

University of Southern Queensland
FACULTY OF ENGINEERING AND SURVEYING

MOBILE MANOEUVRING
ROBOT

A dissertation submitted by

Mr. Matthew Free

in fulfilment of the requirements of

Courses ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering
(Mechatronics)

 Submitted: November, 2006

i

ABSTRACT

Robotic guidance is a large part of many research and design applications. It is being

used more frequently in everyday lifestyles such as vacuum cleaners and lawn mowers,

and is slowly being introduced into the automobile industry.

The need for this technology is growing evermore and different aspects and methods are

being implemented, from various sensor types to camera machine vision. This

dissertation is compiled to explore the use of one of these technologies implemented

into a small unit.

This dissertation develops and analyses the use of Mechatronic technology in the use of

household applications. The overall objective of this project is to implement a

microprocessor based controller in a small mobile robot to achieve straight line driving

with implemented obstacle avoidance.

ii

University of Southern Queensland
FACULTY OF ENGINEERING AND SURVEYING

ENG4111 & ENG 4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk

of the Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the students chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Prof R Smith

Dean

Faculty of Engineering and Surveying

iii

Certification

I certify that the ideas, designs and experimental work, results analysis and conclusions

set out in this dissertation are entirely my own efforts, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Matthew Phillip Free

Student Number: 0050009628

Signature

 Date

iv

ACKNOWLEDGEMENTS

This research was carried out under the principal supervision of Mark Phythian. Many

thanks are due for his expertise and advice in the area surrounding the Mobile

Manoeuvring Robot

Assistance was also obtained from Mr. Terry Byrnes. Many thanks also to his expertise

and advice.

The University of Southern Queensland supplied vital components for the construction

of the Mobile Manoeuvring Robot. Many thanks for the use of these components.

Appreciation is also due to Garth and Diana Free for the use of manufacturing tools and

materials.

v

TABLE OF CONTENTS

Contents Page

ABSTRACT i

DISCLAIMER PAGE ii

CANDIDATES CERTIFICATION iii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF APPENDICES x

NOMENCLATURE xi

1. CHAPTER 1 – Introduction 1

1.1. Outline of the study 1

1.2. The problem 1

1.2.1. Project Goals 2

1.2.2. Performance Guidelines 3

1.3. Research objectives 3

1.4. Conclusions: Chapter 1 4

2. CHAPTER 2 – Literature Review 5

2.1. Introduction 5

2.2. The Need for Autonomous Applications 7

2.3. Sensing Distances in Applications 8

2.4. Object Avoidance 9

2.5. Dual Motor Drive Systems 11

2.6. Consequential effects and outcomes 12

2.7. Summary: Chapter 2 14

3. CHAPTER 3 – Research Design and Methodology 15

3.1. Safety issues 15

3.1.1. Mechanical Safety Issues 15

3.1.2. During The Electrical System Creation 17

vi

3.1.3. During the Testing Procedure 17

3.2. Resource Requirements 17

3.3. Sustainability 18

3.4. Methodology 19

3.5. Justification of Methodology 20

4. CHAPTER 4 – Data Analysis 21

4.1. Initial Design 21

4.2. Second Prototype 22

4.3. Odometer sensors and interrupt control 23

4.3.1. Building the odometer sensors 23

4.3.2. Using interrupts to count odometer readings 24

4.4. H Bridge Motor Control 27

4.5. Infrared Distance Sensors 29

4.5.1. Requirements and Availability 29

4.5.2. Choice of Sensor 31

4.5.3. Design and construction of IR Sensor 31

4.6. The Software 39

4.6.1. Address Definition 41

4.6.2. Variable Definition 42

4.6.3. Main Program 42

4.6.4. DRFWD Drive Forward Subroutine 43

4.6.5. Turning Subroutines 44

4.6.6. Delay 46

4.6.7. COMP Compare subroutine 47

4.6.8. KWGISR Key Wake up Port G 48

4.6.9. IRQISR IRQ Interrupt Service Routine 49

4.6.10. Initialisation of Ports and Interrupts 50

4.6.11. Serial Port Communications 52

5. CHAPTER 5 – Performance and Data Analysis 54

5.1. Sensor Performance 54

5.2. Mechanical Performance 57

5.3. Software Performance 58

vii

5.4. Overall Performance 60

5.5. Conclusions 61

6. CHAPTER 6 Debugging Module 62

6.1. Microcontroller Not working 62

6.2. Motors Not Turning 62

6.3. Not stopping for Objects 63

6.4. Not driving in a Straight Line 64

6.5. Stopping for Objects but irregular behaviour 64

7. CHAPTER 7 Future Work 65

7.1. Hardware

7.1.1. Chassis Design 65

7.1.2. Sensor Design 65

7.1.3. Power Source Design 66

7.1.4. Software Design 66

8. CHAPTER 8 Conclusions 67

APPENDICES 69

REFERENCES 97

viii

LIST OF FIGURES

Number Title Page

Figure 2.1: Army Bomb Deployment 6

Figure 2.2: Bomb Disposal Robot 6

Figure 2.3: Increasing technologies 7

Figure 4.1: Initial Chassis Prototype 21

Figure 4.2: Second Chassis Prototype 22

Figure 4.3: Motor setup 23

Figure 4.4: Chassis design 23

Figure 4.5: Odometer Sensor 23

Figure 4.6: Single hole odometer sensor 24

Figure 4.7: Odometer Sensor Circuitry 24

Figure 4.8: 4013 Flip-Flop configuration 25

Figure 4.9: Basic H Bridge Operation 27

Figure 4.10: Sensor Distance Requirements 30

Figure 4.11: 555 Timer Pulsing Sensor Light 32

Figure 4.12: PCB inside LED Torch 33

Figure 4.13: LED Torch Complete With Wires 33

Figure 4.14: Power Supply Filter for Transmitter 34

Figure 4.15: Position of Sensor Components 36

Figure 4.16: Sensor mounting on the Robot 37

Figure 4.17: Data flow for software 40

Figure 5.1: Sensor spectrum 56

Figure 5.2: Layered approach to robot design. 58

Figure 5.3: Straight line testing 59

Figure 5.4: Results of straight line test 59

Figure 6.1: Showing IR LED status 63

Figure 8.1: Working Prototype of Mobile Manoeuvring Robot 68

ix

LIST OF TABLES

Number Title Page

Table 3.1: Cutting aluminium safety 15

Table 3.2: Grinding and die grinding safety 16

Table 3.3: Drilling safety 16

Table 3.4: Lathe safety 16

Table 3.5: Painting Safety 17

Table 3.6: soldering safety 17

Table 3.7: Testing safety 17

Table 3.8: Mechanical resources 17

Table 3.9: Electronic Resources 17

Table 5.1: Sensor range 55

x

LIST OF APPENDICES

Number Title Page

A Project Specification 70

B Software Listing 71

C Software Design Procedure 85

D Component Data Sheets 91

xi

NOMENCLATURE AND ACRONYMS

The following abbreviations have been used throughout the text and bibliography:-

CRO – Cathode Ray Oscilloscope

DSE – Dick Smith Electronics Australia

IC – Integrated Circuit

IR – Infrared or Infrared Light

LED – light emitting diode

PCB – Printed Circuit Board

PWM – Pulse Width Modulation

USQ – University of Southern Queensland (Toowoomba Campus)

1

CHAPTER 1

INTRODUCTION

1.1 Outline of the study

The final objective of this project is to implement a successful electronic system into a

small mechanical unit in an attempt to make it travel throughout an area whilst avoiding

obstacles to evade collisions. In this case the solution will come from the selection of a

suitable microcontroller, drive system and sensors.

Further work may be completed to make this device actually perform a practical task

such as object retrieval; however this is not essential to the outcomes of this project.

The project objective will be satisfied if the software and hardware configuration is able

to control the vehicle within an indoor environment whilst avoiding collision with

obstacles.

1.2 The problem

The overall project objective is stated above as “to implement a microprocessor based

controller in a small mobile robot to achieve straight line driving with implemented

obstacle avoidance.”

The project objective will be satisfied if the software and hardware configuration is able

to control the vehicle within an indoor environment whilst avoiding collision with

obstacles.

This means the unit will have such features as odometer counters for each wheel to aid

in turning and driving in straight lines and hopefully record where it is in regards to its

starting position. At least three sensors will be used to ‘read’ the path to the front and

both sides of the unit. This will be necessary in the path tracking of the unit, i.e.

deciding on which way to turn in an attempt to avoid collision.

2

1.2.1 Project Goals

In order to reach the overall objective of this project it is necessary to consider a set of

guidelines or a set of project goals to direct the progress of achievement. They are set to

be a set of open statements allowing a lot of movement and flexibility within them but

to globally control the direction and outcome of the project.

By pursuing the following goals the project objective should be reached satisfactorily.

1. Define a guideline to assess the performance of the robot to the specifications of

the project objective.

2. Build a prototype that is practical to the objective

3. Research the background behind obstacle avoidance and other attempts to

achieve similar tasks.

4. Research microcontrollers and sensors to acquire the most practical

configuration as to meet the objective.

5. Define an initial design of the configuration and code to be implemented.

6. Construct initial design

7. Test and analyse the results in accordance to the performance guidelines.

8. Re evaluate the design as required to achieve the project objective.

As time permits the following steps will be undertaken to improve on the robot and

extend the project outcomes.

o Define a new performance guideline for the practical task completion

o Research more methodology if required

o Re design and construct the robot to achieve the new objective.

o Test and analyse the results in accordance to the new performance guidelines

o Evaluate and change the design as required to achieve new objectives.

3

1.2.2 Performance Guidelines

The first project goal is to define a guideline to assess the performance of the robot to

the specifications of the project objective.

For this project to be successful in accordance with the project objective, it is required

that the robot perform to the following criteria.

• Travel in a straight line when in a clear area with no manual assistance.

• Stop before colliding with any obstacles that are in the path

• “Decide” which way is more practical to turn and do so.

• Continue on its path in a straight line.

If the robot adheres to this criterion it will be able to drive continuously, avoiding

collision on a random path.

1.3 Research objectives

The research in this project will basically revolve around similar projects and concepts

developed to achieve similar tasks. The methods that have been used in various areas

will be evaluated in comparison with each other and the superior designs analysed and

modified to enable a suitable proposal for the manoeuvring robot.

The main research has been compiled into a literature review and is detailed in chapter 2

‘Literature Review’.

4

1.4 Conclusions: Chapter 1

From the contents of this chapter the overall project objective has become clear and

broken down into sizeable sections that can be completed individually. The content of

required research has been outlined and a set of performance guidelines has been

created to show the true desired outcome. These are all vital parts of the project if the

objectives are to be met successfully.

The following chapters will detail each of the sections outlined in chapter one and

explain in full the requirements, complications and decisions relating to each aspect.

The majority of this dissertation will detail the design, construction and testing of the

Mobile Manoeuvring Robot.

5

CHAPTER 2
LITERATURE REVIEW

The purpose of this literature review is to discover and critically analyse similar

concepts to that of the Mobile Manoeuvrable Robot. This will build a suitable

framework to commence work and research on the project.

The literature view will comprise of the following aspects:

1. Brief Background on the concept of autonomous control

2. Is there a need for autonomous appliances/applications

3. What is the most suitable method of sensing distances?

4. What methods are best used for object avoidance?

5. Research of previous implementation of dual motor drive systems.

6. Discussions and Implications of autonomous technologies.

2.1 Introduction

The use of automated or autonomous robotic control is not a new concept. Many

people have dedicated their careers into designing these machines for many different

areas and many different applications. The military uses robots as war machines, such

as the TALON robot. The picture below shows a block of C4 explosive being placed in

the claw of the robot. Other military uses include safe bomb diffusion by use of robots

such as the following TELEROB. The robot can be safely sent into a dangerous

environment without the risk of losing human life. This means bombs can be diffused

faster and safer.

6

http://www.army-technology.com

Figure 2.1: Army Bomb Deployment

Figure 2.2: Bomb Disposal Robot

A more closely related topic is the automatic vacuum cleaner. These units commonly

use ultrasonic sensors to navigate around the room cleaning as it goes. Boundaries can

be set using magnets and the unit is sensitive to drop-offs such as stair wells. A

common example of this is Electrolux’s Trilobite which is now commercially available

at retail stores.

State-of-the-art remote bomb disposal
technology, the telerob Explosive Ordnance
Disposal and observation robot tEODor. The
German Army model is equipped with five
cameras and a double shot disruptor type
Richmond RE70.

http://www.army-technology.com

7

2.2 The Need for Autonomous Applications

Imagine never having to wash, iron, clean or cook again. A robot could do it all for you

while you sit back and relax. To some this seems like the perfect world, while to others

it seems unethical and truly against their beliefs. The demand for autonomous

applications is becoming ever more increasing and public acceptance is also on the

increase.

The company ‘Poly Micro’ argued in their 2004 newsletter that autonomous appliances

will grow because of consumers increasing expectations of energy and water saving,

noise reduction and overall efficiency and functionality. They also bring to focus that

more technology is being accepted within society. The following graph from poly

micros 2003 newsletter shows the acceptance of new technology relating to the

automation of driving systems within a manned vehicle.

Poly Micro predicts that by 2010 autonomous driving will be largely accepted as

practical by society. New cars of today are considered dangerous not to have an airbag

whereas 20 years ago this technology was not heard of.

Although this data varies slightly from this dissertation work, the trend of need and

acceptance through time is accurately portrayed in Figure 2.3.

http://www.polymicro-cc.com/site/pdf/POLYMICRO-markets.pdf

Figure 2.3: Increasing technologies

8

The article “Appliances of the future’ states also that the need and expectations of this

type of technology are growing at an alarming rate. It also mentions that for ideal

autonomous work in the future that robots will need emotion such as fear, pride and

caution. How can a robot complete great work if it has no pride in what it does, and

how can it make decisions without a conscience?

Henrik Christensen suggests that autonomous robotics in the home is a great idea

however has not come far enough to really break into the household market. The cost is

simply too high in ratio to its functionality.

Overall it is evident that the need and acceptance for autonomous robots in the home is

ever growing. While some circumstances of future developments may seem unethical

the basic cleaning and entertainment robots are proving to be an accepted and sought

after item in the home.

2.3 Sensing Distances in Applications

There are many different methods available for the purpose of sensing distances. These

include sensors such as proximity, ultrasonic, infrared, magnetic and various others.

Which of these is most suitable for a household application?

The Electrolux Trilobite (vacuum cleaner) uses ultrasonic sensors to navigate around

the room. Most sensors work by emitting some form of light or frequency and waiting

for that emitted source to ‘bounce back’. Ultrasonic sensors use sound or frequency

whereas infrared uses an invisible light source to judge distance or proximity. Infrared

light is often also used in data transmission such as remote control for a common

television.

The robo-rats website (2001) shows several different methods of sensing distances and

details the connections and problems associated with the setups. It shows methods of

beam breaking, using infrared emitters and detectors; distance sensors, also using

infrared emitters and detectors; and photocell sensing.

9

From all of these details it seems that a very successful method of judging proximity,

and also possibly recognising distance, is to use an infrared LED (Light Emitting

Diode) and an infrared detector. When the robot is facing a wall or object within a

certain distance (unknown at this stage and variable) infrared light will reflect from that

object and be collected in the detector. The higher the voltage or current returned from

the receiver, the closer the object must be. To overcome the possibility of natural light,

containing infrared, affecting the functionality of this sensor configuration, it will be

necessary to clock the infrared emitter at a rate of 36 – 40 kHz. The receiver will also

have to be tuned in order to only recognise this frequency of light.

2.4 Object Avoidance

Many applications are beginning to incorporate object avoidance technology into their

design. Cars are becoming more autonomous, traction control for example, and this

technology is bound to move towards object avoidance. Reversing sensors can alert the

driver when an object is close to the rear of the vehicle. It is only a matter of time

before a car will be able to recognise which lane it is and manage the steering system to

ensure it does not cross any lines. This technology is sure to save many lives from the

hazard of driver fatigue.

Object avoidance technology is currently installed into many items such as automatic

vacuum cleaners, auto lawn mowers and other items where little human instruction is

desired. Electrolux’s Trilobite automatic vacuum cleaner uses random driving while

avoiding collision in order to cover the floor space.

A project conducted by a student at Niagara Technology University used sensors and

hardware to create a object avoiding robot not dissimilar to that of this dissertation. The

concept behind this project gave the robot a human like thought process in that it would

come to an object, view the left then view right and make a decision of which way was

best to turn. If the robot had cornered itself then it would turn around and continue

driving.

