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Abstract 

 

This project aims to test the feasibility of, and identify key specifications for a small stand-

alone lock-in amplifier using an embedded device. This may be used in conjunction with 

sensors generating a small signal and used in high noise environments. The intention is that 

this form of implementation will drastically reduce the cost and size of a lock-in amplifier 

while maintaining sufficient accuracy and noise immunity. 

The specification for this project on “DSP-Based Lock-in Amplifier” was developed and 

agreed on with the Faculty of Health, Engineering & Sciences. 

For speed, cost and other considerations, computer simulations of microprocessor hardware 

components were used in this project. 

A Dual-phase lock-in amplifier was specifically chosen and examined for this project so as to 

minimise the component count of future hardware implementations. 

Specifications identified as key parameters were ADC resolution, ADC sample frequency and 

integration time for hardware implementation. The specifications determined by this project 

are within the specifications of current microprocessors and DSP’s. 

Recommendations were made for possible future study 
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Chapter 1 Introduction 

 

1.1 Project Aim 

 

This project aims to test the feasibility of, and identify key specifications for a small stand-

alone lock-in amplifier using an embedded device. This may be used in conjunction with 

sensors generating a small signal and used in high noise environments. The intention is that 

this form of implementation will drastically reduce the cost and size of a lock-in amplifier 

while maintaining sufficient accuracy and noise immunity.  

A real world application for such a device might be a gas detector. The current size of a 

laboratory lock-in amplifier (rack size) and cost greater than $4000 prohibits the use of these 

devices in small low cost applications.  

The final implementation (not part of this project) will be carried out using a microprocessor 

that has a suitable architecture to implement a digital signal processing (DSP) based lock-in 

amplifier. Thus, this project will identify the general specifications of the hardware and 

software to be implemented in a detection systems. 

For speed, cost and other consideration computer simulations of the hardware components 

will be used in this project. 
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1.2 Research Objectives 

 

The specification for this project on “DSP-Based Lock-in Amplifier” was developed and 

agreed on with the Faculty of Health, Engineering & Sciences. The objectives identified were: 

1. Research the design and use of the Lock-in Amplifier, both analogue and digital. 

 

2. Determine the set of algorithms to be implemented for the lock-in, including the 

reference signal multiplication, low pass filtering, and the separate phase-locked loop. 

 

3. Evaluate the performance of the algorithms as implemented, and show the signal 

recovery performance for various parameter settings at different SNR levels. 

 

4. Evaluate the performance in MATLAB using sampled real-world signals. 

 

5. Investigate suitable processor architectures and development systems for an 

embedded lock-in amplifier. 
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Chapter 2 Understanding the Environment for Lock-in 

Amplifiers  

 

 

2.1 Chapter Overview 

This chapter examines the different type of lock-in amplifiers and their function. The digital 

lock-in amplifier and existing literature on microprocessor based lock-in amplifiers. 

 

2.2 Environment and Issues 

The signal is hidden in the noise. The target environment is one in which the desired signal is 

much smaller than the noise in which it is embedded. To analysis the signal we need it 

amplified. 

The following examples will demonstrate methods of retrieving the signal of interest adapted 

from Wenn (2007). A general amplifier will amplify the signal and the noise within the 

amplifiers band width and as well, injects additional noise.  

Consider a clean sine wave with an amplitude of 100 nV at a frequency of 50 kHz. After the 

signal is amplified through an amplifier with an input noise of 5 𝑛𝑉/√𝐻𝑧 and a gain of 1000. 

If the amplifier has a bandwidth of 100 kHz it will add bandwidth noise equal to that in 

equation 2.2.1. 

5 𝑛𝑉 × 1000 × √100 𝑘𝐻𝑧 = 1.6 𝑚𝑉       (2.2.1) 

After the signal is amplified it becomes 100 μV (1000 × 100 𝑛𝑉) which is 16 times smaller 

than the surrounding noise of 1.6 mV, this is demonstrated by the area under the amplifier 

bandwidth in Figure 2-1. 
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Figure 2-1: Weak signal amplified ready for measurement 

When we examine these equations we see that it is the bandwidth of the noise that has caused 

the high output noise levels. The solution is to reduce the bandwidth.   

One method is to use a band pass filter. If the signal is first passed through a high quality band 

pass filter with a Q factor of (say) 100 which has a bandwidth of 500 Hz (50 kHz/Q) at a centre 

frequency of 50 kHz. The noise level present after filtering and amplification is given by 

equation 2.2.2. 

5 𝑛𝑉 × 1000 × √500 𝐻𝑧 = 112 𝜇𝑉       (2.2.2) 

After the filtered signal has been amplified the signal is still 1.1 times smaller than the 

surrounding noise of 112 μV, this is demonstrated by the area under the band pass filter 

bandwidth in Figure 2-2 the diagram demonstrates the difference of filtering and 

amplification. 

 

 

Figure 2-2: Weak signal passed through a band pass filter then amplified 
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Even though the filtered signal is approximately equal to the noise it is still difficult to measure 

and analysis. 

An even tighter bandwidth is required. Lock-in amplifiers are one way to achieve this. 

The Q factor of a lock-in amplifier can be as high as 10,000 this Q factor gives a bandwidth 

of 5 Hz (50 kHz/Q). The noise level present after the lock-in is set to the signal frequency, is 

given by equation 2.2.3. 

5 𝑛𝑉 × 1000 × √5 𝐻𝑧 = 11.2 𝜇𝑉       (2.2.3) 

The noise present after using the lock-in amplifier is approximately 9 times smaller than the 

signal, an accurate measurement can then be taken of signal. Figure 2-3 shows the progression 

of the noise levels produced by amplification, filtering and the use of a lock-in amplifier.  

 

Figure 2-3: Weak signal passed through a band pass filter then amplified, then run through a LIA 

 

As can be seen from the example above, using a lock-amplifier will reduce the bandwidth of 

the noise to the extent that the signal is sufficiently larger than the noise and can be identified 

and analysed. This is the rationale for the use of lock-in amplifies with remote sensors that 

produce weak signals. 
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2.3 Lock-in amplifier Technologies 

A basic lock-in amplifier system is comprised of a wave generator, ‘experiment’ and the lock-

in amplifier as shown in Figure 2-4. The wave generator produces a reference sine wave which 

is the input into the experiment. As the wave passes through the experiment it is phase shifted 

and noise is induced on the signal. An example of this is when a light source is pulsed at the 

reference frequency and is then received by a photo detector. The output of the experiment 

and the reference sine wave are then multiplied together in the lock-in amplifier (Vogelgesang, 

2004). This multiplication results in the cancelation of the frequencies other than the reference 

signal frequency (Aguirre et al. 2011). 

 

 

Figure 2-4: A basic lock-in amplifier system adapted from Vogelgesang, 2004. 

 

For a lock-in amplifier to operate effectively it must be set to detect the signal of interest. This 

is done by supplying the lock-in with a fixed reference voltage of the same frequency and 

phase as the experimental signal. This reference signal is used to lock onto the same frequency 

in the experimental signal to retrieve the experiment result. This locking ensures that any 

reference signal changes are taken into account (Kim et al. 2009); this process is how the 

instrument gets its name. 

There are a number of ways of achieving this ‘locking’. The following section looks at the 

different ways of achieving this ‘locking’ function by examining the different types and sub-

types of lock-in amplifiers. 

 

LOCK-IN 

AMPLIFIER  

Noise Wave 

Generator 

‘Experiment’ 

Reference 

Reference Experiment 

Signal 

Output 
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2.4  Types of Lock-in amplifiers  

 

There are two main types of lock-in amplifiers. These can be separated analogue and digital 

 Analogue  

Analogue lock-in amplifiers use analogue multipliers which are expensive, complex 

and can be nonlinear (Bengtsson, 2012). The analogue lock-in amplifiers also require 

a phase shifter to align the reference signal and the experimented signal to 

compensate for line length or experimental delay (Davies & Meuli, 2010). 

 Digital 

There two types of digital lock-in amplifiers categorised by their use of multipliers: 

o Digital Switch Lock-in Amplifier. A digital switch lock-in amplifier uses 

an analogue polarity-reversing switch operated at the reference frequency; 

these are linear but introduce the unwanted odd harmonics (Davies & Meuli, 

2010).  

o Digital Lock-in Amplifier. A digital lock-in amplifier uses software to 

perform the signal multiplication, low pass filtering and to generate the 

reference signal.  

This project will look at the lock-in amplifier which uses a digital lock-in amplifier. 

