
University of Southern Queensland

Faculty of Health, Engineering & Sciences

DSP Based Lock-in Amplifier

A dissertation submitted by

Robert George Skillington

in fulfilment of the requirements of

Courses ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Electrical and Electronic)

Submitted: October, 2013

i

Abstract

This project aims to test the feasibility of, and identify key specifications for a small stand-

alone lock-in amplifier using an embedded device. This may be used in conjunction with

sensors generating a small signal and used in high noise environments. The intention is that

this form of implementation will drastically reduce the cost and size of a lock-in amplifier

while maintaining sufficient accuracy and noise immunity.

The specification for this project on “DSP-Based Lock-in Amplifier” was developed and

agreed on with the Faculty of Health, Engineering & Sciences.

For speed, cost and other considerations, computer simulations of microprocessor hardware

components were used in this project.

A Dual-phase lock-in amplifier was specifically chosen and examined for this project so as to

minimise the component count of future hardware implementations.

Specifications identified as key parameters were ADC resolution, ADC sample frequency and

integration time for hardware implementation. The specifications determined by this project

are within the specifications of current microprocessors and DSP’s.

Recommendations were made for possible future study

ii

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the

Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitled ``Research Project'' is to contribute to

the overall education within the student's chosen degree program. This document, the

associated hardware, software, drawings, and other material set out in the associated

appendices should not be used for any other purpose: if they are so used, it is entirely at the

risk of the user.

Dean

Faculty of Health, Engineering & Sciences

iii

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set

out in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for assessment

in any other course or institution, except where specifically stated.

Robert George Skillington

0050013265

Signature

 Date

iv

Acknowledgements

I would like to take this opportunity to thank all the people who helped and supported me

during the development of this project.

Firstly, I would like to thank my supervisor Dr John Leis for his support and his advice during

this project.

I would like to thank my university colleagues for their support and providing a positive

working atmosphere.

On a personal note, I would like to thank my friends and family for their prayers and support

during the time of this project and degree.

A special thanks to Ray Hawkins for his advice and help proofreading this dissertation.

v

Table of Contents

Abstract ... i

Acknowledgements ... iv

Table of Contents ... v

List of Figures .. vii

List of Tables .. viii

Nomenclature and Acronyms .. ix

Chapter 1 Introduction ... 1

1.1 Project Aim .. 1

1.2 Research Objectives ... 2

Chapter 2 Understanding the Environment for Lock-in Amplifiers 3

2.1 Chapter Overview .. 3

2.2 Environment and Issues.. 3

2.3 Lock-in amplifier Technologies ... 6

2.4 Types of Lock-in amplifiers ... 7

2.5 Single and Dual-Phase Lock-in amplifiers ... 7

2.6 General Considerations .. 11

Chapter 3 Development Methodology ... 12

3.1 Chapter Overview .. 12

3.2 Testing Environment .. 12

3.2.1 Lock-in Amplifier in MATLAB ... 13

3.3 Constraints ... 14

3.4 Constants .. 15

3.5 Algorithm Considerations .. 15

3.5.1 Lock-in Amplifier Algorithms in MATLAB .. 16

3.5.2 Outputs of this Study .. 17

3.6 Microprocessor Selection ... 18

Chapter 4 Algorithm Development .. 19

4.1 Chapter Overview .. 19

4.2 Algorithms Variations .. 19

4.2.1 Lock-in Amplifier in MATLAB ... 20

4.2.2 SNR of Input Signal ... 23

4.2.3 Simulating a Microprocessors ADC ... 27

4.2.4 MATLAB ‘seed’ Function ... 29

vi

4.3 Results of Final Program .. 30

4.4 Input Real Signal .. 33

Chapter 5 Analysis ... 35

5.1 Chapter Overview .. 35

5.2 Analysis of Results and Plots ... 35

5.3 Real Sampled Signal .. 37

Chapter 6 Project Conclusions ... 38

6.1 Optimal Specifications ... 38

6.2 Opportunities for Further Study ... 39

6.3 Conclusion Summary ... 39

References .. 40

Appendix A .. 41

Appendix B .. 43

Appendix C .. 53

vii

List of Figures

Figure 2-1: Weak signal amplified ready for measurement .. 4
Figure 2-2: Weak signal passed through a band pass filter then amplified 4
Figure 2-3: Weak signal passed through a band pass filter then amplified, then run through a

LIA .. 5

Figure 2-4: A basic lock-in amplifier system adapted from Vogelgesang, 2004. 6
Figure 2-5: A diagram of a single multiplying lock-in amplifier, adapted from Li et al.

(2011)... 8
Figure 2-6: Digital lock-in amplifier, adapted from Li et al. (2011) 9

Figure 4-1: Plot of signal and reference signals ... 20
Figure 4-2: Result of multiplication of signal and reference cosine signal 21
Figure 4-3: Result of multiplication of signal and reference sine signal 22
Figure 4-4: Noise add to the signal at SNR of Inf dB, 2 dB and -37.9 dB. 24

Figure 4-5: Amplitude out using linear spacing for a range from 0.1 to 1000 25
Figure 4-6: Average error2 using logarithmic spacing on a logarithmic y axis 26
Figure 4-7: Amplitude out using logarithmic spacing for a range from 0.1 to 100 27
Figure 4-8: Experimental signal quantised to 3 bit with zero added noise............................ 28

Figure 4-9: Average error2 compared to ADC resolution for different SNR levels. 28
Figure 4-10: Amplitude out when no ‘seed’ option was used in the randn function 29
Figure 4-11: Amplitude out compared to SNR for an integration time of 1 s 32
Figure 4-12: Samples signal with gas present. ... 33

Figure 4-13: X and Y channels before LPF .. 34
Figure 5-1: Noise Immunity compared to ADC Resolution ... 35
Figure 5-2: SNR compared to sample frequency.. 36
Figure 5-3: SNR compared to Integration time .. 36

Figure C-1: Amplitude out using linear spacing for a range from 0.1 to 100 53
Figure C-2: Average error2 using linear spacing on a logarithmic y axis 53
Figure C-3: Plot of amplitude out using a log spacing ... 54
Figure C-4: Average error2 with a straight line approximation for 3 bit ADC at sample

frequency of 80 kHz ... 54
Figure C-5: An oscilloscope screen shot of a sampled gas experiment. 55
Figure C-6: Samples signal without gas present. .. 55

viii

List of Tables

Table 4-1: Table of input and output values for amplitude and phase for zero noise 22
Table 4-2: MATLAB program output for various signal phase delays 23
Table 4-3: Signal to noise ratio (dB) at the 2% error output for 1000 sets of random noise. 30
Table 4-4: Signal to noise ratio (dB) at the 2% error output 5000 sets of random noise. 31

Table 4-5: No seed function used for 5000 sets of random noise. .. 31
Table 4-6: Average error squared at the 2% error output (x10-3) for 5000 sets of random

noise. .. 31
Table 4-7: Lock-in amplifier algorithm outputs for a sampled signal. 34

ix

Nomenclature and Acronyms

LIA Lock-in amplifier

SNR Signal to Noise Ratio

DSP Digital Signal Processor

AC Alternating Current

DC Direct Current

LPF Low Pass Filter

BPF Band Pass Filter

PLL Phase Locked Loop

dB Decibel

1

Chapter 1 Introduction

1.1 Project Aim

This project aims to test the feasibility of, and identify key specifications for a small stand-

alone lock-in amplifier using an embedded device. This may be used in conjunction with

sensors generating a small signal and used in high noise environments. The intention is that

this form of implementation will drastically reduce the cost and size of a lock-in amplifier

while maintaining sufficient accuracy and noise immunity.

A real world application for such a device might be a gas detector. The current size of a

laboratory lock-in amplifier (rack size) and cost greater than $4000 prohibits the use of these

devices in small low cost applications.

The final implementation (not part of this project) will be carried out using a microprocessor

that has a suitable architecture to implement a digital signal processing (DSP) based lock-in

amplifier. Thus, this project will identify the general specifications of the hardware and

software to be implemented in a detection systems.

For speed, cost and other consideration computer simulations of the hardware components

will be used in this project.

2

1.2 Research Objectives

The specification for this project on “DSP-Based Lock-in Amplifier” was developed and

agreed on with the Faculty of Health, Engineering & Sciences. The objectives identified were:

1. Research the design and use of the Lock-in Amplifier, both analogue and digital.

2. Determine the set of algorithms to be implemented for the lock-in, including the

reference signal multiplication, low pass filtering, and the separate phase-locked loop.

3. Evaluate the performance of the algorithms as implemented, and show the signal

recovery performance for various parameter settings at different SNR levels.

4. Evaluate the performance in MATLAB using sampled real-world signals.

5. Investigate suitable processor architectures and development systems for an

embedded lock-in amplifier.

3

Chapter 2 Understanding the Environment for Lock-in

Amplifiers

2.1 Chapter Overview

This chapter examines the different type of lock-in amplifiers and their function. The digital

lock-in amplifier and existing literature on microprocessor based lock-in amplifiers.

2.2 Environment and Issues

The signal is hidden in the noise. The target environment is one in which the desired signal is

much smaller than the noise in which it is embedded. To analysis the signal we need it

amplified.

The following examples will demonstrate methods of retrieving the signal of interest adapted

from Wenn (2007). A general amplifier will amplify the signal and the noise within the

amplifiers band width and as well, injects additional noise.

