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Abstract 

Direct energy inputs such as diesel and electricity are major costs incurred on an 

irrigated cotton farm. They also account for a significant proportion of the total 

greenhouse gas emissions from cropping systems. As energy costs continue to rise, so 

too does irrigator interest in assessing ways to improve their energy efficiency. 

Irrigators want to know how to reduce energy consumption. New techniques and 

equipment are required to assist irrigators in managing their energy consumption and 

therefore reduce running costs and meet targets. Cotton farmer‟s use 60 -70% of their 

energy during the irrigation process (Ballie & Chen 2008), where large quantities of 

water are pumped during the irrigation season, and how efficiently this happens depends 

on the efficiency of the pump stations. 

A Pump Efficiency Monitor (PEM) has been developed to identify pump efficiency 

problems. The PEM enables the continuous measurement of various pump parameters 

to assess efficiency and monitor energy use during an irrigation season. 

The pump efficiency monitor was first trialled during the 2012/13 cotton irrigation 

season on a farm located at Goondiwindi, Queensland. Data for one pumping event was 

successfully obtained during the trial. The data was analysed to determine a combined 

efficiency of the pump and diesel engine. It was identified that reducing engine speed 

by 250 RPM would improve efficiency. A cost benefit analysis performed on the results 

indicates that reducing engine speed would reduce running costs for this particular 

pump station by 44%.  

The ability of the PEM to continuously log various pump variables not only provides 

data to assess pump station efficiency, it also provides accurate information concerning 

energy use for on-farm energy assessments. 
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Chapter One 

Irrigation Energy in the Australia Cotton Industry 

1.1 Introduction to the Australian Cotton Industry 

The versatility of cotton is astounding; cotton can be used as both a food source and 

fibre crop. The cotton seed that remains after the ginning process, can be used as 

supplement feed for livestock such as cattle and sheep (Blackwood 2007) as well as 

being crushed and the oil extracted. The use of cotton seed oil extends from soaps, 

pharmaceuticals, cosmetics, rubber and plastics with a wider potential use for cotton 

seed oil including food products such as cooking oil, salad dressings, and sauces. Cotton 

seed oil was the first type of vegetable oil used in the aforementioned products, other 

types of vegetable oils started to replace cottonseed oil due to lower production 

expenses (Morgan 2013). This gave way to a new field of research for the use of 

cottonseed oil in the production of biodiesel; for use in combustion engines to 

encourage the offset of greenhouse gas emissions (Fan et al. 2011). The cotton fibre can 

be used to create woven or knitted garments and textile products. The small fibres 

removed from the cottonseed after ginning, known as linters, are used to produce cotton 

buds, bank notes, swabs, and bandages (Morgan 2013). 

Australia is the fourth largest exporter of cotton and produces some of the highest 

yielding and finest quality cotton in the world (Cotton Australia 2013a). The total value 
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of the cotton produced in 2011 is $2.87 billon this includes $217 million dollars of 

cottonseed (Cotton Australia 2013b). The first cottonseeds imported into the nation 

were on the first fleet in 1788 (Cotton Australia 2013c). In 1830 the first shipment of 

cotton for export to England consisted of three bags (Cotton Australia 2013c). In 2011 

the total bales of cotton produced in Australia consisted of 3,999,600 an 89% increase 

in production since 1980 (Cotton Australia 2013b). Table 1 indicates the total quantity 

of cotton grown since 1990 and the bales produced per hectare. Table 1 illustrates the 

increase in cotton production over the twenty year period (Cotton Australia 2013b). At 

the turn of the century the cotton industry experienced a ten year period of drought 

which affected the production output. 

Table 1: Australian Cotton Production Statistics (Cotton Australia 2013b) 

Year Total Bales Bales 

per ha 
Year Total Bales Bales 

per ha 

2010/11 3,999,600 6.67 1999/00 3,202,160 6.93 

2009/10 1,594,850 8.76 1998/99 3,221,340 6.02 

2008/09 1,494,300 9.26 1997/98 3,020,065 6.95 

2007/08 601,810 8.77 1996/97 2,710,800 6.96 

2006/07 1,199,700 8.93 1995/96 1,712,600 5.97 

2005/06 2,618,000 7.85 1994/95 1,365,140 6.55 

2004/05 2,904,000 8.98 1993/94 1,411,910 5.12 

2003/04 1,531,000 7.79 1992/93 1,559,860 6.06 

2002/03 1,630,100 7.39 1991/92 2,018,000 7.16 

2001/02 3,072,320 7.60 1990/91 1,804,000 6.58 

2000/01 3,441,334 6.73 1989/90 1,287,500 6.00 

From the planting of the first cotton crop by the first fleet in 1788, the agricultural 

production of cotton now extends from Emerald in central Queensland to Griffith in 

southern New South Wales (Cotton Australia 2013d). This spans a distance of 1500km 

with varying climate terrain and soil types. Cotton is considered a desert plant and thus 

suited to the Australian conditions. 
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The efficiency with which cotton is grown in Australia is three times higher than any 

other nation (Cotton Australia 2013a). This is due to the technological achievements 

within the cotton industry. On-farm energy efficiency is becoming increasingly 

important in the context of rising energy costs and concern over greenhouse gas (GHG) 

emissions (Cotton Australia 2013a). The rising prices on energy are now one of the 

major challenges to the agricultural industry in Queensland. 

Although the rapidly rising energy prices may have initially been viewed as a temporary  

phenomenon, many people in the sector now agree that we are entering into an era of 

high energy prices. A combination of high energy prices and the government‟s target to 

reduce the GHG emissions by 25 to 40% by 2020 (Wilson 2013) forces the 

improvement of on-farm energy efficiency. The fastest, cheapest and easiest way to 

decrease production expenditure and greenhouse gas emissions is to improve the energy 

efficiency practices of an enterprise (Ballie & Chen 2008). The agricultural industry is 

also one of the most severely affected by global warming and climate change (Cline 

2008). It is likely that primary producers in Queensland may face either an energy, 

water or carbon constrained future. Rational and efficient use of energy is essential for 

sustainable development to ensure the survival of the agricultural industry within 

Australia. The export of Queensland‟s agricultural products in 2010-2011 financial year 

accounts for 12.6% for total state exports (Treasury 2011). Improved energy efficiency 

will therefore significantly enhance the clean and green image of Queensland and 

national exports of agricultural products and most importantly improve the enterprises 

bottom line. 
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1.2 Irrigation Energy for Cotton 

„This is the way the previous farmer did it so I just carried on with the same practice.‟ A 

common catch cry heard across the agricultural industry and one that was repeated by 

the grower when asked „Why is the engine speed set to 1,800 RPM?‟ Unfortunately it is 

not always the best practice. The Cotton Industry relies heavily on machinery to 

perform specific tasks; as a result this incurs a high direct energy use on farm. Energy 

inputs such as diesel and electricity are major costs sustained on an irrigated cotton 

farm. Ballie and Chen (2008) conducted a series of energy audits on cotton farms and 

found the energy used varied considerably, ranging between 3.7 and 15.2 GJ/ha, at a 

cost of $80 to $130/ha depending on the irrigation system and the farming method. By 

performing energy assessments and/or audits it is possible to identify poor performance 

and to improve best management practices.  

As energy costs continue to rise, so too does irrigator interest in assessing ways to 

improve their energy efficiency and reduce energy consumption. New techniques and 

equipment are required to assist irrigators in managing their energy consumption and 

therefore reduce running costs and increase profit. 

On a cotton irrigation farm, water pumping is usually the largest energy use operation at 

60 - 70% of total direct energy use (Ballie & Chen 2008). How efficiently this happens 

depends on the efficiency of the pump stations. A poorly performing pump may affect 

the entire irrigation system, reducing irrigation efficiency and productivity. Jessen 

(2008) analysed the results of over 250 pump performance tests conducted in 

Queensland and found the average measured pump efficiency was around 53%. This 

indicates that there is scope for improvement as the efficiency of a pump should not be 

less than 65% for the required duty point (Jessen 2008). Should pump efficiency drop 



5 

 

below 65% the pump selection process should be investigated to achieve a better 

efficiency (Smith 2008). Reynolds et al. (2008) has shown that optimising pump 

performance can provide significant efficiency gains, both economically and from a 

production perspective. 

Another process that requires machinery on cotton irrigated farms includes the 

harvesting operation which consume 20% of the direct energy input (Ballie & Chen 

2008). Modern tractors are highly sophisticated with state of the art technology to 

provide driver feedback and improve energy efficiency. These technologies incorporate 

piezoelectric injectors, common rail, engine power management and stop start 

technology just to name a few (Biggs & Giles 2013). In stark contrast to the 

technological advancement of tractor efficiency in agriculture, pumping systems are still 

primitive in design. Current cotton farm pumping systems do not provide the farmer 

with any computerised feedback to indicate how the pump is performing, although some 

engines have the computerised capability but the resource is not utilised to its full 

capacity. In addition the pumping system is required to perform over a range of 

operating conditions. The operations required by various pump stations include filling 

storage dams, transfer and distribution of water from various locations on farm or 

recycling of irrigation runoff. The operation of the pump needs to adjust with changes in 

river or channel heights which influences the pumping head and consequentially alters 

the water flow rate through the pump.  

The development of a computerised pump performance monitor will provide user 

feedback so that farmers may be aware of performance on the run and therefore able to 

change engine and pump settings to minimise fuel use and optimises pumping 

operations. This will also lay the platform for automated and/or adaptive control of the 
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pump unit to maximise fuel efficiency in response to changing duty point; something 

which is now common place on late model release tractors. 

Conducting a pump test will verify how the pump is operating at a single point in time. 

The ability to record an entire pumping event will highlight trends and provide 

information on how to improve the efficiency of the irrigation process. A Pump 

Efficiency Monitor (PEM) has been developed to conduct in-depth level three energy 

audits on cotton irrigator‟s river harvest and flood/lift pumps. This project developed a 

prototype unit and analysed the results of the first stage in the creation of an automated 

pump efficiency control and monitoring device, as a commercial product, that can be 

retrofitted to a diesel engine driven pump.  
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Chapter Two 

Literature Review 

2.1 Pump Efficiency Vision 

A study conduct by Ballie and Chen (2008) identified a heavy reliance on published 

data in relation to on farm energy efficiency. The report determined that further case 

studies and on-farm energy audits needed to be performed to establish a benchmark for 

comparison of future energy use. This comparison is not only relevant for cotton farms 

but also useful for other industries. Energy audits are a tool used to scrutinise the energy 

and environment management process. An audit will uncover how energy efficient a 

process or selected energy consuming items may be and highlight possible 

improvements or cost savings. 

Grundfos (2008) have developed the CR monitor which performs an energy audit 

and/or monitors pump performance for electrically driven pumps. The CR Monitor 

records inlet and outlet pressure, water flow rate, liquid temperature, ambient 

temperature and electrical performance (including current, voltage and efficiency). This 

lays the foundation for the creation of an automated pumping system, with the ability to 

record and monitor pump parameters. The Grundfos CR monitor is an excellent system 

but it is only available for electrical motors. Research indicates that the cotton industry 

currently lacks appropriate equipment or technology that is able to record and monitor 

the pump and diesel engine parameters which allow for the calculation of either pump, 

diesel engine or combined efficiency levels.  
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The proposal of Mr Ballie and Dr Chen through the seven case studies performed in the 

article „Reducing Energy Input Costs and Associated Greenhouse Gas Emissions in 

Cotton‟ has received funding from the Cotton Research and Development Corporation 

(CRDC) to construct a Pump Efficiency Monitor (PEM) suitable for use in cotton 

irrigation pumping systems. The proposal to CRDC for the pump efficiency monitor 

lays the ground work and sets the objectives for this project. 

2.2 Principle Function of Pump Station Machinery 

2.2.1 Pump Operations 

The centrifugal pump was first invented in 1689 by Denis Papin a French physicist, 

mathematician and inventor (McConnell 2004). The design concept is relatively simple; 

centrifugal forces induced from the rotating impeller accelerates the fluid from the eye 

of the impeller towards the outer edge (Mott 2006). Figure 1 provides a simplified 

schematic of a centrifugal pump. The high speed rotation of the impeller imparts 

velocity energy on the fluid. Some of this velocity energy is transformed into pressure 

inside the casing by one of two means, either a volute or stationary diffuser vanes, both 

of which surround the impeller (Grage 1998). The first stage of pressure increase is 

formed by the resistance from the pump casing on the fluid; then a reduction in the 

velocity of the fluid converts the velocity energy into pressure. The resistance to flow in 

the system (pressure) is then able to be measured on a pressure gauge on the pump 

discharge (Grage 1998). To allow for a continuous process (fluid flow), the acceleration 

of the fluid creates a partial vacuum at the eye of the impeller which then draws more 

fluid into the pump and allows for a continuous pumping system (Grage 1998). 
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     Figure 1: Centrifugal pump components (Pump Fundamentals 2010) . 

The two main parts of a centrifugal pump consist of the impeller on a shaft, and the 

casing surrounding the impeller as identified in Figure 1. Depending on the design of a 

centrifugal pump they can be divided into three separate categories; radial, axial and 

mixed flow as illustrated in Figure 2.  

Radial flow pumps discharge at 90
o
 to the shaft axis. They predominately produce low 

flow rates at high total dynamic heads. They come in single or multi stage impeller 

configurations. Multi stage impellers produce higher head pressures. While at the other 

end of the spectrum axial flow pumps discharge parallel to the shaft axis; there is no 

change in the particles radial position. The advantage of an axial flow pump over a 

radial flow pump is the ability to generate high water flow rates with a low total 

dynamic head. Axial flow pumps are generally the smallest of the three types. A mixed 

flow pump is a combination of both radial and axial flow pumps (Potter et al. 2011).  

 

Figure 2: Three categories of centrifugal pumps (Skovgaard & Nielsen 2004). 
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 Sites that have varying installation environments require centrifugal pumps to perform 

across a wide range of flow rates and head pressures. Many types of pumps exist to 

cater for an assortment of applications. Suitable pump selection involves identifying 

theduty point (flow rate and head) to ascertain the correct pump type. Figure 3 overlays 

the three types of centrifugal pumps to help assist in narrowing the field when selecting 

a suitable pump for known flow rates and head pressures. Delving further into the 

specific characteristics of pumps, manufacturers produce pump performance curves to 

indicate pump operating range for certain parameters. These parameters create a 

performance curve for head pressure, efficiency, net positive suction head (NPSH) and 

power, which are displayed as a function of flow rate. In general pump manufacture‟s 

create pump performance curves according to ISO 9960 which specifies the tolerances 

of the performance curves: 

 Flow Rate (Q) +/- 9 % 

 Head Pressure (H) +/- 7 % 

 Power (P) + 9, -0 % 

 Efficiency (η) +0, -7 % 

 

Figure 3: Flow and head compared for the centrifugal pump types (Skovgaard & Nielsen 2004). 
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Variable speed pumps operate across a range of pump speeds this allows for a greater 

range of water flow rate and head combinations. The pump performance curve 

illustrates the correlation between flow rate (Q) and pressure differential or head (H). 

Flow rate is normally measured in m
3
/h or L/s while head is measured in metres. The 

benefit in measuring pressure in metres is that it negates the need to consider the 

specific gravity of the fluid (Mott 2006). 

The efficiency of a pump is determined from the relationship between the power 

supplied to the pump and the effective power in the water delivered by the pump (Mott 

2006). The efficiency is dependent upon the duty point of the pump, it is therfore 

important to select a pump that matches the flow rate and head requirements to ensure 

the pump is operating at peak efficiency. In some cases pumps may have multiple duty 

points for various tasks, in these situation, it might be necessary to compromise peak 

efficiency to achieve an overall efficiency.  Fundamentally, the more fluid a pump is 

required to move, the higher the power requirements. 

2.2.1.1 Pump Cavitation 

To avoid cavitation within a pump it is imperative to maintain the pressure above the 

net positive suction head curve (NPSH). This is the minimum absolute pressure that can 

occur on the suction side. NPSH is dependent on  (Pump School 2007):  

 The absolute pressure on the surface of the water in the channel, 

 The vertical distance from the surface of the water to the pump centreline,  

 Friction losses in the suction pipe, 

 The velocity head in the suction pipe and  

 The absolute vapour pressure of the water at the pumping temperature.  
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As the velocity of the water increases, the head for friction and velocity increase thus 

reducing the NPSH allowing cavitation to occur. Should cavitation take place, flow rate 

and head will dramatically reduce, decreasing the life of the pump by causing varying 

degrees of damage.  

To define pump cavitation it is first important to understand the fluid property, or 

vapour pressure. The pressure at which small vapour bubbles form within the fluid is 

known as it‟s vapour pressure (Cengel & Boles 2007). This is also known as the fluids 

boiling point. The following is an example of how this occurs naturally. At sea level 

where the atmospheric pressure is 101.3 kPa the temperature of the water at boiling is 

100 
o
C. In comparision to the summit of Mt Everest at 8848 metres above sea level 

(Gamble 2011) where the atmospheric pressure is 32.7 kPa and the water boiling 

temperature is considerably lower at 71 
o
C. Table 2 indicates vapour pressure for the 

corresponding temperature and density.  

Table 2: Vapour pressure of water with corresponding temperature and density (Cengel & Boles 2007). 

Temperature 

(
o
C) 

Density  

(kg/m
3
) 

Vapour 

Pressure (m) 

0 1000 0.062 

10 1000 0.125 

20 998.0 0.238 

30 996.0 0.433 

40 992.0 0.753 

50 988.1 1.26 

60 983.3 2.03 

70 977.5 3.18 

80 971.8 4.83 

90 965.3 7.15 

100 958.8 10.34 

 

How the vapour pressure relates to cavitation in a pump is important. Once the net 

positive suction head falls below the vapour pressure (at given temperature of the fluid) 

vapour bubbles will begin to form. Consider a pump that is required to draw water and 



13 

 

exceeds the pumps NPSH by passing through the fluids vapour pressure line as 

indicated at point A in Figure 4 thus creating vapour bubbles in the fluid. Water enters 

through the inlet at the centre of a rotating impeller and accelerates the fluid toward the 

outer edge of the impeller. At point B in Figure 4 the rapid increase in water pressure 

will cause the vapour bubbles in the fluid to collapse as the pressure increases past the 

vapour pressure line. The violent collapse of vapour bubbles causes the release of large 

amounts of energy which can cause severe damage to the pump‟s impeller and 

surrounding components such as seals and bearings (Pritchard & Leylegian 2011). 

Signs of cavitation in a pump include (Mott 2006):  

 A loud hammering noise similar to a ball peen hammer hitting sheet metal, 

 Vibrations which are transmitted down the transmission line to the engine and 

 A reduction in the discharge water flow rate.  

Therefore, it is important to reduce the cavitation within a pump to ensure the 

improvement in the pumps life expectance and efficiency in pumping the required 

amount of water. 

 

Figure 4: Development of cavitation through a centrifugal pump. 
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A situation arises in which the noise generated from the diesel engine running in close 

proximity to the pump makes it difficult to detect cavitation. Research has been 

conducted and a product manufactured that has the ability to detect cavitation (Klubnik 

2007). The violent collapse of the vapour bubbles generates a particular vibration 

pattern or high frequency energy. Through the analysis of this energy it is possible to 

identify whether the frequency is increasing or decreasing and thus recognise the state 

of cavitation (Klubnik 2007). Automated monitoring devices already exist which are 

capable of collecting and analysing vibration data and informing the operator on how to 

alter the system to reduce cavitation (Reeves 2007). The four most common reasons for 

pump failure include: insufficient lubrication on bearings, fatigue due to overloading 

unbalanced or misaligned pumps, improper installation of pump components and finally 

contamination through seals (Meggitt 2008). Meggitt (2008) claims vibration detection 

equipment will detect all of the listed common pump failures.  

2.3 Critical Factors in System Efficiency 

2.3.1 Pump Efficiency Degradation 

Due to the large number of pump types for various applications this section will focus 

on the main problems associated with large irrigation pumps used on cotton farms. 

Large pump casings are generally made from cast iron which has a rough cast finish. 

Manufacture‟s will apply a coat of paint to reduce corrosion while the pump is in 

storage before sale. Once the pump is in service and high volumes of water are passing 

over the casing erosion corrosion will start to occur and rapidly remove the coat of 

paint. Erosion corrosion is caused by the movement of a fluid over a metal surface, 

removing parts of the metal surface (Askeland & Phule 2006). The carbon dissolves 
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from the solution in the cast iron and leaves a porous surface, this results in 

tuberculation on the pump volute surface and reduces efficiency by 25% (Welke 2012).  