David Tunnel 2004 suggested that there was no perfect solution available for

autonomous object avoiding and hence started a proposal to create an algorithm to

10

perform this operation. The proposed algorithm is intended to create a logical path for a

unmanned vehicle to take by use of sensors, videos and imaging data. ‘Our focus is to

develop a object avoidance algorithm called SmartAvoidT that extracts multiple

objects/targets out of video/imagery data, establishes individual tracks for each object

and maps a path around each object to avoid collisions.’ (Tunnel D 2004). This

algorithm would then be implemented into the vehicles navigation system in order to

follow the calculated path. The algorithm will be designed to work in all weather

conditions such as day, night, rain, smoke or any other condition.

Koren Ward suggests that a successful method of controlling object avoidance is for the

robot to ‘learn’ methods and trends associated with traversing different situations. This

concept still utilises sensors and logic however has another much more complex

learning ability. The unit will record its previous experience with regard to the readings

from its sensors and so will be able to make a decision based on what occurred last

time. For example if sensor 1 was blocked and sensor 2 was clear then it will perform

in the same way as it did last time as long as last time encountered no errors. If errors

occurred it will try a different method and compare the results. This is a very complex

concept however it would most likely produce the least amount of errors in the long run.

A basic logic system may encounter the same error repeatedly, whereas this use of a

fuzzy logic learning system should prevent this occurrence.

While there are several methods of controlling a robot to avoid objects many are much

too complicated for the general purpose of this dissertation. This dissertation aims to

create a base model of an autonomous robot and so the programming of object

avoidance will be kept to a simple level. The concept described by the technology

student above is the initial concept decided upon for this dissertation. Giving the robot

a set of hard coded rules once it reaches an object should give satisfactory performance

while maintaining a simpler approach.

The coded instructions might look something close to the following:

START Drive in a straight line until interrupt from sensor occurs

 Is left sensor clear?

11

 If yes turn left

 If no, is right sensor clear?

 If yes turn right

 If no then reverse out or turn 180 degrees

 Continue in a straight line (loop to START)

2.5 Dual Motor Drive Systems

Many systems use dual motors for directional control. A dual motor drive system refers

to having one motor for each drive wheel also known as ‘differential drive’. Both

motors driving forwards will make the unit move forwards; one motor forwards and one

motor in reverse will result in the unit turning etc. A well known example of this drive

system is in a skid steer (commonly known as a Bobcat). This method gives excellent

directional control and ‘on the spot’ turning allowing for tight corners and superior

manoeuvrability. The major problem with this method however is that one motor will

always turn slightly faster than the other resulting in the unit driving in a slight curve.

This may be due to efficiencies in the motors, gearbox friction, wheel to ground friction

and other uncontrollable factors. Some form of odometry for each wheel will be

necessary to ensure that the unit manoeuvres in a straight line.

This issue of non-straight driving is very common among robot builders and has been

overcome in several different ways. Many choose to change the drive system to a more

car like drive system with a single drive motor and steering mechanism. This is not

practical in many cases as it will sacrifice functionality. The problem has been

overcome before by pulse-width modulating the two drive motors and counting the

edges on the encoders located at each wheel. This seems to be a very successful method.

Knudsen J 2000 refers to a similar method of counting the revolutions of the drive

shafts and comparing the number or revs on each side. All of this information is based

on LEGO™ components however the methods are still relevant. It also explores the use

of a mechanical differential to ensure straight line driving is obtained. This is very

similar to a car differential however is used in a different manner. By attaching the two

drive motors to where wheels would normally be connected, the differential will not

12

rotate unless the motors turn at different speeds. By monitoring the differential with a

sensor algorithms can be written to control the navigation.

For the purposes of this dissertation the clearest method is to use sensors on each wheel,

or better yet on the actual drive motor, to measure the revolutions and therefore distance

travelled. An algorithm will be written to ensure both drive wheels rotate at the same

speed.

This method will become very useful if time permits to increase the robots performance.

If this goes ahead the robot will use a method known as ‘dead reckoning’ where it

calculates its position as a sum of how far and in what direction it has travelled since its

origin. Although this is a rather inaccurate approach it is far simpler than any Global

Positioning Systems (GPS), especially in such a small application.

 2.6 Consequential Effects and Outcomes

The final outcome of this project provides a base model for intelligent household

applications such as cleaning, object retrieval or similar. The extent of this project will

not extend to a final product suitable for marketing but is just the base concept.

The research and technical outcomes from this project pose no direct ethical or legal

dilemmas however if this concept is extended on then some factors may need to be

considered.

Many engineers and scientists are still studying the use of autonomous vehicles for

many different purposes in many different fields of expertise. From military through to

agriculture robots are becoming more frequently relied on and the need for more

advanced technology is ever increasing.

Military and federal applications of robots include the use of technology to diffuse

bombs or clear areas where the risk of losing human life is too high. Similar to this is

the use of robots to track through rubble from collapsed buildings or landslides to

search for survivors and perform simple medical checks. NASA uses autonomous

robotics for missions such as Mars Rover discovery and other distant missions.

13

Although most of these cases still rely on human instruction, usually from remote

control, they are all still based on a similar content to the technical side of this

dissertation.

Future development of this idea of autonomous mobile navigation may result in any

number of new designs. Some of these may be:

• Concept cars able to drive without human instruction. May be used for

taxi services or courier and mail delivery.

• A similar service to ‘Guide dogs for the blind’, helping blind members of

the community to be self sufficient.

• Automatic cleaning of bathrooms, kitchens and offices. Reducing the

need for maids and cleaners.

Some of these future developments pose some ethical questions however. Is it right to

make a machine that will put people out of work? What if the automated robot causes

damage to humans or property and is not able to be controlled? What if an automated

car crashes, killing a family with young children? Who takes the blame for any of these

circumstances? It is a very controversial subject with many sides to each argument.

Many movies have been created which discuss the possibility of robotics in the future.

Humans create machine with such intelligence that they become uncontrollable. ‘The

Matrix, 1999’; ‘I Robot, 2004’ and ‘Stealth, 2005’ all discuss the implications of errors

in machines that have turned into drastic situations. Although these are most likely far

fetched extremes, the concept is a possibility. Electronic components, such as solenoids

and sensors, can easily fail which might make a car miss a turn or fail to brake. It once

again poses questions if it is right to put a human’s life in the hands of a machine.

14

2.7 Summary: Chapter 2

To summarise the literature behind the concept of a mobile manoeuvring robot it is

obvious that most of this technology has been invented before. The content that will be

covered in this dissertation will be on the basis of autonomous technology and hence

will most likely not be an extension into new technology or concepts. The basis for this

project is to explore and understand the basic essentials in an autonomous situation that

may be used for any industrial or commercial purpose.

15

CHAPTER 3
RESEARCH DESIGN AND METHODOLOGY

Before commencing any of the construction or completed design of any of the

electronic or mechanical components, it was necessary to undertake some certain

analysis. A safety analysis and a resource requirements and acquisition table was

completed to fully understand the background, direction and precautions to consider

whilst the project was under design and analysis.

3.1 Safety Issues

Safety is a relatively low concern in this project. While various factors require some

attention, there are no large definite risks such as chemical handling. Saying this

however does not mean that there is no cause for concern along the duration of this

project. The following risk assessment outlines the primary hazards and methods of

reducing the risk.

Constructing anything mechanical brings with it some risks. The construction of this

mechanical unit involves cutting, grinding, drilling and using other power tools on

products such as aluminium and timber. Bushes are also to be made from industrial

grade plastics on a lathe. On the electrical side of this project a lot of soldering and

drilling/screwing will also take place. The possible hazards and risks of these

operations are listed below.

3.1.1 Mechanical Safety Issues

Cutting aluminium with drop-saw or similar

Hazard Occurrence
likelihood

Consequence
H/M/L

Controls to
avoid injury

Risk after
controls

Loud Noise
High- Aluminium
is a noisy material
to work with

H – Hearing
Damage will occur
for multiple cuts

Hearing protection
must be worn

L – Small amount
of cuts no problem.

Flying debris
High – Hot spatter
from saw blade
will fly

H – Blinding if
caught in eyes,
minor burns
possible on skin

Eye protection to
be worn, Face
mask preferable,
non-loose – long
sleeved clothes

L – Adequately
protected

Saw jamb
Medium – If work
not secured piece
may fly

H- possible loss of
fingers in blade or
pinching of skin

Clamp work piece
when cutting

L – If clamped no
problem

Table 3.1: Cutting aluminium safety

16

When grinding, ensure that the appropriate sized grinder is used. For example, a nine

inch angle grinder used on a small piece of aluminium is likely to cause damage to

either operator and/or work piece.

Grinding/ Die grinding
Hazard Occurrence

likelihood
Consequence

H/M/L
Controls to
avoid injury

Risk after
controls

Loud Noise High- Grinding is a
noisy operation

H – Hearing
Damage will occur
for long use

Hearing protection
must be worn

L – Small amount
of cuts no problem.

Flying debris High – Hot sparks
from blade

H – Blinding if
caught in eyes,
minor burns
possible on skin

Eye protection to
be worn, Face
mask preferable,
non-loose – long
sleeved clothes

L – Adequately
protected

Grinder jamb
Medium – If work
not secured piece
may fly

H- possible loss of
fingers in blade or
pinching of skin

Clamp work piece
when cutting, use
appropriate grinder

L – If clamped no
problem

Table 3.2: Grinding and die grinding safety

When using any power tool ensure correct tools and attachments are used and

appropriate user knowledge of the operation is known.

Drilling and other power tools
Hazard Occurrence

likelihood
Consequence

H/M/L
Controls to
avoid injury

Risk after
controls

Loud Noise
Med – most power
tools create some
loud noise

M - Hearing
Damage will occur
for multiple cuts

Hearing protection
must be worn

L – Small amount
of cuts no problem.

Flying debris
High – Hot spatter
from saw blade
will fly

H – Blinding if
caught in eyes,
minor burns
possible on skin

Eye protection to
be worn, Face
mask preferable,
non-loose - long
sleeved clothes

L – Adequately
protected

Tool jamb
Medium – If work
not secured piece
may fly or spin

H- possible loss of
fingers in blade or
pinching of skin

Clamp work piece
during work

L – If clamped
problem minimised

Table 3.3: Drilling safety

Lathe work
Hazard Occurrence

likelihood
Consequence

H/M/L
Controls to
avoid injury

Risk after
controls

Flying debris
High – Hot spatter
from saw blade
will fly

H – Blinding if
caught in eyes,
minor burns
possible on skin

Eye protection to
be worn, Face
mask preferable,
non-loose - long
sleeved clothes

L – Adequately
protected

High speed
operation

M- Chuck and
work piece
spinning

H- loss of fingers
of large cuts and
abrasions

Experienced user
present, caution
used when
operating

M- Impossible to
remove spinning
component

Work piece fly M- chuck slip or
error in clamping

H- building damage
or personal injury

Ensure piece
clamped, be aware
of possible piece
release

M- Impossible to
reduce risk to a
low level.

Saw jamb
Medium – If work
not secured piece
may fly

H- possible loss of
fingers in blade or
pinching of skin

Clamp work piece
when cutting

L – If clamped no
problem

Table 3.4: Lathe safety

17

Painting
Hazard Occurrence

likelihood
Consequence

H/M/L
Controls to
avoid injury

Risk after
controls

Toxic Fumes Med – many
fumes present

M – Eye and
respiratory damage

Eye protection to
be worn, fan or
dust extraction
present, ventilated
area

L – Adequately
protected

Table 3.5: Painting Safety

3.1.2 During The Electrical System Creation:

Soldering
Hazard Occurrence

likelihood
Consequence

H/M/L
Controls to
avoid injury

Risk after
controls

Toxic Fumes
Med – many
fumes present
raising upwards

M – Eye and
respiratory damage

Eye protection to
be worn, fan or
dust extraction
present, ventilated
area

L – Adequately
protected

Hot solder
dripping Low M- Mild burns to

skin

Clear work area in
standing position.
Adequate clothing

L- Caution will
mean no burns

Hot iron
Med. Touching
will leave instant
burns

M – Possible mild
burns

Clear work area
and use caution

M – unavoidable
other than caution
used

Table 3.6: soldering safety

3.1.3 During The Testing Procedure:

Although testing seems very straight forward, there are still several hazards to

be aware of. User hazards are minimal however damage to hardware and

property is still possible.

Testing

Hazard Occurrence
likelihood

Consequence
H/M/L

Controls to
avoid injury

Risk after
controls

Object avoiding
fails

M- sensor fail,
code error

L – small scratches
on objects

Use test blocks
which can be hit

L- no damage will
be caused

Overload or short
circuit
microcontroller

M – surge in power
or error in
connection

H – Expensive
microcontrollers

Careful
connections, use
overload protection

L- microcontroller
protected

Power sources Med – voltage
shocks

H – if large voltage
touched,
electrocution
possible

Understand power
pack before use.
Tape or hide high
voltage wires

L- High voltages
avoided.

Table 3.7: Testing safety

3.2 Resource Requirements

There are many components to this project which will be sourced from a widely varied

field. Due to the nature of this project it will be constructed on a tight budget. This

means aesthetics and practicality may suffer to some degree. Most resources will either

be scavenged from existing products or borrowed from institutions such as USQ where

possible.

18

The required resources can be categorized into two major fields, mechanical and

electronic. The following explains these categories and the planned source.

Mechanical components/resources:

Resource Description Requirements Source Back-up Plan

Unit chassis Aluminium 100x100
box section Light weight Scrap bin at Patio shop N/A

Motors (x 2) 12V Low Amperage Purchase (Bunnings
XU1 cordless drills) N/A

Gear box (x 2) Windscreen wiper
motor (XD Falcon)

Minimal weight, large
reduction Car wreckers N/A

Trundle wheel Low friction small
trundle wheel Light weight Old cupboard wheel N/A

Fastenings (rivets,
screws etc.) Assorted N/A Family Workshop Hardware Purchase

Wheels 115mm diameter Light weight Pram wheels Hardware Purchase

Bushes etc Assorted Low friction, light
weight, affordable Create in workshop Second hand toys

Table 3.8: Mechanical resources

Electronic components

Although there will be many components required that are unknown at this stage, the

following table provides a basic plan for the sourcing of components.

Resource Description Requirements Source Back-up Plan

Microcontroller Motorola HC12 - - - USQ on loan Purchase chip and get
soldered to PCB

Infrared LED + sensors Various - - - Electronic shop Internet purchase

555 timers - - - - - - Electronic shop USQ loan

Wiring Various colours - - - Electronic shop USQ

Table 3.9 Electronic Resources

3.3 Sustainability

Unfortunately it will not be practical to keep the robot assembled at the completion of

this project. Due to the major component (HC12 microcontroller) being unaffordable to

the budget, the robot will be useless after the return of components. Without the

microcontroller the rest is rendered futile.

19

At the conclusion of this project several components will be returned. The

microcontroller will remain the property of USQ. The windscreen wiper motors will be

beyond repair but may be reused in other applications. Wheels and other mechanical

components will be returned to the workshop. The electronic components will be kept

for other applications where sensors etc can be used.

3.4 Methodology

The following project goals were created in chapter one and are re-listed in

methodology so as to set the basis for the structure of this dissertation. The project

work outlined in this dissertation is based entirely around this methodology.

By pursuing the following goals the project objective should be reached satisfactorily

and efficiently.

1. Define a guideline to assess the performance of the robot to the specifications of
the project objective.

2. Build a prototype that is practical to the objective

3. Research the background behind obstacle avoidance and other attempts to

achieve similar tasks.

4. Research microcontrollers and sensors to acquire the most practical
configuration as to meet the objective.

5. Define an initial design of the configuration and code to be implemented.

6. Construct initial design

7. Test and analyse the results in accordance to the performance guidelines.

8. Re evaluate the design as required to achieve the project objective.

As time permits

o Define a new performance guideline for the practical task completion

o Research more methodology if required

o Re design and construct the robot to achieve the new objective.

o Test and analyse the results in accordance to the new performance guidelines

o Evaluate and change the design as required to achieve new objectives.

20

3.5 Justification of Methodology

The methodology above has been chosen carefully to complete the project objectives.

The first step of ‘Define a guideline to assess the performance of the robot to the

specifications of the project objective’ has been chosen to give the robot a set of

guidelines to be assessed against. Without having this goal, it will be impossible to

determine if the robot has met all requirements. Goal three, Research the background

behind obstacle avoidance and other attempts to achieve similar tasks, will give

background knowledge behind the concept. This can save a lot of time in decision

making processes as it may help predict the outcomes based on previous experiences.

The design stage is the next logical step and is carried out as goal four. The testing

stage is very important and is closely linked with goal one of the performance guideline.

The robot must be tested and assessed against these guidelines in order to understand

which parts of the robot were successful and which aspects need more work.

The methodology of the time permitting guidelines can be justified in the same manner.

It is a very similar process with most of the background information already known.

21

CHAPTER 4
Construction and Design

4.1 Initial Design

Several ideas were analysed before the initial prototype was built. The mechanical

structure of the robot was a major consideration. Wheels versus tracks, mechanical

steering versus dual motor drive and other considerations along with shape and

dimensions were the chief factors.