Consider a clean sine wave with an amplitude of 100 nV at a frequency of 50 kHz. After the

signal is amplified through an amplifier with an input noise of 5 𝑛𝑉/√𝐻𝑧 and a gain of 1000.

If the amplifier has a bandwidth of 100 kHz it will add bandwidth noise equal to that in

equation 2.2.1.

5 𝑛𝑉 × 1000 × √100 𝑘𝐻𝑧 = 1.6 𝑚𝑉 (2.2.1)

After the signal is amplified it becomes 100 μV (1000 × 100 𝑛𝑉) which is 16 times smaller

than the surrounding noise of 1.6 mV, this is demonstrated by the area under the amplifier

bandwidth in Figure 2-1.

4

Figure 2-1: Weak signal amplified ready for measurement

When we examine these equations we see that it is the bandwidth of the noise that has caused

the high output noise levels. The solution is to reduce the bandwidth.

One method is to use a band pass filter. If the signal is first passed through a high quality band

pass filter with a Q factor of (say) 100 which has a bandwidth of 500 Hz (50 kHz/Q) at a centre

frequency of 50 kHz. The noise level present after filtering and amplification is given by

equation 2.2.2.

5 𝑛𝑉 × 1000 × √500 𝐻𝑧 = 112 𝜇𝑉 (2.2.2)

After the filtered signal has been amplified the signal is still 1.1 times smaller than the

surrounding noise of 112 μV, this is demonstrated by the area under the band pass filter

bandwidth in Figure 2-2 the diagram demonstrates the difference of filtering and

amplification.

Figure 2-2: Weak signal passed through a band pass filter then amplified

5

Even though the filtered signal is approximately equal to the noise it is still difficult to measure

and analysis.

An even tighter bandwidth is required. Lock-in amplifiers are one way to achieve this.

The Q factor of a lock-in amplifier can be as high as 10,000 this Q factor gives a bandwidth

of 5 Hz (50 kHz/Q). The noise level present after the lock-in is set to the signal frequency, is

given by equation 2.2.3.

5 𝑛𝑉 × 1000 × √5 𝐻𝑧 = 11.2 𝜇𝑉 (2.2.3)

The noise present after using the lock-in amplifier is approximately 9 times smaller than the

signal, an accurate measurement can then be taken of signal. Figure 2-3 shows the progression

of the noise levels produced by amplification, filtering and the use of a lock-in amplifier.

Figure 2-3: Weak signal passed through a band pass filter then amplified, then run through a LIA

As can be seen from the example above, using a lock-amplifier will reduce the bandwidth of

the noise to the extent that the signal is sufficiently larger than the noise and can be identified

and analysed. This is the rationale for the use of lock-in amplifies with remote sensors that

produce weak signals.

6

2.3 Lock-in amplifier Technologies

A basic lock-in amplifier system is comprised of a wave generator, ‘experiment’ and the lock-

in amplifier as shown in Figure 2-4. The wave generator produces a reference sine wave which

is the input into the experiment. As the wave passes through the experiment it is phase shifted

and noise is induced on the signal. An example of this is when a light source is pulsed at the

reference frequency and is then received by a photo detector. The output of the experiment

and the reference sine wave are then multiplied together in the lock-in amplifier (Vogelgesang,

2004). This multiplication results in the cancelation of the frequencies other than the reference

signal frequency (Aguirre et al. 2011).

Figure 2-4: A basic lock-in amplifier system adapted from Vogelgesang, 2004.

For a lock-in amplifier to operate effectively it must be set to detect the signal of interest. This

is done by supplying the lock-in with a fixed reference voltage of the same frequency and

phase as the experimental signal. This reference signal is used to lock onto the same frequency

in the experimental signal to retrieve the experiment result. This locking ensures that any

reference signal changes are taken into account (Kim et al. 2009); this process is how the

instrument gets its name.

There are a number of ways of achieving this ‘locking’. The following section looks at the

different ways of achieving this ‘locking’ function by examining the different types and sub-

types of lock-in amplifiers.

LOCK-IN

AMPLIFIER

Noise Wave

Generator

‘Experiment’

Reference

Reference Experiment

Signal

Output

7

2.4 Types of Lock-in amplifiers

There are two main types of lock-in amplifiers. These can be separated analogue and digital

 Analogue

Analogue lock-in amplifiers use analogue multipliers which are expensive, complex

and can be nonlinear (Bengtsson, 2012). The analogue lock-in amplifiers also require

a phase shifter to align the reference signal and the experimented signal to

compensate for line length or experimental delay (Davies & Meuli, 2010).

 Digital

There two types of digital lock-in amplifiers categorised by their use of multipliers:

o Digital Switch Lock-in Amplifier. A digital switch lock-in amplifier uses

an analogue polarity-reversing switch operated at the reference frequency;

these are linear but introduce the unwanted odd harmonics (Davies & Meuli,

2010).

o Digital Lock-in Amplifier. A digital lock-in amplifier uses software to

perform the signal multiplication, low pass filtering and to generate the

reference signal.

This project will look at the lock-in amplifier which uses a digital lock-in amplifier.

2.5 Single and Dual-Phase Lock-in amplifiers

Some ‘experiments’ cause phase changes which cause a decrease in sensitivity. Single lock-

in amplifiers are affected by this phase change. The single multiplying lock-in amplifier shown

in Figure 2-5 uses a phase shifter to align reference signal with the experimental signal so that

the signal of interest is maximised (Son et al. 2010).

8

Figure 2-5: A diagram of a single multiplying lock-in amplifier, adapted from Li et al. (2011)

To overcome the need to tune the setup with the phase shifter, two multiplication blocks are

introduced in to the lock-in amplifier. The two multiplication block lock-in amplifier is

referred to as a digital dual-phase lock-in amplifier and is shown in Error! Reference

source not found.. It shows the dual-phase multiplication of the experimental signal with both

the reference signal and the reference signal phase shifted by 90° (Son et al. 2010). The signal

and the reference are multiplied together to produce the multiplier output which consists of a

zero frequency (DC) and harmonics. This is passed through a low pass filter to remove the

harmonics and thus obtain the remaining DC signal. This signal is proportional to the input

signal (Son et al. 2010).

This layout removes the need for a phase shifter to correct the alignment of the reference signal

and the experiment signal (Bengtsson, 2012).

The multiplier outputs for the X channel (VOUTX) and Y channel (YOUTX) are shown below

where θ is the phase of the signals (not the phase output).

sin (ωt)

Experiment ADC

Wave Generator

Lock-in Amplifier

OR

Ref

LPF

Phase Shifter

Multiplier

9

Figure 2-6: Digital lock-in amplifier, adapted from Li et al. (2011)

The following derivation shows the principle of the lock-in amplifier adapted from Li et al.

(2011)

𝑉𝐼𝑁 = 𝑉𝑠𝑖𝑔 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔) (2.5.1)

𝑉𝑅𝐸𝐹𝑐𝑜𝑠 = 𝑉𝑟𝑒𝑓 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓) (2.5.2)

𝑉𝑅𝐸𝐹𝑠𝑖𝑛 = 𝑉𝑟𝑒𝑓 sin(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓) (2.5.3)

𝑉𝑂𝑈𝑇𝑋 = 𝑉𝐼𝑁 × 𝑉𝑅𝐸𝐹𝑐𝑜𝑠 (2.5.4)

𝑉𝑂𝑈𝑇𝑋 = 𝑉𝑠𝑖𝑔 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔) × 𝑉𝑟𝑒𝑓 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓) (2.5.5)

𝑉𝑂𝑈𝑇𝑋 =
1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 cos(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓) +

1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 cos(2𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔 + 𝜃𝑟𝑒𝑓) (2.5.6)

𝑉𝑂𝑈𝑇𝑋 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
cos(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓) (After low pass filter) (2.5.7)

+90

°

cos (ωt)

sin (ωt)

Experiment ADC

Wave Generator

Lock-in Amplifier

OR

Ref

X

Y

LPF

10

𝑉𝑂𝑈𝑇𝑌 = 𝑉𝐼𝑁 × 𝑉𝑅𝐸𝐹𝑠𝑖𝑛 (2.5.8)

𝑉𝑂𝑈𝑇𝑌 = 𝑉𝑠𝑖𝑔 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔) × 𝑉𝑟𝑒𝑓 sin(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓) (2.5.9)

𝑉𝑂𝑈𝑇𝑌 =
1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 sin(2𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔 + 𝜃𝑟𝑒𝑓) −

1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 sin(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓) (2.5.10)

𝑉𝑂𝑈𝑇𝑌 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
sin(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓) (After low pass filter) (2.5.11)

The output is maximised when the phase difference between the signal and reference is zero

(Son et al. 2010). The outputs are passed through low pass filters (LPF) to remove the

alternating current (AC) component leaving behind the direct current (DC) amplitude. This

results in equations 2.5.12 and 2.5.13

𝑉𝑂𝑈𝑇𝑋 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
cos(𝜃) (2.5.12)

𝑉𝑂𝑈𝑇𝑌 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
sin(𝜃) (2.5.13)

The two outputs of the dual-phase multipliers (𝑉𝑂𝑈𝑇𝑋 & 𝑉𝑂𝑈𝑇𝑌) are converted into the

magnitude of the signal and phase difference between the signal and the reference with

equations 2.5.14 and 2.5.15 (Li et al. 2011). When the reference signal is 1 volt and the phase

(𝜃) is zero the output is maximised. The magnitude does not depend on the phase difference

between the signal and the reference signal (Aguirre et al. 2011).

