

University of Southern Queensland

Faculty of Health, Engineering & Sciences

Wireless Grain Silo Monitoring and Control

A dissertation submitted by

Christopher White

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Electrical & Electronic)

Submitted: October, 2013

Chris White, u1004803 Page i

Abstract

‘Wireless Grain Silo Monitoring and Control’ was a project put forward by Agridry

International to USQ. The scope detailed that a wireless system had to be designed to

communicate from the office to the grain silos 100m away, with cost being a factor.

The purpose of making a wireless system for the grain silo environment was to add

convenience by reducing the time spent travelling to and from the silos and to have a lower

cost than the current system

Several combinations of wireless communication were researched to select the optimum

design for the system and 434MHz ASK RF modules with an Arduino microprocessor were

selected for the task.

A number of prototypes have been built throughout the project, with new features added in

every version. The current version is able to send packets using half-duplex communication

across a distance of 100m, using dipole antennas.

The polling system has been implemented communicate between the Master module and

each of the silos, sending setting information for the silo fans. Also, errors are reported via

the Serial Monitor when the Master can’t achieve communication.

Chris White, u1004803 Page ii

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences,

and the staff of the University of Southern Queensland, do not accept any responsibility for the

truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council

of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences or the staff

of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise.

The sole purpose of the course pair entitled “Research Project” is to contribute to the overall

education within the student’s chosen degree program. This document, the associated hardware,

software, drawings, and other material set out in the associated appendices should not be used for

any other purpose: if they are so used, it is entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Chris White, u1004803 Page iii

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in

this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in

any other course or institution, except where specifically stated.

Chris White,

0061004803

Signature

Date

Chris White, u1004803 Page iv

Acknowledgements
Firstly I would like to thank my supervisor Dr John Leis and Agridry manager Mr Murray Fenner for

their guidance during the project. Their advice has been insightful and expanded my engineering

knowledge.

I would like to thank my friends, David Dobson, Newman Sana, Robert Skillington and John Sutcliff

for volunteering when testing the first prototype. Also, I would like to thank them for being well-

mannered while working in the laboratory.

I would like to thank the members of Darling downs Toastmasters for their help in improving my

public speaking skills. Presenting my project to a large audience was made easier with their help.

Furthermore, I would like to thank my family and friends for their support during the project.

Chris White, u1004803 Page v

Table of Contents

Abstract .. i

Certification of Dissertation ... iii

Acknowledgements .. iv

Glossary ... vii

List of Figures ... viii

1. Introduction .. 1

1.1 Aim .. 1

2 Literature Review .. 2

2.1 Grain Silos ... 2

2.2 Controller .. 2

2.3 Normal Setup .. 3

2.4 Scope ... 3

2.5 Communication Options ... 4

2.6 Microcontroller Options ... 5

2.7 Wave propagation... 5

3 Methodology ... 6

3.1 Selection of equipment ... 6

3.2 Prototype Design .. 6

3.3 Programming .. 6

3.4 Circuit design ... 6

3.5 Testing ... 7

3.6 Consequential Effects ... 7

4 Design & Implementation ... 9

4.1 Software .. 9

4.1.1 Packet Structure .. 9

4.1.2 Timing .. 10

4.1.3 Half-duplex Communication ... 10

4.1.4 Polling System ... 11

4.1.5 Address Assignment .. 11

4.1.6 Routing .. 12

4.1.7 EEPROM .. 12

4.1.8 Security ... 13

Chris White, u1004803 Page vi

4.2 Hardware .. 13

4.2.1 Voltage Regulators .. 13

4.2.2 Transistor Circuit ... 13

4.2.3 Antenna Requirements and Design .. 14

4.2.4 Regulations .. 15

5 Evaluation ... 16

5.1 Simplex Communication ... 16

5.2 Half-duplex Communication ... 16

5.3 Dipole construction ... 17

5.4 Code structure .. 17

5.5 Polling .. 18

6 Conclusion ... 19

6.1 Further Work and Recommendations .. 19

6.1.1 Antennas ... 19

6.1.2 Circuit Construction .. 20

6.1.3 Address Assignment .. 20

6.1.4 Security ... 20

References .. 21

Appendix A – Project Specification ... 22

Appendix B - Circuit schematics .. 23

Appendix C – Office code .. 24

Appendix D – Master Code ... 27

Appendix E – Sensor code ... 32

Appendix F – Risk Assessment .. 37

Chris White, u1004803 Page vii

Glossary

ACMA - Australian Communications and Media Authority

AGC – automatic gain control

CRC – cyclic redundancy check

Dry-bulb temperature – air temperature with 0% humidity

EEPROM - Electrically Erasable Programmable Read Only Memory

FFD – Full Function Device, a device that can designate other nodes with addresses

