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Abstract 

The use of steel armour plate targets for competitive sports shooting has been 

increasing in popularity over the last forty years. Steel armour used in battle may only 

be used for short periods and receive impacts only in the hundreds, from specific 

threats that occur in battle and the majority of past research is based around this. In 

contrast steel targets used in competition are subject to thousands of impacts over their 

life span, f a variety of commercially available projectiles. Hence the approach to their 

designs is more interested in the limit that causes no damage, rather than the limit 

which prevents total penetration.  

This study deals with the impacts of commercially available target and hunting style 

projectiles impacting against 12mm Bisalloy 500, which is a common choice for 

targets in Australia. Five different projectiles were selected with the following 

matching characteristics; different diameter and similar mass, different diameter and 

similar length, same diameter and different length and same diameter with different 

nose shapes. The projectiles were fired into test plates at 25 m using matching and 

stepped velocities and their penetration depths recorded. Data was compiled in 

MATLAB and compared with the Allen Rogers penetration model and the 

Alekseevskii Tate penetration model.  

Trends were identified with the long ogive hollow point projectiles when normalized, 

showing that there is a distinct pattern which cannot be predicated using the AR or AT 

model using the standard inputs. The AT model was able to be matched up with the 

penetration for the short and solid construction projectiles, giving a reasonable 

estimate for the penetration depth up to impacts around 950 m/s, where plates are very 

close to failure. It has been shown that there is a substantial difference in the 

penetration based on the construction of the projectile and short blunt projectiles have 

a far lower velocity threshold to prevent damage.  

From this research the following maximum impact velocities have been recommended 

that will cause minimal (>0.5 mm) damage to 12mm Bisalloy 500. For long ogive 

hollow point projectiles a maximum impact velocity of 900 m/s and for solid short and 

blunt projectiles a maximum impact velocity of 750 m/s.  
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 Introduction Chapter 1.

 Background 1.1

For nearly as long as steel has been invented it has been used as a form of armour and 

in the present day this is still the case for the majority of heavy armour applications, 

which can be seen by simply looking at construction of most modern military 

equipment. Its properties of strength and ductility make it very suitable for the 

protection from high speed impacts.   

Steel targets are used in sports shooting for a number of reasons as follows: 

 Audible report; steel makes a distinct sound upon impact which can be heard 

from as far as 1500m away, this makes it ideal for long range sports shooting 

where the impact holes in a paper target would be impossible to see without 

moving closer. It is also interactive and gives the shooter instant response to 

whether they have made a hit or miss. 

 Visual response; the target will react to an impact and may move or fall over 

giving response to the shooter of a hit. An impact will also produce a large 

mark from the lead splatter that can be seen from a long distance to indicate the 

point of impact on the target. 

 Lifespan, Efficiency and maintenance; steel targets can be setup and used 

repeatedly without having to need any special care or maintenance, many 

ranges leave their targets out permanently and often the only repairs that need 

to be made are when the item supporting the target is damaged. Steel targets 

are easy to score during competition and are quicker to reset than replacing 

conventional paper targets. 

Records show the first steel silhouettes were used for competition in 1948 (Michigan 

Rifle & Pistol Association, 2004). There are now over nine different shooting 

disciplines which shoot at metallic targets around the world, some of these are: 

 Metallic Silhouette: Animal silhouettes are shot at from distances of 200-500m 

with high power centre-fire rifles.  

 Steel challenge: targets are shot at close range <20m with pistols ranging from 

small to large caliber such as .38 super and .357 sig. 
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 IPSC, IDPA: targets are shot at ranges from 7m with pistol and greater than 

250m with centre-fire rifle 

 1920 Action match: targets shot at close range <10m using centre-fire pistol. 

 Single action match: targets are shot as close as 7m with pistol and rifle using 

only pure lead ammo. 

 ICORE: targets are shot at ranges from 7m with pistol. 

 3-Gun: targets are shot at ranges from 7m with pistol and greater than 250m 

with centre-fire rifle. 

 Big Game Rifle: targets are shot from 200 to 1000yard using large caliber rifles 

suited for hunting large game and using heavy projectiles. 

 Some of these disciplines are estimated to have over forty five thousand members and 

even if they only compete once a year, this would equate to over thirteen million 

projectile impacts on steel targets for one discipline only.  

With all this use of steel for targets, there is very little information available in relation 

to the threshold levels that cause damage to steel plates, when impacted using target 

and hunting style projectiles. From discussions with fellow shooters and through 

perusal of online shooting forums, it is evident that there is also a common myth 

between the general shooting communities. This Myth is that the most damage to 

targets occurs from the most powerful cartridges. With sporting projectiles this is 

normally not the case at all and is one of the main motivations for the author 

undertaking this project. 

Terminal ballistics is the study of impacts of objects against other mediums. For 

armour steels the majority of research is focused on military applications and 

predominantly focuses on the threats that are common in battle and determining the 

ballistic limit for particular armours. The ballistic limit is defined as the limit for 

penetration of an armour plate in 50% of impacts for a given projectile and impact 

angle (U.S Army research labratory, 2008). In military applications the primary 

purpose of armor is to stop full penetration whereas with civilian target shooting 

applications the purpose is to impart minimal or no damage at all and maximize the 

lifespan of the target.   

The steel that is used for target materials can range from normal mild steel to HHA 

plate but for the majority of targets a grade of HHA plate is used and this project will 
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focus around the HHA grades of plate and impact velocities within the small arms 

ordnance range of 0-1500 m/s.  

Projectiles used for normal target shooting are vast and range from cast pure lead 

construction to lathe turned solid brass. In all cases of target and general hunting 

projectiles they are always substantially lower in their yield strength and hardness than 

the targets that they are being used on. This adds an extra challenge to predicting 

penetration as the projectile will suffer large deformation and in many cases will result 

in total consumption of the projectile during the impact, with the projectile being 

turned into debris, molten and vaporized metal as can be seen in Figure 1.1-1.  

 

Figure 1.1-1 Debris and vapor cloud from impact 

 Project aim 1.2

The aim of this project is to build data of target and hunting projectile impacts on steel 

armour plate. Compare this data with already documented models looking for trends 

and the ability to predict the damage caused by different projectiles. Make 

recommendations to the threshold velocity levels for the selected plate that will cause 

minimal or no damage and also any models that can predict penetration accurately. 

This data can then be relayed to the sports shooting community and clubs to allow 

them to make informed decisions when purchasing targets and deciding upon safe 

distances for shooting. This would help to prevent damage to targets and also help to 

predict the lifespan of targets. 
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 Objectives 1.3

A number of objectives have been set for this project. These have been set with the 

limitations that were present and in some cases are limited by the budget of this 

project, as it is self-funded. This limitation meant that not as many tests projectiles 

could be selected for testing. There is sufficient enough selection to provide accurate 

data for the selected projectiles but more test projectiles would allow the 

recommendations to be expanded to cover a broader range of projectiles. The 

objectives should provide enough information to satisfy the project aim, provide 

reliable information for making assumptions and recommendations based on the 

results and research collected.  The primary objectives are: 

1. Test penetration of two similar mass projectiles in different calibers with 

equal velocities. 

2. Test penetration of similar design projectiles (scaled versions) of different 

calibers at equal velocities. 

3. Test penetration for similar length projectiles of different calibers at equal 

velocity. 

4. Test penetration of the same weight projectile in same caliber at different 

velocities. 

5. Compare the test results with theoretical calculations and look for trends and 

patterns and make recommendations on these results. 
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 Literature Review Chapter 2.

 Past research 2.1

Terminal ballistics has been an area of interest for many scientists and engineers, 

which can be seen by the vast number of publications and books available on the 

subject. It can be related to many different fields of engineering such as Civil, 

Mechanical and Aeronautical. Studies range from impacts of projectiles on armour 

plate, impacts of objects on buildings such as falling debris or a car impacting a 

structure, the impact of a meteorite on a space station to the impact of birds on an 

airplane windscreen. These impacts can range from low velocity under the speed of 

sound to hypersonic velocities over Mach 15.  It is an area that is under constant 

research and development. For instance in the military field as weapon technology 

advances with time, so does the need for better armour for protection from these 

advancements.  There are a number of facilities around the world that specialize in the 

ballistic testing of armor and related materials. One of the most commonly known 

facilities is the Army Research Laboratory located on the Aberdeen proving ground in 

Maryland. There are also a number of small facilities in Australia such as Craig 

International Ballistics, BMT, and Advanced Armaments International. Most of these 

facilities are able to carry out testing using projectiles up to .50 cal. The Journal of 

Impact Engineering has been a major source for up to date articles on armor testing 

with a number of different penetrators and target materials.  

Research around the penetration of armor plate is predominantly conducted using 

specific military projectiles that are designed to be used against armored targets.  There 

are three major mechanisms that are commonly used by the military these are: 

1. AP (armor piercing) small arms ammunition with tungsten or hardened steel 

core and usually fired from conventional small arms.  

2. Long rod penetrators, usually made from a high density material such as 

tungsten and have a ratio of L/D greater than 20, these are usually fired from 

artillery style weapons. 

3. Shaped charged jets, formed by the detonation of a shaped charged at a 

specified distance from the armour to create a high velocity jet penetrates via 

erosion of the target material. 
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 Research benefits, target audience 2.2

This project is focused on the penetration and effects that occur due to impacts of 

normal target and hunting projectiles on armour plate. The use of steel armor plate for 

civilian shooting applications and range design is an area which is increasing in 

popularity (Winkler, 2010). Armour plate is used for civilian applications in two main 

areas those being: 

 The use of steel armour plate as an actual target cut out into a desired shape. 

 The use of steel armour plate as a safety mechanism on ranges to deflect 

ricochets, catch projectiles or direct them in specific directions. 

This shows the need for information on the properties of armor plate impacts with 

conventional projectiles to allow engineers and designers to be able to make safe 

decisions on plate selection based on the use of conventional soft projectiles. At the 

present time there are over 9 different shooting disciplines in Australia alone that 

utilize steel plates as part of their course of fire. Some of the main disciplines engage 

steel targets as close as 7m and others to extreme ranges of 1500m. The calibers used 

are vast and range from low velocity rim-fire calibers to high velocity centre-fire and 

custom designed cartridges. 

Range design is can also benefit from further research of conventional projectile 

impacts on steel armour plate. Traditionally ranges were always located far from any 

local infrastructure and required large parchments of land to allow for stray bullet 

fallout zones and hence needed very little protection to ensure that projectiles stayed 

within the fallout zone. With cities increasing in population indoor ranges are 

becoming more popular, also housing and infrastructure often encroach on existing 

ranges forcing extra measures to be added to contain stray projectiles. These indoor 

ranges and new protection measures often involve the use of steel armour plate and 

proper selection of this is important to ensure long life and projectile containment.  

With the additional research around soft projectile impact engineers can make more 

informed decisions when it comes to selecting correct materials in range design.  

 Available research documentation 2.3

Books: 

 Applied Ballistics for Long Range Shooting: This book addresses all major 

facets of ballistics in simple and easy language. It is a major source for 

ballistics data, stability predictions and projectile data.  
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 Hornady handbook of cartridge reloading. This book lists all projectile styles 

manufactured by Hornady and also load data for all popular sporting cartridges. 

Used as a source for selection of projectiles and for load development with 

Hornady projectiles. 

 ADI Powders hand loaders guide: Handbook with specific information for 

powder charges in various different cartridges using ADI manufactured 

smokeless powders. Major source for calculation of starting and maximum 

loads for each cartridge.  

 Terminal Ballistics: Book based on research on the penetration of armour using 

a number of different mechanisms. Contains a number of different models and 

discussions on the validity and application of these models. Was used as the 

major source for selection of appropriate models and modes of failure 

expectations. 

 Berger Bullets reloading manual: This book lists all projectile styles 

manufactured by Berger and also load data for all popular sporting cartridges. 

Used as a source for selection of projectiles and for load development with 

Berger projectiles. 

Online sources: 

 Berger projectiles website: Used for projectile selection and load workup 

 Thales website: Lists online data For ADI handbook for powder charge 

selection and contains any updated information that is not yet in the printed 

handbook. 

 Standards Online: Source for AS standards for ballistic panels and US MIL 

standards. 

