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Abstract 
 

Study in the field of tribology has developed over time within the mechanical 

engineering discipline and is an important aspect of material selection for new 

component design. Most of these components experience failure due to this form of 

loading. It has been well established that there are several conditions or parameters that 

may influence the tribological performance of a material. Good correlations with 

experimental results are not clearly obtained or achieved from mathematical models.  

 

Artificial neural network (ANN) technology is recognised as an effective tool to 

accurately predict material tribological performance in relation to these influencing 

parameters. The benefit and importance is the ANN models capability to predict 

solutions by being trained with experimental data. They essentially catalogue the 

performance characteristics eliminating the need to refer to tables and the requirement 

for additional time consuming testing. This will aid in continuing research, development 

and implementation of fibre composites.  

 

The aim of the project was to investigate artificial neural network (ANN) modelling for 

the accurate prediction of friction coefficient and surface temperature of a kenaf fibre 

reinforced epoxy composite for specific tribological loading conditions. 

 

This study has verified the ability of an artificial neural network to make closely 

accurate generalised predictions within the given domain of the supplied training data. 

Improvements to the generalised predictability of the neural network was realised 

through the selection of an optimal network configuration and training method suited to 

the supplied training data set.  

 

Hence, the trained network model can be utilised to catalogue the friction coefficient 

and surface temperature variables in relation to the sliding distance, speed and load 

parameters. This is limited to the domain of the training data. This will ultimately save 

time and money otherwise used in conducting further testing. 
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    1 Introduction 
 

 

The outline and the research objectives of the project are established within this chapter. 

The main intention of the project is to investigate and develop an artificial neural 

network (ANN) that effectively predicts tribological characteristics of kenaf fibre 

reinforced epoxy composite (KFRE). 

 

1.1 Project Topic 

 

Development of an Artificial Neural Network (ANN) for predicting tribological 

properties of kenaf fibre reinforced epoxy composites. 

 

1.2 Project Background 

 

Societies increasing focus toward awareness for the environment has driven the 

development within the fibre composite industry. Sustainable, environmentally friendly, 

materials have subsequently emerged in popularity. There is also recent concern for the 

sustainability and limited nature of resources used in traditional petro-chemical based 

composites. These synthetic composites typically use synthetic fibres with petro-

chemically based resins. It’s also recognised that as resources are reduced there is a 

realistic concern for increased costs. The implementation of natural fibre composites is 

thus becoming increasingly favourable as sustainable replacements within industry. 

 

The growing interest in implementing natural fibres for polymeric composite 

reinforcement is also driven by the recognition of their desirable properties. Such 

properties include their low density, non-abrasiveness, non-toxicity, biodegradability, 

renewability and low costs (Chin and Yousif 2009). Their higher specific properties like 

modulus, flexibility, strength, and impact resistance also make them attractive. Some 

fibre composites are successfully employed as component materials in various sectors. 

Many of these industrial components are placed under tribological loading. 
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Study in the field of tribology has developed over time within the mechanical 

engineering discipline and is an important aspect of material selection for new 

component design. Essentially the topic covers the science of wear, friction and 

lubrication (Yousif. B 2013). Most of these components experience failure due to this 

form of loading. It has been well established that there are several conditions or 

parameters that may influence the tribological performance of a material.  

 

Artificial neural network (ANN) technology is recognised as an effective tool to 

accurately predict material tribological performance in relation to these influencing 

parameters (Nasir et al. 2009, Zhang et al. 2002, Rashed and Mahmoud 2009, Hayajneh 

et al. 2009). The recent increased application of ANN technology to model and 

characterise the tribological behaviour of the natural fibre materials is assisting in their 

further research, development and implementation. 

 

1.3 Research Aim and Objectives 

 

The project aim is to investigate artificial neural network (ANN) modelling for the 

accurate prediction of friction coefficient and surface temperature of a kenaf fibre 

reinforced epoxy composite for specific tribological loading conditions. 

 

The primary project objectives are characterised below: 

 Understand the process and benefit of developing neural networks 

used for prediction applications. 

 Process sufficient previously collected tribology data and implement 

this data to establish an optimal ANN model through testing various 

neural, layer and function configurations.  

 Train developed optimal ANN model and compare results with data 

to confirm accuracy of model. Consider implementing methods to 

improve network generalisation. 

 Simulate ANN model and assess its ability to make predictions 

beyond trained domain. 
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1.4 Justification 

 

More recently the recognition of the superior properties and demand for kenaf as 

polymer reinforcing fibres has become evident. There is history of this fibre being 

cultivated in areas like Malaysia, India, Thailand, Bangladesh, parts of Africa and south 

east Europe. Twine, paper, cloth and rope are some examples of where the fibre has 

been implemented. Many recent studies have established the superior properties that the 

kenaf fibre exhibit over other commonly used natural fibres such as jute, sugar cane, 

and oil palm (Chin &Yousif 2009). The kenaf fibres have also been shown to 

demonstrate strong interfacial adhesion between the fibres and the matrix (1 and 2).  

 

The stronger interfacial adhesion has been recognised to promote improved wear 

performance (Chin &Yousif 2009). The usage of this natural fibre as polymeric 

composite reinforcements for tribology applications has had little conducted research. 

Subsequently, Chin and Yousif (2009) have conducted work assessing the potential of 

kenaf fibres for reinforcement in polymer based tribo-composites. In their work they 

have assessed various related tribological conditions and parameters. These include 

sliding distance, applied loads, sliding velocity and fibre orientation with respect to 

sliding direction. The tribological characteristics assessed where the coefficient of 

friction, contact surface temperature and the specific wear rate. 

 

There are many operating parameters and contact conditions that can have a strong 

influence on the tribological properties of a polymeric composite (Yousif and El-Tayeb 

2007). Thus establishing models that characterises and predicts the performance based 

on the tribological conditions are useful tools. They essentially catalogue the 

performance characteristics eliminating the need to refer to tables and the requirement 

for additional time consuming testing. This will aid in continuing research, development 

and implementation of the fibre composite.  

 

Good correlations with experimental results are not clearly obtained or achieved from 

mathematical models. It is also recognised to be a time consuming process to develop a 

pure mathematical model to estimate these properties (Nasir et al. 2009). Artificial 

Neural Network (ANN) modelling is more readily implemented as a successful 

alternative tool to closely estimate tribological properties (Zhang et al. 2002, Jiang et al. 

2007). Today many complex engineering and scientific problems are being solved by 
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utilising this ANN technology. The benefit and importance is the ANN models 

capability to predict solutions by being trained with experimental data.  

 

1.5 Scope 

 

To develop an optimal ANN model, data from the previous works will be processed to 

be implemented in the training of the network. . Initial trial and error training will be 

conducted for various network setups. The process of establishing the optimal ANN 

setup will involve a simple series of attempts with various layer, neural and function 

configurations. By comparing the performance of these various setups or developed 

sample models, an optimal ANN model will be derived. 

 

The models will be developed and trained within the ANN toolbox. The optimal layer 

configurations, available transfer functions and training functions will be assessed by 

comparing the performances of the sum squared error (SSE). The model setup 

developed based on this selection process will undergo further training to try and 

achieve higher accuracy and finally produce an ANN model based on the training data 

set. 

 

 

1.6 Conclusion 

 

The project strives toward investigating and developing an optimal ANN tool that 

accurately predicts some tribological performance characteristics of a KFRE composite 

through comparing a series of attempted configurations. A review of sufficient and 

relevant literature will be conducted to establish an understanding for methods 

implemented to develop an optimal neural network. A basis of limitations and expected 

outcomes for the project may be established from this.
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  2 Literature Review  
 

 

2.1 Introduction 

 

Within the following chapter current literature and previous research studies will be 

reviewed. Most of the information in the various subject matters looked at are obtained 

from mostly published information sources and from communication with supervisors. 

A general background of neural networks pertaining to their operation, development and 

applications will be presented. Additional background will be provided regarding the 

tribology, its importance and current testing procedures used to generate relevant 

characterising data. A review on natural fibre composites and their growing position in 

engineering along will be given. An assessment will also be conducted on the 

consequential effects of the project. 

 

 

2.2 Neural Networks (NNs) 

 

The use of artificial neural networks (ANNs) has grown exponentially in recent 

decades. Its current applications encompass a vast range of subjects as diverse as image 

processing; signal processing, robotics, optics, manufacturing systems medical 

engineering, and credit scores (Lisboa 1992). In 1943 McCulloch and Pitts, using 

simple threshold logic elements, represented individual neuron activity and showed how 

many units interconnected could perform logic operations. This was based on the 

realisation that the brain performed information processing in a particular way. The 

understanding of biological neurons is that their basic activity involves the transmission 

of information via electrical impulses propagating along the axon to activate the 

synapses (Refer to Figure 1)(Lisboa 1992, Fauset 1994). This excitation at the synapses 

junction travels to the next neurone by its connected dendrites. The hillock zone is 

recognised as the region of the neurons which dictates their firing rate. (Lisboa 1992). 
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2.2.1 Biological Neurons  

 

Brain Function 

 

ANNs draw much of their inspiration from the biological nervous system. Therefore 

some knowledge of the way this system is organised is very useful. A controlling unit 

which is able to learn is required by most living creatures, providing them with the 

ability to adapt to changes within their environment. To perform such tasks complex 

networks of highly specialized neurons are used by higher developed animals and 

humans. The brain is the control unit that is connected by nerves to the sensors and 

actors in the whole body (www.teco.edu).  It is divided into different anatomic and 

functional sub-units, each having specific tasks like hearing, vision, motor control and 

sensor control. The brains complexity can be contributed to the considerably large 

number of neurons, approximately 10
11

 on average that it consists of (www.teco.edu). 

These are recognised as the building blocks of the central nervous system (CNS). The 

CNS has around 10
10

 neurons conducting the neural signalling elements (Groff and 

Neelakanta 1994). 

 

 Biological Neuron structure  

 

There is enormous complexity to the structure and processes within simple neuron cell. 

Most sophisticated neuron models in artificial neural networks seem toy-like. The 

neurons are interconnected at points called synapses. Structurally the neuron can be 

divided in three major parts: the cell body (soma), the dendrites, and the axon (Fausett 

1994). These features of the neuron are indicated in Figure 1. 

 

 

http://www.teco.edu/~albrecht/neuro/html/node7.html
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Figure 1- Biological Neuron (www.neuralpower.com) 

 

 

Lisboa (1992), Fausett (1994), along with Groff and Neelakanta (1994) all recognise 

neurons as the building blocks of signalling unit in the nervous system. Excitability, 

development of an action potential and synaptic linkage are considered as general 

characteristics of all nerve cells (Groff and Neelakanta 1994). These are key neural 

properties mathematical models of neurons base their construction on.   

 

The dendrites make connections to a larger number of cells within the cluster. They are 

referred to as a hair liked branched fibres emanating from the top of the cell (Groff and 

Neelakanta 1994). Most input signals enter the cell via the dendrites (www.teco.edu). 

Input connections are made from the axons of other cells to the dendrites or directly to 

the body of the cell. Each neuron consists of a single axon, a fine long fibre leading 

from the neuron body and eventually arborizing into strands and sub strands as nerve 

fibres. From 1-100m/s, it transports the output signal of the cell as electrical impulses 

(action potential) along its length to its terminal branches (Lisboa 1992, Groff and 

Neelakanta 1994). Synapse refers to the connection of a neurons axon nerve fibre to the 

soma (cell) or dendrite of another neuron (Lisboa 1992). Justifying the complexity of a 

biological neuron, there is typically between 1000 to 10000 synapses present on each 

neuron (www.neuralpower.com, Groff and Neelakanta 1994). 

 

Biological Neuron Operation  

 

Dendrites work as input receptors for the incoming signals from other neurons by 

channelling the postsynaptic potentials to the neurons soma, which performs as an 

http://neuralpower.com/technology.htm
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accumulator /amplifier. The neuron’s output channel is provided by the axon as it 

conveys the neural cell’s action potential (along nerve fibres) to synaptic connections 

with other neurons (www.teco.edu, Groff and Neelakanta 1994). This transfer of 

impulse and neuron connection is illustrated by Figure 2. 

 

 

 

Figure 2– Connection and impulse transfer of two biological neurons (www.optimaltrader.net). 

 

 

Electrical signals that encode information by the duration and frequency of their 

transmission are action potentials. The transmission of the action potential down the 

axon involves a large movement of ions cross the axon’s membrane (Groff and 

Neelakanta 1994, Barnes 2012). As a collective process across the neuronal assembly, 

neural transmission is physically a bio chemical activated flow of electric signals 

(Barnes 2012).  

 

A flow of chemicals across the synaptic junctions, from the axons leading from other 

neurons, cause the activation of the receiving neuron. The electrical synapse effects will 

either be excitatory or inhibitory. This is based on whether the hillock potential is raised 

or lowered by the postsynaptic potentials, enhancing or reducing likeliness of triggering 

an impulse, respectively. (Lisboa 1992, Groff and Neelakanta 1994). The neuron fires 

by the propagation of an action potential down the output axon if all the gathered 

synaptic potentials exceed a threshold value in a short period of time. This time period 

is referred to as the period of latent summation. A cell cannot refire for a short period of 

several milliseconds, known as the refractory period (Barnes 2012). Neural activation is 

a chain like process, where a neuron that activates other neurons was itself activated by 

other activated neurons. 
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There are many different types of neuron cells found in the nervous system. The 

differences are due to their location and function. The neurons perform the summation 

of the inputs, which may vary by the strength of the connection or the frequency of the 

incoming signal (www.teco.edu). The input sum must exceed certain signal strength or 

activation threshold for an impulse to be sent past the hillock zone and along the axon. 

The hillock zone is recognised as the region of the neurons which dictates their firing 

rate (Lisboa 1992).  

 

 

2.2.2 Artificial Neural Networks (ANN) 

 

Most describe ANN as a biologically inspired mathematical model used to solve 

complex scientific and engineering problems. Artificial neurones implement weightings 

or multiplication factors to simulate synaptic junction strength of biological neurones. 

