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Abstract

Wireless networking is a relatively new technology that is rapidly replacing conventional

wired network infrastructure. Whilst wireless technology has dramatically increased

the portability of computer networks, it has come with a performance cost. There

are inherent problems due to the nature of wireless transmission and to the imperfect

implementation of the Transmission Control Protocol for non-wired networks.

For a great portion of the development of the TCP protocol, wired networks were

the de facto networking standard. As a result, the TCP protocol’s algorithms and

parameters have been optimised to suit wired networks and the implementation for

wireless networks is far from perfect. A considerable improvement in performance may

be possible if the parameters / algorithms of the TCP protocol are modified in a way

that better suits the nature of wireless networks.

A specific problem of 802.11 wireless networks is its ability to handle real-time voice

applications. Wireless networks have a shallow capacity for concurrent ‘Voice over

IP (VoIP)’ sessions. In the presence of TCP traffic sources, the performance of VoIP

becomes unacceptable. This project has its focus on investigating the causes of issues

with VoIP over wireless 802.11 networks, and improving the performance by means of a

prioritised packet scheduling algorithm, and changes to certain networking parameters.

By setting the RTS / CTS threshold to a greater value than the VoIP packet length,

the call capacity of 802.11 access points was approximately tripled.

Using a prioritised packet scheduling algorithm, TCP traffic was able to coexist with

VoIP calls on the same access point up to the call capacity whilst maintaining QoS

contracts for all VoIP connections. The improved performance of VoIP in the presence

of TCP was not at the expense of TCP throughput, which was unnaffected by the

prioritised packet scheduling algorithm.
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1.1 Introduction Introduction

1.1 Introduction

A wireless 802.11 network is essentially a group of computers that can communicate

without wires. Through the transmission of radio frequency signals, wireless 802.11

networks have essentially the same functionality of a wired Local Area Network (LAN).

Wireless 802.11 networks have enjoyed growing popularity, especially in the last few

years. Nowadays, wireless 802.11 devices are encountered almost everywhere. It is likely

that there is an 802.11 access point in your workplace providing you with mobile access

to corporate data. Wireless access points are commonly found in cafes, restaurants,

airports, hotels and universities, serving the internet in what is called a hot spot. With

the rapid emergence of portable devices such as Personal Digital Assistants (PDAs),

the popularity of 802.11 wireless networks can only increase.

Despite the obvious popularity of 802.11 wireless networks, there are serious issues

supporting real-time applications that are sensitive to packet loss and delay. An excep-

tional example of issues with wireless 802.11 networks is its failure to support TCP and

real-time traffic such as Voice over Internet Protocol (VoIP) simultaneously. Voice over

Internet Protocol is the routing of voice conversations over IP-based packet switched

networks. Voice over IP is becoming an important internet application, and is likely to

replace the Public Switched Telephone Network (PSTN) in due course. VoIP calls are

usually free or inexpensive, and can provide near toll quality on a broadband internet

connection. Commercial VoIP applications such as SkypeTM are already in place to

take advantage of this growing industry. The emergence of wireless 802.11 networks

has opened up new possibilities for cheap mobile communication. However, the call

capacity of 802.11 access points is quite low and heavy TCP traffic cripples VoIP. For

the bulk of this project, the focus will be on the performance of VoIP over wireless due

to its popularity, and performance problems.

- 2 -



1.2 Issues with 802.11 & Current Research Introduction

1.2 Issues with 802.11 Performance & Current Research

Wireless 802.11 networking infrastructure is rapidly replacing conventional wired ‘eth-

ernet’ networks on a global scale. With the increasing popularity of VoIP as an alter-

native to PSTN telephony, solutions to issues with VoIP on wireless networks are being

saught. The current research into this area has not offered the scalable solutions to the

problem at hand. From the research completed in this project, current solutions to the

problem included

• An implementation of token ring for 802.11

• Modifying the 802.11 protocol

• Using commercial VoIP access points such as MeruTM access points

Although implementing a token ring system for 802.11 could work when the num-

ber of wireless nodes is low, the technique does not appear to be scalable. In this

solution, a ‘token’ is passed by the access point to all associated nodes sequencially

(Mustafa Ergen, 2003). Upon receiving the token, the node may transmit for a given

time period or choose to forfeit the token. Major scalability issues of this technique

may be become evident with tens of nodes, where a significant amount of time is wasted

in passing the token to nodes that do not wish to transmit. It also ignores problems

that could occur if the token were‘dropped’

Modification to the 802.11 protocol is the perfect solution to the Quality of Service

(QoS) issues in VoIP, and has already been accomplished by the IEEE. A new am-

mendment (‘e’) to the protocol was given final approval late 2005, and devices sup-

porting this standard should become mainstream. Apart from already being done by

the IEEE, modifying the 802.11 MAC protocol removes compatibility with the 802.11

standard (except for ammendments made by the IEEE), which leads to compatibility

issues. The author chose not to make modifications at the MAC layer for these reasons

and because significant performance increases may be had without changing the way

things work at the MAC level.

- 3 -



1.3 Performance Improvement and Compatibility Introduction

Commercialised AP’s have been designed to solve this very problem. Some commercial

solutions to the VoIP over wireless problem have shown impressive performance and

advanced features such as handoff capability and call synchronisation. Meru’s enterprise

access point was found to be an excellent solution for VoIP on 802.11 networks, at a

price. Although being a viable solution to the QoS problem for VoIP, it did not cater

for existing wireless infrastructure.

1.3 Performance Improvement and Compatibility

By changing various parameters of wireless 802.11 networks and the implementation of

a prioritised scheduler, significant improvements in access point call capacity and the

QoS can be realised. By setting the value of the Requeset to Send / Clear to Send (RTS

/ CTS) theshold to a value above the size in bytes of the VoIP packet size, the call

capacity of 802.11 access points can be approximately tripled. Setting the Maximum

Transmissible Unit (MTU) to a lower value than the default of 1500 bytes (as on most

access points) facilitated better flow for smaller packets. An MTU of 960 marginally

improved the consistency of the VoIP packet arrival delay. Protection measures of

802.11g to allow backwards compatibility with 802.11b networks were found to be

a major hinderence. It is definitely advisable to enable the non-protected mode for

802.11g networks. To solve the problem of VoIP not being able to coexist with existing

network traffic (particularly TCP traffic sources), a prioritised scheduler was developed

as a network component for the NS-2 network simulator. Large performance increases

were realised with no modifications to the 802.11 protocol in simulation.

1.4 Viability of Solutions

From research into the area of issues with 802.11 performance, it became appearant

that other solutions had been offered in the past. However, none of the solutions offer a

low cost solution on existing hardware for any 802.11 network. People who could benefit

from the outcomes of this project are those with considerable 802.11 infrastructure in

- 4 -



1.5 Objectives Introduction

place, and a desire to route voice conversations over the network to better utilise the

network resource. The cost to implement a majority of the performance enhancements

is close to zero, with the possible exception of the implementation of a prioritised packet

scheduler. In order to implement this on an access point, an individual would require

access to the firmware sources and software development skills in C/C++. Provided

this is at hand, the priorised packet scheduler is an efficient and cost effective solution

to the performance problems with VoIP over 802.11 networks.

1.5 Objectives

The main objectives of this project were to:

1. Establish that issues with wireless 802.11 networks exist and determine leads for

further studies

2. Experimentally verify the existence of issues with performance via network sim-

ulation

3. Identify problem areas and possible solutions

4. Modify networking components for the ns-2 network simulator to achieve better

network performance

5. Critically evaluate the effect of these alterations on performance via simulation

6. Propose improvements to increase the performance of wireless networks

7. Implement the improvements / adaptations on a wireless network testbed

1.6 Overview

A majority of the work in this project was done using the NS-2 network simulator to

simulate and analyse the way VoIP packets traverse the communications medium. Via

- 5 -



1.6 Overview Introduction

analysing the impact of changing key network parameters on VoIP call capacity and

QoS, it was possible to determine solutions to the problem at hand.

The second chapter was written to give the reader the neccessary backround information

to appreciate the work undertaken in this project. A review of current research in

the area is given, including opinons of experts found in journal articles, texts, other

dissertations and PhD theses.

The main aim of this project was to research performance issues that exist in 802.11

networks with motivation to design and test enhancements to the way wireless networks

operate. Research was undertaken into the 802.11 protocol, the TCP/IP protocol and

Voice over IP technology, and serious performance limitations were found. Chapter

three covers the main performance issues inherent to wireless 802.11 networks.

The purpose of simulating Vo802.11 was to reproduce performance issues in wireless

802.11 networks via simulation. This would serve to further verify the existance of

performance issues, and expose the mechanisms for said issues. Chapter four is con-

cerned with the efficiency and effectiveness of various wireless networking arrangements

to carry VoIP, analysed using the NS-2 network simulator.

After verifying the existance of performance issues identified in chapter three, improve-

ments to the way wireless networks were identified & implemented in the form of a

prioritised packet scheduler. In chapter five, the methods for improvement were dis-

cussed and the expected performance benefits are analysed. A detailed discussion of

the implementation of performance improvements to wireless 802.11 networks follows,

with simulation results to demonstrate the impact of said improvements.

Chapter six begins by summarising the important findings of this project with a critical

analysis of the level of achievement had. Recommendations for performance improve-

ments for VoIP over 802.11 networks is despensed, and the chapter concludes with a

statement of the shortcomings of this project and leads for further work.

- 6 -
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2.1 Wireless Networks Literature Review

2.1 Wireless Networks

Wireless networking is a technology that allows computers to communicate via

the transmission of radio frequency signals. The technology has been around in

some form or another for over thirty years. The University of Hawii networked

four computers on separate islands without wires in 1970 (dubbed ALOHANET)

(Thurwatcher, 2002, pg 98), which some consider the birth of wireless networking.

Despite existing for over three decades, wireless technology has only really been

mainstream for the last 12 years and is considered maturing technology.

Wireless networks are rapidly replacing conventional wired networks for business,

educational and home computing on a global scale. People are enjoying cost ben-

efits of wireless networks which don’t require any cable to be laid and concealed,

and are accessible inside a radius of 45-90 metres (Ohrtman, 2004, pg 239-40).

In the same way that mobile phones gave people the portability and flexibility to

‘talk anywhere, anytime’, wireless technology is set to revolutionise the way we

use computers (Wong, 2005, pg 1-6).

Many wireless standards exist for wireless network interfaces, but the most recent

and widespread are the 802.11x standards designed by the IEEE (Ohrtman, 2004,

pg 1-3, 6). Wireless 802.11 [a, b, g] and the upcoming ‘n’ networks will be

considered in this project. It should be noted that the IEEE consider there to be

only one standard, which is 802.11 with the different letters on the end denoting

an amendments to the protocol.

2.1.1 802.11 Networks

In 1997, the 802.11 protocol was accepted by the Institute of Electrical & Elec-

tronic Engineers and has become the standard for wireless networking. In its

original form, the protocol allowed wireless data transfers at 1-2 Mbps and used
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a 2.4 GHz carrier signal (Gast, 2002, pg 6). The first standard featured frequency-

hopping and direct-sequence modulation techniques. In 1999, ammendments (a)

& (b) were accepted. The specifications for 802.11a required the carrier frequency

to operate at 5 GHz and increased the bandwidth available to 54 Mbps (IEEE,

1999). At the same time, the specifications for 802.11b were finalised and allowed

transmission rates of up to 11 Mbps to be achieved at the same carrier frequency

as the original specification (2.4 GHz).

Although the (a) & (b) ammendments were finalised together in 1999, technical

limitations delayed the arrival of products conforming to the 802.11a specification,

and far more 802.11b products have been purchased by consumers (Prasad, 2005,

pg 35). Late 2002, the approval of the 802.11g draft saw yet another standard

come to light. Whilst the standard is fully backwards compatible with 802.11b

networks, it offers the same bandwidth of 802.11a networks (54 Mbps). It also

has the advantage of operating at the same frequency of 802.11b networks (2.4

GHz) and is set to replace them entirely (Ohrtman, 2003, pg 20).

2.1.2 Types of 802.11 Wireless Networks

There exists two subclassifications of wireless 802.11 networks, namely Ad Hoc

and Infrastructure networks. Both types consists of nodes with wireless net-

work interface cards and infrastructure networks have one or many ‘access points’

(AP’s). Each arrangements has advantages and disadvantages, the suitability of

the network arrangement to its application must be given careful consideration.

A detailed description of the two wireless 802.11 network types follows.

2.1.3 Ad Hoc Networks

In ad-hoc networking, an AP is not used to regulate the transmission of data

over the network. Individual stations communicate with each other directly, and

are not able to transmit to stations that are out of range. Ad-hoc networking
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is the default networking topology for wireless devices. In the absence of an

AP, compatible 802.11 stations will rapidly form a usable ad-hoc network. If an

AP becomes available, the base stations will reconfigure themselves to direct all

communications to the access point (Thurwatcher, 2002, pg 504).

Ad-hoc networks have the advantages of being easier and cheaper to set up and

administrate. Unfortunately, ad-hoc networks have serious drawbacks. Each sta-

tion may only transmit to stations that are within its own transmission range.

This seriously limits the scalability of ad-hoc networks. It becomes neccessary

to use an infrastructure type wireless network for more complex networking ar-

rangements.

2.1.4 Infrastructure Networks

Infrastructure networks are characterised by the presence of an access point. All

wireless traffic from stations is directed to access points for these networks. The

access points serve to:

1. Forward communications to other wireless nodes that are in or out of range

of the originating base station

2. Provide a gateway to other wired / wireless networks

3. To manage the association of stations, so all nodes can ‘see’ and communi-

cate with each other

Infrastructure wireless networks offer practically infinite scalability. Multiple ac-

cess points can provide wireless network coverage over large areas in a ‘Lilly Pad’,

or ‘Hot-Spot’ type arrangement (Thurwatcher, 2002, 504-10).
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2.1.5 Problems Inherent to Wireless Transmission

Wireless networks have several performance issues due to the nature of wireless

transmissions. When compared to wired networks, wireless networks have lower

data rates and throughputs, higher packet loss rates and less reliable connectivity

(Thurwatcher, 2002, pg 539).

2.1.6 Packet Loss / Corruption / Latency

As stated by Ohrtman (2003, pg 177) in any IP network, a percentage of the

packets potentially may be dropped or delayed. This is especially true in times

of congestion. If a base station receives packets more quickly than it can forward

them to the appropriate recipient, packets are queued for transmission. When

the capacity of the queue is exceeded, packets must be ‘dropped’. Packet loss is

undesirable, and can cause poor performance in some networking applications.

An example of an application that is sensitive to packet loss is VoIP (Ohrtman,

2004, pg 159).

Packet corruption on wireless networks usually results from interference by other

stations or electronic devices. As a medium, air is much less reliable and pre-

dictable for transmission of signals than wires. Stations sometimes interfere with

the transmission of other stations due to bad timing (Gast, 2002, pg 26). In-

terference may also be caused by transmissions containing no intelligence, such

as that of a microwave ovens (which operate on the same band as 802.11 b & g

networks) or due to the operation of power tools.

2.1.7 Carrier Sense Multiple Access / Collision Avoidance

Considerable measures are taken by 802.11 networks to avoid collisions at the

expense of additional overhead. The primary Quality of Service (QoS) mecha-

nism in Voice over IP is the Carrier Sense Multiple Access / Collision Avoidance

- 11 -



2.1 Wireless Networks Literature Review

Figure 2.1: Carrier-Sensing Multiple Access / Collision Avoidance

protocol (CSMA/CA). The protocol aims to avoid collisions by forcing stations to

wait a random interval after the channel is clear before attempting transmission

of data (Thurwatcher, 2002, 102-8).

