t ( ) ) ;

f g . copyTo ( out ) ;

f f rame = fa l se ;

framen++;

fg . r e l e a s e ( ) ;

delete frame ;

}
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/∗ This s e t s up t he mix ture model a c co rd ing to t h e frame s i z e parameters .

∗ A l l o c a t e s components f o r each p i x e l and s e t s t h e used components to z e ro .

∗/

void GaussianMixtures : : setup ( const cv : : Mat f r )

{

int i ;

f w idth = f r . s i z e ( ) . width ;

f h e i g h t = f r . s i z e ( ) . he ight ;

f s z = f width ∗ f h e i g h t ;

for ( i = 0 ; i < f s z ; ++i )

{

comp per p ixe l . push back ( 0 ) ; // Se t them a l l t o z e ro

}

for ( i = 0 ; i < f s z ∗ max components ; ++i )

{

comp . push back ( new GaussianComponent ) ; // Components are s e t t o z e ro

// by t h e c on s t r u c t o r .

}

}

int GaussianMixtures : : ca lc comp pos ( int r , int c )

{

int r e t = max components ∗ ( r ∗ f w idth + c ) ;

return r e t ;

}

/∗ This per forms the a c t u a l p i x e l−by−p i x e l s u b t r a c t i o n . E v en t u a l l y t h i s

∗ w i l l become SMP−aware , so i t ’ l l s e t t o work on mu l t i p l e p i x e l s a t once .

∗/

void GaussianMixtures : : subt rac t ( const RGB Img& d ,

Mask& l mask , Mask& h mask )

{

unsigned char l tmask ;

unsigned char h tmask ;

long pos ;

int comps used ;

int r , c ;

// Update acco rd ing to r a s t e r order

for ( r = 0 ; r < f h e i g h t ; r++ )

{

for ( c = 0 ; c < f w idth ; c++ )

{

pos = GaussianMixtures : : ca lc comp pos ( r , c ) ;

l mask ( r , c ) = l tmask ;

h mask ( r , c ) = h tmask ;

// Update t h e p i x e l .

comps used = comp per p ixe l . at ( r ∗ f w idth + c ) ;

comp per p ixe l . at ( r∗ f w idth + c ) = GaussianMixtures : : p ix update ( pos ,

d( r , c ) , comps used , l tmask ,

h tmask ) ;

// Se t t h e background up .

mod bg ( r , c , RED ) = (unsigned char ) comp . at ( pos )−>r mu ( ) ;

mod bg ( r , c , BLUE ) = (unsigned char ) comp . at ( pos )−>b mu ( ) ;

mod bg ( r , c , GREEN ) = (unsigned char ) comp . at ( pos )−>g mu ( ) ;

l mask ( r , c ) = l tmask ;

h mask ( r , c ) = h tmask ;
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}

}

}

/∗ This mess upda t e s t h e model f o r one p i x e l and i t ’ s components . ∗/

int GaussianMixtures : : p ix update ( long pos , const Pixe l& pix ,

int comps used ,

unsigned char& lt , unsigned char& ht )

{

int i , l o c a l i ;

long p ;

bool f i t s p d f = fa l se ;

bool bg low = fa l se ;

bool bg high = fa l se ;

f loat min alpha = 1 − alpha ;

f loat k i l l = (−1∗alpha )∗ cp ;

f loat to ta l w = 0.0 f ;

int bg comps = 0 ;

double sum = 0 . 0 ;

// Work out how many background Gaussian components

for ( i = 0 ; i < comps used ; ++i )

{

i f ( sum < bg thresh )

{

bg comps++;

sum += comp . at ( i + pos )−>weight ( ) ;

}

else break ;

}

// Update a l l o f t h e components and check i f t h e r e i s an e x i s t i n g component

for ( i = 0 ; i < comps used ; i++ )

{

p = pos + i ;

f loat w = comp . at ( p )−>weight ( ) ;

i f ( ! f i t s p d f )

{

f loat v = comp . at ( p )−> s i g ( ) ;

f loat mur = comp . at ( p )−>r mu ( ) ;

f loat mug = comp . at ( p )−>g mu ( ) ;

f loat mub = comp . at ( p )−>b mu ( ) ;