 

 

2.5 Single and Dual-Phase Lock-in amplifiers  

 

Some ‘experiments’ cause phase changes which cause a decrease in sensitivity. Single lock-

in amplifiers are affected by this phase change. The single multiplying lock-in amplifier shown 

in Figure 2-5 uses a phase shifter to align reference signal with the experimental signal so that 

the signal of interest is maximised (Son et al. 2010). 
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Figure 2-5: A diagram of a single multiplying lock-in amplifier, adapted from Li et al. (2011) 

 

To overcome the need to tune the setup with the phase shifter, two multiplication blocks are 

introduced in to the lock-in amplifier. The two multiplication block lock-in amplifier is 

referred to as a digital dual-phase lock-in amplifier and is shown in Error! Reference 

source not found.. It shows the dual-phase multiplication of the experimental signal with both 

the reference signal and the reference signal phase shifted by 90° (Son et al. 2010). The signal 

and the reference are multiplied together to produce the multiplier output which consists of a 

zero frequency (DC) and harmonics. This is passed through a low pass filter to remove the 

harmonics and thus obtain the remaining DC signal. This signal is proportional to the input 

signal (Son et al. 2010). 

This layout removes the need for a phase shifter to correct the alignment of the reference signal 

and the experiment signal (Bengtsson, 2012).  

The multiplier outputs for the X channel (VOUTX) and Y channel (YOUTX) are shown below 

where θ is the phase of the signals (not the phase output). 

sin (ωt) 

Experiment ADC 

Wave Generator 

Lock-in Amplifier 

OR 

Ref 

 

LPF 

Phase Shifter 

Multiplier 
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Figure 2-6: Digital lock-in amplifier, adapted from Li et al. (2011) 

 

The following derivation shows the principle of the lock-in amplifier adapted from Li et al. 

(2011) 

 

𝑉𝐼𝑁 = 𝑉𝑠𝑖𝑔 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔)        (2.5.1) 

𝑉𝑅𝐸𝐹𝑐𝑜𝑠 = 𝑉𝑟𝑒𝑓 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓)       (2.5.2) 

𝑉𝑅𝐸𝐹𝑠𝑖𝑛 = 𝑉𝑟𝑒𝑓 sin(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓)       (2.5.3) 

 

𝑉𝑂𝑈𝑇𝑋 = 𝑉𝐼𝑁 × 𝑉𝑅𝐸𝐹𝑐𝑜𝑠        (2.5.4) 

 

𝑉𝑂𝑈𝑇𝑋 = 𝑉𝑠𝑖𝑔 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔) ×  𝑉𝑟𝑒𝑓 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓)    (2.5.5) 

𝑉𝑂𝑈𝑇𝑋 =
1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 cos(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓) +

1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 cos(2𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔 + 𝜃𝑟𝑒𝑓)  (2.5.6) 

𝑉𝑂𝑈𝑇𝑋 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
cos(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓)  (After low pass filter)    (2.5.7) 

 

+90

° 

cos (ωt) 

sin (ωt) 

Experiment ADC 

Wave Generator 

Lock-in Amplifier 

OR 

Ref 

X 

Y 

LPF 
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𝑉𝑂𝑈𝑇𝑌 = 𝑉𝐼𝑁 × 𝑉𝑅𝐸𝐹𝑠𝑖𝑛         (2.5.8) 

 

𝑉𝑂𝑈𝑇𝑌 = 𝑉𝑠𝑖𝑔 cos(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔) ×  𝑉𝑟𝑒𝑓 sin(𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑟𝑒𝑓)    (2.5.9) 

𝑉𝑂𝑈𝑇𝑌 =
1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 sin(2𝜔𝑟𝑒𝑓𝑡 + 𝜃𝑠𝑖𝑔 + 𝜃𝑟𝑒𝑓) −

1

2
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓 sin(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓)  (2.5.10) 

𝑉𝑂𝑈𝑇𝑌 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
sin(𝜃𝑠𝑖𝑔 − 𝜃𝑟𝑒𝑓)  (After low pass filter)    (2.5.11) 

 

The output is maximised when the phase difference between the signal and reference is zero 

(Son et al. 2010). The outputs are passed through low pass filters (LPF) to remove the 

alternating current (AC) component leaving behind the direct current (DC) amplitude. This 

results in equations 2.5.12 and 2.5.13 

 

𝑉𝑂𝑈𝑇𝑋 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
cos(𝜃)        (2.5.12) 

𝑉𝑂𝑈𝑇𝑌 =
𝑉𝑠𝑖𝑔𝑉𝑟𝑒𝑓

2
sin(𝜃)        (2.5.13) 

 

The two outputs of the dual-phase multipliers (𝑉𝑂𝑈𝑇𝑋 & 𝑉𝑂𝑈𝑇𝑌) are converted into the 

magnitude of the signal and phase difference between the signal and the reference with 

equations 2.5.14 and 2.5.15 (Li et al. 2011). When the reference signal is 1 volt and the phase 

(𝜃) is zero the output is maximised. The magnitude does not depend on the phase difference 

between the signal and the reference signal (Aguirre et al. 2011). 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (𝑉𝑠𝑖𝑔)  = 2 × √𝑉𝑂𝑈𝑇𝑋
2 + 𝑉𝑂𝑈𝑇𝑌

2
      (2.5.14) 

𝑃ℎ𝑎𝑠𝑒 (𝜑) = tan−1 (
𝑉𝑂𝑈𝑇𝑌

𝑉𝑂𝑈𝑇𝑋
)        (2.5.15) 

The importance of the dual-phase lock-in amplifier is that for this project the phase shifter and 

additional components are not required. The signal will be maximised and the project can be 

simplified. 
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2.6 General Considerations 

Second Harmonic 

Use of the 2nd harmonic. Son et al. (2010) identified that 1/𝑓 noise exists at the DC and low 

frequency range of sensor output signals. If the signal is lower than the 1/𝑓 noise amplitude 

the DC lock-in method will not detect the signal. He suggests that using the second harmonic 

of the reference signal which is away from the 1/𝑓 noise will recover a signal with a better 

SNR than that at the reference frequency. 

 

Tolerance accuracy  

The general tolerable noise level of a lock-in amplifier is one that does not affect the output 

more than a few percent above the input amplitude (web document thinksrs, 2013). 

 

Output noise immunity  

Aguirre et al. (2011) proposed a low power analogue lock-in amplifier for portable sensing 

which was able to recover signal information from a SNR of -24 dB with errors below 6%. 

These levels may be a bench mark to compare the performance of the DSP based lock-in 

amplifier.  

The SNR is a measurement to determine the amount of noise present on the signal of interest 

is calculated by equation 2.6.1 adapted from Li et al. (2011). 

𝑆𝑁𝑅 = 10 × log10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) (𝑑𝐵)       (2.6.1) 

 

Lock-in amplifier cost 

A simple google search for ‘Lock-in amplifier cost’ points to a link showing the price of a 

Stanford Research Systems lock-in amplifier priced from $4150. This quick search shows the 

large expense of dedicated lock-in amplifiers and the need to reduce this cost for use in 

reasonable inexpensive remote sensors. 
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Chapter 3 Development Methodology 

 

3.1 Chapter Overview 

 

This chapter discusses the methodology used to carry out this project. This includes: 

 Testing environment  

 Constraints (2nd harmonic, physical hardware, and other things not taken into account 

in this project) 

 Constants (Noise, Phase, 2% acceptable output, etc.)  

 Algorithm development  

 

3.2 Testing Environment 

The final target implementation environment of the output of this study is, either: 

 DSP  

 microprocessor  

 combined DSP plus microprocessor such as dsPIC processor 

All the above may be suited to the task, but because of the range of capabilities and prices of 

various hardware components, it is better to delay this selection until more is understood and 

known. 

Testing a range of hardware with different ADC resolutions and sample frequencies would 

be: 

 expensive 

 time consuming 

 difficult to replicate the same experimental conditions 

 uncertainty of errors and anomalies  
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Therefore MATLAB was chosen as a hardware emulator for development and testing so that 

there would be no hardware limitation or constraints. This will facilitate obtaining better 

general specifications of the target implementation environment.  

 

3.2.1 Lock-in Amplifier in MATLAB  

 

MATLAB was used to develop and test the digital lock-in amplifier algorithms by varying 

specific parameters to simulate the restrictions of a reasonable priced microprocessor and 

DSP’s. In this way the project was able to test whether the use of DSP and microprocessors 

was reasonable in terms of it accuracy and noise immunity. That is, is this a good way to go?  

One of the outcomes of this project was to determine the required microprocessor 

specifications suitable to implement a lock-in amplifier.  

MATLAB allows us to identify the specifications using MATLAB’s inherit benefits which 

are: 

 low cost (availability) 

 reduce hardware setup and test time 

 consistent test conditions 

 the ability to change simulation variables easily 

 reduce errors where the source of the error would not be easily determined 

 good representation of the data 

 implement large volume of test iterations 

 uses a C like programing language which is reasonable easy to transfer to real world 

microprocessors 

 

The limitations of the MATLAB program include: 

 The gap between the pseudo representation of hardware architecture (not even 

emulation) and the implementation in physical hardware will result in lot of issues 

which will not be resolved in this project. 

