
University of Southern Queensland

Faculty of Engineering & Surveying

Speaker Identification - Prototype Development and

Performance

A dissertation submitted by

David Michael Graeme Watts

in fulfilment of the requirements of

ENG4111/ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems)/Bachelor of

Information Technology (Applied Computer Science)

Submitted: November, 2006

Abstract

Human speech is our most natural form of communication and conveys both mean-

ing and identity. The identity of a speaker can be determined from the information

contained in the speech signal through speaker identification.

Speaker identification is concerned with identifying unknown speakers from a database

of speaker models previously enrolled in the system. The general process of speaker

identification involves two stages. The first stage extracts features from speakers that

are to be enrolled into the system. The second stage involves processing the identity of

a speaker using features extracted from the speech and comparing these to the speaker

models.

Several techniques available for feature extraction including Linear Predictive Cod-

ing (LPC), Mel-Frequency Cepstral Coefficients and LPC Cepstral coefficients. These

features are used with a classification technique to create a speaker model. Vector

Quantization is commonly used in speaker identification producing reliable results.

This project demonstrates a prototype speaker identification system tailored for utter-

ances containing less than ten words and target sets of less than eight voice profiles.

VQ (codebook size = 128) with 20-dimension LPCC obtain accuracy results of 83% and

100% using 12 speakers with the NTIMIT and Alternative (own) corpus, respectively.

Tests were conducted using 30s of training speech and 3s of testing speech.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

David Michael Graeme Watts

Q12215217

Signature

Date

Acknowledgments

Firstly, I would like thank my supervisor, Associate Professor John Lies for his guidance

through the duration of this project. Many thanks go to my family for supporting me

in many ways throughout my time at university. I would also like to thank my friends

Nick, Ben, Andrew and Troy for their help on this project. Finally a special thanks to

Catherine and Nathan for their continued support, not only over the duration of this

project, but for my entire university life.

David Michael Graeme Watts

University of Southern Queensland

November 2006

Dedicated to my mother, Alana Alison Watts

Contents

Abstract i

Acknowledgments iv

List of Figures xii

List of Tables xv

Chapter 1 Introduction 1

1.1 Purpose . 1

1.2 Overview of Speaker Recognition . 3

1.3 Speech Analysis . 4

1.4 General Process of Speaker Identification 7

1.5 Practical Implications . 9

1.6 Applications of Speaker Identification 9

1.7 Speaker Corpus . 10

1.8 Principle Objectives of Dissertation . 11

CONTENTS vii

1.9 Overview of Dissertation . 11

Chapter 2 Literature Review 13

2.1 Introduction . 13

2.2 Corpora for the Evaluation of Speaker Recognition Systems 13

2.3 Overview of Automatic Speaker Identification Results 15

2.4 Speaker Identification using Vector Quantization 15

2.5 Speaker Identification using NTIMIT . 17

2.6 Speaker Identification For Large Set of Voices 18

2.7 Effects of Utterance Length on Speaker Identification 19

2.8 Chapter Summary . 19

Chapter 3 Speaker Recognition 21

3.1 Introduction . 21

3.2 Pre-Processing . 21

3.2.1 DC Offset Removal . 22

3.2.2 Silence Removal . 22

3.2.3 Pre-emphasis . 24

3.2.4 Frames and Windowing . 25

3.2.5 Autocorrelation . 26

3.3 Source-Filter Model of Speech . 28

CONTENTS viii

3.4 Speaker Modelling . 30

3.4.1 Vector Quantization . 30

3.4.2 Gaussian Mixture Models . 31

3.4.3 Support Vector Machine . 31

3.5 Distance Metrics . 31

3.6 Chapter Summary . 33

Chapter 4 Feature Extraction 35

4.1 Introduction . 35

4.2 Short-Term Fourier Transform . 36

4.3 Cepstrum . 37

4.3.1 Mel-Frequency Cepstrum Coefficients 39

4.4 Linear Prediction . 40

4.5 Linear Predictive Cepstral Coefficients 44

4.6 Normalisation . 44

4.7 Chapter Summary . 45

Chapter 5 Speaker Modelling 46

5.1 Introduction . 46

5.2 Vector Quantization . 46

5.2.1 Iterative Clustering Methods . 51

CONTENTS ix

5.2.2 Initial Codebook . 51

5.2.3 Generalized Lloyd Algorithm (k-means) 51

5.2.4 Randomized Local Search . 52

5.2.5 Hierarchical Clustering Methods 53

5.2.6 Pairwise Nearest Neighbor . 53

5.2.7 Split . 54

5.2.8 VQ Distortion . 55

5.3 Chapter Summary . 55

Chapter 6 Experimental Setup 57

6.1 Introduction . 57

6.2 Speech Corpora . 57

6.2.1 NTIMIT . 57

6.2.2 Alternative Corpus . 58

6.3 Testing Procedures . 59

6.3.1 Pre-processing . 59

6.3.2 Feature Extraction . 60

6.3.3 Speaker Model . 60

6.3.4 Speech Corpus . 60

6.4 Prototype . 61

CONTENTS x

Chapter 7 Results 62

7.1 Results of Feature Extraction Methods 62

7.1.1 Linear Predictive Coefficients . 63

7.1.2 Mel-Frequency Cepstral Coefficients 66

7.1.3 Linear Predictive Cepstral Coefficeients 70

7.1.4 Comparison of Feature Extraction Methods 73

7.1.5 Effects of Accuracy Results by Increasing Speakers 75

7.2 Chapter Summary . 76

Chapter 8 Conclusion 77

8.1 Summary of Work . 77

8.2 Conclusions . 78

8.3 Further Work . 78

References 80

Appendix A Project Specification 83

Appendix B Alternative Speaker Corpus 85

B.1 Speech . 86

Appendix C Source Code 87

C.1 The AlternativeTest.m MATLAB Function 88

CONTENTS xi

C.2 The timitPro.m MATLAB Function . 89

C.3 The increaseSpeakers.m MATLAB Function 92

C.4 The kmgla.m MATLAB Function . 98

C.5 The mfcc.m MATLAB Function . 98

C.6 The lpcc.m MATLAB Function . 99

C.7 The eucDist.m MATLAB Function . 99

C.8 The mfcc.m MATLAB Function . 100

C.9 The dist.m MATLAB Function . 100

List of Figures

1.1 FOCAL meeting environment (Littlefield & Broughton 2005). 1

1.2 System design of a dual-type ASR (Littlefield & Broughton 2005). . . . 2

1.3 Categories of speaker recognition (Karpov 2003). 4

1.4 The human speech production systems (Johnson 2005). 5

1.5 Voiced (“a”) and Unvoiced Speech (“s”) 6

1.6 The spectral peaks, or formants with the original spectrum 6

1.7 The spectral peaks, or formants of the spectrum of a speech frame . . . 7

1.8 Speaker Identification Process (Willits 2003). 8

3.1 Silence Parts of the Speech Signal . 23

3.2 Voice Degree Detector (Drygajlo 2005). 24

3.3 Frequency response of a pre-emphasis filter with a = 0.95 25

3.4 Frame without Pre-emphasis . 26

3.5 Frame with Pre-emphasis . 26

3.6 Hamming window applied to a framed speech signal 27

LIST OF FIGURES xiii

3.7 The process of extracting features from the speech signal (Willits 2003). 29

3.8 Euclidean and Manhattan metric in R2 32

4.1 Source Filter Spectrum . 36

4.2 Source Filter Spectrum (Karpov 2003) 38

4.3 Cepstrum . 39

4.4 Relationship between the mel-frequency and the physical frequency . . 40

4.5 Mel Frequency Filter Bank . 41

4.6 Source-filter relationship of LPC when used to synthesis speech. Source:

http://www.usq.edu.au/users/leis/courses/ELE4607/module8.pdf . . . 42

4.7 LPC spectrum window, and STFT . 44

5.1 Vector Quantization using two speakers (Do 2003). 47

5.2 Representation of a codebook (k=32) using 20 dimensional LPC recon-

structed code vectors . 48

5.3 Pairwise Nearest Neighbor VQ . 54

5.4 Pairwise Nearest Neighbour VQ . 55

7.1 Performance of the LPC on the NTIMIT and Alternative corpus for

codebook size (k=32) . 63

7.2 Performance of the LPC on the NTIMIT and Alternative corpus for

codebook size (k=64) . 64

7.3 Performance of the LPC on the NTIMIT and Alternative corpus for

codebook size (k=128) . 65

LIST OF FIGURES xiv

7.4 Performance of the LPC on the NTIMIT and Alternative corpus for

codebook size (k=256) . 65

7.5 Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=32) . 67

7.6 Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=64) . 67

7.7 Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=128) . 68

7.8 Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=256) . 69

7.9 Performance of the LPCC on the NTIMIT and alternative corpus for

codebook size (k=32) . 70

7.10 Performance of the LPCC on the NTIMIT and alternative corpus for

codebook size (k=64) . 71

7.11 Performance of the LPCC on the NTIMIT and alternative corpus for

codebook size (k=128) . 72

7.12 Performance of the LPCC on the NTIMIT and alternative corpus for

codebook size (k=256) . 72

7.13 Comparison of Accuracy and Coefficient Type using NTIMIT corpus . . 73

7.14 Comparison of Accuracy and Coefficient Type using Alternative corpus 74

7.15 The effect of increasing speakers on the performance of a VQ(codebook

128) with 20 dimensional LPCC . 75

List of Tables

1.1 Factors affecting Speaker Identification 9

1.2 NTIMIT Corpus Description . 10

1.3 Speakers used in alternative database 10

2.1 Performance of baseline system (TIMIT) 16

2.2 Performance of baseline system (NIST) 17

2.3 Impact of of the number of speakers on identification results 18

2.4 Accuracy results for different length speech input data 19

6.1 Summary of Corpora . 59

Chapter 1

Introduction

1.1 Purpose

Speech recognition is currently an area of research and development by the Defence

Science and Technology Organisation (DSTO). The DSTO is currently exploring the

feasibility of a dual-type Automated Speech Recognition (ASR) system. This project

combines both speaker-dependent and speaker-independent ASR systems, to overcome

the shortcomings in each ASR type (Littlefield & Broughton 2005). The ultimate goal

is to provide a system that is more robust and flexible than current ASR solutions.

Figure 1.1: FOCAL meeting environment (Littlefield & Broughton 2005).

Within the proposed designs of the dual-type ASR system, the speaker-dependent

1.1 Purpose 2

component requires the use of a speaker identification tool. This tool will be used to

load the corresponding user ASR profile of the identified speaker. Therefore this project

aims to explore the technology of speaker recognition, specifically speaker identification,

to research and ultimately develop a prototype speaker identification system. This

prototype is to be tailored for utterances containing less than ten words and should be

able to work from target sets of less than eight voice profiles.

Figure 1.1 illustrates a possible meeting environment the dual-type ASR system will

be used in. Figure 1.2 shows one proposed design of the dual-type ASR system.

Figure 1.2: System design of a dual-type ASR (Littlefield & Broughton 2005).

Speech and speaker recognition have recently become an important research and de-

velopment area. The driving factor behind much of the development is the desire to

produce a natural form of communication between human and machine. Since speech

is our most natural form of communication, it has the capability to impact on countless

fields of research and development.

1.2 Overview of Speaker Recognition 3

1.2 Overview of Speaker Recognition

Speaker recognition is the process of identifying a person, based on the physiological

information contained in their speech. It differs from speech recognition in that the

speaker is identified not the words (as in speech recognition). Speech recognition and

speaker recognition are closely related topics and many of the same techniques are

employed to extract information from the speech signal.

Speaker recognition uses the acoustic features of the speech signal to discriminate be-

tween individuals. These acoustic features can vary greatly from one speaker to an-

other depending upon their anatomy and behavioural characteristics. Modelling these

acoustic features is useful in speaker recognition, as they can be used to identify indi-

viduals.

Implementation of a speaker recognition system requires the human speech content to

convey meaning to a machine. The human voice consists of sounds that are charac-

terised by the behaviour and physiology of the individual. For instance, utterances

produced by an individual are from the same vocal tract, and tend to have a typi-

cal pitch range, along with the characteristics associated with dialect or gender. This

results in a highly correlated speech signal for any particular speaker.

The speech signal is a complex and variable signal that consists of many different

harmonic components. The speech signal is the result of the vocal cords being excited

by air flow from the lungs, which is then filtered through the vocal tract. The vocal

tract then acts in varying ways to filter and ultimately create the collection of sounds

perceived as speech (Johnson 2005).

Speaker recognition can be further broken into two categories: speaker identification

and speaker verification. Identification takes the speech signal from an unknown speaker

and compares this with a set of valid users. The best match is then used to identify the

unknown speaker. Similarly, in verification the unknown speaker first claims identity,

and the claimed model is then used for identification. If the match is above a predefined

threshold, the identity is accepted. The fundamental difference between the two modes

is the number of decision alternatives.

1.3 Speech Analysis 4

Speaker identification can be classified into two types, based on anonymity. These are

open-set and closed-set speaker identification. Both sets use a database of registered

speakers for identification, with the main difference being in the decision process. For

open-set the decision is based upon the enrolled speakers together with the possibility

that the speaker is unknown. Closed-set only considers the best match from the enrolled

speakers.

Figure 1.3: Categories of speaker recognition (Karpov 2003).

Closed-set speaker identification can be further classified into text-dependent and text-

independent. Text-dependent systems rely on prior knowledge of the text spoken by

the individual for identification (Karpov 2003). This can be in the form of a phrase

prompted by the system or a user specific phrase. Text-independent must be capable

of recognising a speaker, without prior knowledge of the text (Karpov 2003). Text-

independent systems are considerably more fixable than text-dependent, however they

tend to produce lower accuracy levels. The varying categories of speaker recognition

are shown in Figure 1.3.

1.3 Speech Analysis

In order to analyse and exploit characteristics of speech production, a method must

be developed to describe and model the process. This involves determining how each

1.3 Speech Analysis 5

sub-system of speech production produces its output. Consequently speech can be

broken into two parts: (a) a sound source produced by the vibration of the vocal cords

in response to air pressure from the lungs, and (b) a filter through the vocal tract,

which creates acoustic disturbances. The vocal cords produce a periodic pulse, known

as the pitch or the fundamental frequency of the speech signal (Johnson 2005). The

vocal tract then serves to shape the spectrum produced by the vocal cords, acting as

a filter. The vocal tract can be considered the Nasal Cavity, Lips, Tongue, Teeth and

Oral Cavity. Figure 1.4 shows the human speech production system.

Figure 1.4: The human speech production systems (Johnson 2005).

The speech signal can be further broken into a number of categories based on the

connection between the vocal cords and vocal tract. Voiced and unvoiced are the two

main sounds that are produced, which also can be combined together. Voiced sounds

are those predominately produced by the vocal cords, which are placed under tension

to produce sounds like “a” and “u”. For unvoiced sounds the vocal cords are placed

under much less tension, this results in sounds that are more noise like, and represent

sounds like “s” and “f”.

1.3 Speech Analysis 6

Figure 1.5: Voiced (“a”) and Unvoiced Speech (“s”)

Figure 1.6 illustrates the spectrum of speech sounds in three dimensions using a spec-

trogram. The top of Figure 1.6 shows the speech signal in the time domain, with the

corresponding spectrogram below. In relation to the spectrogram, the horizontal axis

is time, vertical axis is frequency and the amplitude is illustrated though shades of

darkness.

Figure 1.6: The spectral peaks, or formants with the original spectrum

The voiced and unvoiced sounds can also be seen in Figure 1.6 in both the time-domain

and the spectrogram. The voiced part of the speech is evident in the time-domain and

is also characterised by spectrum highs (darker areas) in the spectrogram. Unvoiced

sounds are those where the frequency is slightly higher and noise-like in its appearance.

1.4 General Process of Speaker Identification 7

The vocal-cord-lung system can be described as the source which is used to produce

a periodic pulse signal that can be then shaped by a filter. As the periodic acoustic

signal passes through the vocal tract, its frequency content is altered by the resonances

(Campbell 1999). The vocal tract serves to shape the spectrum of the signal from the

vocal cords. Resonances produced by the vocal tract are called formants and can be

seen in the spectrum of Figure 1.7. These formants can also be seen in the spectrogram

(Figure 1.6) as the highs or dark spots and form horizontal frequency bands across the

spectrum. These horizontal frequency bands illustrate the effect of the vocal tract over

a period of time. Most speaker recognition systems use features extracted from these

formants.

Figure 1.7: The spectral peaks, or formants of the spectrum of a speech frame

1.4 General Process of Speaker Identification

The general process of speaker identification involves two stages. The first stage is to

enrol the speakers into the system. Enrolment involves determining distinct character-

istics of the speaker’s voice, to be used as a source in the modelling process. Speaker

models are then created for each of the speakers and stored in a database. The sec-

ond stage involves the identification of a speaker. Similar to the enrolment stage,

1.4 General Process of Speaker Identification 8

this involves extracting distinct features from an unknown speaker to compare with

the speaker database. The enrolment and identification processes are very similar, and

both require distinct features to be extracted from the speech signal. The identification

process depends on the modelling procedure used in the enrolment stage.

In order to construct a speaker identification system, there are two important aspects

of the process that require further investigation; namely: feature extraction and classi-

fication. Both of these stages have a critical effect on the identification result. Feature

extraction is the process of extracting distinct characteristics from the speech of an

individual. Classification refers to the process of determining a speaker based upon

previously stored models or information.

Figure 1.8: Speaker Identification Process (Willits 2003).

Pattern matching and speaker modelling are techniques used to classify and enrol speak-

ers to an identification system. Speaker modelling constructs a model of an individual’s

voice based upon the features extracted from their speech signal. This is completed

when speakers are enrolled in the speaker identification system to produce a database

of registered speakers. This occurs through a training stage in which the system creates

the speaker model. Pattern matching uses the models in the speaker database to cal-

culate a matching score for each model. The final result is a measure of the similarity

between the features extracted from the unknown speech signal and each of the models

in the speaker database. Figure 1.8 illustrates how these components connect together.

1.5 Practical Implications 9

1.5 Practical Implications

Practical implications of using a speaker identification system have to be assessed and

if necessary, designed for. These include any factors that will affect the speaker identi-

fication results (Table 1.1).

Table 1.1: Factors affecting Speaker Identification

Situational Factors Environment (eg. room acoustics)

Quality of microphones

Emotional state of speaker

Computing power

Artifacts of the Speech Signal Silent parts of speech

Difference between male & female speakers

Overall signal energy

Figure 1.1 illustrates a typical environment in which the prototype will could be em-

ployed. The dual-type ASR will also be used in a number of environments similar in

design and acoustic properties. The type of speech recordings in these meeting environ-

ments will be of high quality, as the recording will also be need for speech recognition.