Initial analysis of these ideas provided a dual motor, two track setup with a wide wheel -

base for stability. This design is shown in figure 4.1 below.

Figure 4.1: Initial Chassis Prototype

This design seemed very practical for this application due to its small centralised

arrangement, its excellent turning circle and ability to manoeuvre. The problem

occurred however when the drive motor could not gain sufficient traction to the rubber

track. Several different ‘drive hubs’ were implemented to attempt to overcome this

problem however the rubber tracks were too flexible with a very small coefficient of

friction. The setup required to make this arrangement successfully work far out-

weighed the practicality of the design.

22

The motor slipping in the tracks would have made this project a near impossibility

without a delicate error correction system in place. Because of these difficulties a

decision was made to use wheels connected as a direct drive to the motor.

4.2 Second Prototype

The second prototype for the mechanical design consisted of an aluminium chassis with

dual drive motors. A simple trundle wheel for stability was used to allow ‘on the spot’

steering and high manoeuvrability.

Figure 4.2 Second Chassis Prototype

The drive motors were chosen from a set of affordable ‘XU1” 12 volt cordless drills.

The speed of these motors was far too fast to attach directly to the drive wheels of the

robot however, so a gearbox was required. A worm drive seemed the logical

arrangement for this to provide high reduction, high torque and very minimal backlash.

Two windscreen wiper motors from XD Falcons were purchased from a car yard and

modified to suit the desired purpose. Due to the size of this application, batteries will

be small and therefore the motors need to be of low power consumption. Windscreen

wiper motors draw approximately 5-10 amps and so running two of these would require

a rather large battery. By replacing the original motors with the cordless drill motors,

the amperage was dropped to approximately 5 amps for both motors running

simultaneously under load. Figure 4.3 shows the small motor mounted on the gearbox.

23

 Figure 4.3: Motor setup Figure 4.4: Chassis design

The chassis is a 100 x 100mm box section of aluminium commonly found on patio

posts. The axle holes were formed with a die grinder and are designed for the motors to

bolt straight into. The trundle wheel was placed on temporarily until final dimensions

are known for extra hardware (batteries, microcontrollers, wiring etc).

4.3 Odometer Sensors and Interrupt Control
 4.3.1 Building the odometer sensors

As explained earlier, it is necessary for the Mobile Robot to be able to drive in straight

lines between obstacles. For this to occur it is necessary to calculate the turns of each

wheel (or motor) to compare against the other. There are various methods available for

this; however the easiest and most successful technique is to insert a sensor on each

motor to count the revolutions. In this case an infrared LED and receiver have been

used to count the revolutions. Figure 4.5 shows how this sensor is implemented.

Figure 4.5: Odometer Sensor

24

The LED (DSE part number Z3235) and Infrared Receiving Diode (DSE part number

Z1956) are mounted in an outer casing that mounts the motor to the gearbox. A 4mm

hole is drilled through the motor drive shaft which aligns the LED with the Receiving

Diode twice for every revolution of the motor. From this circuitry it is possible to obtain

a 5 volt drop for every time the sensor is aligned.

Figure 4.6 Single Hole odometer sensor

To obtain the 5 volt drop it was necessary to fiddle with resistor values on the 5 volt

input rail to the receiver. The resistor value was dependent on how much of the hole

aligned, the intensity of the infrared beam coming through the hole and also the

brightness of the outside light. (Incandescent light bulbs and sunlight contain masses of

Infrared.) To overcome the variance of the outside light, a film of white gap filler was

applied over the receiver to completely isolate all of the surfaces from any source of IR

other than the emitter. A guess and check of values found that when a 68 kilo ohms

resistor was placed in series in the power supply for the receiving diode, a five volt drop

(5v to 0v) was obtained when the sensor aligned. See circuit below for details.

This circuit can be used to generate an interrupt for use in the microcontroller. It is used

on the high to low edge however can be used in either edge sensitive case.

Figure 4.7: Odometer Sensor Circuitry

25

4.3.2 Using interrupts to count odometer readings

The circuitry detailed earlier was designed to provide a 5v drop twice for every

revolution of the motors shaft. This 5 to 0 volt drop provides the perfect setup to use in

one of the many Motorola HC12 interrupts.

The Motorola has many different interrupts with varying priorities and ideal uses.

Some forethought was applied to the needs of interrupts and it was considered that the

odometry sensors would need the highest priority. This would allow other lower

priority interrupts to run without effecting the counting of motor revolutions. A first

attempt was to use IRQ and XIRQ to count each motor.

The first issue to deal with using this decision was that XIRQ is a level sensitive

interrupt. This meant that if the motor was rotating slower than the interrupt could

service (and obviously this would happen with an 8Mhz processor and the robot only

moving at about 0.2m/s), then the interrupt would run repeatedly whilst the IR LED and

the Receiving Diode where in line. To overcome this, a flip flop was set up to trigger

on the falling edge of the signal and then it would be reset by a wire coming from Port

A. The concept behind this seemed logical and straight forward however many

problems arose for various reasons. Figure 4.8 shows the Flip Flop configuration

implemented.

Figure 4.8: 4013 Flip-Flop configuration

26

The above arrangement of a 4013 Dual D Type Flip Flop is set to work on a rising edge

(0 to 5 volts). Using a falling or rising edge will not affect the accuracy of the counting;

it will still see two rising edges every rotation of the motor. When the sensor rises from

0v to 5v, the flip flop is triggered and Q NOT changes from high to low which triggers

the XIRQ (active low) interrupt. Before the end of the interrupt service routine, a logic

high can be sent from PORT A to reset the flip flop and await the next rising edge from

the sensor.

This concept did not work when attached to the sensor and microcontroller. When

voltages where manually applied to the flip flop slowly it would perform successfully

however when the process was applied through the XIRQ interrupt service routine, the

logic levels would not change appropriately. The IRQ interrupt was also not working

correctly. It was initialised to recognise falling edges but would not activate on the

falling edge coming from the sensors. It would however activate if an earth wire was

touched to it. It was decided that perhaps noise or other less obvious factors were

causing this.

There seemed to be too many problems for the simplicity of this idea so it was deemed

appropriate to disregard the use of XIRQ and IRQ for this purpose. The sensor wires

were connected to the PORT G key wake up port and instantly an accurate counter was

achieved. The major issue with this arrangement was to remember not to use any

higher priority interrupts to run a routine which would turn the motors in either

direction. This would make the position of the robot an unknown factor.

As a result of this testing the odometer sensors were made successful by simply using

an Infrared LED (DSE part number Z3235) and an Infrared Receiving Diode (DSE part

number Z1956) connected to the key wake up of PORT G and the software initialised

correctly to deal with this. A simple interrupt service routine was written to add one (1)

to the counter that recorded the revolutions of the respective motor. These counter

values are then available for calculating straight line driving or even position

monitoring.

27

4.4 H-Bridge Motor Control

After having the mechanical unit constructed, encompassing the microcontroller and

odometry sensors, it was necessary to decide on a method to control the motors. Two H

bridges were sourced from the technician’s lab at USQ to allow the microcontroller to

handle the large current flows. An H bridge works by a series of four switches which

can control the current flow through the motor. The schematic below shows the basic

operation of the common H Bridge. The grey arrows represent the current flow through

the motor.

Figure 4.9: Basic H Bridge Operation

By applying a small voltage such as logic high from the Motorola HC12, the switches

can be turned on to allow current flow and hence motor operation. Only diagonally

opposed switches should be turned on at the one time. If both switches on one side are

turned on at the same time a short circuit is made from the positive to negative voltage

supply. This is often referred to as shoot through.

28

Anything that can control a current is suitable for use as the switches in an H bridge

such as relays, transistors or MOSFETS. In this case, four MOSFETS have been used

with small heat sinks to cater for the 12V motors which are drawing approximately 2.5

amps each at full load.

One excellent advantage of using an H Bridge is that it reduces the voltage and current

spikes that occur from the motors starting, stopping or changing direction quickly. With

the Mobile Manoeuvring Robot the voltage spikes were still higher than the H Bridge

could contain. The cheap motors that were purchased for the drive have very poor

characteristics and were resetting the microcontroller every time that the two motors

turned on simultaneously. There are several procedures that could have been

undertaken to overcome this problem. A more efficient pair of motors may have

produced less voltage spike; a large capacitor could have been implemented to provide a

spike filter; or the chosen method, to use separate power supplies to run the

microcontroller and the motors respectively. A 9 or 10 volt battery is ideal for running

the microcontroller as the voltage passes through a LM7805 voltage regulator. This

method has the added advantage of being able to have a separate, higher voltage battery

to run the motors without having to reduce it significantly to power the microcontroller.

Both power supplies must share a common earth for the robot to function correctly.

To control the motor speed requires more than just a logic high input to the H Bridge.

Motors will always run at slightly different speeds due to the internal friction losses and

other variances in efficiency and so the robot would drive in large circles. Pulse Width

Modulation (PWM) is a very successful method of controlling the speed. By applying a

chosen frequency to both motors and then adjusting the duty cycle, the motors speed

can be controlled. The Motorola HC12 has 4 channels dedicated to pulse width

modulation. Bits 0-3 of PORT P can easily be set to output a controllable pulse. This

provides a perfect environment to control two motors, one channel for each motor in

each direction.

The four PWM pins (PORT P pins 0-3) are connected directly to the H bridge inputs.

Simple software initialisation sets the ports ready for PWM and sets a frequency to base

the duty cycle around. For the Mobile Manoeuvring Robot a pre-scaler divider of 128

is used to divide the 8MHz processor down to create a slower clock that can be used to

29

control the frequency. By setting a number between $01 and $FF in the PWPER (0-3)

registers, the pulse frequency can be set to a proportion of this clock rate. The duty

cycle of this frequency can then simply be controlled by storing values between $00 and

$FF into the PWDTY (0-3) registers. This value represents the proportion of high over

low time; hence $FF/2 would be 50% duty cycle and the motor would be running at half

speed, or $00 would stop the motor.

It is important to not switch the H Bridge switches too fast in this application.

Transistors require a small amount of time to switch on or off. It is because of this time

that causes a current flow and hence a power loss. Over switching at high frequencies

will increase the power consumption and therefore create heat from the MOSFET’s.

Heat sinks are installed on all of the robots MOSFET’s to compensate for the switching

power loss.

To conclude on motor control, the Mobile Manoeuvring Robot is controlled by two

identical H Bridges which are powered from a 10 – 12 volt source. The motor speed is

determined by four separate Pulse Width Modulation Channels with a relatively low but

fixed frequency and variable duty cycle.

4.5 Infrared Distance Sensors

4.5.1 Requirements and Availability

The current market offers many types of sensors for use in various applications. A few

of the major types of sensors include:

• Optical sensors

• Photo diode sensors

• Fibre optics sensors

• Proximity sensors

• Ultrasonic sensors.

30

For accurate manoeuvrability in this application it is necessary that the sensors have a

long enough range to avoid collision during turning. Figure 4.10 illustrates this need.

Figure 4.10 Sensor Distance Requirements

The above diagram illustrates that even after the robot has stopped to avoid an object,

the turning circle will result in the corner of the robot still proceeding forwards. It is

necessary for the sensor to be able to read further than this turning circle. The necessary

distance can be reduced significantly by turning the outside wheel backwards so it pulls

away from the wall, this however does pose the issue of being able to reverse into

objects, as there is no rear sensors.

Also, when in this illustrated position, it would be preferable if the sensors could judge

a long distance at the sides of the robot. If the robot where to turn left after stopping in

figure 4.10, it would turn directly into a wall and be interrupted by the side sensor half

way through a turn. This would make coding of the processor more difficult. Initial

experimentation has shown the ideal range of the sensors will be approximately

200mm-300mm but definitely no less than 100mm for the front sensor.

Furthermore, for household applications the obstacle to avoid may be the wall. If a

short range sensor is used and placed above the skirting board the wheels may impact

this before the sensor realises there is an obstacle. This will result in scratches on the

obstacles and possible breakage of the robot. Also, the robot will be jammed until loss

of power or failure of components.

31

4.5.2 Choice of Sensor

Almost all of the current household applications that require distance or proximity

sensing utilise Ultrasonic or Infrared Light (IR) sensors. The market available choices

are large and vary in specifications and range in price from around $40 - $120 each.

Many hobbyist robot builders choose to construct IR sensors to save a lot of cost and

custom design them to suit the necessary requirements.

For the purpose of the Mobile Manoeuvring Robot, it was decided to construct three

separate Infrared Sensors from parts commonly available at electronic stores.

4.5.3 Design and Construction of IR Sensor

The design and construction of the Infrared sensors took a very large portion of the time

and effort spent on this project. Lack of information on the chosen parts made it

difficult to realise their true operations and many other factors postponed the successful

creation of the sensors.

After thoroughly researching other robot builders’ attempts to build IR sensors, a

commonly available 38 KHz receiver was chosen from Jaycar Electronics along with

the same IR LED’s used in the odometry sensors. To tune the IR light suitable for the

receiver it was decided to use a 555 timer in astable operation to pulse the light at a

square wave at 38 KHz with a duty cycle of 50% in accordance with the data sheet of

the receiver. This circuit was simple to construct and the schematic shows the detail

below in figure 4.11.

32

Figure 4.11: 555 Timer Pulsing Sensor Light

Initial calculated results differed substantially from the measured performance. It was

necessary to connect a Cathode Ray Oscilloscope (CRO) to accurately measure the

waveform output. Slight tuning of resistor values provided an accurate 38 KHz square

wave with 50% Duty Cycle.

The transistor is required on the output of the 555 timer to source the current needed to

supply the three IR LED’s. Each LED can handle 50mA constantly running through

them, however due to the 50% duty cycle; the LED will only be on 50% of the time. It

can then be safely assumed that the LED’s can actually handle 100mA as long as they

are only run through the 555 timers pulse.

To contain the IR LED and project the light in the desired direction, it was decided to

modify and use some discarded LED keychain torches. After removing the batteries,

switch, resistor and white light LED; an IR LED along with the 50 ohm resistor were

soldered on to the Printed Circuit Board (PCB). From the PCB, two wires were run out

the back of the torch to the 555 timer circuit and then the unit sealed to prevent any IR

light escaping which would create undesirable results. Figure 4.12 and 4.13 show the

torch modified into an infrared emitter.

33

Figure 4.12: PCB Inside LED Torch Figure 4.13: LED Torch Complete

With Wires

The IR receiving diode should have responded with a voltage drop or even a noticeable

resistance change when presented with the torch; however no change was found

whatsoever. To check the frequency response of the chip, a function generator was

hooked into the base of the transistor at the output of the 555 circuit. The chip was

tested for response from 1 Hz up to a few hundred kHz but absolutely no response was

found. No datasheet was available for this chip as it was sold solely and had no

markings to distinguish it by. After reading other circuits that seemed to contain similar

chips, it was found that a pull-up resistor was most likely necessary for correct

operation. By adding a 2k2 ohm pull-up resistor to the output of the receiving chip a

change of approximately 0.5V could be obtained over a distance of 100mm. This was

far from ideal however a comparator circuit would be able to turn this small analog

signal into a clear digital response. It wasn’t until the comparator circuit had been

constructed on a breadboard that it was found that sunlight shining through a window

was affecting the response of the sensor. Due to the large complexity of the comparator

circuitry to achieve such a simple task, it was decided to scratch this idea and start from

a different perspective.

After a lot of searching on the internet for different IR receiving components, a DSE

component, part number Z1955, was discovered that claimed to provide a digital signal

in relation to the presence of 38 kHz light. This seemed much more practical than the

analog signal chips, as measuring distance is not a requirement of the Mobile

Manoeuvring Robot. After powering up the new chip and shining the torch off the 555

timer circuit a 5V drop could be obtained over a distance of approximately 500mm.

34

This was ideal for the purpose of the robot and so more of these chips were obtained.

The Z1955 datasheet details a suggested bypassing and filtering circuit containing a few

resistors and capacitors. A single circuit board was soldered containing three of these

bypassing and filtering circuits and three receiving chips. Testing of these revealed that

the first prototype circuit still worked fine, however the two new circuits (identical in

every manner) would only work at a distance of approximately 20mm. Due to the fact

that one of the receiving circuits worked successfully, the mistake was made of

assuming that the IR transmitter circuit was without fault. It wasn’t until after many

hours of testing and different circuitry being implemented that it was found to that the

555 timer circuit was causing relatively large voltage spikes in the power supply in time

with the 38 kHz light pulse. Due to the fact that the emitter and receivers were being

powered from the same voltage supply, the noise was affecting the operation of the

receiver chips. It is still unsolved why one chip worked and the remaining two failed;

however overcoming this problem initiated some desired results.