Journal Articles  

 Perforation resistance of five different high-strength steel plates subjected to 

small-arms projectiles:  Data from density and strength for copper jacketed 

projectile used and information on computer modeling from copper-lead 

projectile impact cited. 

 The effect of target strength on the perforation of steel plates using three 

different projectile nose shapes: Comparison of different nose shapes used to 

backup theory for plate failure from adiabatic shear. 
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 Ballistic Resistance of Steel Plate Hardox upon Impact of Non-Penetrating 

Projectiles: Used to compare the energy of the impact of projectiles and its 

effect on penetration depth.  

 Projectile design  2.4

The range of projectiles that are available on today’s market are vast. Hornady 

manufacture over three hundred different projectiles and is one of several projectile 

manufacturing companies that produce projectiles for target shooting and hunting. 

Other manufacturers include Lapua, Sierra, Berger, Speer, Nosler and Barnes. Target 

and hunting projectiles have an array of different types of designs depending on their 

application, although most of these are still based on a copper jacket and lead core 

construction. A number of these manufacturers are now producing a range of lead free 

projectiles, which are based on a solid copper design or the incorporation of a sintered 

metal to replace the lead core (Barnes Bullets, LLC, 2013).  

A number of sources were reviewed comparing the weights and designs available for 

each caliber and looking for the largest difference in calibers that have the same weight 

projectile. This resulted in the following two calibers and their projectile weight ranges 

(Berger Bullets, 2013) (Johnson (ed), 2010):  

 .22 caliber with weights from 35 to 90 grains  

 .30 caliber with weights from 90 to 230 grains  

With this combination it will be possible to fire to different caliber projectiles of 

similar weight at the same velocity. 

Projectile shape is a factor that requires consideration in the selection of correct test 

projectiles. From researching different styles the following shapes from Berger and 

Hornady have been identified for use. Berger list four main designs as listed below: 

 BTHP (boat tail hollow point): This is a long slender bullet designed to be used 

for long range shooting and is optimized to minimize drag and the effects of 

wind during flight. It utilizes a tangent style radius for the nose radius see 

Figure 2.4-1. 
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Figure 2.4-1 BTHP projectile 

 FBHP (flat base hollow point): Flat base projectile which usually has a tangent 

style nose radius but some also available with a secant nose radius (Figure 

2.4-2). 

  

Figure 2.4-2 FBHP projectile 

 VLD (very low drag): Similar to the design of a BTHP except with the use of 

an secant profile for the nose radius (Figure 2.4-3). 

  

Figure 2.4-3 VLD projectile 

 Hybrid: A combination of a BTHP and a VLD which utilizes a nose radius that 

is a combination of a tangent and secant nose radius (Figure 2.4-4).  

 

Figure 2.4-4 Hybrid projectile 

Hornady have similar shapes but also have the following extra designs: 

 JHP (jacketed hollow point): Flat base style of bullet with a semi flat 

hollow point tip (Figure 2.4-5). 
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Figure 2.4-5 XTP projectile 

 SP (soft point):  Flat base style of projectile with a soft lead point (Figure 

2.4-6). 

 

Figure 2.4-6 SP projectile 

Nose shape can have a pronounced effect on plate penetration and it is highly 

dependent on the material properties of the target material and also the projectile itself. 

In 2004 a study was performed on the differences between blunt, conical and ogival 

projectiles impacting a range of different steels (Børvik, et al., 2004). The projectiles 

used all made from hardened steel and the following conclusions were found from the 

testing: 

 As tensile strength of the target material is increased the ballistic limit for blunt 

nosed projectiles decreases and the ballistic limit for conical and ogival nose 

projectiles increases. 

 Blunt projectiles cause a plugging failure due to adiabatic shear. 

 Conical and ogival projectiles caused failure via ductile hole enlargement. 

For soft projectiles there is a lack of data in response to the properties nose shape have 

on penetration but it is assumed at this stage that it is similar to that of a rigid 

projectile. 

Jacket stabilization is a factor that requires consideration for the testing process.  Light 

projectiles at high velocity can cause the jacket to fail and the projectile to disintegrate 

in flight. This will be an issue with the lighter projectiles in the larger caliber as they 

will likely be designed to operate at lower velocity. The limit for jacket failure also has 

variance depending on the manufacturer and the projectile design. Manufacturers 

recommended values for max velocity can be as low as 310 m/s for copper jacketed 
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projectiles (Johnson (ed), 2010). This value may include a large margin of safety to 

prevent injury or misuse as personal experience and discussion’s with competition 

shooter’s show success with projectiles at speeds above their rating, although this is 

not recommended without strict controls.  

Twist rate will significantly impact the projectiles ability to hold together during flight. 

For instance a projectile fired from a 1 turn in 12” (1 turn in 305 mm) barrel at 975 m/s 

will have an rpm of 192,434 whereas the same speed and projectile in a 1 turn in 10” 

barrel gives an rpm of 230,314.  This formula can be used to determine the rpm.  

             (
 

 
)  

  

                 
 

This factor will be considered as part of the selection process for determining the 

correct twist rate for a given caliber/projectile during the selection of a test barrel 

ensuring slowest twist possible is used to reduce the chance of jacket failure. 

Projectile strength and density also play a large part in the penetration process and a 

number of models for predicting penetration use the projectiles density and yield 

strength.  Projectile manufacturers don’t publish any detailed information about the 

properties of the lead or copper used in their projectiles, which makes it hard to gather 

any data for projectile strength. This is further complicated by the different designs of 

projectiles and would require extensive testing. Rather than determine these values for 

strength and density, they were taken from previous research (Børvik, et al., 2009). 

Projectiles were modeled as if they were of a lead only construction, as it is the 

primary material in commercial projectiles. The values selected from this research and 

used were: 

                          

 Projectile propulsion 2.5

Methods of projectile propulsion vary depending on the desired projectile velocity and 

the weight size and shape of the projectile. Common to most ballistic laboratories is 

the gas powered gun, which utilizes a propellant or energy source to drive a ram down 

a cylinder of compressed gas, which then has a burst plate located at the far end just 

before the projectile to be fired (Dekel & Rosenberg, 2012). Once the ram compresses 

the gas to a certain pressure the burst disk ruptures and the pressure generated then 

propels the projectile down range. Using this method velocities of up to 10km/s are 
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able to be achieved. The speeds required for this research are that of which is 

obtainable using conventional small arms, thus the need for high powered gas guns is 

not required. The test can be carried out using rifles chambered to suit the selected 

calibers for testing. 

Maximum velocity from a rifle is dependent on a number of factors such as projectiles 

weight, case capacity, barrel length and projectile diameter. The calibers that have 

been selected for testing are .22 and .30 caliber. These were selected as they have 

projectiles available in the same weight, are a common and popular size for sports 

shooting and have an array of different cartridges developed for them. To be able to 

satisfy the objectives of the research, projectiles of the same weight need to be 

propelled at the same velocity. The factor that controls the velocity is the smaller 

caliber as it requires more force to drive the same weight projectile. This is due to the 

decreased cross-section of the projectile and also due to extra friction that is generated 

by the longer bearing surface against the barrel rifling. 

From section 2.4 the closest weight that both projectiles are available in is 90 gr. The 

velocity for the Berger .22 90gr projectiles fired out of a 22-250 Remington cartridge 

is approximately 936 m/s (Berger Bullets, 2013).  To achieve slightly higher velocity 

the 22-250 chamber could be modified to 22-250AI which would give a maximum 

velocity of approximately 975m/s.  To stabilize the 90gr projectile would require a 

different rifling twist rate then what is normally supplied with a standard 22-250 

Remington rifle. A 1 in 8” twist gives a stabilization factor at an altitude of 305 m of 

approximately 1.22 which is marginally stable (Litz, 2011) . The same velocity for a 

90gr projectile in the .30 caliber is easily achieved with standard calibers and a .308 

Winchester with a standard 1 in 12” twist will stabilize up to 185gr projectile weights 

pending on their design. This stability is calculated from the Miller stability formula 

Equation 2.5-1 below with an applied correction for velocity and a correction for 

atmospheric conditions. This yields the gyroscopic stability factor SG which indicates 

that factors over 1 are gyroscopically stable. In practice higher factors of around 1.4 

are usually desired for ideal stability allowing a factor of safety for error. This is to 

allow for errors in calculations, imperfectly balanced projectiles and changing 

atmospheric conditions (Litz, 2011).   
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Equation 2.5-1 Miller stability formula and correction factors (Litz, 2011) 

 

 Failure modes 2.6

There are six common modes of failure that can occur during impact of projectiles on 

an intermediate thickness target and they vary greatly depending on the target 

properties, impact velocity and projectile properties and design (Dekel & Rosenberg, 

2012).  Some of these modes are shown in Figure 2.6-1.  
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Figure 2.6-1 Failure modes Roesneberg, Dekel (2012) 
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There are two modes of failure that are expected to occur using the high strength steel 

that the author is testing. The first is plugging, this is due to high localized strain and 

adiabatic shear generated during the impact (Dekel & Rosenberg, 2012). This is most 

common when using blunt projectiles and often occurs at lower velocities than other 

modes (Dekel & Rosenberg, 2012). The second mode of failure expected is ductile 

hole growth except the material is expected to be eroded and not pushed aside by the 

projectile (Dekel & Rosenberg, 2012). 

Adiabatic shear is the forming of localized shear bands, due to the high rate of 

temperature change during an impact a band of material softens from thermal change, 

quicker than it work hardens from the deformation (Farrand, 1991). Unlike the normal 

process where the deformation will strain harden and distribute stress to another area, 

in an adiabatic shear the material does not strain harden and remains soft causing the 

stress to concentrate on this softer area (Farrand, 1991). 

Projectiles are often characterized and modeled by the behavior in which they exhibit 

when impact a target, for rigid penetrators they are often modeled as if they maintain 

their shape and mass (Dekel & Rosenberg, 2012). Dekel (2012) lists two typical 

examples of rigid penetrators, AP (armor piercing small arms ammunition) and high 

hardness long rod penetrators. These penetrators are readily modeled using a number 

of different software programs such as AUTODYN and LS DYNA which, with the 

correct parameters, can predict impact behavior and penetration accurately (Børvik, et 

al., 2004). Børvik (2009) conducted a number of tests using AP and soft core 

projectiles on a number of different strength steel plates, from their findings they were 

able to predict the behavior of the AP projectile using computer modeling to an 

accuracy of approx. 12%. At the same time a model was developed to try and mimic 

the behavior of the soft core projectiles but the results were inconsistent and not able to 

be applied reliably, it did however still give a reasonable estimate of exit velocity for a 

full penetration (Børvik, et al., 2009). 

Eroding penetrators are characterized by their erosion as they penetrate a target. The 

two most common forms are explosive shaped charge jets and long rod penetrators that 

are constructed from high density materials such as depleted uranium or tungsten 

(Dekel & Rosenberg, 2012).  A number of different formulas and models have been 

developed to try and mimic the behavior of eroding penetrators, this analysis can 

become quite complex, especially when trying to account for entrance and termination 

phases of an impact (Dekel & Rosenberg, 2012). The Allen Rogers Model is a simple 
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model that was developed by Allen and Rogers in 1961 during the testing of a number 

of different material rods impacted by an aluminum cylinder. This method was often 

termed reverse ballistics and was excellent for analyzing the impact of soft rods as they 

would tend to deform upon firing from the test gun (Dekel & Rosenberg, 2012). The 

final formula was a modified version of the Bernoulli equation that was developed 

from integrating the equation over time (see Equations 2.6-1). 

 

Equations 2.6-1 Allen Rogers Penetration Formula (Dekel & Rosenberg, 2012) 

The Alekseevskii Tate Penetration model (Dekel & Rosenberg, 2012) provides a 

reasonable guide for predicting the penetration depths of an eroding penetrator for 

velocity’s within the small arms ordnance capabilities. The following nomenclature is 

used: 

Vc= critical velocity for penetration 

Rt= targets resistance to penetration 

Yp= Dynamic strength of penetrator 

Using determined values from testing or previous data the following formulas 

(Equations 2.6-2) can be utilized:

 

Equations 2.6-2 Alekseevskii Tate penetration formula (Dekel & Rosenberg, 2012) 
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By solving equations 1, 2 and 3 (Equations 2.6-2) the relationship of penetration and 

velocity can be plotted to simulate the expected depths of penetration for a given 

projectile. 

