
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Remote Access Laboratory Design and Installation

A dissertation submitted by

Keith Dickmann

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems)/Bachelor of

Information Technology (Applied Computer Science)

Submitted: October, 2013

Abstract

The university of Southern Queensland (USQ) employs remote access laboratories

(RAL) to allow external students to perform practical experiments remotely without

the need to travel to USQ to perform these experiments on campus. Many topics require

practical experiments as part of their learning experience. One such topic is computer

networking. This dissertation details the research, design and implementation of a

networking specific remote access laboratory.

The concepts of a remote access laboratory and several existing technologies were re-

searched. Based on this research and the existing practical networking course at USQ

the requirements for a networking lab were created an analysed. From this a design was

created which comprised of multiple virtual machines, a web interface, a configurable

switch, and a program written to supervise the lab. This design was then implemented

and tested.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineer-

ing & Sciences, and the staff of the University of Southern Queensland, do not accept

any responsibility for the truth, accuracy or completeness of material contained within

or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Health,

Engineering & Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Executive Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Keith Dickmann

0050101371

Signature

Date

Contents

Abstract i

List of Figures xi

List of Tables xiii

Nomenclature xiv

Chapter 1 Introduction 1

1.1 Overview . 1

1.2 Project Aims . 2

1.3 Specific Objectives . 3

1.4 Thesis Outline . 3

Chapter 2 Background Information and Literature Review 5

2.1 Overview . 5

2.2 Online Remote Laboratories . 6

2.2.1 Time on Task . 6

2.2.2 Learning Style . 6

CONTENTS v

2.2.3 Prior Experience . 7

2.2.4 Social Interaction . 7

2.2.5 Perception of Hardware . 8

2.2.6 Building Blocks of a Remote Lab 8

2.3 Computer Networking Education . 9

2.4 Network Management . 10

2.5 Virtual Machines and Automated System Restoration 11

2.6 Delivery of Information . 11

2.7 Remote Access . 12

2.7.1 Remote Desktop Protocol . 12

2.7.2 Virtual Network Computing . 12

Chapter 3 System Design 14

3.1 Overview . 14

3.2 Requirements Analysis . 14

3.2.1 Requirements . 14

3.2.2 Physical Machines . 15

3.3 Laboratory Design . 17

3.3.1 Practical Experiments . 17

3.3.2 Operating System and Software Selection 19

3.3.3 Laboratory Network . 21

3.3.4 Web Interface and Lab Program 22

CONTENTS vi

3.4 Resource Requirements . 24

3.4.1 Hardware Requirements . 24

3.4.2 Software Requirements . 24

3.5 Risk Analysis . 25

3.6 Consequential Effects . 26

3.6.1 Sustainability . 26

3.6.2 Safety . 26

3.6.3 Ethical Considerations . 26

Chapter 4 Implementation 27

4.1 Overview . 27

4.2 Physical Machines . 27

4.3 Virtual Machines . 28

4.4 Web Interface . 29

4.4.1 Virtual Machine . 29

4.4.2 Source Code . 31

4.5 Lab Program . 33

4.5.1 DHCP server . 34

4.5.2 Communication with Web Interface 34

4.5.3 Starting and stopping virtual machines/DHCP server 35

4.5.4 Resetting the configurable switch 36

CONTENTS vii

Chapter 5 Testing 37

5.1 Overview . 37

5.2 Unit Testing . 37

5.2.1 Web Interface . 37

5.2.2 Physical Machines . 38

5.2.3 Virtual Machines . 39

5.3 Integration/System Testing . 39

5.4 Acceptance Testing . 40

5.4.1 Laboratory and Experiments . 40

5.5 Student Evaluation . 40

Chapter 6 Conclusion 42

6.1 Overview . 42

6.2 Further Work . 42

6.3 Summary . 42

References 44

Appendix A Project Specification 46

Appendix B Risk Assessment 48

B.1 Risks to the Student/User . 48

B.2 Risk to the Administrator/Developer . 49

B.3 Security Risks . 50

CONTENTS viii

Appendix C Supervisory Script Source Code 51

C.1 ral.lua . 52

C.2 tplink.ksc . 60

Appendix D Experiment Instructions 61

D.1 Exercise 1 - Static Ip Addresses . 62

D.1.1 Introduction . 62

D.1.2 Methodology . 62

D.2 Exercise 2 - Multiple networks and Routing 65

D.2.1 Introduction . 65

D.2.2 Methodology . 65

D.3 Exercise 3 - Packet Analysing . 68

D.3.1 Introduction . 68

D.3.2 Methodology . 68

D.4 Exercise 4 - Introduction to the Linux Operating System 69

D.4.1 Introduction . 69

D.4.2 The Linux Filesystem . 69

D.4.3 Linux Permissions . 71

D.4.4 Useful Linux Commands . 72

D.5 Exercise 5 - Windows and Linux Networking Tools 75

D.5.1 Introduction . 75

D.5.2 Windows Networking Tools . 75

CONTENTS ix

D.5.3 Linux Networking Tools . 78

D.5.4 Common Tools . 81

D.6 Exercise 6 - DHCP: Dynamic Host Configuration Protocol 83

D.6.1 Introduction . 83

D.6.2 Methodology . 83

D.7 Exercise 7 - Windows File Sharing: NetBIOS Protocol 86

D.7.1 Introduction . 86

D.7.2 Methodology . 86

D.8 Exercise 8 - Unix-Windows File Sharing - Samba 91

D.8.1 Introduction . 91

D.8.2 Methodology . 91

D.9 Exercise 9 - Unix File Sharing - NFS: Network Filesystem 94

D.9.1 Introduction . 94

D.9.2 Methodology . 94

D.10 Experiment 10 - Apache Web Server . 96

D.10.1 Introduction . 96

D.10.2 Methodology . 96

Appendix E Web Interface Source Code 100

E.1 Makefile . 101

E.2 defines.m4 . 101

E.3 feedback.m4 . 104

CONTENTS x

E.4 state.m4 . 107

E.5 exercises.m4 . 108

E.6 exercise1.m4 . 109

E.7 exercise2.m4 . 112

E.8 exercise3.m4 . 114

E.9 exercise4.m4 . 116

E.10 exercise5.m4 . 123

E.11 exercise6.m4 . 125

E.12 exercise7.m4 . 129

E.13 exercise8.m4 . 132

E.14 exercise9.m4 . 136

E.15 exercise10.m4 . 139

List of Figures

3.1 Lab Schematic . 23

4.1 Defining a xhtml header as a macro . 31

4.2 Variables used in the laboratory script 33

4.3 Expect script example . 35

4.4 Script used by c-kermit . 36

D.1 Configuring a network address under Windows 62

D.2 Configuring a network address under Linux 63

D.3 Checking IP Settings . 64

D.4 Sample output for wireshark . 69

D.5 sample output for ipconfig . 76

D.6 sample output for tracert . 77

D.7 sample output for nslookup . 77

D.8 ¿sample output for ifconfig . 78

D.9 sample output for tcpdump . 79

D.10 sample output for traceroute . 79

LIST OF FIGURES xii

D.11 sample output for host . 80

D.12 sample output for nmap . 80

D.13 sample output for ping . 81

D.14 sample output for netstat . 81

D.15 sample output for route . 82

D.16 Enable File and Folder Sharing . 87

D.17 Selecting users who are allowed access to shared folder 88

D.18 Advanced sharing options . 88

D.19 Connecting to shared folder . 89

List of Tables

3.1 Exercise Machine Requirements . 20

4.1 PC-VM-Switch ethernet connections . 28

4.2 Description of Source Code Files . 32

.

Nomenclature

CIFS Common Internet File System

CLI Command Line Interface

DHCP Dynamic Host Configuration Protocol

IP Internet Protocol

IT Information Technology

LAN Local Area Network

NFS Network File System

RAL Remote Access Laboratory

RDP Remote Desktop Protocol

SMB Server Message Block

SSH Secure Shell

VLAN Virtual Local Area Network

VM Virtual Machine

VNC Virtual Network Computing

VPN Virtual Private Network

VRDP VirtualBox Remote Display Protocol

Chapter 1

Introduction

1.1 Overview

The University of Southern Queensland provides Remote Access Laboratories (RAL) in

order to provide students with off-site access to practical and laboratory experiments.

Many courses require practical learning, using dedicated laboratories and equipment

with which students can use to perform experiments in order to gain hands-on practical

experience. However sometimes a student may not find the time to do the experiments,

or is absent due to conflicts or illness. There are also many external students throughout

the world who’s learning is provided solely online or through textbooks and have no

means to do the practical exercises. For example the former Faculty of Engineering

and Surveying approximately 70% of students were studying externally. In order to

complete the practical courses external students have to travel to USQ during the on-

campus holiday period to attend Residential Schools to perform the experiments. While

not meant to replace the Residential School system, Remote Access Labs do provide

students with the means to perform practical experiments remotely, supplementing

their on-campus practical classes, or providing them an opportunity to perform the

practical experiments and prepare for residential school activities.

One topic that requires practical experiments is computer networking. A computer

network is a communications network that groups a number of computers together

and allows them to exchange data and communicate with each other. Setting up a

computer network usually involves connecting multiple computers together and setting

1.2 Project Aims 2

up the computer’s operating system and software to use the network. These activities

involve physically interacting with the computers that are networked together and hence

makes up the practical learning part of computer networking. A Remote Access Lab

that provides this practical experience will be beneficial to students.

1.2 Project Aims

The aim of this project was to design and implement a remote access laboratory that

will allow students to learn the concepts of computer networking. The lab uses multiple

systems and multiple operating systems. One of the systems is configured to supervise

the network while the rest are set up to allow students to perform experiments on them,

as well as the software needed to perform those experiments. The software used is, as

much as possible, be made up of free/open source software, as this minimized the costs

involved in the implementation and maintenance of the laboratory. The computers

and the network configuration must be able to be manipulated by the students in

accordance with their experiments, and must be reset to a default state when needed.

The laboratory also provides a means to allow students to access the machines to

perform the experiments.

Experiments have also been created for the students to perform. The content of the

experiments is be based mainly upon the Electrical and Electronic Practice E course

at USQ, which is focused on operating systems and networking, as well as around the

activities that networking technicians and system administrators do in their jobs in the

real world. These Exercises aim to teach students the basics of computer networking,

how to configure networks on both Windows and Unix systems, how to use commonly

used Windows and Unix networking tools, and set up and configure network based

services.

The laboratory also provides a remote interface that is simple and easy for the students

to use. It must provide all the information for the exercises to the student in a uniform

and consistent manner. A simple and easy means for the student to connect to the

laboratory computers must also be included. The students should be able to manipulate

the laboratory computers as if they were physically sitting in front of them.

1.3 Specific Objectives 3

1.3 Specific Objectives

The Specific Objectives are as follows:

• Undertake a basic requirements analysis and establish potential experiments and

learning outcomes of the experiments.

• Undertake a comprehensive literature review covering all aspects of this project

including computer networking, network management, automatic system restora-

tion, and remote interfacing.

• Design a networked system consisting of a configurable switch and multiple virtual

systems, that allows a user to manipulate the network configuration and the

computers on the network, and can be reset to a known default state when needed.

• Build and test the system.

• Create a number of practical experiments that will enable students to comprehend

networking concepts and learn about network configuration.

• Trial the experiments and evaluate the practicality, ease of use, and reliability of

the system and make modifications as necessary.

• Undertake trials with students to evaluate the system and experiments.

• Document the project and write an academic dissertation on the research.

1.4 Thesis Outline

The outline of this thesis is as follows:

1. Introduction

2. Literature Review

3. System Design

4. Implementation

5. Testing

1.4 Thesis Outline 4

6. Conclusion

Chapter 2

Background Information and

Literature Review

2.1 Overview

Accessing a computer remotely has is not a new concept, in fact methods of accessing a

computer remotely have been around since networking has been invented. Configuring

network services on a remote machine is not a new concept either. Many of the worlds

servers are located in data centres and have little to no physical contact with its users.

Using remote labs is also an existing concept as USQ already has remote labs in place

for other topics.

This section looks at the concepts related to the design of a networking remote access

laboratory such as computer networking, operating systems, and system administration

software. The frequent use of these concepts and their learning value. The methods

used to manage a computer network. The software and methods available to automat-

ically restore remote computer systems, and the software and methods used to access

a computer remotely.

2.2 Online Remote Laboratories 6

2.2 Online Remote Laboratories

The use of the internet is becoming more prevalent in higher education. Many Ed-

ucational institutions are implementing or have implemented e-learning environments

as a way of teaching to a more geographically disperse audience (Gomes & Garca-

Zuba 2007). In all fields of engineering, laboratory test and experimentation are an es-

sential part of a student’s education, and are usually provided with hands-on laboratory

classes. However these classes to come at a cost of space, equipment, and maintenance

staff. Remote laboratories allows for remote access to experiments, equipment (physical

or simulated), ready all the time, without the restrictions associated with classes such

as personal time and location (Gomes & Bogosyan 2009). There are however different

factors that can contribute to the effectiveness of Remote Laboratories.

2.2.1 Time on Task

This is probably the biggest advantage remote labs have over traditional classes. Classes

usually have a limited time to perform the experiments and in some cases, the experi-

ment may span multiple classes. Much of the class is dedicated to learning about the

experiment, and knowledge may be forgotten between classes, therefore more time will

need to be spent on the experiment. The working speed of the student also comes into

play. With remote labs students get much more time to absorb information, and more

crucially, they are presented with the opportunity to re-perform experiments (Bright,

Lindsay, Lowe, Murray & Lui 2008).

2.2.2 Learning Style

The learning style of student plays a significant role in the students learning. Students

have different preferences as to how they are taught, which affects their motivation and

satisfaction in a learning environment (Bright et al. 2008). This factor can be both an

advantage and a disadvantage to a remote lab. The disadvantage is that some students

prefer to handle physical hardware work alongside peers, and seek teacher assistance,

which is unavailable in a remote environment. Another disadvantage is that if the

student at home they can be easily distracted. Some student however prefer working

alone, and using a remote environment can remove pressure off the student to complete

2.2 Online Remote Laboratories 7

the experiments, especially if they work at a slow pace, or intend to re-perform the

experiments.

2.2.3 Prior Experience

Students with prior experience tend to perform better in experiments than students who

are only starting to learn the subject material. This is significant as students without

prior knowledge tend to seek teacher assistance, which is not available in a remote

environment. The networking lab however is designed to give students experience

prior to performing the experiments in the lab classes.For example, students, who only

have little knowledge of Java programming will have problems performing experiments

and need special support of a tutor to learn Java programming. While students with

experience in programming will be able to work mostly independently (?).

2.2.4 Social Interaction

The biggest disadvantage of remote labs to the complete removal of social interactions

between students, and more crucially, between student and teacher. Laboratory classes

provide a learning environment where instructional support can be critical for the stu-

dent’s learning (Bright et al. 2008). With a remote lab there is no teaching support

and students have to learn the subject material by themselves, using provided informa-

tion, or by researching other sources of Information. However this can also be seen as

an advantage, especially where that the norm in some working environments (Bright

et al. 2008). Laboratory classes also allow students to work together on a common

task. While this is also possible with a remote lab it proves to be much more difficult.

This is because organising everyone to access the lab at the same time, and to organise

a common form of communication (e.g. VoIP, IRC, etc) can be very difficult, whilst

lab classes have a specific time and location allocated to it. The USQ’s lab, however,

will comprise of experiments that can be completed individually, and with the wealth

of information on the internet, lessens the need for peer interaction.

2.2 Online Remote Laboratories 8

2.2.5 Perception of Hardware

There can be a difference between students using physical versus using virtualised or

remote hardware. Lab classes give students the opportunity to handle, inspect and

experiment with the hardware directly, allowing for a more in-depth understanding of

the hardware used (Bright et al. 2008). It also allows for experiments where hardware

needs to be changed or modified. With remote labs this physical handling of hardware

is non-existent, so students just have to accept ”it’s there”, but this doesn’t give the

student an understanding of the hardware. Changing or modifying equipment is usually

virtualised, or not included at all, meaning that experiments where hardware is modified

are limited, or non-existent.

2.2.6 Building Blocks of a Remote Lab

A recent paper (Alves, Gericota, Silva & Alves 2007) outlines the basic building blocks

of a remote laboratory.

Experiment Server

The experiment server is what the student performs the experiment on. It is either

connected directly to the experiment equipment or is the experiment equipment.(Alves

et al. 2007). The networking lab makes use of four experiment servers, as required by

the experiments.

Media Server

The media server provides audio and visual feedback to the student from the remote

experiment. For some experiments the media server can be integrated into the experi-

ment server, or not used at all (Alves et al. 2007). The networking lab does not use a

media server as visual feedback will come from the experiment servers.

2.3 Computer Networking Education 9

Web Server

The web server gives the student with all the information required to perform the

exercises (Alves et al. 2007).

Access Server

An access server provides client with access to the lab (Alves et al. 2007). The USQ

remote access labs system provides this functionality.

Provider Server

The provider server provides access to a number of remote labs (Alves et al. 2007). The

USQ remote access labs system provides this functionality.

User Clients

User clients can either be students, performing experiments, or teachers, using the lab

as a demonstration (Alves et al. 2007).

2.3 Computer Networking Education

Computer networking is an integral component of Information Technology (IT) sys-

tems. With many organisations using their own computer networks and the increasing

dependency on the internet, the importance of computer networking cannot be un-

derstated. For this reason many IT, engineering and business courses teach computer

networking because it is heavily used in their areas (Sarkar 2006).

Computer Networking is becoming increasingly difficult to teach to students. Ten years

ago a single course was sufficient to teach a student about computer networking, in the

present day however an entire undergraduate program can be dedicated to computer

networking (Chang 2004). Computer networking is also an abstract topic to many

students. In a typical classroom they cannot see networking equipment and cannot

2.4 Network Management 10

visualise packets and protocols for themselves (Chang 2004). Even when students

actually learn networking concepts in the classroom, it does not mean that the student

has a complete understanding of the topic, nor does it mean that they are able to apply

those concepts in real life (Chen 2003).

Creating an actual computer network and performing experiments draws students closer

to computer networking principles and reinforces information that they have learned

in classes. For a small class in 2002 80 percnt of students strongly agreed that practi-

cal experiments helped them understand computer networking and helped the aquire

practical skill (Chang 2004).

There are many aspects to computer networking. The basics however usually cover

creating customized networks, network protocols, file permissions, and the setting up

of server applications (Sarkar 2006).

2.4 Network Management

A computer network like the one the lab will use typically involves many computers be-

hind a gateway. The lab will have to be managed somehow. A previous implementation

of a remote access lab consisted of a management station, several hosts, and several

routers and makes use of a management LAN to manage the lab machines (Yoo &

Hovis 2007). The main difference between this lab and one that will be created is that

users do not access the lab machines directly, they connect to a user interface which

in turn connects to the lab machines and configures them. In the USQ networking lab

students will be required to interface directly with the lab machines to perform the

experiments.

Another previous implementation makes use of a web server, virtual machines and

something called virtual patch panels. These patch panels (also called physical layer

switch) allows connections to be created without having physically plug and unplug

cables (Rigbey & Dark 2006). for the USQ lab this functionality can also be done using

the VLAN feature in a configurable switch. The previous implementation has students

connect to a web server, connect to the lab via a virtual private network (VPN),

and then connect to the virtual machines using remote desktop software (Rigbey &

Dark 2006). As access to USQ’s lab will be done through USQ’s remote access lab

2.5 Virtual Machines and Automated System Restoration 11

system the use of a VPN is not required, and the webserver will be running on a

machine that manages the lab.

2.5 Virtual Machines and Automated System Restoration

Automated system restoration refers to automatically restoring a computer system to

an earlier known state. While this can be done for both physical and virtual computer

systems, it is much easier to utilise virtual systems as the restoration actions can be

done in software.

The initial definition of a virtual machine is a software extraction that looks like a

computer system’s hardware (Rosenblum 2004). This definition is called hardware-

level virtualization. As the hardware is virtualised, the virtual machine will run all

software, operating system and applications written for the hardware being emulated

(Rosenblum 2004). Virtual machines are also isolated from other virtual machines as

well as the physical machine that they run on, ensuring that any problems with the

software to be run is contained purely within the virtual machine (Rosenblum 2004).