LED- Light Emitting Diode

MHz- Megahertz

PCB- Printed Circuit Board

PLC- Power Line Communication

RF- Radio Frequency

TTL – Transistor-transistor logic

USQ- University of Southern Queensland

Wet-bulb temperature – combined measurement of temperature and humidity

λ - Wavelength

Chris White, u1004803 Page viii

List of Figures
Figure 1: Explanation of controller temperature regulation (Fusae, 2001). ... 3

Figure 2: Normal setup of silos and controller ... 3

Figure 3: The proposed setup for project ... 4

Figure 4: Illustration of Huygen’s Principle ... 5

Figure 5: Serial Monitor showing packets with buffer overrun effects .. 10

Figure 6: The oscilloscope readings detailing the Half-duplex communication 11

Figure 7: BAAM application for addressing silos. ... 12

Figure 8: Configurations of the Monopole (left) and Dipole (right). (Jacobsen 2008) 14

Figure 9: Radiation pattern of a dipole antenna (Beasley, Miller 2008) ... 15

Figure 10: Configuration of dipole antennas .. 17

Figure 11: Results from polling test (Sensors module) ... 18

file:///C:/Users/chris_000/Documents/Final%20Year%20Project/Dissertation_revB.docx%23_Toc370290631

Chris White, u1004803 Page 1

1. Introduction
Wireless technology has changed the world that we live in as it is convenient and can be tailored to

many applications. It is widely used in telecommunications such as television, radio, internet,

remotes, etc. However, wireless has not been applied to controlling and monitoring grain silos.

1.1 Aim

Agridry International had proposed the topic ‘Wireless Grain Silo Monitoring and Control’ to the

Engineering Faculty at University of Southern Queensland (USQ). Agridry specialises in the

manufacture of grain silos, dryers and control equipment. The project required a wireless system to

communicate control signals from the office to turn on the silo fans and acquire temperature and

humidity information from the silo sensors. The system requires the communication to be reliable

and have a range of 100m. Making the system wireless will provide convenience and reduce the

time spent travelling to the silos. Also, the total cost of the system is a major factor and has to be

minimised.

Chris White, u1004803 Page 2

2 Literature Review
This chapter will look into the current system that control grain silos, the proposed solution, options

that are available to solve the problem and relevant wireless communication theory.

2.1 Grain Silos

The primary purpose of the grain silo is to store grain and to keep it at a suitable temperature and

humidity level. If this level is too high, there are some problems that can occur, such as mould and

pests, which would result in poor quality grain (Fusae, 2001). To resolve this, the grain is aerated by

fans at the bottom of the silo, which dehumidifies it.

There are four settings that fans can run at:

 Manual

 Rapid

 Economy

 Off

Manual setting is for when grain is just been added into the silo and runs for 24 hours to remove

harvest heat. After the Manual setting has run, it automatically switches to Rapid.

Rapid is for grain that has been recently added and will turn the fan on full for about 12 hours a day.

This will quickly bring the grain to the lowest dry-bulb temperature which removes negative effects.

Economy is for grain that has been in storage for some time and slowly brings it to its wet-bulb

temperature. This temperature prevents negative effects, is suited for long-term storage and saves

power.

Off is when the silo is empty and no longer in use. These settings are configured by switches on each

of the silos or by a large switchboard.

2.2 Controller

Agridry has designed a controller that will manage the settings and temperature information. The

controller will read the varying outside temperature levels of the day with a sensor, as it fluctuates

during the day, as represented in Figure 1. The controller will have a set temperature at which the

grain has to be kept at, normally around 16 °C and regulate it by switching the silo fans on and off.