To be able to use the formulas further data is required to develop the values for Rt and 

Yp by either determining values from testing or assuming values from previous 

research. It is noted by Dekel & Rosenberg that this model is not as reliable for 

prediction as it does not take into account the length to diameter ratio of the projectile. 

This ratio causes effects during the initial penetration phase or the final phase that are 

not accounted for by the Alekseevskii Tate formulas. 

Hub & Komenda (2009) carried out some testing on 10mm Hardox 450 ( a HHA grade 

of steel plate) using soft projectiles in .338 and .308 caliber. Penetrations were able to 

be achieved with the .338 at a velocity of 900m/s and energy of 6500 J but the .308 

would not penetrate at all with a velocity of approximately 760 m/s and energy of 3000 

J (Hub & Komenda, 2009). Looking at this case would suggest that the failure that has 

been observed is from an adiabatic shear where the energy is enough to cause a direct 

shear failure in the plate or the velocity is now above the threshold limit for that plate. 

There is also another failure mechanism that should be considered that is by erosion 

which occurs at much higher velocities.  Previous testing by the author has seen 

perforation of 12mm armour plate with energy below 3000 J using soft projectiles so it 

is important to also consider this mechanism when testing plate materials. 

 Steel Armour Plate 2.7

There are a number of different types of High hardness plates that are used for various 

testing in the literature that has been reviewed  The strength of the plate material is the 

most important property in determining the penetration depth of both rigid and eroding 

penetrators (Dekel & Rosenberg, 2012).  The hardness of the steel also affects it’s 

performance and typically the ballistic efficiency increases as hardness increases 

(Dekel & Rosenberg, 2012), (Børvik, et al., 2009). As per Figure 2.7-1 it can be seen 

that as the steel hardness approaches 450BHN and higher the ballistic efficiency of the 

HHA plate will increase. The two Armour steels that are listed in Figure 2.7-1 are 

RHA and HHA. RHA (Rolled Homogenous Armour) is made by a process of 

continuous rolling high tensile steel to achieve a homogenous structure and HHA 

(High Hardness Armour) undergoes a quench and temper process to achieve a high 

hardness and still retain some ductility. 
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Figure 2.7-1 Ballistic efficiency vs. hardness (Dekel & Rosenberg, 2012) 

The most common armour plate that is manufactured in Australia is Bisplate HHA and 

this is made by Bisalloy in Wollongong NSW.  Availability of HHA is usually only by 

special order but Bisplate 500 is one of their wear grades which has very similar 

strength and hardness properties and is readily available and stocked by many steel 

suppliers. It is also the choice for the majority of steel targets that are used on ranges 

throughout Australia. The most common sizes that are used on ranges for targets are 

10 mm and 12 mm. Cutting of Bisalloy 500 is best performed with either laser or 

water- jet to minimize the heat affected zone around the edge of the target.  Laser 

cutting results in a heat affected zone of approximately 0.2 mm around the edge of the 

cut and water jet cutting does not induce any heat affected zone at all (Bisalloy Steels, 

2006). 

From the Bisalloy technical manual the properties of Bisplate 500 and Bisplate HHA are 

specified in Table 2.7-1 &  

Table 2.7-2. In comparison to mild steel of approximately 300 MPa yield strength and 

160BHN hardness it is approximately four and a half times stronger and three times 

harder.  

Table 2.7-1 Bisalloy Chemical composition (Bisalloy Steels, 2006) 

Material  C P Mn Si S Cr Mo B CE 

Bisplate 500 0.29 0.015 0.3 0.3 0.003 1.0 0.25 0.001 0.61 
Bisplate HHA 0.32 0.025 0.4 0.35 0.005 1.2 0.30 0.002 0.61 
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Table 2.7-2 Bisalloy mechanical properties (Bisalloy Steels, 2006) 

Bisplate 500 Bisplate HHA  

Yield strength 1400 MPa Yield strength 1400 MPa 

Tensile strength 1640 MPa Tensile strength 1640 MPa 

Elongation in 
50mm 10 % Elongation in 50mm 14 % 

Hardness (BHN) 477-534 Hardness (BHN) 477-534 

Testing has been performed on Bisalloy HHA against AP and FSP rounds and the     

ballistic limit for 12mm plate was determined to be 826 m/s for a /30 cal APM2 

projectile and 835 m/s for a .50 cal FSP (Dwight D. Showalter, 2007). Comment is 

also made that during testing of a number of different grades of hardness plate the 

ballistic limit reduced for an FSP projectile as the plate hardness increased (Dwight D. 

Showalter, 2007).  

 Review findings 2.8

From the literature review the following conclusions have been drawn: 

 The largest possible diameter difference with the same weight projectile is 

.22 cal and .30 cal. 

 To use heavy projectiles in a small caliber barrel requires a different twist rate 

to stabilize the heavier projectile. 

 Ogive style projectiles require more velocity to penetrate as plate hardness 

increase, whereas blunt projectiles will require less velocity to penetrate. 

 Deformable projectiles penetrate similar to that of eroding penetrators on 

impact causing erosion rather than ductile hole growth. 

  The L/D ratio of a projectile can have significant effects on the depth of 

penetration and lower ratios are more efficient in their penetration rate. 

 There is a critical velocity that should result in no damage to armor plate which 

is related to the strength of the plate the strength of the projectile and its 

density. 

 There are many models for predicating penetration but the Alekseevskii Tate 

model is a simple model which has been used by a number of different 

researchers. It does not have the ability to predict the L/D effect though (Dekel 

& Rosenberg, 2012). 
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 Safety & Risk Chapter 3.

 General 3.1

Multiple risks were associated with my thesis which were present during the practical 

component. To manage these risks and identify any high risk activities a general risk 

assessment based on consequence and likelihood was developed see Error! Reference 

source not found.. 

There are 3 main high risk factors that are identified by the risk assessment after 

control measures have been implemented and they are listed below: 

 Distractions and other vehicles whilst driving: As the author lives 

approximately two hours away from the university and the range chosen for 

testing the risk from travel is greatly increased due to the duration on the road. 

It is not possible to account for the actions of other drivers and control their 

fatigue or possible distractions and due to this the risk has been listed as high, 

by implanting the stated controls the risk can be minimized as much as 

possible. 

 Over charging a cartridge during reloading: This usually occurs due to lack of 

attention during the charging process and an accidental double charge is placed 

inside the cartridge. This would not normally be possible with the cartridges 

being used as they would be close to case capacity under normal loading but 

due to using reduced load the volume of powder is smaller. Given that the 

chance of this occurring is possible it is highly unlikely as long as the control 

measures are followed. The main reason for the high rating is that it could 

cause severe injury in an incident. 

 Pressure overload during firing: Shooting sports when compared to many other 

team sports is by far one of the safest sports in term of injuries but the nature of 

releasing pressures of upwards of 40,000psi only inches from ones face does 

present the need for some care to be taken.  Safety mechanisms are built into 

modern rifles to divert pressure in case of an overload situation but injury has 

still occurred in major overloads. The high risk rating indicating that this is an 

area where care must be taken. 
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 Commercial risk 3.2

Damage to equipment can be costly and set back not only the project timeline but also 

possibly affect other research that is dependent on equipment used for this thesis. 

Three items that have been identified as needing special attention to ensure protection 

during the testing are listed below: 

 Chronograph: Many a chronograph has been destroyed by the inexperienced 

shooter not compensating for scope height at short range or not looking down 

the barrel before shooting to make sure the muzzle is aiming through the 

middle of the chronograph pickup sensors.  The cost to replace these screens is 

approximately $200 but more damaging is the lead time to replace if damage 

was to occur. Without the chronograph the testing cannot be carried out as the 

velocity is a critical measurement that must be taken. To reduce this risk the 

procedure before firing every shot through the sensors is to perform a check on 

the muzzle alignment and also to place the chronograph as close as possible to 

the muzzle without been affected by muzzle blast. The Lexan protection screen 

used for protection at the firing position also helps ensure alignment with the 

sensors as it only has a small ported area to fire out of refer to Figure 3.2-2 

  Test rifles: Identified as one of the hazards that could cause injury is an over 

pressure during firing. This is at the extreme end but on a small overpressure 

there may be no injury to the operator but the rifle could still be rendered 

inoperable and cost could exceed $900 to repair any damage. The controls that 

cover the overpressure in the risk assessment are sufficient enough to reduce 

this risk as much as possible. 

 High speed camera: The highest commercial risk that has been identified is that 

of damage to the high speed camera. Damage to this unit could exceed $30,000 

and also affect other projects that are relying in the use of the camera. 

Replacement not only would be costly but could have long lead times as these 

cameras are a specialized supply item. The camera will also be within close 

proximity to the targets during testing and the most likely form of damage 

would be from shrapnel or ricochets off the target.  To prevent this, the camera 

will be placed in an enclosed steel box, which is shielded with extra armoured 

plate on the side facing the targets and also the side that is facing the test 

bench. Viewing will be through the front of the box through a 12mm thick 
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Lexan cover plate which protected the camera from any shrapnel from the 

target and still allow viewing of the impacts ( Figure 3.2-1).  

 

Figure 3.2-1 Camera protection 

 

Figure 3.2-2 Firing position protection  
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 R&D and Methodology Chapter 4.

 Research, Design 4.1

 Plate material selection and Retention 4.1.1

As identified Bisalloy 500 is a readily available armour style steel that is widely used 

for targets on ranges throughout Australia. For this project, testing was on 150mm 

squares of 12mm thick Bisplate 500 laser cut with two 13mm mounting holes. This 

will ensure that the HAZ is kept to a minimum and to prevent this from affecting 

results, the impact points will be approximately 18mm away from each cut edge and 

each subsequent projectile impact on the plate as shown in Figure 4.1-1.  

   

Figure 4.1-1 Impact locations 

Mounting of the plates was via a rigid support frame constructed with 50x50x3 mm 

angle with a 300x400x6 mm mild steel plate with a cutout in the middle to mount the 

testing targets, see Figure 4.1-2 below. The frame stands the target plates at 1050 mm 

tall which fits in line with the benches that were used to fire the test projectiles from, 

this kept the impact angle perpendicular to the test plates. A rigid mounting was 

chosen to simulate worst case scenario of a fixed plate. The support frame will be fixed 

to the ground via heavy stakes and sand bags to increase its rigidity and prevent it from 

moving. It is expected that some deflection will occur during impact but remain at a 

constant amount throughout testing and be of minimal effect to the final results. 
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Figure 4.1-2 Testing frame 

 Cartridge and Caliber selection 4.1.2

From the Literature review it was identified that the 22-250 Ackley Improved cartridge 

was capable of achieving close to the upper limits for small arms velocity for civilian 

available firearms. This was chosen as the base and then the .308 Winchester as the 

second test cartridge as it could match the velocities for the diameter comparison. Both 

these calibers are easily reloadable with standard equipment. Using the 22-250AI a 

max velocity of approximately 1250m/s is achievable using a 50gr projectile. Barrel 

twist was selected to achieve minimum stability for the heaviest weight projectile for 

each calibre. This was based on the 90gr Berger BTHP projectile for the .22 cal and 

the 155gr Hybrid BT for the .30cal. Using the miller stability formula and atmospheric 

data for the testing facility (Appendix C ) yielded the following stability factors at 

975 m/s. 1.075 for the .22cal with a 1in 8 inch twist and 1.44 for a 1 in 12 inch twist in 

the .30 cal. This is the final barrel twist rates that were selected and all calculations are 

based on these rates (Appendix D). 

 Projectile selection 4.1.3

As stated previously .22 and .30 calibre projectiles are both available in 90gr weights. 

Berger makes a 90gr .22 caliber projectile and Hornady make a 90 gr .30 caliber pistol 

projectile. These were used for the diameter comparison. There is approximately 

37.5% difference in the diameters and 89% difference in the cross sectional area. As a 

backup for the 90 gr Hornady projectile a 100 gr Hornady SP was also selected as the 

lighter 90 gr projectile may suffer from jacket failure at the testing velocity. 
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 For the similar length comparison the .30 cal 155gr Berger and .22 cal 90gr Berger 

will be used as their length and sectional density is very close. There is 1.3% 

difference in the overall length and 9.9% difference in the sectional density. 