The two most popular virtual machine solutions are called VMWare Workstation/-

Player created by VMWare Inc. and VirtualBox developed by Oracle. Both software

packages are capable of emulating a full x86 based computer (i.e. a normal desktop pc).

Both software packages provide remote access and can be controlled by a command line

interface.

Oracle’s VirtualBox has a feature called immutable disks, which essentially means that

all disk writes are only saved temporarily and are discarded when the machine is re-

booted. It does this by directing all writes to a differencing image, which is reset every

time the machine is powered on (Oracle n.d.a). This means that the same hard disk

image can be used for multiple virtual machines.

2.6 Delivery of Information

Because students are accessing the laboratory remotely there must be a means to

provide the student with the information to use the laboratory. By far the most common

2.7 Remote Access 12

way of providing information on the internet is by using a web page. Other methods

include printing the information and sending it to the student or making the information

available as an e-book so the student can print out the information themselves.

2.7 Remote Access

There is a number of protocols and computer software available that allows remote

access. As one of the project aims is that the student is able to manipulate machines as

if they were in physically in front of them, remote access solutions are focused toward

’Remote Desktop’ solutions.

2.7.1 Remote Desktop Protocol

Remote Desktop Protocol (RDP) is a remote desktop protocol developed by Microsoft

for Windows platforms, although many third-party cross-platform implementations ex-

ist. RDP is the base protocol used in Microsoft’s remote desktop services (Microsoft

2012). Remote desktop services (and by extension RDP) allows for clients to connect

to a virtual destop on a remote Machine. A RDP server runs on the remote machine

and a RDP client runs on the user’s machine. The RDP Client connects to the RDP

server on the remote machine, and displays a virtual destop of the remote machine on

the user’s machine.

Oracle’s VirtualBox has a feature called VirtualBox Remote Display Protocol (VRDP)

via an extension to VirtualBox. VRDP is a backwards-compatible extension to Mi-

crosoft’s RDP (Oracle n.d.b), allowing any RDP client to access a VirtualBox virtual

machine remotely.

2.7.2 Virtual Network Computing

Virtual Network Computing (VNC) operates in a very similar way. VNC can also

utilise a mirror driver and it allows you to work on a remote computer as if you were

sitting in front of it (Hsiao 2009). But it can also create a virtual desktop that is not

associated with any physical display (Bezroukov, D, 2009). It also uses the client-server

2.7 Remote Access 13

model, but the software also runs on multiple platforms and in a web browser, this is

good for remotely connecting to and from multiple operating systems and a client can

even be embedded in a web browser (Bezroukov, D, 2009). Also a VNC session can be

shared so that multiple users can access it (Bezroukov, D, 2009), this allows one person

to use the remote desktop, and another person to supervise.

Chapter 3

System Design

3.1 Overview

This chapter covers the requirements analysis and the overall design of the remote

access laboratory.

3.2 Requirements Analysis

Based on the project aims and the concepts researched in the literature review, a

detailed requirements list was created. These influenced the overall design of the remote

access lab.

3.2.1 Requirements

Laboratory

• Contains a supervisory lab program which monitors the lab

• Contains a web interface which the user access to configure the lab.

• Contains multiple virtual machines which are configurable for the student to

perform experiments on

• A user configurable network which the user uses in the experiments

3.2 Requirements Analysis 15

Supervisory Lab Program

• Monitors virtual systems to ensure they are still running and are still accessible.

• Must not be accessible by users.

• Continuously checks whether the lab state has changed.

• Can start and stop virtual machines depending on the lab state.

• Can start and stop the DHCP server depending on the state.

• Can reset the configurable switch when the lab state is changed

• Can tell the web interface the current lab state.

3.2.2 Physical Machines

• Must be capable of running at least one virtual machine.

• Must contain enough ethernet ports to accommodate the virtual machines (two

per virtual machine).

• Must not be accessible by the user. This includes direct access or access through

any of the virtual machines.

• Must be able to communicate with each other (in the case of multiple physical

machines).

• One physical machine must have a DHCP server running on it.

• One physical machine must be running the lab program and the virtual machine

containing the web interface.

• The physical machine running the lab program must have a serial connection.

Virtual machines

The virtual machines fill the role of the ”media/experiment server” concept outlined

in the literature review.

3.2 Requirements Analysis 16

• Must be accessible using the remote access tools built into the virtualization

software

• Each virtual machine must have at least two ethernet ports

• The user should be able to configure the system as if he/she were in front of the

physical machine

• The virtual machines must have installed all the necessary tools the user needs

to configure the system in accordance with the experiments

• The virtual machines must be in a frozen state with all changes discarded when

the virtual machine is rebooted

• The system must comprise of windows and Linux machines

Web interface

The web interface fills the role of the ”web server” concept outlined in the literature

review.

• Runs in its own virtual machine.

• Allows users to select experiment.

• Provides instructions for the users to perform experiments.

• Allows users to set the state of the lab in accordance with the experiments.

• Communicates with the lab program when setting the state.

Experiments

• Based on ELE3915.

• Allows users to learn about the basics of computer networking.

• Allows users to create their own computer networks.

• Gives an introduction to the Linux Operating System.

3.3 Laboratory Design 17

• Allows users to learn about commonly used networking tools under Windows and

Linux

• Allows users so set up services on a computer network

3.3 Laboratory Design

This section describes the overall design of the remote access lab as well as details the

decisions made when designing the remote access lab.

3.3.1 Practical Experiments

The exercises performed in the lab have been derived from the exercises ELE3915

Electrical and Electronic Practice E, an existing practical course focused on computer

networking. The purpose of this is to have the lab provide the same learning experience

is the practice course. This will prepare students with the knowledge to perform the

exercises when they attend the practical class, as well as assist with their learning with

other networking classes. Due to the nature of the lab being remotely accessed, some

exercises have been omitted. These include installing Linux in a virtual machine and

using serial ports.

Using the ELE3915 Practice Book as a reference the following exercises have been

created.

Static IPs The student creates a small network and manually assign IP addresses to

each computer on the network.

Gateway and Routing The student will create multiple networks and create router

that will route packets between them.

Wireshark Packet Analyser The student will learn how to use Wireshark to cap-

ture and analyse packets.

Introduction to the Linux Operating System The student will be introduced to

the Linux operating system, including the filesystem, the command line interface

and commonly used Linux commands.

3.3 Laboratory Design 18

Windows and Linux CLI networking tools The student will learn about com-

monly used networking tools used under Linux and Windows.

DHCP Server The student will set up a Dynamic Host Configuration (DHCP) server.

Windows File Sharing - NetBIOS Protocol The student will allow files and fold-

ers to be shared over the network using Windows’ built in sharing functionality.

Unix-Windows File Sharing - Samba The student will allow files and folders to

be shared over between Windows and Linux computers by setting up a Samba

server.

Unix File Sharing - NFS: Network File System The student will share a folder

between two Linux Machines by setting up a NFS server.

Apache Web Server The student will set up a web server.

Information on the exercises (such as background information and instructions) have

also been derived from the ELE3915 Practical Book, as well as online instruction guides

and software manuals, and the information has been modified and updated as needed,

as well as adapted to suite a remote environment.

3.3 Laboratory Design 19

3.3.2 Operating System and Software Selection

To facilitate the ease of rebooting the computers the operating systems were installed

in virtual machines. The two most commonly used virtualization programs available

are VirtualBox and VMWare. VirtualBox will be used because it contains some very

important features that will assist in the operation of the remote access lab. The first

of this is the ability to freeze a hard drive image. This means than virtual machine

that uses a frozen hard drive image, will have its changes discarded when the machine

is turned off. The second feature is that VirutalBox has a built in RDP server (via

an extension pack) which allows for easy integration into the USQ Remote Access Lab

system, which also uses RDP. It also means that we do not have to run a RDP server

within the virtual machine, and the supervisory machine does not have to connect to

the virtual machine and check whether the RDP server is running. Instead it just has

to check whether the virtual machine itself is running. VMWare is not viable for this

lab as it does not support RDP nor can the hard drive image be frozen.

The experiments require using both Windows and Linux Operating Systems. As some

experiments require communication between two Windows machines and communica-

tion between two Linux machines, no less than four virtual machines are required. Two

machines are running Windows and two machines are running Linux. All the physi-

cal machines that the virtual machines that are running the virtual machines must be

running Linux. This is because the lab program that monitors the virtual machines

utilizes many Linux utilities to perform its task.

The distribution of Linux that is used in the remote access lab is CentOS version 6.4.

CentOS is a free Linux operating system based upon Red Hat Enterprise Linux with

all of the propriety components removed, leaving a completely free enterprise operating

system. As the remote access lab will be operating in an enterprise environment, where

stability, security and long term support are of the highest importance, an enterprise

operating system, which uses highly tested and stable software, is highly desirable.

Using an enterprise operating system ensures that the underlying software contains

a minimum amount of bugs, minimum breakage of software when updating, and less

downtime. Using a free operating system like CentOS removes the cost of purchasing

a propriety operating system (e.g. Red Hat Enterprise Linux, upon which CentOS is

based). The downside to this is that most free operating systems is the lack of real

3.3 Laboratory Design 20

m
at

ri
x
.p

d
f

S
h

ee
t1

P
a

ge
 1

E
x

e
rc

is
e

D
e

s
c

ri
p

ti
o

n
P

re
-R

e
q

u
is

it
e

M
1

-L
M

2
-W

M
3

-L
M

4
-W

C
G

F
-S

W
N

o
te

s

st
a

tic
 IP

N
o

 IP
, d

e
fa

u
lt

sw
itc

h
 s

ta
te

2
✓

✓

N
o

 IP
, d

e
fa

u
lt

sw
itc

h
 s

ta
te

2
✓

✓
✓

1
✓

L
in

u
x

F
S

/C
L

I
n

o
n

e
1
✓

W
in

d
o

w
s/

L
in

u
x

C
L

I
n

o
n

e
1
✓

✓

D
H

C
P

 S
e

rv
e

r
st

u
d

e
n

ts
 le

a
rn

 h
o

w
 to

 s
e

t u
p

 a
 D

H
C

P
 s

e
rv

e
r

N
o

 IP
, d

e
fa

u
lt

sw
itc

h
 s

ta
te

2
✓

✓

st
u

d
e

n
ts

 le
a

rn
 h

o
w

 to
 s

e
t u

p
 a

 w
in

d
o

w
s

sh
a

re
2

✓
✓

S
a

m
b

a
st

u
d

e
n

ts
 le

a
rn

 h
o

w
 to

 s
e

t u
p

 a
 s

a
m

b
a

 s
e

rv
e

r
2
✓

✓

N
F

S
2
✓

✓

A
p

a
ch

e
 S

e
rv

e
r

2
✓

-
-

-

M
in

S

ys
te

m
s

R

e
q

u
ir

e
d

st
u

d
e

n
ts

 le
a

rn
 h

o
w

 to
 a

p
p

ly
 a

n
 IP

 a
d

d
re

ss
 to

 a
n

 E
th

e
rn

e
t

in
te

rf
a

ce

ro
u

tin
g

a
n

d
 m

u
lti

p
le

n

e
tw

o
rk

s
st

u
d

e
n

ts
 le

a
rn

 h
o

w
 to

 s
e

t u
p

 m
u

lti
p

le
 n

e
tw

o
rk

s
a

n
d

 r
o

u
te

p

a
ck

e
ts

 b
e

tw
e

e
n

 th
e

m

W
ir

e
sh

a
rk

 p
ac

ke
t

a
n

al
ys

e
r

S
tu

d
e

n
ts

 le
a

rn
 h

o
w

 to
 a

n
a

ly
se

 p
a

ck
e

ts
 u

si
n

g
W

ir
e

sh
a

rk
IP

 a
ss

ig
n

e
d

, d
e

fa
u

lt
sw

itc
h

st

a
te

st
u

d
e

n
ts

 le
a

rn
 s

o
m

e
 b

a
si

c
U

n
ix

 c
o

n
ce

p
ts

, t
h

e
 F

H
S

, u
si

n
g

th
e

 te
rm

in
a

l.

st
u

d
e

n
ts

 le
a

rn
 h

o
w

 to
 u

se
 c

o
m

m
o

n
ly

 u
se

d
 c

o
m

m
a

n
d

 li
n

e

n
e

tw
o

rk
in

g
to

o
ls

 u
n

d
e

r
w

in
d

o
w

s
a

n
d

 L
in

u
x

W
in

d
o

w
n

s
a

ss
ig

n
s

a
n

 a
rb

itr
a

ry

IP
 w

h
e

n
 it

 d
o

e
s

n
o

t r
e

ce
iv

e
 a

n
 IP

fr

o
m

 a
 D

H
C

P
 s

e
rv

e
r,

th
is

 m
a

y
ca

u
se

 c
o

n
fu

si
o

n

N
e

tB
io

s
IP

 a
ss

ig
n

e
d

, d
e

fa
u

lt
sw

itc
h

st

a
te

IP
 a

ss
ig

n
e

d
, d

e
fa

u
lt

sw
itc

h

st
a

te

st
u

d
e

n
ts

 le
a

rn
 h

o
w

 to
 s

e
t u

p
 a

 n
fs

 s
e

rv
e

r
IP

 a
ss

ig
n

e
d

, d
e

fa
u

lt
sw

itc
h

st

a
te

st
u

d
e

n
ts

 le
a

rn
 h

o
w

 to
 s

e
t u

p
 a

n
 a

p
a

ch
e

 s
e

rv
e

r
IP

 a
ss

ig
n

e
d

, d
e

fa
u

lt
sw

itc
h

st

a
te

Table 3.1: Exercise Machine Requirements

3.3 Laboratory Design 21

time support. But as CentOS also derives its documentation from Red Hat’s there is

a lot of information to assist with support cases.

The version of Windows chosen was Windows 7 Professional as it was easiest version

to obtain at the time of creating the virtual machines.

The physical machines are running CentOS 6 as their operating system. A Linux based

operating system is used because a lot of the software that the lab program uses to

function (such as grep, lua, and expect) are only available or more readily available

under Linux.

The web server that is installed on the web interface is the Apache web server which is

highly popular web server used in many servers on the internet.

A terminal emulator is also required to communicate with the configurable switch

through a serial connection. In order to automate this communication a terminal emu-

lator with scripting functionality is required. C-Kermit, originally written by Columbia

University, provides this functionality.

3.3.3 Laboratory Network

The Laboratory consists of five virtual machines. One virtual machine runs the web

server which hosts the web site containing the instructions for the experiments. The

reason for this is simply that the remote access lab system at USQ is RDP based.

By putting the web-interface on a virtual machine, the student access both the web-

interface and the other virtual machines through the same system, instead of having

to access them separately (e.g. accessing web-interface through a separate web site).

The other virtual machines are used by the students to perform the experiments. The

virtual machines can run on any number of physical hosts, the only restriction is that the

virtual machine that is running the web server must be on the same physical machine

that is running the script.

One of the host machines running the virtual machines must have a DHCP server

installed and configured. This is because some of the experiments require that the

virtual machines have IP addresses assigned to them, and some experiments require

that the virtual machines do not have IP addresses. To make things easier the lab

3.3 Laboratory Design 22

program does not connect to the virtual machines and change IP addresses based on

the experiment. Instead it just starts and stops the DHCP server when required. It

will be up to the student to determine the IP address of a particular virtual machine

(this can also be part of the learning process). All host machines must be on the same

network and are able of communicating with each other to allow the lab program to

start and stop the virtual machines on any host machine.

All the ethernet interfaces of the virtual machines are bridged with the ethernet inter-

faces with the host, and the host ethernet interfaces will be connected to a configurable

switch. This is required as one of the experiments requires the configuration of a switch

to allow multiple networks. The bridging of the ethernet interfaces allows the virtual

machines to connect directly to the switch and also allows the DHCP server running

on one of the hosts to assign IP addresses to the virtual machines.

The Lab also utilises a configurable switch to virtualize creating multiple networks

through its VLAN functionality. There is only one exercise that requires creating mul-

tiple networks, but the switch needs to be set back to its default setting afterwards.

Resetting the configurable switch poses a problem as the student requires administra-

tors access to the switch in order to configure multiple virtual networks but they could

also change the settings to restrict access, which makes resetting the configurable switch

through its graphical user interface or configuring a SSH user impractical. To overcome

this manufacturers implement a console port on their switches. A console port provides

command line access to the switch regardless of what the current settings are on the

switch. The console port is designed to connect to a serial computer terminal which is

usually physically secured on location with the switch. In the lab however the console

port is connected to a serial port on the PC running the lab program and a terminal

emulator is used to communicate with the switch.

Taking into account the above requirements, the schematic in figure 4.1 was created.

3.3.4 Web Interface and Lab Program

The students will access the lab using USQ’s Remote Access Lab services. The student

will connect remotely to the machine running the web server which automatically starts

a web browser showing the web interface. Here they can set the state of the lab as

3.3 Laboratory Design 23

Figure 3.1: Lab Schematic

well as find the instructions for each of the experiments. When the user requests the

lab state to be changed, the web interface saves a file containing the new state of the

lab into a shared folder between the host and the virtual machine. The lab program

running on the host continually for this file and when it finds it, reads it, and then

resets the lab into new state.

The reason the web server is running in it’s own virtual machine is because the remote

access to the lab is RDP based. By putting the web server in a virtual machine students

can connect to the web interface just like they would connect to any of the configurable

machines, allowing for a consistent experience, rather than having students access the

web interface separately from the lab.

The laboratory program, which is simply a script, continuously checks the machines in

the lab to make sure that the currently required virtual machines and DHCP server are

running. The lab program is written an a popular, lightweight and extensible scripting

language called Lua. Writing the program as a script is preferable as it is not needed to

compile the source code and it is easier to execute other programs. Scripting languages

such as Lua also provide superior string handling abilities to compiled languages which

is used extensively within the lab program.

The lab program uses SSH to connect to the machines hosting the virtual machines and

is able to start, stop and check the virtual machines and DHCP server. OpesSSH is a

tried and true program used to open command line sessions on other machines. The lab

3.4 Resource Requirements 24

program also executes another script which which controls a serial connection to the

console port of the configurable switch, allowing it to be factory reset when required.

3.4 Resource Requirements

The following gives a detailed view of the hardware and software requirements for the

remote access lab based on the design detailed above.

3.4.1 Hardware Requirements

The hardware requirements for the project are as follows:

• Two desktop computers capable of running at least 2 virtual machines.

– A CPU powerful enough to run at least 2 virtual machines (preferably multi-

core with one core per VM).

– At least 3 GB of RAM (1 GB for each VM and a spare 1 GB for the host).

– Two ethernet cards/usb ethernet adaptors per VM.

• A configurable switch.

• A serial expansion card/usb serial adaptor.

• Network cables.

3.4.2 Software Requirements

The software requirements for the project are as follows:

• Each desktop machine must be running Linux as it’s host operating system.

• The desktop running the lab program must have Lua installed (to run the lab

program).

3.5 Risk Analysis 25

• The desktop running the lab program must have c-kermit installed (to connect

to the configurable switch).

• Each desktop must have OpenSSH installed and configured (to allow the lab

program to connect and check the status of the virtual machines).

• Each desktop must have VirtualBox installed.

• Windows Virtual Machine

– Running a Windows Operating system.

– Have Wireshark packet capture program installed.

• Linux Virtual Machine

– Running a Linux Operating system.

– Have Samba installed

– Have NFS installed

3.5 Risk Analysis

Being an autonomous system that is accessed remotely the remote access lab poses little

physical risk to operators and even lesser risk to users. The following outlines the risks

to people who operate and use the laboratory. The biggest risk involves security. Since

this lab will be connected to the USQ network there are security implications especially

as users will have full control over the certain parts of the lab. Steps need to be taken

to ensure that neither the lab computers or the USQ network become compromised by

a third party. For the details of the risk analysis see appendix B.