A group of capacitors wired in parallel on the input of the transmitter circuit provided a

noise filter to the power supply. A combination of a large Electrolytic capacitor,

medium Tantalum capacitor and a small Monolithic capacitor provide an effective noise

filter to combat fast ripples in the power supply. The following schematic details the

chosen capacitors and placement in the power supply circuitry.

Figure 4.14: Power Supply Filter for Transmitter

An LM7805 voltage regulator is used to supply the 5 volt source from the same battery

that supplies the Motorola HC12.

35

The noise filter, illustrated in figure 4.14, reduced the noise to a negligible level. From

this, the Z1955 receiving chips delivered a different behaviour. First experiments on the

bread board provided three working receivers over a distance of approximately 300-

400mm shown by a 5V drop. As this was suitable performance for the Mobile

Manoeuvring Robot, the circuitry was soldered to a circuit board. Testing at a later date

showed none of the circuits working again. After another long, strenuous testing period

it was discovered that the Z1955 chips were also sensitive to sunlight and incandescent

light, despite the claims of the data sheet. If an IR light source was provided to the

robot, such as an incandescent bulb, the sensors would work successfully to a distance

of approximately 300 mm. Without the additional IR light source the sensors would

sometimes work at a distance of 20 – 30 mm.

To overcome this problem it was finally decided to implement some variable brightness

IR LED’s to supply IR light to the back of the receiving chips. The Z3235 LED can

handle at most 50mA constant current. A 1k variable resistor was implemented in

series with a 100 ohm resistor so to provide a variable current which could not exceed

50 mA. Calculations prove that the current can be varied between 4.5 and 50mA:

(5)
(100 0)
50

MAX
MIN

VI
R

V

mA

=

=
+ Ω

=

 (5)
(100 1000)
4.55

MIN
MAX

VI
R

V

mA

=

=
+ Ω

=

Where: I = Current flowing through LED [Amps];

 V = voltage drop across LED [Volts];

 R = resistance in series with LED [Ohms].

At 4.5 mA the Z3235 LED is hardly on but does produce some IR light. This variable

brightness light provides a method of controlling the sensitivity of the IR receiver and

hence a control of the distance sensed. The IR LED’s provide enough IR to ensure

successful operation of the receiving chips and hence the accomplishment of the

distance sensors.

36

Figure 4.15 gives an overview of how the pulsing IR LED, Receiving diode and

variable IR LED are positioned to provide a successful distance sensor.

Figure 4.15: Position of Sensor Components

The Z1955 IR Receiver is mounted onto the torch containing the pulsating IR LED.

This provides an ideal position to pick up any objects located directly in front of the

sensor. A wider sensing range could be created by shortening the outer housing of the

torch or using extra pulsating LED’s concentrating in the desired direction.

The sensors are mounted to point in each possible direction of travel. This includes a

front, left and right sensor. The code is designed to stop the travel of the robot if

anything activates one of the sensors and then perform a task specific to the status of

each sensor. The figure below shows the mounting of the sensors.

37

Figure 4.16 Sensor mounting on the Robot

There were two main options to communicate between the sensors and the

microcontroller. Either the status wire from the receiver could be connected as an

interrupt to the microcontroller; or it could be connected as a data line to any available

port. Due to the fact that the robots guidance is more interested in knowing the current

status of each of the sensors rather than knowing exactly when each is triggered, using

the data line approach is far more effective. One advantage of this method is that noise

filtering can be used by checking the sensor a number of times to ensure there is

actually an object in front of the sensor and that the signal was not just caused by noise.

After checking the sensors, the robot can make an informed direction on which direction

to travel. Not using interrupts also allows checking of each of the sensors during any

part of the code or in any interrupt service routine.

Each of the sensors is connected to PORT A (pins 0-2). After originally connecting the

wires directly into the port so that when the sensor was active it would read logic zero

and non-activated would read logic one, it was deemed more practical if the data was

inverted. More accurate calculations can be made on this data and the code will be a lot

easier to understand and debug. To invert this data, a HD74lS00P (quad two-input

NAND gate) IC was used with the inputs of each individual NAND tied together to

38

provide inverters. The logic signal from the sensors was then applied through these

joined inputs and the output provided an inverted signal of the input.

The program code simply checks the status of each sensor in a loop by loading PORT A

into an accumulator and performing logic decisions on the value loaded. The

microcontroller now reads a logic one for an activated signal and a logic zero for a non-

activated sensor. Hence, if all sensors are activated the register will read 00000111 or if

no sensors are activated it will read 00000000.

To summarise the distance sensors used on the Mobile Manoeuvring Robot the

following points can be observed.

• Infrared LED’s (DSE part number Z3235) clocked at a 38 kHz square wave with

an even mark to space ratio are used for the transmission of the sensors light.

• Buffered Infrared receiver chips (DSE part number Z1955) with the

recommended filtering and bypassing are used to pick up the transmitted light.

• Extra IR LED’s with variable brightness are used to saturate the IR receivers to

ensure successful performance

• The logic outputs of the sensors are inverted to communicate effectively with

the Motorola HC12

• Sensor status is read in by the microcontroller as data on PORT A.

In retrospect to designing custom IR sensors for the simple use of obstacle detection, it

would be far more practical to spend the money on tuned sensors that work without

error. The robots sensors work reliably now; however an enormous amount of time was

spent on designing these which would have been more effectively used on the objective

and practicality side of the design.

39

4.6 The Software

The software used to control the Mobile Manoeuvring Robot was created in assembly

language for the Motorola HC12. This allowed direct communication with the

microcontroller and convenient access to all of its ports and functions. The software

used to control the heading of the robot follows a relatively simple structure with small

subroutines for each separable function or routine. Interrupts are used for the odometer

counting and a tight loop in the main function keeps track of the direction of travel and

sensor readings.

A software design procedure (available in Appendix C) was used to analyse the problem

and deal with suitable specifications and provide an appropriate software structure. The

software design procedure encompassed the major points of software design; such as

objectives, user information and program structure. The objective of the software was

stated to be “To control the mechanical hardware of a two drive-wheel robot in order to

avoid collision with obstacles. The software must be able to control the unit to travel in

a straight line between objects and is based on assembly level language of the Motorola

68HC12 microcontroller.” It was necessary to base the software structure around this

as well as encompassing the user information. The user information is listed below.

User Information

The code has five sensors that input to the software. Three of these are obstacle

avoidance sensors read in as data through port A and the other two are concerned

with odometer readings read in as interrupts through port G. The program starts at

$0400 with data starting at $0200. The stack pointer must be set in a clear location

such as $0700 and the program counter to $0400 to start the procedure.

When run, the program will output through the serial port the status of the odometer

readings and also controls the speed and direction of both motors to achieve the

desired performance. The program loops continuously to give real time control the

mechanical components

From these listed objectives and user information, while also including any other

specific requirements, a structure was decided upon to control the Mobile Manoeuvring

40

Robot. It is in the form of a tight loop main routine that branches out when individual

activities require to be completed. The following outline was created to establish the

necessary activities to be completed in the main loop and the appropriate related

subroutines.

 While driving do the following:

• Read the odometer sensors and increment odometer counters

o Check odometer counters and adjust speed for straight driving

• Watch obstacle sensors in a tight loop act accordingly when sensors

triggered.

o If left is clear, turn left otherwise turn right

 If left and right blocked, reverse

• Continue on a straight path

• Output data through serial port for debugging purposes

• Repeat process continuously

The data will flow as follows, coming from the five IR sensors and being manipulated

and processed to obtain the required drive on the motors. There are four main processes

that take part in this data processing.

Figure 4.17: Data flow for software

Process 1:

This is the main section of the program. It runs a tight loop checking for data

from the sensors on port A and also checking the odometer readings to initiate a

compare function to maintain straight line driving.

PORT

A

Obstacle

Odometer
readings

Process 1

MOTOR
CONTROL

Process 3 Process 4

D1 = Signal of which direction to turn
D2 = odometer counters
D3 = motor information for turning
D4 = motor information for drive straight
D5 = jump to process 4 when required

D2
D4

PORT

G

sensors

sensors

Process 2
D1

D3
D5

41

Process 2:

Process 2 is a large subroutine called every time a turn is needed. It accesses data

from port A. It checks sensors and turns relative to their status. After the motors

have been adjusted to gain desired performance the code returns to the main loop,

process 1.

Process 3:

This is an interrupt service routine that determines which odometer sensor has

triggered and increments the respective counter. The counter is a byte stored in

memory and is cleared regularly to avoid overflow issues.

Process 4:

This process is a subroutine used to maintain straight line driving. It is called

from the main program loop and works by comparing the odometer counters and

adjusting motor speeds to maintain a constant even speed between the motors.

This results in even wheel speed hence straight driving.

The above set-out of structure and processes has allowed the following code to be

written and implemented into the Mobile Manoeuvring Robot. The next sections will

break the code down into segments and subroutines and detail the operation of each

function. From this, the code can be easily understood and modified to suit similar

purposes. A full code listing is available in Appendix B.

4.6.1 Address Definition
“ ;ADDRESS DEFINITION

PORTA equ $00 ;Port A Data

PORTB equ $01 ;Port B Data

DDRA equ $02 ;Port A Data Direction

…
…
…
ADR16L equ $1FD ;

ADR17H equ $1FE ;

ADR17L equ $1FF ;

 ……..”

42

This section of code is simply written to show and name all of the available addresses of

ports etc inside the Motorola HC12. Credit for this section of code goes to Mr Terry

Byrnes. The rest of the program then references these address names for ease of

reading, understanding and debugging. For instance the code to output hexadecimal 10

would be MOVB #$10, PORTA

This is much easier to understand than a code that says

 MOVB #10, $00

Without knowing the addresses of every single port it would be near impossible to

decipher the assembly language code.

4.6.2 Variable Definition

The next step in the code is variable definition. This simply defines all of the variables

that will be used throughout the program and defines a location for their storage in

memory. The variables start at address $0200 and list onwards from this address.

;*************VARIABLE DEFINITION***********************************

 ORG $0200 START DEFINITION AT ADDRESS $0200

ODMA DC.B 0

ODMB DC.B 0 ;DEFINE VARIABLES

COUNT DC.B 0

4.6.3 Main Program

After variable definition is the main program control loop. This section is responsible

for initialising all of the hardware and ports. The bottom tight loop is responsible for

ensuring the robot drives straight and also that the sensors are checked frequently for

object detection.

;**************MAIN PROGRAM..CONTROL LOOP************************

;NOTE: NO ACTION WILL OCCUR UNTIL THE IRQ INTERRUPT IS ACTIVATED UNLESS

FRONT SENSOR IS TRIGGERED

 ORG $0400 ;START PROGRAM STORE AT $0400

MAIN LDS #$0700 ;SET STACK POINTER

43

 CLR COPCTL ;DISABLE COMPUTER OPERATING

NORMALLY WATCHDOG

 JSR INITSC0 ;INITIALISE SERIAL PORT

 JSR INITKWG ;INITIALISE PORT G

 JSR INITPWM ;SET UP PULSE WIDTH MODULATION ON

PORT P

 JSR INITIRQ ;INITIALISE IRQ INTERRUPT

 JSR INITPA

WAIT BRCLR PORTA,$01,SKP ;CHECK FRONT SENSOR AND IF ON

BRANCH TO TURNL

 JSR TURNL

SKP LDAA COUNT

 CMPA #$5A ;HAS MOTOR A COUNTED xx TIMES YET

(xx/2 REVOLUTIONS)

 BMI WAIT ;IF NOT ,WAIT AND CHECK AGAIN

 JSR COMP ;IF SO JUMP TO COMP (compare function)

 BRA WAIT ;AFTER COMP GO BACK AND WAIT FOR

ANOTHER xx/2 REVOLUTIONS

The main loop code runs indefinitely until the reset button on the microcontroller is

pressed or the power source is interrupted. Firstly it checks port A to determine

whether the front sensor is triggered. If port A shows the front sensor has been

triggered the program branches out of the main loop to the turn left subroutine. This

subroutine will be explained further on. If the sensor does not show to be triggered the

main loop continues on to check how many times it has been since the odometer was

serviced. It does this by loading the number of revolutions motor A has turned and

comparing it with a set number, currently $5A. This number can be adjusted to alter the

performance of the robot. If motor A has not turned $5A counts, the main program

branches back to the start of the loop and continues checking the sensor followed by the

odometer counters. Once motor A has turned $5A counts, the main loop branches to the

subroutine ‘COMP’ which compares motor A counts with motor B counts and adjusts

the motor speeds accordingly to achieve straight line driving. This subroutine will also

be detailed later.

4.6.4 DRFWD Drive Forward Subroutine

This subroutine is very basic and is called in order to start the robot in a forwards

motion. Bytes relative to the desired speed are moved into the PWDTY address that

44

applies to the motor to be run. The byte moved is between $00 and $FF and is the

percentage high time of the duty cycle of the pulse used to control the speed. A value of

$FF will be full time on, hence maximum speed, and $00 will be full time low, hence

not moving at all. The value $A0 has been chosen from physical observation to define

the desired speed as smooth but reasonable pace.

*************DRIVE FORWARDS***

DRFWD MOVB #$A0, PWDTY0 ;DUTY CYCLE FOR CHANNEL 0|

 MOVB #$A0, PWDTY2 ;DUTY CYCLE FOR CHANNEL 2| **DRIVE

FORWARDS

 RTS ;RETURN FROM SUBROUTINE

4.6.5 Turning subroutines

The subroutines used to turn in either the left or right direction are very similar and

hence only one subroutine will be detailed. The TURNL code is explained in the

following.

Before the robot will turn left, several sensors are checked to ensure the turn signal was

not generated by noise and also to ensure there are no objects in the direction of turn.

Firstly the front sensor is checked repeatedly to ensure it is definitely set and that the

signal was not generated by noise. This is done by loading a number into index register

X and then looping that number of times, checking the sensor and decrementing X each

loop. If at any time the sensor does not read triggered, the instruction to turn left will be

aborted and the program will return to the main loop. Once the loop has been executed

X times and is guaranteed to be a legitimate turn request, the left sensor is checked to

ensure there is room to turn. If the left sensor is clear the code proceeds with a left turn.

If not clear the code branches to the turn right subroutine.

In order to turn left, a duty cycle value is written to the left wheel PWDTY register in

order to turn it backwards. The odometer for motor A is cleared and watched in a tight

loop until it reaches the specified number of turns relative to a right angle turn. Running

the motors from an 11V power supply proved decimal 90 counts to be a 90 degree turn.

This takes into account the wind down time of the motor (the inertia continues the

wheel turning for a small time after voltage is turned off). Once the robot has come to a

halt after turning, it continues on a forward path. Between all of the direction changing

45

commands a delay is implemented to reduce some of the jerky motion. The delay

subroutine is used to create this delay.

;********TURNING CODES**

TURNL LDX #$0A00

LP BRCLR PORTA,$01,FALSE ;|

 DEX ;LOOP TO CHECK SENSOR $0A00 TIMES

TO ENSURE NOT JUST NOISE

 BNE LP ;|

 BRCLR PORTA,$04,SKR ;IF LEFT SENSOR(3) BLOCKED, TURN

 JSR TURNR ;RIGHT INSTEAD

SKR LDAA #'L'

 JSR TXBYTE

 MOVB #$00,PWDTY0 ;|

 MOVB #$00,PWDTY2 ;|STOP MOTORS

 JSR DELAY ;WAIT FOR DELAY PERIOD

 MOVB #$00,ODMA ;|

 MOVB #$00,ODMB ;|CLEAR ODOM COUNTERS

 MOVB #$80,PWDTY1 ;TURN MOTOR B BACKWARDS

CONTL LDAA #$00

 LDAB ODMB

 CPD #90 ;SET NUMBER RELATIVE TO A 90 DEGREE

TURN

 BLT CONTL ;WAIT FOR TURN TO COMPLETE

 MOVB #$00,PWDTY1

 JSR DELAY

 JSR DRFWD ;CONTINUE FORWARDS

FALSE RTS ;RETURN FROM SUBROUTINE

The backup subroutine is called only after the code has deemed it impossible to move

forward or turn in either direction. The code is designed to only reverse long enough to

clear one side of the robot and allow it to turn in that direction.

Initially it ensures both motors are stopped, and then turns both wheels backwards at the

same speed as it normally drives forward. The code then drops into a loop which waits

for either side sensor to clear. First it checks the left sensor and turns left then exits the

loop if clear; followed by the right sensor and turns right and exits if it is clear. If

neither is clear then the loop continues until either one of the directions is vacant. After

46

the robot has turned in either direction the backup subroutine is exited and the main

loop continues.