2.1.8 Hidden Node Problem

The 802.11 standard includes CSMA / CA media access protocol as the basic

mechanism to avoid collisions with other stations on the same channel. Usually,

all stations sharing a given channel are within transmitting range of each other

but this is not always the case. It is possible for two nodes to be placed on

opposite sides of an access point at the far reaches of the access point’s range.

This is commonly referred to as the hidden node problem, and is depicted in

figure 2.2.

Since stations A and B cannot detect collisions with traffic from the other, they

assume the communciations medium is free and transmit frames. When both

stations begin transmitting to the access point at the same time, a collision occurs,

and the nodes back off a random delay before reattempting transmission. A

collision may be detected in this case by the absence of an 802.11 ACK returned

by the access point. This problem is overcome by the RTS / CTS mechism

introduced with 802.11b.
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Figure 2.2: Illustration of Hidden Node Problem

The RTS / CTS mechanism of 802.11 provides virtual carrier sensing to prevent

the hidden node problem. A station that wishes to transmit a packet must first

transmit a short control packet called Request To Send (RTS) which includes

the source, destination and the duration of the following transaction. If the

communications medium is free, the access point responds with a CTS control

packet. Because in infrastructure networks all nodes should be within range of

the access point, all nodes should hear this CTS. Both the RTS and CTS packets

include the duration that the medium is requested for, allowing all stations to set

their Network Allocation Vectors (NAVs) to avoid transmitting during another

nodes access slot.

Unfortunately, the RTS / CTS mechanism adds a considerable amount of over-

head in order to solve the hidden node problem. Greater network performance

may be had by moving hidden nodes closer to the access point until they come

into range of the other associated nodes, or increasing the transmitting power of

far stations. Of course, this solution may not be practical in some situations.

2.1.9 Exposed Node Problem

In wireless networks, the exposed node problem when a node is unnecessarily

prevented from transmitting packets to other nodes due to a neighboring trans-

mitter. This is a consequence of the carrier sense mechanism of 802.11 networks.
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The solution to the exposed node problem is the utilise the IEEE 802.11 RTS /

CTS mechanism, at the expense of some additional overhead. When a node hears

an RTS from a neighboring node, but not the corresponding CTS, that node can

deduce by itself that it is an exposed node, and it may transmit to neighboring

nodes without causing collisions.

2.1.10 Quality of Service

In packet-switched networks and computer networking, the traffic engineering

term Quality of Service (QoS) refers to the probability of the telecommunication

network meeting a given traffic contract. The term is usually used to refer to

the probability of a packet successfully traversing the link between two network

nodes within a nominal latency period. In the field of telephony, the term takes

on a different meaning . In this context, QoS is used to describe user satisfaction

of all imperfections affecting a telephone conversation. This definition includes

the human in the assessment and demands an appropriate subjective weighting

of diverse defects such as noise and tones on the circuit, loudness levels, notice-

able echos, etc. In this project, the former definition is used almost exclusively.

Artificial Mean Opinion Scores (MOS) have be used where it is neccessary to give

the reader a reference point for likely user satisfaction levels.

2.2 Voice Over Internet Protocol

Voice over IP is the routing of voice conversations over the Internet or through any

other IP-based network (Wright, 2001, pg 69). The voice data flows over a general-

purpose packet-switched network, instead of dedicated legacy circuit-switched

telephony transmission lines. VoIP technology allows voice conversations to be

conducted over conventional Ethernet networks, and more recently over wireless

networks (Comer, 2000, pg 539-47). VoIP is handled by the IP protocol, which

has the advantage of compatibility with existing network infrastructure. Voice
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2.2.1 Corporate Intranet Communication

VoIP is becoming a viable ‘telephone alternative’. It is possible to use VoIP sys-

tems to make a voice calls to people in the same way that telephones are used

today. On corporate intranets and hospitals, VoIP systems are often utilised to

facilitate cheap mobile voice communication within the building. In this con-

figuration, mobile 802.11 devices use the wireless networking infrastructure to

carry voice calls. A mobile 802.11 device could take the form of a laptop with a

microphone and VoIP software installed, or a deditacted Vo802.11 handset.

2.2.2 Gateway to Public Switched Telephone Networks

VoIP gateways allow routing of VoIP calls in much the same way as switched

telephone networks. In the same way that a ‘gateway’ in the network sense is

used to connect local area networks to the internet, VoIP gateways provide users

with the ability to make VoIP calls to telephones connected to the PSTN. VoIP

gateways connect the public telephone network with a computer network and

performs the necessary actions and conversations to make the call possible. To

make a call to somebody, you would call the gateway and specify the destination

for the call. The call woud then be set up and if the other end is available, the

conversation can start.

2.2.3 Application to Wide Area Networks

When using VoIP over a Local Area Network (LAN), there is usually plenty of

bandwidth available and the delay between sending and receiving is usually very

low. Here, VoIP can often be used without problems. However, when a Wide

Area Network (WAN) is used (ie, the internet) problems can arise. One problem

is the delay: while the delay on a LAN is usually very low, on a WAN this is

not necessarily true. If the delay becomes too large, the conversation will not

be very pleasant. Another problem is the quality of the speech signals. When
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certain routes get too heavily loaded, packets on the WAN will be lost. These

lost packets cause interruptions in the speech signal. In turn, these interruptions,

when large enough, can also disturb the conversation. To alleviate the load, a lot

of VoIP programs use lossy compression techniques. Lossy (as opposed to lossless)

audio compression achieves excellent data compression ratios by removing some

of the signal’s information. With such zealous compression techniques, telephone

quality audio is not achieved.

2.2.4 Signalling Protocol

Signalling protocols handle the connection and disconnection of voice calls on a

packet switched network. Common signalling protocols for VoIP include H.323

and SIP. H.323 was the first signalling protocol to be used for VoIP, and is the

signalling protocol recommended by the International Telocommunication Union

(ITU-T) (Ohrtman, 2004, page 28). For these reasons, the H.323 signaling pro-

tocol only will be considered in this project.

The H.323 signalling protocol is comprised of several other subprotocols. For

example, the H.225.0 protocol is used for registration, admission, status, call

signaling, and control whilst the H.245 protocol is used for media description

control and other uses. Essentially, the process of the H.323 signalling protocol

is:

1. Send an invitation to talk to the intended recipient

2. Listen for the response (busy, ringing, or none)

3. Wait for the other party to acknowledge the invitation

4. A voice session is initiated

5. Either party terminate the call

6. The other party acknowledges the call termination
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2.2.5 Encoder / Decoder Algorithms

In order for voice to be transmitted over a packet switched network it must

first be digitised. The process of converting an analogue signal into a digital

representation consists of two stages: quantisation and compression. This task

is performed by an algorithm called a codec (Ohrtman, 2004, page 36). Upon

reception at the other end, the encoded analogue signal may be reconstructed by

decompressing the voice data contained in the VoIP packet. The codec family

G.72x has gained the most prevalence, and thus will be the main codec family

considered in this scope of this project.

2.2.6 Bandwidth Requirements of VoIP

Depending on the codec used to encode the VoIP data stream, bandwidth re-

quirements vary considerably. A voice over IP connection typically requires less

than 10 KB/s of actual data through put, the G.723.1 codec requires only one

kilobyte per second of actual data throughput (Wright, 2001, pg 79). Unfortu-

nately, due to the overhead required to transmit each VoIP packet the actual

bandwidth required is significantly higher. Each VoIP voice packet must trans-

mit a Real-Time Transport Protocol (RTP), a User Datagram Protocol, and a IP

datagrams (Comer, 2000, 542-5). In total, these three datagrams add 40 bytes

of overhead to each VoIP packet transmitted. This overhead adds 16 kbps to the

bandwidth required, assuming a VoIP packet rate of 50 Hz.

2.2.7 Jitter Buffer

When packets are sent over switched networks, they are not guaranteed to arrive

in the same order as they were sent at the destination (or at all) (Gast, 2002,

pg 32). Generally, this is not a problem as TCP/IP applications simply reorder

packets that were received in the wrong sequence and wait for packets that didn’t

arrive to be retransmitted successfully. However, for voice over IP it is desirable
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for packets to arrive in the right order for obvious reasons. If voice over IP

packets were received and played in a different order than recorded, the result

would be unintelligible gibberish. Voice over IP applications provide a jitter buffer

to alleviate the problem. A jitter buffer allows packets to arrive in any order and

at any speed whilst the VoIP application pulls packets off the buffer at regular

intervals (Wright, 2001, pg 31-36).

2.2.8 Performance Issues with Vo802.11

At this point in time, the general consensus of the industry is that the quality

of service of Vo802.11 is inadequate (Ohrtman, 2004, pg 143). Voice over IP is

very sensitive to packet loss and high latency, both difficult things to avoid in

wireless data transmissions in general. These problems are compounded by the

gross inefficiency of VoIP packet transmission due to excessive overhead and the

excessive delays caused by the CSMA/CA protocol (Ohrtman, 2004, pg 144). The

IEEE is working on an ammendment to the protocol, namely 802.11e in order

to address the QoS issues with Vo802.11 (Ohrtman, 2003, pg 20). However, this

ammendment will require the purchase of new hardware, supporting the 802.11e

standard. Significant improvement should be possible by other avenues such as

through prioritised queuing (Ohrtman, 2004).

2.3 The UDP Protocol

The User Datagram Protocol (UDP) is a transport layer protocol defined for use

with the IP network layer protocol. It provides a best-effort datagram service

to a destination system. UDP transactions are connectionless, and unresponsive.

That is to say, it is not neccessary to set up a connection with a server running a

UDP service, a user datagram is simply constructed, transmitted and forgotten.

There is no TCP equivalent of an acknowledge control packet for UDP. The

purpose of UDP was to avoid the added overhead utilised by TCP where reliability
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of the packet stream is not important, and / or where the packet contents are

delay sensitive. The service provided by UDP is unreliable, that is to say, it

provides no guarantees for delivery and no protection from packet duplication or

arrival out of sequence.

The UDP header is extremely simple. It of four two byte fields, which makes it

eight bytes in length. These fields are:

1. Source Port: UDP packets from a client use this as a Service Access Point

(SAP) to indicate the session on the local client that originated the packet.

2. Destination Port: UDP packets from a client use this to indicate the service

required from the remote server.

3. UDP length: The size of the UDP header plus the payload data in bytes.

4. UDP Checksum: The UDP checksum attempts to detect alteration in the

packet (corruption) due to various noise mechanisms between the transmit-

ting node and the receiving node. A checksum cannot absolutly verify that

the end to end data has not been corrupted, but when the check sum com-

putes it is statistically unlikely that the packets contents are corrupt. This

field can be ignored by zeroing the bits of the UDP checksum.

2.4 Network Simulation

In computer network research, network simulation is a technique where a pro-

gram simulates the behavior of a network. The program performs this simula-

tion either by calculating the interaction between the different network entities

(hosts/routers, data links, packets, etc) using mathematical formulas, or actually

capturing and playing back network parameters from a production network.

Using this input, the behavior of the network and the various applications and

services it supports can be observed in a simulation. ¡reference¿ Various attributes
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of the environment can also be modified in a controlled manner to asses these

behaviors under different conditions. When a simulation program is used in

conjunction with live applications and services in order to observe end-to-end

performance to the user desktop, this technique is also referred to as network

emulation.

2.4.1 The NS-2 Simulator

The NS-2 simulator is a powerful open-source network simulator capable of sim-

ulating complex wired and / or wirless network infrastructure.Development of ns

has been was supported by DARPA through the VINT project and by numerous

other organisations including Xerox PARC, the University of California, Berkeley

and the University of Southern California. Currently ns development is support

through Defense Advanced Research Projects Agency (DARPA) in collaboration

with other researchers including AT&T’s center for internet research.

NS-2 has become a popular tool in both industrial and academic settings due

to its extensibility and plentiful online documentation. The NS-2 simulator sup-

ports a plethora of popular network protocols, and offers simulation capabilities

for both wired and wireless networks. The simulation results of the NS-2 network

simulator are believed to be accurate indications of actual network performance.

Whilst developers of the simulation package state that accurate results are not

gauranteed, studies have shown that the accuracy of NS-2 is comparable to com-

mercial network simulators (such as the OPNET Modeller).

“While we have considerable confidence in ns, ns is not a polished and

finished product, but the result of an on-going effort of research and de-

velopment. In particular, bugs in the software are still being discovered

and corrected. Users of ns are responsible for verifying for themselves

that their simulations are not invalidated by bugs. We are working to
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help the user with this by significantly expanding and automating the

validation tests and demos.” —John Heidemann 2000, Ns

Developer

The core of the NS-2 network simulator is written in c++, providing a robust

framework to base simulations upon. This part of the simulator performs the

functions of various network protocols and emulation of physical links between

nodes. In order to allow users to rapidly produce and alter network simulations,

simulation scripts are written in Object-Oriented Tool Command Language, often

abbreviated to oTcl. NS-2 provides oTcl interfaces to user controllable para-

maters such as the speed of a communications link, or the length of a queue on

a router. The oTcl language is far less ‘structured’ and syntactically complex

than c++, allows ns users to ignore a great deal of the underlying complexity

and produce simulation scripts that read well.

2.4.2 Network Animator

Nam is a Tcl/TK based animation tool capable of interpreting network simulation

traces produced by the NS-2 network simulator. In this project, nam was used

as a tool to visualise data flow through various network topologies. It allows

manipulation of the topology layout and displays packet level animation. Various

data inspection tools provide the user access to statistics such as channel packet

loss and average end to end delay at any point in the simulation.
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Figure 2.3: Network Animator Depicting Wired & Wired Topology
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3.1 Introduction

In order to achieve each of the objectives of this project, several seperate tasks

were defined from the list of objectives. In this chapter, the author identifies

the methods used to achieve the objectives and justifies their selection. The

objectives of the project were to:

1. Establish that issues with wireless 802.11 networks exist and determine leads

for further studies

2. Experimentally verify the existence of issues with performance via network

simulation

3. Identify problem areas and possible solutions

4. Modify networking components for the ns2 network simulator to achieve

better network performance

5. Critically evaluate the effect of these alterations on performance via simu-

lation

6. Propose improvements to increase the performance of wireless networks

7. Implement the improvements / adaptations on a wireless network testbed

The methods used to achieve each objective are described in the sections to follow.

3.2 Investigation of Performance Issues

The purpose of investigating performance issues that exist with wireless 802.11

networks was to:

• Justify the need for research in this area

• Determine the extent of performace problems
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• Find and incorporate existing relevant research into this project

In order to establish that issues with wireless 802.11 networks exist, the author

found relevant existing research by reading various publications on the topic (as

referenced in the literature review). It was also useful to complement this by

studying the transport control protocol / internet protocol (TCP/IP) in detail

(RFC 1180, 791, 793), which led to a better understanding of the inner workings

IP based networks. General networking theory was revisited, and network simu-

lation theory was explored. Since wireless networking devices communicate using

the 802.11 protocol, information on the protocol was gathered to give the author

an insight into the operation of 802.11 networks. Relevant ammendments to the

802.11 protocol were also studied in detail, with particular attention to wireless

802.11g networks.