Comparing energy at 975 m/s the 155 gr has 4700 J and the 90 gr has only 2700 J 

which is a difference of 74%. 

For the velocity step test, the following two projectiles were selected: 

 .22 cal 50 gr Barnes varmint grenade.  

 .22 cal 55gr Speer SP. 

The 50 gr Barnes was selected as it is renowned for its ability to handle velocity over 

1200m/s and also as it is an unusually long projectile for its given weight and size. It 

often referred to as a frangible round and instead of a conventional lead core it is filled 

with a sintered tin. The 55 gr Speer is a more conventional design with a solid lead 

core and of a more common length for that size (Johnson (ed), 2010) & (Berger 

Bullets, 2013). Comparing the two together they are similar in the nose style except the 

Barnes is a hollow point and the Speer a soft lead point. There is also approximately 

28% difference between the lengths of the two.  Each projectile style can be seen in 

Figure 4.1-3. 

 

Figure 4.1-3 Projectiles, from left .30 cal (155gr, 100gr, 90gr) & .22 cal (90gr, 50gr, 55gr) 

 Stability of each projectile was checked using the miller stability formula Equation 

2.5-1 (full description in Equation 2.5-1) and adding the correct velocity and 

atmospheric corrections.  All projectiles have an SG of greater than 1, ensuring 
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stability during the testing process. Table 4.1-1 shows the properties of each projectile 

selected for testing including their stability factors. 

Equation 4.1-1Miller stability formula and correction factors (Litz, 2011) 

  

Table 4.1-1Projectile properties 

 

 Velocity selection 4.1.4

To select the velocities for testing, the major limiting factor was the maximum velocity 

that could be achieved using the .30cal 90 gr projectiles due to case capacity. From 

load development this was approximately 983 m/s. Loads higher than this were not 

possible with the current powder that was used.  Working this velocity forward to the 

impact point using Ballistic AE gives an impact velocity of 930m/s.  The other 

projectiles were then based from this, although they may not reach this value. This 

maximum will be used as it will ensure that the two exact weights are going the same 

velocity at the highest possible speed that can be achieved with the chosen testing 

equipment.   

For the velocity step test the minimum velocity for testing was chosen at 750m/s 

(muzzle velocity) as values below this have shown no appreciable damage to plates 

through previous testing that was performed by the author. The maximum velocity was 

selected at 1250 m/s as this is the maximum available from the 50 gr projectile before 

pressure signs began to show, it is also the maximum velocity allowed at the testing 

Projectile properties 
Calibre 
(inch) 

Make  
Weight 
(grains) 

Length 
(mm) 

Style S.D B.C 
Target 
impact 
V (m/s) 

Energy 
(J) 

Twist 
(in/rev) 

SG  

0.22 Berger 90 32.1 BTHP 0.256 0.512 930 2522 8.0 1.0 

0.22 Barnes 50 21.8 FBHP 0.142 0.183 1200 2333 8.0 1.9 

0.30 Berger 155 32.5 BTHP 0.233 0.483 930 4343 12.0 1.4 

0.30 Hornady 100 16.37 SP 0.151 0.152 930 2802 12.0 6.1 

0.30 Hornady 90 13.23 JHP 0.115 0.136 930 2522 12.0 9.5 

0.22 Speer 55 17 FBSP 0.157 0.212 1200 2566 8.0 4.3 
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facility. Testing will be stepped in 50 m/s intervals resulting in eleven shots total per 

projectile for the velocity step test. 

To work out the impact velocities and desired muzzle velocity the program Ballistic 

AE was used, an app designed to run off an iPhone. It is an advanced ballistic 

calculation simulator and based on the proven JBM ballistics engine developed by 

James B. Millard (Zdziarski, 2013).  This program uses the following data for basic 

calculation: 

 Loads and measures local weather data. 

 B.C. 

 Chronograph velocity. 

 Distance from chronograph to muzzle. 

With this data entered it will output the velocity at any distance and the muzzle 

velocity input was altered a number of times until the velocity at 25 m reached the 

target impact velocity. The corresponding muzzle velocity was then used as the target 

chronograph velocity. Table 4.1-2 lists the desired chronograph speed measured 2m 

from the muzzle and also the target impact velocity calculated from this program. Note 

that the .30 cal 90 and 100 gr projectiles are losing velocity significantly quicker than 

the .22 cal 90 gr projectiles, showing the difference in velocity that air drag can cause. 

Table 4.1-2Velocity Target Chronograph and Impact Velocity 

Calibre 

(inch) 
Make 

Weight 

(grains) 

Distance from 

chrono (m) 

Target chrono  

velocity (m/s) 

Target impact V 

(m/s) 

0.22 Berger 90 2.0 944.0 930 

0.22 Barnes 50 2.0 1248.0 1200 

0.30 Berger 155 2.0 945.0 930 

0.30 Hornady 100 2.0 976.0 930 

0.30 Hornady 90 2.0 983.0 930 

0.22 Speer 55 2.0 1248.0 1200 

 

 Major Equipment 4.1.5

The items listed below were the major items used for the testing process, all these were 

essential to the testing process. Unfortunately due to last minute issues with insurance 

off campus the high speed camera was not able to be used. Although not critical to the 

final testing process, it does mean that it was not possible to view the projectile shape 

just before impact or the tip interaction during penetration of each different projectile. 

 Test rifle 1 .22 caliber chambered in 22-250AI with 1 in 8 twist barrel. 
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 Test rifle 2 .30 caliber chambered in .308 Win with standard 1 in 12 twist 

barrel.  

 CED M2 chronograph for primary velocity measurement.  

 Reloading equipment for 22-250 AI and 308 Winchester is available and ready 

for use. 

 Metrology equipment, digital calipers, tape measure and laser range finder.  

 Photron Fastcam SA3 High speed video camera. 

 Ballistic unit for holding steel plates and providing protection for the camera. 

 Portable setup to fix reloading equipment to allow in field velocity changes. 

Test rifle two is a standard off the shelf rifle and was loaned for the testing, while test 

rifle one had to be custom fitted with the faster twist barrel to allow the stabilization of 

the 90 gr projectile. The CED M2 is a mid-range chronograph designed for sporting 

shooters and in good light it is accurate to 99.95% (Competitive Edge Dynamics, 

2013). It is important though to keep consistent lighting during the testing to give 

consistency between velocities (Competitive Edge Dynamics, 2013). Measurement of 

penetration depth and crater diameter will be with digital calipers and also some gauge 

blocks and a ground cylinder to straddle the plate and improve accuracy during 

measurement.  

Standard reloading equipment was used for load development and the powder scales 

used for testing were calibrated before use to ensure correct readings were displayed. 

A portable bench was designed to allow loading at the testing facility, this provided a 

huge time saving and allowed quick load development and the ability to make on the 

spot changes as needed. 

All other general equipment used and consumables is listed in Appendix E. 

 Facilities licensing, Environmental controls 4.1.6

Millmerran SSAA shooting complex (Captains Mountain, south of Millmerran) was 

used as the testing facility, it is licensed and contains a range that is approved for the 

use of hard targets. Velocity is limited to 1250 m/s and energy to 6000 J measured 

from the muzzle. 

Testing at this facility alleviates any concerns with noise pollution or ground 

contamination that are associated with testing on private property. It also has marked 

safety boundary to ensure warn of danger inside the range template.  Testing took 

place over two consecutive days.  
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 Load development 4.2

 General loading 4.2.7

The load development process was a far more involved task than first anticipated. 

Load development took place over approx. 6 different days and each load had to be 

worked up from starting loads (Thales Australia, 2013) to the maximum level to 

determine the limiting velocities for each projectile. This was further complicated by 

the fact that some of the projectiles were running at velocities that are close or above 

the jacket separation limit (Johnson (ed), 2010).  To keep the process as simple as 

possible powders and primers were kept to only two types and each projectile was 

worked up to its limits and the velocities recorded. As loads were worked up to their 

limits powder was only increased in 0.5 gr increments until the target velocity was 

reached or pressure signs began to show. To assist with load development load charts 

were used (see Appendix C) to keep the recording standard and prevent mix-up of load 

data. 

 22-250 AI Loads 4.2.8

The loads for the 22-250 AI all approach the upper limits for pressure and hence care 

must be taken during the load development stage. The following combinations were 

used: 

 50 gr Barnes varmint grenade Rem:  

o 9.5M primers.  

o   37.5 to 45 gr AR2209 for 1100 m/s to 1250 m/s.  

o  19 to 31 gr of AR2206H for 750-1050 m/s. 

 .224 dia 55 gr Speer soft point projectiles: 

o 9.5M primers.  

o 41 gr of AR2206H for 954 m/s. 

o This load was not able to achieve the final velocity due to jacket failure 

in the early stage velocities so it has been removed for the testing 

process. 

 .224 dia 90 gr Berger BTHP projectiles: 

o 9.5M primers.  

o 38.0 gr of AR2209 for 944 m/s. 
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 .308 Winchester Loads 4.2.9

The .308 Winchester had one load that approached maximum pressures the .30 cal 

155 gr Berger and had to be limited to 840 m/s.  Loading of the light projectiles for 

this cartridge also presents its own challenges. Although they are not approaching the 

higher end of the pressure scale, the light projectiles chosen are near their limit for 

jacket separation (Johnson (ed), 2010). Loads were worked up to the target velocity or 

the limit where the jacket failed. This failure is often witnessed as a grey puff of smoke 

at some point down range and consequently no holes in the target. Another factor that 

also needs to be considered is the powder charge and filled case volume. Too little case 

volume with slow powders can result in a case detonation which is a serious hazard. 

To prevent this, lighter loads are based on AR2206H powder. This powder has 

specifically been tested with low case volume loads and proven safe for any load as 

long as it is within 40% of the maximum charge (Hodgon Powder Company, 2013). 

The following combinations were used: 

 .308 dia 90 gr Hornady XTP projectiles: 

o 9.5 primers.  

o 52 gr of AR2206H for 984 m/s max case capacity. 

 .308 dia 100 gr Hornady SP projectiles: 

o 9.5 primers.  

o 52 gr of AR2206H for 948 m/s. 

 .308 dia 155 gr Berger Hybrid projectiles: 

o 9.5 primers.  

o 46.5 gr of AR2206H for 840 m/s. 

o This load started to show pressure signs before the target velocity of 

945 m/s could be reached. 
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Figure 4.2-1 .30 cal 90 gr at Max case capacity 

 Final load results 4.2.10

The final load workup was conducted on the range during the testing to allow loads to 

be tailored and altered as atmospheric conditions changed and or problems were 

encountered. 

The overall impact velocity had to be reduced to 930 m/s to achieve the same velocity 

for the two 90 gr loads as the maximum case capacity was reached using the AR2206H 

powder for the .30 cal 90 gr XTP, Figure 4.2-1. This was the same case for the .30 cal 

100 gr Hornady soft point which could only reach an impact velocity of 900 m/s. 

The .30 cal 155 gr could only reach 826 m/s instead of 945 m/s but it was still used for 

testing.  Ideally this load could have been moved up to a larger cartridge capable of a 

higher velocity but this was not available at the time. 

The .22 cal 55 gr Speer was removed from the testing process as it experienced jacket 

failure at 945 m/s making it unsuitable for the velocity step test.  
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All loads showed accuracy within 25 mm at 25 m except for the .30 cal 100 gr 

Hornady SP which showed signs of instability and accuracy was approximately 

100mm at 25m.  Velocity stability for all loads was within         see table Table 

4.2-1 for each projectile variance.   

Table 4.2-1 Velocity variance 

Name  Velocity variance +- (m/s) 
.22 cal 50 gr Barnes varmint grenade 930 m/s N/A 

.22 cal 90 gr Berger BTHP 929 m/s 0.43% 

.30 cal 90 gr Hornady XTP 932 m/s 0.21% 

.30 cal 100 gr Hornady SP 898 m/s 0.50% 

.30 cal 155 gr Berger Hybrid 826 m/s 0.54% 

 

 Testing procedure 4.3

The testing fixture was placed at 25 m and the chronograph at 2 m from the firing 

position, measured using a standard tape measure. Each projectile was loaded with 

eight rounds for the comparison test and fifteen rounds for the velocity step test. These 

allowed two shots to sight in and confirm the impact point and one spare in case a 

projectile was placed off target. A paper target was placed under the plate to be used as 

the sight in target which minimized the need for readjustment of the firing position and 

to keep alignment with the chronograph.   