The controller switches on all of the fans, with a particular setting (Rapid or Economy), when the

outside air temperature goes below a calculated point. The fans will run during the night and switch

off in the morning, as it is more efficient. The Rapid setting is first to switch on and has a linear

cooling rate, while Economy switches on a short duration later and has a slower response.

Chris White, u1004803 Page 3

Figure 1: Explanation of controller temperature regulation (Fusae, 2001).

2.3 Normal Setup

The current system is shown in Figure 2, the switches and the controller are placed near the silos.

However, they are far from the office, up to 100m away, and these settings need to be regularly

changed and the temperatures monitored. Also, there are a large number of wires going to the silos

and if the complex is large, multiple controllers have to be purchased which are expensive. The idea

of making this system wireless is to get rid of travelling to and from the grain silos and the reduction

of cost.

Figure 2: Normal setup of silos and controller

2.4 Scope

The current plan is to design three modules; office, master and sensor modules (Figure 3). The Office

module will be placed at the office and receive information from the controller, to switch on Rapid

and/or Economy silos. The information will be transmitted using a communication method, up to

100m to the Master module. From there, the signal will be transmitted by a polling or pseudo-

random system to each of the Sensor modules, switching the appropriate fans on. The system will

have to resend the settings to the silos every 15-30 mins to ensure that the setting is correct.

100m

Chris White, u1004803 Page 4

Also, the Sensor modules will have the silos temperature and humidity information which needs to

be sent back to the office. This information needs to be sent at regular intervals as well, about one

minute apart.

This concept is new, as there haven’t been any development of wireless monitoring and control in

the grain silo application. Although, by using wireless communication theory and designing,

implementing and testing a prototype will state if a solution is feasible.

Figure 3: The proposed setup for project

2.5 Communication Options

There are several methods of communicating information between the office and the silos. The

methods that are available are Power Line Communication, Radio Frequency and Zigbee.

Power Line Communication (PLC) is achieved by sending data through a power line, using the three

phase voltage as a carrier. The modulator superimposes the data onto the three phase voltage and is

demodulated at the receiving end to retrieve the information. The advantages of using this system

are that no additional wires are required as it uses the existing power lines connected to the silos

and it can transmit over long distances. However, the disadvantages are that the system doesn’t

have much versatility compared to others, most systems are expensive and there are some safety

issues dealing with 240V.

The next method is Radio Frequency (RF). An online electronics distributor, Little Bird Electronics sell

small 434 MHz ASK (Amplitude Shift Keying) RF modules, which uses an unlicensed frequency. These

are very cheap, around $5, and only require 5V power supply and a serial input from a

microcontroller. The disadvantages are that ASK is susceptible to noise and can cause errors. Also,

when other devices near the frequency band are present, slight errors can occur.

Zigbee is another method of sending information and it is known to have higher reliability and

transmission distance. However, the disadvantages are that some of the functions on the Zigbee

Chris White, u1004803 Page 5

aren’t needed, the cost is moderate and operates at 2.4GHz which will reflect more off conductive

surfaces.

2.6 Microcontroller Options

With using the above communications methods, a microcontroller has to be used to read, write and

manipulate information. The microcontrollers that have been researched are the PIC and Arduino.

The PIC is a microcontroller manufactured by Microchip, which are fairly cheap ($5) and come in

various shapes, sizes and functionalities. The disadvantages are that it requires a separate

programmer ($60) and external components.

The next microcontroller is the Arduino Uno. The Arduino uses an atMEGA328 from Atmel and has

the required external components soldered onto a printed circuit board. The programing of the

board is done with its own firmware and is relatively easy to use. Some of the disadvantages are that

the cost is moderate ($30/board) and the project only uses 5 pins out of its total 18.

2.7 Wave propagation

When sending RF signals, the main concern is that they will most likely diffract and reflect off the

metal of the silos making it hard to detect the information being sent.

In electromagnetic wave propagation, diffraction follows Huygen’s Principle; a point on the primary

wavefront can act as a source for primary waves (Beasley, Miller 2008). As shown in Figure 4, when

the primary wavefront meets an obstacle it radiates from a point. On the opposite side of the

obstacle, there are shadow zones where the signal can’t be received. At lower frequencies, it is

known that the shadow zone is smaller and is less affected by obstacles (Beasley, Miller 2008).

