University of Southern Queensland

Faculty of Engineering & Surveying

Software Simulator Development for Orthogonal
Frequency Division Multiplexing (OFDM) Modulation
A dissertation submitted by

Barry Dunbar

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Electrical and Electronic)

Submitted: November, 2006

Abstract

Orthogonal Frequency Division Multiplexing (OFDM) modulation using varied inputs,
code rates, modulation schemes and sub-carrier sizes over different fading and noisy
channels were developed and tested in this thesis. The different code rates were the %, %
and % whilst the different modulation schemes were Binary Phase Shift Keying (BPSK),
Quadrature Phase Shift Keying (QPSK), 16-Quadrature Amplitude Modulation (16-
QAM) and 64-Quadrature Amplitude Modulation. The different size sub-carriers were
64, 256, 512, 1024, 2048, 4096 and 8192. The different channels were the Rayleigh fading

and the Rician fading channels. These aspects of the OFDM modulation system were

developed using Matlab 7.1 as code written program utilising the toolboxes available.

The simulator was setup to be able to mirror all current implementations of the technol-
ogy. Through the use of the simulator, a varied amount of system configurations were
tested. The system arrangement that was found to be the most resilient to noise was a
system using the three-quarter code rate, 64-QAM modulation and the 64 sub-carrier

size.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the
risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled “Research Project” is to
contribute to the overall education within the student’s chosen degree program. This
document, the associated hardware, software, drawings, and other material set out in
the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof R Smith
Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

BARRY DUNBAR

0050022993

Signature

Date

Acknowledgments

I would like to thank the people who encouraged and helped me along not only in

finishing this thesis but throughout the course as a whole.

To my supervisor, Dr. Wei Xiang for the guidance throughout the project and constant

emails making sure I was keeping on track.

To my brother, John, who showed the way and guided me along in the technical and

detail areas.

To my wife’s extended family, The Mackeys, for the many and varied social evenings

around the chimenea.

To my brother-in-law, Patrick, for knowing what needs to be known when it comes to

processing pictures.

Finally, to my loving wife, Katherine, who has watched, supported and kept the home
fires burning. Her stoicism amidst the technical babble were a welcome relief and

allowed me to think outside the square.

BARRY DUNBAR

University of Southern Queensland

November 2006

Contents

Abstract i
Acknowledgments iv
List of Figures xiii
List of Tables xvi
Nomenclature xvii
Chapter 1 Introduction 1
1.1 Imtroduction 1
1.2 Project Aim 2
1.3 Project Objectives 2
1.4 Effects e 3
1.4.1 Sustainability L 3

1.4.2 Safety e 4

1.4.3 Risk Assessment e 4

CONTENTS

vi

1.5 Overview of the Dissertation

Chapter 2 OFDM Review

2.2 Design

2.3 Architecture
2.3.1 Encoding
2.3.2 Interleaving
2.3.3 Modulation
2.3.4 Pilot Tone Insertion
2.3.5 IFFT
2.3.6 Fourier Transform
2.3.7 Cyclic Extension .
2.3.8 Transmission . . .
2.3.9 Receiver

2.4 Chapter Summary

Chapter 3 Radio Environment

3.1 Propagation
3.2 Multipath
3.2.1 Frequency Diversity

11

12

13

17

19

20

21

22

23

24

25

CONTENTS vii

3.2.2 Space Diversity 29
3.2.3 Delay Spread 29
3.2.4 Doppler Effect L 30

3.3 Noise. o 30
3.3.1 External Noise 31
3.3.2 Internal Noise 32
3.3.3 Signal to Noise Ratio (SNR) 35

3.4 Interference 35
3.4.1 Inter-Symbol Interference (I.S.I) 35
3.4.2 Narrowband Interference. 36
3.4.3 Wideband Interference 37
3.4.4 Intermodulation oL 37

3.5 Chapter Summary 38
Chapter 4 Current Implementations 39
4.1 ADSL . . . e 39
4.2 DAB . . . 40
4.3 DVB . . o 42
4.4 802.11a Wireless LAN 43
4.5 802.11g WIFT 44
4.6 802.16a Wireless MAN 46

CONTENTS viii

4.7 FLASH 48
4.8 Chapter Summary oo 48
Chapter 5 Matlab Model 50
5.1 Chapter Overview 50
5.2 Preparation 50
5.3 Imitialisation L 51
5.4 Input. e 51
54.1 Input Amount 52
54.2 All’Us bit stream 52
5.4.3 Random bit streamo 53
544 Video 53

5.5 Encoding 54
5.5.1 Halfrate Code Rate 55
5.5.2 Two Thirds Code Rate 56
5.5.3 Three Quarters Code Rate 56

5.6 Interleaving o7
5.7 Modulation 58
5.7.1 BPSK Modulation 59
5.7.2 QPSK Modulation L 61

5.7.3 16-QAM Modulation 62

CONTENTS ix

5.74 64-QAM Modulation 62

5.8 IFFT, Pilot Insertion and Cyclic Extension 63
5.9 Preamble 65
5.10 RF/IQ Modulation 65
5.11 Channel 66
5.12 Receiver e 67
5.13 Output o 67
5.14 Chapter Summary o v v vt e 68
Chapter 6 Results and Discussions 69
6.1 Results. 69
6.1.1 Simulation GUI Screen., 69
6.1.2 Typical test result screens 70
6.1.3 Single system test result L. 72
6.1.4 Code rate comparison test result 73
6.1.5 Modulation type comparison test result 75
6.1.6 Sub-carrier size comparison test result 0L 76
6.1.7 Video testresult L 7

6.2 Discussiono 80
6.2.1 Research. L 80

6.2.2 QGuide Vs Simulink 81

CONTENTS X

6.2.3 Goal Achievement, 81

6.3 Chapter Summary 82
Chapter 7 Conclusions and Further Work 83
7.1 Conclusions 83

7.2 Further Work 84
References 85
Appendix A Project Specification 88
Appendix B Program Code 90
B.1 OFDM._Simulator 91
B.2 OFDMopara oo 108
B.3 ofdmwssyscod 115
B.4 ofdmsysmod 118
B.5 ofdm.syscar L 121
B.6 ofdmsysvid L 124
B.7 ofdmtxo 128
B.8 ofdm_inputSelect 130
B.9 ofdm.coder 133
B.10 ofdm_interleaver L 136

B.11 ofdm_modulator 139

CONTENTS xi

B2 ofdmdiffto 145
B.13 ofdm ifft64 148
B.14 ofdm ifft256 L. 150
B.15 ofdm iffth12o o 153
B.16 ofdm_ifft1024o 156
B.17 ofdm ifft2048o 159
B.18 ofdm ifft4096o 164
B.19 ofdm ifft8192 Lo 170
B.20 ofdm_pream 179
B2l ofdm_channo 181
B22ofdmorx 183
B.23 ofdm.rempreamo L Lo 184
B24ofdm fft 186
B25ofdm fft64o 189
B.26 ofdm ft256o Lo 191
B.27 ofdm fft512 194
B28 ofdm fft1024o 196
B.29 ofdm fft2048 199
B30 ofdm fFt4096o 202

B.31 ofdm fIt8192o 207

CONTENTS

xii

B.32 ofdm_demodulator

B.33 ofdm_deinterleaver

B.34 ofdm_decoder

List of Figures

1.1 World-wide number of Internet users 2
2.1 Concept of OFDM, (a) conventional frequency allocation and (b) OFDM
frequency allocation L L 8
2.2 OFDM transceiver block Diagram 11
2.3 OFDM convolutional encoder diagram 12
2.4 Block interleaver 13
2.5 BPSK constellation map 14
2.6 QPSK constellationmap oL 15
2.7 16-QAM constellation map L 16
2.8 64-QAM constellation map 17
2.9 Pilot and data sub-carriers Lo 18
2.10 Orthogonal sub-carriers 21
2.11 Guard interval 22
3.1 Line of Sight (LOS) 26

LIST OF FIGURES xiv

3.2

3.3

3.4

4.1

5.1

5.2

5.3

5.4

9.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Attenuation from radio to x-rays, insert shows weather effect 27
Multipatho 28
Noise vector effect 31
ADSL frequency allocation 40
Simulator convolutional encoder 55
Two-thirds code rate output oL 56
Three-quarters code rate output 57
BPSK simulator scatter plot L Lo 60
QPSK simulator scatter plot 61
16-QAM simulator scatter plot L. 62
64-QAM simulator scatter plot 63
Simulator RF stage diagram, 66
Simulator GUl screen 69
Typical single test output oL 70
Typical code rate comparison test output 71
Typical modulation rate comparison test output 71
Typical sub-carrier size comparison test output 72
Single test output 73

No code test output 74

LIST OF FIGURES XV

6.8 Three quarter code test output, 74
6.9 No modulation test output 75
6.10 64-QAM modulation test output L 75
6.11 Sub-carrier size 64 test output. 76
6.12 Sub-carrier size 8192 test output 7
6.13 Video test input, clock.avi o oL 7
6.14 Video test output with E;/N, @ 35 dB, rxclocka.avi 78
6.15 Video test output with E;/N, @ 29 dB, rxclocka.avi 79
6.16 Video test output with E;/N, @ 23 dB, rxclocka.avi 79

6.17 Video test output with E,/N, @ 17 dB, rxclocka.avi 80

List of Tables

1.1 Risk assessment e

Nomenclature

16-QAM
64-QAM
A/D
ADSL
AGC
AM
AMPS
AWGN
BER
BPSK
CCK
CDMA
CIF
CS-CCA
D/A
dB
DAB
DAS
DE
D-BPSK
D-QPSK
DVB
DVB-H
EDTV

16 point Quadrature Amplitude Modulation
64 point Quadrature Amplitude Modulation
Analogue to Digital

Asynchronous Digital Subscriber Line
Automatic Gain Control

Amplitude Modulation

Analogue Mobile Phone System

Additive White Gaussian Noise

Bit Error Rate

Binary Phase Shift Keying

Complementary Code Keying

Code Division Multiple Access

Common Interleaved Frame

Carrier Sense - Clear Channel Assessment
Digital to Analogue

Decibel

Digital Audio Broadcast

Distributed Antennae System

Doppler Effect

Differential Binary Phase Shift Keying
Differential Quadrature Phase Shift Keying
Digital Video Broadcast

Digital Video Broadcast - Handheld

Enhanced Definition Television

Nomenclature

xviii

EMI
ERP
FDD
FDMA
FET
FIC
FLASH
FM
FSK

GI
GSM
GUI
GUIDE
HDSL
HDTV
HIPERLAN
IBC
ICI

IF
IFFT
1/Q
IMD
ISDN
ISI

ISM
LDTV
LOS
MCM
MPEG
MSC
OFDM
OFDMA

Electro-Magnetic Interference
Extended Rate Preamble
Frequency Division Multiplexing
Frequency Division Multiple Access
Fast Fourier Transform

Fast Information Channel

Fast low Latency Access and Seamless Handoff
Frequency Modulation

Frequency Shift Keying

Guard Interval

Global Switching Mobile

Graphical User Interface

Graphical User Interface Development Environment

High Digital Subscriber Line

High Definition Television

High Performance Radio Local Area Network
In Building Coverage

Inter-Channel Intermodulation

Intermediate Frequency

Inverse Fast Fourier Transform

In phase and Quadrature phase
Inter-Modulation Distortion

Integrated Services Digital Network
Inter-Symbol Interference

Industrial, Scientific and Medical

Limited Definition Television

Line of Sight

Multi-Carrier Modulation

Moving Picture Experts Group

Main Service Channel

Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiple Access

Nomenclature xix

PBCC
QPSK
RF
RGB
SDTV
SFD
SNR
TDD
TDMA
TPS
UHF
VHF
VDSL
WLAN
WMAN
WCDMA

Packet Binary Convolutional Coding
Quadrature Phase Shift Keying
Radio Frequency

Red, Green and Blue

Standard Definition Television

Start Frame Delimiter

Signal to Noise Ratio

Time Division Multiplexing

Time Division Multiple Access
Transmitter Parameter Signalling
Ultra High Frequency

Very High Frequency

Very high bit Digital Subscriber Line
Wireless Local Area Network
Wireless Metropolitan Area Network
Wideband Code Division Multiple Access

Chapter 1

Introduction

1.1 Introduction

As technology advances, the future impact on our lives is never fully realised by those
implementing the new technology. These impacts can change the way we work, rest and
play. Since the advent of the Internet towards the closure of the last century, there has
been a veritable explosion in the number of people who have taken up the opportunity
to become connected to a vast number of fellow humans, some known, but mostly
unknown, from around the globe, transcending nationalities, cultures and the tyranny
of distance. This Internet technology has enabled direct access, freely unfettered to
different people a wealth of information and to business entities that they previously

would have been unlikely or unable to access.

Allied to the fast pace of our modernlifestyles and modern society, this Internet revo-
lution has also facilitated an explosion in the creative use and adoption of telecommu-
nication products to achieve and maintain a state of perpetual connection. Included
with this take-up, the increase in the use of wireless devices, which have the potential
and ability to keep us in even greater touch, designed to the relentless trend towards
freedom of usage. In order to try and meet the demand for more sophisticated, secure
and faster connections, many different types of connection models have been intro-

duced. Examples of these include ISDN, ADSL, GSM, TDMA, CDMA, WLAN and

1.2 Project Aim 2

nnn

BOD fmmmmmmmm i m e e e e ABE
-
L)
:
e --
=
]
=1
=
—
"
B [mmmmmm oo --
-
=]

260
L REEEEEEI-EEEEEEEERE | EEEEEE --
135
=0
o L[
193 195 000 0 004
Year

Figure 1.1: World-wide number of Internet users

Source: Engels, Figure 1.1, pl

HIPERLAN, just to name a few.

1.2 Project Aim

In recent years, the need for fast wireless communications has increased. This has led
to a number of investigations as to how these services can best be provided. The aim
of this project is to investigate the use of Orthogonal Frequency Division Multiplexing
(OFDM) Modulation, as a vehicle for supplying these future needs, via the use of a
simulation tool known as MATLAB

1.3 Project Objectives

The research efforts undertaken during this project are focused upon meeting various

objectives. These project objectives are as follows:

1.4 Effects 3

e Research the methodology of Orthogonal Frequency Division Multiplexing (OFDM)

Modulation.

e Examine a radio channel and discuss the impact on communication signals and

Systems.

e Design an Orthogonal Frequency Division Multiplexing (OFDM) Modulation sim-
ulator using MATLAB.

e Verify the simulation results matching the theoretical results of an Orthogonal

Frequency Division Multiplexing (OFDM) transceiver system.

e Analyse the simulation results relative to different scenarios and rationalise these

results with regard to network integrity.

Through research, design and analysis, simulation of the possibilities of wireless con-
nectivity may demonstrate an ability in some instances to meet the needs of future

users but an inability to do so in other instances.

1.4 Effects

All projects will have outcomes on various groups of society or surrounding environ-
ments to varying degrees. Some of these outcomes will be foreseen by the project
engineers and therefore, will have mechanisms in place to minimise any damaging
consequences. Other consequences may not be foreseen and so the engineers should

endeavour to make the technical activity as safe as possible.

1.4.1 Sustainability

The choice of the materials used in the production of the transceiver need to be thor-
oughly investigated to keep the impact on future generations minimal. Some com-

ponents used in the manufacture will be hazardous to the environment when the

1.4 Effects 4

transceiver’s lifecycle has come to an end. The amount of original resources can be
reduced with the use of recycling programs. Through recycling, some of these re-
sources can be reused thus reducing the impact on a limited resource, Earth. The
choice of components can decide the manufacturing process. If the components were
safe to the environment, the manufacturing process would need to be investigated for
its impact. This would include the degradation of the surrounding environment, such as
contamination of waterways and nature parks, and the increase in ozone holes. Through
the consideration of the impact that production, use and disposal of a communication
transceiver has, in the planning stage, we guarantee the equitable growth and cost of

the system across multiple generations [Johnston et al 1999 p476].

1.4.2 Safety

The implementation of any new engineering activity induces and introduces hazards
and insecurities through the act of modernisation [Adams, 1998 p180]. The introduction
of a new wireless transmission system creates an area where the Radio Frequency (RF)
energy is higher than the standard allows. The transmitting antenna has to be situated
so that special keys or tools are required to approach it. The antennae would be placed
on a tall tower or over the edge of a building away from the general public. Maintenance
staff would need access so they can ensure the most efficient use of the system. There
is a trade-off between the general public and network operators. The transceiver design
requires that when staff is handling it, they do not injure themselves. The weight and

shape has to be designed so that the maintenance staff can carry the unit easily.

1.4.3 Risk Assessment

A Risk Assessment was conducted for a communications transceiver.

1.5 Overview of the Dissertation

Table 1.1: Risk assessment

Hazard Peopleat Parts of Risk Categories | Short Long Term
Risk the body | Level Term Controls
Controls
RF Any person All Moderate | Transceiver | Measure Flace
Exposure within the design, reverse transmitter
desgnated Location poOwWer, aerial ih an
area where design shutdown area where
the RF level when equipmentis
iz greater above zet needed to
than the limit. accessite.g
standard tower
all owrs.
AB2TTL
Transceiver | Installers and | Back Moderate | Transceiver | Manual Separate
ton heawy Iaintenance design handling transceiver
staff dewices into less
weighty
components
Tranzceiver | Installers and | Hands Low Transceiver | Cooling Il onitor
hotto IMaintenatce design fans temperature
touch staff and
shutdown
when limit
reached
Electric Installers and | All Low Transceiver | Circuit Residual
shock IMaintenance design breaker Current
staff Device

1.5 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 describes the basic problem of why this technology is needed and the de-
sign and application of the technology to overcome the difficulties of wireless

transmission.

Chapter 3 discusses the radio environment and the impact it has on the different

signals and systems associated with it.

1.5 Overview of the Dissertation 6

Chapter 4 describes the current applications of OFDM technology and the different

structures of each implementation.
Chapter 5 details the MATLAB model used to simulate OFDM transmission.

Chapter 6 reports the results of the simulator and relates these results to the impact

they would have on network integrity.

Chapter 7 reports the conclusions of the dissertation. There is,also, a discussion on

the suggestion for future work.

Chapter 2

OFDM Review

2.1 History

The concept of OFDM communications has evolved from the use of Frequency Division
Multiplexing (FDM). Over a century ago, the use of telegraph employed more than one
low rate signal being carried over a relatively wide bandwidth channel using separate
carrier frequencies [Bahai et al, 2004 pp5-6]. These frequencies, or sub-carriers, were
spaced far enough apart so they did not overlap. This allowed for filter design to be
less specific and ensured that inter-channel interference was minimised. This system,
compared to today’s communication systems, was very inefficient. Through research
during the 1950s and 1960s, a more efficient parallel data and FDM approach was
developed.

With the new concept, the intention is for the sub-carriers to overlap each other. This
could only be achieved if the sub-carriers each carry a signal rate, c, as well as be spaced
a multiple of % apart in frequency. This concept is called ”orthogonal”. Using this
criterion, a more efficient use of the bandwidth could be employed, whilst still avoiding
impulsive noise and the use of high-speed equalisation. Such efficiencies would save up
to 50% of bandwidth [Prasad, 2004 p12]. In 1971, Weinstein and Ebert chose the use
of the Discrete Fourier Transform (DFT) as part of the modulation / demodulation

scheme. This allowed the implementation complexity of the equipment to be reduced

2.2 Design 8

NANNNN

—

Ch7

Guard Interval

Spectrum Savings

F S
X

Figure 2.1: Concept of OFDM, (a) conventional frequency allocation and (b) OFDM fre-

quency allocation

[Hanzo et al, 2002 p536], but due to manufacturing constraints, cost and size, usage of
this idea would not occur. Then, during the 1980s and 1990s, the development of very
large scale integrated chipsets that could implement the functions of OFDM has seen

its use expanded considerably. OFDM is now being used or considered for use in:

High speed modems

Digital mobile communications

High density recording

Various Digital Subscriber Lines (HDSL, ADSL, VDSL, etc)

Digital Audio Broadcasting (DAB) and

High Definition Television(HDTV) Transmission

2.2 Design

The sub-carriers need to overlap themselves to ensure the maximum use of available
spectrum. This type of hybrid communication came about from combining the two
ideas of multi-carrier modulation (MCM) and Frequency Shift Keying (FSK) [Heiskala

et al, 2002 p31]. However, using this type of communication creates problems at the

2.3 Architecture 9

receiver end when the data needs to be processed from the received signal. One way of
ensuring the relevant data can be extracted from the received signal is to ensure that all
the sub-carriers are orthogonal. This is the basic principle for all Orthogonal Frequency
Division Multiplexing (OFDM) Systems today. For maximum efficiency, a number of
equal sized sub-carriers would divide the available spectrum. This would allow for
parallel data transportation instead of the serial transport means. Using a number of
sub-carriers allows for more, smaller rate carriers instead of one fast signalling rate. The
benefit is a smaller channel bandwidth, which is less susceptible to noise or interference
than wide channels [Armstrong, 2002 p37]. The channel response becomes more linear

as the channel bandwidth becomes narrower.

2.3 Architecture

A communication system is made up of five mandatory components, a source, a trans-
mitter, a receiver, a destination, and a channel. The source applies its information
to the transmitter. Depending on the system type, analogue or digital, the informa-
tion may be processed to ensure it is in the correct format for the transmitter. The
transmitter sends user information signals over the channel, whilst the receiver picks
the signal plus additive noise from the channel. The receiver passes on the decoded
information to the destination where it may be converted to the appropriate signal
type for its use. With a wireless communication system, air or space represents the
channel as its medium. The transition through the wireless medium is not as smooth
as wire-line transmission, and this poses problems, which need to be addressed by the
receiver, to ensure the intelligence is decoded correctly. OFDM is primarily used in
digital communication systems. Thus, if the input source signals are analogue, the
information is converted to a digital stream through the use of an A/D converter. The

binary stream is put through an OFDM transceiver to produce the OFDM signal.

Whilst in the transceiver, the binary stream is encoded, generally with a convolution
encoder. The encoder produces a number of output bits for each input bit giving the
message redundancy. Next, the encoded binary stream is put through an interleaver.

The interleaver reduces the impact of deep fades in the wireless channel by moving

2.3 Architecture 10

adjacent bits to non adjacent positions. Following the interleaver, the bit stream is
modulated to symbols in the modulator functional block. The data is separated into
streams that equal the amount of sub carrier channels. This is the serial to Paral-
lel functional block. Here, pilot tones are added to the symbols and then they are
modulated to OFDM symbols via Inverse Fast Fourier Transform (IFFT) block. The
separate, parallel data streams are placed back into a serial data stream. The cyclic
extension function block adds a cyclic extension, which is a copy of a number of sub
carriers at the end of the OFDM symbol. This copy is placed at the start of the symbol.
The signal converted to an analogue signal using an IQ modulation function block and
the signal is up-converted to the required frequency for transmission. These stages were
not added to the simulator as the simulator only tests the signal processing up to and
including the intermediate frequency (IF) stage. The signal is put through a channel
function block that adds White Gaussian noise (AWGN) as well as fading. The signal
becomes corrupted and it is the purpose of the receiver to extract the wanted infor-
mation from this signal. At the other side of the radio channel, the receiver processes
the received signal, and converts it back to its original data. The imperfect channel
would have changed the signal by adding noise and offsetting the phase and frequency.
The receiver will need to adjust for these imperfections prior to signal demodulation
using the synchronisation function block. Together with the synchronised signal and
the timing signals, the cyclic extension is removed. Following the cyclic extension re-
moval functional block, the serial data stream is split into many parallel data streams.
The number is equal to the number of sub carrier channels as in the transmitter. The
data streams are demodulated from OFDM symbols using the Fast Fourier Transform
(FFT) function block. The resultant symbols are converted back into a serial signal
stream where the pilot tones are removed. The pilot tones are compared with a set of
pilot tones to find any frequency, phase and amplitude differences. The resultant timing
signals are used to fine tune the data signal whilst it is being demodulated. The signal
is converted to a binary stream in the demodulation function block and passed to the
de-interleaver function block. Here the data stream is de-interleaved so the resultant
data is now in the original order. The data is sent through a decoder function block

where the original data is removed.

2.3 Architecture 11

Pilot Insertion |

Binary Input —*

| — i
™ ™
Encoder Interleave Modulate P IFFT RS Cyclic
- — ™
™ v uill —®| Eitension
i —
m— i
Channel
— — I
— —
Remove Cyclic
Decoder De-interleave [Dermodulate M= Pis[¥] FFT %77 sipje— E}{tensinny
M [
3 F 3
- - tl
Binary Output o
Channel Correct Synchronisation —

and rernove pilots

Figure 2.2: OFDM transceiver block Diagram

2.3.1 Encoding

The use of an error control coder enables the system to be more reliable. It can
reduce Bit Error Rate (BER) for a given Signal-to-Noise Ratio (SNR). The cost to the
system is that the signal has added redundancy resulting in a reduction in effective
throughput. Depending on the chosen code rate, the original bit representation is
increased accordingly. This results in the increase of the number of transmission bits
in the original bit stream or message. The code rate is defined by the number of input
bits, ko, being divided by the number of representative output bits, no. The code rate

can be expressed as:

Ko
R. = — 2.1
- 21

There are different coding rates for different scenarios. The code rates, R, used in OFDM

1 2

communication systems are 3, 5 or %. Whilst the % rate is being used, two output bits

2.3 Architecture 12

Input
k=

e
R
¥

Catput
k=

i
T

R
L J

Figure 2.3: OFDM convolutional encoder diagram

represent one original input bit. This represents an increase of twice the length of the

original message.

For the use of the % rate, the % rate has some bits omitted. When two bits are coded,
making four output bits, one of the added bits is excluded leaving three bits representing
the two original input bits, providing the % rate. For the % rate, the same principle
is used. Six output bits represent three input bits but two output bits are discarded.
The remainder four output bits represent three input bits or the % rate. The omission

of these bits is called ”puncturing”.

2.3.2 Interleaving

The use of an interleaver in OFDM communications systems is to try and offset the
fading effects of the radio channel and its non-linear response across its frequency
range. The sub-carriers in the OFDM symbol populate different frequencies. Due to
the different frequencies, the sub-carrier’s amplitude will be different. To reduce the
impact the differing amplitude has on the coded stream, the bits are separated so
that several sub-carriers are between original neighbouring bits when they are mapped
to their respective sub-carriers. The coded bit stream will only have small separate
bits missing instead of a large chunk, if any noise or interference occurs. The type of
interleaver used in OFDM systems is generally a block interleaver. An example of a M

* N block interleaver is:

2.3 Architecture 13

] |

Bo Bar1 | . B
By Bevz | . Buy
=5 Bues | . B
Read bits E E i
1 ' H
! ! !
Bua Bawr | . Bana
=% Ba | . B

Figure 2.4: Block interleaver

As the bits are written into the block in columns, the system will read the bits out in

TOwsSs.

2.3.3 Modulation

The coded bit stream is modulated into symbols to increase the efficiency of the commu-
nication system. Modulation of the signal changes the amplitude, phase and frequency
of that signal. With OFDM, only the phase and amplitude is varied. The frequency
is left constant to ensure the orthogonal aspect of the sub-carriers. The situation and
application controls the type of modulation scheme chosen. Through the conversion
of bits to symbols, a complex number represents one or more bit, depending on the
scheme chosen. The modulation schemes used in OFDM communication schemes are
BPSK, QPSK, 16-QAM and 64-QAM. Each scheme maps a certain number of bits to
a symbol. This can be seen in their constellation maps. For BPSK, one bit represents
a symbol whilst QPSK has two bits corresponding to the same symbol. 16-QAM has
four bits equating to a symbol and 64-QAM has six bits per symbol. The Bit Error
Rate (BER) increases for the same SNR level as the bit per symbol mapping criteria
increases. The SNR needs to be higher so the removal of the bits in the receiver can

be done effectively. This is due to the smaller phase difference that each modulation

2.3 Architecture 14

scheme has when the number of points in the constellation map increases. As the num-
ber of points increases, the average power of the constellation increases as well. The

average power equation:

Where:
M is the number of points in the map and

(Y is the power of all the M points in the map.

From the formula above, it is very easy to see that a direct relationship exists between
the number of points and the power of the signal. As the power of the signal can vary
with the number of points, the probability of a bit error varies as well. The equation

for the probability of an erroneous bit is:

Where:
@ is the Probability Density Function of a zero mean, normal, random variable
Ey is the energy of the bit and

N, is the power of the noise.

For BPSK, there are only two outcomes for a 0’ and a '1’. These results are separated

by 180°. The constellation map for BPSK is:

Figure 2.5: BPSK constellation map

2.3 Architecture 15

When the data goes through the noisy channel, the data points will not be exactly on
the constellation point as above. The difference between the exact and where it does
occur is called the vector error. With BPSK| it does not have any imaginary factors as
part of the complex number. This leaves the result to be on the real axis either side of
the zero mark. The receiver can decide what the data point is supposed to be, either
a’0’ or a '1’, depending on which side of the zero point the data is. For QPSK, there
are four points in the constellation map. Each point has a real part and an imaginary
part that makes up the complex number. This means, besides having points on either
side of the zero line in the real dimension, it also has points either side of the zero line
in the quadrature dimension. The area where a data point is, after being affected by
noise, is only a quarter of the map if it is to be analysed as correct. If the data point
has a phase change greater than 90°, it will fall into a different quadrant, the receiver
will interpret it as a different data point and an error will occur. To ensure errors are
minimised, the SNR needs to be larger than for the BPSK scheme. The receiver must
decide whether the data point is one of four points as opposed to one of two points in

the BPSK modulation scheme. The constellation map for QPSK is:

Figure 2.6: QPSK constellation map

2.3 Architecture 16

The 16-QAM modulation scheme has sixteen points of which the receiver needs to
ensure the data is correct. This allows for only a phase change of 45° before it becomes
an error. As well as signal phase changes to depict different data points, QAM schemes,
also, changes the amplitude of the signal. Two aspects of the signal are needed to be
correct to ensure the correct data is retrieved as opposed to one for the PSK schemes.
The SNR of the signal needs to greater to enable the receiver to interpret the signal
correctly. If the amplitude or phase varies, an error can result. The constellation map

for 16-QAM is:

4 —_—

& @ @ 9
2 —_—

e & @» L
I:l —_—

e & #» L
2 —

e & @» @
g —

Figure 2.7: 16-QAM constellation map

The final modulation scheme used is 64-QAM. This scheme has sixty-four data points
in its constellation map. The phase difference that the scheme allows before an error
would occur is 22.5°. This is half of the previous scheme, 16-QAM, so the data points
need to be more precise to ensure the receiver correctly deciphers the signal. As well,
there are four levels of amplitude the scheme uses. The signal will need a larger SNR

to ensure the data is correctly extracted from the signal. The constellation scheme for

2.3 Architecture 17

64-QAM is:

E —_—T

L & ® L ® [] ¢ L
ﬁ —_—

L L [] & L] L L
4 [E—

L & [] L & [] & L
2 —_—T

& L ® L L [] L &
0

@ & [] L L @ & L
-2

L L [] L L] L ®
4 —

L @ [L L [] & L
o —

& & [] L & @ & L
B T

Figure 2.8: 64-QAM constellation map

2.3.4 Pilot Tone Insertion

The transmitted signal, passing through a wireless channel, will be affected by a fre-
quency and phase shift as well as noise. To help a receiver to extract the data from
the received signal, pilot tones are inserted into the OFDM signal. These signals are
positioned throughout the OFDM symbol for the maximum effect of being able to help

the receiver detect a change in the frequency or phase of the transmitted signal.

The synchronisation data the pilots carry, add to the overall data that is sent, but are

2.3 Architecture 18

Filot Sub-carriers Diata Sub-carriers

A“'/“\ Ll

Figure 2.9: Pilot and data sub-carriers

considered overhead signals. The synchronisation of the receiver to the transmitted
signal enables the receiver to extract the wanted data. The spacing of the pilot tones
depends heavily on the type of wireless channel, its bandwidth and the coherence time.
The more noise in the channel, the more help and time the receiver needs to synchronise
to the received signal. However, as the pilot tones do not carry any information data,
they add to the overall noise of the bandwidth and therefore decrease the SNR. The
amount of pilot tones becomes a trade-off between channel performance and SNR loss.
This becomes more apparent when the transmission is used for packet transfer. The
delay due to the processing of the pilot tones slows the system and ultimately the data
throughput. Through knowledge of the maximum delay spread, Ty,qz, the minimum
spacing of the pilot channels can be calculated. The spacing needs to be less than the

maximum delay to ensure the integrity of the data, that is:

Spacing = (2.4)

Tmazx

Where:

Tmaz 18 the maximum delay spread.

Taking a typical mobiles base station whose coverage area has been set for approxi-

mately 5 km, the maximum delay is round trip time divided by the speed of light, c.

2.3 Architecture 19

The delay for the site is:

(5000 x 2)

Delay = 5o

= 33.33us

With a delay of 33us, the minimum spacing is 30 KHz and also having knowledge of
the sub-carrier frequency spacing, the position and number of pilot sub-carriers can be

found.

The pilot tones have complex data values of 1 + jO and -1 + jO. As seen, they only
have a real part and no imaginary part. These values are stored in the receiver as
well for comparison. Through comparison of the pilot tones in the receiver with those
received as part of the OFDM packet, an estimation of the phase shift, frequency and
timing offsets and amplitude change can be deduced. This estimation can be used to

compensate for these alterations to the signal.

2.3.5 IFFT

Once the pilots have been inserted into the data symbols, the data is put through an
Inverse Fast Fourier Transform (IFFT). This maps the complex data symbols to a Time
Domain OFDM symbol. The OFDM symbol is made of a number of discrete, base-
band and orthogonal sub-carriers, which carry the data symbols and other, required
timing information. Not all sub-carriers are used for data and pilot information. There
are some sub-carriers that are used as guard barriers and preamble at the start and
finish of the OFDM symbol. To enable the most efficient use of the IFFT function,
the number of sub-carriers is kept to a power of two, namely 2". Prior to the advent
of Digital Signal Processors (DSPs), which allow the IFFT to be performed in a single
chip, a bank of mixers, oscillators and filters performed this function. This amount of
equipment meant that the size and weight were limiting factors in the use of this type

of communication.

2.3 Architecture 20

2.3.6 Fourier Transform

With the analysis of communication systems, the understanding of the relationship that
signals have in both the time and frequency domains becomes very important. Many
systems studied in the frequency domain are given an input as a random, time varying
signal. One of the tools used to provide the relationship is the Fourier Transform (FT).

Given a periodic, complex input signal, with a period of T, is:

z(t) = APl (2.5)

Where:
A is the amplitude of the signal and

fo is the frequency of the signal in Hertz.

The orthogonal augmentation of the signal is represented by the Fourier series coeffi-

cients. The Fourier series coefficients of the signal z (¢) are:

Tp, ==

a+T, i n
/ z (£)e 25 gt (2.6)

1
TO o
Where:
T, is the period of the signal
« is a constant indicating the lower boundary and

z (t) is the input signal.

Taking note of the term:

2.3 Architecture 21

Where:
T, is the period of the signal and

fo is the frequency of the signal.

and that the fundamental frequency is f,, the coefficients represent the harmonics of
the fundamental frequency. The coefficients are generally complex values regardless of

the signal being real or complex.

Fl1 F2 F3

Figure 2.10: Orthogonal sub-carriers

2.3.7 Cyclic Extension

A cyclic extension is added to the OFDM symbol to ensure the sub-carriers remain
orthogonal to each other. The extension is a repeat of the later section of the proceeding

OFDM symbol but is added to the front of the next OFDM symbol.

The length of the extension is chosen so that the maximum multipath delay incurred
in the radio channel is smaller than the extension length. If the delay was to become
larger than the extension, inter-symbol interference (IST) would occur. The sub-carriers
closest to the ends of the symbol would be affected first and as the delay increases,
more and more sub-carriers become affected thus rendering the system inoperable.
The orthogonal sub-carriers are, also, affected which leads to inter-carrier interference

(ICI) [Engels, 2003 p37].

The efficiency and SNR, of the signal becomes compromised when the length of the

2.3 Architecture 22

O F D M symbol

|
¥

e

)

Figure 2.11: Guard interval

cyclic extension is made too large. As the data in the extension is not being used for
information, the efficiency of the system is being reduced. The transmitted energy of
the extension adds to the noise level, therefore leading to a reduction in the SNR. The
size of the extension needs to be carefully chosen for the most optimum performance
in the given environment. The extension length can be as low as 10% of the useful
information block length if they are long information blocks i.e. > 128 sub-carriers

[Hanzo et al, 2003 p42].

2.3.8 Transmission

The OFDM symbol is now converted to a serial data stream, modified to an analogue
signal and up-converted to the required frequency for transmission. The OFDM symbol

can be written as:

Y g .
2 27 | fot i (t—kT
s() = RS Y mge ﬂ[f ST

i — _Ns
t="7

KT <t<kT+T (28)

Where:

2.3 Architecture 23

N is the number of sub-carriers

7;), is the complex data and pilot signal
fe is the OFDM centre frequency

1 is the sub-carrier index

k is the transmitted symbol index

T is the OFDM symbol period and

T is the effective OFDM symbol period.

The signal is emitted into the wireless channel. A continuous, transmitted OFDM

sequence can be expressed as:

o
sp(t) = D Sepx (t—kT) (2.9)
k= —oc0
Whilst in the channel, the sequence will be affected by noise and other interferences.
For effective removal of the data from the signal, the receiver will need to account for

the effect on the signal.