Tuberculation is the formation of localized corrosion products spread over the surface of 

the cast iron which forms knob-like mounds (Rothwell 1979). Figure 5 depicts 

tuberculation in pump casings. The corrosion mounds increase the roughness inside the 

pipe which increases the resistance to water flow (Rothwell 1979). Aftermarket 

products can be applied to construct an extremely slippery surface within the pump 

casing which will improve pump efficiency and reduce energy inputs (Belzona 2013).  

 

              Figure 5: Pump internal with severe tuberculation (Verosky et al. 2008). 

The impeller of a centrifugal pump is designed to move the water from the centre or eye 

to the outer edge. This is achieved by the centrifugal forces created by the rotating 

impeller. The energy supplied to the impeller from the diesel engine is transferred to the 

water through the impeller volute surface. The very nature of this energy transfer causes 

high amounts of friction on the impeller volute surface and encourages erosion 

corrosion. Applying a surface coating will reduce friction and improve pump efficiency. 

In 2008 a Lowara pump was independently tested with a coating of „Super Metal Glide‟ 

and the results from the test indicate a 7% reduction in power consumption when the 

pump was run at its peak efficiency point (Maillard 2008).   
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The seal between the pump impeller and casing must be of good quality to stop any 

water recirculation. Welke (2012) highlighted that the gap between the impeller and seal 

is typically 0.4mm, generally on low quality pumps this seal is machined straight into 

the cast iron casing. The cast iron casing erodes very quickly which in turn will increase 

the size of the gap and reduce pump efficiency. In which case it not only increases the 

amount of energy required but also significantly reduces the water flow rate through the 

pump. To combat the problem a replaceable seal ring constructed from a material with a 

high resistance to abrasion can be installed. Materials suitable for this application are 

stainless steel rings and ceramic coatings (Welke 2012). 

2.3.2 Power Efficiency Transfer 

The output shaft on the diesel engine drives the pump in one of three common ways, 

belts chains, gears and direct drive. Belts and gear driven systems have associated 

energy transmission losses, while an engine with a direct drive system incurs no losses. 

The disadvantage of a direct drive system is that there is no means of reducing the 

output speed of the engine. The speed of the engine must match the operating speed of 

the pump for correct operation.  

A gear mechanism transfers the rotary motion from one shaft to another by the interface 

of toothed members; and by altering the diameter of the gears this will alter the ratio at 

which the output shaft operates providing a means to increase or decrease shaft speed.  

From the various means of transmitting power such as gears belts and chains, gears are 

generally considered the most hard-wearing and robust (Juvinall & Marshek 2006). The 

efficiency of a gear driven system is dependent upon the surface roughness between the 

gears and the type of lubrication system utilised together with the arrangement of the 

gear teeth whether it‟s a spur, bevel or helical gear (Kahraman et al. 2008). Efficiency 
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losses occur from the sliding frictional element between the opposing gears mesh and 

the hydrodynamic rolling element. Hydrodynamic rolling energy losses are compression 

of the lubricating oil between the teeth (Anderson & Loewenthal 1980). The efficiency 

of power transmission in a gear system is as high as 98% (Juvinall & Marshek 2006). 

Belts and chains are flexible components. A belt system allows for greater distance 

between the drive shaft and driven shaft allowing greater flexibility in design and is 

relatively quiet during operation. The flexibility within a belt reduces the transmission 

of vibration and shock between the components. Some common types of belts are flat 

belts, V-belts and toothed belts. The energy losses in belts tend to be higher than gears. 

The efficiency of a V-belt configuration when first installed is about 97%. After the run-

in period the belt stretches and loses tension which causes slippage within the sheaves 

ultimately reducing efficiency to approximately 94% (Francis 2000). Energy loss occurs 

from the friction caused by the slippage of the belt and the sheave generating heat 

within the belt. This not only reduces efficiency but also shortens the life of the belt. To 

maintain maximum efficiency in a belt, system alignment and tension should be 

continuously checked and adjusted by the grower to ensure that the belt is operating at 

or near the rated load capacity. By the grower scarficing a little time to continually re-

tension belts that are in good condition, they can ensure the pump‟s efficency can 

increase by about 3-4% thus saving the grower money in the long run (Francis 2000).  

2.4 Energy Audits 

The purpose of conducting an energy audit is to provide the energy user with 

information to establish consumption rates from the various energy inputs and 

recommendations to improve energy efficiency (Australian Standards 2000). The 

energy audit will provide a benchmark that can be used to compare the site to other 
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energy users and display whether energy consumption is high, at a reasonable level or 

running efficient. This will also establish if further investigations need to be conducted. 

Essentially there are three levels associated with an energy audit each subsequent level 

requires further investigation into the energy consumed on site.  

2.4.1 Level One Energy Audit 

A level 1 energy audit, also known as an „Overview‟, accounts for all the energy 

consumed on site. This will create an initial benchmark for comparison in later years to 

identify any significant changes or improvements from the initial level. The audit 

generally does not require a site visit and can be completed as a desktop study. The 

auditor will require the quantity of the several types of energy (electricity, diesel, petrol, 

gas, coal etc.) consumed on site for the previous 24-months. From the supplied energy 

data, consumption can be broken down into monthly or seasonal variations. Rough 

savings and costs can be determined from the identification of any potential reduction in 

energy consumption. The accuracy of the figures from a level 1 energy audit should be 

within ±40% (Australian Standards 2000). 

2.4.2 Level Two Energy Audit  

A level 2 energy audit should be carried out every 3-5 years. The audit begins with the 

same process as a level 1 audit with the addition of a site visit. During the site visit a 

record of all power ratings for each electrical item and fuel consumption for machinery 

must be compiled. Through discussion with the site manager or the appropriate 

personnel an accurate assumption for equipment annual run times are collected. A 

combination of rated input energy and annual run times will provide an estimate of the 

annual total energy consumed for each item for an annual year. According to the 
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Australian Standard 3598:2000 the accuracy of the gathered data will generally be 

within ±20%. The collation of data will provide greater detail of analysis and therefore 

further recommendations for potential energy and cost savings.  

2.4.3 Level Three Energy Audit 

Level 3 energy audits should only be performed after a level 1 and/or 2 audits have been 

conducted and individual high energy consuming items have been identified. A level 3 

energy audit will provide further detail into energy consumption for individual items 

over time. Not all sites will require a level 3 audit. High energy consuming areas 

identified in either level 1 or 2 audits will benefit from a level 3 audit before any 

investment into equipment or process upgrades are considered to improve energy 

efficiency. The installation of energy meters and logging equipment onto individual 

items or sections will enhance the quality of the data gathered. This will provide further 

information into possible energy savings. In addition a cost benefit analysis of any 

potential infrastructure upgrades will determine how much energy will be saved plus the 

payback period for the infrastructure. The accuracy for the data gathered from a level 3 

energy audit should be within +10%for costs and -10% for benefits (Australian 

Standards 2000). 

2.5 Efficiency Improvements from Pump Station Layout 

The turn of the century witnessed the redesign of cotton irrigated pump stations. Before 

the redesign „Irrigators frequently complained that they could not keep the water up to 

the cotton fields‟ (Reynolds et al. 2008). The original installation design from the mid 

1980‟s incorporated the Macquarie 26HBC-40 mixed flow pump driven by a diesel 

engine. However this was considered less than ideal, once the irrigators realised the 
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pumps were not deliveing their rated capacity. The cause was identified as the pump 

installation being too high above the source and discharge pan, resulting in the water 

being siphoned from the pump. Figure 6 illustrates the discharge outlet below the mid-

point of pump; as a result there was nothing for the pump to push against due to the 

negative discharge pressure. This caused severe cavitation within the pump, which also 

resulted in a 40% reduction in flow rate from the required 100ML/day, for cotton 

requirements, to only 60ML/day (Reynolds et al. 2008). The pump was exceeding its 

rated suction head and with no discharge pressure irrigators found that increasing the 

pump speed only exacerbated the problem of insufficient flow rate. A full 

redevelopment of the pump station was necessary for cotton irrigators to supply the vital 

water needed in the cotton fields. 

 

Figure 6: Original layout for diesel engine pump station typically used up to late 90‟s. 

A case study site at “Topbox” was recognised and redeveloped at a cost of $49,650. 

This included $4,600 to incorporate a foot valve and shed plus $40,500 for a new John 

Deere 60814 engine and gearbox. The pump demands were 125 horse power to move 

100 ML of water a day rotating at 520 RPM. The original engine was producing 200 

horse power at 1,800 RPM exceeding requirments and resulting in glazing on the 

cylinders from a rich mixture creating unburnt fuel in the exhaust. Additionally $4,550 

was spent on labour, an excavator and concrete to reposition the pump station two 

metres below the original site and install a distribution tank that elevated the discharge 
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level to create a positive discharge pressure as represented in Figure 7 (Reynolds et al. 

2008). This gave the pump a lower suction head and a higher discharge head, water 

flow rate was increased to 90ML/day and fuel consumption was improved by over 20% 

(Reynolds et al. 2008). The original system took 12 days to water 350 hectares. The 

redevelopment reduced water time to approximately 5 days. The operating cost for the 

pump station saw a dramatic reduction from $285/Ha to $101/Ha, this is equivalent to a 

64.5% improvement in efficiency. The payback period for the redevelopment costs of 

$49,650 equates to 9 months.  

 

Figure 7: Redeveloped pump station to reduce cavitation and increase water delivery. 

2.6 Conclusions from Literature Review 

The literature review identifies efficiency issues for cotton irrigation pump stations. 

There is between 60-70% of energy consumption on cotton irrigation farms in the 

pumping operation. The efficiency issues have ranged from cavitation, inefficient power 

transfer and poor installation design. Problems such as tuberculation occur over time 

and may go unnoticed for many years, while the efficiency of the pump station steadily 

decreases. Altering the task required of a pump station may unknowingly induce 

cavitation, thus reducing efficiency. The highlighted problems expose a gap in the 

current management tools of cotton irrigation pumps and the need to create a pump 
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efficiency monitor. The pump efficiency monitor will provide another tool to support 

cotton growers to reduce energy consumption and meet greenhouse gas emission targets 

within irrigation practises.      
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Chapter Three 

Design of the Pump Efficiency Monitor 

3.1 Methodology 

A Pump Efficiency Monitor (PEM) has been developed to identify pump efficiency 

problems. The PEM consists of four types of electronic measuring sensors with data 

logging capability.  This enables the continuous measurement of several pump variables 

to assess efficiency and monitor energy use during an irrigation season. Conducting a 

pump test will verify how the pump is operating at a single point in time. The ability to 

record an entire pumping event will highlight trends and provide information on how to 

improve the efficiency of the irrigation process.  

Figure 8 and 9 identifies the layout of the pump station and the location for each of the 

sensing instruments. Fuel consumption of the diesel engine is measured via two 

Macnaught fuel flow meters with a range of 15-500L/hr . These meters are installed on 

the inflow and return fuel lines and produce a pulse output equivalent to 2.5mL of diesel 

per pulse. Two types of instruments are used to measure the energy output of the pump. 

First are two WIKA pressure transducers a -1 to 0 bar installed on the inlet and a 0 to 1 

bar installed on the outlet. This will measure the total dynamic head (TDH) across the 

pumping system. The second is a Dalian Zerogo ultra sonic flow meter used to measure 

water flow rate. This requires an onsite calibration and outputs the results in a 4-20mA 

format. 
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Figure 8: Layout for pump station. 

 

 

 

 

 

 

 

 

 

All the measurements are recorded in a Campbell Scientific data logger and processed 

to determine fuel consumption/cost per mega litre per metre head (Diesel L/ML/m).The 

pump efficiency monitor contains telemetry equipment to allow access to the data where 

a 3G network is available. A battery was installed to ensure an adequate power supply 

to the PEM and access to the data. Battery charging is conducted via the 24V system on 

the diesel engine plus a 10W solar panel. Figure 10 illustrates the location of the 

internal components in the pump efficiency monitor. The following sections within 

Chapter 3 provide a detailed explanation on how individual components function and 

provide accurate data for analysis. 
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Figure 9: Pump station used for trial of pump efficiency monitor. 

Table 3: Identification of components in PEM. 

 

 

 

 

 

 

Components in PEM 

A Data logger F Modem control relay 

B Modem G Sensor control relay 

C Ultra sonic flow meter H Solar charge controller 

D Fuse box I 12V Battery 

E DC-DC converter   
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    Figure 10: Layout of components in PEM 

3.2  Fuel Flow Meters 

According to Equation 2 in Section 4.1 the fuel consumption of the diesel engine will be 

in the vicinity of 50 L/h when producing 200 kW. This has little significance to the 

selection of the fuel flow meters as a diesel engine has two fuel lines, an inlet and 

return. The purpose of the return line is to send the excess diesel, not used for 

combustion, back to the fuel tank to allow for cooling. A diesel fuel pump supplies a 

greater capacity than required by the engine for combustion. The excess diesel 
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lubricates various components within the pump and injectors; the diesel also supplies a 

cooling medium for the injectors. With this knowledge, it is necessary to determine the 

diesel pump capacity and select the appropriate size fuel flow meter. Perusal of the 

literature provided by the manufacture (Volvo) of the engine, revealed the pump 

capacity was not specified. However through discussions with the maintenance 

department for the engines on site it was ascertained that the pump capacity is 

approximately 3-4 times the maximum theoretical fuel consumption. Therefore the 

requirement for a fuel flow meter is to manage a maximum capacity of 200 L/h. The 

installation of the fuel flow metres as displayed in Figure 11. 

 

           Figure 11: Installation of fuel flow metres. 

Macnaughton offers a fuel flow meter with a capacity of 15-500 L/h. The meter is of 

pulse type, one pulse is equivalent to 2.5 ml of diesel. There are two methods to 

measure the pulse, the first is a mechanical Reed Switch and the second a Hall Effect 

Sensor. Both systems have advantages and disadvantages. The following two sections 

will describe how each system works and why the Hall Effect Sensor was chosen for the 

first PEM, to then be changed to the Reed Switch for the second PEM. 
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Each fuel flow cable is constructed from a 15m length, 5.7mm diameter, 6 core shielded 

cable. The shield is to provide protection from outside interference. Table 4 identifies 

the colour code and function of each wire, with Figure 12 indicating the connector 

pattern and Figure 13 illustrating the wiring diagram within the fuel flow meter.  

Table 4: Fuel flow sensor wire functions (Gavin 2009). 

 

                                                   

 

Figure 12: Connector for fuel flow meters. 

 

        Figure 13: Fuel flow sensor wiring diagram (Gavin 2009). 
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3.2.1 Hall Effect Sensor 

The principle of the Hall Effect Sensor was discovered by an American physicist Edwin 

Herbert Hall in 1879. Edwin Hall discovered that when a magnetic field is applied at 

right angles to a current carrying conductor a small voltage is produced (Ramsden 

2006). With the use of appropriate instrumentation it is possible to measure the created 

voltage. In effect this is the creation of a simple transducer with applications ranging 

from signal processing, proximity sensing, current sensing plus speed and timing 

sensors. The benefits of a Hall Effect Sensor are its insusceptibility to dust, dirt, mud 

and water. There are no additional mechanically moving parts which would provide an 

infinite life, in theory a Hall Effect Sensor should never fail.  In current sensing 

applications such as the McNaughton fuel flow meter a shunt resistor must be applied to 

the primary circuit. The disadvantage of the Hall Effect is the voltage range produced is 

only in the order of millivolts which is inadequate to directly drive actuators and 

requires the installation of a transistor based circuit to amplify the signal. While this has 

no direct implications for the pump efficiency monitor, objects that produce a magnetic 

flux in the area surrounding the fuel flow meter will.  The sensor is required to detect a 

magnetic flux should the surrounding environment contain any devices or materials that 

produce a magnetic flux this may have a detrimental effect on the fuel flow meter by 

either enhancing or diminishing the desired results.  

For the construction of the first pump efficiency monitor power consumption was not an 

issue. Therefore the reliability of the Hall Effect sensor was ideal.  The sensor draws a 

constant 7.5mA which is not a large amount of current and did not pose a problem when 

the diesel engine was in operation. However due to the installation of solar power to the 

pump efficiency monitor to allow regular accessibility to the data logger it was deemed 
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suitable to change from using the Hall Effect sensor within the fuel flow meter to the 

Reed Switch. Section 3.5 will provide further information of the power supply systems. 

3.2.2 Reed Switch 

A Reed Switch is best described as an electromechanical component containing two 

Ferro magnets known as Reeds that are hermetically sealed in a glass casing (Gurevich 

2006). In 1922 Professor Kovalenkov from Leningrad Electrotechnical University 

invented the Reed Switch and research continued in 1936 by Bell Telephone 

Laboratories (Gurevich 2006). A Reed Switch is activated by a magnet that moves 

towards and away from the Reeds. The switch will close as the magnet approaches and 

in the case of the fuel flow meter generate an electrical pulse to be counted. The 

advantage of the Reed Switch is that it does not consume any power while on standby 

which allows the fuel flow meters to be continuously active. The drawback of a 

mechanical switch is that the component is susceptible to failure. From testing 

conducted by Digi-Key Corporation in the United States of America the life expectance 

of a Reed Switch can be in the order of 800 million operations when operated at 10V 

and 4.0mA (Meder 2013). One pulse equates to 2.5 ml of diesel, from this the expected 

quantity of fuel to be measured is approximately 2 ML of diesel. At an average flow 

rate of 125 L/h the life expectance from the sensors is approximately 16,000 hours. By 

this estimate a pump station operating for 1000 hours a season, will require replacement 

of the fuel flow meters every sixteen years. 

3.3 Pressure Transducers 

There are three types of pressures that can be measured in a pipe flow system these 

include static, stagnation and dynamic pressure (Pritchard & Leylegian 2011). In 



31 

 

regards to the pressure sensors on the PEM they are required to take measurements of 

the static pressure at both the pump inlet and outlet. The installation of the pressure 

sensors will measure the total dynamic head (TDH) added to the irrigation water by the 

pump. Therefore it is important to install the sensors as close to the inlet and outlet of 

the pump as reasonably possible. The sensors must also be perpendicular to the flow so 

as not to induce any partial dynamic pressure into the static pressure reading. It was 

requested that the grower install two one inch ball values at pre-determined locations on 

the inlet and outlet of the pump, for the installation of the pressure sensors. Ball values 

where used to allow the removal of the pressure sensors without having to shut down 

the pump or engine. It was not possible to install the sensors directly before the inlet or 

after the outlet due to the pump casings which are made from cast iron and drilling into 

the casing would more than likely cause the casing to crack. However it was possible to 

install a suction pressure sensor approximately one metre before entry into the pump.  

Unfortunately the flange between the pump and pipe on the outlet could create too much 

disturbance to the flow and may produce poor quality data. This section of pipe was 

immediately followed by one 90
o
 bend with a 30

o
 inclination to the horizontal and a 

further 30
o
 bend 800 millimetres downstream reverting back to a horizontal pipe. 

Appendix C provides the layout of both suction and discharge pipe lines in the pump 

station design. The most suitable location for the discharge pressure sensor was the mid-

point on a straight section of pipe between the 30
o
 bend and the exit to the distribution 

tank. While it was not ideal it was the most suitable position. Due to the unaccounted 

head loss, given that the discharge pressure sensor was not immediately after the pump 

outlet and the suction sensor was not immediately before the pump inlet, a full analysis 

is provided in Section 4.2, while Figure 14 indicates the location of both suction and 

discharge pressure sensors. 
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Figure 14: Location of suction and discharge pressure sensors. 

The pressure transducer selected for this role is a WIKA S-11 with an external 

diaphragm. Static pressure within the pipe is converted into an electrical signal through 

the deflection of the external diaphragm which varies the electrical signal between 4-

20 mA and proportional to the fluid pressure. Cables connecting the sensor to the 

cabinet are 15m in length and consist of 4 core shielded cable 4.8mm in diameter with 

the pin placement represented in Figure 15. 

 

Figure 15: Connector for pressure transducers. 
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3.4 Water Flow Meter 

The ultrasonic flow meter is designed to measure the velocity of a fluid within a closed 

pipe. The principle involved is known as the transit-time flow measurement and utilises 

a pair of transducers mounted upstream and downstream on the pipe as illustrated in 

Figure 16. Each transducer operates as a transmitter and receiver. The internal circuitry 

of the unit operates by consecutively transmitting and receiving a coded burst of sound 

energy between the two transducers. The transit-times from both the upstream and 

downstream transducers are measured. The difference between the two transient times 

will develop a direct relationship for the velocity of the fluid within the pipe as 

displayed in Equation 1.  