Figure 4: Illustration of Huygen’s Principle

For the design, the reflection has to be minimised so that the signal isn’t distorted by any reflected

waves. At lower frequencies, the attenuation of the reflected signal when using steel or other metals

is large. Also at lower frequencies, the attenuation in free space is small and can travel further.

(Parsons, Hancock, 2012)

Chris White, u1004803 Page 6

3 Methodology
This chapter details the method of selecting the equipment, designing the prototypes, programming

and testing. Also the ethics and consequential effects involved in this project are discussed.

3.1 Selection of equipment

The 434MHz modules were selected for the task, due to the effects of reflection and diffraction

being low. Arduino was the selected microcontroller because the simplicity of uploading the

program onto the board.

3.2 Prototype Design

Once the equipment had been selected, the prototype had to be designed and implemented. The

prototyping had several stages:

 Prototype 1 – Simplex communication

 Prototype 2 – Half-duplex communication

 Prototype 3 – Dipole construction

 Prototype 4 – Polling system

The first prototype was designed with minimal components, one RF transmitter on one Arduino and

the RF receiver on the other Arduino. Tests were conducted to see what solutions worked and

identify any problems with the design. Once the system worked, the prototype was updated to the

next stage with a new feature.

The second prototype had implemented half-duplex communication to provide a reliable channel. A

RF pair was added to the Arduinos, so each board had one transmitter and one receiver.

The third prototype had added a dipole to the RF modules to provide better range.

The forth prototype had implemented a polling system to go through each of the silo addresses and

retrieve information.

3.3 Programming

The programming of the Arduino is done through a USB cable that is attached to the board and

computer. The Arduino board has its own firmware that was downloaded to the computer, which

uses it own language that is based off C and Processing.

3.4 Circuit design

The project had required a circuit to work with the Arduinos. Arduino ProtoShields are connected on

top to give a surface to solder components onto. The 434 MHz modules are connected to the

Chris White, u1004803 Page 7

ProtoShield via a female headers, this is to enable the ability to connect and remove the modules if

they require modification.

The 434 MHz RF transmitters have an operating voltage of 3-12V, a higher voltage produces a

greater transmitting distance. To produce the highest transmitting power, the 9V battery that

powers the circuit is converted by a 12V step-up regulator. The Arduino and the rest of the circuit

need to operate at 5V; therefore a step-down regulator is implemented.

The antennas are made of thin solid core wire and are connected to the RF modules. The remaining

resources of the project are basic electronic components such as wire, LEDs, push buttons and

battery clips. The circuit is arranged in the manner of Appendix 1.

3.5 Testing

There are many methods of testing if the system is working properly or locating a problem. The

Arduino has the functionality of displaying information on the Serial Monitor located on the

computer. The USB cable that is used for programming the microcontroller is connected to the serial

pins D0 and D1 (RX and TX respectively). Using the command Serial.print() in the code will display

values on the screen that can be used for debugging.

The multimeter was used for measuring voltage between two points and resistor values. The voltage

was measured across the battery and voltage regulator output was taken to ensure the Arduino had

received the appropriate 5V power supply. Also, the multimeter was used to find if any components

weren’t soldered on correctly.

Another item of equipment that was used during testing is the Oscilloscope. The Oscilloscope was

mainly used for reading the signals on the serial ports connected to the 434MHz transmitter and

receiver (D3 and D12 of Appendix 1).

The testing of the prototypes was initially done in the electronics laboratory for the short distance

tests. In the case of prototypes 1, 2 and 3, the long distance tests were conducted in an outside area

located near a building.

3.6 Consequential Effects

There are a number of ethical issues to take into consideration when designing the wireless system.

This is required to reduce risks occurring and improve satisfaction of users operating the system.

First of all, the silo fans have to be switched on one at a time as each fan draws a lot of current when

starting. If a large number of fans are started together, there will be high current draw on the lines

and a voltage drop will occur with the possibility of a brownout.

The modules have to be designed to resend the information. There is a small chance that the silos

will switch on by random noise and resending the signal will ensure that each silo has the correct

setting. Otherwise, having the silos switched on at the wrong time or with the wrong setting will ruin

the quality of the grain. The scope detailed a resending time of 15 – 30 mins would be sufficient.