  MATLAB will be generally slower than a physical implementation. This, however, 

is not necessarily a bad thing whilst it will increase the iteration of testing the real 

world implementation will be expected to be faster. 
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Based on the analysis of the results from the MATLAB program, the microprocessor 

specifications can be suggested. The MATLAB program was used to determine the 

microprocessors ADC resolution and sample frequency, other microprocessor specifications 

that are to be taken into consideration will include: 

 price 

 size 

 type of software language used on the microprocessor 

 development systems or programmers required 

 

The implementation of a digital lock-in amplifier using a microprocessor or DSP needs to 

have minimum number of components. Therefore the aim is to maximise the microprocessors 

ability to produce the reference signal internally and its inbuilt analogue to digital converter 

(ADC). This drove the project to the use of a dual-phase lock-in amplifier. 

 

3.3 Constraints 

Test for increased noise immunity. In the research literature revealed that increased noise 

immunity could be obtained by using 2nd harmonics. (Refer 2.6 above) This project uses 

simpler algorithms at this stage, so as to minimise costs in specified hardware.  It was felt that 

if the outcomes showed that the noise immunity was insufficient, then implementation of a 

more complicated algorithm to use 2nd harmonics may be warranted.   

Thus the 2nd harmonic was not used in this project but considered worth investigating in a 

subsequent project, if required. 

Implementation in physical hardware. This project specifically avoided implementation in 

physical hardware for the reasons given above. (Ref 3.2.1) 

Time. The memory capacity of the programs host computer resulted in it not being able to run 

enough random noise samples to produce an exact representation of a Gaussian noise.  

ADC simulation limitations. For simplicity the MATLAB program did not simulate the ADC 

sample frequency fully. It did not simulate the sampling of a near continuous waveform and 

keeping the reference signal at a constant amount of samples for each sample frequency 

change. Instead, an experimental signal was produced to match the number of the samples in 

the reference signals for each ADC sample frequency change;  
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Signal Amplitude. The simulated experimental signal amplitude was not changed to reflect 

how the physical experiment amplitude would change. The simulated experimental signal 

amplitude was set at 1.8 volts to maintain a level of constancy throughout the simulations.  

 

3.4 Constants 

Noise. To see how the lock-in amplifier would perform under different SNR conditions, it was 

planned to develop and apply simulated white noise to the experimental signal.  

Phase. It was planned to implement a dual-phase lock-in amplifier because it reduced the 

amount of code required. The time required for development of code to simulate a phase 

shifter, and possibly a phase locked loop (PLL), would seriously compromise the project. The 

simulated phase delay of the experimental signal therefore can be set at an arbitrary constant. 

2% acceptable output. It was important to identify a point where the project could determine 

that a true positive signal was ‘seen’.  The literature search (Ref 2.6 above) suggested that a 

few percent of the signal was acceptable. The project supervisor nominated 2% as the point 

of determining true positive results. 

Reference frequency. The project supervisor identified 2000 Hz to be used as the reference 

frequency. This was based on a physical experiment currently running in the laboratory. 

 

3.5 Algorithm Considerations 

 

Algorithm development is the core of the project and is discussed more fully in subsequent 

sections of this document (Ref Chapter 4 below). The following general comments apply 

regarding algorithm development. 

A review of the current literature was used to determine the equations to be used for the digital 

lock-in amplifier. The review also investigated the principles behind the equations and how 

they are used to perform the lock-in function. Derivations using the lock-in amplifier equations 

were written out by hand to form a better understanding of their operation (Ref 2.5). 

An understanding of analogue lock-in amplifiers was first developed to form a knowledge 

foundation of the lock-in amplifier. This lead to investigating the different variations (Ref 2.4) 

of digital lock-in amplifiers. Digital lock-in amplifiers which use digital signal processes 

(DSP) and dual-phase multipliers were mainly considered.  
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3.5.1 Lock-in Amplifier Algorithms in MATLAB  

A MATLAB program was written such that each of the parameters that simulate the 

microprocessor specifications could be easily changed to rerun the program for the different 

parameters. 

Specifically, the lock-in amplifier algorithms to function correctly, and provide adequate 

outputs, the simulated environment requires certain components to be present or simulated. 

The following lists these components: 

Input for the simulated ‘experiment’ 

 Reference signal (constant amplitude and frequency at a constant phase) 

 Simulated experimental signal 

 Noise injection  

Output from simulated ‘experiment’/ input to simulated lock-in amplifier 

 Derived SNR from experimental output  

 ADC sample frequency simulation 

Simulated components 

 ADC bit resolution simulation 

 Low pass filter 

 Lock-in amplifier amplitude output 

Output of simulated lock-in amplifier 

 Average error squared output (σ2) 

Maximum flexibility of parameters was chosen to drive the simulation so as to obtain a 

maximum understanding of the requirements of the future implementation hardware. 
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3.5.2 Outputs of this Study 

This project has a number of specified objectives which are listed below, but there are a 

number of other areas of understanding that are desirable and useful for determining the 

feasibility and specification of a future hardware implementation. 

Specified Project Objectives 

1. Determine the set of algorithms to be implemented for the lock-in, including the 

reference signal multiplication, low pass filtering, and the separate phase-locked loop. 

2. Evaluate the performance of the algorithms as implemented, and show the signal 

recovery performance for various parameter settings at different SNR levels. 

3. Evaluate the performance in MATLAB using sampled real-world signals. 

4. Investigate suitable processor architectures and development systems for an 

embedded lock-in amplifier. 

 

 

Desirable information to be gained from this project 

 Is the implantation of lock-in amplifiers on a DSP or microprocessor feasible? Or is 

the technology just not there yet? 

 What is the minimum ADC bit resolution that will give ‘acceptable’ results? 

 Is there an optimal ADC bit resolution. Or is higher resolution better?  Is the ‘quality’ 

linear? 

 How does the ADC sample frequency effect the result?  

 Does Integration time affect the results? If so, how? 

 Is there a relationship between sample frequency, bit resolution and integration time? 

Can one be traded off for the other?  
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3.6 Microprocessor Selection 

 

Based on the analysis of the results from the MATLAB program the microprocessor 

specifications can be suggested. The MATLAB program was used to determine the suitable 

ADC resolution and sample frequency, other microprocessor specifications. 

These specifications can be then used to determine suitable microprocessor or DSP hardware 

and final choices can be determined taking into consideration: 

 price 

 size 

 type of software language used on the microprocessor 

 development systems or programmers required 

The actual selection of hardware and the implementation are not seen as part of this project.  
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Chapter 4 Algorithm Development 

 

4.1 Chapter Overview  

 

This chapter will discuss the implementation of the lock-in amplifier algorithms in MATLAB. 

The chapter will follow the development of the MATLAB program from a basic lock-in 

implementation to simulate a range of microprocessor specifications. The plots produced 

during the development of the program were used as a visual check will also be discussed. 

The processing of an external sampled signal will be discussed. 

The final main MATLAB program which performed the microprocessor specification 

simulation is listed in the Appendix B. 

 

4.2 Algorithms Variations 

The following subsections demonstrate the progression of the lock-in amplifier algorithms 

implemented in a MATLAB program. 

 A version of the program using a square wave reference was tested. The main program 

(Appendix B) can easily be changed to use a square reference signal. The outputs for the 

square wave reference version were similar to the outputs of the sinusoidal reference wave 

version. For this reason the results were not duplicated using the square wave reference.  

The values of the SNR, average error2 and amplitude out for each ADC bit resolution were 

stored for future plotting. The MATLAB program used to produce the plots from the data 

produced by the final main MATLAB program is listed in the Appendix B. 
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4.2.1 Lock-in Amplifier in MATLAB 

The start of the MATLAB program was written to create the experimental signal and the two 

reference signals. These signals were made into matrices that had a time period of 0.1 seconds 

in length at a constant frequency of 2 kHz.  

To simulate the increase or decrease in ADC sample frequency the amount of values per cycle 

for each signal matrix were increased or decreased. This was done while maintaining the 

correct frequency and the same time period. The sample frequency was set to 80 kHz as a 

starting figure. 

The experimental signal matrix (signal) was made to be a sinusoidal cosine waveform with a 

phase delay of π/10 radians and an amplitude of 1.8 volts.  

The first reference signal matrix was made to be a sinusoidal cosine waveform with zero phase 

shift. The second reference signal matrix was made to be a sinusoidal cosine waveform with 

a phase delay of 90 degrees (which becomes a sine wave). Both reference signal matrices have 

an amplitude of 1 volt. The signal and the two reference signals were plotted to see if their 

phases are correct shown in Figure 4-1. 

 

Figure 4-1: Plot of signal and reference signals 
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The lock-in amplifier equations were programed next. The two reference multiplication stages 

were programed using the equations in section 2.5.  