3.6 Consequential Effects 26

3.6 Consequential Effects

3.6.1 Sustainability

The only sustainability issues for the remote access laboratory is making sure that the

lab is maintained properly, hardware and software is up to date. Usage of off-the-shelf

products makes maintainability easy. Also because of the high availability of computer

hardware it is relatively simple to upgrade or replace parts. Smart design and making

the system modular can also ease the maintence and modifiability of the system to

include additional features or experiments should the administrator see fit.

3.6.2 Safety

All equipment used in implementing the lab are required to conform to Australian

and international standards. As all components of the lab are off-the-shelf products

they automatically come under mandatory standards compliance in order to be sold in

Australia.

As the system operates entirely online there is very little danger posed to the user other

than strain caused by using a computer.

3.6.3 Ethical Considerations

The main ethical consideration is that lab will be used to educate students. This entails

the inclusion of human beings in the research project. For this reason Human Ethics

Clearance will be required as per the guidelines set in the National Statement on Ethical

Conduct in Human Research 2007.

Chapter 4

Implementation

4.1 Overview

This section outlines the details of the implementation of the remote networking lab us-

ing the requirements and design. Two desktop PCs and a configurable switch have been

provided by USQ for the purpose of implementing the remote networking laboratory.

4.2 Physical Machines

Each PC was modified to include 5 ethernet adaptors as each PC hosts two of the virtual

machines that the student will perform experiments. Four of the ethernet interfaces

are connect to the configurable switch. The hard drives were then wiped and CentOS

6 was installed. Each PC had an OpenSSH server configured and restricted to key-

only authentication, and SSH keys were generated and given to the PC running the

lab program. Both machines also have VirtualBox installed on them. All the bridged

ethernet interfaces except the one the DHCP server is listening on, are configured to not

have any IP address assigned. This disallows any connection from the virtual machines

to the physical machines. The remaining ethernet interfaces are used by the student to

connect to the lab and connected to the USQ network. The physical machine running

the web interface and the lab program also had Lua, Expect, c-kermit and a DHCP

server installed. This machine was also connected directly to the configurable switch’s

console port.

4.3 Virtual Machines 28

4.3 Virtual Machines

There are five virtual machines in total in the lab: one for the web interface and four

for the student to experiment on. Of the four experiment machines two are running

CentOS and the other two are running Windows 7. Both operating systems are installed

with the default settings as well as any extra necessary software is installed as per the

experiment requirements. The virtual machines are named as follows: CentOS 6-1,

CentOS 6-2, Windows 7-1 and Windows 7-2. Each virtual machine is configured to

use one CPU core. Each of the Linux virtual machines are configured to use 512MB

of RAM while the two Windows virtual machines use 1GB of ram each. Each virtual

machine was given two ethernet interfaces and they were bridged to the ethernet ports

on the physical machine that were connected to the switch.

In order to easily identify which virtual machine is connected to which port on the

switch, connections were between each of the machines were organised and fixed.

Physical machine Virtual Machine Switch Port

PC1-eth1 CentOS 6-1-eth0 1

PC1-eth2 CentOS 6-1-eth1 2

PC1-eth3 CentOS 6-2-eth0 3

PC1-eth4 CentOS 6-2-eth1 4

PC2-eth1 Windows 7-1-LAN1 5

PC2-eth2 Windows 7-1-LAN2 6

PC2-eth3 Windows 7-2-LAN1 7

PC2-eth4 Windows 7-2-LAN2 8

Table 4.1: PC-VM-Switch ethernet connections

VirtualBox has a feature called immutable hard drives which means that the hard drive

image is frozen and any changes that are made are discarded. Every time the virtual

machine is run with an immutable hard drive image, a ”difference image” is created

that temporarily contains the changes made to the virtual machine, thus preserving

the original image. This is done automatically by VirtualBox. There are two hard

drive images used in the lab. One hard drive image contains a CentOS 6 installation

and is shared between the two Linux virtual machines. The two Windows virtual

machine likewise share a single hard drive image. When each operating system was

4.4 Web Interface 29

installed the hard drive image was not frozen attached to only one virtual machine.

After the operating system was installed, updated and had the necessary software

installed, the hard drive image was detached. The image was then made immutable

using VirtualBox’s media manager then reattached to the virtual machines that used

that image.

Whenever the virtual machine is update the hard drive images have to be detached

from their virtual machines, all difference images deleted (done via VirtualBox’s media

manager), the image set to normal (unfreezing it) then reattached to one of the virtual

machines. Once the virtual machine is updated the hard drive image can be made

immutable again.

VirtualBox also provides a RDP server via the Oracle VM VirtualBox Extension Pack,

and extension to VirtuasBox freely available from the VirtualBox website. The settings

for the RDP server are located within the display settings for each virtual machine.

The web interface is configured to use port 37000 on the first physical machine and

CentOS 6-1 and CentOS 6-2 use ports 37001 and 37002 respectively on the first phys-

ical machine. Windows 7-1 and Windows 7-2 are configured to use 37001 and 37002

respectively on the second physical machine. The physical machines have also had their

firewall’s configured to accept connections on these ports.

4.4 Web Interface

4.4.1 Virtual Machine

The web interface is simply a web server running in its own virtual machine with

a web browser connected to that web server. The virtual machine runs a cut down

version of CentOS (much of the user software is not installed) which is configured to

automatically run the web browser on boot. The web browser that CentOS comes

with by default is Mozilla Firefox. The apache web server was also installed on the

web interface’s virtual machine. In order to allow shared folders to be enabled on

the virtual machine, VirtualBox guest additions were installed on the virtual machine.

This however required additional software such as gcc, make and dkms which were also

installed. All software except the VirtualBox guest additions were installed through

4.4 Web Interface 30

CentOS’ package manager.

Mozilla Firefox has a ’kiosk mode’ extension installed to make the web browser full

screen as well as limit what the user is allowed to do with the web browser. The

extension is called mKiosk which is freely available on the internet and is configured

to automatically enter fullscreen mode and the menu bar is removed. The virtual

machine hosting the web interface is also configured to automatically log in. This is

done by adding the options AutomaticLogin=user and AutomaticLoginEnable=True

to the daemon section of /etc/gdm/custom.conf. The virtual machine is also configured

to start Firefox automatically after login. In order to protect the web interface from

being tampered and for easy maintenance the source files for the web interface are not

stored within the virtual machine. Instead they are stored on the host machine.

The web interface’s virtual machine has there folders shared with the host machine.

They are called: project, state and feedback and are located on the physical machine

in /home/user/shared/ and /media/ on the web interface’s virtual machine. All shared

folders are owned by the vbox group and the apache user has been made part of the

vbox group to allow it access to the shared folders. The user that the student runs the

web browser as is not part of the vbox group and therefore cannot access the shared

folders.

The project folder contains the source files for the web interface. It is configured

within VirtualBox to be read-only meaning that it can not be modified from the virtual

machine. Also the web interface can be modified easily be simply changing the source

files on the host machine without having to boot into the virtual machine. The project

folder is mapped to /media/sf project/ within the virtual machine and the apache server

in the virtual machine has been configured to use /media/sf project as it’s document

root.

The state folder is folder is used by both the web interface and the lab program to

communicate the current state of the lab between them. On the virtual machine the

shared folder is mapped to /media/sf state/. When the student sets a new state for

the lab the web interface writes a new file called state to to the state folder which is

read by the lab interface. The lab interface also writes a file called ”status” which is

read by the web server and displayed on the web interface.

4.4 Web Interface 31

The final folder called feedback is used by the web server to write any feedback the

student writes about the remote access lab. The feedback page will be passed the

exercise number for which exercise the feedback is for using PHP. The feedback for

each of the exercises is stored in their own text file in the feedback folder and named

to identify which exercise the feedback corresponds to (e.g. exercise1.txt). Each time

feedback is left by a student it is appended to the file corresponding with the respective

exercise. Each line of a feedback file corresponds to one student.

4.4.2 Source Code

All the source code for the web interface is written in xhtml and PHP functionality

is used to read, write and display the lab state as well as save the student feedback.

There is very little styling and the content is laid out in a consistent way that is easy for

the student to read. To make writing the source code easier a macro processor called

m4 was used. When using a macro processor you define a macro (or symbol) and its

associated text. When the macro processor is run on a text file it searches for those

macro and replaces them with their defined text. This is highly useful for things like

custom PHP functions, where you define a list of functions and simply put the macro

in the source code. This way the functions only have to be defined once and the macros

placed in all the source files, instead of having to copy the functions into every source

file.

define(‘XML_HEADER’, ‘<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">’)dnl

Figure 4.1: Defining a xhtml header as a macro

There are two folders associated with the source code for the web interface: project and

project build. The directory project build contains the source code before the macro

processor has processed. The macro processor m4 is then run over all these files and

output into the project folder. The resulting output is then used as the document

source for the web interface. To automate all this a makefile is used to automatically

run m4 on all file as well as copy and extra files (such as images) to the project folder.

Simply running the utility ”make” inside the project build folder will do this.

4.4 Web Interface 32

m4 macro processor file xhtml/PHP source file Description.

defines.m4 Contains PHP function definitions

as well as xhmtml header.

index.php Dummy file that redirects to exer-

cises.php.

exercises.m4 exercises.php Displays the server status and con-

tains the list of experiments and

feedback links.

state.m4 state.php Outputs the state of the lab to be

read by the lab program.

feedback.m4 feedback.php Feedback for for the exercises.

exercise1.m4 exercise1.php Exercise 1

exercise2.m4 exercise2.php Exercise 2

exercise3.m4 exercise3.php Exercise 3

exercise4.m4 exercise4.php Exercise 4

exercise5.m4 exercise5.php Exercise 5

exercise6.m4 exercise6.php Exercise 6

exercise7.m4 exercise7.php Exercise 7

exercise8.m4 exercise8.php Exercise 8

exercise9.m4 exercise9.php Exercise 9

exercise10.m4 exercise10.php Exercise 10

Table 4.2: Description of Source Code Files

The web page exercises.php displays a list of the exercises the student can perform as

well as feedback links for each exercise and also shows the current state of the lab.

Each exercise web page shows the required lab state need to perform the exercise as

well as a link to set the lab state. The link opens ”state.php” and passes it the required

state (in the form ”D1234” or similar). The PHP code then outputs this to the state

folder to be read by the web interface, and then the PHP function tells the web browser

redirects back to the exercise page.

4.5 Lab Program 33

4.5 Lab Program

The script is named ”ral.lua” and is simply run by passing it as an argument to the

lua interpreter (by running lua ral.lua). The actual laboratory script resides in /home-

/user/shared/lab/.

Several aspects of the lab such as the names of the virtual machines, their locations,

the directory containing state information, and the location of the DHCP server, were

implemented as variables in the lab script. This allows the virtual machines and DHCP

server to be located on any physical machine or if the IP address of a particular machine

changes. Simply change the variable containing the name of the virtual machine and

the IP address of the machine its sitting on within the script. This also allows the

names and locations of folders and files to be changed easily in the script in the event

the actual folders on the machines do change.

--predefined variables

VMMACHINES = {}

VMMACHINES[1] = {"127.0.0.1", "CentOS_6-1", "STOPPED"}

VMMACHINES[2] = {"127.0.0.1", "CentOS_6-2", "STOPPED"}

VMMACHINES[3] = {"10.1.0.228", "Windows_7-1", "STOPPED"}

VMMACHINES[4] = {"10.1.0.228", "Windows_7-2", "STOPPED"}

webip = "127.0.0.1"

webname = "WebServer"

quit = false

dhcpServer = "127.0.0.1"

labLanIp = "192.168.11.1"

tpScript = "tplink.ksc"

currentState = ""

switchTime = 0

stateFile = "/home/user/shared/state/state"

statusFile = "/home/user/shared/state/status"

errorLog = "/home/user/shared/lab/error"

--stateFile = "/var/www/state"

numMachines = 4

Figure 4.2: Variables used in the laboratory script

4.5 Lab Program 34

4.5.1 DHCP server

Since some experiments require the virtual machines to have IP addresses assigned

a simple DHCP server was used to automatically assign IP addresses to the virtual

machines. The DHCP server runs on the same physical machine that the lab script runs

on. It is configured to give IP addresses in the range of 192.168.11.2 to 192.168.11.10.

The physical machine has eth1 (the fist ethernet interface bridged with the virtual

machine) with a static IP address of 192.168.11.1 to facilitate the DHCP server. The

server is also configured to only listen on eth1 to make sure that the only requests come

from the virtual machines.

4.5.2 Communication with Web Interface

As stated above a shared folder is used to communicate between the web interface

and the lab program. When the use sets a new state within the lab the web server

will output a file called ”state” into the /media/sf state/folder on the web interface’s

virtual machine. On the host this folder’s path is /home/user/shared/state. The lab

program continually checks for this file and if it is detected open it, read the lab state

from the file, then deletes the file to avoid setting the state repeatedly. Whenever this

file appears it signifies that the state has changed and the lab program proceeds to

shutdown the DHCP server and all the virtual machines except the web interface.

The lab state is determined by five characters: ’D’, ’1’, ’2’, ’3’ and ’4’. These corre-

spond to the DHCP server, CentOS 6-1, CentOS 6-2, Windows 7-1 and Windows 7-2

respectively and must be present in the state file and separated by spaces. The lab

program reads a limited number of characters from the file, separate individual words

by spaces, puts them into an array, then scans through the array and checks whether

each element is a single character that matches ’D’, ’1’, ’2’, ’3’ or ’4’. Every other word

or character is ignored. The same format is used when communicating the current lab

status to the web interface. The lab program will continuously check the lab state and

output a file called ”status” to the state folder, which is read by the web server every

time the page is refreshed.

4.5 Lab Program 35

4.5.3 Starting and stopping virtual machines/DHCP server

The script is designed to be able to start and stop the DHCP server and the virtual

machines on any of the physical machines. In order to do that the script must be able

to remotely connect to any of the physical machines. An expect script was used to

provide this functionality. Expect is a program used to automate control of interactive

CLI applications by reading input and send output just like a human would using a

keyboard. The expect script allows for an automatic SSH session to a remote computer.

The following code is an example which will connect to a remote computer and start a

virtual machine.

set timeout 5

spawn ssh user@192.168.11.10\n

expect {

"*\]" {

send "DISPLAY=:0 vboxmanage startvm CentOS_6-1\n"

expect "*\]"

send "exit\n"

expect eof

exit 0

}

}so

exit 1

Figure 4.3: Expect script example

Using the string handling functionality in Lua the IP address and the name of the

virtual machine to be started can be changed to whatever is defined in the script and

Expect can be run multiple times, each with a new IP address and VM name. There

are multiple Expect scripts for different functionality. Expect can also take a string as

it’s script input, allowing for the Expect scripts to be embedded into the lab program.

Expect scripts are also used to check the lab state by looking through the process list of

the host machine (using the command line application ps) and looking for an entry for

the virtual machine that it’s currently checking (using the command line application

grep).

4.5 Lab Program 36

4.5.4 Resetting the configurable switch

A small script that can be read and executed by c-kermit is used to automatically

reset the configurable switch. This script opens a connection over a serial cable to the

configurable switch and uses the switch’s command line interface to initiate a factory

reset. The script is executed whenever the lab state changes. As the configurable switch

takes about thirty seconds to reset a timer has been written into the lab program in

order to avoid attempting to reset the configurable switch while it’s already being reset.

The script is called tpscript.ks and is located in the same folder as the laboratory script.

set line /dev/ttyS0

set flow-control none

set carrier-watch off

set speed 38400

lineout

input 5 TL-SG3216>

lineout enable

input 5 TL-SG3216#

lineout reset

input 5 (Y/N)

lineout y

exit

Figure 4.4: Script used by c-kermit

Chapter 5

Testing

5.1 Overview

This chapter describes how the networking remote access lab was tested as well as the

requirements needed to pass each test. As each port of the remote access lab was tested,

any errors that appeared during testing were fixed and the lab retested.

5.2 Unit Testing

The following shows what each component of the lab must be able to do when under-

going testing.

5.2.1 Web Interface

The virtual machine containing the web interface was run by itself. Communication

between the web interface and the lab program was simulated simply by writing a new

file to the shared directory. Likewise checking the output of the web interface (state,

feedback) was done by simply opening the shared folder and checking the files. The

following outlines the requirements for the web interface to pass testing.

• The web interface must allow students to choose an experiment

5.2 Unit Testing 38

• The web interface must store student feedback in the correct shared folder.

• The web interface must store feedback for each exercise in a separate file.

• Each file containing feedback must be properly named to differentiate between

exercises (e.g. exercise1.txt)

• The web interface must allow for easy navigation between is web pages.

• The web interface must correctly read the state of the lab from the ’state’ file in

the shared folder.

• The web interface must accurately show the current state of the lab.

• Each experiment must show the correct server requirements.

• The web interface must correctly set the new state of the lab based on the exper-

iment requirements.

• The web interface must accurately output the new state of the lab into the correct

shared folder.

• The content on the web interface must be laid out clearly and easy to comprehend.

• The experiments’ instructions must be clear and easy to follow.

5.2.2 Physical Machines

Testing the physical machines was simply done by checking that the required software

was install, configured and functioning properly.

• The hardware and software must meet the resource requirements.

• The physical machines must have SSH running and configured correctly to allow

the lab program to connect to any physical machine.

• SSH must be configured to only allow key-based authentication.

• The PC running the lab program must contain all the SSH authentication keys

of the other physical machines.

• The software of the physical machines must be easily upgradable.

5.3 Integration/System Testing 39

• The physical machine running the lab program must be connected to the config-

urable switch through a serial cable.

5.2.3 Virtual Machines

Testing the virtual machines was simply done by checking that the required software

was install, configured functioning properly.

• The virtual machines must have the software required to perform the experiments.

• The virtual machines must be configured properly in order to perform the exper-

iments.

• The virtual machines must to discard changes made to in when restarted.

• The virtual machines must be capable of being updated.

5.3 Integration/System Testing

This test covered the lab program, virtual machines, DHCP server, and web interface

together. Unfortunately the lab was not integrated with USQ’s remote access lab

service so integration testing did no cover that part of the lab.

• Setting the state in the web interface must be picked up by the lab program, and

the relevant machines must be started.

• The lab program must be able to correctly set the lab state

• The lab program must be able to parse the state information from the file output

by the web interface

• The lab program must be able to open a SSH session to other virtual machines

• The lab program must be able to start and stop virtual machines on any physical

machine

• The lab program must be able to start and stop a DHCP server on any machine.

5.4 Acceptance Testing 40

• The lab program must be able to tell the web interface the current state of the

lab.

• If the lab program crashes for any reason it must display an error message

• The lab program must output its current operation (checking state, starting stop-

ping machines, etc).

• The lab program must be able to reset the configurable switch

5.4 Acceptance Testing

Acceptance testing was done by performing the actual experiments on the remote access

lab.

5.4.1 Laboratory and Experiments

• The experiments must allow students to learn about computer networking.

• The experiments must be completable.

• The content of the experiments must be comparable to existing computer net-

working courses.

• The content of the experiments must be comparable to what is used in the in-

dustry.

5.5 Student Evaluation

Student evaluation is focused on:

• How usable is the web interface, can it be navigated easily?

• Are the experiments understandable/doable, what parts need clarification?

• What did the students learn from the exercises?

• What experiments would the student like to see extended.

5.5 Student Evaluation 41

• What experiments would the student like to see included.

Student feedback is important as the operating goal of the remote access lab is to

provide a practical learning experience. Information gathered from the students help

find parts of the lab which need modification and improvement. Unfortunately due to

time constraints student evaluation was not conducted. However all other tests outlined

above were completed.

Chapter 6

Conclusion

6.1 Overview

This chapter outlines the further work that can be continued on the remote access lab

outside the scope of this project.

6.2 Further Work

Unfortunately the lab wasn’t able to be integrated with the USQ’s remote access labs

or able to be tested with students. Future work for this project will prioritize these two

tasks. Further work after that entails receiving feedback from students on the lab and

further improving it based on that feedback. Other work would include extending the

existing experiments, adding additional experiments and possibly additional hardware

such as wifi adaptors.