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (𝑉𝑠𝑖𝑔) = 2 × √𝑉𝑂𝑈𝑇𝑋
2 + 𝑉𝑂𝑈𝑇𝑌

2
 (2.5.14)

𝑃ℎ𝑎𝑠𝑒 (𝜑) = tan−1 (
𝑉𝑂𝑈𝑇𝑌

𝑉𝑂𝑈𝑇𝑋
) (2.5.15)

The importance of the dual-phase lock-in amplifier is that for this project the phase shifter and

additional components are not required. The signal will be maximised and the project can be

simplified.

11

2.6 General Considerations

Second Harmonic

Use of the 2nd harmonic. Son et al. (2010) identified that 1/𝑓 noise exists at the DC and low

frequency range of sensor output signals. If the signal is lower than the 1/𝑓 noise amplitude

the DC lock-in method will not detect the signal. He suggests that using the second harmonic

of the reference signal which is away from the 1/𝑓 noise will recover a signal with a better

SNR than that at the reference frequency.

Tolerance accuracy

The general tolerable noise level of a lock-in amplifier is one that does not affect the output

more than a few percent above the input amplitude (web document thinksrs, 2013).

Output noise immunity

Aguirre et al. (2011) proposed a low power analogue lock-in amplifier for portable sensing

which was able to recover signal information from a SNR of -24 dB with errors below 6%.

These levels may be a bench mark to compare the performance of the DSP based lock-in

amplifier.

The SNR is a measurement to determine the amount of noise present on the signal of interest

is calculated by equation 2.6.1 adapted from Li et al. (2011).

𝑆𝑁𝑅 = 10 × log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) (𝑑𝐵) (2.6.1)

Lock-in amplifier cost

A simple google search for ‘Lock-in amplifier cost’ points to a link showing the price of a

Stanford Research Systems lock-in amplifier priced from $4150. This quick search shows the

large expense of dedicated lock-in amplifiers and the need to reduce this cost for use in

reasonable inexpensive remote sensors.

12

Chapter 3 Development Methodology

3.1 Chapter Overview

This chapter discusses the methodology used to carry out this project. This includes:

 Testing environment

 Constraints (2nd harmonic, physical hardware, and other things not taken into account

in this project)

 Constants (Noise, Phase, 2% acceptable output, etc.)

 Algorithm development

3.2 Testing Environment

The final target implementation environment of the output of this study is, either:

 DSP

 microprocessor

 combined DSP plus microprocessor such as dsPIC processor

All the above may be suited to the task, but because of the range of capabilities and prices of

various hardware components, it is better to delay this selection until more is understood and

known.

Testing a range of hardware with different ADC resolutions and sample frequencies would

be:

 expensive

 time consuming

 difficult to replicate the same experimental conditions

 uncertainty of errors and anomalies

13

Therefore MATLAB was chosen as a hardware emulator for development and testing so that

there would be no hardware limitation or constraints. This will facilitate obtaining better

general specifications of the target implementation environment.

3.2.1 Lock-in Amplifier in MATLAB

MATLAB was used to develop and test the digital lock-in amplifier algorithms by varying

specific parameters to simulate the restrictions of a reasonable priced microprocessor and

DSP’s. In this way the project was able to test whether the use of DSP and microprocessors

was reasonable in terms of it accuracy and noise immunity. That is, is this a good way to go?

One of the outcomes of this project was to determine the required microprocessor

specifications suitable to implement a lock-in amplifier.

MATLAB allows us to identify the specifications using MATLAB’s inherit benefits which

are:

 low cost (availability)

 reduce hardware setup and test time

 consistent test conditions

 the ability to change simulation variables easily

 reduce errors where the source of the error would not be easily determined

 good representation of the data

 implement large volume of test iterations

 uses a C like programing language which is reasonable easy to transfer to real world

microprocessors

The limitations of the MATLAB program include:

 The gap between the pseudo representation of hardware architecture (not even

emulation) and the implementation in physical hardware will result in lot of issues

which will not be resolved in this project.

 MATLAB will be generally slower than a physical implementation. This, however,

is not necessarily a bad thing whilst it will increase the iteration of testing the real

world implementation will be expected to be faster.

14

Based on the analysis of the results from the MATLAB program, the microprocessor

specifications can be suggested. The MATLAB program was used to determine the

microprocessors ADC resolution and sample frequency, other microprocessor specifications

that are to be taken into consideration will include:

 price

 size

 type of software language used on the microprocessor

 development systems or programmers required

The implementation of a digital lock-in amplifier using a microprocessor or DSP needs to

have minimum number of components. Therefore the aim is to maximise the microprocessors

ability to produce the reference signal internally and its inbuilt analogue to digital converter

(ADC). This drove the project to the use of a dual-phase lock-in amplifier.

3.3 Constraints

Test for increased noise immunity. In the research literature revealed that increased noise

immunity could be obtained by using 2nd harmonics. (Refer 2.6 above) This project uses

simpler algorithms at this stage, so as to minimise costs in specified hardware. It was felt that

if the outcomes showed that the noise immunity was insufficient, then implementation of a

more complicated algorithm to use 2nd harmonics may be warranted.

Thus the 2nd harmonic was not used in this project but considered worth investigating in a

subsequent project, if required.

Implementation in physical hardware. This project specifically avoided implementation in

physical hardware for the reasons given above. (Ref 3.2.1)

Time. The memory capacity of the programs host computer resulted in it not being able to run

enough random noise samples to produce an exact representation of a Gaussian noise.

ADC simulation limitations. For simplicity the MATLAB program did not simulate the ADC

sample frequency fully. It did not simulate the sampling of a near continuous waveform and

keeping the reference signal at a constant amount of samples for each sample frequency

change. Instead, an experimental signal was produced to match the number of the samples in

the reference signals for each ADC sample frequency change;

15

Signal Amplitude. The simulated experimental signal amplitude was not changed to reflect

how the physical experiment amplitude would change. The simulated experimental signal

amplitude was set at 1.8 volts to maintain a level of constancy throughout the simulations.

3.4 Constants

Noise. To see how the lock-in amplifier would perform under different SNR conditions, it was

planned to develop and apply simulated white noise to the experimental signal.

Phase. It was planned to implement a dual-phase lock-in amplifier because it reduced the

amount of code required. The time required for development of code to simulate a phase

shifter, and possibly a phase locked loop (PLL), would seriously compromise the project. The

simulated phase delay of the experimental signal therefore can be set at an arbitrary constant.

2% acceptable output. It was important to identify a point where the project could determine

that a true positive signal was ‘seen’. The literature search (Ref 2.6 above) suggested that a

few percent of the signal was acceptable. The project supervisor nominated 2% as the point

of determining true positive results.

Reference frequency. The project supervisor identified 2000 Hz to be used as the reference

frequency. This was based on a physical experiment currently running in the laboratory.

3.5 Algorithm Considerations

Algorithm development is the core of the project and is discussed more fully in subsequent

sections of this document (Ref Chapter 4 below). The following general comments apply

regarding algorithm development.

A review of the current literature was used to determine the equations to be used for the digital

lock-in amplifier. The review also investigated the principles behind the equations and how

they are used to perform the lock-in function. Derivations using the lock-in amplifier equations

were written out by hand to form a better understanding of their operation (Ref 2.5).

An understanding of analogue lock-in amplifiers was first developed to form a knowledge

foundation of the lock-in amplifier. This lead to investigating the different variations (Ref 2.4)

of digital lock-in amplifiers. Digital lock-in amplifiers which use digital signal processes

(DSP) and dual-phase multipliers were mainly considered.

16

3.5.1 Lock-in Amplifier Algorithms in MATLAB

A MATLAB program was written such that each of the parameters that simulate the

microprocessor specifications could be easily changed to rerun the program for the different

parameters.

Specifically, the lock-in amplifier algorithms to function correctly, and provide adequate

outputs, the simulated environment requires certain components to be present or simulated.

The following lists these components:

Input for the simulated ‘experiment’

 Reference signal (constant amplitude and frequency at a constant phase)

 Simulated experimental signal

 Noise injection

Output from simulated ‘experiment’/ input to simulated lock-in amplifier

 Derived SNR from experimental output

 ADC sample frequency simulation

Simulated components

 ADC bit resolution simulation

 Low pass filter

 Lock-in amplifier amplitude output

Output of simulated lock-in amplifier

 Average error squared output (σ2)

Maximum flexibility of parameters was chosen to drive the simulation so as to obtain a

maximum understanding of the requirements of the future implementation hardware.

17

3.5.2 Outputs of this Study

This project has a number of specified objectives which are listed below, but there are a

number of other areas of understanding that are desirable and useful for determining the

feasibility and specification of a future hardware implementation.

Specified Project Objectives

1. Determine the set of algorithms to be implemented for the lock-in, including the

reference signal multiplication, low pass filtering, and the separate phase-locked loop.

2. Evaluate the performance of the algorithms as implemented, and show the signal

recovery performance for various parameter settings at different SNR levels.