Summations of signals received from every link models the action of the hillock zone 

(Lisboa, 1992, www.teco.edu). Numerous literatures on ANNs have been presented in 

recent years. Gyurova and Friedrich (2010) described the neural networks as being 

similar to the brain, containing a massive parallel collection of small and simple 

processing units. Models typically compose of numerous non-linear computational 

elements that operate in parallel, organised into reminiscent patterns of biological neural 

nets (Lippmann 1987). Figure 3 illustrates this concept with a typical structure of an 

ANN setup. 
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Figure 3– ANN structure representing interconnected organised parallel operating nature of numerous 

individual neurons (www.optimaltrader.net). 

 

 

 It is also identified that an ANN acts like “black-box” as the modelling process is 

relatively not clear and any physical relationships within the data set are difficult to 

obtain from the Network (Gyurova. & Friedrich  2010). Figure 4 simply depicts this 

perception of the ANN. Lippman (1987) suggests the non-linear nature enables NNs to 

perform signal filter operations and functional approximations which are beyond 

optimal linear techniques. Thus they are capable of performing pattern 

recognition/classification by defining non-linear regions in feature space. The NNs are 

also recognised to perform at higher computational rates than Voneuman single 

processor computers due to the parallel nature of the networks (Fausett 1994). 

 

 

Figure 4 – ANN summarised as black-box that computes outputs from various input parameters. 

(www.optimaltrader.net). 
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The ANN learns and models itself on experience by detecting trends or patterns within 

the data it is presented with (Gyurova & Friedrich 2010). This is achieved by the 

computational elements or nodes being connected by weights and bias factors. These 

are adapted during use and training of the network to improve performance. This 

adaptive nature enables the NN to learn characteristics of the input signals and to adjust 

to changes in data (Lippmann R. 1987).  

 

Subsequently, no defining physical relationships and observational theory is necessary 

in the ANNs construction. This aspect clearly has an advantage over regression analysis 

and is therefore accommodates problem modelling where input and output relationships 

are unclear or significant formulation time is required. Gyurova & Friedrich (2010), 

Tchaban et al. (1998), Velten K et al. (2000), Myshkin et al. (1997) and Schooling et al. 

(1999) all recognise and validate the previously defined aspect. Buttsworth et al. (2009) 

and Yusaf et al. (2009) also recognised implementing ANNs as an investigative tool, to 

model and predict data, greatly reduces the amount of expensive and time consuming 

testing required.  

 

In the engineering tribological field the several applications such as wear, erosion, 

friction, temperature sensitivity and surface roughness have employed the ANN method 

of prediction. All works carried out implementing the ANNs report that their models 

were capable of output predictions to variable accuracy levels. This is depicted by the 

graph (Figures 5 & 6) presented by Yusaf et al. (2009), showing the predicted vs. 

experimental values of a derived ANN model for motor performance parameters.  
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Figure 5 - The predicted vs. experimental values for experimental motor performance parameters (Yusaf 

et al. 2009). 

 

 

 

Figure 6 - The predicted vs. experimental values for experimental motor performance parameters (Yusaf 

et al. 2009). 

 

 

These levels of accuracy or performance are recognised to be controlled by a few 

elements (Nasir et al. 2009). The NN structure, input data, and the training functions 
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have been recognised as influential factors by most recent literature (Zhang et al. 2002, 

Jiang et al. 2007, Pai et al. 2008, Aleksendric & Duboka 2006, Jie et al. 2007). 

Lippmann (1987) also identifies NN model performance with respect to a dataset is 

specified by the node characteristics, network topology, and training or learning rules. 

Subsequently, both network design rules and training rules are the topic of much current 

research. 

 

 

2.2.3 Node/Neuron Operational Structure 

 

McCulloch and Pitts developed the first mathematical (logic) neuron model. The sum 

unit multiplies each input xi
in

 by a weight W before summing them. If a predetermined 

threshold is exceeded by the sum, the output will be one or else it will be zero. Thus in 

this models case the neuron is either excited or inhibited by its inputs giving an output 

when its threshold is exceed. This neuron model is considered a binary device since it 

exists as either as active or inactive. This is presented in the arithmetic notation of 1 and 

0, respectively (Groff and Neelakanta 1994).  

 

The first ANN containing single layer artificial neurons connected by weights to a set of 

inputs were first seen around the in 1950’s and 1960’s. Rosenblatt conceived that this 

simplified model of the biological mechanisms of processing of sensory info refers to 

perceptron (Groff and Neelakanta 1994).  

 

Nodes or neuron setup as computing elements is characterised by the summation of 

inputs multiplied weight and/or bias multiplication factors and passed through a specific 

transfer function to produce a node output. The function and operation of the neuron is 

perceived the same by Haykin (1999), Fausett (1994), Zeng (1998) and many other 

literatures. Essentially they all believe an artificial neuron may be regarded as a simple 

calculator.  

 

 

Mathematical Expression 

 

Hillock zone is in essence modelled by the summation of the signals received from 

every link. The neuron’s firing rate in response to this summative incoming signal is 
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then portrayed by a mathematical function. The resulting value represents the frequency 

of emission of electrical impulses along the axon (Lisboa 1992). These are essential in 

the behaviour of the neural networks. Thus making an exact mathematical treatment 

difficult, yet essential if artificial networks are to do anything useful. 

 

Neuronal network connections are mathematically presented as a basis function U(W, 

x) where W is the Weight matrix and p is the input matrix. U is a linear basis function 

in hyper-plane, given by:  

 

               
 
          1 

 

The net value expressed by the basis function is generally added to a bias factor. This is 

then transformed by a nonlinear function or activation function to portray the nonlinear 

activity of the neuron (Groff and Neelakanta 1994). Figure 7 illustrates this with an 

elementary neuron model with R inputs.  

 

 

 

 

Figure 7 - Elementary Neuron Model (Demuth and Beale 2013) 

 

 

Each input p in to the neuron is multiplied by appropriately assigned weights w, which 

characterise the fitting parameters of the model. The weighted inputs are summed as 

defined by the linear basis function (equation1). The sum is added to a bias factor to 

form the input to the transfer function f. Neurons may implement any differentiable 

transfer function f to generate their output (Demuth and Beale 2013, www.teco.edu). 

This may be summarised in the associated formula presented as:  
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                 2 

 

This presented mathematical treatment of neuron calculative process is the general 

consensus of most of the related literature viewed. 

 

Weights  

 

Groff and Neelakanta (1994) perceived the mathematical degree of influence that a 

single neuron has on another is accomplished by a weight associated with their 

interconnection. The synapses are in essence the biological counterpart of this 

interconnection. Lisboa (1992) identifies that mathematically the strength of each 

synaptic junction is represented by a multiplication factor or weight. A positive weight 

is used for excitatory responses and negative weights for an inhibitory effect. When the 

NN learns something in response to new input the, weights are modified. Hence, 

training the network involves alteration of the weights in order to more accurately fit the 

models parameters. 

 

Bias 

 

As previously indicated a bias can be included by adding a component to the input 

vector p or to the sum of the dot product of the weight and input vectors (Wp).The bias 

is therefore treated exactly like any other weight. It performs like a connection weight 

from a unit whose activation is always 1 (Fausett 1994). The term determines the 

spontaneous activity of a neuron, i.e. in absence of any incoming signal. This can also 

be viewed as setting the threshold values for the sudden onset of a high firing rate, thus 

the term non linear threshold element (Lisboa 1992). Some authors implement a fixed 

threshold for the activation function instead. However, this is demonstrated be 

essentially be equivalent to using an adjustable bias (Fausett 1994). 

 

 

Transfer Function 

 

As previously established the summation of the weighted input products must be put 

through an activation function to ensure that the neuron output doesn’t exceed its 
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minimum or maximum activation value. Lsiboa (1992) identifies that real neurons have 

a limited dynamic range from nil response to the full firing rate. Subsequently, the 

function is typically non-linear, levelling off at 0 and1. The common and most useful 

activation functions are step, ramp, sigmoid, and gaussian functions (Groff and 

Neelakanta 1994). 

 

The output is typically transferred forward to the neurons in the next connected neural 

layer. This perception of an artificial neuron recognises that it is a non linear function of 

its inputs (Lisboa 1992). The function is commonly a sigmoid function that compresses 

the combined neuron input to the required range of the activation value, between 0 and 

1 (Lippmann 1987). 

Most multilayer networks often implement the log-sigmoid transfer function.  As the a 

neurons net input goes from negative to positive infinity the log-sig function generates 

outputs between 0 and 1. This function is illustrated by Figure 8.  

 

 

 

Figure 8 – Log-Sigmoid Transfer Function (Demuth and Beale 2013) 

 

 

The tan-sigmoid function is considered as a common alternative in multilayer networks.  

This function generates outputs between -1 and 1, as the neurons net input goes from 

negative to positive infinity. The function is illustrated in Figure 9.  
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Figure 9 – Tan-Sigmoid Transfer Function (Demuth and Beale 2013) 

 

 

The neurons that implement the sigmoid output functions are often used for pattern 

recognition problems. Linear output neurons are used for function fitting problems. The 

pure linear transfer function is depicted in Figure 10.  

 

 

 

Figure 10 – Linear Transfer Function (Demuth and Beale 2013) 

 

 

The three transfer functions presented are the most commonly employed in multilayer 

networks. There various other differentiable transfer functions like the step, ramp and 

Gaussian that may be implemented (Groff and Neelakanta 1994, Demuth and Beale 

2013). 

 

 

2.2.4 Layout 

 

As previously discussed it has been established by numerous works that the accuracy of 

the NN capability of predicting data is dependent on the network structure or layout. 

The structure is ultimately defined by the setup of the nodes or neurons and the network 

topology.  
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Network Structure (Topology) 

 

The structure of an ANN involves the organisation of network neurons into layers. The 

three primary layer types are the input layer, hidden layer/s and the output layer 

(Gyurova L. & Friedrich K. 2010). This is the general consensus of mostly all viewed 

literature regarding NN structuring. The input layer is the initial layer where the data is 

presented into the network while the output layer is the final layer dictating the outcome 

of the system (Demuth and Beale 2013). The layer in between is the referred to as the 

hidden layer/s which represents the calculative brain (Nasir et al. 2009). Signals from 

the input layer are spread through the hidden layer/s where the neurons and the inter 

connections manipulate the input data at each layer then finally sum to produce an 

output (Lisboa 1992, Nasir et al. 2009).  

The number of neurons in the input and output layers typically reflect the number of 

input and output variables. More than one layer may make up the hidden layer and the 

volume of neurons in each layer is flexible. Nasir et al. (2009) identifies that the 

complexity of the system will influence the number of hidden layers and their 

associated neuron volume required to ascertain higher levels of performance. The 

systems complexity is in respect to the number of input parameter, irregularities and 

fluctuations in the data. Therefore layer configuration involving the number of layers 

and the number of neurons within each layer is dependent on the nature of the input 

data. This has been validated by various previous works conducted in the related field of 

tribology. 

 In the work of Zhang et al. (2002) the ANN generated to predict tribological properties 

of short fibre composites consisted of 9 input parameters and required 3 hidden layers. 

The ANN developed by Nasier et al. (2009) to predict tribological properties of 

polymeric composites performed best with a single hidden layer for its 4 input 

parameters. A single hidden layer was also required in the ANNs with two input 

parameters for the works of Jie et al. (2007) and Cetinel et al. (2006). These works 

related to the study of tribological behaviour for 30 wt.% carbon-fibre-reinforced 

polyetherketone composite (PEEK-CF30) and Mo coating wear loss, respectively. The 

work conducted by Aleksendric and Duboka (2006) in using ANNs to predict 

automotive friction material characteristic established that the use of larger databases 

provided a greater degree of accuracy.  
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Feed Forward Network 

 

Feed forward networks typically consist of one or more hidden layers of sigmoid 

neurons, followed by an output layer of linear neurons. A detailed model of single-layer 

network containing S neurons with R inputs and log-sigmoid transfer functions is 

presented on the left in Figure 11. A layer diagram of the neurons is also presented on 

the right. 

 

 

 

Figure 11 – General Feed forward network (Demuth and Beale 2013) 

 

 

Nonlinear relationships between input and output vectors are able to be learned by 

multiple neuron layers that implement nonlinear transfer functions. Function fitting 

problems often use a linear output layer. If however the network outputs are desired to 

be constrained, a sigmoid transfer function should be employed. An example of this 

would relate to pattern recognition problems, where the network is required to make 

decisions (Demuth and Beale 2013). 

 

Figure 12 that follows is a two-layer tan-sigmoid/pure-linear network. It may generally 

be implemented to approximate functions. Given sufficient hidden layer neurons, can 

approximate any function with a finite number of discontinuities subjectively well 
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(Demuth and Beale 2013).  As gathered from the diagram the subscript on the weight 

matrix is determined by the associated layer number. 

 

 

 
Figure 12 - Two-layer tan-sigmoid/pure-linear network (Demuth and Beale 2013) 

 

 

2.2.4 Training and Training Functions 

 

A response pattern or a distribution of memory within interconnecting neurons is clearly 

evident by the spatial propagation of their linked sequential responses. Relevant writing 

and reading phase exist for this memory phase unit. Writing refers to the storage of the 

set of info data to be remembered, whilst the reading phase is involves the retrieval of 

this data. The storage of the data specifies the gained training and learning experiences 

of the network (Lisboa 1992). A dilemma with developing an ANN is establishing 

weight or coefficient values that best fit the network and the known experimental data. 

Adaption or learning is a major focal point for NN research. 

 

To characterise the connection strength the neural network adaptively updates the 

synaptic weights. This process follows a set of informational training rules (Lisboa 

1992). Most NN algorithms adapt connection weights in time to improve performance 

based on current results. The learning rules specify an initial set of weights and indicate 

how weights should be adapted during use to improve performance (Lippmann 1987). 