6.3 Summary

Currently the University of Southern Queensland utilises practical courses in order to

give students practical experience in computer networking. However external students

have to travel to USQ within a limited time to attend this practical course as there has

been no means of giving external students practical experience remotely. In order to

6.3 Summary 43

provide a practical experience for computer networking to external students, a remote

access lab which give students this practical experience was created.

This dissertation detailed the design and implementation of a remote access laboratory

capable of allow students to learn about the concepts of computer networking. It is

hoped that the laboratory detailed in this dissertation will be put into use as part of the

curriculum at USQ. It is also hoped that this lab will be continue to be developed and

improved in the future, providing a practical learning experience for future students.

References

Alves, G., Gericota, M., Silva, J. & Alves, J. (2007), Large and small scale networks of

remote labs: a survey, in ‘Advances on remote laboratories and e-learning experi-

ences’, University of Deusto, Bilbao, pp. 15–34.

Andreas Bhne1, N. F. & Wagner, B. (2002), Self-directed Learning and Tutorial Assis-

tance in a Remote Laboratory, Interactive Computer Aided Learning Conference.

Australia, E. (2010), ‘Code of Ethics’, http://www.engineersaustralia.

org.au/sites/default/files/shado/About%20Us/Overview/Governance/

codeofethics2010.pdf.

Berzoukov, D. (2009), ‘VNC The Essential Sysadmin Tool’, http://www.

softpanorama.org/Xwindows/vnc.shtml.

Bright, C., Lindsay, E., Lowe, D., Murray, S. & Lui, D. (2008), Factors that impact

learning outcomes in Remote Laboratories, World Conference on Educational Mul-

timedia, Hypermedia and Telecommunications (EDMEDIA) 2008.

Chang, R. (2004), Teaching Computer Networking with the Help of Personal Computer

Networks, The Hong Kong Polytechnic University.

Chen, C. (2003), ‘A Constructivist Approach to Teaching: Implications in Teach-

ing Computer Networking’, Information Technology, Learning, and Performance

Journal 21(2).

Gomes, L. & Bogosyan, S. (2009), ‘Current Trends in Remote Laboratories’, IEEE

Transactions on Industrial Electronics 56(12), 4744.

Gomes, L. & Garca-Zuba, J. (2007), Preface, in ‘Advances on remote laboratories and

e-learning experiences’, University of Deusto, Bilbao, pp. 9–11.

http://www.engineersaustralia.org.au/sites/default/files/shado/About%20Us/Overview/Governance/codeofethics2010.pdf
http://www.engineersaustralia.org.au/sites/default/files/shado/About%20Us/Overview/Governance/codeofethics2010.pdf
http://www.engineersaustralia.org.au/sites/default/files/shado/About%20Us/Overview/Governance/codeofethics2010.pdf
http://www.softpanorama.org/Xwindows/vnc.shtml
http://www.softpanorama.org/Xwindows/vnc.shtml

REFERENCES 45

Hsiao, P. (2009), Virtual Remote Desktop - Implementation, Tatung University.

Hutchinson, D. & Bekkering, E. (2009), ‘Using Remote Desktop Applications in Edu-

cation’, Information Systems Education Journal 7(13).

Microsoft (2012), ‘Remote Desktop Services’, http://technet.microsoft.com/

library/hh831447.aspx.

Oracle (n.d.a), ‘VirtualBox - Chapter 5. Virtual Storage’, http://www.virtualbox.

org/manual/ch05.html.

Oracle (n.d.b), ‘VirtualBox - Chapter 7. Remote Virtual Machines’, http://www.

virtualbox.org/manual/ch07.html.

Rigbey, S. & Dark, M. (2006), Designing a Flexible, Multipurpose Remote Lab for

the IT Curriculum, SIGITE ’06 Proceedings of the 7th conference on Information

technology education.

Rosenblum, M. (2004), ‘The Reincarnation of Virtual Machines’, Queue - Virtual Ma-

chines 2(5), 34–40.

Sarkar, N. (2006), ‘Teaching Computer Networking Fundamentals Using Practical Lab-

oratory Exercises’, IEEE Transactions on Education 9(2).

Yoo, S. & Hovis, S. (2007), Remote Access Networking Laboratory, Middle Tennessee

State University.

http://technet.microsoft.com/library/hh831447.aspx
http://technet.microsoft.com/library/hh831447.aspx
http://www.virtualbox.org/manual/ch05.html
http://www.virtualbox.org/manual/ch05.html
http://www.virtualbox.org/manual/ch07.html
http://www.virtualbox.org/manual/ch07.html

Appendix A

Project Specification

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project
PROJECT SPECIFICATION

FOR: Keith DICKMANN

TOPIC: NETWORKING LABORATORY DESIGN AND INSTALLATION

SUPERVISORS: Alexander Kist

PROJECT AIM: To design and implement a Remote Access Laboratory (RAL), capable of
allowing external students to learn the basics of computer networking,
providing a hands-on practical learning experience while being completely
remote.

PROGRAMME: (Issue C, 26 March 2013)

1. Undertake a basic requirements analysis and establish potential experiments and learning outcomes of the
experiments.

2. Undertake a comprehensive literature review covering all aspects of this project including computer
networking, network management, automatic system restoration, and remote interfacing.

3. Design a networked system consisting of a configurable switch and multiple virtual systems, that allows a
user to manipulate the network configuration and the computers on the network, and can be reset to a known
default state when needed.

4. Build and test the system.

5. Create a number of practical experiments that will enable students to comprehend networking concepts
and learn about network configuration.

6. Trial the experiments and evaluate the practicality, ease of use, and reliability of the system and make
modifications as necessary.

7. Undertake trials with students to evaluate the system and experiments.

8. Document the project and write an academic dissertation on the research.

As Time Permits:

9. Modify the system to include more hardware, and allow multiple users access at the same time.

10. Include additional experiments which introduces other commonly used networking hardware.

11. Include additional experiments which introduce commonly used system administration tools.

AGREED: __________________(Student) __________________(Supervisor)

 ____ / ____ / ____ ____ / ____ / ____

Appendix B

Risk Assessment

The risk assessment is split into three parts:

• Risk to the Student/User

• Risk to the Administrator/Developer

• Security Risks

B.1 Risks to the Student/User

Hazard Description Repetitive stress injury using keyboard/mouse

Number of People 1

Parts of the Body hands

Injury Level low

Likelyhood low

Actions to Reduce Risk force the user to rest

B.2 Risk to the Administrator/Developer 49

B.2 Risk to the Administrator/Developer

Hazard Description Electrocution via short/faulty wiring

Number of People 1

Parts of the Body hands

Injury Level high

Likelyhood low

Actions to Reduce Risk keep equipment away from water, keep equipment discon-

nected from mains power when working on it

Hazard Description Injury from dropping equipment

Number of People up to 3

Parts of the Body legs, feet

Injury Level low, medium

Likelyhood low

Actions to Reduce Risk wear suitable clothing, minimizing chance that equipment

will fall

Hazard Description Cuts/abrasions from assembling/upgrading/maintaining com-

puters

Number of People 1

Parts of the Body hands, fingers

Injury Level low

B.3 Security Risks 50

Likelyhood low

Actions to Reduce Risk

B.3 Security Risks

Risk Description User tries to compromise the lab from the configurable computers

Actions to Reduce Risk Isolate the configurable machines from the physical ma-

chines as much as possible

Risk Description User tries to compromise using other techniques

Actions to Reduce Risk harden the lab as much as possible. Remove unneeded

programs, setup firewalls, etc.

Risk Description Unauthorised access

Actions to Reduce Risk Access will be restricted to USQ students who have been

granted RAL access. Use USQ student authentication.

Risk Description User tries to disrupt/damage configurable computers

Actions to Reduce Risk Make the configurable computers virtual and have them

reset

Risk Description User tries to disrupt/damage lab interface

Actions to Reduce Risk Isolate the lab interface from the rest of the lab as much

as possible.

Appendix C

Supervisory Script Source Code

C.1 ral.lua 52

C.1 ral.lua

-- explode(seperator, string)

function explode(d,p)

local t, ll

t={}

ll=0

if(p == nil) then return {} end

if(#p == 1) then return {p} end

while true do

l=string.find(p,d,ll,true) -- find the next d in the string

if l~=nil then -- if "not not" found then..

table.insert(t, string.sub(p,ll,l-1)) -- Save it in our array.

ll=l+1 -- save just after where we found it for searching next time.

else

table.insert(t, string.sub(p,ll)) -- Save what’s left in our array.

break -- Break at end, as it should be, according to the lua manual.

end

end

return t

end

--

--check whether a file exists

function fileExists(name)

local f=io.open(name,"r")

if f~=nil then io.close(f) return true else return false end

end

--

--check whether a virtual machine is running

function checkMachine(host, name)

expectScript = [[

set timeout 2

C.1 ral.lua 53

spawn ssh user@]]..host.."\n"..[[

expect {

"*\]" {

send "ps aux | grep \[V\]irtualBox | grep]]..name..[[\n"

expect {

"VirtualBox" {

expect {

"]]..name..[[" {

send "exit\n"

expect eof

exit 0

}

}

}

}

}

}

exit 1]]

os.execute("echo ’"..expectScript.."’ > expectScript")

return os.execute("expect expectScript && rm -rf expectScript")

--return os.execute("expect -c ’"..expectScript.."’")

end

--

function vboxmanage(host, name, action)

if action == "start"

then

arg = "startvm "..name

else

arg = "controlvm "..name.." poweroff"

end

expectScript = [[

set timeout 5

spawn ssh user@]]..host.."\n"..[[

expect {

C.1 ral.lua 54

"*\]" {

send "DISPLAY=:0 vboxmanage]]..arg..[[\n"

expect "*\]"

send "exit\n"

expect eof

exit 0

}

}

exit 1]]

return os.execute("expect -c ’"..expectScript.."’")

end

--

function checkdhcpd(host)

expectScript = [[

set timeout 2

spawn ssh user@]]..host.."\n"..[[

expect {

"*\]" {

send "ps aux | grep \[d\]hcpd\n"

expect {

"dhcpd" {

send "exit\n"

expect eof

exit 0

}

}

}

}

exit 1]]

os.execute("echo ’"..expectScript.."’ > expectScript")

return os.execute("expect expectScript && rm -rf expectScript")

--return os.execute("expect -c ’"..expectScript.."’")

end

C.1 ral.lua 55

--

function dhcpd(host, action)

expectScript = [[

set timeout 5

spawn ssh user@]]..host.."\n"..[[

expect {

"*\]" {

send "su -c \"/etc/rc.d/init.d/dhcpd]]..action..[[\"\n"

expect {

"Password:" {

send "raladmin\n"

expect "*\]"

send "exit\n"

expect eof

exit 0

}

}

}

}

exit 1]]

return os.execute("expect -c ’"..expectScript.."’")

end

--[[--

function checkExercise1()

print("checking exercise 1")

checkString = ""

if os.execute("ifconfig eth1 192.168.0.50") ~= 0

then

os.execute("echo ’Error: unable to set ip address to eth1 while checking exercise 1’ > "..errorLog)

end

local r = os.execute("nmap -O --max-os-tries 1 192.168.0.101 | grep Linux")

checkString = checkString..tostring(r).." Linux Machine with an IP of 192.168.0.101;"

local r = os.execute("nmap -O --max-os-tries 1 192.168.0.102 | grep Linux")

checkString = checkString..tostring(r).." Linux Machine with an IP of 192.168.0.102;"

C.1 ral.lua 56

local r = os.execute("nmap -O --max-os-tries 1 192.168.0.103 | grep Windows")

checkString = checkString..tostring(r).." Windows Machine with an IP of 192.168.0.103;"

local r = os.execute("nmap -O --max-os-tries 1 192.168.0.104 | grep Windows")

checkString = checkString..tostring(r).." Windows Machine with an IP of 192.168.0.104"

os.execute("echo ’"..checkString.."’ > "..checkDir.."exercise1")

end--]]

--

--program body

--predefined variables

VMMACHINES = {}

VMMACHINES[1] = {"127.0.0.1", "CentOS_6-1", "STOPPED"}

VMMACHINES[2] = {"127.0.0.1", "CentOS_6-2", "STOPPED"}

VMMACHINES[3] = {"10.1.0.228", "Windows_7-1", "STOPPED"}

VMMACHINES[4] = {"10.1.0.228", "Windows_7-2", "STOPPED"}

webip = "127.0.0.1"

webname = "WebServer"

quit = false

dhcpServer = "127.0.0.1"

labLanIp = "192.168.11.1"

tpScript = "tplink.ksc"

currentState = ""

switchTime = 0

--checkDir = "/home/user/shared/check/"

--checkFile = checkDir.."tocheck"

stateFile = "/home/user/shared/state/state"

statusFile = "/home/user/shared/state/status"

errorLog = "/home/user/shared/lab/error"

--stateFile = "/var/www/state"

numMachines = 4

--[[check for root user

if os.execute("whoami | grep root") ~= 0

then

print("this script mus be run as root")

C.1 ral.lua 57

os.exit()

end

--]]

os.execute("touch "..stateFile)

while 0 == 0

do

----check for new state

print("----------checking for new state----------")

if fileExists(stateFile) == true

then

file = io.open(stateFile, "r")

state = file:read(’*line’)

print("new state found: ", state)

stateArray = explode(" ", state)

file:close()

os.execute("rm -f "..stateFile)

print("\n")

print("----------stopping current state----------")

-- os.execute("rm -rf "..checkDir.."*")

----stop dhcp server

dhcpd(dhcpServer, "stop")

----stop virtual machines

for i = 1, numMachines

do

vboxmanage(VMMACHINES[i][1], VMMACHINES[i][2], "stop")

end

----reset switch

if os.time() - switchTime > 35

then

os.execute("kermit "..tpScript)

switchTime = os.time()

else

print("switch already in the process of resetting")

end

print("\n")

C.1 ral.lua 58

----start servers

print("----------setting new state----------")

-- os.execute("ifconfig eth1 "..labLanIp)

if table.getn(stateArray) ~= 0

then

for i = 1, table.getn(stateArray)

do

----dhcp server

if stateArray[i] == "D" then dhcpd(dhcpServer, "start")

----virtual machines

elseif stateArray[i] == "1" then vboxmanage(VMMACHINES[1][1], VMMACHINES[1][2], "start")

elseif stateArray[i] == "2" then vboxmanage(VMMACHINES[2][1], VMMACHINES[2][2], "start")

elseif stateArray[i] == "3" then vboxmanage(VMMACHINES[3][1], VMMACHINES[3][2], "start")

elseif stateArray[i] == "4" then vboxmanage(VMMACHINES[4][1], VMMACHINES[4][2], "start")

end

end

end

end

----check web server

print("----------checking web werver----------")

if checkMachine(webip, webname) ~= 0

then

print("--web server not running, starting..")

vboxmanage(webip, webname, "start")

end

----check lab state

print("----------checking current state----------")

currentState = ""

if table.getn(stateArray) ~= 0

then

for i = 1, table.getn(stateArray)

do

if stateArray[i] == "D"

then

print("----------checking DHCP server----------")

C.1 ral.lua 59

if checkdhcpd(dhcpServer) ~= 0

then

print("--dhcp not running, starting..")

dhcpd(dhcpServer, "start")

end

currentState = currentState.."D"

end

for j = 1, 4

do

if stateArray[i] == tostring(j)

then

print("----------checking virtual machine "..tostring(j).."----------")

if checkMachine(VMMACHINES[j][1], VMMACHINES[j][2]) ~= 0

then

print("--machine "..tostring(j).." not running, starting..")

vboxmanage(VMMACHINES[j][1], VMMACHINES[j][2], "start")

end

currentState = currentState..j

end

end

end

end

os.execute("echo ’"..currentState.."’ > "..statusFile)

--[[--check exercise feedback

print("----------checking exercise results----------")

if fileExists(checkFile) == true

then

file = io.open(checkFile, "r")

exercise = file:read(’*line’)

file:close()

os.execute("rm -f "..checkFile)

local exercise = exercise.sub(exercise, 1, 2);

if exercise == "1" then checkExercise1();

elseif exercise == "2" then checkExercise1();

elseif exercise == "5" then checkExercise1();

C.2 tplink.ksc 60

elseif exercise == "7" then checkExercise1();

elseif exercise == "8" then checkExercise1();

elseif exercise == "9" then checkExercise1();

elseif exercise == "10" then checkExercise1();

end

end

--]]

os.execute(’sleep 2s’)

end

C.2 tplink.ksc

set line /dev/ttyS0

set flow-control none

set carrier-watch off

set speed 38400

lineout

input 5 TL-SG3216>

lineout enable

input 5 TL-SG3216#

lineout reset

input 5 (Y/N)

lineout y

exit

Appendix D

Experiment Instructions

D.1 Exercise 1 - Static Ip Addresses 62

D.1 Exercise 1 - Static Ip Addresses

D.1.1 Introduction

In this Experiment you will create a small network of consisting of four computers.

You will be assigning each computer an IP address manually and then you will test the

network by making sure that each computer can connect to another.

D.1.2 Methodology

1 - To configure a Windows machine with a static IP first click on the network icon in

the system tray then select ’Open Network and Sharing Centre’ then ’Change Adapter

Settings’. Alternatively type ’View Network Connections’ in the search area of the start

menu. Right-click the network interface you want to configure then select properties.

Select Internet Protocol Version 4 (TCP/IPv4) then click properties.

Figure D.1: Configuring a network address under Windows

2 - To Configure a Linux machine right-click the network icon in the system tray then

select ’Edit Connections’. Select eth0 from the list then select Edit. Select the IPv4

D.1 Exercise 1 - Static Ip Addresses 63

Tab and change Method to Manual

Figure D.2: Configuring a network address under Linux

3 - Configure the first ethernet interface of the machines to use the following IP ad-

dresses (leave the default gateway and DNS server blank for the moment). When

applying these settings to a Linux machine you may be asked for a password. The

password is password.

Linux 1 - Address: 192.168.0.101, Netmask: 225.225.225.0

Linux 2 - Address: 192.168.0.102, Netmask: 225.225.225.0

Windows 1 - Address: 192.168.0.103, Netmask: 225.225.225.0

Windows 2 - Address: 192.168.0.103, Netmask: 225.225.225.0

4 - Click OK/Apply to apply the new settings

5 - Confirm that each computers have the correct IP addresses. On Windows right-click

D.1 Exercise 1 - Static Ip Addresses 64

the network interface then select ’status’, then click ’details’. On Linux right-click the

network icon in the system tray then select ’Connection Information’ then select the

eth0 tab.

Figure D.3: Checking IP Settings

6 - Confirm that the computers can communicate with each other by running ping

<ip-address>, where <ip-address>is the address of the computer you want to send

the ICMP Packet to. Sending ICMP Packets with the ping is a great way to diagnose

whether a computer on the network is running or not.

D.2 Exercise 2 - Multiple networks and Routing 65

D.2 Exercise 2 - Multiple networks and Routing

D.2.1 Introduction

In this exercise you will create two networks and allow packets to be routed between

them. Packets can only be sent to computers on the same subnet. If a host doesn’t

know an IP address, it either sends it to a specified host depending on the routing

table, or drops it. The routing table is a table that stores information on where packets

are meant to be sent depending on the packets destination. Each ’route’ contains a

destination (which can either be a network or a particular host) and a gateway (where

to send the packet meant for the destination). For example if you have a packet that

is meant to be sent to the IP address ¡code¿8.8.8.8¡/code¿, the operating system will

look through the routing table to see if there is an the IP address matches any of the

destination entries, if there is it will send the packet to the corresponding gateway.

D.2.2 Methodology

1 - Connect to Linux 1 and give it an IP address of 192.168.0.2 (either interface will be

fine).

2 - Open the web browser and type 192.168.0.1 into the address bar. This will allow

you to access the configurable switch. Select VLans from the menu on the side. Virtual

LAN (VLAN) allows you to break up the ports on the configurable switch into ”virtual

switches”. allowing you to create multiple networks on the same physical switch without

having to rewire connections or buy extra switches.