BACKUP ;LDAA #'K' ;SEND K THROUGH SERIAL PORT

 ;JSR TXBYTE ;(DEBUG)

 ;MOVB #$00,PWDTY0 ;|

 ;MOVB #$00,PWDTY2 ;|STOP MOTORS (DRIVING FORWARDS)

 ;JSR DELAY ;WAIT DELAY PERIOD

 ;MOVB #$A0,PWDTY1 ;|

 ;MOVB #$A0,PWDTY3 ;|REVERSE STRAIGHT

WFCLR BRCLR PORTA,$02,OUTL ;IF LEFT NOT SET BRA TO OUTL

 ;BRCLR PORTA,$04,OUTR ;IF RIGHT NOT SET BRA TO OUTR

 BRA WFCLR ;IF L&R SET, BRA WFCLR. WAIT FOR L OR

R TO CLEAR

 OUTL JSR TURNL ;TURN L WHEN L SENSOR IS CLEAR

OUTR JSR TURNR ;TURN R WHEN R SENSOR IS CLEAR

 JSR DELAY

 RTS ;RETURN TO MAIN LOOP

4.6.6 Delay

The delay code works with a loop inside a loop decrementing a value slowly. The inner

loop increments index register X by one for every loop, until it ‘rolls over’ from $FFFF

to $0000. When index register X reaches zero, the outer loop value (stored in index

register Y) decrements by one. Thus, the delay is the time it takes to increment X

$FFFF times, multiplied by the number initially stored into index register Y. To adjust

the delay time it is easiest to adjust the initial value in index register Y.

;*************DELAY***

;CODE TO ADD A DELAY TO EASE THE SWITCHING OF MOTORS

;GIVES APPROX 2 SEC DELAY. CAN SHORTEN TIME BY INCREASING INITIAL Y

VALUE

DELAY LDY #$FFDC ;INITIAL VALUE FOR Y

DELA LDX #$0000 ;INITIAL CONDITION OF X

DEL INX ;INCREMENT X BY 1

 BNE DEL ;IF Z NOT = 0 BRANCH TO DELAY

 INY

 BNE DELA

 RTS

47

4.6.7 COMP Compare Subroutine

The entire purpose of the COMP subroutine is to compare the speeds of each motor and

ensure they run in parallel. This ensures straight line driving which was one of the

major project guidelines. This function is called by the main loop every time the

odometer for motor A reaches its defined value. When this occurs, it writes a new line

through the serial port then compares ODMA (odometer of motor A) with ODMB

(odometer of motor B). If ODMA is larger than ODMB then motor A is spinning too

fast, therefore the subroutine branches to the label ‘A2FAST’ where the motor speeds

are adjusted. Likewise if ODMB is larger than ODMA the subroutine branches to the

label ‘B2FAST’.

A2FAST works on a simple rule. Before simply reducing the duty cycle in the PWDTY

register it is necessary to check whether that duty cycle is above a certain threshold.

Without this check, the robot would eventually slow to a stop. If the duty cycle is lower

than this threshold, in this case $65, instead of slowing Motor A it will instead increase

the speed of motor B slightly. Likewise the routine B2FAST works on the same

threshold, if the duty cycle drops below the threshold, it will speed motor A instead of

slowing motor B. Of course if the duty cycle is above the threshold it will simply

reduce the speed of the respective motor.

;*************COMPARE SPEEDS**

;CODE TO COMPARE MOTOR A AND B SPEEDS AND CONTROL H BRIDGE

COMP JSR NEWLINE ;START NEW LINE ON SERIAL PORT

 LDAA ODMA ;LOAD MOTOR A COUNT INTO ACC A

 CMPA ODMB ;COMPARE MOTOR A WITH MOTOR B

 BPL A2FAST ;IF MOTOR A FASTER THAN MOTOR B

 BMI B2FAST :IF MOTOR A SLOWER THAN MOTOR B

;-------------------------------------

A2FAST JSR NEWLINE ;CASE MOTOR A IS FASTER THAN B

 LDAA #'a'

 JSR TXBYTE ;TX BYTE THROUGH SERIAL (DEBUG)

 LDAA PWDTY2 ;LDAA SPEED OF MOTOR A

 CMPA #$65 ;IF MOTOR A IS SLOWER THAN $65

 BMI FASTB ;SPEED UP MOTOR B

48

 SUBA #$01 ;IF MOTOR A IS FASTER THAN $C5

 STAA PWDTY2 ;SLOW MOTOR A SLIGHTLY

 BRA DONE ;EXIT

FASTB LDAA PWDTY0 ;|

 ADDA #$01 ;|SPEED B UP ONE

 STAA PWDTY0 ;|

 BRA DONE

;--------------------------------------

B2FAST JSR NEWLINE ;CASE MOTOR B IS FASTER THAN A

 LDAA #'b'

 JSR TXBYTE ;TX BYTE THROUGH SERIAL (DEBUG)

 LDAA PWDTY0 ;LDAA WITH SPEED OF MOTOR B

 CMPA #$65 ; |

 BMI FASTA ; | IF MOTOR B GOING TOO SLOW, SPD UP

A

 SUBA #$01 ;|

 STAA PWDTY0 ;|SLOW MOTOR B SLIGHTLY

 BRA DONE

FASTA LDAA PWDTY2 ;|

 ADDA #$01 ;| SPEED A UP BY ONE

 STAA PWDTY2 ;|

DONE MOVB #$00, COUNT ;|

 MOVB #$00, ODMA ;| CLEAR COUNTERS

 MOVB #$00, ODMB ;|

 RTS ;RETURN AND WAIT FOR NEXT COMPARE

4.6.8 KWGISR Key Wake Up Port G

This is the code written for the interrupt service routine which is responsible for

incrementing the odometer counters every time the microcontroller receives a signal

from the odometer sensors. Basically, when the interrupt port is triggered by a falling

edge on any port G pin (5v down to 0v), the code checks each connected pin (pins 0 and

1) to determine which sensor triggered the interrupt. If pin 0 triggered the interrupt then

it loads ODMA and adds 1, if it was pin 1 that triggered it loads ODMB and increments

it. If both pin 0 and 1 appear to not have triggered the interrupt then the subroutine will

simply exit and the main program will continue to run.

49

;*****************KEY WAKE UP PORT G ***********************

;ADDS 1 TO COUNTER FOR CORRESPONDING MOTOR

;****SENSOR G 0************

KWGISR BRCLR KWIFG,$01,NOTG0 ;CHECK BIT 0

 LDAA ODMB ;IF MOTOR B, LDA WITH ODOM COUNT B

 ADDA #$01 ;ADD 1 TO ODMB COUNT

 STAA ODMB ;STORE BACK TO ODMB

 LDAA #'B'

 JSR TXBYTE ;WRITE TO SERIAL PORT (DEBUG)

;****SENSOR G 1************

NOTG0 BRCLR KWIFG,$02,NOTG1 ;CHECK BIT 1

 LDAA ODMA ;IF MOTOR A, LDA WITH ODOM COUNT A

 ADDA #$01 ;ADD 1 TO COUNT

 STAA ODMA ;STORE BACK TO ODMA

 LDAA COUNT

 ADDA #$01

 STAA COUNT

 LDAA #'A'

 JSR TXBYTE ;WRITE TO SERIAL PORT (DEBUG)

;********FALSE INTERRUPT********

NOTG1 MOVB #%00000011,KWIFG ;CLEAR WAKE UP FLAGS

 RTI ;RETURN FROM INTERRUPT

4.6.9 IRQISR IRQ Interrupt Service Routine

This interrupt service routine waits for the falling edge on the IRQ interrupt. This is

input to the microcontroller from a push button switch which is intended to start the

operation of the robot. When the button is pressed, the service routine delays before

branching to the DRFWD subroutine which initiates a forward motion. The delay

provides some software switch bounce as this interrupt is set to be edge sensitive only.

;**********************IRQ SERVICE ROUTINE**************************

;THIS INTERRUPT STARTS THE ROBOT WHEN BUTTON IS PRESSED

IRQISR JSR DELAY ;PROVIDES SOME SWITCH BOUNCE

 JSR DRFWD ;BEGIN DRIVING

 RTI ;RETURN FROM INTERRUPT

50

4.6.10 Initialisation of Ports and Interrupts

There are several different subroutines used to initialise ports and define interrupt

control. One exists for each of the following: Pulse width modulation, port P; Port A;

Key wake up Port G and the serial port. It is essential that these initialisation

subroutines are run at the start of the program before any actual running commences.

This ensures the interrupts are set ready to work, the serial port is communicating and

that all input and output is taken care of.

The Pulse Width Modulation (PWM) is the method of controlling the speed of the

motors. The Motorola HC12 has four channels devoted to PWM and can easily be set

using the following code. Each of the bytes moved into the PWM control registers

provides a certain setting required for the desired use of the PWM channels. Clear

explanation of each bit can be found in the data sheet for the Motorola HC12. First

specification set is the pre-scaler. This is used to slow down the clock for use as the

PWM. Extremely high frequencies are not desired as they create excess power loss and

heating through the H Bridge switching. Used here is a pre-scaler of 128 which means

the frequency of the PWM will be 128 times smaller than the frequency of the

microcontroller clock. The PWPOL byte takes care of which clock to use for each

channel and also the polarity of the duty cycle for each cycle. PWEN simply enables all

the selected lines to be output regardless of the data direction register. PWCTL sets

port P to have an active pull up device enabled.

;***

;SETUP PWM Channels

INITPWM MOVB #%00111111,PWCLK ;PRESCALER OF /128

 MOVB #%00001111,PWPOL ;PPOL

 MOVB #%00001111,PWEN ;ENABLE ALL OUTPUTS

 MOVB #%00000010,PWCTL ;PULL UP DEVICE ENABLED

SETPWM MOVB #$FF,PWPER0 ;|

 MOVB #$FF,PWPER1 ;|PERIOD FOR PWM

 MOVB #$FF,PWPER2 ;|

 MOVB #$FF,PWPER3 ;|

51

 RTS ;RETURN TO MAIN

Initialisation for port A simply involves setting the three used pins for data input and

setting all of the pins to initially start with logic low. This ensures no sensor readings

take place until the sensor actually detects an object.

***************INITIALISE PORT A**

INITPA MOVB #%11111000,DDRA ;SET PORT A BITS FOR OUT AND IN 0 =

INPUT

 MOVB #%00000000,PORTA ;ENSURE PORT A INPUTS ARE ZEROES

WAITING FOR ACITVE HIGH

 RTS

Initialising port G for key wake up behaviour involves setting conditions in four

separate registers. DDRG sets the data direction for port G, the used pins need to be

data input while the rest can be either. Writing to KWIFG clears the wake up flags on

the desired pins and KWIEG enables the selected pins to be key wake up interrupts.

This means that as soon as the edge is detected the interrupt will automatically service.

The PUCR register is used to enable or in this case disable all of the pull up resistors on

selected ports. As no pull up resistors are desired on any ports in use it is simplest to

write all zeroes to this register. Storing the opcode for the jump command into the

pseudo vector notifies the interrupt what to do when the interrupt is triggered. Also

mentioned here is the address to jump to. This is the interrupt service routine that was

outlined above. It is essential that the interrupt mask bit is cleared after these registers

have been initialised.

**************INITIALISE PORT G FOR KEY WAKE UP***************************

INITKWG MOVB #%11111100,DDRG ;BITS 0-1 AS INPUT

 MOVB #%00000011,KWIFG ;CLEAR WAKE UP FLAG 0-1

 MOVB #%00000011,KWIEG ;ENABLE KEY WAKE UP INTERRUPTS

 MOVB #%00000000,PUCR ;SET PORT G, H IRQ AND XIRQ FOR PULL

DOWN (DISAHLE ALL PULL UPS(ALL 0'S))

 LDAA #$06 ;JMP COMMAND OPCODE

 STAA $07B8 ;RTI PSEUDO VECTOR

 LDD #KWGISR ;ADDRESS TO JUMP TO, KWG ISR

 STD $07B9

 CLI ;CLEAR INTERUPT MASK

 RTS

52

The serial port requires having the baud rate set and also to enable the transmitter. It is

also adequate to enable the transceiver which accomplishes the same task. The baud

rate value is chosen and then a corresponding number is found from the baud rate

generation table in the HC12 data sheet. Loading accumulator A with the contents of

SC0DRL clears the flags inside that register and readies the serial port for use.

;****************SERIAL PORT**

; TO USE THE SERIAL PORT, SET BAUD RATE TO 19200

; BAUD. THE VALUE HERE IS A 16 BIT DIVISOR.

INITSC0 LDD #26 ; VALUE FROM BAUD RATE GENERATION

TABLE

 STD SC0BDH

 LDAA #$0C ; ENABLE TRANSCEIVER

 STAA SC0CR2

 LDAA SC0DRL ;CLEAR FLAGS

 RTS

4.6.11 Serial Port Communications

Two simple subroutines were written for serial port communication. Although not

necessary to the correct functioning of the Mobile Manoeuvring Robots performance,

they provide an excellent debugging facility. Characters can be sent to a computer

screen to understand which parts of code are being run and hence follow the real time

branching and code order.

NEWLINE simply loads the ASCII value of a carriage return and uses the TXBYTE

subroutine to transmit it to the screen. This is followed by an ASCII line feed being

sent in a similar matter. On the computer screen this looks the same as hitting an enter

key in a text editor.

;***************SERIAL PORT WRITING COMMANDS******************************

; SEND A CARRIAGE RETURN AND LINE FEED TO SCREEN

NEWLINE LDAA #$0D ;LOAD CARRIAGE RETURN FOR ASCII

 JSR TXBYTE ;TRANSMIT TO SCREEN

53

 LDAA #$0A ;LOAD LINE FEED ASCII

 JSR TXBYTE ;TRANSMIT TO SCREEN

 RTS ;RETURN

The TXBYTE subroutine checks the serial ports status register to await the clear flag

before sending the data stored in accumulator A through the serial port. It is essential to

await the clear flag before sending data to avoid data contentions.

; TRANSMIT A CHARACTER STORED IN ACCUMULATER A

TXBYTE BRCLR SC0SR1, #$80 ;WAIT FOR CLEAR FLAG

 STAA SC0DRL ;SEND DATA THROUGH SERIAL PORT

 RTS

;**

54

CHAPTER 5

PERFORMANCE AND DATA ANALYSIS

No specific data was obtained from the results of this dissertation. This is due to the

fact that it is a simple performance based outcome. If GPS tracking or similar had been

used to control direction there would be headings and position plots to consider. The

only way to assess the performance of the Mobile Manoeuvring Robot is to visually

assess the performance. This performance however can be broken down into the

various aspects of the robot such as mechanical, software, electrical and so on. This

chapter discusses the performance of each individual aspect of design and in some cases

suggests recommendations to overcome some of the poorer performance aspects.

5.1 Sensor performance

The sensors used in the Mobile Manoeuvring Robot ended up working successfully. A

reasonable range was achieved (explained later) and a clean voltage drop was obtained

for communication with the microprocessor. Overall these are the only requirements

necessary for operation of the robot.

To greatly assess the performance of the sensors a simple test was performed to

determine the range of object detection. This involved sensor height range, width range

and distance range. Basically an object was held to the side of the sensors view and

then moved slowly across the sensors view until the response triggered. By lining this

point up to rulers laying in each direction orthogonal to each other (x, y, z axes) a point

was recorded in 3d space. This was performed in every direction until each extremity of

the sensors range was known. These points can then be plotted using computer

software to give a clear indication of the effective distance of the sensors. The object of

choice was a small white block of timber which gave an effective reflection of light.

The following table of data was obtained from physical experimentation with one of the

sensors.

55

 Coordinate

Position X Y Z

1 0 200 0

2 50 180 0

3 -55 180 0

4 0 180 65

5 0 180 -50

6 35 180 35

7 -35 180 -35

8 -35 180 50

9 35 180 50

10 45 180 30

11 -45 180 30

12 45 180 -20

13 -50 180 -20

14 20 180 60

15 -20 180 60

16 20 180 -40

17 -25 180 -40

TABLE 5.1: Sensor range

Using computer software to plot these results shows the range the sensor can detect.

The following MATLAB code was produced to plot these points as vectors from the

origin in three dimensional space.

x = [0 50 -55 0 0 35 -35 -35 35 45 -45 45 -50 20 -20 20 -25];

y = [200 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180];

z = [0 0 0 65 -50 -35 -35 50 50 30 30 -20 -25 60 60 -40 -40];

loop = 1;

for loop = 1:17;

 plot3([0,x(1,loop)], [0,y(1,loop)], [0,z(1,loop)])

 hold on;

 loop = loop + 1;

end

plot3([0,x(1,1)], [0,y(1,1)], [0,z(1,1)], 'r')

56

Figure 5.1 shows the MATLAB 3D plot which depicts roughly the boundary an object

must enter to be detected by the sensor. The red line represents the perpendicular

sensing distance and the blue lines show the extremities of the reflected light.

Figure 5.1 Sensor spectrum

This is a practical spread of detectable range. If pointed towards the driving surface the

sensors will detect any object that comes within the driving direction of the robot.