Typically, the actual output values are compared to the teacher values and if a 

difference exists it is minimised on a basis of least-squares error. This is therefore 

achieved by optimising the synaptic weights by reducing the associated energy function 

(Lisboa 1992). 
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Mean Squared Error (MSE) 

 

The process of training a neural network involves tuning the values of the weights and 

biases of the network to optimize network performance. The common performance 

function is mean square error. The average squared error between the networks outputs 

a and the target outputs t (Demuth and Beale 2013,Nirmal 2010). It is defined as 

follows: 

 

     2 

 

Any standard numerical optimization algorithm can be used to optimize the 

performance function. There are a few key standouts that have demonstrated excellent 

ANN training performance. These optimization methods commonly use the gradient or 

the Jacobian of the network errors with respect to the network weights. The gradients 

are calculated using a technique called the back-propagation algorithm, which involves 

performing computations backward through the network (Demuth and Beale 2013, 

Nirmal 2010).  

 

Supervised and Unsupervised 

 

Unsupervised and supervised learning are the two primary learning techniques. The 

unsupervised strategy the network is trained via a training set containing input training 

patterns only. Without teacher aid the network Adapts itself upon the experiences 

collected through the previous training set. The method is also referred to as Hebbian 

learning, where neuron units I and J are simultaneously excited and their connection 

strength is increased in proportion to their activation product.  Many pairs of input and 

output training patterns within the training data are required for supervised learning. 

Fixed weight networks are those that have pre-stored synaptic weights and don’t 

implement training (Lisboa 1992, Fausett 1994). A single layer of input and a single 

layer of output neurons exist within such networks.  
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Training Algorithms  

 

There are various types of available training algorithms. The gradient descent 

optimisation algorithm is considered the simplest and is used to demonstrate the general 

training operation. The network weights and biases are updated in a way that promotes 

the most rapid decrease in the performance function, the greatest negative gradient 

(Nasir etal. 2009, Nirmal 2010). An iteration of this algorithm may be expressed as 

 

        3 

 

where xk is a vector of current weights and biases, gk is the current gradient, 

and αk is the learning rate. Iteration of this equation is continued until the networks 

performance function converges (Demuth and Beale 2013, Nirmal 2010). In essence the 

gradient gk approaches zero. Often the “backpropagation” term refers specifically to this 

gradient descent algorithm. However, the process of computing the gradient and 

Jacobian by performing calculations backward through the network is applied in all of 

the training functions listed above. Therefore, specifying the optimisation algorithm 

used rather than just back propagation alone is recommended for clarity. 

 

 

Back propagation Training Algorithm 

 

The back-propagation computation is derived using the chain rule of calculus. The 

training involves repetitive steps of evaluating and optimizing the weights until the 

performance ceases improving. Lippmann (1987) defines it as an iterative gradient 

algorithm developed to reduce the MSE between the actual output and the desired 

output of a multilayer feed-forward perceptron, requiring continuous differentiable non-

linearities.  

 

The following is a step by step algorithm of the back propagation training phase 

presented by Fausett (1994):  

 

1. Initialise weights (set to small random values) 

Complete following steps for each training pair while stopping condition is 

false.  
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2. Feedforward: 

Involves input units (Xi, i=1, . . . , n) broadcasting it signal to all units in the 

above layer (hidden units). Each hidden unit (Zj, j=1, . . . , p) sums the weighted 

input signals and applies its activation function to compute an output signal, 

which is sent to all the output units in the above layer. The output  units (Yk, k=1, 

. . . , m) also sum the weighted input signals and applies it activation function to 

produce its output signal.  

 

3. Backpropagation of error: 

Each output unit (Yk, k=1, . . . , m) receives a target pattern corresponding to the 

input training pattern, computes its error information term,  

           
      

          

Calculates the weight correction term (to later update     ), 

            ,         

Calculates its bias correction term (to later update    ), 

                    

And sends    to units in the layer below. 

 

4. Each hidden unit (Zj, j=1, . . . , p) sums its delta inputs (from units in layer 

above), 

          
 
      ,         

Multiplies by derivative of its activation function to calculate its error 

information term, 

          
        ,         

respectively calculates its weight and bias correction terms (to update them 

later), 

           ,          

         ,          

The  ’s are repeatedly calculated for each additional layer. 

 

5. Update weights and biases: 

Each output unit (Yk, k=1, . . . , m) updates its weights and bias ( j=0, . . . , p): 

                         .       

Each hidden unit (Zj, j=1, . . . , p) updates its weights and bias ( i=0, . . . , n): 

                         .       

 

6. Test stopping condition. 

 

Epoch is the term used to define one cycle through the entire set of training 

vectors (Fausett 1992, Nasir et al. 2009). Many are typically required for the 

complete backpropigation training of the neural network. The algorithm updates 

the weights after each training pattern is presented. 
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Generalisation 

 

Reasonable answers or predictions are capable of being made by properly trained multi 

layer networks when presented with unseen inputs. If the new inputs are similar to 

inputs used in the training data set, an accurate output is typically produced (Demuth 

and Beale 2013). ANNs may be thought of as a group of generic filters which store 

information in a dispersed form. The sample data form is changed into a new form 

depending on the training algorithm and architecture of the network used. This stored 

information may consist of pattern classifications samples, data regularities, or temporal 

behaviour predictions of a dynamical system. Implementing the same data in 

combination with different networks could accomplish any of these storage cases 

(Lisboa 1992). 

 

The inherent nonlinearities and the collective action of the numerous individual 

elements give rise to this generalising property of the system.  This enables a pattern 

completion capability, making it possible to train a network with only a representative 

set of input/target pairs and get good results (Demuth and Beale 2013). Therefore, 

example data presented with missing or corrupted info leads the network to recall the 

completed stored pattern, with the corrupted information filled in or corrected. This is 

referred to as an associative memory capacity. New related patterns will activate the 

network to recall or interpolate a response which is intermediate between the most 

appropriate responses related to the stored patterns (Lisboa 1992).  

 

Often during the training process a problem referred to as over fitting may occur if the 

network is not trained correctly. This evidently occurs when the training data set 

predictions have been driven to very small error values. In this case the network 

essentially memorizes the training set, and has not learned to generalize to new 

conditions (Demuth and Beale 2013). Hence there will typically be large errors when 

unseen data is presented to the network. Therefore the trained network will be 

ineffective at interpolating new data points.  

 

There are alternative measures employed to ensure that over fitting is avoided and a 

network is trained effectively so that it is capable of generalising new data points well 

are trained properly. One clear method for improving network generalization is utilising 
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a sufficiently large NN to give an adequate fit (Demuth and Beale 2013). It is evident 

within the range of reviewed literature that more complexity in the networks computing 

functions are introduced as the networks size is increased (Lippmann 1987, Demuth and 

Beale 2013). Thus, a small enough network structure will not have enough power or 

complexity to overfit the data. However, difficulty arises in knowing and establishing 

the sufficient size of a network for its given application. 

 

It was noted by Demuth and Beale (2013) that there is a considerably reduced chance of 

over fitting if the quantity of network parameters is significantly less than the amount of 

points within the training set. Hence, providing additional training data for the network 

is also more likely to produce a network that generalizes well to new data. This is quite 

evident in the work of Nasir and Yousif (2009), where they used a training data set 

consisting of greater than 7000 points of data. This has also been clearly noted and 

expressed numerous related works. It is clearly distinguished in the works conducted by 

Zhang et al and Jiang et al. Within their work they make comparisons with the amount 

of a given data set required to achieve specific levels of correlation coefficient, also 

referred to as R values.  

 

However, in relatively large data sets or additional data may not be available and 

supplied data may be limited. Such cases call for alternative methods that make 

effective use of the supply of limited data. Demuth and Beale (2013) recognise two 

alternative generalisation techniques commonly implemented as regularization and early 

stopping. These are two features that are incorporated in the Neural Network Toolbox 

software to aid in improving network generalization.  

 

 

Data 

 

A set of examples of proper network behaviour including inputs p and target outputs t is 

required for the training process. For MATLAB use, the data is generally divided into 

three subsets (Demuth and Beale 2013, Nirmal 2010, Nasir et al. 2009). The training set 

is the first subset, which is implemented to compute the gradient and to update the 

weights and biases. The second subset is the validation set and is used to monitor the 

error throughout training. This error along with the training set error typically decreases 

in the initial phase of the training. Error on the validation set will tend to rise as the 
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network starts to overfit the data. Training cycles are therefore discontinued as network 

weights and biases are stored or saved at the minimum error of the validation set. 

 

 

2.3 Tribology & ANN Applications 

 

 

2.3.1 Tribology 

 

Tribology is a topic that has developed over time within the mechanical engineering 

discipline and is an important aspect of material selection for new component design. 

Essentially the topic covers the science of wear, friction and lubrication (Yousif 2013). 

As stated understanding the tribological performance or properties of material has 

become important for material selection in some component design situations. An 

example would be the consideration of wear and friction in the design of a light weight 

composite bearing. Asperity interaction in contact controls these tribological 

behaviours. Topography and other modifications on the surfaces of the interacting 

materials are influenced by the frictional heat and shear force in the interface region 

during the sliding or rubbing (www.tribology-abc). 

 

Many industrial components are placed under tribological loading. Most of these 

components experience failure due to this form of loading. It has been well established 

that there are several conditions or parameters that may influence the tribological 

performance of a material. Some of these influential factors include the sliding distance, 

velocity, normal load force, contact conditions, contact mechanisms, material structure. 

Conditions of contact may refer to wet or dry contact. Point, line or areas are referred to 

as mechanisms of contact. Material micro structure is also recognised to be of 

significant importance particularly with the increasing development and applications of 

new polymers and composite materials (Yousif 2012). 

 

 

2.3.2 Tribology Testing 

 

Materials with different microstructures under various contact mechanisms, contact 

conditions and operating parameters have had much attention in investigations into wear 
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behaviour.  Investigations conducted by Bansal et al. (2011) and Narish et al. (2011) 

highlight sliding distance, sliding velocity and applied load as some common operating 

parameters. Work done by Yousif and El-Tayeb (2010) identifies considerations to 

conditions of dry verses wet contact. Line, point and area mechanisms of contact have 

also been investigated (Yousif and El-Tayeb 2008). The effect of material micro 

structure has also been investigated in the works of Jawaid et al. (2011) and Siddhartha 

et al. (2011). 

 

Numerous designed and standardised tribological apparatus have been employed to 

study the material behaviour in relation to the identified influential factors. Most of the 

laboratory machines have been designed and fabricated to conduct investigations based 

on individual techniques. These include block-on-disk (BOD), block-on-ring (BOR), 

wet sand rubber wheel (WSRW), dry sand rubber wheel (DSRW), and sand/steel wheel 

(SSW) test in wet/dry conditions (Yousif 2012). The key difference between the test 

techniques is primarily the tested material’s method of contact with the counter-face. 

This is clearly evident in the depiction of each of these common techniques in the 

following figures. 
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Figure 13 - Schematic drawing showing the most common configurations of tribological machine for 

adhesive and abrasive testing. (a) block on disc (BOD), (b) block on ring (BOR) and (c) dry sand rubber 

wheel (DSRW) (Yousif 2012). 

 

 

Figure 13a depicts the standard BOD test set up according to ASTM G99-05. The 

standard BOR technique as defined by ASTM G77-98 is illustrated in Figure 13b.  The 

technique setup for DSRW, WSRW and SSW tests in line with ASTM G105 and 

ASTM B611 is shown in Figure 13b. Figure 14 depicts a newly developed testing 

apparatus that is currently in use within the testing laboratories of the University of 

Southern Queensland.  The machine is essentially able to perform each of the outlined 

testing mechanisms. It is also capable of conducting both BOD and BOR testing 

mechanism simultaneously, reducing considerable additional testing time. The 

apparatus has load cells (Accutec H3-50 and B6 N-50) equipped on the BOR and BOD 

load levers to measure the contact frictional forces. Infrared thermometers (Extech 

42580) are also equipped to the on the rig frame and directed toward the contact areas in 

order to record interface temperature (Yousif 2012). 

 

 

Figure 14 - A three dimensional drawing of the new tribo-test machine. 1-Counterface, 2-BOR load lever, 

3-BOD load lever-, 4-third body hopper, 5-BOD-Specimens, 6-BOR-Speceimen, 7-Lubricant Container, 

8- Dead weights (Yousif 2012) 
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2.3.3 Materials 

 

 Societies increasing focus toward awareness for the environment has driven the 

development within the fibre composite industry Sustainable, environmentally friendly, 

materials have subsequently emerged in popularity. There is also recent concern for the 

sustainability and limited nature of resources used in traditional petro-chemical based 

composites (Yousif 2009b). This has lead to recent and growing interest in 

implementing natural fibres for polymeric composite reinforcement. Properties like their 

low density, non-abrasiveness, non-toxicity, biodegradability, renewability and low 

costs have also driven this interest (Chin and Yousif 2009). Their higher specific 

properties like modulus, flexibility, strength, and impact resistance also make them 

attractive.  

 

The study of tribology has thus developed as an important aspect of material selection 

for new component design (Yousif 2013). Many industrial components are placed under 

tribological loading and experience failure due to this form of loading. Numerous recent 

studies have thus been conducted and are still yet to be completed on the tribological 

behaviour of these newly emerging natural fibres. These studies will aid the 

employment of such materials within industrial component applications. 

 

Fibre Composites  

 

A composite is generally a material made from two or more different phase types, each 

with varying material properties. Constitutes of the material are selected to achieve 

desired specific material properties (Mano1991). One component (fibre) will reinforce 

the other component (matrix) structurally. The polymer matrix or secondary phase 

provides a means of load dispersion and ensures the primary phase or reinforcing fibres 

remain in position by adhesion (Kaw 1997, www.mdacomposites.org). Fibres vary from 

fillers or particular reinforcements by their much greater display a length to cross 

section ratio (Matthews & Rawlings 1999).  