1.6 Applications of Speaker Identification

Speaker identification has many applications, from security to forensics and has the

potential to impact upon many other areas. This technology can be used by financial

institutions to protect accounts or as security defence for businesses. However an impor-

tant aspect of speaker identification is its susceptibility to fraud and as such it should

be used with other, existing measures of security (e.g. using speaker identification with

PIN for an ATM withdrawal).

Many other areas exist where security is not of paramount importance, such as use in a

meeting environment. Others include incorporating speaker identification into already

existing systems that may use personalised greetings. The identification result can also

be used to personalise and configure applications for particular individuals.

1.7 Speaker Corpus 10

1.7 Speaker Corpus

Speaker recognition systems are normally evaluated using standard speech corpora.

This project uses two corpora for evaluation, an Alternative corpus created specially

for this project and the standard NTIMIT corpus.

NTIMIT Corpus

The TIMIT corpus was originally designed as speech data for acoustic studies in order to

evaluate speech recognition systems. However due to the pristine recording environment

it is poorly suited to speaker recognition systems, as these conditions are unrealistic.

The speaker corpus chosen for the evaluation of this project is the NTIMIT corpus. The

NTIMIT corpus is a variation of the TIMIT corpus, where the TIMIT speech is played

through an artificial mouth into a carbon-button telephone handset, transmitting the

speech over local and long-distance telephone lines and recording the received signal

(Joseph P. Campbell & Reynolds 1999). Table 1.2 shows the distribution of speakers.

Table 1.2: NTIMIT Corpus Description

No. of speakers 630(438M/192F)

Type of Speech Sentences

Alternative Speaker Corpus

Recordings were also taken from a number of speakers, for use with evaluation in

conditions matching those in the meeting environment. Table 1.3 shows the distribution

of speakers.

Table 1.3: Speakers used in alternative database

Speaker Male Female

No. # 7 5

1.8 Principle Objectives of Dissertation 11

1.8 Principle Objectives of Dissertation

The principle objectives of this Dissertation are to:

1. Research and evaluate published results of speaker identification

2. Examine speaker identification methods and systems available, including

• Pre-processing methods.

• Feature extraction methods.

• Classification techniques for creating speaker models.

• Decision methods.

3. Choose a combination of suitable speaker identification techniques to design and

develop a suitable prototype, tailored for utterances containing less than ten

words and a speaker database of less than eight voice profiles.

4. Complete evaluation using both the NTIMIT speaker corpus and Alternative

(own) speaker corpus.

1.9 Overview of Dissertation

The following chapters explore and examine methods used for development of a proto-

type speaker identification system.

Chapter 2: Literature Review. This chapter reports and evaluates published results

of speaker identification.

Chapter 3: Speaker Recognition. This chapter describes the different techniques used

in speaker identification. These involve techniques to improve the speech signal

for analysis, feature extraction and classification techniques used to identify the

speaker. This chapter also introduces the source-filter model of speech which is

used as a basis for many speaker recognition techniques.

1.9 Overview of Dissertation 12

Chapter 4: Feature Extraction. Different techniques for feature extraction are ex-

plored and also their ability to represent the speech signal. These include the

Short-Term Fourier Transform (STFT) Linear Predictive Coefficients (LPC) and

cepstral analysis.

Chapter 5: Speaker Modelling. This involves Vector Quantization (VQ) techniques

for creating speaker models from the feature vectors. These include descriptions

of k-means, randomized local search and hierarchical clustering methods.

Chapter 6: Experimental Setup. This describes the prototypes and the experimental

setup using two different speech corpora. The first being the NTIMIT corpus,

which uses telephone grade speech quality and an alternative (own) speech cor-

pora produced specifically for experimentation.

Chapter 7: Results. VQ techniques used with LPC, LPC cepstral and mel-frequency

cepstral coefficients with various codebook sizes. Effects of increasing the number

of speakers in the dataset, on the identification result.

Chapter 8: Conclusion. Conclusions of proposed prototype and further work.

Chapter 2

Literature Review

2.1 Introduction

The following section is an overview of published speaker identification systems and

results. Results are also presented from studies demonstrating similar techniques dis-

cussed throughout this project.

2.2 Corpora for the Evaluation of Speaker Recognition

Systems

Standard speech corpora are important factors behind speaker recognition as they allow

experimentation and evaluation. Joseph P. Campbell & Reynolds (1999) have evaluated

current publicly available speech corpora which are intended for use with evaluation

of speaker recognition systems. These researchers’s study outlines the corpora salient

features and suitability for conducting speaker recognition experiments.

Four factors of the speech corpora where used to evaluate their suitability for speaker

recognition, these include:

• Number and diversity of speakers.

2.2 Corpora for the Evaluation of Speaker Recognition Systems 14

• Time separation of sessions per speaker.

• Type of speech.

• Channel, microphone and recoding environment types and variability.

The degree to which a speech corpus exhibits these factors indicates its effectiveness

for use with speaker recognition.

The following list gives a brief description of the five English speech corpora evaluated

in Joseph P. Campbell & Reynolds (1999) study.

TIMT and Derivatives were designed for acoustic-phonetic studies and for de-

veloping and evaluating automatic speech recognition systems. TIMIT itself is

poorly suited for evaluating speaker recognition systems due to the unrealistically

pristine conditions. However, the NTIMIT corpus is more suitable, as noisy char-

acteristics are introduced by transmitting speech over telephone lines. There are

630(438M/192F) speakers that make up this corpus.

KING-92 is a corpus collected under research contracted with the US government.

It contains recorded speech from 51 male speakers who were recorded under 2

different settings. These settings differ in their channel characteristics: one from

a telephone. handset and the other from a high-quality microphone.

YOHO corpus was designed to support text-dependent speaker verification evalua-

tion for government security access applications. The speech was recorded in an

environment with low-level office noise with high-quality microphones. There are

138(106M/32F) speakers making up this corpus.

Switchboard I-II Including NIST evaluation Subsets are corpora that represent

one of the largest collections of conversational, telephone speech recordings. The

numbers of speakers for Switchboard I-II are 543 and 657 (50% M/50% M),

respectfully.

Speaker Recognition Corpus consists of 100(47M/53F) speakers calling from dif-

ferent telephone environments. Speakers called from quiet (e.g. closed room)

and noisy (e.g. public area) locations using various types of phones (e.g. mobile,

2.3 Overview of Automatic Speaker Identification Results 15

public). This corpus is useful for text-independent speaker identification and

verification systems.

Throughout research undertaken in this area the most common speech corpora used

for evaluation of speaker identification systems were the TIMIT, NTIMIT and NIST

Corpora.

2.3 Overview of Automatic Speaker Identification Results

Research conducted by Reynolds (2002) provides an overview of studies performed on

automatic speaker recognition. This work highlights some of the indicators of perfor-

mance in different conditions. There have been two text-independent speaker identi-

fication results described, based on average performance of typical systems. The first

systems using conversational speech, with two minutes of training data and 30 seconds

of testing data. The accuracy results for these systems range from 85%-93%. The sec-

ond system uses very noisy data from military radios and microphones with 30 seconds

of training data and 15 seconds of testing data. The accuracy results for these systems

typical range from 65%-80%.

2.4 Speaker Identification using Vector Quantization

Iyer et al. (2004) describes a speaker identification system, which focuses on speech

detection and extraction. This system is based on the idea of the usable speech concept.

The speech frames containing higher information content (i.e., usable) are separated

form those containing lower information content (i.e., unusable).

The speaker identification system evaluated by Iyer et al. (2004) used Linear Predictive

Cepstral Coefficents (LPCC) (refer to section 4) to extract features from the usable

speech frames. The speaker model is created with Vector Quantization (VQ) (refer to

section 5 on the features extracted, using the Euclidean distance metric. The system

uses 14th order LPCC with a codebook size of 128 (VQ codebook).

2.4 Speaker Identification using Vector Quantization 16

The TIMIT corpus was used for the experiments, with 48 speakers (24 male, 24 female)

chosen from various dialects. Each speaker has ten utterances with four utterances used

for training and the remaining six for testing. The results obtained with both usable

and unusable speech frames gave an accuracy result of 94%, while for usable frames

only, the accuracy an result of 100%.

It is evident from Iyer et al.’s (2004) research, that pre-processing techniques such as

the usable speech concept can improve accuracy results. It also demonstrates accuracy

results using a baseline system with LPCC and VQ on the TIMIT corpus.

Most of the computation time in speaker identification is spent on identifying matching

scores between speakers and unknown utterances. Kinnuenen et al. (2004) demonstrates

real-time speaker identification aimed at optimizing and reducing the matching process.

This focuses on optimising a VQ based speaker identification system.

This study used the TIMIT corpus, with all 630 speakers being used for testing pur-

poses. The baseline system for speaker identification used 12-dimensional Mel Fre-

quency Cepstral Coefficients (MFCC) (refer to section 4) for feature extraction. VQ

was then applied using the LBG (Linde-Buzo-Gray) algorithm on the feature vectors

obtained using the MFCC, with a codebook sizes of 8, 64 and 512. The results obtained

are shown in Table 2.1

Table 2.1: Performance of baseline system (TIMIT)

Codebook size Accuracy Rate (%)

8 89.5

64 99.52

512 99.18

No model 98.41

These results illustrate the effectiveness of the VQ model using MFCC with the TIMIT

corpus. Overfitting (refer to section 5) is also shown to occur when all data (No model)

is used, as the accuracy decreases.

Results were also obtained using the NIST 1999 corpus, which includes recordings over

telephone network similar to that of the NTIMIT. Results here are shown in Table 2.2

2.5 Speaker Identification using NTIMIT 17

with the corresponding codebook size used.

Table 2.2: Performance of baseline system (NIST)

Codebook size Accuracy Rate(%)

64 81.94

128 82.22

256 82.66

These results demonstrate the effect that degraded speech signals have on the identifi-

cation results, reducing them significantly.

Kinnunen, Kilpelainen et al. (2004) have experimented with a number of different

VQ techniques including GLA(Generalized Lloyd Algorithm), SOM (Self-Organising

Maps), PNN(Pairwise Nearest Neighbour), Split and RLS(Randomized Local Search)

(refer to section 5). This system used 12-dimensional MFCC with each of the VQ

techniques. The results are shown with two different codebook sizes (k = 64 and

k = 256).

The speaker corpus used for evaluation were collected from 25(14 males and 11 females)

Finnish speakers. The quality of the speech was improved by; (a) removing the silent

parts, (b) removing the DC offset, (c) applying pre-emphasis and (d) applauying 30ms

Hamming window (refer to section 3).

These results indicate that the size of the codebook has a bearing on the accuracy of

the system, along with the type of VQ technique used. Codebooks of 64 using the RLS

method produced marginally better results than other VQ techniques. Increasing the

size above 64 did not improve results significantly.

2.5 Speaker Identification using NTIMIT

Jr et al. (1995) reports speaker identification results using the NTIMIT corpus to exam-

ine performance degradation. The current speaker identification systems perform well

with clean speech however, performance decreases significantly when speech is recorded

under more realistic conditions, such as over telephone lines. Using the NTIMIT corpus,

2.6 Speaker Identification For Large Set of Voices 18

accuracy results of 81.7% for male speakers and 74.5% for females were found. This

system used Gaussian Mixture Models (GMM) (refer to section 4) and 20-dimensional

MFCC.

Reynolds et al. (1995) examined the effects of size of the population of speakers and

degradations introduced by noisy communication channels. The study examined speaker

identification performance on the complete 630 speaker TIMIT and NTIMIT corpora.

Identification accuracies obtained were 99.5% and 60.7% for TIMIT and NTIMIT re-

spectively. The speaker identification system used in this study consisted of using

MFCC with GMM.

2.6 Speaker Identification For Large Set of Voices

Starnoiewicz & Majewski (1998) presented a text-dependent speaker identification sys-

tem based on Support Vector Machines (SVM). These researches examined the useful-

ness of a SVM speaker identification system using a large set of speakers.

The Polish Speech Dat(E) corpus was used in the evaluation and consisted of 1300

speakers. Features were extracted using a Hamming window with 15-dimensional

MFCC for each frame.

The speaker identification system was tested using three groups of speakers shown in

Table 2.3

Table 2.3: Impact of of the number of speakers on identification results

Speakers Accuracy Rate(%)

125 92.5

500 88.5

1300 88.5

These results indicate that the SVM implementation with MFCC is a relative effective

method of identifying speakers. However due to the different corpus used in this study,

comparisons between other speaker identification may be misleading.

2.7 Effects of Utterance Length on Speaker Identification 19

2.7 Effects of Utterance Length on Speaker Identification

Kwon & Narayanan (2005) presented a speaker identification system which was tailored

to use short utterances, by selectively using relatively robust feature vectors. The

evaluation was performed using the NIST speech (1999) corpus with 400(200M/200F)

speakers. This included 50 seconds of spontaneous speech for each speaker: 40 seconds

of the speech was used for training and 10 seconds for identification.

The baseline speaker identification used 24-dimensional MFCC with a 30ms Hamming

window shifted by 10ms. The speaker model was created using GMM with 16 mixtures.

The results using different lengths of input speech are shown in Table 2.4

Table 2.4: Accuracy results for different length speech input data

Length of Input Data(seconds) Accuracy Rate(%)

0.25 71

0.5 76

1 81

2 85

These results show the effect of identification using short utterances with GMM. This

indicates that to gain reasonable identification results, at least two seconds of speech

is needed. This can also be applied to other techniques such as VQ, were two seconds

of speech can also produce reasonable accuracy results.

2.8 Chapter Summary

This chapter has described different studies and their relevance to speaker identification.

These studies have shown the combination of methods used in a speaker identification

system. These included the type of results expected with different parameters. These

studies have examine the following areas

• Corpora for the Evaluation of Speaker Recognition Systems

• Automatic Speaker Identification Results

2.8 Chapter Summary 20

• Speaker Identification using Vector Quantization

• Speaker Identification using NTIMIT

• Speaker Identification For Large Set of Voices

• Effects of Utterance Length on Speaker Identification

As evident in the literature the results expected for a speaker identification system

range from 60% to 99% depending on the corpora, utterances length and the number

speakers used. Therefore it is these methods which will be described and focused on

during the current study.

Chapter 3

Speaker Recognition

3.1 Introduction

Speaker Recognition can be divided into different areas as discussed in Chapter 1.

Specifically this project is concerned with developing a Speaker Identification system

using closed-set, text-independent speaker identification system. With this in mind,

the following methods for speaker recognition will be directed specifically at closed-set,

text-independent speaker identification.

Speaker identification involves two main stages, the enrolment stage and the identifi-

cation stage described in section 1.4. These phases involve three main parts:

• Pre-Processing.

• Feature Extraction.

• Speaker Modelling.

3.2 Pre-Processing

Speech is recorded by sampling the input, which results in a discrete-time speech sig-

nal. Pre-processing is a technique used to make the discrete-time speech signal more

3.2 Pre-Processing 22

amendable for the processes that follow. There are five pre-processing techniques that

can be used to enhance feature extraction. These include DC offset removal, silence

removal, pre-emphasis, windowing and autocorrelation.

3.2.1 DC Offset Removal

Often audio signals carry an inaudible, yet unwanted constant offset or DC offset.

The DC offset can have an effect on the quality of the information extracted from

the speech signal and may cause errors in the speaker model. There are a number of

methods available to approximate the DC Offset, allowing for its removal.

The first method involves calculating the average value of the speech signal and sub-

tracting this from itself. This effectively removes the DC offset, if it is constant over

time. However the DC offset can vary over time, so a more effective method involves

using a one-pole, one-zero high-pass filter. This filter considers the DC offset a zero-

frequency component. A one-pole, one-zero high pass filter has the transfer function:

H(z) = 1− 1− p

1− pz−1
(3.1)

=
p− pz−1

1− pz−1

3.2.2 Silence Removal

Silence removal is used to remove silent parts of the speech signal, which contain little

or no speaker specific characteristics. It is also useful in practical implementations

such as in a meeting environment as it will eliminate inadvertent speech or prevent

interference picked up by a microphone from being seen as the primary speaker source.

Silence removal is usually achieved using the energy of the signal and comparing this

to the energy of each frame. This is achieved using a smaller overlapped range usually

half the size of the frame size used for feature extraction.

The silent parts of the speech signal can be detected from the short-time energy defined

3.2 Pre-Processing 23

Figure 3.1: Silence Parts of the Speech Signal

as

En =
L−1∑
m=0

xn(m)2 (3.2)

Voice degree detector can also be used to determine what parts of the speech signal are

useful. A voice degree detector uses autocorrelation to determine the varying levels of

speech present in the signal. Autocorrelation is defined as

R(k) =
N−1−k∑

n=0

s(n)s(n− k) (3.3)

where s(n) is the speech frame and s(n− k) is the same speech frame delayed by k. A

voice degree detector can then be created using

α =
R[1]
R[0]

(3.4)

where R[0] and R[1] is the autocorrelation sequence defined in Equation 3.3. α is a

similarity measure of the speech frames. High values of α represent speech frames that

are noise like or unvoiced sounds, while low values occur for periodic voiced sounds.

Figure 3.2 shows a speech signal and the corresponding result of a voice detector using

Equation 3.4.

3.2 Pre-Processing 24

Figure 3.2: Voice Degree Detector (Drygajlo 2005).

3.2.3 Pre-emphasis

Pre-emphasis is a technique used in speech processing to enhance high frequencies

of the signal. There are two important factors driving the need for pre-emphasis.

Firstly, the speech signal generally contains more speaker specific information in the

higher frequencies (Gravier 2004). Secondly, as the speech signal energy decreases the

frequency increases. Therefore by applying pre-emphasis, the spectrum is flattened,

consisting of formants of similar heights. This allows the feature extraction process to

focus on all aspects of the speech signal.

Pre-emphasis is implemented as a first-order Finite Impulse Response (FIR) filter de-

fined as:

H(z) = 1− az−1 (3.5)

Generally a is chosen to be between 0.9 and 0.95. Figure 3.3 shows the frequency

response of a pre-emphasis filter.

3.2 Pre-Processing 25

Figure 3.3: Frequency response of a pre-emphasis filter with a = 0.95

3.2.4 Frames and Windowing

The speech signal can be considered quasi-stationary over small intervals, making it

amendable for analysis techniques at this level. Therefore we divide the speech signal

into fixed-length frames, each considered as a stand-alone signal. This enables short-

time analysis of the speech signal.