The signal matrix is multiplied element wise by the cosine reference signal matrix as well the 

signal matrix is multiplied element wise by the sine reference signal matrix. This forms two 

separate matrices which are equivalent to equations (2.5.6) and (2.5.10) (refer to 2.5). Figure 

4-2 and Figure 4-3 below show the signal and the reference signals with the result of the 

multiplication below each pair.  

The two output matrices from the multiplication stage require filtering. A moving average low 

pass filter was written and tested in the MATLAB program but it took a lot of processing time 

so it was removed. 

 

 

Figure 4-2: Result of multiplication of signal and reference cosine signal 
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Figure 4-3: Result of multiplication of signal and reference sine signal 

The moving average low pass filter was replaced by a low pass filter which used MATLABs 

‘mean’ function. The mean function found the DC value of the multiplication stage matrices. 

The output of the filters produced a single value for each of the X and Y channel outputs. The 

X and Y channel outputs are then used to find the amplitude of the signal and phase difference 

between the signal and the reference signal.  

The outputs of the lock-in amplifier algorithms are two values, one for the amplitude signal 

and one for the phase of the signal, for the set integration time period. 

The MATLAB program for the final correctly functioning lock-in amplifier algorithms 

(without added noise and ADC resolution) is listed in the Appendix B. 

The preceding implemented the lock-in amplifier algorithms. To test the lock-in amplifiers 

performance the amplitude and phase of the output were compared with the input amplitude 

and phase to see if they were equal. The input and the output should be equal because there is 

no noise added to the signal. Table 4-1 shows the lock-in amplifier input and output values. 

Table 4-1: Table of input and output values for amplitude and phase for zero noise 

Variable Input Output 

Amplitude 1.800 1.800 

Phase delay of signal 𝜋

10
= (0.31416)  0.31416 

Noise 0.00 SNR: Inf dB 
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The phase output results were not displayed in future program versions after it was seen that 

the algorithms were functioning correctly, as it had no effect on the amplitude output. 

Furthermore the phase was held constant for all following simulations (so would not change). 

Table 4-2 below shows that the output of the lock-in amplifier is not effected by the phase 

delay of the signal. 

 

Table 4-2: MATLAB program output for various signal phase delays 

Phase delay of signal Amplitude 

Input (radians) Output (radians) Input (V) Output (V) 

𝜋

10
= (0.31416)  0.31416 1.800 1.800 

𝜋 = (3.1416)  3.1416 1.800 1.800 

2𝜋 = (0.0000)  -2.8267e-014 ≈ 0 1.800 1.800 

4𝜋

3
= (4.18 − 2𝜋 =

−2.094)  

-2.0944 1.800 1.800 

25𝜋

87
= (0.902756)  0.90276 1.800 1.800 

 

 

4.2.2 SNR of Input Signal  

After the lock-in amplifier algorithms functioned correctly by outputting the input values noise 

was added to the signal to test the lock-in amplifier noise rejection performance. The noise 

was added using MATLABs ‘randn’ function which produces a random number with a 

Gaussian distribution. The random noise was made into a matrix the same length as the signal 

so that it could later be added to the signal. This random matrix was then multiplied by a noise 

level multiplication factor. The multiplication factor was a range of increasing incremental 

values to simulate the level of noise increasing in the ‘experiment’. The multiplication factor 

range will be discussed later in this section. Figure 4-4 show the signal with no noise and the 

signal with two increasing noise multiplication factors. 



24 

 

 

 

Figure 4-4: Noise add to the signal at SNR of Inf dB, 2 dB and -37.9 dB. 

 

The signal to noise ratio (SNR) of the signal was used to determine the level of noise immunity 

at which the lock-in amplifier could still produce an acceptable output. The SNR of the signal 

was calculated using the signal power and noise power using equation 2.6.1 in section 2.6.  

The amplitude of the lock-in amplifier output was plotted against the SNR for the range of 

noise multiplication factors. It was expected that as the noise increased that the amplitude 

would increase and the output would not be acceptable. The question was then raised ‘How 

far above the input amplitude (1.8 V) could the output get before it was deemed unacceptable?’ 

A value of two percent above the input amplitude was chosen as discussed previously (Ref 

3.4). The two percent error was marked on the output amplitude plot to give a visual 

representation and the value of the SNR at this point was also displayed in the title of the plot.  

The first version of code used a noise multiplication factor range from 0.1 to 1000 with 100 

steps spaced linearly over the range. This large range was used because the lock-in amplifier 

algorithm performance was unknown. Figure 4-5 shows the approximate output range of the 

lock-in amplifier, seen to the left of the plot the values below -40 dB do not need to be 

calculated. Therefore the range of noise multiplication factors can be reduced to save 

computation time. 
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The error between the input and the output was calculated to monitor the output error as the 

noise level increased. This only produced one number for each level noise in the range, the 

value of this would change each time the program was run due to the different random noise. 

It was recommended by the project supervisor to run 1000 sets of random noise. This amount 

of random samples was tried but could not be run successfully on the host computer at that 

time (it kept on crashing). A new host computer was purchased, this computer was able to run 

the 1000 sets successfully. The 1000 sets of random noises were averaged so that a more 

appropriate effect of the Gaussian noise was achieved. So 1000 sets of random noises were 

averaged and squared to produce an average error squared (σ2) for each noise level. This σ2 is 

the square of the average of the error between the input amplitude and the output amplitude 

for the set of random numbers. A straight line approximation was applied to the average error2 

plot which can be found in Appendix C. 

 

 

Figure 4-5: Amplitude out using linear spacing for a range from 0.1 to 1000 

The noise multiplication factor range was reduced to a range of 0.1 to 100 to save on program 

run time plot can be seen in the Appendix C. 

This average error squared was plot against the SNR of the input signal this relationship can 

be seen in the Appendix C. 
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The multiplication factor was then changed to a logarithmic spacing because the average error 

squared was plotted on a logarithmic y axis. The logarithmic scale visually produced a straight 

line and the logarithmic spacing of the noise produced an evenly spaced line on the average 

error squared plot shown in Figure 4-6. The noise multiplication factor using the logarithmic 

spacing was first run from 0.1 to 1000 with 100 steps. After the program was run this 

logarithmic noise multiplication factor range produced a slightly better result than the linear 

spacing, because the logarithmic spacing provided more data points at the acceptable output 

amplitude. 

 

Figure 4-6: Average error2 using logarithmic spacing on a logarithmic y axis 

 

The noise multiplication factor using the logarithmic spacing was reduced to 0.1 to 100 with 

100 steps. The acceptable output using the new range occurred within this 0.1 to 100 range. 
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Figure 4-7: Amplitude out using logarithmic spacing for a range from 0.1 to 100 

 

4.2.3 Simulating a Microprocessors ADC 

 

Signal quantisation was used to simulate a range of analogue to digital converter (ADC) bit 

resolutions. A range of two bit to sixteen bit was used. The quantisation was performed on the 

signal matrix after the noise had been added to it. The signal matrix was converted to a sixteen 

bit integer then quantised to the required bit resolution. Then the signal matrix was converted 

back to double perdition format.  

An outer loop was added to the program to determine the effect of changing the ADC bit 

resolution from 2 bit to 16 bit. While testing the quantisation by visually checking the 

quantised signal plot (Figure 4-8) the noise was set to zero. 
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Figure 4-8: Experimental signal quantised to 3 bit with zero added noise. 

A loop was made to find specific SNR values and their corresponding average error2 value 

from the straight line approximation matrix. This formed the main plot to compare the 

different ADC resolutions. The average error2 for each decibel value from 20dB to -30dB in 

5dB steps was stored for each ADC bit resolution increase. Figure 4-9 shows the relationship 

between the average error2 and the increased ADC bit resolution. 

 

Figure 4-9: Average error2 compared to ADC resolution for different SNR levels. 
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4.2.4 MATLAB ‘seed’ Function 

After the ADC bit resolution loop was added it was noticed that the results were inconsistent 

for each time the program was run and for different ADC resolutions. The ‘seed’ option of 

MATLABs randn function was used so that each bit resolution change would have the same 

set of random noises. This was so that the difference between each result was only caused by 

the ADC bit resolution changing. The plot of amplitude out without the ‘seed’ option used is 

shown below in Figure 4-10.  

 

Figure 4-10: Amplitude out when no ‘seed’ option was used in the randn function 
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4.3 Results of Final Program 

 

The final program was run with different sample frequencies, which were changed manually 

because of the time taken to run the program was too long and memory intensive. The final 

MATLAB program used to simulate the ADC specifications can be found in the Appendix B. 

Critical information discovered during the programs development that improved the results 

were the use of the ‘seed’ option in the randn function and the number of random noises sets 

being averaged. The variable which controlled the amount of averaged random noise sets 

showed that a higher number (1000-5000) resulted in a smoother amplitude out curve.  