Chris White, u1004803 Page 8

The RF receiver has an AGC (automatic gain control) which converts the incoming signal to the

appropriate TTL voltage level, so that it can communicate with the Arduino serial port. While there

is no 434MHz signal, the receiver amplifies the noise and produces a random sequence of levels on

the receiving line. If the data is transmitted without a proper structure, it could be hard to detect the

information from the noise.

With any wireless system, security has to be implemented into this system so that it prevents any

hacker infiltrating the network. The worst case scenario would be if the hacker was able to change

the settings of the fans and ruin the grain.

Chris White, u1004803 Page 9

4 Design & Implementation
This chapter details the how the software and hardware were designed and implemented into the

system.

4.1 Software

4.1.1 Packet Structure

The transmission of data has to be done in a packet system, which is widely used in wireless systems.

Each packet will include several sync bytes, a header, address, data and checksum bytes, respectively

in order (Beasley, Miller 2008).

While sending information, the transmitter and receiver timing may not be synchronised with each

other and produce wrong information. Sending Sync bytes of 01010101 at the start of the packet

synchronises the modules. The header byte is placed after the sync bytes and indicates the start of

the packet. The address byte specifies where the data needs to be sent; examples are the master

module or silo number. The Data byte is the important information that needs to be sent, such as

the setting or silo temperature.

After each packet, the checksum is calculated and placed to enable error detection. The checksum is

calculated by doing an exclusive-or operation on each of the previous bytes, in this case, the header,

address and data bytes. The packet is sent to the receiver with the checksum on the end. The

receiver looks at the received bytes, calculates the checksum again and compares the two checksum

bytes. If they are the same the packet is accepted, otherwise it is discarded.

The last prototype completed in the project had the packet structure of one header byte, one byte

to indicate the destination address, one byte to indicate the source address, one byte for data and

one byte for the checksum. The number of bytes per section could be increased to provide greater

detail. However, a longer packet will be more susceptible to errors and increase the number of reties

before getting the correct information. The number of bits per section can’t be decreased, as a byte

provides a range of 256 values which is well suited to amount of addresses that can be distributed to

the silos. Reducing the range would cause restrictions on the design. Also the temperature and

humidity values from the sensors will be placed into the data section, which needs to have a high

enough resolution to provide accurate readings. The temperatures will range from -10 to 50 °C and

need a resolution of 0.5 °C.

The software serial library had to be used, as the normal Serial port was being used for displaying

debugging information to the computer. The software serial is able to create additional serial ports

that are simulated by the software on the microcontroller. The functions used are

SoftwareSerial(RX,TX) which defines the pins that the new serial port is set, SerialA.begin() sets the

baud rate and SerialA.write(“xyz”) writes information onto the port.

The RF modules operate with a baud rate between 300-2400 bits per second. The rate of 1200 bits

was selected because operating at a slower speed will increase the number of symbols per bit and

make it less susceptible to errors.

Chris White, u1004803 Page 10

4.1.2 Timing

After each byte, the Arduino requires the command Serial.flush() to ensure that all of the

information in the transmit buffer is sent. Without this command, the Arduino has the tendency to

overwrite the byte in the buffer before it is sent to the transmitter. In the example of Figure 5, it is

shown that some complete packets (37:24:72) are received and others only show the first few bytes,

as a result of the bytes being overwritten.

Figure 5: Serial Monitor showing packets with buffer overrun effects

4.1.3 Half-duplex Communication

To be able to achieve reliable communication between both of the Arduinos, half-duplex method

had to be implemented. Half-duplex is two-way communication where only one device can send

information to the other, at any one time. In the system that has been built, the first module sends

information to the second, as shown on channel 2 (middle) in Figure 6. After a short delay, the

second module transmits an acknowledgement packet back to the original module to confirm the

information, shown on channel 3 (bottom) in Figure 6. Channel 1 (top) is the reading taken from one

of the receivers and shows the summation of the two. The modules will repeat sending information

both ways until the acknowledgement is received by the first module. This method takes an amount

of time, but ensures accuracy of the information being sent.