Speaker recognition takes advantage of the quasi-stationary speech signal through short-

time analysis. A windowing function is used on each frame to smooth the signal and

make it more amendable for spectral analysis. We can define this as:

xn(m) = x(n−m)w(m) (3.6)

Where w(m) is a finite-length windowing function.

Windowing functions can be applied w(m) to the frames. The simplest being a rectangle

window shown at the top of Figure 3.6. This rectangle window however is not normally

used, as it causes spectral distortion. This is due to abrupt frequencies caused by the

end points of the frame. This distortion can be reduced by using a smoothing function to

improve the short-time spectral analysis of the frames. Hamming, Hann and Blackman

windows are three window functions used commonly in speech analysis to reduce the

abrupt and undesirable frequencies occurring in the framed speech. Figure 3.6 shows

a Hamming window applied to a speech frame.

3.2 Pre-Processing 26

Figure 3.4: Frame without Pre-emphasis

Figure 3.5: Frame with Pre-emphasis

The Hamming window is defined as:

w(n) = 0.54− 0.46 cos
[

2πn

N − 1

]
(3.7)

The Hann window is defined as:

w(n) = 0.5
(

1− cos
(

2πn

N − 1

))
(3.8)

The Blackman window is defined as:

w(n) = 0.42− 0.5 cos(
2πn

N
) + 0.08 cos(

2πn

N
) (3.9)

where N represents the width of the frame and n is an integer, with values 0 ≤ n ≤ N−1

3.2.5 Autocorrelation

Autocorrelation provides a mechanism for removing the noise-like parts of the speech

signal, while preserving the spectrum of the speech signal and speaker information.

3.2 Pre-Processing 27

Figure 3.6: Hamming window applied to a framed speech signal

Autocorrelation is a measure of how well a signal matches a time-shifted version of itself.

Two important pieces of information about autocorrelation signals are: (Leis 2002)

1. the autocorrelation of a periodic signal preserves the periodicity.

2. the autocorrelation of a random signal is zero at all lags except for a lag of zero.

Autocorrelation is defined as:

Rxx(k) =
1
N

N−1∑
n=0

x(n)x(n− k) (3.10)

where k is the lag or delay

Autocorrelation is taken over the frames to reduce the amount of noise and aims to

improve the ability of feature extraction methods.

3.3 Source-Filter Model of Speech 28

3.3 Source-Filter Model of Speech

There are numerous techniques available to extract features and model speakers. How-

ever, to do so requires an appreciation for the invariably complex signal that is our

speech and the information obtained when captured.

Most characteristics of the speech signal are difficult to measure explicitly, however

they are captured implicitly through short-time and long-time spectral energy. Char-

acteristics are also captured implicitly through the fundamental frequency and overall

energy. The implicit nature of the speech signal makes it difficult to differentiate one

speaker from another without specific analysis techniques.

Most analysis techniques commonly employed in speaker identification are based on

the short-time spectral analysis. This is due to the periodic and quasi-stationary char-

acteristics of the speech signal when taken in small intervals or frames, usually around

10-30ms (Johnson 2005). In small frames like this, the statistical properties of the

signal are slow moving and are amendable for speaker analysis. This leads us to the

first component of speaker identification, feature extraction.

Designing a speaker identification tool first requires features to be extracted from the

speech signal. Generally a 10-30ms windowing system, such as a Hamming window is

used to sample the speech signal, as it can be considered quasi-stationary over a short

period of time. From this windowed signal we can produce coefficients that represent

the most dominant features of that part of the signal. This basic concept is known

as feature extraction. There are many methods available that can be used to extract

features from the speech signal, such as cepstral analysis, Linear Prediction (LP) and

variations of these.

Feature extraction is used to parameterise the speech signal using short-time analysis.

It is applied to framed speech to produce speaker-specific feature vectors. This process

is shown in Figure 3.7.

There are a number of methods available to perform feature extraction and many

incorporate the fundamental idea of the source-filter method defined as:

3.3 Source-Filter Model of Speech 29

Figure 3.7: The process of extracting features from the speech signal (Willits 2003).

ŝ(n) = e(n)× f(n) (3.11)

The speech signal can be modelled by the source-filter method of speech production.

Cepstral and LP analysis is useful as a tool for feature extraction as they both try

to separate the source and filter parts of the speech signal. The source-filter concept

leads directly to engineering methods used separate the source from the filter (Gold &

Morgan 2000). Here the source is the excitation signal, produced by the vocal cords

and the filter is the vocal tract, which shapes the speech signal by emphasizing certain

frequencies(Rabiner & Juang 1999). If the excitation signal is donated by e(n) and the

filter signal by f(n) then the resulting speech waveform is the convolution of the two

signals:

3.4 Speaker Modelling 30

s(n) = e(n)× f(n) (3.12)

Since the source characteristics contain much less speaker specific information then filter

or vocal cord characteristics, it would be useful to discard this information. Separation

of the excitation and filter signals is, in a practical sense, impossible due to the mixed

signals non-linearity. Chapter 4 details feature extraction methods.

3.4 Speaker Modelling

After extracting speaker-specific characteristics from the speech signal we need a method

to classify the speaker in order to determine the author of a given speech signal. In

order for identification a speaker must first be enrolled in the system using a modelling

process. Once models for the speakers have been created, a matching or classification

process is then used for identification.

Speaker modelling requires training, which is used to characterize speaker specific pat-

terns of the speech signal for a given speaker. There exist a number of methods used

for speaker modelling. Two commonly used methods are:

• Vector Quantization

• Gaussian Mixture Models

3.4.1 Vector Quantization

Vector Quantization (VQ) is a clustering method, which maps vectors from a vector

space to a finite number of regions in that space. Each of these regions or clusters has

a central vector or centroid. These clusters represent characteristics of similar vectors

from the vector space (Kinnunen et al. 2004). Together these clusters form the vector

space, known as a codebook. The codebook is created using features extracted from

the speech signal, which are used to model specific components of a speakers voice

(discussed in section 4.

3.5 Distance Metrics 31

3.4.2 Gaussian Mixture Models

Gaussian mixture models (GMM) are also a useful technique in speaker modelling.

GMM is a statistical method used to model speaker-specific features, which aims to

provide better estimates of data. A key advantage GMM have over VQ is that the

clusters are able to overlap, which can lead to results that model the speakers more

accurately

Mixture models are a type of density model, which comprise of a number component

functions (Wu 2005). These component functions can be combined to provide a multi-

modal Gaussian density representation that is unique for each speaker.

A GMM can be represented as a weighted sum of component densities, or mathemati-

cally as:

p(x) =
M∑
i=1

pibi(x) (3.13)

where M is the number of components, x is a feature vector, bi are the components

densities and pi are the mixture weights.

3.4.3 Support Vector Machine

Support Vector Machines (SVM) are another method used recently in speaker identifi-

cation and has achieved performance results that are greater or equal to other methods

(Starnoiewicz & Majewski 1998). SVM are based on the principle of structural risk

minimisation and are a binary classifier that makes decisions by constructing a linear

hyperplane that optimally separates two classes.

3.5 Distance Metrics

An integral step in determining a speaker’s identity is to determine the similarity be-

tween an unknown speaker’s feature vectors and set of valid speaker models. This

involves using a metric to calculate the distortion between unknown feature vectors

and the speaker models. From these results, the lowest distortion can determine which

3.5 Distance Metrics 32

speaker model is the closest match for the unknown speaker. Several different metrics

can be used to calculate the distortion between feature vectors and a speaker model,

or codebook in the case of VQ. Commonly the Euclidean Distance Metric is used to

calculate the distance between two points.

d(x,y) = (x1 − y1)2 + . . . + (xn − yn)2 (3.14)

or

di(xi,x) = (xi − x)T (xi − x)

(3.15)

where x and y are feature vectors, x is the mean of the feature vectors, xi is the mean

of the ith speaker’s codebook and the d is Euclidean Distance between the two. A

variation of this is the Euclidean Squared Distance Metric.

d(x,y) =
√

(x1 − y1)2 + . . . + (xn − yn)2 (3.16)

The Euclidean measure is isotropic and is the best measure when all attributes are the

same.

The Manhattan Distance Metric is also a useful metric and is more robust than the

Euclidean Distance Metric. The Manhattan Distance Metric has the advantage of being

less sensitive to large discrepancies.

d(x,y) = |x1 − y1|+ . . . + |xn − yn| (3.17)

Figure 3.8: Euclidean and Manhattan metric in R2

3.6 Chapter Summary 33

Another commonly used metric is the Mahalanobis Distance. This distance metric is

based on the Euclidean distance metric where a weighting matrix is added to give less

weights to components having more variance. This is defined as

di(xi,x) = (xi − x)TW(xi − x) (3.18)

where W is the weighting matrix. The weighting matrix W is the covariance matrix

corresponding to the mean x. If weighting matrix W , were an identity matrix of x the

distance would be Euclidean.

The covariance of two points:

cov(x,y) =
∑n

i=1(xi − x)(yi − y)
(n− 1)

(3.19)

Therefore the W weight matrix is the covariance matrix defined as:

W =

cov(x1, x1) cov(x1, x2) . . . cov(x1, xn)

cov(x2, x1) cov(x2, x2) . . . cov(x2, xn)
...

...
...

...

cov(xn, x1) cov(xn, x2) . . . cov(xn, xn)

(3.20)

where n is the number of dimensions in x

3.6 Chapter Summary

This chapter has presented an overview of speaker identification and the processes

involved. This includes pre-processing, feature extraction, speaker determination and

pattern matching. Several techniques were demonstrated for each of the processes

involved.

Firstly, pre-processing techniques are used to improve the quality of the speech signal

to make it amendable for feature extraction. These pre-processing techniques include

• DC offset removal.

• Silence Removal.

3.6 Chapter Summary 34

• Pre-emphasis.

• Windowing.

• Autocorrelation.

Secondly the process of extracting information from the speech signal was presented

which demonstrated a number of methods briefly. These techniques included

• Cepstral Analysis.

• Linear Predictive Coding.

The above methods were based on the source-filter concept of speech modelling, which

can give a good approximation of the information obtained in the speech signal.

Lastly, techniques used for speaker modelling, which included methods of how to con-

struct representations of the speakers speech from the features extracted from their

speech signal. These included

• Vector Quantization.

• Gaussian Mixture Models.

• Support Vector Machines.

In conjunction with these speaker modelling techniques, a distance metric is needed,

to determine the distortion between points. Three commonly used metrics examined

were

• Eucildean.

• Manhatten.

• Mahalanobis.

Chapter 4

Feature Extraction

4.1 Introduction

In order to create a speaker profile, the speech signal must be analysed to produce some

representation that can be used as a basis for such a model. In speech analysis this is

known as feature extraction. Feature extraction allows for speaker specific characteris-

tics to be derived from the speech signal, which are used to create a speak model. The

speaker model uses a distortion measure to determine features which are similar. This

places importance on the features extracted, to accurately represent the speech signal.

A number of speech coding methods used for compression, are prime candidates for

extracting features from a signal. Notably Linear Prediction (LP) and its associated

variants are examples of speech coding techniques applied to speaker identification.

Another important method used involves a spectral technique called cepstral analysis.

Both methods provide a good approximation of the deconvolution of the source and

filter, described in Section 3.3

4.2 Short-Term Fourier Transform 36

4.2 Short-Term Fourier Transform

The Short-Term Fourier Transform (STFT) can be used to extracted spectral infor-

mation from the speech signal. The Fourier transform is commonly used in speaker

recognition techniques to extract information. It is normally used in combination with

other methods to emphasis certain spectral components.

The Discrete Fourier Transform (DCT) of a sampled signal is:

X(k) =
N−1∑
n=0

x(n)e−jnωk (4.1)

where N is the number of samples and ωk is the frequency of the kth sinusoid

ωk =
2πk

N
(4.2)

The spectral energy in the speech signal is characterized by the speech content and

physiology of the speaker.

Figure 4.1: Source Filter Spectrum

Figure 4.1 shows the a voiced segment of speech and the corresponding STFT of the

4.3 Cepstrum 37

same frame. The spectrum of a speech frame illustrates that the signal has a high am-

plitude component with a low frequency and a number of higher frequency components.

Features can be extracted using the STFT, such as pitch information and formants,

however the STFT is rarely used by itself. Instead the STFT is used with other methods

which rely on this transformation into the frequency domain. A method used commonly

is the cepstrum, which takes advantage of the characteristics of STFT.

4.3 Cepstrum

The fundamental idea of the cepstrum is to take the inverse Fourier transform of the

logarithm of the spectrum. Mathematically it can be defined as:

cepstrum = IFT (log(FT (signal))) (4.3)

There are two forms of the cepstrum, the real and the complex. The real ceptrsum uses

the logarithm defined for real values while the complex cepstrum users the logarithm

defined for complex values (Osdol 2004). The outcome is that the real cepstrum retains

information only on the magnitude of the spectrum while the complex cepstrum retains

both magnitude and phase information.

For applications in signal processing the complex cepstrum is used most often, due

to the information retained in the phase and magnitude. The complex cepstrum of a

signal s(n) can be defined in terms of its Z transform.

The cepstrum can be used to approximate the separation of the source and filter signals.

The convolution of the excitation signal s(n) and the vocal tract filter f(n), when

represented in the frequency-domain become the multiplication of the respective Fourier

transform:

s(ω) = e(ω)× f(ω) (4.4)

Then by taking the logarithm of the magnitude of both sides we can separate the

4.3 Cepstrum 38

Figure 4.2: Source Filter Spectrum (Karpov 2003)

multiplied variables. This transforms the equation from multiplication to addition.

log |s(ω)| = log |e(ω)| × log |f(ω)| (4.5)

Finally by taking the inverse Fourier transform of the logarithm of the magnitude

spectrum we get the frequency distribution of the fluctuations in the curve of the

spectrum of the original signal.

IFT (log |s(ω)|) = IFT (log |e(ω)|)× IFT (log |f(ω)|) (4.6)

The inverse Fourier transform separates the quickly varying and slowly varying parts

from the log of the spectrum. The cepstrum basically decomposes the signal into the

source and filter characteristics and can be considered a deconvolution operator. The

final result of the cepstrum is an approximate separation of the source and filtered

signals. The source information contains little speaker-specific information, while the

filter signal does contain speaker specific information that can be used for identification.

This allows us to produce speaker-specific vectors that can be used to model and identify

speakers. Figure 4.3 shows the cepstrum and correspond speech frame.

There a number of feature extraction methods that rely on modelling the human speech

as a convolution of two signals, the source and the filtered signals. In order to separate

the speech signal, methods such as the cepstral analysis can be used to approximate

the deconvolution.

4.3 Cepstrum 39

Figure 4.3: Cepstrum

4.3.1 Mel-Frequency Cepstrum Coefficients

A method used for feature extraction is Mel-frequency cepstrum coefficients (MFCC).

MFCC are based upon short-time spectral analysis in which MFCC vectors are com-

puted. MFCC analysis is similar to that of cepstral analysis, however the frequency

axis is warped according to a mel-scale. The mel-scale is a perceptual scale of pitches

judged by listeners to be equal in distance from one another (Raja, Y. (1999)). MFCC

is based on the information carried by low-frequency components of the speech signal,

in which less emphasis is placed on the high frequency components. The aim MFCC is

to better approximate the human auditory system’s response.

The mel-scale shown in Figure 4.4 illustrates that the spacing below 1kHz is linearly

spaced while the that above 1kHz is spaced logarithmically (Shah, Iyer et al. 2004). This

non-linearity of the mel-scale approximates, that of the human ear, which roughly hears

frequencies lower than 1kHz linearly and frequencies higher than 1kHz logarithmically.

4.4 Linear Prediction 40

The relationship between the mel-frequency and normal frequency is given by

mel(f) = 2595× log10(1 + f/700) (4.7)

Figure 4.4: Relationship between the mel-frequency and the physical frequency

A method used commonly to create the mel-spectrm is to use a filter bank. Each

filter in this bank has a triangular bandpass frequency response and corresponding to a

desired mel-frequency component. Each filter computes the average spectrum around

each centre frequency with increasing bandwidths as shown in Figure 4.5

4.4 Linear Prediction

LP is a speech coding technique used to reduce the amount of information needed

to represent the signal. It is based on the source-filter method of speech production.

LP analysis is similar to that of cepstral analysis in that the source is considered to

be pulses from the vocal cords, which are then passed through an all-pole transfer

4.4 Linear Prediction 41

Figure 4.5: Mel Frequency Filter Bank

function representing the effect of the vocal tract (Markel & Gray 1976). Specific poles

of the transfer function (4.8) can then be used as a representation of the signal. The

LP Coefficients (LPC) are the result of attempting to predict the speech samples as a

linear combination of past samples. Certain weights that give the best prediction, and

form the coefficients.

H(z) =
G

A(z)
(4.8)

Generally, LP analyses the past speech samples in order to predicted a given speech

sample. The prediction signal ŝ(n) can be represented as a summation of the previous

samples s(n) multiplied weights or coefficients.

ŝ(n) = a1s(n− 1) + a2(n− 2) + aP s(n− P) (4.9)

=
P∑

k=1

aks(n− k)

Here P is the number of coefficients and n is the sample. The speech signal s(n) can

then be modelled based on this prediction

e(n) = s(n)− ŝ(n) (4.10)

e(n) = s(n)−
P∑

k=1

aks(n− k) (4.11)

4.4 Linear Prediction 42

In the z-domain we can represent e(n) as

A(z) = 1−
P∑

k=1

akz
−k (4.12)

If we combined equation 4.8 and 4.12 we get the all-pole transfer function

H(z) =
G

1−
∑P

k=1 akz−k
(4.13)

An all-pole transfer function may not retain some the phase characteristics of the speech

signal, however this information is less important as the human ear is fundamentally

phase deaf (Karpov 2003). The all-pole model also preserves the spectral information

almost exactly and is why LPC and variations of this method are used in speech coding

and speaker recognition systems. Figure 4.6 shows the process of LP, importantly the

Pulse Train (vocal cords).

Figure 4.6: Source-filter relationship of LPC when used to synthesis speech. Source:

http://www.usq.edu.au/users/leis/courses/ELE4607/module8.pdf

The next problem is how to calculate the prediction coefficients. There exists two

methods, autocorrelation and covariance method. Both of these methods minimize the

mean-square value of error, equation 4.11.

E = e2(n) (4.14)

=

[
s(n)−

P∑
k=1

aks(n− k)

]2

To find the optimal value, the partial derivative of E with respect to ak is set to zero.

∂E

∂ak
= 0, k =, . . . P. (4.15)

4.4 Linear Prediction 43

This can be solved using the autocorrelation method, which has the form.