3. Evaluate the performance in MATLAB using sampled real-world signals.

4. Investigate suitable processor architectures and development systems for an

embedded lock-in amplifier.

Desirable information to be gained from this project

 Is the implantation of lock-in amplifiers on a DSP or microprocessor feasible? Or is

the technology just not there yet?

 What is the minimum ADC bit resolution that will give ‘acceptable’ results?

 Is there an optimal ADC bit resolution. Or is higher resolution better? Is the ‘quality’

linear?

 How does the ADC sample frequency effect the result?

 Does Integration time affect the results? If so, how?

 Is there a relationship between sample frequency, bit resolution and integration time?

Can one be traded off for the other?

18

3.6 Microprocessor Selection

Based on the analysis of the results from the MATLAB program the microprocessor

specifications can be suggested. The MATLAB program was used to determine the suitable

ADC resolution and sample frequency, other microprocessor specifications.

These specifications can be then used to determine suitable microprocessor or DSP hardware

and final choices can be determined taking into consideration:

 price

 size

 type of software language used on the microprocessor

 development systems or programmers required

The actual selection of hardware and the implementation are not seen as part of this project.

19

Chapter 4 Algorithm Development

4.1 Chapter Overview

This chapter will discuss the implementation of the lock-in amplifier algorithms in MATLAB.

The chapter will follow the development of the MATLAB program from a basic lock-in

implementation to simulate a range of microprocessor specifications. The plots produced

during the development of the program were used as a visual check will also be discussed.

The processing of an external sampled signal will be discussed.

The final main MATLAB program which performed the microprocessor specification

simulation is listed in the Appendix B.

4.2 Algorithms Variations

The following subsections demonstrate the progression of the lock-in amplifier algorithms

implemented in a MATLAB program.

 A version of the program using a square wave reference was tested. The main program

(Appendix B) can easily be changed to use a square reference signal. The outputs for the

square wave reference version were similar to the outputs of the sinusoidal reference wave

version. For this reason the results were not duplicated using the square wave reference.

The values of the SNR, average error2 and amplitude out for each ADC bit resolution were

stored for future plotting. The MATLAB program used to produce the plots from the data

produced by the final main MATLAB program is listed in the Appendix B.

20

4.2.1 Lock-in Amplifier in MATLAB

The start of the MATLAB program was written to create the experimental signal and the two

reference signals. These signals were made into matrices that had a time period of 0.1 seconds

in length at a constant frequency of 2 kHz.

To simulate the increase or decrease in ADC sample frequency the amount of values per cycle

for each signal matrix were increased or decreased. This was done while maintaining the

correct frequency and the same time period. The sample frequency was set to 80 kHz as a

starting figure.

The experimental signal matrix (signal) was made to be a sinusoidal cosine waveform with a

phase delay of π/10 radians and an amplitude of 1.8 volts.

The first reference signal matrix was made to be a sinusoidal cosine waveform with zero phase

shift. The second reference signal matrix was made to be a sinusoidal cosine waveform with

a phase delay of 90 degrees (which becomes a sine wave). Both reference signal matrices have

an amplitude of 1 volt. The signal and the two reference signals were plotted to see if their

phases are correct shown in Figure 4-1.

Figure 4-1: Plot of signal and reference signals

21

The lock-in amplifier equations were programed next. The two reference multiplication stages

were programed using the equations in section 2.5.

The signal matrix is multiplied element wise by the cosine reference signal matrix as well the

signal matrix is multiplied element wise by the sine reference signal matrix. This forms two

separate matrices which are equivalent to equations (2.5.6) and (2.5.10) (refer to 2.5). Figure

4-2 and Figure 4-3 below show the signal and the reference signals with the result of the

multiplication below each pair.

The two output matrices from the multiplication stage require filtering. A moving average low

pass filter was written and tested in the MATLAB program but it took a lot of processing time

so it was removed.

Figure 4-2: Result of multiplication of signal and reference cosine signal

22

Figure 4-3: Result of multiplication of signal and reference sine signal

The moving average low pass filter was replaced by a low pass filter which used MATLABs

‘mean’ function. The mean function found the DC value of the multiplication stage matrices.

The output of the filters produced a single value for each of the X and Y channel outputs. The

X and Y channel outputs are then used to find the amplitude of the signal and phase difference

between the signal and the reference signal.

The outputs of the lock-in amplifier algorithms are two values, one for the amplitude signal

and one for the phase of the signal, for the set integration time period.

The MATLAB program for the final correctly functioning lock-in amplifier algorithms

(without added noise and ADC resolution) is listed in the Appendix B.

The preceding implemented the lock-in amplifier algorithms. To test the lock-in amplifiers

performance the amplitude and phase of the output were compared with the input amplitude

and phase to see if they were equal. The input and the output should be equal because there is

no noise added to the signal. Table 4-1 shows the lock-in amplifier input and output values.

Table 4-1: Table of input and output values for amplitude and phase for zero noise

Variable Input Output

Amplitude 1.800 1.800

Phase delay of signal 𝜋

10
= (0.31416) 0.31416

Noise 0.00 SNR: Inf dB

23

The phase output results were not displayed in future program versions after it was seen that

the algorithms were functioning correctly, as it had no effect on the amplitude output.

Furthermore the phase was held constant for all following simulations (so would not change).

Table 4-2 below shows that the output of the lock-in amplifier is not effected by the phase

delay of the signal.

Table 4-2: MATLAB program output for various signal phase delays

Phase delay of signal Amplitude

Input (radians) Output (radians) Input (V) Output (V)

𝜋

10
= (0.31416) 0.31416 1.800 1.800

𝜋 = (3.1416) 3.1416 1.800 1.800

2𝜋 = (0.0000) -2.8267e-014 ≈ 0 1.800 1.800

4𝜋

3
= (4.18 − 2𝜋 =

−2.094)

-2.0944 1.800 1.800

25𝜋

87
= (0.902756) 0.90276 1.800 1.800

4.2.2 SNR of Input Signal

After the lock-in amplifier algorithms functioned correctly by outputting the input values noise

was added to the signal to test the lock-in amplifier noise rejection performance. The noise

was added using MATLABs ‘randn’ function which produces a random number with a

Gaussian distribution. The random noise was made into a matrix the same length as the signal

so that it could later be added to the signal. This random matrix was then multiplied by a noise

level multiplication factor. The multiplication factor was a range of increasing incremental

values to simulate the level of noise increasing in the ‘experiment’. The multiplication factor

range will be discussed later in this section. Figure 4-4 show the signal with no noise and the

signal with two increasing noise multiplication factors.

24

Figure 4-4: Noise add to the signal at SNR of Inf dB, 2 dB and -37.9 dB.

The signal to noise ratio (SNR) of the signal was used to determine the level of noise immunity

at which the lock-in amplifier could still produce an acceptable output. The SNR of the signal

was calculated using the signal power and noise power using equation 2.6.1 in section 2.6.

The amplitude of the lock-in amplifier output was plotted against the SNR for the range of

noise multiplication factors. It was expected that as the noise increased that the amplitude

would increase and the output would not be acceptable. The question was then raised ‘How

far above the input amplitude (1.8 V) could the output get before it was deemed unacceptable?’

A value of two percent above the input amplitude was chosen as discussed previously (Ref

3.4). The two percent error was marked on the output amplitude plot to give a visual

representation and the value of the SNR at this point was also displayed in the title of the plot.

The first version of code used a noise multiplication factor range from 0.1 to 1000 with 100

steps spaced linearly over the range. This large range was used because the lock-in amplifier

algorithm performance was unknown. Figure 4-5 shows the approximate output range of the

lock-in amplifier, seen to the left of the plot the values below -40 dB do not need to be

calculated. Therefore the range of noise multiplication factors can be reduced to save

computation time.

25

The error between the input and the output was calculated to monitor the output error as the

noise level increased. This only produced one number for each level noise in the range, the

value of this would change each time the program was run due to the different random noise.

It was recommended by the project supervisor to run 1000 sets of random noise. This amount

of random samples was tried but could not be run successfully on the host computer at that

time (it kept on crashing). A new host computer was purchased, this computer was able to run

the 1000 sets successfully. The 1000 sets of random noises were averaged so that a more

appropriate effect of the Gaussian noise was achieved. So 1000 sets of random noises were

averaged and squared to produce an average error squared (σ2) for each noise level. This σ2 is

the square of the average of the error between the input amplitude and the output amplitude

for the set of random numbers. A straight line approximation was applied to the average error2

plot which can be found in Appendix C.

Figure 4-5: Amplitude out using linear spacing for a range from 0.1 to 1000

The noise multiplication factor range was reduced to a range of 0.1 to 100 to save on program

run time plot can be seen in the Appendix C.

This average error squared was plot against the SNR of the input signal this relationship can

be seen in the Appendix C.

26

The multiplication factor was then changed to a logarithmic spacing because the average error

squared was plotted on a logarithmic y axis. The logarithmic scale visually produced a straight

line and the logarithmic spacing of the noise produced an evenly spaced line on the average

error squared plot shown in Figure 4-6. The noise multiplication factor using the logarithmic

spacing was first run from 0.1 to 1000 with 100 steps. After the program was run this

logarithmic noise multiplication factor range produced a slightly better result than the linear

spacing, because the logarithmic spacing provided more data points at the acceptable output

amplitude.