The virtual machines are connect to the configurable switch. The Following shows what

machines are connected to each port on the switch.

Linux 1 - eth0 - port 1

Linux 1 - eth1 - port 2

Linux 2 - eth0 - port 3

Linux 2 - eth1 - port 4

Windows 1 - Local Area Network 1 - port 5

Windows 1 - Local Area Network 2 - port 6

D.2 Exercise 2 - Multiple networks and Routing 66

Windows 2 - Local Area Network 1 - port 7

Windows 2 - Local Area Network 2 - port 8

2 - Create two VLANs and put Linux 1 on the first one, Linux 2 on the second one,

and Windows 1 on both VLANs by putting one ethernet port on the first VLAN.

3 - To use a windows machine as a router, a registry key has to be set. Type in regedit

in the windows start menu to bring it up in the menu. Then click it to run it. Locate the

key HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\services\Tcpip\Parameters.

Select IPEnableRouter and set it’s value to 1. For future reference you can enable ip

forwarding in Linux by setting /proc/sys/net/ipv4/ip forward to 1. To enable it

permanently change /etc/sysctl.conf and set net.ipv4.ip forward = 1, or add it

if it isn’t there.

4 - The first method of routing we will use is by setting a default route (also called a

default gateway). The routing table will have the entry network: 0.0.0.0, gateway:

<:address>. This means that all traffic (as denoted by the 0.0.0.0) is sent to the

gateway <address>. The default route is usually applied last in the routing table to

allow other routing rules to be applied (i.e. the default route is only used when other

routing rules do not match). Configure the ethernet interfaces of the machines to use

the following IP addresses (leave the default gateway and DNS server blank for the

moment).

Linux 1 - Address: 192.168.0.101, Netmask: 225.225.225.0, Gateway: 192.168.0.102

Linux 2 - Address: 192.168.5.101, Netmask: 225.225.225.0, Gateway: 192.168.5.102

Windows 1 - Address: 192.168.0.102, Netmask: 225.225.225.0

Windows 1 - Address: 192.168.5.102, Netmask: 225.225.225.0

As you can see Linux 1 will be on one network and Linux 2 will be on the other.

Windows 1 will be connected to both networks and will act as a gateway between

them. Make sure that each interface on Windows 1 is configured correctly (e.g the

interface that is on the same network as Linux 1 is on the same subnet as Linux 1).

5 - Test that the packets are routed properly by trying to ping Linux 1 from Linux 2

(or vice-versa). If done correctly it should be successful.

D.2 Exercise 2 - Multiple networks and Routing 67

6 - Now instead of setting a default route we are going to modify the routing table

directly.

Open a terminal on one of the Linux machines and type in route to display the routing

table. It should only show an entry for the default gateway but it may also show a

route for the network that the machine is on.

¡div¿¡img src=exercise5-12.png alt=”Sample output for netstat”/¿ ¡br/¿sample output

for route¡/div¿

7 - Now edit the Linux machines’ IP settings and remove the default gateway. You may

have to delete the entry and re-add the IP settings to be able to save the configuration.

You may also have to reconnect to the network in order to apply those settings. Just

click the network icon in the system tray and click on the name of the network to

reconnect it.

8 - Now open the terminal and log into root by typing su and using the password

password. Add a new route to the routing table by running route add net <destination>

netmask <netmask> gw <gateway>

Linux 1 - Destination: 192.168.5.0, Netmask: 225.225.225.0, Gateway: 192.168.0.102

Linux 2 - Destination: 192.168.0.0, Netmask: 225.225.225.0, Gateway: 192.168.5.102

9 - Test that the network works by again sending a packet from one Linux machine to

another.

10 - OPTIONAL - If you want to play with routing more you can create more networks,

change subnets, etc.

D.3 Exercise 3 - Packet Analysing 68

D.3 Exercise 3 - Packet Analysing

D.3.1 Introduction

In this exercise you will use a packet analyzer view the packets travelling through an

ethernet interface. Wireshark is a powerful open-source network protocol analyzer,

which we will be using in this exercise. Wireshark is already installed on the Windows

machines.

D.3.2 Methodology

1 - Start Wireshark.

2 - Select capture from the menu bar and select interfaces. Then select an interface

you want to capture packets from and start capturing.

3 - When Wireshark is capturing packets it will show the screen in three sections. The

top section shows the packets as they are passing through the interface. If you click on

a packet in the top section, all the details of that packet will be shown in the middle

section, and the raw data of the selected packet will be shown in the bottom section.

4 - Try pinging another machine. The packets should come up in the packet analyser.

5 - Select a packet coming through and look through all its details taking note of

information like source, destination, protocol, ports, etc. Also take note of the protocol

layers.

D.4 Exercise 4 - Introduction to the Linux Operating System 69

Figure D.4: Sample output for wireshark

D.4 Exercise 4 - Introduction to the Linux Operating Sys-

tem

D.4.1 Introduction

This exercise (...well, not really an exercise) will give you an introduction to the Linux

filesystem as well as the Terminal and some commonly used terminal commands. Linux

is vastly different from Windows. Windows is designed for ordinary users, as such many

aspects of the operating system are hidden. Unix (upon which Linux is based) is the

opposite, with most if not all of the operating system exposed allowing the user a large

amount of control over the system.

D.4.2 The Linux Filesystem

Unlike Windows filesystems which start with a drive letter. Linux uses a single heirar-

chal file structure starting at /, also called the root directory. All files and folders

(including those on separate drives/partitions) are descendants of this root directory.

D.4 Exercise 4 - Introduction to the Linux Operating System 70

Instead of assigning drive letters to partitions, Linux mounts the partitions to a loca-

tion in the existing filesystem. You can visualise it as attaching the top level directory

of the drive/partition to an existing folder on the Linux filesystem. So when you access

that folder you are actually accessing the drive/partition.

The Filesystem Hierarchy Standard (FHS) defines the directory structure of Linux

systems. Most Linux distributions follow the FHS but some may have slight deviations.

The following is the directory structure according to the FHS.

/ The root directory. This is the top level directory of the entire filesystem.

/bin Contains Essential programs for all users.

/boot Contains the Linux kernel and other files required at boot time.

/dev All files here are representations of the system hardware. The Linux philosophy

is that everything is a file. Reading and writing to files in this directory will read

and write to the hardware directly.

/etc Contains all the system configuration files.

/home Contains all the user files. Each user gets their own folder here called their

home directory.

/lib Libraries essential to the programs in /bin. Some 64-bit distributions also include

a /lib64 directory

/media Contains mount points for removable media (although partitions can be mounted

to any folder, it is common practice to mount external media to folders within

/media)

/mnt Contains mount points for temporary filesystems.

/opt Used for optional software. This directory is used less and less in favour of

/usr/local.

/proc A virtual filesystem which represents the internals of the Linux kernel.

/root Home directory for the root user.

/sbin Contains essential system binaries.

D.4 Exercise 4 - Introduction to the Linux Operating System 71

/srv Contains files to be used by services.

/tmp Contains temporary files which are usually deleted at boot time.

/usr Contains read-only user data, user applications (/usr/bin), user libraries (/us-

r/lib), documentation and source code.

/var Contains files that are expected to continually change such as log files, spooling

data, ...

D.4.3 Linux Permissions

Unix Permissions

Traditional Unix (and by extension Linux) permissions come in three classes: Owner,

Group and Other. Within each class there are three distinct permissions: read, write

and execute. This comes to a total of nine different types of permissions that all files

and directories have associated with them. Lets do an example:

1 - Open a terminal (Applications->System Tools->Terminal). Note that the ter-

minal will start in the users home directory (/home/<user-name>/, also called / for

the current user).

2 - Create a file called test in the current directory by typing touch test.

3 - now list all the files in the current directory and their permissions by typing ls -l.

You should get something similar to:

total 32

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Desktop

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Documents

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Downloads

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Music

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Pictures

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Public

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Templates

-rw-rw-r--. 1 user user 0 Jun 25 23:29 test

D.4 Exercise 4 - Introduction to the Linux Operating System 72

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Videos

For a full explanation of the output see http://en.wikipedia.org/wiki/Ls

The letters to the left (minus the very first character, which is set to d to indicate

a directorie) shows the permissions that are set for the file. Our test file shows the

permissions: rw-rw-r--. The first three character show permissions for the owner of

the file, the next three show permissions for the group associated with that file, and the

last three are permissions for everybody else. As you can see our test file has read/write

access for both the user and group, and read-only access for everyone else.

Take note that directories have their executable permissions set. This allows you to

browse through the directories.

Superuser: root

Most operating systems have a special user accout called the superuser which has

complete, unrestricted access to the entire system regardless of permissions. Windows

systems have a user called Administrator which is usually disabled by default, with

UAC providing elevated priveleges. The Linux superuser is called root which may or

may not be enabled depending on the distribution of Linux. Distributions with root

disabled have a program called sudo which can elevate priveleges. On the lab Linux

machines root is enabled and can be logged in to using the terminal.

Note: Make sure that you understand Linux permissions. On most Linux systems

(including the lab machines) a large majority of the operating system is owned by

root, and since you log into the machines as a user named user, the operating system

will not allow you to modify those files. Keep this in mind as in later exercises you will

have to log in as root and modify some system files.

D.4.4 Useful Linux Commands

Here are some basic linux commands that are very useful. If you want to know more

about the command you can run man <command> in a terminal to view the command’s

D.4 Exercise 4 - Introduction to the Linux Operating System 73

manual.

cd <directior> Change the current directory. Typing cd ../ will change to the

parent of the current directory. Please note that Linux file and path names are

case-sensitive

ls Lists all files and folders in the current directory

pwd Show the current directory path

man <command> Shows the manual page for the given command. Very useful if you

want to know how to use a particular command

cp <source> <destination> Copy a file/directory ¡source¿ to ¡destination¿. (Note.

you must use the recursive option ¡code¿-r¡/code¿ when copying folders)

mkdir <directory> Create a new directory

rm <file1> <file2>... Remove files. Use the -r option to remove folders. Do NOT

run this on the root directory / as it could potentially wipe the operating system

and all mounted drives

cat <file1> <file2>... Concatinate files and display the result. Useful for just

displaying the contents of a particular file

locate <file> Show the location of a file.

grep <string> <file> Find a string within a file

ps List current running processes. Running ps by itself only shows processes within

the current terminal. To show all running process run —textttps aux

top Show the top running processes ordered by cpu usage (default)

touch <file> Updates the timestamp of a file. if the file doesn’t exist it is created

df Shows disk usage

free Shows RAM usage

less shows the contents of a file allowing you to scroll through the file

vi A command line text editor

D.4 Exercise 4 - Introduction to the Linux Operating System 74

whoami Show the current user

GUI programs can also be run from the terminal. One of the most useful programs is

gedit which is the text editor for gnome (the desktop GUI on the lab’s Linux machines).

This is handy for when we need to edit system configuration files. To edit a system file,

open a terminal, log in to root using su, navigate to the directory containing the file

you want to edit using cd <directory>, and open the file using gedit <filename>.

Linux makes extensive use of piping, which allows the output of one program to be used

as input for another program. For example ps -aux | grep openssh will get the list of

currently running processes, which will be input to grep which will search for the string

openssh. Program output can also be piped to files, e.g ps -aux > processlist.txt

will get the list of currently running processes and write it to processlist.txt

Practice the above commands as some of them will be useful in later exercises.

D.5 Exercise 5 - Windows and Linux Networking Tools 75

D.5 Exercise 5 - Windows and Linux Networking Tools

D.5.1 Introduction

In this exercise you will learn how to use some commonly used networking tools under

both Windows and Linux. These tools are used to show information about ethernet

ports, information about the network the computer is connected to, as well as trou-

bleshoot any problems in the network. Under Linux you can look up the manual page

for each command.

D.5.2 Windows Networking Tools

ipconfig

Ipconfig will display the system’s network configuration. Run ipconfig /all to display

more detailed information.

D.5 Exercise 5 - Windows and Linux Networking Tools 76

Figure D.5: sample output for ipconfig

tracert

Usage: tracert <host>

Show the path that a packet travels to a given host.

D.5 Exercise 5 - Windows and Linux Networking Tools 77

Figure D.6: sample output for tracert

nslookup

Usage: nslookup <hostname>

Determine the IP address of a given host.

Figure D.7: sample output for nslookup

D.5 Exercise 5 - Windows and Linux Networking Tools 78

D.5.3 Linux Networking Tools

ifconfig

Ifconfig will display the system’s network configuration. Run ifconfig <interface>

<ipaddress> to assign an ip address to an interface.

Figure D.8: ¿sample output for ifconfig

tcpdump

Usage: tcpdump -i <interface>

Capture packets from a giveen interface and dump packet information to screen. Add

the -v and -vv options for more detail. This utility must be run as root.

D.5 Exercise 5 - Windows and Linux Networking Tools 79

Figure D.9: sample output for tcpdump

traceroute

Usage: traceroute <host>

Show the path that a packet travels to a given host.

Figure D.10: sample output for traceroute

D.5 Exercise 5 - Windows and Linux Networking Tools 80

host

Usage: host <hostname>

Determine the IP address of a given host.

Figure D.11: sample output for host

nmap

Usage: too many to list, see the manual page.

Network Scanner/Mapper. Nmap sends specially crafted packets out onto the network

in order to gather information about it. It can discover hosts on the network, scan for

open ports on a host, and even detect the operating system.

Figure D.12: sample output for nmap

D.5 Exercise 5 - Windows and Linux Networking Tools 81

D.5.4 Common Tools

ping

Usage: ping <host>

ping will send an icmp packet to a given host/address

Figure D.13: sample output for ping

netstat

Display network statistics. For a full list of options see http://en.wikipedia.org/wiki/Netstat

Figure D.14: sample output for netstat

D.5 Exercise 5 - Windows and Linux Networking Tools 82

route

View/Modify Routing Table

Running route without any arguments will display the routing table under Linux, while

running route printwill do the same in Windows. You can add to the routing ta-

ble by running route add <destination> mask <mask> <gatewary> under Windows

and route add -host <destination> netmask <mask> gw <gateway> under Linux.

Figure D.15: sample output for route

D.6 Exercise 6 - DHCP: Dynamic Host Configuration Protocol 83

D.6 Exercise 6 - DHCP: Dynamic Host Configuration Pro-

tocol

D.6.1 Introduction

A DHCP server allows the dynamic allocation of IP addresses to clients without an IP

address without having to configure those computers manually.

When a new computer is connected to the network it broadcasts (sends to address

255.255.255.255) a DHCPDISCOVER message onto the network which is picked up by

any DHCP servers on the network. the DHCP server(s) then reserves an IP address

and broadcasts a DHCPOFFER message containing the reserved ip address and the

hardware address of the new computer.

The new computer receives the offer(s), accepts one offer and broadcasts a DHCPRE-

QUEST message requesting the IP address of that particular offer. This also tells all

DHCP servers on the network which offer the new computer accepted (the other DHCP

servers withdraw their offers). The DHCP server whose offer was offer was excepted

then replies with a DHCPACK message acknowledging the request and containing the

lease time and any other information the new computer needs. The new computer

receives this and configures its network interface accordingly.

In this Experiment you will create a DHCP server on one of the machines. This Machine

you will give a static IP address. You will then configure the DHCP server to give a

range of IP addresses to DHCP enabled computers. You will then enable DHCP on the

other computers. You will have successfully completed this exercise when the other 3

computers are automatically assigned IP addresses.

D.6.2 Methodology

Note: You will have to log in to the root user su in order to modify system files.

The root Password is password. It is recommended you use gedit text editor to edit

system files.

1 - Connect to Linux machine 1 as it will run our DHCP server

D.6 Exercise 6 - DHCP: Dynamic Host Configuration Protocol 84

2 - Examine man dhcpd for configuration details.

3 - Edit the configuration file /etc/dhcpd/dhcpd.conf and add the following:

default-lease-time 60;

max-lease-time 60;

ddns-update-style interim;

option subnet-mask 255.255.255.0;

subnet 192.168.1.0 netmask 255.255.255.0

{

interface eth0;

range 192.168.1.150 192.168.1.200;

}

Explanation of parameters:

default lease time Default time than an allocated IP is valid in seconds

max-lease-time Maximum time than an allocated IP is valid in seconds

ddns-update-style = update Update the DNS server whenever a lease is updated

(not used here)

option subnet-mask sets the subnet mask

interface The network interface for the DHCP server to operate on. In this case the

server is restricted to eth0.

subnet, netmask, range This defines the network the DHCP operates on, and the

range of ip addresses that are handed out to clients

Note: Parameters outside the subnet definition are considered global and apply to

all subnet definitions while parameters inside the subnet definition are local to that

definition.

Note: If you want it is possible to allocate a fixed ip address to a certain hardware

address. e.g:

D.6 Exercise 6 - DHCP: Dynamic Host Configuration Protocol 85

host Q6-4101

{

hardware ethernet 76:75:89:32:67:3C;

fixed address 192.168.11.300;

}

This will make the dhcp server assign an IP address of 192.168.11.300 to the machine

with the hardware address of 76:75:89:32:67:3C.

4 - Configure the first interface (eth0) so Linux-1 to have a static ip of 192.168.1.1.

This will be the network interface that the DHCP server will be listening on (as shown

in the configuration above).

5 - Start the DHCP server by running ¡code¿service dhcpd start¡/code¿. If [FAILED] is

shown double check you configuration and make sure the machine has a static IP. You

can also check /var/log/messages for any dhcpd errors. You can do this by running

tail -n 20 /var/log/messages (must be run as root).

6 - Windows-1 and Linux-2 will serve as our DHCP clients so you must configure them

to use DHCP. You can do this in the same place where you assigned static IPs, but this

time you select ’obtain an ip address automatically’ in Windows and change Method

to ’Automatic (DHCP)’ in Linux.

7 - Ensure that the client machines are all assigned IP addresses. these address should

be 192.168.1.150, 192.168.1.151 and 192.168.1.152, or something similar. Windows

strangely tends to assign a (usually) useless ip address to an interface that cannot

connect to a network. If this is the case you may have to disable the interface and

re-enable it (right-click).

You will have complete this exercise when all interfaces on all machines (except the

interface the DHCP is listening on) are assigned an IP address by the DHCP server.

D.7 Exercise 7 - Windows File Sharing: NetBIOS Protocol 86

D.7 Exercise 7 - Windows File Sharing: NetBIOS Proto-

col

D.7.1 Introduction

In this exercise you will share a folder on one Windows machine, and access it on

another Windows machine. You will have successfully completed this exercise when

you are able to share files from one Windows machine to another.

D.7.2 Methodology

1 - Click start and then right-click computer then select properties. Ensure that the

workgroup is named WORKGROUP.

2 - Ensure that the machine has file sharing turned on. To do this open the Network and

Sharing Centre and select ’Change advanced sharing settings’. Make sure that ’Turn

on file and printer sharing’, ’Turn on network discovery’, ’Turn off password protected

sharing’ are selected for public networks. Do this for both Windows-1 and Windows-2.

D.7 Exercise 7 - Windows File Sharing: NetBIOS Protocol 87

Figure D.16: Enable File and Folder Sharing

3 - Create a new folder on the desktop. To share this folder right-click it and select

properties. Select the sharing tab and click ’share’. You can choose which users you

can share the folder with. For this exercise add ’Everyone’ from the drop-down box

and click add then change the permission level for ’Everyone to ’Read/Write’. Click

Share then Done.

D.7 Exercise 7 - Windows File Sharing: NetBIOS Protocol 88

Figure D.17: Selecting users who are allowed access to shared folder

Also Click ’Advanced Sharing’ and make sure ’Share this folder’ is checked. Click

permissions and make sure that ’Everyone’ has full control.

Figure D.18: Advanced sharing options

D.7 Exercise 7 - Windows File Sharing: NetBIOS Protocol 89

If you’re asked to turn of file and folder sharing select yes.

4 - On the other Windows machine open Windows explorer and select ’Network’ from

the side menu. From here you should be able to navigate to the shared folder. If

you cannot see the folder try typing \\<ip-address>\ into the address bar where

<ip-address> is the IP address of the machine with the shared folder (you will need to

find the IP address yourself).Test that you can read and write to the folder by creating

a new file. If you cannot read or write to the folder check the sharing permissions.