Ra = r (4.16)

where R is a special type of matrix called the Toeplitz matrix (reference), a is the vector

of the LPC and r is the autocorrelation matrix. The autocorrelation of s(n) is defined

as rs(k) in equation

R(k) =
N−1−k∑

n=0

s(n)s(n− k) (4.17)

The predictor coefficients can then be found by solving the matrix equation 4.16, where

R =

Rn(0) Rn(1) Rn(2) . . . Rn(P − 1)

Rn(1) Rn(0) Rn(1) . . . Rn(P − 2)
...

...
...

...
...

Rn(P − 1) Rn(P − 2) Rn(P − 3) . . . Rn(0)

(4.18)

R is the Toeplitz matrix or autocorrelation matrix

a =

a1

a2

. . .

aP

(4.19)

a is the predictor coefficients

r =

Rn(1)

Rn(2)

. . .

Rn(P)

(4.20)

r is the autocorrelation vector

LPC are calculated over each speech frame to produce feature vectors. The number of

coefficients used to represent each frame generally ranges from 10 to 20 depending on

the application, sampling rate, and number of poles in the model.

4.5 Linear Predictive Cepstral Coefficients 44

Figure 4.7: LPC spectrum window, and STFT

4.5 Linear Predictive Cepstral Coefficients

Combining both LPC and cepstral analysis of a signal gives benefits of both techniques

and improves the accuracy of the features extracted. The basic idea of Linear Predictive

Cepstral Coefficients (LPCC) is instead of taking the inverse Fourier transform of the

logarithm of the spectrum of a signal, its taken from the LPC. By taking the LPC

[ak]
P
k=1 the cepstral coefficients c(n) can be computed using a recursive formula, without

computing the Fourier Transform (Campbell 1999).

c(n) = a(n) +
n−1∑
k=1

[
k

n

]
c(k)a(n− k) (4.21)

4.6 Normalisation

Normalisation is used to reduce the mismatch between signals which have been recorded

in different environments (Gravier 2004). Normalising the data can be achieved by cal-

4.7 Chapter Summary 45

culating the mean x and variance s2 for the features and then applying a normalisation

function. That is

xj =
1
m

m∑
i=1

xij (4.22)

s2 =
1

m− 1

m∑
i=1

(xij − xj)2

Then to normalise

zij =
xij − xj

sj
(4.23)

4.7 Chapter Summary

This chapter has presented techniques for feature extraction. These include STFT,

Ceptral analysis and LP analysis. These methods are based on the source-filter method

of speech production the speech signal can be represented by the convolution of a source

and filter. These methods described seek to separate the two and model the filter to

determine speaker specific characteristics.

The cesptrum approximates the deconvolution of the source from the vocal cords s(n)

and filter f(n) caused by the vocal tract. This can be improved by warping the fre-

quencies according to a mel-scale, which approximates the human auditory system.

LP is a speech coding method which can be used to extract speaker specific features.

LP can be combined with the cepstrum method to produce features which include the

benefits of both methods.

Finally normalisation is applied to the feature vectors to account for any mis-match

between speech signals.

Chapter 5

Speaker Modelling

5.1 Introduction

A number of different techniques exist that can be used to model speakers based on the

features extracted from there speech. Vector Quantization (VQ) is commonly used as

a technique for lossy data compression which can be also be used to create a speaker

model. Much research has been invested into VQ as it applies to Speaker Recognition

and results have shown that it can produce practical results and compares well to other

techniques such as Gaussian Mixture Models (GMM).

5.2 Vector Quantization

VQ is a method used predominantly for image and speech coding as a compression tool.

However, VQ is also applied in biometrics to classify data and can be used to model

speaker specific characteristics. VQ is similar to scalar quantization and involves the

process of approximating a continuous or large set of values by a small set of discrete

values. The important difference is that scalar quantization considers only R1 while

VQ can be used in RN , where N is an positive integer.

VQ works be taking a large set of vectors that form a vector space, and mappings

5.2 Vector Quantization 47

these into a smaller number of finite regions in that space. This process finds clusters

of vectors with similar values and uses the central vectors or centroids to create a

codebook. This codebook represents the vector space from which the vector set was

created. When applied to speaker identification this codebook can be used to represent

a speaker, created from the features extracted from the speech signal. The process of

creating a codebook is illustrated in Figure 5.1.

Figure 5.1: Vector Quantization using two speakers (Do 2003).

VQ is used to form k non-overlapping clusters of the feature vectors. Each cluster is

represented by a code vector Ck or centroid. The set of code vectors for a speaker is

then known as the code book and serves to model the speaker.

Mathematically, VQ can be defined as:

X = x1, x2, . . . , xT

C = c1, c2, . . . , ck

where a centroid cn is

cn =
∑

xmεSn
xm∑

xm∃Sn
1

(5.1)

Where X is the set of feature vectors for a specific speaker, C is the corresponding

feature codebook and Sn are the vectors that represent a particular cluster.

5.2 Vector Quantization 48

The aim of the codebook C is to model a specific speaker by reducing the amount

of data in speech signal, while preserving the distribution and essential information

contained in the speaker’s voice. Figure 5.2 illustrates a speakers codebook (k = 32)

showing the centroids as reconstructed LPC signals. Each of these signals represents

the information used to identify a speaker.

Figure 5.2: Representation of a codebook (k=32) using 20 dimensional LPC recon-

structed code vectors

VQ can be decomposed into two operations, the vector encoder E(x) and vector decoder

D(x). These operations can occur in Rn and together can be used to create specific

speaker codebooks. This process can be regarded as

E(x) : Rn −→ C (5.2)

D(x) : C −→ Rn

where C is the codebook.

In the context of speaker identification vector quantization will match a code vector c

with an approximate and similar representation of the input vector x. The vector x

5.2 Vector Quantization 49

may represent a number of different possible feature extraction parameters, including

LPC and MFCC discussed in Chapter 3.

Generally given vector quantize, the encoder E(x) must satisfy the nearest-neighbour

rule, where each input vector x is quantized to an output vector c which is at least as

close to x as any other code vector. The measure between the, vector is assumed to be

the squared error distortion

To assess the quality of codebooks, a performance measure is used, normally a distortion

function d(x, y), which measures the distortion between two vectors, in this case the

code vector c and input vector x. A common distortion measure used is the mean

squared error or squared Euclidean distance metric(Eq. 3.17)

d(x, y) =‖ x− y ‖2 (5.3)

Another useful distortion function is the weighted squared error function

d(x, y) = (x− y)tW (x− y) (5.4)

where W is a symmetric non-negative definite matrix.

The main disadvantage of VQ is that clusters cannot overlap, and such interconnections

between clusters cannot be modelled. Simply features vectors can only be associated

with one cluster, and partially with many. This ability to allowed clusters to overlap is

an advantage of using probability methods such as GMM, as this allows for intercon-

nection.

VQ is used to model speaker-specific characteristics, how well this is achieved is based

on the generation method and the size of the codebook. Two issues which affect the

accuracy of the codebook to model a speaker, include:

• Size of the code book (e.g. Typical sizes include 64, 128, 256 code vectors).

• Algorithm used to generate the codebook.

Research shows that the size of the codebook used and directly effect the accuracy

results (refer to section 2. Generally increasing the codebook size reduces the error

5.2 Vector Quantization 50

rates, however the codebook can be set to high as to overfit the data. This overfitting

is artefact from using a large codebook with training data. The codebook would model

the specific training data, more than the general speaker specific characteristics.

The second important aspect of VQ is the algorithm used to create the codebook. These

can be classed into supervised and unsupervised generation of the codebook. Supervised

codebook generation involves creation of the codebooks independent of other speak-

ers codebook. Unsupervised codebook generation uses the intercorrelations between

the codebooks to minimize any overlap between them.(Reference) The most popular

method used in speaker identification systems is that of the unsupervised methods, as

supervised can become complex and involve tweaking of certain parameters. For the

purpose of this project, supervised algorithms will be considered only.

The following list shows a number of clustering methods used for codebook generation:

• GLA: Generalized Lloyd(Voronoi) Aalgorithm, starts with an initial codebook,

which is iteratively improved until a local minimum is reached (Kinnunen et al.

2004).

• SOM: Self-Organising Maps, uses neural network concepts, to develop code vec-

tors.

• PNN: Pairwise Nearest Neighbour, creates the codebook hierarchically.

• Split: Iterative splitting technique, top down-approach starting with a single

cluster including all feature vectors.

• RLS: Randomized Local Search, starts with a random codebook, which is improve

iteratively.

Two main approaches are used in VQ, for creating the codebooks, they are iterative

methods and hierarchical methods.

5.2 Vector Quantization 51

5.2.1 Iterative Clustering Methods

Iterative methods are those where an initial solution is iteratively improved to produce

an optimal solution. These improvements can be random (RLS) or descendent (GLA)

where certain rules are used to improve the codebook. However it is important for some

methods to start with an initial codebook that will allow for the best globally optimal

solution.

5.2.2 Initial Codebook

Vector quantization requires an initial codebook in order to begin optimising based

on a speaker features. There are a number of different methods for selecting these

initial codebooks, with varying effects on the solution, such as whether the codebook

is globally or locally optimal. Four methods of selecting the initial codebooks are:

• Random generation of the codebook,

• Splitting (discussed in section 5.2.7),

• Create codebook with different subset using the appropriate method,

• Pairwise Nearest Neighbour (discussed in section 5.2.6),

5.2.3 Generalized Lloyd Algorithm (k-means)

Many different supervised algorithms exist which are variations on the basic k-means

algorithm, also known as the Generalized Lloyd algorithm(GLA)(reference) or Linde-

Buzo-Gray algorithm(reference).

The k-means algorithm is used to find k clusters of N data points Rn, with each cluster

represented by k centroids. The clusters are found by starting with k tentative centroids

and allocating each point to the closest centroid, which is based on a particular distance

metric (Euclidean in k-means). The centroids are then recalculated to by taking the

mean of the associated data points for each centroid and allocating this, as the new

5.2 Vector Quantization 52

centroid. The closest data points are allocated to these new centroids and the process

is continued iteratively until each of the centroids converge. The aim of the k-means

algorithm is to minimize an objective function, in this case J

J =
k∑

j=1

n∑
i=1

‖x(j)
i − cj‖2 (5.5)

Where the xi is the data point and cj is the cluster centre or centroid and the distance

measure ‖x(j)
i − cj‖2.

k-means is guaranteed to find the local minimum, however this may not be the global

minimum and therefore the algorithm is not always optimal. Problems also exist in the

initial centroids or codebook to begin with and the criteria used to stop the iterations.

k-means is the simplest of methods of implementing VQ, but forms the basis for related

algorithms are based upon.

5.2.4 Randomized Local Search

Randomized Local Search (RLS) using a random codebook, which is iteratively im-

proved by a predefined number of iterations. The codebook is created using a random

swap technique, in which a randomly chosen code vector c is replaced by another ran-

domly chose input vector x. Two iterations of GLA are then applied to fine-tune the

trail solution. The codebook is accepted if the solution improves the previous solution

and is repeated for a fixed number of iterations (Kinnunen et al. 2004).

The random swap occurs as follows:

cj ←− xi | j = random(1,M), i = random(1, N) (5.6)

where M and N are the size of the codebook and feature space (input vectors) respec-

tively. The new codebook is accepted if:

d(xi, c
′
k) < d(xi, ck) (5.7)

That is, the new codebook gives a smaller distortion than the original. This codebook is

then accepted and the process can continue again, until the require number of iterations

has elapsed. An important note is that when the random swap occurs, the codebook

5.2 Vector Quantization 53

vector that is replaced, ceases to exist. The final solution using RLS can be improved

by using the k-means algorithm described previously.

5.2.5 Hierarchical Clustering Methods

Hierarchical methods of forming codebooks, involve building the cluster structure step-

wise. Two hierarchical methods are the splitting (top-down) and the merge-based

(bottom-up). The splitting approach increases the codebook size by new code vectors

until the size required is reached. These are normally started from an initial codebook

of one. Merge-based approach is the opposite of this, it starts with a large codebook,

which decrease by removing existing code vectors and merging clusters. Pairwise near-

est neighbour and Split are two common approaches to VQ by hierarchical means.

5.2.6 Pairwise Nearest Neighbor

Pairwise nearest neighbour (PNN) generates the codebook hierarchically, by initializing

every training vector as a code vector. Two code vectors which increase the distortion

the least are merged at each step until the desired size codebook is obtained.

Figure 5.3 shows the basic idea of PNN. Here each of the feature vectors are allocated

to a particular centroid. Two centroids or code vectors are then chosen which produce

the lowest increase in distortion. These two code vectors are then merged and the

result is a new cluster with the total codebook decreased by one. This process would

be repeated until the required size codebook is obtained.

Using the PNN approach to VQ, can become computationally expensive for large data

sets compared to k-means, and other hierarchically methods. The PNN method of VQ

is not guaranteed to generate the most optimal codebook for a feature space, however

in practice it generates good codebooks for data sets (Teo & Garfinkle 1998).

5.2 Vector Quantization 54

Figure 5.3: Pairwise Nearest Neighbor VQ

5.2.7 Split

This is essentially the opposite of PNN, where the codebook is started as a single code

vector. Each code vector is then split to give the best distortion and optimized using

k-means. This process completed until the required codebook is reached.

Figure 5.4 shows the process of splitting single initial code vector. Generally the mean

of the feature vectors is used as the initial codebook. The code vector is split by a

perturb ± ε distance which is fixed over the entire duration of the algorithm.

The splitting approach is more efficient than PNN due to the nature of the exponential

rate at which the code book increases (Teo & Garfinkle 1998). The number of iterations

obtained a desired codebook is the logarithm to base 2 of the number of elements

require.

log2 N = i (5.8)

where i is the number of iterations to produce a codebook of size N

5.3 Chapter Summary 55

Figure 5.4: Pairwise Nearest Neighbour VQ

5.2.8 VQ Distortion

VQ will produce a codebook which can be measure to the degree at which it represents

the training feature vectors. This is known as the distortion measure, and uses tech-

niques discussed in section 3.5. The dissimilarity between the codebook Ci and feature

vectors X used to create the codebook is:

d(X, Ci) =
1
L

L∑
j=1

minK
k=1 d(xj , cik) (5.9)

where d(xj , cik) is the distance metric used to create the codebook. This distortion

measure is also known as the Mean Square Error (MSE).

5.3 Chapter Summary

This chapter has introduced VQ as a classification technique that is able to take feature

vectors and convert them into a feature space that can be used for identification of

speakers.

There are many algorithms that can be used in VQ, this section has presented four of the

5.3 Chapter Summary 56

most commonly used methods including k-means, hierarchical and random methods.

Generally these methods can be used together to produce better results, however results

do not increase significantly from one method to another as shown by Kinnunen et al.

(2004)

Chapter 6

Experimental Setup

6.1 Introduction

Experimentation is an important procedure in which techniques and algorithms are

explored and assessed. This will determine the viability of such techniques for speaker

identification.

6.2 Speech Corpora

For the evaluation of the speaker identification methods, two speech corpora were used,

namely the NTIMIT corpus and an Alternative corpus created specifically for this

project.

6.2.1 NTIMIT

NTIMIT is an American English corpus based on the original TIMIT corpus. The

NTIMIT corpus is a variation on the TIMIT corpus, where the speech is played through

telephone lines, which reduces the quality and information in the speech. The corpus

consists of 8 dialect regions, with 10 speech files for each speaker. Two of these files

6.2 Speech Corpora 58

(the SA sentences) contain the same linguistic content for all speakers and are meant

to expose the dialectal variants of the speakers (UPenn 1990). Five sentences (the

SX sentences) are phonetically-compact and three sentences (the SI sentences) are

phonetically diverse (UPenn 1990).

In order to make comparisons between the corpora, 12 speakers were arbitrary from

dialect region DR3. Three of these were female and seven were male. For training

purposes 8 files were used, the SX and SI sentences, 2 files were used for testing, SA

sentences. The training sentences together were on average 18 seconds, while the test

sentences were 6 seconds.

6.2.2 Alternative Corpus

An alternative corpus was used to compare and contrast between the results of the

different corpora. This corpus was created using Australian English. The recordings

were taking in a low-level noise room with an inexpensive microphone. Three recordings

were taken:

• One training speech file, which last between 22 to 29 seconds depending on the

speaker (see Appendix B for details)

• Two test speech files, these are sentences which range from 3 to 4 seconds (see

appendix for details).

The Alternative corpus provides a reasonably accurate representation of the speech and

variability of the quality which would be expected in a possible meeting environment.

The advantages of such a corpus over the NTIMIT, is that the degraded quality of

the NTIMIT may effect results excessively. The effect of telephone speech and the

associated information loss could greatly impact results in some of the prototypes. The

attributes of both corpora are shown in Table 6.1

Speaker identification prototype is to be used with 8 voice profiles. In these experiments

we are assessing the methods using 12 speakers to add some flexibility in the indented

6.3 Testing Procedures 59

Table 6.1: Summary of Corpora

NTIMIT Alternative

Language American English Australian English

Speakers 12(7M,5F) 10(7M,5F)

Speech Type Read Speech Read Speech

Recording Conditions Nosiy Clean

Sampling Frequency 16 kHz 16 kHz

Training Speech 18s 22s

Evaluation Speech 6s 3s

use. The testing speech is also completed using evaluation speech of between 3 and 6

seconds, to comply with aim of using utterances of less than 10 words.

6.3 Testing Procedures

This section examines the procedures that will be used in the experiments. This in-

cludes:

• pre-processing;

• feature extraction; and

• speaker modelling.

6.3.1 Pre-processing

Pre-processing will be applied for each of the experiments, with the following combi-

nation.

1. DC offset removal (via the removal of the mean).

2. Silence removal.

3. Pre-emphasis using a = 0.95.

6.3 Testing Procedures 60

4. 20ms Hamming window, overlapped by 10ms.

5. Autocorrelation .

These pre-processing techniques are applied to both speech corpora before feature ex-

traction.

6.3.2 Feature Extraction

The experimentation will be used to assess the most effective feature extraction method.

Three methods will be assess from Chapter 5.

• LPC

• MFCC

• LPCC

Each of these methods will be assessed by varying the order of coefficients from 1 to

20. This will be used to asses the quality of each method.

6.3.3 Speaker Model

Speaker models will be created using VQ (GLA method). VQ will be used with code-

book sizes of 32, 64, 128 and 256. The Euclidean distance metric will be used to find

the distortion between data points.

Results for other VQ implementations have shown that accuracy does not improve

significantly (Kinnunen et al. 2004) and therefore will not be assessed in this experiment.