 

Resins 
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Polymer resins are typically used as the matrix for many modern commercial fibre 

composites. Polymer resins are primarily categorised as thermoplastics and thermosets 

(www.mdacomposites.org). 

 

Fibres 

 

Bunsell and Renard (2005) categorise fibres as synthetic, regenerated and natural. Plant, 

mineral and animal fibres are used to subcategorise the natural fibres. Typical synthetic 

fibres include nylon, glass and carbon. Hemp and flax from plants, wool from animals 

and asbestos minerals are some recognised natural fibres. Long filaments processed 

from a plants molecular structure represent regenerated fibres (Bunsell & Renard 2005). 

 

Composite properties are intimately associated with the properties and content of the 

reinforcing fibres. Most research and testing characterise the fibre content of a 

composite in terms of either a weight or volume fractions, relevant to fabrication or 

property calculations, respectively (Matthews & Rawlings 1999). 

 

Literature reports have identified that the degree of adhesion or the matrix bond quality 

has a significant influence on the composite properties (Chin and Yousif 2009). Flexural 

strength, compression strength, traverse tensile strength, fracture toughness, in-plane 

shear strength and wear performance are all influenced by adhesion. Matthews and 

Rawlings (1999) note that the fractions of weight and volume can modify the matrix to 

fibre bond quality to some degree. 

 

Natural Fibres 

 

This project focuses on ANN development to characterise the tribological 

characteristics of a kenaf fibre reinforce epoxy composite. Various advantages of 

natural fibres are their lower expense with higher specific properties, ease of processing; 

recyclability and renewable supply with a reduced carbon foot print (Chin and Yousif 

2009). Table 2.1 presents a comparison of the mechanical properties of some common 

natural fibres and traditional fibres. 
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Table 2.1 - Some common natural fibre and traditional fibre mechanical properties 

 

 

 

Kenaf is a plant based fibre, the structure of a plant fibre can be seen below in Figure 

15. A plant fibril is basically structured with a primary cell wall surrounding a 

secondary wall (www.ccrc.uga.edu). Growth rate, structural support and cell 

interactions are the responsibility of the primary cell wall. Bulk mechanical strength is 

given by the three layers of the secondary wall. The middle lamella, referring to the 

fibres outer layer provides stability by fixing together adjoining cells. The fibres 

themselves may be perceived as a composite, with mainly cellulose fibres secured in a 

matrix of lignin and hemi-cellulose. Thus, the reinforcing cellulose content is in direct 

relation modulus and tensile strength (www.ccrc.uga.edu). 

 

 

Figure 15 – Plant fibre structure (www.ccrc.uga.edu) 

 

2.3.4 Kenaf Fibre Reinforced Epoxy Composite (KFRE)  

 

Many recent studies have established the superior properties exhibited by kenaf fibres 

over other commonly used natural fibres such as jute, sugar cane, and oil palm. The 

kenaf fibres have also been shown to demonstrate strong interfacial adhesion between 

the fibres and the matrix (Chin & Yousif 2009).  
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 Little research has been conducted regarding the usage of natural fibres as polymeric 

composite reinforcements for tribology applications. Subsequently, Chin and Yousif 

(2009) have conducted work assessing the potential of kenaf fibres for reinforcement in 

polymer based tribo-composites. Their work has assessed the composite’s specific wear 

rate, contact surface friction coefficient and contact interface temperature. The 

assessment was made in relation to sliding distance, applied load, sliding velocity and 

fibre orientation with respect to sliding direction as the controlled parameters. 

 

The previous experimental work was conducted using 10mm x 10mm x 20mm test 

specimens of the composite prepared by closed moulding and machining. The resin 

used was widely used liquid epoxy (DER 331). JOINTMINE 905-3S was utilised as the 

curing agent, uniformly mixed in a 2:1 ratio of epoxy to hardener. About 48% volume 

fraction of fibre were used within the matrix. Fibre diameters range between 0.25 – 

0.4mm. Table 2.2 lists some of the properties of the neat epoxy and the KFRE 

composite.  

Table 2.2 – Neat poxy and KFRE composite Specifications (Chin & Yousif 2009) 

 

 

A BOD machine, as depicted in Figure 16, was used to conduct the tests on the 

specimens against AISI 304 stainless steel. Before each test, strict procedures were 

followed to prepare both the steel and specimen counter-face to ensure high intimate 

contact.  Tests were conducted at different sliding velocities (1.1-3.9 m/s), sliding 

distances (0-5 km) and applied loads (30-100 N) at a 28˚C room temperature. This was 

done for the parallel (P-O), anti-parallel (AP-O) and normal (N-O) fibre orientations 

(Figure 17).  
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Figure 16– Pin-on-Disc machine (Chin & Yousif 2009) 

 

 

 

Figure 17– Orientation of fibres with respect to sliding direction (Chin & Yousif 2009). 

 

 

Each test was repeated three times and the average measurements were derived. Friction 

force was measured by load cell on the load lever and interface temperatures were 

recorded by an infrared thermometer. Specimen weights were tested before and after 

tests to calculate weight loss and subsequently the specific wear rate (mm
3
/Nm) at each 

operating condition. The graphs presented within the report of the work depict and 

compares some of the resulting data. These figures are presented in appendix (?). 
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2.4 Risk Management 

  

2.4.1 Introduction 

 

A risk assessment is involved in the consequential effects of this project. Safe guards 

and associated risks need to be documented. Throughout and outside the execution of 

the project certain risks are likely to be encountered. Subsequently, it is imperative to 

establish a level of continuing responsibility. 

 

2.4.2 Identification of Risks 

 

Since the course of the project is primarily computer based, there are no identifiable 

direct risks associated with the project work. However there are several risks that are 

identifiable for the related works from which necessary computational data has be 

gathered. The primary risks associated with this related outside work can be 

summarised as sample preparation, testing, maintenance, and project sustainability. 

 

Sample preparation involves risks related to the handling synthetic and/or natural fibres, 

hardeners, resins and other fibre treatment chemicals. Greater risk is presented during 

the shaping of the composites by means of cutting and polishing to size. Operators 

involved in this process typically exposed to elevated equipment noise, airborne 

particles and spinning disks and/or blades. There is the potential for both long term and 

short term operator injury for these identified hazards. Lose of limbs, hearing or vision 

impairment, skin irritations and impaired breathing highlight the range of possible 

injuries.  

 

Operator error and inflicted injury by released airborne testing fragments are the form of 

risk considered in the testing stage. Depressing the wrong machine buttons may result in 

limbs being crushed. This represents the occurrence of injuries due to insufficient 

operator confidence and training. Maintenance also reflects in tidiness and general areas 

of risk include slippery surfaces from spills, correct labelling of chemicals and 

equipment, work area cleanliness and trip hazards. Risks relevant to the sustainability of 

the project work involve the environment and direct future users. Disposal of no longer 
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required or used materials presents environmental risks. Considerations to particle 

emissions and power use are also required. 

 

2.4.3 Evaluation of Risks 

 

Low levels of risk are associated with most of the risks identified in the previous 

subsection. If materials are handled correctly by the operator they are harmless and this 

preparation phase of the sample presents a low risk to the operator. However, potential 

for injury still exists if incorrect handling occurs. Encountering injury during shaping 

preparation of the sample has the higher risk probability.  

 

Minor to moderate levels of risk may be associated with the mechanical cutting and 

polishing devices. Permanent injury possibilities arise if these machines are utilised 

incorrectly. Examples include cuts or amputations of limbs due to blade or disc 

breakage. Minor to moderate risk to eye injury is perceived in relation to projectile 

debris from polishing or cutting. The level of polishing or cutting dust also presents 

moderate risk of lung damage. Due to the machines situated distance from the operator 

and the clear protective coverings/shields, the testing stage has only a minor probability 

of operator. As the machine is mostly remotely controlled, the associated injuries 

caused by twisting and crushing are not likely. The presence of clear viewing shields 

around the machine should make the potential of any injuries inflicted by projectile 

debris an unlikely event. 

 

Regular scheduled maintenance and cleaning of the labs along with immediate cleaning 

of equipment after use indicate maintenance risks as unlikely events. Materials used are 

mostly natural and may be reused. The non-recyclable materials such as the epoxy resin 

are used in significantly small, none threatening, amounts. Risks to the environment are 

therefore considered low. 

 

2.4.4 Risk Control 

 

The following action plan should be implemented to minimise risks, before undertaking 

tasks. 

 

1. Understand the task 
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If further testing and data collection is required for further or other related work it is 

essential that all tasks are explained by supervisors and technicians before conducting 

tasks. 

 

2. Complete relevant training 

Safety inductions relating to handling materials, machine operation and safety actions 

need to be incorporated with demonstrations during operator training. 

 

3. Identify risks 

Informal job safety assessments (JSA) should be carried out identifying any risks before 

commencing any operations. 

 

4. Reduce or control the risks 

Additionally, any risks should be minimised by employing protective controls. This 

includes utilising personal protective equipment (PPE) or immediately cleaning spill are 

examples. 
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   3 Research Design and Methodology 
 

 

3.1 Introduction 

 

3.1.1 ANN Development Process 

 

The following chapter is separated to address the typical steps that were conducted in 

developing the most optimal ANN prediction tool the tribological characteristics of a 

KFRE composite. The general consensus from the literature regarding the systematic 

optimal ANN development process is presented in the flowchart in Figure 18. Initially 

previous experimental data is to be collected and processed for use to train and test the 

network. Following this is the generation of an optimal network model derived through 

a series of attempts. The resulting optimal model is further trained to hopefully achieve 

greater accuracy before it is finally tested to simulate predictions and compared to with 

experimental data.  Within the continued training process it is also recognised that there 

needs to be point of termination, such that the model will not over fit the training data  

and will capable of effective generalisation. Further investigation into generalisation of 

the network will be carried out using previously established techniques. 

 

 

 

Figure 18 - Flowchart illustrating steps in developing the ANN model (Nirmal 2010).  
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3.1.2 Implementing MATLAB 

 

MATLAB has been recognised as an effective neural network modelling tool and is 

subsequently used to carry out the project. The Neural Network Toolbox function 

provides varied levels of complexity in which the user is able produce ANNs. The first 

level is represented by the Guided User Interfaces (GUIs) that provide a quick way to 

use the toolbox function for many problems of function fitting, pattern recognition, 

clustering and time series analysis.  The toolbox may used through basic command-line 

operations that use simple argument lists with intelligent settings for function 

parameters.  Customization of the toolbox is an advanced capability that permits the 

creation of custom neural networks still with full functionality of the toolbox. Every 

computational component is written in MATLAB code and is fully accessible (Demuth 

and Beale 2013). 

 

The toolbox will enable the user to setup custom networks and essentially trains the 

networks by means of specified training algorithms. To train the networks the toolbox 

divided supplied training data into training, validation and test subsets. These are used 

to evaluate the networks performance after each training epoch. Once the training is 

stopped by a specified method or condition the toolbox can present summarised training 

information. 

 

The general MATLAB code setup for creating the various network configurations and 

assigning specific training algorithms and termination parameters is presented in 

Appendix C. The presented code was implemented and manipulated throughout the 

project to derive and train various networks with three hidden layers. Two other 

modified versions of this code were utilised in the same manner for the single and 

double layer systems. The setup of this code was guide by the literature presented by 

Demuth and Beale (2013) and the MATLAB Toolbox.  

 

During training a training window will appear, like the one presented as Figure 19. The 

window displays to the user the data division function, training method and 

performance function used to train the network. The progress of the training is 

constantly updated in this window. Also presented is the performance, the magnitude of 

the gradient of performance and the number of validation checks. Various methods such 

as minimum gradient magnitude, training time, number of training cycles and the 
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number of validation checks are used to terminate the training. As the training reaches a 

minimum performance value the gradient will become very small. The number of 

successive training iterations that don’t yield lower performance values is represented 

by the number of validation checks. If the default or nominated values for either the 

gradient magnitude or validation checks are reached the training is stopped. 

 

 

 

Figure 19 – Example MATLAB training window 

 

 

The performance, training state, error histogram and regression plots can be accessed 

from the training window. The value of the performance function for the training, 

validation and test subsets are plotted against the iteration number in the performance 

plot. The other training variable like the gradient magnitude and number of validation 

checks have their progress plotted in the training state plot. The plot of error histogram 

depicts the network error distribution.  The regression plots may be used to validate the 
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performance of the network as it shows a regression between network outputs and 

network targets for each of the data subsets.  

 

 

 

Figure 20  – Example of MATLAB performance plot 
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Figure 21 – Example of MATLAB regression plot  

 

 

3.2 Collect & Process Data 

 

The experimental data on the KFRE composites was a small portion of the data supplied 

by the project facilitator that was collected from the unpublished work currently being 

conducted. The based on this collected and presented data the neural network will be 

capable of being trained to calculate two tribological characteristic outputs based on 

three tested parameter inputs. The outputs are the contact surface temperature, and the 

coefficient of friction. The parameter inputs characterising these outputs are the fibre 

sliding distance, sliding velocity and applied load.  

 

The portion of data provided contained a total of 305 data points. It was desirable to 

utilise the remaining data set for the later simulation and predictions. However this 

work was still yet unpublished and incomplete. Thus, the remaining data would not be 

used in the validation and assessment steps. This was to respect privacy and 

confidentiality and to avoid dependency on the unpublished work. The alternative was 

to extract 10 percent of the data points from the given data and utilise this to assess the 

networks overall predictability.  

 

This method of dividing the data is recognised and employed as an effective method for 

assessing predictability for unforseen data in various other related works (Nasir et al 

2009, Aleksendrik & Duboka 2007). This testing subset of the data is extracted from the 

network by utilising a randomly dividing algorithm commonly employed MATLAB 

before the NN is trained. Thus, the values extracted for the test subset will vary for 

every training session or reinitialized training. Having several different subsets during 

repetitive training on various networks and configurations will ultimately verify the 

robustness of the performance of the networks.  