Figure D.19: Connecting to shared folder

5 - Right-click the share and select ’Map Network Drive’, and assign the share a drive

letter. You should now be able to open the shared folder from My Computer. Right-

click the network drive and select disconnect to remove the drive.

The following does the same as the above steps except using the command line. 6 -

Run net view< to list windows computers on the network

7 - Run net use /? | more to learn the syntax on how to assign a drive letter to a

share ¡p/¿ 8 - Assign a drive letter to the share by running net use <drive-letter>:

\\<computer-name>\<share-name>, where <drive-letter> is the drive letter you

want to assign, <computer-name> is the name or IP address of the machine containing

D.7 Exercise 7 - Windows File Sharing: NetBIOS Protocol 90

the shared folder, and <share-name> is the name of the share. The shared folder should

now appear in My Computer as a network drive.

9 - List current shares by running net use

10 - Disconnect the share by running net use <drive-letter>/delete

D.8 Exercise 8 - Unix-Windows File Sharing - Samba 91

D.8 Exercise 8 - Unix-Windows File Sharing - Samba

D.8.1 Introduction

Samba allows Unix files to be accessible on Windows using the SMB (Server Message

Block) protocol, also known as CIFS (Common Internet FileSystem). In this exercise

you will share a folder on a Linux machine, and access it on a windows machine. You

will have successfully completed this exercise when you are able to share files from the

Linux machine to a Windows machine.

D.8.2 Methodology

Note: You will have to login as root in order to modify system files. the password for

the root user is password

1 - Connect to Linux-1, which will run our samba server.

2 - Examine man smb.conf for configuration details.

3 - Rename /etc/samba/smb.conf to /etc/samba/smb.conf.backup using mv /etc/samba/smb.conf

/etc/samba/smb.conf.backup and create a new blank smb.conf by running touch

/etc/samba/smb.conf

4 - Edit /etc/samba/smb.conf using gedit and add the following:

[global]

workgroup = WORKGROUP

Server String = I am a Samba Server

security = user

Map to guest = Bad User

username map = /etc/samba/smbusers

Explanation of parameters

workgroup Windows NT Domain Name/Workgroup Name

D.8 Exercise 8 - Unix-Windows File Sharing - Samba 92

Server String server description

security = user security mode samba runs in, setting it to user mode makes samba

authenticate incoming connections

Map to guest = Bad User makes samba treat any unauthenticated users as a guest

user

username map The file listing the users that samba uses for authentication

5 - make sure that nobody = guest exists in /etc/samba/smbusers. If smbusers

doesn’t exist then create it and add the line to it. nobody = guest will link the samba

guest account to the Linux account ’nobody’.

6 - Create folder /home/public. This will be the folder you will be sharing. Make sure

that it has its permissions for other set to read, write and executable by running chmod

o+rwx /home/public (important!)

7 - Add the following share definition to /etc/samba/smb.conf:

[share]

comment = Public Folder

path = /home/public

writeable = yes

browsable = yes

public = yes

only guest = yes

Explanation of parameters

comment description of the share definition

path path to the folder to be shared

writeable whether or not connected users can write to the shared folder

browsable whether or not connected users can navigate the shared folder

D.8 Exercise 8 - Unix-Windows File Sharing - Samba 93

public whether the guest account is allowed access (guest ok = yes/no can be used

here instead)

only guest whether or not only the guest account is allowed access

8 - Start the server by running service smb start (as root). You can stop the server

by running service smb stop and check its status by running service smb status

9 - Check that the server works. On a windows machine open windows explorer and

enter \\<ip-address>\ into the address bar, where <ip-address> is the IP address of

the machine that the server is running on. To find the ip address type ifconfig on

the machine running the server.

10 - If any ”cannot connect” or ”permission denied” errors occur, check the status of

the server in /var/log/samba/log.smbd. Also double check /etc/samba/smb.conf

for any errors. Also check the permissions of the shared folder on the server. the folder

and all file inside should have read, write and execute permissions. If not then change

the permissions using the chmod command.

D.9 Exercise 9 - Unix File Sharing - NFS: Network Filesystem 94

D.9 Exercise 9 - Unix File Sharing - NFS: Network Filesys-

tem

D.9.1 Introduction

In this exercise you will share a folder on a Linux machine, and access it on another

Linux machine. You will have successfully completed this exercise when you are able

to share files from one Linux machine to another.

D.9.2 Methodology

Note: You will have to log in to the root user su in order to modify system files.

The root Password is password. It is recommended you use gedit text editor to edit

system files.

1 - Connect to Linux machine 1

2 - create folder /home/public by running mkdir -p /home/public. This will be the

folder you will be sharing.

3 - start the NFS server by running service nfs start

4 - In order to make a folder accessible to a client it must be ”exported” by the server.

To do this we must make an entry into /etc/exports. For the full set of options check

the exports man page man exports.

5 - Edit /etc/exports and add this line:

/home/public 192.168.11.*(rw,sync,no root squash,no subtree check)

Explanation of parameters

/home/public folder to be shared

192.168.11.* specifies ip addresses that are allowed to connect (in this case the entire

192.168.11.xxx subnet)

D.9 Exercise 9 - Unix File Sharing - NFS: Network Filesystem 95

rw allow both read and write requests

sync reply to new requests only after previous changes have been completed on the

server system

no root squash allows the client’s root account to be mapped to server’s root account

(by default requests made by the client’s root account are mapped to nobody on

the server, an action called root squashing)

no subtree check disable checking whether the file/folder is a descendant of the ex-

ported directory

6 - exportfs is the program that maintains the export table for the nfs server. Now we

have to update the export table with the new entry we put into ¡code¿/etc/exports¡/code¿.

Run exportfs -a to do this.

7 - On the other Linux machine create a mount point. The concept of mount points is

that a partition on a physical drive (or in our case a location on a remote computer) us

bound to a folder on the filesystem. For example if you mount sda1 (first partition of

physical drive sda) to folder /media/drive/ the contents of that partition is accessible

from that folder. Windows uses the same concept except it uses specialised mount

points (drive letters).

So lets create a mount point /mnt/remotedir/, (run mkdir -p /mnt/remotedir), and

then mount the shared folder on the remote system to the mount point that we just

created. Run mount <ip-address>:/home/public /mnt/remotedir.

8 - You should now be able to access the shared folder by accessing /mnt/remote/dir.

Take note that Linux permissions play a big role here. By default the permissions

of /mnt/remotedir only allow write access for root. To allow a normal user to write

to files in the shared folder you need to change the permissions of the mount point

(/mnt/remotedir). You can give everyone write permissions by running chmod o+rwx

/mnt/remotedir.

D.10 Experiment 10 - Apache Web Server 96

D.10 Experiment 10 - Apache Web Server

D.10.1 Introduction

In this exercise you will learn how to set up a web page using the apache web server.

D.10.2 Methodology

Note: You will have to log in to the root user su in order to modify system files.

The root Password is password. It is recommended you use gedit text editor to edit

system files.

Starting a web server

1 - First create a test html file called index.html in /var/www/html. This is the default

document root for the apache web server in CentOS.

2 - Type the following into your index.html file:

<!-- doctype html -->

<html>

<body>

<h1 align=center>

 Hello World

</h1>

</body>>

</html>

You can add anything you want to this html file.

3 - Now test whether the server actually works. Run apachectl start in the terminal

to start the server. Open a web browse and type localhost or http://127.0.0.1 in

the address bar. The web page you created should come up.

D.10 Experiment 10 - Apache Web Server 97

4 - Now try to connect from another machine by opening a web browser and typing

the IP address of the server into the address bar. You may have to adjust the firewall

on the server to allow http connections (port 80).

Access Permissions

5 - Now we are going to restrict access to the web server. Search the main apache

configuration file /etc/httpd/conf/httpd.conf for the entry

<Directory "/var/www/html">

Find the section dealing with access mermissions:

Order allow,deny

Allow from all

This rule says that the ”allow” rules are processed first, followed by the ”deny” rules.

In this case everybody is allowed permission to view the web page.

6 - Change this section to only allow access from a particular machine:

Order deny,allow

deny from all

allow from <ip-address>

where <ip-address> is the IP address of the machine you want to allow access to the

web server.

7 - Restart the web server (apachectl restart). Verify that the only the machine

specified in the above rule is the only one allowed access to the web page.

password protection

8 - Now we are going to configure the web server to require a username and password

for access to the web page. First we have to create a password file which will contain

D.10 Experiment 10 - Apache Web Server 98

the usernames and passwords for the web server. The htpasswd program does this for

us.

htpasswd -cm /etc/httpd/conf/htpasswd.conf fred

will create a new password file called htpasswd.conf in /etc/httpd/conf/, prompt

for a password, create an entry for the user fred in that password file and encrypt the

password with the md5 hash algorithm and store it alongside the username.

Passwords are always encrypted with a hash algorithm. This ensures that passwords

cannot be decrypted given the encrypted password. The example above will yield an

entry similar to:

fred:$apr1$Iw12IIOq$PX67jCzpU3uJlGdzZdvgw1

You can also check the manual page for htpasswd (man htpasswd) for more details on

the program.

9 - Now reopen the http.conf file and again search for the section:

<Directory "/var/www/html">

and search for the line:

AllowOverride None

Change this to:

AllowOverride AuthConfig

10 - Now go back to the document root (/var/www/html/) and create a new file called

.htaccess containing:

AuthName "Realm Name"

AuthType basic

AuthUserFile "/etc/httpd/conf/htpasswd.conf"

require valid-user

11 - Restart the server, and check that the browser requests a password for all we pages

D.10 Experiment 10 - Apache Web Server 99

in the directory.

Appendix E

Web Interface Source Code

E.1 Makefile 101

E.1 Makefile

all:

mkdir -p ../project

cp index.php ../project/

m4 state.m4 > ../project/state.php

m4 feedback.m4 > ../project/feedback.php

m4 exercises.m4 > ../project/exercises.php

m4 exercise1.m4 > ../project/exercise1.php

cp exercise1-* ../project

m4 exercise2.m4 > ../project/exercise2.php

m4 exercise3.m4 > ../project/exercise3.php

cp exercise3-* ../project

m4 exercise4.m4 > ../project/exercise4.php

m4 exercise5.m4 > ../project/exercise5.php

cp exercise5-* ../project

m4 exercise6.m4 > ../project/exercise6.php

m4 exercise7.m4 > ../project/exercise7.php

cp exercise7-* ../project

m4 exercise8.m4 > ../project/exercise8.php

m4 exercise9.m4 > ../project/exercise9.php

m4 exercise10.m4 > ../project/exercise10.php

cp server-o* ../project/

clean:

rm -rf ../project

E.2 defines.m4

define(‘XML_HEADER’, ‘<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">’)dnl

define(‘STYLE’, ‘ <style>

E.2 defines.m4 102

div{

display:inline-block;

}

body{

margin-left: auto;

margin-right: auto;

max-width: 70em;

}

</style>’)dnl

define(‘FUNCTIONS’, ‘<?PHP

function getState()

{

$statein = "";

$statein = @file_get_contents("/media/sf_state/status");

return $statein;

}

function displayState($statein)

{

$statusD = "server-offline.png";

$status1 = "server-offline.png";

$status2 = "server-offline.png";

$status3 = "server-offline.png";

$status4 = "server-offline.png";

if (strpos($statein,"D") !== FALSE)

$statusD = "server-online.png";

if (strpos($statein,"1") !== FALSE)

$status1 = "server-online.png";

if (strpos($statein,"2") !== FALSE)

$status2 = "server-online.png";

if (strpos($statein,"3") !== FALSE)

$status3 = "server-online.png";

if (strpos($statein,"4") !== FALSE)

$status4 = "server-online.png";

E.2 defines.m4 103

echo "<div>
DHCP</div>";

echo "<div>
Linux-1</div>";

echo "<div>
Linux-2</div>";

echo "<div>
Windows-1</div>";

echo "<div>
Windows-2</div>";

echo "
";

}

function checkState($state)

{

$statein = getState();

$referer = basename($_SERVER["PHP_SELF"]);

$stateD = false;

$state1 = false;

$state2 = false;

$state3 = false;

$state4 = false;

if (preg_match("/D/", $statein) === preg_match("/D/", $state))

$stateD = true;

if (preg_match("/1/", $statein) === preg_match("/1/", $state))

$state1 = true;

if (preg_match("/2/", $statein) === preg_match("/2/", $state))

$state2 = true;

if (preg_match("/3/", $statein) === preg_match("/3/", $state))

$state3 = true;

if (preg_match("/4/", $statein) === preg_match("/4/", $state))

$state4 = true;

if ($stateD === false

|| $state1 === false

|| $state2 === false

|| $state3 === false

|| $state4 === false)

{

echo "The current lab state does not match the exercise requirements.
";

$stateLink = "Here";

E.3 feedback.m4 104

echo "Click $stateLink to set the lab state.";

}

else

echo "The current lab state matches the exercise requirements";

}

?>’)dnl

E.3 feedback.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<?php

$exercise = "";

$complete1 = "";

$complete2 = "";

$objectives1 = "";

$objectives2 = "";

$content1 = "";

$content2 = "";

$comments = "";

if (array_key_exists("exercise",$_GET))

{

$exercise = $_GET["exercise"];

}

if (array_key_exists("complete1", $_POST))

{

$complete1 = $_POST["complete1"];

}

if (array_key_exists("complete2", $_POST))

{

$complete2 = $_POST["complete2"];

}

if (array_key_exists("objectives1", $_POST))

E.3 feedback.m4 105

{

$objectives1 = $_POST["objectives1"];

}

if (array_key_exists("objectives2", $_POST))

{

$objectives2 = $_POST["objectives2"];

}

if (array_key_exists("content1", $_POST))

{

$content1 = $_POST["content1"];

}

if (array_key_exists("content2", $_POST))

{

$content2 = $_POST["content2"];

}

if (array_key_exists("comments", $_POST))

{

$comments = $_POST["comments"];

}

if (!empty($_POST))

{

shell_exec("echo \"$complete1, $complete2, $objectives1, $objectives2, $content1, $content2, $comments\" >> /media/sf_feedback/exercise$exercise.csv");

header("Location: exercises.php");

}

?>

<head>

<title>Feedback - Exercise <?php printf($exercise)?></title>

</head>

<body>

<h1> Feedback - Exercise <?php printf($exercise)?></h1>

<form name="feedback" action="feedback.php?exercise=<?php printf($exercise)?>" method="post">

Were you able to complete the exercise?

<input type="radio" name="complete1" value="yes"/>yes

<input type="radio" name="complete1" value="no"/>no

E.3 feedback.m4 106

<p/>

If you were unable to complete the exercise, please provide information on what went wrong (step number, what you expected, what actually happened).

<textarea rows="10" cols="100" name="complete2"/></textarea>

<p/>

Do you feel you understood/achieved the objectives of the exercise?

<input type="radio" name="objectives1" value="1"/>1

<input type="radio" name="objectives1" value="2"/>2

<input type="radio" name="objectives1" value="3"/>3

<input type="radio" name="objectives1" value="4"/>4

<input type="radio" name="objectives1" value="2"/>5

<p/>

If you did not understand/achieve the objectives of the exercise, what aspects of the exercise did you not understand?

<textarea rows="10" cols="100" name="objectives2"/></textarea>

<p/>

Do you feel the exercise was enough to achieve the objectives?

<input type="radio" name="content1" value="1"/>1

<input type="radio" name="content1" value="2"/>2

<input type="radio" name="content1" value="3"/>3

<input type="radio" name="content1" value="4"/>4

<input type="radio" name="content1" value="2"/>5

<p/>

What aspects of the exercise would you implement differently?

<textarea rows="10" cols="100" name="content2"/></textarea>

<p/>

Other comments.

<textarea rows="10" cols="100" name="comments"/></textarea>

<p/>

<input type="submit" value="Submit"> <INPUT type="reset"/>

</form>

</body>

</html>

E.4 state.m4 107

E.4 state.m4

include(‘defines.m4’)dnl

<?php

$statein = "";

$stateout = "";

if (array_key_exists("state",$_GET))

{

$statein = $_GET["state"];

}

if (strpos($statein,"D") !== FALSE)

{

$stateout .= " D";

}

if (strpos($statein,"1") !== FALSE)

{

$stateout .= " 1";

}

if (strpos($statein,"2") !== FALSE)

{

$stateout .= " 2";

}

if (strpos($statein,"3") !== FALSE)

{

$stateout .= " 3";

}

if (strpos($statein,"4") !== FALSE)

{

$stateout .= " 4";

}

shell_exec("echo \"$stateout\" > /media/sf_state/state");

shell_exec("echo \"$stateout\" > /media/sf_state/status");

if (array_key_exists("referer",$_GET))

E.5 exercises.m4 108

{

$referer = $_GET["referer"];

header("Location: $referer");

}

?>

E.5 exercises.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercises</title>

STYLE

</head>

<body>

<h1>Networking Remote Access Laboratory</h1>

<h2>Introduction</h2>

Welcome to the Networking Remote Access Laboratory. This Laboratory is designed to allow you to experiment an learn about the basic conceps of computer networking. These experiments are based upon ELE3915 Electrical and Electronic Practice E although not all experiments from that course have not been included. After you complete an exercise please complete the feedback page so we know what parts of the lab we can improve.

<h3>This lab is experimental. There will be bugs.</h3>

<h2>Server Status</h2>

Refresh the Page to update the server status.

Note: Linux Machines - Username: user, Password: password

<p/>

<?php

$statein = getState();

displayState($statein);

$referer = basename($_SERVER["PHP_SELF"]);

$stateLink = "Here";

echo "Click $stateLink to shutdown the lab machines.";

?>

E.6 exercise1.m4 109

<h2>Exercises</h2>

Exercise 1 - Static IP Addresses

Feedback

Exercise 2 - Routing Between Networks

Feedback

Exercise 3 - Packet analysis using Wireshark

Feedback

Exercise 4 - Introduction to the Linux Operating System

Feedback

Exercise 5 - Networking CLI Tools

Feedback

Exercise 6 - DHCP Server

Feedback

Exercise 7 - Windows File Sharing - NetBIOS protocol

Feedback

Exercise 8 - Unix-Windows File Sharing - Samba

Feedback

Exercise 9 - Unix File Sharing - NFS: Network File System

Feedback

Exercise 10 - Apache Web Server

Feedback

</body>

</html>

FUNCTIONS

E.6 exercise1.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercise 1 - Static IP Addresses</title>

STYLE

E.6 exercise1.m4 110

</head>

<body>

<h1>Exercise 1 - Static IP Addresses</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("1234");

checkState("1234");

?>

<h2>Introduction</h2>

In this Experiment you will create a small network of consisting of four

computers. You will be assigning each computer an IP address manually and

then you will test the network by making sure that each computer can

connect to another.

<h2>Methodology</h2>

1 - To configure a Windows machine with a static IP first click on the

network icon in the system tray then select ’Open Network and Sharing

Centre’ then ’Change Adapter Settings’. Alternatively type ’View Network

Connections’ in the search area of the start menu. Right-click the

network interface you want to configure then select properties. Select

’Internet Protocol Version 4 (TCP/IPv4)’ then click properties.

<p/>

<div>

Configuring a network address under Windows</div>

<p/>

2 - To Configure a Linux machine right-click the network icon in the

system tray then select ’Edit Connections’. Select eth0 from the list

then select ’Edit’. Select the IPv4 Tab and change Method to Manual

<p/>

<div>

Configuring a network address under Linux</div>

<p/>

3 - Configure the first ethernet interface of the machines to

E.6 exercise1.m4 111

use the following IP addresses (leave the default gateway and dns server

blank for the moment). When applying these settings to a Linux machine

you may be asked for a password. The password is <code>password</code>.