6.3.4 Speech Corpus

The NTIMIT and Alternative speech corpora will be used to evaluate the methods

discussed above, using 12 speakers from each, as seen in Table 6.1.

6.4 Prototype 61

The NTIMIT corpus will also be used to assess the effect of increasing the speakers in

that dataset. This will be achieved by increase the number of speakers in the dataset

from 1 through to 40 and determining the accuracy result at each level.

6.4 Prototype

A prototype will be recommended based on the accuracy results obtained in these

experiments.

Chapter 7

Results

7.1 Results of Feature Extraction Methods

This section presents the results obtained using different feature extraction methods,

for codebook sizes of 32, 64, 128 and 256. The feature extraction methods evaluated

include

• Linear Predictive Coefficients (LPC)

• Mel Frequency Cepstral Coefficients (MFCC)

• Linear Predictive Cepstral Coefficients (LPCC)

The results for the different codebook sizes and features, are shown for both the

NTIMIT and Alternative corpora.

Euclidean distance metric is used to determine the distortion between two feature

vectors, for both the codebook generation (training) and the identification phase. The

pre-processing stages are the same as those described in chapter 6 (silence removal, DC

offset removed, 20ms Hamming window, auto-correlation, 10ms overlap, pre-emphasis).

7.1 Results of Feature Extraction Methods 63

7.1.1 Linear Predictive Coefficients

The first method evaluated uses LPC to derived features. LPC is rarely used directly

by themselves and they serve as a basis for comparison between other methods. The

results are shown in Figures 7.1 7.2 7.3 and 7.4

Figure 7.1: Performance of the LPC on the NTIMIT and Alternative corpus for code-

book size (k=32)

As shown in Figure 7.1 there is an effect of varying the order of LPC with a codebook

size of 32. A prominent observation of these results it that the difference in the accuracy

obtained between the NTIMIT and Alternative corpora. The accuracy results increase

for both corpora for the first 6 LPC coefficients. The results for the NTIMIT corpus

then dramatically decrease until they are completely inaccurate, while the Alternative

corpus continues to increase, oscillating at 80% accuracy.

These results are not totally unexpected and can be explained by two significant factors:

the quality the speech signal combined with the quality of the codebook and LPC

features. The size of the codebook and LPC parameters have also effected the results.

Increasing the number of LPC parameters may also increase the effect of noise, as the

coefficients have less signal information. This allows the noise to become a mitigating

factor. It would be expected that results for an increased sized codebook would produce

7.1 Results of Feature Extraction Methods 64

better results for both the NTIMIT and Alternative corpora. The training data for the

both corpora is unlikely to cause a difference between these recognition results, as

speech times were similar (see Table 6.1).

Figure 7.2: Performance of the LPC on the NTIMIT and Alternative corpus for code-

book size (k=64)

The results shown in Figure 7.2 using a codebook of 64, are very similar to those in

Figure 7.1, using a codebook of 32. Again the NTIMIT performs poorly, while the

Alternative corpus accuracy results stabilise with more than 10-dimensional LPC.

Figure 7.3 shows similar results using a codebook of 128, as those using a codebook

of 32. The main difference here is the slight increase in the accuracy found using the

NTIMIT corpus. However, these results are still poor, as they continually decrease

after the first three LPC. Again noise is a mitigating factor, but the increase in the

codebook size has enhanced accuracy results. The alternative corpus remains around

the 80% accuracy mark.

Finally using a codebook size of 256, Figure 7.4 shows results that almost mimic those

of Figure 7.4, with only slight increases overall for both corpora.

7.1 Results of Feature Extraction Methods 65

Figure 7.3: Performance of the LPC on the NTIMIT and Alternative corpus for code-

book size (k=128)

Figure 7.4: Performance of the LPC on the NTIMIT and Alternative corpus for code-

book size (k=256)

7.1 Results of Feature Extraction Methods 66

Conclusion

Results using LPC on the Alternative corpus are similar to those discussed in chapter

Chapter 2. These results stabilised using 14th order LPC and a codebook of size 64.

Conversely, the results for the NTIMIT were very poor due in part, to the quality of

the speech signal. This reduction in quality caused the LPC to inaccurately capture

speaker specific characteristics.

Results were also found using LPC coefficients as the feature extraction method for

both clean and noisy signals. The results are far below the desirable, even with only

12 speakers. The findings show that LPC is especially poor for noisy signals however,

moderate results are produced with relatively clean speech.

Variations in the number of coefficients used, codebook size, training and testing speech

could also be altered to possible improve the recognition results. However, this would

not be significant enough to warrant such investigation (Kinnunen et al. 2004). Instead

another approach to feature extraction is implemented, namely MFCC.

7.1.2 Mel-Frequency Cepstral Coefficients

The second method evaluates how cepstral analysis derives features from the speech

frames. In the case of the cepstrum, the frequency axis is warped by a mel-scale

which produce the MFCC. This method is commonly used with probability methods

of analysis such as GMM. However here, VQ is used to determine MFCC suitable for

speaker identification. The results of this process are shown in Figures 7.5 7.6 7.7 and

7.8

Figure 7.5 shows the effect of using MFCC with a codebook size of 32. These results

are similar to those obtained in Figure 7.1, with reasonable results using the Alterna-

tive corpus and poorer results for the NTIMIT. However the MFCC do seem to give

moderately better results for the NTMIT corpus with an average of approximately

50% accuracy. This shows that the MFCC are more resistant to the amount of noise

contained in the signal than to LPC.

7.1 Results of Feature Extraction Methods 67

Figure 7.5: Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=32)

Figure 7.6: Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=64)

7.1 Results of Feature Extraction Methods 68

Using a codebook of 64 with MFCCs produces the result shown in Figure 7.6. Here

the main change has occured in the accuracy results from the NTIMIT corpus which

have increasing slightly, with a sharp decline using 20 MFCC. The NTIMIT accuracy

results also oscillate greatly around 70%. The Alternative corpus results are slightly

worse in this case, increasing around 17 MFCC.

Figure 7.7: Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=128)

Figure 7.7 shows the accuracy results using a codebook of 128 with MFCC. The main

changes include a greater accuracy result in the Alternative corpus early in the order

(4th order) of MFCC and a stabilising effect on the NTIMIT corpus at about 70%.

Lastly Figure 7.8 shows results using MFCC with a codebook size of 256. These results

are almost identical to those obtained for a codebook size of 128, with just a few

accuracy points changing. This illustrates that increasing the size of the codebook from

128 to 256 does not significantly improve the result. In fact increasing the codebook size

any more than 256 is likely to result in overfitting, causing a decrease in performance.

7.1 Results of Feature Extraction Methods 69

Figure 7.8: Performance of the MFCC on the NTIMIT and Alternative corpus for

codebook size (k=256)

Conclusion

The results for MFCC indicated a significant increase in accuracy over LPC for the

NTIMIT corpus. These results improved from around 40% to 70% with a codebook

of 128 and using 14 or more coefficients. This illustrates that the MFCC are better

equipped for modelling noisy and degraded signals than LPC. The results for the Alter-

native corpus are very similar for MFCC and LPC. These are slightly less with MFCC

approximately 75% compared with 80% for LPC.

Again these results have demonstrated that the number of coefficients and codebook

size does effect the accuracy results. The results from both the experiments using LPC

and MFCC, with different codebooks show that results are not significantly improved

using more then 14 coefficients and a codebook of greater than 128. A combination of

these two methods is demonstrated next, which hopes to improve accuracy results.

7.1 Results of Feature Extraction Methods 70

7.1.3 Linear Predictive Cepstral Coefficeients

The final method evaluates LPCC features, in which the MFCC are taken from the

reconstructed signal created by the LPC. This method aims to combine the benefits of

both methods to produce speaker specific features that improve identification results.

The results shown in Figures 7.9 7.10 7.11 and 7.12

Figure 7.9: Performance of the LPCC on the NTIMIT and alternative corpus for code-

book size (k=32)

Figure 7.9 shows the results for a codebook size of 32 using LPCC. These accuracy

results are already significantly Improved over LPC and MFCC features. The Alterna-

tive corpus after only 6 LPCC starts to oscillate around 95%. This improves greatly

over LPC and MFCC features for a codebook size of 32. The NTIMIT corpus is also

significantly better with accuracy of around 80% after 12 LPCC. This method indicates

that the LPCC method is far better equipped for use with VQ using both clean and

noisy speech.

Figure 7.10 shows improved results using a codebook of 64 for both the NTIMIT and

Alternative corpora. Importantly here the Alternative corpus is stable with 100% accu-

racy using 13 LPCC. This demonstrates the improvement in both the LPCC technique

and the codebook size on accuracy results. The NTIMIT corpus has also improved

7.1 Results of Feature Extraction Methods 71

Figure 7.10: Performance of the LPCC on the NTIMIT and alternative corpus for

codebook size (k=64)

with stable results after 10 LPCC.

The results shown in Figure 7.11 using a codebook of 128 shows improvements in the

stability of the accuracy results for both corpora. This illustrates that increasing the

codebook size from 64 to 128 may not significantly increase the overall results after

14 LPCC. However, it does make the overall accuracy results improve incrementally

preventing oscillation with both lower and higher order coefficients.

LPCC are demonstrating in Figure 7.12 using a codebook of 256. These results are

almost identical to those used with 128 for both corpora. Slight improvements occur

for lower coefficients. The NTIMIT corpus reaches an accuracy results of 92%, with

the Alternative corpus still at 100%. Results indicate using 14th order LPCC for both

speech corpora yield the best results.

Conclusion

LPCC produced the best performance by far, for both the NTIMIT and Alternative

corpora. The accuracy results for the NTIMIT corpus peaked at 92%, using 14 LPCC

7.1 Results of Feature Extraction Methods 72

Figure 7.11: Performance of the LPCC on the NTIMIT and alternative corpus for

codebook size (k=128)

Figure 7.12: Performance of the LPCC on the NTIMIT and alternative corpus for

codebook size (k=256)

7.1 Results of Feature Extraction Methods 73

with a codebook of 256. For the Alternative corpus the accuracy results peaked using

13 LPCC with a codebook of just 64. These results indicate that when determining

what parameters a speaker identification system should use, the quality of the speech

signal is critical to its performance.

7.1.4 Comparison of Feature Extraction Methods

This section compares the different feature extraction methods, using 14 and 20 coef-

ficients. Most speaker recognition systems used between 10 to 20 dimension feature

vectors to model a speakers vocal characteristics. Figure 7.13 and 7.14 show a com-

parison of the different types of coefficients.

Figure 7.13: Comparison of Accuracy and Coefficient Type using NTIMIT corpus

Figure 7.13 displays accuracy results using the NTIMIT with 14 and 20 dimensional

LPC, MFCC and LPCC. The performance using LPCC easily out performs the other

extraction methods, while LPC performs poorly. Surprisingly the results for LPC

get worse for high dimensional coefficients. The apparent loss of information can be

explained by the noise in the speech signal. Since the lower coefficients (higher di-

mensional coefficients) will have progressively less information, the noise will have an

increasing detrimental effect on the lower the coefficients.

7.1 Results of Feature Extraction Methods 74

The use of MFCC produces results that are a significant improvement over LPC. MFCC

are the result of the approximate deconvolution of the source and filter. These results

are less sensitive to noise, as the noise and filter characteristics are separated from the

source.

Finally using LPCC produce results that best model the speech. Reconstructing the

signal from the LPC coefficients results in a speech signal which models the fundamental

formants of the speaker. By applying cepstral analysis, the signal is separate into

the source and filter parts, which is less sensitive to noisy. This is due to both the

reconstructed signal and cepstral analysis.

Figure 7.14: Comparison of Accuracy and Coefficient Type using Alternative corpus

Figure 7.14 shows accuracy results for the Alternative corpus similar to that for the

NTIMIT. The obvious change here is the increased accuracy obtained for the 14 and 20

dimensional LPC, MFCC and LPCC coefficients. This is a direct result of the quality

of the speech signal used in the Alternative corpus compared with that of the NTIMIT.

LPCC produces easily the best results for both the NTIMIT and Alternative corpus.

VQ using LPCC features produces 100% accuracy with the 12 speakers in the Alter-

native corpus.

7.1 Results of Feature Extraction Methods 75

7.1.5 Effects of Accuracy Results by Increasing Speakers

It is also of interest to see the effect increasing the number of speakers on the accu-

racy results of identification. Here we use the NTIMIT corpus only for these results

increasing the number of speakers to 40. The alternative corpus has a limited number

of speakers and could not be used for this experiment. The system used to assess the ef-

fect of increasing speakers, is the 20 dimensional LPCC technique of feature extraction

with a codebook size of 128.

Figure 7.15: The effect of increasing speakers on the performance of a VQ(codebook

128) with 20 dimensional LPCC

Figure 7.15 shows the effect of increasing the speakers on performance of the speaker

identification system. Accuracy starts off highly as would be expected, and slowly

declines to approximately 65%. It would be expect that the results would plateau

around 60%, which is congruent with accuracy results found in Reynolds et al. (1995).

These performance results illustrate that the number of speakers in the database sig-

nificantly influences the results. The performance of only 8 speakers in the database

using the NTIMIT corpus would at worst produce an accuracy result of 88%. These

results serve to show a worse case scenario using VQ with LPCC. Ultimately perfor-

mance in the purposed meeting environment would produce results that closely match

7.2 Chapter Summary 76

those obtained using the Alternative corpus, rather than the NIMIT corpus.

7.2 Chapter Summary

The experiment results have produced the following findings:

• LPC performs poorly with noisy speech signals.

• Codebook sizes greater than 128 do not significantly improve results.

• Coefficients greater than 14, do not significantly improve results.

• Overall LPC performance is the least effective method to extract features.

• The most effective method for extracting features are LPCC.

From the experiment results, the preposed prototype will used a codebook of 128, with

14-dimensional LPCC. These parameters produce the most practically effective results.

Chapter 8

Conclusion

8.1 Summary of Work

Before a speech signal can be used for speaker identification, pre-processing is required

to improve the speech for feature extraction. These techniques involve DC offset re-

moval, silence detection, pre-emphasis, windowing and autocorrelation. This leaves the

signal ready for use with speaker identification.

The fundamental process in speaker identification is feature extraction. This involves

extraction of speaker specific features from the speech signal. These features can be

extracted using LPC, MFCC and LPCC. The coefficients form the feature space of a

speaker, which can then be used to create a speaker model.

VQ is used to create speaker models from the feature space of a speaker. The speaker

model or codebook is then used in the identification stage. The codebook is compare

via a distance metric to the feature space of an unknown speaker. The best match in

the speaker database is found, indicating the identify of the speaker

8.2 Conclusions 78

8.2 Conclusions

This dissertation has presented the design and development of a speaker identification

system, tailored for use with utterances of less than ten words and a speaker database

of eight voice profiles. This system is intended for use with a dual-type ASR, currently

being researched by the DSTO.

The experiment results identify which methods, used commonly in speaker recognition,

produce the best performance under the conditions describe for this project. The

proposed design of the speaker identification system uses 14 dimensional LPCC with a

VQ codebook of 128. The parameters of the proposed design are the result of evaluation

of different speaker identifications designs, evaluated using the NTIMIT and Alternative

corpora. The Alternative corpus achieved 100% accuracy using 12 speakers while the

NTIMT achieved 83% accuracy. This demonstrates the performance with a slightly

higher number of speakers, than needed, illustrating some flexibility for use with the

dual-type ASR.

The results indicate that the speaker identification system would work well in the

environment with of dual-type ASR system. The quality of the speech used with the

purposed system would match that of the Alternative corpus, rather than speech from

the NTIMIT. The NTIMIT speech demonstrates a worse case scenario and performance

would be far greater when uses with dual-type ASR system. Results using the NTIMIT

corpus, illustrate that increasing the number of speakers can significantly affect the

accuracy of the system.

8.3 Further Work

1. Comparison of the prototype speaker identification system to a commercial pro-

duce such as Nuance Verifier.

2. Further work on VQ could be undertake to determine the most accurate method of

creating the codebook. Kinnunen et al. (2004) has shown results using a number

of VQ methods which could form a basis of investigation.

8.3 Further Work 79

3. Collection and experimentation on a speech corpus created in the intended envi-

ronment would be derisible.

4. Investigation of the effectiveness of SVM for more robust speaker identification.

References

Burges, C. J. (1988), A Tutorial on Support Vector Machines for Pattern Recognition,

Technical report, Microsoft Research, Lucent Technologies.

Campbell, J. P. (1999), Speaker Recognition, Technical report, Department of Defence,

Fort Meade.

Do, M. N. (2003), An Automatic Speaker Recognitio System, Technical report, Swiss

Federal Institute of Technology, Lausanne Switzerland.

Drygajlo, A. (2005), Biometrics, Technical report, University of Lausanne.

Ethicity Group (1998), ‘LPC for Speech Recognition’.

http://www.owlnet.rice.edu/∼elec532/PROJECTS98/speech/cepstrum

viewed 01/06/2006.

Gold, B. & Morgan, N. (2000), Speech and Audio Signal Processing, John Wiley &

Sons, Inc.

Gravier, G. (2004), ‘Speech Analysis Techniques’.

http://www.irisa.fr/metiss/guig/spro/spro-4.0.1/spro 2.html#SEC8

viewed 12/09/2006.

Husband, M. (2004), ‘Linear Predictive Coding in Voice Conversion’.

http://cnx.org/content/m12473/latest viewed 19/09/2006.

Iyer, A. N. et al. (2004), Speaker Identification Improvement using the Usable Speech

Concept, Technical report, Temple University.

Johnson, D. (2005), ‘Modeling the Speech Signal’.

http://cnx.org/content/m0049/latest viewed 29/05/2006.

http://www.owlnet.rice.edu/~elec532/PROJECTS98/speech/cepstrum
http://www.irisa.fr/metiss/guig/spro/spro-4.0.1/spro_2.html#SEC8
http://cnx.org/content/m12473/latest
http://cnx.org/content/m0049/latest

REFERENCES 81

Joseph P. Campbell, J. & Reynolds, D. A. (1999), Corpora for the Evaluation of Speaker

Recognition Systems, Technical report, Department of Defence, USA.

Jr, C. R. J. et al. (1995), Measuring Fine Structure in Speech: Application to Speaker

Identification, in ‘ICASSP 1995’, MIT Lincoln Laboratory.

Karpov, E. (2003), Real-Time Speaker Identification, Masterś thesis, University of

Joensuu.

Kinnuenen, T. et al. (2004), Real-Time Speaker Identification, Technical report, Uni-

versity of Joensuu.

Kinnunen, T., Kilpelainen, T. et al. (2004), Comparison of Clustering Algorithms in

Speaker Identification, Technical report, Department of Computer Science, Uni-

versity of Joensuu, Joensuu, Finland.