// Ca l c u l a t e t h e d r i f t

f loat dr = mur − pix ( RED ) ;

f loat dg = mug − pix ( GREEN ) ;

f loat db = mub − pix ( BLUE ) ;

f loat s q d i s t = ( dr∗dr ) + ( dg∗dg ) + (db∗db ) ;

i f ( s q d i s t < h igh thre sh ∗ var && i < bg comps )

bg high = true ;

i f ( s q d i s t < l ow thresh ∗ var )

{

f i t s p d f = true ;

// Check i f t h i s i s pa r t o f background

i f ( i < bg comps ) bg low = true ;

// Update t h e components

f loat k = alpha / w;

w = min alpha ∗ w + k i l l ;

w += alpha ;

comp . at ( p )−>set mu ( mur − ( k∗dr ) ,

mug − ( k∗dg ) ,

mub − ( k∗db) ) ;

f loat new sigma = v + k ∗ ( s q d i s t − v ) ;
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// Se t t h e new var i ance acco rd ing to t h e l i m i t

comp . at ( p )−> s e t s i g ( new sigma < 4 ? 4 : new sigma > 5 ∗ var

? 5 ∗ var : new sigma ) ;

// Sor t t h e component i n t o de s cend ing

// order o f we i gh t .

for ( int i l o c = i ; i l o c > 0 ; i l o c−− )

{

long pl = pos + i l o c ;

i f ( comp . at ( p l )−> s i g ( ) > comp . at ( p l − 1 )−> s i g ( ) )

{

GaussianComponent ∗tmp = comp . at ( p l ) ;

comp . at ( p l ) = comp . at ( p l − 1 ) ;

comp . at ( p l − 1 ) = tmp ;

}

else

{

break ;

}

}

}

}

else

{

w = min alpha ∗ w + k i l l ;

// Check i f we need to drop t h i s component

i f ( w < −1∗ k i l l )

{

w = 0 . 0 ;

comps used−−;

}

comp . at ( p )−> s e t s i g ( w ) ;

}

to ta l w += w;

}

for ( int l o c a l i = 0 ; l o c a l i < comps used ; l o c a l i++ )

{

int pl = pos + l o c a l i ;

comp . at ( p l )−>set w ( comp . at ( p l )−>weight ( ) / to ta l w ) ;

}

// Make a new component i f r e q u i r e d

i f ( ! f i t s p d f )

{

i f ( comps used == max components )

{

}

else

{

comps used++;

long pl = pos + comps used − 1 ;

i f ( comps used == 1 )

{

comp . at ( p l )−>set w ( 1 ) ;

}

else

{

comp . at ( p l )−>set w ( alpha ) ;

}

// Renormal ise t h e we i g h t s so t h ey sum to 1
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f loat sum = 0 . 0 ;

for ( l o c a l i = 0 ; l o c a l i < comps used ; l o c a l i++ )

{

sum += comp . at ( pos + l o c a l i )−>weight ( ) ;

}

// Check to make sure we a c t u a l l y need to do the r eno rma l i s a t i o n

i f ( sum != 0 .0 )

{

for ( l o c a l i = 0 ; l o c a l i < comps used ; l o c a l i++ )

{

f loat cur r we ight = comp . at ( pos + l o c a l i )−>weight ( ) ;

comp . at ( pos + l o c a l i )−>set w ( ( 1 . 0 f /sum) ∗ cur r we ight ) ;

}

}

comp . at ( p l )−>set mu ( pix ( RED ) , pix ( GREEN ) , pix ( BLUE ) ) ;

comp . at ( p l )−> s e t s i g ( var ) ;

}

// Sor t t h e components in de s cend ing order by we i gh t

for ( l o c a l i = comps used − 1 ; l o c a l i > 0 ; l o c a l i−− )

{

long x = pos + l o c a l i ;

i f ( comp . at ( x )−>weight ( ) > comp . at ( x − 1 )−>weight ( ) )

{

GaussianComponent ∗tmp = comp . at ( x ) ;

comp . at ( x ) = comp . at ( x − 1 ) ;

comp . at ( x − 1 ) = tmp ;

}

else

{

break ;

}

}

}

i f ( bg low )

{

l t = (unsigned char ) BG;

}

else

{

l t = (unsigned char ) FG;

}

i f ( bg high )

{

ht = (unsigned char ) BG;

}

else

{

ht = (unsigned char ) FG;

}

return comps used ;

}



Appendix E

Source Code Listing - Support

Scripts

This Appendix contains the support scripts used to supervise the vision software and

synchronise output data between the local deployment and a remote server and self-

supervision of the vision system. Please note, that due to security reasons some parts

have been redacted or generalised.