Chris White, u1004803 Page 11

Figure 6: The oscilloscope readings detailing the Half-duplex communication

4.1.4 Polling System

In the case of the Master module communicating to the Sensor modules, there has to be a polling

system implemented. The master module will go through a list of all of the silo addresses, poll each

sensor and receive back a packet, still using half-duplex communication.

The other method is to use pseudo-random communication. The Master module will broadcast a

message to all of the silos, asking to report back information of its current state. Each Sensor module

will have a random time slot allocated, to transmit back to the master. If a collision between the

data occurs, new random time slots are generated and the system tries again.

The polling system has advantages over pseudo-random communication in this scenario. Polling the

information will ensure that each silo has the correct information, but at the cost of time. The timing

of this system is not important, as there is a 15 min gap between transmitting the setting from the

controller. Also, the amount of modules transmitting is reduced with the polling system, as only one

signal is sent at a time. With pseudo-random, many modules would be transmitting over a short

period of time which could prove difficult in an environment with reflective surfaces.

4.1.5 Address Assignment

In the situation of the system is being first setup, the all of the modules won’t have addresses and

they need to be assigned. El Rachkidy, N et al. (2010) have detailed methods of assigning addresses

for wireless systems in mines, DAAM, SAAM and BAAM. These methods, especially BAAM (Binary

Address Assignment Mechanism), would be useful in the silo environment because some of the silos

won’t be reachable if the communication was only between the Master and Sensors. In figure 7, the

Master might have difficulty communicating normally with silo 7. With BAAM, the Sensors are given

Chris White, u1004803 Page 12

the ability of a FFD (full function device) (El Rachkidy, N et al. 2010) to be able to communicate with

other nodes in the network and assign addresses to its two children.

The method of assigning address will be based off El Rachkidy, N et al. (2010) and Schungers, C et al.

(2002). The Master module will start up first and has two vacant spaces for children. Each of the

Sensors will start up randomly, send ‘Hello’ messages to other devices and listens for any ‘Info’

packets (Schungers, C et al. 2002). The ‘Info’ messages contain the information of the neighbouring

devices which details if it is also requesting an address, if it is a FFD and whether it has any vacancies.

If there is any conflict between the devices, the device waits and stores information of its

neighbours. When there is no conflict, the device selects a FFD and requests an address. The FFD will

give the device half of available addresses and designate the first address to that device.

4.1.6 Routing

If the above addressing scheme is used, the messages have to be routed when the Master is polling

the Sensors. Each FFD will contain the addresses of its children and the devices below them. When a

device is selected to be polled (example of silo 7 in Figure 7), the route is calculated and sends the

packet to the first address (silo 1). The devices repeatedly pass down the packet until it reaches the

desired address (1 → 5 → 6 → 7). The same path is taken when sending back the acknowledgement.

4.1.7 EEPROM

EEPROM is non-volatile memory space on the Arduino that can store 8-bit values. The memory

won’t be deleted after the power is turned off and can be retrieved later. If power failures occur, the

EEPROM will be useful as it can protect against loss of important data, such as the address and

routing information. Although, the EEPROM has a slow access time and will have to be used rarely

for the program to run smoothly. Also, Arduino has the limit of storing 1 Kbyte of EEPROM on to the

microcontroller.

Silos

Master

3 2 1

5 6 4

7

Figure 7: BAAM application for addressing silos.

Chris White, u1004803 Page 13

4.1.8 Security

As the wireless signal can be received by any 433MHz receiver, some form of encryption has to be

implemented into the system to prevent any security threats. Encryption is achieved by generating a

value (key) and preforming XOR with the packet being sent. The receiver will have the same key and

can decrypt the packet to get the original information. Anyone without the key won’t be able to read

the information and hack the device.

4.2 Hardware

4.2.1 Voltage Regulators

To be able to operate effectively, the circuit needs a 12V power supply for the transmitter and a 5V

supply for the Arduino and the receiver. The device is connected to a 9V battery which is converted

to 12V with a step up regulator. This 12V is then converted down with a 5V regulator to power the

rest of the circuit.