Each shot was fired then the velocity and point of impact on the plate was recorded on 

the test record sheet for that projectile (Appendix C).  After all shots were completed 

on that plate it was removed and marked with the shot number for each impact, the 

details of the projectile and the velocity using a permanent marker.  

Shots were aimed starting from the top left hand side and working to the right and 

down for each row. If accuracy was poor and this was not able to be achieved the shot 

number was marked between each shot to avoid confusion. This was the case for the 

.30 cal 100 gr Hornady soft point which resulted in an aim point in the center of the 

plate for all shots and marking after each shot. 

Atmospheric conditions were taken at the commencement of testing and monitored 

during the testing process for any significant changes. Current conditions and the 

recorded chronograph velocity were used to calculate the projectile impact velocity 

using the selected program Ballistic AE. Final atmospheric conditions used for 

calculations are listed in Appendix C. 
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After testing was completed the penetration was measured and recorded in the 

corresponding column on the test data sheet. Penetration was measured using a digital 

depth gauge, ground flat cylinder and two pieces of ground square steel (Figure 4.3-1). 

A reference measurement was first taken beside the impact, outside of the affected area 

the depth measurement was then taken and the difference recorded as the penetration 

depth. This method minimized any error occurring from bending, warping or a raised 

area formed from projectile impact. The crater diameter was also measured as a 

reference using digital calipers. This was quite difficult for small penetration depths as 

the crater was often not clearly defined, so the best estimate of the start of the material 

deforming was used as the crater diameter measurement (Figure 4.3-2). 

Once all the testing was completed the percent variation from the target velocity was 

calculated for each of the comparison projectiles and hand written records transferred 

to a soft copy to allow data to be compiled for comparison. 

 

Figure 4.3-1 Measuring penetration depth 



 Page 33 of 72 

Lachlan Orange  Std No. 0050010100 21/10/2013 

 

Figure 4.3-2 Measuring penetration and crater diameter  
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 Results  Chapter 5.

 .22 cal 50 gr Barnes varmint grenade (velocity step) 5.1

The 50gr Barnes Varmint grenade was chosen for the velocity step test because of its 

capability to withstand high velocity and fast barrel twist rates. The first impact 

velocity was 711 m/s which only had a penetration of 0.05 mm and no appreciable 

mark in the plate. The velocity was increased until the maximum was reached with an 

impact velocity of 1199 m/s. This resulted in a penetration depth of approximately 

2.19 mm and a crater of 14.5 mm.  The change in penetration was gradual but after 

shot six at 888 m/s there was a definite change in the crater shape and material could 

easily be seen to be eroded. Shot eight at 1049 m/s also started to display an 

indentation on the back of the plate and this increased further for the higher velocities, 

to a point where the final shot looks to be close to a failure via plugging. Also note that 

the penetration at the comparison velocity is only 0.3 mm (Figure 5.1-1) & (Table 

5.1-1). 

Table 5.1-1 .22 cal 50 gr Barnes penetration 

Shot no. Impact velocity (m/s) Impact energy (J) Penetration (mm) 

1 711 817 0.07 

2 740 883 0.06 

3 787 999 0.09 

4 838 1134 0.14 

5 888 1272 0.25 

6 931 1401 0.3 

7 993 1593 0.51 

8 1049 1775 0.8 

9 1098 1946 1.22 

10 1138 2092 1.4 

11 1199 2321 2.19 
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Figure 5.1-1 .22 cal 50 gr Barnes penetration 

  



 Page 36 of 72 

Lachlan Orange  Std No. 0050010100 21/10/2013 

 .22 cal 90 gr Berger BTHP  5.2

The .22cal 90 gr Berger had an average impact velocity of 929 m/s (Table 5.2-1) and 

penetration of 0.50 mm. The penetration craters are all very similar except for crater 

one which shows slightly more erosion but still a similar overall depth. There is no 

marking on the rear of the plate and damage is minimal to the front of the plate (Figure 

5.2-1). 

Table 5.2-1  .22 cal 90 gr Berger penetration 

Shot no. Impact velocity (m/s) Impact energy (J) Penetration (mm) 

1 928 2508 0.55 

2 927 2503 0.5 

3 935 2546 0.46 

4 928 2508 0.5 

5 928 2508 0.5 

Crater Diameter :  7 mm 

Average Velocity: 929 m/s 

Average Penetration:  0.50 mm 

 

Figure 5.2-1 .22 cal 90 gr Berger Penetration 
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 .30 cal 90 gr Hornady XTP 5.3

The .30 cal 90 gr Hornady had an average impact velocity of 932 m/s (Table 5.3-1) 

and penetration of   2.82 mm. There was 10% difference between some of the impact 

depths and the crater diameter (15mm at the largest part) was significantly larger than 

the original projectile. All impacts also showed initiation of plugging failure and 

protrusion of the plug could be seen on the back of the target plate (Figure 5.4-2). A 

star pattern which was a mirror image of the front of the projectile was also present in 

the centre of the impact crater and the centre of the impact also showed discoloration 

from heat (Figure 5.3-1).  

Table 5.3-1  .30 cal 90 gr Hornady  

Shot no. Impact velocity (m/s) Impact energy (J) Penetration (mm) 

1 931 2513 2.51 

2 931 2519 3.10 

3 934 2534 2.53 

4 934 2534 3.17 

5 930 2508 2.80 

Crater Diameter :  15mm 

Average Velocity: 932 m/s 

Average Penetration:  2.82 mm 

.  

Figure 5.3-1 .30 cal 90 gr Hornady front 
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 30 cal 100 gr Hornady SP 5.4

 Only four shots were recorded for the .30 cal 100 gr Hornady projectile as it suffered 

problems with accuracy at the testing velocity. The first impact was on the edge of the 

plate so it was omitted due to been too close to the edge and HAZ. From the four 

impacts the average velocity was 899 m/s (Table 5.4-1) which is 3.3% lower than the 

other test projectiles. The average penetration was 3.4mm (Figure 5.4-1) and all 

impacts showed signs of plugging failure on the rear of the plate.  Impact number three 

was very close to full penetration, the plug from impact was protruding approximately 

3 mm and complete failure could be seen around the plug (Figure 5.4-3). 

 Table 5.4-1 .30 cal 100 gr Hornady 

Shot no. Impact velocity (m/s) Impact energy (J) Penetration (mm) 

1 Not counted 
  

2 900 2613 3.08 

3 903 2630 4.46 

4 894 2580 2.87 

5 897 2596 3.24 

Crater Diameter :  15mm 

Average Velocity: 899 m/s 

Average Penetration:  3.4 mm 

 

Figure 5.4-1.30 cal 100 gr Hornady 
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Figure 5.4-2 .30 cal 90 gr Hornady rear of plate 

 

 

Figure 5.4-3 30 cal 100gr Hornady rear of plate 
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 .30 cal 155 gr Berger Hybrid 5.5

The .30 cal 155 gr Berger only had an average velocity of 826 m/s (Table 5.5-1) which 

was 11.2% lower than the target velocity due to the maximum load been reached 

before the target velocity was able to be obtained.  The average penetration was only 

0.28 mm and this remained consistent for each impact. No deformation could be seen 

on the back of the target plate and only small marks could be seen on the front (Figure 

5.5-1). 

 Table 5.5-1 .30 cal 155 gr Berger 

 

Figure 5.5-1 .30 cal 155 gr Berger 

Shot no. Impact velocity (m/s) Impact energy (J) Penetration (mm) 

1 824 3537 0.30 

2 832 3474 0.30 

3 826 3424 0.29 

4 823 3400 0.24 

5 826 3424 0.29 

Crater Diameter :  9 mm 

Average Velocity: 826 m/s 

Average Penetration:  0.28 mm 
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 Accuracy of results 5.6

The results achieved were accurate suitable to use for analysis. The velocity variance 

for each test was within 0.6% of the average and all the 95
th

 percentiles were less than 

          (Table 5.6-1). The penetration variance was around 10% for all the 

comparison projectiles except for the .30 cal 100 gr Hornady which had a penetration 

variance of 23%.  It is possible that this larger variance is due to the plate been very 

close to complete penetration of the projectile.  

Table 5.6-1 Projectile velocity statistics 

.22 cal 90 gr Berger BTHP 

Max velocity (m/s) 949.4 

Min velocity (m/s) 941.2 

Extreme spread (m/s) 8.2 

Average (m/s) 943.3 

Standard Deviation 3.1 

95th Percentile 4.9 

.30 cal 90 gr Hornady XTP 

Max velocity (m/s) 988.4 

Min velocity (m/s) 983.8 

Extreme spread 4.6 

Average 986 

Standard Deviation 1.9 

95th Percentile 3.1 

.30 cal 100 gr Hornady SP 

Max velocity (m/s) 947.6 

Min velocity (m/s) 939 

Extreme spread 8.6 

Average 943.6 

Standard Deviation 2.8 

95th Percentile 4.4 

.30 cal 155 gr Berger Hybrid 

Max velocity (m/s) 846 

Min velocity (m/s) 836.9 

Extreme spread 9.1 

Average 840 

Standard Deviation 3.3 

95th Percentile 5.1 
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 Discussion Chapter 6.

 Penetration Depth trends  6.1

A number of interesting behaviors were witnessed during the testing and the results 

have provided data for analysis of the behavior of each projectile and its impact on the 

test plates.  Graphing the results from the comparisons at the same impact velocity 

shows that the largest penetration was clearly the .30cal 100 gr Hornady followed 

closely by the .30cal 90 gr Hornady XTP (Figure 6.1-1).  These two projectiles 

penetrated approximately six times deeper than the others. 

 

Figure 6.1-1 Penetration at comparison velocity 

To help analyze the results the penetrations were normalized by dividing them by the 

projectile length and then mapping the points on a graph to look for trends in 

penetration. By normalizing the penetration depths it allows different lengths to be 

compared. From Figure 6.1-2 it can be seen that there are two distinct groupings of 

projectiles when graphed using the normalized penetration length. 

The first is the .30 cal 90 gr Hornady XTP and the .30 cal 100 gr Hornady SP.  These 

projectiles are very similar in their weight and also their design. They are both quite 

short in their length and are a solid construction. The 90 gr XTP is a jacketed hollow 

point but this point is quite flat and shallow, whereas the Hornady 100 gr is a soft point 

but it is a steep radius and comes to a 2mm flat instead of a point. Both of these 

projectiles would only have a short distance to deform before they reached an impact 

surface area equal to that of the projectile diameter. This tip style can be seen in the 

cross section of each of the projectiles in Figure 6.1-3.  
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The second grouping is that of the longer hollow point designs the .22 cal 55 gr 

Barnes, .22 cal 90 gr Berger and .30 cal 155 gr Berger. If a trend line was plotted along 

the velocity step test points then all the other hollow point projectiles also fall on or 

very close to this line at their relative impact velocities. The cross section Figure 6.1-3 

shows the cavity at the front of each of these projectiles, consequently the projectile 

would deform more easily upon impact until the solid cross section is reached. This is 

a considerably longer distance than that of the shorter projectiles and also would have 

less resistance to deform as there is only the jacket component to deform at the start of 

the impact.  

From the results there are two different penetrations that need to be modeled, that of 

the short and solid projectiles and also the longer hollow point style.  Both these styles 

show very different behaviors and it would not be possible to predict them using the 

one model. 

 

Figure 6.1-2 P/L Vs velocity  
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Figure 6.1-3 Projectile cross section from left .30 cal (90 gr XTP, 100 gr SP, 155 gr 

Berger, 200 gr Woodleigh)  .22 cal (50 gr Barnes, 55 gr Speer, 90gr Berger) 

 Numerical modeling of Penetration 6.1

Two numerical simulations were used to compare against the experimental data, the 

Allen Rogers formula for eroding rods and the Alekseevskii Tate penetration model. 