E.1 conf.py

# System Vars

hostName = ’name ’

l o c a t i o n = ’ l o c a t i o n ’

c on f v e r = ’ 2 .0 ’

l o g f i l e = ’ / var / log / supe rv i s o r . py ’

# VPN Conf ig

vpn enable = False # Enable t h e VPN tunne l

vpn connect cmd = [ ’ / usr / sb in /vpnc−connect ’ , hostName ]

vpn disconnect cmd = [ ’ / usr / sb in /vpnc−d i s connect ’ ]

vpn p ing in t e rna l = [ ’ ping ’ , ’−c5 ’ , ’−t5 ’ , ’REDACTED’ ] # ping 5 t imes w i th a t t l o f 5 s e c s

vpn timeout = 30 # 30 second t imeou t

# F i l e r e t u rn c o n f i g u r a t i o n

r sync hos t = ’ somehost . somewhere . com ’

r sync u s e r = ’ r syncuse r ’

r s y n c l o c a l d i r = ’ /mnt/usb/ ’

r sync remoted i r = ’ /path/ to / c o l l e c t i o n / ’

rsync cmd = [ ’ / usr / bin / rsync −azh %s %s@%s :%s ’ , %( r s y n c l o c a l d i r , r sync use r , r sync host , r sync remoted i r , ) ]

## Conf ig Rules
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# The l i n e s b e g in w i th a keyword ( no l e a d i n g space s ! ) .

# The v a l u e s s t a r t e x a c t l y one space a f t e r t h e keywords , and run to t h e end o f l i n e .

# This l e t s you put any k ind o f we ird c ha r a c t e r ( e x c e p t CR, LF and NUL) in your s t r i n g s ,

# bu t i t does mean you can ’ t add comments a f t e r a s t r i n g , or space s b e f o r e them .

vpnConnect = [

’ IPSec gateway REDACTED’ ,

’ IPSec ID REDACTED’ ,

’ IPSec s e c r e t REDACTED’ ,

’ Xauth username REDACTED’ ,

’ Xauth password REDACTED’ ,

’NAT−Keepal ive packet i n t e r v a l 60 ’ # Ping the VPN Tunnel e ve ry 1min

]

# Note : s u p e r v i s o r w i l l p o pu l a t e t h e i p and mac addre s s

ip = ’ ’

mac = ’ ’

t imeServer = ’ 0 . au . pool . ntp . org ’

i n e t I f a c e = ’ eth0 ’

tunnI face = ’ tun0 ’

# Loca l app l i s t

appDir = ’ / usr / l o c a l / bin ’

## How to use t h i s s e c t i o n

#

# The program must be a l i s t , w i t h each parameter a s e p e r a t e i tem .

# Note : Pipe ( | ) and stream r e d i r e c t i o n (>) w i l l not work

#

# I f t h e f i r s t i tem in the l i s t matches one o f t h e i t ems in ’ l aunchInScreen ’

# then the app w i l l be l aunched in a d e t a t c h e d sc r een .

#

# appL i s t = [

# [ ’ f o s l i s t e n ’ , ’−− s e r i a l=%s ’ % f l e c kPo r t , ’−− e r r l o g f i l e =/var / l o g / f o s l i s t e n . l o g ’ , ’−− s a f e t y ’ , ’−−show=r t d ’ ] ,

# [ ’ f o s d bpu sh ’ , ’−− l o c a t i o n=%s ’ % ( l o c a t i o n , ) ] ,

# [ ’ s sh ’ , ’−NfR ’ , ’ 2 0 2 5 : 1 2 7 . 0 . 0 . 1 : 2 2 ’ , ’ f leck@www . s en s o rn e t s . c s i r o . au ’ ] ,

# [ ’ s sh ’ , ’−NfR ’ , ’ 9 3 4 1 : 1 2 7 . 0 . 0 . 1 : 9 0 0 1 ’ , ’ f leck@www . s en s o rn e t s . c s i r o . au ’ ] ,