3.3 Theoretical Capacity Analysis

After issues with the performance of 802.11 wireless networks were established,

some theoretical capacity calculations were undertaken to determine the major

causes of performance problems. The most significant performance issue found

with wireless networks was its poor capacity for voice calls. In order to validate

the research on performance issues in wireless networks, theoretical calculations

were performed (as reported in chapter XX). The efficiency of VoIP at the IP layer

and theoretical call capacity of access points were determined. This was done by

utilising information gathered on VoIP, TCP/IP and the 802.11 protocol.

3.4 Reproducing Issues in Simulation

Reproducing performance issues in wireless 802.11 networks in simulation served

to further verify the existance of performance issues. By simulation, the efficiency

and effectiveness of various wireless networking arrangements to carry VoIP were
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analysed. A constant bit rate (CBR) source operating intermittently provided a

reasonably accurate approximation to a voice over IP application on a network.

Network simulation, as opposed to actual network testing was chosen to expose

performance problems that are explained in the sections to follow.

3.4.1 Complex Topologies Possible in Simulation

Network simulation allows a user to simulate complex networking arrangements

with equipment that he / she does not possess or cannot afford. Through simu-

lation, a person can analyse a situations that are impractical to physically repro-

duce, such a distributed denial of service (DDOS).

3.4.2 Simulation Accuracy

The simulation results of the ns-2 network simulator are believed to be accurate

indications of actual network performance. Whilst developers of the simulation

package state that accurate results are not gauranteed, studies have shown that

the accuracy of ns-2 is comparable to commercial network simulators (such as the

OPNET Modeller).

3.4.3 Access to More Information

In simulation, it is possible to access far more information than available in actual

testing. This is due to the fact that it is possible to log any network event on

a network simulator, some of which may be impossible to know on a networking

test bed. For instance, a packet analyser could tell you that a certain packet

was transmitted and not acknowleged by the recipient, but it cannot tell the user

where the packet was dropped or the reasons for it. In network simulation using

the ns-2 network simulator and nam, dropped packets may be visualised and

interrogated to determine the time and reason they were dropped.
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3.4.4 More Flexible & Extensible

It is possible to rapidly change the simulation parameters in ns-2 simulations

by editing the simulation scripts. Parameters such as link speed, queue length

and node position can be changed in a few seconds, as opposed to minutes or

hours with a networking test bed when it is even possible. Implementing and

debugging new network protocols can be accomplished by writing / modifying

network components for the ns-2 network simulator in C++ recompiling the

simulator.

3.5 Modification of Network Protocols

After the initial simulations exposed performance issues with the 802.11 proto-

col, the root causes were identified. From this information it was possible to

devise methods increase the performance of VoIP on wireless networks without

hardware alterations or modification to the 802.11 protocol. These methods in-

cluded changing parameters of wireless 802.11 access points such as the RTS

/ CTS threshold, and the MTU size as well as modifying network components

of the NS-2 network simulator. Alterations to network components to be more

conductive to VoIP traffic included writing a prioritised packet scheduler for the

NS-2 network simulator, and a VoIP agent. No modifications were made on the

hardware level, or to the 802.11 protocol to ensure that:

1. Improvements could be implemented on any 802.11 device / network

2. Backwards compatibility with existing 802.11 networks was maintained

3. Performance improvements could be implemented ‘out of house’ (by end

user)
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3.6 Evaluation of Performance

A set of benchmarks are needed to measure and report the performance of a

packet switched network. Several performance criteria were chosen to convey

information about network performance. These included:

1. Percentage packet loss

2. Average end-to-end delay

3. Round trip time & Latency

4. Artificial Mean Opinion Scores (VoIP specific)

5. Call capacity (VoIP specific)

6. Jitter

Percentage packet loss, average end-to-end delay and round trip time are stan-

dard measures of network efficiency. Artificial Mean opinion scores were chosen

to evaluate the perceived voice quality of the simulated VoIP sessions because

actual voice data is not transmitted in simulation. Artificial MOS’s have had

a high correlation with actual MOS’s in studies, and have the advantage of not

being avoiding human subjectivity. Call capacity is a measure of the number of

simultaneous VoIP sessions an Access Point (AP) can support whilst retaining

a good MOS. It is an estimate of the maximum number of voice calls an access

point can handle without significant voice quality degradation. The term ‘Jitter’

is used to refer to describe the variation in transit delay of individual packets

which leads to annoying voice artifacts in voice conversations.

3.7 Performance Improvements

From initial simulations, possible improvements to the way wireless networks

handle voice traffic were idenitified, and modifications to ns-2 simulation scripts
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and networking components were made to implement them. After each change

to parameters / network protocols, the network performance was re-evaluated

and recorded. It should be noted that it was not possible to test all possible

improvements due to the sheer complexity of the ns-2 simulator and the network

protocols themselves.

3.8 Prediction of Access Point Capacity

The access point calculation for different 802.11 networks were found by deter-

mining the minimum framing interval for a VoIP packet, and inverting this value

to get the maximum number of VoIP frames transmitted per second.

iframe = DIFS + DATA/datarate + SIFS + 802.11ACK (3.1)

packetrate =
1

iframe

(3.2)

call capacity =
packetrate

2× V oIPframerate

(3.3)
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4.1 Introduction Performance Issues with Vo802.11

4.1 Introduction

Voice over IP is the routing of voice conversations over IP-based networks. The

voice data flows over a general-purpose packet-switched network, instead of the

dedicated public switched telephone network. This has enabled voice conversa-

tions to be carried over conventional Ethernet networks, and more recently over

wireless networks.

Unlike telephone switching networks, the medium for VoIP is not dedicated for

voice traffic. Packet switched networks are typically used for data rather than

voice, and are geared towards high data throughput rather as a result. This

chapter aims to analyse the performance of Vo802.11 networks and determine

areas for improvement.

4.2 Capacity analysis of 802.11 Access Points

From a simple efficiency calculation, the poor suitability of 802.11 networks for

VoIP becomes obvious. Modern 802.11 access points has a bandwidth of 54Mb/s

(in ‘a’ or ‘g’ modes). The typical bandwidth requirement of a bi-directional voice

call is under 20 kb/s1 (considering only the voice payload), depending on the

codec used. A list of common codecs and their bandwidth utilisation is provided

in table 4.1.

In principle, 802.11 access points have enough raw bandwidth to carry thousand

of simultaneous connections VoIP sessions. The theoretical call capacity for an

802.11 access point operating at common data rates is shown in table 4.2

The reality is, an 802.11g access point operating at 54 Mb/s can only handle about

18 simultaneous connections using the G.729 codec (as opposed to a theoretical

capacity of over 3000 simultaneous connections) in protected mode. This equates

1In telephony, a kilobit per second is 1,000 bits per second, as opposed to the 210 (1024) bits per

second that is more common in computing.
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Codec Voice Payload (Bytes) Sample Interval (ms) Bitrate (Kb/s)

G.711 160 20 64

G.729 20 20 8

G.723.1a 24 30 6.3

G.723.1b 20 30 5.3

G.726a 80 20 32

G.726b 60 20 24

G.728 60 30 16

Table 4.1: Common VoIP Codec Bandwidth Requirements

BW G.711 G.729 G.723.1a G.723.1b G.726.a G.726.b G.728

54 Mb/s 432 3456 4388 5216 864 1152 1728

48 Mb/s 384 3072 3900 4636 768 1024 1536

36 Mb/s 288 2304 2925 3477 576 768 1152

24 Mb/s 192 1536 1950 2318 384 512 768

18 Mb/s 144 1152 1462 1738 288 384 576

12 Mb/s 96 768 975 1159 192 256 384

11 Mb/s 88 704 893 1062 176 234 352

Table 4.2: Theoretical Call Capacities of 802.11 Access Points at Common Data Rates
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to an transport efficiency of VoIP just over 0.5 %. From this standpoint, it

obvious the implementation of VoIP over wireless is grossly inefficent.

4.3 Efficiency Limitations at Protocol Level

VoIP packets must be small to give good quality of service over a network because

the voice sample size sets the lower bound for the transit delay. Unfortunately,

the small transmission size of VoIP packets make it inherently inefficient. The

necessary overhead for transmission of a UDP packet is 40 bytes including the

IP, UDP and RTP headers. With this considered, the payload seems remarkably

small. This causes the efficiency at the IP layer to typically be lower than 60%.

Table 4.3 shows the efficiency of the most common VoIP codecs.

Codec Payload (Bytes) Net Bitrate (Kb/s) % Efficiency

G.711 160 80 80.0

G.729 20 24 33.4

G.723.1a 24 17.4 37.5

G.723.1b 20 16.3 33.4

G.726a 80 48 66.7

G.726b 60 40 60.0

G.728 60 27.2 60.0

Table 4.3: Efficiency of Common VoIP Codecs over Wireless 802.11 Networks

4.4 Queing Problems with Small Packets

Another problem due to the small size of VoIP packets is they have a tendency

to get stuck behind larger packets in network queues. In order to maximise

the efficiency and throughput, TCP traffic utilise larger packet sizes. These are

usually close to the maximum transmissible unit, which defaults to 1500 on most

APs. These large packets consume large amounts of bandwidth, and tend to be
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transmitted in rapid succession. Since the transmission time for a TCP packet

may be several times longer than the transmission time for a VoIP packet, this

causes TCP traffic to produce delays in VoIP packet transmission..

4.5 CSMA / CA Delays

The Carrier Sense, Multiple Access with Collision Avoidance (CSMA/CA) pro-

tocol helps prevent collisions by sensing when other devices are transmitting on

the network. A station wishing to transmit must first sense the channel for the

duration of a distributed interframe space (DIFS) plus the backoff 1 to check for

activity on the channel. If the channel is sensed ”idle” then the station is permit-

ted to transmit. If the channel is sensed as ”busy” the station defers transmission.

Figure 4.1 depicts two stations communicating via the CSMA/CA protocol.

Figure 4.1: Carrier Sense Multiple Access with Collision Avoidance Protocol

The CSMA/CA protocol attempts to increase the throughput on 802.11 networks

by reducing the number of packet collisions. In doing so, it introduces additional

overhead for every packet transmitted. The protocol does very well to prevent

collisions on congested networks, but delays introduced to VoIP packets are quite

large. The Distributed Coordination Function (DCF) paramaters for 802.11 net-

works define timing aspects of the CSMA/CA protocol. These parameters are

listed in table 4.4.

1The backoff is a random number multiple of slots ranging from 0 to the contention window (CW)
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Parameter 802.11a 802.11b 802.11g

DIFS 34 µs 50 µs 28 µs

SIFS 16 µs 10 µs 10 µs

Slot Time 9 µs 20 µs 10 µs

CWMIN 15 31 15

CWMAX 1023 1023 1023

Max Rate 54 Mb/s 11 Mb/s1 54 Mb/s

Table 4.4: Distributed Coordination Function Parameters for 802.11[a, b & g] Networks

4.6 Overhead Due to RTS / CTS Mechanism

The Request to Send, Clear to Send (RTS/CTS) mechanism is required to avoid

the hidden node problem. When a node has data to send, it initiates the process

by sending an RTS frame. The destination node replies with a CTS frame if the

channel was idle. The amount of time the node should wait before trying to get

access to the medium is included in both the RTS and the CTS frame. Any node

that ‘overhears’ the CTS frame sets their Network Allocation Vector (NAV) and

will not attempt to access the channel until the NAV has expired. This virtual

carrier sensing mechanism solves the hidden node problem, however, it comes

at the expense of additional network overhead. Figure 4.2 depicts a RTS/CTS

transaction.

Voice over IP packets are small, and take little time to transmit. It is impractical

to use the RTS/CTS protocol in conjunction with medium VoIP traffic due to the

delays caused by RTS/CTS frames. In the time it takes to send a RTS and receive

a positive acknowledge, at least two VoIP packets could have been transmitted.

This has the effect of reducing the network capacity for VoIP sessions by two

thirds. It is possible to set an RTS/CTS threshold between 0 and 2347 bytes,

which has the effect of allowing packets smaller than the threshold to bypass

the RTS/CTS mechanism. If the threshold is set higher than this value, the

RTS/CTS mechanism is disabled (which is the default setting of most access
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Figure 4.2: Request to Send, Clear to Send Transaction

points).

4.7 Association Issues

It takes time for wireless nodes to associate / deassociate from an access point.

With 802.11, it is not possible to be associated with two access points at the

same time. When users conducting a voice call using VoIP move between access

points with wireless 802.11, their call drops out. Roaming is not possible at the

moment, one possible solution is to allow association at more than one access

point, and implement an improved hand-off mechanism. Association issues are

outside the scope of this project because they are part of the 802.11 protocol. It

is discussed here only for completeness.

4.8 Security Protocols

Mention that implementing security causes decreased network capacity
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4.9 Inability to Coexist with TCP Traffic
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Figure 5.1: Wireless Networks Bridged via the Internet

5.1 Introduction

The aim of simulating Vo802.11 was to reproduce performance issues in wireless 802.11

networks via simulation. This would serve to further verify the existance of performance

issues, and expose the mechanisms for said issues. The efficiency and effectiveness of

various wireless networking arrangements to carry VoIP were analysed using the ns-2

network simulator1.

5.2 Wireless Network Topology

The main network configuration was two wireless networks separated via a low latency

broadband internet link. This was approximated in simulation by creating two wireless

/ wired hybrid nodes (access points) connected via a T1 speed link. A T1 link is a

full duplex link with a maximum throughput 1.544 Mb/s. The latency of the link was

arbitrarily chosen to be 50 ms, which is a relatively low latency connection on the

internet. It should be noted that the end to end latency of this link is not as important
1Please refer to Appendix B for the tcl simulation scripts
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Figure 5.2: Network Topology as Illustrated with the Network Animator

as the variation of end to end delay (jitter), and varies greatly between internet nodes.

The wireless simulation test plan defined in the methodology was followed for both

networking scenarios. To briefly restate the important details:

1. Each access point supports a varying number of mobile wireless nodes

2. The two wireless networks are not within transmission range of each other

3. Both networks operate in Infrastructure Mode at all times

4. All mobile nodes belonging to an access point are within range of all other mobile

nodes associated with said access point

5. Security protocols (WEP & WPA) have been disabled

6. Mobile nodes remain stationary over the simulation period (specifically, no ran-

dom movement)

In order to model VoIP sessions in simulation, Constant Bit Rate (CBR) sources were

attached to User Datagram Protocol (UDP) transport agents for each node pair con-

ducting VoIP sessions. The CBR sources operated intermittently, sending payloads of

‘voice data’ to the UDP agents at the frame rate of the VoIP codec modelled. In actual

fact, VoIP packets are not plain UDP packets, they use the Real Time Protocol (RTP).

However, a CBR agent generating UDP packets approximate VoIP traffic quite well

because RTP and UDP are both unresponsive protocols1.
1Unresponsive traffic types do not sense the network communications medium or retransmit dropped

/ corrupted packets. For this reason, it is appropriate to substitute a UDP agent for a RTP agent in

network simulation without affecting the results.
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5.3 Wireless Network Scenarios

Two main wireless networking scenarios are included in this report. In the first scenario,

the wireless networks are dedicated to voice traffic. When no other traffic sources are

competing for bandwidth, the call capacity of the topology can be calculated. However,

it is not often the case that a wireless network is reserved exclusively for voice caller

access. Most wireless networks in place are used to connect computers on a network

to share data (as opposed to carrying voice calls). Network simulation was used to

determine how well VoIP coexists with external traffic sources.