   
  

     
 

  

         
    (1) 

M  = The number of times the sound traverses the flow. 

D  = Diameter of the pipe. 

Θ    The angle between sound path and direction of flow. 

Tup = Time taken for sound to travel from upstream to downstream transducer 

Tdown = Time taken for sound to travel from downstream to upstream transducer. 

ΔT   Difference in Tup and Tdown (Tup - Tdown). 

 

 

        Figure 16: Location of transducers for the ultra-sonic flow metre. 
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The flow rate in the pipe is calculated from the velocity along with pipe material and 

construction parameters entered by the user. These include: 

 Outer and/or inner pipe diameter. 

 Wall thickness. 

 Material of the pipe. 

 Material of liner and thickness if required. 

 The type of fluid in the pipe. 

 Transducer type (in the case of the PEM a Standard M1 transducer was used). 

 Transducer mounting method (Z method). 

From the data entered above the unit will compute the spacing required between the two 

transducers as indicated in Figure 16 and 17.  

 

Figure 17: Display for ultrasonic flow meter. 

Space inside the PEM cabinet is at a premium and for this reason the ultrasonic flow 

meter was stripped from its IP68 cabinet as illustrated in Figure 17. The stripped unit 

was evaluated to determine correct functioning with the display disconnected, as this 

provided additional space to install further equipment. Upon completion of stage one 

construction the additional space was not required and for ease of installation and data 

entry in the field the flow meter interface was reinstalled.  
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The output signal from the flow meter consists of an analogue 4-20mA reading. 4mA 

corresponds to zero flow rate and 20mA maximum flow rate. This highlights the 

disadvantage of operating such a system to measure flow rates as it is necessary to 

obtain a value for the maximum flow rate possible within the pumping system. To try 

and reduce any induced error, the maximum flow corresponding to the edge of the 

pump curve is utilised, this is displayed as 1,800 L/s.  Connecting the transducers to the 

cabinet is 20m of 3 core shielded cable with an IP66 connector as illustrated in Figure 

18. The transducers units are rated to IP68 and are water submersible to 3m. 

 

 

Figure 18: Connector wiring for both ultrasonic transducer units. 

3.5 Power Supply System 

The design of power system in the original pump efficiency monitor is not overly 

complex. The diesel engines alternator supplied the electrical energy requirements for 

the PEM. The engines alternator produces 80A which is sufficient for the operation of 

the diesel engine accessories plus the 500mA to operate the PEM and then charge the 

PEM‟s internal battery. Power is supplied from the diesel engine electrical system when 

the battery clamps are connected; this only occurs during a pumping event which results 

in limited access to the data logger for download requirements. In designing the second 

pump efficiency monitor it was decided that access to the data logger was required 

Blue (+ve) 
White (-ve) 

Shield 
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outside when the diesel engine was in operation. The final design allowed the user to 

log on to the data logger five minutes before and five minutes after the hour, a total of 

ten minutes. For further details on the communication network see Section 3.6  

The power source for the second PEM consists of a 12V 7Ahr battery. The battery is 

charged from a 10W solar panel and the 24V alternator on the diesel engine. To protect 

the electrical components inside the cabinet from a reverse polarity connection on the 

battery of the diesel engine a 3A fuse and 6A 1kV diode is wired in series. The 24V‟s 

supplied from the engine continues onto a DC-DC convertor where the voltage is 

reduced to 15V. The setting of 15V is chosen because it allows for a charging voltage of 

14V on the battery and a voltage drop within the electrical supply system of 

approximately 1V, as measured during construction. The 15V passes through another 

diode which will stop the battery discharging to the diesel engine electrical system. 

Solar power also enters the cabinet at this point via a diode to also control battery 

discharge. Both 24V diesel engine and solar power are wired together into the 12V 5A 

solar charge controller. By wiring them together the battery can be charged by either 

24V or solar power. The source with the highest voltage will enter the solar charge 

controller. The solar charge controller has two outlets the first is directly to the battery 

with a 3A protection fuse, the second is to the fuse box which will distribute power to 

the various components. 

 Indicated below is the voltage range and current consumption of each component in the 

pump efficiency monitor. It is important to identify the limitations of each component to 

reduce the possibility of overload. Note that the voltage range of the data logger is in 

close proximity to the voltage output of the power system. 
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Voltage range: 

 Data Logger:  9.6-16VDC 

 Modem: 6-32VDC 

 Ultrasonic Flow Meter: 8-36VDC 

 Fuel Flow Meter (Hall Effect): 4.5-24VDC 

 Pressure Transducers: 10-30VDC  

 

Current usage: 

 Data logger current drain 100 Hz Sample Rate (one fast SE meas. w/ RS-232 

communications): 27.6 mA optional keyboard display on: add 7 mA to current 

drain. Backlight on: add 100 mA to current drain. Total 0.14A  

 Modem: Idle 50mA, Maximum 150mA at 12VDC. 

 Ultra Sonic flow meter consumes less than 2W therefore current drain at 12V is 

0.17A. 

 Fuel flow Meters: Hall Effect 7.5mA, Reed Switch no current draw 

 Pressure transducers: 20mA 

As mentioned earlier the solar panel will be installed to allow access to the data logger 

via the modem when the diesel engine is not operating. The selection of the battery 

required research into how many amperes where consumed when the PEM was in 

standby mode. The 12V 7Ahr battery will run the fuel flow meters (no current draw), 

data logger (30mA) and modem (5mA) in their relative standby modes. Battery life will 

be conserved by shutting down the remaining components. A current draw of 35mA, 

from the data logger and modem, on a 7Ahr battery equates to a standby life of 

approximately 200hrs (8.3days).   

The start-up sequence for the components in shut down mode relies on the fuel flow 

meters. The power supply for the ultrasonic flow meter and pressure sensors are 

controlled by a Crydom DC60S3 solid state relay. The control input for the relay is a 5V 

output from the data logger and becomes active once the data logger registers a positive 

reading from the fuel flow meters. This indicates that the engine is running and for the 

system to switch on. Once the diesel engine is operating and fuel is flowing through the 

meters, producing pulses, a signal is sent from the data logger to a relay. This relay 
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opens and allows power to activate the remaining components. Once this sequence has 

occurred power will be supplied to the PEM from the diesel engine and continue to 

charge the battery. Relying on the 10W 12V solar panel to charge the battery, producing 

0.83A, will require 8.4 hours for a complete charge from a drained state.   

The cables used to connect the solar panel and diesel battery to the PEM is 3mm twin 

core copper cable at 10 metres in length, with a connector rated to IP68. Figure 19 

illustrates the correct wiring procedure to supply power. 

 

Figure 19: Connector wiring for power supply both 24V and solar. 

3.6 Communication Network 

The location of the PEM is 300km from NCEA‟s office and while it is possible to travel 

to site and manual download the data logger it is not an efficient method. To enhance 

the capability of the pump efficiency monitor a modem was installed for remote access. 

Reduction in power consumption on the battery was enabled by the installation of a 

Crydom DC60S3 solid state relay. The data logger is programmed to activate the relay 

and energise the modem for 10 minutes of every hour to allow remote connection and 

data download.  

Brown +ve Blue -ve 
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             Figure 20: Location of PEM relative to Telstra 3G towers (not to scale)(Google Earth). 

Table 5: Location of Telstra towers surrounding PEM. 

 

Telstra 

Tower 

 

GPS 

Coordinate 

 

Distance 

(km) 

 

Elevation 

above sea level 

(m) 

Maximum Elevation 

Between PEM and 

Tower (m) 

Boomi 
28

o
43‟29.02”S 

149
o
34‟42.88”E 

35.3 184 204 

Bungunya 
28

o
25‟24.89”S 

149
o
39‟27.86”E 

29.6 191 203 

Goondiwindi 
28

o
33‟46.69”S 

150
o
06‟19.30”E 

40.2 220 229 

Boggabilla 
28

o
36‟29.00”S 

150
o
21‟36.89”E 

45 224 225 

     

PEM 

Location 

28
o
34‟53.89”S 

149
o
54‟02.53”E 

NA 196 NA 

 

To establish a good communication link between NCEA head office and the PEM 

station it was necessary to identify which tower is suitable to setup the communication 

network for the PEM. Research into the location of each surrounding tower was 

conducted to determine whether an omni-directional antenna would be suitable for 

communications or if further expense was required to install a uni-directional antenna. 
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Figure 20 shows a geographical representation, from Google Earth, between the Telstra 

towers and the pump site. Table 5 displays the GPS coordinate of the Telstra towers 

distance between the tower and the PEM station, elevation of the Telstra tower above 

sea level and the highest point that may interfere with a direct line of sight between the 

tower and the PEM station.  Analysing the gathered data from Table 5 a 9dB omni-

directional antenna was selected to establish the communication link. For verification 

the Telstra coverage map in Figure 21 locates the position of the PEM and indicates that 

a typical download speed of 550 kbps to 3 Mbps are expected with the installation of an 

external antenna.  

 

Figure 21: Identification of Telstra download speed at PEM location. 

3.7 Data Logger 

A Campbell Scientific CR850 data logger was selected to record and process the data 

generated from the instrumentation. The unit controls what instruments are operating 
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and when it also performs calculations to elevate what level of efficiency the pump 

station is operating. This particular unit allows for six 4-20mA inputs and four pulse 

counters. In addition there are four channels that supply a 5V output two of which are 

used to control the solid state relays. A requirement of the project was to allow for on-

site grower interaction with the PEM to identify how the pump is operating. The CR850 

incorporates a display that outputs the current reading of fuel consumption, total 

dynamic head and water flow rate. This function allows the grower to make decisions 

on how best to operate the pump station to achieve maximum efficiency. 
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Chapter Four  

Verification of Results from Pump Efficiency Monitor 

4.1 Fuel Consumption Measurements 

The diesel engine installed at the pump station is a 12 Litre 6 cylinder turbocharged 

Volvo Penta TWD 1211V. At a maximum speed of 1,800 RPM the engine would 

produce 1,644 Nm of torque. The manufacture claims the specific fuel consumption at 

100% power is 220 g/kWh (Volvo 1997). The engine is connected to the pump via a 

belt driven system, with a ratio of 2.8:1 and reduces the drive speed to the required level 

for the pump. The pump is a Macquarie Centrifugal 26HBC-40 lift pump that encases a 

26 inch impeller. The pump is capable of a maximum volume flow rate at 1,800 L/s. 

According to the manufactures pump curve the maximum speed of the pump is 

650 RPM. The power required to drive the pump at peak efficiency is 200 kW. From 

the supplied data it is possible to determine an estimate of the fuel consumption for the 

diesel engine operating at maximum power, as displayed in Equation 2. Furthermore 

this estimate will allow for comparison of the fuel consumption data gathered during the 

trail test. The specific gravity of Caltex diesel in the Australian market place is 0.85 at 

15
o
C (Caltex 2007). 

                 
                 ⁄

        ⁄
          (2) 
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4.1.1 Fuel Flow Metre Laboratory Tests 

The PEM integrates five instruments that produce various readings to evaluate the 

efficiency of a pump station. Verification that the recorded readings of the individual 

sensors where accurate took place before the PEM was installed onto a pump station. It 

was not possible to test the PEM as one unit therefore the verification process was 

broken down into the three stages. 

The first stage of the verification process took place in the Engine Lab (P7) located at 

the University of Southern Queensland. The engine within the lab used for the test 

procedure is a 4L41C Hatz diesel engine. According to the manufactures specifications, 

taking into account the de-rating parameters listed in Table 6, the engine consumes 

280.3g/kWh when set at 2200RPM (Strabe 2008). 

 

Table 6: De-rating parameters for Hatz diesel engine (Strabe 2008). 

 

 

 

 

 

The assessment of the fuel flow meters consisted of setting the Hatz engine to 

2,200 RPM increasing the load on the engine to the maximum permissible of 54 kW 

and allowing the system to run for ten minutes. To further increase the reliability of the 

data gathered the volume of fuel consumed before and after the test procedure was 

measured. This was achieved by filling the fuel tank to a recorded level at the start of 

 

De-rating 

 

 

Percentage (%) 

 

Parameter 

 

Run-in Period 

 

 

5 

 

 

Altitude 

 

 

1 

For every 100m 

above 100m 

 

Temperature 

 

 

4 

For every 10
o
C 

above 25
o
C 
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the test run and then measuring how much fuel was required to fill the tank to the 

original start point. The calculation in Equation 3 determines the expected fuel 

consumption within the ten minute running period. This includes a 5% de-rating as the 

engine was still within its run-in period plus an additional 6.9% de-rated because 

Toowoomba is location 691 metres above sea level. 

                                   ⁄           (3) 

          ⁄             

          

The results from the test procedure are in Appendix D. The average hourly fuel 

consumption calculated from the results of the ten minute running period is 17.6L/hr. 

This indicates an 18% error when measured against the parameters dictated by the 

manufacture of the Hatz engine. It is important to note that the manufactures of the Hatz 

engine performed their testing under ISO 3046-1 Standards. This was not achieved or 

attempted during the test conducted in the Engine Lab at the University of Southern 

Queensland. In addition there was no testing conducted to verify the energy contained 

in the diesel used to perform this test procedure. The ISO 3046-1 Standard states that 

fuel must contain 42.5 MJ/kg to compile. The Department of Climate Change and 

Energy Efficiency (2012) indicates the energy content of diesel in Australia is only 

38.6 MJ/L  

The second part of the test relating to the fuel consumption measured from the tank 

suggests a much more accurate and reasonable assessment. A one litre beaker was filled 

exactly three times to replace the fuel consumed from the tank during the test, a total of 

three litres. From the results, calculating the fuel consumed in ten minutes using the 

average hourly fuel consumption of 17.6 L/h equates to 2.93 litres in ten minutes. From 
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this test the error associated with the method employed to measure the fuel consumed 

from a diesel engine is 2.2%.    

4.2 Total Dynamic Head 

Total dynamic head is the energy added by the pump to the water and is measured 

across the pump inlet and outlet. To remove variability of the fluid density the units of 

measure used are metres. Ideally the pressure transducers should be installed directly 

before the pump inlet and directly after the pump outlet. This approach accounts for all 

the losses within the system and elevations between water levels, this provides a true 

measure of total dynamic head. The following two subsections 4.2.1 and 4.2.2 will 

establish the accuracy of the results collected from the pump efficiency monitor in 

determining the total dynamic head. All equations, charts, tables and figures referred to 

in the following two subsections are sourced from Pritchard and Leylegian (2011).  

4.2.1 Discharge Pipe 

Unfortunately the pump station setup did not allow for the ideal installation of the 

pressure transducer on the discharge pipe. Appendix C illustrates the layout of the pump 

station and Figure 22 highlights the detailed view of the discharge pipe to the 

distribution tank. Immediately after the pump outlet into the discharge pipe is a 90 

degree bend constructed from cast steel. Due to the difficultly to insert a pressure 

transducer and location it was deemed unsuitable to measure pressure. This is consistent 

with the following 800 millimetre section of pipe at an elevation of 30
o
. The first 

suitable location for the discharge pressure sensor was identified at the mid-point of a 

straight section of pipe with an overall length of 2.4 metres.  
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Figure 22: Schematic of discharge pipe. 

In selecting the discharge pressure location it is necessary to determine the losses 

between the pump outlet and pressure sensor to account for unmeasured pipe losses. 

The result is added to the measured sensor reading to establish a discharge pressure. 

Completing an analysis of the discharge system establishes a source to determine 

accuracy from the measured readings plus accounts for the unmeasured section of pipe. 

Equation 4 will calculate the losses within segments of the discharge system.   

     
  

 
 
  

  
    (4) 

        ( )           

The minimum flow rate required by the grower to service the needs of the cotton crop is 

120ML/day this converts to 1.38m
3
/s (Q). While the flow rate does vary 120ML/day 

will be used as a base line.  

          (5) 

          

          

From the continuity equation, velocity of the water in the discharge pipe, as shown in 

Equation 6, with a cross sectional area of 0.342 m
2
 determined from Equation 5 is: 
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    ⁄      (6) 

           ⁄  

           

An equivalent length (Le/D) for a standard 90
o
 elbow Table 8.4 (Pritchard & Leylegian 

2011) is 30. 

The evaluation of the friction factor (f) is achieved with the Moody diagram (Pritchard 

& Leylegian 2011) by calculating the Reynolds number (Re), from Equation 7 and the 

Relative Roughness (e/D) of the pipe, from Equation 8. The kinematic viscosity (v) of 

water at 15
o
C is 1.14e

-6
m

2
s

-1
. 

   
  

 
     (7) 

   
         

       
 

         

Roughness (e) for commercial steel pipes is sourced from Table 8.1 (Pritchard & 

Leylegian 2011) is 0.046 millimetres: 

 

 
 
     

   
             (8) 

The frictional factor (f) evaluated with Reynolds number and Relative Roughness from 

the Moody diagram in (Pritchard & Leylegian 2011) is: 

         

Therefore from Equation 9 the head losses in the 90 degree bend is: 

             
     

      
              (9) 
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Working along the discharge section of pipe a straight length of 800 millimetres 

precedes the standard elbow. Calculation from Equation 10 determines the minor losses 

for the 800 millimetre section of pipe. Variables previously calculated that do not 

change, such as water velocity and friction factor will continue through the following 

equations. 

     
 

 
 
  

  
    (10) 

          
   

    
 

     

      
 

         
  

An equivalent length (Le/D) for a 30
o
 deflection in the pipe refer to 7 Figure 8.17(b) 

(Pritchard & Leylegian 2011). Calculations to determine head losses in 30
o
 pipe bend 

and 2.4 metre straight section of discharge pipe are from Equation 11 and 12 

respectively. 

            
     

      
    (11) 

         
  

          
   

    
 

     

      
    (12) 

         
  

The exit of the water into the distribution tank dissipates all the kinetic energy. The loss 

coefficient (K) equates to 1 in this situation Figure 8.15 (Pritchard & Leylegian 2011). 

The calculations for minor exit losses are from Equation 13. 
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     (13) 

     
     

      
 

         
  

The total head losses for the discharge section of pipe equates to the addition of all the 

minor loses and displayed in Equation 14. 

                                  (14) 

                

Therefore if the distribution tank was full at 4.5 metres plus the addition of the total 

discharge head losses of 1.386 metres the discharge pressure would equate to 5.886 

metres. 

The total head losses between the pump outlet and discharge pressure transducer that 

have not been accounted for through the measurements, are calculated in Equation 15. 

This figure needs to be incorporated into the results to allow for an accurate 

measurement of total dynamic head (THD) 

                     (      ⁄ )   (15) 

               

4.2.2 Suction Line 

The suction line is illustrated in Figure 23 and consists of a concentric taper at the 

entrance followed by a vertical straight section of pipe at a length of 4.94 metres. A 

90 degree bend re-directs the pipe into a horizontal direction with a 5.0 metre straight 
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section towards the pump inlet, before the inlet to the pump there is an eccentric taper 

reducing the pipe from 750 to 660 millimetres in diameter.  

 

Figure 23: Schematic of suction pipe. 

A complete suction side analysis will establish a reference to determine accuracy of the 

measured readings plus account for the unmeasured section of pipe. A flow rate of 

120ML/day will be maintained as the diameter of the suction pipe is larger thus by 

continuity the fluid velocity will be lower and displayed in Equation 16 and 17 

respectively.  

          (16) 

           

          

    ⁄      (17) 

           ⁄  
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The minor loss coefficient (K) for the type of pipe entrance is sourced from Table 8.2 in 

Pritchard and Leylegian (2011) and equates to 0.5. Head losses caused by the pipe 

entrance are calculated in Equation 18. 

     
  

  
     (18) 

       
     

      
 

         
  

The following section of the suction pipe consists of the vertical length at 4.94 metres. 

As the velocity and pipe diameter have changed it is necessary to re-calculate the 

friction factor (f) and then continue to determine the head loss. Reynolds number and 

relative roughness are calculated in Equation 19 and 20 respectively.  

   
  

 
     (19) 

   
         

       
 

         

Roughness (e) for commercial steel pipes is sourced from Table 8.1 (Pritchard & 

Leylegian 2011) is 0.046 millimetres: 

 

 
 
     

   
            (20) 

The frictional factor (f) evaluated with Reynolds number and Relative Roughness from 

the Moody diagram in Pritchard and Leylegian (2011) is: 
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Therefore the head loss in 4.94 metres of piping is calculated in Equation 21: 

     
 

 
 
  

  
    (21) 

          
    

    
 

     

      
 

         
  

The next section is a 90 degree bend with an equivalent length (Le/D) of 60 from Figure 

8.17(b) Pritchard and Leylegian (2011). The head losses from the 90 degree bend are 

calculated in Equation 22. 