# ]

# REDACTED

## Var i a b l e s f o r gateway r e s e t

modem reset enable = False

modem reset cmd = [ ’ ssh ’ , ’REDACTED’ , ” ’/ sb in / reboot ’ ” ]

E.2 supervisor.py

#!/ usr / b in / env python

import FosVirtua l

import os

import s i g n a l

import subprocess

import re

import s t r i n g

import sys

import time

# For IP Address d i s c o v e r y
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import socket

import f c n t l

import s t r u c t

# For op t i on pa r s i n g

import optparse

# For l o g g i n g

import LogMsgHandler

## What t h i s s c r i p t needs to do :

## − g e t c o n f i g i n f o rma t i on from the da ta ba s e / c o n f i g f i l e

## − make vpn connec t i on

## − make sure a l l t h e apps are running

## − check t h e s t a t u s o f dbpush and l i s t e n e r

## − check f o r upda t e s

## − push l o g in f o rma t i on i n t o t h e da t a ba s e

## − uptime , i p add re s s

################################################################################

## Helper Funct ions

# c r e d i t : h t t p : // code . a c t i v e s t a t e . com/ r e c i p e s /439094/

def getIpAddr ( ifname ) :

try :

s = socket . socket ( socket . AF INET , socket .SOCK DGRAM)

return socket . i n e t n toa ( f c n t l . i o c t l (

s . f i l e n o ( ) ,

0x8915 , # SIOCGIFADDR

s t r u c t . pack ( ’ 256 s ’ , i fname [ : 1 5 ] )

) [ 2 0 : 2 4 ] )

except IOError :

return None

def getHwAddr ( ifname ) :

try :

s = socket . socket ( socket . AF INET , socket .SOCK DGRAM)

i n f o = f c n t l . i o c t l ( s . f i l e n o ( ) , 0x8927 , s t r u c t . pack ( ’ 256 s ’ , i fname [ : 1 5 ] ) )

return ’ ’ . j o i n ( [ ’%02x : ’ % ord ( char ) for char in i n f o [ 1 8 : 2 4 ] ] ) [ : − 1 ]

except IOError :

return None

def r eadCon f i gF i l e ( c o n f i g F i l e ) :

”””

r e adCon f i gF i l e r eads t h e c o n f i g f i l e s e t in v a r i a b l e c o n f i g F i l e or g i v en as argv [ 1 ] .

The imported c o n f i g u r a t i o n parameters are a c c e s s ed through th e params v a r i a b l e

”””

global c on f i g

i f c o n f i g F i l e [ −3 : ] == ” . py” :

c o n f i g F i l e = c o n f i g F i l e [ : −3 ]

c on f i g = i m p o r t ( c o n f i g F i l e , g l o b a l s ( ) , l o c a l s ( ) , [ ] )

print ” Parameters loaded from con f i g f i l e . ”

return True

def getAppPID (appName ) :

pid = {} ;

# The l i s t o f running apps

r e t = os . popen ( ”ps xa” , ” r ” ) ;

runningAppList = r e t . r e a d l i n e s ( ) ;

for r in runningAppList :

i f r . f i nd ( appName ) != −1:

pid [ r . s p l i t ( ) [ 0 ] ] = r [27 :−1]

return pid ;
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def uptime2Time ( uptime ) :

try :

uptimeStr = re . search ( ”up [\ s\w, ] ∗ ( \ d+):(\d+)” , uptime ) . group ( ) . s p l i t ( )

i f l en ( uptimeStr ) == 4 :

return 60∗( i n t ( uptimeStr [ 1 ] )∗ 2 4 + in t ( uptimeStr [ 3 ] . s p l i t ( ’ : ’ ) [ 0 ] ) ) + in t ( uptimeStr [ 3 ] . s p l i t ( ’ : ’ ) [ 1 ] )

e l i f l en ( uptimeStr ) == 2 :

return i n t ( uptimeStr [ 1 ] . s p l i t ( ’ : ’ ) [ 0 ] )∗ 6 0 + in t ( uptimeStr [ 1 ] . s p l i t ( ’ : ’ ) [ 1 ] )

else :

return None

except Attr ibuteError :

return None

def proccessWait ( proccess , waitTime =10):

startTime = time . time ( )

# I f waitTime i s z e ro or be low re tu rn on l y when f i n i s h e d

i f waitTime <= 0:

os . waitpid ( p rocce s s . pid , 0)