5.3.1 Network Dedicated for Voice Traffic

To briefly recap the methodology for this scenario, wireless 802.11 a, b & g networks are

simulated at various data rates for each of the common VoIP codecs listed in chapter

one. The simulation process was as follows:

• Simulation begins with no VoIP traffic

• Each 10 seconds, an additional node pair begin a VoIP session

• Once a node pair begin a VoIP session, it is maintained until the end of simulation

After simulation, the packet loss, jitter and average end to end delay were found using

the unix awk utility. Awk provides text file processing facilities (it is not a word

processor), and can perform calculations on data in text files. The results obtained

from simulation were tabulated, and performance issues analysed. The capacity of the

network for VoIP sessions was also recorded.

5.3.2 Presence of Transmission Control Protocol Traffic

The simulation procedure for this scenario was identical to the previous, with the

exception of the presence of a TCP traffic source. The TCP traffic source starts soon

after the beginning of the simulation and before the first VoIP call is established. As
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with the previous scenario, a new VoIP session is started each 10 seconds until any of

the VoIP sessions has a packet loss of over 1%. When this occured, no more nodes were

added to the simulation.

5.4 Initial Simulation Results

5.4.1 Network Dedicated for Voice Traffic

The network dedicated for VoIP traffic had performance in simulation that was consis-

tent with the expected results. It can be seen from the results that network data rate

has only a marginal effect on VoIP capacity. Specifically, doubling the data rate does

not even come close to doubling the number simultanious voice calls supported.

The of 802.11a access points to carry VoIP on dedicated networks was found to be

quite good, even at low data rates. Compared to the 802.11b protocol, the 802.11a has

a much tighter distributed coordination function.

Rate (Mb/s) Ideal Predicted Simulation Difference

Capacity Capacity Capacity (%)

6 384 49.0 43 14.0

9 576 59.5 49 21.4

12 768 66.6 56 18.9

18 1152 75.8 63 19.0

24 1536 81.3 69 17.8

36 2304 87.7 75 17.0

48 3072 91.3 76 18.5

54 3456 92.6 76 20.0

Table 5.1: Concurrent Call Capacity for 802.11a per Access Point with G.729

Access points using the 802.11b standard are somewhat less efficient at carrying voice

calls, especially with the older 192µs physical preamble. The minimum transaction
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time of 802.11b networks is much longer 802.11a, causing gross inefficiency for small

packet traffic like VoIP. Newer 802.11b devices can reliably synchronise with the carrier

in less than half the time than in the original 802.11b standard (96µs). Large perfor-

mance increase may be had by using the shorter preamble. In simulation, devices using

the shorter preamble were able to support approximately 35% more concurrent VoIP

sessions.

Rate (Mb/s) Ideal Predicted Simulation Difference

Capacity Capacity Capacity (%)

1 62.5 13.5 12 12.5

2 125.0 19.9 17 17.1

5.5 343.8 28.5 26 9.6

11 687.5 32.6 29 12.4

22 1375.0 35.1 32 9.7

Table 5.2: Concurrent Call Capacity for 802.11b per Access Point (Short Preamble)

Rate (Mb/s) Ideal Predicted Simulation Difference

Capacity Capacity Capacity (%)

1 62.5 10.7 9 18.9

2 125.0 14.4 13 10.1

5.5 343.8 18.4 15 22.7

11 687.5 20.1 18 11.7

22 1375.0 21.0 18 16.7

Table 5.3: Concurrent Call Capacity for 802.11b per Access Point (Long Preamble)

The capacity of 802.11g without RTS/CTS or CTS to self protection is identical to

802.11a. At first glance, this seems unusual as 802.11a and 802.11g use different timing

values. Although the DIFS for 802.11g is shorterthan 802.11a by 6µs, the required

6µs extension after the data frame cancels any performance benefit. When this is

considered, it is no surprise that the performance calulated and seen in simulation is

identical for the two networks.

Backwards compatibility is useful in situations where interoperability with existing
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Rate (Mb/s) Ideal Predicted Simulation Difference

Capacity Capacity Capacity (%)

6 384 49.0 43 14.0

9 576 59.5 49 21.4

12 768 66.6 56 18.9

18 1152 75.8 63 19.0

24 1536 81.3 69 17.8

36 2304 87.7 75 17.0

48 3072 91.3 76 18.5

54 3456 92.6 76 20.0

Table 5.4: Concurrent Call Capacity for 802.11g per Access Point with G.729 (Non -

Protected)

infrastructure is required. The 802.11g standard was designed to yield performance

increases for next generation wireless equipment whilst retaining backwards compati-

bility with the older 802.11b standard. It could do so because 802.11g operates in the

same part of the radio frequency spectrum as 802.11b.

However, this backwards compatibility comes with a serious performance cost. When

an 802.11b device associates with an 802.11g access point, the slower DCF timings of

802.11b are used. Additinally, CTS-to-self protection enables ‘g’ devices to communi-

cate at higher speeds without disturbing ‘b’ devices but with larger overheads than ‘g’

only networks. Performance of VoIP on combined ‘g’ & ‘b’ networks is far less than

ideal.

5.4.2 Presence of Transmission Control Protocol Traffic

It is rarely the case that a wireless network is reserved specifically for voice traffic.

Normally, wireless networks are used for data traffic. In simulation, the addition of

TCP traffic sources severely interfered with VoIP traffic. With the addition of a

single TCP source, the quality of service metric cannot be met even for a few VoIP

sessions. Whilst the packet loss criteria can be met for low numbers of VoIP connections,
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Rate (Mb/s) Ideal Predicted Simulation Difference

Capacity Capacity Capacity (%)

6 384 22.9 20 14.5

9 576 24.9 20 24.5

12 768 26.1 22 18.6

18 1152 27.4 23 19.1

24 1536 28.1 25 12.4

36 2304 28.8 25 15.2

48 3072 29.2 26 12.3

54 3456 29.3 26 12.7

Table 5.5: Concurrent Call Capacity for 802.11g per Access Point with G.729 (Protected,

Long Preamble)

Rate (Mb/s) Ideal Predicted Simulation Difference

Capacity Capacity Capacity (%)

6 384 29.3 27 8.5

9 576 32.8 29 13.1

12 768 34.8 31 12.3

18 1152 37.2 35 6.3

24 1536 38.5 35 10.0

36 2304 39.8 37 7.6

48 3072 40.6 38 6.8

54 3456 40.8 38 7.3

Table 5.6: Concurrent Call Capacity for 802.11g per Access Point with G.729 (Protected,

Short Preamble)
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Figure 5.3: Packet Delay for 8 VoIP sessions without a TCP Traffic Source

it is more difficult to make guarantees of low jitter.

Due to the unresponsive nature of UDP, VoIP traffic is transmitted at the constant bit

rate defined by the codec used. When a TCP traffic source appears on the network,

it begins increasing its rate of transmission exponentially until packet loss occurs. At

this point, it has found a (presumably) suitable value for its contention window, and

reduces its transmission rate. However, from time to time, the TCP traffic source will

attempt to increase its transmission rate again, which results in packets loss.

VoIP clients do not have to compete with TCP traffic for bandwidth as such, however,

delay insensitive TCP data is often transmitted ahead of VoIP traffic causing delays.

Figure 5.4 and 5.3 show the packet delay versus sequence number for a wireless network

with (figure 5.3) and without (figure 5.4) TCP traffic. Upon comparing figure 5.4 to

figure 5.3, the impact of TCP traffic on VoIP can easily be seen.
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Figure 5.4: Packet Delay for 8 VoIP sessions with a TCP Traffic Source

Figure 5.5: Cumulative Distribution Function of Packet Delay (without a TCP Traffic

Source)
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Figure 5.6: Cumulative Distribution Function of Packet Delay (with a TCP Traffic Source)

5.5 Outcomes of Initial Simulation

Network simulation of 802.11 wireless networks used for VoIP has served several pur-

poses. An objective was to obtain simulation results that correlate well with the pre-

dicted capacity calculations. This objective was achieved, with simulation results gen-

erally within 20% of the predicted values. The simulation results were always below

what the theoretical calculations predicted. A likely cause of the discreptancy is the

capacity calculations not taking collisions and packet corruption into account. The

fact that simulation results were within 20% of the predicted performance supports

the premise that the ns-2 simulator can produce accurate results. In doing this, the

existance of performance issues in wireless 802.11 networks was also confirmed.

Through simulation, insight into the mechanisms of 802.11 networks was gained and

leads for performance improvement determined. These performance improvements are

discussed and implemented in the prioritised packet scheduler discussed in the next

chapter.
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6.1 Introduction

In light of the performance issues identified in chapter, improvements to the way wire-

less networks have been identified & implemented in the form of a prioritised packet

scheduler. In this chapter, the methods for improvement are discussed and the expected

performance benefits are analysed. A detailed discussion of the implementation of per-

formance improvements to wireless 802.11 networks follows, with simulation results to

demonstrate the impact of said improvements.

6.2 Performance Improvements for Vo802.11

6.2.1 RTS / CTS Threshold Setting

The purpose of the Request To Send / Clear To Send (RTS / CTS) mechanism was to

solve the hidden and exposed node problems. As noted in simulation, the RTS / CTS

mechanism of the CSMA / CA protocol increases the network overhead significantly.

When RTS / CTS is disabled, the call capacity of 802.11 networks is greatly increased.

In simulation, the call capacity was tripled by setting the RTS / CTS threshold above

the VoIP packet length. This paramater can be easily adjusted on most access points,

and requires no hardware / software changes.

6.2.2 Maximum Transmission Unit Size

On packet switched networks, the Maximum Transmission Unit (MTU) is the largest

packet size that can be transmitted. If a larger packet than the MTU needs to be sent,

the packet is divided into fragments for transmission, and recombined at the receiver.

The significance of the MTU in traffic engineering is that network packet size sets the

lower bound for queueing delays. By setting the MTU to a low value, it is possible to

give smaller packets a greater possibility of being transmitted after a smaller delay. It

also has the advantage of reducing the size of retransmissions due to packet corruption.
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Care must be taken not to set an MTU too low, as the network overhead increases

with the number of packets transmitted. Changing the MTU alters the performance of

VoIP sessions in the presence of TCP traffic, but has little effect otherwise. By itself,

changing the MTU didn’t have a great impact on performance. However, when used

in conjunction with a prioritised scheduler, the performance increases were significant.

6.2.3 Priority Queuing for VoIP Packets

Real-time communications, like VoIP, are sensitive to end-to-end delay and variation

in packet arrival times. They require a steady, reliable stream of packets to provide

acceptable quality. End-to-end delay is the time it takes a packet to traverse the

communications medium and arrive at its destination. The delay budget for reasonable

two-way conversations is approximately 150 milliseconds. When the end-to-end delay

exceeds this threshold, callers have a tendency to talk over one other. This compromises

the real-time aspect of the conversation, and can be a frustrating experience for the

callers.

An audio artifact known as jitter can be heard when packets arrive early, late, or out of

sequence. Jitter is the result of variation having occurred in the time between packets

transmitted and packets received. Excessive jitter causes the users to experience quality

degradation during a call. Jitter creates different audio artifacts, depending on its

severity and the original audio signal. A VoIP audio stream of a person speaking with

a moderate amount of jitter can sounds almost as if the person were talking underwater.

This audio artifact sounds similar to very low bitrate MPEG Layer III (mp3) encoded

audio.

A way to compensate for excessive jitter is to increase the size of the jitter buffer. The

jitter buffer for VoIP is responsible for reassembling packet streams. When there is

an issue with packets, such as arriving out of sequence or too late, the buffer will try

compensate by replaying the last packet received, filling the slot with white ‘comfort’

noise. However, the jitter buffer needs to be as small as possible to to reduce the delay

between the audio being recorded by the sender and being played at the receivers end.
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To this end, it is better to transmit VoIP packets as soon as possible, so the jitter buffer

can be kept small and good voice quality is perceived by users.

A priority queuing mechanism favouring realtime traffic is neccessary to provide satis-

actory QoS in the presence of other traffic sources (especially TCP). In the experiments

conducted as part of this project, a prioritised queue for VoIP packets allowed the access

point call capacity to approach the dedicated network call capacity whilst maintaining

QoS contracts.

6.2.4 Use of Multicast Packets

Most computer network applications use unicast packets exclusively for transporting

information between points. Some examples of such network applications might web

browsers using the Hyper-text Transfer Protocol (HTTP) protocol, the Network File

System (NFS) protocol, and the interaction between an email client and a Post Office

Protocol (POP) server.

There are cases where the transmission of information using multicast packets, however,

is more practical. A multicast packet is the packet switched network equivalent of

broadcasting. In this sense, a single packet can be transmitted to multiple destinations.

This could be a single subnet, or an entire network. There are two particularly useful

aspects about multicast packets on a wireless network.

1. Multicast packets can be transmitted to all nodes connected to an access point

simultaneously, as opposed to sending individual packets to associated nodes

2. There is no Acknowledge (ACK) at the 802.11 protocol level for these packets,

which greatly reduces the overheads of transmission

The use of multicasting conserves the bandwidth of a network because only the trans-

mission of a single packet is necessary rather than sending packets individually ad-

dressed to each node. This is especially important for 802.11 networks as they have
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limited bandwith compared to conventional ethernet LANs. By removing the require-

ment of an 802.11 ACK for VoIP packets, the effective voice call capacity practi-

cally doubles. In simulation, the performance increase measured was close to 100%

when using multicast packets.

Multicasting is supported in the 802.11 standards as part of its asynchronous services.

An 802.11 client associated with an access point can request a multicast delivery by

sending multicast packets in 802.11 unicast data frames directed to the access point.

Provided the access point receives this frame correctly, it responds with an 802.11

ACK frame. If the client sending the frame doesn’t receive an acknowledgement, it

will retransmit the frame after a delay. After receiving the unicast data frame from

the client, the access point transmits the data (that the originating client wants to

multicast) as a multicast frame. Each of the destination stations can receive the frame,

but do not respond with 802.11 ACKs. It would be impractical to implement this, as

nodes may join / leave the network silently and the acknowledge packets would take

much time and bandwidth. As a result, multicasting doesn’t ensure a complete, reliable

flow of data but this is a non-issue for VoIP packets. It is better for a VoIP packet to

be dropped than arrive outside the jitter window.

Figure 6.1: The Unicast Packet Transaction on 802.11 Wireless Networks

Figure 6.2: Multicast Packet Transaction on 802.11 Wireless Networks

In order to provide improved performance by exploiting multicast packets, it is necces-

sary to make some configuration changes at the access point and the wireless clients.
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On most access points, multicast packets are transmitted at the lowest supported speed

by default. For 802.11a, this is 6 Mbits/s whereas 802.11b/g the basic rate is used 1

Mbit/s. When the lowest speeds are used for multicasting VoIP packets, it all but

defeats the purpose of performance gains. However, the multicast transmission rate is

easily changable on most access points, and can be set to the maximum data rate the

wireless network device supports. Provided all nodes have excellent signal reception,

the maximum rate can be selected and large performance increases are obtained.

Another issue with multicasting to consider is that multicast frames may experience

lower quality of service. With 802.11 networks, multicast packets are delayed when one

or more of the wireless clients are using the 802.11 power save mode. If a wireless node

that has enabled power saving is associated to an access point, that access point buffers

all multicast frames and sends them immediately following the next Delivery Traffic

Indication Message (DTIM). This problem is solved by turning power saving off on all

wireless clients. When power saving mode is disabled, access points transmit multicast

frames as soon as possible instead of waiting for the next DTIM.