These models were chosen as it is believed that they will give a good prediction of the 

penetration using the selected projectiles. The models were run in Matlab using 

constants identified during the literature review. The material properties used for the 

model inputs were:  

           (Børvik, et al., 2009)              

               (Børvik, et al., 2009)                

 

 Allen Rogers penetration model 6.1.1

The Allen Rogers Model for penetration is as follows (Equation 6.1-1): 

 

 
  

    √    

  √        
  where:      

    

  
 

 and   √
  

  
 

                        (Dekel & Rosenberg, 2012) 

Equation 6.1-1 Allen Rogers Equations 

Running this in Matlab and adjusting the value for   from      to         moved the 

model curve for penetration into line with the  penetration for the .30 cal 90 gr 
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Hornady XTP and the .30 cal 100gr Hornady SP. This also roughly matched with the 

starting point for penetration using the .22 cal 50 gr Barnes projectile in the velocity 

test (Figure 6.1-1) 

 

Figure 6.1-1 Allen Rogers model comparison 

 

 Alekseevskii-Tate penetration model 6.1.2

 Using determined values from testing or previous data the following formulas can be 

utilized (Equation 6.1-2): 

 

 
            

 

 
   

             

   
  

  
         eq.2 

  

  
                   √

 (      )

  
            

Equation 6.1-2 Alekseevskii Tate Equations   

Substituting different values for    to match up with the data found the best match to 

be         which the same as the value of   used in the Allen Rogers model. Again this 

curve only matches with the .30 cal 90 gr Hornady and the .30 cal 100gr Hornady.  

The model was solved numerically in Matlab using velocity increments of 10 m/s and 

a time step of        s. This took thirty one minutes to compute but using a time 

step that was greater than that yielded some erratic results. 
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Figure 6.1-2 Alekseevskii Tate Model Rt = 2.12 Yt 

It can be seen from the model graphs that neither of the models used can predict the 

behavior of the hollow point style projectiles. This difference is probably due to the 

ease of deformation of the projectile tip upon impact before it reaches a solid cross 

section. The equation for a line of best fit as matched in Matlab is Equation 6.1-3: 

  
 

 
                                   

Equation 6.1-3 Hollow point velocity trend line 

This could be used to predict penetration of 12 mm Bisalloy 500 plate using hollow 

point projectiles up to an impact velocity of 1200 m/s. This matched trend line is 

shown in Figure 6.1-3. The AT model also shows a much steeper penetration rate, 

which when comparing to the level of penetration in the test plates would be a more 

accurate representation, as the plates are very close to complete penetration at the 

impact velocities used. To confirm that the AT model is a reasonable match for the two 

short .30 cal projectiles, velocity step tests would be required to be carried out so that 

the AT model accuracy can be confirmed at a number of different impact velocities.  
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Figure 6.1-3 Penetration with Trend line and AT model 

 

 Air pocket and L/D ratio 6.2

The L/D ratios of each projectile show that projectiles with a lower L/D ratio penetrate 

further into the targets. This supports the previous claims (Dekel & Rosenberg, 2012) 

that a projectile with a low L/D ratio is more efficient than one with a larger ratio and 

that the Alekseevskii Tate model does not account for the effect of the L/D ratio. In 

these experiments due to the construction of the longer projectiles, it is most likely the 

air pocket and reduced density at the front of the projectile, which is having a far 

greater effect on this trend. The percentage of the length of the air pocket is between 

22-33 % for the hollow point style and 0-7 % for the short .30 cal projectiles (Table 

6.2-1).  

Table 6.2-1 L/D and air pocket percent 

Projectile type L / D % length air chamber  
.22 cal 50 gr Barnes varmint grenade 930 

m/s 3.83 32 

.22 cal 90 gr Berger BTHP 929 m/s 5.64 22 

.30 cal 90 gr Hornady XTP 932 m/s 1.69 0.00 

.30 cal 100 gr Hornady SP 898 m/s 2.09 7 

.30 cal 155 gr Berger Hybrid 826 m/s 4.16 33 

 

  Target plate Behaviour 6.3

Penetration on the target plates ranged from minimal damage to near complete 

penetration. Both erosion and plugging failure mechanisms could be seen on some of 
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the impacts. In the case of the .22 cal 50 gr velocity step test the impacts started with 

no damage and began to show erosion at 930 m/s. At 1200 m/s deformation of the 

back of the plate could be seen indicating that plugging failure is present in its early 

stages.  The most damage that occurred to the plates was with the .30 cal 100 gr 

Hornady soft point. The impact craters showed an area where erosion has occurred for 

approximately 2 mm and then failure via plugging for the rest of the penetration depth 

Figure 6.3-1 and Figure 6.3-2.  

From the experimental testing it can be seen that using long hollow point projectiles 

with impact velocities’ less than 930 m/s result in minimal damage or deformation to 

the test plates. For the short solid and semi flat pointed .30 cal 90 gr and 100 gr 

Hornady this threshold is much lower and velocity step testing needs to be carried out 

for these projectiles to confirm this threshold.  

 

Figure 6.3-1 Crater failure zones front view 

 

Figure 6.3-2 Crater failure zones rear view  

Plugging Failure Erosion 

Failure 

Front View 
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 Conclusion Chapter 7.

 Threshold Levels 7.1

From the velocity step test it can be seen that the long ogive hollow point projectiles, 

produce far less damage at a given velocity than the equivalent weight in a  short and 

blunt tip projectile. As a rule of thumb long ogive hollow point projectiles with an L/D 

ratio of greater than 3.8, will only cause minimal damage to targets at impact velocities 

up to 900 m/s and would be fine for use on targets. 

For all projectiles the threshold level of    (Dekel & Rosenberg, 2012) seems to be an 

accurate prediction of the velocity where damage will start to occur to the plates. 

Using 12 mm Bisplate 500 and lead or lead-copper jacket projectiles this value is 

approximately 740 m/s (2430 ft/s).  

 Experimental Vs Model 7.2

In conclusion the models were not successful in predicting the penetration of the long 

ogive hollow point style projectiles(.22 cal 55 gr Barnes, .22 cal 90 gr Berger and 

.30 cal 155 gr Berger). For the short and Blunt .30 cal 90 gr Hornady XTP and the 

.30 cal 100 gr Hornady SP projectiles the impacts did fall on the model line for both 

the Alekseevskii Tate and the Allen rogers models but to make an accurate prediction 

as to their accuracy requires some more experimental velocity step tests on these 

projectiles. 

 Future Work 7.3

Further testing on the .30 cal 90 gr Hornady XTP and the .30 cal 100 gr SP using a 

velocity step test will give more data to be able to predict the accuracy of the models 

used in this project for predicting penetration.  

Further testing on long ogive solid or soft point projectiles to compare the difference in 

penetration to the hollow point designs would be beneficial as it may be found that 

they behave in the same manner for penetration. This data could then be used to 

develop a formula that can accurately predict the penetration of the long ogive hollow 

point projectiles and similar soft point designs.  
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Appendix A. Project specification 
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Appendix B. Risk Assessment 
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Appendix C. SSAA Millmerran 

Atmospheric conditions 

 Table C-1 Millmerran Atmospheric conditions 

Millmerran SSAA captains mountain Atmospheric conditions 

Value 
SI 

units 
Imperial 

Imp 
value 

Altitude (m) 425 1394 ft 

Relative humidity (%) 16 16 % 

Barometric press (hPa) 1022 30.18 inHg 

Wind (m/s) 5 16.405 ft/s 

Wind direction 11 11  

Temperature (Deg C) 21 69.8 °F 

 

  



 Page 59 of 72 

Lachlan Orange  Std No. 0050010100 21/10/2013 

Appendix D. Stability Calculations 

 Table D-1  Prelim Stability Calculations 

Prelim Calculations for calibre selection 
Calibre 
(inch) 

Make  
Weight 
(grains) 

Length 
(mm) 

Target  
velocity 

(m/s) 

Energy 
(J) 

Rifling twist rate 
inches per turn 

SG (miller 
stability 
formula 

0.22 Berger 90 32.1 
975.

0 
2772 8.0 1.075 

0.30 Berger 155 32.5 
975.

0 
4774 12.0 1.436 
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Appendix E. Consumables & 

Equipment 

 

E 1. Reloading Consumables  

 ADI AR2209 Powder, ADI AR2206H Powder. 

 Remington 9.5 & 9.5M primers. 

 .224 dia 50 gr Barnes varmint grenade projectiles. 

 .24 dia 55 gr Speer soft point projectiles. 

 .224 dia 90 gr Berger BTHP projectiles. 

 .308 dia 90gr Hornady XTP projectiles. 

 .308 dia 100gr Hornady SP projectiles. 

 .308 dia 155 gr Berger Hybrid projectiles. 

 Remington .308 Winchester cartridges. 

 Lapua .22-250 AI (fire-formed) cartridges.  

 

E 2. Target materials 

 6 x 12mm Bisalloy 500 150x150 mm square targets. 

 Paper target for sight in.  

 Steel target mounting frame.   

 Lexan protection screen. 

 Camera protection box, camera front armour plate cover. 

 

E 3. Testing equipment 

 Test rifle 1 .22 caliber chambered in 22-250AI with 1 in 8 twist barrel. 

 Test rifle 2 .30 caliber chambered in .308 Win with standard 1 in 12 twist barrel.  

 CED M2 chronograph for primary velocity measurement. 

 Reloading Dies for 22-250 AI and 308 Winchester and associated reloading 

equipment. 

 IPhone for measuring weather conditions and also to run JBM ballistics calculator. 

 Metrology equipment, digital calipers, tape measure and laser range finder.  
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 Ballistic unit for holding steel plates and providing protection for the camera. 

 Generator, power leads. 

 Cameras 2 x GoPro video cameras and laptop. 

 PPE: enclosed shoes, eye protection and hearing protection (ear muffs and plugs) 
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Appendix F. Load Development sheets 

 Table F-1 .22 cal 50 gr Barnes Varmint Grenade 

 

 

 Table F-2 .22 cal 55 gr Speer 

 

5.689 Cartridge 22-250AI Altitude (m) 425

FBHP Case type Lapua Relative humidity (%) 16%

0.183 Primer type Remington 9.5m Barometric press (hPa) 1022

21.800 COAL (mm) 62.9 Wind (m/s) 5

1248 Projectile wt (gr) 100.0 Temperature (Deg C) 21

2.0 Projectile brand Barnes Powder measure Mem No. MEM-018

Shot 

no.
Powder type

Powder 

wt (gr)
muzzle velocity (m/s) COAL (mm) OGAL (mm) 

1 AR2209 37.5 1100.0 62.9 55.0

2 AR2209 40.0 1143.0 62.9 55.0

3 AR2209 40.5 1155.0 62.9 55.0

4 AR2209 41.0 1164.0 62.9 55.0

5 AR2209 41.5 1167.0 62.9 55.0

6 AR2209 42.0 1184.0 62.9 55.0

7 AR2209 42.5 1199.0 62.9 55.0

8 AR2209 43.0 1204.0 62.9 55.0

9 AR2209 43.5 1223.0 62.9 55.0

10 AR2209 44.0 1235.0 62.9 55.0

11 AR2209 44.5 1240.0 62.9 55.0

12 AR2209 45.0 1252.0 62.9 55.0

13 AR2206H 20.0 771.0 62.9 55.0

14 AR2206H 22.0 828.0 62.9 55.0

15 AR2206H 24.0 870.0 62.9 55.0

16 AR2206H 26.0 914.0 62.9 55.0

17 AR2206H 28.0 980.0 62.9 55.0

18 AR2206H 30.0 1020.0 62.9 55.0

Low pressure loads

Low pressure loads

Low pressure loads

Low pressure loads

Low pressure loads

Low pressure loads

Slight pressure signs

OGAL on 2-22 insert

Ballistic coefficient

Projectile length (mm)

Target velocity (m/s)

Distance from muzzle to chrono (m)

Notes

.22 cal 50gr Barnes Varmint Grenade #22496 load sheet
Setup data Load data Atsmospheric Data

Projectile diameter (mm)