Figure 4-6: Average error2 using logarithmic spacing on a logarithmic y axis

The noise multiplication factor using the logarithmic spacing was reduced to 0.1 to 100 with

100 steps. The acceptable output using the new range occurred within this 0.1 to 100 range.

27

Figure 4-7: Amplitude out using logarithmic spacing for a range from 0.1 to 100

4.2.3 Simulating a Microprocessors ADC

Signal quantisation was used to simulate a range of analogue to digital converter (ADC) bit

resolutions. A range of two bit to sixteen bit was used. The quantisation was performed on the

signal matrix after the noise had been added to it. The signal matrix was converted to a sixteen

bit integer then quantised to the required bit resolution. Then the signal matrix was converted

back to double perdition format.

An outer loop was added to the program to determine the effect of changing the ADC bit

resolution from 2 bit to 16 bit. While testing the quantisation by visually checking the

quantised signal plot (Figure 4-8) the noise was set to zero.

28

Figure 4-8: Experimental signal quantised to 3 bit with zero added noise.

A loop was made to find specific SNR values and their corresponding average error2 value

from the straight line approximation matrix. This formed the main plot to compare the

different ADC resolutions. The average error2 for each decibel value from 20dB to -30dB in

5dB steps was stored for each ADC bit resolution increase. Figure 4-9 shows the relationship

between the average error2 and the increased ADC bit resolution.

Figure 4-9: Average error2 compared to ADC resolution for different SNR levels.

29

4.2.4 MATLAB ‘seed’ Function

After the ADC bit resolution loop was added it was noticed that the results were inconsistent

for each time the program was run and for different ADC resolutions. The ‘seed’ option of

MATLABs randn function was used so that each bit resolution change would have the same

set of random noises. This was so that the difference between each result was only caused by

the ADC bit resolution changing. The plot of amplitude out without the ‘seed’ option used is

shown below in Figure 4-10.

Figure 4-10: Amplitude out when no ‘seed’ option was used in the randn function

30

4.3 Results of Final Program

The final program was run with different sample frequencies, which were changed manually

because of the time taken to run the program was too long and memory intensive. The final

MATLAB program used to simulate the ADC specifications can be found in the Appendix B.

Critical information discovered during the programs development that improved the results

were the use of the ‘seed’ option in the randn function and the number of random noises sets

being averaged. The variable which controlled the amount of averaged random noise sets

showed that a higher number (1000-5000) resulted in a smoother amplitude out curve.

The SNR level at the 2% error threshold fluctuated up and down as the sample frequency

increased at a 1000averaged sets of random numbers and below.

With 1000 averaged sets of random numbers from a range of multiplication factors from 0.1

and 100. The SNR for the each ADC bit resolutions change over a range of ADC sample frequencies

is displayed in Table 4-3.

Table 4-3: Signal to noise ratio (dB) at the 2% error output for 1000 sets of random noise.

fs

(kHz)

ADC bit Resolutions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

128 19 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25

80 19 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23

64 18 -24 -24 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25

32 18 18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18

16 16 16 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20

8 16 16 -13 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12

The SNR level at the 2% error threshold decreased consecutively as the sample frequency

increased at 5000 averaged sets of random numbers.

With 5000 averaged sets of random numbers from a range of multiplication factors from 1 and

31.6 the SNR for the each ADC bit resolutions change over a range of ADC sample frequencies is

displayed in Table 4-4.

31

Table 4-4: Signal to noise ratio (dB) at the 2% error output 5000 sets of random noise.

fs

(kHz)

ADC bit Resolutions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

128 -1.9 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26

80 -17 -25 -25 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23

64 -15 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23

40 -16 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20

32 -15 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19

16 -15 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18

8 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14

It is thought that the average of 1000 sets of random noises did not represent the Gaussian

distribution effectively but the 5000 sets seemed to according to Table 4-4.

Using a high number (5000) of averaged random noise sets (without the ‘seed’) showed that

the simulation using the ‘seed’ function for 1000 random noise sets is close to the values

received using a high number of sets as shown in Table 4-5.

Table 4-5: No seed function used for 5000 sets of random noise.

fs

(kHz)

ADC bit Resolutions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

80 -15 -23 -23 -23 -25 -25 -24 -23 -24 -23 -23 -24 -24 -23 -23

The average of the average error2 decreased as the sample frequency increased.

The Table 4-6 below shows the average of the average error2 for 5000 averaged sets of random

numbers from a range of multiplication factors from 1 to 31.6.

Table 4-6: Average error squared at the 2% error output (x10-3) for 5000 sets of random noise.

fs

(kHz)

ADC bit Resolutions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

128 35 25 24 23 23 23 23 23 23 23 23 23 23 23 23

80 52 40 38 38 37 37 37 37 37 37 37 37 37 37 37

64 66 51 48 48 47 47 47 47 47 47 47 47 47 47 47

32 125 100 95 94 94 94 94 94 94 94 94 94 94 94 94

16 228 192 183 181 181 180 180 180 180 180 180 180 180 180 180

8 421 362 350 346 345 345 345 345 345 345 345 345 345 345 345

32

When the MATLAB lock-in amplifier algorithm was run using a one second integration time

the results were improved by approximately -10 dB as shown is Figure 4-11. A full data set

using a one second integration time was not able to be produced due to the host computer

limitations.

Figure 4-11: Amplitude out compared to SNR for an integration time of 1 s

33

4.4 Input Real Signal

The experiment included a waveform generator which produced the cosine and sine reference

signals. The cosine waveform was used as a reference signal for a LED driver which pulsed

the infrared LED. The light from the LED travelled through a gas chamber and received by a

photo detector. The signal out of the photo detector is the experimental signal which would be

feed into the lock-in amplifier. The experimental signal, the cosine and sine reference signals

were sampled using a USB Adlink data acquisition unit. These three signals were also

displayed on an oscilloscope for visual representation, a screen shot of this is included in the

Appendix C. The sampled data from the acquisition unit was stored on a laptop for later

analysis in MATLAB.

The sampled data was imported into MATLAB for processing with the lock-in amplifier

algorithms. The sample was loaded into MATLAB using a premade program (supplied by the

project supervisor) which placed the data into matrices. A new program was written which

used the lock-in algorithms without the ADC and noise loops. Different integration times were

used to see the variation this had on the results of the lock-in algorithms.

The sampled signal MATLAB program is listed in Appendix B.

The plot in Figure 4-12 is of the sampled experimental signal and the reference signals with

gas present, the sampled signals without gas are in Appendix C. The product of the signal

multiplication stages for the gassed sample are shown in Figure 4-13.

Figure 4-12: Samples signal with gas present.

34

Figure 4-13: X and Y channels before LPF

Table 4-7 shows the output of the lock-in amplifier algorithms for an integration time of

0.16 s. The output amplitude of the gassed sample was 3.6% reduced from the non-gassed

sample.

Table 4-7: Lock-in amplifier algorithm outputs for a sampled signal.

 No Gas Present Gas Present

Amplitude 1.382 1.332

Phase 1.3235 radians 1.3235 radians

35

Chapter 5 Analysis

5.1 Chapter Overview

For clarity the graphs in this analysis section are a representation only. They have been

generalised from the results. Please refer to the results for the exact relationships.

5.2 Analysis of Results and Plots

ADC resolution: The Figure 5-1 below shows that the noise immunity increased as the ADC

resolution increased. Good results were obtained from using a 6 bit ADC resolution. ADC

resolutions above 8 bit showed no discernable increase in noise immunity.

Figure 5-1: Noise Immunity compared to ADC Resolution

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

is
e

Im
m

u
n

it
y

(1
/σ

2
)

ADC Resolution

36

ADC sample frequency: An increase in the sampling frequency improved the noise

immunity. For a doubling for the sampling frequency the noise immunity improved by

approximately 3 dB as shown in Figure 5-2.

Figure 5-2: SNR compared to sample frequency

Integration time: An increase in integration time increased the noise immunity. Increasing

the integration time from 0.1 s to 1 s increased noise immunity by 10 dB. As Figure 5-3 shows

this relationship between SNR and integration time is not linear.

Figure 5-3: SNR compared to Integration time

Therefore a combination of specifications produces an acceptable result. Increasing the

specifications improves the noise immunity of the lock-in amplifier.

0

5

10

15

20

25

30

8 16 32 64 128

SN
R

Sample Frequency

0

10

20

30

40

0.1 0.5 1

SN
R

Integration Time

37

5.3 Real Sampled Signal

The lock-in amplifier algorithms were tested with a real sampled signal from the output of an

experiment involving an infrared gas sensor. Two tests results were analysed one without gas

and the other with gas present. The results showed that the phase output did not change with

the addition of the gas. The amplitude out of the gassed sample was reduced in comparison

with the non-gassed sample.

The lock-in amplifier algorithms were able to retrieve the signal and phase of the sampled

signal. The lock-in amplifier algorithms were not tested with a sampled signal containing high

noise levels.

The performance of the lock-in amplifier algorithms under high noise level conditions is a

task for future hardware development.

38

Chapter 6 Project Conclusions

6.1 Optimal Specifications

An inter-relationship existed between:

 ADC resolution.

 ADC sample frequency.

 Integration time.