 

This provided training data set has been included as. It’s clear that this is not a complete 

set of data based on the completed sets described in other related tribology works (Nasir 

et al 2009, Chin & Yousif 2009).  The data is subdivided into major categories. The 

major categories define the speed at which the test specimens were tested. There are 

data points presented for only two speeds, 2.8 meters per second and 1.1 meters per 
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second. Under each of these are two sub categories for the outputs, which are 

temperature and the friction coefficient. There are successive data points for each of 

these outputs exists under four sub-categories specifying the load used to apply the 

normal force to the test specimen. These loads are 30 newtons, 50 newtons, 70 newtons 

and 100 newtons.  

 

The successive data points are related to a specified sliding distance at which it was 

recorded during the test. The sliding distances are spaced evenly at 0.084 kilometres, 

starting at zero and ending at 5.04 kilometres, for a total of sixty one recording 

intervals.  As mentioned the data set is incomplete, only presenting data points for the 

50 Newton load category for the test speed of 1.1 meters per second. Previous related 

tribology studies also indicate datasets containing similar categories, with other test 

speed settings of 1.5, 3.1 and 3.5 metres per second (Nasir et al 2009, Chin & Yousif 

2009).  

 

For the data to be implemented in training the networks in MATLAB they were 

converted into MATLAB matrix files. In this case the number of columns in the input 

and output matrices represent the number of network input and output parameters, 

respectively. The dataset was re-organised to make it more presentable or readable as 

inputs and outputs for training the NNs. This was simply completed by making three 

input columns and the two output columns. All the temperature and friction coefficient 

data points are arranged into these two columns. The three input columns represent the 

sliding distance, the force and the velocity respectively. The data inputs were arranged 

into these columns so they are associated with the corresponding output data. The inputs 

and the corresponding outputs were then imported as two separate input files, which are 

presented as Appendix A.  

 

From this data, a neural network will be trained and developed to closely approximate 

friction coefficient and temperature based on sliding speed, sliding distance and load. 

This dataset also highlights the need for developing ANNs as predictive tools. As they 

can be trained with a portion of data to hopefully provide accurate predictions and to 

interpolate unseen data points not provided within a given data set.  
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3.3 Generate Optimal Model  

 

Generating the optimal ANN model involved the selective series of attempts with 

different neural, function and layer configurations. Selection of the most optimal 

configurations for the three separate considerations was completed by comparing the 

network performances based on the relative mean squared error (MSE).  

 

The process of developing an optimal ANN model was completed through a systematic 

trial and error approach. This involved setting up various network structures within 

Matlab that were trained with a specific set of collected data. Evaluations and 

comparisons of the performance of each of the network structures were conducted 

primarily based on their MSE. During the training of the networks the performance and 

performance curves will generally converge towards zero. This means that the MSE is 

approaching zero and a higher performance of the system is being achieved (Demuth, H. 

and Beale, M. 2013).   

 

The alternative sum square error (SSE) is also employed for the same purpose as it 

gives similar representation of the performance. However the MSE gives a better idea of 

relative error at each data point.  Both are recognised by many texts to be effective 

comparative values in terms of function fitting (Demuth, H. and Beale, M. 2013). It is 

also employed in various related works and is set as the default calculated value for 

measuring performance within the NN Toolbox in MATLAB (Jiang et al 2007, Zhang 

et al 2002). Hence, judging the performance based on the models error clearly 

established the ability of the networks to accurately predict the desired outputs based on 

specific inputs. 

 

In obtaining these performance values it was recognised that the results for a particular 

setup would vary each time the network weights and biases were initialised. Different 

initial weights and biases would be selected marginally influencing the performance 

after the final epoch of each training session. Thus each network setup was trained and 

the performance recorded three times each so that an average would be obtained. This 

average was expected to provide a general sense of the training performance for each 

network setup. Testing several varied initial conditions validates a robust performance 

of the network. Subsequently, the performance averages were used as the primary figure 
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in comparing the networks. All training performance results and calculated averages 

were logged in tables within excel. These logs are included as Appendix D.  

 

The systematic steps taken in developing the model included initially establishing the 

desired combination of transfer functions between each of the network neural layers. 

Next the various training methods provided within the NN Toolbox were employed and 

assessed on their influence to the performance of each of the setup networks. 

 

Finally, the numbers of layers were established along with the numbers of neurons 

within those layers. The reason for testing the networks in this sequence was to try 

covering as many of the endless potential network setups as possible with as few 

network configurations tested. Zhang et al (2002), Jiang et al (2007) and Jie et al (2007) 

are some of the related works from current literature that have adopted a similar process 

to the optimization of the neural network configuration. 

 

 

3.3.1 Select Transfer Function 

 

As previously established in subsection 2.2.3 of Chapter 2, the three most common 

transfer functions used in ANNs are log-sigmoid, tan-sigmoid and pure-linear. Each 

function is equipped to the ANN MATLAB toolbox. It’s recognised from the literature 

that the transfer function for the output layer would typically be pure linear since the 

outputs results are required to be any numerical value (Demuth and Beale 2013, Nasir et 

al 2009). Therefore, testing for the optimal transfer function for the hidden layer/s was 

completed by training a few random networks with respect to each of the functions and 

comparing their performance values. 

 

The literature reviewed identified that there is a clear relationship between the effective 

number of layers and the complexity of the input to output relationships. This 

complexity of the network is also influenced by the number of input parameters that 

have an influence on the outputs. Generally, the more complex the relationships the 

more hidden neural layers may be employed within the network structure. The typical 

range for the number of hidden layers employed in most other works is between one and 

three. This is because the complexity of relationships that most networks are being 

designed to make predictions for can generally be accomplished with these lower 
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hidden layer networks. It should also be noted that implementing too many hidden 

layers for relatively smaller data sets may result in potential over fitting. Subsequently, 

in conducting the systematic search for the optimal ANN, multiple networks containing 

between one and three hidden layers were trained and assessed. 

The purpose for assessing transfer functions for each hidden layer setup and with 

different layer volumes was to provide a greater scope of all network possibilities. 

Therefore, any preferences or influence to preference in transfer functions in relation to 

the number of hidden layers and their volume could be identified. The network neuron 

configurations trained and assessed were randomly selected for the purpose of 

establishing general relationships and preferences of transfer functions. 

 

3.3.2 Select Training Function 

 

Training has already been established as the process in which the weights and biases are 

modified to achieve greater performance. There are various training functions employed 

to carry this out and Table 3.1 presents a list of the available algorithms in MATLAB. 

These training methods dictate the means of adaptation. With the optimal transfer 

function selected for the hidden layers the various training functions were used to train 

the same general networks. The comparison of the performance values of each function 

revealed the optimal function for data set and transfer function.  

 

Table 3.1 – MATLAB training functions and associated algorithms. 

Algorithm MATLAB Function  

 

Levenberg-Marquardt trainlm 

Bayesian Regularization trainbr 

BFGS Quasi-Newton trainbfg 

Resilient Backpropagation trainrp 

Scaled Conjugate Gradient trainscg 

Conjugate Gradient with Powell/Beale Restarts traincgb 

Fletcher-Powell Conjugate Gradient traincgf 

Polak-Ribiére Conjugate Gradient traincgp 

One Step Secant trainoss 

Variable Learning Rate Gradient Descent traingdx 

Gradient Descent with Momentum traingdm 

Gradient Descent traingd 
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3.3.3 Select Layer Configuration 

 

Different network layer configurations were created and tested to identify the most 

optimal network structure.  This involved setting up numerous single, double and triple 

layer networks with varying neuron volumes. Each model was trained to 300 epochs 

and their performance values compared. After the comparison, the optimal number of 

layers for the ANN was established. Further models were constructed and tested to 

finally ascertain the optimal neuron volume for the preferred number of hidden layers. 

 

3.3.4 Train and Test Generalisation of Selected Model 

 

Further training of the derived optimal network is carried out by repetitively applying 

the training process to the ANN. This has been recognised to improve the models 

performance (Nasir et al. 2009) as the model accumulates improvement from the 

previous training session and adjusts for greater accuracy. As the training cycles 

continue to increase the network the error percentage drops and the performance of the 

system gradually converges until no further improvements are observable. It was also 

recognised that a more generalised network would be desirable since the training data 

represents only a portion of the full data set. The network weight and bias setups after 

certain amounts of training were stored so that these models may be used to assess their 

ability to generalise and predict the unforseen data. 

 

3.4 Improved Generalisation 

 

It is obviously critical to ensure the selected optimal network configuration is 

appropriately trained in such a way that will avoid over fitting and emphasise the 

networks ability to predict in a generalised sense. The literature reviewed indicated 

some alternative methods commonly employed in the training processes that are 

recognized to produce improved generalisation of a network.  
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3.4.1 Generalisation Technique 

 

Early Stopping 

 

The early stopping process requires the division of the data into validation and training 

sets. Computation of the gradient and updating of the weights and biases of the NN is 

performed with the training set. The error on the validation set during training is 

monitored. This error initially improves along with the training error before it converges 

to a minimum and then starts to rise as the training is continued. This is illustrated by 

the MSE plots for all three data subsets in Figure 22. This rise indicates that the network 

is beginning to overfit the training data set and its ability to generalise starts reducing 

(Demuth and Beale 2013, Jie et al. 2007).  

 

 

Figure 22 – MSE plot for all data subsets illustrating early stopping for a 3-[25-15-10]-2 network trained 

with the trainlm algorithm. 

 

 

Generally the error of the validation set is allowed to increase for certain number of 

training iterations before the training is ceased. The network is then I returned back to 

the minimum validation error weights and biases. This technique is set up as the default 
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method for improving generalization within the MATLAB software. The division of the 

data is adjustable through various division functions. Each utilises parameters that 

customize the networks training and behaviour.  

 

Bayesian Regularization 

 

The second alternative method implemented in improving generalization is 

regularization. The Bayesian Regularization training function trainBR performs 

regularization automatically within its training process. The training function essentially 

achieves improved generalization through modification of the performance function by 

the addition of a term containing the mean square weights (MSW) of the network 

(Demuth and Beale 2013, Jie et al. 2007). This is demonstrated within Equation 3.1, 

where γ is the performance ratio. MSW is given by equation 3.2, representing the mean 

of the sum of squares of the network weights (Demuth and Beale 2013).  

 

 

                                (3.1) 

 

 

         (3.2) 

 

 

Updating the bias and weight values of the network is generally performed with the 

Levenberg-Marquardt training function, trainlm. To establish a well generalising 

network it minimises and then determines the correct combination of weights and 

squared errors. The networks trained with this function typically result in lower weight 

and bias values throughout the network. Consequently, a smoother network response is 

forced and data over fitting is less expected (Demuth and Beale 2013).  

 

Referring back to the equation 3.1 it is evident that the performance ratio influences the 

weighting the MSE and MSW have on the regularized MSE used in training. If it is set 

to 0.5, there will be equal weight given to both. Over fitting often occurs when the 

parameter is too large and a smaller value may result in significant under fitting. 
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Determining the optimal value for the performance ratio is the difficult problem with 

regularisation (Demuth and Beale 2013). 

 

As mentioned, the trainBR function performs automatic regularization during training. 

The division of the data into a validation set is stopped and all validation assigned 

values are added to the training set. This is performed so the regularised MSE is 

secluded from early stopping (Demuth and Beale 2013). Another notable feature of the 

algorithm measures how many effective network parameters (weights and biases) are 

being utilised by the network.  

 

 

3.4.2 Validation 

 

To assist in the validation of the networks performance and ability to generalise the 

MSE curve of the test set is plotted alongside the training MSE, as previously 

demonstrated in Figure 20. For further validation regression plots, as depicted 

previously in Figure 3.4, are also generated for each of the data subsets. Within the plots 

the ANN predictions are plotted against the experimental data showing the general 

relationship trend between the two. 

 

 A solid best fit linear regression line between the targets and outputs is plotted to depict 

this relationship trend. An R value, also termed the correlation coefficient, is derived 

from this regression line. This value provides an indication of the relationship between 

the targets and outputs. A dashed line is also presented to indicate the perfect result 

where the output and target values are equal. This line represents an R value of one, as 

there would be an exact linear relationship (Demuth and Beale 2013). The R values for 

the test data sets provide an indication of the accuracy and generalisation of the model. 

Typically, acceptable correlations have R values that are greater than 0.9 (Nasir et al 

2009). 

 

 

3.4.3 Train and Test Generalised Model 

 

The most optimal generalisation training setup and network configuration was 

established based on comparing the performances obtained for the MSE and regression 
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R values. As mentioned the comparison between the trained networks involved 

simulating and comparing the R values for the extracted test data in order to give an 

indication of the networks ability to generalise and predict for new unseen data points. 

Further or continued training for the most optimal model was considered and carried out 

with the R value for the networks test data being closely monitored.  

 

To verify a robust network performance the increased training session for the optimal 

model was trained repeatedly with new initialised weights and divided data subsets in 

each session. The continued training was ultimately stopped once the MSE gradient for 

the training data reached the minimum assigned value of 0.001. The most robust 

network weight and bias setup was stored so that the model may be reused to assess its 

ability simulate and make generalised predictions. 

 

 

3.5 Simulate and Compare ANN Results  

 

In the previous training and testing stage the final model was required to simulate for 

the extracted test data subset. The test data set is not implemented within the training of 

the network and is therefore considered as a set of new unseen data points. The network 

essential made predictions for these unseen situations. The MSE and R values for the 

test data set were produced and compared during the training. These were obviously 

used to indicate the networks ability to make closely accurate generalized predictions.  

 

This is verified through additional simulations and plots of ANN predictions overlayed 

with experimental data for some specific input parameters. The ability to interpolate 

other points not within either of the training or test data is also assessed based on the 

approximated trend lines within these plots. Both the ability to interpolate inside and 

outside the domain of the total given data set is considered.  