Kwon, S. & Narayanan, S. (2005), Robust Short-Segment Speaker Identification base

on Selective Use of Feature Vectors, Technical report, University of Southern Cal-

ifornia.

Leis, J. (2002), Digital Signal Processing - MATLAB-Base Tutorial Approach, Research

Studies Press LTD.

Littlefield, J. & Broughton, M. (2005), Dual-Type Automatic Speech Recogniser De-

signs for Spoken Dialogue Systems, in ‘Australasian Language Technology Work-

shop 2005’, Defence Science and Technology Organisation.

Lovekin, J. M. et al. (2001), Developing Usable Speech Criteria for Speaker Identifica-

tion Technology, Technical report, Temple University.

Markel, J. & Gray, A. (1976), Linear Prediction of Speech, Springer-Verlag, New York.

Osdol, B. V. (2004), ‘Cepstrum’.

http://cnx.org/content/m12469/latest viewed 01/06/2006.

Parsons, P. (2006), ‘Focus’, Focus Magazine .

Phan, T. T. & Soong, T. (1999), Text-Indepentdent Speaker Identification, Technical

report.

http://cnx.org/content/m12469/latest

REFERENCES 82

Rabiner & Juang (1999), ‘Cepstrum Analysis’.

http://shay.ecn.purdue.edu/∼ee649/notes/cepstrum.html viewed

01/06/2006.

Reynolds, D. A. (2002), An overview of Automatic Speaker Recognition Technology,

in ‘ICASSP 2002’, MIT Lincoln Laboratory.

Reynolds, D. A. et al. (1995), The Effects of Telephone Transmission Degradations on

Speaker Recognition Performance, in ‘ICASSP 1995’, MIT Lincoln Laboratory.

Shah, J. K., Iyer, A. N. et al. (2004), Robust Voice/Unvoiced Classification using

Novel Featuresand Guassian Mixture Model, Technical report, Temple University,

Philadelphia, USA.

Starnoiewicz, P. & Majewski, W. (1998), SVM Based Text-Dependent Speaker Iden-

tification for Large Set of Voices, Technical report, Department of Analysis and

Processing of Acoustic Signal, Institute of Telecommunications and Acoustics,

Worclaw Univesity of Technology.

Teo, P. C. & Garfinkle, C. D. (1998), Fast Resampling Using Vector Quantization,

Technical report, Department of Computer Science, Standford University.

UPenn (1990), ‘The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus’.

http://www.ldc.upenn.edu/Catalog/readme files/timit.readme.html

viewed 03/08/2006.

Villazon, L. (2006), ‘How do seabirds warm their feet’, Focus p. 39.

Wan, V. & Renals, S. (2004), SVMSVM: Support Vector Machine Speaker Verification

Methodology, Technical report, Department of Computer Science, University of

Sheffield.

Willits, A. E. (2003), Low Resource Speaker Identification, Masterś thesis, University

of Edinburgh.

Wu, Y.-C. (2005), ‘Gaussian Mixture Model’.

http://cnx.org/content/m13205/latest viewed 05/06/2006.

http://shay.ecn.purdue.edu/~ee649/notes/cepstrum.html
http://www.ldc.upenn.edu/Catalog/readme_files/timit.readme.html
http://cnx.org/content/m13205/latest

Appendix A

Project Specification

[Jniversity of Southern Queensland

FACTJLTY OF ENGINEERTNG AND SURVEYING

FOR:

TOPIC:

SUPERVISORS: John Leis

ENROLMENT:

ENG 4llll4l12 Research Project
PROJECT SPECIFICATION

David Michael Graeme WATTS

SPEAKER IDENTIFICATION - PROTOTYPE DEVELOPMENT
ANDPERFORMANCE

Michael Broughton & Jason Littlefield, Defence Science and
Technology (DSTO)

ENG4Il l -Sl ,D,2AA6
ENG4llz - 52, D,20A6

SPONSORSHIP: Defence Science and Technology Organisation (DSTO)

CONDIFDENTIALITY: TINCLASSIFIED,COMMERCIALINCONFIDENCE

PORIECT AIM: The objective of this project is to develop a demonstrable set
of software tools and techniques for Speaker Identification.

PROGRAMME: Issue B.24th July 2006

1. Research background information relating to speaker identification systems and conduct a
literature review of the published results.

2. Examine and evaluate existing speaker identification algorithms and systems available.

3. Experiment with a number of methods, using MATLAB and other suitable software,
comparing the difference between clean and noisy signals.

4. Examine the eflects of various techniques and parameters to maximise the speaker
identification system effectiveness for the specified application.

5. Develop a prototype speaker identification system that is tailored for utterances
containing less than ten words, and is able to work from target sets of less than eight voice
profiles.

Iftime permits
6. Compare the prototype speaker identification system to a commercial product such as

Nuance Verifier

{ (supervisor)
r

Date:A 1 rc / o6-

Appendix B

Alternative Speaker Corpus

B.1 Speech 86

B.1 Speech

Speakers were given a one paragraph and two sentences for the recordings. The para-

graph was the same for all the speakers. This speech from this paragraph was used for

training. These were taken from the June issue of Focus:

“How do seabirds warm their feet? They don’t. If seabirds were to pump bloody at

body temperature round their legs, they would dump their body heat into the water much

faster than it was generated and die of hypothermia. So they extract the heat from the

blood that’s on its way down to the feet, using a contraflow system. As this cold blood

returns to the body, it is warmed by the heat from the arterial blood that is heading out

to the feet. The muscles (which require warm blood) are all at the top of the leg and

work the toes remotely by pulling tendons.”(Villazon 2006)

A number of sentences were used for testing these included (Parsons 2006):

• “You’ll find detailed test about almost everything from digital cameras to cars.”

• “You’ll get expert but jargon-free features, from complementary therapies to the

lastest technology”

• “When I went to school it was drummer into me that the number of planets in

out Solar System was nine”

• “It wouldn’t be the first time a planet has been demoted”

Appendix C

Source Code

C.1 The AlternativeTest.m MATLAB Function 88

C.1 The AlternativeTest.m MATLAB Function

This is used to test the Alternative corpus using 12 speakers
1 % Tests t he a l t e r n a t i v e corpus
2 % David Watts , 2006
3

4 % A l t e r n a t i v e speaker corpus
5 sp e e chF i l e s 1 = { ’ darcy1 ’ , ’ david1 ’ , ’ de lan1 ’ , ’ c a the r i n e1 ’ , ’ john1 ’ , ’ ben1 ’ , ’ matt1 ’ , ’

n ick1 ’ , ’ andrew1 ’ , ’ anne1 ’ , ’ rach1 ’ , ’ wens1 ’ } ;
6 sp e e chF i l e s 2 = { ’ darcy2 ’ , ’ david2 ’ , ’ de lan2 ’ , ’ c a the r i n e2 ’ , ’ john2 ’ , ’ ben2 ’ , ’ matt2 ’ , ’

n ick2 ’ , ’ andrew2 ’ , ’ anne2 ’ , ’ rach2 ’ , ’ wens2 ’ } ;
7

8 % s t o r s a l l t h e r e s u l t s
9 a l lRe s = [] ;

10 k i t e r = [32 64 64 2 5 6] ;
11 f o r i t e = 1 :4
12 k = k i t e r (i t e) ;
13 % c l e a r s o l d r e s u l t s f o r nex t i t e r a t i o n
14 r e s = [] ;
15 f o r P = 20:20
16 codeBook = [] ;
17 f o r codeTest = 1 :2
18 codeTest
19 % s t o r e s the f e a t u r e v e c t o r s
20 dataD = [] ;
21 f o r f i l e s = 1 :12
22 % determines i f t h i s i s a t r a i n i n g or t e s t i n run
23 i f codeTest == 1
24 s p e e chF i l e s = spe e chF i l e s 1 ;
25 [y sam] = wavread (char (s t r c a t (sp e e chF i l e s (f i l e s) , ’T. wav ’)))

;
26 e l s e
27 s p e e chF i l e s = spe e chF i l e s 2 ;
28 [y sam] = wavread (char (s t r c a t (sp e e chF i l e s (f i l e s) , ’R. wav ’)))

;
29 end
30 % the l e n g t h o f t he speech s i g n a l
31 ny = l ength (y) ;
32 % samples
33 % frameSi ze i s 200 ;
34 frameTime = 0 . 0 2 0 ;
35 f rameSize = frameTime ∗ sam ;
36 % fo r use wi th inde x e s
37 f s = frameSize −1;
38 % Sto r e s the codebook f o r each i t e r a t i o n
39 lpck = [] ;
40 % fo r the new s i g n a l
41 newsound = [] ;
42 % fo r l p c
43 l p c o e f f = [] ;
44 overLap = frameSize /2 ;
45 % loop s through the s i g n a l a t t he ” f rameSi ze ”
46 f o r f = 1 : frameSize−overLap : ny−f s +1;
47 frame = y(f : f+f s) ;
48 % l en g t h o f t he frame
49 n = l ength (frame) ;
50 % Hamming window
51 h = hamming(f rameSize) ;
52 frame = frame .∗ h ;
53 % uncomment to use f e a t u r e e x t r a c t i o n method
54 % MFCC
55 % pc = mfcc (frame ,P) ;
56 % LPCC
57 pc = lpcc (frame ,P)
58 % LPC
59 lpck = [lpck pc] ;
60 % pc = r e a l (l p c (frame ,P)) ;
61 %lp c k = [l p c k pc (2 :P+1) ’] ;
62 end
63 i f (codeTest == 1)
64 % c a l c u l a t e s codebook , not nece s sary f o r t r a i n i n g data
65 c = kmgla (lpck ’ , k)
66 codeBook = [codeBook c] ;
67 end

C.2 The timitPro.m MATLAB Function 89

68 % s t o r s data f o r use wi th comparison o f codebooks and
69 % unknown speake r s
70 data1 = lpck ’ ;
71 switch (f i l e s)
72 case (1)
73 darcy = data1 ;
74 case (2)
75 david = data1 ;
76 case (3)
77 delan = data1 ;
78 case (4)
79 cat = data1 ;
80 case (5)
81 john = data1 ;
82 case (6)
83 ben = data1 ;
84 case (7)
85 matt = data1 ;
86 case (8)
87 nick = data1 ;
88 case (9)
89 and = data1 ;
90 case (10)
91 ann = data1 ;
92 case (11)
93 rach = data1 ;
94 case (12)
95 wens = data1 ;
96 otherw i s e
97 −1
98 end
99 end

100 end
101 % i d e n t i f i e s t he sp eak e r s
102 r e s =[r e s ; d i s t (darcy , codeBook ,P) d i s t (david , codeBook ,P) d i s t (delan ,

codeBook ,P) d i s t (cat , codeBook ,P) d i s t (john , codeBook ,P) . . .
103 d i s t (ben , codeBook ,P) d i s t (matt , codeBook ,P) d i s t (nick , codeBook ,P) d i s t (

and , codeBook ,P) d i s t (ann , codeBook ,P) . . .
104 d i s t (rach , codeBook ,P) d i s t (wens , codeBook ,P)] ;
105 end
106 % s t o r e s a l l t h e r e s u l t s
107 a l lRe s = [a l lRe s ; r e s] ;
108 end

C.2 The timitPro.m MATLAB Function

This is used to test the NTIMIT corpus using 12 speakers
1 % Tests t he NTIMIT Corpus us ing 12 speaker
2 % David Watts
3

4 codeBook = [] ;
5 dataD = [] ;
6

7 addpath (’C:\ dev\ p r o j e c t \ t im i tm f i l e s ’) ;
8 addpath (’C:\ dev\ p r o j e c t \new ’) ;
9

10

11 % Test NTIMIT F i l e s
12 sp e e chF i l e s 1 = { ’FALK0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI456 ’ , ’ SI658 ’ , ’ SI1086 ’ , ’SX6 ’ , ’SX96 ’ , ’ SX186

’ , ’ SX276 ’ , ’ SX366 ’ } ;
13 sp e e chF i l e s 2 = { ’FCKE0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI481 ’ , ’ SI1111 ’ , ’ SI1741 ’ , ’SX31 ’ , ’ SX121 ’ , ’

SX211 ’ , ’ SX301 ’ , ’ SX391 ’ } ;
14 sp e e chF i l e s 3 = { ’FCMG0’ , ’SA1 ’ , ’SA2 ’ , ’ SI1142 ’ , ’ SI1242 ’ , ’ SI1872 ’ , ’SX72 ’ , ’ SX162 ’ , ’

SX252 ’ , ’ SX342 ’ , ’ SX432 ’ } ;
15 sp e e chF i l e s 4 = { ’FDFB0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1318 ’ , ’ SI1948 ’ , ’ SI2010 ’ , ’SX58 ’ , ’ SX148 ’ , ’

SX238 ’ , ’ SX328 ’ , ’ SX418 ’ } ;

C.2 The timitPro.m MATLAB Function 90

16 sp e e chF i l e s 5 = { ’FDJH0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI935 ’ , ’ SI1565 ’ , ’ SI2195 ’ , ’SX35 ’ , ’ SX125 ’ , ’
SX215 ’ , ’ SX305 ’ , ’ SX395 ’ } ;

17 sp e e chF i l e s 6 = { ’MADC0’ , ’SA1 ’ , ’SA2 ’ , ’ SI737 ’ , ’ SI1367 ’ , ’ SI1997 ’ , ’SX17 ’ , ’ SX107 ’ , ’
SX197 ’ , ’ SX287 ’ , ’ SX377 ’ } ;

18 sp e e chF i l e s 7 = { ’MAKB0’ , ’SA1 ’ , ’SA2 ’ , ’ SI1016 ’ , ’ SI1646 ’ , ’ SI2276 ’ , ’SX26 ’ , ’ SX116 ’ , ’
SX206 ’ , ’ SX296 ’ , ’ SX386 ’ } ;

19 sp e e chF i l e s 8 = { ’MAKR0’ , ’SA1 ’ , ’SA2 ’ , ’ SI722 ’ , ’ SI1352 ’ , ’ SI1982 ’ , ’SX92 ’ , ’ SX182 ’ , ’
SX272 ’ , ’ SX272 ’ , ’ SX452 ’ } ;

20 sp e e chF i l e s 9 = { ’MAPV0’ , ’SA1 ’ , ’SA2 ’ , ’ SI663 ’ , ’ SI1293 ’ , ’ SI1923 ’ , ’SX33 ’ , ’ SX123 ’ , ’
SX213 ’ , ’ SX303 ’ , ’ SX393 ’ } ;

21 spe e chF i l e s 10 = { ’MBEF0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI651 ’ , ’ SI1281 ’ , ’ SI1911 ’ , ’SX21 ’ , ’ SX111 ’ , ’
SX201 ’ , ’ SX291 ’ , ’ SX381 ’ } ;

22 spe e chF i l e s 11 = { ’MCAL0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI508 ’ , ’ SI1138 ’ , ’ SI1768 ’ , ’SX58 ’ , ’ SX148 ’ , ’
SX238 ’ , ’ SX328 ’ , ’ SX418 ’ } ;

23 spe e chF i l e s 12 = { ’MCDC0’ , ’SA1 ’ , ’SA2 ’ , ’ SI662 ’ , ’ SI1292 ’ , ’ SI1922 ’ , ’SX32 ’ , ’ SX122 ’ , ’
SX212 ’ , ’ SX302 ’ , ’ SX392 ’ } ;

24

25 f o r f i l = 1 :12
26 switch (f i l)
27 case (1)
28 s p e e chF i l e s = spe e chF i l e s 1 ;
29 case (2)
30 s p e e chF i l e s = spe e chF i l e s 2 ;
31 case (3)
32 s p e e chF i l e s = spe e chF i l e s 3 ;
33 case (4)
34 s p e e chF i l e s = spe e chF i l e s 4 ;
35 case (5)
36 s p e e chF i l e s = spe e chF i l e s 5 ;
37 case (6)
38 s p e e chF i l e s = spe e chF i l e s 6 ;
39 case (7)
40 s p e e chF i l e s = spe e chF i l e s 7 ;
41 case (8)
42 s p e e chF i l e s = spe e chF i l e s 8 ;
43 case (9)
44 s p e e chF i l e s = spe e chF i l e s 9 ;
45 case (10)
46 s p e e chF i l e s = spee chF i l e s 10 ;
47 case (11)
48 s p e e chF i l e s = spee chF i l e s 11 ;
49 case (12)
50 s p e e chF i l e s = spee chF i l e s 12 ;
51 otherw i se
52 −1
53 end
54

55 y = [] ;
56 totLen = 1 ;
57 f o r f i l e s = 2 :11
58 [insY , BufLen , sam] = n i s t r e ad (char (s t r c a t (’ t e s t F i l e s \ ’ , s p e e chF i l e s (1) , ’ \ ’ ,

s p e e chF i l e s (f i l e s) , ’ .WAV’))) ;
59 i f (f i l e s == 2 | f i l e s == 3)
60 y = [y (insY (10 : l ength (insY))) ’] ;
61 e l s e
62 % y = [y (insY (10 : l e n g t h (insY))) ’] ;
63 end
64 end
65 k = 128 ;
66

67 % Or i g i na l S i gna l
68 ny = l ength (y) ;
69 t = 1/sam :1/ sam : ny/sam ;
70 % Pre−Proces s ing
71 s i g n a l = y ;
72 l en = l ength (s i g n a l) ;
73 t = 1/sam :1/ sam : l en /sam ;
74 avg = mean (s i g n a l) ;
75 stddev = std (s i g n a l) ;
76 % Remove dc o f f s e t
77 s i g n a l = s i g n a l − avg ;
78 frameTime = 0 . 0 2 0 ;
79 f rameSize = frameTime ∗ sam ;
80 newSignal = [] ;
81 engS igna l = sum(s i g n a l . ˆ 2) /(l en / f rameSize) ;
82

83 f o r f = 1 : f rameSize : len−f rameSize
84 frame = s i g n a l (f : f+frameSize −1) ;

C.2 The timitPro.m MATLAB Function 91

85 engFrame = (sum(frame . ˆ 2)) ;
86 stdFrame = std (frame) ;
87 i f (stdFrame > stddev /9)
88 newSignal = [newSignal frame] ;
89 end
90 end
91

92 y = f i l t e r ([−0.95 1] , [1] , newSignal (:)) ;
93

94 ny = l ength (y) ;
95 t = 1/sam :1/ sam : ny/sam ;
96

97 % samples
98 %frameSi ze = 200;
99 frameTime = 0 . 0 2 0 ;