6.2.5 Choice of VoIP Codec

Different VoIP codecs affect the performance of VoIP over 802.11 networks in different

ways. The choice of VoIP Codec is dependent upon the characteristics of the network

involved. Since the major limitation for voice call capacity of 802.11 access points is

the minimum framing interval, the codec packet rate plays a larger role in determining

performance than the payload size. Common VoIP codecs have a payload size between

20 and 160 bytes, and take a small fraction of the framing interval to be transmitted.

For example, a G.729 VoIP packet (60 bytes) can be transmitted with 2 symbols (216

bits per symbol) at the maximum symbol rate of 250, 000 symbols per second1. The

transmission time is calculated as follows:

Transmission T ime =
Symbols

Rate

1Only valid for 802.11a/g access points, 802.11b networks utilise smaller 8 bit symbols
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=
3

250k

= 12 µs

When compared to the framing interval of 455 µs for 802.11g networks in protected

mode, the transmission time of 12 µs seems remarkably small. Of course, it is better

to use VoIP codecs that use lower VoIP payloads to minimise bandwidth requirements.

However, due to the large symbol size of 802.11a/g networks, there is no difference in

the transmission time for packets between 54-81 bytes2.

The most important consideration when choosing a VoIP codec for implementation

on a wireless network is the codec framing interval. For small framing intervals, the

end-to-end delay is minimised at the expense of total call capacity. This is due to the

transmitting station buffering one frame of call audio before transmission. Of course,

for low framing intervals, greater packet rates are required for each VoIP stream (hence,

lower call capacity). Long framing intervals (or combining frames) reduce the framing

overhead required for transmission of each VoIP stream. However, the end-to-end delay

is increased by the length of the framing interval.

In order to maximise the call capacity and QoS of VoIP sessions via choice of codec,

it is neccessary to know the characteristics of the wireless network. If the end-to-end

delay is high (> 60 ms), it is better to trade some call capacity for lower end-to-end

delay using a VoIP codec with a small framing interval, such as G.729 (20 ms). On the

other hand, if the network had low end-to-end latency (< 60 ms) extra call capacity

could be obtained by using a codec with a larger framing interval, such as G.723.1 (30

ms).
2The symbol size is 216 bits for 802.11a/g, which is 27 bytes. It is not possible to transmit a fraction

of a symbol, therefore three symbols are required for packets between 54-81 bytes in length
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6.2.6 Type of Wireless Network

From the 802.11 networks considered, 802.11a & 802.11g networks provide the best

performance. The call capacities of access points belonging to these two networks

are identical when 802.11g is used in ‘g-only’ mode without CTS-to-self protection.

By enabling support for 802.11b devices, the call capacity of 802.11g access points is

greatly reduced. Between 55-75% of the call capacity is lost when an 802.11b device

associates with an 802.11g access point, depending on whether short or long 802.11b

preambles are used.

Legacy 802.11b devices are inferior to 802.11a & 802.11g due to their long minimum

framing intervals and relatively low data rates (maximum of 11 Mbits/s according to the

802.11b standards). Far greater performance can obtained using 802.11a/g networks

when the network is required to carry VoIP calls.

6.3 Prioritised Packet Scheduler

A prioritised scheduler was implemented using the NS-2 network simulator to test the

performance of VoIP sessions on wireless networks with other traffic sources (particu-

larly TCP). This was accomplished by writing network components for NS-2 to favour

VoIP traffic over all other traffic sources. The main components required to be written

were:

• A Voice Over IP Agent

• The addition of a VoIP packet type for NS-2 (multicasting enabled by default)

• Prioritised queueing for the VoIP packet type

After these networking components were written, some changes to configuration files

and sources were required in order to implement them. The most significant of these

changes were adding the priority queue and the VoIP agent components to the ns-2.29

makefile, and adding the packet type PT VOIP to the definitions in packet.h. After
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testing and debugging the new network components with the GNU Data Display De-

bugger (DDD), the wireless simulations were repeated using the prioritised scheduling

algorithm.

6.3.1 Voice Over IP Agent

In the initial simulations, voice over IP traffic was approximated by attaching a constant

bit rate source generating the required number of packets per second to a UDP agent.

Whilst this was an accurate model for the behaviour of VoIP traffic in simulation, it

did not allow differentiation between UDP traffic and VoIP traffic types. Any attempt

to give VoIP packets priority in this model would apply the same priority to other,

non-voip UDP packets.

In order to solve this problem, a VoIP agent for the NS-2 simulator was written in C++,

using the UDP agent (udp.cc) as a base. Another requirement for the improvement

of VoIP performance was the use of multicast packets for VoIP packets. This was

incorporated into the new VoIP agent written for NS-2. The major differences between

the base UDP agent and the derived VoIP agent were:

• A new packet type (PF VOIP) is defined to enable NS-2 networking components

to differentiate between VoIP & all other traffic

• Multicasting is enabled by default for the VoIP agent to disable the 802.11 ACK

at the receiving end

• The default packet size is set to 60 bytes (G.729 VoIP Codec)

• A default packet rate of 50 packets per second is used (G.729 VoIP Codec)

Modification of the base UDP agent provided in the NS-2 simulator to create a VoIP

agent set the framework in place for a priority based scheduler for VoIP packets.
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6.3.2 Implementation of A Priority Queue for VoIP Packets

In order to provide the required QoS for voice over IP packets in simulation, a prioritised

packet scheduler was written in C++. Via network simulation, it was found that delay

insensitive TCP traffic interferes with VoIP connections by forcing full queues and

delaying VoIP packets. TCP sources only reduce their transmission rate when packet

loss is encountered, and periodically attempt to exponentially increase their thoughput

which forces VoIP packets to be dropped from queues. In order to increase the fairness

for treatment of VoIP packets, a prioritised scheduling algorithm was designed.

NS-2 has a base queue class called ‘Queue’ that provides generic First In First Out

(FIFO) queue and supporting functions. A lot of the neccessary functions for a network

queue are provide by the derived ‘PacketQueue’ class. Member functions are provided

in this class to access and manipulate the queue, such as dropping and transmitting

packets. Through the use of C++ inheritance, the VoIP priority scheduler derived this

basic functionaliy from the ‘Queue’ class included in the NS-2 sources.

/*

* A priority based queue for increasing the call capacity of 802.11 access pts

*/

// Inherit the ‘Queue’ class, and create a packet queue

class VoipPri : public Queue {
public:

VoipPri() {
q = new PacketQueue;

pq = q ; 10

bind bool("summarystats_", &summarystats);

bind bool("queue_in_bytes_", &qib ); // boolean: q in bytes?

bind("mean_pktsize_", &mean pktsize );

}
˜VoipPri() {

delete q ;

}
}

- 58 -



6.4 Simulation Results The Prioritised Packet Scheduler

The priority sheduling algorithm works by ordering packets in the queue based on their

packet type, and the time they were received. Each time a new packet is received, it is

queued immediately if there is enough room on the queue to accomodate the packet.

In the event that there is not enough space on the queue, the packet type is checked.

If the packet is a low priority (non-voip), it is discarded immediately.

However, if the received packet is a critical packet (VoIP) the algorithm looks through

the queue for a low priority packet to remove to make room for the received packet. If

low priority packets exist on the queue, one is dropped to make room for the critical

packet. After this, the critical packet is enqueued at the tail, and each non-critical

packet on the queue is removed in turn (oldest first), and re-queued at the tail after

the critical packet. However, if no low priority packets exist on the queue, the received

critical packet is dropped. This can occur when the call capacity of the access point is

exceeded, and is impossible to avoid. The process described above is depicted in the

form of a software flow chart in figure 6.3.

6.4 Simulation Results

The networking scenario simulated to test the call capacity of 802.11 access points in

the presence of TCP traffic was the same as the simulation in the previous chapter,

with two exceptions:

1. The VoIP agent written for NS-2 was sustituted for the UDP transport agent

used in the simulation scripts.

2. A priority queue was used to give VoIP traffic preference

In this scenario, the TCP traffic source begins soon after the start of the simulation.

A new VoIP session is started each 10 seconds until any of the VoIP sessions has an

average packet loss exceeding 1%. When this occured, no more nodes were added. After

simulation, the packet loss, jitter and average end to end delay were found using the

unix awk utility. The results obtained from simulation were tabulated, and performance
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Figure 6.3: Priority Queue Flow Chart
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issues analysed. The capacity at which both traffic contractual constraints (less than

1% loss & less than 1% of packets delayed by 25 ms was recorded as the call capacity

for that particular networking configuration.

6.4.1 VoIP Coexisting with TCP Traffic

The network simulation results for all 802.11 acess point types indicated that the addi-

tion of a priority queue greatly improves the VoIP call capacity in the presence of TCP

traffic sources. With the priority queue for VoIP packets in place, the call capacity of

802.11 access points reached or came close to that of the dedicated network scenario

described in the previous chapter. It should however, be noted that as the call capac-

ity was approached, the TCP throughput declined to almost zero. As can be seen in

figure 6.4, there appears to be a linear tradeoff between TCP traffic and the number of

simultaneous VoIP connections.

Rate (Mb/s) Predicted Without TCP With TCP Difference

Capacity Capacity Capacity (%)

6 49.0 43 42 2.3

9 59.5 49 49 0.0

12 66.6 56 56 0.0

18 75.8 63 62 1.6

24 81.3 69 69 0.0

36 87.7 75 75 0.0

48 91.3 76 75 1.3

54 92.6 76 75 1.3

Table 6.1: Call Capacity for 802.11a Access Points using Priority Queuing

6.4.2 Multicasting Technique

By removing the requirement of an 802.11 ACK for VoIP packets, the framing interval is

significantly reduced. In turn, this allows 802.11 access points to transmit VoIP packets

more rapidly, and avoid retransmissions caused by packet corruption. In simulation, the
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Figure 6.4: TCP Throughput versus Number of VoIP Connections for 802.11a with Priori-

tised Scheduler

Rate (Mb/s) Predicted Without TCP With TCP Difference

Capacity Capacity Capacity (%)

1 13.5 12 12 0.0

2 19.9 17 17 0.0

5.5 28.5 26 26 0.0

11 32.6 29 29 0.0

22 35.1 32 32 0.0

Table 6.2: Call Capacity for 802.11b Access Points with Priority Queuing (Short Preamble)
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Rate (Mb/s) Predicted Without TCP With TCP Difference

Capacity Capacity Capacity (%)

1 10.7 9 9 0.0

2 14.4 13 13 0.0

5.5 18.4 15 15 0.0

11 20.1 18 18 0.0

22 21.0 18 18 0.0

Table 6.3: Call Capacity for 802.11b Access Points with Priority Queuing (Long Preamble)

Rate (Mb/s) Predicted Without TCP With TCP Difference

Capacity Capacity Capacity (%)

6 49.0 43 42 2.3

9 59.5 49 49 0.0

12 66.6 56 56 0.0

18 75.8 63 62 1.6

24 81.3 69 69 0.0

36 87.7 75 75 0.0

48 91.3 76 75 1.3

54 92.6 76 75 1.3

Table 6.4: Call Capacity for 802.11g Access Points with Priority Queuing (Non - Protected)
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Rate (Mb/s) Predicted Without TCP With TCP Difference

Capacity Capacity Capacity (%)

6 22.9 20 20 0.0

9 24.9 20 20 0.0

12 26.1 22 22 0.0

18 27.4 23 23 0.0

24 28.1 25 25 0.0

36 28.8 25 25 0.0

48 29.2 26 26 0.0

54 29.3 26 26 0.0

Table 6.5: Call Capacity for 802.11g per Access Point with Priority Queuing (Protected,

Long Preamble)

Rate (Mb/s) Predicted Without TCP With TCP Difference

Capacity Capacity Capacity (%)

6 29.3 27 27 0.0

9 32.8 29 29 0.0

12 34.8 31 31 0.0

18 37.2 35 35 0.0

24 38.5 35 35 0.0

36 39.8 37 37 0.0

48 40.6 38 38 0.0

54 40.8 38 38 0.0

Table 6.6: Call Capacity for 802.11g Access Points with Priority Queuing (Protected, Short

Preamble)
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performance increase measured when using multicast packets varied with the network

type. For 802.11b networks, an 802.11 ACK takes 203 µs to transmit, which is almost

half the the time required for a single VoIP transaction (499 µs at 11 Mb/s using

the G.729 VoIP Codec). Less impressive performance increases are had for 802.11a/g

networks due to tighter timing specifications. An 802.11a ACK only takes 24 µs, which

is roughly a quarter of the time required for a single VoIP transaction (106 µs at 54

Mb/s using the G.729 VoIP Codec). For 802.11g networks, the 802.11 ACK takes

slightly longer, and greater peformance increases are realised as a consequence. The

time required for a VoIP transaction on a non-protected 802.11g network is 76 µs with

multicast packets, as opposed to 106 µs using unicast packets (an improvement of

28.3%).

Rate (Mb/s) Predicted Simulation Difference

Capacity Capacity (%)

6 56.2 52 7.5

9 70.4 65 7.7

12 80.6 76 5.7

18 90.5 82 9.4

24 103.1 94 8.8

36 113.6 102 10.2

48 119.8 105 12.4

54 121.9 106 13.0

Table 6.7: Call Capacity for 802.11a Access Points using Priority Queuing & Multicasting

6.4.3 Discussion of Simulation Results

A main objective of the prioritised packet scheduler was to increase the performance

of VoIP in the presence of external traffic sources. By using the prioritised packet

scheduler, this objective has been met. In the presence of a single TCP traffic source,

the prioritised packet scheduler allowed the full ‘dedicated network’ capacity whilst

maintaining QoS contracts in most cases. In the cases that the full ‘dedicated network’

capacity was not obtained, the call capacity was at least 97% of the dedicated capacity.
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Rate (Mb/s) Predicted Simulation Difference

Capacity Capacity (%)

6 58.1 53 8.7

9 73.5 67 8.8

12 84.7 77 9.1

18 100.0 93 7.0

24 109.9 98 10.8

36 122.0 108 11.5

48 129.0 114 11.6

54 131.6 115 12.6

Table 6.8: Call Capacity for 802.11g Access Points using Priority Queuing & Multicasting

Rate (Mb/s) Predicted Simulation Difference

Capacity Capacity (%)

1 15.7 14 10.8

2 25.3 23 9.1

5.5 41.1 35 14.8

11 50.1 42 16.2

22 56.2 43 23.5

Table 6.9: Call Capacity for 802.11b Access Points with Priority Queuing & Multicasting

(Short Preamble)

Rate (Mb/s) Predicted Simulation Difference

Capacity Capacity (%)

1 13.7 12 12.4

2 20.3 18 11.3

5.5 29.5 25 15.25

11 33.8 27 20.1

22 36.5 29 20.5

Table 6.10: Call Capacity for 802.11b Access Points with Priority Queuing & Multicasting

(Long Preamble)
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Without the prioritised packet scheduler, 802.11 networks cannot maintain the QoS

contracts for VoIP consistently for even one VoIP session contending with TCP Traffic1.

With or without the presence of external traffic sources, the use of multicast packets

for VoIP been shown to significantly increase the call capacity of 802.11 access points.

Access point call capacity increases between 25 and 40 percent were found to be possible

in simulation by exploiting multicast packets. In an infrastructure based network,

the only downside to using multicast packets for VoIP traffic is a slight increase in

complexity on the VoIP client side. Each and every VoIP client associated with an

access point will receive all VoIP packets, some of which will be intended for other

nodes.