The SNR level at the 2% error threshold fluctuated up and down as the sample frequency 

increased at a 1000averaged sets of random numbers and below. 

With 1000 averaged sets of random numbers from a range of multiplication factors from 0.1 

and 100. The SNR for the each ADC bit resolutions change over a range of ADC sample frequencies 

is displayed in Table 4-3. 

 

Table 4-3: Signal to noise ratio (dB) at the 2% error output for 1000 sets of random noise. 

fs 

(kHz) 

ADC bit Resolutions 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

128 19 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 

80 19 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 

64 18 -24 -24 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 

32 18 18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 

16 16 16 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 

8 16 16 -13 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 

 

The SNR level at the 2% error threshold decreased consecutively as the sample frequency 

increased at 5000 averaged sets of random numbers. 

With 5000 averaged sets of random numbers from a range of multiplication factors from 1 and 

31.6 the SNR for the each ADC bit resolutions change over a range of ADC sample frequencies is 

displayed in Table 4-4. 
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Table 4-4: Signal to noise ratio (dB) at the 2% error output 5000 sets of random noise. 

fs 

(kHz) 

ADC bit Resolutions 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

128 -1.9 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 

80 -17 -25 -25 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 

64 -15 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 -23 

40 -16 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 

32 -15 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 

16 -15 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 

8 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 

 

It is thought that the average of 1000 sets of random noises did not represent the Gaussian 

distribution effectively but the 5000 sets seemed to according to Table 4-4. 

 

Using a high number (5000) of averaged random noise sets (without the ‘seed’) showed that 

the simulation using the ‘seed’ function for 1000 random noise sets is close to the values 

received using a high number of sets as shown in Table 4-5. 

Table 4-5: No seed function used for 5000 sets of random noise. 

fs 

(kHz) 

ADC bit Resolutions 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

80 -15 -23 -23 -23 -25 -25 -24 -23 -24 -23 -23 -24 -24 -23 -23 

 

The average of the average error2 decreased as the sample frequency increased.  

The Table 4-6 below shows the average of the average error2 for 5000 averaged sets of random 

numbers from a range of multiplication factors from 1 to 31.6. 

Table 4-6: Average error squared at the 2% error output (x10-3) for 5000 sets of random noise. 

fs 

(kHz) 

ADC bit Resolutions 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

128 35 25 24 23 23 23 23 23 23 23 23 23 23 23 23 

80 52 40 38 38 37 37 37 37 37 37 37 37 37 37 37 

64 66 51 48 48 47 47 47 47 47 47 47 47 47 47 47 

32 125 100 95 94 94 94 94 94 94 94 94 94 94 94 94 

16 228 192 183 181 181 180 180 180 180 180 180 180 180 180 180 

8 421 362 350 346 345 345 345 345 345 345 345 345 345 345 345 
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When the MATLAB lock-in amplifier algorithm was run using a one second integration time 

the results were improved by approximately -10 dB as shown is Figure 4-11. A full data set 

using a one second integration time was not able to be produced due to the host computer 

limitations. 

 

 

Figure 4-11: Amplitude out compared to SNR for an integration time of 1 s 
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4.4 Input Real Signal 

The experiment included a waveform generator which produced the cosine and sine reference 

signals. The cosine waveform was used as a reference signal for a LED driver which pulsed 

the infrared LED. The light from the LED travelled through a gas chamber and received by a 

photo detector. The signal out of the photo detector is the experimental signal which would be 

feed into the lock-in amplifier. The experimental signal, the cosine and sine reference signals 

were sampled using a USB Adlink data acquisition unit. These three signals were also 

displayed on an oscilloscope for visual representation, a screen shot of this is included in the 

Appendix C. The sampled data from the acquisition unit was stored on a laptop for later 

analysis in MATLAB.  

The sampled data was imported into MATLAB for processing with the lock-in amplifier 

algorithms. The sample was loaded into MATLAB using a premade program (supplied by the 

project supervisor) which placed the data into matrices. A new program was written which 

used the lock-in algorithms without the ADC and noise loops. Different integration times were 

used to see the variation this had on the results of the lock-in algorithms. 

The sampled signal MATLAB program is listed in Appendix B. 

The plot in Figure 4-12 is of the sampled experimental signal and the reference signals with 

gas present, the sampled signals without gas are in Appendix C. The product of the signal 

multiplication stages for the gassed sample are shown in Figure 4-13. 

 

Figure 4-12: Samples signal with gas present.  
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Figure 4-13: X and Y channels before LPF 

 

Table 4-7 shows the output of the lock-in amplifier algorithms for an integration time of 

0.16 s. The output amplitude of the gassed sample was 3.6% reduced from the non-gassed 

sample. 

 

Table 4-7: Lock-in amplifier algorithm outputs for a sampled signal. 

 No Gas Present Gas Present 

Amplitude  1.382 1.332 

Phase 1.3235 radians 1.3235 radians 
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Chapter 5 Analysis 

 

5.1 Chapter Overview 

For clarity the graphs in this analysis section are a representation only. They have been 

generalised from the results. Please refer to the results for the exact relationships. 

 

5.2 Analysis of Results and Plots 

 

ADC resolution: The Figure 5-1 below shows that the noise immunity increased as the ADC 

resolution increased. Good results were obtained from using a 6 bit ADC resolution. ADC 

resolutions above 8 bit showed no discernable increase in noise immunity. 

 

 

Figure 5-1: Noise Immunity compared to ADC Resolution 
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ADC sample frequency: An increase in the sampling frequency improved the noise 

immunity. For a doubling for the sampling frequency the noise immunity improved by 

approximately 3 dB as shown in Figure 5-2. 

 

 

Figure 5-2: SNR compared to sample frequency 

 

Integration time: An increase in integration time increased the noise immunity. Increasing 

the integration time from 0.1 s to 1 s increased noise immunity by 10 dB. As Figure 5-3 shows 

this relationship between SNR and integration time is not linear. 

 

 

Figure 5-3: SNR compared to Integration time 

 

Therefore a combination of specifications produces an acceptable result. Increasing the 

specifications improves the noise immunity of the lock-in amplifier. 
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5.3 Real Sampled Signal 

 

The lock-in amplifier algorithms were tested with a real sampled signal from the output of an 

experiment involving an infrared gas sensor. Two tests results were analysed one without gas 

and the other with gas present. The results showed that the phase output did not change with 

the addition of the gas. The amplitude out of the gassed sample was reduced in comparison 

with the non-gassed sample. 

The lock-in amplifier algorithms were able to retrieve the signal and phase of the sampled 

signal. The lock-in amplifier algorithms were not tested with a sampled signal containing high 

noise levels. 

The performance of the lock-in amplifier algorithms under high noise level conditions is a 

task for future hardware development. 
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Chapter 6 Project Conclusions 

 

6.1 Optimal Specifications 

An inter-relationship existed between: 

 ADC resolution. 

 ADC sample frequency. 

 Integration time. 

ADC resolution: Good results were obtained from using a 6 bit ADC resolution. Higher bit 

resolutions produce marginally better results with no discernable improvement after 8 bit 

resolution. Actual implementation may depend on the cost of discrete ADC’s at various 

resolutions.  

ADC sample frequency: The microprocessor or the DSP will produce the ADC sample 

frequency as an on chip function  

For a doubling for the sampling frequency: 

 Noise immunity improved by 3 dB 

 The average error2 was halved 

Therefore microprocessors and DSP’s that have a higher clock speed will give better results 

however it is unknown if there is an upper limit to this improvement. 

Integration time: An increase in integration time proved to increase the noise immunity. This 

was not fully tested because of the limitation of the host computer. However in minimal testing 

it was seen that an increase in integration time from 0.1 s to 1 s increased noise immunity by 

10 dB. For applications were real time monitoring is not required increasing the integration 

time is advantageous. 

Hardware should be chosen to optimise the integration function. It should be capable of 4 bit 

ADC (or better) and producing a sample frequency greater than 100 kHz. It should be noted 

that the dsPIC33F more than meets these requirements. 
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6.2 Opportunities for Further Study 

The actual selection of hardware and the implementation are seen as the basis of a possible 

future project. Considerations should be given to dsPIC processes  

Further study is required to identify the limit (if any) to improvement of the noise immunity 

by increasing the sampling frequency. 

Further investigation of the increase in integration time would be considered profitable, this 

would only be feasible using a hardware implementation. 

 

 

6.3 Conclusion Summary  

The specifications determined by this project are within the specifications of current 

microprocessors and DSP’s. 

Hardware should be chosen to optimise the integration function. It should be capable of 6 bit 

ADC (or better) and producing a sample frequency greater than 100 kHz. It should be noted 

that the dsPIC33F more than meets these requirements. 