2.3.9 Receiver

The OFDM receiver implements the reversal of the processing that occurred in the
transmitter with some extra timing functions. The receiver needs to be synchronised
in both frequency and phase with the received signal to ensure the correct bit stream
data is extracted. After the Radio Frequency (RF) signal has been reduced to its base-
band signal, the receiver searches for a pre-defined sequence or preamble. This sets the
boundaries for each OFDM transmission. Once the boundaries have been found, the
frequency offset needs to be found. This is done through a channel estimate using the
pilot tones in the OFDM symbol. This is a coarse correction with fine-tuning occurring
after the Fast Fourier Transform (FFT) function. The cyclic extension is removed prior
to the FFT. The FFT is utilised and the corrections are implemented to the incoming

signal. The signal and receiver are now fully synchronised to each other. The signal is

2.4 Chapter Summary 24

demodulated, de-interleaved and decoded. The final product is the digital bit stream.
If the result needs to be an analogue signal, it is further processed through a Digital to

Analogue Converter (DAC).

2.4 Chapter Summary

Understanding the structure of an OFDM transmission system aids design to make the
most efficient use of the wireless channel and to further develop the technology into a
more flexible tool in communications. Although the process of transmitting an OFDM
signal may seem to be very complex, the advantages of a lower error rate, with the use

of many of the functional blocks, at a lower SNR level outweigh the constraints.

Chapter 3

Radio Environment

3.1 Propagation

Radio waves travel through a medium, usually free space or air, and become attenuated.
This reduction of signal power is due to many signal and system parameters. When
a signal is being transmitted, the radiated energy is in different forms and in different
directions. Some of the energy goes towards the sky and is used in long distance
transmissions. These are sky waves. Some of the energy is directed, so it is parallel to
the Earth’s surface. These are direct or space waves and are used in short transmissions.
The last type of signal propagation is the type where the energy is directed at the ground
and is reflected so it ’hops’ around the Earth. These are ground waves and are used for
both short and long distance transmissions. The type of transmission waves is mainly
determined by the antennae array and the frequency. Multiple access wireless systems
used in Australia use frequencies below 10 GHz. The transmission waves for these
systems are made up of direct / space and ground waves as the two ends, transmitter
and receiver, usually can be seen by each other. This is called Line of Sight propagation

(LOS).

As the frequency gets higher, the waves become more like sky waves and can penetrate
the ionosphere and are used for transmission in space or beyond. For systems that

use the LOS principle, the signal is attenuated by distance and frequency. As the

3.1 Propagation 26

Transmitter Direct Wave Receiver

Reflected Wave

Figure 3.1: Line of Sight (LOS)

distance gets longer, the signal gets proportionally weaker. As frequency gets higher,
the loss is proportionally greater as well. The loss is accounted for through the Earth’s
atmospheric contents including water vapour, various gases molecules and free electrons.
The atmosphere contains a high proportion of water and oxygen and the loss is high
when the water and oxygen absorption is at its peak of around 21 GHz and 60 GHZ
respectively [Young, 1985 p681]. As the frequency gets lower, the free electrons play a

larger part in the loss factor of the path loss.

The LOS path loss formula is:

Path Loss = 32.4420 log(f) + 20 log(d) (3.1)

Where:
Path Loss is in dB
frequency f is in MHz and

distance d is in km.

The above formula states the relationship between distance (d), frequency (f) and
the channel loss. This is used extensively to design radio systems and to find their
coverage footprint. Other factors can add to the propagation loss. These can be heavy
precipitation e.g. snow, rain or from tree foliage growing in front of the antennae thus
causing signal degradation. These issues can be allowed for by ensuring the receive

signal is always greater than the noise level of the receiver. This is called Fade Margin.

3.2 Multipath 27

Solid line gives noise floor from space

Dotied line gives noise from carth

3 15 1065 3 L5 1

e

18

Wavelength {mm}_,-

10

3 eefiie 10
i
Him Im 100 mm 10 mm 1 mm 100 puim 10pm
Waveleagth
100 MHz | GHz 10 GHz 100 GHz 1THz 10THz o 10D THz 1PHz
: Frequency

Figure 3.2: Attenuation from radio to x-rays, insert shows weather effect

Source: Kraus et al, Figure 5-59, p336

3.2 Multipath

The transmitted signal will reach the receiver at different times and signal strengths to
each other. These signals would have come directly from the transmitter or have been

bounced off nearby buildings or obstructions [Armstrong, p16].

As the distance travelled is different, their time of arrival and signal strength will vary.
This affects the phase of the signal with respect to each of the different received signals.
If any signals are completely out of phase, destructive signal addition occurs and the
received signal will be cancelled. As the received signals have different strengths and
phases, a signal is usually recovered. The phase difference should be kept to a minimum
so the received signal is at a maximum after constructive signal addition has occurred.
This phenomenon is called Rayleigh Fading. Rayleigh fading can cause fading to occur
very quickly and within a wavelength [Miller, 1993 p323]. For mobile users where

3.2 Multipath 28

Base-station
«] antenna

Building
Partial blockage

Intermittent blockage
by automobiles

Clear path behind
tree trunk

Figure 3.3: Multipath

Source: Kraus et al, Figure P5-11-20, p352

the transmitted signal is around the 1 GHz, the wavelength is less than a metre so
small movements can cause a connection to struggle to maintain connectivity. In urban
landscapes where there are a lot of obstacles, this type of fading occurs regularly and
can be combated by having a significant fade margin of 20 dB or more or the use of
diversity [Miller, 1993 p323]. Some of the different types of diversity are frequency and

space diversity.

3.2.1 Frequency Diversity

Frequency diversity uses different frequencies with matching transmitters and receivers
to combat fading. All radio channels suffer from a spectral response that is not linear
across its range. At various frequencies, the response can be very poor. This occurs
because the frequencies destructively cancel each other out. At other frequencies, they
add to each other. This type of response causes narrow band transmissions to be
affected more greatly than wide band transmissions. If a null in the spectrum occurs at
the wanted frequency, the complete signal can be lost. The use of multiple frequencies
is incorporated into OFDM modulation [Chuang, 2000 p4]. It uses many narrow band
sub carriers and if one or more of the sub carriers has a poor response, the system still
allows data to be transferred using the other frequencies. The loss of the signal power

of one or more sub-channels can be overcome with the signal power of the remaining

3.2 Multipath 29

sub-channels instead of a complete loss of signal.

3.2.2 Space Diversity

Space diversity employs the use of multiple receivers, spaced many wavelengths apart.
Using antennae set apart by many wavelengths, the receive signal between the two
antennae would not have a null or large phase difference. This allows for resultant
higher average signal strength as the received signals add together. Many of Australia’s
network providers use external configurations where multiple antennae are used for
space diversity as well as redundancy for when problems exist in the external plant.
If a problem does exist in the external equipment, only mobile capacity is affected.

Coverage is still provided with the use of the remaining external equipment.

3.2.3 Delay Spread

When multipath occurs, the received signal contains a direct route signal plus many
reflected signals. The reflected signals have travelled a longer route so the signal has
some delay compared to the direct route signal. Also, with different frequencies, the
delay is not linear. As the frequencies increase, the delay also increases. With all these
delays in the receive signal, the signal is spread over a wider time frame. The time
between the first and last significant received signal is called delay spread [Intini, 2000
p20]. This phenomenon causes inter-symbol interference (ISI) if it is large enough to
affect the received signal. With OFDM Modulation, ISI is negated with the use of a
cyclic extension. This is a partial repeat of the data being sent. If the delay spread is
smaller than the cyclic extension, no ISI should occur. If it is larger, then IST becomes
an issue that needs to be addressed. The length of the extension is chosen to be enough
to combat the greatest delay that would be encountered, thus keeping ISI under control.
Another way of keeping delay spread under control is to reduce the data rate. By doing
this, the symbol has a longer time period between different states and therefore can
be more resilient to the delay. This slows the systems throughput if it only has one
channel. OFDM modulation reduces the data rate but only to each sub-channel. The

overall data rate is a combination of the sub carrier’s rate multiplied by the number of

3.3 Noise 30

sub carriers utilised. The original data rate can still be supported and the impact of

the delay spread can be negated at the same time.

3.2.4 Doppler Effect

The frequency of the reflected received signal can vary if there is motion between the
transmitter and the receiver [Miller, 1993 p544]. In mobile communications, the user is
generally moving towards or away from the radio base station. This affects the received
signal frequency. As with a motorcycle that is approaching you as a bystander, the
motor sounds different when it is driving away from you. The frequency of the motor
is higher as it approaches you and lower as it drives away. This change in frequency is
called the Doppler Effect and has to be accounted for when synchronising the receiver
to the transmitted signal. The amount of frequency shift caused by the Doppler Effect
is:
2 v
Af = ~
Where:

v is velocity in metres per second and

A is the wavelength in metres.

For OFDM modulation, the frequency shift can cause a loss of orthogonality which

result in errors occurring in the data transmission.

3.3 Noise

Noise is unwanted signals that appear at all receivers’ input when the wanted signal
is not there. Noise can also drown out the wanted signal at the receiver if it is strong

enough. The level of noise directly impacts the SNR and therefore the capacity of the

3.3 Noise 31

channel. Many processes have to be employed to ensure the noise effect is kept to a
minimum and our desired signal is extracted. The effect the noise can have on the
received signal is to change the amplitude of the signal in both the real and imaginary
parts as well as the phase of the signal. These aspects are the two parameters in OFDM

transmission can change the received data from being correct to an erroneous bit.

Moise vector

Figure 3.4: Noise vector effect

The noise can come from many sources but are classed as two different types. They

are external and internal noise.

3.3.1 External Noise

The external noise can be either natural or man-made. The naturally occurring noise
comes from events that happen in and around the Earth’s atmosphere. These mainly
happen when storms are occurring and cause problems for receivers close to the storm.
This can be seen when watching television and lightning strikes nearby. The picture
suddenly becomes full of static when the strikes occur. The strike emits frequen-
cies across a broad spectrum but as the frequency increases the effect diminishes very
quickly. Also, if there is heavy rainfall between the transmitter and the receiver, the
signal can be degraded. The other type of naturally occurring noise that affects radio
transmission comes from events in space. The most commonly known effect is solar

noise. This occurs approximately every 11 years, when sun spot activity reaches a

3.3 Noise 32

peak, and is very unpredictable. Other cosmic noise occurs from the stars but as their
distances are very large, the effect is very minimal. The Earth’s atmosphere helps to
absorb a lot of this cosmic noise but there is still enough getting through to make radio
transmissions unpredictable. Man-made noise from other mechanical devices causes
the most impact on radio transmissions. This type of noise is produced by switch gear
operating machinery, ignition systems, electrical motors, mast head amplifiers, lights,
other communication systems and any equipment that switches power. The equipment
causing the noise may have become faulty and is transmitting it in all directions sur-
rounding the equipment or may not have any electro magnetic interference (E.M.I)
barriers to stop the noise from emanating from it. This has created a lot of debate in
the last decade and manufacturers are taking E.M.I issues very seriously now when de-
signing new products. Many faulty mast head amplifiers transmit out of the antennae
and cause high levels of noise that interfere with communications systems. As wire-
less communications becomes more prevalent, the spectrum becomes more and more
congested with radio signals that interfere with other communications systems. This
creates more noise and therefore other systems have to transmit at higher levels to keep
their connectivity. This adds more noise and the process keeps escalating. As this is
occurring more in urbanised areas, very sensitive equipment is located in remote areas
where the man made noise is at its lowest. This type of equipment is used in satellite

and space exploration communications.

3.3.2 Internal Noise

Internal noise is present in all equipment. This is produced by the components in the
receiver. The main types of internal noise are thermal, shot, flicker, burst and transmit
time noise. Thermal noise is caused by the electrons interacting with ions at the atom
level. The vibrations, caused between an atom and an ion interacting, creates heat
which varies the rate of electron flow. With varying rates of electron flow or current,
voltages are produced. This is the thermal noise voltage [Young, 1990 pl118]. The
frequency content of this noise is extremely broad and is affected by temperature. This
type of noise can be referred to as White noise, as well, due to the colour white having

all the colours of the spectrum. This noise is proportional to the bandwidth of the

3.3 Noise 33

system used so the wider the bandwidth, the larger the noise level. The noise level is:

Where:
% is Boltzmann’s constant (1.38 x 10723 J/K)
T is the temperature in Kelvin (usually 290 indicates ambient temperature) and

B is the bandwidth in Hertz.

The noise level of any system can be determined by the bandwidth of the system.
It is always advisable to keep the bandwidth as small as possible. Noise floor is the
most important factor that limits the usefulness of any receiver. When designing a
communication network, an indication of the level of noise is important. The formula
for thermal noise is used extensively to gauge the noise floor of the system. For a 20

MHz bandwidth system, such as WLAN, the noise floor is:

N, (dBm) = 10log (1.38 x 10723 times 290 x 20 x 10) + 30

= —101 dBm

Once designers know the noise floor and using the path loss formula, they are aware of
how well a communications network will meet the needs of the users. With all receivers
the first stage has the most impact on how the noise will affect the signal level. The
choice of components is very important if the receiver has any chance of extracting
the data from the signal. These components are manufactured so they produce the
minimum amount of noise possible. Shot noise occurs when a bias current in a discrete
component is not in a steady motion as it crosses the potential junction. As with all
electronic components, a standard or similar P-N junction exists. The junction is a
barrier to the electron flow until a bias current is applied that allows the electrons to
flow. As the electrons flow, they flow in a random fashion due to the direction and

distance being different for all electrons. The anode of the semi conductor heats up

3.3 Noise 34

due to the electrons flowing to this electrode and the name ”shot” is derived from the
electrons bombarding the anode. With transistors and other multi junction devices,
the shot noise is increased based on the number of junctions that exist and the amount
of bias current needed. The shot noise and thermal noise add to each other to give an
overall noise effect in the receiver. This noise is purely random in its nature and is flat
across the frequency spectrum. Flicker noise is associated with a bias current in semi
conductors and is caused by the defects in the manufacturing of the electronic junction.
The noise is proportional to the bias current but as frequency increases, the noise level
decreases. As the response is not flat across the frequency spectrum, the noise is referred
to as Pink noise. The flicker noise is random and is very device specific depending on the
number of defects occurring in the manufacturing process. Burst noise is very similar to
flicker noise but it is caused by the contamination of the ions used in the production of
the semi conductor junction. It is proportional to the bias current but decreases more
quickly as frequency increases. The bias current increases suddenly for short periods of
time before returning to its original level. This is also known as Popcorn noise due to the
popping sound it produces if it is amplified. The burst noise is random and like flicker
noise is very device dependent due to the manufacturing process. Burst and flicker
noise are not a problem for applications in the wireless data communications industry
as the frequencies used are generally in the Very High Frequency (V.H.F), Ultra High
Frequency (U.H.F) or above frequency ranges. Transmit-time noise occurs when the
wireless application is close to the maximum boundary of the chosen components.
When the period of the frequency becomes similar to the time taken to cross the semi
conductor junction, some of the signal can become diverted to other junction points
[Miller, 1993 p11]. This increases the current in other areas of the semi conductor,
therefore increasing the level of noise. This is only a problem if the chosen components
are not suitable for the application, or higher than expected frequencies are occurring.
A well designed receiver should allow for any frequencies that are seen at the receiver

and any frequencies that should not be there are filtered out prior.

3.4 Interference 35

3.3.3 Signal to Noise Ratio (SNR)

SNR indicates the relationship of the wanted signal to the noise level of the receiver.
Given the noise floor using the formula for thermal noise, any signal received that is
above this level is the SNR of that signal. This is an indication of the quality of the
wanted data prior to it being processed. The higher the SNR of the received signal will
give better quality of the processed data. If the SNR is too low, the noise will degrade
the signal to the point where it will be unusable. Although a good SNR figure is needed
to ensure the data being extracted from the receiver is the wanted information, the noise
figure the receiver has to be considered. The receiver’s noise figure is an indication of
the impact its own internal noise will have on the signal. Although ideal devices inject
no noise into the signal, it has been found that in practical situations, noise is universal
and needs to be considered. The noise figure of a receiver is always designed for a very
low result so the additive noise is minimised. In communication systems where the
frequencies used are above 1 GHz, the noise figure value is replaced with a value called
Equivalent Noise Temperature (T¢;). The T,, value highlights a greater variation in
the noise level and it is easier for designers to work with to produce working circuits,

especially in systems based in space [Young 1990 p746].

3.4 Interference

Interference is an unwanted signal, causing errors with the wanted signal of our com-
munications system. There are four main types of interference. These are Inter-Symbol

Interference (I.S.I), Narrowband, Wideband and Intermodulation.

3.4.1 Inter-Symbol Interference (I.S.I)

ISI is caused between the different symbols in the data stream of digital communication
systems. As the data is transferred through a non linear phase response radio channel,
some frequencies of the symbol are lost. The effect is a rounding of the pulse and the

next pulse is affected because the response is slower than the transmission rate. As the

3.4 Interference 36

transmission rates get higher, the effect gets greater till errors of an un-sustainable level
occur and the data is lost. To compensate for this type of interference, a filter that
is matched to the channel is used. One of the most commonly used filter types is the
Raised Cosine filter. One of the main reasons ISI is an issue is that the channel cannot
handle the higher transmission rates. As the rates get higher, they start to approach

the channel capacity. Shannon stated that the channel capacity is:

C = BWlogs (SNR + 1) (3.4)

Where:
C' is the channel capacity,
BW is the bandwidth and

SNR is the signal to noise ratio (not in dB).

When the transmission rate approaches the channel capacity, the number of errors
starts to increase. The formula shows that if the spectrum is noisy, a reduction of
the bandwidth to enhance the SNR also reduces the channel capacity. The capacity
becomes a trade-off between bandwidth and SNR. Another tool to help keep the in-
tegrity of the system in noisy environments is to employ the use of error correction
coding. OFDM modulation can use Forward Error Coding and Interleaving to improve

the SNR and offset the non-linearity of the channel.

3.4.2 Narrowband Interference

Narrowband interference is interference that is very narrow in relation to the transmit-
ted signal. It can reside in the receiver’s spectrum and only cause problems to part
of the signal. The communication system can still operate but at a reduced efficiency.
The efficiency is dependant on how much impact the interference has. It is usually
created by external sources. For OFDM modulation, it has very good narrowband re-
jection facilities due to the many sub carriers it employs. If the narrowband interference

causes problems with some of the sub carriers, these sub carriers are blocked from being

3.4 Interference 37

used and the data is still carried on the unaffected sub carriers. A typical example of
narrowband interference is mast head interference. This happens when the masthead
amplifier for a household television system goes faulty. It transmits out a very narrow
frequency, similar to a Delta function, equal to the internal oscillator’s frequency. As
the day goes on, the frequency shifts with the heat of the sun. It creates problems for
users of Australia’s CDMA and GSM mobile phone networks. As the interference gets

wider, more and more sub carriers are affected till the system becomes inoperable.

3.4.3 Wideband Interference

Wideband interference causes the communications systems to become unusable till the
interference is removed. They have bandwidths that are similar to or larger than the
communication system that is being used. The sources of these types of interference can
be classed in two areas. They are Interference and Intermodulation Distortion (IMD).
As with narrowband interference, wideband interference is interference that is usually
created by external sources. An example of this is faulty fluorescence lights. The pulses
from these lights create a broad band signal that moves through the receiver’s spectrum

making it unusable.

3.4.4 Intermodulation

Intermodulation occurs when two frequencies add or subtract together causing resul-
tant frequencies to interfere with the communication system. These products occur at
non linear junctions, such as poorly designed mixers and combiners, faulty connections
or antennae. These second or third order products usually fall outside narrowband sys-
tems but when a broadband system is being used, they fall inside the receive spectrum.
The products (2f; - fa, 2f; + f3, 2f - f; and 2fy + f;) have amplitude that can interfere
with the system if it is not carefully designed. In systems where the desired frequency
is close to another frequency that is much higher than the desired frequency, the un-
wanted frequency can still get into the receiver and mix with the wanted frequency.
This causes mixing products that can interfere with the information signal. As well,

systems that use the same antennae system, such as, In-Building Coverage Distributed

3.5 Chapter Summary 38

Antennae Systems (IBC / DAS), the mixing of two transmit signals can occur in the
DAS components resulting in a frequency near the wanted receive frequency. To com-
bat this occurring, an intermodulation level of -140dBc needs to be attained when using

carriers around + 43dBm (20W).

3.5 Chapter Summary

A wireless channel is a very complex segment of the communication system that impacts
the quality of the signal immensely. Through the impact of noise, in its various forms,
the signal gets degraded. Having the signal and system robust enough to offset the
impact makes it very complex. Different tools can be utilised to enable the signal to be
received in a state where the information can be extracted. A system designer would
need to be aware of the constraints that noise has on the signal to ensure that a properly

designed system is implemented to cope in the extreme and varying conditions.

Chapter 4

Current Implementations

OFDM modulation is very flexible and is being used in many applications now. It can
be adapted to any situation so maximum efficiency can be attained. Some of these

applications are ADSL, DAB, DVB, WLANs, WMANs and FLASH.

4.1 ADSL

OFDM modulation is used to provide high speed data connectivity across the standard
copper cabling that goes to every phone in every household. Whilst telephone cable
was traditionally used for adhoc, voice connections, Asymmetric Digital Subscriber
Line (ADSL) is a continually connected, ready to go service. The biggest advantage
for ADSL is most of the infrastructure is already in place, thus providing a huge cost
saving in supplying the product. With ADSL, the transmit speeds vary with the type
of traffic. The faster speeds are used for downlink traffic, whilst slower speeds are used
for uplink traffic. The traditional services of the line are still kept and the new ADSL
services do not interfere with this service. There are many variations of ADSL ranging
from the standard ADSL to ADSL4 which can provide speeds up to 52 Mbps across a
3.75 MHz bandwidth. [DSL White Paper, 2005 p7] For standard ADSL, the spectrum
is broken into various sections. The original spectrum (0 to 4 KHz) is reserved for voice

calls whilst the spectrum above this frequency is used for data. The signal is split into

4.2 DAB 40

255 sub carriers, or bins. They are spaced 4.3125 KHZ apart. The frequency spectrum
of a copper line used for ADSL is from DC to 1.104MHZ. The first 4 KHz is reserved for
voice calls, followed by an unused guard band from 4 KHz to 25 KHz. This spectrum
comprises of 7 bins which are disabled. The spectrum from 25 KHz to 138 KHz is
utilised for Uplink and comprises of 24 bins. The following spectrum, from 138 KHZ
to 1,104 KHz, is used for Downlink and comprises of 224 bins. More bins are reserved
for downlink traffic as experience has shown that there is a substantial amount more

downlink traffic than uplink traffic.

ADSL

Upstream/Downstream

Frequency

0-4 kHz I_I_I 25 kHz 1.1 MHz

Guard Band
Figure 4.1: ADSL frequency allocation

FEach bin is continually monitored and when the SNR level falls below 6 dB, the bin is

blocked. This ensures the most efficient use of the connection at all times.

4.2 DAB

The Digital Audio Broadcast (DAB) standard was designed and implemented for the
distribution of digital audio services. The system is very flexible as it can be used
in different network configurations due to the four different frame structures it can
utilise. They are 96 ms (Transmission Mode I), 24 ms (Transmission Mode II and
III) and 48 ms (Transmission Mode IV). Mode I is to be used in the Band I, II and
IIT of the UHF Band. Mode II and IV are to be used in Bands I to V which exist
over both VHF and UHF bands. It is also available for use between 1,452 and 1,492
MHz (L - Band) for satellite transmission. Mode III is to be used to transmit in any

configuration as long as the frequency range is below 3 GHz. The standard also allows

4.2 DAB 41

the use of cable as a delivery medium. The chosen mode for the cable transmission
can be any of the four modes, but Mode III is preferred as its transmission frequency
is very flexible. The frequency bands, VHF and UHF, are currently being used to
transmit Amplitude Modulation (AM) services, Frequency Modulation (FM) Services
and Analogue television. The new systems must not interfere with these current signals
and systems. For all transmission modes, the channel width is 1.536 MHz and is known
as the DAB block [DAB Standard, 2006 p168]. The different modes utilise different FFT
sizes. For Mode I, the FF'T size is 2048 otherwise known as 2K Mode. Mode II uses a
FFT size of 512 whilst Mode III uses a size of 256. Mode IV uses 1024 sub carriers and is
known as 1K Mode. The number of data sub carriers used is of the FFT size. The size
of the cyclic extension, or guard interval, is of the FF'T size for all transmission modes.
A DAB transmission consists of numerous frames. Each frame is a combination of a
synchronisation channel, a Fast Information Channel (FIC) and a Main Service Channel
(MSC). The combinations of these sections total the frame time length that indicates
the particular mode in operation. Each section is made up of a number of OFDM
symbols. The total number of OFDM symbols varies for each mode. For Mode I, 11
and IV, the number of OFDM symbols used is 77. For Mode III, the number of symbols
is 153. In each mode, the first two OFDM symbols are used for the synchronisation
sub frame. Of these two symbols, the first symbol is known as the NULL symbol. The
Null symbol has a different length to the rest of the OFDM symbols. For Mode I, the
Null symbol length is 1.297 ms. For Mode II, it is 324 us. For mode III, it is 168 us
and for Mode IV, the Null symbol length is 648 us. The length of the OFDM symbols
used throughout the rest of the frame is approximately 4 % shorter at 1.246 ms, 312
us, 156 us and 623 us respectively. The increased length of the Null symbol is to ensure
the start of frame is made correctly. Following the Null symbol is the Phase Reference
symbol. This symbol sets the reference of the demodulator for the following OFDM
symbol. The type of modulation used is Differential Quadrature Phase Shift Keying
(D-QPSK). Following the synchronisation section is the FIC section. For Modes I, II
and IV, there are three OFDM symbols allocated. For Mode III, eight OFDM symbols
are used. The FIC block contains control information regarding parameters of the frame
for the proper demodulation of the received signal and regional area information. This
includes the time, date, country and network parameters that can be used to provide

supplementary information or services. These can include regular traffic updates for

4.3 DVB 42

localised areas. The remaining 72 (Mode I, II and IV) and 144 (Mode III) OFDM
symbols are used for Common Interleaved Frames (CIF). The CIF frames hold all the

information of audio, data and services that are broadcasted.

4.3 DVB

The Digital Video Broadcast (DVB) standard has been designed for the transmission
of digital terrestrial television broadcasting. This involves the services of Limited Def-
inition (LDTV), Standard Definition (SDTV), Enhanced Definition (EDTV) and High
Definition Television (HDTV). The frequency spectrum of this standard will be in the
Very High Frequency (VHF) and Ultra High Frequency (UHF) bands. These bands
are currently being used to transmit analogue television and must not be interfered
with. The channel widths are 6, 7 and 8 MHz. A 5 MHz channel width has been made
available for handheld terminals (DVB-H) [DVB-H Standard, 2004 p10]. There are two
FFT sizes, 2048 (2K mode) and 8192 (8K mode). An extra FFT size, 4096 (4K mode)
is added for handheld operation. The 2K mode is used in areas where the network
coverage is small and the 8K mode is for large coverage areas. For the different opera-
tional modes, a flexible, cyclic prefix length ranging from i to 3% can be combined with
different types of modulation. The available modulation types are QPSK, 16-QAM and
64-QAM and non-uniformed 16-QAM and 64-QAM. Using the above parameters, a bit
rate ranging from 4.98 Mbits/s to 31.67 Mbits/s can be achieved [DVB Standard, 2004
p40]. With the added flexibility of a two tiered, hierarchical code, maximum frequency
efficiency in any network configuration can be maintained at all times. The two levels
of transmission, high priority and low priority, allow independent streams of the same
or different data to be received by the user. A program can be transmitted in a high
definition mode, which would be more susceptible to radio channel effects, whilst being
transmitted in a standard definition mode. If the signal becomes degraded by the radio
channel effects, the receiver can switch to the standard definition mode so the user still
has reception. If the effects become large enough, reception is lost. The data frame
consists of many super frames. A super frame is four OFDM frames. Each OFDM
frame consists of 68 OFDM symbols. Each symbol represents 6817 sub carriers (8K

mode) or 1705 sub carriers (2K mode). Each OFDM frame contains a data section and

4.4 802.11a Wireless LAN 43

a cyclic extension section. Throughout the data section, there are permanent and vari-
able positioned pilot sub carriers as well as Transmitter Parameter Signalling (TPS)
carriers. These pilots are used to synchronise the receiver to the incoming received
signal. The TPS carriers contain data that informs the receiver what settings in the
receiver need to be allocated to properly demodulate the data. These parameters refer
to the coding, the constellation spacing, hierarchy information, guard interval length,
transmission mode, frame number, cell identification and modulation type used. Given
the TPS data, the receiver knows enough information about the transmitted signal that
zero padding is not used. This allows optimum data transfer. The TPS sub carriers
are D-QPSK modulated and are transmitted with the mean energy level of all data sub
carriers. The input data stream can come directly from a MPEG-2 coded television sig-
nal. The data is placed into fixed packets of 188 bytes. It is coded and interleaved using
a Reed Solomon code prior to it being convolutional coded and interleaved again. It is
mapped to the constellation based on the transmitter parameter «. These parameters

make up the TPS values that are transmitted with the data.

4.4 802.11a Wireless LAN

The 802.11a specification refers to Wireless LANs being used in the 5 GHz U-NII
frequency spectrum. There are three separate frequency spectrum (5.15 - 5.25 GHz,
5.25 - 5.35 GHz and 5.725 - 5.825 GHz). The lower and middle spectrums have 8
channels across their total 200 MHz whilst the upper spectrum has 4 channels in it.
Each channel is 18 MHz wide at the reference level, and is separated by 20 MHz
spacing. Each channel uses 48 data sub-channels, 4 pilot channels and twelve zero set
sub-channels. The total number of sub carrier channels is 64 which are a 2’s multiply
to allow for a more efficient Inverse Fast Fourier Transform (IFFT) function. Given the
number of sub carriers is 64 and the channel is spaced 20 MHz apart, the individual
sub carriers are spaced at 312,500 Hz apart. This resembles the current GSM standard
of 200 KHz. A cyclic extension of 16 sub carriers is appended to the front of the signal
frame to make an OFDM data frame. The data sub carriers are Gray-coded modulated
with four different types of modulation schemes depending on the application. They are

BPSK, QPSK, 16-QAM and 64-QAM. The binary data stream is encoded using three

4.5 802.11g WIFI 44

different convolutional coding rates. They are %, % and %. Using these coding rates
coupled with the different modulation schemes, a variety of transmission rates ranging
from 6 Mbits/s to 54 Mbits/s can be achieved [802.11a Std, 2003 p3]. The transmission
rate can be higher, up to 72 Mbits/s, but without the use of the coding process. To
ensure the data is more resilient to channel non-linearity, the data is also interleaved.
The data stream that is sent out by the transmitter has been encoded, interleaved,
modulated, had pilots inserted, IFFT function conducted on the data symbols, a cyclic
extension is added before it is modulated onto the carrier frequency. Prior to the
transmitter sending the data frames out, some synchronisation frames are sent. These
frames set up the receiver so it is synchronised with the received signal. The first frame
is a repetition of ten frames to allow signal detection, Automatic Gain Control (AGC),
coarse frequency adjustment and timing synchronisation. The second frame is used to
fine frequency adjustment and to help in the channel offset estimation. It comprises of
two long training frames with their associated cyclic extension. The following frame has
parameters about the data frames. The pilots that are inserted into the data frames are
used to make the coherent detection more robust to phase noise and frequency offsets.
The transmitter power levels are restricted to certain levels. They are 40 mW (416
dBm) for the lower spectrum, 200 mW (423 dBm) for the middle spectrum and 800
mW (+29 dBm) for the upper spectrum. From these power levels, it is quite evident
that this system is used as a Pico or Micro wireless system that only covers an area up to
a couple of hundred metres from the transmitter. Coupled with the receiver sensitivity
ranging from -82 dBm to -65 dBm, it would only be used in indoor applications. The
receiver uses the Carrier Sense Clear Channel Assessment (CS-CCA) to sense any signal
above -82 dBm and will enter a 'busy’ state till the signal disappears. This is similar

to computers on a wired network when transmission is occurring.

4.5 802.11g WIFI

The 802.11g specification refers to Wireless LANs being used in the 2.4 GHz ISM
frequency spectrum and is the next technological step after the 802.11b standard. The
802.11b standard is used for slower transmission rates in the same spectrum. The

spectrum is from 2.4 GHz to 2.4835 GHz, a range of 83.5 MHz. Within this spectrum,

4.5 802.11g WIFI 45

there are 14 separate channels of 22 MHz wide. Their centre frequency is 5 MHz apart
starting at 2.412 GHz which means they overlap each other. Within Australia, only
channels 1 to 11 are supported. Various countries support different numbers of channels
from the list of 14. When multiple cells are used in a single area, adjacent or overlapping
frequencies would operate with minimum errors if the channel frequencies chosen are
separated by 5 channels (+ 25 MHz). As with the 802.11a standard, each channel uses
48 data sub-channels, 4 pilot channels and 12 zero set sub-channels giving a total of 64
sub-channels. The cyclic extension is a replica of the 802.11a standard which consists
of 16 sub carriers. This is appended to the front of the signal frame to make an OFDM
data frame. The data sub carriers are similarly Gray-coded modulated, but instead
of four modulation types, there are six different types of modulation schemes that are
used with OFDM modulation. They are CCK, PBCC, BPSK, QPSK, 16-QAM and
64-QAM. The D-BPSK and D-QPSK modulation schemes that are involved in this
standard are not used in conjunction with OFDM modulation and therefore have not

been mentioned. The type of scheme chosen is dependent on the application. There are

1
» 2

four convolutional code rates, none % and % used to encode the data stream. The
additional none code rate has been added to the three used previously in the 802.11a
standard. The highest data transmission speed has not been improved on but there
has been extra, slower speeds introduced. These rates, 1 Mbit, 2 Mbits, 5.5 Mbits and
11 Mbits do not use OFDM modulation for their data transfer. They use D-BPSK,
D-QPSK, CCK and PBCC. The transmitter will emit synchronisation frames prior
to emitting data frames. With the different types of rates and transmission speeds,
there are three different synchronisation preambles. They are Long Preamble, Short
Preamble and Extended Rate Preamble - OFDM (ERP-OFDM) [802.11g Std, 2003
pl8]. The long preamble consists of 144 bits of which 128 scrambled, ”all ones” bits
are used for synchronising the receiver. The remaining 16 bits, Start Frame Delimiter
(SEFD), are used to indicate the start of frame. The short Preamble consists of 72 bits.
The first 56 bits are used to synchronise the receiver and they are scrambled ”all zeros”.
The remaining 16 bits are the SFD but are orientated in reverse to the SFD used in
the long preamble. The use of the short preamble is to minimise network overheads
and increase data throughput. The coding of the preamble is done with the use of the

1 Mbits Barker Spreading code. For users whose equipment does not use this code, the

long preamble is used instead. The ERP-OFDM preamble is the same as the 802.11a

4.6 802.16a Wireless MAN 46

preamble, that is, it uses two frames. The first synch frame is a repetition of ten frames
to allow signal detection, Automatic Gain Control (AGC), coarse frequency adjustment
and timing synchronisation. The second frame is used to fine frequency adjustment and
to help in the channel offset estimation. It comprises of two long training frames with
their associated cyclic extension. Due to the different national authorities, there is a
huge variation in the transmitter power levels that network providers are allowed to
operate at. Some of the more familiar levels are 1000 mW (+30 dBm) in the USA,
100 mW (420 dBm) in Europe and its associated partners, Australia included, and 10
mW /MHz (+10 dBm) in Japan. This aspect restricts the coverage of the transmitter to
small areas. To make them profitable, these units are mainly placed in areas that have
high populations such as metropolitan areas and major centres. As with the 802.11a
standard, the receiver uses the Carrier Sense Clear Channel Assessment (CS-CCA) to

sense any signal above -76 dBm and will enter a "busy’ state till the signal disappears.

4.6 802.16a Wireless MAN

The 802.16 specification refers to Broadband Wireless Access Systems being used in the
frequency band from 10 GHz to 66 GHz where Line of Sight (LOS), low multipath and
multi-vendor systems can operate. This standard is otherwise known as Wireless MAN.
The standard can be used for frequencies below 10 GHz, but employs extra functionality
to offset the channel effects. The frequency range below 10 GHz is optional, as that
spectrum is not available in all countries. With the spectrum above 10 GHz, some
part of that spectrum is available in all countries, therefore allowing manufacturers to
provide a product range that can be used in a multitude of countries. This keeps costs
down, which the producers find appealing and therefore the standard is accepted for use
throughout the globe. The standard is very adaptable and can be utilised in a frequency
division duplex (FDD) mode or a Time Division Duplex (TDD) mode. The channel
width used in the USA and associated countries are 1.5, 3, 6 and 12 MHz whilst Europe
and their associated countries use channel widths of 1.75, 3.5, 7, 8, 14 and 28 MHz.
With the differing size of channel widths, there is a range of associated symbol rates.
These range from 1.4 to 26.4 MSymbols/second depending on the modulation chosen.
The different types of modulation, used on the data, are QPSK, 16-QAM and 64-QAM.