Projectile style

5.689 Cartridge 22-250AI Altitude (m) 425

FBSP Case type Lapua Relative humidity (%) 16%

0.512 Primer type Remington 9.5m Barometric press (hPa) 1022

32.080 COAL (mm) 60.96 OGAL 52.38 Wind (m/s) 5

Various Projectile wt (gr) 55.0 Temperature (Deg C) 21

2.0 Projectile brand Speer Powder measure Mem No. MEM-

Shot 

no.
Powder type

Powder 

wt (gr)
muzzle velocity (m/s) COAL (mm) OGAL (mm) 

1 AR2209 40.0 954.0 61.0 52.4

2 AR2209 41.0 954.0 61.0 52.4

OGAL on 2-22 insert

Jacket failure

Ballistic coefficient

Projectile length (mm)

Target velocity (m/s)

Distance from muzzle to chrono (m)

Notes

.22 cal 55gr Speer FBHP #1047 load sheet
Setup data Load data Atsmospheric Data

Projectile diameter (mm)

Projectile style
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 Table F-3 .22 cal 90 gr Berger BTHP 

 

 

 Table F-4 .30 cal 90 gr Hornady XTP 

 

5.689 Cartridge 22-250AI Altitude (m) 425

BTHP Case type Lapua Relative humidity (%) 16%

0.512 Primer type Remington 9.5m Barometric press (hPa) 1022

32.080 COAL (mm) 68.97 Wind (m/s) 5

964 Projectile wt (gr) 90.0 Temperature (Deg C) 21

2.0 Projectile brand Berger Powder measure Mem No. MEM-017

Shot 

no.
Powder type

Powder 

wt (gr)
muzzle velocity (m/s) COAL (mm) OGAL (mm) 

1 AR2209 30.5 831.0 69.0 55.8

2 AR2209 31.0 841.0 69.0 55.8

3 AR2209 31.5 854.0 69.0 55.8

4 AR2209 32.0 860.0 69.0 55.8

5 AR2209 32.5 871.0 69.0 55.8

6 AR2209 33.0 880.0 69.0 55.8

7 AR2209 33.5 884.0 69.0 55.8

8 AR2209 34.0 895.0 69.0 55.8

9 AR2209 34.5 906.0 69.0 55.8

10 AR2209 35.0 917.0 69.0 55.8

11 AR2209 35.5 919.0 69.0 55.8

12 AR2209 36.0 927.0 69.0 55.8

13 AR2209 36.5 939.0 69.0 55.8

14 AR2209 37.0 921.0 69.0 55.8

15 AR2209 37.5 947.0 69.0 55.8

16 AR2209 38.0 955.0 69.0 55.8 Slight pressure signs

OGAL on 2-22 insert

Ballistic coefficient

Projectile length (mm)

Target velocity (m/s)

Distance from muzzle to chrono (m)

Notes

.22 cal 90gr Berger BTHP #22426 load sheet
Setup data Load data Atsmospheric Data

Projectile diameter (mm)

Projectile style

7.823 Cartridge .308 Winchester Altitude (m) 425

XTP FBHP Case type Remington Relative humidity (%) 16%

0.136 Primer type Remington 9.5 Barometric press (hPa) 1022

13.230 COAL (mm) 61.14 Wind (m/s) 5

1007 Projectile wt (gr) 90.0 Temperature (Deg C) 21

2.0 Projectile brand Hornady Powder measure Mem No. MEM-020

Shot 

no.
Powder type

Powder 

wt (gr)
muzzle velocity (m/s) COAL (mm) OGAL (mm)

1 AR2206H 30.0 611.0 61.1 58.0

2 AR2206H 34.0 583.8 61.1 58.0

3 AR2206H 37.0 650.3 61.1 58.0

4 AR2206H 39.0 680.8 61.1 58.0

5 AR2206H 42.0 760.0 61.1 58.0

6 AR2206H 44.0 818.0 61.1 58.0

7 AR2206H 46.0 870.0 61.1 58.0

8 AR2206H 48.0 910.0 61.1 58.0

9 AR2206H 49.0 921.0 61.1 58.0

10 AR2206H 50.0 966.0 61.1 58.0

11 AR2206H 51.0 991.5 61.1 58.0

12 AR2206H 51.5 984.5 61.1 58.0

13 AR2206H 52.0 1014.0 61.1 58.0

Notes

.30 cal 90gr Hornady XTP #31000 load sheet

Target velocity reached

Projectile diameter (mm)

Projectile style

Ballistic coefficient

Atsmospheric Data

Projectile length (mm)

Target velocity (m/s)

Distance from muzzle to chrono (m)

Load dataSetup data
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 Table F-5 .30 cal 100 gr Hornady SP 

 

 

 Table F-6 .30 cal 155 gr Berger Hybrid 

 

  

7.823 Cartridge .308 Winchester Altitude (m) 425

FBSP Case type Remington Relative humidity (%) 16%

0.152 Primer type Remington 9.5 Barometric press (hPa) 1022

16.370 COAL (mm) 64.2 Wind (m/s) 5

1000 Projectile wt (gr) 100.0 Temperature (Deg C) 21

2.0 Projectile brand Hornady Powder measure Mem No. MEM-021

Shot 

no.
Powder type

Powder 

wt (gr)
muzzle velocity (m/s) COAL (mm) OGAL (mm)

1 AR2206H 45.0 816.0 64.2 Not measured

2 AR2206H 47.0 869.2 64.2 Not measured

3 AR2206H 48.0 897.3 64.2 Not measured

4 AR2206H 49.0 914.6 64.2 Not measured

5 AR2206H 50.0 930.8 64.2 Not measured

6 AR2206H 51.0 960.0 64.2 Not measured

7 AR2206H 52.0 976.0 64.2 Not measured Max case capacity reached

Ballistic coefficient

Projectile length (mm)

Target velocity (m/s)

Distance from muzzle to chrono (m)

Notes

.30 cal 10gr Hornady Soft point #3005 load sheet
Setup data Load data Atsmospheric Data

Projectile diameter (mm)

Projectile style

7.823 Cartridge .308 Winchester Altitude (m) 425

BTHP Case type Remington Relative humidity (%) 16%

0.483 Primer type Remington 9.5 Barometric press (hPa) 1022

32.500 COAL (mm) 73.45 Wind (m/s) 5

966 Projectile wt (gr) 155.0 Temperature (Deg C) 21

2.0 Projectile brand Berger Powder measure Mem No. MEM-019

Shot 

no.
Powder type

Powder 

wt (gr)
muzzle velocity (m/s) COAL (mm) OGAL (mm)

1 AR2206H 43.0 786.0 73.5 58.2

2 AR2206H 44.0 809.8 73.5 58.2

3 AR2206H 44.5 824.0 73.5 58.2

4 AR2206H 45.0 842.0 73.5 58.2

5 AR2206H 45.5 837.0 73.5 58.2

6 AR2206H 46.0 863.7 73.5 58.2

7 AR2206H 46.5 870.7 73.5 58.2 Slight pressure signs

Notes

Ballistic coefficient

Projectile length (mm)

Target velocity (m/s)

Distance from muzzle to chrono (m)

.30 cal 155gr Berger Hybrid #30426 load sheet
Setup data Load data Atsmospheric Data

Projectile diameter (mm)

Projectile style
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Appendix G. Test data record sheets 

Table G-1 .22 cal 50 gr Berger test data 

 

  

Item 2 Load data
5.690 Cartridge 22-250 AI 425.0

FBHP Case type Lapua 16.0

0.183 Primer type Rem 9.5m 1022.0

21.800 Powder type AR2209 or AR2206H 5.0

1248 Powder charge (gr) Varied 21.0

1200 COAL (mm) 62.9mm or 55 OGAL

2332.8 Projecti le wt (gr) 50.0

2.0 Projecti le brand Barnes

25.0 Projectile length (mm) 21.8

Shot 

no.

Actual Muzzle 

Velocity (m/s)

Actual 

impact 

% var in 

target 

Actual impact 

energy (J)

% variation  in 

impact energy 

Flight time 

(s)

Estimated 

penetratio

Actual 

penetration 

Crater 

Dia 

% 

variation 

1 745 711 N/A 817 N/A 0.04 0.07 6

2 774 740 N/A 883 N/A 0.03 0.06 6

3 822 787 N/A 999 N/A 0.03 0.09 6

4 875 838 N/A 1134 N/A 0.03 0.14 6

5 926 888 N/A 1272 N/A 0.03 0.25 6

6 971 931 N/A 1401 N/A 0.03 0.3 7.6

7 1035 993 N/A 1593 N/A 0.03 0.51 9

8 1092 1049 N/A 1775 N/A 0.02 0.8 10.5

9 1143 1098 N/A 1946 N/A 0.02 1.22 13

10 1185 1138 N/A 2092 N/A 0.02 1.4 13.7

11 1248 1199 N/A 2321 N/A 0.02 2.19 14.5

Projecti le diameter (mm) Alti tude (m)

Projecti le s tyle Relative humidity (%)

Bal l i s tic coefficient Barometric press  (hPa)

.22 cal 50gr barnes Varmint Grenade FB Test data record sheet

Test Target Photo

Setup data

Projecti le length (mm) Wind (m/s)

Target veloci ty (m/s) Temperature (Deg C)

Target impact veloci ty (m/s)
Notes    Velocity step test

Target impact energy (J)

Dis tance from muzzle to chrono (m)

Dis tance from muzzle to Target (m)

.22 cal 50gr barnes Varmint Grenade FB Test data record sheet

Atsmospheric data
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 Table G-2 .22 cal 90 gr Berger test data 

 

  

Item 1 Load data
5.690 Cartridge 22-250 AI 425.0

BTHP Case type Lapua 16.0

0.512 Primer type Rem 9.5m 1022.0

32.080 Powder type AR2209 5.0

944 Powder charge (gr) 38 21.0

930 COAL (mm) 69.0  or 55.8 OGAL

2522.0 Projecti le wt (gr) 90.0

2.0 Projecti le brand Barnes

25.0 Projectile length (mm) 32.1

Shot 

no.

Actual Muzzle 

Velocity (m/s)

Actual 

impact 

% var in 

target 

Actual impact 

energy (J)

% variation  in 

impact energy 

Flight time 

(s)

Penetratio

n Est (mm)

 

Penetration 

Crater 

Dia 

% 

variation 

1 942 928 0.22% 2508 0.56% 0.03 0.55 9.00

2 941 927 0.32% 2503 0.75% 0.03 0.5 7.00

3 949 935 -0.54% 2546 -0.95% 0.03 0.46 7.50

4 942 928 0.22% 2508 0.56% 0.03 0.5 7.00

5 942 928 0.22% 2508 0.56% 0.03 0.5 7.00

Setup data
Projecti le diameter (mm)

Projecti le s tyle

Bal l i s tic coefficient

Projecti le length (mm)

Test Target Photo

.22 cal berger 90gr BTHP Test data record sheet

Atsmospheric data

.22 cal berger 90gr BTHP Test data record sheet

Notes

Alti tude (m)

Relative humidity (%)

Barometric press  (hPa)

Wind (m/s)

Temperature (Deg C)Target veloci ty (m/s)

Target impact veloci ty (m/s)

Target impact energy (J)

Dis tance from muzzle to chrono (m)

Dis tance from muzzle to Target (m)
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 Table G-3  .30 cal 90 gr Hornady XTP test data 

 

  

Item 5 Load data
7.823 Cartridge .308 Winchester 425.0

JHP Case type Remington 16.0

0.136 Primer type Rem 9.5 1022.0

13.230 Powder type AR2206H 5.0

983 Powder charge (gr) 52 21.0

930 COAL (mm) 61.14

2522.0 Projecti le wt (gr) 90.0

2.0 Projecti le brand Hornady

25.0 Projecti le length 13.2

Shot 

no.