There are further avenues of study available. 
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ENG 4111/2 Research Project 

Project Specification 

 

For:   Robert Skillington 

 

Topic:   DSP-Based Lock-in Amplifier 

 

Supervisors:  John Leis 

 

Sponsorship:  Faculty of Health, Engineering & Sciences 

 

Project Aim:  To develop hardware and software to implement a lock-in amplifier for 

measurement systems. Using a Digital Signal Processor (DSP) or even a low-

cost microcontroller. A part of the research aspect is to determine the 

suitability of certain processor architectures for this task. 

 

Program:  (Issue B, 26th March 2013) 

 

1. Research the design and use of the Lock-in Amplifier, both analogue and digital. 

 

2. Determine the set of algorithms to be implemented for the lock-in, including the 

reference signal multiplication, low pass filtering, and the separate phase-locked loop. 

 

3. Evaluate the performance of the algorithms as implemented, and show the signal 

recovery performance for various parameter settings at different SNR levels. 

 

4. Evaluate the performance in MATLAB using sampled real-world signals. 

 

5. Investigate suitable processor architectures and development systems for an 

embedded lock-in amplifier. 

 

 

As time and resources permit: 

 

1. Design the hardware and implement the embedded lock-in amplifier. 

 

2. Test its performance under various conditions. 

 

3. Augment with a Phase-Locked Loop (PLL) so as to be able to use an external 

reference signal. 

 

Agreed: 

 

   Student Name:   Robert Skillington 

   Date:      

 

   Supervisor Name:   John Leis 

   Date:      

 

  Examiner/Co-Examiner: 

  Date: 
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Appendix B 

 

MATLAB program listing for LOCK-IN AMPLIFIER ADC simulation 

ProjectDSPBasedLIA_2013_Final.m 

% Robert Skillington, Project: DSP based Lock-in Amplifier 2013 
% Lock-in Amplifier algorithm using Cosine or Square waveform for Reference signal 
% This code uses logarithmic spacing for the added noise or linear spacing 
% Simulates ADC bit resolution from 2 to 16 bit 

  
clc; 
clear all; 
close all; 

  
%% Signal parameters  
tic 
% sample frequencies used, 8,16,32,40,64,80,128 kHz 
fs =80000;                      % Sampling Frequency (samples/second) >8000 
Ar = 1;                         % Reference Amplitude 
Ai = 1.8;                       % Input Amplitude 
t = 0.1;                        % Integration Time in seconds 
n = [0:round(t*fs)-1]'/fs;      % Time axis 
fo = 2000;                      % Frequency of sinusoid 
errIncr = 0.02;                 % percent error above input amplitude 

  
%% Experimental signal 

  
VsigCos = Ai*cos((n*2*pi*fo)-(pi/10)) ;% V signal Sine waveform equation 
% to add the phase difference through the experiment 

  
%% Cosine Reference signals & %% Square Reference signals Note: Ao(k) also 
%% has to be changed for square reference. 

  
% VrefSin = Ar*square(n*2*pi*fo);      % V reference Sine waveform equation 
% VrefCos = Ar*square((n*2*pi*fo)+(pi/2)); % V reference Cosine waveform 
% equation 

  
VrefCos = Ar*cos(n*2*pi*fo);          % V reference Sine waveform equation 
VrefSin = Ar*cos((n*2*pi*fo)-(pi/2));% V reference Cosine waveform equation 

  
%% Plots of Experimental signal and reference signals and their multiplication 

  
Vctest = VsigCos.*VrefCos; % Vctest to plot signal with no noise 
Vstest = VsigCos.*VrefSin; % Vstest to plot signal with no noise 

  
figure('units','normalized','outerposition',[0 0 1 1]); %Full screen Figure 
figure(1) 
subplot(3,1,1) 
plot(n(1:ceil(1/fo*5*fs)),VsigCos(1:ceil(1/fo*5*fs)),'-o') % gives 5 cycles of the 

waveform 
title('Cosine Experimental Signal'); 
title(sprintf('Cosine Experimental Signal at %g Hz at a sample frequency of %g 

Hz',fo,fs),'FontSize',14); 
xlabel('Time (sec)','FontSize',12); 
ylabel('Amplitude (V)','FontSize',14); 
grid on 

  
subplot(3,1,2) 
plot(n(1:ceil(1/fo*5*fs)),VrefCos(1:ceil(1/fo*5*fs)),'-o') 
title(sprintf('Cosine reference Signal at %g Hz',fo),'FontSize',14); 
xlabel('Time (sec)','FontSize',12); 
ylabel('Amplitude (V)','FontSize',14); 
grid on 
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subplot(3,1,3) 
plot(n(1:ceil(1/fo*5*fs)),Vctest(1:ceil(1/fo*5*fs)),'-o') 
title('Cosine Experimental Signal multiplied by Cosine reference 

Signal','FontSize',14); 
xlabel('Time (sec)','FontSize',12); 
ylabel('Amplitude (V)','FontSize',14); 
grid on 

  
figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure 
figure(2) 
subplot(3,1,1) 
plot(n(1:ceil(1/fo*5*fs)),VsigCos(1:ceil(1/fo*5*fs)),'-o') 
title(sprintf('Cosine Experimental Signal at %g Hz at a sample frequency of %g 

Hz',fo,fs),'FontSize',14); 
xlabel('Time (sec)','FontSize',12); 
ylabel('Amplitude (V)','FontSize',14); 
grid on 

  
subplot(3,1,2) 
plot(n(1:ceil(1/fo*5*fs)),VrefSin(1:ceil(1/fo*5*fs)),'-o') 
title(sprintf('Sine reference Signal at %g Hz',fo),'FontSize',14); 
xlabel('Time (sec)','FontSize',12); 
ylabel('Amplitude (V)','FontSize',14); 
grid on 

  
subplot(3,1,3) 
plot(n(1:ceil(1/fo*5*fs)),Vstest(1:ceil(1/fo*5*fs)),'-o') 
title('Cosine Experimental Signal multiplied by Sine reference 

Signal','FontSize',14); 
xlabel('Time (sec)','FontSize',12); 
ylabel('Amplitude (V)','FontSize',14); 
grid on 

  
%% Main LIA with ADC resolution simulation 

  
Aolimstore=[];   % Stores Ao max output below set threshold 
Aerrlimstore=[]; % SNR at 2% 

  
% set to 10,100,1000,5000 (time taken will increase start low) 
kmax = 1000; % amount of random samples being averaged 

  
adc = 2:16; % ADC resolution 

  
for ADC = adc; 

     
    aveSNRsin = [];     % initialising average of SNR   % aveSNRsqur = []; 
    aveAerrsin = [];    % initialising average of error % aveAerrsqur = []; 
    aveAo= [];          % initialising average of error % aveAosqur = []; 

     
    stepn = -1; %stepn = 0.1; use with linspace 
    %changes the range of Gaussian noise from the experiment 
    x = logspace(stepn,2,100); % linspace(stepn,100,10/stepn); 

     
    for a = x; %for a = for a = stepn;%  % noise added from 0.1 to 100 

         
        for k = 1:kmax; 

             
            %% Noise addition 

             
            randn('seed', k+45);% sets the random starting at 45(no reason) 

             
            Expnoise = a.*randn(length(n), 1); % Experimental noise 

             
            npwr(k) = sum(Expnoise.^2);  % noise power 

             
            sigpwr(k) = sum(VsigCos.^2); % signal power 

             
            %% Input signal (Signal  + Noise) 

             
            VsigCosandNoise = VsigCos + Expnoise;% adds noise to the signal 

             
            %% Quantisation 
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            Mul = (2^15)/max(abs(VsigCosandNoise));  % scaling multiplier 

             
            VsigCos16 = int16(VsigCosandNoise.*Mul); % convert to a signed 16 bit 

intiger 

             
            VsigCosQ16 = idivide(VsigCos16,2^(16-ADC), 'floor').*2^(16-ADC); % 

Quantises 

             
            VsigCosandNoiseQ = double(VsigCosQ16)./Mul; % Convert back to a double 

             
            %% Noisy signal x reference signals 

             
            Vs = VsigCosandNoiseQ.*VrefSin; % Vs is the multiplication of noisy input 

signal and Sine reference 
            Vc = VsigCosandNoiseQ.*VrefCos; % Vs is the multiplication of noisy input 

signal and Cosine reference 

             
            %% Filter for Vs and Vc to form I and Q (X and Y) channel 
            %% output 

             
            Ivs = mean(Vs); % mean of I 
            Qvc = mean(Vc); % mean of Q 

             
            %% Finds the Amplitude of output signal 
            % For square Ref wave Ao = (pi/4)*2*sqrt((Ivs^2)+(Qvc^2)); 
            Ao(k) = 2*sqrt((Ivs^2)+(Qvc^2)); 

             
            %% Finds the Phase of signal 

             
            Phase =  atan2(Ivs,Qvc);% OR atan(Qvc./Ivs) 