4.6 802.16a Wireless MAN 47

The modulation scheme is chosen to ensure the fastest throughput on each link. The
size of the Fast Fourier Transform (FFT) can be adaptable based on the size of the
cyclic prefix but the higher the FFT value, the more sensitive the system is to oscillator
phase noise. The range of FFT values are from 64 to 2048 (2K mode) sub carriers.
A, IEEE recommended, FFT size is 2048 (2K mode) as it is a compromise between
multipath, frequency accuracy and pulse shape. Depending on the size of spectrum
used, the maximum distance that the system can be used before delay starts to cause
unacceptable errors is up to 50 km. This is comparable to the current GSM standard,
but a little short of the CDMA standard. The sizes of the cyclic prefix, in relation to
the OFDM frame, are %, %, % and 3—12 The different modes the standard can operate
in are TDD and FDD. Whilst in TDD mode, the different users are determined by
Time Division Multiple Access (TDMA). TDMA divides the sub carrier into different
timeslots, which is very similar to how the GSM standard operates. Whilst in FDD
mode, the different users are differentiated by Orthogonal Frequency Division Multiple
Access (OFDMA). This is a sub-set of OFDM. Each cluster of 64 sub carriers is grouped
together to form a sub-channel. As the FF'T size increases, the number of sub-channels
increases to a maximum of 32, when the FFT size is 2048 (2K mode). This allows
32 simultaneous users. The benefit to the user is that they only need to transmit
on their allocated sub-channel, which for the 2K mode, is 3% of the frame period.
This is a huge saving in battery use. Also, the user block size stays consistent at 64
sub carriers. The system operates very similar to the 802.11a standard and therefore
is backward compatible with that network. On a frame basis, the sub-channels are
allocated different sub carriers. The allocation algorithm rotates the sub carriers so
that when the number of rotations equals the sub-channel total, it starts again. The
allocation algorithm is not used on the 64 FFT mode frame as it only has one sub-
channel. The rotation of sub-channels helps offset any radio channel fade that affects
the signal. To help keep synchronisation of the signal with the receiver, two modes of
sub-channel synchronisation are utilised. In the first mode, some of the sub-channels
are allocated as Ranging sub-channels. These sub-channels carry no user data and are
used solely for the receiver to synchronise with the received signal. In the second mode,
the ranging signals are allocated sub carriers throughout the data sub-channels. This
allows for the emission of both data and synchronisation signals simultaneously. As

well as the ranging signals, the frames have pilot carriers placed throughout. Some

4.7 FLASH 48

of these pilots are permanently placed on the same sub carrier whilst other pilots are

continuously varied over a cycle of every 4" symbol.

4.7 FLASH

Fast Low Latency Access with Seamless Handoff (FLASH) OFDM uses a fast hopping
sequence which spreads the user across multiple sub carriers. This has been aimed
at Mobile Data Communications specifically. A user that is normally assigned the
same number of and positioned sub carriers is now assigned different positioned sub
carriers on every frame. This is very similar to how CDMA operates. The benefits
of 7spreading” are frequency diversity and interference averaging. Having multiple
users assigned to different sub carriers allows each user to not cause any interference
to any other user and be resilient to deep fades. This concept is used in TDMA with
separate timeslots. The idea of Flash OFDM is to bring the benefits of both CDMA
and TDMA together in the same technology, and to be at least three times more
efficient than CDMA [OFDM for Mobile Data Communications, 2006 p17]. Coupled
with the benefits of these two technologies, Flash OFDM keeps the signalling IP from
end user to end user. This reduces the processing time or latency of the system. For
systems that need fast throughput, such as video conferencing and live gamers, this
idea becomes very attractive. The channel bandwidths for this system are 1.5MHz and
5MHz. This is comparable to the spectrum bands used in CDMA and WCDMA which
are candidates for second and third generation technologies. The system uses spectrum

below the 3GHz frequency. This caters for the majority of mobile communications.

4.8 Chapter Summary

The many and varied implementations of OFDM modulation show the flexibility it
has to meet the requirements of current and future applications. With the increasing
number of users wanting various applications, OFDM modulation is at the forefront
ready to be utilised in any form. From cable fed ADSL to Flash, the different types

of implementations provide different needs to the user although the transmission tech-

4.8 Chapter Summary 49

nology is the same. This allows the maximum efficiency of the transmission channel

regardless of the application.

Chapter 5

Matlab Model

5.1 Chapter Overview

The object of the Matlab simulator is to simulate the operation of an OFDM system.
The data, as a bit stream will be configured and sent through the transmitter system.
This will involve the bit stream being encoded, interleaved, modulated, pilots inserted,
placed through the IFFT function and finally a cyclic extension or guard interval added.
The signal emanating from here will replicate the Intermediate Frequency (IF) signal.
The IF signals are put through a channel where it is affected by Additive White Gaus-
sian noise. The simulation of the Radio Frequency (RF) stage which involves the IQ
Modulator and power amplifier was not simulated. The simulation used Matlab Stu-
dent Version 7.1 as the simulation software. It is not known if the simulator would
operate using previous versions of Matlab. The Simulink block functionality was not

used. The code was written using the various toolboxes that Matlab has at its disposal.

5.2 Preparation

Prior to starting the simulation code, Matlab had to be researched to find how it can
be utilised to run the program. The function of Matlab that allows simulations, to run

with input from the user, is the Graphical User Interface Development Environment

5.3 Initialisation 51

(GUIDE). Guide allows the production of a program that has input functions, such
as buttons and pull down menus, allowing the user to input into the program. It
also allows the set-up of graphs to show the output of the program. Guide lets the
programmer set out the Graphical User Interface (GUI) for the easiest operation. The
Gui is linked to a program code file where the software developer can add different code
so when the user activates a particular function, that code is operated on. Knowing the
different functional blocks in an OFDM transceiver, the Gui was divided into separate
sections. Each section represented a component of the transceiver system. The three
main sections were Transmitter, Channel and Receiver. Each section was broken down

into smaller blocks. The codes for these blocks was written and then added together.

5.3 Initialisation

The simulator is initialised when the file, OFDM_simulator.m, has been run in the
Matlab environment. Ensuring that the Matlab current directory holds all the associ-
ated files, the simulator should initialise and execute with the user’s input. Once the
above has run, the GUI is loaded with the default parameters. Using Guide, Matlab’s
GUI program, the interface was setup automatically. The pull down menus, text boxes,
panels and various buttons were loaded. These had to be setup when building the GUI,
but they became automatic when they were saved in the m file. Various parameters
were setup when the simulator’s opening function was executed. These various param-
eters were updated into the GUI structure, handles. The code to execute this function
is:

guidata (hObject , handles);

5.4 Input

For the use of the simulator, there is a text box where the user enters the packet amount
in bits and the type of data input. There are three types of data input. They are an

all ']’ bit stream, a random bit stream of either '0’s or '1’s and a bit stream from a

5.4 Input 52

video source.

5.4.1 Input Amount

The amount the user would like to enter is entered in the text box. The amount must
be positive. There is no upper limit set to the packet size. The value entered is added
to the GUI structure, handles, so it is available for all other functions. The code used
is:

pval = get (hObject,’ String ’);

pakval = str2double(pval);

handles .pakNumVal = pakval;

5.4.2 All ’1’s bit stream

The use of an all ’1’ bit stream is a common industry standard that is used to test a
communication system. This is commonly called a loop back test. The system is set up
so the output of the last functional block, prior to the radio frequency stage, is looped
back into the input port. If any errors exist, the amount is recorded and the system is
broken down to find the source of the errors. The ’Leap frog’ rule is used to trace the
error source. When using the Leap frog rule, the loop back is placed on the output of
the first block. The data is checked. This step ensures the quality of data entering the
system. As each block is checked for conformity, the loop back is moved towards the
final stage. Various stages may be ’leap frogged’ until the faulty block is found. This
test is an invasive test and therefore the system is inoperable whilst in the test mode.
For an invasive test, the output result could be analysed. The expected result is all '1’s
and any errors and be picked up very easily. The production of the bit stream in the

simulator occurs using the code:

dataorig = ones(s,1);

When the Bit Error Rate (BER) is zero, the test is complete and the system is working

as it should. The random bit stream test is employed to further test the system.

5.4 Input 53

5.4.3 Random bit stream

A random bit stream comprising of either ’0’s or ’1’s, is used as the input to further
test the system’s BER response. The random bit stream assesses the system more
thoroughly than the previous all ’1’s examination. The receiver decision algorithm
must decide whether the data is either a ’0’ or a ’1’. This analysis highlights any
system deficiencies that the all ’1’s exam does not pick up. The test is an invasive

assessment as well. The random bit stream is created using the code:

dataorig = randsrc(s,1,[0 1]);

At the end of the assessment, the result is compared to the input and the errors are
read. The leap frog rule is used till the faulty block is found and rectified. The test
cannot be conducted without knowledge of the input bit stream. As this is random,
this needs to be found prior to every test. This may be difficult if different sections exist
at different locations. For wireless communication systems, this is usually the case. At
the completion of the test with no errors, the system is deemed to have no detrimental
impact on the data. A final assessment of sending through data of a defined structure

or picture is the last system test.

5.4.4 Video

This is the final input data type that the system is assessed on. It comprises of a movie

file, clock.avi. The code used to call the movie file into the simulator is:

mov = aviread (’clock.avi’);
fileinfo = aviinfo (’clock.avi’);
movira = fileinfo .NumFrames;

The file is converted into a bit stream prior to transmission through the simulator. The
file comprises of a cdata matrix and an associated colour map. The cdata matrix is a
matrix of integers that represents each pixel in the picture. The matrix element is an 8
bit integer. The integer indicates the colour of the pixel. The total choice of colours for

an 8 bit integer is 256 colours. The colour map comprises of 4 columns. The first column

5.5 Encoding 54

refers to the colour integer, 1 through to 256. The following 3 columns indicate the
amount of red, green or blue (RGB) levels in the pixel colour. The matrix and colour
maps are converted to a binary bit representation and input into the transceiver. The

code used to convert the matrix and colour map is:

[xmov,movMap| = frame2im (mov(imov));
xmovb = de2bi(xmovab,8);

movMapaa = movMapa * 255;

movMapb = de2bi(movMapaa,8);

movbin = [xmove movMapc | ;

Once the bit stream has been through the simulator, the system BER is measured.
The resultant bit stream is converted back to a movie file, rxclock.avi. The movie file
can be played by any media player to show the effect the system has on the quality of
the picture. The movie comprises of 12 frames. Each frame is shown once per second.
The picture is a clock face where a hand moves from the number 1 to the number 12
in a circular motion. The file shows the effect of noise as the SNR is decreased for each
frame. Through comparison with the line graph output, a subjective relationship can

be made with the resultant movie.

5.5 Encoding

The output of the Input Select block becomes the input stream to the OFDM transmit-
ter. The first block in the transmitter is the Forward Error Correction (FEC) Encoder.
The encoder outputs a number of output bits for each input bit. The number of output
bits is dependent on the code rate chosen. There are three different code rates used.
They are %, % and %. The encoder used in the simulator was a convolutional encoder
that is the model for the WLAN standard. The polynomials used are 7 as the con-
straint, 133 and 171 as the generator matrix feedback entries. The constraint is the
number of bits in the shift register and the matrix entries indicate the bits that are
used to add together to get the output bit. The outputs of the generator have a bit

delay due to the shift register. These outputs are represented by:

5.5 Encoding 55

g1 (D) = D+ D3>+ D'+ DS + D7 (5.1)

g2(D) = D+ D?* + D> + D' + D7 (5.2)

Where:

D represents the unit time shift delay of the shift register

The generator as shown:

Cutput A
3
T T T T T T T
—
Input
¥
Cutput B

Figure 5.1: Simulator convolutional encoder

The output bit A shall precede the output bit B. The use of bit puncturing is employed

to gain higher code rates.

5.5.1 Half rate Code Rate

The half rate outputs two bits for every input bit. This is the standard output from
the encoder. The output bits are determined by the input bit plus the contents of the

5.5 Encoding 56

shift register. These bits may be the starting state of the shift register or the previous
seven bits of the data stream. The code used to encode the bit stream with the code

rate is:

t = poly2trellis (7,[133 171]);

tcode = convenc (codeln ,t);

5.5.2 Two Thirds Code Rate

The two thirds code rate uses the half rate as previous but, omits every fourth bit. The
pattern is two input bits long making four output bits. When the bit has been omitted,

the output has three output bits for every two input bits.

Figure 5.2: Two-thirds code rate output

The code used to generate the two thirds code rate is:

t = poly2trellis (7,[133 171]);
tcode = convenc (codeln ,t);
punct23code = tcode;
punct23code (4:4:end)=[];

5.5.3 Three Quarters Code Rate

As with the previous code rate, the three-quarters code rate is the half rate code with
some bits punctured. The puncturing pattern is three input bits long. This leaves six

output bits prior to puncturing. The code omits every fourth and fifth bit so after

5.6 Interleaving 57

three bits have entered the function, four output bits are produced. This represents

four output bits for every three input bits.

Figure 5.3: Three-quarters code rate output

The code that produces the three-quarters code rate was:

t = poly2trellis (7,[133 171]);
tcode = convenc (codeln ,t);
punct34code = tcode;
punct34code (4:6:end)=[];
punct34code (4:5:end)=][];

5.6 Interleaving

The data stream from the encoder block is put into the interleaving function. The
function of this block is to spread the data bits over the sub carrier channels. This
is to offset any deep fades that occur in the wireless channel. The wireless channel is
a wideband channel and rarely encounters a flat, consistent response across the entire
spectrum. As deep fades affect more than one sub carrier channel, a block of data is
affected. By spreading adjacent bits across the channels, the bits affected by fades will
be isolated, once the bits have been re-arranged in their proper order. The effect of the
fade is reduced. The interleaver function used in the simulation is a random process,
randperm. The bits are placed in a block equal to the number of sub carriers multiplied
by the number of bits per symbol. The number of bits per symbol is dependent on
the modulation type used to transfer the data. The types of modulation are BPSK,
QPSK, 16-QAM and 64-QAM. If the WLAN standard is being simulated, the number
of sub-carriers is forty eight and therefore the block lengths are 48, 96, 192 and 288

bits respectively. The length of the block is referred to as the interleaving depth. This

5.7 Modulation 58

parameter defines the delay the interleaver introduces to the system. As the depth gets
larger for the different modulation schemes employed, the delay gets larger accordingly.
The length of the data stream is padded out so it becomes a multiple of the block
length. This ensures there are complete blocks even at the end of the data stream. The
integers in the permutation matrix range from 1 to the block length. These integers
are randomly rearranged. The bits in the data block are rearranged according to the
permutation matrix. The permutation matrix is carried through to the receiver so the
de-interleaving function can occur. The receiver requires the matrix as it is different
for each data transfer. The code used to generate the interleaved data using a random

block permutation is:-

q = randperm ((NoSubxNoBits)). ’;

newintrlvd = intrlv (levMess ,q);

5.7 Modulation

Once the data has been through the interleaving process, it is placed into the Modula-
tion function. The modulation function is to convert the binary bit stream into complex
symbols so that these information symbols can be transmitted through a channel. The
complex symbols are RF expressions for the data stream and are generally expressed

as:

s(t) = A(t)elwet 00 (5.3)

Where:
A is the signal amplitude,
w, is the carrier frequency in radians and

6 (t) is the phase.

The radian carrier frequency is calculated from the equation:

5.7 Modulation 59

we = 27f, (5.4)

Where:

fe is the carrier frequency in hertz.

The types of modulation used in the simulator are BPSK, QPSK, 16-QAM and 64-
QAM. Added to these types, is a choice of no modulation which was used as a control
to compare all the different types for their impact. The choice of no modulation means
that the data out is a replica of the data in. No processing of the data occurs with this

choice.

5.7.1 BPSK Modulation

BPSK modulation involves placing 1 bit of the data stream onto a RF carrier. The data
stream is checked to ensure there are enough bits to make complete symbols. When the
end of the data stream is reached, there may not be enough bits to make a symbol, so
extra bits are padded onto the length. With BPSK modulation, the number of symbols
is the same as the number of bits. This is due to the 1 bit per symbol parameter of

BPSK. The code used to check the symbol number is:

M=2;

k = log2(M);

input_sym_len = inModLengthOrig/k;

sym_len_.rnd = ceil(input_sym_len);
inputLength = sym_len_rnd * k;

msgExtBitsLen = inputLength — inModLengthOrig;
msgExtBits = ones(1,msgExtBitsLen);

newMess = [mod_input msgExtBits];

newMessLen = length (newMess);

newMess = newMess ’;

5.7 Modulation 60

Although the code is not used as there is a direct relationship, it was still added to the
function in case future use called for data changes. The data is converted from binary
bits to a decimal representation. The data stream is not changed in any way, as the
decimal range for BPSK is from 0 to 1. It is still added for program conformity. The

code for the conversion is:

msg_sym = bi2de(msg_sym_reshape.’,’left —-msb’);

Once the data has being changed to decimal notation, it is modulated using the code:

msg_tx = pskmod (msg_sym ,M);

A scatter plot produced from Matlab shows the correct constellation map for BPSK

modulation.
scatter plat
3 T T T T T
at 4
1 L .
[ak]
2
g 0F + + .
(1]
=
i
At 4
21 4
-3 I I I I I
-3 -2 -1 o 1 2 3

In-Phase

Figure 5.4: BPSK simulator scatter plot

5.7 Modulation 61

5.7.2 QPSK Modulation

QPSK modulation involves placing two bits onto a RF carrier. The same process of
checking is carried out to ensure there are enough bits to make complete symbols. For
QPSK, the number of bits has to be an even number. If the original data length is an
odd number, the data stream is padded with an extra '1’. It is converted to a decimal
number that ranges from 0 to 3. The binary range is 00 to 11. The code to convert
and modulate is the same. The difference is the modulation parameter M where for
BPSK, the value is 2 and for QPSK, it is 4. A scatter plot is produced to ensure the

code matches the operation. The scatter plot is:

acatter plot
3 T T T T T

Cuadrature
[}
*
*
1

In-Phase

Figure 5.5: QPSK simulator scatter plot

5.7 Modulation 62

5.7.3 16-QAM Modulation

16-QAM modulation involves the placing of 4 bits on a RF carrier. The process of
checking the data length to ensure it is a multiple of 4 and padding it with ’1’s till it
is, is very involved. It is converted to decimal whose range is now from 0 to 15 (0000

to 1111). As the modulation scheme is not a PSK scheme, the code to modulate is:

msg_tx = gammod(msg_sym ,M);

The modulation parameter M is 16 and the associated scatter plot is:

Scatter plaot

5

4t |
3 |
2t |
1]

Cluzdrature
(]

-5 0 5
In-Phase

Figure 5.6: 16-QAM simulator scatter plot

5.7.4 64-QAM Modulation

64-QAM modulation enables 6 bits of data to be placed on each RF carrier. The
process of ensuring the data length is a multiple of six is used prior to decimalisation

and modulation. The range of decimal values for 64-QAM is from 0 to 63 (000000 to

5.8 IFFT, Pilot Insertion and Cyclic Extension 63

111111). The scatter plot is:

Scatter plot

T T T
B n i
* + * + * + * +
E L]
+ + + + + + + +
4t J
* + * + * + * +
2 L]
@
S +* + +* + +* + +* +
=
£ g !
@
= + + * + * + * +
i
21]
* * * * * * * +
At 1
* + * + * + * +
Fl]
* + * + * + * +
2l |
L L L
-5 0 5
In-Phase

Figure 5.7: 64-QAM simulator scatter plot

5.8 IFFT, Pilot Insertion and Cyclic Extension

To ensure the correct data is extracted from the received signal, pilot sub-carriers are
placed throughout the OFDM symbol. The complex symbols, from the modulation
function block, are measured to ensure its length is a multiple of the data sub-carriers.
If the length is not, the symbol stream is padded with ’1’s. The length is made a
multiple of the data sub-carriers so that the output of the IFFT function block is a

number of complete OFDM symbols. The code that ensures the length is correct is:

sym_len_col = (length(ifft_input)/noDatCar);
sym_len_rnd = ceil(sym_len_col);
inpifftLen = sym_len_rnd % noDatCar;

ifftExtBitsLen = inpifftLen — ifftLenOrig;

5.8 IFFT, Pilot Insertion and Cyclic Extension 64

ifftExtBits = ones(1,ifftExtBitsLen);
ifft _input = ifft_input ’;

newifftMess = [ifft_input ifftExtBits];
newifftLen = length (newifftMess);

)

newifftMess = newifftMess ’;

Once the symbol stream length is correct, the symbols are assigned to the sub-carrier

index. The code for the 64-IFFT is:

ifftSymPil ([7:11,13:25,27:32,34:39 ,41:53 ,55:59],:) =
ifftSym ([1:5,6:18,19:24,25:30,31:43 ,44:48] ,:);

The various pilot tones, zero pads and DC pad are assigned their relevant sub-carrier

index. The code for the 64-IFFT is:

ifftSymPil ([1:6] ,:) = 0;
ifftSymPil ([12],:) = 1;
ifftSymPil ([26],:) = 1;
ifftSymPil ([33],:) = 0;
ifftSymPil ([40] ,:) = 1;
ifftSymPil ([54],:) = —1;
ifftSymPil ([60:64] ,:) = 0;

The OFDM data symbols have now been assigned the proper data symbol to their
respective sub-carrier index and they are transformed using the IFFT function. The

code is:

ifftSymOut = ifft (ifftSymPil);

The cyclic extension is added to the OFDM data symbol to make the complete OFDM

symbol. The code that incorporates the cyclic extension for the 64-IFFT is:

ifftSymPrefix ([1:16 ,17:80],:) = ifftSymOut ([49:64 ,1:64]

The OFDM symbols are serialised and waiting for the preamble to be added before it

is transmitted. The code for the other IFFT is exactly the same except the assignment

1)

5.9 Preamble 65

of the sub-carrier index is larger to incorporate the bigger IFFT sizes. All the program

code is located in Appendix B.

5.9 Preamble

The preamble is used to allow the receiver and the received symbol stream to synchro-
nise to each other prior to the data. This allows the receiver to gain some knowledge
of the impact the channel has had on the transmitted signal. The receiver has a set
of known OFDM symbols that it compares the received preamble with. Through the
comparison process, the phase and amplitude changes can be estimated and offset. The
simulator’s preset preamble is aligned with the 802.11 preamble and is the same for all
the different scenarios. This consists of 10 short training symbols followed by 2 long

training symbols. The code to produce the preamble is:

pl6([1:16],:) = pshortifft ([1:16],:);
peramsh = [pl6 pl6 pl6 pl6 pl6 pl6 pl6é pl6 pl6 pl6];

plongifftPrefix ([1:16 ,17:80],:) = plongifft ([49:64,1:64],:);

peramblelo ([1:16,17:32,33:96,97:160] ,:) =
plongifft ([33:48, ... 49:64,1:64,1:64],:);

preamblefull = [peramblesh peramblelo |;

The preamble is added to the OFDM symbols at the start of the OFDM transmission.
The code is:

frameout = [preamble ifftoutput |;

The parameter frameout is the complete OFDM transmission and it is sent into the

wireless channel to the receiver.

5.10 RF/IQ Modulation

The RF / 1Q Modulation stage of the OFDM simulator was studied and tested. The

functional diagram for this stage was:

5.11 Channel 66

Cos wt
OFDM
Symbols in
IQ Modulator
HPaA
- Bin wt

Figure 5.8: Simulator RF stage diagram

The simulator code did not work as the receiver received every OFDM symbol as an
error. Whilst simulators generally only test to the IF or baseband signal, the application
of the RF stage would highlight the technology at different frequencies. A more in depth
study of radio simulation practises is needed and it is beyond my current knowledge

base.

5.11 Channel

The channel was set up to create noise and to induce fading. The transmitted signal
would be affected by a Rayleigh or Rician fading channel and white Gaussian noise
would be added. The user can choose which fading channel type they prefer but the
white Gaussian noise is always utilised. Noise is considered universal and to not have
noise included in the simulation is not a true indication of the systems behaviour. The
capability to alter the value of the signal Eb/No is to test the signal under varying
conditions. A graph could be produced to highlight these effects. The channel code is:

fadedSig = filter (chan, channin);

5.12 Receiver 67

channout = awgn(fadedSig ,snr);

5.12 Receiver

The receiver is to detect the start of the transmission, synchronise and offset any
changes made to the signal and remove any information from it. It is basically the
reverse of the transmitter with extra timing and frequency functions. The preamble is
removed and is changed from the complex Cartesian values to complex polar values.
The known preamble is compared with the received preamble and the difference is the
channel impact on the signal. These values become the channel estimate to adjust the

received signal values with so as to offset the channel impact. The code is:

rxIpream = real (rxIQpre);

rxQpream = imag(rxIQpre);

[rxTHETA ,rxRHO] = cart2pol (rxIpream ,rxQpream);
preamresrho = txRHO ./ rxRHO;

preamresthet = txXTHETA — rxTHETA;

5.13 Output

The output of the simulator is in a matrix as well as a graph. The test results always
compare the simulation parameters to see what the BER will be with a set value for
SNR. The BER values are recorded as the SNR is varied. This shows the response
the simulator has in varying conditions. The test results can be chosen depending on
the user’s choice. The choices are single test, code rate comparison, modulation type
comparison and video test results. The single rate test tests the simulator as set by the
user. It outputs a graph to highlight the system’s response. It does not compare to
a baseline measure. The code rate comparison compares the different code rates used
in the simulator with each other and a baseline, non-encoded signal. It highlights how
well the system setup compares using different rates. The modulation type comparison

compares the different types of modulation schemes with each other and as well as a

5.14 Chapter Summary 68

base-line non-modulated signal. The video test gives a real situation demonstration of
what the graphical figures would look like if used. A graph showing the system response
is given and the user can make a subjective decision on how well the system responds

to the given setup.

5.14 Chapter Summary

The implementation of the OFDM simulator in Matlab was very involved and com-
plex. By breaking the system down into functional blocks, the simulation could be
achieved. Being familiar with the code and the many different commands make the
task of coding a lot easier and this would come with experience. Whilst the system
was being constructed, the output of the functional blocks was being compared with
the theoretical results, to highlight the quality of the code written. This allowed for
the detection of errors before the simulations were started. The RF stage was found to
not be functioning correctly and was removed. A deeper knowledge of Matlab and its

code commands would solve this issue.

Chapter 6

Results and Discussions

6.1 Results

6.1.1 Simulation GUI Screen

Once the simulator has been started, the user will be prompted to input the system

parameters for their OFDM transmission. The GUI screen is:

<} <Student Yersionz : DFDM_simulator = |E| ﬂ
— Transtritter Barry Dunbar
Input Cocling Madulstion IFFT Dr. Wi Xiang
Usa
Fandorm || fore rate || [pacam i e =l
— Channel
Datar Size (kits) sl () EbiMo Min.
10000 20,000,000 I g
Ehmo Step.
2
Ebitla hian
—Ooutput——————————————— I
s — Receiver =
Fading Type
Rayleigh = I
Output Type
{* Single Test
i Compare Codes Run
™ Compare hodulstions
i Copare Sub-cartier Size
Cloze |

Figure 6.1: Simulator GUI screen

6.1 Results 70

6.1.2 Typical test result screens

The simulator can give the results of a system simulation in a number of screens. The
choice is decided by the user. The choices of screen results are a single test result,
a code rate comparison test result, a modulation type comparison test result and a
sub-carrier size comparison test result. The user can choose the size of data that they
would like to send in bits, the type of data, either a random bit stream or an all ’1’s bit
stream. They which type of encoding, either none, %, % or %. The modulation type is
chosen as either none, BPSK, QPSK, 16-QAM or 64-QAM. The size of the sub-carrier
is chosen as either 64, 256, 512, 1024, 2048, 4096 or 8192. The screens come with an

associated matrix of the values of the system simulation BER. A single test screen shot

is:

«<Student ¥ersion > Figure 1 :-, 1Ol x|
File Edit Wiew Insert Tools Desktop ‘Window Help ~

IS EREEE=

QOFDM Transmission System Test result

Bit Error Rate (BER)

15 16 17 18 19 20 21)
SNR (dE)

Figure 6.2: Typical single test output

A typical code rate comparison screen shot is:

6.1 Results

71

<) <Student Yersion > Figure 1 . =13l
File Edit Wiew Insert Tools Deskiop ‘Window Help £

DSdE k|eaN® |08 O

DOFDM Transmission, "MONE" Modulation Rate, Varying Code Rates

L T E| TIEI: T

Bit Errar Rate (BER)

Figure 6.3: Typical code rate comparison test output

A typical modulation scheme comparison screen shot is:

=)} <Student Yersion > Figure 1 f I]
File Edit Wiew Insert Tools Desktop ‘Window Help £

Deda k|eaane || 0B O

DOFDM Transmission, "MONE" Code Rate, Yarying Modulation Rates
10

Bit Errar Rate (BER)

Figure 6.4: Typical modulation rate comparison test output

6.1 Results 72

A typical sub-carrier size comparison screen shot is:

<} <Student ¥ersion:> Figure 1 I] [
File Edit WYiew Insert Tools Deskbop ‘Window Help u

D& hRQAM®|(E (08| 83

OFDM Transmission, Varying Sub Carrier Size

=

B | | 7

Bit Errar Rate (BER)

Figure 6.5: Typical sub-carrier size comparison test output

6.1.3 Single system test result

For a given scenario, the BER of the system is found with a varying level of SNR. The
values are placed in a graph for easy interpretation of the figures. The performance of
any type of transmission can be found. If the user needs to know how well a system
would work at a particular BER, this graph will highlight the performance.From the
graphical result below, it can clearly be seen that as the power of a signal increases,
the error rate decreases. There is a power level where the error rate flattens out and
becomes constant. This seems to occur at approximately 15 dB. The results are left in

the matrix, bitout. A graphical view of the System Test result is:

6.1 Results 73

<) <Student ¥ersion> Figure 1 3 _I— _ID il
File Edit Yiew Insert Tools Deskiop ‘Window Help Y

NSHSE »RAND|¥ (0B 50

i OFDM Transmission Systern Test result
10

i

i

Bit Errar Rate (BER)
=

Figure 6.6: Single test output

6.1.4 Code rate comparison test result

The code rate test compares the settings the user has defined for their OFDM trans-
mission with the different types of code rates to find the optimum code rate. The same
channel and data parameters, that the user chose, are used except the code rate is
varied for all types. From the graphical results below, a none coded signal has a BER
of 0.01 at a level of approximately 41 dB. A similar signal that is coded with the three
quarter rate has a BER of 0.01 at approximately 36 dB. A maximum difference of 5 dB
was found as all the other code rates fell between these two extremes. At about 25 dB
the BER level levels out for all types of code rates. In noisy areas where the E; /N, of
the signal is below this level, the use of a code rate adds no extra benefit. A test result

for varying code rates is:

6.1 Results

74

File

<) «Student Yersion: Figure 1

Edit Wiew Insert Tools Desktop ‘Window Help

P& k|RAM®|EDE O

Bit Errar Rate (BER)

0 OF DM Transmission, Warying Sub Carrier Size

=
D.
(2

Figure 6.7: No code test output

v} <Student Yersion Figure 1

File Edit Wiew Insert Tools Desktop ‘Window Help

8 [m] 3

Peda k|eaaM®|E 0B =0

Bit Error Rate (BER)

Q OFDM Transmission, Varying Sub Carrier Size

5 10 15 20 25 a0 3
ENR (dE)

Figure 6.8: Three quarter code test output

6.1 Results

75

6.1.5 Modulation type comparison test result

A modulation comparison screen shot is:

File:

R e S

Edit Wiew Insert Tools Desktop ‘Window Help o

O

sHE | KRaTm® £ 08|00

OFDM Transmission, Yarying Sub Carrier Size

Bit Error Rate (BER)

3 10 15 20 25 a0 35 40 45
SNR (dE)

Figure 6.9: No modulation test output

<Student Yersion - Figure 1 =10 x|
File Edit Wiew Insert Tools Desktop ‘window Help ~
W IR E I EE=

OFDM Transmission, Yarying Sub Carrier Size

15 T T

Bit Error Rate (BER)

15 20 25 A £ 40 45 |
SNR (4B

Figure 6.10: 64-QAM modulation test output

The modulation type comparison test takes the user defined parameters for their OFDM

6.1 Results 76

transmission and varies the modulation type so that the optimum modulation scheme
can be found. The result is a graph that compares the different schemes against each
other and a base-line non-modulated signal. From the results above, a non-modulated
signal has a result that is approximately 12 dB than a signal that is modulated. This
is constant regardless of the different carrier size. This shows the use of a modulation

scheme is necessary for data transmission. The values are stored in a matrix, bitout.

6.1.6 Sub-carrier size comparison test result

The sub-carrier size comparison test compares the different sizes of sub-carriers that
are available whilst using the user defined system parameters. The different sizes are
64, 256, 1024, 2048, 4096 and 8192 sub-carriers. The result is a graph that can be
interpreted very easily to find the most optimum sub-carrier size. From the graphs
below, the 64 sub-carrier transmission has the best result at 22 dB. For the transmission
with 8192 sub-carriers, the best result is 44 dB for the same modulation scheme. The
64 sub-carrier system has a better response by approximately 22 dB regardless of the
modulation scheme used. The values are, also, stored in a matrix, bitout. A typical

sub-carrier size comparison screen shot is:

<) <Student Yersion:> Figure 1 ';: i =] |
File Edit Yiew Insert Tools Desktop ‘Window Help £

W I EE R EE=

OFDM Transmission, "MONE" Code Rate, Warying Modulation Rates

Bit Errar Rate (BER)

5 10 15 20 25 a0 * 40
SNR (dB)

Figure 6.11: Sub-carrier size 64 test output

6.1 Results

77

=10l

File Edit ‘iew Insert Tools Desktop Window Help

DeEE kRa®e | 0B =0

N OFDM Transmission, "MOME" Code Rat

T T T T 1=

e, Yarying Modulation Rates
—1— - -

E| E

Bit Error Rate (BER)

5 e . e, i e 5
SNR (dB)

Figure 6.12: Sub-carrier size 8192 test output

6.1.7 Video test result

The video test result is a movie file output based on a movie as its input.

Figure 6.13: Video test input, clock.avi

6.1 Results 78

The output movie would highlight the differences between its picture and colour quality
and the input movie’s picture and quality. The output movie, rxclock.avi, is written
to the working directory of the simulator. A media program, such as Windows Media
Player, is needed to play the movie to see the differences. The test movie, clock.avi,
is the face of a clock with a rotating hand. The movie has 12 frames and is played at
1 frame per second. As the frames are played, the hand rotates around stopping at
each number on the face. The test is set so that as the frames are played, the SNR
was reduced to highlight the impact that a noisy environment would have on a movie

or television broadcast.

Figure 6.14: Video test output with E,/N, @ 35 dB, rxclocka.avi

At frame 1, the E; /N, was set at 35 dB. This should produce a quality picture. The
frames were sent through the system with a reduction of the E; /N, at 3 dB per frame.
This left the range from 2 dB to 35 dB. At approximately 30 dB, the picture started to
show grainy spots. At 17 dB, the picture was non-existent due to the noise. A matrix
of the BER, bitout, corresponds to the errors each frame has. From a user’s subjective
viewpoint, the BER amount can be found for a movie broadcast. A suitable amount

of errors can be found before it impacts on the movie quality.

6.1 Results 79

Figure 6.15: Video test output with E,/N, @ 29 dB, rxclocka.avi

Figure 6.16: Video test output with E,/N, @ 23 dB, rxclocka.avi

6.2 Discussion 80

Figure 6.17: Video test output with E,/N, @ 17 dB, rxclocka.avi

6.2 Discussion

6.2.1 Research

The research for this project has shown the possibilities of this technology in the coming
future. There are already many different types of applications in use clearly showing
the flexibility the modulation technique has to offer. As technology progresses, the ad-
vent of this technique to ensure continual connectivity is becoming more of a realistic
goal. Within the last century, many communication techniques have been introduced
that have made it possible to consider the Earth a much smaller place than ever. Peo-
ple have been able to contact other people without a large effort of getting together.
All of these techniques relied on serial transmission. With OFDM, this technique of
sending information in a parallel data transfer has broken the mould of the previous
century. Given the possibilities of OFDM transmission, many groups have researched
this approach and have developed many new standards for commercial use. The time

between the development of these standards to the wide spread use of the technology

6.2 Discussion 81

has been very short. Such is the case of the 802.11g standard known as ”WIFI”. It
was ratified in late 20003 and many businesses were upgrading their 802.11b equipment
less than 2 years later. The demand for faster and faster connections is pushing the
technology ahead as can be seen with the popularity of digital televisions. The project
has given me a thorough insight into the possibilities of the future and the communi-
cation approaches that may be used to achieve them. I have learnt that a thorough
understanding of the critical aspects of an idea can lead to possible new methods to

improve the current environment.

6.2.2 Guide Vs Simulink

For the simulator, Guide, Matlab’s GUI program was used. Another alternative to
Guide is Simulink. This is supported by the Matlab people. Simulink is purposely
produced to simulate, model and analyse systems. Without a complete understanding
of Simulink, it looks a lot easier than writing each functional block in Guide and its
associated m files. The blocks are preset and only the parameters need to be filled prior

to the operation of the simulation. This would save a lot of time coding and debugging.

6.2.3 Goal Achievement

The use of a simulator that mirrors theory is the ultimate result of any simulation. It
proves that the research, application of the techniques used and the investigation of
the environment that impacts on the technology have been understood. Through the
research into OFDM transmission, a wide variety of applications have been found to
operate. This allows for a broad use for the simulator to imitate. As with all wireless
communications, the channel will impact on the signal being transmitted through it. To
offset these changes, is to show that a thorough understanding of a radio channel was
achieved. The design of the simulator can be verified with the knowledge of theoretical
outputs of each functional block. The output of each block was checked to ensure the
theory matched prior to advancing to the next block. This practise ensured a quality
simulator could be achieved. Being able to alter the systems parameters to suit many

different environments allows the flexibility to find any short comings the modulation

6.3 Chapter Summary 82

technique would have.

6.3 Chapter Summary

From the results of the simulation, a few rules could be gleaned. They are:

1. A modulation scheme must be used for all types of communications.

2. The use of different codes did not have a large impact on improving the signal

and its robustness towards noise.

3. The size of the sub-carriers was best met by the smallest size, 64. As the sub-

carrier size increased, the response of the system decreased.

For the maximum efficiency of the system, a sub-carrier size of 64, a modulation scheme

using 64-QAM and the three-quarter code rate.

Chapter 7

Conclusions and Further Work

7.1 Conclusions

The results of the simulator show a relationship between the theory and the simulator.
With all simulators, being able to verify that the results mirror the experiences in the
outside world can be a difficult objective to achieve. With the graphical results, it is
clear that as the SNR increases, the BER decreases. This point shows that as the signal
has more power, it is more resistant to the impact of noise. With the different code
rates, their use clearly shows an improvement in the SNR response of the system. At
a BER of 0.001, the SNR is a minimum of 3 dB better than the non-coded system.
This allows for a saving in costs as half the power is needed to achieve the same result.
As with all scenarios, once the SNR goes below a defined level, the use of different
code rates do not help the transmission. That level seems to be approximately 12 dB.
For the use of different modulation schemes, a huge improvement of upwards to 20
dB can be seen using different modulation schemes. Again, once the SNR goes below
approximately 10 dB, the use of any scheme does not make any improvement to the
BER. The use of a larger sub-carrier size does not improve the system’s response to the
noisy channel. The lowest sub-carrier size, 64, has an improvement of approximately
20 dB over the 8K sub-carrier size. The most efficient system parameters would be
a three-quarter code rate, a 64-QAM modulation scheme and a sub-carrier size of 64.