After the large time and effort that went into the design, construction and testing

explained in chapter 4, it has become evident that the price of commercial sensors is

very affordable. If the sensors had been purchased as a whole unit it is presumable that

few troubles would have occurred from the vision aspect for the duration of the project.

This in turn would have allowed a much greater development of the practical side of the

robot. Dead reckoning guidance could have been implemented and a useful purpose

such as object retrieval could have been created. For sensors in similar applications it is

easy to see that it is worth spending extra money and having a small, compact sensor

that can be relied on relatively heavily.

57

5.2 Mechanical performance

The chassis used for the duration of this project served its purpose sufficiently. It was

possible to mount all the required equipment, however room for additional components

is exhausted. The major problem with the chassis design at this point is the lack of

room for a suitable battery. The battery used can sustain operation for only a short

period of time and so either more cells or a new design of battery is required. For this

to take place more room is required on the chassis. Also for extending any operation of

the robot, such as a retrieval arm, would require chassis space to mount and control.

The only successful way to continue work on this project, including extended operation

and achieving smoother running, is to re-design and construct the chassis. A more

successful approach to this than the prototype used would be to construct the chassis in

a series of layers. Each layer would contain a separate part of operation for the robot.

By designing in this manner there is always more room for additional components by

adding additional layers until all objectives have been met. After the robot is successful

to the point of putting into operation it could be finally re-designed into a more compact

unit suitable for practical use or manufacturing. This would encompass such factors as

aesthetics, practicality and weight reduction.

Figure 5.2 below shows the application of the layered board system. The bottom layer

here contains the drive wheels, motors and H Bridges. It may also be practical to mount

the microcontroller here if there is room. Layers are joined by ribbon cables or wires

and are bolted together for rigidity. It is important to consider the spacing of the layers

as if the robot becomes too tall, stability will suffer greatly.

58

Figure 5.2: Layered approach to robot design.

This design allows greatly for troubleshooting as each layer can be pulled apart

separately to give room for soldering, viewing and modifying. It would also be

advisable to allow a lower layer for the battery storage as they are likely to be one of the

heavier components and mounting them high would affect the robots stability.

5.3 Software Performance

The software as explained above follows a very simple structure. Because of this there

are few errors that affect the performance of the Mobile Manoeuvring Robot. As a

whole, the software completed the overall objective of the project and so should be

recognised as a success.

As a formal test for the straight line driving performance, a pen or chalk can be attached

to the unit to track the trajectory of the robot. To achieve this, a chalk stick was taped to

the rear of the robot. Ideally it should be mounted midway between the drive wheels

however this was not practical for the experiment. The robot was then placed on a clear

and clean slab of concrete and set to run. The result was a line with slight curvature at

the beginning, but as a whole very straight. The slight curvature at the start is due to the

motors starting at full speeds and slowly equalizing. During this time the robot will turn

a slight, hardly noticeable curve. Figure 5.3 shows the testing in progress and figure 5.4

shows the results of the experiment.

59

Figure 5.3: Straight line testing

Figure 5.4: Results of straight line test

Approximately 1 metre

60

Figure 5.4 shows the results of the straight line test. This section of line is

approximately one metre from the start of the test and approximately one metre long.

The chalk line has been drawn over to make more visible and a string line pulled tight to

lie beside it as a control. It can be seen that as a whole, the robot drives in a very

straight line with only slight variances in either direction. These variances may be due

to the inaccuracies of chalk on concrete or the slight changing in motor speeds and

loads. Either way this test proves the robot to adequately meet the straight line driving

performance objective.

5.4 Overall Performance

As a whole the robots performance is best assessed against the performance guidelines

set out in the project specification. Whether or not improvements can be made, the

performance guidelines are the real assessment criteria of the Mobile Manoeuvring

Robots performance. The robots performance in relation to the initial guidelines is

outlined below in detail.

 Performance guideline one:

• Travel in a straight line when in a clear area with no manual assistance.

The Mobile Manoeuvring Robot encompasses odometer sensors and interrupt control to

achieve straight line driving. When in a clear area free from objects, the robot

maintains a constant speed and direction. Hence this performance guideline is met

adequately.

 Performance guideline two:

• Stop before colliding with any obstacles that are in the path

Once the robot is in motion, any detectable object is avoided. Issues with this aspect of

performance come into affect with small objects that are missed by the relatively narrow

range of the sensors. Obstacles such as chair legs and tables are adequately avoided and

as it was not defined what size obstacle is necessary to be avoided; the performance in

this sector is adequate. Increased sensor spread and range would however improve this

performance aspect.

61

 Performance guideline three:

• “Decide” which way is more practical to turn and do so.

The robot follows a strict simple decision making process in turning operations. This

operation is detailed in the code section of this dissertation. If there is not room for the

robot to turn in any one direction, the robot will not attempt the turn and reverse until a

clear path is found. This process ensures that the third performance guideline is met

satisfactorily.

 Performance guideline four:

• Continue on its path in a straight line.

Similarly to performance guideline one, the robot will continue on a straight path after

any turn or reverse decision. The Mobile Manoeuvring Robot adheres to this

performance guideline.

 Time permitting:

Due to time constraints and early issues with hardware design, the time permitting

objectives were not completed. This however, does not hinder the specified

performance of the robot.

5.5 Conclusions

While several aspects of the Mobile Manoeuvring Robot have ample room for

improvement and extension, the overall success of its performance is noteworthy. The

robot adheres to all of the performance guidelines set out in initial project specifications

and performs satisfactorily. Many aspects need improvement such as the purpose for

this technology (e.g. object retrieval) and restructuring the chassis, however this is not

encompassed within the project definition or requirements. The robot performs as such

that it can move throughout an indoor environment whilst avoiding obstacles. This is

the overall project specification and so must be recognised as a success.

62

CHAPTER 6

DEBUGGING MODULE
The Mobile Manoeuvring Robot has been designed and constructed in such a way for

ease of troubleshooting. An example of this is that the software has been written to

output certain characters through the serial port which can be used to gain

understanding of the actual performance of the robot. The following sections are

written to detail the methods of debugging or troubleshooting the robot when

performance is not desirable.

6.1 Microcontroller Not Working

There are two main reasons for the possible case of the microcontroller not turning on,

either a poor power source or a short circuit on the voltage source lines. The orange

LED on the card12 will determine whether the HC12 is working or not. If the orange

LED is not lit, check the polarity and connection of the battery terminals. If these are

connected properly and securely then it is likely to be either a flat battery, faulty voltage

regulator, or a short circuit from any of the loose wires.

Firstly check the battery, it is easiest to either recharge or connect a different battery to

eliminate this problem. The LM7805 voltage regulator requires approximately 7 to 12

volts at the input to ensure correct operation with a 5 volt output. To test the voltage

regulator, a multimeter can be connected to the output leg. Typically this value will

read 5.04 volts when working correctly. If this voltage is degrading slowly then the

battery is flat or faulty. If there is 5 volts present on this track and is not broken away

from the microcontroller then it is highly likely there is a short somewhere on the robot.

Visually checking wires and contacts is the only way to find most shorts.

6.2 Motors Not Turning

If the microcontroller is on and there is no mechanical output from the robot when the

push button is depressed, then it is likely there is no power supplied to the H-Bridges.

This power comes from a separate supply to the microcontroller and should be 10 – 12

volts. It is connected directly to the top and bottom of the H Bridges. Also ensure all

wires are connected securely between the H-Bridges and the microcontroller and also to

the motors. Ensure H-Bridges are not damaged or burnt out however this is unlikely to

63

be the cause of problem. To ensure the push button has worked and been acknowledged

by the microcontroller, connect the serial port to a computer and run a monitor program

such as OC Console. Depress the button; a character ‘Q’ should be displayed on the

screen if it has worked. A small delay follows this character send before power is sent

to the H-Bridges.

6.3 Not Stopping for Objects

The main cause for the robot not stopping at objects is for the sensors to have failed.

The sensors are powered by the same supply as the microcontroller and so should

always be working if the microcontroller is still on. To test the sensors, view the IR

LED through a digital camera. If the LED is on it will glow a purple shade and if not on

it will remain black. Figure 6.1 shows cases of the LED both on and off.

Figure 6.1: showing IR LED status. (Left: LED on // Right: LED off

If the sensors are not working, check the power supply at the LM7805 voltage regulator

on the sensor PCB. This should behave the same as the regulator for the

microcontroller detailed above. If 5 volts is present and supplied to the PCB, check all

wires and connections.

If the sensors are working check the operation of the receivers. Connect a multimeter to

the left pin of the receiver (Blue wire). This pin should read 5 volts when there is no IR

light present, and close to 0 volts when it receives reflected IR light. If this behaviour

does not occur check all wiring and components.

64

6.4 Not Driving in a Straight Line

If the robot is moving but fails to drive in a straight line it is most likely caused by a

fault in the odometer sensors. To check these, connect the serial port to a computer and

run a monitoring program such as OC Console. Connect a voltage to one of the motors

to make it spin. As the motor spins, either the character ‘A’ or ‘B’ should be repeated

on the screen. (‘A’ for motor A; ‘B’ for motor B). This character is sent to the screen

for every half turn of the motor armature. If these characters are not being sent to the

screen, either the IR LED, receiver or microcontroller interrupt is failing. Check the

voltage coming from the receiver. The receiver output should read 5 volts until the hole

in the motor shaft is aligned, when it should drop to approximately 0 volts. If this is

occurring and the character is still not being written to the screen disconnect the wire

from port G and apply a voltage edge (5 volts down to 0) directly onto the port G pin. If

this does not send a character to the screen the problem lies within the software. Check

the INITKWG and KWGISR subroutines.

6.5 Stopping for Objects but Irregular Behaviour

If the robot is not behaving as explained in any of the above sections, the problem is

most likely within the software. During construction sometimes changing hardware

required different properties in the code. For instance if the source used to drive the

motors was changed from 10 volts up to 12 volts, the number of odometer counts

required for a 90 degree turn was altered slightly. Due to the greater inertia of the motor

spinning faster, the wheel would continue to turn longer after the power was cut.

Generally, all of the driving subroutines can be operated separately. If major debugging

is needed, it is possible to comment out the ‘BACKUP’ and ‘TURNR’ subroutines

along with the branch instruction in ‘TURNL’. This will then make the robot behave

the same for every circumstance. Every time an object is detected the robot will turn

left. Evidently this is impractical however it provides a good base to start adding

additional code without worrying about all of the loops that are involved with the

driving sequence. The ‘TURNR’ can then be implemented after the turning left

sequence is working correctly, followed by the ‘BACKUP’ subroutine until the

complete driving sequence is functioning correctly.

65

CHAPTER 7
FUTURE WORK

This chapter summarises the future work that may be carried out on the Mobile

Manoeuvring Robot. Future work has been detailed in each individual section such as

chassis design and software; however this chapter aims to provide the possible future

work in a neat summary.

7.1 Hardware

7.1.1 Chassis Design

As described earlier, the current chassis, consisting of an aluminium box section with

two worm drive gearboxes mounted inside, is barely adequate for the desired purpose of

the Mobile Manoeuvring Robot. The design has very limited space with the current

components as it is required to support:

• Two gearbox drives with motors

• Two H Bridge cards

• One microcontroller card

• Three obstacle sensors

• Sensor PCB

• Noise filter

• Power Supply

For future work to continue, the chassis needs to be extended or re-constructed. The

layered design explained in chapter 5 (performance and data analysis) is deemed the

most adequate.

7.1.2 Sensor Design

The sensors require very little extra work as they are adequate as they are. If the

purpose of this robot is extended to achieve more practical tasks, the sensors may need

to be adjusted to give a wider range. This may be more suitable for detecting smaller or

less obvious obstacles in the path. This extension may be completed by removing the

66

outer of the torch so that the clocked IR light spreads further rather than being

concentrated to a point. Another method would be to add more clocked light LED’s to

transmit a greater quantity of light, and hence objects will reflect more light to the

receiver. This is not deemed an important aspect of future work however may become

important if the robots performance criteria change.

7.1.3 Power Source Design

Currently, the Mobile Manoeuvring Robot has two power sources. One battery powers

the microcontroller and IR sensors, and the other powers the drive motors. The main

purpose of this concept is to eliminate voltage spikes from the drive motors resetting the

microcontroller. This problem could be overcome however by adding filters

(capacitors) to the power source or the drive motors. For the purposes of the Mobile

Manoeuvring Robot this was not dealt with as the dual power source was not an issue.

For future work it may be desirable to reduce the amount of battery carried on the robot

to lessen the weight and bulkiness of the system.

7.2 Software Design

The structure of the software depends greatly on the desired performance of the Mobile

Manoeuvring Robot. If future work only extends on the base concept there are several

areas where improvement can be made.

• Ramping functions on the drive motors instead of starting them at full speed.

This will reduce voltage spikes and make the travel of the Robot much

smoother.

• Dead reckoning guidance. This will give the robot much more objective. If the

robot ‘knows’ its starting position (zero odometer counts) and also a desired

finishing position, it will have a more logical turning sequence, rather than

simply avoiding the obstacles.

67

CHAPTER 8

CONCLUSIONS

As discussed in chapter 5 (Performance and Data Analysis), the performance of the

Mobile Manoeuvring Robot was a success. All of the performance guidelines were met

including:

• Travel in a straight line when in a clear area with no manual assistance.

• Stop before colliding with any obstacles that are in the path

• “Decide” which way is more practical to turn and do so.

• Continue on its path in a straight line.

All of these criteria are met satisfactorily however there is room for improvement in

several areas as also explained in chapter 5. Before implementation into any practical

situation the following factors need improvement.

• Chassis re-design to allow more components e.g. batteries, robotic arms.

• Software improvements depending on the desired task.

Although unlikely to be the entire solution to any problem, the code and hardware

associated with the Mobile Manoeuvring Robot would provide a good base or inner

structure into many autonomous applications. Depending on the application, it may

require minor or major adjustments to the software to suit. For example an autonomous

vacuum cleaner may use this software, but turn 180 degrees and offset every time an

obstacle is detected, instead of simply turning 90 degrees. This would require only

several extra lines of code.

68

Figure 8.1: Working Prototype of Mobile Manoeuvring Robot

Figure 8.1 shows the prototype robot to date without the power supplies attached.

Overall, the Mobile Manoeuvring Robot was a success in every aspect of performance

however would need substantial work to implement into a practical application.

69

APPENDICES

Appendix A – Project Specification

Appendix B – Software Listing

Appendix C – Software Design Procedure

Appendix D – Component Data Sheets

70

Appendix A – Project Specification

University of Southern Queensland
FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project
PROJECT SPECIFICATION

FOR: MATTHEW FREE

TOPIC: Mobil Manoeuvring Robot

SUPERVISOR: Mark Phythian

ENROLMENT: BEng (Mtr) ENG4111 – S1, ONC, 2006

 ENG4112 – S2, ONC, 2006

PROJECT AIM: This project aims to explore the use of sensors and Mechatronic
technology in order to produce an obstacle avoiding robot based on
a household sized application.

PROGRAMME: Issue A, 17th March 2006

1. Research the background behind mobile technology including motor driven
wheels, microcontrollers and sensors.

2. Analyse different technologies such as sensors and microcontrollers to obtain
the most practical configuration of a mobile system.