     
  

 
 
  

  
    (22) 

             
     

      
 

          

The last section of the suction pipe line before entering the pump consists of 4.5 metres 

of pipe before an eccentric taper reducing the pipe diameter to 660 millimetres. 

Calculations from Equation 23 and 24 will determine the losses in the 4.5 metres of pipe 

and the eccentric taper respectively.  

     
 

 
 
  

  
    (23) 

          
   

    
 

     

      
 

         
  

The minor loss coefficient (K) for the eccentric taper is 0.05, sourced from Table 8.3 

Pritchard and Leylegian (2011) 
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     (24) 

        
     

      
 

         
  

The total head losses for the suction section of pipe equates to the addition of all the 

minor loses demonstrated in Equation 25. 

                                  (25) 

                

The head losses not measured by the suction pressure transducer include the eccentric 

taper and 0.5 metre of straight piping calculated in Equation 26. 

         (      ⁄ )    (26) 

                

Combining the head losses not measured by the pressure transducer on the discharge 

pipe plus the losses not measured on the suction pipe will give the total error across the 

pumping system in regards to energy losses as displayed in Equation 27. This figure 

must be added to pressure readings to provide an accurate measurement for total 

dynamic head or energy added by the pump station.  

                (27) 

               

The maximum total dynamic head achievable includes the calculated head losses, plus 

the level of water in the storage dam above the centreline of the pump and the level of 

the tail water below the centreline of the pump. It is important to note that the head 
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losses have been calculated using the minimum flow rate required by the grower as the 

flow rate increases the head losses within the pipes and bends will increase. Equation 28 

below displays a theoretical calculation for the total dynamic head when the storage 

dam is at a maximum capacity of 4.5 metres and the tail water level is at 3 metres. A 

survey was conducted to determine the level of the tail water. The results indicate that 

the level can vary from 2-5 metres depending on rain events and watering procedure, a 

level of 3 metres is relatively standard as stated by the grower. 

                          (28) 

                 

A TDH of 9.752 metres represents a mathematical engineering solution of the total 

dynamic head pressure across the pump station. The value is used as a comparison 

against the measured values from the PEM. It must be highlighted that the mathematical 

value for TDH is not an exact answer. There are uncertainties associated with the 

calculation, one such uncertainty includes the minor loss coefficients sourced from two 

text books highlighted throughout the calculations. The exit and entrance losses 

required a level of engineering judgement to calculate head losses, as there was little 

information found on the minor loss coefficient. A better approximation of the total 

dynamic head is determined using the maximum measured head pressure of 7.48 

metres, plus the additional calculated friction losses of 0.56 metres to give a total 

dynamic head of 8.04 metres. The measured pressure 7.48 metres corresponds to the 

flow rate used in the calculation to determine TDH in Equation 28. There is 21.3% 

difference between the measured and calculated values. The current setup of the PEM is 

unlikely to under estimate the head pressure, there are sections of unmeasured pipe and 

corrosion on internal surfaces that will increase head lose. The standard error associated 

with the measured total dynamic head is estimated to be 2.5 times the difference of the 
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measured and calculated pressure for the positive, +53.3%  and – 21.3% of the 

measured value for the negative. 

   4.3 Water Flow Meter 

Verifying the accuracy of the ultrasonic water flow meter is a complex and difficult task 

but necessary to gather reasonably accurate data to calculate the efficiency of pump 

stations. The Australian National Association of Testing Authorities (NATA) is one 

suitable solution although it is an expensive and time consuming process at such an 

earlier stage of the PEM‟s development. Testing the PEM through a NATA lab will be 

required after further development of the monitor and closer to the completion of an 

automated system. It was not deemed necessary at such an early stage of the design 

phase. The simplest method employed for the earlier stage of development encompassed 

the use of another water flow meter for comparison. The verification of the water flow 

meter was conducted on three water flow meters at three separate locations. The first 

comparison was conducted by two engineers in the hydraulics lab at the University of 

Southern Queensland. The second and third comparisons where conducted in the field 

with the PEM installed on a pump station. The meters used for field testing include a 

Panametric Flow Meter and a Siemens Meter. Across all three comparisons the greatest 

variation noted was 500m
3
/h on the Siemens Meter. The Siemens Meter was reading 

~5500 m
3
/h and the PEM ~5000 m

3
/h at its greatest range. It was noticed that on all 

three meters the reading was not stable and would range up to 500m
3
/h as noticed on the 

Siemens Meter, which displayed the maximum range. This indicates a possible 9% error 

in the readings on the PEM‟s ultrasonic flow meter. Further testing of the flow meter 

will be conducted at a later stage of development. 

 

 



57 

 

Chapter Five 

Result from Pump Efficiency Monitor 

5.1 Data Collection 

A suitable location to trial test the pump efficiency monitor was identified on a cotton 

farm 45km‟s west of Goondiwindi. On the 30
th

 of October 2012 a site visit was 

conducted to find a pumping station that allowed easy installation and setup of the 

pump efficiency monitor. The cotton grower presented three suitable candidates, a river 

harvest pump and two lift pumps. One of the lift pumps was selected as it comprised of 

long stretches of piping which is necessary to produce accurate readings for the water 

flow meters and pressure sensors. The suction and discharge pressure gauges where 

easily installed and accessible, although they could not be installed immediately before 

or after the pump inlet or outlet. To overcome the issue of unaccounted minor losses 

due to the location of the sensors, full calculations are provided in Section 4.2. The fuel 

flow meters would be installed in an appropriate position without having to directly cut 

into the fuel line, a joiner could be disconnected which allowed for easy fitment. 

Adequate filtration for the fuel flow meters are connected to the outlet on the fuel 

storage tank. The most important benefit of this particular lift pump over the other 

stations on site is the expected high frequency of usage throughout the 2012 – 2013 

irrigation season, with varying tasks and duty points. The grower anticipated pumping 

events to be approximately 10-14 days in duration. This allowed for large amounts of 

data to be collected in a short period of time. 
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The first reliable collection of data from the pump efficiency monitor came from a 

pumping event that started on the 27
th

 January 2013 at 12:30pm and finished on the 7
th

 

February 2013 at 5:30pm. The purpose of the pumping event was to fill an empty 

1800ML ring tank as quickly as possible after a 250mm rain event. The monitor gave 

sound results continuously throughout the pumping event. Appendix E presents the data 

gathered from the PEM. The capability of the data logger allowed measurements to be 

recorded at time intervals that suit the situation. This can range from recording 

measurements in milliseconds to days. After trailing various recording times it was 

deemed suitable to measure each parameter every minute and then to take the average 

reading at the end of every thirty minute block. Any recording arrangement less than 

this produced large amounts of data that proved very difficult and time consuming to 

process without any added benefit to the results. Whereas time blocks larger than thirty 

minutes reduced the accuracy of the results as any changes within the system could 

either be missed or not accounted for. 

 

5.2 Data Processing 

After collection, the raw data required processing to provide information in a relevant 

format that would establish what level of efficiency the pump station was operating. It is 

essential to determine how much energy is being consumed and what it costs to pump 

one mega litre of water per metre of head. Reading the results in Appendix E from left 

to right the first two columns indicate the suction and discharge pressure with the units 

in metres. From these two measurements it is possible to calculate the total dynamic 

head (TDH) or energy added across the pump. Note that the unaccounted losses 

calculated in Section 4.2 have been incorporated to give a true measurement for total 
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dynamic head (TDH). Section 4.2 provides the calculations and reasoning for this 

addition. Equation 29 is a representation on how to determine the total dynamic head 

from the results in Appendix E.   

    (   (                 ))                                      

           (29) 

The water flow rate requires no post processing once the data has been captured and is 

transferred to the final results table without modification. Fuel consumption is 

calculated by subtracting the pulses generated from the return flow fuel meter from the 

pulses generated by the inflow fuel meter as displayed in Equation 29. This process was 

undertaken within the data logger and required no post processing. 

                                          (30) 

 

5.2.1 Calculation of Combined Efficiency 

Combined efficiency is a measure of how well the diesel engine produces power 

through the combustion process and then for the pump to transfer the power onto the 

water. At this stage of the project it is not possible to calculate the efficiency of the 

individual item that is either the pump or the diesel engine. Measurement of individual 

efficiency requires the installation of a torque meter and will be discussed further in 

Chapter 6.1 Future Work. The combined efficiency is calculated using Equation 31 

(Growcom 2005).  

                   
                  

                  
    (31) 

                                   ( )      
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                                    (    ⁄ )           

De-rating the engine must be included in the calculation which consists of altitude, 

temperature and transmission type. As the altitude of the pump station increases the 

density of air decreases thus reducing the amount of oxygen available for combustion 

which inherently reduces the performance of the engine. The ambient temperature has a 

similar effect, as the temperature increases the density of air decreases and once again 

reduces the amount of oxygen available for combustion. In accordance with the engine 

manufactures specification there will be no de-rating applied for altitude or temperature. 

The altitude de-rating factor applies above 1000m; the altitude of the pump station is 

200m and temperature de-rating begins above 40
o
C, this limitation was not exceeded 

during the pumping event. As discussed in Chapter 2.3.2 Power Transfer Efficiency the 

type of transmission used to transfer the power from the diesel engine to the pump will 

have an effect on the quantity of power transferred. From the research conducted a 

transmission de-rating factor of 0.94 will be implemented.  Appendix F contains the 

results of the calculated combined efficiency from the data collected during the 

pumping event. 

 

5.2.2 Calculation for energy cost and consumption 

A common method for comparing either the energy cost or consumption is to measure 

the amount of diesel consumed for every mega litre of water pumped, for each metre of 

head across the pump. The data collected in Appendix E is sufficient to establish a 

benchmark for comparison between various pumps across different industries. The 

calculations are demonstrated in Equation 32. 
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                             (
 

  
)                        ((     )) 

           ( )         (32) 

There is an assumed cost of diesel at $1.50/L to give a monetary value for pumping 

water. The variability in energy cost across the pumping event is recorded in Appendix 

F. Figure 24 defines the trend quite clearly. The combined efficiency of the diesel 

engine and pump starts from just above 10% with an energy cost of $3.37 /ML/m head. 

As the pumping event continues and the storage dam starts to fill, the combined 

efficiency increases and achieves a peak at 24% while the cost to pump the irrigation 

water reduces to $1.44/ML/m head, a 57.3% reduction in running cost. 

Cotton growers tend to be interested in comparing running costs across internal pump 

stations or other pumps in the cotton industry. To achieve a cost comparison, the cost to 

pump one mega litre of water is calculated. The calculation is demonstrated in Equation 

33 and sample results from the calculations illustrated in Appendix F.  

                             (   ⁄ )                        ((     ))

           (33) 

5.3 Pump Station Duty Point 

The results calculated for energy cost in Equation 32 are illustrated in Figure 24 

comparing against the pump stations combined efficiency. The results indicate a 

dramatic drop in fuel cost and an equivalent rise in combined efficiency. To evaluate 

why the performance of the pump station improved over the pumping event Figure 25 

was constructed and displays the data gathered from individual sensors.  



62 

 

 

Figure 24: Comparison of combined efficiency and energy costs. 

 

Figure 25: Continuous collection of data from pump event. 

The water flow rate remained relatively consistent up until the 30 January averaging 

approximately 5,700 m
3
/h and reduced to 5,200m

3
/h for the remainder of the pumping 

event. The total dynamic head started at a minimum of 3 metres due to the storage dam 

being empty and increase to 7.5 metres once the storage dam was filled to capacity. 
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Operating at such a low head pressure has caused a high fuel consumption rate due to 

the severe cavitation occurring within the pump. As the head pressure increases the fuel 

consumption decreases because cavitation is reduced. A minimum fuel consumption 

rate of 40.39 L/h corresponds to 3.69 metres of head. While the pump may continue to 

cavitate at a head pressure of 3.69 metres the head pressure progressively increases thus 

increasing the rate of energy consumption. The poor result of 10% for combined 

efficiency is at the start of the pumping event and is understood to occur from the lack 

of pressure on the discharge of the pump therefore causing cavitation. To achieve a 

greater understanding of the system the data points at the start and end of the pumping 

event were plotted onto the manufactures pump curve to give an idea on the duty point 

of the pump in Figure 26. 

 

               Figure 26: China Pump 26HBC-40 Performance Curves 

A 

B 

C 

D 
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The pump manufactures performance curves in Figure 26 have been utilised to 

demonstrate what the cotton industry are using. There is a lot of information on the 

curves which may be daunting to some cotton irrigators. The horizontal and vertical red 

lines on the performance curve highlights the limitations experienced during the trial 

test. The vertical red line on the pump curve is the minimum water flow rate that the 

grower will accept. This is the amount of water the grower needs to pump to maintain 

the requirements of the cotton crop or in the case of this pumping event to store as much 

flood water as quickly as possible while it is available. The horizontal red line 

demonstrates the maximum head pressure achieved during the trial test. Further works 

needs to be conducted to verify the maximum head pressure achievable on this pump 

station. 

The two green duty points C and D indicate the start (C) and finish (D) of the pumping 

event, plotting the head pressure against water flow rate. Duty point C exhibits 3 metres 

of head and a flow rate of 5,760 m
3
/h, while duty point D at the end of pumping 

displays 7.5 metres head and a flow rate 5,040 m
3
/h. However the pump speed does not 

correspond to the recorded reading of 650 RPM. Duty points C and D indicate a pump 

speed of 550 RPM. For comparison duty points A and B were plotted, A represents the 

head pressure and pump speed of 650 RPM at the start of pumping while B displays the 

end of pump with a pump speed of 650 RPM and head pressure of 7.5 metres. The 

problem with points A and B are that they do not reflect the corresponding water flow 

of 6,480 m
3
/h and 6,120 m

3
/h respectively. From plotting the four representative duty 

points it is evident that points A and C are completely off the performance curve to the 

point that the three metre head line was required to be pencilled in. The result of being 

so far off the pump curve is severe cavitation which reinforces the earlier results from 

Figure 25. During the field setup and operation it was not possible to hear the pump 

cavitating due to the noise produced from the diesel engine.  
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Extrapolating the lines indicating RPM on the pump curve for points C and D, it 

appears that both points fall on the same pump speed of 550RPM. A notion was 

conceived that if the pump speed was reduced to 550RPM, what would be the 

corresponding water flow rate and fuel consumption? To investigate a spot check of the 

engine set to 1,550 RPM with the corresponding pump speed of 550 RPM proved that 

there was no noticeable change in water flow rate but the fuel consumption reduced to 

25L/hr. In theory if the pump speed is reduced then the water flow rate should also 

reduce. However since the pump is cavitating severely it is believed that the RPM 

reduction is actually significantly reducing the slip of the impeller and therefore 

increasing performance markedly. Due to the trial test occurring at the end of the cotton 

irrigation season it was not possible to conduct any further testing in the 2012 – 2013 

irrigation season and further testing would be conducted in the 2013-2014 cotton 

irrigation season to verify this theory. It is clear from the plotted duty points on the 

pump curve that the current setup for this pump station is not correct for the task the 

station is required to perform. This point is further confirmed when the torque curve for 

the diesel engine is interrogated, as this identifies that at 1,800 RPM the engine is not 

operating in its peak torque band, rather its peak power, thus reducing the performance 

of the engine (Volvo 1997). 

5.4 Pump Efficiency Improvements 

5.4.1 Cost Benefit Analysis 

On the basis that the theory of reducing engine RPM to reduce cavitation is correct a 

simple cost benefit analysis was performed to ascertain what the benefit of an engine 

RPM reduction would be. The first stage is to determine how much fuel is consumed by 
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the pump station in one season. From the gathered data an average fuel consumption of 

45 L/h was calculated. The grower estimates 1000 operating hours for this particular 

pump station in a typical season. Therefore the total fuel consumption for the season is 

45,000 L/season. According to the spot check performed with the engine set to 

1550RPM and a fuel consumption of 25L/h the total amount of fuel consumed in one 

cotton season will reduce to 25,000 L/season. This is equivalent to a 44% gain in 

efficiency with diesel at an assumed cost of $1.50/L this has the potential to save the 

grower $30,000 a season on this particular pump station. This does not infer that any 

grower is able to reduce their pump operating speed by 250RPM and save over $30,000 

in energy cost. It simple illustrates the need to perform pump tests and benchmark 

performance as this has the potential to highlight possible energy savings and to thus 

reduce operating costs. Table 7 displays the cost benefit analysis while Figure 27 

illustrates the benefit over a twenty year period. 

Table 7: Results from cost benefit analysis. 

Consumption 

Existing Consumption 45,000 L/year 

Proposed Consumption 25,000 L/year 

Efficiency Gain 44% 

Energy Costs 

Assumed Diesel Cost $1.50 

Existing Diesel Cost $67,500/year 

Proposed Diesel Cost $37,500/year 
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Figure 27: Cumulative costs for existing RPM and Proposed RPM reduction. 
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Chapter Six  

Conclusion and Future Work 

6.1 Future Work 

The first stage of the construction and testing for the pump efficiency monitor is 

complete. The final objective is to create an autonomous pump efficiency monitor 

which requires further development of the current system. During the process of 

creating an autonomous pump efficiency monitor, it is possible to provide the cotton 

industry a greater depth of knowledge on cotton irrigation pumps. The knowledge 

gained will aim at reducing energy costs with improved resource management and 

increase grower profits, while also reduces greenhouse gas emission leading to a 

decreased carbon foot print for the cotton industry. 

The next stage in the development of a pump efficiency monitor will add pump and 

engine speed counters, to record and identify pump and engine speeds. Counters will 

negate the need to refer to the engine tachometer, grower‟s diary or speculate from the 

measured fuel consumption. Installing counters on both pump and engine will detect 

any slippage between the belts and pulleys. The calculated pulley ratio of 2.8 between 

the engine and pump is used in Equation 34 to identify slippage. Once the slippage 

exceeds a predetermined level a warning to the grower can be issued to rectify the issue 

and maintain an efficient system. 

                      (               )  (34) 
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The current results from the collected data only calculate the combined efficiency of the 

pump station. Without assuming a level of efficiency for either the pump or the engine 

it is currently not possible to determine individual component efficiencies. To overcome 

the issue it is mandatory to develop a method of either measuring the torque output on 

the engine or preferably the torque input to the pump. Retrofitting a torque meter to a 

rotating pulley or shaft is a complex problem that requires further investigation to 

achieve a successful outcome.   

At the completion of installing the engine and pump speed counters plus a torque meter 

on the pump input shaft, it is necessary to devise a software program that develops an 

interface between the grower and the pump station. The concept is to display the engine 

and pump parameters onto a tablet for viewing by the grower. The basic interface 

informs the grower of fuel consumption, quantity of water pumped and the efficiency at 

which the task is being performed. Through the software program the pump station will 

alter inputs such as the engine throttle and outlet gate valves to maintain the operation 

of the pump at the peak efficiency for the task set by the grower. There will be potential 

to display further parameters that will be identified as the development of the pump 

efficiency monitor progresses. Other ideas include the grower to manage the operation 

of the pump via the tablet by initiating start up and shut down of the pump station and 

also adjusting engine speed and the position of gate valves should the need arise. The 

benefit of grower interaction allows for remote access and reduces the need to drive to 

and from pump stations to perform the same tasks. This results in reduced fuel 

consumption and maintenance on vehicles plus labour, ultimately contributing to the 

grower‟s profit margin.  

During the literature review there was no work identified to confirm the pump 

manufactures performance curves. With the aim to provide further knowledge to the 
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cotton industry it would be beneficial to perform pump tests in accordance with ISO 

5198:2000 Centrifugal, Mixed Flow and Axial Pumps - Code For Hydraulic 

Performance Tests - Precision Class. Figure 28 illustrates the variable pump speeds at 

total heads verse water flow rate. The results from the pump tests can be plotted onto 

the reproduced performance curves to verify the accuracy of the manufactures 

performance curves and provide information to the cotton industry to improve 

management practices. 

 

Figure 28: Reproduction of 26HBC-40 China pump performance curve. 

There are numerous 26HBC-40 China pumps in the cotton industry; a single cotton 

farm can have a dozen or more pumps. Currently there is no information provided to 

growers to determine how efficiently their pumps are operating within their own 

property let alone within the industry. During further development of the pump 

efficiency monitor it is possible to install the current model to perform energy 

assessments and determine the efficiency of pump stations. Collecting the measured 

data and combining into a data base will allow for the development of an industry 
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benchmark that cotton growers and industry representatives can access. Growers will 

have the ability to determine where there individual pump station efficiency is 

performing.  