This is very similar to the highest rate system found in the WLAN standard. The video

7.2 Further Work 84

test shows the impact that BER would have on the quality of a broadcast transmission.
Through the matching of a BER value to a picture frame, a subjective outlook can be
achieved. This is point for designers to start as they can choose an appropriate BER

level and see the impact it would have on the signal.

7.2 Further Work

OFDM modulation is a very flexible transmission technique. It has a broad range of
uses of which there are some applications already in commercial use. The dissertation
only covers a minute amount of issues that affect the modulation scheme. For the

future work, the following areas could be investigated

The use of Simulink as the simulation environment

e Introduction of narrowband noise and its impact on throughput

e Varying the size of the cyclic extension

e Use of a RF stage to fully complement the baseband stage

e The creation of a model test bed to trial the technique in real scenarios

e Consider the impact of current mobility issues, such as hand-offs, would have on

OFDM as a wireless, mobile communication system.

e Research the implications on security and how various levels of security can be

utilised.

References

Adams, J. (1998), Risk, UCL Press, London.

Allied Telesyn and Bothell (2005), ‘DSL White Paper’, www.alliedtelesyn.com. viewed
5th July 2006.

Armstrong, J. (2002a), OFDM - Orthogonal Frequency Division Multiplexing, Techni-

cal report, IEEE Signal Processing Society - Victorian Chapter, Melbourne.

Armstrong, J. (2002b), ‘OFDM Fundamentals and Emerging Applications’, Monash

University.

Bahai, A. R., Saltzberg, B. R. & Ergen, M. (2004), Multi-Carrier Digital Commu-
nications: Theory and Applications of OFDM, second edn, Springer Science +

Business Media Inc., New York.

Chuang, J., Sollenberger, N. & Labs-Research, A. &. T. (2000), Beyond 3G - Wide-
band Wireless Data Access Based on OFDM and Dynamic Packet Assignment,

Technical report, IEEE, New Jersey.

DAB (2006), Radio Broadcasting Systems: Digital Audio Broadcasting to Mobile,
Portable and Fived Receivers (2006-06), www.etsi.org. viewed 7th July 2006.

DVB (2004a), Digital Video Broadcasting (DVB): Framing structure, channel coding
and modulation for digital terrestrial television (2004-11), www.etsi.org. viewed

7th July 2006.

DVB (2004b), Digital Video Broadcasting (DVB): Transmission System for Handheld
Terminals (DVB-H)(2004-11), www.etsi.org. viewed 7th July 2006.

REFERENCES 86

Engels, M. (2003), Wireless OFDM Systems : How to make them work?, Kluwer Aca-

demic Publishers, Norwell, Massachusetts.

Fla (2006), OFDM for Mobile Data Communications,

www.iec.org/online/tutorials/ofdm. viewed 12th July 2006.

Hanzo, L., Miinster, M., Choi, B. & Keller, T. (2003), OFDM and MC-CDMA for
Broadband Multi-User Communications, WLANs and Broadcasting, John Wiley
& Sons Ltd, West Sussex, England.

Hanzo, L., Ng, S., Keller, T. & Webb, W. (2004), Quadrature Amplitude Modulation
From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded
OFDM, CDMA and MC-CDMA Systems, second edn, John Wiley & Sons Ltd,
West Sussex, England.

Hanzo, L., Wong, C. & YEE, M. (2002), Adaptive Wireless Transceivers : Turbo-Coded,
Turbo-Equalized and Space-Time Coded TDMA, CDMA and OFDM Systems, John
Wiley & Sons Ltd, West Sussex, England.

Heiskala, J. & Terry, J. (2002), OFDM Wireless LANs : A Theoretical and Practical
Guide, Sams Publishing, U.S.A.

Intini, A. (2000), ‘Orthogonal Frequency Division Multiplexing for Wireless Networks’,

University of California, California.

Johnston, S., Gostelow, P. & Jones, E. (1999), Engineering and Society an Australian
perspective, second edn, Addison-Wesley Longman Australia Pty Limited, South

Melbourne.

Kraus, J. D. & Fleisch, D. A. (1999), Electromagnetics with Applications, fifth edn,

McGraw-Hill International, Singapore.

Miller, G. M. (1993), Modern Electronic Communication, fourth edn, Regents/Prentice

Hall International, Englewood Cliffs, New Jersey.
Prasad, R. (2004), OFDM for Wireless Communications Systems, Artech House, U.S.A.

WLA (2003a), Part 11: Wireless LAN Medium Access Control (MAC) and Physical
(PHY) specifications. Amendment 4: Further Higher Data Rate Extension in the
2./ GHz Band, www.ieee.org. viewed 7th March 2006.

REFERENCES 87

WLA (2003b), Part 11: Wireless LAN Medium Access Control (MAC) and Physical
(PHY) specifications. High-speed Physical Layer in the 5 GHz Band, www.ieee.org.
viewed 7th March 2006.

Young, P. H. (1985), Electronic Communication Techniques, second edn, Merrill Pub-
lishing, Columbus, Ohio.

Appendix A

Project Specification

89

University of Southern Queensland
FACULTY OF ENGINEERING AND SURVEYING
ENG 4111/4112 Research Project
PROJECT SPECIFICATION

For: Barry DUNBAR

TOPIC: Software Simulator Development for Orthogonal Frequency
Division Multiplexing (OFDM) Modulation

SUPERVISOR: Wei Xiang

ENROLMENT: ENG 4111 - S1, X, 2006

ENG 4122 - S2, X, 2006

PROJECT AIM: This project aims to develop a software simulator to determine
the robustness of an Orthogonal Frequency Division
Multiplexing (OFDM) modulation transceiver whilst subjected

to varying system parameters.

PROGRAMME: ISSUE A, 27" March 2006

1. Research the methodology of Orthogonal Frequency Division Multiplexing (OFDM)

modulation.
2. Examine a radio channel and discuss the impact on communication signals and systems.

3. Design an Orthogonal Frequency Division Multiplexing (OFDM) modulation simulator
using MATLAB.

4. Verify the simulation results matching the theoretical results of an Orthogonal

Frequency Division Multiplexing (OFDM) transceiver system.

5. Analyse the simulation results relative to different scenarios and rationalise these results

with regard to network integrity.

As time permits:

1. Consider the possible hand-over problems, which become apparent to mobile network

users, and solutions to these problems.

2. Develop the simulator so that it incorporates various levels of security.

AGREED: (Student) (Supervisor)
(Dated) / /

Appendix B

Program Code

B.1 OFDM_Simulator 91

B.1 OFDM Simulator

%% TITLE
YISTTTISTTTISTTISSTTIISTIISSTIIISTTTISSTITSSTTIISSTIISSTTIISSTITSTITIS o
YIS TTISSTTTISTITSSTTIISTTISSTTIISITISSTITSS T TSI TS TITSSTTTSSTTITS o
TSTTSTSTT T Project — OFDM Simulator

%

%Barry Dunbar 0050022993

YIS TTISSTTTISSTTISSTTITSTTISSTTTISITISSTITSSTTISSTITSSTSTIISSTSTSSTTITS o
%% Setup a Guide screen

function varargout = OFDM simulator(varargin)

%Program Settings and Parameters
TIISSTTTTTIISSTTTTIISSSISTTTTISSSSTTTTIISSSTSITTIITISSSTSITTSTISSSISTITT o
%% OFDM SIMULATOR, M-file for OFDM simulator.figTITLE

%

% OFDM SIMULATOR, by itself , creates a new OFDMSIMULATOR or
% raises the existing

% singleton x*.

%

% H = OFDM.SIMULATOR, returns the handle to a new OFDMSIMULATOR
%o or the handle to

% the existing singleton x.

%

% OFDM_SIMULATOR (’CALLBACK’ , hObject ,eventData , handles ,...)

% calls the local

% function named CALLBACK in OFDMSIMULATOR.M with the given
% input arguments.

%

% OFDM.SIMULATOR(' Property ', ’Value ’ ,...) creates a new

% OFDM SIMULATOR, or raises the

B.1 OFDM_Simulator 92

% existing singletonx. Starting from the left , property

% value pairs are

% applied to the GUI before OFDM _simulator_OpeningFunction
% gets called. An

% unrecognized property name or invalid value makes property
% application

% stop. All inputs are passed to OFDM_simulator_OpeningFcn
% via varargin.

%

% x*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows
% only one

% instance to run (singleton)”.

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help OFDM_simulator

% Last Modified by GUIDE v2.5 25—0ct—2006 00:33:12

TSI TSSTITTTTTSISSSSTIITTTSTSISSSIITTTTSISSSSIIITTTTSISSSTIITTTTSISSSSIIT o
%% Begin initialization code — DO NOT EDIT
%

gui_Singleton = 1; gui_State = struct (’gui_-Name’, mfilename ,

"gui_Singleton’, gui_Singleton ,
"gui_OpeningFcn’, QOFDM_simulator_OpeningFcn
"gui_OutputFen’, @QOFDM_simulator_OutputFcn,
"gui_LayoutFen’, []
"gui_Callback 7, [1);
if nargin && ischar(varargin{1l})
gui_State.gui_Callback = str2func(varargin{1l});

end

B.1 OFDM_Simulator 93

if nargout

[varargout {1:nargout }| = gui_mainfcn (gui_State, varargin{:});

else

gui_mainfen (gui_State , varargin{:});

end
% End initialization code — DO NOT EDIT
YT T TSI ITSTSTTITISTTI ST

%% —— Executes just before OFDM_simulator is made visible.

%

function OFDM _simulator_OpeningFcn(hObject , eventdata, handles,

varargin)

%
%o
%o
%o
%o

This function has no output args, see OutputFcn.

hObject
eventdata
handles

varargin

handle to figure

reserved — to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)
command line arguments to OFDM simulator (see VARARGIN)

%Initialising Variables

handles.
handles.
handles.
handles.
handles.

noSubCar = 52;
noDataCar = 48;
noPilotCar = 4,
noPadCar = 12;
noCeCar = 16;

hsubnono = handles.noSubCar + handles.noPadCar + handles.noCeCar;

handles.
handles
handles
handles.
handles.
handles
handles.
handles.
handles.

totSubChan = hsubnono;
.noTxAnt = 1;
.noRxAnt = 1;
inpTypeVal = 1;
codTypeVal = 1;
.modTypeVal = 1;
modkval = 1;
codextrabits = 0;
intextrabits = 0;

B.1 OFDM_Simulator 94

handles. modextrabits = 0;
handles.intperm = 0;
handles.subCarSizVal = 1;

handles. ifftextrabits = 0;

handles.inpVidcou = 0;
handles . pakNumVal = 10000;
handles .bandNumVal = 20000000;
handles .ebminNumVal = b;
handles .ebstpNumVal = 2;
handles .ebmaxNumVal = 26;
handles.fadTypeVal = 1;
handles .outputbutnum = 1;

guidata (hObject , handles);
% Choose default command line output for OFDM_simulator
handles.output = hObject;

% Update handles structure
guidata (hObject , handles);

% UIWAIT makes OFDM simulator wait for user response (see UIRESUME)
% uiwait (handles. figurel);

% —— Outputs from this function are returned to the command line .
function varargout = OFDM_simulator_OutputFcn(hObject, eventdata ,
handles)

% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

B.1 OFDM_Simulator 95

% Get default command line output from handles structure

varargout {1} = handles.output;

%OFDM _simulator is now visible
YITTTITITSTTS TSI TSI TSI TSI TSI SIS TSI IS TSI TSI ITITITSISTSITSIITS o
YT TSI TSI IS SIS SIS SIS IS SIS ST SIS SIS TISTSISISITSTIST S

%Various Additions to screen layout

TTTTTTTTTTTTTTTITITITIIIIIIIISIISSSSSSSSSSSSSSSISISISSISISISISSTSIISISTSI TS

%% Input Type Pop—up Menu

% —— Executes on selection change in InputType.

function InputType_Callback(hObject, eventdata, handles)

% hObject handle to InputType (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’String’) returns InputType
% contents as cell array

% contents{get (hObject,’ Value’)} returns selected item from InputType

val = get (hObject,’Value ’); handles.inpTypeVal = val;
guidata (hObject , handles);

% —— Executes during object creation, after setting all properties.
function InputType_CreateFcn(hObject, eventdata, handles)

% hObject handle to InputType (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns callec

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’ BackgroundColor’) ,...

B.1 OFDM_Simulator 96

get (0, defaultUicontrolBackgroundColor 7))

set (hObject ,’ BackgroundColor ’, > white 7);
end
%End of Input Type Pop—up Menu
TSI TTTTIISSSTTTTTISSSTTTTISSSSTTTIIISSSTSTTTISSSSTTTTTISSSTSTTTIIIS ST T o
%% Coding Type Pop—Up menu
% —— Executes on selection change in CodeType.
function CodeType_Callback(hObject, eventdata, handles)
% hObject handle to CodeType (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’ String’) returns CodeType
% contents as cell array

% contents{get (hObject,’Value’)} returns selected item from CodeType

val = get (hObject,’ Value ’); handles.codTypeVal = val;
guidata (hObject , handles);

% —— Executes during object creation, after setting all properties.
function CodeType_CreateFcn(hObject, eventdata, handles)

% hObject handle to CodeType (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns

% called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’ BackgroundColor’),
get (0, defaultUicontrolBackgroundColor 7))
set (hObject , ' BackgroundColor ’, ’white 7) ;

end

B.1 OFDM_Simulator 97

%End of Coding Type Pop—Up Menu

TSI TTTTIISSSTTTTTISSSSTTTTISSSSTTTIIISSSTSITTISSSSTTTIISSSISITTI SIS TSI T o
%% Modulation Type Pop—up Menu

% —— Executes on selection change in ModulationType.

function ModulationType_Callback (hObject, eventdata, handles)

% hObject handle to ModulationType (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’ String ’) returns ModulationType
% contents as cell array

% contents{get (hObject,’Value’)} returns selected item from ModulationType

val = get (hObject,’ Value ’); handles.modTypeVal = val;
guidata (hObject , handles);

% —— Executes during object creation, after setting all properties.
function ModulationType_CreateFcn (hObject, eventdata, handles)

% hObject handle to ModulationType (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns

% called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,’ BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))

set (hObject , ' BackgroundColor ’, ’white 7) ;
end
%End of Modulation Type Pop—up menu
TSI TTTTIISSSTTTTTISSSTTTTISSSSTTIIISSSTTTISSSSTTTIISSSSTTTT SIS SIS T o
%% Press Button "RUN” to start simulation

% —— Executes on button press in RunSimulation.

B.1 OFDM_Simulator 98

function RunSimulation_Callback (hObject, eventdata, handles)

% hODbject handle to RunSimulation (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

TSI SIS IS IS IS IS IS SIS IS IS IS IS IS I TSI STITTII TS o
%Gather all variable wvalues

handles;

[kp,mstrp, cstrp ,sc,dc,pc,zc,gc,tc] = ofdm_para(handles);
handles.modkval = kp;

handles.modstr = mstrp;

handles.codstr = cstrp;

handles.noSubCar = sc;
handles.noDataCar = dc;
handles.noPilotCar = pc;
handles.noPadCar = zc;
handles.noCeCar = gc;
handles.totSubChan = tc;

guidata (hObject , handles);

handles
TISTTISSTTIISSTISSTIISSTTISSTIIS SIS ST IS TSI ST ISSTIISSTISSTTIS o
%% Receiver output Amnalysis
% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate.
%handles ;

bnum = handles.outputbutnum;

btyp = handles.inpTypeVal;

B.1 OFDM_Simulator 99

if btyp ==3;

[dout, mout] = ofdm_sysvid (handles);

else

switch bnum

case 1 %Single test

[dout, mout] = ofdm_systest(handles);

case 2 %Code Rate Comparsion test

[dout, mout] = ofdm_syscod (handles);

case 3 %Modulation Type Comparison test

[dout , mout] = ofdm_sysmod (handles);

case 4 %Carrier Size Comparison test

[dout , mout] = ofdm_syscar (handles);

end end

%% Press Button ”Close” to end simulation and close application

%

% —— Executes on button press in CloseSimulation.

function CloseSimulation_Callback (hObject, eventdata, handles)

% hODbject handle to CloseSimulation (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

B.1 OFDM_Simulator 100

close all;

function editl_Callback (hObject, eventdata, handles)

% hODbject handle to editl (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject,’ String ’) returns contents of editl as text
% str2double (get (hObject ,’ String ’)) returns contents of editl as a double

pval = get (hObject,’ String ’); pakval = str2double(pval);
handles.pakNumVal = pakval;
guidata (hObject , handles);
handles;
% —— Executes during object creation, after setting all properties.
function editl_CreateFcn (hObject, eventdata, handles)
% hODbject handle to editl (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns

% called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’ BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))
set (hObject ,’ BackgroundColor ’, > white 7);

end

% —— Executes on button press in radiobuttonl.
function radiobuttonl_Callback (hObject, eventdata, handles)
% hObject handle to radiobuttonl (see GCBO)

B.1 OFDM_Simulator 101

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject,’Value’) returns toggle state of radiobuttonl

% —— Executes on selection change in SubCarrierSize.

function SubCarrierSize_Callback (hObject, eventdata, handles)

% hObject handle to SubCarrierSize (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’ String ’) returns SubCarrierSize
% contents as cell array

% contents{get (hObject,’Value’)} returns selected item from

% SubCarrierSize

val = get (hObject,’ Value ’);
handles.subCarSizVal = val;
guidata (hObject , handles);

% —— Executes during object creation, after setting all properties.
function SubCarrierSize_CreateFcn (hObject, eventdata, handles)

% hObject handle to SubCarrierSize (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns

% called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’ BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))

B.1 OFDM_Simulator 102

set (hObject , ’ BackgroundColor ’, " white 7) ;

end

function edit2_Callback (hObject, eventdata, handles)

% hODbject handle to edit2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject,’ String ’) returns contents of edit2 as text
% str2double (get (hObject,’ String ’)) returns contents of edit2 as a
% double

bval = get (hObject,’ String ’); banval = str2double(bval);

handles .bandNumVal = banval;
guidata (hObject , handles);
handles;

% —— Executes during object creation, after setting all properties.
function edit2_CreateFcn (hObject, eventdata, handles)

% hODbject handle to edit2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns

% called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))
set (hObject , ’ BackgroundColor ’, " white 7) ;

B.1 OFDM_Simulator 103

end

% —— Executes on selection change in popupmenu6.

function popupmenu6_Callback (hObject, eventdata, handles)

% hObject handle to popupmenu6 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,’ String ’) returns popupmenu6
% contents as cell array

% contents{get (hObject,’Value’)} returns selected item from popupmenu6

val = get (hObject,’ Value ’);
handles.fadTypeVal = val;
guidata (hObject , handles);

% —— Executes during object creation, after setting all properties.
function popupmenu6_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu6 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns

% called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal (get(hObject,’BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))
set (hObject , ' BackgroundColor ’, ’white 7);

end

function edit3_Callback (hObject, eventdata, handles)
% hODbject handle to edit3 (see GCBO)

B.1 OFDM_Simulator 104

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’String ’) returns contents of edit3 as text
% str2double (get (hObject,’ String ’)) returns contents of edit3 as a double

val = get (hObject,’ String ’);
ebminval = str2double(val);
handles .ebminNumVal = ebminval;
guidata (hObject , handles);
handles;

% —— Executes during object creation, after setting all properties.
function edit3_CreateFcn (hObject, eventdata, handles)

% hODbject handle to edit3 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns

% called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’ BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))
set (hObject , ' BackgroundColor ’, ’white 7) ;

end

function edit4_Callback (hObject, eventdata, handles)

% hODbject handle to edit4 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject,’ String ’) returns contents of editd as text

B.1 OFDM_Simulator 105

% str2double (get (hObject,’ String ’)) returns contents of edit4d as a
%double

val = get (hObject,’ String ’);
ebstpval = str2double(val);
handles .ebstpNumVal = ebstpval;
guidata (hObject , handles);
handles;

% —— Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)

% hODbject handle to edit4 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles empty — handles not created until after all CreateFcns callec

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’ BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))
set (hObject ,’ BackgroundColor ’, > white 7);

end

function editb_Callback (hObject, eventdata, handles)

% hObject handle to editd (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,’ String ’) returns contents of editb as text
% str2double (get (hObject ,’String ’)) returns contents of edith as a

% double

val = get (hObject,’String ’); ebmaxval = str2double(val);

B.1 OFDM_Simulator 106

handles .ebmaxNumVal = ebmaxval;
guidata (hObject , handles);
handles;

% —— Executes during object creation, after setting all properties.
function edit5_CreateFcn (hObject, eventdata, handles)
% hObject handle to editb5 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns
% called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,’BackgroundColor’) ,...
get (0, defaultUicontrolBackgroundColor 7))
set (hObject , ’ BackgroundColor ’, white 7) ;

end

function uipanell2_SelectionChangeFcn (hObject ,eventdata ,handles)
%function uibuttongroupl_SelectionChangeFcn (hObject ,eventdata ,handles)
% hObject handle to uipanell2 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Get Tag of selected object

switch get (hObject , Tag’)

case ’'radiobutton4’

val = get (hObject, Tag’);

handles.outputbutval = val;

B.1 OFDM_Simulator 107

handles .outputbutnum = 1;
guidata (hObject , handles);
handles;

case ’'radiobutton2’

val = get (hObject, Tag’);

handles.outputbutval = val;
handles .outputbutnum = 2;
guidata (hObject , handles);
handles;

case ’'radiobuttonl’

val = get (hObject, Tag’);
handles.outputbutval = val;
handles .outputbutnum = 3;
guidata (hObject , handles);
handles;

case ’'radiobuttonb’

val = get (hObject, Tag’);

handles.outputbutval = val;
handles.outputbutnum = 4;
guidata (hObject , handles);
handles ;

end

%

function Untitled_1_Callback (hObject, eventdata, handles)

B.2 OFDM _para 108

% hObject handle to Untitled_-1 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

B.2 OFDM _para

WITSTTSTTISTISTISTISTISTISTISSTIS SIS TIISIISIISTISTISTISTISTIS SIS
TWITTTTISTISTISTISTISTISTTSSTTSSTISSTISSIISIISTIST IS T IS T IS TS TSI o
TISITSS SIS Project — OFDM Simulator

%

%Barry Dunbar 0050022993

TISSTITSSTTIS ST IS STIIS ST IS ST IS ST IS ST TSI ST IS ST TSI ST IS ST TS SITIS ST o

%% Simulator Parameters

function [kl,mstrl,cstrl , hsc,hdc,hpc,hzc,hge,htc] =

ofdm_para(handles);

handles;

%Assigning number of bits to Modulation value and string
if handles.modTypeVal =— 1
k = 1;
mstr = 'NONE’;
else
if handles.modTypeVal =— 2
k = 1,
mstr = 'BPSK’;
else
if handles.modTypeVal = 3
k = 2;
mstr = "QPSK’;

B.2 OFDM _para

109

else

if handles.modTypeVal =— 4

k = 4;

mstr = '16QAM’ ;
else

k = 6;

mstr = '64QAM’ ;

end

end

%Assigning code string to code value

kl = k; mstrl = mstr;

if handles.codTypeVal = 1
cstr = 'NONE’;
else
if handles.codTypeVal = 2
cstr = '1/27;
else

if handles.codTypeVal = 3

cstr = '2/37;
else
cstr = '3/47;
end
end
end
cstrl = cstr;

%Assigning the Sub—carrier sizes

popupsubsiz_sel_id = handles.subCarSizVal;

B.2 OFDM _para 110

switch popupsubsiz_sel_id

%64

case 1
hsc = 52;
hdc = 48;
hpc = 4;
hzc = 12;
hge = 16;
htc = 80;

%256

case 2
hsc = 208;
hdec = 192;
hpc = 16;
hzc = 48;
hge = 64;
htec = 320;

%512

case 3
hsc = 416;
hdc = 384;
hpc = 32;
hzc = 96;

hge = 128;

B.2 OFDM _para 111

htc = 640;
%1024
case 4
hsc = 832;
hdc = 768;
hpc = 64;
hzc = 192;
hge = 256;
htc = 1280;
%2048
case b
hsc = 1664;
hdc = 1536;
hpc = 128;
hzc = 384;
hge = 512;
htc = 2560;
%4096
case 6
hsc = 3328;
hdc = 3072;
hpc = 256;
hzc = 768;

hge = 1024;

B.2 OFDM _para 112

htec = 5120;
%8192
case 7
hsc = 6656;
hde = 6144;
hpc = 512;
hzc = 1536;
hge = 2048;
htc = 10240;
end
%o
\section {ofdm${_}$systest}
%

\begin{lstlisting}

WISTITISTTIITISTITITISIISI IS ITTIST IS TITIST IS TSI TSI ITIIST TSI IITIST TS IIT TS o
TSI IS IIST TSI IS SIS IS SIS TS IIST IS SIS TSI IS IS IS TSI IS TSI IS ISIII TS o
YSSTTISTTIS o Project — OFDM Simulator

%

%Barry Dunbar 0050022993

WISTIITSTTSTIIIS TSI IST TSI IS IIST TSI IS TSI TSI TSI SI IS ITST TSI IS TIST IS TSI III TS o
%% System Simulator Amnalysis

% BER Computation
% Compare input and output to obtain the number of errors and

% the bit error rate.

B.2 OFDM _para 113

function [osimdat ,osimout] = ofdm_systest (handles);

handles; ek = handles.modkval;
ebmin = handles.ebminNumVal;
ebstep = handles.ebstpNumVal;

ebmax = handles.ebmaxNumVal;

Ebi = [ebmin:ebstep :ebmax];

snri = Ebi + 3 + 10xlogl0(ek);
ja = ((ebmax — ebmin)/ebstep)+1;
ebi = 5;

for jj = 1:ja

%% Transmitter
handles;
[ofdmtxout ,dbitin ,dal ,cdatabinlen ,cdatalen ,colmapl,...

coe ,ine ,inpe ,moe, kvl ifx , pt] = ofdm_tx(handles);

handles.inpFileSize = dal;

handles.codextrabits = coe;
handles.intextrabits = ine;
handles.intperm = inpe;

handles. modextrabits = moe;

handles. ifftextrabits = ifx;
handles.txpreamblevals = pt;

handles;

%% Channel

tic;
[simchanout] = ofdm_chann (ofdmtxout ,kvl,ebi,handles);
toc;

%% Receiver

B.2 OFDM _para 114

[ofdmrxout] = ofdm_rx(simchanout , handles);

%% Analysis
% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate.
handles;
datain = dbitin;
output = ofdmrxout;
[number_of_errors , bit_error_rate] = biterr (datain,output);
bitout (:,jj) = bit_error_rate;
ebi = ebi 4+ 3;

end

%% Output

osimdat = dbitin;

osimout = ofdmrxout ;
handles;

bitout

ek ;

bitouta (1,:) = bitout (1,:);

%Plot results.
figure (1);
pi = 1;
semilogy (snri , bitout (pi,:),’ ’r’);
xlabel (’SNR (dB) 7);
ylabel (’Bit Error Rate (BER)'’);
grid on;

drawnow ;

B.3 ofdm_syscod 115

title (['OFDM Transmission System Test result ’]);

B.3 ofdm_syscod

YIS TTISSTTTTSTTISSTTTTSTTTISSTITISTTIISSITSSTTIISSTISSTTIISSTIISSTTITSSTTTS o
YISTTISTTIISTTISSTITSSTTIISSTIISSTTIISSTIISSTIIIS SIS STIIISSTIISSTIIISTTTS o
YITTTSSIIT o Project — OFDM Simulator

%

%Barry Dunbar 0050022993

YIS TTTSSTTTTSTTTSSTTTSTTISSITTSSTTTISSTTTSSTTISSTTTSSTTITSSTTTSSTTITSTTTS o
%% System Simulator Amnalysis

% BER Computation
% Compare input and output to obtain the number of errors and

% the bit error rate.

function [osimdat,osimout] = ofdm_syscod (handles);

handles;

ek = handles.modkval;

ebmin = handles.ebminNumVal;
ebstep = handles.ebstpNumVal;
ebmax = handles.ebmaxNumVal;

Ebi = [ebmin:ebstep :ebmax];

snri = Ebi + 3 + 10xlogl0(ek);
ja = ((ebmax — ebmin)/ebstep)+1;

handles.codTypeVal = 1;
for ii = 1:4

handles.codTypeVal;
handles;
ebi = 5;

B.3 ofdm_syscod 116

for jj = 1:ja

%% Transmitter

handles;

[ofdmtxout ,dbitin ,dal,cdatabinlen ,cdatalen ,colmapl,...

coe ,ine ,inpe ,moe, kvl ifx , pt] = ofdm_tx(handles);

handles.inpFileSize = dal;

handles.codextrabits = coe;
handles.intextrabits = ine;
handles.intperm = inpe;

handles. modextrabits = moe;

handles. ifftextrabits = ifx;

handles. txpreamblevals = pt;

handles;

%% Channel

tic;
[simchanout| = ofdm_chann (ofdmtxout ,kvl,ebi,handles);
toc;

%% Receiver

[ofdmrxout] = ofdm_rx(simchanout ,handles);

%% Analysis
% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate.
handles;
datain = dbitin;
output = ofdmrxout;

[number_of_errors , bit_error_rate] = biterr (datain ,output);

B.3 ofdm_syscod 117

bitout (ii ,jj) = bit_error_rate;
ebi = ebi 4+ 3;

end

handles.codTypeVal = handles.codTypeVal 4+ 1;
end

%% Output

osimdat = dbitin;

osimout = ofdmrxout ;
handles;

bitout

ek;

bitouta (1,:) = bitout (1,:);

% Plot results.

figure (1);

pi = 1;

semilogy (snri, bitout (pi,:), —r+");
xlabel (’SNR (dB) 7);

ylabel (’Bit Error Rate (BER)’);

grid on;

drawnow ;

hold on;

semilogy (snri , bitout ((pi+1),:), —gx*’);
semilogy (snri, bitout ((pi+2),:), —bx’);
semilogy (snri , bitout ((pi+3),:), —cp’);
legend ('NONE',’1/27,°2/3°,73/4");

title ([’OFDM Transmission, ”’,num2str(handles.modstr) ,...

"7 Modulation Rate, Varying Code Rates ’']);

hold off;

B.4 ofdm_sysmod 118

B.4 ofdm_sysmod

YIS TTTSTTTISTTISSTTITSTTISSTIITSTTIISSTITSSTSISSITSSTIIS SIS STIIS SIS
TS TTISTTISSTTISSTTISSITIISSTIISSTTIISSTITSSTTIISSTITSSTTIISSTITSTIIISIT o
YITTSSSISIT o Project — OFDM Simulator

%

%Barry Dunbar 0050022993

YIS TTTSSTTTISTTTSSTTITSTIISSTTIISTTTISSTTTSSTIISSITTSSTITSSTTTSSTTTTS ST o
%% System Simulator Amnalysis

% BER Computation

% Compare input and output to obtain the number of errors and

% the bit error rate.

function [osimdat,osimout] = ofdm_sysmod (handles);
handles;
ebmin = handles.ebminNumVal;

ebstep = handles.ebstpNumVal;
ebmax = handles.ebmaxNumVal;
Ebi = [ebmin:ebstep :ebmax];
ja = ((ebmax — ebmin)/ebstep)+1;
handles.modTypeVal = 1;
[kpm] = ofdm_para(handles);
ek = kpm;
for ii = 1:5

handles;
ebi = 5;

for jj = 1:ja
%% Transmitter

B.4 ofdm_sysmod 119

handles;
[ofdmtxout ,dbitin ,dal,cdatabinlen ,cdatalen ...
colmapl ,coe,ine,inpe ,moe, kvl , ifx ,...

pt] = ofdm_tx (handles);

handles.inpFileSize = dal;

handles.codextrabits = coe;
handles.intextrabits = ine;
handles.intperm = inpe;

handles. modextrabits = moe;

handles. ifftextrabits = ifx;
handles.txpreamblevals = pt;
ifx

handles;

%% Channel

tic;
[simchanout| = ofdm_chann (ofdmtxout ,kvl,ebi,handles);
toc;

%% Receiver

[ofdmrxout] = ofdm_rx(simchanout ,handles);

%% Analysis
% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate.
handles;
datain = dbitin;

output = ofdmrxout;

B.4 ofdm_sysmod 120

[number_of_errors , bit_error_rate] = biterr (datain ,output);
bitout (ii ,jj) = bit_error_rate;

snrout (ii ,jj) = ebi + 3 4+ 10xlogl0(kvl);

ebi = ebi 4+ 3;

end
handles.modTypeVal = handles.modTypeVal 4+ 1;

end

%% Output

osimdat = dbitin;

osimout = ofdmrxout ;
handles ;

bitout

ek ;

bitouta (1,:) = bitout (1,:);
snrout ;

% Plot results.

figure (1);

pi = 1;

semilogy (snrout (pi,:) , bitout(pi,:), —r+");
xlabel (’SNR (dB) 7);

ylabel (’Bit Error Rate (BER)’);
grid on;

drawnow ;

hold on;

bitout ((pi+1),

semilogy (snrout ((pi+1),:), ((g *
snrout ((pi+2),:),bitout ((pi+2),
)5:)s ((

)

):1), T —gx);
)5:) . =bx7);
Pi+3),:), —cp’);
);:), —md’)

md’

)

semilogy

bitout

9

((
((
semilogy (snrout ((pi+3
((-

semilogy (snrout ((pi+4),:),bitout ((pi+4),

)

legend ('NONE' , "BPSK’ , "QPSK’, ' 16QAM’ , *64QAM’) ;

B.5 ofdm_syscar 121

title ([’OFDM Transmission, ”’,num2str(handles.codstr) ,...
"7 Code Rate, Varying Modulation Rates ’]);
hold off;

B.5 ofdm _syscar

YIS TTISSTTTISTTISSTTITSTIISSTTISSTTIISSTITSSTSISSITSSTTIISSTITSSTSIS SIS
YT TTISTTIISTTTISSTTISSITIISSTTISSTTIISSTITSSTTIISSTITSSTTIISSTITSSTIIIS I
YITTSSSSIT o Project — OFDM Simulator

%

%Barry Dunbar 0050022993

YIS TTTSSTTTISTTTSSITTTSTIISSTITSTIISSTTISSTITSSITTSSTTITS ST TSI TITS T
%% System Simulator Amnalysis

% BER Computation

% Compare input and output to obtain the number of errors and

% the bit error rate.

function [osimdat,osimout] = ofdm_syscar (handles);
handles;
ebmin = handles.ebminNumVal;

ebstep = handles.ebstpNumVal;
ebmax = handles.ebmaxNumVal;

Ebi = [ebmin:ebstep :ebmax];

ja = ((ebmax — ebmin)/ebstep)+1;
handles.subCarSizVal = 1;

for i1 = 1:7

handles ;
[kpm, m1trl,cltrl ;hlc,h2c¢,h3c,hdc, hbc,...