# I f p r o c c e s s running w i th t imeou t

while procce s s . p o l l ( ) i s None and time . time ( ) − startTime < waitTime :

time . s l e e p (5)

i f procce s s . returncode i s None :

os . k i l l ( p rocc e s s . pid , s i g n a l . SIGKILL)

def vpnConfigure ( ) :

global c on f i g

vpnconf = None

i f os . path . i s f i l e ( ”/ etc /vpnc/%s . conf ”%con f i g . hostName ) :

f = open ( ”/ etc /vpnc/%s . conf ”%con f i g . hostName , ’ r ’ )

vpnconf = f . read ( )

f . c l o s e ( )

vpncmd = ””

for cmd in c on f i g . vpnConnect :

vpncmd += ”%s\n”%cmd

i f vpnconf != vpncmd :

try :

#os . sys tem ( ”/ usr / l o c a l / s b i n / remountrw” ) ;

f = open ( ”/ etc /vpnc/%s . conf ”%con f i g . hostName , ’w ’ )

f . wr i t e ( vpncmd ) ;

f . c l o s e ( ) ;

os . system ( ”/ usr / l o c a l / sb in / remountro” ) ;

l og . wr i t e ( ’VPN con f i g updated / etc /vpnc/%s . conf ’%con f i g . hostName , 3)

except IOError :

l og . wr i t e ( ’ Could not update / etc /vpnc/%s . conf ’%con f i g . hostName , 3)

return False

return True

def vpnConnect ( ) :

global log , vpn

i f getIpAddr ( c on f i g . tunnI face ) == None :

r e t = subprocess . Popen ( con f i g . vpn connect cmd , s h e l l=False )

proccessWait ( ret , c on f i g . vpn timeout )

i f r e t . returncode == 0 :

log . send ( ’VPN connect command executed ’ , 3)

vpn [ ’ ip ’ ] = getIpAddr ( c on f i g . tunnI face )

vpn [ ’ upd ’ ] = True

return True

else :

l og . send ( ’VPN connect command f a i l e d ’ , 3)

modemReset ( )
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return False

else :

l og . send ( ’VPN di sconnect command execute ’ , 3)

r e t = subprocess . c a l l ( c on f i g . vpn disconnect cmd )

i f r e t == 0 or r e t ==1:

time . s l e e p (1)

r e t = subprocess . Popen ( con f i g . vpn connect cmd , s h e l l=False )

proccessWait ( ret , c on f i g . vpn timeout )

i f r e t . returncode == 0 :

log . send ( ’VPN connect command executed ’ , 3)

vpn [ ’ ip ’ ] = getIpAddr ( c on f i g . tunnI face )

return True

else :

l og . send ( ’VPN connect command f a i l e d ’ , 3)

modemReset ( )

return False

else :

l og . send ( ’VPN di sconnect command f a i l e d ’ , 3)

return False

def vpnCheck ( ) :

global vpn , l og

vpn [ ’ ip ’ ] = getIpAddr ( c on f i g . tunnI face )

vpn [ ’ upd ’ ] = False

i f vpn [ ’ ip ’ ] == None :

l og . wr i t e ( ’VPN not connected ’ , 3)

i f vpnConfigure ( ) :

return vpnConnect ( )

else :

return False

else :

l og . wr i t e ( ’VPN connected − Test ing Connection ’ , 3)

r e t = subprocess . c a l l ( c on f i g . vpn p ing in t e rna l )

i f r e t == 0 :

log . send ( ’VPN responding ’ , 3)

return True

else :

l og . send ( ’VPN f a i l e d ’ , 3)

i f vpnConfigure ( ) :

return vpnConnect ( )

else :

return False

return False

def modemReset ( ) :

global db , log , c on f i g

i f c on f i g . modem reset enable :

i f db :

db . d i s connec t ( )

db = None

con f i g . modem reset enable = False

r e t = subprocess . c a l l ( c on f i g . modem reset cmd )

i f r e t == 0 :

log . send ( ’Modem r e s e t command executed ’ , 1 , ’ s upe rv i s o r ’ , ’ Connection ’ , i n f o )

else :

l og . send ( ’Modem r e s e t command f a i l e d ’ , 1 , ’ s upe rv i s o r ’ , ’ Connection ’ , i n f o )