Understanding where the performance of an individual pump stands when compared to 

industry levels, gathered from the benchmarking program, only gives a partial solution. 

Should a pump be under performing to the industry standard the grower may require 

further information on how to improve the pump station performance. Several case 

studies will be performed to provide such information. Alterations to the operation of a 

pump station are either a management change or an infrastructure change. A 

management change generally requires minimal or no financial input while an 

infrastructure alteration would require substantial investment.  Some of the ideas that 

can be incorporated into the case studies include: 

 Alternating pipe diameters to reduce water velocity,  

 Alter pulley sizes to allow the engine to run at peak torque and 

 Lower the pump station to reduce the suction head.  

Anyone of these ideas can incur a significant cost. As part of the case studies an 

economic analysis can be conducted to identify the cost and benefit to the grower, once 

again allowing for a more informed decision. 

6.2 Conclusions 

The ability of the PEM to continuously log various pump variables not only provides 

data to assess diesel engine and pump efficiency, it also provides accurate information 

concerning energy use for on-farm energy assessments. The trial of the PEM has 

indicated that large energy and cost savings are achievable. The trial highlights the 
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importance to test each individual pumping set-up to identify the optimum operating 

point to achieve maximum efficiency. Significant savings are possible for individual 

operators and the industry collectively. 

The scope of this project was to design and develop monitoring system to assess pump 

efficiency by measuring energy input to the diesel engine and the energy output of the 

irrigation pump. The design and development stage of the project has successfully been 

completed with an operating pump efficiency monitor that is in current use out in the 

field to assess pump station efficiency and for further development. The next stage of 

the project was to gather and analyse the data to determine a cost per mega litre per 

metre elevation head (/ML/m head). The cost of pumping from one event has been 

assessed, with the start of the pumping event at a cost of $3.37 /ML/m head and 

reducing to $1.44 /ML/m head. Through futher analysis of the data it was also identified 

that if the engine speed was reduced by 250 RPM there was an efficiency gain of 44%. 

The trial test highlights the poor operation of cotton irrigated pump stations and the 

need to monitor their performance. The pump efficiency monitor can now be used to 

conduct pump assessments to assist in identifing any improvements to reduce energy 

consumption within cotton irrigation pumping stations and quantify cost savings. 

 

 

 

 



74 

 

 

 

 

 

 

 

 

 

 

 

 



75 

 

References 

Anderson, NE & Loewenthal, SH 1980, Spur gear Efficiency at Part and Full Load, 

NASA, Lewis Research Centre. 

Askeland, DR & Phule, PP 2006, The Science and Engineering of Materials, 5th edn, 

Thomson Learning, Southbank, Victoria. 

Australian Standards 2000, Energy Audits, AS 3598, Sydney. 

Ballie, CP & Chen, G 2008, Reducing Energy Input Costs and Associated Greenhouse 

Gas Emissions in Cotton, Gold Coast, 12 -14 August 2008. 

Belzona 2013, Solutions For Pumps, viewed 06 May, 

<http://www.belzona.com/focus/pumps.aspx>. 

Biggs, L & Giles, D 2013, 'Current and future agricultural practices and technologies 

which affect fuel efficiency', Efficient 20,   

Blackwood, I 2007, 'White cottonseed - a supplementary feed for beef cattle', Prime 

Facts,   

Caltex 2007, Material Safety Data Sheet. 

Cengel, YA & Boles, MA 2007, Thermodynamics An Engineering Approach, 6 edn, 

McGraw-Hill, Singapore. 

Cline, WR 2008, 'Gobal Warming and Agriculture', Finance and Development,  

Cotton Australia 2013a, 'The Economics of Cotton in Australia', Fact Sheet,   

---- 2013b, Statistics, <www.cottonaustralia.com.au/cotton-library/statistics>. 

---- 2013c, 'Australian Cotton History', Fact Sheet,   

---- 2013d, Basics, <http://cottonaustralia.com.au/australian-cotton/basics>. 

Department of Climate Change and Energy Efficiency, National Greenhouse and 

Energy Reporting System Measurement, 2012, Commonwealth of Australia. 

Fan, X, Wang, X & Chen, F 2011, 'Biodiesel Production from Crude Cottonseed Oil: 

An Optimization Process Using Response Surface Methodology', The Open Fuels and 

Science Journal, vol. 4,  

Francis, R 2000, 'Pushing Belt Drive Efficiency', viewed 12 April 2013, 

<www.machinedesign.com/technologies/pushing-belt-drive-efficiency>  

Gamble, B 2011, 'Mt Everest height to be Clarified', Australian Geographic,  

Gavin, S 2009, M05, M1 & M2 Seies Flowmeter Instruction Manual, Macnaught, 

Turrella, NSW. 

Grage, A 1998, Australian Pump Technical Handbook, 8th edn, McPherson's Printing 

Group, Maryborough, Victoria. 

http://www.belzona.com/focus/pumps.aspx%3e
http://www.cottonaustralia.com.au/cotton-library/statistics%3e
http://cottonaustralia.com.au/australian-cotton/basics%3e
http://www.machinedesign.com/technologies/pushing-belt-drive-efficiency


76 

 

 

Growcom 2005, Pump Efficency Centrifugal Systems - Diesel. 

Grundfos 2008, Grundfos CR Monitor Intelligent warning, Denmark, 

<http://www.grundfos.com/products/find-product/cr-cre-monitor.html#brochures>. 

Gurevich, V 2006, Electric Relays: Principles and Applications, CRC Press Taylor and 

Francis Group, Boco Raton, Florida. 

Jessen, M 2008, 'On Farm Pump Tests Reveal Surpriseing Results: Rising Fuel Costs 

put the Emphasis on Pump Efficiency', Irrigation Australia Limited, vol. 24, no. 3, pp. 

14-5,  

Juvinall, RC & Marshek, KM 2006, Fundamentals of machine Component Design, 4 

edn, John Wiley & Sons, United States of America. 

Kahraman, A, Anderson, NE & Chase, DR 2008, 'An Experimental Investigation of 

Spur Gear Efficiency', Journal of Mechanical Design, vol. 130,  

Klubnik, R 2007, 'Detecting Pump Cavitation with a Vibration Sensor', Pumps & 

Systems,  

Maillard, J 2008, Coating Technology Increase Pump Performance, Belzona, North 

Yorkshire. 

McConnell, A 2004, Papin Denis (1647-1712?), Natural Philosopher, Oxford 

Dictionary of National Biography. 

Meder 2013, Life Requirements, Digi Key, viewed 5 May. 

Meggitt 2008, Vibrations Monitoring of Pumps, Wilcoxon Research. 

Morgan, B 2013, Twenty Facts About Cottonseed Oil, National Cottonseed Products 

Association, viewed 10 July, <www.cottonseed.com/publications/facts.asp>. 

Mott, RL 2006, Applied Fluid Mechanics, 6th edn, Pearson Prentice, Singapore. 

Potter, MC, Wiggert, DC & Ramadan, BH 2011, Mechanics of Fluids, 4 edn, Cengage 

Learning. 

<http://books.google.com.au/books?id=ID3tTiMtaDoC&pg=PA609&redir_esc=y#v=on

epage&q&f=false>. 

Pritchard, PJ & Leylegian, JC 2011, Fox and McDonald's Introduction to Fluid 

mechanics, 8 edn, John Wiley & Sons,Inc. 

Pump Fundamentals 2010, Cnetrifugal Pump Parts Terminology, viewed 23 April, 

<http://www.pumpfundamentals.com/centrifugal_pump.htm>. 

Pump School 2007, 'Understanding Net Postive Suction Head',   

Ramsden, E 2006, Hall Effect Sensor: Theroy and Application, 2nd edn, Elsevier, 

Burlington, USA. 

Reeves, T 2007, 'Prevent Pump Damage Through Automatic Detection of Cavitation', 

Pumps & Systems, <http://www.pump-

zone.com/topics/instrumentationcontrols/prevent-pump-damage-through-automatic-

detection-cavitation>  

http://www.grundfos.com/products/find-product/cr-cre-monitor.html#brochures>
http://www.cottonseed.com/publications/facts.asp%3e
http://books.google.com.au/books?id=ID3tTiMtaDoC&pg=PA609&redir_esc=y#v=onepage&q&f=false>
http://books.google.com.au/books?id=ID3tTiMtaDoC&pg=PA609&redir_esc=y#v=onepage&q&f=false>
http://www.pumpfundamentals.com/centrifugal_pump.htm%3e
http://www.pump-zone.com/topics/instrumentationcontrols/prevent-pump-damage-through-automatic-detection-cavitation
http://www.pump-zone.com/topics/instrumentationcontrols/prevent-pump-damage-through-automatic-detection-cavitation
http://www.pump-zone.com/topics/instrumentationcontrols/prevent-pump-damage-through-automatic-detection-cavitation


77 

 

Reynolds, M, Jackson, R, Montgomery, J & Bray, S 2008, Improving Pump Installation 

for Efficiency, New South Wales. 

Rothwell, GP 1979, 'Corrosion Mechanisms Applicable To Metallic Pipes.', Corrosion 

Prevention & Control, vol. 26, no. 3, pp. 9-13,  

Skovgaard, A & Nielsen, CB 2004, Pump Handbook, Grundfos, Bjerringbro, Denmark. 

Smith, P 2008, 'How to make sense of pump curves', New South Wales Department of 

Primary Industry,   

Strabe, E 2008, Silent Pack The Extremely Silent Industrial Multi-Cylinder Diesel 

Engine, Germany. 

Treasury, Q, Annual Economic Report 2010-2011 The Queesnland Economy, 2011, Q 

Treasury. 

Verosky, K, Maier, P, White, R, Connell, S & Knoll, K 2008, 'Energy Savings through 

Pump Refurbishment and Coatings', Pumps & Systems, <http://www.pump-

zone.com/topics/pumps/pumps/energy-savings-through-pump-refurbishment-and-

coatings>  

Volvo 1997, TWD 1211 V Engine for Industrial Applications, Germany. 

Welke, R 2012, 'Is Your Pump Really That Efficient?', Irrigation Australia, vol. 28, no. 

4, pp. 20-2,  

Wilson, R 2013, Reducings Australia's Emissions, Carbon Neutral, 

<http://www.carbonneutral.com.au/climate-change/reducing-australias-

emissions.html>. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.pump-zone.com/topics/pumps/pumps/energy-savings-through-pump-refurbishment-and-coatings
http://www.pump-zone.com/topics/pumps/pumps/energy-savings-through-pump-refurbishment-and-coatings
http://www.pump-zone.com/topics/pumps/pumps/energy-savings-through-pump-refurbishment-and-coatings
http://www.carbonneutral.com.au/climate-change/reducing-australias-emissions.html%3e
http://www.carbonneutral.com.au/climate-change/reducing-australias-emissions.html%3e


78 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

Appendix A: Project Specification 

University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

ENG 4111/4112 Research Project 

PROJECT SPECIFICATION 

FOR: PHILLIP SZABO 

TOPIC: DEVELOPMENT OF A PUMP EFFICIENCY MONITOR FOR USE 

IN COTTON IRRIGATION 

SUPERVISOR: Dr David Buttsworth 

ENROLMENT: ENG 4111 – S1, ONC, 2013; 

 ENG 4112 – S2, ONC, 2013 

 

PROJECT AIM: This project seeks to develop equipment to perform a level three 

energy audit for cotton irrigation pumping stations. A monitoring 

system will be designed and developed to assess pump efficiency by 

measuring energy input to the diesel engine and the energy output of 

the irrigation pump. The gathered data will be analysed to determine a 

cost per mega litre per metre elevation head (/ML/m head). This will 

be used determine a benchmark to evaluate pumping stations in the 

future. The monitoring system can then be used to conduct pump 

assessments to identify any improvements to reduce energy 

consumption within cotton irrigation pumping stations and quantify 

cost savings. 

 

PROGRAM:  

 

1. Research the background information relating to on farm energy consumption for 

cotton irrigation and how to conduct an energy audit on diesel engine pumping 

stations. 

2. Design, construct and test a monitoring system to record pump and diesel engine 

parameters. 

3. Analyse the data to determine the efficiency of the pump and the cost to pump the 

irrigation water. 

4. Evaluate the results to identify areas for improvement in pump efficiency. 

 

AGREED: 

 

 

 

__________________________   

 _____________________________ 

Mr Phillip Szabo    ___ /___ /___    Dr David Buttsworth   ___ 

/___ /___ 
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Appendix B: Risk Assessment 

The pump station site is located approximately 45km west of Goondiwindi, 280km from 

the University of Southern Queensland (USQ) Toowoomba campus. To conduct work 

at the pump site it is necessary to travel 560km on return trip taken approximately 6.5 

hours of driving. USQ's Motor Vehicles and Travel Fatigue policy states that: 

“A distance of no more than 800 kilometres should normally be driven 

per day in any ten (10) hour period.”  

This leaves a maximum of 240km for travel on farm, plus any trips into Goondiwindi 

township for incidentals. The chosen pump site is located approximately 20km from the 

farm house and it is an NCEA and Prime Ag requirement to report to the farm manager 

once on site. The policy also states that: 

“Driving time plus non-driving duties must not normally exceed a total 

of twelve (12) hours in any twenty-four hour period and” 

“The total time spent driving, inclusive of breaks, must not normally 

exceed ten (10) hours in any twenty-four hour period. This applies to a 

single driver or where the driving is shared by two (2) or more 

employees.” 

All aspects of the policy must be adhered too; the points mentioned above are 

highlighted as a single day may not be sufficient to conduct all the work required. In 

which case, a suitable plan will need to be developed to comply with university policy, 

such as staying overnight. 

Once on site it is necessary to comply with the National Centre for Engineering in 

Agriculture‟s risk management plan for Conducting Field Work. Some of the risks 
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associated with working on diesel pump stations are highlighted below. It is important 

to employ the control measures indicated in the risk management plan to keep the level 

of risk as low as reasonably practicable. 

 If noise levels exceed the safe working level of 88db(A) for four hours work 

when the diesel engine is operating, appropriate hearing protect must be worn  

 Prime Ag has defined the area around the diesel engine as a confined space, 

loose article such as tools and clothing must avoid moving parts, ventilation 

must be maintained to remove exhaust gases and the possibility of asphyxiation.  

 The installation of the communication aerial requires working at heights. The 

aerial is installed at the top of the distribution tank which is four metres above 

ground level. Three points of contact must be maintained at all times. 

 The pump is located outside with minimal cover, the work carried out is during 

the hotter summer months, sun burn and dehydration are risks that must be 

managed by wearing appropriate clothing, applying sunscreen and remaining 

hydrated with the intake of water. 

 There is a known risk of poisonous snakes within the area, an appropriate first 

aid kit, first aid training and communication should be easily available. 

These points highlight some of the common risks associated on this particular pump 

site. It is important to consult the risk management plan to become aware of the other 

possible risks that may be relevant. 
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Appendix C: Pump Station Layout 
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Appendix D: Results from Test Procedure on Hatz Engine 

Date and Time 

Pulses (/10sec) 
Fuel Flow Rate 

(L/hr) Fuel 

Consumption 

(L/hr) Return Inflow Consumption Return Inflow 

4/10/2012 12:57 65 84 19 58.5 75.6 17.1 

4/10/2012 12:57 65 84 19 58.5 75.6 17.1 

4/10/2012 12:57 65 85 19 58.5 76.5 17.1 

4/10/2012 12:57 65 85 19 58.5 76.5 17.1 

4/10/2012 12:57 65 85 20 58.5 76.5 18.0 

4/10/2012 12:58 65 85 20 58.5 76.5 18.0 

4/10/2012 12:58 65 85 20 58.5 76.5 18.0 

4/10/2012 12:58 65 84 19 58.5 75.6 17.1 

4/10/2012 12:58 66 85 19 59.4 76.5 17.1 

4/10/2012 12:58 66 86 20 59.4 77.4 18.0 

4/10/2012 12:58 65 85 20 58.5 76.5 18.0 

4/10/2012 12:59 65 85 20 58.5 76.5 18.0 

4/10/2012 12:59 66 85 19 59.4 76.5 17.1 

4/10/2012 12:59 65 85 20 58.5 76.5 18.0 

4/10/2012 12:59 66 84 18 59.4 75.6 16.2 

4/10/2012 12:59 65 84 19 58.5 75.6 17.1 

4/10/2012 12:59 66 85 19 59.4 76.5 17.1 

4/10/2012 13:00 66 86 20 59.4 77.4 18.0 

4/10/2012 13:00 66 86 20 59.4 77.4 18.0 

4/10/2012 13:00 65 85 20 58.5 76.5 18.0 

4/10/2012 13:00 65 85 20 58.5 76.5 18.0 

4/10/2012 13:00 65 85 20 58.5 76.5 18.0 

4/10/2012 13:00 65 85 20 58.5 76.5 18.0 

4/10/2012 13:01 66 85 19 59.4 76.5 17.1 

4/10/2012 13:01 65 85 20 58.5 76.5 18.0 

4/10/2012 13:01 65 85 20 58.5 76.5 18.0 

4/10/2012 13:01 65 85 20 58.5 76.5 18.0 

4/10/2012 13:01 65 85 20 58.5 76.5 18.0 

4/10/2012 13:01 65 85 20 58.5 76.5 18.0 

4/10/2012 13:02 65 84 19 58.5 75.6 17.1 

4/10/2012 13:02 65 85 20 58.5 76.5 18.0 

4/10/2012 13:02 66 85 19 59.4 76.5 17.1 

4/10/2012 13:02 65 84 19 58.5 75.6 17.1 

4/10/2012 13:02 65 84 19 58.5 75.6 17.1 

4/10/2012 13:02 66 84 18 59.4 75.6 16.2 

4/10/2012 13:03 65 84 19 58.5 75.6 17.1 

4/10/2012 13:03 66 85 19 59.4 76.5 17.1 
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Date and Time 

Pulses (/10sec) 
Fuel Flow Rate 

(L/hr) Fuel 

Consumption 

(L/hr) 
Return Inflow Consumption Return Inflow 

4/10/2012 13:03 65 84 19 58.5 75.6 17.1 

4/10/2012 13:03 65 85 20 58.5 76.5 18.0 

4/10/2012 13:03 65 85 20 58.5 76.5 18.0 

4/10/2012 13:03 65 85 20 58.5 76.5 18.0 

4/10/2012 13:04 66 85 19 59.4 76.5 17.1 

4/10/2012 13:04 65 85 20 58.5 76.5 18.0 

4/10/2012 13:04 66 85 19 59.4 76.5 17.1 

4/10/2012 13:04 65 85 20 58.5 76.5 18.0 

4/10/2012 13:04 66 84 18 59.4 75.6 16.2 

4/10/2012 13:04 65 84 19 58.5 75.6 17.1 

4/10/2012 13:05 66 85 19 59.4 76.5 17.1 

4/10/2012 13:05 66 85 19 59.4 76.5 17.1 

4/10/2012 13:05 65 86 21 58.5 77.4 18.9 

4/10/2012 13:05 65 86 21 58.5 77.4 18.9 

4/10/2012 13:05 65 85 20 58.5 76.5 18.0 

4/10/2012 13:05 65 85 20 58.5 76.5 18.0 

4/10/2012 13:06 66 86 20 59.4 77.4 18.0 

4/10/2012 13:06 65 85 20 58.5 76.5 18.0 

4/10/2012 13:06 66 86 20 59.4 77.4 18.0 

4/10/2012 13:06 65 85 20 58.5 76.5 18.0 

4/10/2012 13:06 66 85 19 59.4 76.5 17.1 

4/10/2012 13:06 65 84 19 58.5 75.6 17.1 

4/10/2012 13:07 66 84 18 59.4 75.6 16.2 

4/10/2012 13:07 65 85 20 58.5 76.5 18.0 

4/10/2012 13:07 65 85 20 58.5 76.5 18.0 

4/10/2012 13:07 65 85 20 58.5 76.5 18.0 

4/10/2012 13:07 65 84 19 58.5 75.6 17.1 

4/10/2012 13:07 66 86 20 59.4 77.4 18.0 
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Appendix E: Results from PEM 

Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

27/01/2013 19:30 -4.42 0.30 5596.45 46.03 

27/01/2013 20:00 -4.39 0.45 5626.00 46.03 

27/01/2013 20:30 -4.42 0.52 5692.36 46.32 

27/01/2013 21:00 -4.38 0.50 5653.32 46.24 

27/01/2013 21:30 -4.39 0.24 5735.31 46.13 

27/01/2013 22:00 -4.35 0.07 5735.40 46.24 

27/01/2013 22:30 -4.36 0.33 5705.29 46.02 

27/01/2013 23:00 -4.33 -0.41 5766.11 45.91 

27/01/2013 23:30 -4.29 -0.54 5751.17 45.59 

28/01/2013 0:00 -4.27 -0.54 5781.30 45.49 

28/01/2013 0:30 -4.22 -0.54 5830.74 45.75 

28/01/2013 1:00 -4.22 -0.51 5784.55 45.96 

28/01/2013 1:30 -4.18 -0.51 5802.53 45.93 

28/01/2013 2:00 -4.16 -0.46 5736.45 45.72 

28/01/2013 2:30 -4.14 -0.49 5776.53 45.78 

28/01/2013 3:00 -4.09 -0.45 5801.86 45.57 

28/01/2013 3:30 -4.09 -0.44 5802.51 45.64 

28/01/2013 4:00 -4.08 -0.49 5823.88 45.66 

28/01/2013 4:30 -4.04 -0.49 5755.85 45.74 

28/01/2013 5:00 -4.02 -0.45 5812.85 45.77 

28/01/2013 5:30 -4.01 -0.42 5759.55 45.83 

28/01/2013 6:00 -3.99 -0.42 5817.40 45.80 

28/01/2013 6:30 -3.96 -0.39 5804.64 45.88 

28/01/2013 7:00 -3.95 -0.35 5876.35 45.99 

28/01/2013 7:30 -3.95 -0.36 5856.39 45.95 

28/01/2013 8:00 -3.94 -0.37 5811.01 45.97 

28/01/2013 8:30 -3.86 -0.22 5824.69 45.63 

28/01/2013 9:00 -3.83 -0.28 5847.40 45.11 

28/01/2013 9:30 -3.84 -0.13 5805.72 45.11 

28/01/2013 10:00 -3.82 -0.11 5890.08 45.07 

28/01/2013 10:30 -3.81 -0.30 5926.56 45.02 

28/01/2013 11:00 -3.80 -0.32 5858.37 45.03 

28/01/2013 11:30 -3.80 -0.22 5856.45 45.01 

28/01/2013 12:30 -3.77 -0.38 5833.32 43.00 

28/01/2013 13:00 -3.76 -0.38 5828.45 42.91 

28/01/2013 13:30 -3.75 -0.36 5799.60 42.92 

28/01/2013 14:00 -3.73 -0.38 5848.64 42.91 

28/01/2013 14:30 -3.74 -0.35 5832.77 42.86 

28/01/2013 15:00 -3.73 -0.39 5722.58 42.90 

28/01/2013 15:30 -3.72 -0.36 5767.39 42.94 

28/01/2013 16:00 -3.70 -0.36 5772.91 43.03 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

28/01/2013 16:30 -3.73 -0.36 5727.62 43.02 

28/01/2013 17:00 -3.68 -0.33 5786.72 43.05 

28/01/2013 17:30 -3.68 -0.32 5754.86 43.03 

28/01/2013 18:00 -3.71 -0.36 5821.94 42.99 

28/01/2013 18:30 -3.70 -0.33 5841.34 43.02 

28/01/2013 19:00 -3.71 -0.35 5694.85 43.01 

28/01/2013 20:00 -3.70 -0.30 5749.63 43.02 

28/01/2013 20:30 -3.71 -0.29 5897.77 42.99 

28/01/2013 21:00 -3.72 -0.25 5798.86 43.00 

28/01/2013 21:30 -3.70 -0.34 5777.57 43.06 

28/01/2013 22:00 -3.70 -0.22 5797.80 43.07 

28/01/2013 22:30 -3.69 -0.33 5803.28 43.04 

28/01/2013 23:00 -3.72 -0.25 5831.79 43.06 

28/01/2013 23:30 -3.71 -0.30 5730.22 42.96 

29/01/2013 0:00 -3.68 -0.25 5750.78 42.92 

29/01/2013 0:30 -3.68 -0.29 5831.81 42.93 

29/01/2013 1:00 -3.69 -0.24 5813.10 42.96 

29/01/2013 1:30 -3.71 -0.25 5887.32 42.95 

29/01/2013 2:00 -3.70 -0.22 5783.22 42.97 

29/01/2013 2:30 -3.68 -0.20 5795.61 43.02 

29/01/2013 3:00 -3.71 -0.23 5838.68 42.99 

29/01/2013 3:30 -3.71 -0.21 5778.43 42.99 

29/01/2013 4:00 -3.71 -0.23 5792.80 42.96 

29/01/2013 4:30 -3.70 -0.20 5851.88 42.96 

29/01/2013 5:00 -3.71 -0.21 5785.76 42.99 

29/01/2013 5:30 -3.70 -0.17 5748.47 43.02 

29/01/2013 6:00 -3.70 -0.21 5762.70 43.02 

29/01/2013 6:30 -3.69 -0.21 5739.78 42.99 

29/01/2013 7:30 -3.67 -0.20 5846.22 41.46 

29/01/2013 8:00 -3.65 -0.20 5896.84 41.39 

29/01/2013 8:30 -3.68 -0.11 5858.44 41.43 

29/01/2013 9:00 -3.68 -0.18 5909.93 41.48 

29/01/2013 9:30 -3.68 -0.12 5936.29 41.50 

29/01/2013 10:00 -3.67 -0.08 5863.41 41.48 

29/01/2013 10:30 -3.67 -0.06 5863.53 41.44 

29/01/2013 11:00 -3.64 -0.12 5867.65 41.44 

29/01/2013 11:30 -3.67 -0.12 5828.86 41.41 

29/01/2013 12:00 -3.67 -0.08 5887.77 41.39 

29/01/2013 12:30 -3.66 -0.08 5898.73 41.39 

29/01/2013 13:00 -3.69 -0.09 5896.95 41.39 

29/01/2013 13:30 -3.69 -0.05 5848.63 41.32 

29/01/2013 14:00 -3.71 -0.07 5833.79 41.32 

29/01/2013 14:30 -3.68 -0.09 5814.79 41.30 

29/01/2013 15:00 -3.68 -0.04 5882.36 41.34 

29/01/2013 15:30 -3.69 -0.04 5871.59 41.28 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

29/01/2013 16:00 -3.67 -0.05 5820.97 41.28 

29/01/2013 16:30 -3.81 -0.11 5245.07 40.97 

29/01/2013 17:30 -3.66 -0.04 5810.91 40.46 

29/01/2013 18:00 -3.66 -0.01 5842.88 40.41 

29/01/2013 18:30 -3.67 0.02 5807.10 40.39 

29/01/2013 19:00 -3.66 0.00 5806.91 40.44 

29/01/2013 19:30 -3.67 0.00 5800.21 40.47 

29/01/2013 20:00 -3.69 0.01 5787.80 40.54 

29/01/2013 20:30 -3.69 0.00 5800.01 40.55 

29/01/2013 21:00 -3.68 0.02 5782.21 40.63 

29/01/2013 21:30 -3.69 0.04 5770.14 40.67 

29/01/2013 22:00 -3.70 0.06 5745.29 40.71 

29/01/2013 22:30 -3.69 0.06 5806.08 40.72 

29/01/2013 23:00 -3.71 0.07 5786.10 40.81 

29/01/2013 23:30 -3.70 0.10 5860.71 40.79 

30/01/2013 0:00 -3.70 0.07 5805.78 40.82 

30/01/2013 0:30 -3.71 0.09 5803.96 40.86 

30/01/2013 1:00 -3.72 0.07 5815.40 40.87 

30/01/2013 1:30 -3.73 0.12 5849.09 40.92 

30/01/2013 2:00 -3.71 0.09 5815.13 40.93 

30/01/2013 2:30 -3.71 0.13 5823.19 40.93 

30/01/2013 3:00 -3.72 0.11 5857.89 40.98 

30/01/2013 3:30 -3.72 0.12 5809.86 41.02 

30/01/2013 4:00 -3.71 0.13 5872.68 41.00 

30/01/2013 4:30 -3.73 0.17 5836.58 40.99 

30/01/2013 5:00 -3.71 0.16 5844.15 41.00 

30/01/2013 5:30 -3.71 0.16 5825.59 41.01 

30/01/2013 6:00 -3.72 0.14 5866.64 41.00 

30/01/2013 6:30 -3.73 0.18 5820.65 40.97 

30/01/2013 7:00 -3.68 0.17 5748.71 40.92 

30/01/2013 7:30 -3.75 0.14 5828.77 40.71 

30/01/2013 8:00 -3.74 0.18 5866.41 41.37 

30/01/2013 8:30 -3.74 0.18 5715.71 41.36 

30/01/2013 9:00 -3.74 0.19 5751.13 41.34 

30/01/2013 9:30 -3.75 0.22 5884.83 41.31 

30/01/2013 10:00 -3.75 0.24 5870.21 41.31 

30/01/2013 10:30 -3.76 0.23 5831.34 41.25 

30/01/2013 11:00 -3.74 0.25 5856.62 41.21 

30/01/2013 11:30 -3.74 0.25 5739.42 41.19 

30/01/2013 12:00 -3.71 0.22 5784.92 41.13 

30/01/2013 12:30 -3.73 0.24 5767.50 41.16 

30/01/2013 13:00 -3.72 0.27 5850.54 41.21 

30/01/2013 13:30 -3.73 0.29 5804.24 41.19 

30/01/2013 14:00 -3.75 0.29 5818.29 41.19 

30/01/2013 14:30 -3.75 0.28 5835.22 41.25 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

30/01/2013 15:00 -3.77 0.31 5807.72 41.18 

30/01/2013 15:30 -3.75 0.30 5817.82 41.17 

30/01/2013 16:00 -3.74 0.29 5820.70 41.25 

30/01/2013 16:30 -3.75 0.30 5829.90 41.36 

30/01/2013 17:00 -3.74 0.33 5826.79 41.29 

30/01/2013 17:30 -3.77 0.32 5846.65 41.33 

30/01/2013 18:00 -3.76 0.35 5745.94 41.39 

30/01/2013 18:30 -3.75 0.36 5806.74 41.41 

30/01/2013 19:00 -3.76 0.35 5718.17 41.56 

30/01/2013 19:30 -3.77 0.36 5773.53 41.61 

30/01/2013 20:00 -3.78 0.40 5782.57 41.74 

30/01/2013 20:30 -3.80 0.39 5777.43 41.87 

30/01/2013 21:00 -3.79 0.40 5764.72 41.94 

30/01/2013 21:30 -3.81 0.36 5766.62 41.96 

30/01/2013 22:00 -3.80 0.38 5722.21 41.98 

30/01/2013 22:30 -3.79 0.41 5641.45 42.01 

30/01/2013 23:00 -3.81 0.41 5675.63 42.02 

30/01/2013 23:30 -3.78 0.45 5635.88 42.11 

31/01/2013 0:00 -3.77 0.57 5613.16 42.11 

31/01/2013 0:30 -3.78 0.58 5604.41 42.15 

31/01/2013 1:00 -3.80 0.54 5551.03 42.06 

31/01/2013 1:30 -3.77 0.45 5566.88 42.06 

31/01/2013 2:00 -3.79 0.46 5563.34 42.07 

31/01/2013 2:30 -3.79 0.51 5495.53 42.10 

31/01/2013 3:00 -3.79 0.48 5524.48 42.14 

31/01/2013 3:30 -3.81 0.44 5495.37 42.15 

31/01/2013 4:00 -3.82 0.46 5547.26 42.17 

31/01/2013 4:30 -3.82 0.44 5610.43 42.19 

31/01/2013 5:00 -3.83 0.47 5657.61 42.24 

31/01/2013 5:30 -3.85 0.49 5587.04 42.30 

31/01/2013 6:00 -3.84 0.49 5570.49 42.36 

31/01/2013 6:30 -3.83 0.51 5538.56 42.27 

31/01/2013 7:00 -3.82 0.51 5543.08 42.23 

31/01/2013 7:30 -3.92 0.65 5649.66 42.47 

31/01/2013 8:00 -3.95 0.69 5668.02 42.65 

31/01/2013 8:30 -3.96 0.70 5622.38 42.55 

31/01/2013 9:00 -3.98 0.71 5617.05 42.58 

31/01/2013 9:30 -3.98 0.66 5610.85 42.60 

31/01/2013 10:00 -3.99 0.75 5659.35 42.64 

31/01/2013 10:30 -3.99 0.76 5598.41 42.67 

31/01/2013 11:00 -4.00 0.73 5631.95 42.79 

31/01/2013 11:30 -4.01 0.79 5671.93 42.81 

1/02/2013 0:00 -4.02 0.73 5606.41 42.82 

1/02/2013 0:01 -4.02 0.73 5636.49 42.82 

1/02/2013 0:30 -4.04 0.79 5677.32 42.82 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

1/02/2013 1:00 -4.02 0.75 5599.04 42.88 

1/02/2013 1:30 -4.05 0.79 5580.69 42.86 

1/02/2013 2:00 -4.04 0.76 5612.85 42.87 

1/02/2013 2:30 -4.06 0.80 5504.84 42.94 

1/02/2013 3:00 -4.08 0.80 5473.69 42.96 

1/02/2013 3:30 -4.11 0.79 5560.21 43.02 

1/02/2013 4:00 -4.13 0.86 5564.56 43.13 

1/02/2013 4:30 -4.15 0.87 5659.12 43.25 

1/02/2013 5:00 -4.19 0.83 5610.41 43.22 

1/02/2013 5:30 -4.12 0.81 5506.95 41.25 

1/02/2013 6:00 -4.20 0.85 5519.23 42.87 

1/02/2013 6:30 -4.23 0.82 5583.43 42.81 

1/02/2013 7:00 -4.21 0.85 5500.62 42.78 

1/02/2013 7:30 -4.24 0.82 5553.40 42.87 

1/02/2013 8:00 -4.22 0.88 5472.70 42.86 

1/02/2013 8:30 -4.25 0.87 5321.56 42.79 

1/02/2013 9:00 -4.25 0.89 5378.90 42.83 

1/02/2013 9:30 -4.29 0.89 5480.54 42.85 

1/02/2013 10:00 -4.29 0.93 5458.53 42.76 

1/02/2013 10:30 -4.26 0.91 5331.68 42.71 

1/02/2013 11:00 -4.27 0.94 5416.33 42.72 

1/02/2013 11:30 -4.27 0.92 5348.57 42.80 

1/02/2013 12:00 -4.27 0.94 5376.45 42.77 

1/02/2013 12:30 -4.31 0.96 5360.20 42.80 

1/02/2013 13:00 -4.29 0.97 5441.68 42.72 

1/02/2013 13:30 -4.29 0.97 5377.38 42.69 

1/02/2013 14:00 -4.28 0.97 5322.72 42.59 

1/02/2013 14:30 -4.29 0.99 5454.49 42.64 

1/02/2013 15:00 -4.31 0.96 5476.66 42.67 

1/02/2013 15:30 -4.30 0.96 5519.30 42.79 

1/02/2013 16:00 -4.28 0.98 5721.98 43.64 

1/02/2013 16:30 -4.25 1.03 5735.12 43.45 

1/02/2013 17:00 -4.19 1.02 5785.55 43.32 

1/02/2013 17:30 -4.14 1.02 5836.91 43.10 

1/02/2013 18:00 -4.11 1.05 5750.27 43.12 

1/02/2013 18:30 -4.11 1.07 5809.01 43.24 

1/02/2013 19:00 -4.08 1.07 5751.08 43.25 

1/02/2013 19:30 -4.06 0.90 5704.31 43.25 

1/02/2013 20:00 -4.06 1.04 5708.62 43.24 

1/02/2013 20:30 -4.11 1.00 5750.86 43.32 

1/02/2013 21:00 -4.10 1.07 5616.38 43.17 

1/02/2013 21:30 -4.10 1.10 5653.77 43.22 

1/02/2013 22:00 -4.08 1.04 5580.25 43.06 

1/02/2013 22:30 -4.06 1.03 5492.06 43.15 

1/02/2013 23:00 -4.09 1.07 5700.29 43.43 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

1/02/2013 23:30 -4.11 1.09 5780.33 43.48 

2/02/2013 0:00 -4.09 1.13 5745.00 43.49 

2/02/2013 0:30 -4.11 1.13 5562.15 43.34 

2/02/2013 1:00 -4.12 1.10 5643.96 43.50 

2/02/2013 1:30 -4.14 1.12 5707.46 43.57 

2/02/2013 2:00 -4.15 1.13 5716.85 43.58 

2/02/2013 2:30 -4.13 1.12 5640.39 43.59 

2/02/2013 3:00 -4.15 1.12 5431.47 43.58 

2/02/2013 3:30 -4.13 1.14 5349.34 43.55 

2/02/2013 4:00 -4.17 1.18 5514.61 43.65 

2/02/2013 4:30 -4.16 1.17 5438.36 43.54 

2/02/2013 5:00 -4.17 1.18 5533.56 43.56 

2/02/2013 5:30 -4.14 1.19 5379.60 43.61 

2/02/2013 6:00 -4.14 1.18 5399.59 43.61 

2/02/2013 6:30 -4.15 1.21 5509.29 43.58 

2/02/2013 7:00 -4.13 1.20 5367.73 42.25 

2/02/2013 7:30 -4.20 1.19 5304.61 42.88 

2/02/2013 8:00 -4.16 1.24 5260.01 42.97 

2/02/2013 8:30 -4.18 1.25 5336.58 42.92 

2/02/2013 9:00 -4.19 1.25 5281.39 42.81 

2/02/2013 9:30 -4.19 1.28 5186.73 42.70 

2/02/2013 10:00 -4.20 1.28 5154.36 42.58 

2/02/2013 10:30 -4.21 1.28 5209.75 42.60 

2/02/2013 11:00 -4.22 1.29 5349.58 42.72 

2/02/2013 11:30 -4.24 1.30 5107.60 42.75 

2/02/2013 12:00 -4.26 1.32 5171.83 42.80 

2/02/2013 12:30 -4.28 1.33 5219.64 42.77 

2/02/2013 13:00 -4.25 1.33 5282.25 42.72 

2/02/2013 13:30 -4.25 1.35 5439.76 42.78 

2/02/2013 14:00 -4.29 1.37 5258.95 42.83 

2/02/2013 14:30 -4.26 1.32 5225.46 42.77 

2/02/2013 15:00 -4.26 1.30 5266.27 42.79 

2/02/2013 15:30 -4.28 1.36 5249.94 42.88 

2/02/2013 16:00 -4.30 1.38 5312.90 42.99 

2/02/2013 16:30 -4.30 1.37 5450.92 43.04 

2/02/2013 17:00 -4.31 1.40 5458.87 43.12 

2/02/2013 17:30 -4.31 1.39 5293.49 43.05 

2/02/2013 18:00 -4.32 1.38 5094.36 43.01 

2/02/2013 18:30 -4.34 1.38 5206.77 43.05 

2/02/2013 19:00 -4.32 1.37 5347.96 43.19 

2/02/2013 19:30 -4.37 1.37 5481.75 43.21 

2/02/2013 20:00 -4.36 1.36 5359.42 43.08 

2/02/2013 20:30 -4.36 1.40 5336.59 43.10 

2/02/2013 21:00 -4.34 1.42 5317.62 43.16 

2/02/2013 21:30 -4.37 1.39 5240.68 43.22 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