B.5 ofdm_syscar 122

h6c] = ofdm_para(handles);
ek = kpm;
msr = mltrl;
cst = cltrl;
handles.noSubCar = hlc;
handles.noDataCar = h2c;
handles.noPilotCar = h3c;

handles.noPadCar = hdc;
handles .noCeCar = hbc;
handles.totSubChan = hbc;
handles;
ebi = 5;

for jj = 1:ja

%% Transmitter

handles;
[ofdmtxout ,dbitin ,dal ,cdatabinlen ,cdatalen ...
colmapl ,coe,ine,inpe ,moe, kvl , ifx ,...

pt] = ofdm_tx(handles);

handles.inpFileSize = dal;

handles.codextrabits = coe;
handles.intextrabits = ine;
handles.intperm = inpe;

handles. modextrabits = moe;

handles. ifftextrabits = ifx;
handles . txpreamblevals = pt;
ifx;

handles;

%% Channel

B.5 ofdm_syscar 123

tic;
[simchanout] = ofdm_chann (ofdmtxout ,kvl,ebi,handles);

toc;

%% Receiver

[ofdmrxout] = ofdm_rx(simchanout ,handles);

%% Analysis
% BER Computation

% Compare x and z to obtain the number of errors and

% the bit error rate.

end

end

handles;

datain = dbitin;

output = ofdmrxout;

[number_of_errors , bit_error_rate] = biterr (datain ,output);
bitout (ii ,jj) = bit_error_rate;

snrout (ii ,jj) = ebi + 3 4+ 10xlogl0(kvl);

ebi = ebi 4+ 3;

handles.subCarSizVal = handles.subCarSizVal + 1;

%% Output

osimdat = dbitin;
osimout = ofdmrxout;
handles;

bitout

ek ;

B.6 ofdm_sysvid

124

% Plot

bitouta (1,:) = bitout (1,:);
snrout ;

results.

figure (1);
pi = 1;

semilogy (snrout (pi,:) , bitout(pi,:), —r+");

xlabel ('SNR (dB) 7);

ylabel (’Bit Error Rate (BER)’);
grid on;

drawnow ;

hold on;

semilogy (snrout ((pi+1

9

semilogy (snrout ((pi+2

)

pi+3),

(

(
semilogy (snrout

(

(

semilogy (snrout ((pi+5),

)
)
)
)
)
)

semilogy (snrout ((pi+6

)

((

((

((
semilogy (snrout ((pi+4

((

((

6’

legend (647,725

,bitout
,bitout

,bitout

,bitout

)
)
)
,:), bitout
)
:), bitout

,’5127,710247 7

)
)
cp’);
)
)

ys
Kn');

48°,74096,°8192");

title ([’OFDM Transmission, Varying Sub Carrier Size ’]);

hold off;

B.6 ofdm_sysvid

WITTSTISTTSTTISTISTISTISTISTISTISTISTISTISTISTIS SIS TIS TS SIS SIS o
WITTSTISTTTTIISIISTISIISTISTISTISTISTISTISTISSTIS SIS SIS SIS SIISIIS o

VAL

%

%Barry Dunbar 0050022993
TTTTTTTTTTTTTTTITIIIIIIIIIISSSSSSSSSSSSSSSSISTSISSISTIISSTITSISTSTTSITTT TS So
%% System Simulator Analysis

Project — OFDM Simulator

B.6 ofdm_sysvid

125

% BER Computation

% Compare input and output to obtain the number of errors and

% the bit error rate.

function [osimdat,osimout] = ofdm_sysvid (handles);
handles;
ebmin = handles.ebminNumVal;

for jj

ebstep = handles.ebstpNumVal;

ebmax = handles.ebmaxNumVal;
Ebi = [ebmin:ebstep :ebmax];
%must be = or < number of frames

ja = ((ebmax — ebmin)/ebstep)+1;

ebi = 35;

= 1:12

handles.inpVidcou = jj;
handles;

%% Transmitter

handles;
[ofdmtxout ,dbitin ,dal,vbl,vel ,vml, coe,ine ,...

inpe ,moe, kvl ,ifx , pt] = ofdm_tx(handles);

handles.inpFileSize = dal;
handles.inpVidbinLen = vbl;
handles.inpVidcdLen = vecl;
handles.inpVidcMLen = vml;
handles.codextrabits = coe;

handles.intextrabits = ine;

B.6 ofdm_sysvid 126

handles.intperm = inpe;
handles. modextrabits = moe;
handles. ifftextrabits = ifx;
handles.txpreamblevals = pt;

handles;

%% Channel

tic;
[simchanout| = ofdm_chann (ofdmtxout ,kvl,ebi,handles);
toc;

%% Receiver

[ofdmrxout] = ofdm_rx(simchanout ,handles);

%% Analysis
% BER Computation
% Compare x and z to obtain the number of errors and

% the bit error rate.

handles;

datain = dbitin;

output = ofdmrxout;
rxmovbin = ofdmrxout ;

rxml = vbl;

xmovd = rxmovbin (1:rxml);
rmbinl = length (rxmovbin);
movMapd = rxmovbin ((rxml+1):rmbinl);
xmdmin = min (xmovd);
xmdmax = max (xmovd) ;
xmdran = xmdmax — xmdmin;
xmdsc = xmovd/xmdran;

xmdme = mean (xmdsc) ;

B.6 ofdm_sysvid 127

xmdscf = 0.5 — xmdme;

xmdsca = xmdsc + xmdscf;
xmdrnd = round (xmdsca) ;
xmove = reshape (xmdrnd,[] ,8);
xmovf = bi2de (xmove);

xl = vel;

xw = (vbl/8)/vecl;

xmovg = reshape (xmovf, xl ,xw);

mMdmin = min (movMapd) ;

mMdmax = max (movMapd) ;

mMdran = mMdmax — mMdmin;

mMdsc = movMapd /mMdran ;

mMdme = mean (mMdsc) ;

mMdscf = 0.5 — mMdme;

mMdsca = mMdsc + mMdsct;

mMdrnd = round (mMdsca) ;

movMape = reshape (mMdrnd, [] ,8);
movMapf = bi2de (movMape) ;

movMapff = double (movMapf);

movMapfff = movMapff / 255;

ml = vml;

mw = ((rmbinl — vbl)/8)/vml;

movMapg = reshape (movMapfff , ml,mw);
rxfra(jj) = im2frame(xmovg+1,movMapg);
[number_of_errors , bit_error_rate] = biterr (datain ,output);
bitout (:,jj) = bit_error_rate;

snrout (:,jj) = ebi + 3 + 10xlogl0 (kvl);
ebi = ebi — 3;

end

rxmov = rxfra;

B.7 ofdm_tx 128

%% Output

osimdat = dbitin;

osimout = ofdmrxout ;
handles;

bitout

bitouta (1,:) = bitout (1,:);

snrout ;

9 9

movie2avi(rxmov, 'rxclocka.avi’,’compression ’ ,...
? Y 9 Y 9 Y .
RLE’ ,’colormap ’ ;movMapg, ' fps ’ ,1);

rxfileinfo = aviinfo (’rxclocka.avi’);

B.7 ofdm_tx

TTTTTTTTTTTTTTTTTITTTIITIIIISISSSSSS SIS SIS SIS SISSISSISSSTSSTSTTITTTSo
TSI TTTTTISSSTTTTTISSSTTTITISSSTITTIISSSTSITTTISSSTSTTIIISSSTITTIISSSTSTTTTIS o
YTTTTSSSS o Project — OFDM Simulator

%

%Barry Dunbar 0050022993

TSI TSI TSIISITSTITSTITTS o
%% Transmitter

function [txout,databitin ,dl,cdbl,cdl,cml,ce,ie,...

ip ,me,kv,ife , ptx] = ofdm_tx(handles);

handles;

%% Input function call

[datain ,datalen ,cdatbinl ,...

cdatl ,colmapl| = ofdm_inputSelect (handles);

B.7 ofdm_tx 129

[dp,dq] = size(datain);

%% Coding function call

[codemessout ,codeextbit] = ofdm_coder (datain ,...

handles.codTypeVal);

interlvdin = codemessout;

%% Interleaver function call

[interlvdmessout ,interlvdextbit ,...

interlvdperm|] = ofdm_interleaver (interlvdin ,...

handles .noDataCar, handles.modTypeVal);

modin = interlvdmessout;

%% Modulator function call

[modsymoutput, modextbits ,...

kval] = ofdm_modulator (modin, handles.modTypeVal);

modsymoutput ;

%% IFFT function call

[ifftoutput , iffext] = ofdm_ifft (modsymoutput,handles);
ifftoutput ;

%% Preamble function call

preamble = ofdm_pream ();

B.8 ofdm_inputSelect 130

%% Add preamble and data together

frameout = [preamble ifftoutput |;

%% Output

txout = frameout;

%for BER tests
databitin = datain;
dl = datalen;

cdbl = cdatbinl;

cdl = cdatl;

cml = colmapl;

ce = codeextbit;

ie = interlvdextbit ;
ip = interlvdperm

me = modextbits;
kv = kval;
ife = iffext;

ptx = preamble;

B.8 ofdm_inputSelect

TISSTTTTIISSSSTTTTISSSSTTTTTISSSTSITTIISSSSTITTSIISSSTITTTISSSTSTTTTIIS o
TISSSTTTTIISSSTTTTTISSSSTTTTIISSSTSTTTIISSSSTTTIISSSSTTTTISSSSSTTTIIIS o
TTTTTSSSS o Project — OFDM Simulator
%

%Barry Dunbar 0050022993
YISISTTTTIISSSTTTTSISSSTTTITISSSSTTTTISSSSTTTISSSSTTTISSSSTTTISIS ST T
%% InputSelect

function [inpout ,inputLength ,xmovcl,xmovl,...

B.8 ofdm_inputSelect 131

movMapl] = ofdm_inputSelect (handles)

%Assigning variables
popupmodselid = handles.inpTypeVal;
s = handles.pakNumVal;

switch popupmodselid
case 1 %A1l ones

%Generate all ’'1’s bit stream

dataorig = ones(s,1);

%0utput variables

inpout = dataorig;

inputLength = length (dataorig);
xmovel = 0;

xmovl = 0;

movMapl = 0;

case 2 %Random ones or zeros

%Generate random bit stream

dataorig = randsrc(s,1,[0 1]);

%Output variables

inpout = dataorig;

inputLength = length(dataorig);
xmovcel = 0;

xmovl = 0;

movMapl = 0;

case 3 %Video file read in

B.8 ofdm_inputSelect 132

%Read in movie file

mov = aviread (’clock.avi’);
fileinfo = aviinfo (’clock.avi’);
movira = fileinfo .NumFrames;

YCDATA matrix

imov = handles.inpVidcou;

%convert frame to image

[xmov ,movMap] = frame2im (mov(imov));
[x] xw|= size (xmov);
xa = x| * xw;

%1 column * many rows

xmova = reshape (xmov,xa,1);

%convert to type double

xmovab = double (xmova);

%convert to binary stream

xmovb = de2bi(xmovab,8);
[xbl xbw|= size (xmovb);
xba = xbl * xbw;

%1 row * many colums

xmove = reshape (xmovb,1,xba);

YCOLOURMAP matrix

[ml mw]= size (movMap);

B.9 ofdm_coder 133

ma = ml % mw;

%1 column * many rows

movMapa = reshape (movMap,ma,1);

%convert to whole integers

movMapaa = movMapa * 255;

%convert to binary stream

movMapb = de2bi(movMapaa,8);

[mbl mbw]= size (movMapb);

mba = mbl * mbw;

%1 row * many columns

movMapc = reshape (movMapb,1 ,mba);

Y%append CDATA and COLOURMAP into one bit stream

movbin = [xmovc movMapc|;
movbina = double (movbin);
movbinaa = movbina ’;

%video file output variables
inpout = movbinaa;

inputLength = length (movbinaa);
xmovel = length (xmove);

xmovl = x1;

movMapl = ml;

end

B.9 ofdm _coder

B.9 ofdm_coder 134

WITTSTISTITSTISIISTISTISTISTISTISTISTISTISTISSTISSISSISSIISTISTIST o
TWITSTTSTTTTTTSITSIISTISTISTISTIST IS ST IS TS SIS TISSTITSITSIISTISTIST o
YISTTTIIS o Project — OFDM Simulator

%

%Barry Dunbar 0050022993

TSI SIS IS IS ISTSTIT TS0
%% Coder

function [cod_out,cod_ext] = ofdm_coder(cod_in, codType)
%Assigning variables

codeln = cod_in;

popupcod_sel_id = codType;

switch popupcod_sel_id

case 1 %No coding

%0ut equals In

cod_out = codeln;

%Output variable

cod_ext = 0;

case 2 %1/2 Rate

%Trellis code
t = poly2trellis (7,[133 171]);

%Encode

tcode = convenc (codeln ,t);

B.9 ofdm_coder 135

%Length is (2xlength)
codeLengthOrig = length(tcode);

%O0utput variables
cod_out = tcode;

cod_ext = 0;

case 3 %2/3 Rate

%Trellis code
t = poly2trellis (7,[133 171]);

%Encode

tcode = convenc(codeln ,t);

%Length is (2xlength)x 3/4 rounded up
codeLengthOrig = length (tcode);

%Puncture code for 2/3 rate
punct23code = tcode;
punct23code (4:4:end)=[];

codeLength23 = length (punct23code);
codeLength230rig = 4/3xcodeLength23;
punct23extbit = codeLength230rig — codeLengthOrig;

%Output variables
cod_out = punct23code;

cod_ext = punct23extbit;

case 4 %3/4 Rate

B.10 ofdm_interleaver 136

%Trellis code
t = poly2trellis (7,[133 171]);

%Encode

tcode = convenc (codeln ,t);

%Length is (2xlength)*3/4 rounded up
codeLengthOrig = length (tcode);

%Puncture code for 3/4 rate
punct34code = tcode;
punct34code (4:6:end)=[];
punct34code (4:5:end)=[];

codeLength34 = length (punct34code);
codeLength340rig = 3/2xcodelLength34;
punct34dextbit = codeLength340rig — codeLengthOrig;

%Output variables
cod_out = punct34code;

cod_ext = punct34dextbit;

end

B.10 ofdm_interleaver

TWITSTTSTTTTTISIISTISTISTISTISTISTTSSTISSTISSTISSISSITSTISTISTIST o
WTTSTISTTITTISTISTISTISTISTISTISTISTISTISSTISSTISSISSTISTISTIST o
VO Project — OFDM Simulator

%

%Barry Dunbar 0050022993
WTTSTISTISSTISIISTISTISTISTISTISTISTISTIS SIS SIS SISSTSSTISTIS o

B.10 ofdm_interleaver 137

%% Interleaver
function [interlvd_out ,interlvd_ext ,...

inter_perm| = ofdm_interleaver (interlvd_in ,NoSub,MapType)
%Assigning variables

%Input

interleavlin = interlvd_in;

%Length of Input

interleavLen = length (interleavIn);

%No. of Sub—Carriers
NoSubc = NoSub;

%Modulation Type

ModType = MapType;

%Assigning number of bits per symbol

switch ModType

case 1

NoBits = 1;
case 2

NoBits = 1;
case 3

NoBits = 2;

case 4

B.10 ofdm_interleaver 138

NoBits = 4;
case 9
NoBits = 6;

end

%divide input by no. of bits per symbol
%and no. of Sub carriers

leav_sym_len = interleavLen /(NoSubc*NoBits);

%round up to whole number

leav_len_rnd = ceil(leav_sym_len);

Ymew lenghth x bits % subcarriers

inputLength = leav_len_rnd % (NoSubcxNoBits);

Y%extra bits amount

levExtBitsLen = inputLength — interleavLen;

Y%make extra bits all ones

levExtBits = ones(1,levExtBitsLen);

%Add extra bits to input
lev_inputresh = interleavIn.’;
newLev = [lev_inputresh levExtBits];

newLevLen = length (newLev);

%1 row * many columns.

newLev = newLev. ’;

B.11 ofdm_modulator 139

%Reshape into No. of Subcarriers * numerous columns

levMess = reshape (newLev,(NoSubcxNoBits) ,[]);

%Set up permutation

q = randperm ((NoSub*NoBits)). ’;

%Interleave data

newintrlvd = intrlv (levMess , q);

Y%make serial

newinterlved = reshape(newintrlvd ,1 ,[]);

%output variables
interlvd_out = newinterlved;
interlvd_ext = levExtBitsLen;

inter_perm = q;

B.11 ofdm_modulator

TWITSTISTTTSIISTISTISTISTISTISTISTISTISTISSISSITSIISTISTISTIST o
TWITSTTSSTTTSTISTTSTISTISTIST IS T TSI TS SIS ST IS SISSISSITSTISTISTIST o
VAL Project — OFDM Simulator

%

%Barry Dunbar 0050022993

TISSTISSTTIS ST IS ST IIS ST IS ST TSI ST IS ST TSI TSI IS ST SIS TTIS ST IS STTIS T o
%% Modulator

function [mod_out, extbits, kbit] = ofdm_modulator (mod_in, modType)

%Assigning variables

mod_input = mod_in;

popupmod_sel_id = modType;
inModLengthOrig = length (mod_input);

B.11 ofdm_modulator

140

switch

popupmod_sel_id

case 1 %No Modulation

mod_out = mod_input;
extbits = 0;
kbit = 1;

case 2 %BPSK Modulation

%Modulation parrameter

M=2;

%Number of bits per symbol eg. 1 bits per symbol
k = log2(M);

%Padding data length with extra ’1’s for multiple
%of symbol size

input_sym_len = inModLengthOrig/k;

sym_len_rnd = ceil (input_sym_len);

inputLength = sym_len_rnd x* k;

msgExtBitsLen = inputLength — inModLengthOrig;
msgExtBits = ones(1,msgExtBitsLen);

newMess = [mod_input msgExtBits];

newMessLen = length (newMess);

newMess = newMess ’;

%symbol length
inputSymbolLength = newMessLen/k ;

%Reshape for matrix of 1 rows % numerous columns

msg_sym_reshape = reshape (newMess,k,inputSymbolLength);

B.11 ofdm_modulator 141

%Decimalisation

msg sym = bi2de(msg_sym_reshape.’,’left —msb’);

%Modulation

msg_tx = pskmod (msg_sym ,M);

%0utput variables
mod_out = msg_tx;
extbits = msgExtBitsLen;
kbit = 1;

%Scatterplot
%hl = scatterplot (msg_tx);
Zaxis([—-3 3 =3 3]); % Set axis ranges.

case 3 %QPSK Modulation

%Modulation parrameter

M=4;

%Number of bits per symbol eg. 2 bits per symbol
k = log2(M);

%Padding data length with extra ’1’s for multiple
%of symbol size

input_sym_len = inModLengthOrig/k;

sym_len_rnd = ceil (input_sym_len);

inputLength = sym_len_rnd * k;

msgExtBitsLen = inputLength — inModLengthOrig;
msgExtBits = ones (1, msgExtBitsLen);

newMess = [mod_input msgExtBits];

B.11 ofdm_modulator 142

newMessLen = length (newMess);

newMess = newMess ’;

%symbol length
inputSymbolLength = newMessLen/k;

%Reshape for matrix of 2 rows % numerous columns

msg_sym_reshape = reshape (newMess,k,inputSymbolLength);

%Decimalisation

msg_sym = bi2de(msg_sym_reshape.’,’left —-msb’);

%Modulation

msg_tx = pskmod (msg_sym ,M);

%Output variables
mod_out = msg_tx;
extbits = msgExtBitsLen;
kbit = 2;

%Scatterplot
%h1l = scatterplot (msg_tx);
%axis ([—3 3 —3 3]); % Set axis ranges.

case 4 %16QAM Modulation

%Modulation parrameter

M=16;

%Number of bits per symbol eg. 4 bits per symbol
k = log2(M);

%Padding data length with extra ’1’s for multiple

B.11 ofdm_modulator 143

%of symbol size

input_sym_len = inModLengthOrig/k;

sym_len_rnd = ceil (input_sym_len);
inputLength = sym_len_rnd * k;

msgExtBitsLen = inputLength — inModLengthOrig;
msgExtBits = ones(1,msgExtBitsLen);

newMess = [mod_input msgExtBits|;

newMessLen = length (newMess);

newMess = newMess ’;

%symbol length
inputSymbolLength = newMessLen/k;

%Reshape for matrix of 4 rows * numerous columns

msg_sym_reshape = reshape (newMess,k,inputSymbolLength);

%Decimalisation

msg_sym = bi2de(msg_sym_reshape.’,’left —msb’);

%Modulation

msg_tx = gqammod(msg_sym ,M);

%Output variables
mod_out = msg_tx;
extbits = msgExtBitsLen;
kbit = 4;

%Scatterplot
%hl = scatterplot (msg_tx);

%axis([—5 5 —5 5]); % Set axis ranges.

case 5 %64Q0AM Modulation

B.11 ofdm_modulator 144

%Modulation parrameter

M=64;

%Number of bits per symbol eg. 6 bits per symbol
k = log2(M);

%Padding data length with extra ’1’s for multiple
%of symbol size

input_sym_len = inModLengthOrig/k;

sym_len_rnd = ceil (input_sym_len);

inputLength = sym_len_rnd * k;

msgExtBitsLen = inputLength — inModLengthOrig;
msgExtBits = ones (1, msgExtBitsLen);

newMess = [mod_input msgExtBits];

newMessLen = length (newMess);

newMess = newMess ’;

%symbol length
inputSymbolLength = newMessLen /k;

%Reshape for matrix of 6 rows * numerous columns

msg_sym_reshape = reshape (newMess,k,inputSymbolLength);

%Decimalisation

msg sym = bi2de(msg_sym_reshape.’,’left —msb’);

%Modulation

msg_tx = qammod (msg_sym ,M);

%Output variables
mod_out = msg_tx;
extbits = msgExtBitsLen;
kbit = 6;

B.12 ofdm_ifft 145

%Scatterplot
%h1l = scatterplot (msg_tx);
%axis ([—9 9 —9 9]); % Set axis ranges.

end

B.12 ofdm ifft

ISTTISTTISSTTISSTIISTTISSTISSTTISSTTISSTTISSTISSTTISSTISSTTIS ST o
IISTTISSTTIISSTTISSTIISTTISSITIISSTISSITIISTTISSTISSTTIS ST IS SIS ST o
TTTTTS S Project — OFDM Simulator

%

%Barry Dunbar 0050022993
TITISSTTTTTIISSTTTTIISSSTITISISSSTTTT SIS SSTIT SIS STTTI SIS SSTTTTIISo
function [ifft_out , ifftextbits] = ofdm_ifft(ifft_in ,handles)

%Assigning variables

ifft _input = ifft_in;

ifftLenOrig = length (ifft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;

sCsv = handles.subCarSizVal;

%Calling required IFFT function

switch scsv

B.12 ofdm_ifft 146

case 1 %IFFT64

%IFFT function call
[ifft64output ,...
iff6dext] = ofdm_ifft64 (ifft_input ,handles);

%Output variables
ifft _out = ifft64output;
ifftextbits = iff64ext;

case 2 %IFFT256
%WFFT function call
[ifft2560utput ,. ..
iff256ext] = ofdm_ifft256 (ifft_input ,handles);
%Output variables
ifft_out = ifft256output;
ifftextbits = iff256ext;
case 3 %IFFT512
Y%IFFT function call
[ifft5120utput ,...
iffs12ext] = ofdm_ifft512 (ifft_input ,handles);
%Output variables
ifft_out = iffts512output;
ifftextbits = iffb12ext;

case 4 %IFFT1024

%FFT function call

B.12 ofdm_ifft

147

[ifft10240utput ,. ..

iff1024ext] = ofdm_ifft1024 (ifft_input ,handles);

%Output variables
ifft_out = ifft1024output;
ifftextbits = iffl1024ext;

case 5 %IFFT2048

Y9IFFT function call
[ifft20480utput ,. ..

iff2048ext] = ofdm_ifft2048 (ifft_input ,handles);

%Output variables
ifft_out = ifft2048output;
ifftextbits = iff2048ext;

case 6 %IFFT4096

YIFFT function call
[ifft40960utput ,. ..

iff4096ext] = ofdm_ifft4096 (ifft_input ,handles);

%O0utput variables
ifft_out = ifft4096output;
ifftextbits = iff4096ext ;

case 7 %IFFT8192

Y%FFT function call
[ifft81920utput ,. ..

iff8192ext] = ofdm_ifft8192 (ifft_input ,handles);

B.13 ofdm_ifft64

148

%Output variables

ifft_out = ifft8192o0utput;

ifftextbits = iff8192ext;

end

B.13 ofdm _ifft64

TSI SIS SIS SISISTSITIIISIIIIISITTTTTT T o
TTTTTTTTTT TSI TSI TTTITISSSS SIS SIS SIS SISSISTSISTSISTSISTSISTSISISITTTTTSo
TSTTSTSS T Project — OFDM Simulator

%
%Barry Dunbar 0050022993

TWITSTTSTTTSIISIITIISTISTISTISTISTISTISTIS TSI SIS SIS ST ISSITSIIS o

%% IFFT64

function [ifft64out , ifft64extbits] = ofdm_ifft64 (ifft64in ,handles)

%Assigning variables

ifft .input = ifft64in;

ifftLenOrig = length (ifft_input);

noSubCar = handles.
noDatCar = handles.
noPilCar = handles.
noPadCar = handles.
noCeCar = handles.

.totSubChan ;

noTotCar = handles

noSubCar;
noDataCar;
noPilotCar;
noPadCar;

noCeCar;

STTTTSTT TSI TSI TSI TSI TSI TS ST TSI TSI TS ST TSI SITSTSISITTSISI o
%% Add pilots , DC zero and zero pad the Symbols

%Padding length with ’1’s for mulitple of data sub—carriers

sym_len_col = (length(ifft_input)/noDatCar);

B.13 ofdm_ifft64 149

sym_len_.rnd = ceil(sym_len_col);
inpifftLen = sym_len_rnd * noDatCar;
ifftExtBitsLen = inpifftLen — ifftLenOrig;
ifftExtBits = ones(1,ifftExtBitsLen);
ifft_input = ifft_input ’;

newifftMess = [ifft_input ifftExtBits];
newifftLen = length (newifftMess);

)

newifftMess = newifftMess ’;

%Reshape to Number of data sub—carriers

ifftSym = reshape(newifftMess ,noDatCar,sym_len_rnd);

%Assigning data to data sub—carriers
ifftSymPil ([7:11,13:25,27:32,34:39,41:53,
55:59],:) = ifftSym ([1:5,6:18,19:24,25:30,31:43 ,44:48],:);

%Assigning zero pad to padding sub—carriers
%(Nc =1 to 6, 60 to 64)

%Assigning zero pad to DC sub—carrier

%(Nc = 33)

%Assigning pilots to pilot sub—carriers

%(Nc = 12, 26, 40, 54)

ifftSymPil ([1:6] ,:) = 0;
ifftSymPil ([12],:) = 1;
ifftSymPil ([26] ,:) — 1
ifftSymPil ([33],:) = 0;
ifftSymPil ([40],:) = 1;
ifftSymPil ([54] ,:) = —1;
ifftSymPil ([60:64],:) = O0;

TIITSSTTTTITISSSTTTTITISSTTTTIISSSTTTTITISSSITTITIISSISIITITISSSTIIT o
%% IFFT OFDM symbols

B.14 ofdm_ifft256 150

YFFT function
ifftSymOut = ifft (ifftSymPil);

TTTTTTTTTTTTTTTTTITIIISIISISSSSSSSSSSSSSSSSSSISISISISISTISTITITSTTSITSI TS
%% Add Cyclic prefix

%Add cyclic extension
ifftSymPrefix ([1:16,...
17:80],:) = ifftSymOut ([49:64 ,1:64],:);

ST TSI IS ITITS TSI SIS SIS SIS SIS SSTSISTSISI SIS
%% Output

%Parallel OFDM symbols
ifft_outa = ifftSymPrefix;

%Serial OFDM symbols

ifft _.outSer = reshape(ifft_outa ,1,[]);

%Output variables
ifft64out = ifft_outSer;
ifft6dextbits = ifftExtBitsLen;

B.14 ofdm _ifft256

TITTSSTITTTTTSSSSITTTTSTSISS SIS TTTISTSSS SIS TTTSTISS SIS TTTTIS SIS SIS TS o
TITSSSSTTTTTTSSSSITTTTTSISSSITTTTTTSSSSIITTTTTSSSSITTTTTTSSSSITTTTo
YSTSTSTS TS Project — OFDM Simulator

%

B.14 ofdm_ifft256

151

%Barry Dunbar 0050022993
TTTTTTTTTTTTTT TSI TSI IIIIITIISSSSSSSSSSSSSSSS SIS SSISTIISISISISI T o

%% IFFT256

function [ifft_out ,

ifftextbits| = ofdm_ifft256 (ifft_in ,handles)

%Assigning variables

ifft _input

= ifft_in;

ifftLenOrig = length (ifft_input);

noSubCar
noDatCar
noPilCar
noPadCar
noCeCar

noTotCar

handles.
handles.
handles.
handles.
handles.
handles.

noSubCar;
noDataCar ;
noPilotCar;
noPadCar
noCeCar;

totSubChan;

TSI STTTTTIISSSTTTTISSSSTTTISISSSTTTTIISSSTTTISSSSTTT TSI SSTTTTIIS o
%% Add pilots , DC zero and zero pad the Symbols

%Padding length with ’1’s for mulitple of data sub—carriers

sym_len_col = (length (ifft_input)/noDatCar);

sym_len_rnd = ceil(sym_len_col);

inpifftLen

= sym_len_rnd % noDatCar;

ifft ExtBitsLen = inpifftLen — ifftLenOrig;

ifftExtBits = ones(1,ifftExtBitsLen);

ifft _input

= ifft_input ’;

newifftMess = [ifft

_input ifftExtBits];

newifftLen = length (newifftMess);

newifftMess = newifftMess ’;

)

%Reshape to Number of data sub—carriers

ifftSym

reshape (newifftMess ,noDatCar,sym _len_rnd);

%Assigning data to data sub—carriers

B.14 ofdm_ifft256 152

ifftSymPil ([25:30,32:43 ,45:56 ,58:69 ,71:82,84:95,97:108 ,...
110:121,123:128,130:135,137:148,150:161,163:174 ,...
176:187,189:200,202:213,215:226,228:233] ,:)...
= ifftSym ([1:6,7:18,19:30,31:42,43:54 ,55:66,
67:78,79:90,91:96,97:102,103:114,115:126,127:138,...
139:150,151:162,163:174,175:186,187:192] ,:);

%Assigning zero pad to padding sub—carriers
%Assigning zero pad to DC sub—carrier

%Assigning pilots to pilot sub—carriers

ifftSymPil ([1:24],:) = 0;
ifftSymPil ([31],:) = 1;
ifftSymPil ([44] ,:) - 1
ifftSymPil ([57] ,:) = 1;
ifftSymPil ([70] ,:) = 1;
ifftSymPil ([83],:) = 1;
ifftSymPil ([96] ,:) = 1;
ifftSymPil ([109],:) = 1;
ifftSymPil ([122],:) = 1;
ifftSymPil ([129],:) = 0;
ifftSymPil ([136],:) = 1;
ifftSymPil ([149],:) = 1;
ifftSymPil ([162],:) = 1;
ifftSymPil ([175] ,:) - 1;
ifftSymPil ([188],:) = 1;
ifftSymPil ([201],:) = 1;
ifftSymPil ([214],:) = 1;
ifftSymPil ([227],:) = —1;
ifftSymPil ([234:256],:) = 0;

WITSTISTISTTISTISTISTISTISTISTISTISTISTISTISTISSISSTISSTSSTISTIST o

B.15 ofdm_ifft512 153

%% IFFT OFDM symbols

%IFFT function
ifftSymOut = ifft (ifftSymPil);

TSI SSISTSISTSITIISISIIIIISITTTTTTT o
%% Add Cyclic prefix

%Add cyclic extension

ifftSymPrefix ([1:64 ,...
65:320],:) = ifftSymOut ([193:256,1:256] ,:);

TTTTTTTTT TSI IS TTTTTTTTSSSSS SIS SIS SIS SSISTSISTSISTSITSISTSISISIITSITSSo
%% Output

%Parallel OFDM symbols
ifft _outa = ifftSymPrefix;

%Serial OFDM symbols
ifft _outSer = reshape(ifft_outa ,1,[]);

%Output variables
ifft _out = ifft_outSer;
ifftextbits = ifftExtBitsLen;

B.15 ofdm_ ifft512

TWITTSTTTSTISTISTISITISTIST IS TS STISTISSITSIISTIST IS T IS T IS TS TISTTSo
ITTTTTITTISTISTISTISTISTISTISTISSTISSTIISTISTISTISTISTISTISTISTTSo

TSTTSTSTTTo Project — OFDM Simulator

B.15 ofdm_ifft512 154

%o

%Barry Dunbar 0050022993
TISTTISSTIISSTTISSTIISTTISSTIIS ST IS STIISTT IS ST IS TSI IS ST IS SIS ST o
%% IFFT512

function [ifft_out , ifftextbits] = ofdm_ifft512(ifft_in ,handles)

%Assigning variables

ifft _input = ifft_in;

ifftLenOrig = length (ifft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;

noTotCar = handles.totSubChan;

TSTTTTSSTTTTSTT TSI TSI TS ST TSIS IS IS IS TSI TSI TSI IT TSI
%% Add pilots , DC zero and zero pad the Symbols

%Padding length with ’1’s for mulitple of data sub—carriers
sym_len_col = (length(ifft_input)/noDatCar);

sym_len_rnd = ceil(sym_len_col);

inpifftLen = sym_len_rnd % noDatCar;

ifftExtBitsLen = inpifftLen — ifftLenOrig;

ifftExtBits = ones(1,ifftExtBitsLen);

ifft .input = ifft_input ’;

newifftMess = [ifft_input ifftExtBits];

newifftLen = length (newifftMess);

newifftMess = newifftMess ’;

%Reshape to Number of data sub—carriers

ifftSym = reshape(newifftMess ,noDatCar,sym _len_rnd);

B.15 ofdm_ifft512 155

%Assigning data to data sub—carriers

ifftSymPil ([49:54,56:67,69:80,82:93,95:106,108:119,121:132,...
134:145,147:158,160:171,173:184,186:197,199:210,212:223,...
225:236,238:249,251:256,258:263,265:276,278:289,291:302,...
304:315,317:328,330:341,343:354,356:367,369:380,382:393,...
395:406,408:419,421:432,434:445,447:458 ,460:465],:)...
= ifftSym ([1:6,7:18,19:30,31:42,43:54,55:66,67:78,79:90,...
91:102,103:114,115:126,127:138,139:150,151:162,163:174,...
175:186,187:192,193:198,199:210,211:222,223:234,235:246,...
247:258,259:270,271:282,283:294,295:306,307:318,319:330,...
331:342,343:354,355:366,367:378,379:384],:);

%Assigning zero pad to padding sub—carriers
%Assigning zero pad to DC sub—carrier

%Assigning pilots to pilot sub—carriers

ifftSymPil ([1:48],:) = 0;

ifftSymPil ([55,68,81,94,107,...

120,133 ,146,159,172,185,198,211,224,237,250,264,277,...
290,303,316,329,342,355,368,381,394,407,420,433,...

446] ,:) = 1;
ifftSymPil ([257] ,:) = 0;
ifftSymPil ([459] ,:) = -1
ifftSymPil ([466:512],:) = 0;

TTTTTTTTTTTTTTTTTITIIIIIIISISISSSSSSS SIS SIS SISISISSTSISISISISISISIISISTIST TSI To
%% IFFT OFDM symbols

%IFFT function
ifftSymOut = ifft (ifftSymPil);

B.16 ofdm_ifft1024 156

TSI TTTTITSSTTTTITSSSTTTTIISSS TSI S TIISSSTTTTIISSSTTTTIISSSTTTTTISSI TS0
%% Add Cyclic prefix

%Add cyclic extension
ifftSymPrefix ([1:128,...
129:640],:) = ifftSymOut ([385:512,1:512] ,:);

TSI IS SSSISTSTSTSITITSIIIIIIITITTTTT o
%% Output

%Parallel OFDM symbols

ifft _outa = ifftSymPrefix;

%Serial OFDM symbols

ifft _outSer = reshape(ifft_outa ,1,[]);

%Output variables
ifft _out = ifft_outSer;

ifftextbits = ifftExtBitsLen;

B.16 ofdm ifft1024

WITTSTTISTISTTISTISTISTISTISTISTISTISTISTISTISTIS SIS TISSTIS SIS SIS o
ITTSTISTTTTTISIITIISTISTISTISTISTISTISTISTISSTIS SIS STIS SIS TSI SIIS o
VAL Project — OFDM Simulator

%

%Barry Dunbar 0050022993
TWITSTTSTTTTITSITSIISTISTISTISTIST IS T IS TS TS SIS SIS SIS SIS SIT SIS o
%% 1FFT1024

function [ifft_out , ifftextbits] = ofdm_ifft1024 (ifft_in ,handles)

B.16 ofdm_ifft1024 157

%Assigning variables

ifft _input = ifft_in;

ifftLenOrig = length (ifft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;

noTotCar = handles.totSubChan;

TTTTTTTTTTTTTTTTTTITITIIIIIIIITIISSSISSSSSSSS SIS SIS STSISISISTSISITISIT o
%% Add pilots , DC zero and zero pad the Symbols

%Padding length with ’1’s for mulitple of data sub—carriers
sym_len_col = (length(ifft_input)/noDatCar);

sym_len_.rnd = ceil(sym_len_col);

inpifftLen = sym_len_rnd * noDatCar;

ifft ExtBitsLen = inpifftLen — ifftLenOrig;

ifftExtBits = ones(1,ifftExtBitsLen);

ifft _input = ifft_input ’;

newifftMess = [ifft_input ifftExtBits];

newifftLen = length (newifftMess);

)

newifftMess = newifftMess ’;

%Reshape to Number of data sub—carriers

ifftSym = reshape(newifftMess ,noDatCar,sym_len_rnd);

%Assigning data to data sub—carriers

ifftSymPil ([97:102,104:115,117:128,130:141,143:154,156:167,...
169:180,182:193,195:206,208:219,221:232,234:245,247:258 ...
260:271,273:284,286:297,299:310,312:323,325:336,338:349,...
351:362,364:375,377:388,390:401,403:414,416:427,429:440,...

B.16 ofdm_ifft1024 158

442:453,455:466 ,468:479,481:492,494:505,507:512,514:519,...
521:532,534:545,547:558,560:571,573:584,586:597,599:610,...
612:623,625:636,638:649,651:662,664:675,677:688,690:701,...
703:714,716:727,729:740,742:753,755:766,768:779,781:792,...
794:805,807:818,820:831,833:844,846:857,859:870,872:883,...
885:896,898:909,911:922,924:929] ,:)...

= ifftSym ([1:6,7:18,19:30,31:42,43:54,55:66,67:78,79:90,...
91:102,103:114,115:126,127:138,139:150,151:162,163:174,...