 

 

3.6 Resource Analysis 

 

Required resources for the successful completion of this project are the experimental 

data supplied from research supervisors and the use of the MATLAB Neural Network 
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Toolbox.  The Toolbox extension is supplied with the USQ MATLAB software. Access 

to this software is provided in any of the engineering computer laboratories.  
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   4 Results and Discussion 

 

4.1 Generate Optimal Model  

 

4.1.1 Select Transfer Function 

 

A particular transfer function was to be selected for each of the hidden layers. As 

identified there are three primary transfer functions that are commonly employed. As 

established from the literature the pure linear function is implemented in the output 

layer of all the networks trained since the output is desired to be in the form of any 

numerical value (Demuth and Beale 2013, Nasir et al 2009). Since this is a preliminary 

step, the training function implemented in this process was the Levenberg-Marquardt 

algorithm. This is defined as the trainlm function within Matlab and is the NN Toolbox 

default function.  

 

The training of all networks at this stage of the network development was limited to a 

total of 100 epochs. This is identified as the number of times the networks is able to 

adjust the weights and biases to achieve a better result (Demuth and Beale 2013). This 

was deemed as suitable termination point enabling a sufficient amount training to then 

identify which of the transfer functions would provide the best performance from the 

network. This training termination point was also based on the work by Nasir et al 

(2009) which invovles a similar selection processes. 

 

Single Hidden Layer Networks 

 

To cover all possibilities, various transfer function combinations were tested for each of 

the network layer setups. Initially a single hidden layer system was trained and assessed 

with each of the three transfer functions in the hidden layer of the network. To ensure 

that the performance results and preference of the transfer function was not influenced 

by the neuron volume, a second single hidden layer system was trained. Therefore each 

network varied in neuron volume. The first consisted of twenty five neurons, whilst the 
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second system contained forty. The results for both networks trained with each transfer 

function are presented and compared in Figure 23.  

 

 

 
Figure 23 – Comparison of transfer function performance of single hidden layer networks  

 

 

Figure 23 clearly indicates the pure linear transfer function as impractical for use within 

the single hidden layer. During the training with the purelin transfer function an error 

was produced and the networks training ceased after three epochs. This was as 

expected, validating the information presented in the reviewed literature. The 

performance would cease improving once it would reach a limit of 4.38 for the MSE. 

Thus, the gradient of the performance curve would reduce below the minimum gradient 

of 1
-5

. This minimum value is set as one of the termination training parameters causing 

the network to stop training after only three iterations. Since the pure linear function is 

clearly not viable the other two possibilities are compared more closely in Figure 24. 
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Figure 24 – Comparison of transfer function performance of single hidden layer networks 

 

 

It’s evident that the tan-sigmoid function outperforms the log-sigmoid function in the 

single hidden layer networks. In both networks the MSE is lower when the tan-sigmoid 

function was implemented. This also indicated that there was no change in preference as 

the node of neuron volume within the layer changed. The additional benefit of 

comparing the two networks is the indication of improved performance obtained from 

the greater neuron volume.  

 

Double Hidden Layer Networks 

 

The two double layered networks trained had 3-[25-15]-2 and 3-[15-5]-2 as their neural 

structure. The first and last figures represent the number of input and output parameters, 

respectively. Numbers within the brackets indicate the number of neurons in each of the 

hidden layers. The sequence of the numbers presented in the brackets is associated to 

the hidden layer sequence in the network. Figure 25 presents performance results for the 

transfer function combinations used in the 3-[25-10]-2 network structure. The label 

sequence on the bottom axis associated with layer sequence in which the named transfer 

function is employed.  

 

 

 
Figure 25 – Performance comparison of transfer function combinations in the 3-[25-10]-2 network. 
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the single hidden layer systems it was expected that the solution implementing the pure 

linear function within the hidden layer would have diminished performance results. The 

results presented in Figure 25 clearly validated this expectation. The implementation of 

this function was therefore neglected when considering the following network 

structures. The presence of the tan-sigmoid function in the first layer appears to provide 

the better performance. To validate this and ensure preferences were not influenced by 

the neural volume the second network structure was trained. Figure 26 displays the 

results of the four tan-sigmoid and log-sigmoid combinations for both double layer 

networks.  

 

 

 
Figure 26 – Performance comparison of transfer function combinations in double hidden layer networks. 

 

 

The second network, with the lower neural volume, appears to have a minor variation in 

preference. However, employing the tan-sigmoid function still proves to provide better 

performance. In comparing the performances of each network, the clear preference is 

the implementation of the tan-sigmoid transfer function in both hidden layers. This 

preference may have been assumed from the performance obtained in the single layer 

networks.  The assessment of the single and double layered networks validated the tan-

sigmoid function as the preferred transfer function in both setups. Based on this trend it 

was predicted that the same result would occur in the assessment of the triple hidden 

layer networks. Again there is a clear trend in the improvement of performance in 

relation to the neuron volume in the hidden layers. 
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Triple Hidden Layer Networks 

 

The same process used to assess the double layer networks was performed similarly for 

the three layer networks. In this case the two networks that were trained were 3-[25-15-

10]-2 and 3-[15-10-5]-2. There were eight possible combinations of transfer functions 

that were assessed. As noted previously the pure linear function was not considered due 

to its expected lower performance values. The trend of increased performance with 

increasing neural volume is again evident within the performance of these two 

networks. Based on the comparison of the performances presented in Figure 27 there is 

mixture in the preferences of transfer function setup. It was also recognised from the 

graph that all the results were relatively close, within a 0.01 range of MSE. All 

combinations could therefore have been considered as viable options.  

 

 

 
Figure 27 – Performance comparison of transfer function combinations in triple hidden layer networks. 

 

 

The reason for the minor differences and less clear preference could possibly be due to 

the fact that the number of layers mitigates the influence of the transfer functions on the 

performance of the network. To possibly try identifying the preferences more clearly the 

networks could have been trained with a greater number of epochs. However, it is 

notable from Figure 27 that the performances of both networks are marginally better 

when the tan-sigmoid function is implemented in all three layers. This validates the 

predicted preference for the three layer setups. Therefore, the tan-sigmoid function was 

indicated as the preferred transfer function regardless of the number of layers within the 

NN and the volume of the neurons within each layer. 
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4.1.2 Select Training Function 

 

In conducting this selection the most favourable transfer function configurations were 

selected for the three alternate hidden layer setups. As identified in the previous section 

the tan-sigmoid function was the most favourable and was therefore implemented in 

conducting this next step in the ANN development. A similar process to the 

identification of the transfer function was carried out in the selection of the most 

optimal training function. A total of 100 epochs was again deemed a sufficient training 

limit for assessing the performances. Once more an assessment was desired on 

variations to neuron volume for each hidden layer setups. This was to provide a little 

further scope and assess the preferential influence of neuron volumes in the layers. 

Subsequently, the previous one, two and three hidden layer configurations were again 

utilised to compare performances achieved with different training functions.  

 

Single Hidden Layer Networks 

 

Each of the identified training functions within MATLAB were implemented and 

assessed initially within the 3-[25]-2 Network. The comparison of the performances, 

presented in Figure 28 identify the traingdm and traingd functions being clearly out 

performed by the various other functions. The performances obtained from the second 

network trained with the remainder of these various function are presented and 

compared with the first network in Figure 29. 
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Figure 28 – Performance comparison of training functions in a 3-[25]-2 network  

 

 

 
Figure 29 – Performance comparison of training functions in single hidden layer networks 

 

 

The general trend in the performance from each of the tested functions is relatively 

similar between the two networks. Thus, the neural volume was identified to have 

minimal influence on the sequence of the training function preferences. A gain there is a 

general trend of improved performance with increase in nodes within the hidden layer. 

Based on these performances the trainlm function clearly offers the greatest 

performance with the least MSE obtained.  
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Only a select few of the training functions were considered for the double layer setup 

based on the performances of the single layer system. The training functions that 

identifiably produced greater MSE values for the single layer systems were neglected. 

Figure 30 compares the remainder of the functions used to train the two double hidden 

layer networks. The three most effective training functions were recognised as trainlm, 

trainbr and trainbfg. This was also the case when comparing the results for the single 

layer networks. Once again the general sequence of preferences between the training 

functions is similar to that of the single hidden layer systems. This identified that there 

was no change in preference between numbers of hidden layers employed. Thus, the 

most optimal training function was again the trainlm function.   

 

 

 
Figure 30  – Performance comparison of training functions in double hidden layer networks 
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the neuron volumes would not change the preference of the training functions. This is 

confirmed in Figure 31 as the trainlm function is once again indicated as the preferred 

training algorithm. The improvement of performance was also noted between the two 

setups. The greater neural volume within the layers promoted a reduction in the MSE as 

predicted from the analysis of the single and double layer systems. 

 

 

Figure 31 – Performance comparison of training functions in triple hidden layer networks 
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Number of Layers 

 

The optimal number of layers for the network was identifiable from all previous training 

results during the selection of the transfer and training functions. This was achievable 

due to the training and assessment of the three different layer configurations. As 

previously established, only between one to three hidden layers were considered in the 

analysis as this was deemed sufficient to handle the complexity of the input to output 

relationships. Therefore the six previously trained neural network structures with 

optimal transfer and training function setups were directly compared and presented in 

Figure 32. For this comparison the networks were trained up to 300 epochs. The 

increase in training epochs was in the hope to identify greater differences between the 

network performances and present a better view of their training potential. 

 

 

 

Figure 32 – Performance comparison hidden layer configurations 
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given dataset, the most optimal training performance is achieved by implementing three 
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Neuron Volume 

 

To establish an optimal neuron volume in each hidden layer of the NN, two three layer 

configurations previously trained were utilised as the base models. Neuron variations to 

these models were trained and compared. Each of the network configurations for each 

series of layer tests were trained to 100, 200 and finally 300 epochs by performing 

successive training sessions. This was conducted so that the performance at each 

interval could be compared. Presenting these points within a fitted line graph also 

indicates the general convergence of each neural configuration.  

 

 

 

Figure 33 –Performance of various node volumes 
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Figure 34 - Performance of various node volumes 

 

 

The two graphs presented depict the general trend of the MSE as each neural 

configuration is tested (Figure 33 & 34). It was noted that at this stage the relative 
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distinguishes the configuration as the most preferred. 
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same approach, the selected 3-[30-25-20]-2 network configuration was trained up to 

2001 epochs with the trainlm function. Figure 33 presents the training graph that 

indicates an initially quick reduction in the MSE. The performance gradually reached a 

saturation point of 1.28x10
-5

 where no further significant improvement was observed.  

 

 

 
Figure 35 – Selected ANN model training with trainlm over 2001 epochs 
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error values. In this case the network essentially memorizes the training set, and has not 

learned to generalize to new conditions (Demuth and Beale 2013). Hence there will 

typically be large errors when unseen data is presented to the network. Therefore the 

trained network will be ineffective at interpolating new data points, which is the 

emphasis in developing the NN model.  

 

 

 Comparison of Experimental and ANN Results without Generalizing  

 

 
Figure 36 – Friction coefficient results from ANN predictions and Experimental training data at 2.8m/s 

with 50N force 
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Figure 37 – Friction coefficient results from ANN predictions and Experimental training data at 1.1m/s 

with 50N force 

 

 

4.2 Generalizing  

 

 

4.2.1 Training with Generalization 

 

It is well distinguished that multilayer networks that have been trained properly are 

capable of producing reasonable answers for inputs that they have not seen within their 

training. This predictive ability of the network is referred to as generalisation. The 

property enables the network to be trained with only a set of representative paired inputs 

and targets. The NNs are therefore capable of obtaining good results without 

implementing all possible input and output pairs in the training.  
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Early Stopping 

 

As identified within the reviewed literature it was recognised that utilising smaller 

networks or larger data sets would improve generalisation. Subsequently, in conducting 

an initial assessment upon training with early stopping three networks were trained. 

These are three of the six networks used in the previous training conducted. Each varied 

in the number of hidden layers to once again recognise any trends in the preferred 

number of hidden layers. All the optimal generated MSE and R values for three 

repeated tests for each network were tabulated and are presented within Appendix D. 

Presented in Figure 38 are the resulting training MSE averages. Clear indications from 

this figure are the decreasing MSE and improved performance as the number of hidden 

layers is reduced. This is obviously an influence caused by the early stopping as the 

reverse trends were observed in the non generalizing training methods in previous 

sections. 

 

 

 
Figure 38 - Average achieved training MSE values for variant hidden layer networks implementing early 

stopping generalisation, trained with trainlm. 

 

 

Averaged R values or correlation coefficients of the predictions from the trained ANN 

models are summarised in Figure 39. R values pertain to the ANN predictions for 
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used in the training. It does serve as a useful comparison the different models. It often 

also useful to plot the MSE for the test set during the training process. The R values 

plotted highlight the single layered networks as having greater correlation of its 

predictions to the training and validation sets. However, the average R value presented 

for test set is significantly lower for this network. This may be a resulting influence of 

the way the data sets were randomly divided.  

 

 

 
Figure 39 - Average achieved R values for variant hidden layer networks implementing early stopping 

generalisation, trained with trainlm. 
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relationships. 

 

The R values for the validation and test sets give some sense of the networks ability to 

generalise since the data contained within these sets are unseen by the network during 

its training. The combined average of these two sets may provide a more effective 

comparison of the networks generalizing ability. In that sense the three layered network 

would have the best generalizing result but still the lowest correlation to the training 

data. 
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All R-values fall short of the standard satisfactory 0.9 value. It was quite clear from 

these presented R-values that this generalisation method was incapable of producing 

trained networks that could correlate outputs and targets satisfactorily.   

 

 

 

Bayesian Regularization 

 

It is highlighted by Demuth and Beale (2013) that the Bayesian regularization method 

achieves superior generalization performance than early stopping method when training 

function fitting networks with relatively small data sets. This is mostly associated to the 

fact that a validation data set is not required to be separate from the training set. Hence 

the network utilises more data during the training. 