################################################################################

## Main Program
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print ” Sta r t i ng supe rv i s o r . py”

# Should have an op t i on hand l e r here − t o s p e c i f y c o n f i g f i l e , t e s t mode , o f f l i n e mode e t c

p = optparse . OptionParser ( )

p . add opt ion ( ’−−debug ’ , dest=’ debug ’ , type=’ i n t ’ , he lp=’Debug l e v e l (0−3) ’ )

p . add opt ion ( ’−−s imulate ’ , dest=’ s imulate ’ , a c t i on=’ s t o r e t r u e ’ , he lp=’ Simulate launching o f programs ’ )

p . add opt ion ( ’−−c on f i g ’ , dest=’ conf igLoc ’ , type=’ s t r ’ , he lp=’ Config f i l e l o c a t i o n ’ )

p . s e t d e f a u l t s ( debug=0, s imulate=False , nodb=False , con f igLoc=’ conf . py ’ )

( opts , args ) = p . pa r s e a r g s ( )

g l o b a l s ( ) . update ( opts . d i c t )

########################################

## Import c o n f i g f i l e

r eadCon f i gF i l e ( ’ conf . py ’ )

########################################

## S t a r t LogMsgHandler

db = None

log = LogMsgHandler . LogMsgHandler (db , c on f i g . l o g f i l e , sys . s t d e r r )

########################################

##

s tatusNotes = ’ Normal − VPN’

s ta tusNotesDe fau l t = statusNotes

########################################

## Check network i n t e r f a c e s

# Loca l i n t e r f a c e

c on f i g . ip = getIpAddr ( c on f i g . i n e t I f a c e )

c on f i g . mac = getHwAddr ( c on f i g . i n e t I f a c e )

l og . wr i t e ( ’ IP Address : %s ’ % con f i g . ip , 3)

l og . wr i t e ( ’MAC Address : %s ’ % con f i g . mac , 3)

i n f o = { ’ mac address ’ : c on f i g . mac , ’ l o c a t i o n ’ : c on f i g . l o c a t i o n }

########################################

## Check i f s u p e r v i s o r a l r e a d y running

superv i sorRunningLi s t = getAppPID ( ’ supe rv i s o r ’ )

for pid in superv i sorRunningLi s t :

i f i n t ( pid ) not in [ os . getp id ( ) , os . getppid ( ) ] :

os . k i l l ( i n t ( pid ) , s i g n a l . SIGKILL)

# Log message here t h a t s u p e r v i s o r (#p id ) was a l r e a d y running and k i l l e d

l og . send ( ’ Superv i so r a l ready running . Process %s k i l l e d ’ % pid , 1 , ’ s upe rv i s o r ’ , ’ Program ’ , i n f o )

########################################

## Check VPN connec t i on

# VPC i n t e r f a c e

vpn = {}

i f c on f i g . vpn enable and vpnCheck ( ) :

vpn act ive = True

log . wr i t e ( ’VPN IP Address : %s ’ % vpn [ ’ ip ’ ] , 3)

l og . wr i t e ( ’VPN Status : %s ’ % vpn act ive , 3)

e l i f not c on f i g . vpn enable :

vpn act ive = True

log . wr i t e ( ’VPN Status : Disabled ’ , 3)

vpn [ ’ upd ’ ] = False

else :

vpn act ive = False

modemReset ( )
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########################################

## Update Time

i f vpn act ive :

p = subprocess . Popen ( [ ’ / usr / sb in / ntpdate ’ , c on f i g . t imeServer ] , s h e l l=False )

ntpTime = time . time ( )

# I f p r o c c e s s running w i th t imeou t o f 10 seconds

while p . p o l l ( ) i s None and time . time ( ) − ntpTime < 10 :

time . s l e e p (5)

i f not p . returncode and p . returncode == 0 :

log . send ( ”Time adjusted us ing ntpdate ” , 2 , ’ s upe rv i s o r ’ , ’ Program ’ , i n f o )

else :

try :

p = subprocess . Popen ( [ ’ / e tc / i n i t . d/ntp ’ , ’ stop ’ ] , s h e l l=False )

r e t = os . waitpid (p . pid , 0)

except OSError :

r e t = 0

i f r e t == 0 :

p = subprocess . Popen ( [ ’ / usr / sb in / ntpdate ’ , c on f i g . t imeServer ] , s h e l l=False )