175:186,187:198,199:210,211:222,223:234,235:246 ,247:258 ,...
259:270,271:282,283:294,295:306,307:318,319:330,331:342,...
343:354,355:366,367:378,379:384,385:390,391:402,403:414,...
415:426 ,427:438 ,439:450 ,451:462 ,463:474 475:486 ,487:498 ,...
499:510,511:522,523:534,535:546,547:558 ,559:570,571:582,...
583:594,595:606,607:618,619:630,631:642,643:654,655:666 ,...
667:678,679:690,691:702,703:714,715:726,727:738,739:750,...
751:762,763:768],:);

%Assigning zero pad to padding sub—carriers
%Assigning zero pad to DC sub—carrier

%Assigning pilots to pilot sub—carriers

ifftSymPil ([1:96] ,:) = 0;

ifftSymPil ([103,116,129,142,155,168,181,194,207,220,233 ,...
246,259,272,285,298,311,324,337,350,363,376,389,402,...
415,428,441 ,454,467,480,493,506,520,533,546,559,572,...
585,598 ,611,624 ,637,650,663 ,676,689,702,715,728 741 ...
754,767,780,793,806,819,832,845,858,871,884,...
897,910,],:) - 1

ifftSymPil ([513],:) = 0;
ifftSymPil ([923],:) = —1;

B.17 ofdm_ifft2048 159

ifftSymPil ([930:1024] ,:) = 0;

TISSTTTTITISSTTTTIITISSSTTTIIISSSTTTTITISS TSI TITSSSTTTTIIISSSITTITISSTTTSo
%% IFFT OFDM symbols

%IFFT function
iftSymOut = ifft (ifftSymPil);

YISSTTTTIIISSTTTTIISSSTTTTIISSSISTTIITSSS TSI TISSSSTTIT TSI STSTTTTISSSITTSo
%% Add Cyclic prefix

%Add cyclic extension
ifftSymPrefix ([1:256 ,...
257:1280],:) = ifftSymOut ([769:1024,1:1024] ,:);

TWITSTTSSTTTTTTSIISIISTISTISTISTIST IS ST IS TS SIS STISSITSISSTISTISTIST o

%% Output

%Parallel OFDM symbols

ifft _outa = ifftSymPrefix;

%Serial OFDM symbols
ifft _outSer = reshape(ifft_outa ,1,[]);

%0Output variables

ifft_out = ifft_outSer;
ifftextbits = ifftExtBitsLen;

B.17 ofdm ifft2048

B.17 ofdm_ifft2048 160

TSI TTTTIISSSTTTTTISSSTSTTTTISSSSTTTIISSSSTTTTISSSSTTTTISSSSTTTTIIIS ST To
YIS TTTTIIISSTTTISISSSTTTIIISSSTTTISSSSTTTISSS ST TTISSSSTTTISIS ST T
TISTTST TS0 Project — OFDM Simulator

%

%Barry Dunbar 0050022993
TITSSSSTITTTTTSSSSITTTTSTSTSSSSITTTTSTSSSSITTTTISSSSIITTTTTSSSSITTTT o
%% IFFT2048

function [ifft_out , ifftextbits] = ofdm_ifft2048 (ifft_in ,handles)

%Assigning variables

ifft _input = ifft_in;

ifftLenOrig = length (ifft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;

noTotCar = handles.totSubChan;

TSTTTTTTTTSTT TSI IS SIS ST TSI TSI IS I TSTS ST TISIITISITSTSIS TSI o
%% Add pilots , DC zero and zero pad the Symbols

%Padding length with ’1’s for mulitple of data sub—carriers
sym_len_col = (length (ifft_input)/noDatCar);

sym_len_.rnd = ceil(sym_len_col);

inpifftLen = sym_len_rnd * noDatCar;

ifft ExtBitsLen = inpifftLen — ifftLenOrig;

ifftExtBits = ones(1,ifftExtBitsLen);

ifft_input = ifft_input ’;

newifftMess = [ifft_input ifftExtBits];

newifftLen = length (newifftMess);

)

newifftMess = newifftMess ’;

B.17 ofdm_ifft2048 161

%Reshape to Number of data sub—carriers

ifftSym = reshape(newifftMess ,noDatCar,sym _len_rnd);

%Assigning data to data sub—carriers

ifftSymPil ([193:198,200:211,213:224,226:237,239:250,252:263,...
265:276,278:289,291:302,304:315,317:328,330:341,343:354,...
356:367,369:380,382:393,395:406,408:419,421:432,434:445,...
447:458,460:471,473:484,486:497,499:510,512:523,525:536,...
538:549,551:562,564:575,577:588,590:601,603:614,616:627,...
629:640,642:653 ,655:666 ,668:679,681:692,694:705,707:718,...
720:731,733:744,746:757,759:770,772:783,785:796,798:809 ,...
811:822,824:835,837:848,850:861,863:874,876:887,889:900,...
902:913,915:926,928:939,941:952,954:965,967:978,980:991,...
993:1004,1006:1017,1019:1024,1026:1031,1033:1044,...
1046:1057,1059:1070,1072:1083,1085:1096,1098:1109,...
1111:1122,1124:1135,1137:1148,1150:1161,1163:1174,...
1176:1187,1189:1200,1202:1213,1215:1226,1228:1239,...
1241:1252,1254:1265,1267:1278,1280:1291,1293:1304,...
1306:1317,1319:1330,1332:1343,1345:1356,1358:1369,...
1371:1382,1384:1395,1397:1408,1410:1421,1423:1434,...
1436:1447,1449:1460,1462:1473,1475:1486,1488:1499,...
1501:1512,1514:1525,1527:1538,1540:1551,1553:1564 ,...
1566:1577,1579:1590,1592:1603,1605:1616,1618:1629,...
1631:1642,1644:1655,1657:1668,1670:1681,1683:1694,...
1696:1707,1709:1720,1722:1733,1735:1746,1748:1759,...
1761:1772,1774:1785,1787:1798,1800:1811,1813:1824,...
1826:1837,1839:1850,1852:1857],:)...
= ifftSym ([1:6,7:18,19:30,31:42,43:54,55:66 ,67:78,79:90,...
91:102,103:114,115:126,127:138,139:150,151:162,163:174,...
175:186,187:198,199:210,211:222,223:234,235:246,247:258,...
259:270,271:282,283:294,295:306,307:318,319:330,331:342,...

B.17 ofdm_ifft2048 162

343:354,355:366,367:378,379:384,385:390,391:402,403:414,...
415:426,427:438 ,439:450,451:462 ,463:474,475:486,487:498,...
499:510,511:522,523:534,535:546,547:558 ,559:570,571:582,...
583:594,595:606,607:618,619:630,631:642,643:654,655:666,...
667:678,679:690,691:702,703:714,715:726,727:738,739:750,...
751:762,763:768,769:774,775:786 ,787:798,799:810,811:822,...
823:834,835:846,847:858,859:870,871:882,883:894,895:906,...
907:918,919:930,931:942,943:954,955:966,967:978,979:990,...
991:1002,1003:1014,1015:1026,1027:1038,1039:1050,...
1051:1062,1063:1074,1075:1086,1087:1098,1099:1110,...
1111:1122,1123:1134,1135:1146,1147:1158,1159:1170,...
1171:1182,1183:1194,1195:1206,1207:1218,1219:1230,...
1231:1242,1243:1254,1255:1266,1267:1278,1279:1290,...
1291:1302,1303:1314,1315:1326,1327:1338,1339:1350,...
1351:1362,1363:1374,1375:1386,1387:1398,1399:1410,...
1411:1422,1423:1434,1435:1446,1447:1458,1459:1470,...
1471:1482,1483:1494,1495:1506,1507:1518,1519:1530,...
1531:1536],:);

%Assigning zero pad to padding sub—carriers
%Assigning zero pad to DC sub—carrier

%Assigning pilots to pilot sub—carriers

ifftSymPil ([1:192] ,:) = 0;
ifftSymPil ([1025],:) = 0;
ifftSymPil ([1858:2048],:) = O0;

ifftSymPil ([199,212,225,238,251,264,277,290,303,316,329 ...
342,355,368 ,381,394,407,420,433,446 ,459 ,472 485,498 ,...
511,524 ,537,550,563,576,589,602,615,628,641,654,667,...
680,693 ,706,719,732,745,758 771,784,797 ,810,823,836 ,...

B.17 ofdm_ifft2048 163

849,862 ,875,888,901,914,927,940,953,966,979,992,1005,...
1018,1032,1045,1058,1071,1084,1097,1110,1123,1136,...
1149,1162,1175,1188,1201,1214,1227,1240,1253,1266,...
1279,1292,1305,1318,1331,1344,1357,1370,1383,1396,...
1409,1422,1435,1448,1461,1474,1487,1500,1513,1526,...
1539,1552,1565,1578,1591,1604,1617,1630,1643,1656,...
1669,1682,1695,1708,1721,1734,1747,1760,1773,1786,...
1799,1812,1825,1838] ,:) = 1;

ifftSymPil ([1851],:) = —1;

SIISTISTISTISTISTISTISSTITSTISSIISIISTISTIST o

%% IFFT OFDM symbols

%IFFT function
ifftSymOut = ifft (ifftSymPil);

TWITSTTSSTTTSTIISIISIISTISTISTISTIST IS ST IS TS SIS TS SITSITSIISIISTIST o

%% Add Cyclic prefix

%Add cyclic extension

ifftSymPrefix ([1:512,...
513:2560],:) = ifftSymOut ([1537:2048 ,1:2048] ,:);

WITSTISTISTIISIISTISTISTISTISTISTISTISTISSTISSTIS SIS SIS SIS SIS SIIS o

%% Output

%Parallel OFDM symbols
ifft_outa = ifftSymPrefix;

%Serial OFDM symbols

B.18 ofdm_ifft4096 164

ifft _outSer = reshape(ifft_outa ,1,[]);

%Output variables
ifft _out = ifft_outSer;
ifftextbits = ifftExtBitsLen;

B.18 ofdm ifft4096

TITISSTTTIIISSTTTTISSSSTITIIISSSSTT TSI SSTSTTTISSSSTTT TSI SSTITTTIS o
ISTTISTTISSTTISSTIISTTISSTISSTTISSTTISSTTISSTISSTTISSTISSTTIS ST o
VLS Project — OFDM Simulator

%o

%Barry Dunbar 0050022993
YISTTISSTTIISTTISSTIISTTISSTIISSTTISSIIISTTISSTISS TSI SIS SIS ST o
%% IFFT4096

function [ifft_out , ifftextbits] = ofdm_ifft4096 (ifft_in ,handles)

%Assigning variables

ifft _input = ifft_in;

ifftLenOrig = length (ifft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;

noTotCar = handles.totSubChan;

TSTTTTSTT TSI TSI TSI TSI TSI SIS IS ST TSI TSI IT TSI TTSIT TS o
%% Add pilots , DC zero and zero pad the Symbols

%Padding length with ’1’s for mulitple of data sub—carriers

sym_len_col = (length(ifft_input)/noDatCar);

B.18 ofdm_ifft4096

165

sym_len_rnd

inpifftLen

ceil (sym_len_col);

sym_len_rnd * noDatCar;

ifftExtBitsLen = inpifftLen — ifftLenOrig;

ifftExtBits |;

ifftExtBits = ones(1,ifftExtBitsLen);
ifft_input = ifft_input ’;

newifftMess = [ifft_input

newifftLen = length (newifftMess);
newifftMess = newifftMess ’;

)

%Reshape to Number of data sub—carriers

ifftSym

reshape (newifftMess ,noDatCar,sym_len_rnd);

%Assigning data to data sub—carriers

ifftSymPil ([385:390,392:403,405:416,418:429,431:442 ,444:

457:468 ,470:481 ,483:
548:559 ,561:572 ,574:
639:650,652:663,665:
730:741,743:754,756:
821:832,834:845,847
912:923,925:936,938:
1003:1014,1016:1027,

1068:
1133:
1198:
1263:
1328:
1393:
1458:
1523:
1588:
1653:
1718:
1783:

1079,1081:
1144 ,1146:
1209,1211:
1274,1276:
1339,1341:
1404,1406:
1469,1471:
1534,1536:
1599 ,1601:
1664 ,1666:
1729,1731:
1794 ,1796:

1092,1094

1287,1289:

1352,1354

1612,1614

494,496:507,509:
585,587:598,600:
676,678:689,691:
767,769:780,782:
858,860:871,873:
949,951:962,964:

1170,1172:
1235,1237:
1300,1302:

:1365,1367:
1417,1419:
1482 ,1484:
1547,1549:

1430,1432:
1495,1497:
1560,1562:

:1625,1627:
1677,1679:
1742 ,1744:
1807,1809:

1690,1692:
1755,1757:
1820,1822:

520,522:5
611,613:6

793.795:8
884 ,886:8

1118,1120:
1183,1185:
1248 ,1250:
1313,1315:
1378,1380:
1443 ,1445:
1508 ,1510:
1573 ,1575:
1638 ,1640:
1703,1705:
1768 ,1770:
1833 ,1835:

33,535:
24 ,626:

702,704:715,717:

06,808:
97,899:

975,977:988,990:
1029:1040,1042:1053,1055:1066 ,...
:1105,1107:
1157,1159:
1222,1224:

1131,...
1196,...
1261,...
1326,...
1391,...
1456 ,...
1521,...
1586 ,...
1651 ...
1716,...
1781,...
1846, ...

455 ...
546 ...
637, ...
728 ...
819,...
910,...
1001 ,...

B.18 ofdm_ifft4096 166

1848:1859,1861:1872,1874:1885,1887:1898,1900:1911 ,...
1913:1924,1926:1937,1939:1950,1952:1963,1965:1976 ,...
1978:1989,1991:2002,2004:2015,2017:2028,2030:2041 ,...
2043:2048,2050:2055,2057:2068 ,2070:2081,2083:2094 ,...
2096:2107,2109:2120,2122:2133,2135:2146,2148:2159,...
2161:2172,2174:2185,2187:2198,2200:2211,2213:2224,...
2226:2237,2239:2250,2252:2263,2265:2276,2278:2289 ...
2291:2302,2304:2315,2317:2328,2330:2341,2343:2354,...
2356:2367,2369:2380,2382:2393,2395:2406,2408:2419,...
2421:2432,2434:2445,2447:2458 ,2460:2471,2473:2484 ,...
2486:2497,2499:2510,2512:2523,2525:2536,2538:2549 ,...
2551:2562,2564:2575,2577:2588,2590:2601,2603:2614 ,...
2616:2627,2629:2640,2642:2653,2655:2666,2668:2679 ,...
2681:2692,2694:2705,2707:2718,2720:2731,2733:2744 ,...
2746:2757,2759:2770,2772:2783,2785:2796,2798:2809 ...
2811:2822,2824:2835,2837:2848,2850:2861,2863:2874 ...
2876:2887,2889:2900,2902:2913,2915:2926,2928:2939 ...
2041:2952,2954:2965,2967:2978,2980:2991,2993:3004 ,...
3006:3017,3019:3030,3032:3043,3045:3056,3058:3069,...
3071:3082,3084:3095,3097:3108,3110:3121,3123:3134,...
3136:3147,3149:3160,3162:3173,3175:3186,3188:3199,...
3201:3212,3214:3225,3227:3238,3240:3251,3253:3264,...
3266:3277,3279:3290,3292:3303,3305:3316,3318:3329,...
3331:3342,3344:3355,3357:3368,3370:3381,3383:3394,...
3396:3407,3409:3420,3422:3433,3435:3446,3448:3459,...
3461:3472,3474:3485,3487:3498,3500:3511,3513:3524,...
3526:3537,3539:3550,3552:3563,3565:3576,3578:3589 ,...
3591:3602,3604:3615,3617:3628,3630:3641,3643:3654,...
3656:3667,3669:3680,3682:3693,3695:3706,3708:3713],:)...
= ifftSym ([1:6,7:18,19:30,31:42,43:54 ,55:66,67:78,79:90 ,...
91:102,103:114,115:126,127:138,139:150,151:162,163:174,...
175:186,187:198,199:210,211:222,223:234,235:246,247:258,...
259:270,271:282,283:294,295:306,307:318,319:330,331:342,...

B.18 ofdm_ifft4096 167

343:354,355:366,367:378,379:390,391:402,403:414,415:426,...

427:438,439:450,451:462,463:474,475:486 ,487:498,499:510,...

511:522,523:534,535:546 ,547:558,559:570,571:582,583:594,...

595:606,607:618,619:630,631:642,643:654,655:666,667:678,...

679:690,691:702,703:714,715:726,727:738,739:750,751:762,...

763:774,775:786,787:798,799:810,811:822,823:834,835:846,...

847:858,859:870,871:882,883:894,895:906,907:918,919:930,...

931:942,943:954,955:966,967:978,979:990,991:1002,1003:1014,...
1015:1026,1027:1038,1039:1050,1051:1062,1063:1074,1075:1086,...
1087:1098,1099:1110,1111:1122,1123:1134,1135:1146,1147:1158,...
1159:1170,1171:1182,1183:1194,1195:1206,1207:1218,1219:1230,...
1231:1242,1243:1254,1255:1266,1267:1278,1279:1290,1291:1302,...
1303:1314,1315:1326,1327:1338,1339:1350,1351:1362,1363:1374,...
1375:1386,1387:1398,1399:1410,1411:1422,1423:1434,1435:1446,...
1447:1458,1459:1470,1471:1482,1483:1494,1495:1506,1507:1518,...
1519:1530,1531:1536,1537:1542,1543:1554,1555:1566,1567:1578,...
1579:1590,1591:1602,1603:1614,1615:1626,1627:1638,1639:1650,...
1651:1662,1663:1674,1675:1686,1687:1698,1699:1710,1711:1722,...
1723:1734,1735:1746 ,1747:1758,1759:1770,1771:1782,1783:1794 ,...
1795:1806,1807:1818,1819:1830,1831:1842,1843:1854,1855:1866,...
1867:1878,1879:1890,1891:1902,1903:1914,1915:1926,1927:1938,...
1939:1950,1951:1962,1963:1974,1975:1986,1987:1998,1999:2010,...
2011:2022,2023:2034,2035:2046,2047:2058,2059:2070,2071:2082,...
2083:2094,2095:2106,2107:2118,2119:2130,2131:2142,2143:2154,...
2155:2166,2167:2178,2179:2190,2191:2202,2203:2214,2215:2226,...
2227:2238,2239:2250,2251:2262,2263:2274 ,2275:2286 ,2287:2298 ,...
2299:2310,2311:2322,2323:2334,2335:2346,2347:2358,2359:2370,...
2371:2382,2383:2394,2395:2406,2407:2418,2419:2430,2431:2442 ...
2443:2454,2455:2466 ,2467:2478,2479:2490,2491:2502,2503:2514 ...
2515:2526,2527:2538,2539:2550,2551:2562,2563:2574,2575:2586,...
2587:2598,2599:2610,2611:2622,2623:2634,2635:2646,2647:2658,...
2659:2670,2671:2682,2683:2694,2695:2706,2707:2718,2719:2730,...
2731:2742,2743:2754,2755:2766 ,2767:2778,2779:2790,2791:2802,...

B.18 ofdm_ifft4096 168

2803:2814,2815:2826,2827:2838,2839:2850,2851:2862,2863:2874,...
2875:2886,2887:2898,2899:2910,2911:2922,2923:2934,2935:2946,...
2947:2958,2959:2970,2971:2982,2983:2994,2995:3006,3007:3018,...
3019:3030,3031:3042,3043:3054,3055:3066,3067:3072],:);

%Assigning zero pad to padding sub—carriers
%Assigning zero pad to DC sub—carrier

%Assigning pilots to pilot sub—carriers

ifftSymPil ([1:384],:) = 0;
ifftSymPil ([2049],:) = 0;
fftSymPil ([3714:4096],:) = O0;

ifftSymPil ([391,404,417,430,443,456,469,482,495,508,521,534 ,...
547,560,573 ,586,599,612,625,638,651,664,677,690,703,716 ,...
729,742 ,755,768,781,794,807,820,833,846,859,872,885,898 ,...
911,924,937,950,963,976,989,1002,1015,1028,1041,1054,1067,...
1080,1093,1106,1119,1132,1145,1158,1171,1184,1197,1210,...
1223,1236,1249,1262,1275,1288,1301,1314,1327,1340,1353,...
1366,1379,1392,1405,1418,1431,1444,1457,1470,1483,1496,...
1509,1522,1535,1548,1561,1574,1587,1600,1613,1626,1639 ,...
1652,1665,1678,1691,1704,1717,1730,1743,1756,1769,1782,...
1795,1808,1821,1834,1847,1860,1873,1886,1899,1912,1925,...
1938,1951,1964,1977,1990,2003,2016,2029,2042,2056,2069 ,...
2082,2095,2108,2121,2134,2147,2160,2173,2186,2199,2212,...
2225,2238,2251,2264,2277,2290,2303,2316,2329,2342,2355,...
2368,2381,2394,2407,2420,2433,2446,2459,2472,2485,2498 ,...
2511,2524,2537,2550,2563,2576,2589,2602,2615,2628 ,2641 ,...
2654,2667,2680,2693,2706,2719,2732,2745,2758,2771,2784 ...
2797,2810,2823,2836,2849,2862,2875,2888,2901,2914,2927,...
2940,2953,2966,2979,2992,3005,3018,3031,3044,3057,3070,...

B.18 ofdm_ifft4096 169

3083,3096,3109,3122,3135,3148,3161,3174,3187,3200,3213,...
3226,3239,3252,3265,3278,3291,3304,3317,3330,3343,3356,...
3369,3382,3395,3408,3421,3434,3447 ,3460,3473,3486,3499 ...
3512,3525,3538,3551,3564,3577,3590,3603,3616,3629,3642 ,...
3655,3668,3681,3694,3707] ,:) = 1;

ifftSymPil ([3707],:) = —1;

TISSSTTTTTTISSTTTTITSSSTTTTITSSSSTSTTTIISSSITTTIISSSTTSTTIISSSTSTSTTTIISS o
%% IFFT OFDM symbols

%IFFT function
ifftSymOut = ifft (ifftSymPil);

TISSSTTTTTITISSSTTTTIISSSTTSTTIISSS TSI TTTISSSTSITTIISSSTISTIISSSISTSTTTTISS o
%% Add Cyclic prefix

%Add cyclic extension
ifftSymPrefix ([1:1024 ,...
1025:5120],:) = ifftSymOut ([3073:4096,1:4096] ,:);

TISSTTTSSTTISSTISSTTIS ST IS ST IIS ST IS ST TISTTIS ST TSI ST IS ST TISTT IS o

%% Output

%Parallel OFDM symbols
ifft_outa = ifftSymPrefix;

%Serial OFDM symbols
ifft _.outSer = reshape(ifft_outa ,1,[]);

B.19 ofdm_ifft8192 170

%0utput variables
ifft _out = ifft_outSer;
ifftextbits = ifftExtBitsLen;

B.19 ofdm ifft8192

YISTTISSTIISTTISSTIIS ST IS STIIS ST IS STISSTTISSTISS TSI ST IS SIS ST o
TITISSTTTIIISSTTTTISSSSTITIIISSSSTT TSI SSTSTTTISSSSTTT TSI SSTITTTIS o
TSTTSTSTT T Project — OFDM Simulator

%o

%Barry Dunbar 0050022993
ISTTISTTIISTTISSTIISTTISSTISSTTISSTTISSTTISSTISSTTIS SIS SIS ST o
%% TFFT8192

function [ifft_out , ifftextbits] = ofdm_ifft8192 (ifft_in ,handles)

%Assigning variables

ifft _input = ifft_in;

ifftLenOrig = length (ifft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;

noTotCar = handles.totSubChan;

TISISSTTTTIIISSTTTTISSSSTTTI SIS SSTTTI SIS SSITTTISSSSTTTISISSSTTTTIIS o
%% Add pilots , DC zero and zero pad the Symbols

%Padding length with ’1’s for mulitple of data sub—carriers

sym_len_col = (length (ifft_input)/noDatCar);

sym_len_.rnd = ceil(sym_len_col);

B.19 ofdm_ifft8192 171

inpifftLen = sym_len_rnd % noDatCar;

ifft ExtBitsLen = inpifftLen — ifftLenOrig;
ifftExtBits = ones(1,ifftExtBitsLen);

ifft .input = ifft_input ’;

newifftMess = [ifft_input ifftExtBits];
newifftLen = length (newifftMess);

newifftMess = newifftMess ’;

%Reshape to Number of data sub—carriers

ifftSym = reshape(newifftMess ,noDatCar,sym _len_rnd);

%Assigning data to data sub—carriers
ifftSymPil ([769:774,776:787,789:800,802:813,815:826,828:839,...
841:852,854:865,867:878,880:891,893:904,906:917,919:930,...
932:943,945:956,958:969,971:982,984:995,997:1008,...
1010:1021,1023:1034,1036:1047,1049:1060,1062:1073,...
1075:1086,1088:1099,1101:1112,1114:1125,1127:1138,...
1140:1151,1153:1164,1166:1177,1179:1190,1192:1203,...
1205:1216,1218:1229,1231:1242,1244:1255,1257:1268,...
1270:1281,1283:1294,1296:1307,1309:1320,1322:1333,...
1335:1346 ,1348:1359,1361:1372,1374:1385,1387:1398,...
1400:1411,1413:1424,1426:1437,1439:1450,1452:1463,...
1465:1476,1478:1489,1491:1502,1504:1515,1517:1528,...
1530:1541,1543:1554,1556:1567,1569:1580,1582:1593,...
1595:1606,1608:1619,1621:1632,1634:1645,1647:1658,...
1660:1671,1673:1684,1686:1697,1699:1710,1712:1723,...
1725:1736 ,1738:1749,1751:1762,1764:1775,1777:1788,...
1790:1801,1803:1814,1816:1827,1829:1840,1842:1853,...
1855:1866,1868:1879,1881:1892,1894:1905,1907:1918,...
1920:1931,1933:1944,1946:1957,1959:1970,1972:1983,...
1985:1996,1998:2009,2011:2022,2024:2035,2037:2048,...
2050:2061,2063:2074,2076:2087,2089:2100,2102:2113,...
2115:2126,2128:2139,2141:2152,2154:2165,2167:2178,...

B.19 ofdm_ifft8192 172

2180:2191,2193:2204,2206:2217,2219:2230,2232:2243 ...
2245:2256,2258:2269,2271:2282,2284:2295,2297:2308 ...
2310:2321,2323:2334,2336:2347,2349:2360,2362:2373,...
2375:2386,2388:2399,2401:2412,2414:2425,2427:2438 ...
2440:2451,2453:2464 ,2466:2477,2479:2490,2492:2503,...
2505:2516,2518:2529,2531:2542,2544:2555,2557:2568 ...
2570:2581,2583:2594,2596:2607,2609:2620,2622:2633,...
2635:2646,2648:2659,2661:2672,2674:2685,2687:2698,...
2700:2711,2713:2724,2726:2737,2739:2750,2752:2763,...
2765:2776,2778:2789,2791:2802,2804:2815,2817:2828,...
2830:2841,2843:2854,2856:2867,2869:2880,2882:2893,...
2895:2906,2908:2919,2921:2932,2934:2945,2947:2958,...
2960:2971,2973:2984,2986:2997,2999:3010,3012:3023,...
3025:3036,3038:3049,3051:3062,3064:3075,3077:3088,...
3090:3101,3103:3114,3116:3127,3129:3140,3142:3153,...
3155:3166,3168:3179,3181:3192,3194:3205,3207:3218,...
3220:3231,3233:3244,3246:3257,3259:3270,3272:3283,...
3285:3296,3298:3309,3311:3322,3324:3335,3337:3348,...
3350:3361,3363:3374,3376:3387,3389:3400,3402:3413,...
3415:3426,3428:3439,3441:3452,3454:3465,3467:3478,...
3480:3491,3493:3504,3506:3517,3519:3530,3532:3543,...
3545:3556,3558:3569,3571:3582,3584:3595,3597:3608,...
3610:3621,3623:3634,3636:3647,3649:3660,3662:3673,...
3675:3686,3688:3699,3701:3712,3714:3725,3727:3738,...
3740:3751,3753:3764,3766:3777,3779:3790,3792:3803,...
3805:3816,3818:3829,3831:3842,3844:3855,3857:3868,...
3870:3881,3883:3894,3896:3907,3909:3920,3922:3933,...
3935:3946,3948:3959,3961:3972,3974:3985,3987:3998,...
4000:4011,4013:4024,4026:4037,4039:4050,4052:4063,...
4065:4076,4078:4089,4091:4096 ,4098:4103,4105:4116,...
4118:4129,4131:4142,4144:4155,4157:4168,4170:4181,...
4183:4194,4196:4207,4209:4220,4222:4233 ,4235:4246,...
4248:4259,4261:4272,4274:4285,4287:4298,4300:4311,...

B.19 ofdm_ifft8192

173

4313:
4378:
4443:
4508:
4573:
4638:
4703:
4768:
4833:
4898:
4963:
5028:
5093:
5158:
5223:
5288:
5353:
5418:
5483:
5548:
5613:
5678:
5743:
5808:
5873:
5938:
6003:
6068:
6133:
6198:
6263:
6328:
6393:

4324 ,4326:
4389 ,4391:
4454 ,4456:
4519 ,4521:
4584 ,4586:
4649 ,4651:
4714 ,4716:
4779 ,4781:
4844 ,4846:
4909 ,4911:
4974 ,4976:
5039,5041:
5104,5106:
5169,5171:
5234,5236:
5299 ,5301:
5364 ,5366:
5429 ,5431:
5494 ,5496:
5559 ,5561:
5624 ,5626:
5689 ,5691:
5754 ,5756:
5819 ,5821:
5884 ,5886:
5949 ,5951:
6014,6016:
6079,6081:
6144 ,6146:
6209,6211:
6274,6276:
6339,6341:
6404 ,6406:

4337,4339:
4402 ,4404:
4467 ,4469:
4532 ,4534:
4597 ,4599:
41662 ,4664:
4727 ,4729:
4792 ,4794:
4857 ,4859:
4922 ,4924:
4987 ,4989:
5052 ,5054:
5117,5119:
5182,5184:
5247 ,5249:
5312,5314:
5377,5379:
5442 ,5444:
5507 ,5509:
5572 ,5574:
5637,5639:
5702 ,5704:
5767,5769:
5832 ,5834:
5897 ,5899:
5962 ,5964:
6027,6029:
6092,6094:
6157,6159:
6222,6224:
6287,6289:
6352 ,6354:
6417,6419:

4350 ,4352:
4415 ,4417:
4480 ,4482:
4545 ,4547:
4610,4612:
4675 ,4677:
4740 ,4742:
4805 ,4807:
4870 ,4872:
4935,4937:
5000,5002:
5065,5067:
5130,5132:
5195,5197:
5260,5262:
5325,5327:
5390,5392:
5455 ,5457:
5520,5522:
5585 ,5587:
5650,5652:
5715,5717:
5780,5782:
5845 ,5847:
5910,5912:
5975,5977:
6040,6042:
6105,6107:
6170,6172:
6235,6237:
6300,6302:
6365,6367:
6430,6432:

4363,4365:
4428 ,4430:
4493 ,4495:
4558 ,4560:
4623 ,4625:
4688 ,4690:
4753 ,4755:
4818 ,4820:
4883 ,4885:
4948 ,4950:
5013,5015:
5078 ,5080:
5143 ,5145:
5208,5210:
5273 ,5275:
5338,5340:
5403 ,5405:
5468 ,5470:
5533,5535:
5598 ,5600:
5663,5665:
5728 ,5730:
5793,5795:
5858 ,5860:
5923 ,5925:
5988,5990:
6053,6055:
6118,6120:
6183,6185:
6248 ,6250:
6313,6315:
6378,6380:
6443 ,6445:

4376 ,...
4441 ...
4506 ,...
4571 ,...
4636 ,...
4701,...
4766 ,...
4831 ,...
4896 ,...
4961 ,...
5026 ,...
5091,...
5156,...
5221, ...
5286 ,...
5351,...
5416 ,...
5481, ...
5546 ,...
5611, ...
5676, ...
5741,...
5806 ,...
5871,...
5936 ,...
6001 ,...
6066 ,...
6131,...
6196 ,...
6261 ,...
6326 ,...
6391,...
6456 ,...

B.19 ofdm_ifft8192

174

6458:
6523:
6588:
6653:
6718:
6783:
6848:
6913:
6978:
7043:
7108:
7173:
7238:
7303:
7368:

6469 ,6471:
6534 ,6536:
6599 ,6601:
6664 ,6666:
6729 ,6731:
6794 ,6796:
6859 ,6861:
6924 ,6926:
6989 ,6991:
7054 ,7056:
7119,7121:
7184 ,7186:
7249 ,7251:
7314 ,7316:

6482 ,6484:
6547 ,6549:
6612,6614:
6677 ,6679:
6742 ,6744:
6807 ,6809:
6872 ,6874:
6937,6939:
7002 ,7004:
7067 ,7069:
7132,7134:
7197,7199:
7262 ,7264:
7327,7329:

6495 ,6497:
6560 ,6562:
6625 ,6627:
6690 ,6692:
6755 ,6757:
6820 ,6822:
6885 ,6887:
6950 ,6952:
7015 ,7017:
7080 ,7082:
7145 ,7147:
7210,7212:
7275 ,7277:
7340 ,7342:

6508 ,6510:
6573 ,6575:
6638 ,6640:
6703 ,6705:
6768,6770:
6833 ,6835:
6898 ,6900:
6963 ,6965:
7028 ,7030:
7093,7095:
7158 ,7160:
7223 ,7225:
7288 ,7290:
7353 ,7355:

6521, ...
6586 ,...
6651 ,...
6716 ,...
6781, ...
6846 ,...
6911, ...
6976 ,...
7041, ...
7106, ...
7171, ...
7236, ...
7301, ...
7366 ,...

7379,7381:7392,7394:7405,7407:7418,7420:7425],:)...

ifftSym ([1:6,7:18,19:30,31:42,43:54,55:66,67:78,79:90,...

91:102,103:114,115:126,127:138,139:150,151:162,163:174,...

175:
259:
343:
427:
511:
595:
679:
763:
847:

366 ,367:
450,451:
534 ,535:
618 ,619:
702 ,703:
786 ,787:
870 ,871:

204,295:
378,379:
462 ,463:
546 ,547:
630,631:
714,715:
798,799:
882 ,883:

390,391:
474 ,475:
558,559:
642,643:
726,727
810,811:
894 ,895:

306,307:318,319:
402,403:
486 ,487:
570,571:
654 ,655:
738,739:
822,823:
906,907:

330,331:
414 ,415:
498 ,499:
582 ,583:
666,667:
750,751:
834,835:
918,919:

186,187:198,199:210,211:222,223:234,235:246,247:258,...
270,271:282,283:
354 ,355:
438,439:
522.,523:
606,607:
690,691:
T74,775:
858 ,859:

342 ...
426 ,...
510,...
594 ...
678 ,...
762 ...
846 ,...
930, ...

931:942,943:
1015:
1087:
1159:
1231:

954 ,955:
1026,1027:1038,
1098,1099:1110,1111:1122,1123:
1170,1171:1182,1183:1194,1195:
1242,1243:1254,1255:1266,1267:
1314,1315:1326,1327:1338,1339:
1386,1387:1398,1399:1410,1411:

966,967:978,979:
1039:1050,1051:

990,991:
1062,1063:
1134,1135:
1206,1207:
1278,1279:

1002,1003:1014,...
1074,1075:
1146,1147:
1218,1219:
1290,1291:

1086 ,...
1158, ...
1230,...
1302, ...
1374,...
1446 ,...

1303:
1375:

1350,1351:
1422 ,1423:

1362,1363:
1434,1435:

B.19 ofdm_ifft8192 175

1447:1458,1459:1470,1471:1482,1483:1494,1495:1506,1507:1518,...
1519:1530,1531:1542,1543:1554,1555:1566,1567:1578,1579:1590,...
1591:1602,1603:1614,1615:1626,1627:1638,1639:1650,1651:1662,...
1663:1674,1675:1686,1687:1698,1699:1710,1711:1722,1723:1734,...
1735:1746 ,1747:1758,1759:1770,1771:1782,1783:1794,1795:1806,...
1807:1818,1819:1830,1831:1842,1843:1854,1855:1866,1867:1878,...
1879:1890,1891:1902,1903:1914,1915:1926,1927:1938,1939:1950,...
1951:1962,1963:1974,1975:1986,1987:1998,1999:2010,2011:2022,...
2023:2034,2035:2046,2047:2058,2059:2070,2071:2082,2083:2094,...
2095:2106,2107:2118,2119:2130,2131:2142,2143:2154,2155:2166,...
2167:2178,2179:2190,2191:2202,2203:2214,2215:2226,2227:2238,...
2239:2250,2251:2262,2263:2274,2275:2286 ,2287:2298,2299:2310,...
2311:2322,2323:2334,2335:2346,2347:2358,2359:2370,2371:2382,...
2383:2394,2395:2406,2407:2418,2419:2430,2431:2442,2443:2454 ,...
2455:2466,2467:2478,2479:2490,2491:2502,2503:2514,2515:2526,...
2527:2538,2539:2550,2551:2562,2563:2574,2575:2586 ,2587:2598,...
2599:2610,2611:2622,2623:2634,2635:2646 ,2647:2658,2659:2670,...
2671:2682,2683:2694,2695:2706,2707:2718,2719:2730,2731:2742,...
2743:2754,2755:2766 ,2767:2778,2779:2790,2791:2802,2803:2814,...
2815:2826,2827:2838,2839:2850,2851:2862,2863:2874,2875:2886,...
2887:2898,2899:2910,2911:2922,2923:2934,2935:2946,2947:2958,...
2959:2970,2971:2982,2983:2994,2995:3006,3007:3018,3019:3030,...
3031:3042,3043:3054,3055:3066,3067:3072,3073:3078,3079:3090,...
3091:3102,3103:3114,3115:3126,3127:3138,3139:3150,3151:3162,...
3163:3174,3175:3186,3187:3198,3199:3210,3211:3222,3223:3234,...
3235:3246,3247:3258,3259:3270,3271:3282,3283:3294,3295:3306,...
3307:3318,3319:3330,3331:3342,3343:3354,3355:3366,3367:3378,...
3379:3390,3391:3402,3403:3414,3415:3426,3427:3438,3439:3450,...
3451:3462,3463:3474,3475:3486,3487:3498,3499:3510,3511:3522,...
3523:3534,3535:3546,3547:3558,3559:3570,3571:3582,3583:3594,...
3595:3606,3607:3618,3619:3630,3631:3642,3643:3654,3655:3666,...
3667:3678,3679:3690,3691:3702,3703:3714,3715:3726,3727:3738,...
3739:3750,3751:3762,3763:3774,3775:3786,3787:3798,3799:3810,...