The 9V battery wouldn’t be suitable for the final prototype, as the battery would deplete over a few

days and need replacing. However, silo fans are connected to 24V and this line can be used to power

the modules, via a 12V and 5V step down regulator. Also the office module could be designed to use

a power supply from a computer USB port or 240V power port. Using the 9V battery in the current

setup provides the ease of use during testing.

4.2.2 Transistor Circuit

After sending the packet, the transmitter module had the tendency to return to logic level 1 and

continue to send the 433 MHz signal. This is not ideal, as it wastes power and can interfere with

other devices. The solution was to place a transistor on the power line so that it can be turned on

and off when needed. The transistor acts as a switch, as enables current to flow from the collector to

the emitter once there is a current in the transistor base (Appendix 1, D4). The transistor collector

current needs to be fully saturated to work effectively and requires two resistors to set the current.

The calculations of resistor values connecting to the transistor are shown below.

Chris White, u1004803 Page 14

4.2.3 Antenna Requirements and Design

The detail on the antenna length required was not specified by the seller. In antenna design, the

monopole antenna is known to be λ/4, λ being wavelength. To find the wavelength of the 434 MHz

signal Equation 1 is used:

 (Equation 1)

C is the speed of light (3*10^8) and is the frequency (434 MHz), which comes to a distance of

17.28 cm for the λ/4. The actual wavelength required is smaller, as radio waves travel slightly slower

than the speed of light (about 95%) and the antenna has to be trimmed accordingly.

The monopole antenna works with a ground plane to create a mirror image of the original antenna,

and acts like a dipole antenna, being λ/2 long. The RF modules have a ground plane on the printed

circuit board, however they are small compared to the size of the antenna and are inadequate for

the task.

The dipole was constructed to provide a better quality antenna. The dipole antenna consists of two

wires being λ/4 long, which are connected to the antenna and ground lines of the module and are

pointed in opposite directions (Figure 8). The radiation of a dipole antenna in Figure 9, shows that

the maximum power is perpendicular to the antenna wires and no power (null) when inline.

Figure 8: Configurations of the Monopole (left) and Dipole (right). (Jacobsen 2008)

Chris White, u1004803 Page 15

Figure 9: Radiation pattern of a dipole antenna (Beasley, Miller 2008)

4.2.4 Regulations

No regulations have been found detailing the time limit of transmitting the 434 MHz signal.

However, AMCA (Australian Media and Communication Authority) states the requirement of

maximum equivalent isotropically radiated power (EIRP) of 25 mW (ACMA 2013). The EIRP is shown

in Equation 2, Dt being the directivity of the antenna and Wt the power of the antenna.

 (Equation 2)

Substituting known values, directivity of a dipole antenna is 1.64.

As shown the input power of the antenna has to be less than 15.24mW to comply with regulations.

The power of the input of the antenna has not been found out, as there is no datasheet for the RF

modules and the current can’t be calculated.

Chris White, u1004803 Page 16

5 Evaluation
During the project, there have been many stages due to the fact that there are numerous variables

to consider. The project started with getting the 434MHz modules to operate and then improve the

design with altered prototypes.

5.1 Simplex Communication

The first prototype was constructed and a simple experiment of sending data with simplex or one-

way communication. The modules at this stage only consisted of one RF transmitter and receiver

pair connected to the Arduino. The two Arduinos had separate code uploaded, one for the

transmitter circuit and one for the receiver.

The transmitter Arduino was implemented to send a packet every second. The data byte changed

with every transmission and counted from one to fifty. The receiver was placed at incremental

distances of 1m, 5m, 10m, 20m and 30m from the transmitter and printed the received packets to

the Serial Monitor on the computer.

The results from the computer had produced an indication of reliability of the system. If the signal

was affected by noise or synchronisation errors there would be a gap in the number sequence. After

the counting loop had finished, the amount of packets received is shown. Table 1 shows the results

of the experiment at different distances. As seen, the results are not ideal as the signal drops off at

30m.

Distance (m) Valid packets/50 %

1m 22 44

5m 18 36

10m 14 28

20m 6 12

30m 4 8

Table 1 : Experiment results of the first prototype

5.2 Half-duplex Communication

The second prototype had improved by implementing half-duplex communication, the transistor

circuit and voltage regulators. The half-duplex communication was setup with the Office module

sending a packet to the Master module. If the Master receives this packet correctly, it would send an

acknowledgement packet containing the same data back to the Office. The Office would compare

the sent and received data and would turn on an LED if it was correct.