The solution to this problem is to modify the VoIP client slightly to identify the intended

recipient of VoIP packets. This recipient information could be stamped in unused bits

of the RTP / IP / UDP headers, or added to the UDP data segment of VoIP packets.

Neither of these solutions incur additional overhead for any of the common VoIP codecs

considered for 802.11a or 802.11g networks as a result of the large symbol size (216 bits).

This is a result of none of the VoIP codecs considered in this project having packet

sizes that are even multiples of 216 bits (meaning the last symbol of a transmitted VoIP

packet is padded with zeros). For 802.11b networks, an additional byte in the UDP

datagram would cause negligible additional overhead (between 0.7 and 8 µs, depending

on the data rate).

The most effective method of increasing access point capacity for ‘dedicated networks’

was also the simplest. By setting the RTS / CTS threshold above the VoIP packet

length, the VoIP call capacity was approximately tripled in simulation. Although the

RTS / CTS mechanism is required to solve the hidden node problem, it has arguable

benefits in a typical office situation (Kaixin Xu, 2002). This is due to the effectiveness
1Packet loss for VoIP in the presence of TCP traffic is bursty. Although a single connection could

maintain a packet loss below 1% overall, the packet loss spiked well above this periodically. A voice

over IP conversation conducted in such a scenario would exhibit audio degradation that would result

in an intelligible voice stream with ‘annoying’ audio artifacts
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of carrier sensing mechanism of wireless devices. A wireless device can sense a carrier

signal at distances where the actual transmitted information is unintelligible. For these

reasons, the author believes better performance in an office environment can be had

by:

1. Disabling the RTS / CTS mechanism by setting the threshold to 2347

2. Ensure that neighbouring wireless networks occupy a different channel

3. Increasing the carrier sense sensitivity to appropriate levels

A hidden node on a network without RTS / CTS causes problems due to packet col-

lisions, and should be avoided wherever possible. Increasing the number of, or strate-

gically placing access points in the area reduces the likelyhood of the hidden node

problem occuring, albeit at additional financial expence. A greater number of access

points increases the network performance in general if enough devices utilise them.

Perhaps the best feature of the prioritised packet scheduler is that the improvement

of VoIP performance in the presence of TCP traffic is not at the expense of TCP

throughput. That is to say, when an 802.11 access point is supporting a certain number

of VoIP calls and has a TCP traffic source, the TCP throughput is the same with or

without the prioritised packet scheduler. This is an important result, as it infers that

the performance issues of VoIP on 802.11 networks can be largely solved by using the

prioritised packet scheduler. However, by solving one problem, the prioritised packet

scheduler has created another.

As the number of VoIP calls per access point increases to the call capacity of the access

point, the TCP throughput drops to zero. This may or may not be desirable behaviour,

depending on what the main function of the wireless network is. Another problem is

that when the access point’s call capacity is exceeded, packet losses begin to surge.

In simulation, increasing the number of VoIP sessions just one above the call capacity

found in simulation led to downstream VoIP packet losses of over 5% for 802.11(a/b/g)

networks.
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A solution to this issue might be to limit the number of concurrent VoIP sessions at the

AP. This could be accomplished by recording each VoIP stream’s source and destination

addresses to keep track of the number of VoIP sessions in existance. When another VoIP

session attempt begins that would cause the network to become overloaded, packets

from that session could be discarded, perhaps until another VoIP session ends. By

effectively limiting the number of VoIP sessions on the wireless network, it is possible

maintain VoIP performance and reserve some bandwidth for other types of traffic.
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7.1 Introduction

The main aim of this project was to research performance issues that exist in 802.11

networks with motivation to design and test enhancements to the way wireless networks

operate. Research was undertaken into the 802.11 protocol, the TCP/IP protocol and

Voice over IP technology, and serious performance bottlenecks were found. Through

extensive network simulation and an implementation of a prioritised packet scheduler,

the major issue of VoIP not coexisting with TCP traffic over wireless 802.11 networks

has been solved. This chapter is intended to highlight the major discoveries made in the

course of this project, along with proposed solutions to issues in 802.11 performance and

a critical analysis of the robustness of these solutions. The chapter closes by mentioning

certain shortcomings of the project undertaken, and makes mention of further work to

be undertaken in this area.

7.2 Establishment of Issues with 802.11 Networks

Several performance issues with 802.11 networks were found as a result of extensive

research. Many papers have been written on the performance issues due to the imperfect

implementation of the TCP protocol for wireless, and the difficulties faced in securing

a shared medium. The main issues with wireless 802.11 performance were found to be:

• A complete lack of QoS facilities existing for 802.11

• The inability for VoIP and TCP traffic to coexist

• Security issues, especially due to the weakness of WEP

Issues with security in 802.11 networks has been rectified for the most part, and were

not the main concern of this project. However, the inability for VoIP and TCP traffic

to coexist and the lack of QoS facilities for 802.11 networks were real challenges with no

complete solution. From research, it was found that the IEEE devoted a task group to

solve VoIP issues by introducing QoS mechanisms via the ‘e’ ammendment (approved
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late 2005). However, mainstream 802.11 devices are yet to fully adopt the new ‘e’

ammendment.

7.3 Current Research

Numerous methods and attempts have been made to solve the issue of the poor support

for real-time services and the inability for such services to coexist with other traffic

sources in 802.11 networks. Some efforts included:

• An implementation of token ring for 802.11

• Modifying the 802.11 protocol

• Using commercial VoIP access points such as MeruTM access points

Implementing a token ring protocol for 802.11 is a reasonable solution to the problems

VoIP has coexisting with external traffic sources where the number of wireless nodes is

low. However, the token must be passed between the access point and individual nodes

on the network in order for them to take control of the communications medium and

transmit their data. Upon closer inspection, this solution had major scalability issues

due to the overhead in passing the token to nodes that do not wish to transmit, and

possible delays if the token is ‘dropped’

Modification to the 802.11 protocol is the ideal solution to the QoS issues explored in

this report, which is exactly what the IEEE have proposed with their ‘e’ ammendment

to the protocol. Modifying the 802.11 MAC protocol however, removes compatibility

with the 802.11 standard (except for ammendments made by the IEEE), which leads

to compatibility issues. The author chose not to make modifications at the MAC layer

for these reasons and because significant performance increases may be had without

changing the way things work at the MAC level.

Commercialised AP’s especially designed for VoIP over wireless had impressive spec-

ifications, and advanced features such as handoff capability and call synchronisation.
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Meru’s enterprise access point was found to be an excellent solution for VoIP on 802.11

networks. Unfortunately, Meru access points are quite expensive which limits their use

primarily for business users. Although being a viable solution to the QoS problem for

VoIP, it did not cater for existing wireless infrastructure.

Other researchers suggested dedicating networks to VoIP in order to have good QoS

for voice calls and maintain a efficient data network. Of course, this doesn’t actually

solve the original problem. In fact, it sidesteps the problem at hand by suggesting the

use of financial resources to add more network infrastructure. This solution does not

attempt to effectively utilise existing wireless networking infrastructure that may be in

place.

7.4 Verifying Issues via Simulation

Using the NS-2 network simulator, the existance of performance issues in 802.11 net-

works was verified. The ‘dedicated’ voice capacities for various 802.11 configurations

were tested, with the simulation results agreeing with theoretical capacity calculations

to a large extent. The simulations did not produce the exact results calculated, with

discreptancies being worse for the older 802.11b networks. Generally simulation results

were within 12% of calculated capacity, but differed by as much as 20%. Likely causes

of these discreptancies were suggested to be:

• Limitations of the network model used in NS-2

• Errors due to bugs in the NS-2 simulator’s wireless implementations

• Collisions and packet loss due to corruption, which was not accounted for in the

access point capacity calculations

Despite the inconsistencies between the theoretical capacity calcuations of 802.11 access

point call capacity and simulated call capacity, the results were perceived to be adequate

reflections of the performance of actual 802.11 networks. The actual call capacities of
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802.11 access points found in simulation was deemed less important than the percentage

increases obtained via changes to the way 802.11 wireless networks handle VoIP traffic.

7.5 Determining Solutions to 802.11 Issues

From network simulation, various issues with the performance of VoIP on 802.11 net-

works were exposed, validating the performance issues discovered via research. The

major issues were the low VoIP call capacity of 802.11 access points, (especially when

compared to the theoretical capacity), and the intolerance of other traffic sources by

VoIP. Wireless 802.11a/g access points have enough raw bandwidth to support (in prin-

ciple) thousands of VoIP connections according to capacity calcuations made in this

project. However, a stock 802.11a/g access point can only support about 90 simul-

taneous VoIP connections (in the absence of external traffic sources) out of the box.

The QoS contractual constrains of <1% packet loss and <1% of packets arriving with

less than 25 ms variation in delay for VoIP sessions was not possible in simulation with

the addition of a TCP traffic source. Although the packet loss could be kept below

<1% on average, packet loss ‘surged’ to several times this threshold occasionally as the

TCP traffic source attempted to increase its output.

After numerous network simulations and extensive research into 802.11 networks, sev-

eral configuration changes were discovered that could significantly increase the per-

formance of VoIP sessions over wireless 802.11 networks. Configurational factors that

influenced the performance of VoIP over wireless were:

• Decreasing MTU to facilitate the flow of smaller packets

• Correct setting of RTS-CTS threshold

• Choice of VoIP codec depending on network

• Choice of wireless network type (802.11g being the clear winner)
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However, in order to enable VoIP to coexist with other traffic sources, network compo-

nents of the NS-2 network simulator had to be modified. A prioritised packet scheduler

was developed to meet this need, complete with multicasting packets to reduce overhead

due to the (802.11 ACK)

7.6 Development of a Prioritised Packet Scheduler

By developing new network components for the NS-2 network simulator, it was possible

to implement a priority queuing mechanism for VoIP packets on an 802.11 network.

This was accomplished by creating VoIP traffic type, derived from the UDP class in

the NS-2 sources, and writing a queue that favours the flow of this traffic. The ability

to use multicast packets was also incorporated into the prioritised packet scheduler to

enable larger peformance increases.

In simulation, the prioritised packet scheduler allowed VoIP to coexist with TCP traffic

up to the call capacity limit of the access point. An attractive feature of the prioritised

packet scheduler was that the performance gains for VoIP traffic was not at the expense

of TCP throughput. That is to say, with 10 VoIP connections and a TCP traffic source,

the TCP throughput is identical whether the prioritised packet scheduler is used or not

(so long as the number of VoIP connections does not meet or exceed the call capacity

of the access point found in simulation).

Multicasting provided significant capacity improvements just by itself. The increase in

call capacity realised by exploiting multicast packets varied according to the network

type used. Performance increases measured in simulation were between 25-40 % by

using muticast packets. Although to take advantage of multicast packets for VoIP on

a wireless network in this fashion some added complexity at the VoIP client side is

required, the call capacity gained by are well worthwhile.

Setting the RTS-CTS threshold above the VoIP packet length has been found to ap-

proximately triple the access point VoIP call capacity in simulation. In the presence of
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TCP traffic, it was found to be best to disable the RTS / CTS mechanism entirely by

setting the RTS / CTS threshold to 2347 bytes. The only downside to disabling the

RTS / CTS mechanism on 802.11 wireless devices is that the network becomes suscep-

tible to the hidden and exposed node problems. In most cases, the hidden / exposed

node problems don’t become an issue due to carrier sensing and adjacent networks

being set to different channels.

7.7 Critical Evaluation of Solutions

Although the prioritised packet scheduler allowed VoIP sessions to coexist with other

traffic sources, the behaviour it exibits when nearing the access point call capacity could

be undesirable in some circumstances. The prioritised packet scheduler promotes VoIP

packets, perhaps a little to zealously. In the previous chapter, it was found that the

TCP throughput tapered off linearly with the number of VoIP sessions on an access

point using the prioritised packet scheduler. Another important result was the effect

of adding an extra VoIP session to an access point that was already at its call capacity

was to cause the VoIP packet loss to surge periodically at about 5%. Both of these

problems can be substancially solved by limiting the VoIP capacity at the access point

to a value somewhat below the call capacity.

Another downfall of the prioritised packet scheduler is its requirement for a specially

modified VoIP client in order to take advantage of multicast packets. The modifications

required for the VoIP client are quite small, and could be completed by an accomplished

C/C++ programmer in a matter of hours if the sources for the client were available

(and they may not be available). It was not neccessary to do this to test the prioritised

packet scheduler in network simulation, so it is possible that other challenges exist in

the test bed implementation.

Disabling the RTS / CTS mechanism causes the wireless network to become susceptible

to the hidden and exposed node problems. In the situations that this occurs, the

effectiveness of the 802.11 access points to carry voice traffic could be reduced due

to collisions on the network. In most cases, the hidden / exposed node problems
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don’t become an issue due to carrier sensing mechanism of 802.11 devices and physical

proximity of nodes to an access point. The exposed node problem can be removed by

ensuring adjacent networks are set up to use different channels.

7.8 Proposed Improvements for 802.11 Networks

All things considered, the overall recommendations to increase the peformance of VoIP

with wireless 802.11 networks are:

1. Disable RTS / CTS, or at least set it higher than VoIP packets if the majority of

wireless nodes are in close proximity to the access point to approximately triple

the VoIP call capacity per access point. This effectively triples the VoIP call

capacity of 802.11 access points, albeit with a small risk of the hidden / exposed

node problems occuring

2. Use a VoIP codec that is suited to the individual wireless network. If the end-

to-end delay is high (> 60 ms), it is better to trade some call capacity for lower

end-to-end delay using a VoIP codec with a small framing interval, such as G.729

(20 ms). On the other hand, if the network had low end-to-end latency (< 60

ms) extra call capacity could be obtained by using a codec with a larger framing

interval, such as G.723.1 (30 ms).

3. Set the MTU to a smaller value than the default 1500 bytes which provides the

best balance between VoIP performance and TCP throughput. An MTU of 960

marginally improved the consistency of the VoIP packet arrival.

4. Use a prioritised packet scheduler where VoIP traffic must coexist with TCP

traffic

5. Exploit the lower framing interval of 802.11 multicast packets for VoIP to increase

the call capacity of access points between 25-40 %

6. If it is possible, better performance can be had using 802.11g compatible network-

ing equipment exclusively, and in non-protected mode. Whilst the performance

of 802.11a and 802.11 g is identical for unicast packets, 802.11g has a slightly
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shorter framing interval for multicast packets and is the clear winner for VoIP

with the prioitised packet scheduler solution.

7.9 Evaluation of Performance on a Wireless Networking

Test Bed

Unfortunately, time did not permit the completion of the final objective in this project.

As a result, the prioritised packet scheduler has not yet been trialled on a wireless net-

working testbed. It is possible that testing the prioritised packet scheduler on a wireless

networking test bed may have brought other issues to light, or shown a performance

impact different to that found in simulation.

Regardless, the NS-2 network simulator is an internationally renouned for its accuracy

and performance as a simulation tool, which infers that success in simulation is very

likely to translate to success in practice in this case. The author considers that the

network simulations carried out gave good indications of the performance gains that

can be expected from a full implementation of the prioritised packet scheduler on a

wireless networking test bed.