B.19 ofdm_ifft8192 176

3811:3822,3823:3834,3835:3846,3847:3858,3859:3870,3871:3882,...
3883:3894,3895:3906,3907:3918,3919:3930,3931:3942,3943:3954 ...
3955:3966,3967:3978,3979:3990,3991:4002,4003:4014,4015:4026,...
4027:4038,4039:4050,4051:4062,4063:4074,4075:4086 ,4087:4098 ...
4099:4110,4111:4122,4123:4134 ,4135:4146,4147:4158 ,4159:4170,...
4171:4182,4183:4194,4195:4206,4207:4218,4219:4230,4231:4242,...
4243:4254 ,4255:4266 ,4267:4278 ,4279:4290,4291:4302,4303:4314,...
4315:4326,4327:4338 ,4339:4350,4351:4362,4363:4374,4375:4386 ,...
4387:4398,4399:4410,4411:4422 ,4423:4434 ,4435:4446 ,4447:4458 ,...
4459:4470,4471:4482 ,4483:4494 ,4495:4506,4507:4518 ,4519:4530,...
4531:4542 ,4543:4554 ,4555:4566 ,4567:4578 ,4579:4590,4591:4602 ,...
4603:4614,4615:4626,4627:4638 ,4639:4650,4651:4662,4663:4674 ,...
4675:4686 ,4687:4698 ,4699:4710,4711:4722 ,4723:4734 ,4735:4746,...
ATAT:47T58 4T59:4770,4771:4782,4783:4794 ,4795:4806 ,4807:4818 ...
4819:4830,4831:4842 ,4843:4854 ,4855:4866 ,4867:4878,4879:4890 , ...
4891:4902,4903:4914,4915:4926,4927:4938,4939:4950,4951:4962,...
4963:4974,4975:4986 ,4987:4998 ,4999:5010,5011:5022,5023:5034 ,...
5035:5046,5047:5058,5059:5070,5071:5082,5083:5094,5095:5106 ,...
5107:5118,5119:5130,5131:5142,5143:5154,5155:5166,5167:5178,...
5179:5190,5191:5202,5203:5214,5215:5226 ,5227:5238 ,5239:5250,...
5251:5262,5263:5274,5275:5286,5287:5298 ,5299:5310,5311:5322,...
5323:5334,5335:5346 ,5347:5358,5359:5370,5371:5382,5383:5394 ...
5395:5406 ,5407:5418 ,5419:5430,5431:5442 ,5443:5454 ,5455:5466 ,...
5467:5478 ,5479:5490,5491:5502,5503:5514,5515:5526 ,5527:5538 ...
5539:5550,5551:5562,5563:5574 ,5575:5586,5587:5598,5599:5610 ...
5611:5622,5623:5634,5635:5646,5647:5658 ,5659:5670,5671:5682,...
5683:5694 ,5695:5706,5707:5718,5719:5730,5731:5742 ,5743:5754 ...
5755:5766,5767:5778,5779:5790,5791:5802,5803:5814 ,5815:5826 ,...
5827:5838,5839:5850,5851:5862,5863:5874,5875:5886 ,5887:5898 ...
5899:5910,5911:5922,5923:5934,5935:5946 ,5947:5958 ,5959:5970,...
5971:5982,5983:5994 ,5995:6006,6007:6018,6019:6030,6031:6042 ...
6043:6054,6055:6066,6067:6078,6079:6090,6091:6102,6103:6114,...
6115:6126,6127:6138,6139:6144],:);

B.19 ofdm_ifft8192 177

%Assigning zero pad to padding sub—carriers
%Assigning zero pad to DC sub—carrier

%Assigning pilots to pilot sub—carriers

ifftSymPil ([1:768] ,:) = 0;
ifftSymPil ([4097],:) = 0;
ifftSymPil ([7426:8192],:) = 0;

ifftSymPil ([775,788,801,814,827,840,853,866,879,892,905,918 ...
931,944,957,970,983,996,1009,1022,1035,1048,1061,1074 ,...
1087,1100,1113,1126,1139,1152,1165,1178,1191,1204,1217,...
1230,1243,1256,1269,1282,1295,1308,1321,1334,1347,1360,...
1373,1386,1399,1412,1425,1438,1451,1464,1477,1490,1503,...
1516 ,1529,1542,1555,1568,1581,1594,1607,1620,1633,1646,...
1659,1672,1685,1698,1711,1724,1737,1750,1763,1776,1789,...
1802,1815,1828,1841,1854,1867,1880,1893,1906,1919,1932,...
1945,1958,1971,1984,1997,2010,2023,2036,2049,2062,2075,...
2088,2101,2114,2127,2140,2153,2166,2179,2192,2205,2218,...
2231,2244,2257,2270,2283,2296,2309,2322,2335,2348,2361 ,...
2374,2387,2400,2413,2426,2439,2452,2465,2478,2491,2504 ,...
2517,2530,2543,2556,2569 ,2582,2595 ,2608 ,2621,2634 ,2647,...
2660,2673,2686,2699,2712,2725,2738,2751,2764,2777,2790,...
2803,2816,2829,2842,2855,2868,2881,2894,2907,2920,2933,...
2946,2959,2972,2985,2998,3011,3024,3037,3050,3063,3076,...
3089,3102,3115,3128,3141,3154,3167,3180,3193,3206,3219,...
3232,3245,3258,3271,3284,3297,3310,3323,3336,3349,3362,...
3375,3388,3401,3414,3427,3440,3453,3466,3479,3492,3505,...
3518,3531,3544,3557,3570,3583,3596,3609,3622,3635,3648,...
3661,3674,3687,3700,3713,3726,3739,3752,3765,3778,3791,...
3804,3817,3830,3843,3856,3869,3882,3895,3908,3921,3934,...
3947,3960,3973,3986,3999,4012,4025,4038,4051,4064,4077,...

B.19 ofdm_ifft8192 178

4090,4104,4117,4130,4143,4156,4169,4182,4195,4208,4221,...
4234 ,4247 ,4260,4273 ,4286,4299,4312,4325 ,4338 ,4351,4364,...
4377.,4390,4403,4416,4429 ,4442 4455 ,4468 ,4481,4494 ,4507,...
4520,4533,4546,4559 ,4572,4585 ,4598 ,4611 ,4624 ,4637 ,4650 ...
4663,4676,4689,4702,4715,4728 ,4741,4754 ,4767 ,4780,4793 ,...
4806,4819,4832,4845 ,4858 ,4871,4884,4897,4910,4923,4936,...
4949 ,4962,4975,4988 ,5001,5014,5027,5040,5053,5066,5079 ...
5092 ,5105,5118,5131,5144,5157,5170,5183,5196,5209,5222 ,...
5235,5248,5261,5274,5287,5300,5313,5326,5339,5352,5365,...
5378,5391,5404,5417,5430,5443 ,5456,5469 ,5482,5495 ,5508 ,...
5521,5534,5547 ,5560,5573,5586,5599 ,5612,5625,5638 ,5651 ,...
5664,5677,5690,5703,5716,5729,5742,5755,5768 ,5781,5794 ...
5807 ,5820,5833,5846,5859,5872,5885,5898,5911,5924,5937,...
5950,5963,5976,5989,6002,6015,6028,6041,6054,6067,6080 ,...
6093,6106,6119,6132,6145,6158,6171,6184,6197,6210,6223 ...
6236,6249,6262,6275,6288,6301,6314,6327,6340,6353,6366 ,...
6379,6392,6405,6418,6431,6444 ,6457 ,6470,6483,6496,6509 ,...
6522 ,6535,6548,6561,6574,6587,6600,6613,6626,6639,6652,...
6665,6678,6691,6704,6717,6730,6743,6756,6769,6782,6795,...
6808,6821,6834,6847,6860,6873,6886,6899,6912,6925,6938,...
6951,6964,6977,6990,7003,7016,7029,7042,7055,7068,7081,...
7094,7107,7120,7133,7146,7159,7172,7185,7198,7211,7224 ...
7237,7250,7263,7276,7289 ,7302,7315,7328,7341,7354,7367 ...
7380,7393,7406],:) = 1;

ifftSymPil ([7419],:) = —1;

TIISSSTTTTTTISSSTTTTIITISSSTTTTIISSSTTTTITISSSITTTIISSSISTTTIIISSSTTTT o
%% IFFT OFDM symbols

%FFT function

B.20 ofdm_pream 179

ifftSymOut = ifft (ifftSymPil);

TSI TSI IS ITTISISIS SIS SSSSSSS o
%% Add Cyclic prefix

%Add cyclic extension
ifftSymPrefix ([1:2048,...

2049:10240],:) = ifftSymOut ([6145:8192,1:8192] ,:);

TISSSTTTTTTTSSTTTTIISSSTTSTTIISSSISTSTSTIISSST TS TIISSSTTSTTIISSSSTTITTIS o
%% Output

%Parallel OFDM symbols

ifft _outa = ifftSymPrefix;

%Serial OFDM symbols

ifft _outSer = reshape(ifft_outa ,1,[]);

%Output variables
ifft _out = ifft_outSer;

ifftextbits = ifftExtBitsLen;

B.20 ofdm_pream

TWITSTTSTTTTTTSITSIISTISTISTISTISTISTIS TS TS STTS SIS SIS ST ITSTIISIIS o
TISSTITSTTIS ST IS ST TSI ST IS ST ITS ST IS ST IS SITIS ST IS ST IS ST IS SIS ST IS o
VO Project — OFDM Simulator

%

%Barry Dunbar 0050022993

WTTSTISTITSISSIISTISTISTISTISTISTISTISTISSTISTIS SIS SIS SIS SIS SIIS o

B.20 ofdm_pream 180

%% Preamble Generator

function [preamble_out] = ofdm_pream ()

IS TSI SIS TSI TS TSI TSI SIS IS IS I TSTIISTIISTIT
%% Short Preamble

%Allocating the 12 sub—carriers

pshort = (sqrt(13/6))=«[0,0,0,0,0,0,0,0,14+j,0,0,0,—-1—j,0,0,
0,1+j,0,0,0,-1-,0,0,0,-1-3,0,0,0,1+j,0,0,0,0,0,0,0,
-1-j,0,0,0,-1~-j,0,0,0,1+j,0,0,0,14+j,0,0,0,14+j,0,0,0,
14j,0,0,0,0,0,0,0];

pshorta = pshort. ’;

%IFFT short preamble
pshortifft = ifft (pshorta);

%Taking the first 16 symbols
pl6 ([1:16],:) = pshortifft ([1:16],:);

%Making 10 training symbols
peramsh = [pl6 pl6 pl6 pl6 pl6 pl6 pl6é pl6 pl6 pl6];

%Serialise

peramblesh = reshape (peramsh,160,1);

TITISSTITTTTTSSSSTITTTTTSISSSIITTTTSTSS SIS TTTTSISSSIITTTTISSSSITTTT o
%% Long Preamble

%Allocating the 53 sub—carriers

plong = [0,0,0,0,0,0,1,1,—-1,—-1,1,1,—-1,1,—-1,1,1,1,1,1,1,—1,
-1,1,17,-1,1,-1,1,1,1,1,0,1,-1,—-1,1,1,—-1,1,—-1,1,—-1,—-1,
-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1,0,0,0,0,0];

B.21 ofdm_chann 181

plonga = plong.’;

%IFFT short preamble

plongifft = ifft (plonga);

%Making cyclic extensions of the training symbols

plongifftPrefix ([1:16 ,17:80],:) = plongifft ([49:64,1:64],:);

%Adding the cyclic extensions
peramblelo ([1:16,17:32,33:96,97:160],:) = plongifft ([33:48,
49:64,1:64,1:64] ,:);

YIS SIS SIS ST ST SIS TSI SIS TS S TSI SIS STSTSTITITT o
%% Preamble Out

%Combining the short and long symbols to make the preamble

preamblefull = [peramblesh peramblelo |;

%Output variable
preamble_out = reshape(preamblefull ;1,320);

B.21 ofdm_chann

TITSTTSTTTSTITSTITSTISTISTISTISTISTISTIS TS SIS STTS SIS SIS SIS SIT SIS o
TISSTTSSTIIS ST IS ST IIS ST IS ST TSI SIS ST IS ST IS ST IS ST IS ST IS ST TIS ST IS o
VO Project — OFDM Simulator

%o

%Barry Dunbar 0050022993

TSI TSI TSI TSI TSI TSI TS TSI TSI TSI TSI SIS TSI ISTITSTIISTIISTITTI o
%% Channel

function [channout]| = ofdm_chann(channin , kin,Ebin, handles)

B.21 ofdm_chann 182

%Assigning variables
ke = kin;
EbNo = Ebin;

popupmod_sel_id = handles.fadTypeVal;

%Calculating SNR

snr = EbNo + 3 + 10xlogl0 (kc);
switch popupmod_sel_id

case 1 %None

9%No fading channel parameters

fadedSig = channin;

case 2 %Rayleigh

%Rayleigh fading channel parameters

chan = rayleighchan;

%Effect of fading channel

fadedSig = filter (chan, channin);

case 3 %Rician

%Rician fading channel parameters
chan = ricianchan;

chan.KFactor = 3;

%Effect of fading channel

fadedSig = filter (chan, channin);

B.22 ofdm_rx 183

end

%Add Gaussian noise and output

channout = awgn(fadedSig ,snr);

B.22 ofdm_rx

IS TTISTTIISTTTISSTTTSSTTIISSTIISTITISSTIISTITISTSTIISISTITSSTIIISSTIISTITISSTSo
YIS TTTSSTTTTSTTTISSTTISSTT TSI TSI TTISSTTTSSTTTTSTITSSTTTISTITSSTITSSTIIS T To
TSTTSTSTT T Project — OFDM Simulator

%

%Barry Dunbar 0050022993
TISTTISSTTTTSTTISSTTTSSTTIISSTTSSTTTIS SIS STTTTSSTTTSSTITIS TSI STITSST TSI So
%% Receiver

function [rxout] = ofdm_rx(ofin ,handles);
handles;
ofdmrxin = ofin;
present = handles.txpreamblevals;

%% Remove Preamble

[preout ,datout] = ofdm_rempream (ofdmrxin, handles);

%

%% FFT function call

fftoutput = ofdm_fft (datout , handles);

fftoutput ;

[fp,fq] = size(fftoutput);

B.23 ofdm_rempream 184

%% Demodulator function call
demodin = fftoutput;
demodoutput = ofdm_demodulator (demodin , ...

handles .modTypeVal, handles. modextrabits);

n = length (demodoutput);

demodoutput ;

%% Deinterleaver function call

deinterlvdin = demodoutput;

[deinterlvdout] = ofdm_deinterleaver (deinterlvdin ,...
handles.noDataCar, handles . modTypeVal , ...
handles.intextrabits ,handles.intperm);

decodemessin = deinterlvdout;

%% Decoder function call

[decodemessout] = ofdm_decoder(decodemessin , ...

handles.codTypeVal, handles. codextrabits);

%% Output

rxout = decodemessout ;

B.23 ofdm_rempream

WITTSTITSTTSTTITTISTISTISTISTISTISTISTISTISTISTISTISTISTTSTTSSTIS o
WITTSTISTITTIISIISTISIISITISTISTISTISTISTISTISTIS SIS SIS SIS SIS SIIS o

B.23 ofdm_rempream 185

YITTSSIST o Project — OFDM Simulator

%

%Barry Dunbar 0050022993

YIS TTTSSTTTISTTISSTTTSSTT TSI TS TTISSTTTSSTTIS ST TS STTITSSTTTSSTTITSTTTS o
%% Receiver Preamble Removal

function [preout, datout] = ofdm_rempream(pre_in ,handles)

%Assigning variables
rxIQ = pre_in;

preamble_tx = handles.txpreamblevals;

%Finding the size and removing preamble
rxIQs = reshape (rxIQ,1 ,[]);
[rxIQsp ,rxIQsq] = size (rxIQs);
rxIQpre (:,[1:320]) = rxIQs (:,[1:320]);
[rxIQpp ,rxIQpq] = size (rxIQpre);
rxIQdat (:,[1:(rxIQsq—rxIQpq)]) =

rx1Qs ([(rxIQpq+1):rxIQsq)

[rxIQdp ,rxIQdq] = size (rxIQdat);

%Received preamble values
rxIpream = real (rxIQpre);
rxQpream = imag(rxIQpre);
[rxXTHETA ,1xRHO] = cart2pol (rxIpream ,rxQpream);

%Known preamble values
txIpream = real (preamble_tx);
txQpream = imag(preamble_tx);

[txTHETA ,txRHO] = cart2pol (txIpream ,txQpream);

%Finds channel estimate through preamble comparison

preamresrho = txRHO ./ rxRHO;

B.24 ofdm _fTt 186

preamresthet = txXTHETA — rxXTHETA;

%Adjusts for channel estimate
preamresrhoa = preamresrho .x rxRHO;

preamrestheta = preamresthet + rxXTHETA;

[rempreresX ,rempreresY| = pol2cart (preamrestheta ,...

preamresrhoa);

rempreamcom = complex (rempreresX ,rempreresY);

%O0utput variables
preout = rxIQpre;
datout = rxIQdat;

B.24 ofdm_fIt

YIS TTISTTTISTIISSTTTSSTTIISSTITSSTTTISSTIISSTIIISSTIISSTITISSTITSTITISTSo
YIS TTISTTIISTTTISSTTISSTTTISSTTISSTTTISSTTISSTITISSTIISSTITISTIISTITISTSo
TSTTSTSITTo Project — OFDM Simulator

%

%Barry Dunbar 0050022993

TGS IS IS IS I I IS IS SIS IS SIS SIS SIS ITIISTSTITI o
9% FFT

function [fft_out] = ofdm_fft(fft_in ,handles)

%Assigning variables

fft _input = fft_in;

fftLenOrig = length (fft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;

noPilCar = handles.noPilotCar;

B.24 ofdm _fTt 187

noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;
fft_ModTy = handles.modTypeVal;
noExtbits = handles. ifftextrabits;

scsv = handles.subCarSizVal;

%Calling required FFT function

switch scsv

case 1 %FFT64

%FFT function call
[fft64output] = ofdm_fft64 (fft_input ,handles);

%Output variables
fft _out = fft64doutput;

case 2 %FFT256

%FFT function call
[fft2560utput] = ofdm_fft256 (fft_input , handles);

%O0utput variables
fft _out = fft256output;

case 3 %FFT512

%FFT function call
[fft5120utput| = ofdm_fft512 (fft_input ,handles);

%Output variables
fft _out = fft512o0utput;

B.24 ofdm _fTt

188

case 4 %FFT1024

Y%FFT function call

[fft10240output| = ofdm_fft1024 (fft_input ,handles);

%Output variables
fft _out = fft1024output;

case 5 %FFT2048

Y%FFT function call

[fft20480output] = ofdm _fft2048 (fft_input , handles);

%O0utput variables
fft _out = fft2048output;

case 6 %FFT4096

Y%FFT function call

[fft40960utput] = ofdm_fft4096 (fft_input , handles);

%Output variables
fft _out = fft4096output ;

case 7 %FFT8192

Y%FFT function call

[fft81920utput] = ofdm _fft8192 (fft_input ,handles);

%Output variables
fft _out = fft8192output;

B.25 ofdm_fft64 189

end

B.25 ofdm fft64

TISTTISSTIISSTISSTIIS ST IS STIIS ST IS ST TSI TSI IS ST IS TSI IS ST IS SIS ST o
TITISSTTTTT SIS STTTTISSSSTIT TSI SSTTT TSI SSTSTTTISSSSTTT TSI SSTITTIIS o
YISIISSST o Project — OFDM Simulator

%o

%Barry Dunbar 0050022993
ISTTISSTTIISTTISSTIISTTISSTISSSTTISSTIISSTTISSTISSTTISSTISSTTIS ST o
%% FFT64

function [fft_out] = ofdm_fft64 (fft_in ,handles)

%Assigning variables

fft _input = fft_in;

fftLenOrig = length (fft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;
fft_ModTy = handles.modTypeVal;

noExtbits = handles. ifftextrabits;

TTTTTTTTTTTTTTTTITITIIIIISIIISISSSSSSS SIS SIS SSISSISISISTSISISTTISTTSIT ST S
%% Remove Cyclic prefix

%Reshape to make parallel , ensures Total Sub—carrier deep
[fftInpLen , fftInpWid| = size (fft_input);
fft _Par = reshape(fft_input ,noTotCar,|[]);

B.25 ofdm_fft64 190

%Remove cyclic extension

fftSym ([1:64] ,:) = fft_Par ([17:noTotCar] ,:);

TISSTTTTTITISSSTTTTITSSSTTSTTITISSSTSTTTIISSSTSTTTIISSSTTTTTISSSSTTTTTIS o
%% FFT OFDM symbols

YFFT function

fftSymOut = fft (fftSym);

WITTSTISTTTSIIST TSI ISTISTISTISTISTISSTISTISSISSISSIISIISTISTIST o

%% Remove the pilots , DC zero and zero padding of the Symbols

Y%Remove Pilots , DC and zero pads

fftSymPil ([1:4],:) = fftSymOut ([12,26,40,54],:);
fftSymZeros ([1:11] ,:) = fftSymOut ([1:6 ,60:64] ,:);
fftSymDCzero ([1] ,:) = fftSymOut ([33],:);

%Remove data sub—carriers

fftSymDat ([1:48] ,:) = f{ftSymOut ([7:11,...
13:25,27:32,34:39 ,...
41:53,55:59] ,:);

[fftSymLen , fftSymWid| = size (fftSymDat);

fftDatSer = reshape (fftSymDat ,(fftSymLenxfftSymWid) ,1);
fftSerLen = length (fftDatSer);

fftMessLen = fftSerLen — noExtbits;
fftMess ([1: fftMessLen] ,:) = fftDatSer ([1:fftMessLen] ,:);

%fft MessLen ;
%fft Mess ;
fftMessa = reshape (fftMess ,1,fftMessLen);

B.26 ofdm_fft256 191

if fft_-ModTy = 1
fftMessa = real (fftMessa);

%makes negative zeros (—0) a zero (0) for biterr
fftMessa = fftMessa.x fftMessa
fftMessa = round (fftMessa);

end

TTTTTTTTT T I I IS I IITTTTTTSSSSTSSTSSSSSSSSSSTSISTSISTSISTSISTSISISISTSISTSISISTSSo
%% Output

%Output varaiables
fft_out = fftMessa;

B.26 ofdm fft256

TISTTITSTIIS ST IS STTISTT IS ST IS SIS ST TSI IS ST SIS TSI IS ST IS ST IS ST o
TITISSTTTTITSSSTTTTITSSSTIT TSI SSTTT TSI SIS TSI SSTTT TSI SSTITTIIS o
YISIISSST o Project — OFDM Simulator

%o

%Barry Dunbar 0050022993
ISTTISSTTIISTTISSTIISTTISSTIISSTTISSTIISTTISSTISSTTISSTISSTTIS ST o
%% FFT256

function [fft_out] = ofdm_fft256 (fft_in ,handles)

%Assigning variables

fft _input = fft_in;

B.26 ofdm_fft256 192

fftLenOrig = length (fft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;

fft _ModTy = handles.modTypeVal;
noExtbits = handles. ifftextrabits;

TISSSTTTTTTISSSITTTIISSSTTTTITISS TSI TIIISSSTTTTIISSSTTTTISISSSTTTTTTS o
%% Remove Cyclic prefix

%Reshape to make parallel, ensures Total Sub—carrier deep
[fftInpLen , fftInpWid]| = size (fft_input);
fft _Par = reshape(fft_input ,320,[]);

%Remove cyclic extension

FftSym ([1:256] ,:) = fft_Par ([65:320],:);
WITSTTSTTIT TSI TSI TISTISSIIS TSI IS SIISIISSIISSTIS ST TSI TSI TSI SIIS o
%% FFT OFDM symbols

Y%FFT function
fftSymOut = fft (fftSym);

TSI TTTTTISSSTTTTIISSSSTTTTISSSSTTTTIISSSSTTTTIISSSTSTTTSI SIS SIS T o
%% Remove the pilots , DC zero and zero padding of the Symbols

%Remove Pilots , DC and zero pads

fftSymPil ([1:16] ,:) = fftSymOut ([31,44,57,70,83,96,109,...
122,136,149,162,175,188,201,214,227] ,:);

fftSymZeros ([1:47] ,:) = f{ftSymOut ([1:24,234:256],:);

B.26 ofdm_fft256 193

fftSymDCzero ([1] ,:) = fftSymOut ([129] ,:);

%Remove data sub—carriers

fftSymDat ([1:192] ,:) = fftSymOut ([25:30,32:43,...
45:56,58:69,71:82,84:95,97:108,110:121,123:128,...
130:135,137:148,150:161,163:174,176:187,189:200,...
202:213,215:226,228:233],:);

[fftSymLen , fftSymWid| = size (fftSymDat);

fftDatSer = reshape (fftSymDat ,(fftSymLenxfftSymWid) ,1);
fftSerLen = length (fftDatSer);

%noExtbits ;

fftMessLen = fftSerLen — noExtbits;
fftMess ([1: fftMessLen] ,:) = fftDatSer ([1: fftMessLen] ,:);

%fft MessLen ;
%tftMess ;
fftMessa = reshape (fftMess ,1,fftMessLen);

if fft_ ModTy = 1
fftMessa = real (fftMessa);

%makes negative zeros (—0) a zero (0) for biterr
fftMessa = fftMessa.x fftMessa;
fftMessa = round (fftMessa);

end

TTTTTTTTTTTTTTTITIIIIISIISSSSSSSSSSSS SIS TSI STISISISTSIISISTSISTSITSITSITTT TS So
%% Output

B.27 ofdm_fft512 194

%Output varaiables
fft _out = fftMessa;

B.27 ofdm fft512

TITISSTTTTITIISSTTTT SIS SSTTT SIS STTT TSI SSTIT SIS SSTTTISSSSSTIT TSI ST T
YIS TTISTTIISTTISSTTIISTTISSTISSTTISSTISSTTISSTISSTISSSTISSTTISSTT IS o
TISISSS SIS Project — OFDM Simulator

%o

%Barry Dunbar 0050022993
IISTTISSTIISTTISSTIIS ST IS SIS TSI SIS ST IS ST IS SIS ST IS SITISSTT IS o
%% FFT512

function [fft_out] = ofdm_fft512 (fft_in ,handles)

%Assigning variables

fft_input = fft_in;

fftLenOrig = length (fft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;
fft_ModTy = handles.modTypeVal;

noExtbits = handles. ifftextrabits;

TIITSTTTTITISSSTTTTIISSSTTTTITISSSISTTITISSITTTIISSSTTTTISSSSISTTTITIS o
%% Remove Cyclic prefix

%Reshape to make parallel , ensures Total Sub—carrier deep

[fftInpLen , fftInpWid]| = size (fft_input);

B.27 ofdm_fft512 195

fft_Par = reshape(fft_input ,640,[]);

%Remove cyclic extension

fFtSym ([1:512] ,:) = fft_Par ([129:640],:);
YIS TTISSTTTISTTISSTTTSTTISSTTISSISTIISSTITSS TSI SIS STIIS SIS STIIS IS
%% FFT OFDM symbols

Y%FFT function
fftSymOut = fft (fftSym);

TTTTTTTTTTTTTTTTTTITIIIIIIIIITIISSIIISSSSSSSS SIS SIS SSTSISTSIITTSISI o
%% Remove the pilots , DC zero and zero padding of the Symbols

%Remove Pilots , DC and zero pads
fftSymPil ([1:32] ,:) = fftSymOut ([55,68,81,94,107,...
120,133 ,146,159,172,185,198,211,224,237 250,264,277 ,...
290,303,316,329,342,355,368,381,394,407,420,433 ,446,459] ,:);
fftSymZeros ([1:95] ,:) = fftSymOut ([1:48,466:512],:);
fftSymDCzero ([1] ,:) = fftSymOut ([257] ,:);

%Remove data sub—carriers

fftSymDat ([1:384] ,:) = fftSymOut ([49:54 ,56:67,69:80,82:93,...
95:106,108:119,121:132,134:145,147:158,160:171,173:184 ,...
186:197,199:210,212:223,225:236,238:249,251:256,258:263,...
265:276,278:289,291:302,304:315,317:328,330:341,343:354,...
356:367,369:380,382:393,395:406,408:419,421:432 ,434:445,...
447:458 ,460:465] ,:);

[fftSymLen , fftSymWid| = size (fftSymDat);

fftDatSer = reshape (fftSymDat , ({fftSymLen*fftSymWid) ,1);

fftSerLen = length (fftDatSer);

fftMessLen = fftSerLen — noExtbits;

fftMess ([1: fftMessLen] ,:) = fftDatSer ([1: fftMessLen] ,:);

B.28 ofdm_fft1024 196

%fft MessLen ;
%fftMess ;
fftMessa = reshape (fftMess ,1,fftMessLen);

if fft_ModTy = 1
fftMessa = real (fftMessa);

Y%makes negative zeros (—0) a zero (0) for biterr
fftMessa = fftMessa .x fftMessa;
fftMessa = round(fftMessa);

end

TSI TSI SIS SIS ST SSSISTSIST TSI SI TSI ST TTTTTTTT I TSI TSI TSI ITTITS
%% Output

%Output varaiables
fft _out = fftMessa;

B.28 ofdm fft1024

TITISSTTTTIISSTTTTISSSSTIT TSI SSTTT TSI SIS TSI SSTTT TSI SSTITTIIS o
IWSTTISSTTIISTTISSTIISTTISSTISSSTTISSTIISSTTISSTISSTTISSTISSTTIS ST o
TITISSSST o Project — OFDM Simulator

%o

%Barry Dunbar 0050022993
TISTTISSTTIISTTISSTIISTTISSTIIS ST IS STIISTTISSTISS TSI ST IS SIS ST o
%% FFT1024

function [fft_out] = ofdm_fft1024 (fft_in ,handles)

B.28 ofdm_fft1024 197

%Assigning variables

fft .input = fft_in;

fftLenOrig = length (fft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;
fft ModTy = handles.modTypeVal;

noExtbits = handles. ifftextrabits;

TISSSTTTTTTTSSSTTTTIISSSTTSTTIISSSSTSTSTIISSSTTSTIISSSTTITIISSSSTTITTIS o
%% Remove Cyclic prefix

%Reshape to make parallel , ensures Total Sub—carrier deep
[fftInpLen , fftInpWid] = size (fft_input);
fft_Par = reshape(fft_input ,1280,[]);

%Remove cyclic extension

fftSym ([1:1024] ,:) = fft_Par ([257:1280],:);
YISTTISSTTTISSTTISSTTITSSTTISSTIIISTITISSTITISITISSTITSSTSTIISSSTISTIIIS o
%% FFT OFDM symbols

YFFT function

fftSymOut = fft (fftSym);

TTTTTTTTTTTTTTTTTTTTITTIITIIITIIIIISISSIISSSSSSSSS SIS SSSSSISISI o
%% Remove the pilots, DC zero and zero padding of the Symbols

B.28 ofdm_fft1024 198

%Remove Pilots , DC and zero pads

fftSymPil ([1:64] ,:) = fftSymOut ([103,116,129,142,155,...
168,181,194 ,207,220,233,246,259 ,272 285,298 ,311,324 ,...
337,350,363,376,389,402,415,428,441,454,467,480,493,...
506,520,533,546,559,572,585,598,611,624,637,650,663,...
676,689 ,702,715,728 741,754,767 ,780,793 806,819,832 ...
845,858 ,871,884,897,910,923],:);

fftSymZeros ([1:191] ,:) = f{ftSymOut ([1:96,930:1024] ,:);

[
[

fftSymDCzero ([1] ,:) = fftSymOut ([513] ,:);
Y%Remove data sub—carriers
fftSymDat ([1:768] ,:) = fftSymOut ([97:102,104:115,117:128,...

130:141,143:154,156:167,169:180,182:193,195:206,208:219 ,...
221:232,234:245,247:258,260:271,273:284,286:297,299:310,...
312:323,325:336,338:349,351:362,364:375,377:388,390:401 ,...
403:414,416:427,429:440,442:453 ,455:466 ,468:479 ,481:492 ,...
494:505,507:512,514:519 ,521:532 ,534:545 ,547:558 ,560:571 ,...
573:584,586:597,599:610,612:623,625:636,638:649 ,651:662 ,...
664:675,677:688,690:701,703:714,716:727,729:740,742:753 ,...
755:766,768:779,781:792,794:805,807:818,820:831,833:844 ...
846:857,859:870,872:883,885:896,898:909,911:922,924:929] ,:);

[fftSymLen , fftSymWid| = size (fftSymDat);

fftDatSer = reshape (fftSymDat ,(fftSymLenxfftSymWid) ,1);
fftSerLen = length (fftDatSer);

fftMessLen = fftSerLen — noExtbits;
fftMess ([1: fftMessLen] ,:) = fftDatSer ([1: fftMessLen] ,:);

%fftMessLen ;
%fft Mess ;
fftMessa = reshape (fftMess ,1,fftMessLen);

B.29 ofdm_fft2048 199

if fft _ModTy = 1
fftMessa = real (fftMessa);

%makes negative zeros (—0) a zero (0) for biterr
fftMessa = fftMessa.x fftMessa;
fftMessa = round (fftMessa);

end

YIS STTTTTISSSTTTTITSSSISTTSTIISSSTSTTIIISSSTTSTIISSSTISTTIISSSITTTIIIIS TS
%% Output

%O0utput varaiables
fft _out = fftMessa;

B.29 ofdm fft2048

TTTTTTTTTTTTTTTTTTTTITIIITIIIIIIIIISISSSSSSSSSSSSS SIS SSSSTSIIS o
TTTTTTTTTTTTTTTTTTITTTIITIITIITIIIIIIIIIIIIISSSSSSSSS SIS o
TISTTST TS0 Project — OFDM Simulator

%

%Barry Dunbar 0050022993
TITSSSSTITTTTTTSSSITTTTSTSTSSSSIITTTTSSSSSITTTTSISTSSSSIITTTSTSTSSS ST T o
%% FFT2048

function [fft_out] = ofdm_fft2048 (fft_in ,handles)

%Assigning variables
fft _input = fft_in;
fftLenOrig = length (fft_input);

B.29 ofdm_fft2048 200

noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;
fft_ModTy = handles.modTypeVal;

noExtbits = handles. ifftextrabits;

TSI IS ITTIIISSSISSSS SIS o
%% Remove Cyclic prefix

%Reshape to make parallel , ensures Total Sub—carrier deep
[fftInpLen , fftInpWid| = size (fft_input);
fft _Par = reshape(fft_input ,2560 ,[]);

%Remove cyclic extension

fftSym ([1:2048],:) = fft_Par ([513:2560],:);
TISISTTTTITIISSTTTTISSSSSTTTISISSSTSTTIISSSSTTTTISSSSSTIT TSI ST T TS0
%% FFT OFDM symbols

%FFT function
fftSymOut = fft (fftSym);

YSTTTTSTT TSI TSI T TSI TSI TSI TSI STSSII TSI TSI IT TSI TISIIT o
%% Remove the pilots, DC zero and zero padding of the Symbols

%Remove Pilots , DC and zero pads
fftSymPil ([1:128] ,:) =
fftSymOut ([199,212,225,238 ,251,264,277,290,303,316,329 ...

342,355,368 ,381,394,407,420,433,446,459,472 ,485 ,498 ...
511,524 ,537,550,563,576,589,602,615,628,641,654,667,...

B.29 ofdm_fft2048 201

680,693 ,706,719,732,745 758,771,784 ,797,810,823,836 ,...
849,862 ,875,888,901,914,927,940,953,966,979,992,1005,...
1018,1032,1045,1058,1071,1084,1097,1110,1123,1136,...
1149,1162,1175,1188,1201,1214,1227,1240,1253,1266,...
1279,1292,1305,1318,1331,1344,1357,1370,1383,1396,...
1409,1422,1435,1448,1461,1474,1487,1500,1513,1526,...
1539,1552,1565,1578,1591,1604,1617,1630,1643,1656,...
1669,1682,1695,1708,1721,1734,1747,1760,1773,1786,...
1799,1812,1825,1838,1851],:);

fftSymZeros ([1:383] ,:) = fftSymOut ([1:192,1858:2048],:);
fftSymDCzero ([1] ,:) = fftSymOut ([1025],:);

%Remove data sub—carriers

fftSymDat ([1:1536] ,:) =

fftSymOut ([193:198,200:211,213:224,226:237,239:250,252:263,...
265:276,278:289,291:302,304:315,317:328,330:341,343:354,...
356:367,369:380,382:393,395:406,408:419,421:432,434:445,...
447:458 ,460:471,473:484,486:497,499:510,512:523,525:536,...
538:549,551:562,564:575,577:588,590:601,603:614,616:627,...
629:640,642:653,655:666 ,668:679,681:692,694:705,707:718,...
720:731,733:744,746:757 ,759:770,772:783,785:796,798:809,...
811:822,824:835,837:848 ,850:861,863:874,876:887,889:900,...
902:913,915:926,928:939,941:952,954:965,967:978,980:991 ,...
993:1004,1006:1017,1019:1024,1026:1031,1033:1044,...
1046:1057,1059:1070,1072:1083,1085:1096,1098:1109,...
1111:1122,1124:1135,1137:1148,1150:1161,1163:1174,...
1176:1187,1189:1200,1202:1213,1215:1226,1228:1239,...
1241:1252,1254:1265,1267:1278,1280:1291,1293:1304,...
1306:1317,1319:1330,1332:1343,1345:1356,1358:1369,...
1371:1382,1384:1395,1397:1408,1410:1421,1423:1434,...
1436:1447,1449:1460,1462:1473,1475:1486,1488:1499,...