ADC resolution: Good results were obtained from using a 6 bit ADC resolution. Higher bit

resolutions produce marginally better results with no discernable improvement after 8 bit

resolution. Actual implementation may depend on the cost of discrete ADC’s at various

resolutions.

ADC sample frequency: The microprocessor or the DSP will produce the ADC sample

frequency as an on chip function

For a doubling for the sampling frequency:

 Noise immunity improved by 3 dB

 The average error2 was halved

Therefore microprocessors and DSP’s that have a higher clock speed will give better results

however it is unknown if there is an upper limit to this improvement.

Integration time: An increase in integration time proved to increase the noise immunity. This

was not fully tested because of the limitation of the host computer. However in minimal testing

it was seen that an increase in integration time from 0.1 s to 1 s increased noise immunity by

10 dB. For applications were real time monitoring is not required increasing the integration

time is advantageous.

Hardware should be chosen to optimise the integration function. It should be capable of 4 bit

ADC (or better) and producing a sample frequency greater than 100 kHz. It should be noted

that the dsPIC33F more than meets these requirements.

39

6.2 Opportunities for Further Study

The actual selection of hardware and the implementation are seen as the basis of a possible

future project. Considerations should be given to dsPIC processes

Further study is required to identify the limit (if any) to improvement of the noise immunity

by increasing the sampling frequency.

Further investigation of the increase in integration time would be considered profitable, this

would only be feasible using a hardware implementation.

6.3 Conclusion Summary

The specifications determined by this project are within the specifications of current

microprocessors and DSP’s.

Hardware should be chosen to optimise the integration function. It should be capable of 6 bit

ADC (or better) and producing a sample frequency greater than 100 kHz. It should be noted

that the dsPIC33F more than meets these requirements.

There are further avenues of study available.

40

References

Aguirre, J., Medrano, N., Calvo, B. & Celma, S. (2011), ‘Lock-in amplifier for portable

sensing systems’, Electronics Letters 47(21), 1172-1173.

Bengtsson, L. E. (2012), ‘A microcontroller-based lock-in amplifier for sub-milliohm

resistance measurements’, Review of Scientific Instruments 83(7), 075103-075103-8.

Davies, R. & Meuli, G. (2010), Development of a digital lock-in amplifier for open-path

light scattering measurement, in ‘Industrial Electronics Applications (ISIEA), 2010 IEEE

Symposium on’, pp. 50-55.

Kim, E.-J., Park, H.-Y. & Kim, S. (2009), Low frequency clock synchronization technique

for low signal to noise ratio (snr) signal recoery from noise environment, in ‘Digital Signal

Processing, 2009 16th International Conference on’, pp. 1-4.

Li, G., Zhou, M., He, F. & Lin, L. (2011), ‘A novel algorithm combining oversampling and

digital lock-in amplifier of high speed and precision’, Review of Scientific Instruments

82(9), 095106-095106-6.

Son, H.-H., Jung, I.-I., Hong, N.-P., Kim, D.-G. & Choi, Y. (2010), ‘Signal detection

technique utilising ‘lock-in’ architecture using 2ωc harmonic frequency for portable sensors’,

Electronics Letters 46(13), 891-892.

Vogelgesang, R 2004, Lock-in Amplifier Theory, viewed May 9,

<http://traktoria.org/files/sonar/signal_processing/analog/LockIn.pdf>

Wenn, D 2007, ‘Implementing Digital Lock-In Amplifier Using the dsPIC DSC’, Microchip

Technology Inc. AN1115, viewed 22 April 2013,

<http://ww1.microchip.com/downloads/en/AppNotes/01115A.pdf>.

2013. [ONLINE] Available at:

<http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf>, viewed 15

October 2013.

41

Appendix A

Project Specification

42

ENG 4111/2 Research Project

Project Specification

For: Robert Skillington

Topic: DSP-Based Lock-in Amplifier

Supervisors: John Leis

Sponsorship: Faculty of Health, Engineering & Sciences

Project Aim: To develop hardware and software to implement a lock-in amplifier for

measurement systems. Using a Digital Signal Processor (DSP) or even a low-

cost microcontroller. A part of the research aspect is to determine the

suitability of certain processor architectures for this task.

Program: (Issue B, 26th March 2013)

1. Research the design and use of the Lock-in Amplifier, both analogue and digital.

2. Determine the set of algorithms to be implemented for the lock-in, including the

reference signal multiplication, low pass filtering, and the separate phase-locked loop.

3. Evaluate the performance of the algorithms as implemented, and show the signal

recovery performance for various parameter settings at different SNR levels.

4. Evaluate the performance in MATLAB using sampled real-world signals.

5. Investigate suitable processor architectures and development systems for an

embedded lock-in amplifier.

As time and resources permit:

1. Design the hardware and implement the embedded lock-in amplifier.

2. Test its performance under various conditions.

3. Augment with a Phase-Locked Loop (PLL) so as to be able to use an external

reference signal.

Agreed:

 Student Name: Robert Skillington

 Date:

 Supervisor Name: John Leis

 Date:

 Examiner/Co-Examiner:

 Date:

43

Appendix B

MATLAB program listing for LOCK-IN AMPLIFIER ADC simulation

ProjectDSPBasedLIA_2013_Final.m

% Robert Skillington, Project: DSP based Lock-in Amplifier 2013
% Lock-in Amplifier algorithm using Cosine or Square waveform for Reference signal
% This code uses logarithmic spacing for the added noise or linear spacing
% Simulates ADC bit resolution from 2 to 16 bit

clc;
clear all;
close all;

%% Signal parameters
tic
% sample frequencies used, 8,16,32,40,64,80,128 kHz
fs =80000; % Sampling Frequency (samples/second) >8000
Ar = 1; % Reference Amplitude
Ai = 1.8; % Input Amplitude
t = 0.1; % Integration Time in seconds
n = [0:round(t*fs)-1]'/fs; % Time axis
fo = 2000; % Frequency of sinusoid
errIncr = 0.02; % percent error above input amplitude

%% Experimental signal

VsigCos = Ai*cos((n*2*pi*fo)-(pi/10)) ;% V signal Sine waveform equation
% to add the phase difference through the experiment

%% Cosine Reference signals & %% Square Reference signals Note: Ao(k) also
%% has to be changed for square reference.

% VrefSin = Ar*square(n*2*pi*fo); % V reference Sine waveform equation
% VrefCos = Ar*square((n*2*pi*fo)+(pi/2)); % V reference Cosine waveform
% equation

VrefCos = Ar*cos(n*2*pi*fo); % V reference Sine waveform equation
VrefSin = Ar*cos((n*2*pi*fo)-(pi/2));% V reference Cosine waveform equation

%% Plots of Experimental signal and reference signals and their multiplication

Vctest = VsigCos.*VrefCos; % Vctest to plot signal with no noise
Vstest = VsigCos.*VrefSin; % Vstest to plot signal with no noise

figure('units','normalized','outerposition',[0 0 1 1]); %Full screen Figure
figure(1)
subplot(3,1,1)
plot(n(1:ceil(1/fo*5*fs)),VsigCos(1:ceil(1/fo*5*fs)),'-o') % gives 5 cycles of the

waveform
title('Cosine Experimental Signal');
title(sprintf('Cosine Experimental Signal at %g Hz at a sample frequency of %g

Hz',fo,fs),'FontSize',14);
xlabel('Time (sec)','FontSize',12);
ylabel('Amplitude (V)','FontSize',14);
grid on

subplot(3,1,2)
plot(n(1:ceil(1/fo*5*fs)),VrefCos(1:ceil(1/fo*5*fs)),'-o')
title(sprintf('Cosine reference Signal at %g Hz',fo),'FontSize',14);
xlabel('Time (sec)','FontSize',12);
ylabel('Amplitude (V)','FontSize',14);
grid on

44

subplot(3,1,3)
plot(n(1:ceil(1/fo*5*fs)),Vctest(1:ceil(1/fo*5*fs)),'-o')
title('Cosine Experimental Signal multiplied by Cosine reference

Signal','FontSize',14);
xlabel('Time (sec)','FontSize',12);
ylabel('Amplitude (V)','FontSize',14);
grid on

figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure
figure(2)
subplot(3,1,1)
plot(n(1:ceil(1/fo*5*fs)),VsigCos(1:ceil(1/fo*5*fs)),'-o')
title(sprintf('Cosine Experimental Signal at %g Hz at a sample frequency of %g

Hz',fo,fs),'FontSize',14);
xlabel('Time (sec)','FontSize',12);
ylabel('Amplitude (V)','FontSize',14);
grid on

subplot(3,1,2)
plot(n(1:ceil(1/fo*5*fs)),VrefSin(1:ceil(1/fo*5*fs)),'-o')
title(sprintf('Sine reference Signal at %g Hz',fo),'FontSize',14);
xlabel('Time (sec)','FontSize',12);
ylabel('Amplitude (V)','FontSize',14);
grid on

subplot(3,1,3)
plot(n(1:ceil(1/fo*5*fs)),Vstest(1:ceil(1/fo*5*fs)),'-o')
title('Cosine Experimental Signal multiplied by Sine reference

Signal','FontSize',14);
xlabel('Time (sec)','FontSize',12);
ylabel('Amplitude (V)','FontSize',14);
grid on

%% Main LIA with ADC resolution simulation

Aolimstore=[]; % Stores Ao max output below set threshold
Aerrlimstore=[]; % SNR at 2%