3. Design and create prototypes of the mechanical structure of the robot. Analyse
and construct leading design.

4. Write code to define robot manoeuvring/instructions and obstacle identification
and attempted avoidance.

5. Implement paramount designs into final robot.

If time permits

6. Develop a motorized arm to retrieve items.

AGREED:

Student: _______________________ ___/___/___

Supervisor: _______________________ ___/___/___

71

Appendix B – Software Listing
This is the code stored in the Motorola HC12 ‘s memory which is executed on the event

of the ‘start’ push button.
;ADDRESS DEFINITION

PORTA equ $00 ;Port A Data

PORTB equ $01 ;Port B Data

DDRA equ $02 ;Port A Data Direction

DDRB equ $03 ;Port B Data Direction

PORTE equ $08 ;Port E Data

DDRE equ $09 ;Port E Data Direction

PEAR equ $0A ;Port E Assigment

MODE equ $0B ;Mode

PUCR equ $0C ;Pull Up Control

RDRIV equ $0D ;Reduced Drive

INITRM equ $10 ;RAM Position

INITRG equ $11 ;Register Position

INITEE equ $12 ;EEPROM Position

MISC equ $13

RTICTL equ $14 ;Real Time Interrupt Control

RTIFLG equ $15 ;Real Time Interrupt Flag

COPCTL equ $16 ;COP Control

COPRST equ $17 ;Arm/Reset COP Timer

INTCR equ $1E ;Interrupt Control

HPRIO equ $1F ;Highest Priority Interrupt

BRKCT0 equ $20 ;

BRKCT1 equ $21 ;

BRKAH equ $22 ;

BRKAL equ $23 ;

BRKDH equ $24 ;

BRKDL equ $25 ;

PORTG equ $28 ;Port G Data

PORTH equ $29 ;Port H Data

DDRG equ $2A ;Port G Data Direction

DDRH equ $2B ;Port H Data Direction

KWIEG equ $2C ;

KWIEH equ $2D ;

KWIFG equ $2E ;

KWIFH equ $2F ;

SYNR equ $38 ;

72

REFDV equ $39 ;

PLLFLG equ $3B ;

PLLCR equ $3C ;

CLKSEL equ $3D ;

SLOW equ $3E ;

PWCLK equ $40 ;

PWPOL equ $41 ;

PWEN equ $42 ;

PWPRES equ $43 ;

PWSCAL0 equ $44 ;

PWSCNT0 equ $45 ;

PWSCAL1 equ $46 ;

PWSCNT1 equ $47 ;

PWCNT0 equ $48 ;

PWCNT1 equ $49 ;

PWCNT2 equ $4A ;

PWCNT3 equ $4B ;

PWPER0 equ $4C ;

PWPER1 equ $4D ;

PWPER2 equ $4E ;

PWPER3 equ $4F ;

PWDTY0 equ $50 ;

PWDTY1 equ $51 ;

PWDTY2 equ $52 ;

PWDTY3 equ $53 ;

PWCTL equ $54 ;

PWTST equ $55 ;

PORTP equ $56 ;

DDRP equ $57 ;

ATD0CTL0 equ $60 ;Reserved

ATD0CTL1 equ $61 ;Reserved

ATD0CTL2 equ $62 ;ATD Control 2

ATD0CTL3 equ $63 ;ATD Control 3

ATD0CTL4 equ $64 ;ATD Control 4

ATD0CTL5 equ $65 ;ATD Control 5

ATD0STAT0 equ $66 ;ATD Status

ATD0STAT1 equ $67 ;ATD Status Low Byte

ATD0TESTH equ $68 ;ATD Test

ATD0TESTL equ $69 ;ATD Test Low Byte

PORTAD0 equ $6F ;Port AD Data Input

73

ADR00H equ $70 ;A/D Converter Result0

ADR00L equ $71 ;

ADR01H equ $72 ;A/D Converter Result 1

ADR01L equ $73 ;

ADR02H equ $74 ;A/D Converter Result 2

ADR02L equ $75 ;

ADR03H equ $76 ;A/D Converter Result 3

ADR03L equ $77 ;

ADR04H equ $78 ;A/D Converter Result 4

ADR04L equ $79 ;

ADR05H equ $7A ;A/D Converter Result 5

ADR05L equ $7B ;

ADR06H equ $7C ;A/D Converter Result 6

ADR06L equ $7D ;

ADR07H equ $7E ;A/D Converter Result 7

ADR07L equ $7F ;

TIOS equ $80 ;Timer Input Capture/Output Compare Select

CFORC equ $81 ;Timer Compare Force

OC7M equ $82 ;Output Compare 7 Mask

OC7D equ $83 ;Output Compare 7 Data

TCNT equ $84 ;Timer Counter

TCNTL equ $85 ;Timer Counter Low Byte

TSCR equ $86 ;Timer System Control

TQCR equ $87 ;Reserved

TCTL1 equ $88 ;Timer Control 1

TCTL2 equ $89 ;Timer Control 2

TCTL3 equ $8A ;Timer Control 3

TCTL4 equ $8B ;Timer Control 4

TMSK1 equ $8C ;Timer Interrupt Mask 1

TMSK2 equ $8D ;Timer Interrupt Mask 2

TFLG1 equ $8E ;Timer Interrupt Flag 1

TFLG2 equ $8F ;Timer Interrupt Flag 2

TC0 equ $90 ;TIC/TOC 0

TC0LOW equ $91 ;TIC/TOC 0 Low Byte

TC1 equ $92 ;TIC/TOC 1

TC1LOW equ $93 ;TIC/TOC 1 Low Byte

TC2 equ $94 ;TIC/TOC 2

TC2LOW equ $95 ;TIC/TOC 2 Low Byte

TC3 equ $96 ;TIC/TOC 3

TC3LOW equ $97 ;TIC/TOC 3 Low

74

TC4 equ $98 ;TIC/TOC 4

TC4LOW equ $99 ;TIC/TOC 4 Low Byte

TC5 equ $9A ;TIC/TOC 5

TC5LOW equ $9B ;TIC/TOC 5 Low Byte

TC6 equ $9C ;TIC/TOC 6

TC6LOW equ $9D ;TIC/TOC 6 Low Byte

TC7 equ $9E ;TIC/TOC 7

TC7LOW equ $9F ;TIC/TOC 7 Low Byte

PACTL equ $A0 ;Pulse Accumulator Control

PAFLG equ $A1 ;Pulse Accumulator Flag

PACN3 equ $A2 ;Pulse Accumulator Count

PACN2 equ $A3 ;

PACN1 equ $A4 ;

PACN0 equ $A5 ;

MCCTL equ $A6 ;

MCFLG equ $A7 ;

ICPACR equ $A8 ;

DLYCT equ $A9 ;

ICOVW equ $AA ;

ICSYS equ $AB ;

TIMTST equ $AD ;Timer Test

PORTT equ $AE ;Timer Port T Data

DDRT equ $AF ;Timer Port T Data Direction

PBCTL equ $B0 ;

PBFLG equ $B1 ;

PA3H equ $B2 ;

PA2H equ $B3 ;

PA1H equ $B4 ;

PA0H equ $B5 ;

MCCNTH equ $B6 ;

MCCNTL equ $B7 ;

TC0H equ $B8 ;

TC0HLOW equ $B9 ;

TC1H equ $BA ;

TC1HLOW equ $BB ;

TC2H equ $BC ;

TC2HLOW equ $BD ;

TC3H equ $BE ;

TC3HLOW equ $BF ;

SC0BDH equ $C0 ;SCI 0 Baud Rate

75

SC0BDL equ $C1 ;SCI 0 Baud Rate Low Byte

SC0CR1 equ $C2 ;SCI 0 Control 1

SC0CR2 equ $C3 ;SCI 0 Control 2

SC0SR1 equ $C4 ;SCI 0 Status 1

SC0SR2 equ $C5 ;SCI 0 Status 2

SC0DRH equ $C6 ;SCI 0 Data

SC0DRL equ $C7 ;SCI 0 Data Low Byte

SC1BDH equ $C8 ;SCI 1 Baud Rate

SC1BDL equ $C9 ;SCI 1 Baud Rate Low Byte

SC1CR1 equ $CA ;SCI 1 Control 1

SC1CR2 equ $CB ;SCI 1 Control 2

SC1SR1 equ $CC ;SCI 1 Status 1

SC1SR2 equ $CD ;SCI 1 Status 2

SC1DRH equ $CE ;SCI 1 Data

SC1DRL equ $CF ;SCI 1 Data Low Byte

SP0CR1 equ $D0 ;SPI 0 Control 1

SP0CR2 equ $D1 ;SPI 0 Control 2

SP0BR equ $D2 ;SPI 0 Baud Rate

SP0SR equ $D3 ;SPI 0 Status

SP0DR equ $D5 ;SPI 0 Data

PORTS equ $D6 ;Port S Data

DDRS equ $D7 ;Port S Data Direction

PURDS equ $D9 ;

EEMCR equ $F0 ;EEPROM Module Configuration

EEPROT equ $F1 ;EEPROM Block Protect

EEPROG equ $F3 ;EEPROM Control

FEE32LCK equ $F4 ;

FEE32MCR equ $F5 ;

FEETST equ $F6 ;

FEE32CTL equ $F7 ;

FEE28LCK equ $F8 ;

FEE28MCR equ $F9 ;

FEETST1 equ $FA ;

FEE28CTL equ $FB ;

CMCR0 equ $100 ;

CMCR1 equ $101 ;

CBTR0 equ $102 ;

CBTR1 equ $103 ;

CRFLG equ $104 ;

CRIER equ $105 ;

76

CTFLG equ $106 ;

CTCR equ $107 ;

CIDAC equ $108 ;

CRXERR equ $10E ;

CTXERR equ $10F ;

CIDAR0 equ $110 ;

CIDAR1 equ $111 ;

CIDAR2 equ $112 ;

CIDAR3 equ $113 ;

CICMR0 equ $114 ;

CIDMR1 equ $115 ;

CIDMR2 equ $116 ;

CIDMR3 equ $117 ;

CIDAR4 equ $118 ;

CIDAR5 equ $119 ;

CIDAR6 equ $11A ;

CIDAR7 equ $11B ;

CIDMR4 equ $11C ;

CIDMR5 equ $11D ;

CIDMR6 equ $11E ;

CIDMR7 equ $11F ;

PCTLCAN equ $13D ;

PORTCAN equ $13E ;

DDRCAN equ $13F ;

RxFG equ $140 ;

Tx0 equ $150 ;

Tx1 equ $160 ;

Tx2 equ $170 ;

ATD1CTL0 equ $1E0 ;

ATD1CTL1 equ $1E1 ;

ATD1CTL2 equ $1E2 ;

ATD1CTL3 equ $1E3 ;

ATD1CTL4 equ $1E4 ;

ATD1CTL5 equ $1E5 ;

ATD1STAT0 equ $1E6 ;

ATD1STAT1 equ $1E7 ;

ATD1TESTH equ $1E8 ;

ATD1TESTL equ $1E9 ;

PORTAD1 equ $1EF ;

ADR10H equ $1F0 ;

77

ADR10L equ $1F1 ;

ADR11H equ $1F2 ;

ADR11L equ $1F3 ;

ADR12H equ $1F4 ;

ADR12L equ $1F5 ;

ADR13H equ $1F6 ;

ADR13L equ $1F7 ;

ADR14H equ $1F8 ;

ADR14L equ $1F9 ;

ADR15H equ $1FA ;

ADR15L equ $1FB ;

ADR16H equ $1FC ;

ADR16L equ $1FD ;

ADR17H equ $1FE ;

ADR17L equ $1FF ;

;***

;MOTOR DIRECTION CONTROL

;pwm channel 0 = motor B CLOCKWISE

;pwn channel 1 = motor B ANTI CLOCKWISE

;pwm channel 2 = motor A ANTI CLOCKWISE

;pwm channel 3 = motor A CLOCKWISE

;*************VARIABLE DEFINITION***********************************

 ORG $0200 START DEFINITION AT ADDRESS $0200

ODMA DC.B 0

ODMB DC.B 0 ;DEFINE VARIABLES

COUNT DC.B 0

;**************MAIN PROGRAM..CONTROL LOOP************************

;NOTE: NO ACTION WILL OCCUR UNTIL THE IRQ INTERRUPT IS ACTIVATED UNLESS

FRONT SENSOR IS TRIGGERED

 ORG $0400 ;START PROGRAM STORE AT $0400

MAIN LDS #$0700 ;SET STACK POINTER

 CLR COPCTL ;DISABLE COMPUTER OPERATING

NORMALLY WATCHDOG

78

 JSR INITSC0 ;INITIALISE SERIAL PORT

 JSR INITKWG ;INITIALISE PORT G

 JSR INITPWM ;SET UP PULSE WIDTH MODULATION

ON PORT P

 JSR INITIRQ ;INITIALISE IRQ INTERRUPT

 JSR INITPA

WAIT BRCLR PORTA,$01,SKP ;CHECK FRONT SENSOR AND IF ON

BRANCH TO TURNL

 JSR TURNL

SKP LDAA COUNT

 CMPA #$5A ;HAS MOTOR A COUNTED xx TIMES YET

(xx/2 REVOLUTIONS)

 BMI WAIT ;IF NOT ,WAIT AND CHECK AGAIN

 JSR COMP ;IF SO JUMP TO COMP (compare function)

 BRA WAIT ;AFTER COMP GO BACK AND WAIT FOR

ANOTHER xx/2 REVOLUTIONS

;*************DRIVE FORWARDS**

DRFWD MOVB #$A0, PWDTY0 ;DUTY CYCLE FOR CHANNEL 0|

 MOVB #$A0, PWDTY2 ;DUTY CYCLE FOR CHANNEL 2| **DRIVE

FORWARDS

 RTS ;RETURN FROM SUBROUTINE

;********TURNING CODES**

TURNL LDX #$0A00

LP BRCLR PORTA,$01,FALSE ;|

 DEX ;LOOP TO CHECK SENSOR $0A00 TIMES

TO ENSURE NOT JUST NOISE

 BNE LP ;|

 BRCLR PORTA,$04,SKR ;IF LEFT SENSOR(3) BLOCKED, TURN

 JSR TURNR ;RIGHT INSTEAD

SKR LDAA #'L'

 JSR TXBYTE ;TRANSMIT L TO SCREEN (DEBUG)

 MOVB #$00,PWDTY0 ;|

 MOVB #$00,PWDTY2 ;|STOP MOTORS

 JSR DELAY ;WAIT FOR DELAY PERIOD

 MOVB #$00,ODMA ;|

79

 MOVB #$00,ODMB ;|CLEAR ODOM COUNTERS

 MOVB #$80,PWDTY1 ;TURN MOTOR B BACKWARDS

CONTL LDAA #$00

 LDAB ODMB

 CPD #90 ;SET NUMBER RELATIVE TO A 90

DEGREE TURN

 BLT CONTL ;WAIT FOR TURN TO COMPLETE

 MOVB #$00,PWDTY1

 JSR DELAY

 JSR DRFWD ;CONTINUE FORWARDS

FALSE RTS ;RETURN FROM SUBROUTINE

;-------------------------------------

TURNR ;BRCLR PORTA,$02,SKB ;IF RIGHT SENSOR(2) BLOCKED,

BACKUP INSTEAD

 JSR BACKUP

SKB LDX #$0A00 ;|

LP2 BRCLR PORTA,$04,FALSE2 ;|

 DEX ;|LOOP TO CHECK SENSOR(3) $0200

TIMES TO ENSURE NOT JUST NOISE

 BNE LP2 ;|

 LDAA #'R' ;SEND ‘R’ THROUGH SERIAL PORT

 JSR TXBYTE ;FOR DEBUG PURPOSES

 MOVB #$00,PWDTY0 ;|

 MOVB #$00,PWDTY2 ;|STOP MOTORS (DRIVING FORWARDS)

 MOVB #$00,ODMA ;|

 MOVB #$00,ODMB ;|CLEAR ODOM COUNTERS

 JSR DELAY ;WAIT FOR DELAY PERIOD

 MOVB #$80,PWDTY3 ;TURN MOTOR A BACKWARDS

CONTR LDAA #$00

 LDAB ODMA

 CPD #90 ;SET NUMBER RELATIVE TO A 90

DEGREE TURN

 BLT CONTR ;WAIT FOR TURN TO COMPLETE

 MOVB #$00,PWDTY3

 JSR DELAY ;WAIT DELAY PERIOD

 JSR DRFWD ;CONTINUE FORWARDS

FALSE2 RTS ;EXIT AND RETURN FROM SUBROUTINE

;---

BACKUP ;LDAA #'K' ;SEND K THROUGH SERIAL PORT

80

 ;JSR TXBYTE ;(DEBUG)

 ;MOVB #$00,PWDTY0 ;|

 ;MOVB #$00,PWDTY2 ;|STOP MOTORS (DRIVING FORWARDS)

 ;JSR DELAY ;WAIT DELAY PERIOD

 ;MOVB #$A0,PWDTY1 ;|

 ;MOVB #$A0,PWDTY3 ;|REVERSE STRAIGHT

WFCLR BRCLR PORTA,$02,OUTL ;IF LEFT NOT SET BRA TO OUTL

 ;BRCLR PORTA,$04,OUTR ;IF RIGHT NOT SET BRA TO OUTR

 BRA WFCLR ;IF L&R SET, BRA WFCLR. WAIT FOR L

OR R TO CLEAR

OUTL JSR TURNL ;TURN L WHEN L SENSOR IS CLEAR

OUTR JSR TURNR ;TURN R WHEN R SENSOR IS CLEAR

 JSR DELAY

 RTS ;RETURN TO MAIN LOOP

;*************DELAY***

;CODE TO ADD A DELAY TO EASE THE SWITCHING OF MOTORS

;GIVES APPROX 2 SEC DELAY. CAN SHORTEN TIME BY INCREASING INITIAL Y VALUE

DELAY LDY #$FFDC ;INITIAL VALUE FOR Y

DELA LDX #$0000 ;INITIAL CONDITION OF X

DEL INX ;INCREMENT X BY 1

 BNE DEL ;IF Z NOT = 0 BRANCH TO DELAY

 INY

 BNE DELA

 RTS

;*************COMPARE SPEEDS**

;CODE TO COMPARE MOTOR A AND B SPEEDS AND CONTROL H BRIDGE

COMP JSR NEWLINE ;START NEW LINE ON SERIAL PORT

 LDAA ODMA ;LOAD MOTOR A COUNT INTO ACC A

 CMPA ODMB ;COMPARE MOTOR A WITH MOTOR B

 BPL A2FAST ;IF MOTOR A FASTER THAN MOTOR B

 BMI B2FAST :IF MOTOR A SLOWER THAN MOTOR B

;-------------------------------------

A2FAST JSR NEWLINE ;CASE MOTOR A IS FASTER THAN B

 LDAA #'a'