 

The six networks used in the previous conduct training were trained to again monitor 
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Figure 40 - Average achieved training MSE values for variant hidden layer networks and volumes trained 

with trainbr. 

 

 

Averaged R values or correlation coefficients of the predictions from the trained ANN 

models are summarised in Figure 41. These R values again pertain to the ANN 

predictions for friction coefficients. The graph presents the regression values for the two 

data set divisions of each network. The data sets were divided into 90 and 10 percent for 

the training and testing sets, respectively. The R values plotted highlight the 3-[25-10]-2 

configured double layer network as having greater correlation of its predictions to the 

training and test sets. 

 

 

 
Figure 41 - Average achieved R values for variant hidden layer networks and volumes trained with 

trainbr. 
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It was also recognised that a relatively constant MSE for several epochs also indicates 

convergence. Thus the training was stopped when the training MSE gradient reduced 

below a set minimum of 0.001. This was established to be optimal as continued training 

lead gradually to over fitting as the test MSE would begin to steadily rise. This was 

observable in the generated MSE performance plot. The training session was 

reinitialised several times, testing several different initial conditions and data subset 

divisions to try and verify robust network performance. The final performance plot for 

the best training session encountered is presented as Figure 42. 

 

 

 
Figure 42 – MSE Performance plot for double hidden layer network 3-[25-10]-2 trained with 

automatically generalising trainbr training function. 
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Figure 43 – Final trained optimal model regression plots. 
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Figure 44-ANN predictions and experimental data for surface temperature for various sliding distances 
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Figure 45- ANN predictions and experimental data for friction coefficient for various sliding distances 
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experimental data trend lines. These points however cannot be validated for accuracy by 

the current supplied data sets. However, it can be assumed that there is a relatively small 

reduction in the accuracy of prediction; given the predicted data point input parameters 

exist within a small percentage from the inputs from the trained domain.  

 

 

 
Figure 46 - ANN predictions and experimental data for friction coefficient for various load force 

 

 

 

Figure 47 - ANN predictions and experimental data for friction coefficient for various load force. 
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 This reduction in the network ability to extrapolate for points further from the trained 

domain is illustrated by the comparison plot presented in Figure 48. Within the figure is 

a trend line for the experimental results for the sliding speed of 2.8m/s plotted alongside 

the ANN predicted points for the variable of 1.1m/s. The single point within the data set 

for these input parameters at 1.1m/s also plotted. As expected good correlation to the 

ANN prediction exist for this point. The expected trend for the ANN points would be to 

closely follow the trend presented by the experimental data at the elevated speed with a 

slight offset. However, as the data points move away from only experimental point at 

that speed, the ANN predictions continue to leave the offset trend of the faster 

experimental points.  These predicted points are therefore less dependable the further 

the data points are form the trained domain. 

 

 

 

Figure 48 - ANN predictions and experimental data for friction coefficient for various load force 
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   5 Conclusions 
 

 

5.1 Introduction 

 

This project has investigated and developed an artificial neural network (ANN) that 

effectively predicts tribological characteristics of kenaf fibre reinforced epoxy 

composite (KFRE). Through this project an understanding of the benefits of developing 

and implementing ANNs has been gained. 

 

To develop the network sufficient previously collected data was processed and 

implemented to establish an optimal ANN model through testing various neural, layer 

and function configurations. An optimal ANN model was derived with additional 

consideration to achieving improved network generalisation. The developed optimal 

generalising network was trained and tested. Further simulations were carried out with 

the derived network to confirm accuracy of model and also assess ability to extrapolate. 

 

5.2 Derived Model Configuration and Training 

 

The selection of derived models optimal architectural configuration and training set up 

involved a systematic trial and error approach. Numerous possible transfer function, 

training function and network configurations were trained, compared and critiqued 

systematically. Comparison and optimal selection was performed based on the mean 

square error of ANN outputs from the actual target data.  

The systematic analysis established the optimal network configuration as double hidden 

layer network with 25 and 10 neurons in the first and second layers, respectively. The 

recognised optimal transfer function for the network utilises the tan sigmoid transfer 

function within the hidden layers. Training with the Bayesian regularisation training 

function was determined to provide the most optimal generalised performance from this 

network. The final trained model achieved an MSE training value of 0.019833.  
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5.3 Network Testing, Simulation and Comparison 

 

This network achieved output against target regression line R values of 0.99 and 0.9866 

for training and testing data sets, respectively. The test data represents a random 

selection of 10% of the total data. The R value for the test data set indicated that the 

ANN model can closely interpolate or generalise for unseen data points quite well.  

Further simulations of the network for points outside the domain of the total data set 

indicated that the networks ability to extrapolate would be less dependable the further 

the data points are form the trained domain.  

 

5.2 Conclusion 

 

This study has verified the ability of an artificial neural network to make closely 

accurate generalised predictions within the given domain of the supplied training data. 

Improvements to the generalised predictability of the neural network was realised 

through the selection of an optimal network configuration and training method suited to 

the supplied training data set.  

 

Hence, the trained network model can be utilised to catalogue the friction coefficient 

and surface temperature variables in relation to the sliding distance, speed and load 

parameters. This is limited to the domain of the training data. This will ultimately save 

time and money otherwise used in conducting further testing. 
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   6 Recommendations 
 

 

6.1 Introduction 

 

The results and lessons from this project have established specific limitations to the use 

of the derived ANN model. From this further research and work recommendations were 

identified. 

 

6.2 Limitations and Challenges 

 

Throughout the project there were certain limitations and challenges encountered in 

generating the optimal model. These are listed below: 

 

 Establishing and applying an optimal generalising training limit. 

 Assessing and finding methods in the current literature to improve extrapolation. 

 

6.3 Recommendations for future work 

 

Questions pertaining to the desirable broader use and application of an ANN model 

throughout the project were recognised as possible recommend avenues of future work 

these are listed below: 

 

1) Try integrating additional tribological data and expanding the domain 

of the produced neural network.  

2) Try integrating additional input and output tribological parameters 

like fibre orientation and specific wear.  

3) Analyse composite structure and assess its possibility for specific 

applications based on ANN predictions. 
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   Appendix A: Project Specification 
 

University of southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING  

ENG8411/8412 Research Project 

Project Specifications  

 

For:   Tyler Griinke 

 

Topic:   DEVELOPMENT OF AN ARTIFICIAL NEURAL NETWORK (ANN) FOR 

 PREDICTING TRIBOLOGICAL PROPERTIES OF KENAF FIBRE 

 REINFORCED EPOXY COMPOSITES. 

 

Supervisors:  Dr. Belal Yousif 

 

Enrolment:  ENG4111 – S1, ENG4112 – S2, 2013 

 

Project Aim:  The project investigates artificial neural network (ANN) modelling for 

  the accurate prediction of friction coefficient and surface temperature of 

  a kenaf fibre reinforced epoxy (KFRE) composite for specific  

  tribological loading conditions. 

 

Programme:  (Issue A, 27 March 2013) 

1) Research ANNs and other investigations involving the development 

of neural networks used for the prediction of tribological properties. 

2) Collect and process sufficient tribology data to utilize in the 

development and training the ANN.  

3) Develop an optimal ANN model through testing various neural, layer 

and function configurations.  

4) Train developed ANN model and compare results with data to 

confirm accuracy of model. Consider implementing methods to 

improve network generalisation. 

5) Simulate ANN model and make predictions beyond trained domain. 

6) Produce academic dissertation. 

 

  As time Permits: 

4) Try integrating additional tribological data and expanding the domain 

of the produced neural network.  

5) Try integrating additional input and output tribological parameters 

like fibre orientation and specific wear.  

6) Analyse composite structure and assess its possibility for specific 

applications based on ANN predictions. 

 

AGREED: 

    (Student)    (Supervisor) 

         /       /       .            /       /       . 
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   Appendix B: DATA 
 

2.8m/s 1.1m/s 

    Friction Temp(˚C) Friction Temp(˚C) 

Time SD 30N 50N 70N 100N 30N 50N 70N 100N 50N 50N 

0 0 0 0 0 0 24 23 23 24 0 22 

0.5 0.084 0.92 0.9 0.85 0.979 24 24 24 25 0.95 23 

1 0.168 0.85 0.91 0.8 0.938667 24 24.5 24 25 0.91 23 

1.5 0.252 0.81 0.85 0.79 0.898333 24.5 25 25 26 0.85 24 

2 0.336 0.78 0.81 0.78 0.869 25 25 26 27 0.8 23 

2.5 0.42 0.77 0.82 0.78 0.869 26 26 26 27 0.78 24 

3 0.504 0.74 0.8 0.77 0.847 26.5 26 26 28 0.79 23 

3.5 0.588 0.75 0.8 0.76 0.847 27 27 27 28 0.8 24 

4 0.672 0.72 0.78 0.77 0.832333 27.5 27 27 28 0.85 25 

4.5 0.756 0.71 0.76 0.78 0.825 28 27 27 29 0.79 25 

5 0.84 0.67 0.73 0.78 0.799333 28 28 28 29 0.78 26 

5.5 0.924 0.65 0.72 0.77 0.784667 29 28 29 30 0.77 26 

6 1.008 0.67 0.72 0.78 0.795667 29 29 30 31 0.77 25 

6.5 1.092 0.63 0.7 0.76 0.766333 30 29 30 31 0.76 26 

7 1.176 0.61 0.71 0.78 0.77 31 29 31 31 0.75 26 

7.5 1.26 0.64 0.72 0.76 0.777333 31 30 32 32 0.75 26 

8 1.344 0.6 0.7 0.75 0.751667 32 30 32 32 0.74 27 

8.5 1.428 0.59 0.69 0.75 0.744333 32 31 33 34 0.73 27 

9 1.512 0.6 0.7 0.73 0.744333 32 31.5 34 35 0.75 27 

9.5 1.596 0.58 0.67 0.72 0.722333 32 32 34 35 0.75 28 

10 1.68 0.55 0.65 0.71 0.700333 32.5 32 35 35 0.77 28 

10.5 1.764 0.53 0.65 0.72 0.696667 33 32 35 36 0.76 29 

11 1.848 0.55 0.65 0.68 0.689333 34 32 35 36 0.74 29 

11.5 1.932 0.52 0.62 0.69 0.671 34.5 33 36 36 0.75 29 

12 2.016 0.52 0.63 0.68 0.671 35 34 36 37 0.76 30 

12.5 2.1 0.53 0.62 0.69 0.674667 35 35 36 37 0.77 30 

13 2.184 0.51 0.6 0.68 0.656333 35.5 35 36 38 0.74 30 

13.5 2.268 0.5 0.61 0.69 0.66 36 35 37 39 0.74 30.5 

14 2.352 0.49 0.6 0.68 0.649 36.5 36 38 39 0.74 31 

14.5 2.436 0.49 0.6 0.68 0.649 36.5 37 39 40 0.75 31 

15 2.52 0.5 0.59 0.68 0.649 37 37 39 40 0.76 31.5 

15.5 2.604 0.48 0.59 0.67 0.638 37 38 40 42 0.74 32 

16 2.688 0.46 0.58 0.68 0.630667 37.5 39 40 42 0.74 32 

16.5 2.772 0.45 0.57 0.66 0.616 38 40 41 43 0.74 33 

17 2.856 0.46 0.56 0.63 0.605 38 41 41 43 0.75 33 

17.5 2.94 0.42 0.56 0.62 0.586667 38.5 41 42 44 0.73 33 

18 3.024 0.44 0.6 0.63 0.612333 39 42 42 45 0.74 34 

18.5 3.108 0.42 0.58 0.63 0.597667 39 43 43 45 0.7 34 

19 3.192 0.41 0.56 0.62 0.583 39 43 45 46 0.72 35 

19.5 3.276 0.4 0.58 0.62 0.586667 40 43 45 47 0.73 35 

20 3.36 0.41 0.6 0.61 0.594 40 44 45 48 0.71 36 

20.5 3.444 0.42 0.58 0.64 0.601333 40 44 46 49 0.72 36 

21 3.528 0.41 0.58 0.63 0.594 41 45 47 50 0.72 36 

21.5 3.612 0.42 0.59 0.62 0.597667 41 46 48 50 0.7 37 

22 3.696 0.43 0.57 0.6 0.586667 41 46 48 57 0.7 37 

22.5 3.78 0.42 0.6 0.59 0.590333 42 46 49 58 0.71 37 

23 3.864 0.41 0.57 0.58 0.572 42 47 50 59 0.71 38 

23.5 3.948 0.42 0.55 0.57 0.564667 42.5 48 50 59 0.71 38 

24 4.032 0.42 0.54 0.58 0.564667 42.5 48 51 60 0.72 39 

24.5 4.116 0.42 0.55 0.59 0.572 43 49 51 61 0.7 39 

25 4.2 0.43 0.53 0.56 0.557333 43 49 52 61 0.7 40 

25.5 4.284 0.44 0.55 0.56 0.568333 43 50 52 62 0.72 40 

26 4.368 0.41 0.55 0.55 0.553667 43.5 51 53 63 0.73 41 

26.5 4.452 0.42 0.54 0.54 0.55 44 51 54 64 0.71 42 

27 4.536 0.44 0.55 0.56 0.568333 44 52 54 65 0.71 43 

27.5 4.62 0.45 0.54 0.56 0.568333 44 52 56 66 0.7 44 

28 4.704 0.41 0.54 0.54 0.546333 44.5 53 56 67 0.7 45.5 

28.5 4.788 0.43 0.55 0.56 0.564667 45 53 57 67 0.7 46 

29 4.872 0.43 0.54 0.54 0.553667 45 54 57 68 0.7 47 

29.5 4.956 0.42 0.55 0.55 0.557333 45 54 57 69 0.7 47.5 

30 5.04 0.41 0.55 0.54 0.55 45.5 55 58 70 0.7 49 
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  Appendix C: MATLAB Code Example 
 