7.10 Shortcomings & Further Work

Several areas of research in this area were neglected due to time constraints. Further

research in the area of issues with 802.11 wireless network performance could be to

explore other hurdles wireless networks face in more detail. Specific examples might

include:

• In wireless 802.11 networks, low TCP throughput relative to the connection speed

is a problem, according to Gast (2002). Apparently, the TCP throughput for

802.11 wireless networks is slightly more than half the bandwidth. There is obvi-

ously room for improvement in a system that is less than 50% efficient.
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• Current TCP alorithms are not entirely suited to for wireless networks, notably

the contention window algorithm. Wireless 802.11 networks have a higher bit

error rate than ethernets the TCP protocol was designed for. As a result, TCP

does not achieve optimal performance on a wireless network. Via modification to

TCP parameters / algorithms, it should be possible to tailor the TCP protocol

to its application on wireless networks and receive performance improvements as

a result.

• An access point capacity analysis for Variable BitRate (VBR) VoIP codecs was

one of the things missing from this project. VBR codecs get their name from

their ability to change the transmitting bit rate on the fly, notably transmitting

at very low bitrates in periods where the caller is not speaking. Despite the lower

bandwidth requirements of VoIP, its suitability on 802.11 networks is uncertain

due to its intermittent nature of transmission.

• The possibility using Cross-Layer Coupled Coding to improve the performance of

VoIP on congested 802.11 networks requires investigation. Cross-Layer coupled

coding allows communication between the network layer and the VoIP compres-

sion codec. The VoIP codec can get information about current network conditions

such as packet loss or delay, and request bandwidth based on these factors.

Dispite the shortcomings and limitations of this project, the majority of the objectives

were met to a high degree. Through this project, several performance issues in 802.11

wireless networks have been solved with substantial progress towards a physical im-

pementation of the prioritised packet scheduler. The findings and analyses conducted

in this project would provide a good basis for further research in the area of wireless

802.11 networks and voice over the internet protocol.
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B.1 Prioritised Scheduling Queue for Voip

#include "voip-priqueue.h"

static class VoipPriClass : public TclClass {
public:

VoipPriClass() : TclClass("Queue/VoipPri") {}
TclObject* create(int, const char*const*) {

return (new VoipPri);

}
} class voip pri;

10

void VoipPri::reset()

{
Queue::reset();

}

int

VoipPri::command(int argc, const char*const* argv)

{
if (argc==2) {

if (strcmp(argv[1], "printstats") == 0) { 20

print summarystats();

return (TCL OK);

}
if (strcmp(argv[1], "shrink-queue") == 0) {

shrink queue();

return (TCL OK);

}
}
if (argc == 3) {

if (!strcmp(argv[1], "packetqueue-attach")) { 30

delete q ;

if (!(q = (PacketQueue*) TclObject::lookup(argv[2])))

return (TCL ERROR);

else {
pq = q ;

return (TCL OK);

}
}
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}
return Queue::command(argc, argv); 40

}

/*

* Priority queueing

*/

void VoipPri::enque(Packet* p)

{
// If we care about statistics, update them

if (summarystats) {
Queue::updateStats(qib ?q −>byteLength():q −>length()); 50

}

// Update queue information

int qlimBytes = qlim * mean pktsize ;

if ((!qib && (q −>length() + 1) >= qlim ) | |
(qib && (q −>byteLength() + hdr cmn::access(p)−>size()) >= qlimBytes)){

// If the queue would overflow if we added this packet,

// check to see what type of packet we have. . .

struct hdr cmn *ch = HDR CMN(p); 60

// . . .if it isn’t a udp packet, just get rid of it. . .

if (ch−>ptype() != PT VOIP)

{
drop(p);

}

// . . .It’s a VoIP packet, look for something else to kill. . .

else {
70

int i = 0;

bool found lp = false;

while (i < q −>length() && !found lp)

{
Packet *pp = q −>lookup(i);

struct hdr cmn *ch = HDR CMN(pp);
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// . . . if we find one, kill it. . .

if (ch−>ptype() != PT VOIP) 80

{
q −>remove(pp);

drop(pp);

q −>enque(p);

found lp = true;

}
}

// If we tried our best, but could not find any low priority packets

// to get rid of to make room, we must discard the newest packet 90

if (!found lp) drop(p);

}
}

// The queue is not full, & this is a voip packet, enque with priority

else

{
q −>enque(p);

// Sort queue, VoIP packets in front of TCP packets. 100

struct hdr cmn *ch = HDR CMN(p);

if (ch−>ptype() == PT VOIP)

{
// search the queue, looking for the first non-critical packet

int i=0;

while (i < q −>length())

{
Packet* pp = q −>lookup(i);

struct hdr cmn *ch = HDR CMN(pp );

110

// if we find one, pull it off & put at the end of the line

if (ch −>ptype() != PT VOIP)

{
Packet oldpack = *pp ;

q −>remove(pp );

q −>enque(pp );

}
i++;
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}
} 120

}
}

//AG if queue size changes, we drop excessive packets. . .

void VoipPri::shrink queue()

{
int qlimBytes = qlim * mean pktsize ;

if (debug )

printf("shrink-queue: time %5.2f qlen %d, qlim %d\n",

Scheduler::instance().clock(), 130

q −>length(), qlim );

while ((!qib && q −>length() > qlim ) | |
(qib && q −>byteLength() > qlimBytes))

{
Packet *pp = q −>tail();

q −>remove(pp);

drop(pp);

}
}

140

Packet* VoipPri::deque()

{
if (summarystats && &Scheduler::instance() != NULL) {

Queue::updateStats(qib ?q −>byteLength():q −>length());

}
return q −>deque();

}

void VoipPri::print summarystats()

{ 150

//double now = Scheduler::instance().clock();

printf("True average queue: %5.3f", true ave );

if (qib )

printf(" (in bytes)");

printf(" time: %5.3f\n", total time );

}
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#ifndef ns voip priq h

#define ns voip priq h

#include <string.h>

#include "queue.h"

#include "config.h"

/*

* A priority based queue for increasing the call capacity of 802.11 access pts

*/ 10

class VoipPri : public Queue {
public:

VoipPri() {
q = new PacketQueue;

pq = q ;

bind bool("summarystats_", &summarystats);

bind bool("queue_in_bytes_", &qib ); // boolean: q in bytes?

bind("mean_pktsize_", &mean pktsize );

}
˜VoipPri() { 20

delete q ;

}
protected:

void reset();

int command(int argc, const char*const* argv);

void enque(Packet*);

Packet* deque();

void shrink queue(); // To shrink queue and drop excessive packets.

PacketQueue *q ; /* underlying FIFO queue */ 30

int summarystats;

void print summarystats();

int qib ; /* bool: queue measured in bytes */

int mean pktsize ; /* configured mean packet size in bytes */

};

#endif
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B.2 Voice Over Internet Protocol Agent

/*

* VoIP Agent, built from a modified ns-2.30 UDP agent, written to

* differentiate VoIP traffic from regular UDP traffic

*

*

*

*/

#include "voip.h" 10

#include "rtp.h"

#include "random.h"

#include "address.h"

#include "ip.h"

static class VoIPAgentClass : public TclClass {
public:

VoIPAgentClass() : TclClass("Agent/VoIP") {}
TclObject* create(int, const char*const*) { 20

return (new VoIPAgent());

}
} class VoIP agent;

VoIPAgent::VoIPAgent() : Agent(PT VOIP), seqno (−1)

{
bind("packetSize_", &size );

}

VoIPAgent::VoIPAgent(packet t type) : Agent(type) 30

{
bind("packetSize_", &size );

}

// put in timestamp and sequence number, even though VoIP doesn’t usually

// have one.

void VoIPAgent::sendmsg(int nbytes, AppData* data, const char* flags)

{
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Packet *p;

int n; 40

assert (size > 0);

n = nbytes / size ;

if (nbytes == −1) {
printf("Error: sendmsg() for VoIP should not be -1\n");

return;

}
50

// If they are sending data, then it must fit within a single packet.

if (data && nbytes > size ) {
printf("Error: data greater than maximum VoIP packet size\n");

return;

}

double local time = Scheduler::instance().clock();

while (n−− > 0) {
p = allocpkt();

hdr cmn::access(p)−>size() = size ; 60

hdr rtp* rh = hdr rtp::access(p);

rh−>flags() = 0;

rh−>seqno() = ++seqno ;

hdr cmn::access(p)−>timestamp() =

(u int32 t)(SAMPLERATE*local time);

// Send all voip packets to broadcast address to avoid 802.11 ack

hdr ip* iph = hdr ip::access(p);

iph−>dst = IP BROADCAST;

70

if (flags && (0 ==strcmp(flags, "NEW_BURST")))

rh−>flags() |= RTP M;

p−>setdata(data);

target −>recv(p);

}
n = nbytes % size ;

if (n > 0) {
p = allocpkt();
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hdr cmn::access(p)−>size() = n;

hdr rtp* rh = hdr rtp::access(p); 80

rh−>flags() = 0;

rh−>seqno() = ++seqno ;

hdr cmn::access(p)−>timestamp() =

(u int32 t)(SAMPLERATE*local time);

// add “beginning of talkspurt” labels (tcl/ex/test-rcvr.tcl)

if (flags && (0 == strcmp(flags, "NEW_BURST")))

rh−>flags() |= RTP M;

p−>setdata(data);

target −>recv(p);

} 90

idle();

}
void VoIPAgent::recv(Packet* pkt, Handler*)

{
if (app ) {

// If an application is attached, pass the data to the app

hdr cmn* h = hdr cmn::access(pkt);

app −>process data(h−>size(), pkt−>userdata());

} else if (pkt−>userdata() && pkt−>userdata()−>type() == PACKET DATA) {
// otherwise if it’s just PacketData, pass it to Tcl 100

//

// Note that a Tcl procedure Agent/VoIP recv {from data}
// needs to be defined. For example,

//

// Agent/VoIP instproc recv {from data} {puts data}

PacketData* data = (PacketData*)pkt−>userdata();

hdr ip* iph = hdr ip::access(pkt);

Tcl& tcl = Tcl::instance(); 110

tcl.evalf("%s process_data %d {%s}", name(),

iph−>src .addr >> Address::instance().NodeShift [1],

data−>data());

}
Packet::free(pkt);

}
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int VoIPAgent::command(int argc, const char*const* argv)

{ 120

if (argc == 4) {
if (strcmp(argv[1], "send") == 0) {

PacketData* data = new PacketData(1 + strlen(argv[3]));

strcpy((char*)data−>data(), argv[3]);

sendmsg(atoi(argv[2]), data);

return (TCL OK);

}
} else if (argc == 5) {

if (strcmp(argv[1], "sendmsg") == 0) {
PacketData* data = new PacketData(1 + strlen(argv[3])); 130

strcpy((char*)data−>data(), argv[3]);

sendmsg(atoi(argv[2]), data, argv[4]);

return (TCL OK);

}
}
return (Agent::command(argc, argv));

}
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#ifndef ns voipagent h

#define ns voipagent h

#include "agent.h"

#include "trafgen.h"

#include "packet.h"

#define SAMPLERATE 8000

#define RTP M 0x0080 // marker for significant events

10

class VoIPAgent : public Agent {
public:

VoIPAgent();

VoIPAgent(packet t);

virtual void sendmsg(int nbytes, const char *flags = 0)

{
sendmsg(nbytes, NULL, flags);

}
virtual void sendmsg(int nbytes, AppData* data, const char *flags = 0);

virtual void recv(Packet* pkt, Handler*); 20

virtual int command(int argc, const char*const* argv);

protected:

int seqno ;

};

#endif
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C.1 Initial Simulation Script

# File: initial.tcl

# Author: Benjamin Gray, except small sections taken from wired-and-wireless

# Purpose: Simulation of wired-cum-wireless topology to determine

# 802.11 access point capacities

#

# ==================================================

# Define options

# ==================================================

set opt(chan) Channel/WirelessChannel ;# channel type 10

set opt(prop) Propagation/TwoRayGround ;# radio−propagation model

set opt(netif) Phy/WirelessPhy ;# network interface type

set opt(mac) Mac/802 11 ;# MAC type

set opt(ifq) Queue/DropTail/PriQueue ;# interface queue type

set opt(ll) LL ;# link layer type

set opt(ant) Antenna/OmniAntenna ;# antenna model

set opt(ifqlen) 50 ;# max packet in ifq

set opt(nn) 200 ;# number of mobilenodes

set opt(adhocRouting) DSDV ;# routing protocol

20

set opt(cp) "" ;# cp file not used

set opt(sc) "" ;# node movement file.

set opt(x) 1000 ;# x coordinate of topology

set opt(y) 1000 ;# y coordinate of topology

set opt(seed) 0.0 ;# random seed

set opt(stop) 1000 ;# time to stop simulation

set opt(ftp1−start) 10.0

set opt(voip−start) 20.0 30

set num wired nodes 1

set pi 3.141592 ;# Used to place mobile nodes in a circle

;# surrounding the access point

# ==================================================

# MAC Parameters

# NB: These were modified for different access points
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# ==================================================

40

Mac/802 11 set SlotTime 0.000020 ;# 20us

Mac/802 11 set SIFS 0.000010 ;# 10us

Mac/802 11 set PreambleLength 144 ;# Long preamble

Mac/802 11 set PLCPHeaderLength 48 ;# 48 bits

Mac/802 11 set PLCPDataRate 1.0e6 ;# 1Mbps

Mac/802 11 set dataRate 54.0e6 ;# 22Mbps

Mac/802 11 set basicRate 1.0e6 ;# 1Mbps

Mac/802 11 set RTSThreshold 512 ;# No RTS for VoIP

# ================================================== 50

# check for boundary parameters and random seed

if { $opt(x) == 0 | | $opt(y) == 0 } {
puts "No X-Y boundary values given for wireless topology\n"

}
if {$opt(seed) > 0} {

puts "Seeding Random number generator with $opt(seed)\n"

ns−random $opt(seed)

}
60

# create simulator instance

set ns [new Simulator]

# ==================================================

# Colour Definitions (For coloured traces)

# ==================================================

# define color index

$ns color 0 blue

$ns color 1 red

$ns color 5 chocolate 70

$ns color 3 brown

$ns color 4 tan

$ns color 2 gold

$ns color 6 black

# ==================================================

# Hierachial Routing (ns-2.29 doesn’t directly support access points)

# ==================================================
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$ns node−config −addressType hierarchical 80

AddrParams set domain num 3 ;# number of domains

lappend cluster num 2 1 1 ;# number of clusters in each domain

AddrParams set cluster num $cluster num

lappend eilastlevel 1 1 2 1 ;# number of nodes in each cluster

AddrParams set nodes num $eilastlevel ;# of each domain

# ==================================================

# Set up simulation traces 90

# ==================================================

set tracefd [open simout.tr w]

set namtrace [open simout.nam w]

$ns trace−all $tracefd

$ns namtrace−all−wireless $namtrace $opt(x) $opt(y)

# Create topography object

set topo [new Topography]

100

# define topology

$topo load flatgrid $opt(x) $opt(y)

# create God

# 2 for HA and FA

create−god [expr $opt(nn) + 2]

# ==================================================

# Creating wired nodes

# ================================================== 110

set temp {0.0.0 0.1.0} ;# hierarchical addresses

for {set i 0} {$i < $num wired nodes} {incr i} {
set W($i) [$ns node [lindex $temp $i]]

}

# ==================================================
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# Configure for Access Points

# ================================================== 120

$ns node−config −mobileIP ON \
−adhocRouting $opt(adhocRouting) \
−llType $opt(ll) \
−macType $opt(mac) \
−ifqType $opt(ifq) \
−ifqLen $opt(ifqlen) \
−antType $opt(ant) \
−propType $opt(prop) \
−phyType $opt(netif) \ 130