Actual Muzzle 

Velocity (m/s)

Actual 

impact 

% var in 

target 

Actual impact 

energy (J)

% variation  in 

impact energy 

Flight time 

(s)

Penetratio

n Est (mm)

 

Penetration 

Crater 

Dia 

% 

variation 

1 984 931 -0.11% 2513 0.36% 0.03 2.51 15

2 985 931 -0.11% 2519 0.12% 0.03 3.10 15

3 988 934 -0.43% 2534 -0.48% 0.03 2.53 15

4 988 934 -0.43% 2534 -0.48% 0.03 3.17 15

5 983 930 0.00% 2508 0.56% 0.03 2.80 15

Projecti le diameter (mm) Alti tude (m)

Projecti le s tyle Relative humidity (%)

Bal l i s tic coefficient Barometric press  (hPa)

.30 cal 90gr hornady XTP Test data record sheet

Test Target Photo

Setup data

Projecti le length (mm) Wind (m/s)

Target veloci ty (m/s) Temperature (Deg C)

Target impact veloci ty (m/s) Notes

Target impact energy (J)

Dis tance from muzzle to chrono (m)

Dis tance from muzzle to Target (m)

.30 cal 90gr hornady XTP Test data record sheet

Atsmospheric data
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 Table G-4  .30 cal 100 gr Hornady SP test data 

 

 

Item 4 Load data
7.823 Cartridge .308 Winchester 425.0

SP Case type Remington 16.0

0.152 Primer type Rem 9.5 1022.0

16.370 Powder type AR2206H 5.0

976 Powder charge (gr) 52 21.0

930 COAL (mm) 64.2

2802.2 Projecti le wt (gr) 100.0

2.0 Projecti le brand Hornady

25.0 Projecti le length (mm)16.4

Shot 

no.

Actual Muzzle 

Velocity (m/s)

Actual 

impact 

% var in 

target 

Actual impact 

energy (J)

% variation  in 

impact energy 

Flight time 

(s)

Penetratio

n Est (mm)

 

Penetration 

Crater 

Dia 

% 

variation 

1 Not counted

2 945 900 3.23% 2613 6.75% 0.03 3.08 15

3 948 903 2.90% 2630 6.15% 0.03 4.46 15

4 939 894 3.87% 2580 7.93% 0.03 2.87 15

5 942 897 3.55% 2596 7.36% 0.03 3.24 15

Projecti le diameter (mm) Alti tude (m)

Projecti le s tyle Relative humidity (%)

Bal l i s tic coefficient Barometric press  (hPa)

.30 cal hornady 100gr SP Test data record sheet

Test Target Photo

Setup data

Projecti le length (mm) Wind (m/s)

Target veloci ty (m/s) Temperature (Deg C)

Target impact veloci ty (m/s) Notes : Only 4 shots as accuracy was 

severly unstable and unable to 

achieve all clean shots on plate.

Target impact energy (J)

Dis tance from muzzle to chrono (m)

Dis tance from muzzle to Target (m)

.30 cal hornady 100gr SP Test data record sheet

Atsmospheric data
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 Table G-5  .30 cal 155 gr Berger Hybrid test data 

 

 

Item 3 Load data
7.823 Cartridge .308 Winchester 425.0

BTHP Case type Remington 16.0

0.483 Primer type Rem 9.5 1022.0

32.512 Powder type AR2206H 5.0

945 Powder charge (gr) 46.5 21.0

930 COAL (mm) 73.5 OGAL 58.2

4343.5 Projecti le wt (gr) 155.0

2.0 Projecti le brand Hornady

25.0 Projecti le length 32.5

Shot 

no.

Actual Muzzle 

Velocity (m/s)

Actual 

impact 

% var in 

target 

Actual impact 

energy (J)

% variation  in 

impact energy 

Flight time 

(s)

Penetratio

n Est (mm)

 

Penetration 

Crater 

Dia 

% 

variation 

1 838 824 11.40% 3537 18.57% 0.03 0.30 9

2 846 832 10.54% 3474 20.02% 0.03 0.30 9

3 840 826 11.18% 3424 21.17% 0.03 0.29 9

4 837 823 11.51% 3400 21.72% 0.03 0.24 9

5 840 826 11.18% 3424 21.17% 0.03 0.29 9

Projecti le diameter (mm) Alti tude (m)

Projecti le s tyle Relative humidity (%)

Bal l i s tic coefficient Barometric press  (hPa)

.30 cal Berger 155gr Hybrid BTHP Test data record sheet

Test Target Photo

Setup data

Projecti le length (mm) Wind (m/s)

Target veloci ty (m/s) Temperature (Deg C)

Target impact veloci ty (m/s) Notes

Target impact energy (J)

Dis tance from muzzle to chrono (m)

Dis tance from muzzle to Target (m)

.30 cal Berger 155gr Hybrid BTHP Test data record sheet

Atsmospheric data
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Appendix H.  Matlab Code 

H 1. Allen rogers Model 

%Lachlan Orange Thesis Penetration modelling% 
% Module 1 % 
clc; 
clear; 
% load import from file% 
load PLR 
%Density of Target kg/m3% 
Pt=7850 
%Density of Penetrator kg/m3% 
Pp=10660 
%Allen rogers model data% 
%value for mu Rod/target density ratio% 
mu=sqrt(Pt/Pp) 
% yield strength of plate MPa% 
Yt=1400*10^6 
%Value for dynamic strength MPa% 
s=2.12*Yt 
%Value for Q% 
Q=2*(s)*((1-(mu^2))/Pt) 
% Diameter and length arrays .22 50,.22 90,.30 90,.30 100,.30 155 % 
D=[5.69,5.69,7.82,7.82,7.82]; 
L=[21.8,32.08,13.23,16.37,32.51]; 
%define velocity span m/s% 
V=[100:10:1800]; 
%define start value for n% 
n=1 
%Define Vc% 
Vc=sqrt(2*s*10^6/Pp) 
%Define matrix for allen rogers model% 
PL=zeros(length(V),2); 
while n <=length(V) 
PL(n,1)=V(n); 
%formula for normalised penetration allen rogers% 
PL(n,2)=(V(n)-mu*sqrt((V(n)^2)+Q))/(mu*sqrt((V(n)^2)+Q)-((mu^2)*V(n))) 
n=n+1; 
end 
%create fugure for plot% 
figure('name','P/L Vs velocity trends') 
%Plot V,P?L values on graph% 
plot(PL(:,1),PL(:,2),'c','LineWidth',2,'MarkerSize',11) 
hold on  
%plot 50gr barnes% 
plot(PLR(1:11,4),PLR(1:11,10),'+g','LineWidth',2,'MarkerSize',11) 
%plot 90gr berger% 
plot(PLR(12:16,4),PLR(12:16,10),'xb','LineWidth',2,'MarkerSize',11) 
%plot 90gr XTP% 
plot(PLR(17:21,4),PLR(17:21,10),'om','LineWidth',2,'MarkerSize',11) 
%plot 100gr SP 
plot(PLR(22:25,4),PLR(22:25,10),'+k','LineWidth',2,'MarkerSize',11) 
%plot 155gr Berger for % 
plot(PLR(26:30,4),PLR(26:30,10),'or','LineWidth',2,'MarkerSize',11) 
axis([600,1800,0,1]) 
title('Penetration / Length Vs velocity','FontSize',15) 
xlabel('Velocity m/s','FontSize',15),ylabel('P/L','FontSize',15) 
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legend('Allen Rogers Model 2.12Yt','50gr Barnes','90gr Berger','90gr 

XTP','100gr SP','155gr Berger','location','NorthWest') 

  
figure('name','P/L Vs velocity') 
hold on  
%plot 50gr barnes% 
plot(PLR(1:11,4),PLR(1:11,10),'+g','LineWidth',2,'MarkerSize',11) 
%plot 90gr berger% 
plot(PLR(12:16,4),PLR(12:16,10),'xb','LineWidth',2,'MarkerSize',11) 
%plot 90gr XTP% 
plot(PLR(17:21,4),PLR(17:21,10),'om','LineWidth',2,'MarkerSize',11) 
%plot 100gr SP 
plot(PLR(22:25,4),PLR(22:25,10),'+k','LineWidth',2,'MarkerSize',11) 
%plot 155gr Berger for % 
plot(PLR(26:30,4),PLR(26:30,10),'or','LineWidth',2,'MarkerSize',11) 
axis([600,1300,0,.3]) 
xlabel('Velocity m/s'),ylabel('P/L') 
title('Penetration / Length Vs velocity','FontSize',15) 
legend('50gr Barnes','90gr Berger','90gr XTP','100gr SP','155gr Berger') 

 

H 2. Alekseevskii Tate Model 

%Lachlan Orange Thesis Penetration modelling% 
% Model to match hollow point projectiles % 
%trendline added% 
clc; 
clear; 
% load import Penetration testing data from file% 
load PLR 
%Density of Target kg/m3% 
Pt=7850; 
%Density of Penetrator kg/m3% 
Pp=10660; 
%Yield strength of penetrator% 
Yp=24*10^6; 
% yield strength of plate MPa% 
Yt=1400*10^6; 
%Value for targets resistance to penetration% 
Rt=Yt*2.12; 
%Define critical velocity Vc% 
Vc=sqrt(2*(Rt-Yp)/Pp); 
% Diameter and length arrays .22 50,.22 90,.30 90,.30 100,.30 155 % 
D=[5.69,5.69,7.82,7.82,7.82]; 
Li=[21.8,32.08,13.23,16.37,32.51]; 
%define velocity span m/s% 
Vi=[0:5:3000]; %ideal 5 m/s step 
%Define time step% 
t=.00001; %ideal .00001 
%define initial length% 
Li=1; 
%define start value for n% 
n=1; 
%set variable in toolbox; 
u=sym('u'); 
%Define matrix for AT model% 
PL=zeros(length(Vi),2); 
% while loop for each velocity  
while n<=length(Vi) 
    V=Vi(n); 
    L=Li; 
    P=0; 
    Ldot=0; 
    Vdot=0; 



 Page 72 of 72 

Lachlan Orange  Std No. 0050010100 21/10/2013 

        while L>0 && V>=Vc 
        %formula 1 AT model% 
        U=solve(.5*Pp*(V-u)^2+Yp==.5*Pt*u^2+Rt,u); 
            if double(U(1))>=0 && double(U(1))<=V 
                U=double(U(1)); 
            elseif double(U(2))>=0 && double(U(2))<=V 
                U=double(U(2)); 
            end 
        %formula 2 AT model% 
        Vdot=(-Yp/(L*Pp))*t; 
        %formula 3 AT model% 
        Ldot=-(V-U)*t; 
        %formula 4 AT model% 
        Pdot=U*t; 
        %add values% 
        V=V+Vdot; 
        L=L+Ldot; 
        P=P+Pdot; 
        end  
        if P==0 && n>1 
            PL(n,2)=PL(n-1,2); 
        else 
    PL(n,2)=P; 
        end 
    PL(n,1)=Vi(n); 
     NUM=['Last velocity calculated ',num2str(PL(n,1))]; 
    disp(NUM) 
    n=n+1; 
end 
%plot trendline% 
VT=[700:5:1300]; 
PT=(8.8737*10^-10)*VT.^3 - (1.9812*10^-6)*VT.^2 + 0.0015017*VT - 

0.38258; 
%plot AT model lines 
figure('name','P/L Vs velocity trends') 
%Plot x,t values on graph% 
plot(PL(:,1),PL(:,2),'c','LineWidth',2,'MarkerSize',11) 
hold on  
%Plot trendline values on graph% 
plot(VT,PT,'m','LineWidth',2,'MarkerSize',11) 
%plot 50gr barnes% 
plot(PLR(1:11,4),PLR(1:11,10),'+g','LineWidth',2,'MarkerSize',11) 
%plot 90gr berger% 
plot(PLR(12:16,4),PLR(12:16,10),'xb','LineWidth',2,'MarkerSize',11) 
%plot 90gr XTP% 
plot(PLR(17:21,4),PLR(17:21,10),'om','LineWidth',2,'MarkerSize',11) 
%plot 100gr SP 
plot(PLR(22:25,4),PLR(22:25,10),'+k','LineWidth',2,'MarkerSize',11) 
%plot 155gr Berger for % 
plot(PLR(26:30,4),PLR(26:30,10),'or','LineWidth',2,'MarkerSize',11) 
%axis([0,1200,0,1.5]) 
title('Penetration / Length Vs velocity','FontSize',15) 
xlabel('Velocity m/s','FontSize',15),ylabel('P/L','FontSize',15) 
legend('AT Model Yt','Trendline match','50gr Barnes','90gr Berger','90gr 

XTP','100gr SP','155gr Berger','location','NorthWest') 

 

 