Linux 1 - Address: 192.168.0.101, Netmask: 225.225.225.0

Linux 2 - Address: 192.168.0.102, Netmask: 225.225.225.0

Windows 1 - Address: 192.168.0.103, Netmask: 225.225.225.0

Windows 2 - Address: 192.168.0.103, Netmask: 225.225.225.0

<p/>

4 - Click OK/Apply to apply the new settings

<p/>

5 - Confirm that each computers have the correct IP addresses. On Windows

right-click the network interface then select ’status’, then click

’details’. On Linux right-click the network icon in the system tray then

select ’Connection Information’ then select the ’eth0’ tab.

<p/>

<div>

Checking IP Settings</div>

<p/>

6 - Confirm that the computers can communicate with each other by running

<code>ping <ip-address></code>, where <code><ip-address>

</code> is the address of the computer you want to send the ICMP Packet

to. Sending ICMP Packets with the <code>ping</code> is a great way to

diagnose whether a computer on the network is running or not.

<!--<h2>Results</h2>

check whether you have successful completed this exercise.--!>

</body>

</html>

FUNCTIONS

E.7 exercise2.m4 112

E.7 exercise2.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercise 1 - Static IP Addresses</title>

STYLE

</head>

<body>

<h1>Exercise 1 - Static IP Addresses</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("1234");

checkState("1234");

?>

<h2>Introduction</h2>

In this Experiment you will create a small network of consisting of four

computers. You will be assigning each computer an IP address manually and

then you will test the network by making sure that each computer can

connect to another.

<h2>Methodology</h2>

1 - To configure a Windows machine with a static IP first click on the

network icon in the system tray then select ’Open Network and Sharing

Centre’ then ’Change Adapter Settings’. Alternatively type ’View Network

Connections’ in the search area of the start menu. Right-click the

network interface you want to configure then select properties. Select

’Internet Protocol Version 4 (TCP/IPv4)’ then click properties.

<p/>

<div>

Configuring a network address under Windows</div>

E.7 exercise2.m4 113

<p/>

2 - To Configure a Linux machine right-click the network icon in the

system tray then select ’Edit Connections’. Select eth0 from the list

then select ’Edit’. Select the IPv4 Tab and change Method to Manual

<p/>

<div>

Configuring a network address under Linux</div>

<p/>

3 - Configure the first ethernet interface of the machines to

use the following IP addresses (leave the default gateway and dns server

blank for the moment). When applying these settings to a Linux machine

you may be asked for a password. The password is <code>password</code>.

Linux 1 - Address: 192.168.0.101, Netmask: 225.225.225.0

Linux 2 - Address: 192.168.0.102, Netmask: 225.225.225.0

Windows 1 - Address: 192.168.0.103, Netmask: 225.225.225.0

Windows 2 - Address: 192.168.0.103, Netmask: 225.225.225.0

<p/>

4 - Click OK/Apply to apply the new settings

<p/>

5 - Confirm that each computers have the correct IP addresses. On Windows

right-click the network interface then select ’status’, then click

’details’. On Linux right-click the network icon in the system tray then

select ’Connection Information’ then select the ’eth0’ tab.

<p/>

<div>

Checking IP Settings</div>

<p/>

6 - Confirm that the computers can communicate with each other by running

<code>ping <ip-address></code>, where <code><ip-address>

</code> is the address of the computer you want to send the ICMP Packet

to. Sending ICMP Packets with the <code>ping</code> is a great way to

diagnose whether a computer on the network is running or not.

<!--<h2>Results</h2>

E.8 exercise3.m4 114

check whether you have successful completed this exercise.--!>

</body>

</html>

FUNCTIONS

E.8 exercise3.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercise 1 - Static IP Addresses</title>

STYLE

</head>

<body>

<h1>Exercise 1 - Static IP Addresses</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("1234");

checkState("1234");

?>

<h2>Introduction</h2>

In this Experiment you will create a small network of consisting of four

computers. You will be assigning each computer an IP address manually and

then you will test the network by making sure that each computer can

connect to another.

<h2>Methodology</h2>

1 - To configure a Windows machine with a static IP first click on the

network icon in the system tray then select ’Open Network and Sharing

Centre’ then ’Change Adapter Settings’. Alternatively type ’View Network

E.8 exercise3.m4 115

Connections’ in the search area of the start menu. Right-click the

network interface you want to configure then select properties. Select

’Internet Protocol Version 4 (TCP/IPv4)’ then click properties.

<p/>

<div>

Configuring a network address under Windows</div>

<p/>

2 - To Configure a Linux machine right-click the network icon in the

system tray then select ’Edit Connections’. Select eth0 from the list

then select ’Edit’. Select the IPv4 Tab and change Method to Manual

<p/>

<div>

Configuring a network address under Linux</div>

<p/>

3 - Configure the first ethernet interface of the machines to

use the following IP addresses (leave the default gateway and dns server

blank for the moment). When applying these settings to a Linux machine

you may be asked for a password. The password is <code>password</code>.

Linux 1 - Address: 192.168.0.101, Netmask: 225.225.225.0

Linux 2 - Address: 192.168.0.102, Netmask: 225.225.225.0

Windows 1 - Address: 192.168.0.103, Netmask: 225.225.225.0

Windows 2 - Address: 192.168.0.103, Netmask: 225.225.225.0

<p/>

4 - Click OK/Apply to apply the new settings

<p/>

5 - Confirm that each computers have the correct IP addresses. On Windows

right-click the network interface then select ’status’, then click

’details’. On Linux right-click the network icon in the system tray then

select ’Connection Information’ then select the ’eth0’ tab.

<p/>

<div>

Checking IP Settings</div>

<p/>

6 - Confirm that the computers can communicate with each other by running

E.9 exercise4.m4 116

<code>ping <ip-address></code>, where <code><ip-address>

</code> is the address of the computer you want to send the ICMP Packet

to. Sending ICMP Packets with the <code>ping</code> is a great way to

diagnose whether a computer on the network is running or not.

<!--<h2>Results</h2>

check whether you have successful completed this exercise.--!>

</body>

</html>

FUNCTIONS

E.9 exercise4.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>

Exercise 4 - Introduction to the Linux Operating System

</title>

STYLE

</head>

<body>

<h1>Exercise 4 - Introduction to the Linux Operating System</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("1");

checkState("1");

?>

<h2>Introduction</h2>

This exercise (...well, not really an exercise) will give you an

E.9 exercise4.m4 117

introduction to the Linux filesystem as well as the Terminal and some

commonly used terminal commands. Linux is vastly different from

Windows. Windows is designed for ordinary users, as such many aspects

of the operating system are hidden. Unix (upon which Linux is based)

is the opposite, with most if not all of the operating system exposed

allowing the user a large amount of control over the system.

<h2>The Linux Filesystem</h2>

Unlike Windows filesystems which start with a drive letter. Linux uses

a single hierarchical file structure starting at /, also called the root

directory. All files and folders (including those on separate

drives/partitions) are descendentslol coul of this root directory. Instead of

assigning drive letters to partitions, Linux mounts the

partitions to a location in the existing filesystem. You can visualise

it as attaching the top level directory of the drive/partition to an

existing folder on the Linux filesystem. So when you access that folder

you are actually accessing the drive/partition.

<p/>

The Filesystem Hierarchy Standard (FHS) defines the directory structure

of Linux systems. Most Linux distributions follow the FHS but some may

have slight deviations. The following is the directory structure

according to the FHS.

<p/>

<dl>

<dt>/</dt>

<dd>The root directory. This is the top level directory of the

entire filesystem.</dd>

<dt>/bin</dt>

<dd>Contains Essential programs for all users.</dd>

<dt>/boot</dt>

<dd>Contains the Linux kernel and other files required at boot time.

</dd>

<dt>/dev</dt>

<dd>All files here are representations of the system hardware. The

Linux philosophy is that everything is a file. Reading and writing

E.9 exercise4.m4 118

to files in this directory will read and write to the hardware

directly.</dd>

<dt>/etc</dt>

<dd>Contains all the system configuration files.</dd>

<dt>/home</dt>

<dd>Contains all the user files. Each user gets their own folder

here called their home directory.</dd>

<dt>/lib</dt>

<dd>Libraries essential to the programs in /bin. Some 64-bit

distributions also include a /lib64 directory</dd>

<dt>/media</dt>

<dd>Contains mount points for removable media (although partitions

can be mounted to any folder, it is common practice to mount

external media to folders within /media).</dd>

<dt>/mnt</dt>

<dd>Contains mount points for temporary filesystems</dd>

<dt>/opt</dt>

<dd>Used for optional software. This directory is used less and less

in favour of /usr/local</dd>

<dt>/proc</dt>

<dd>A virtual filesystem which represents the internals of the

Linux kernel.</dd>

<dt>/root</dt>

<dd>Home directory for the root user</dd>

<dt>/sbin</dt>

<dd>Contains essential system binaries</dd>

<dt>/srv</dt>

<dd>Contains files to be used by services</dd>

<dt>/tmp</dt>

<dd>Contains temporary files which are usually deleted at boot time

</dd>

<dt>/usr</dt>

<dd>Contains read-only user data, user applications (/usr/bin), user

libraries (/usr/lib), documentation and source code</dd>

<dt>/var</dt>

E.9 exercise4.m4 119

<dd>Contains files that are expected to continually change such as

log files, spooling data, ...</dd>

</dl>

<p/>

<h2>Linux Permissions</h2>

<h3>Unix Permissions</h3>

Traditional Unix permissions come in three classes: Owner, Group and

Other. Within each class there are three distinct permissions: read,

write and execute. This comes to a total of nine different types of

permissions that all files and directories have associated

with them. Lets do an example:

<p/>

1 - Open a terminal (<code>Applications->System Tools->Terminal

</code>). Note that the terminal will start in the users home

directory (<code>/home/<user-name>/</code>, also called <code>

~/</code> for the current user).

<p/>

2 - Create a file called <code>test</code> in the current directory by

typing <code>touch test</code>.

<p/>

3 - now list all the files in the current directory and their

permissions by typing <code>ls -l</code>. You should get something

similar to:

<pre>

total 32

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Desktop

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Documents

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Downloads

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Music

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Pictures

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Public

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Templates

-rw-rw-r--. 1 user user 0 Jun 25 23:29 test

drwxr-xr-x. 2 user user 4096 Jun 24 01:57 Videos

</pre>

E.9 exercise4.m4 120

For a full explanation of the output see http://en.wikipedia.org/wiki/Ls

<p/>

The letters to the left (minus the very first character, which is set to

<code>d</code> to indicate a directory) shows the

permissions that are set for the file. Our test file shows the

permissions: <code>rw-rw-r--</code>. The first three character show

permissions for the owner of the file, the next three show permissions

for the group associated with that file, and the last three are

permissions for everybody else. As you can see our test file has

read/write access for both the user and group, and read-only access

for everyone else.

<p/>

Take note that directories have their executable permissions set. This

allows you to browse through the directories.

<h3>Superuser: root</h3>

Most operating systems have a special user accout called the superuser

which has complete, unrestricted access to the entire system

regardless of permissions. Windows systems have a user called

<code>Administrator</code> which is usually disabled by default, with

UAC providing elevated priveleges. The Linux superuser is called

<code>root</code> which may or may not be enabled depending on the

distribution of Linux. Distributions with <code>root</code> disabled

have a program called <code>sudo</code> which can elevate priveleges.

On the lab Linux machines <code>root</code> is enabled and can be

logged in to using the terminal.

<p/>

Note: Make sure that you understand Linux permissions.

On most Linux systems (including the lab machines) a large majority of

the operating system is owned by <code>root</code>, and since you log

into the machines as a user named <code>user</code>, the operating

system will not allow you to modify those files. Keep this in mind as

in later exercises you will have to log in as <code>root</code> and

modify some system files.

<p/>

<h2>Useful Linux Commands</h2>

E.9 exercise4.m4 121

Here are some basic linux commands that are very useful. If you want

to know more about the command you can run <code>man <command>

</code> in a terminal to view the command’s manual.

<dl>

<dt>cd <directory></dt>

<dd>Change the current directory. Typing <code>cd ../</code> will

change to the parent of the current directory. Please note that

Linux file and path names are case-sensitive</dd>

<dt>ls</dt>

<dd>Lists all files and folders in the current directory</dd>

<dt>pwd</dt>

<dd>Show the current directory path</dd>

<dt>man <command></dt>

<dd>Shows the manual page for the given command. Very useful if you

want to know how to use a particular command</dd>

<dt>cp <source> <destination></dt>

<dd>Copy a file/directory <source> to <destination>.

(Note. you must use the recursive option <code>-r</code> when copying

folders)</dd>

<dt>mkdir <directory></dt>

<dd>Create a new directory</dd>

<dt>rm <file1> <file2>...</dt>

<dd>Remove files. Use the <code>-r</code> option to remove folders.

Do NOT run this on the root directory <code>/</code> as it could

potentially wipe the operating system and all mounted drives</dd>

<dt>cat <file1> <file2>...</dt>

<dd>Concatinate files and display the result. Useful for just

displaying the contents of a particular file</dd>

E.9 exercise4.m4 122

<dt>cat <file1> <file2>...</dt>

<dd>Concatinate files and display the result. Useful for just

displaying the contents of a particular file</dd>

<dt>locate <file></dt>

<dd>Show the location of a file</dd>

<dt>grep <string> <file></dt>

<dd>Find a string within a file</dd>

<dt>ps</dt>

<dd>List current running processes. Running <code>ps</code> by

itself only shows processes within the current terminal. To show all

running process run <code>ps aux</code></dd>

<dt>top</dt>

<dd>Show the top running processes ordered by cpu usage (default)</dd>

<dt>touch <file></dt>

<dd>Updates the timestamp of a file. if the file doesn’t exist it is

created</dd>

<dt>df</dt>

<dd>Shows disk usage</dd>

<dt>free</dt>

<dd>Shows RAM usage</dd>

<dt>less</dt>

<dd>shows the contents of a file allowing you to scroll through the

file</dd>

<dt>vi</dt>

<dd>A command line text editor</dd>

<dt>whoami</dt>

<dd>Show the current user</dd>

</dl>

GUI programs can also be run from the terminal. One of the most useful

E.10 exercise5.m4 123

programs is <code>gedit</code> which is the text editor for gnome (the

desktop GUI on the lab’s Linux machines). This is handy for when we

need to edit system configuration files. To

edit a system file, open a terminal, log in to root using <code>su

</code>, navigate to the directory containing the file you want to

edit using <code>cd <directory></code>, and open the file using

<code>gedit <filename></code>.

<p/>

Linux makes extensive use of piping, which allows the output of one

program to be used as input for another program. For example <code>

ps -aux | grep openssh</code> will get the list of currently running

processes, which will be input to <code>grep</code> which will search

for the string <code>openssh</code>. Program output can also be piped

to files, e.g <code>ps -aux > processlist.txt</code> will get the list

of currently running processes and write it to <code>processlist.txt</code>

<p/>

Practice the above commands as some of them will be useful in later

exercises.

</body>

</html>

FUNCTIONS

E.10 exercise5.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercise 1 - Static IP Addresses</title>

STYLE

</head>

<body>

<h1>Exercise 1 - Static IP Addresses</h1>

Exercise List

E.10 exercise5.m4 124

<h2>Required Lab Machines</h2>

<?PHP

displayState("1234");

checkState("1234");

?>

<h2>Introduction</h2>

In this Experiment you will create a small network of consisting of four

computers. You will be assigning each computer an IP address manually and

then you will test the network by making sure that each computer can

connect to another.

<h2>Methodology</h2>

1 - To configure a Windows machine with a static IP first click on the

network icon in the system tray then select ’Open Network and Sharing

Centre’ then ’Change Adapter Settings’. Alternatively type ’View Network

Connections’ in the search area of the start menu. Right-click the

network interface you want to configure then select properties. Select

’Internet Protocol Version 4 (TCP/IPv4)’ then click properties.

<p/>

<div>

Configuring a network address under Windows</div>

<p/>

2 - To Configure a Linux machine right-click the network icon in the

system tray then select ’Edit Connections’. Select eth0 from the list

then select ’Edit’. Select the IPv4 Tab and change Method to Manual

<p/>

<div>

Configuring a network address under Linux</div>

<p/>

3 - Configure the first ethernet interface of the machines to

use the following IP addresses (leave the default gateway and dns server

blank for the moment). When applying these settings to a Linux machine

you may be asked for a password. The password is <code>password</code>.

E.11 exercise6.m4 125

Linux 1 - Address: 192.168.0.101, Netmask: 225.225.225.0

Linux 2 - Address: 192.168.0.102, Netmask: 225.225.225.0

Windows 1 - Address: 192.168.0.103, Netmask: 225.225.225.0

Windows 2 - Address: 192.168.0.103, Netmask: 225.225.225.0

<p/>

4 - Click OK/Apply to apply the new settings

<p/>

5 - Confirm that each computers have the correct IP addresses. On Windows

right-click the network interface then select ’status’, then click

’details’. On Linux right-click the network icon in the system tray then

select ’Connection Information’ then select the ’eth0’ tab.

<p/>

<div>

Checking IP Settings</div>

<p/>

6 - Confirm that the computers can communicate with each other by running

<code>ping <ip-address></code>, where <code><ip-address>

</code> is the address of the computer you want to send the ICMP Packet

to. Sending ICMP Packets with the <code>ping</code> is a great way to

diagnose whether a computer on the network is running or not.

<!--<h2>Results</h2>

check whether you have successful completed this exercise.--!>

</body>

</html>

FUNCTIONS

E.11 exercise6.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

E.11 exercise6.m4 126

<title>Exercise 6 - DHCP: Dynamic Host Configuration Protocol</title>

STYLE

</head>

<body>

<h1>Exercise 6 - DHCP: Dynamic Host Configuration Protocol</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("123");

checkState("123");

?>

<h2>Introduction</h2>

A DHCP server allows the dynamic allocation of IP addresses to clients

without an IP address without having to configure those computers

manually.

<p/>

When a new computer is connected to the network it broadcasts

(sends to address 255.255.255.255) a DHCPDISCOVER message onto the

network which is picked up by any DHCP servers on the network. the DHCP

server(s) then reserves an IP address and broadcasts a DHCPOFFER message

containing the reserved ip address and the hardware address of the new

computer.

<p/>

The new computer recieves the offer(s), accepts

one offer and broadcasts a DHCPREQUEST message

requesting the IP address of that particular offer. This also tells

all DHCP servers on the network which offer the new computer accepted

(the other DHCP servers withdraw their offers). The DHCP server whose

offer was offer was excepted then replies with a DHCPACK message

acknowledging the request and containing the lease time and any other

information the new computer needs. The new computer recieves this

and configures its network interface accordingly.

<p/>

In this Experiment you will create a DHCP server on one of the

E.11 exercise6.m4 127

machines. This Machine you will give a static ip

address. You will then configure the dhcp server to give a range of

ip addresses to dhcp enabled computers. You will then enable dhcp on the

other computers. You will have successfully completed this exercise

when the other 3 computers are automatically assigned ip addresses.

<h2>Methodology</h2>

Note: You will have to log in to the root user <code>

su</code> in order to modify system files. The root Password is <code>

password</code>. It is recommended you use <code>gedit</code> text

editor to edit system files.

<p/>

1 - Connect to Linux machine 1 as it will run our DHCP server

<p/>

2 - Examine <code>man dhcpd</code> for configuration details.

<p/>

3 - Edit the configuration file <code>/etc/dhcpd/dhcpd.conf</code> and

add the following:

<p/>

<code>

default-lease-time 60;

max-lease-time 60;

ddns-update-style interim;

option subnet-mask 255.255.255.0

subnet 192.168.1.0 netmask 255.255.255.0

{

 interface eth0;

 range 192.168.1.150 192.168.1.200;

}

</code>

<h4>Explanation of parameters</h4>

<dl>

<dt>default lease time</dt>

<dd>Default time than an allocated ip is valid in seconds</dd>

<dt>max-lease-time</dt>

E.11 exercise6.m4 128

<dd>Maximum time than an allocated ip is valid in seconds</dd>

<dt>ddns-update-style = update</dt>

<dd>Update the DNS server whenever a lease is updated (not used

here)</dd>

<dt>option subnet-mask</dt>

<dd>sets the subnet mask</dd>

<dt>interface</dt>

<dd>The network interface for the DHCP server to operate on.