% set to 10,100,1000,5000 (time taken will increase start low)
kmax = 1000; % amount of random samples being averaged

adc = 2:16; % ADC resolution

for ADC = adc;

 aveSNRsin = []; % initialising average of SNR % aveSNRsqur = [];
 aveAerrsin = []; % initialising average of error % aveAerrsqur = [];
 aveAo= []; % initialising average of error % aveAosqur = [];

 stepn = -1; %stepn = 0.1; use with linspace
 %changes the range of Gaussian noise from the experiment
 x = logspace(stepn,2,100); % linspace(stepn,100,10/stepn);

 for a = x; %for a = for a = stepn;% % noise added from 0.1 to 100

 for k = 1:kmax;

 %% Noise addition

 randn('seed', k+45);% sets the random starting at 45(no reason)

 Expnoise = a.*randn(length(n), 1); % Experimental noise

 npwr(k) = sum(Expnoise.^2); % noise power

 sigpwr(k) = sum(VsigCos.^2); % signal power

 %% Input signal (Signal + Noise)

 VsigCosandNoise = VsigCos + Expnoise;% adds noise to the signal

 %% Quantisation

45

 Mul = (2^15)/max(abs(VsigCosandNoise)); % scaling multiplier

 VsigCos16 = int16(VsigCosandNoise.*Mul); % convert to a signed 16 bit

intiger

 VsigCosQ16 = idivide(VsigCos16,2^(16-ADC), 'floor').*2^(16-ADC); %

Quantises

 VsigCosandNoiseQ = double(VsigCosQ16)./Mul; % Convert back to a double

 %% Noisy signal x reference signals

 Vs = VsigCosandNoiseQ.*VrefSin; % Vs is the multiplication of noisy input

signal and Sine reference
 Vc = VsigCosandNoiseQ.*VrefCos; % Vs is the multiplication of noisy input

signal and Cosine reference

 %% Filter for Vs and Vc to form I and Q (X and Y) channel
 %% output

 Ivs = mean(Vs); % mean of I
 Qvc = mean(Vc); % mean of Q

 %% Finds the Amplitude of output signal
 % For square Ref wave Ao = (pi/4)*2*sqrt((Ivs^2)+(Qvc^2));
 Ao(k) = 2*sqrt((Ivs^2)+(Qvc^2));

 %% Finds the Phase of signal

 Phase = atan2(Ivs,Qvc);% OR atan(Qvc./Ivs)

 %% SNR

 SNR(k) = 10*log10((sigpwr)/(npwr)); % SNR of the output

 Aerr(k) = Ao(1,k)-Ai; % Error between the input and the output

 end

 aveSNRsin(end+1) = mean(SNR); % Average of SNR's for kmax sets of

noise
 aveAerrsin(end+1) = mean(Aerr.^2); % Average of error for kmax sets of

noise
 aveAo(end+1) = mean(Ao); % Average of Amplitude out for kmax sets

of noise

 end

 %% Ployfit straight line approximation for Average error squared
 % creates polynomial fit to the Average error squared values
 [p,s] = polyfit(aveSNRsin(1,2:end),log10(aveAerrsin(1,2:end)),1);
 polcap = polyval(p,aveSNRsin(1,2:end));
 Polcap10 = 10.^(polcap);

 %% Calculates the SNR at the 2% error set by 'errIncr'
 l=1;
 while aveAo(l)<= (Ai+(Ai*errIncr)); % acceptable output threshold
 Aolim = aveSNRsin(1,l);
 Aerrlim = aveAerrsin(1,l);
 l = l+1;
 end
 Aerrlimstore(1,end+1) = Aerrlim;
 Aolimstore(1,end+1) = Aolim; % Stores the SNR value at the acceptable output

 %% Variables stored for each ADC resolution

 SNRavebit(:,ADC) = aveSNRsin(1,2:end); % stores SNR
 Aerravebit(:,ADC) = aveAerrsin(1,2:end); % stores average error
 Aoavebit(:,ADC) = aveAo(1,2:end); % stores Amplitude out
 polcapbit(:,ADC) = Polcap10; % stores Polyfit straight line

46

 MeanAerravebit = mean(Aerravebit); % average of Average error^2

 fprintf('SNR = %2.4f dB\tat %2.0fbit ADC\tat Sample Frequency: %2.0f Ave error:

%2.5f k = %2.0f Time= %2.2fsec\n', Aolim, ADC, fs, MeanAerravebit(ADC),kmax,t);

end

%% Chooses specific SNRs for each ADC resolution

SNRdB = [20 15 10 5 0 -5 -10 -15 -20 -25 -30];

for dB = 1:length(SNRdB);
 for v = adc;
 nsnr=1;
 while length(SNRavebit)>=nsnr && SNRavebit(nsnr,v) >= SNRdB(1,dB);
 bitavesnr(dB,v) = nsnr+1;
 nsnr=nsnr+1;
 Avegerrstor(dB,v) = polcapbit(nsnr+1,v);
 end
 end
end
% Plot of Ave error^2 for SNRdB for ADC resolution range.
figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure
semilogy(adc,flipud(Avegerrstor(:,adc)),'-o','LineWidth',2);% or use plot
title(sprintf('%g - %g bit ADC at Sample Frequency: %gHz', adc(1,1),adc(1,end),

fs),'FontSize',14);
ylabel('Average error ^2','FontSize',14);
xlabel('ADC bit Resolution','FontSize',14);
legend(fliplr({'20 dB','15 dB','10 dB','5 dB','0 dB','-5 dB','-10 dB','-15 dB','-20

dB','-25 dB','-30 dB'}))
xlim([1 adc(1,end)+1]);
ylim([10^-6 10^1]);

toc % show time taken

47

Program to Plot variables created by ‘ProjectDSPBasedLIA_2013_Final.m’

ProjectDSPBasedLIA_2013_Final_Plots.m

%% Plots for different fs and bit resolutions to be used with

%% ProjectDSPBasedLIA_2013_Final.m

clc

close all

for ADC = adc(1,1):adc(end);

 figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure

 subplot(2,2,1);

 semilogy(SNRavebit(:,ADC),Aerravebit(:,ADC),'-o',

SNRavebit(:,ADC),polcapbit(:,ADC),'r');%

 title(sprintf('Average Error ^2 for %g bit ADC Resolution on a semilog Y

scale',ADC),'FontSize',14);

 xlabel('SNR dB','FontSize',14);

 ylabel('Average error ^2','FontSize',14);

 ylim([10^-6 10^1]);

 xlim([-40 30]);

 grid on;

 % figure('units','normalized','outerposition',[0 0 1 1]); % Full screen

Figure

 subplot(2,2,2);

 plot(SNRavebit(:,ADC),Aerravebit(:,ADC),'o');

 title(sprintf('Average Error ^2 for %g bit ADC Resolution',ADC),'FontSize',14);

 xlabel('SNR dB','FontSize',14);

 ylabel('Average error ^2','FontSize',14);

 % ylim([0 max(aveAerrsin)]);

 xlim([-40 30]);

 grid on;

 % figure('units','normalized','outerposition',[0 0 1 1]); % Full screen

Figure

 subplot(2,2,3);

 plot(n(1:500),VsigCosandNoiseQ(1:500),'-o');

 % ylim([-5000 5000]);

 title(sprintf('Quantized Signal and Noise for %g bit ADC Resolution, %g

quantization levels',ADC,2^ADC),'FontSize',14);

 xlabel('time (sec)','FontSize',14);

 % xlim([0 0.003]);

 % ylabel('');

 grid on;

 l=1;

 while Aoavebit(l,ADC)<= (Ai+(Ai*errIncr)); % acceptable output threshold

 Aolim = SNRavebit(l,ADC);

 Aerrlim = Aerravebit(l,ADC);

 l = l+1;

 end

 Aerrlimstore(1,end+1) = Aerrlim;

 Aolimstore(1,end+1) = Aolim; % Stores the SNR value at the acceptable output

 % figure('units','normalized','outerposition',[0 0 1 1]); % Full screen

Figure

 subplot(2,2,4);

 %plot(aveSNRsin(1,2:end),aveAo(1,2:end),'-',[min(aveSNRsin)

max(aveSNRsin)],[(Ai+(Ai*errIncr)),(Ai+(Ai*errIncr))],'--r','LineWidth', 2);

 plot(aveSNRsin(1,2:end),aveAo(1,2:end),'-',[Aolim Aolim],[min(aveAo)

max(aveAo)],'r',[min(aveSNRsin)

max(aveSNRsin)],[(Ai+(Ai*errIncr)),(Ai+(Ai*errIncr))],'--r','LineWidth', 2);

 title(sprintf('SNR = %gdB, %gbit ADC at Sample Frequency: %gHz',Aolim, ADC,

fs),'FontSize',14);

 xlabel('Signal to Noise Ratio (dB)','FontSize',14);

 ylabel('Amplitude out (V)','FontSize',14);

 legend('Amplitude out','dB at 2% error','2% error')% legend('Amplitude out','2%

error')%

 ylim([1.75 max(aveAo)]);

 % xlim([-40 30]);

 grid on;

48

 fprintf('SNR = %2.4f dB\tat %2.0fbit ADC\tat Sample Frequency: %2.0f Ave error:

%2.5f k = %2.0f Time= %2.2fsec\n', Aolim, ADC, fs, MeanAerravebit(ADC),kmax,t);

end

SNRdB = [20 15 10 5 0 -5 -10 -15 -20 -25 -30];

for dB = 1:length(SNRdB);

 for v = adc;

 nsnr=1;

 while length(SNRavebit)>=nsnr && SNRavebit(nsnr,v) >= SNRdB(1,dB);

 bitavesnr(dB,v) = nsnr+1;

 nsnr=nsnr+1;

 Avegerrstor(dB,v) = polcapbit(nsnr+1,v);

 end

 end

end

figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure

semilogy(adc,flipud(Avegerrstor(:,adc)),'-o','LineWidth',2);% or use plot

title(sprintf('%g - %g bit ADC at Sample Frequency: %gHz', adc(1,1),adc(1,end),

fs),'FontSize',14);

ylabel('Average error ^2','FontSize',14);

xlabel('ADC bit Resolution','FontSize',14);

legend(fliplr({'20 dB','15 dB','10 dB','5 dB','0 dB','-5 dB','-10 dB','-15 dB','-20

dB','-25 dB','-30 dB'}))

xlim([1 adc(1,end)+1]);

ylim([10^-6 10^1]);

49

Lock-in amplifier algorithms with no added noise or ADC simulation.