100 f rameSize = frameTime ∗ sam ;
101 % fo r use wi th inde x e s
102 f s = frameSize −1;
103 % Sto r e s the l p c c o e f f i c i e n t s
104 lpck = [] ;
105 % fo r the new s i g n a l
106 newsound = [] ;
107 l p c o e f f = [] ;
108 R = [] ;
109 overLap = frameSize ∗0 . 3 75 ;
110 % loop s through the s i g n a l a t t he ” f rameSi ze ”
111 f o r f = 1 : frameSize−overLap : ny−f s +1;
112 frame = y(f : f+f s) ;
113 % l en g t h o f t he frame
114 n = l ength (frame) ;
115 % Hamming window
116 h = hamming(f rameSize) ;
117 frame = frame .∗ h ;
118 % uncomment to use f e a t u r e e x t r a c t i o n method
119 % MFCC
120 % pc = mfcc (frame ,P) ;
121 % LPCC
122 pc = lpcc (frame ,P)
123 % LPC
124 lpck = [lpck pc] ;
125 % pc = r e a l (l p c (frame ,P)) ;
126 %lp c k = [l p c k pc (2 :P+1) ’] ;
127 end
128

129 c = kmgla (lpck ’ , k) ;
130 data1 = lpck ’ ;
131 codeBook = [codeBook c ;] ;
132 switch (f i l)
133 case (1)
134 dat1 = data1 ;
135 case (2)
136 dat2 = data1 ;
137 case (3)
138 dat3 = data1 ;
139 case (4)
140 dat4 = data1 ;
141 case (5)
142 dat5 = data1 ;
143 case (6)
144 dat6 = data1 ;
145 case (7)
146 dat7 = data1 ;
147 case (8)
148 dat8 = data1 ;
149 case (9)
150 dat9 = data1 ;
151 case (10)
152 dat10 = data1 ;
153 case (11)
154 dat11 = data1 ;
155 case (12)
156 dat12 = data1 ;
157 otherw i s e
158 gh = 1
159 end
160 end

C.3 The increaseSpeakers.m MATLAB Function 92

C.3 The increaseSpeakers.m MATLAB Function

This test the effect of increasing speakers on the NTIMIT corpus
1 % Tests t he NTIMIT Corpus i n c r e a s i n g the speaker from 1 through to 40
2 % David Watts , 2006
3 codeBook = [] ;
4 dataD = [] ;
5

6 addpath (’C:\ dev\ p r o j e c t \ t im i tm f i l e s ’) ;
7 addpath (’C:\ dev\ p r o j e c t \new ’) ;
8

9 % Test NTIMIT F i l e s
10 sp e e chF i l e s 1 = { ’FALK0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI456 ’ , ’ SI658 ’ , ’ SI1086 ’ , ’SX6 ’ , ’SX96 ’ , ’ SX186

’ , ’ SX276 ’ , ’ SX366 ’ } ;
11 sp e e chF i l e s 2 = { ’FCKE0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI481 ’ , ’ SI1111 ’ , ’ SI1741 ’ , ’SX31 ’ , ’ SX121 ’ , ’

SX211 ’ , ’ SX301 ’ , ’ SX391 ’ } ;
12 sp e e chF i l e s 3 = { ’FCMG0’ , ’SA1 ’ , ’SA2 ’ , ’ SI1142 ’ , ’ SI1242 ’ , ’ SI1872 ’ , ’SX72 ’ , ’ SX162 ’ , ’

SX252 ’ , ’ SX342 ’ , ’ SX432 ’ } ;
13 sp e e chF i l e s 4 = { ’FDFB0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1318 ’ , ’ SI1948 ’ , ’ SI2010 ’ , ’SX58 ’ , ’ SX148 ’ , ’

SX238 ’ , ’ SX328 ’ , ’ SX418 ’ } ;
14 sp e e chF i l e s 5 = { ’FDJH0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI935 ’ , ’ SI1565 ’ , ’ SI2195 ’ , ’SX35 ’ , ’ SX125 ’ , ’

SX215 ’ , ’ SX305 ’ , ’ SX395 ’ } ;
15 sp e e chF i l e s 6 = { ’MADC0’ , ’SA1 ’ , ’SA2 ’ , ’ SI737 ’ , ’ SI1367 ’ , ’ SI1997 ’ , ’SX17 ’ , ’ SX107 ’ , ’

SX197 ’ , ’ SX287 ’ , ’ SX377 ’ } ;
16 sp e e chF i l e s 7 = { ’MAKB0’ , ’SA1 ’ , ’SA2 ’ , ’ SI1016 ’ , ’ SI1646 ’ , ’ SI2276 ’ , ’SX26 ’ , ’ SX116 ’ , ’

SX206 ’ , ’ SX296 ’ , ’ SX386 ’ } ;
17 sp e e chF i l e s 8 = { ’MAKR0’ , ’SA1 ’ , ’SA2 ’ , ’ SI722 ’ , ’ SI1352 ’ , ’ SI1982 ’ , ’SX92 ’ , ’ SX182 ’ , ’

SX272 ’ , ’ SX272 ’ , ’ SX452 ’ } ;
18 sp e e chF i l e s 9 = { ’MAPV0’ , ’SA1 ’ , ’SA2 ’ , ’ SI663 ’ , ’ SI1293 ’ , ’ SI1923 ’ , ’SX33 ’ , ’ SX123 ’ , ’

SX213 ’ , ’ SX303 ’ , ’ SX393 ’ } ;
19 spe e chF i l e s 10 = { ’MBEF0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI651 ’ , ’ SI1281 ’ , ’ SI1911 ’ , ’SX21 ’ , ’ SX111 ’ , ’

SX201 ’ , ’ SX291 ’ , ’ SX381 ’ } ;
20 spe e chF i l e s 11 = { ’MCAL0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI508 ’ , ’ SI1138 ’ , ’ SI1768 ’ , ’SX58 ’ , ’ SX148 ’ , ’

SX238 ’ , ’ SX328 ’ , ’ SX418 ’ } ;
21 spe e chF i l e s 12 = { ’MCDC0’ , ’SA1 ’ , ’SA2 ’ , ’ SI662 ’ , ’ SI1292 ’ , ’ SI1922 ’ , ’SX32 ’ , ’ SX122 ’ , ’

SX212 ’ , ’ SX302 ’ , ’ SX392 ’ } ;
22 spe e chF i l e s 13 = { ’FGCS0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI856 ’ , ’ SI1486 ’ , ’ SI2116 ’ , ’SX46 ’ , ’ SX136 ’ , ’

SX226 ’ , ’ SX316 ’ , ’ SX406 ’ } ;
23 spe e chF i l e s 14 = { ’FEME0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI875 ’ , ’ SI1505 ’ , ’ SI2135 ’ , ’SX65 ’ , ’ SX155 ’ , ’

SX245 ’ , ’ SX335 ’ , ’ SX425 ’ } ;
24 spe e chF i l e s 15 = { ’FGRW0’ , ’SA1 ’ , ’SA2 ’ , ’ SI1152 ’ , ’ SI1782 ’ , ’ SI1990 ’ , ’SX72 ’ , ’ SX162 ’ , ’

SX252 ’ , ’ SX342 ’ , ’ SX432 ’ } ;
25 spe e chF i l e s 16 = { ’FJLG0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1506 ’ , ’ SI1889 ’ , ’ SI2306 ’ , ’SX89 ’ , ’ SX179 ’ , ’

SX269 ’ , ’ SX359 ’ , ’ SX449 ’ } ;
26 spe e chF i l e s 17 = { ’FJLR0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI601 ’ , ’ SI1231 ’ , ’ SI1861 ’ , ’SX61 ’ , ’ SX151 ’ , ’

SX241 ’ , ’ SX331 ’ , ’ SX421 ’ } ;
27 spe e chF i l e s 18 = { ’FLAC0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI901 ’ , ’ SI1339 ’ , ’ SI2161 ’ , ’SX91 ’ , ’ SX181 ’ , ’

SX271 ’ , ’ SX361 ’ , ’ SX451 ’ } ;
28 spe e chF i l e s 19 = { ’FLJD0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI886 ’ , ’ SI1516 ’ , ’ SI2146 ’ , ’SX76 ’ , ’ SX166 ’ , ’

SX256 ’ , ’ SX346 ’ , ’ SX436 ’ } ;
29 spe e chF i l e s 20 = { ’FLTM0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1070 ’ , ’ SI1700 ’ , ’ SI2330 ’ , ’SX80 ’ , ’ SX170 ’ , ’

SX260 ’ , ’ SX350 ’ , ’ SX440 ’ } ;
30 spe e chF i l e s 21 = { ’MCDD0’ , ’SA1 ’ , ’SA2 ’ , ’ SI883 ’ , ’ SI1513 ’ , ’ SI2143 ’ , ’SX73 ’ , ’ SX163 ’ , ’

SX253 ’ , ’ SX343 ’ , ’ SX433 ’ } ;
31 spe e chF i l e s 22 = { ’MCEF0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI842 ’ , ’ SI1135 ’ , ’ SI1765 ’ , ’SX55 ’ , ’ SX145 ’ , ’

SX235 ’ , ’ SX325 ’ , ’ SX415 ’ } ;
32 spe e chF i l e s 23 = { ’MDBB1’ , ’SA1 ’ , ’SA2 ’ , ’ SI1006 ’ , ’ SI1636 ’ , ’ SI2056 ’ , ’SX16 ’ , ’ SX106 ’ , ’

SX196 ’ , ’ SX286 ’ , ’ SX376 ’ } ;
33 spe e chF i l e s 24 = { ’MDDC0’ , ’SA1 ’ , ’SA2 ’ , ’ SI789 ’ , ’ SI1419 ’ , ’ SI2049 ’ , ’SX69 ’ , ’ SX159 ’ , ’

SX249 ’ , ’ SX339 ’ , ’ SX429 ’ } ;
34 spe e chF i l e s 25 = { ’MDEF0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1123 ’ , ’ SI1563 ’ , ’ SI2193 ’ , ’SX33 ’ , ’ SX123 ’ , ’

SX213 ’ , ’ SX303 ’ , ’ SX393 ’ } ;
35 spe e chF i l e s 26 = { ’MDHS0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI900 ’ , ’ SI1530 ’ , ’ SI2160 ’ , ’SX90 ’ , ’ SX180 ’ , ’

SX270 ’ , ’ SX360 ’ , ’ SX450 ’ } ;
36 spe e chF i l e s 27 = { ’MDJM0’ , ’SA1 ’ , ’SA2 ’ , ’ SI825 ’ , ’ SI1455 ’ , ’ SI2085 ’ , ’SX15 ’ , ’ SX105 ’ , ’

SX195 ’ , ’ SX285 ’ , ’ SX375 ’ } ;
37 spe e chF i l e s 28 = { ’MDLC0’ , ’SA1 ’ , ’SA2 ’ , ’ SI765 ’ , ’ SI1395 ’ , ’ SI2025 ’ , ’SX45 ’ , ’ SX135 ’ , ’

SX225 ’ , ’ SX315 ’ , ’ SX405 ’ } ;
38 spe e chF i l e s 29 = { ’MDLH0’ , ’SA1 ’ , ’SA2 ’ , ’ SI574 ’ , ’ SI700 ’ , ’ SI1960 ’ , ’SX70 ’ , ’ SX160 ’ , ’

SX250 ’ , ’ SX340 ’ , ’ SX430 ’ } ;

C.3 The increaseSpeakers.m MATLAB Function 93

39 spe e chF i l e s 30 = { ’MDNS0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI873 ’ , ’ SI1011 ’ , ’ SI2271 ’ , ’SX21 ’ , ’ SX111 ’ , ’
SX201 ’ , ’ SX291 ’ , ’ SX381 ’ } ;

40 spe e chF i l e s 31 = { ’MDSS1 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI697 ’ , ’ SI1327 ’ , ’ SI1713 ’ , ’SX67 ’ , ’ SX157 ’ , ’
SX247 ’ , ’ SX337 ’ , ’ SX427 ’ } ;

41 spe e chF i l e s 32 = { ’MDTB0’ , ’SA1 ’ , ’SA2 ’ , ’ SI570 ’ , ’ SI1200 ’ , ’ SI1830 ’ , ’ SX120 ’ , ’ SX210 ’ , ’
SX300 ’ , ’ SX321 ’ , ’ SX390 ’ } ;

42 spe e chF i l e s 33 = { ’MDWM0’ , ’SA1 ’ , ’SA2 ’ , ’ SI916 ’ , ’ SI1546 ’ , ’ SI2176 ’ , ’SX16 ’ , ’ SX106 ’ , ’
SX286 ’ , ’ SX376 ’ , ’ SX433 ’ } ;

43 spe e chF i l e s 34 = { ’MFMC0’ , ’SA1 ’ , ’SA2 ’ , ’ SI502 ’ , ’ SI1132 ’ , ’ SI1762 ’ , ’SX52 ’ , ’ SX142 ’ , ’
SX232 ’ , ’ SX322 ’ , ’ SX412 ’ } ;

44 spe e chF i l e s 35 = { ’MGAF0’ , ’SA1 ’ , ’SA2 ’ , ’ SI652 ’ , ’ SI1282 ’ , ’ SI1912 ’ , ’SX22 ’ , ’ SX112 ’ , ’
SX202 ’ , ’ SX292 ’ , ’ SX382 ’ } ;

45 spe e chF i l e s 36 = { ’MHJB0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1017 ’ , ’ SI1647 ’ , ’ SI2277 ’ , ’SX27 ’ , ’ SX117 ’ , ’
SX207 ’ , ’ SX297 ’ , ’ SX387 ’ } ;

46 spe e chF i l e s 37 = { ’MHMR0’ , ’SA1 ’ , ’SA2 ’ , ’ SI489 ’ , ’ SI1119 ’ , ’ SI1692 ’ , ’SX39 ’ , ’ SX129 ’ , ’
SX219 ’ , ’ SX309 ’ , ’ SX399 ’ } ;

47 spe e chF i l e s 38 = { ’MILB0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI807 ’ , ’ SI903 ’ , ’ SI2163 ’ , ’SX3 ’ , ’SX93 ’ , ’
SX183 ’ , ’ SX273 ’ , ’ SX363 ’ } ;

48 spe e chF i l e s 39 = { ’MJDA0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1031 ’ , ’ SI1661 ’ , ’ SI2291 ’ , ’SX41 ’ , ’ SX131 ’ , ’
SX221 ’ , ’ SX311 ’ , ’ SX401 ’ } ;

49 spe e chF i l e s 40 = { ’MJJB0 ’ , ’SA1 ’ , ’SA2 ’ , ’ SI1139 ’ , ’ SI1277 ’ , ’ SI1769 ’ , ’SX59 ’ , ’ SX149 ’ , ’
SX239 ’ , ’ SX329 ’ , ’ SX419 ’ } ;

50
51

52 f o r i n c r = 1 :2
53 f o r f i l = 1 :40
54 switch (f i l)
55 case (1)
56 s p e e chF i l e s = spe e chF i l e s 1 ;
57 case (2)
58 s p e e chF i l e s = spe e chF i l e s 2 ;
59 case (3)
60 s p e e chF i l e s = spe e chF i l e s 3 ;
61 case (4)
62 s p e e chF i l e s = spe e chF i l e s 4 ;
63 case (5)
64 s p e e chF i l e s = spe e chF i l e s 5 ;
65 case (6)
66 s p e e chF i l e s = spe e chF i l e s 6 ;
67 case (7)
68 s p e e chF i l e s = spe e chF i l e s 7 ;
69 case (8)
70 s p e e chF i l e s = spe e chF i l e s 8 ;
71 case (9)
72 s p e e chF i l e s = spe e chF i l e s 9 ;
73 case (10)
74 s p e e chF i l e s = spee chF i l e s 10 ;
75 case (11)
76 s p e e chF i l e s = spee chF i l e s 11 ;
77 case (12)
78 s p e e chF i l e s = spee chF i l e s 12 ;
79 case (13)
80 s p e e chF i l e s = spee chF i l e s 13 ;
81 case (14)
82 s p e e chF i l e s = spee chF i l e s 14 ;
83 case (15)
84 s p e e chF i l e s = spee chF i l e s 15 ;
85 case (16)
86 s p e e chF i l e s = spee chF i l e s 16 ;
87 case (17)
88 s p e e chF i l e s = spee chF i l e s 17 ;
89 case (18)
90 s p e e chF i l e s = spee chF i l e s 18 ;
91 case (19)
92 s p e e chF i l e s = spee chF i l e s 19 ;
93 case (20)
94 s p e e chF i l e s = spee chF i l e s 20 ;
95 case (21)
96 s p e e chF i l e s = spee chF i l e s 21 ;
97 case (22)
98 s p e e chF i l e s = spee chF i l e s 22 ;
99 case (23)

100 s p e e chF i l e s = spee chF i l e s 23 ;
101 case (24)
102 s p e e chF i l e s = spee chF i l e s 24 ;
103 case (25)
104 s p e e chF i l e s = spee chF i l e s 25 ;

C.3 The increaseSpeakers.m MATLAB Function 94

105 case (26)
106 s p e e chF i l e s = spee chF i l e s 26 ;
107 case (27)
108 s p e e chF i l e s = spee chF i l e s 27 ;
109 case (28)
110 s p e e chF i l e s = spee chF i l e s 28 ;
111 case (29)
112 s p e e chF i l e s = spee chF i l e s 29 ;
113 case (30)
114 s p e e chF i l e s = spee chF i l e s 30 ;
115 case (31)
116 s p e e chF i l e s = spee chF i l e s 31 ;
117 case (32)
118 s p e e chF i l e s = spee chF i l e s 32 ;
119 case (33)
120 s p e e chF i l e s = spee chF i l e s 33 ;
121 case (34)
122 s p e e chF i l e s = spee chF i l e s 34 ;
123 case (35)
124 s p e e chF i l e s = spee chF i l e s 35 ;
125 case (36)
126 s p e e chF i l e s = spee chF i l e s 36 ;
127 case (37)
128 s p e e chF i l e s = spee chF i l e s 37 ;
129 case (38)
130 s p e e chF i l e s = spee chF i l e s 38 ;
131 case (39)
132 s p e e chF i l e s = spee chF i l e s 39 ;
133 case (40)
134 s p e e chF i l e s = spee chF i l e s 40 ;
135 otherw i s e
136 −1
137 end
138 y = [] ;
139 totLen = 1 ;
140 f o r f i l e s = 2 :11
141

142 [insY , BufLen , sam] = n i s t r e ad (char (s t r c a t (’ t e s t F i l e s \ ’ , s p e e chF i l e s (1) , ’ \ ’ ,
s p e e chF i l e s (f i l e s) , ’ .WAV’))) ;