             
            %% SNR 

             
            SNR(k) = 10*log10((sigpwr)/(npwr)); % SNR of the output 

             
            Aerr(k) = Ao(1,k)-Ai; % Error between the input and the output 

             
        end 

         
        aveSNRsin(end+1) = mean(SNR);       % Average of  SNR's for kmax sets of 

noise 
        aveAerrsin(end+1) = mean(Aerr.^2);  % Average of  error for kmax sets of 

noise 
        aveAo(end+1) = mean(Ao);            % Average of  Amplitude out for kmax sets 

of noise 

         
    end 

     
    %% Ployfit straight line approximation for Average error squared 
    % creates polynomial fit to the Average error squared values 
    [p,s] = polyfit(aveSNRsin(1,2:end),log10(aveAerrsin(1,2:end)),1); 
    polcap = polyval(p,aveSNRsin(1,2:end)); 
    Polcap10 = 10.^(polcap); 

     
    %% Calculates the SNR at the 2% error set by 'errIncr' 
    l=1; 
    while aveAo(l)<= (Ai+(Ai*errIncr)); % acceptable output threshold 
        Aolim = aveSNRsin(1,l); 
        Aerrlim = aveAerrsin(1,l); 
        l = l+1; 
    end 
    Aerrlimstore(1,end+1) = Aerrlim; 
    Aolimstore(1,end+1) = Aolim; % Stores the SNR value at the acceptable output 

     
    %% Variables stored for each ADC resolution 

     
    SNRavebit(:,ADC) = aveSNRsin(1,2:end); % stores SNR 
    Aerravebit(:,ADC) = aveAerrsin(1,2:end); % stores average error 
    Aoavebit(:,ADC) = aveAo(1,2:end); % stores Amplitude out 
    polcapbit(:,ADC) = Polcap10; % stores Polyfit straight line 
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    MeanAerravebit = mean(Aerravebit); % average of Average error^2 

     
    fprintf('SNR = %2.4f dB\tat %2.0fbit ADC\tat Sample Frequency: %2.0f   Ave error: 

%2.5f  k = %2.0f Time= %2.2fsec\n', Aolim, ADC, fs, MeanAerravebit(ADC),kmax,t); 

     
end 

  
%% Chooses specific SNRs for each ADC resolution 

  
SNRdB = [20 15 10 5 0 -5 -10 -15 -20 -25 -30]; 

  
for dB = 1:length(SNRdB); 
    for v = adc; 
        nsnr=1; 
        while length(SNRavebit)>=nsnr && SNRavebit(nsnr,v) >= SNRdB(1,dB); 
            bitavesnr(dB,v) = nsnr+1; 
            nsnr=nsnr+1; 
            Avegerrstor(dB,v) = polcapbit(nsnr+1,v); 
        end 
    end 
end 
% Plot of Ave error^2 for SNRdB for ADC resolution range. 
figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure 
semilogy(adc,flipud(Avegerrstor(:,adc)),'-o','LineWidth',2);% or use plot 
title(sprintf('%g - %g bit ADC at Sample Frequency: %gHz', adc(1,1),adc(1,end), 

fs),'FontSize',14); 
ylabel('Average error ^2','FontSize',14); 
xlabel('ADC bit Resolution','FontSize',14); 
legend(fliplr({'20 dB','15 dB','10 dB','5 dB','0 dB','-5 dB','-10 dB','-15 dB','-20 

dB','-25 dB','-30 dB'})) 
xlim([1 adc(1,end)+1]); 
ylim([10^-6 10^1]); 

  
toc % show time taken 
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Program to Plot variables created by ‘ProjectDSPBasedLIA_2013_Final.m’ 
 

ProjectDSPBasedLIA_2013_Final_Plots.m  

 
%% Plots for different fs and bit resolutions to be used with 

%% ProjectDSPBasedLIA_2013_Final.m 

  

clc 

close all 

  

for ADC = adc(1,1):adc(end); 

     

    figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure 

    subplot(2,2,1); 

    semilogy(SNRavebit(:,ADC),Aerravebit(:,ADC),'-o', 

SNRavebit(:,ADC),polcapbit(:,ADC),'r');% 

    title(sprintf('Average Error ^2 for %g bit ADC Resolution on a semilog Y 

scale',ADC),'FontSize',14); 

    xlabel('SNR dB','FontSize',14); 

    ylabel('Average error ^2','FontSize',14); 

    ylim([10^-6 10^1]); 

    xlim([-40 30]); 

    grid on; 

     

    %     figure('units','normalized','outerposition',[0 0 1 1]); % Full screen 

Figure 

    subplot(2,2,2); 

    plot(SNRavebit(:,ADC),Aerravebit(:,ADC),'o'); 

    title(sprintf('Average Error ^2 for %g bit ADC Resolution',ADC),'FontSize',14); 

    xlabel('SNR dB','FontSize',14); 

    ylabel('Average error ^2','FontSize',14); 

    %     ylim([0 max(aveAerrsin)]); 

    xlim([-40 30]); 

    grid on; 

     

    %     figure('units','normalized','outerposition',[0 0 1 1]); % Full screen 

Figure 

    subplot(2,2,3); 

    plot(n(1:500),VsigCosandNoiseQ(1:500),'-o'); 

    %     ylim([-5000 5000]); 

    title(sprintf('Quantized Signal and Noise for %g bit ADC Resolution, %g 

quantization levels',ADC,2^ADC),'FontSize',14); 

    xlabel('time (sec)','FontSize',14); 

    %     xlim([0 0.003]); 

    %     ylabel(''); 

    grid on; 

     

    l=1; 

    while Aoavebit(l,ADC)<= (Ai+(Ai*errIncr)); % acceptable output threshold 

        Aolim = SNRavebit(l,ADC); 

        Aerrlim = Aerravebit(l,ADC); 

        l = l+1; 

    end 

    Aerrlimstore(1,end+1) = Aerrlim; 

    Aolimstore(1,end+1) = Aolim; % Stores the SNR value at the acceptable output 

     

    %     figure('units','normalized','outerposition',[0 0 1 1]); % Full screen 

Figure 

    subplot(2,2,4); 

    %plot(aveSNRsin(1,2:end),aveAo(1,2:end),'-',[min(aveSNRsin) 

max(aveSNRsin)],[(Ai+(Ai*errIncr)),(Ai+(Ai*errIncr))],'--r','LineWidth', 2); 

    plot(aveSNRsin(1,2:end),aveAo(1,2:end),'-',[Aolim Aolim],[min(aveAo) 

max(aveAo)],'r',[min(aveSNRsin) 

max(aveSNRsin)],[(Ai+(Ai*errIncr)),(Ai+(Ai*errIncr))],'--r','LineWidth', 2); 

    title(sprintf('SNR = %gdB, %gbit ADC at Sample Frequency: %gHz',Aolim, ADC, 

fs),'FontSize',14); 

    xlabel('Signal to Noise Ratio (dB)','FontSize',14); 

    ylabel('Amplitude out (V)','FontSize',14); 

    legend('Amplitude out','dB at 2% error','2% error')% legend('Amplitude out','2% 

error')% 

    ylim([1.75 max(aveAo)]); 

    %     xlim([-40 30]); 

    grid on; 
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    fprintf('SNR = %2.4f dB\tat %2.0fbit ADC\tat Sample Frequency: %2.0f   Ave error: 

%2.5f  k = %2.0f Time= %2.2fsec\n', Aolim, ADC, fs, MeanAerravebit(ADC),kmax,t); 

     

end 

  

SNRdB = [20 15 10 5 0 -5 -10 -15 -20 -25 -30]; 

  

for dB = 1:length(SNRdB); 

    for v = adc; 

        nsnr=1; 

        while length(SNRavebit)>=nsnr && SNRavebit(nsnr,v) >= SNRdB(1,dB); 

            bitavesnr(dB,v) = nsnr+1; 

            nsnr=nsnr+1; 

            Avegerrstor(dB,v) = polcapbit(nsnr+1,v); 

        end 

    end 

end 

  

figure('units','normalized','outerposition',[0 0 1 1]); % Full screen Figure 

semilogy(adc,flipud(Avegerrstor(:,adc)),'-o','LineWidth',2);% or use plot 

title(sprintf('%g - %g bit ADC at Sample Frequency: %gHz', adc(1,1),adc(1,end), 

fs),'FontSize',14); 

ylabel('Average error ^2','FontSize',14); 

xlabel('ADC bit Resolution','FontSize',14); 

legend(fliplr({'20 dB','15 dB','10 dB','5 dB','0 dB','-5 dB','-10 dB','-15 dB','-20 

dB','-25 dB','-30 dB'})) 

xlim([1 adc(1,end)+1]); 

ylim([10^-6 10^1]); 

 

 

 

 

  



49 

 

Lock-in amplifier algorithms with no added noise or ADC simulation. 
 