ProjectDSPBasedLIA_2013.m

% Robert Skillington Project DSP based Lock-in Amplifier 2013

% LIA algorithm using Square OR sine waveform for Reference signal

clc; clear all; close all;%

%%

tic

fs = 80000; % sampling frequency (samples/second) >4000

Ar = 1; % Reference Amplitude

Ai = 1.8; % Input Amplitude

n = [0:round(0.1*fs)-1]'/fs; % Time axis

fo = 2000; % Frequency of sinusoid

%% Experement signal

 VsigCos = Ai*cos((n*2*pi*fo)-(pi/10)) ;% % V signal Sine waveform equation to add

the phase difference through the experiment

%% Cosine Reference signals % Square Reference signals

VrefCos = Ar*cos(n*2*pi*fo); % Ar*square(n*2*pi*fo); % V reference Sine waveform

equation

VrefSin = Ar*cos((n*2*pi*fo)-(pi/2));% Ar*square((n*2*pi*fo)+(pi/2)); % V reference

Cosine waveform equation

%% Vs and Vc (VsigSinandNoise x V reference Sine) and (VsigSinandNoise x V reference

Cosine)

Vs = VsigCos.*VrefSin; % Vs is the multiplication of noisy input signal and Sine

reference

Vc = VsigCos.*VrefCos; % Vs is the multiplication of noisy input signal and Cosine

reference

%% Filter for Vs and Vc to form I and Q (X and Y)

Ivs = mean(Vs); % mean of

Qvc = mean(Vc); % mean of

%% Finds the magnitude of signal

Ao = 2*sqrt((Ivs^2)+(Qvc^2)); % Ao = (pi/4)*2*sqrt((Ivs^2)+(Qvc^2));% for square

wave %LIA output Amplitude

fprintf('Ai: %1.10f \n',Ai)

fprintf('Ao: %1.10f \n',Ao)

%% Finds the Phase of signal

Phase = atan2(Ivs,Qvc); % atan(Qvc./Ivs); % Phase difference from signal and

reference

fprintf('Phase: %1.5g radians \n',Phase);

50

Lock-in amplifier used on a real sampled signal.

LIA_Sampled_Gas_Signal.m

% Sampled signal Test

% Robert Skillington Project DSP based Lock-in Amplifier 2013

% LIA algorithm using square and sine waveform for Reference signal

% This code shows both an air and gas sample

% The sine and cosine voltage was 2.5V peak to peak

% The Cosine wave had a DC offset of 2.5V

clc; clear all; close all;%

sampl = 10000 ;

[DataMat NumChans SampleRate ScanRate NumScans Comment] = AdlinkReadFile('air.bin',

sampl);

[DataMatg NumChansg SampleRateg ScanRateg NumScansg Commentg] =

AdlinkReadFile('gas.bin', sampl);

samptime = sampl/ScanRate;

fprintf('Sample Time: %1.5g seconds \n',samptime);

xsigD = DataMat(:,1); % V signal Sine waveform equation to add the phase difference

through the experement

xCosD = DataMat(:,2); % V referance Cosine waveform equation % VrefSin =

Ar*square(n*wo)

xSinD = DataMat(:,3); % V referance Sine waveform equation % VrefCos =

Ar*square((n*wo)+(pi/2))

figure(1)

subplot(3,1,1)

plot(xsigD(1:100),'-o')

title('Signal','FontSize',14);

grid on

subplot(3,1,2)

plot(xCosD(1:100),'-o')

title('Cosine reference','FontSize',14);

grid on

subplot(3,1,3)

plot(xSinD(1:100),'-o')

title('Sine reference','FontSize',14);

grid on

xsig = xsigD -mean(xsigD); % Normalises

xCos = xCosD -mean(xCosD);

xSin = xSinD -mean(xSinD);

figure(2)

subplot(3,1,1)

plot(xsig(1:100),'-o')

title('Normalised Signal','FontSize',14);

grid on

subplot(3,1,2)

plot(xCos(1:100),'-o')

title('Normalised Cosine reference','FontSize',14);

grid on

subplot(3,1,3)

plot(xSin(1:100),'-o')

title('Normalised Sine reference','FontSize',14);

grid on

Vc = xsig.*xCos; % Vs is the multiplication of noisy input signal and Cosine

reference

Vs = xsig.*xSin; % Vc is the multiplication of noisy input signal and sine reference

figure(3)

subplot(2,1,1)

plot(Vc(1:100),'-o')

title('X','FontSize',14);

grid on

51

subplot(2,1,2)

plot(Vs(1:100),'-o')

title('Y','FontSize',14);

grid on

%% Filter for Vs and Vc to form I and Q (X and Y)

Is = mean(Vs); % mean of

Qc = mean(Vc); % mean of

%% Finds the magnitude of signal

Ao = 2*sqrt((Is^2)+(Qc^2)); % LIA output Amplitude

fprintf('Ao: %1.2f \n',Ao)

%% Finds the Phase of signal

Phase = atan2(Qc,Is);% atan(Qc./Is); % Phase difference from signal and

reference

fprintf('Phase: %1.5g radians \n',Phase);

%%

%% GASED Sample

xsigDg = DataMatg(:,1); % V signal Sine waveform equation to add the phase difference

through the experement

xCosDg = DataMatg(:,2); % V referance Cosine waveform equation % VrefSin =

Ar*square(n*wo)

xSinDg = DataMatg(:,3); % V referance Sine waveform equation % VrefCos =

Ar*square((n*wo)+(pi/2))

figure(4)

subplot(3,1,1)

plot(xsigDg(1:100),'-o')

title('Signal with Gas','FontSize',14);

grid on

subplot(3,1,2)

plot(xCosDg(1:100),'-o')

title('Cosine reference','FontSize',14);

grid on

subplot(3,1,3)

plot(xSinDg(1:100),'-o')

title('Sine reference','FontSize',14);

grid on

xsigg = xsigDg -mean(xsigDg); % Normalises

xCosg = xCosDg -mean(xCosDg);

xSing = xSinDg -mean(xSinDg);

figure(5)

subplot(3,1,1)

plot(xsigg(1:100),'-o')

title('Normalised Signal with Gas','FontSize',14);

grid on

subplot(3,1,2)

plot(xCosg(1:100),'-o')

title('Normalised Cosine reference','FontSize',14);

grid on

subplot(3,1,3)

plot(xSing(1:100),'-o')

title('Normalised Sine reference','FontSize',14);

grid on

Vcg = xsigg.*xCosg; % Vs is the multiplication of noisy input signal and Cosine

reference

Vsg = xsigg.*xSing; % Vc is the multiplication of noisy input signal and sine

reference

52

figure(6)

subplot(2,1,1)

plot(Vcg(1:100),'-o')

title('X channel with Gas','FontSize',14);

grid on

subplot(2,1,2)

plot(Vsg(1:100),'-o')

title('Y channel with Gas','FontSize',14);

grid on

%% Filter for Vs and Vc to form I and Q (X and Y)

Isg = mean(Vsg); % mean of

Qcg = mean(Vcg); % mean of

%% Finds the magnitude of signal

Aog = 2*sqrt((Isg^2)+(Qcg^2)); % LIA output Amplitude

fprintf('Ao gas: %1.2f \n',Aog)

%% Finds the Phase of signal

Phaseg = atan2(Qc,Is); % Phase difference from signal and reference pi/2-

2pi/25=1.319

fprintf('Phase gas: %1.5g radians \n',Phaseg);

per = Aog/Ao;

fprintf('Per change: %1.5g %%\n',per*100);

53

Appendix C

Figure C-1: Amplitude out using linear spacing for a range from 0.1 to 100

Figure C-2: Average error2 using linear spacing on a logarithmic y axis

54

Figure C-3: Plot of amplitude out using a log spacing

Figure C-4: Average error2 with a straight line approximation for 3 bit ADC at sample frequency of 80 kHz

55

Figure C-5: An oscilloscope screen shot of a sampled gas experiment.

Figure C-6: Samples signal without gas present.