# I f p r o c c e s s running w i th t imeou t o f 10 seconds

proccessWait (p)

i f not p . returncode and p . returncode == 0 :

log . send ( ”Time adjusted us ing ntpdate ” , 2 , ’ s upe rv i s o r ’ , ’ Program ’ , i n f o )

else :

l og . send ( ”Problem occured when updating time us ing ntpdate ” , 1 , ’ s upe rv i s o r ’ , ’ Program ’ , i n f o )

i f s tatusNotes != statusNotesDe fau l t :

s tatusNotes += ’ , time not synced ’

else :

s tatusNotes = ’Time not synced ’

########################################

## Update c o n f i g f i l e

# Need to save d i r e c t l y to t h e f i l e and then r e l o a d th e c o n f i g f i l e . Check t h e v e r s i o n numbers f i r s t

#i f s t a t u sNo t e s != s t a t u sNo t e sD e f a u l t :

# s t a t u sNo t e s += ’ , Loca l c o n f i g updated ’

#e l s e :

# s t a t u sNo t e s = ’ Loca l c o n f i g updated ’

########################################

## Update hostname on system

f = open ( ’ / e tc /hostname ’ , ’ r ’ )

host = f . read ( )

f . c l o s e ( )

i f host != con f i g . hostName :

try :

f = open ( ’ / e tc /hostname ’ , ’w ’ )

f . wr i t e ( c on f i g . hostName ) ;

f . c l o s e ( ) ;

l og . wr i t e ( ’ Updated / etc /hostname ’ , 3)

except IOError :

l og . wr i t e ( ’ Could not update / etc /hostname ’ , 3)

########################################

## Check f o r sys tem upda t e s

# I f update , k i l l running program and then re l aunch
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#i f s t a t u sNo t e s != s t a t u sNo t e sD e f a u l t :

# s t a t u sNo t e s += ’ , Updated System ’

#e l s e :

# s t a t u sNo t e s = ’ Updated System ’

########################################

## Check l i s t o f running programs

for app in c on f i g . appList :

appRunning = False

appPid = getAppPID ( app [ 0 ] )

for pid in appPid :

i f appPid [ pid ] . f i nd ( ’ ’ . j o i n ( [ ’%s ’ % i for i in app ] ) [ : − 1 ] ) != −1:

l og . wr i t e ( ’App %s a l ready running ’ % app [ 0 ] , 3)

appRunning = True

i f not appRunning :

l og . wr i t e ( ’App %s not running ’ % app [ 0 ] , 3)

i f app [ 0 ] in c on f i g . launchInScreen :

cmd = [ ’ s c r een ’ , ’−d ’ , ’−m’ ] + app

else :

cmd = app

i f not s imulate :

try :

subprocess . Popen (cmd)

except OSError :

l og . wr i t e ( ’ Could not f i nd %s ’%app [ 0 ] , 3)

l og . send ( ’ S ta r t i ng %s with %s ’ % ( app [ 0 ] , ’ ’ . j o i n ( [ ’%s ’ % i for i in cmd ] ) [ : − 1 ] ) , 1 , ’ s upe rv i s o r ’ , ’ Program ’ , i n f o )

########################################

## Update l o g f i l e s

# Get uptime in f o rma t i on

r e t = os . popen ( ’ uptime ’ , ’ r ’ )

uptime = re t . r e a d l i n e s ( ) [ 0 ] [ : − 1 ]

uptime = uptime [ 0 : uptime . r f i n d ( ’ , load ’ ) ]

r e t . c l o s e ( )

l og . wr i t e ( ”Uptime : %s ” % uptime , 2)

########################################

## Check c ron tab en t r y

f = open ( ”/ etc / crontab ” , ” r ” ) ;

cronTab = ’ ’ . j o i n ( f . r e a d l i n e s ( ) ) ;

f . c l o s e ( ) ;

i f cronTab . f i nd ( ” supe rv i s o r . py” ) == −1:

try :

f = open ( ”/ etc / crontab ” , ”a” ) ;

f . wr i t e ( ”PYTHONPATH=.:% s / p y c l a s s e s \n” % ( con f i g . appDir , ) ) ;

f . wr i t e ( ”# Run the supe rv i s o r every 5 min\n” ) ;

f . wr i t e ( ”∗/5 ∗ ∗ ∗ ∗ root / usr / bin /python %s / supe rv i s o r . py 2> /tmp/ supe rv i s o r . l og \n” % ( con f i g . appDir , ) ) ;

f . wr i t e ( ”# Star t the supe rv i s o r and s e t user v a r i a b l e s on star tup \n” ) ;