143 i f ((f i l e s == 2 | f i l e s == 3))
144 i f (i n c r == 2)
145 y = [y (insY (10 : l ength (insY))) ’] ;
146 end
147 e l s e
148 i f (i n c r == 1)
149 y = [y (insY (10 : l ength (insY))) ’] ;
150 end
151 end
152 end
153

154 k = 128 ;
155

156 ny = l ength (y) ;
157 t = 1/sam :1/ sam : ny/sam ;
158

159 % Pre−Proces s ing
160 s i g n a l = y ;
161 l en = l ength (s i g n a l) ;
162 t = 1/sam :1/ sam : l en /sam ;
163 avg = mean (s i g n a l) ;
164 stddev = std (s i g n a l) ;
165 % Remove dc o f f s e t
166 s i g n a l = s i g n a l − avg ;
167

168 frameTime = 0 . 0 2 0 ;
169 f rameSize = frameTime ∗ sam ;
170 newSignal = [] ;
171 engS igna l = sum(s i g n a l . ˆ 2) /(l en / f rameSize) ;
172

173 f o r f = 1 : f rameSize : len−f rameSize
174 frame = s i g n a l (f : f+frameSize −1) ;
175 engFrame = (sum(frame . ˆ 2)) ;
176 stdFrame = std (frame) ;
177 % Removal o f S i l e n c e Component
178 i f (stdFrame > stddev /9)
179 newSignal = [newSignal frame] ;
180 end
181 end
182 y = f i l t e r ([−0.95 1] , [1] , newSignal (:)) ;

C.3 The increaseSpeakers.m MATLAB Function 95

183

184 ny = l ength (y) ;
185 t = 1/sam :1/ sam : ny/sam ;
186

187 frameTime = 0 . 0 2 0 ;
188 f rameSize = frameTime ∗ sam ;
189 % fo r use wi th inde x e s
190 f s = frameSize −1;
191 % Sto r e s the l p c c o e f f i c i e n t s
192 lpck = [] ;
193 % fo r the new s i g n a l
194 newsound = [] ;
195 l p c o e f f = [] ;
196 R = [] ;
197 overLap = frameSize ∗0 . 0 20 ;
198 % loop s through the s i g n a l a t t he ” f rameSi ze ”
199 f o r f = 1 : frameSize−overLap : ny−f s +1;
200 frame = y(f : f+f s) ;
201 % l en g t h o f t he frame
202 n = l ength (frame) ;
203 % Hamming window
204 h = hamming(f rameSize) ;
205 frame = frame .∗ h ;
206 % uncomment to use f e a t u r e e x t r a c t i o n method
207 % MFCC
208 % pc = mfcc (frame ,P) ;
209 % LPCC
210 pc = lpcc (frame ,P)
211 % LPC
212 lpck = [lpck pc] ;
213 % pc = r e a l (l p c (frame ,P)) ;
214 %lp c k = [l p c k pc (2 :P+1) ’] ;
215 end
216 i f (i n c r == 1)
217 [idx c] = kmeans (lpck ’ , k) ;
218 codeBook = [codeBook c ;] ;
219 end
220 data1 = lpck ’ ;
221

222 switch (f i l)
223 case (1)
224 dat1 = data1 ;
225 case (2)
226 dat2 = data1 ;
227 case (3)
228 dat3 = data1 ;
229 case (4)
230 dat4 = data1 ;
231 case (5)
232 dat5 = data1 ;
233 case (6)
234 dat6 = data1 ;
235 case (7)
236 dat7 = data1 ;
237 case (8)
238 dat8 = data1 ;
239 case (9)
240 dat9 = data1 ;
241 case (10)
242 dat10 = data1 ;
243 case (11)
244 dat11 = data1 ;
245 case (12)
246 dat12 = data1 ;
247 case (13)
248 dat13 = data1 ;
249 case (14)
250 dat14 = data1 ;
251 case (15)
252 dat15 = data1 ;
253 case (16)
254 dat16 = data1 ;
255 case (17)
256 dat17 = data1 ;
257 case (18)
258 dat18 = data1 ;
259 case (19)
260 dat19 = data1 ;

C.3 The increaseSpeakers.m MATLAB Function 96

261 case (20)
262 dat20 = data1 ;
263 case (21)
264 dat21 = data1 ;
265 case (22)
266 dat22 = data1 ;
267 case (23)
268 dat23 = data1 ;
269 case (24)
270 dat24 = data1 ;
271 case (25)
272 dat25 = data1 ;
273 case (26)
274 dat26 = data1 ;
275 case (27)
276 dat27 = data1 ;
277 case (28)
278 dat28 = data1 ;
279 case (29)
280 dat29 = data1 ; ;
281 case (30)
282 dat30 = data1 ;
283 case (31)
284 dat31 = data1 ;
285 case (32)
286 dat32 = data1 ;
287 case (33)
288 dat33 = data1 ;
289 case (34)
290 dat34 = data1 ;
291 case (35)
292 dat35 = data1 ;
293 case (36)
294 dat36 = data1 ;
295 case (37)
296 dat37 = data1 ;
297 case (38)
298 dat38 = data1 ;
299 case (39)
300 dat39 = data1 ;
301 case (40)
302 dat40 = data1 ; ;
303 otherw i s e
304 −1
305 end
306 end
307 end
308

309 % fo r t e s t i n g by i n c r e a s i n g the number o f s p eake r s
310 f o r speaker s = 2 :40
311 r e s = [] ;
312 speaker s
313 f o r spk = 1 : speaker s
314 switch (spk)
315 case (1)
316 r e s = [r e s d i s t (dat1 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
317 case (2)
318 r e s = [r e s d i s t (dat2 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
319 case (3)
320 r e s = [r e s d i s t (dat3 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
321 case (4)
322 r e s = [r e s d i s t (dat4 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
323 case (5)
324 r e s = [r e s d i s t (dat5 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
325 case (6)
326 r e s = [r e s d i s t (dat6 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
327 case (7)
328 r e s = [r e s d i s t (dat7 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
329 case (8)
330 r e s = [r e s d i s t (dat8 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
331 case (9)
332 r e s = [r e s d i s t (dat9 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
333 case (10)
334 r e s = [r e s d i s t (dat10 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
335 case (11)
336 r e s = [r e s d i s t (dat11 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
337 case (12)

C.3 The increaseSpeakers.m MATLAB Function 97

338 r e s = [r e s d i s t (dat12 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
339 case (13)
340 r e s = [r e s d i s t (dat13 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
341 case (14)
342 r e s = [r e s d i s t (dat14 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
343 case (15)
344 r e s = [r e s d i s t (dat15 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
345 case (16)
346 r e s = [r e s d i s t (dat16 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
347 case (17)
348 r e s = [r e s d i s t (dat17 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
349 case (18)
350 r e s = [r e s d i s t (dat18 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
351 case (19)
352 r e s = [r e s d i s t (dat19 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
353 case (20)
354 r e s = [r e s d i s t (dat20 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
355 case (21)
356 r e s = [r e s d i s t (dat21 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
357 case (22)
358 r e s = [r e s d i s t (dat22 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
359 case (23)
360 r e s = [r e s d i s t (dat23 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
361 case (24)
362 r e s = [r e s d i s t (dat24 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
363 case (25)
364 r e s = [r e s d i s t (dat25 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
365 case (26)
366 r e s = [r e s d i s t (dat26 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
367 case (27)
368 r e s = [r e s d i s t (dat27 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
369 case (28)
370 r e s = [r e s d i s t (dat28 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
371 case (29)
372 r e s = [r e s d i s t (dat29 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
373 case (30)
374 r e s = [r e s d i s t (dat30 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
375 case (31)
376 r e s = [r e s d i s t (dat31 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
377 case (32)
378 r e s = [r e s d i s t (dat32 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
379 case (33)
380 r e s = [r e s d i s t (dat33 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
381 case (34)
382 r e s = [r e s d i s t (dat34 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
383 case (35)
384 r e s = [r e s d i s t (dat35 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
385 case (36)
386 r e s = [r e s d i s t (dat36 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
387 case (37)
388 r e s = [r e s d i s t (dat37 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
389 case (38)
390 r e s = [r e s d i s t (dat38 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
391 case (39)
392 r e s = [r e s d i s t (dat39 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
393 case (40)
394 r e s = [r e s d i s t (dat40 , codeBook (: , 1 : speaker s ∗P) ,P)] ;
395 otherw i s e
396 −1
397 end
398 end
399 end

C.4 The kmgla.m MATLAB Function 98

C.4 The kmgla.m MATLAB Function

Performs the VQ
1 % Implementat ion o f GLA
2 % Inpu t s : f e a t u r e v e c t o r s and s i z e o f r e qu i r e d codebook
3 % Output : Codebook
4 % David Watts
5

6 f unc t i on [codeBook] = kmgla (f ea t , k)
7 % s i z e o f t he f e a t u r e s
8 [r f e a t c f e a t] = s i z e (f e a t) ;
9 % random v e c t o r s f o r i n i t i a l code v e c t o r

10 rdn = c e i l (rand (k , 1) ∗ r f e a t) ;
11 i n i t i a lCodebook = f e a t (rdn , :) ;
12 % fo r check o f wh i l e l oop
13 oldCodebook = ones (k , c f e a t) ;
14 d i s t an c e s = [] ;
15 a l l D i s t = [] ;
16 i t = 0 ;
17 whi le ((sum ((sum ((oldCodebook−i n i t i a lCodebook) . ˆ 2)))) > 0 .01)
18 % c a l c u l a t e s t he d i s t a n c e s f o r each f e a t u r e v e c t o r and a s s o c i a t e s t he

f e a t u r e s
19 % to the c e n t r o i d s
20 f o r (i = 1 : k)
21 f o r (j = 1 : r f e a t)
22 d i s t an c e s = [d i s t an c e s sq r t (sum ((i n i t i a lCodebook (i , :) − f e a t (j

, :)) . ˆ 2))] ;
23 end
24 a l l D i s t = [a l l D i s t ; d i s t an c e s] ;
25 d i s t an c e s = [] ;
26 end
27 % new codebook i s update
28 [va l vec to r] = min (a l l D i s t) ;
29 a l l D i s t = [] ;
30 oldCodebook = in i t i a lCodebook ;
31 % c a l c u l a t e s t he new d i s t o r t i o n measure
32 f o r (i = 1 : k)
33 i f sum(f i nd (vec to r == i)) > 1
34 i n i t i a lCodebook (i , :) = mean (f e a t (f i nd (vec to r == i) , :)) ;
35 end
36 end
37 end
38 codeBook = in i t i a lCodebook ;

C.5 The mfcc.m MATLAB Function

1 % c a l c u l a t e s t he l p c c
2 % David Watts , 2006
3

4 f unc t i on [d] = mfcc (frame , f e a t u r e s) ;
5

6 f i e r = f f t (frame) ;
7 f o u r i e r = l og10 (r e a l (f i e r (1 : l ength (frame /2)))) ;
8 % warps the f r e quency us ing mel−s c a l e
9 mel = 2595∗ l og10 (f o u r i e r /700) ;

10 % working mel
11 a l lCo e f = r e a l (i f f t (mel)) ;
12 % removes the DC component
13 d = a l lCo e f (2 : f e a t u r e s +1) ;

C.6 The lpcc.m MATLAB Function 99

C.6 The lpcc.m MATLAB Function

1 % c a l c u l a t e s t he l p c c
2 % David Watts , 2006
3

4 f unc t i on [d] = lpcc (frame , f e a t u r e s) ;
5

6 % c a l c u l a t e s l p c and r e c o n s t r u c t s t he s i g n a l
7 e = ze ro s (l ength (frame) ,1) ;
8 e (1) = 0 . 0 1 ;
9 pc = r e a l (lpc (frame , f e a t u r e s)) ;

10 yr = f i l t e r (1 , pc , e) ;
11 f i e r = f f t (yr) ;
12 f o u r i e r = l og10 (r e a l (f i e r (1 : l ength (frame /2)))) ;
13 % warps the f r e quency us ing mel−s c a l e
14 mel = 2595∗ l og10 (f o u r i e r /700) ;
15 % working mel
16 a l lCo e f = r e a l (i f f t (mel)) ;
17 % removes the DC component
18 d = a l lCo e f (2 : f e a t u r e s +1) ;

C.7 The eucDist.m MATLAB Function

Calculates the Euclidean distance
1 % Ca l c u l a t s t he Ec lud ian d i s t a n c e Measure f o r inpu t f e a t u r e s and a codebook
2 % David Watts
3 % Inputs , f e a t u r s = lcpk , and codebook = c l u s t
4

5 f unc t i on [d] = eucDist (lpck , c l u s t) ;
6

7 % used f o r norma l i z a t i on
8 lpckMean = mean (lpck) ;
9 lpckStd = std (lpck) ;

10 [k1 dontcar] = s i z e (c l u s t) ;
11 % l en g t h o f f e a t u r e s
12 s = l ength (lpck) ;
13 % Noraml izes inpu t f e a t u r s
14 z1 = [] ;
15 f o r k = 1 : s
16 z1 = [z1 ; (lpck (k , :)−lpckMean) . / lpckStd] ;
17 end
18 % Normal i zes codebook
19 clustMean = mean (c l u s t) ;
20 c lu s tS td = std (c l u s t) ;
21 z2 = [] ;
22 f o r m = 1 : k1
23 z2 = [z2 ; (c l u s t (m, :)−clustMean) . / c l u s tS td] ;
24 end
25 % s e t s new va l u e s
26 lpck = z1 ;
27 c l u s t = z2 ;
28 d i s tA l l = [] ;
29 t o t a lD i s t = 0 ;
30 f o r j = 1 : s
31 f o r i = 1 : k1
32 % Eucu l idean Dis tance
33 d i s t = sq r t (sum ((lpck (j , :) − c l u s t (i , :)) . ˆ 2)) ;
34 %d i s t = (sum((l p c k (j , :) − c l u s t (i , :)) . ˆ 2)) ;
35 %d i s t = sum(abs (l p c k (j , :) − c l u s t (i , :))) ;
36 d i s tA l l = [d i s tA l l d i s t] ;
37 end
38 [va l pos] = min (d i s tA l l) ;
39 t o t a lD i s t = t o t a lD i s t + va l ;
40 d i s tA l l = [] ;
41 end
42 % re tu rn s t o t a l d i s t o r t i o n
43 d = to t a lD i s t / s ;

C.8 The mfcc.m MATLAB Function 100

C.8 The mfcc.m MATLAB Function

1 % c a l c u l a t e s t he l p c c
2 % David Watts , 2006
3

4 f unc t i on [d] = mfcc (frame , f e a t u r e s) ;
5

6 f i e r = f f t (frame) ;
7 f o u r i e r = l og10 (r e a l (f i e r (1 : l ength (frame /2)))) ;
8 % warps the f r e quency us ing mel−s c a l e
9 mel = 2595∗ l og10 (f o u r i e r /700) ;

10 % working mel
11 a l lCo e f = r e a l (i f f t (mel)) ;
12 % removes the DC component
13 d = a l lCo e f (2 : f e a t u r e s +1) ;

C.9 The dist.m MATLAB Function

Finds the distance between features and codebooks
1 % Ca l c u l a t e s t he d i s t between a l l codebooks and the f e a t u r e s
2 % re tu rn s the d i s t o r t i o n between codebooks and inpu t f e a t u r e s
3 % Inpu t s f e a t u r e ve c t o r s , codebooks , order o f c o e f f i c i e n t s
4 % David Watts , 2006
5

6 f unc t i on [d] = d i s t (dat , cdbk , P) ;
7

8 [r c] = s i z e (cdbk) ;
9 s i z = c/P;

10 ee = [] ;
11 f o r i =1:P : (P∗ s i z)−1
12 % c a l c u l a t e s t he eu c l i d e an d i s t an c e
13 ee = [ee eucDist (dat , cdbk (: , i : i+P−1))] ;
14 end
15 [xx yy] = min (ee) ;
16 d = yy ;

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter Introduction
	Purpose
	Overview of Speaker Recognition
	Speech Analysis
	General Process of Speaker Identification
	Practical Implications
	Applications of Speaker Identification
	Speaker Corpus
	Principle Objectives of Dissertation
	Overview of Dissertation

	Chapter Literature Review
	Introduction
	Corpora for the Evaluation of Speaker Recognition Systems
	Overview of Automatic Speaker Identification Results
	Speaker Identification using Vector Quantization
	Speaker Identification using NTIMIT
	Speaker Identification For Large Set of Voices
	Effects of Utterance Length on Speaker Identification
	Chapter Summary
	Chapter Speaker Recognition
	Introduction
	Pre-Processing
	DC Offset Removal
	Silence Removal
	Pre-emphasis
	Frames and Windowing
	Autocorrelation

	Source-Filter Model of Speech
	Speaker Modelling
	Vector Quantization
	Gaussian Mixture Models
	Support Vector Machine

	Distance Metrics
	Chapter Summary
	Chapter Feature Extraction
	Introduction
	Short-Term Fourier Transform
	Cepstrum
	Mel-Frequency Cepstrum Coefficients

	Linear Prediction
	Linear Predictive Cepstral Coefficients
	Normalisation
	Chapter Summary

	Chapter Speaker Modelling
	Introduction
	Vector Quantization
	Iterative Clustering Methods
	Initial Codebook
	Generalized Lloyd Algorithm (k-means)
	Randomized Local Search
	Hierarchical Clustering Methods
	Pairwise Nearest Neighbor
	Split
	VQ Distortion

	Chapter Summary

	Chapter Experimental Setup
	Introduction
	Speech Corpora
	NTIMIT
	Alternative Corpus

	Testing Procedures
	Pre-processing
	Feature Extraction
	Speaker Model
	Speech Corpus

	Prototype

	Chapter Results
	Results of Feature Extraction Methods
	Linear Predictive Coefficients
	Mel-Frequency Cepstral Coefficients
	Linear Predictive Cepstral Coefficeients
	Comparison of Feature Extraction Methods
	Effects of Accuracy Results by Increasing Speakers

	Chapter Summary

	Chapter Conclusion
	Summary of Work
	Conclusions
	Further Work

	References
	Appendix Project Specification
	Appendix Alternative Speaker Corpus
	Speech
	Appendix Source Code
	The AlternativeTest.m MATLAB Function
	The timitPro.m MATLAB Function
	The increaseSpeakers.m MATLAB Function
	The kmgla.m MATLAB Function
	The mfcc.m MATLAB Function
	The lpcc.m MATLAB Function
	The eucDist.m MATLAB Function

	The mfcc.m MATLAB Function
	The dist.m MATLAB Function