 JSR TXBYTE ;TX BYTE THROUGH SERIAL (DEBUG)

81

 LDAA PWDTY2 ;LDAA SPEED OF MOTOR A

 CMPA #$65 ;IF MOTOR A IS SLOWER THAN $C5

 BMI FASTB ;SPEED UP MOTOR B

 SUBA #$01 ;IF MOTOR A IS FASTER THAN $C5

 STAA PWDTY2 ;SLOW MOTOR A SLIGHTLY

 BRA DONE ;EXIT

FASTB LDAA PWDTY0 ;|

 ADDA #$01 ;|SPEED B UP ONE

 STAA PWDTY0 ;|

 BRA DONE

;--------------------------------------

B2FAST JSR NEWLINE ;CASE MOTOR B IS FASTER THAN A

 LDAA #'b'

 JSR TXBYTE ;TX BYTE THROUGH SERIAL (DEBUG)

 LDAA PWDTY0 ;LDAA WITH SPEED OF MOTOR B

 CMPA #$65 ; |

 BMI FASTA ; | IF MOTOR B GOING TOO SLOW, SPD

UP A

 SUBA #$01 ;|

 STAA PWDTY0 ;|SLOW MOTOR B SLIGHTLY

 BRA DONE

FASTA LDAA PWDTY2 ;|

 ADDA #$01 ;| SPEED A UP BY ONE

 STAA PWDTY2 ;|

DONE MOVB #$00, COUNT ;|

 MOVB #$00, ODMA ;| CLEAR COUNTERS

 MOVB #$00, ODMB ;|

 RTS ;RETURN AND WAIT FOR NEXT

COMPARE

;*****************KEY WAKE UP PORT G ***************************************

;ADDS 1 TO COUNTER FOR CORRESPONDING MOTOR

;****SENSOR G 0************

KWGISR BRCLR KWIFG,$01,NOTG0 ;CHECK BIT 0

 LDAA ODMB ;IF MOTOR B, LDA WITH ODOM COUNT

B

 ADDA #$01 ;ADD 1 TO ODMB COUNT

 STAA ODMB ;STORE BACK TO ODMB

82

 LDAA #'B'

 JSR TXBYTE ;WRITE TO SERIAL PORT (DEBUG)

;****SENSOR G 1************

NOTG0 BRCLR KWIFG,$02,NOTG1 ;CHECK BIT 1

 LDAA ODMA ;IF MOTOR A, LDA WITH ODOM COUNT

A

 ADDA #$01 ;ADD 1 TO COUNT

 STAA ODMA ;STORE BACK TO ODMA

 LDAA COUNT

 ADDA #$01

 STAA COUNT

 LDAA #'A'

 JSR TXBYTE ;WRITE TO SERIAL PORT (DEBUG)

;********FALSE INTERRUPT********

NOTG1 MOVB #%00000011,KWIFG ;CLEAR WAKE UP FLAGS

 RTI ;RETURN FROM INTERRUPT

;**********************IRQ SERVICE ROUTINE**************************

;THIS INTERRUPT STARTS THE ROBOT WHEN BUTTON IS PRESSED

IRQISR JSR DELAY ;PROVIDES SOME SWITCH BOUNCE

 JSR DRFWD ;BEGIN DRIVING

 RTI ;RETURN FROM INTERRUPT

;**

;SETUP PWM Channels

INITPWM MOVB #%00111111,PWCLK ;PRESCALER OF /128

 MOVB #%00001111,PWPOL ;PPOL

 MOVB #%00001111,PWEN ;ENABLE ALL OUTPUTS

 MOVB #%00000010,PWCTL ;PULL UP DEVICE ENABLED

SETPWM MOVB #$FF,PWPER0 ;|

 MOVB #$FF,PWPER1 ;|PERIOD FOR PWM

 MOVB #$FF,PWPER2 ;|

 MOVB #$FF,PWPER3 ;|

 RTS ;RETURN TO MAIN

83

***************INITIALISE PORT A**

INITPA MOVB #%11111000,DDRA ;SET PORT A BITS FOR OUT AND IN 0 =

INPUT

 MOVB #%00000000,PORTA ;ENSURE PORT A INPUTS ARE ZEROES

WAITING FOR ACITVE HIGH

 RTS

**************INITIALISE PORT G FOR KEY WAKE UP**********************************

INITKWG MOVB #%11111100,DDRG ;BITS 0-4 AS INPUT

 MOVB #%00000011,KWIFG ;CLEAR WAKE UP FLAG 0-4

 MOVB #%00000011,KWIEG ;ENABLE KEY WAKE UP INTERRUPTS

 MOVB #%00000000,PUCR ;SET PORT G, H IRQ AND XIRQ FOR PULL

DOWN (DISAHLE ALL PULL UPS(ALL

0'S))

 LDAA #$06 ;JMP COMMAND OPCODE

 STAA $07B8 ;RTI PSEUDO VECTOR

 LDD #KWGISR ;ADDRESS TO JUMP TO, KWG ISR

 STD $07B9

 CLI ;CLEAR INTERUPT MASK

 RTS

;****************SERIAL PORT**

; TO USE THE SERIAL PORT, SET BAUD RATE TO 19200

; BAUD. THE VALUE HERE IS A 16 BIT DIVISOR.

INITSC0 LDD #26 ; VALUE FROM BAUD RATE

GENERATION TABLE

 STD SC0BDH

 LDAA #$0C ; ENABLE TRANSCEIVER

 STAA SC0CR2

 LDAA SC0DRL ;CLEAR FLAGS

 RTS

;***************SERIAL PORT WRITING COMMANDS***********************************

; SEND A CARRIAGE RETURN AND LINE FEED TO SCREEN

NEWLINE LDAA #$0D ;LOAD CARRIAGE RETURN FOR ASCII

 JSR TXBYTE ;TRANSMIT TO SCREEN

 LDAA #$0A ;LOAD LINE FEED ASCII

 JSR TXBYTE ;TRANSMIT TO SCREEN

 RTS ;RETURN

84

;---

; TRANSMIT A CHARACTER STORED IN ACCUMULATER A

TXBYTE BRCLR SC0SR1, #$80 ;WAIT FOR CLEAR FLAG

 STAA SC0DRL ;SEND DATA THROUGH SERIAL PORT

 RTS

;**

85

Appendix C – Software design procedure

MOBILE MANOEUVRING ROBOT SOFTWARE DESIGN

Objectives: To control the mechanical hardware of a two drive-wheel robot in order to

avoid collision with obstacles. The software must be able to control the unit to travel in

a straight line between objects and is based on assembly level language of the Motorola

68HC12 microcontroller.

Obstacle avoiding

While driving do the following:

• Read the odometer sensors and increment odometer counters

o Check odometer counters and adjust speed for straight driving

• Watch obstacle sensors in a tight loop act accordingly when sensors

triggered.

o If left is clear, turn left otherwise turn right

 If left and right blocked reverse

• Continue on a straight path

• Output data through serial port for debugging purposes

• Repeat process continuously

User Information:

The code has five sensors that input to the software. Three of these are obstacle

avoidance sensors read in as data through port A and the other two are concerned with

odometer readings read in as interrupts through port G. The program starts at $0400

with data starting at $0200. The stack pointer must be set in a clear location such as

$0700 and the program counter to $0400 to start the procedure.

When run, the program will output through the serial port the status of the odometer

readings and also controls the speed and direction of both motors to achieve the desired

performance. The program loops continuously to give real time control the mechanical

components

86

System Model

The following data flow diagram shows the basic flow of values through the system.

Process 1:

This is the main section of the program. It runs a tight loop checking for data from the

sensors on port A and also checking the odometer readings to initiate a compare

function to maintain straight line driving.

Process 2:

Process 2 is a large subroutine called every time a turn is needed. It accesses data from

port A. It checks sensors and turns relative to the status of them. After the motors have

been adjusted to gain desired performance the code returns to the main loop, process 1.

Process 3:

This is an interrupt service routine that determines which odometer sensor has triggered

and increments the respective counter. The counter is a byte stored in memory and is

cleared regularly to avoid overflow issues.

Process 4:

This process is a subroutine used to maintain straight line driving. It is called from the

main program loop and works by comparing the odometer counters and adjusting motor

speeds to maintain a constant even speed between the motors. This results in even

wheel speed hence straight driving.

PORT

A

Obstacle

Odometer
readings

Process 1

MOTOR
CONTROL

Process 3 Process 4

D1 = Signal of which direction to turn
D2 = odometer counters
D3 = motor information for turning
D4 = motor information for drive straight
D5 = jump to process 4 when required

D2
D4

PORT

G

sensors

sensors

Process 2
D1

D3
D5

87

Software Specification

Execution structures, Pseudocode

MAIN set the stack pointer in a clear area

 Clear computer watchdog

 Initialise serial port

 Initialise Kew Wake up on port G

 Initialise IRQ Interrupt

 Initialise port A

Start loop check sensor for objects

 Branch to turn if necessary

 Check odometer counters and branch to compare if necessary

 Repeat loop.

DRFWD start both wheels driving forwards

 Return to main

TURNL ensure signal not just noise

 if left blocked, jump to turn right

 transmit an L through the serial port

 Stop the motors

 Turn motor B backwards until robot turned 90 degrees

 Stop turning

 Continue in straight path (jump to DRFWD)

 Return to main

TURNR ensure signal not just noise

 if right blocked, jump to backup

 transmit an R through the serial port

 Stop the motors

 Turn motor A backwards until robot turned 90 degrees

 Stop turning

 Continue in straight path (jump to DRFWD)

 Return to main

88

BACKUP transmit ‘K’ through serial port

 Stop the motors

 Delay

 Turn both motors backwards

Start loop if left sensor clear, turn left then go forwards again

 If right sensor clear, turn right then go forwards again

 Repeat loop

 Return to main

DELAY load a large number

 Decrement it slowly

 Return to main

COMP new line through serial port

 Load accumulator with odometer count A

 Compare with odometer count B

 If B bigger than A branch to B2FAST

 IF A bigger than B branch to A2FAST

A2FAST write ‘a’ through serial port

 Compare motor A speed with a constant

 If faster than constant slow it slightly

 If slower than constant branch to FASTB

FASTB Increase motor B slightly

 Return to main

B2FAST write ‘b’ through serial port

 Compare motor B speed with a constant

 If faster than constant slow it slightly

 If slower than constant branch to FASTA

FASTA Increase motor A slightly

 Return to main

89

Software Module Description (Major modules)

Module Name: MAIN

Purpose: To run a tight loop continuously monitoring all sensors and

odometer readings.

Called by: N/A

Calls: INITSCO, INITKWG, INITPWM, INITIRQ, INITPA, TURNL,

COMP

Validation: PORT A OBSTACLE SENSORS

Registers used: A and memory location COUNT

Module Name: DRFWD

Purpose: Initialise driving forward

Called by: IRQISR, TURNL, TURNR

Calls: N/A

Validation: N/A

Registers used: N/A

Module Name: TURNL and TURNR

Purpose: To turn the robot in the desired direction by 90 degrees

Called by: MAIN

Calls: TXBYTE, DELAY, DRFWD

Validation: Outputs to PWDTY registers

Registers used: A, B, and X

Module Name: BACKUP

Purpose: Reverse the robot in a straight line

Called by: TURNR

Calls: DELAY, TURNR, TURNL

Validation: outputs to PWDTY registers

Registers used: A, B, X

90

Module Name: DELAY

Purpose: To create a pause in the program.

Called by: IRQISR, TURNL, TURNR, BACKUP

Calls: N/A

Validation: N/A

Registers used: X and Y

System Implementation

Data dictionary

Constants and variables used in this code are listed below.

 - ODMA odometer counter of motor A

 - ODMB odometer counter of motor B

 - COUNT variable used in compare function

Conversion procedures

The assembly language code has been written in a text editor such as notepad or

MiniIDE and built into a listing file using MiniIDE. Data has been transferred to

the microcontroller using the program OC Console.

Load Map

- Data is to be loaded at $0200.

- Program starts at $0400

- Stack pointer set to clear area at $0700

Conclusions

The system performed adequately to the required specifications. The software

responded as desired for all sensor inputs including odometer readings. As a result

of the success, the robot is able to drive at a constant speed in a straight line between

obstacles.

The robots performance could be improved by adding additional code in many of

the functions. One such instance is the adding of ramps in the PWDTY registers to

‘ease’ into the desired speed. If dead reckoning guidance is implemented, this code

will require extensive modification.

91

 Appendix D – Component Data Sheets
The following data sheets are the main components used in the construction of the

Mobile Manoeuvring Robot. Not all data sheets will be supplied such as the transistor

sheets which are not specific to the purpose of the Mobile Manoeuvring Robot.

The Microcontroller, Motorola MC68HC12 data sheet will not be included as it is far

too extensive for the purpose of listing the data sheets. The MC68HC12 data sheet can

be downloaded from various sources on the internet.

Z 3235 IR LED

The Z3235 IR LED is a Dick Smith Electronics part available at Dick Smith Electronic

stores. This component is used in all of the IR sensors, both clocked and constant light

sources.

92

Z 1955 Buffered Infra Red Receiver System

The Z 1955 Buffered IR Receiver system is a Dick Smith Electronics part available at

Dick Smith Electronic stores. This component is used in the obstacle avoidance IR

sensors to receive the clocked IR light from the transmitter.

93

Z 1956 Infrared Receiving Diode

The Z 1955 IR Receiving Diode is a Dick Smith Electronics part available at Dick

Smith Electronic stores. This component is used in the odometer counting sensors to

receive the IR light.

94

CARD12

The card 12 sheet is placed here to show the layout of the MC68HC12 microcontroller.

The card 12 is a user friendly PCB which splits the microcontroller’s pins out into the

separate ports and channels. It provides easy access for soldering and can be attached to

any other PCB by the use of two ‘2*25 pin plugs’. The serial port is accessed on the

card 12 ready for connection to a PC.

95

Also included in this appendix are the important pages on Interrupt vectors used for the

CARD12.

96

97

REFERENCES

Polymicro 2004, Application Areas and Markets for polymer Micro-Optics, viewed 9

May 2006, POLYMICRO, http://www.polymicro-cc.com/site/pdf/POLYMICRO-

markets.pdf

Media Limited SPG 2006, ‘Explosive Ordnance Disposal and Mine Clearance Gallery’,

viewed 9 May 2006, <http://www.army-technology.com>

Electrolux, ‘Welcome to the Electrolux Trilobite’, viewed 9 May 2006,

<http://www.electrolux.com.au/node142.asp>

2002, ‘Appliances of the Future’, Ricoh Journal, viewed 9 May 2006,

http://www.jnd.org/dn.mss/appliances_of_the_fu.html

Christensen H 2002, ‘Intelligent Home Appliances’, viewed 9 May 2006,

<http://www.nada.kth.se/~hic/hic-papers/isrr-01.pdf>

2001, ‘Robo-Rats Electronics’, viewed 10 May 2006,

http://groups.csail.mit.edu/drl/courses/cs54-2001s/interface.html

‘Project’, Viewed 10 May 2006, http://www.technology.niagarac.on.ca/

students/d/mdelange/index.html

Tunnel D 2004, ‘SmartAvoidT - A Portable, Scalable Object Avoidance Solution for all

Day/Night/Weather/Smoke Environments’, viewed 10 May 2006,

http://www.navysbir.com/04_3/49.htm

Ward K, ‘Learning Mobile Robot Behaviours by Discovering Associations between

Input Vectors and Trajectory Velocities,’ viewed 10 May 2006,

 http://www.uow.edu.au/~koren/Papers/AI97.pdf

98

Lee F Lin L, ‘Don't Worry, Be Happy,’ viewed 10 May 2006,

http://robots6270.mit.edu/contests/2001/robots/10/www/

Knudsen J 2000, ‘The Straight and Narrow,’ Viewed 10 May 2006,

http://www.oreillynet.com/pub/a/network/2000/05/22/LegoMindstorms.html

Bitsoi H et al 2001, ‘F.U.B.A.R’, viewed 11 July 2006,

www.ee.nmt.edu/~wedeward/EE382/SP01/group3.pdf

McCoy T et al 2004, ‘Infrared Communications Link with Voice and Data’ viewed 19

July 2006, www.home.people.net.au/~tmccoy

Leppard D, 2‘Using B32's Interrupts IRQ and XIRQ’viewed 5 August,

http://www.seattlerobotics.org/encoder/200008/dougl.html