B.30 ofdm_{ft4096 202

1501:1512,1514:1525,1527:1538,1540:1551,1553:1564,...
1566:1577,1579:1590,1592:1603,1605:1616,1618:1629,...
1631:1642,1644:1655,1657:1668,1670:1681,1683:1694,...
1696:1707,1709:1720,1722:1733,1735:1746,1748:1759,...
1761:1772,1774:1785,1787:1798,1800:1811,1813:1824,...
1826:1837,1839:1850,1852:1857],:);

[fftSymLen , fftSymWid| = size (fftSymDat);

fftDatSer = reshape (fftSymDat , ({fftSymLen*fftSymWid) ,1);
fftSerLen = length (fftDatSer);

fftMessLen = fftSerLen — noExtbits;
fftMess ([1: fftMessLen] ,:) = fftDatSer ([1: fftMessLen] ,:);
fftMessa = reshape (fftMess ,1,fftMessLen);

if fft_ ModTy — 1
fftMessa = real (fftMessa);

%makes negative zeros (—0) a zero (0) for biterr
fft Messa = fftMessa .x fftMessa;
fftMessa = round (fftMessa);

end

YITTTTTTTTTTTTTTTTTTTTTTTTTTTT TSI TSI TSI TSI TSI TSTSSo
%% Output

%0utput varaiables
fft _out = fftMessa;

B.30 ofdm fft4096

WTTTTITTTISTISTISTISTISTISTISSTISSTISSIISI TSI IS TISTISTISTISTIS SIS

B.30 ofdm_{ft4096 203

TITISSTTTIIISSSTTTTISSSSTITT TSI SSTSTT TSI SSTSTT TSI SSTTT TSI SSTITTTIS o
YISIISSST o Project — OFDM Simulator

%o

%Barry Dunbar 0050022993
YSTTISSTTIISTTISSTIISTTISSTTISSTTISSTTISSTTISSTISSTIISSTISSTTIS ST o
%% FET4096

function [fft_out] = ofdm_fft4096 (fft_in ,handles)

%Assigning variables

fft_input = fft_in;

fftLenOrig = length (fft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;
fft_ModTy = handles.modTypeVal;

noExtbits = handles. ifftextrabits;

TTTTTTTTTTTTTTTTTTTITIIIIIIIITIIIIISISSSSSSS SIS SIS SSSISSISISISSIS o
%% Remove Cyclic prefix

%Reshape to make parallel , ensures Total Sub—carrier deep
[fftInpLen , fftInpWid| = size (fft_input);
fft _Par = reshape(fft_input ,5120,[]);

%Remove cyclic extension

fftSym ([1:4096] ,:) = fft_Par ([1025:5120],:);
TISSSTTTTTISSSSTTTTISSSSTTTTISISSSTTTIISSSSTTTTISSSSTTTISISSSTTTTII o
%% FFT OFDM symbols

B.30 ofdm_{ft4096 204

YFFT function
fftSymOut = fft (fftSym);

TISSSTTTTIISSSSTTTTISSSSTTTTTISSSTSTTTTISSSSTITIISSSSTIT TSI SSTTTTIIS o
%% Remove the pilots , DC zero and zero padding of the Symbols

%Remove Pilots , DC and zero pads

fftSymPil ([1:256] ,:) =

fftSymOut ([391,404 ,417,430,443,456,469,482,495,508,521,534,...
547,560,573,586,599,612,625,638,651,664,677,690,703,716,...
729,742 ,755,768,781,794,807,820,833,846,859,872,885,898,...
911,924,937,950,963,976,989,1002,1015,1028,1041,1054,1067,...
1080,1093,1106,1119,1132,1145,1158,1171,1184,1197,1210,...
1223,1236,1249,1262,1275,1288,1301,1314,1327,1340,1353,...
1366,1379,1392,1405,1418,1431,1444,1457,1470,1483,1496,...
1509,1522,1535,1548,1561,1574,1587,1600,1613,1626,1639,...
1652,1665,1678,1691,1704,1717,1730,1743,1756,1769,1782,...
1795,1808,1821,1834,1847,1860,1873,1886,1899,1912,1925,...
1938,1951,1964,1977,1990,2003,2016,2029,2042,2056,2069,...
2082,2095,2108,2121,2134,2147,2160,2173,2186,2199,2212,...
2225,2238,2251,2264,2277,2290,2303,2316,2329,2342,2355,...
2368,2381,2394,2407,2420,2433,2446,2459,2472,2485,2498,...
2511,2524,2537,2550,2563,2576,2589,2602,2615,2628,2641,...
2654,2667,2680,2693,2706,2719,2732,2745,2758,2771,2784,...
2797,2810,2823,2836,2849,2862,2875,2888,2901,2914,2927,...
2940,2953,2966,2979,2992,3005,3018,3031,3044,3057,3070,...
3083,3096,3109,3122,3135,3148,3161,3174,3187,3200,3213,...
3226,3239,3252,3265,3278,3291,3304,3317,3330,3343,3356,...
3369,3382,3395,3408,3421,3434,3447,3460,3473,3486,3499,...
3512,3525,3538,3551,3564,3577,3590,3603,3616,3629,3642,...
3655,3668,3681,3694,3707],:);

B.30 ofdm_{ft4096 205

ffttSymZeros ([1:767] ,:)
fftSymDCzero ([1] ,:)

fftSymOut ([1:384,3714:4096] ,:);
fftSymOut ([2049] ,:);

%Remove data sub—carriers

fftSymDat ([1:3072] ,:)

fftSymOut ([385:390,392:403 ,405:416,418:429,431:442 ,444:455,...
457:468 ,470:481 ,483:494,496:507,509:520,522:533,535:546,...
548:559,561:572,574:585,587:598,600:611,613:624,626:637,...
639:650,652:663,665:676,678:689,691:702,704:715,717:728,...
730:741,743:754,756:767,769:780,782:793,795:806,808:819,...
821:832,834:845,847:858,860:871,873:884,886:897,899:910,...
912:923,925:936,938:949,951:962,964:975,977:988,990:1001,...

1003:1014,1016:1027,

1068:
1133:
1198:
1263:
1328:
1393:
1458:
1523:
1588:
1653:
1718:
1783:
1848:
1913:
1978:
2043:
2096:
2161:

1079,1081:
1144,1146:
1209,1211:
1274,1276:
1339,1341:
1404,1406:
1469,1471:
1534 ,1536:
1599 ,1601:
1664 ,1666:
1729,1731:
1794,1796:
1859 ,1861:
1924,1926:
1989 ,1991:
2048 ,2050:
2107,2109:
2172,2174:

1092,1094:
1157,1159:
1222,1224:
1287,1289:
1352,1354:
1417,1419:
1482 ,1484:
1547,1549:
1612,1614:
1677,1679:
1742 ,1744:
1807 ,1809:
1872 ,1874:
1937,1939:
2002,2004:
2055,2057:
2120,2122:
2185,2187:

1105,1107:
1170,1172:
1235,1237:
1300,1302:
1365,1367:
1430,1432:
1495,1497:
1560,1562:
1625,1627:
1690,1692:
1755,1757:
1820,1822:
1885,1887:
1950,1952:
2015,2017:
2068,2070:
2133,2135:
2198 ,2200:

1118,1120:
1183,1185:
1248,1250:
1313,1315:
1378,1380:
1443 ,1445:
1508 ,1510:
1573 ,1575:
1638 ,1640:
1703 ,1705:
1768,1770:
1833 ,1835:
1898,1900:
1963 ,1965:
2028,2030:
2081,2083:
2146,2148:
2211,2213:

1029:1040,1042:1053,1055:1066 ,...

1131,...
1196,...
1261, ...
1326,...
1391,...
1456 ,...
1521,...
1586 ,...
1651,...
1716,...
1781,...
1846, ...
1911,...
1976 ,...
2041,...
2094 ,...
2159 ,...
2224 ,...

B.30 ofdm_{ft4096 206

2226:2237,2239:2250,2252:2263,2265:2276 ,2278:2289 ...
2291:2302,2304:2315,2317:2328,2330:2341,2343:2354 ...
2356:2367,2369:2380,2382:2393,2395:2406,2408:2419,...
2421:2432,2434:2445,2447:2458,2460:2471 ,2473:2484 ,...
2486:2497,2499:2510,2512:2523,2525:2536,2538:2549,...
2551:2562,2564:2575,2577:2588,2590:2601,2603:2614,...
2616:2627,2629:2640,2642:2653,2655:2666 ,2668:2679 ...
2681:2692,2694:2705,2707:2718,2720:2731,2733:2744 ,...
2746:2757,2759:2770,2772:2783,2785:2796,2798:2809,...
2811:2822 ,2824:2835,2837:2848,2850:2861 ,2863:2874 ,...
2876:2887,2889:2900,2902:2913,2915:2926,2928:2939,...
2941:2952,2954:2965,2967:2978,2980:2991,2993:3004,...
3006:3017,3019:3030,3032:3043,3045:3056,3058:3069,...
3071:3082,3084:3095,3097:3108,3110:3121,3123:3134,...
3136:3147,3149:3160,3162:3173,3175:3186,3188:3199,...
3201:3212,3214:3225,3227:3238,3240:3251,3253:3264,...
3266:3277,3279:3290,3292:3303,3305:3316,3318:3329,...
3331:3342,3344:3355,3357:3368,3370:3381,3383:3394,...
3396:3407,3409:3420,3422:3433,3435:3446,3448:3459,...
3461:3472,3474:3485,3487:3498,3500:3511,3513:3524,...
3526:3537,3539:3550,3552:3563,3565:3576,3578:3589,...
3591:3602,3604:3615,3617:3628,3630:3641,3643:3654,...
3656:3667,3669:3680,3682:3693,3695:3706,3708:3713],:);

[fftSymLen , fftSymWid| = size (fftSymDat);

fftDatSer = reshape (fftSymDat , (fftSymLenxfftSymWid) ,1);
fftSerLen = length (fftDatSer);

Y%moExtbits ;

fftMessLen = fftSerLen — noExtbits;
fftMess ([1: fftMessLen] ,:) = fftDatSer ([1: fftMessLen] ,:);

%fftMessLen ;

B.31 ofdm _fft8192 207

%tftMess ;
fftMessa = reshape (fftMess ,1,fftMessLen);

if fft_ ModTy = 1
fftMessa = real (fftMessa);

%makes negative zeros (—0) a zero (0) for biterr
fftMessa = fftMessa.x fftMessa;
fftMessa = round (fftMessa);

end

TTTTTTTTTTTT TSI I TSI TITTTITTTTSSSS SIS SIS SIS SIS SIS o
%% Output

%O0utput varaiables
fft _out = fftMessa;

B.31 ofdm fft8192

TTTTTTTTTTTTTT ST TSI IIIIIITITIIISSSTSSSSSSSS SIS SIS SIS STISTISIISISI T o
TTTTTTTTTTTTTTTTTTIIITIIIIIIIITIIIIIIIISSSSSS SIS SIS SSSSTSISTSIISISIS T
TSISTTST TS0 Project — OFDM Simulator

%

%Barry Dunbar 0050022993
TITSSSSTTTTTTTTSSSITTTTSTSSSSSIITTTTISSSSITTTTSTSSSSITTTTSTTSSSSIITT T
%% FFT8192

function [fft_out] = ofdm_fft8192(fft_in , handles)

B.31 ofdm _fft8192 208

%Assigning variables

fft_input = fft_in;

fftLenOrig = length (fft_input);
noSubCar = handles.noSubCar;
noDatCar = handles.noDataCar;
noPilCar = handles.noPilotCar;
noPadCar = handles.noPadCar;
noCeCar = handles.noCeCar;
noTotCar = handles.totSubChan;
fft_ModTy = handles.modTypeVal;

noExtbits = handles. ifftextrabits;

TITSSSSITTTTTSSSSITTTTSTSISSSSITTTTISSSSITTTTISTSS SIS TTTTTSSSSITT o
%% Remove Cyclic prefix

%Reshape to make parallel , ensures Total Sub—carrier deep
[fftInpLen , fftInpWid| = size (fft_input);
fft _Par = reshape(fft_input ,10240,[]);

%Remove cyclic extension

fftSym ([1:8192] ;1) = fft_Par ([2049:10240],:);
TSI TTTTTIISSSTTTTISSSSTTTISISSSTTTIT SIS SSTTTTIISSSTTTISISSSTTTTII o
%% FFT OFDM symbols

%FFT function
fftSymOut = fft (fftSym);

TISSTISSTTIS ST IS ST TSI ST IS ST TSI ST IS ST TSI TSI ST IS ST IS ST IS SITTIS o

%% Remove the pilots, DC zero and zero padding of the Symbols

%Remove Pilots , DC and zero pads
fftSymPil ([1:512] ,:) =

B.31 ofdm _fft8192 209

fftSymOut ([775,788,801,814,827,840,853,866,879,892,905,918 ,...
931,944,957,970,983,996,1009,1022,1035,1048,1061,1074 ,...
1087,1100,1113,1126,1139,1152,1165,1178,1191,1204,1217,...
1230,1243,1256,1269,1282,1295,1308,1321,1334,1347,1360,...
1373,1386,1399,1412,1425,1438,1451,1464,1477,1490,1503,...
1516 ,1529,1542,1555,1568,1581,1594,1607,1620,1633,1646 ,...
1659,1672,1685,1698,1711,1724,1737,1750,1763,1776,1789,...
1802,1815,1828,1841,1854,1867,1880,1893,1906,1919,1932,...
1945,1958,1971,1984,1997,2010,2023,2036,2049,2062,2075,...
2088,2101,2114,2127,2140,2153,2166,2179,2192,2205,2218,...
2231,2244,2257,2270,2283,2296,2309,2322,2335,2348,2361 ,...
2374,2387,2400,2413,2426,2439,2452,2465,2478,2491,2504 ,...
2517,2530,2543,2556,2569,2582,2595 ,2608 ,2621,2634,2647,...
2660,2673,2686,2699,2712,2725,2738 ,2751,2764 ,2777,2790 ,...
2803,2816,2829,2842,2855,2868,2881,2894,2907,2920,2933,...
2946,2959,2972,2985,2998,3011,3024,3037,3050,3063,3076,...
3089,3102,3115,3128,3141,3154,3167,3180,3193,3206,3219,...
3232,3245,3258,3271,3284,3297,3310,3323,3336,3349,3362,...
3375,3388,3401,3414,3427,3440,3453,3466,3479,3492,3505,...
3518,3531,3544,3557,3570,3583,3596,3609,3622,3635,3648,...
3661,3674,3687,3700,3713,3726,3739,3752,3765,3778,3791,...
3804,3817,3830,3843,3856,3869,3882,3895,3908,3921,3934,...
3947,3960,3973,3986,3999,4012,4025,4038,4051,4064 ,4077,...
4090,4104,4117.,4130,4143,4156,4169,4182,4195,4208,4221,...
4234 ,4247 ,4260,4273,4286,4299 ,4312,4325,4338 ,4351,4364 ,...
4377,4390,4403,4416,4429 ,4442 ,4455 ,4468 ,4481,4494 ,4507 ,...
4520 ,4533,4546,4559 ,4572 4585 ,4598 ,4611,4624 ,4637,4650 ,...
4663,4676,4689,4702,4715,4728 ,4741,4754 ,4767 ,4780,4793 ,...
4806,4819,4832,4845,4858 ,4871 ,4884,4897,4910,4923,4936,...
4949 4962 ,4975,4988,5001 ,5014,5027,5040,5053,5066,5079 ,...
5092,5105,5118,5131,5144,5157,5170,5183,5196,5209,5222,...
5235,5248,5261,5274 ,5287,5300,5313,5326,5339,5352,5365,...
5378,5391,5404 ,5417 ,5430,5443 ,5456 ,5469 ,5482,5495 5508 ,...

B.31 ofdm _fft8192 210

5521,5534,5547 ,5560,5573 ,5586,5599 ,5612,5625,5638 ,5651 ,...
5664 ,5677,5690,5703,5716,5729,5742 5755 5768 ,5781,5794 ,...
5807,5820,5833,5846,5859 ,5872,5885,5898 ,5911,5924 5937 ,...
5950,5963,5976,5989,6002,6015,6028,6041,6054,6067,6080 ,...
6093,6106,6119,6132,6145,6158,6171,6184,6197,6210,6223 ...
6236,6249,6262,6275,6288,6301,6314,6327,6340,6353,6366 ...
6379,6392,6405,6418,6431,6444 ,6457 ,6470,6483,6496,6509 ...
6522,6535,6548 ,6561,6574,6587,6600,6613,6626,6639,6652 ...
6665,6678,6691,6704,6717,6730,6743,6756,6769,6782,6795,...
6808 ,6821,6834,6847,6860,6873,6886,6899,6912,6925,6938 ...
6951,6964,6977,6990,7003,7016,7029,7042,7055,7068,7081 ,...
7094,7107,7120,7133,7146 ,7159,7172,7185,7198,7211,7224 ,...
7237,7250,7263,7276,7289,7302,7315,7328,7341,7354 7367 ,...
7380,7393,7406,7419],:);

fftSymZeros ([1:1535] ,:) = fftSymOut ([1:768,7426:8192],:);
fftSymDCzero ([1] ,:) = fftSymOut ([4097] ,:);

%Remove data sub—carriers

fftSymDat ([1:6144] ,:) =

fftSymOut ([769:774 ,776:787,789:800,802:813,815:826,828:839,...
841:852,854:865,867:878,880:891,893:904,906:917,919:930,...
932:943,945:956,958:969,971:982,984:995,997:1008,...
1010:1021,1023:1034,1036:1047,1049:1060,1062:1073,...
1075:1086,1088:1099,1101:1112,1114:1125,1127:1138,...
1140:1151,1153:1164,1166:1177,1179:1190,1192:1203,...
1205:1216,1218:1229,1231:1242,1244:1255,1257:1268,...
1270:1281,1283:1294,1296:1307,1309:1320,1322:1333,...
1335:1346,1348:1359,1361:1372,1374:1385,1387:1398,...
1400:1411,1413:1424,1426:1437,1439:1450,1452:1463,...
1465:1476,1478:1489,1491:1502,1504:1515,1517:1528,...
1530:1541,1543:1554,1556:1567,1569:1580,1582:1593,...

B.31 ofdm _fft8192 211

1595:1606,1608:1619,1621:1632,1634:1645,1647:1658 ,...
1660:1671,1673:1684,1686:1697,1699:1710,1712:1723 ...
1725:1736,1738:1749,1751:1762,1764:1775,1777:1788 ,...
1790:1801,1803:1814,1816:1827,1829:1840,1842:1853 ,...
1855:1866,1868:1879,1881:1892,1894:1905,1907:1918,...
1920:1931,1933:1944,1946:1957,1959:1970,1972:1983 ...
1985:1996,1998:2009,2011:2022,2024:2035,2037:2048 ,...
2050:2061,2063:2074,2076:2087,2089:2100,2102:2113,...
2115:2126,2128:2139,2141:2152,2154:2165,2167:2178,...
2180:2191,2193:2204,2206:2217,2219:2230,2232:2243 ,...
2245:2256,2258:2269,2271:2282,2284:2295,2297:2308 ,...
2310:2321,2323:2334,2336:2347,2349:2360,2362:2373 ,...
2375:2386,2388:2399,2401:2412,2414:2425,2427:2438 ...
2440:2451,2453:2464 ,2466:2477,2479:2490,2492:2503 ,...
2505:2516,2518:2529,2531:2542,2544:2555,2557:2568 ,...
2570:2581,2583:2594,2596:2607,2609:2620,2622:2633 ,...
2635:2646,2648:2659,2661:2672,2674:2685,2687:2698 ,...
2700:2711,2713:2724,2726:2737,2739:2750,2752:2763 ,...
2765:2776,2778:2789,2791:2802,2804:2815,2817:2828,...
2830:2841,2843:2854 ,2856:2867 ,2869:2880,2882:2893 ,...
2895:2906,2908:2919,2921:2932,2934:2945,2947:2958 ,...
2060:2971,2973:2984,2986:2997,2999:3010,3012:3023,...
3025:3036,3038:3049,3051:3062,3064:3075,3077:3088,...
3090:3101,3103:3114,3116:3127,3129:3140,3142:3153,...
3155:3166,3168:3179,3181:3192,3194:3205,3207:3218,...
3220:3231,3233:3244,3246:3257,3259:3270,3272:3283 ,...
3285:3296,3298:3309,3311:3322,3324:3335,3337:3348,...
3350:3361,3363:3374,3376:3387,3389:3400,3402:3413,...
3415:3426,3428:3439 ,3441:3452,3454:3465,3467:3478,...
3480:3491,3493:3504,3506:3517,3519:3530,3532:3543 ,...
3545:3556,3558:3569,3571:3582,3584:3595,3597:3608,...
3610:3621,3623:3634,3636:3647,3649:3660,3662:3673,...
3675:3686,3688:3699,3701:3712,3714:3725,3727:3738,...

B.31 ofdm _fft8192

212

3740:
3805:
3870:
3935:
4000:
4065:
4118:
4183:
4248:
4313:
4378:
4443:
4508:
4573:
4638:
4703:
4768:
4833:
4898:
4963:
5028:
5093:
5158:
5223:
5288:
5353:
5418:
5483:
5548:
5613:
5678:
5743:
5808:

3751,3753:
3816,3818:
3881,3883:
3946,3948:
4011,4013:
4076 ,4078:
4129 ,4131:
4194 ,4196:
4259 ,4261:
4324 ,4326:
4389 ,4391:
4454 ,4456:
4519 ,4521:
4584 ,4586:
4649 ,4651:
4714 ,4716:
4779 ,4781:
4844 ,4846:
4909 ,4911:
4974 ,4976:
5039,5041:
5104,5106:
5169,5171:
5234,5236:
5299 ,5301:
5364 ,5366:
5429 ,5431:
5494 ,5496:
5559 ,5561:
5624 ,5626:
5689 ,5691:
5754 ,5756:
5819 ,5821:

3764,3766:
3829 ,3831:
3894 ,3896:
3959 ,3961:
4024 ,4026:
4089 ,4091:
4142 ,4144:
4207,4209:
4272 ,4274:
4337,4339:
4402 ,4404:
4467 ,4469:
4532 ,4534:
4597 ,4599:
4662 ,4664:
4727 ,4729:
4792 ,4794:
4857 ,4859:
4922 ,4924:
4987 ,4989:
5052 ,5054:
5117,5119:
5182,5184:
5247 ,5249:
5312,5314:
5377,5379:
5442 ,5444:
5507 ,5509:
5572 ,5574:
5637,5639:
5702 ,5704:
5767 ,5769:
5832 ,5834:

3777,3779:
3842 ,3844:
3907,3909:
3972,3974:
4037,4039:
4096 ,4098:
4155 ,4157:
4220 ,4222:
4285 ,4287:
4350 ,4352:
4415 ,4417:
4480 ,4482:
4545 ,4547:
4610 ,4612:
4675 ,4677:
4740 ,4742:
4805 ,4807:
4870 ,4872:
4935,4937:
5000,5002:
5065,5067:
5130,5132:
5195,5197:
5260,5262:
5325,5327:
5390,5392:
5455 ,5457:
5520,5522:
5585 ,5587:
5650,5652:
5715,5717:
5780,5782:
5845 ,5847:

3790,3792:
3855,3857:
3920,3922:
3985,3987:
4050,4052:
4103,4105:
4168,4170:
4233 ,4235:
4298 ,4300:
4363,4365:
4428 ,4430:
4493 ,4495:
4558 ,4560:
4623 ,4625:
4688 ,4690:
4753 ,4755:
4818 ,4820:
4883 ,4885:
4948 ,4950:
5013,5015:
5078 ,5080:
5143 ,5145:
5208,5210:
5273 .,5275:
5338,5340:
5403,5405:
5468 ,5470:
5533,5535:
5598 ,5600:
5663,5665:
5728 ,5730:
5793,5795:
5858 ,5860:

3803, ...
3868 ,...
3933 ...
3998 ,...
4063 ,...
4116,...
4181,...
4246 ,...
4311,...
4376 ,...
4441 ...
4506 ,...
4571 ...
4636 ,...
4701 ,...
4766 ,...
4831, ...
4896 ,...
4961 ,...
5026 ,...
5091 ,...
5156,...
5221, ...
5286 ,...
5351,...
5416,...
5481 ,...
5546 ,...
5611,...
5676 ,...
5741,...
5806 ,...
5871,...

B.31 ofdm _fft8192

213

5873:
5938:
6003:
6068:
6133:
6198:
6263:
6328:
6393:
6458:
6523:
6588:
6653:
6718:
6783:
6848:
6913:
6978:
7043:
7108:
7173:
7238:
7303:
7368:

[fftSymLen , fftSymWid |
reshape (fftSymDat , (fftSymLen«fftSymWid) ,1);
length (fftDatSer);

fftDatSer
fftSerLen

5884 ,5886:
5949 ,5951:
6014,6016:
6079,6081:
6144 ,6146:
6209,6211:
6274,6276:
6339,6341:
6404 ,6406:
6469 ,6471:
6534 ,6536:
6599 ,6601:
6664 ,6666:
6729,6731:
6794 ,6796:
6859 ,6861:
6924 ,6926:
6989,6991:
7054,7056:
7119,7121:
7184 ,7186:
7249 ,7251:
7314,7316:
7379 ,7381:

Y%moExtbits ;

5897 ,5899:
5962 ,5964:
6027 ,6029:
6092 ,6094:
6157,6159:
6222,6224:
6287 ,6289:
6352 ,6354:
6417 ,6419:
6482 ,6484:
6547 ,6549:
6612 ,6614:
6677 ,6679:
6742,6744:
6807 ,6809:
6872 ,6874:
6937,6939:
7002 ,7004:
7067 ,7069:
7132,7134:
7197 ,7199:
7262 ,7264:
7327 ,7329:
7392 ,7394:

5910,5912:
5975 ,5977:
6040 ,6042:
6105,6107:
6170,6172:
6235 ,6237:
6300,6302:
6365 ,6367:
6430 ,6432:
6495 ,6497:
6560 ,6562:
6625 ,6627:
6690 ,6692:
6755 ,6757:
6820 ,6822:
6885 ,6887:
6950,6952:
7015 ,7017:
7080 ,7082:
7145 ,7147:
7210,7212:
7275 ,7277:
7340 ,7342:

7405,7407:7418,7420:

size (fftSymDat);

fftMessLen = fftSerLen — noExtbits;

fftMess ([1: fftMessLen] ,:)

%fftMessLen ;

5923 ,5925:
5988,5990:
6053,6055:
6118,6120:
6183,6185:
6248 ,6250:
6313,6315:
6378,6380:
6443 ,6445:
6508 ,6510:
6573,6575:
6638,6640:
6703,6705:
6768,6770:
6833,6835:
6898,6900:
6963,6965:
7028,7030:
7093,7095:
7158 ,7160:
7223 ,7225:
7288 ,7290:
7353 ,7355:

5936 ,...
6001 ,...
6066 ,...
6131, ...
6196 ,...
6261 ,...
6326 ,...
6391, ...
6456 ,...
6521 ,...
6586 ,...
6651 ,...
6716, ...
6781, ...
6846 ,...
6911, ...
6976 ,...
7041, ...
7106 ,...
7171, ...
7236, ...
7301, ...
7366 ,...
7425],:);

fftDatSer ([1: fftMessLen] ,:);

B.32 ofdm_demodulator 214

%tftMess ;

fftMessa = reshape (fftMess ,1,fftMessLen);

if fft_ ModTy = 1
fftMessa = real (fftMessa);

%makes negative zeros (—0) a zero (0) for biterr

fftMessa = fftMessa.x fftMessa;
fftMessa = round (fftMessa);

end

TTTTTTTTT TSI TSI TTTTTTTTSSSSS SIS SIS SIS SIS SISTSISTSISTSISTSISTSISISIITSITSSo
%% Output

%O0utput varaiables
fft _out = fftMessa;

B.32 ofdm_demodulator

WITTTTSTTSSTISI TSI ISTISTISTISTISTISTISTISTISSTISSISSISSIISTISTIST o

TITSSSSTTTTTTTSSSITTTTTTSSSSITTTTTSSSS ST TTTTSISSS ST TTTTTSSS SIS TTTTSo
VSTSTS TSI Project — OFDM Simulator
%

%Barry Dunbar 0050022993

YIS TSI IS STIISTIT TS0
%Demodulator

function demod_out = ofdm_demodulator (demod_in, modType, extdebits)

popupdemod_sel_id = modType;

B.32 ofdm_demodulator 215

switch popupdemod_sel_id

case 1

demod_out = demod_in;

case 2 9YBPSK Demodulation

M=2;

%Number of bits per symbol eg. 1 bits per symbol
k = log2 (M);

inputSymLength = length (demod_in);
input_sym_len = inputSymLengthxk;

msg_rx = demod_in;
msg_dem = pskdemod (msg_rx ,M);
msg_dem_len = length (msg_dem);

msg_rx_sym = de2bi(msg.dem,’left —msb’);

[m,n] = size(msg.rx_sym);
msg_rx_size = mxkn;
msg_rx_orig = reshape(msg.rx_sym.’, msg_rx_size 1);

extra_bits = extdebits;

if extra_bits > 1

newlen = input_bit_len — extra_bits;
msg_rx_orig (newlen+1:1:input_bit_len)=][];
msg newlen = length (msg_rx_orig);

end

demod_out = msg_rx_orig;

B.32 ofdm_demodulator 216

case 3 YQPSK Demodulation

M=4;
%Number of bits per symbol eg. 2 bits per symbol
k = log2(M);

inputSymLength = length (demod_in);
input_sym_len = inputSymLengthxk;

msg_rx = demod_in;
msg-dem = pskdemod (msg_rx ,M);
msg_dem_len = length (msg_dem);

msg rx_sym = de2bi(msg.dem,’left —msb’);

[m,n] = size(msg._rx_sym);
msg._rx_size = mx*n;
msg_rx_orig = reshape(msg rx sym.’ , msg_rx_size ,1);

extra_bits = extdebits;

if extra_bits > 1
newlen = input_bit_len — extra_bits;

msg_rx_orig (newlen+1:1:input_bit_len)=][];

msg newlen = length (msg_rx_orig);
end
demod_out = msg_rx_orig;

case 4 %16QAM Demodulation

M=16;
%Number of bits per symbol eg. 4 bits per symbol
k = log2 (M);

inputSymLength = length (demod_in);

B.32 ofdm_demodulator 217

input_bit_len = inputSymLengthxk;

msg_rx = demod_in;
msg-dem = gamdemod (msg_rx ,M);
msg_dem_len = length (msg_dem);

msg_rx_sym = de2bi(msg.dem,’left —msb’);

[m,n] = size (msg rx_sym);
msg_rx_size = mxn;
msg_rx_orig = reshape(msg.rx_sym.’, msg_rx_size 1);

extra_bits = extdebits;
if extra_bits > 1
newlen = input_bit_len — extra_bits;

msg_rx_orig(newlen+1:1:input_bit_len)=[];

msg_newlen = length (msg_rx_orig);
end
demod_out = msg_rx_orig;

case 5 %640AM Demodulation

M=64;

[am,an] = size (demod_in);

%Number of bits per symbol eg. 6 bits per symbol
k = log2(M);

inputSymLength = length (demod_in);
input_bit_len = inputSymLengthxk;

msg_rx = demod_in;

msg-dem = gamdemod (msg_rx ,M);
msg_dem_len = length (msg_dem);
msg_rx_sym = de2bi(msg.dem,’left —msb’);

[m,n] = size(msg._rx_sym);

B.33 ofdm_deinterleaver 218

end

B.33

msg_rx_size = mxn;

msg_rx_orig = reshape(msg.rx_sym.’, msg_rx_size 1);

extra_bits = extdebits;

if extra_bits > 1
newlen = input_bit_len — extra_bits;

msg_rx_orig(newlen+1:1:input_bit_len)=][];

msg_newlen = length (msg_rx_orig);
end
demod_out = msg_rx_orig;

ofdm_deinterleaver

TTTTTTTTTT TSI II TSI TITTTTITSSSSSSSS SIS SIS SIS STSISTSISTSISTSITTISI T o
TTTTTTTTT T T IIITIIITITTTTTTSSSSSISSISSSSSSSSSISSITSISTSITISTSITSISISI T o
TSTTSTSITTo Project — OFDM Simulator

%

%Barry Dunbar 0050022993
TTTTTTTTTTTTTTTIIITIIITISTTTTSSSSSSTTSTSSIS IS SSSISSIISITISTSITITSITSI TS

%% De—interleaver

function [deinterlvd_out] = ofdm _deinterleaver(deinterlvd_in ,...

NoSub,MapType, deinterlvd_ext ,deinter_perm)

%Assigning variables

deinterleavIn = deinterlvd_in;
deinterleavLen = length(deinterleavIn);
NoSubc = NoSub;

ModType = MapType;

DelevExtBits = deinterlvd_ext;

B.33 ofdm_deinterleaver 219

qr = deinter_perm;

switch ModType

case 1

NoBits = 1;
case 2

NoBits = 1;
case 3

NoBits = 2;
case 4

NoBits = 4;
case H

NoBits = 6;

end

deinterlvinput = reshape(deinterleavIn ,(NoSubcxNoBits) ,[]);
Y%De—interleave

deintrlvd = deintrlv (deinterlvinput ,qr);

newdele = reshape(deintrlvd ,1,[]);

if DelevExtBits >= 1

%Subtract extra bits

B.34 ofdm_decoder 220

newlen = deinterleavLen — DelevExtBits;
newdele (newlen+1:1:deinterleavLen)=[];

msg _newlen = length (newdele);

end

deinterlvd_out = newdele. ’;

B.34 ofdm_decoder

TTTTTTTTTTTTTTIIIIIITTTITTTTTSSSSSSSSSS SIS SSISTSSTSITSISTSISISISISISISITSSISTSSo
TSI IS IS SIS SIS SSISTSTISITITSISIIIITSITITTTTTSo
TSTTSTSTTo Project — OFDM Simulator

%

%Barry Dunbar 0050022993

TSI IS TSI IS IS TSI TSI TSI SIS SIS IS IIST TSI STIISTIT S
%% Decoder

function [decod_out] = ofdm_decoder(decod_in, decodType,extdebits)

%Assigning variables

deCodeln = —2x«decod_in+1;
deCodeLengthOrig = length (deCodeln);
popupcod_sel_id = decodType;
deCodebits = extdebits;

switch popupcod_sel_id

case 1 %No coding

%0ut equals In after normalising for BER checks
decod_out = —(deCodeln/2)+0.5;

B.34 ofdm_decoder 221

case 2 %1/2 Rate

%Trellis code
t = poly2trellis (7,[133 171]);

% Decode
decoded = vitdec (deCodeln,t,96, trunc’, ’unquant’);

%0utput variable
decod_out = decoded;

case 3 %2/3 Rate

%Original length of zeros represent inserted data

noCode = zeros (((4/3)*deCodeLengthOrig — deCodebits) ,1);

%Place data in matrix in correct position
noCode (1:4:end) = deCodeln (1:3:end);
noCode (2:4:end) = deCodeln (2:3:end);
noCode (3:4:end) = deCodeln (3:3:end);

%Trellis code
t = poly2trellis (7,[133 171]);

%Decode

decoded = vitdec (noCode,t,96, trunc’,’unquant ’);

%O0utput variable

decod_out = decoded;

B.34 ofdm_decoder 222

case 4 %3/4 Rate

%Original length of zeros represent inserted data

noCode = zeros (((3/2)+xdeCodeLengthOrig — deCodebits) ,1);

%Place data in matrix in correct position

noCode (1:6:end) = deCodeln (1:4:end);
noCode (2:6:end) = deCodeln (2:4:end);
noCode (3:6:end) = deCodeln (3:4:end);
noCode (6:6:end) = deCodeln (4:4:end);

%Trellis code
t = poly2trellis (7,[133 171]);

%Decode

decoded = vitdec (noCode,t,96, trunc’,’unquant ’);

%Output variable

decod_out = decoded;

end

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature
	Chapter Introduction
	Introduction
	Project Aim
	Project Objectives
	Effects
	Sustainability
	Safety
	Risk Assessment

	Overview of the Dissertation

	Chapter OFDM Review
	History
	Design
	Architecture
	Encoding
	Interleaving
	Modulation
	Pilot Tone Insertion
	IFFT
	Fourier Transform
	Cyclic Extension
	Transmission
	Receiver

	Chapter Summary

	Chapter Radio Environment
	Propagation
	Multipath
	Frequency Diversity
	Space Diversity
	Delay Spread
	Doppler Effect

	Noise
	External Noise
	Internal Noise
	Signal to Noise Ratio (SNR)

	Interference
	Inter-Symbol Interference (I.S.I)
	Narrowband Interference
	Wideband Interference
	Intermodulation

	Chapter Summary

	Chapter Current Implementations
	ADSL
	DAB
	DVB
	802.11a Wireless LAN
	802.11g WIFI
	802.16a Wireless MAN
	FLASH
	Chapter Summary

	Chapter Matlab Model
	Chapter Overview
	Preparation
	Initialisation
	Input
	Input Amount
	All '1's bit stream
	Random bit stream
	Video

	Encoding
	Half rate Code Rate
	Two Thirds Code Rate
	Three Quarters Code Rate

	Interleaving
	Modulation
	BPSK Modulation
	QPSK Modulation
	16-QAM Modulation
	64-QAM Modulation

	IFFT, Pilot Insertion and Cyclic Extension
	Preamble
	RF/IQ Modulation
	Channel
	Receiver
	Output
	Chapter Summary

	Chapter Results and Discussions
	Results
	Simulation GUI Screen
	Typical test result screens
	Single system test result
	Code rate comparison test result
	Modulation type comparison test result
	Sub-carrier size comparison test result
	Video test result

	Discussion
	Research
	Guide Vs Simulink
	Goal Achievement

	Chapter Summary

	Chapter Conclusions and Further Work
	Conclusions
	Further Work

	References
	Appendix Project Specification
	Appendix Program Code
	OFDM_Simulator
	OFDM_para
	ofdm_syscod
	ofdm_sysmod
	ofdm_syscar
	ofdm_sysvid
	ofdm_tx
	ofdm_inputSelect
	ofdm_coder
	ofdm_interleaver
	ofdm_modulator
	ofdm_ifft
	ofdm_ifft64
	ofdm_ifft256
	ofdm_ifft512
	ofdm_ifft1024
	ofdm_ifft2048
	ofdm_ifft4096
	ofdm_ifft8192
	ofdm_pream
	ofdm_chann
	ofdm_rx
	ofdm_rempream
	ofdm_fft
	ofdm_fft64
	ofdm_fft256
	ofdm_fft512
	ofdm_fft1024
	ofdm_fft2048
	ofdm_fft4096
	ofdm_fft8192
	ofdm_demodulator
	ofdm_deinterleaver
	ofdm_decoder