2/02/2013 22:00 -4.36 1.38 5155.92 43.27 

2/02/2013 22:30 -4.36 1.44 5221.67 43.31 

2/02/2013 23:00 -4.37 1.43 5299.16 43.24 

2/02/2013 23:30 -4.39 1.43 5209.35 43.23 

3/02/2013 0:00 -4.39 1.43 5235.49 43.24 

3/02/2013 0:30 -4.44 1.42 5258.51 43.16 

3/02/2013 1:00 -4.43 1.43 5328.82 43.13 

3/02/2013 1:30 -4.44 1.44 5392.13 43.23 

3/02/2013 2:00 -4.47 1.47 5284.34 43.20 

3/02/2013 2:30 -4.48 1.46 5412.97 43.22 

3/02/2013 3:00 -4.52 1.45 5361.34 43.28 

3/02/2013 3:30 -4.52 1.56 5380.14 43.36 

3/02/2013 4:00 -4.55 1.61 5400.48 43.41 

3/02/2013 4:30 -4.55 1.60 5204.91 43.35 

3/02/2013 5:00 -4.57 1.65 5321.06 43.45 

3/02/2013 5:30 -4.54 1.59 5232.33 42.60 

3/02/2013 6:00 -4.61 1.50 5457.17 43.72 

3/02/2013 6:30 -4.60 1.42 5316.31 43.61 

3/02/2013 7:00 -4.61 1.50 5399.16 43.51 

3/02/2013 7:30 -4.58 1.52 5201.07 43.57 

3/02/2013 8:00 -4.63 1.52 5178.66 43.65 

3/02/2013 8:30 -4.66 1.45 5259.64 43.89 

3/02/2013 9:00 -4.69 1.58 5509.48 44.14 

3/02/2013 9:30 -4.71 1.41 5395.73 43.94 

3/02/2013 10:00 -4.72 1.46 5240.75 43.90 

3/02/2013 10:30 -4.74 1.53 5276.14 44.04 

3/02/2013 11:00 -4.54 1.58 4906.67 44.13 

3/02/2013 11:30 -4.54 1.53 4932.55 43.69 

3/02/2013 12:00 -4.55 1.55 5176.38 43.64 

3/02/2013 12:30 -4.58 1.57 5411.34 43.89 

3/02/2013 13:00 -4.60 1.60 5463.63 44.02 

3/02/2013 13:30 -4.63 1.71 5530.78 44.09 

3/02/2013 14:00 -4.71 1.60 5567.84 44.38 

3/02/2013 14:30 -4.69 1.24 5557.91 44.33 

3/02/2013 15:00 -4.69 1.54 5572.84 44.41 

3/02/2013 15:30 -4.69 1.62 5573.44 44.61 

3/02/2013 16:00 -4.75 1.63 5139.29 44.60 

3/02/2013 16:30 -4.76 1.63 5233.92 44.52 

3/02/2013 17:00 -4.76 1.65 5376.82 44.65 

3/02/2013 17:30 -4.80 1.66 5277.47 44.73 

3/02/2013 18:00 -4.82 1.69 5132.22 44.69 

3/02/2013 18:30 -4.85 1.68 5251.85 44.82 

3/02/2013 19:00 -4.86 1.68 5107.02 44.74 

3/02/2013 19:30 -4.81 1.67 5074.88 44.41 

3/02/2013 20:00 -4.86 1.68 5097.67 44.54 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

3/02/2013 20:30 -4.88 1.68 4920.04 44.48 

3/02/2013 21:00 -4.92 1.69 5063.44 44.54 

3/02/2013 21:30 -4.95 1.71 5137.14 44.69 

3/02/2013 22:00 -4.95 1.71 5182.45 44.72 

3/02/2013 22:30 -4.95 1.75 5093.69 44.68 

3/02/2013 23:00 -4.95 1.75 5043.40 44.88 

3/02/2013 23:30 -4.98 1.76 5273.82 44.97 

4/02/2013 0:00 -5.00 1.77 4320.89 44.79 

4/02/2013 13:00 -4.99 2.07 5230.47 46.93 

4/02/2013 13:30 -4.98 1.91 5338.19 46.86 

4/02/2013 14:00 -4.95 2.01 5393.98 46.83 

4/02/2013 14:30 -4.91 2.14 4671.66 46.74 

4/02/2013 15:30 -4.86 1.96 5061.28 46.67 

4/02/2013 16:00 -4.89 2.03 5107.49 46.41 

4/02/2013 16:30 -4.84 1.88 4981.76 46.52 

4/02/2013 17:00 -4.85 2.08 4990.76 46.75 

4/02/2013 17:30 -4.84 2.03 5094.03 46.83 

4/02/2013 18:00 -4.85 2.00 5155.29 46.75 

4/02/2013 18:30 -4.83 2.05 5005.83 46.74 

4/02/2013 19:00 -4.83 2.07 5130.04 46.97 

4/02/2013 19:30 -4.85 2.04 5135.58 46.99 

4/02/2013 20:00 -4.84 2.05 5138.54 47.01 

4/02/2013 20:30 -4.85 2.08 5064.12 47.07 

4/02/2013 21:00 -4.83 2.08 5094.37 47.10 

4/02/2013 21:30 -4.84 2.07 5102.17 47.04 

4/02/2013 22:00 -4.84 2.03 5221.09 46.98 

4/02/2013 22:30 -4.84 2.01 5098.63 46.92 

4/02/2013 23:00 -4.84 2.06 4992.04 46.83 

4/02/2013 23:30 -4.86 2.00 5253.71 46.97 

5/02/2013 0:00 -4.86 2.02 5295.68 46.92 

5/02/2013 0:30 -4.88 2.04 5314.24 46.94 

5/02/2013 1:00 -4.86 2.02 5243.80 46.95 

5/02/2013 1:30 -4.87 2.08 5231.32 46.99 

5/02/2013 2:00 -4.87 2.03 5152.12 47.04 

5/02/2013 2:30 -4.87 2.06 5195.91 47.16 

5/02/2013 3:00 -4.88 2.11 5202.32 47.45 

5/02/2013 3:30 -4.86 2.14 5090.47 47.68 

5/02/2013 4:00 -4.84 2.04 5129.23 47.54 

5/02/2013 4:30 -4.82 2.09 4987.95 47.57 

5/02/2013 5:00 -4.75 2.14 4908.37 46.92 

5/02/2013 5:30 -4.88 2.10 5252.87 46.01 

5/02/2013 6:00 -4.91 2.13 5313.28 46.04 

5/02/2013 6:30 -4.94 2.13 5319.37 45.96 

5/02/2013 7:00 -4.92 2.13 5325.98 46.10 

5/02/2013 7:30 -4.91 2.14 5276.02 46.06 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

5/02/2013 8:00 -4.82 2.11 5172.98 45.83 

5/02/2013 8:30 -4.86 2.13 5214.27 45.77 

5/02/2013 9:00 -4.88 2.18 5084.61 45.82 

5/02/2013 9:30 -4.85 2.11 5133.36 45.84 

5/02/2013 10:00 -4.84 2.19 5050.30 45.82 

5/02/2013 10:30 -4.83 2.13 4986.83 45.71 

5/02/2013 11:00 -4.85 2.17 5066.96 45.92 

5/02/2013 11:30 -4.84 2.17 5048.29 45.78 

5/02/2013 12:00 -4.86 2.21 5153.88 45.62 

5/02/2013 12:30 -4.92 2.18 5302.74 46.01 

5/02/2013 14:00 -4.10 2.20 5567.23 46.09 

5/02/2013 14:30 -4.09 2.24 5603.70 45.86 

5/02/2013 15:00 -4.11 2.21 5632.00 45.82 

5/02/2013 15:30 -4.10 2.27 5615.67 45.95 

5/02/2013 16:00 -4.12 2.28 5726.05 46.20 

5/02/2013 16:30 -4.11 2.25 5665.96 46.03 

5/02/2013 17:00 -4.10 2.26 5610.45 45.93 

5/02/2013 17:30 -4.12 2.27 5616.64 45.82 

5/02/2013 18:00 -4.13 2.27 5616.61 45.92 

5/02/2013 18:30 -4.15 2.29 5633.19 46.03 

5/02/2013 19:00 -4.15 2.29 5547.90 46.20 

5/02/2013 19:30 -4.14 2.26 5524.16 46.20 

5/02/2013 20:00 -4.17 2.31 5500.91 46.35 

5/02/2013 20:30 -4.19 2.34 5524.74 46.43 

5/02/2013 21:00 -4.19 2.31 5490.91 46.49 

5/02/2013 21:30 -4.25 2.30 5569.42 46.44 

5/02/2013 22:00 -4.26 2.33 5586.57 46.57 

5/02/2013 22:30 -4.33 2.33 5646.42 46.64 

5/02/2013 23:00 -4.33 2.33 5572.21 46.70 

5/02/2013 23:30 -4.37 2.33 5552.52 46.64 

6/02/2013 0:00 -4.42 2.32 5525.42 46.79 

6/02/2013 0:30 -4.43 2.31 5554.30 46.81 

6/02/2013 1:00 -4.48 2.36 5387.44 46.93 

6/02/2013 1:30 -4.54 2.42 5458.47 47.63 

6/02/2013 2:00 -4.60 2.40 5529.78 47.85 

6/02/2013 2:30 -4.65 2.39 5372.07 48.43 

6/02/2013 3:00 -4.76 2.41 5377.71 48.60 

6/02/2013 3:30 -4.91 2.37 5495.09 48.74 

6/02/2013 4:00 -5.07 2.38 5295.30 49.17 

6/02/2013 11:30 -5.03 2.45 4366.85 36.48 

6/02/2013 12:00 -4.96 2.42 4602.15 36.44 

6/02/2013 12:30 -4.81 2.48 4372.00 35.92 

6/02/2013 13:00 -4.67 2.45 4374.31 35.05 

6/02/2013 13:30 -4.63 2.44 4447.07 35.03 

6/02/2013 14:00 -4.64 2.42 4444.10 35.04 
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Time Stamp Suction Discharge 
Water Flow 

(m3/h) 

Fuel 
Consumption 

(L/h) 

6/02/2013 14:30 -4.62 2.46 4283.39 35.29 

6/02/2013 15:00 -4.63 2.46 4286.69 35.19 

6/02/2013 15:30 -4.67 2.45 4255.30 35.33 

7/02/2013 3:30 -4.87 2.61 4371.26 42.70 

7/02/2013 4:00 -4.66 2.52 4564.13 41.19 

7/02/2013 4:30 -4.65 2.61 5024.27 41.08 

7/02/2013 5:00 -4.69 2.66 4930.18 41.04 

7/02/2013 5:30 -4.71 2.68 4904.42 41.03 

7/02/2013 6:00 -4.75 2.70 4810.15 41.13 

7/02/2013 6:30 -4.81 2.64 4968.73 41.47 

7/02/2013 7:00 -4.50 2.64 4534.46 37.05 

7/02/2013 7:30 -4.13 2.57 4116.32 28.52 

7/02/2013 8:00 -4.15 2.60 4080.85 28.69 

7/02/2013 8:30 -4.13 2.59 4082.64 28.75 

7/02/2013 9:00 -4.11 2.62 4063.68 28.76 

7/02/2013 9:30 -4.12 2.60 4072.77 28.83 

7/02/2013 10:00 -4.11 2.71 4039.69 28.77 

7/02/2013 10:30 -4.11 2.75 4095.64 28.72 

7/02/2013 11:00 -4.12 2.67 4048.07 28.79 

7/02/2013 11:30 -4.14 2.69 4039.99 28.80 

7/02/2013 12:00 -4.17 2.66 4122.56 28.92 

7/02/2013 12:30 -4.15 2.65 4109.26 28.98 

7/02/2013 13:00 -4.13 2.64 4159.26 29.05 

7/02/2013 13:30 -4.11 2.64 4127.21 29.05 

7/02/2013 14:00 -4.12 2.66 4126.54 28.98 

7/02/2013 14:30 -4.13 2.66 4161.20 28.91 

7/02/2013 15:00 -4.15 2.67 4222.55 28.87 

7/02/2013 15:30 -4.20 2.68 4336.41 28.92 

7/02/2013 16:00 -4.27 2.71 4326.76 28.90 

7/02/2013 16:30 -4.28 2.67 4170.60 28.84 

7/02/2013 17:00 -4.39 1.88 3166.89 28.66 
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 Appendix F: Analysis of Results 

Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

27/01/2013 19:30 13.53 8.22 2.61 0.65 

27/01/2013 20:00 13.95 8.18 2.53 0.67 

27/01/2013 20:30 14.28 8.14 2.47 0.59 

27/01/2013 21:00 14.06 8.18 2.51 0.61 

27/01/2013 21:30 13.55 8.04 2.61 0.62 

27/01/2013 22:00 12.93 8.06 2.73 0.56 

27/01/2013 22:30 13.69 8.07 2.58 0.66 

27/01/2013 23:00 11.59 7.96 3.05 0.58 

27/01/2013 23:30 11.15 7.93 3.17 0.63 

28/01/2013 0:00 11.17 7.87 3.16 0.66 

28/01/2013 0:30 11.04 7.85 3.20 0.59 

28/01/2013 1:00 10.98 7.95 3.22 0.54 

28/01/2013 1:30 10.92 7.92 3.23 0.54 

28/01/2013 2:00 10.91 7.97 3.24 0.59 

28/01/2013 2:30 10.83 7.93 3.26 0.57 

28/01/2013 3:00 10.89 7.85 3.24 0.62 

28/01/2013 3:30 10.92 7.86 3.23 0.61 

28/01/2013 4:00 10.76 7.84 3.28 0.59 

28/01/2013 4:30 10.52 7.95 3.36 0.56 

28/01/2013 5:00 10.70 7.87 3.30 0.57 

28/01/2013 5:30 10.63 7.96 3.32 0.55 

28/01/2013 6:00 10.69 7.87 3.30 0.56 

28/01/2013 6:30 10.64 7.90 3.32 0.54 

28/01/2013 7:00 10.85 7.83 3.26 0.53 

28/01/2013 7:30 10.80 7.85 3.27 0.53 

28/01/2013 8:00 10.62 7.91 3.32 0.52 

28/01/2013 8:30 10.91 7.83 3.24 0.61 

28/01/2013 9:00 10.85 7.71 3.25 0.72 

28/01/2013 9:30 11.24 7.77 3.14 0.75 

28/01/2013 10:00 11.41 7.65 3.09 0.77 

28/01/2013 10:30 10.88 7.60 3.25 0.74 

28/01/2013 11:00 10.64 7.69 3.32 0.73 

28/01/2013 11:30 10.95 7.69 3.23 0.75 

28/01/2013 12:30 10.83 7.37 3.26 1.19 

28/01/2013 13:00 10.81 7.36 3.27 1.21 

28/01/2013 13:30 10.79 7.40 3.27 1.21 

28/01/2013 14:00 10.75 7.34 3.29 1.21 

28/01/2013 14:30 10.85 7.35 3.25 1.23 

28/01/2013 15:00 10.50 7.50 3.36 1.18 

28/01/2013 15:30 10.63 7.45 3.32 1.18 

28/01/2013 16:00 10.56 7.45 3.34 1.16 

28/01/2013 16:30 10.57 7.51 3.34 1.16 

28/01/2013 17:00 10.60 7.44 3.33 1.16 

28/01/2013 17:30 10.59 7.48 3.33 1.16 

28/01/2013 18:00 10.69 7.39 3.30 1.18 
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Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

28/01/2013 18:30 10.75 7.37 3.29 1.18 

28/01/2013 19:00 10.47 7.55 3.37 1.15 

28/01/2013 20:00 10.73 7.48 3.29 1.18 

28/01/2013 20:30 11.02 7.29 3.20 1.22 

28/01/2013 21:00 11.00 7.42 3.21 1.21 

28/01/2013 21:30 10.59 7.45 3.34 1.16 

28/01/2013 22:00 11.03 7.43 3.20 1.20 

28/01/2013 22:30 10.66 7.42 3.31 1.17 

28/01/2013 23:00 11.06 7.38 3.19 1.21 

28/01/2013 23:30 10.69 7.50 3.30 1.19 

29/01/2013 0:00 10.84 7.46 3.26 1.21 

29/01/2013 0:30 10.86 7.36 3.25 1.21 

29/01/2013 1:00 10.98 7.39 3.22 1.22 

29/01/2013 1:30 11.16 7.30 3.16 1.24 

29/01/2013 2:00 11.04 7.43 3.20 1.22 

29/01/2013 2:30 11.04 7.42 3.20 1.21 

29/01/2013 3:00 11.13 7.36 3.17 1.23 

29/01/2013 3:30 11.08 7.44 3.19 1.22 

29/01/2013 4:00 11.05 7.42 3.20 1.23 

29/01/2013 4:30 11.23 7.34 3.14 1.25 

29/01/2013 5:00 11.08 7.43 3.19 1.23 

29/01/2013 5:30 11.10 7.48 3.18 1.22 

29/01/2013 6:00 10.99 7.47 3.21 1.21 

29/01/2013 6:30 10.96 7.49 3.22 1.21 

29/01/2013 7:30 11.54 7.09 3.06 1.64 

29/01/2013 8:00 11.56 7.02 3.05 1.66 

29/01/2013 8:30 11.86 7.07 2.98 1.69 

29/01/2013 9:00 11.75 7.02 3.00 1.67 

29/01/2013 9:30 11.98 6.99 2.95 1.69 

29/01/2013 10:00 11.95 7.07 2.96 1.70 

29/01/2013 10:30 12.00 7.07 2.94 1.71 

29/01/2013 11:00 11.75 7.06 3.01 1.67 

29/01/2013 11:30 11.79 7.10 3.00 1.69 

29/01/2013 12:00 12.00 7.03 2.94 1.73 

29/01/2013 12:30 12.04 7.02 2.93 1.73 

29/01/2013 13:00 12.10 7.02 2.92 1.74 

29/01/2013 13:30 12.15 7.07 2.91 1.76 

29/01/2013 14:00 12.10 7.08 2.92 1.76 

29/01/2013 14:30 11.88 7.10 2.97 1.73 

29/01/2013 15:00 12.19 7.03 2.90 1.76 

29/01/2013 15:30 12.23 7.03 2.89 1.78 

29/01/2013 16:00 12.01 7.09 2.94 1.75 

29/01/2013 16:30 11.15 7.81 3.17 1.70 

29/01/2013 17:30 12.22 6.96 2.89 1.99 

29/01/2013 18:00 12.43 6.92 2.84 2.04 

29/01/2013 18:30 12.48 6.96 2.83 2.05 

29/01/2013 19:00 12.38 6.96 2.85 2.02 

29/01/2013 19:30 12.36 6.98 2.86 2.01 

29/01/2013 20:00 12.41 7.01 2.85 2.00 
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Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

29/01/2013 20:30 12.43 6.99 2.84 2.00 

29/01/2013 21:00 12.42 7.03 2.84 1.98 

29/01/2013 21:30 12.44 7.05 2.84 1.97 

29/01/2013 22:00 12.51 7.09 2.82 1.97 

29/01/2013 22:30 12.60 7.01 2.80 1.98 

29/01/2013 23:00 12.62 7.05 2.80 1.96 

29/01/2013 23:30 12.86 6.96 2.75 2.01 

30/01/2013 0:00 12.61 7.03 2.80 1.96 

30/01/2013 0:30 12.71 7.04 2.78 1.96 

30/01/2013 1:00 12.72 7.03 2.78 1.96 

30/01/2013 1:30 12.97 7.00 2.72 1.99 

30/01/2013 2:00 12.72 7.04 2.78 1.95 

30/01/2013 2:30 12.87 7.03 2.74 1.97 

30/01/2013 3:00 12.88 7.00 2.74 1.96 

30/01/2013 3:30 12.78 7.06 2.76 1.93 

30/01/2013 4:00 12.95 6.98 2.73 1.96 

30/01/2013 4:30 13.05 7.02 2.71 1.98 

30/01/2013 5:00 13.01 7.02 2.72 1.97 

30/01/2013 5:30 12.96 7.04 2.72 1.96 

30/01/2013 6:00 13.00 6.99 2.72 1.97 

30/01/2013 6:30 13.09 7.04 2.70 1.99 

30/01/2013 7:00 12.72 7.12 2.78 1.95 

30/01/2013 7:30 13.11 6.99 2.69 2.07 

30/01/2013 8:00 13.08 7.05 2.70 1.89 

30/01/2013 8:30 12.74 7.24 2.77 1.84 

30/01/2013 9:00 12.88 7.19 2.74 1.86 

30/01/2013 9:30 13.30 7.02 2.65 1.93 

30/01/2013 10:00 13.34 7.04 2.65 1.94 

30/01/2013 10:30 13.26 7.07 2.66 1.94 

30/01/2013 11:00 13.36 7.04 2.64 1.97 

30/01/2013 11:30 13.10 7.18 2.70 1.94 

30/01/2013 12:00 13.04 7.11 2.71 1.94 

30/01/2013 12:30 13.11 7.14 2.69 1.94 

30/01/2013 13:00 13.33 7.04 2.65 1.96 

30/01/2013 13:30 13.32 7.10 2.65 1.97 

30/01/2013 14:00 13.44 7.08 2.63 1.98 

30/01/2013 14:30 13.43 7.07 2.63 1.97 

30/01/2013 15:00 13.53 7.09 2.61 2.00 

30/01/2013 15:30 13.45 7.08 2.63 1.99 

30/01/2013 16:00 13.39 7.09 2.64 1.96 

30/01/2013 16:30 13.44 7.09 2.63 1.94 

30/01/2013 17:00 13.52 7.09 2.61 1.97 

30/01/2013 17:30 13.62 7.07 2.59 1.97 

30/01/2013 18:00 13.46 7.20 2.62 1.93 

30/01/2013 18:30 13.57 7.13 2.60 1.94 

30/01/2013 19:00 13.32 7.27 2.65 1.87 

30/01/2013 19:30 13.50 7.21 2.62 1.88 

30/01/2013 20:00 13.61 7.22 2.60 1.86 

30/01/2013 20:30 13.61 7.25 2.60 1.82 
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Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