In this case the server is restricted to eth0.</dd>

<dt>subnet, netmask, range</dt>

<dd>This defines the network the dhcp operates on, and the range

of ip addresses that are handed out to clients</dd>

</dl>

<p/>

Note: Parameters outside the subnet definition are

considered global andapply to all subnet definitions while parameters

inside the subnet definition are local to that definition.

<p/>

Note: If you want it is possible to allocate a fixed

ip address to a certain hardware address. e.g:

<p/>

<code>

host Q6-4101

{

 hardware ethernet 76:75:89:32:67:3C;

 fixed address 192.168.11.300;

}

</code>

<p/>

This will make the dhcp server assign an IP address of 192.168.11.300

to the machine with the hardware address of 76:75:89:32:67:3C.

<p/>

4 - Configure the first interface (eth0) so Linux-1 to have a static

ip of 192.168.1.1. This will be the network interface that the DHCP

server will be listening on (as shown in the configuration above).

E.12 exercise7.m4 129

<p/>

5 - start the dhcp server by running <code>service dhcpd start</code>.

If <code>[FAILED]</code> is shown double check you configuration and

make sure the machine has a static ip. You can also check

<code>/var/log/messages</code> for any dhcpd errors. You can do this

by running <code>tail -n 20 /var/log/messages</code> (must be run as

root).

<p/>

6 - Windows-1 and Linux-2 will serve as our DHCP clients so you must

configure them to use DHCP. You can do this in the

same place where you assigned static ips, but this time you select

’obtain an ip address automatically’ in Windows and change Method to

’Automatic (DHCP)’ in Linux.

<p/>

7 - Ensure that the client machines are all assigned ip addresses.

these address should be 192.168.1.150, 192.168.1.151 and 192.168.1.152,

or something similar. Windows strangely tends to assign a (usually)

useless ip address to an interface that cannot connect to a network.

If this is the case you may have to disable the interface and renable

it (right-click).

<p/>

You will have complete this exercise when all interfaces on all machines

(except the interface the DHCP is listening on) are assigned an IP address

by the DHCP server.

</body>

</html>

FUNCTIONS

E.12 exercise7.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

E.12 exercise7.m4 130

<head>

<title>Exercise 7 - Windows File Sharing: NetBIOS Protocol</title>

STYLE

</head>

<body>

<h1>Exercise 7 - Windows File Sharing: NetBIOS Protocol</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("D34");

checkState("D34");

?>

<h2>Introduction</h2>

In this exercise you will share a folder on one Windows machine, and

access it on another Windows machine. You will have successfully

completed this exercise when you are able to share files from one

Windows machine to another.

<h2>Methodology</h2>

1 - Click start and then right-click computer then select properties.

Ensure that the workgroup is named WORKGROUP.

<p/>

2 - Ensure that the machine has file sharing turned on. To do this open

the Network and Sharing Centre and select ’Change advanced sharing

settings’. Make sure that ’Turn on file and printer sharing’, ’Turn on

network discovery’, ’Turn off password protected sharing’ are selected

for public networks. Do this for both Windows-1 and Windows-2.

<p/>

<div>

Enable Sharing</div>

<p/>

3 - Create a new folder on the desktop. To share this folder right-

click it and select properties. Select the sharing tab and click

’share’. You can choose which users you can share the folder with. For

this exercise add ’Everyone’ from the drop-down box and click add then

E.12 exercise7.m4 131

change the permission level for ’Everyone to ’Read/Write’. Click Share

then Done.

<p/>

<div>
Share Folder</div>

<p/>

Also Click ’Advanced Sharing’ and make sure ’Share this

folder’ is checked. Click permissions and make sure that ’Everyone’

has full control.

<p/>

<div>
Share Folder</div>

<p/>

If you’re asked to turn of file and folder sharing select yes.

<p/>

4 - On the other Windows machine open Windows explorer and select

’Network’ from the side menu. From here you should be able to navigate

to the shared folder. If you cannot see the folder try typing

<code>\\<ip-address>\</code> into the address bar where

<code><ip-address></code> is the ip address of the machine with the

shared folder (you will need to find the IP address yourself).Test that

you can read and write to the folder

by creating a new file. If you cannot read or write to the folder check

the sharing permissions.

<p/>

<div>

Connecting to shared folder</div>

<p/>

5 - Right-click the share and select ’Map Network Drive’, and assign

the share a drive letter. You should now be able to open the shared

folder from My Computer. Right-click the network drive and select

disconnect to remove the drive.

<p/>

<h4>The following does the same as the above steps except using the command

line.</h4>

6 - Run <code>net view</code> to list windows computers on the network

<p/>

E.13 exercise8.m4 132

7 - Run <code>net use /? | more</code> to learn the syntax on how to

assign a drive letter to a share

<p/>

8 - Assign a drive lette to the share by running <code>net use

<drive-letter>: \\<computer-name>\<share-name></code>,

where <code><drive-letter></code> is the drive letter you want

to assign, <code><computer-name></code> is the name or IP address

of the machine containing the shared folder, and

<code><share-name></code> is the name of the share.

The shared folder should now apper in My Computer as a network drive.

<p/>

9 - List current shares by running <code>net use</code>

<p/>

10 - Disconnect the share by running <code>net use

<drive-letter>/delete</code>

</body></html>

FUNCTIONS

E.13 exercise8.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercise 8 - Unix-Windows File Sharing - Samba</title>

STYLE

</head>

<body>

<h1>Exercise 8 - Unix-Windows File Sharing - Samba</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("D13");

checkState("D13");

E.13 exercise8.m4 133

?>

<h2>Introduction</h2>

Samba allows Unix files to be accessable on Windows using the SMB

(Server Message Block) protocol, also known as CIFS (Common

Internet FileSystem). In this exercise you will share a folder on a

Linux machine, and access it on a windows machine. You will have

successfully completed this exercise when you are able to share files

from the Linux machine to a Windows machine.

<h2>Methodology</h2>

Note: You will have to log in to the root user <code>

su</code> in order to modify system files. The root Password is <code>

password</code>. It is recommended you use <code>gedit</code> text

editor to edit system files.

<p/>

1 - Connect to Linux-1, which will run our samba server.

<p/>

2 - Examine <code>man smb.conf</code> for configuration details.

<p/>

3 - Rename <code>/etc/samba/smb.conf</code> to

<code>/etc/samba/smb.conf.backup</code> using <code>mv /etc/samba/smb.conf

/etc/samba/smb.conf.backup</code>and create a new blank smb.conf

by running <code>touch /etc/samba/smb.conf</code>

<p/>

4 - Edit <code>/etc/samba/smb.conf</code> using gedit and add

the follwing:<p/>

<code>

[global]

 workgroup = WORKGROUP

 Server String = I am a Samba Server

 security = user

 Map to guest = Bad User

 username map = /etc/samba/smbusers

</code>

<p/>

E.13 exercise8.m4 134

<h4>Explanation of parameters</h4>

<dl>

<dt>workgroup</dt>

<dd>Windows NT Domain Name/Workgroup Name</dd>

<dt>Server String</dt>

<dd>server description</dd>

<dt>security = user</dt>

<dd>security mode samba runs in, setting it to user mode makes samba

authenticate incoming connections</dd>

<dt>Map to guest = Bad User</dt>

<dd>makes samba treat any unauthenticated users as a guest user</dd>

<dt>username map</dt>

<dd>The file listing the users that samba uses for authentication</dd>

</dl>

<p/>

5 - make sure that <code>nobody = guest</code> exists in

<code>/etc/samba/smbusers</code>. If <code>smbusers</code> doesnt exist

then create it and add the line to it. <code>nobody = guest</code> will

link the samba guest account to the Linux account ’nobody’.

<p/>

6 - Create folder <code>/home/public</code>. This will be the folder

you will be sharing. Make sure that it has its permissions for other set

to read, write and executable by running <code>chmod o+rwx /home/public</code>

(important!)

<p/>

7 - Add the following share definition to <code>/etc/samba/smb.conf

</code>:

<p/>

<code>

[share]

 comment = Public Folder

 path = /home/public

 writable = yes

 browsable = yes

E.13 exercise8.m4 135

 public = yes

 only guest = yes

</code>

<p/>

<h4>Explanation of parameters</h4>

<dl>

<dt>comment</dt>

<dd>description of the share definition</dd>

<dt>path</dt>

<dd>path to the folder to be shared</dd>

<dt>writable</dt>

<dd>whether or not connected users can write to the shared folder</dd>

<dt>browsable</dt>

<dd>whether or not connected users can navigate the shared folder</dd>

<dt>public</dt>

<dd>whether the guest account is allowed acces (guest ok = yes/no can

be used here instead)</dd>

<dt>only guest</dt>

<dd>whether or not only the guest account is allowed access</dd>

</dl>

<p/>

8 - Start the server by running <code>service smb start</code>. You

can stop the server by running <code>service smb stop</code> and check

its status by running <code>service smb status</code>

<p/>

9 - Check that the server works. On a windows machine open windows

explorer and enter <code>\\<ip-address>\</code> into the address

bar, where <code><ip-address></code> is the ip address of the

machine that the server is running on. To find the ip address type

<code>ifconfig</code> on the maching running the server.

<p/>

10 - If any "cannot connect" or "permission denied" errors occur, check

the status of the server in <code>/var/log/samba/log.smbd</code>. Also

double check <code>/etc/samba/smb.conf</code> for any errors. Also check

the permissions of the shared folder on the server. the folder and all

E.14 exercise9.m4 136

file inside should have read, write and execute permissions. If not

then change the permissions using the chmod command.

</body></html>

FUNCTIONS

E.14 exercise9.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercise 9 - Unix File Sharing - NFS: Network Filesystem

</title>

STYLE

</head>

<body>

<h1>Exercise 9 - Unix File Sharing - NFS: Network Filesystem</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("D12");

checkState("D12");

?>

<h2>Introduction</h2>

In this exercise you will share a folder on a Linux machine, and access

it on another Linux machine. You will have successfully completed this

exercise when you are able to share files from one Linux machine to

another.

<h2>Methodology</h2>

Note: You will have to log in to the root user <code>

su</code> in order to modify system files. The root Password is <code>

password</code>. It is recommended you use <code>gedit</code> text

editor to edit system files.

E.14 exercise9.m4 137

<p/>

1 - Connect to Linux machine 1

<p/>

2 - create folder <code>/home/public</code> by running <code>mkdir -p

/home/public</code>. This will be the folder you will be sharing.

<p/>

3 - start the NFS server by running <code>service nfs start</code>

<p/>

4 - In order to make a folder accessible to a client it must be

"exported" by the server. To do this we must make an entry into <code>

/etc/exports</code>. For the full set of options check the exports man

page <code>man exports</code>.

<p/>

5 - Edit <code>/etc/exports</code> and add this line:

<p/>

<code>

/home/public 192.168.11.*(rw,sync,no_root_squash,no_subtree_check)

</code>

<p/>

<h4>Explanation of parameters</h4>

<dl>

<dt>/home/public</dt>

<dd>folder to be shared</dd>

<dt>192.168.11.*</dt>

<dd>specifies ip addresses that are allowed to connect (in this case

the entire 192.168.11.xxx subnet)</dd>

<dt>rw</dt>

<dd>allow both read and write requests</dd>

<dt>sync</dt>

<dd>reply to new requests only after previous changes have been completed

on the server system</dd>

<dt>no_root_squash</dt>

<dd>allows the client’s root account to be mapped to server’s root

account (by default requests made by the client’s root account are

mapped to <code>nobody</code> on the server, an action called root

E.14 exercise9.m4 138

squashing)</dd>

<dt>no_subtree_check</dt>

<dd>disable checking whether the file/folder is a descendant of the

exported directory</dd>

</dl>

<p/>

6 - <code>exportfs</code> is the program that maintains the export

table for the nfs server. Now we have to update the export table with

the new entry we put into <code>/etc/exports</code>. Run <code>exportfs

-a</code> to do this.

<p/>

7 - On the other Linux machine create a mount point. The concept of

mount points is that a partition on a physical drive (or in our case a

location on a remote computer) us bound to a folder on the filesystem.

For example if you mount sda1 (first partition of physical drive sda)

to folder <code>/media/drive/</code> the contents of that partition is

accesible from that folder. Windows uses the same concept except it

uses specialised mount points (drive letters).

<p/>

So lets create a mount point <code>/mnt/remotedir/</code>, (run

<code>mkdir -p /mnt/remotedir</code>), and then mount the shared folder

on the remote system to the mount point that we just created. Run

<code>mount <ip-address>:/home/public /mnt/remotedir</code>.

<p/>

8 - You should now be able to access the shared folder by accessing

<code>/mnt/remote/dir</code>. Take note that Linux permissions play a

big role here. By default the permissions of <code>/mnt/remotedir</code>

only allow write access for root. To allow a normal user to write to

files in the shared folder you need to change the permissions of the mount

point (<code>/mnt/remotedir</code>). You can give everyone write permisions

by running <code>chmod o+rwx /mnt/remotedir</code>.

</body></html>

FUNCTIONS

E.15 exercise10.m4 139

E.15 exercise10.m4

include(‘defines.m4’)dnl

XML_HEADER

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>

<title>Exercise 1 - Static IP Addresses</title>

STYLE

</head>

<body>

<h1>Exercise 1 - Static IP Addresses</h1>

Exercise List

<h2>Required Lab Machines</h2>

<?PHP

displayState("1234");

checkState("1234");

?>

<h2>Introduction</h2>

In this Experiment you will create a small network of consisting of four

computers. You will be assigning each computer an IP address manually and

then you will test the network by making sure that each computer can

connect to another.

<h2>Methodology</h2>

1 - To configure a Windows machine with a static IP first click on the

network icon in the system tray then select ’Open Network and Sharing

Centre’ then ’Change Adapter Settings’. Alternatively type ’View Network

Connections’ in the search area of the start menu. Right-click the

network interface you want to configure then select properties. Select

’Internet Protocol Version 4 (TCP/IPv4)’ then click properties.

<p/>

<div>

Configuring a network address under Windows</div>

E.15 exercise10.m4 140

<p/>

2 - To Configure a Linux machine right-click the network icon in the

system tray then select ’Edit Connections’. Select eth0 from the list

then select ’Edit’. Select the IPv4 Tab and change Method to Manual

<p/>

<div>

Configuring a network address under Linux</div>

<p/>

3 - Configure the first ethernet interface of the machines to

use the following IP addresses (leave the default gateway and dns server

blank for the moment). When applying these settings to a Linux machine

you may be asked for a password. The password is <code>password</code>.

Linux 1 - Address: 192.168.0.101, Netmask: 225.225.225.0

Linux 2 - Address: 192.168.0.102, Netmask: 225.225.225.0

Windows 1 - Address: 192.168.0.103, Netmask: 225.225.225.0

Windows 2 - Address: 192.168.0.103, Netmask: 225.225.225.0

<p/>

4 - Click OK/Apply to apply the new settings

<p/>

5 - Confirm that each computers have the correct IP addresses. On Windows

right-click the network interface then select ’status’, then click

’details’. On Linux right-click the network icon in the system tray then

select ’Connection Information’ then select the ’eth0’ tab.

<p/>

<div>

Checking IP Settings</div>

<p/>

6 - Confirm that the computers can communicate with each other by running

<code>ping <ip-address></code>, where <code><ip-address>

</code> is the address of the computer you want to send the ICMP Packet

to. Sending ICMP Packets with the <code>ping</code> is a great way to

diagnose whether a computer on the network is running or not.

<!--<h2>Results</h2>

E.15 exercise10.m4 141

check whether you have successful completed this exercise.--!>

</body>

</html>

FUNCTIONS

	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	1.1 Overview
	1.2 Project Aims
	1.3 Specific Objectives
	1.4 Thesis Outline

	Chapter 2 Background Information and Literature Review
	2.1 Overview
	2.2 Online Remote Laboratories
	2.2.1 Time on Task
	2.2.2 Learning Style
	2.2.3 Prior Experience
	2.2.4 Social Interaction
	2.2.5 Perception of Hardware
	2.2.6 Building Blocks of a Remote Lab

	2.3 Computer Networking Education
	2.4 Network Management
	2.5 Virtual Machines and Automated System Restoration
	2.6 Delivery of Information
	2.7 Remote Access
	2.7.1 Remote Desktop Protocol
	2.7.2 Virtual Network Computing

	Chapter 3 System Design
	3.1 Overview
	3.2 Requirements Analysis
	3.2.1 Requirements
	3.2.2 Physical Machines

	3.3 Laboratory Design
	3.3.1 Practical Experiments
	3.3.2 Operating System and Software Selection
	3.3.3 Laboratory Network
	3.3.4 Web Interface and Lab Program

	3.4 Resource Requirements
	3.4.1 Hardware Requirements
	3.4.2 Software Requirements

	3.5 Risk Analysis
	3.6 Consequential Effects
	3.6.1 Sustainability
	3.6.2 Safety
	3.6.3 Ethical Considerations

	Chapter 4 Implementation
	4.1 Overview
	4.2 Physical Machines
	4.3 Virtual Machines
	4.4 Web Interface
	4.4.1 Virtual Machine
	4.4.2 Source Code

	4.5 Lab Program
	4.5.1 DHCP server
	4.5.2 Communication with Web Interface
	4.5.3 Starting and stopping virtual machines/DHCP server
	4.5.4 Resetting the configurable switch

	Chapter 5 Testing
	5.1 Overview
	5.2 Unit Testing
	5.2.1 Web Interface
	5.2.2 Physical Machines
	5.2.3 Virtual Machines

	5.3 Integration/System Testing
	5.4 Acceptance Testing
	5.4.1 Laboratory and Experiments

	5.5 Student Evaluation

	Chapter 6 Conclusion
	6.1 Overview
	6.2 Further Work
	6.3 Summary

	References
	Appendix A Project Specification
	Appendix B Risk Assessment
	B.1 Risks to the Student/User
	B.2 Risk to the Administrator/Developer
	B.3 Security Risks

	Appendix C Supervisory Script Source Code
	C.1 ral.lua
	C.2 tplink.ksc

	Appendix D Experiment Instructions
	D.1 Exercise 1 - Static Ip Addresses
	D.1.1 Introduction
	D.1.2 Methodology

	D.2 Exercise 2 - Multiple networks and Routing
	D.2.1 Introduction
	D.2.2 Methodology

	D.3 Exercise 3 - Packet Analysing
	D.3.1 Introduction
	D.3.2 Methodology

	D.4 Exercise 4 - Introduction to the Linux Operating System
	D.4.1 Introduction
	D.4.2 The Linux Filesystem
	D.4.3 Linux Permissions
	D.4.4 Useful Linux Commands

	D.5 Exercise 5 - Windows and Linux Networking Tools
	D.5.1 Introduction
	D.5.2 Windows Networking Tools
	D.5.3 Linux Networking Tools
	D.5.4 Common Tools

	D.6 Exercise 6 - DHCP: Dynamic Host Configuration Protocol
	D.6.1 Introduction
	D.6.2 Methodology

	D.7 Exercise 7 - Windows File Sharing: NetBIOS Protocol
	D.7.1 Introduction
	D.7.2 Methodology

	D.8 Exercise 8 - Unix-Windows File Sharing - Samba
	D.8.1 Introduction
	D.8.2 Methodology

	D.9 Exercise 9 - Unix File Sharing - NFS: Network Filesystem
	D.9.1 Introduction
	D.9.2 Methodology

	D.10 Experiment 10 - Apache Web Server
	D.10.1 Introduction
	D.10.2 Methodology

	Appendix E Web Interface Source Code
	E.1 Makefile
	E.2 defines.m4
	E.3 feedback.m4
	E.4 state.m4
	E.5 exercises.m4
	E.6 exercise1.m4
	E.7 exercise2.m4
	E.8 exercise3.m4
	E.9 exercise4.m4
	E.10 exercise5.m4
	E.11 exercise6.m4
	E.12 exercise7.m4
	E.13 exercise8.m4
	E.14 exercise9.m4
	E.15 exercise10.m4