# Export t h e python path back i n t o ba shrc as / roo t i s a ram d i s k and a l l changes are l o s t on r e boo t

f . wr i t e ( ”@reboot root echo ’ export PYTHONPATH=%s / p y c l a s s e s : . ’ >> / root / . bashrc\n” % ( con f i g . appDir , ) ) ;

f . wr i t e ( ”@reboot root / usr / bin /python %s / supe rv i s o r . py 2> /tmp/ supe rv i s o r . l og \n” % ( con f i g . appDir , ) ) ;

# Set up the rsync f i l e push to run eve ry 30 minutes

f . wr i t e ( ”∗/30 ∗ ∗ ∗ ∗ root %s ” %(rsync cmd , ) ) ;

f . c l o s e ( ) ;

except IOError :

l og . send ( ’ Unable to open crontab ’ , 2 , ’ s upe rv i s o r ’ , ’ Program ’ , i n f o )

os . system ( ”/ usr / l o c a l / sb in / remountro” ) ;

l og . send ( ’ Adding supe rv i s o r to crontab ’ , 2 , ’ s upe rv i s o r ’ , ’ Program ’ , i n f o )

else :

l og . wr i t e ( ” Superv i so r in crontab ” , 3)
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########################################

## Trim s u p e r v i s o r . l o g f i l e

os . system ( ” sed − i −e ’ : a ’ −e ’ $q ;N;101 ,$D ; ba ’ %s ” % con f i g . l o g f i l e )



Appendix F

Errata

This Appendix contains external resources which may aid in the understanding &

verification of results presented in this dissertation.

F.1 Preliminary Detection Trial - Results

The results of this test have been uploaded to the Internet and can be viewed via

YouTube. The outcomes of this test show a 100% detection rate. Each stage of pro-

cessing is visible to aid in understanding of the results.

See: http://www.youtube.com/watch?v=xdPQEtSCEs4

F.2 Preliminary Noise Tolerance Trial - Results

The results of this test have been uploaded to the Internet and can be viewed via

YouTube. The outcomes of this test show a significant degree of noise tolerance, with

only one spurious motion detected. Each stage of processing is visible to aid in under-

standing of the results.

See: http://www.youtube.com/watch?v=E1a1bMTlVJk

http://www.youtube.com/watch?v=xdPQEtSCEs4
http://www.youtube.com/watch?v=E1a1bMTlVJk
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F.3 Extended Algorithm Testing - Results

The results of these tests have been uploaded to the Internet and can be viewed via

YouTube. Each stage of processing is visible to aid in understanding of the results.

F.3.1 Dataset 1

See: http://www.youtube.com/playlist?list=PLS6E9hSzh0N4arm_xXo21MKD7SDgWGakq&feature=

view_all

F.3.2 Dataset 2

See: http://www.youtube.com/playlist?list=PLS6E9hSzh0N71rMHLSfVsOjXSli3yTnBd&feature=

view_all

F.3.3 Dataset 3

See: http://www.youtube.com/playlist?list=PLS6E9hSzh0N6WgyX2tHU8lv4gPm2lxERv&feature=

view_all

http://www.youtube.com/playlist?list=PLS6E9hSzh0N4arm_xXo21MKD7SDgWGakq&feature=view_all
http://www.youtube.com/playlist?list=PLS6E9hSzh0N4arm_xXo21MKD7SDgWGakq&feature=view_all
http://www.youtube.com/playlist?list=PLS6E9hSzh0N71rMHLSfVsOjXSli3yTnBd&feature=view_all
http://www.youtube.com/playlist?list=PLS6E9hSzh0N71rMHLSfVsOjXSli3yTnBd&feature=view_all
http://www.youtube.com/playlist?list=PLS6E9hSzh0N6WgyX2tHU8lv4gPm2lxERv&feature=view_all
http://www.youtube.com/playlist?list=PLS6E9hSzh0N6WgyX2tHU8lv4gPm2lxERv&feature=view_all
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