30/01/2013 21:00 13.56 7.28 2.60 1.79 

30/01/2013 21:30 13.47 7.28 2.62 1.78 

30/01/2013 22:00 13.40 7.34 2.63 1.76 

30/01/2013 22:30 13.26 7.45 2.66 1.73 

30/01/2013 23:00 13.39 7.40 2.64 1.75 

30/01/2013 23:30 13.35 7.47 2.65 1.72 

31/01/2013 0:00 13.59 7.50 2.60 1.75 

31/01/2013 0:30 13.63 7.52 2.59 1.74 

31/01/2013 1:00 13.47 7.58 2.62 1.75 

31/01/2013 1:30 13.15 7.56 2.69 1.71 

31/01/2013 2:00 13.24 7.56 2.67 1.72 

31/01/2013 2:30 13.19 7.66 2.68 1.70 

31/01/2013 3:00 13.17 7.63 2.68 1.69 

31/01/2013 3:30 13.07 7.67 2.70 1.67 

31/01/2013 4:00 13.25 7.60 2.67 1.69 

31/01/2013 4:30 13.32 7.52 2.65 1.69 

31/01/2013 5:00 13.55 7.47 2.61 1.71 

31/01/2013 5:30 13.49 7.57 2.62 1.69 

31/01/2013 6:00 13.40 7.60 2.64 1.66 

31/01/2013 6:30 13.38 7.63 2.64 1.68 

31/01/2013 7:00 13.40 7.62 2.64 1.69 

31/01/2013 7:30 14.30 7.52 2.47 1.73 

31/01/2013 8:00 14.53 7.53 2.43 1.71 

31/01/2013 8:30 14.49 7.57 2.44 1.73 

31/01/2013 9:00 14.56 7.58 2.43 1.73 

31/01/2013 9:30 14.37 7.59 2.46 1.70 

31/01/2013 10:00 14.81 7.54 2.38 1.74 

31/01/2013 10:30 14.65 7.62 2.41 1.71 

31/01/2013 11:00 14.67 7.60 2.41 1.68 

31/01/2013 11:30 14.96 7.55 2.36 1.71 

1/02/2013 0:00 14.66 7.64 2.41 1.67 

1/02/2013 0:01 14.74 7.60 2.40 1.68 

1/02/2013 0:30 15.07 7.54 2.34 1.72 

1/02/2013 1:00 14.66 7.66 2.41 1.65 

1/02/2013 1:30 14.85 7.68 2.38 1.68 

1/02/2013 2:00 14.82 7.64 2.38 1.68 

1/02/2013 2:30 14.65 7.80 2.41 1.64 

1/02/2013 3:00 14.63 7.85 2.41 1.63 

1/02/2013 3:30 14.90 7.74 2.37 1.64 

1/02/2013 4:00 15.16 7.75 2.33 1.63 

1/02/2013 4:30 15.45 7.64 2.29 1.62 

1/02/2013 5:00 15.33 7.70 2.30 1.62 

1/02/2013 5:30 15.50 7.49 2.28 2.27 

1/02/2013 6:00 15.30 7.77 2.31 1.73 

1/02/2013 6:30 15.51 7.67 2.28 1.77 

1/02/2013 7:00 15.33 7.78 2.30 1.76 

1/02/2013 7:30 15.42 7.72 2.29 1.74 

1/02/2013 8:00 15.32 7.83 2.31 1.73 

1/02/2013 8:30 15.00 8.04 2.35 1.72 
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Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

1/02/2013 9:00 15.20 7.96 2.32 1.73 

1/02/2013 9:30 15.61 7.82 2.26 1.77 

1/02/2013 10:00 15.70 7.83 2.25 1.81 

1/02/2013 10:30 15.21 8.01 2.32 1.77 

1/02/2013 11:00 15.57 7.89 2.27 1.81 

1/02/2013 11:30 15.30 8.00 2.31 1.75 

1/02/2013 12:00 15.42 7.96 2.29 1.77 

1/02/2013 12:30 15.55 7.99 2.27 1.78 

1/02/2013 13:00 15.77 7.85 2.24 1.83 

1/02/2013 13:30 15.59 7.94 2.26 1.82 

1/02/2013 14:00 15.44 8.00 2.29 1.83 

1/02/2013 14:30 15.90 7.82 2.22 1.87 

1/02/2013 15:00 15.91 7.79 2.22 1.86 

1/02/2013 15:30 15.96 7.75 2.21 1.83 

1/02/2013 16:00 16.25 7.63 2.17 1.58 

1/02/2013 16:30 16.40 7.58 2.15 1.66 

1/02/2013 17:00 16.38 7.49 2.16 1.70 

1/02/2013 17:30 16.45 7.38 2.15 1.78 

1/02/2013 18:00 16.18 7.50 2.18 1.74 

1/02/2013 18:30 16.38 7.44 2.16 1.73 

1/02/2013 19:00 16.13 7.52 2.19 1.70 

1/02/2013 19:30 15.41 7.58 2.29 1.62 

1/02/2013 20:00 15.86 7.58 2.23 1.67 

1/02/2013 20:30 15.95 7.53 2.21 1.65 

1/02/2013 21:00 15.81 7.69 2.23 1.69 

1/02/2013 21:30 16.02 7.64 2.20 1.70 

1/02/2013 22:00 15.61 7.72 2.26 1.70 

1/02/2013 22:30 15.27 7.86 2.31 1.64 

1/02/2013 23:00 15.96 7.62 2.21 1.62 

1/02/2013 23:30 16.27 7.52 2.17 1.63 

2/02/2013 0:00 16.26 7.57 2.17 1.63 

2/02/2013 0:30 15.82 7.79 2.23 1.63 

2/02/2013 1:00 15.94 7.71 2.22 1.59 

2/02/2013 1:30 16.22 7.63 2.18 1.60 

2/02/2013 2:00 16.28 7.62 2.17 1.60 

2/02/2013 2:30 16.00 7.73 2.21 1.57 

2/02/2013 3:00 15.48 8.02 2.28 1.52 

2/02/2013 3:30 15.24 8.14 2.32 1.51 

2/02/2013 4:00 15.91 7.92 2.22 1.54 

2/02/2013 4:30 15.68 8.01 2.25 1.55 

2/02/2013 5:00 15.99 7.87 2.21 1.58 

2/02/2013 5:30 15.48 8.11 2.28 1.51 

2/02/2013 6:00 15.53 8.08 2.27 1.52 

2/02/2013 6:30 15.96 7.91 2.21 1.57 

2/02/2013 7:00 15.96 7.87 2.21 2.01 

2/02/2013 7:30 15.69 8.08 2.25 1.77 

2/02/2013 8:00 15.55 8.17 2.27 1.72 

2/02/2013 8:30 15.89 8.04 2.22 1.78 

2/02/2013 9:00 15.80 8.11 2.24 1.80 
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Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

2/02/2013 9:30 15.66 8.23 2.26 1.82 

2/02/2013 10:00 15.61 8.26 2.26 1.86 

2/02/2013 10:30 15.81 8.18 2.23 1.88 

2/02/2013 11:00 16.25 7.99 2.17 1.89 

2/02/2013 11:30 15.58 8.37 2.27 1.80 

2/02/2013 12:00 15.87 8.28 2.22 1.82 

2/02/2013 12:30 16.11 8.20 2.19 1.85 

2/02/2013 13:00 16.25 8.09 2.17 1.89 

2/02/2013 13:30 16.76 7.86 2.11 1.93 

2/02/2013 14:00 16.37 8.15 2.16 1.86 

2/02/2013 14:30 16.06 8.18 2.20 1.85 

2/02/2013 15:00 16.11 8.13 2.19 1.85 

2/02/2013 15:30 16.24 8.17 2.18 1.83 

2/02/2013 16:00 16.52 8.09 2.14 1.82 

2/02/2013 16:30 16.91 7.90 2.09 1.85 

2/02/2013 17:00 17.02 7.90 2.07 1.83 

2/02/2013 17:30 16.48 8.13 2.14 1.80 

2/02/2013 18:00 15.89 8.44 2.22 1.75 

2/02/2013 18:30 16.28 8.27 2.17 1.78 

2/02/2013 19:00 16.61 8.08 2.13 1.77 

2/02/2013 19:30 17.15 7.88 2.06 1.82 

2/02/2013 20:00 16.73 8.04 2.11 1.82 

2/02/2013 20:30 16.80 8.08 2.10 1.82 

2/02/2013 21:00 16.71 8.12 2.11 1.79 

2/02/2013 21:30 16.44 8.25 2.15 1.74 

2/02/2013 22:00 16.11 8.39 2.19 1.69 

2/02/2013 22:30 16.46 8.29 2.15 1.71 

2/02/2013 23:00 16.73 8.16 2.11 1.76 

2/02/2013 23:30 16.51 8.30 2.14 1.74 

3/02/2013 0:00 16.61 8.26 2.13 1.75 

3/02/2013 0:30 16.82 8.21 2.10 1.80 

3/02/2013 1:00 17.04 8.09 2.07 1.83 

3/02/2013 1:30 17.29 8.02 2.04 1.83 

3/02/2013 2:00 17.10 8.18 2.07 1.82 

3/02/2013 2:30 17.51 7.99 2.02 1.85 

3/02/2013 3:00 17.42 8.07 2.03 1.82 

3/02/2013 3:30 17.78 8.06 1.99 1.83 

3/02/2013 4:00 18.05 8.04 1.96 1.84 

3/02/2013 4:30 17.37 8.33 2.03 1.79 

3/02/2013 5:00 17.94 8.17 1.97 1.81 

3/02/2013 5:30 17.71 8.14 1.99 2.10 

3/02/2013 6:00 17.97 8.01 1.97 1.72 

3/02/2013 6:30 17.27 8.20 2.04 1.69 

3/02/2013 7:00 17.85 8.06 1.98 1.78 

3/02/2013 7:30 17.13 8.38 2.06 1.69 

3/02/2013 8:00 17.20 8.43 2.05 1.67 

3/02/2013 8:30 17.23 8.35 2.05 1.58 

3/02/2013 9:00 18.42 8.01 1.92 1.60 

3/02/2013 9:30 17.72 8.14 1.99 1.61 
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Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

3/02/2013 10:00 17.39 8.38 2.03 1.59 

3/02/2013 10:30 17.69 8.35 2.00 1.57 

3/02/2013 11:00 16.01 8.99 2.21 1.39 

3/02/2013 11:30 16.16 8.86 2.19 1.55 

3/02/2013 12:00 17.06 8.43 2.07 1.66 

3/02/2013 12:30 17.86 8.11 1.98 1.64 

3/02/2013 13:00 18.13 8.06 1.95 1.62 

3/02/2013 13:30 18.71 7.97 1.89 1.64 

3/02/2013 14:00 18.64 7.97 1.89 1.52 

3/02/2013 14:30 17.51 7.98 2.02 1.45 

3/02/2013 15:00 18.39 7.97 1.92 1.49 

3/02/2013 15:30 18.55 8.00 1.90 1.43 

3/02/2013 16:00 17.29 8.68 2.04 1.34 

3/02/2013 16:30 17.66 8.51 2.00 1.39 

3/02/2013 17:00 18.19 8.30 1.94 1.39 

3/02/2013 17:30 17.93 8.48 1.97 1.34 

3/02/2013 18:00 17.59 8.71 2.01 1.32 

3/02/2013 18:30 18.04 8.53 1.96 1.31 

3/02/2013 19:00 17.58 8.76 2.01 1.30 

3/02/2013 19:30 17.43 8.75 2.03 1.41 

3/02/2013 20:00 17.63 8.74 2.00 1.38 

3/02/2013 20:30 17.09 9.04 2.07 1.36 

3/02/2013 21:00 17.70 8.80 2.00 1.39 

3/02/2013 21:30 18.02 8.70 1.96 1.36 

3/02/2013 22:00 18.18 8.63 1.94 1.36 

3/02/2013 22:30 17.99 8.77 1.96 1.36 

3/02/2013 23:00 17.74 8.90 1.99 1.27 

3/02/2013 23:30 18.60 8.53 1.90 1.29 

4/02/2013 0:00 15.36 10.37 2.30 1.12 

4/02/2013 13:00 18.53 8.97 1.91 0.54 

4/02/2013 13:30 18.48 8.78 1.91 0.56 

4/02/2013 14:00 18.87 8.68 1.87 0.59 

4/02/2013 14:30 16.57 10.01 2.13 0.55 

4/02/2013 15:30 17.40 9.22 2.03 0.60 

4/02/2013 16:00 17.92 9.09 1.97 0.71 

4/02/2013 16:30 16.96 9.34 2.08 0.63 

4/02/2013 17:00 17.41 9.37 2.03 0.57 

4/02/2013 17:30 17.60 9.19 2.01 0.55 

4/02/2013 18:00 17.80 9.07 1.98 0.58 

4/02/2013 18:30 17.34 9.34 2.04 0.57 

4/02/2013 19:00 17.72 9.16 1.99 0.50 

4/02/2013 19:30 17.71 9.15 1.99 0.49 

4/02/2013 20:00 17.72 9.15 1.99 0.48 

4/02/2013 20:30 17.54 9.29 2.01 0.46 

4/02/2013 21:00 17.60 9.25 2.01 0.45 

4/02/2013 21:30 17.64 9.22 2.00 0.47 

4/02/2013 22:00 17.99 9.00 1.96 0.50 

4/02/2013 22:30 17.52 9.20 2.02 0.51 

4/02/2013 23:00 17.30 9.38 2.04 0.54 



104 

 

Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

4/02/2013 23:30 18.07 8.94 1.95 0.51 

5/02/2013 0:00 18.29 8.86 1.93 0.53 

5/02/2013 0:30 18.44 8.83 1.92 0.53 

5/02/2013 1:00 18.09 8.95 1.95 0.52 

5/02/2013 1:30 18.22 8.98 1.94 0.51 

5/02/2013 2:00 17.80 9.13 1.98 0.47 

5/02/2013 2:30 17.98 9.08 1.96 0.44 

5/02/2013 3:00 18.02 9.12 1.96 0.33 

5/02/2013 3:30 17.59 9.37 2.01 0.24 

5/02/2013 4:00 17.48 9.27 2.02 0.29 

5/02/2013 4:30 17.06 9.54 2.07 0.27 

5/02/2013 5:00 16.97 9.56 2.08 0.50 

5/02/2013 5:30 18.77 8.76 1.88 0.90 

5/02/2013 6:00 19.12 8.67 1.85 0.91 

5/02/2013 6:30 19.27 8.64 1.83 0.94 

5/02/2013 7:00 19.17 8.66 1.84 0.89 

5/02/2013 7:30 19.01 8.73 1.86 0.89 

5/02/2013 8:00 18.44 8.86 1.92 0.95 

5/02/2013 8:30 18.75 8.78 1.88 0.99 

5/02/2013 9:00 18.46 9.01 1.91 0.96 

5/02/2013 9:30 18.33 8.93 1.93 0.94 

5/02/2013 10:00 18.23 9.07 1.94 0.95 

5/02/2013 10:30 17.87 9.17 1.98 0.97 

5/02/2013 11:00 18.23 9.06 1.94 0.91 

5/02/2013 11:30 18.22 9.07 1.94 0.96 

5/02/2013 12:00 18.79 8.85 1.88 1.05 

5/02/2013 12:30 19.26 8.68 1.83 0.93 

5/02/2013 14:00 17.91 8.28 1.97 0.83 

5/02/2013 14:30 18.20 8.18 1.94 0.93 

5/02/2013 15:00 18.29 8.14 1.93 0.95 

5/02/2013 15:30 18.35 8.18 1.92 0.90 

5/02/2013 16:00 18.68 8.07 1.89 0.82 

5/02/2013 16:30 18.43 8.12 1.92 0.88 

5/02/2013 17:00 18.30 8.19 1.93 0.91 

5/02/2013 17:30 18.44 8.16 1.91 0.96 

5/02/2013 18:00 18.44 8.18 1.92 0.92 

5/02/2013 18:30 18.57 8.17 1.90 0.88 

5/02/2013 19:00 18.20 8.33 1.94 0.80 

5/02/2013 19:30 18.01 8.36 1.96 0.79 

5/02/2013 20:00 18.09 8.43 1.95 0.74 

5/02/2013 20:30 18.29 8.40 1.93 0.72 

5/02/2013 21:00 18.05 8.47 1.96 0.69 

5/02/2013 21:30 18.49 8.34 1.91 0.72 

5/02/2013 22:00 18.60 8.34 1.90 0.68 

5/02/2013 22:30 18.97 8.26 1.86 0.66 

5/02/2013 23:00 18.70 8.38 1.89 0.63 

5/02/2013 23:30 18.77 8.40 1.88 0.66 

6/02/2013 0:00 18.73 8.47 1.89 0.60 

6/02/2013 0:30 18.85 8.43 1.87 0.59 
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Time Stamp 
Combined 

Efficency (%) 
Fuel Use / 

ML 
Fuel Cost 
$/ML/m 

Total Head 
(m) 

6/02/2013 1:00 18.47 8.71 1.91 0.54 

6/02/2013 1:30 18.76 8.73 1.88 0.27 

6/02/2013 2:00 19.06 8.65 1.85 0.19 

6/02/2013 2:30 18.39 9.02 1.92 -0.04 

6/02/2013 3:00 18.69 9.04 1.89 -0.10 

6/02/2013 3:30 19.31 8.87 1.83 -0.16 

6/02/2013 4:00 18.89 9.29 1.87 -0.33 

6/02/2013 11:30 21.08 8.35 1.68 5.17 

6/02/2013 12:00 21.96 7.92 1.61 5.40 

6/02/2013 12:30 20.88 8.22 1.69 5.36 

6/02/2013 13:00 20.93 8.01 1.69 5.75 

6/02/2013 13:30 21.13 7.88 1.67 5.82 

6/02/2013 14:00 21.09 7.88 1.67 5.80 

6/02/2013 14:30 20.24 8.24 1.74 5.46 

6/02/2013 15:00 20.34 8.21 1.74 5.53 

6/02/2013 15:30 20.19 8.30 1.75 5.43 

7/02/2013 3:30 18.03 9.77 1.96 2.10 

7/02/2013 4:00 18.73 9.03 1.89 2.77 

7/02/2013 4:30 20.91 8.18 1.69 3.14 

7/02/2013 5:00 20.79 8.33 1.70 3.13 

7/02/2013 5:30 20.80 8.37 1.70 3.14 

7/02/2013 6:00 20.50 8.55 1.72 3.06 

7/02/2013 6:30 20.99 8.35 1.68 2.98 

7/02/2013 7:00 20.55 8.17 1.72 4.80 

7/02/2013 7:30 22.75 6.93 1.55 9.32 

7/02/2013 8:00 22.58 7.03 1.56 9.18 

7/02/2013 8:30 22.46 7.04 1.57 9.10 

7/02/2013 9:00 22.38 7.08 1.58 9.06 

7/02/2013 9:30 22.36 7.08 1.58 9.02 

7/02/2013 10:00 22.53 7.12 1.57 9.12 

7/02/2013 10:30 23.03 7.01 1.53 9.35 

7/02/2013 11:00 22.49 7.11 1.57 9.09 

7/02/2013 11:30 22.56 7.13 1.57 9.12 

7/02/2013 12:00 22.95 7.01 1.54 9.22 

7/02/2013 12:30 22.72 7.05 1.55 9.10 

7/02/2013 13:00 22.83 6.98 1.55 9.11 

7/02/2013 13:30 22.59 7.04 1.56 9.02 

7/02/2013 14:00 22.72 7.02 1.55 9.10 

7/02/2013 14:30 23.03 6.95 1.53 9.26 

7/02/2013 15:00 23.48 6.84 1.50 9.46 

7/02/2013 15:30 24.30 6.67 1.45 9.76 

7/02/2013 16:00 24.60 6.68 1.44 9.89 

7/02/2013 16:30 23.67 6.91 1.49 9.55 

7/02/2013 17:00 16.30 9.05 2.17 6.64 

 