ProjectDSPBasedLIA_2013.m 
 
% Robert Skillington Project DSP based Lock-in Amplifier 2013 

% LIA algorithm using Square OR sine waveform for Reference signal 

  

clc; clear all; close all;% 

  

%% 

tic 

  

fs = 80000;                   % sampling frequency (samples/second) >4000 

Ar = 1;                       % Reference Amplitude 

Ai = 1.8;                     % Input Amplitude 

n = [0:round(0.1*fs)-1]'/fs;  % Time axis 

fo = 2000;                    % Frequency of sinusoid 

  

%% Experement signal 

 VsigCos = Ai*cos((n*2*pi*fo)-(pi/10)) ;%   % V signal Sine waveform equation to add 

the phase difference through the experiment 

  

  

%% Cosine Reference signals                  % Square Reference signals 

  

VrefCos = Ar*cos(n*2*pi*fo); % Ar*square(n*2*pi*fo);    % V reference Sine waveform 

equation   

VrefSin = Ar*cos((n*2*pi*fo)-(pi/2));% Ar*square((n*2*pi*fo)+(pi/2));  % V reference 

Cosine waveform equation  

  

  

%% Vs and Vc (VsigSinandNoise x V reference Sine) and (VsigSinandNoise x V reference 

Cosine) 

  

Vs = VsigCos.*VrefSin; % Vs is the multiplication of noisy input signal and Sine 

reference 

Vc = VsigCos.*VrefCos; % Vs is the multiplication of noisy input signal and Cosine 

reference 

  

%% Filter for Vs and Vc to form I and Q (X and Y) 

  

Ivs = mean(Vs); % mean of  

Qvc = mean(Vc); % mean of  

  

  

%% Finds the magnitude of signal 

  

Ao = 2*sqrt((Ivs^2)+(Qvc^2));   % Ao = (pi/4)*2*sqrt((Ivs^2)+(Qvc^2));% for square 

wave %LIA output Amplitude  

  

fprintf('Ai: %1.10f \n',Ai) 

fprintf('Ao: %1.10f \n',Ao) 

  

%% Finds the Phase of signal 

  

Phase = atan2(Ivs,Qvc); % atan(Qvc./Ivs);   % Phase difference from signal and 

reference 

  

fprintf('Phase: %1.5g radians \n',Phase); 
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Lock-in amplifier used on a real sampled signal. 

LIA_Sampled_Gas_Signal.m 

 
% Sampled signal Test 

  

% Robert Skillington Project DSP based Lock-in Amplifier 2013 

% LIA algorithm using square and sine waveform for Reference signal 

% This code shows both an air and gas sample 

% The sine and cosine voltage was 2.5V peak to peak 

% The Cosine wave had a DC offset of 2.5V 

  

clc; clear all; close all;% 

  

sampl = 10000 ; 

  

[DataMat NumChans SampleRate ScanRate NumScans Comment] = AdlinkReadFile('air.bin', 

sampl); 

[DataMatg NumChansg SampleRateg ScanRateg NumScansg Commentg] = 

AdlinkReadFile('gas.bin', sampl); 

  

samptime = sampl/ScanRate;  

fprintf('Sample Time: %1.5g seconds \n',samptime); 

xsigD = DataMat(:,1); % V signal Sine waveform equation to add the phase difference 

through the experement 

xCosD = DataMat(:,2); % V referance Cosine waveform equation   %  VrefSin = 

Ar*square(n*wo) 

xSinD = DataMat(:,3); % V referance Sine waveform equation %  VrefCos = 

Ar*square((n*wo)+(pi/2)) 

  

figure(1) 

subplot(3,1,1) 

plot(xsigD(1:100),'-o') 

title('Signal','FontSize',14); 

  

grid on 

  

subplot(3,1,2) 

plot(xCosD(1:100),'-o') 

title('Cosine reference','FontSize',14); 

grid on 

  

subplot(3,1,3) 

plot(xSinD(1:100),'-o') 

title('Sine reference','FontSize',14); 

grid on 

  

xsig = xsigD -mean(xsigD); % Normalises  

xCos = xCosD -mean(xCosD); 

xSin = xSinD -mean(xSinD); 

  

figure(2) 

subplot(3,1,1) 

plot(xsig(1:100),'-o') 

title('Normalised Signal','FontSize',14); 

grid on 

  

subplot(3,1,2) 

plot(xCos(1:100),'-o') 

title('Normalised Cosine reference','FontSize',14); 

grid on 

  

subplot(3,1,3) 

plot(xSin(1:100),'-o') 

title('Normalised Sine reference','FontSize',14); 

grid on 

  

Vc = xsig.*xCos; % Vs is the multiplication of noisy input signal and Cosine 

reference 

Vs = xsig.*xSin; % Vc is the multiplication of noisy input signal and sine reference 

  

figure(3) 

subplot(2,1,1) 

plot(Vc(1:100),'-o') 

title('X','FontSize',14); 

grid on 
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subplot(2,1,2) 

plot(Vs(1:100),'-o') 

title('Y','FontSize',14); 

grid on 

  

%% Filter for Vs and Vc to form I and Q (X and Y) 

  

Is = mean(Vs); % mean of  

Qc = mean(Vc); % mean of  

  

  

%% Finds the magnitude of signal 

  

Ao = 2*sqrt((Is^2)+(Qc^2));   % LIA output Amplitude 

  

fprintf('Ao: %1.2f \n',Ao) 

  

%% Finds the Phase of signal 

  

Phase = atan2(Qc,Is);% atan(Qc./Is);        % Phase difference from signal and 

reference 

  

fprintf('Phase: %1.5g radians \n',Phase); 

  

%% 

%% GASED Sample 

  

  

xsigDg = DataMatg(:,1); % V signal Sine waveform equation to add the phase difference 

through the experement 

xCosDg = DataMatg(:,2); % V referance Cosine waveform equation   %  VrefSin = 

Ar*square(n*wo) 

xSinDg = DataMatg(:,3); % V referance Sine waveform equation %  VrefCos = 

Ar*square((n*wo)+(pi/2)) 

  

figure(4) 

subplot(3,1,1) 

plot(xsigDg(1:100),'-o') 

title('Signal with Gas','FontSize',14); 

grid on 

  

subplot(3,1,2) 

plot(xCosDg(1:100),'-o') 

title('Cosine reference','FontSize',14); 

grid on 

  

subplot(3,1,3) 

plot(xSinDg(1:100),'-o') 

title('Sine reference','FontSize',14); 

grid on 

  

xsigg = xsigDg -mean(xsigDg); % Normalises  

xCosg = xCosDg -mean(xCosDg); 

xSing = xSinDg -mean(xSinDg); 

  

figure(5) 

subplot(3,1,1) 

plot(xsigg(1:100),'-o') 

title('Normalised Signal with Gas','FontSize',14); 

grid on 

  

subplot(3,1,2) 

plot(xCosg(1:100),'-o') 

title('Normalised Cosine reference','FontSize',14); 

grid on 

  

subplot(3,1,3) 

plot(xSing(1:100),'-o') 

title('Normalised Sine reference','FontSize',14); 

grid on 

  

Vcg = xsigg.*xCosg; % Vs is the multiplication of noisy input signal and Cosine 

reference 

Vsg = xsigg.*xSing; % Vc is the multiplication of noisy input signal and sine 

reference 
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figure(6) 

subplot(2,1,1) 

plot(Vcg(1:100),'-o') 

title('X channel with Gas','FontSize',14); 

grid on 

  

subplot(2,1,2) 

plot(Vsg(1:100),'-o') 

title('Y channel with Gas','FontSize',14); 

grid on 

  

%% Filter for Vs and Vc to form I and Q (X and Y) 

  

Isg = mean(Vsg); % mean of  

Qcg = mean(Vcg); % mean of  

  

  

%% Finds the magnitude of signal 

  

Aog = 2*sqrt((Isg^2)+(Qcg^2));   % LIA output Amplitude 

  

fprintf('Ao gas: %1.2f \n',Aog) 

  

%% Finds the Phase of signal 

  

Phaseg = atan2(Qc,Is);        % Phase difference from signal and reference pi/2-

2pi/25=1.319 

  

fprintf('Phase gas: %1.5g radians \n',Phaseg); 

  

per = Aog/Ao; 

fprintf('Per change: %1.5g %%\n',per*100); 
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Appendix C 

 

 

Figure C-1: Amplitude out using linear spacing for a range from 0.1 to 100 

 

 

Figure C-2: Average error2 using linear spacing on a logarithmic y axis  
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Figure C-3: Plot of amplitude out using a log spacing 

 

Figure C-4: Average error2 with a straight line approximation for 3 bit ADC at sample frequency of 80 kHz 
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Figure C-5: An oscilloscope screen shot of a sampled gas experiment.   

 

 

Figure C-6: Samples signal without gas present. 

 

 

 

 