Three_Hidden_Layer.m (Script File) 

 

% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by NFTOOL 
% Created Wed Sep 04 10:46:08 EST 2013 
% 

  
inputs = importdata('tribol_inputs.mat'); 
targets = importdata('tribol_targets.mat'); 

  
inputs = inputs'; 
targets = targets'; 

  
% Create a Fitting Network 
net = network; 
net.numInputs = 1; 
net.numLayers = 4; 
net.biasConnect = [1; 1; 1; 1]; 
net.inputConnect = [1; 0; 0 ; 0]; 
net.layerConnect = [0 0 0 0; 1 0 0 0; 0 1 0 0; 0 0 1 0]; 
net.outputConnect = [0 0 0 1]; 

  
net.layers{1}.size = 25; 
net.layers{1}.transferFcn = 'tansig'; 
net.layers{1}.initFcn = 'initnw'; 

  
net.layers{2}.size = 15; 
net.layers{2}.transferFcn = 'tansig'; 
net.layers{2}.initFcn = 'initnw'; 

  
net.layers{3}.size = 10; 
net.layers{3}.transferFcn = 'tansig'; 
net.layers{3}.initFcn = 'initnw'; 

  

  
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 

  
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 20/100; 
net.divideParam.testRatio = 10/100; 

  

  
% For help on training function 'trainlm' type: help trainlm 
% For a list of all training functions type: help nntrain 
net.trainFcn = 'trainbr';  % Levenberg-Marquardt 
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% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean squared error 

  
%Set training stopping criteria 
net.trainParam.min_grad = 1e-4; 
net.trainParam.epochs = 200; 
net.trainParam.max_fail = 6; 

  

  
% Choose Plot Functions 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
  'plotregression', 'plotfit'}; 

  

  
% Train the Network 
[net,tr] = train(net,inputs,targets); 

  
% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs); 

  
% Recalculate Training, Validation and Test Performance 
trainTargets = targets .* tr.trainMask{1}; 
%valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,outputs); 
%valPerformance = perform(net,valTargets,outputs); 
testPerformance = perform(net,testTargets,outputs); 

  
%View the Network 
%view(net) 

  
% Plots 
%Find indice values of targets and extract train,val and test outputs 
trainOutputs = outputs(:,tr.trainInd'); 
% valOutputs = outputs(:, tr.valInd'); 
testOutputs = outputs(:, tr.testInd'); 

  
figure(1) 
% Regression line for coefficient of friction  
plotregression(trainTargets(1,tr.trainInd'),trainOutputs(1,:),'Train',

... 
testTargets(1,tr.testInd'),testOutputs(1,:),'Testing') 

  
% valTargets(1,tr.valInd'),valOutputs(1,:),'Validating',... 

  
%figure(2) 
% Regression line for Temperature 
%plotregression(trainTargets(2,tr.trainInd'),trainOutputs(2,:),'Train'

,... 
 % valTargets(2,tr.valInd'),valOutputs(2,:),'Validating',...   
%testTargets(2,tr.testInd'),testOutputs(2,:),'Testing') 

  
% 

  
%Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
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%figure, plotfit(net,inputs,targets) 
%figure, plotregression(targets,outputs) 
%figure, ploterrhist(errors) 

  
%gensim(net,-1) 

 

 

  



89 

 Appendix D: Training, Testing and Simulation 

Results 
 

 

Transfer Function Assessment 

Single Hidden Layer 3-[25]-2 
   

     Transfer functions Test 1 Test 2 Test 3 Average 

Tansig 0.0659 0.0556 0.0791 0.066867 

Logsig 0.092 0.0743 0.0824 0.0829 

Purelin 4.38 4.38 4.38 4.38 

 

 

Transfer Function Assessment 

Single Hidden Layer 3-[40]-2 
   

     Transfer functions Test 1 Test 2 Test 3 Average 

Tansig 0.0584 0.0492 0.0602 0.055933 

Logsig 0.0838 0.0753 0.0724 0.077167 

Purelin 4.38 4.38 4.38 4.38 

 

 

Transfer Function Assessment 

Two Hidden Layers 3-[25-10]-2 
  

     Transfer functions Test 1 Test 2 Test 3 Average 

tansig -tansig 0.0439 0.0613 0.0434 0.049533 

tansig-logsig 0.0484 0.0585 0.0583 0.055067 

logsig-tansig 0.0601 0.0586 0.0837 0.067467 

logsig-logsig 0.0703 0.0501 0.0737 0.0647 

tansig -purelin 0.0947 0.0852 0.104 0.094633 

logsig-purelin 0.101 0.0902 0.0863 0.0925 

 

 

Transfer Function Assessment 

Two Hidden Layers 3-[15-5]-2 
  

     Transfer functions Test 1 Test 2 Test 3 Average 

tansig -tansig 0.0624 0.0576 0.0674 0.062467 

tansig-logsig 0.0687 0.0564 0.0754 0.066833 

logsig-tansig 0.0659 0.0746 0.0631 0.067867 

logsig-logsig 0.0734 0.0809 0.0833 0.0792 
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Transfer Function Assessment 

Three Hidden Layer  3-[25-15-10]-2 
  

     Transfer functions Test 1 Test 2 Test 3 Average 

tansig-tansig-tansig 0.0321 0.0362 0.0356 0.034633 

tansig-tansig-logsig 0.0365 0.0366 0.0411 0.038067 

tansig-logsig-logsig 0.0416 0.0403 0.036 0.0393 

logsig-logsig-logsig 0.0444 0.0431 0.035 0.040833 

logsig-logsig-tansig 0.039 0.0434 0.0426 0.041667 

logsig-tansig-tansig 0.0417 0.0446 0.0368 0.041033 

logsig-tansig-logsig 0.0395 0.0413 0.0386 0.0398 

tansig-logsig-tansig 0.0409 0.0422 0.0372 0.0401 

 

 

Transfer Function Assessment 

Three Hidden Layer  3-[15-10-5]-2 
  

     Transfer functions Test 1 Test 2 Test 3 Average 

tansig-tansig-tansig 0.0351 0.04366 0.0429 0.040553 

tansig-tansig-logsig 0.0476 0.04582 0.0451 0.046173 

tansig-logsig-logsig 0. 0429 0.0485 0.0416 0.04505 

logsig-logsig-logsig 0. 0463 0.0428 0.0457 0.04425 

logsig-logsig-tansig 0.0469 0.0411 0.0468 0.044933 

logsig-tansig-tansig 0.0525 0.047 0.043 0.0475 

logsig-tansig-logsig 0.0404 0.0427 0.0513 0.0448 

tansig-logsig-tansig 0.0494 0.0425 0.0452 0.0457 

 

 

Assessing Hidden Layers 

Layer Config 
Transer 
Functions 

Training  
Functions Test 1 Test 2 Test 3 Average 

3-[40]-2 tansig trainlm 0.0364 0.0474 0.0439 0.042567 

3-[25]-2 tansig trainlm 0.0631 0.0495 0.0491 0.0539 

3-[25-10]-2 
tansig-
tansig 

trainlm 

0.0321 0.032 0.0316 0.0319 

3-[15-5]-2 
tansig-
tansig 

trainlm 

0.0428 0.0477 0.0484 0.0463 

3-[25-15-10]-
2 

tansig-
tansig-
tansig 

trainlm 

0.0269 0.0245 0.0246 0.025333 

3-[15-10-5]-2 

tansig-
tansig-
tansig 

trainlm 

0.0334 0.0381 0.032 0.0345 

 

 

Neuron Volume Assessment 1 
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Neuron Configuration 100 epoch 200 epochs 
300 
epochs 

3-[15-10-5]-2 0.043 0.0358 0.0262 

3-[20-15-10]-2 0.0428 0.0361 0.0288 

3-[25-20-15]-2 0.0343 0.03 0.0222 

3-[30-25-20]-2 0.0353 0.026 0.0185 

3-[35-30-25]-2 0.0339 0.0222 0.0191 

 

 

Neuron Volume Assessment 2 

Neuron Configuration 100 epoch 200 epochs 
300 
epochs 

3-[30-25-20]-2 0.0353 0.026 0.0185 

3-[25-15-5]-2 0.0432 0.0344 0.0294 

3-[30-20-10]-2 0.0364 0.0227 0.0192 

3-[35-25-15]-2 0.0293 0.0228 0.0191 

 

 

 

Training Function Assessment 

Single Hidden 
Layer 3-[25]-2 

   

     Training  functions Test 1 Test 2 Test 3 Average 
trainlm 0.0686 0.0682 0.0723 0.0697 
trainbr 0.0908 0.11 0.0865 0.095767 
trainscg 0.134 0.131 0.136 0.133667 
traincgb 0.139 0.133 0.127 0.133 
traingdx 0.22 0.363 0.253 0.278667 
trainbfg 0.116 0.113 0.119 0.116 
trainrp 0.2 0.225 0.222 0.215667 
traincgf 0.131 0.133 0.143 0.135667 
traincgp 0.146 0.132 0.14 0.139333 
trainoss 0.134 0.132 0.134 0.133333 
traingdm 3.31 3.74 2.84 3.296667 
traingd 6.15 5.57 5.65 5.79 

 

 

Training Function Assessment 

Single Hidden Layer 3-[40]-2 
   

     Training  functions Test 1 Test 2 Test 3 Average 
trainlm 0.0664 0.0658 0.0771 0.069767 
trainbr 0.103 0.0914 0.104 0.099467 
trainscg 0.128 0.117 0.129 0.124667 
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traincgb 0.118 0.13 0.116 0.121333 
traingdx 0.266 0.198 0.236 0.233333 
trainbfg 0.0911 0.0915 0.0939 0.092167 
trainrp 0.202 0.23 0.171 0.201 
traincgf 0.141 0.191 0.12 0.150667 
traincgp 0.132 0.126 0.121 0.126333 
trainoss 0.134 0.125 0.12 0.126333 
traingdm 2.52 3.43 2.95 2.966667 
traingd 5.68 4.88 4.8 5.12 

 

 

Training Function Assessment 

Two Hidden Layers 3-[25-10]-2 
  

     Transfer functions Test 1 Test 2 Test 3 Average 
trainlm 0.0553 0.0577 0.0498 0.054267 
trainbr 0.0973 0.0892 0.0878 0.091433 
trainscg 0.162 0.164 0.142 0.156 
traincgb 0.153 0.148 0.167 0.156 
trainbfg 0.0954 0.0815 0.0836 0.086833 
traincgp 0.178 0.165 0.155 0.166 
trainoss 0.183 0.191 0.231 0.201667 

 

Training Function Assessment 

Two Hidden Layers 3-[15-5]-2 
  

     Transfer functions Test 1 Test 2 Test 3 Average 
trainlm 0.0664 0.0577 0.0765 0.066867 
trainbr 0.0866 0.0833 0.0851 0.085 
trainscg 0.185 0.247 0.191 0.207667 
traincgb 0.202 0.206 0.159 0.189 
trainbfg 0.0995 0.103 0.0903 0.0976 
traincgp 0.173 0.2 0.262 0.211667 
trainoss 0.207 0.239 0.21 0.218667 

 

 

Training Function Assessment 

Three Hidden 
Layer  3-[25-15-10]-2 

  

     Transfer functions Test 1 Test 2 Test 3 Average 
trainlm 0.0398 0.0393 0.0385 0.0392 
trainbr 0.0463 0.0504 0.0839 0.0602 
trainbfg 0.0593 0.0623 0.0602 0.0696 
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Training Function Assessment 

Three Hidden Layer  3-[15-10-5]-2 
  

     Transfer functions Test 1 Test 2 Test 3 Average 
trainlm 0.0436 0.0432 0.0399 0.042233 
trainbr 0.0546 0.064 0.0828 0.067133 
trainbfg 0.0862 0.0806 0.0791 0.081967 
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Bayesian Regularization Training 

 

 

Early Stopping Training 

N
E

T 

MSE 

R (Friction Coefficient) 

Test Epochs Training  Validation 

1 2 3 

Aver

age 1 2 3 

Aver

age 1 2 3 

Aver

age 1 2 3 
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age 1 2 3 
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age 
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50 
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4

0 

2

5 23 
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]-2 

0.
23 

0.
07 

0.
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0.
79 

0.
64 

0.
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0.
45 

0.
59 

0.
55 0.53 

0.
38 

0.
93 

0.
53 0.61 5 8 7 6.7 

3-

[2
5-

15

-
10

]-2 

0.

33 

0.

09 

0.

12 0.18 

0.

68 

0.

63 

0.

70 0.67 

0.

51 

0.

72 

0.

74 0.65 

0.

84 

0.

85 

0.

61 0.77 9 5 

2

4 13 

 

NET 

MSE 

R (Friction Coefficient) 

Effective parameters 

 

Training  Test 

 
1 2 3 Ave 1 2 3 Ave 1 2 3 Ave 

1 2 3 Ave 

3-[40]-2 0.07 0.08 0.09 0.08 0.77 0.74 0.80 0.77 0.67 0.91 0.59 0.73 

85 90 75 83 

3-[25]-2 0.08 0.08 0.08 0.08 0.79 0.85 0.75 0.80 0.48 0.95 0.76 0.73 

83 87 75 82 

3-[25-10]-

2 0.03 0.03 0.04 0.04 0.97 0.95 0.85 0.92 0.77 0.51 0.97 0.75 

157 142 121 140 

3-[15-5]-2 0.05 0.05 0.06 0.05 0.63 0.66 0.67 0.65 0.46 0.89 0.54 0.63 

89 95 91 91 

3-[25-15-

10]-2 0.03 0.04 0.05 0.04 0.88 0.77 0.73 0.79 0.50 0.67 0.87 0.68 

152 135 112 133 

3-[15-10-

5]-2 0.05 0.05 0.05 0.05 0.71 0.70 0.72 0.71 0.33 0.75 0.55 0.54 108 115 118 113 