−channelType $opt(chan) \
−topoInstance $topo \

−wiredRouting ON \
−agentTrace ON \

−routerTrace OFF \
−macTrace OFF

# ==================================================

# Create Home Agent and Foreign Agent

# ================================================== 140

set HA [$ns node 1.0.0]

set FA [$ns node 2.0.0]

$HA random−motion 0

$FA random−motion 0

# Position (fixed) for base-station nodes (HA & FA).

$HA set X 1.000000000000

$HA set Y 2.000000000000

$HA set Z 0.000000000000 150

$FA set X 650.000000000000

$FA set Y 600.000000000000

$FA set Z 0.000000000000

# ==================================================

# Create mobile nodes & associate with access points

# ==================================================



C.1 Initial Simulation Script Networking Simulation Scripts

$ns node−config −wiredRouting OFF 160

for { set i 0 } { $i < [expr $opt(nn) / 2] } { incr i } {
set MH($i) [$ns node 1.0.[expr $i + 1]]

set node ($i) $MH($i)

# Pretty traces

$node ($i) color "1"

set HAaddress [AddrParams addr2id [$HA node−addr]]

[$MH($i) set regagent ] set home agent $HAaddress

170

# Arrange the mobile nodes in circles around their parent AP

$MH($i) set Z 0.00

$MH($i) set Y [expr 100 + 50 * sin($i * 4 * $pi / $opt(nn))]

$MH($i) set X [expr 100 + 50 * cos($i * 4 * $pi / $opt(nn))]

}

for { set i [expr $opt(nn) / 2] } { $i < $opt(nn) } { incr i } {
set MH($i) [$ns node 2.0.[expr $i + 1]]

set node ($i) $MH($i)

set FAaddress [AddrParams addr2id [$FA node−addr]] 180

[$MH($i) set regagent ] set home agent $FAaddress

$MH($i) set Z 0.00

$MH($i) set Y [expr 600 + 50 * sin($i * 4 * $pi / $opt(nn))]

$MH($i) set X [expr 650 + 50 * cos($i * 4 * $pi / $opt(nn))]

}

# create links between wired and BaseStation nodes

#$ns duplex-link $W(0) $W(1) 5Mb 2ms DropTail

$ns duplex−link $HA $W(0) 1.5Mb 20ms DropTail 190

$ns duplex−link $FA $W(0) 1.5Mb 20ms DropTail

$ns duplex−link−op $W(0) $HA queuePos 0.5

$ns duplex−link−op $FA $W(0) queuePos 0.5

# Setup TCP connections between a wired node and the MobileHost

# if we are simulating with TCP
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#set tcp1 [new Agent/TCP]

#$tcp1 set class 1 200

#set sink1 [new Agent/TCPSink]

#$ns attach-agent $MH(12) $tcp1

#$ns attach-agent $MH(0) $sink1

#$ns connect $tcp1 $sink1

#set ftp1 [new Application/FTP]

#$ftp1 attach-agent $tcp1

#$ns at $opt(ftp1-start) “$ftp1 start”

# Set up voip sessions, increasing by 1 every 10 seconds

for {set i 0} {$i < [expr $opt(nn) / 10]} {incr i} { 210

set voipsrc1($i) [new Agent/UDP]

set voipsnk1($i) [new Agent/LossMonitor]

$ns attach−agent $MH($i) $voipsrc1($i)

$ns attach−agent $MH([expr $i + $opt(nn) / 10]) $voipsnk1($i)

$ns connect $voipsrc1($i) $voipsnk1($i)

set voipsrc2($i) [new Agent/UDP]

set voipsnk2($i) [new Agent/LossMonitor]

$ns attach−agent $MH([expr $i + $opt(nn) / 10]) $voipsrc2($i)

$ns attach−agent $MH($i) $voipsnk2($i) 220

$ns connect $voipsrc2($i) $voipsnk2($i)

set cbr1($i) [new Application/Traffic/CBR]

set cbr2($i) [new Application/Traffic/CBR]

# colour traffic

$voipsrc1($i) set class 2

$voipsrc2($i) set class 3

$ns color 1 orange

$ns color 2 green 230

$ns color 3 red

$cbr1($i) set packetSize 60 ;# Codec dependent

$cbr1($i) set interval 0.02 ;# Codec dependant

$cbr1($i) attach−agent $voipsrc1($i)

$ns at [expr $opt(voip−start) + $i * 1.005250] "$cbr1($i) start"

$cbr2($i) set packetSize 60
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$cbr2($i) set interval 0.02

$cbr2($i) attach−agent $voipsrc2($i) 240

$ns at [expr $opt(voip−start) + $i * 1.005250 + 0.005] "$cbr2($i) start"

}

# Define initial node position in nam

for {set i 0} {$i < $opt(nn)} {incr i} {
# 20 defines the node size in nam

$ns initial node pos $node ($i) 20

} 250

# Tell all nodes when the siulation ends

for {set i 0} {$i < $opt(nn) } {incr i} {
$ns at $opt(stop).0 "$node_($i) reset";

}
$ns at $opt(stop).0 "$HA reset";

$ns at $opt(stop).0 "$FA reset";

$ns at $opt(stop).0002 "puts \"NS EXITING. . .\" ; $ns_ halt"

$ns at $opt(stop).0001 "stop" 260

proc stop {} {
global ns tracefd namtrace

close $tracefd

close $namtrace

}

# some useful headers for tracefile

puts $tracefd "M 0.0 nn $opt(nn) x $opt(x) y $opt(y) rp \

$opt(adhocRouting)"

puts $tracefd "M 0.0 sc $opt(sc) cp $opt(cp) seed $opt(seed)" 270

puts $tracefd "M 0.0 prop $opt(prop) ant $opt(ant)"

puts "Starting Simulation. . ."

$ns run
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C.2 Simulation Script with Prioritised Scheduler

# File: withvoip-pq.tcl

# Author: Benjamin Gray, extensively modified from wired-and-wireless

# Purpose: Simulation of wired-cum-wireless with priority queue to determine

# the voice call capacity of 802.11 access point capacities

#

# ==================================================

# Define options

# ==================================================

set opt(chan) Channel/WirelessChannel ;# channel type 10

set opt(prop) Propagation/TwoRayGround ;# radio−propagation model

set opt(netif) Phy/WirelessPhy ;# network interface type

set opt(mac) Mac/802 11 ;# MAC type

set opt(ifq) Queue/DropTail/PriQueue ;# interface queue type

set opt(ll) LL ;# link layer type

set opt(ant) Antenna/OmniAntenna ;# antenna model

set opt(ifqlen) 50 ;# max packet in ifq

set opt(nn) 200 ;# number of mobilenodes

set opt(adhocRouting) DSDV ;# routing protocol

20

set opt(cp) "" ;# cp file not used

set opt(sc) "" ;# node movement file.

set opt(x) 1000 ;# x coordinate of topology

set opt(y) 1000 ;# y coordinate of topology

set opt(seed) 0.0 ;# random seed

set opt(stop) 1000 ;# time to stop simulation

set opt(ftp1−start) 10.0

set opt(voip−start) 20.0 30

set num wired nodes 1

set pi 3.141592 ;# Used to place mobile nodes in a circle

;# surrounding the access point

# ==================================================

# MAC Parameters

# NB: These were modified for different access points
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# ==================================================

40

Mac/802 11 set SlotTime 0.000020 ;# 20us

Mac/802 11 set SIFS 0.000010 ;# 10us

Mac/802 11 set PreambleLength 144 ;# Long preamble

Mac/802 11 set PLCPHeaderLength 48 ;# 48 bits

Mac/802 11 set PLCPDataRate 1.0e6 ;# 1Mbps

Mac/802 11 set dataRate 54.0e6 ;# 54Mbps

Mac/802 11 set basicRate 1.0e6 ;# 1Mbps

Mac/802 11 set RTSThreshold 3000 ;# No RTS for VoIP

# ================================================== 50

# check for boundary parameters and random seed

if { $opt(x) == 0 | | $opt(y) == 0 } {
puts "No X-Y boundary values given for wireless topology\n"

}
if {$opt(seed) > 0} {

puts "Seeding Random number generator with $opt(seed)\n"

ns−random $opt(seed)

}
60

# create simulator instance

set ns [new Simulator]

# ==================================================

# Colour Definitions (For coloured traces)

# ==================================================

# define color index

$ns color 0 blue

$ns color 1 red

$ns color 5 chocolate 70

$ns color 3 brown

$ns color 4 tan

$ns color 2 gold

$ns color 6 black

# ==================================================

# Hierachial Routing (ns-2.29 doesn’t directly support access points)

# ==================================================
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$ns node−config −addressType hierarchical 80

AddrParams set domain num 3 ;# number of domains

lappend cluster num 2 1 1 ;# number of clusters in each domain

AddrParams set cluster num $cluster num

lappend eilastlevel 1 1 2 1 ;# number of nodes in each cluster

AddrParams set nodes num $eilastlevel ;# of each domain

# ==================================================

# Set up simulation traces 90

# ==================================================

set tracefd [open simout.tr w]

set namtrace [open simout.nam w]

$ns trace−all $tracefd

$ns namtrace−all−wireless $namtrace $opt(x) $opt(y)

# Create topography object

set topo [new Topography]

100

# define topology

$topo load flatgrid $opt(x) $opt(y)

# create God

# 2 for HA and FA

create−god [expr $opt(nn) + 2]

# ==================================================

# Creating wired nodes

# ================================================== 110

set temp {0.0.0 0.1.0} ;# hierarchical addresses

for {set i 0} {$i < $num wired nodes} {incr i} {
set W($i) [$ns node [lindex $temp $i]]

}

# ==================================================
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# Configure for Access Points

# ================================================== 120

$ns node−config −mobileIP ON \
−adhocRouting $opt(adhocRouting) \
−llType $opt(ll) \
−macType $opt(mac) \
−ifqType $opt(ifq) \
−ifqLen $opt(ifqlen) \
−antType $opt(ant) \
−propType $opt(prop) \
−phyType $opt(netif) \ 130

−channelType $opt(chan) \
−topoInstance $topo \

−wiredRouting ON \
−agentTrace ON \

−routerTrace OFF \
−macTrace OFF

# ==================================================

# Create Home Agent and Foreign Agent

# ================================================== 140

set HA [$ns node 1.0.0]

set FA [$ns node 2.0.0]

$HA random−motion 0

$FA random−motion 0

# Position (fixed) for base-station nodes (HA & FA).

$HA set X 1.000000000000

$HA set Y 2.000000000000

$HA set Z 0.000000000000 150

$FA set X 650.000000000000

$FA set Y 600.000000000000

$FA set Z 0.000000000000

# ==================================================

# Create mobile nodes & associate with access points

# ==================================================
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$ns node−config −wiredRouting OFF 160

for { set i 0 } { $i < [expr $opt(nn) / 2] } { incr i } {
set MH($i) [$ns node 1.0.[expr $i + 1]]

set node ($i) $MH($i)

# Pretty traces

$node ($i) color "1"

set HAaddress [AddrParams addr2id [$HA node−addr]]

[$MH($i) set regagent ] set home agent $HAaddress

170

# Arrange the mobile nodes in circles around their parent AP

$MH($i) set Z 0.00

$MH($i) set Y [expr 100 + 50 * sin($i * 4 * $pi / $opt(nn))]

$MH($i) set X [expr 100 + 50 * cos($i * 4 * $pi / $opt(nn))]

}

for { set i [expr $opt(nn) / 2] } { $i < $opt(nn) } { incr i } {
set MH($i) [$ns node 2.0.[expr $i + 1]]

set node ($i) $MH($i)

set FAaddress [AddrParams addr2id [$FA node−addr]] 180

[$MH($i) set regagent ] set home agent $FAaddress

$MH($i) set Z 0.00

$MH($i) set Y [expr 600 + 50 * sin($i * 4 * $pi / $opt(nn))]

$MH($i) set X [expr 650 + 50 * cos($i * 4 * $pi / $opt(nn))]

}

# create links between wired and BaseStation nodes

#$ns duplex-link $W(0) $W(1) 5Mb 2ms DropTail

$ns duplex−link $HA $W(0) 1.5Mb 20ms VoipPri 190

$ns duplex−link $FA $W(0) 1.5Mb 20ms VoipPri

$ns duplex−link−op $W(0) $HA queuePos 0.5

$ns duplex−link−op $FA $W(0) queuePos 0.5

# Setup TCP connections between a wired node and the MobileHost

# if we are simulating with TCP
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#set tcp1 [new Agent/TCP]

#$tcp1 set class 1 200

#set sink1 [new Agent/TCPSink]

#$ns attach-agent $MH(12) $tcp1

#$ns attach-agent $MH(0) $sink1

#$ns connect $tcp1 $sink1

#set ftp1 [new Application/FTP]

#$ftp1 attach-agent $tcp1

#$ns at $opt(ftp1-start) “$ftp1 start”

# Set up voip sessions, increasing by 1 every 10 seconds

for {set i 0} {$i < [expr $opt(nn) / 10]} {incr i} { 210

set voipsrc1($i) [new Agent/VOIP]

set voipsnk1($i) [new Agent/LossMonitor]

$ns attach−agent $MH($i) $voipsrc1($i)

$ns attach−agent $MH([expr $i + $opt(nn) / 10]) $voipsnk1($i)

$ns connect $voipsrc1($i) $voipsnk1($i)

set voipsrc2($i) [new Agent/VOIP]

set voipsnk2($i) [new Agent/LossMonitor]

$ns attach−agent $MH([expr $i + $opt(nn) / 10]) $voipsrc2($i)

$ns attach−agent $MH($i) $voipsnk2($i) 220

$ns connect $voipsrc2($i) $voipsnk2($i)

set cbr1($i) [new Application/Traffic/CBR]

set cbr2($i) [new Application/Traffic/CBR]

# colour traffic

$voipsrc1($i) set class 2

$voipsrc2($i) set class 3

$ns color 1 orange

$ns color 2 green 230

$ns color 3 red

$cbr1($i) set packetSize 60 ;# Codec dependent

$cbr1($i) set interval 0.02 ;# Codec dependant

$cbr1($i) attach−agent $voipsrc1($i)

$ns at [expr $opt(voip−start) + $i * 1.005250] "$cbr1($i) start"

$cbr2($i) set packetSize 60
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$cbr2($i) set interval 0.02

$cbr2($i) attach−agent $voipsrc2($i) 240

$ns at [expr $opt(voip−start) + $i * 1.005250 + 0.005] "$cbr2($i) start"

}

# Define initial node position in nam

for {set i 0} {$i < $opt(nn)} {incr i} {
# 20 defines the node size in nam

$ns initial node pos $node ($i) 20

} 250

# Tell all nodes when the siulation ends

for {set i 0} {$i < $opt(nn) } {incr i} {
$ns at $opt(stop).0 "$node_($i) reset";

}
$ns at $opt(stop).0 "$HA reset";

$ns at $opt(stop).0 "$FA reset";

$ns at $opt(stop).0002 "puts \"NS EXITING. . .\" ; $ns_ halt"

$ns at $opt(stop).0001 "stop" 260

proc stop {} {
global ns tracefd namtrace

close $tracefd

close $namtrace

}

# some useful headers for tracefile

puts $tracefd "M 0.0 nn $opt(nn) x $opt(x) y $opt(y) rp \

$opt(adhocRouting)"

puts $tracefd "M 0.0 sc $opt(sc) cp $opt(cp) seed $opt(seed)" 270

puts $tracefd "M 0.0 prop $opt(prop) ant $opt(ant)"

puts "Starting Simulation. . ."

$ns run