The experiment of obtaining the maximum distance was conducted again. Instead of depending on a

computer to retrieve information, the Arduinos were placed separately with their own power supply

Chris White, u1004803 Page 17

and illuminated LEDs if the system was working. In this experiment, the signal of this system had

dropped out around 70m.

5.3 Dipole construction

The next phase of the prototype was to increase the range and to design the dipole antenna to

replace the monopole. As explained before, the dipole were soldered onto the RF modules via the

antenna and ground lines and pointed in opposite directions.

In the first configuration, the dipoles were arranged parallel to each other. The spacing between the

dipoles was 2-3 cm and when testing, the maximum distance reached 50m. As a consequence of the

incorrect spacing, one of the dipoles was acting as a reflector and distorting the signal. The

appropriate spacing between the antennas should be λ/2 or 34.6cm to remove the reflective effect.

To confirm that the signal was affected by the distance between the dipoles and not any other

effects, the dipoles were arranged right angles to each other (Figure 10). In wave propagation, the

electric (E) and magnetic fields (H) travel right angles to each other. The polarization relates to the

positioning of the antenna, a vertical antenna will have a vertical polarization. A signal from an

antenna with vertical polarization will not be received by an antenna with horizontal polarization

because of the fields are at right angles and not aligned (Beasley, Miller 2008). The experiment was

run with this configuration and produced a reliable signal at a range of 100m.

Figure 10: Configuration of dipole antennas

5.4 Code structure

The code in the previous stage was unorganised and only consisted of a single loop. The code had to

be organised into function blocks, as it provided large sections of code that could be reused and

copied to other Arduinos. The functions could have been organised into libraries and included into

each of the codes. However, the pin assignments for the two boards are different and all of them

would have to be declared through the library function, which would appear unordered.

Chris White, u1004803 Page 18

The code had implemented into states to organise what code executed in particular circumstances,

e.g. sending data from Office to Master, acknowledgement received from Master, etc. Also it proved

useful when the polling system was tested (see 5.5). Instead of the Master waiting to receive a signal

from the Office, the state was changed to 1 to skip the requirement.

5.5 Polling

The next prototype includes a polling system, as explained above. In the first stage, one Arduino will

be loaded with the Office code and transmit to the Master normally. The Master will be

implemented to wait for a period of time before transmitting to the sensors. This is to avoid the case

where the Office doesn’t receive back the acknowledgement and keeps transmitting.

As there are only two Arduinos available, one Arduino acted as the Master and the other acted as

the Sensor modules. The Master is loaded with a range of addresses to indicate each of the Sensors

and poll each one. The Sensors Arduino will act as many sensors (addresses 101 to 105) and have

different settings allocated (Figure 11). Once polled, the silo changes its setting and sends back an

acknowledgement containing its current state.

After each address is polled, the Master checks the silos that haven’t reported back an

acknowledgement, and then re-polls those addresses. The program will retry a number of times,

about 10, before continuing. If there is still no acknowledgement from an address, an error message

is given to indicate that a Sensor can’t communicate with the Master or it is not switched on.

Figure 11: Polling test turning Rapid on (from Sensors module)

Chris White, u1004803 Page 19

6 Conclusion
This project has taken relevant literature and researched possible solutions for the problem. There

was research done on the existing grain silo setup, the available options that are available and

wireless communication theory. The communication theory had spaned different areas such as

packet structure, communication methods, antenna design, address assignment and security.

A method of testing the system has been detailed which involves various types of equipment such as

the oscilloscope, multimeter and computer. The ethical issues have been carefully been considered

implemented with the design

There were several prototypes designed and implemented in the duration of the project. Firstly, the

prototype had achieved simplex communication, where the problems of timing and packet structure

were identified and solved. The second prototype had added half-duplex communication, which

made a reliable channel for communication. However, there was a problem with inadequate

transmission distance and a dipole antenna had to be constructed. In the third prototype, the

arrangement of the antennas had presented a problem and was solved. The final prototype

constructed in this project had implemented the polling system and achieved communication

between the Master and the Sensors modules and displayed errors to the Serial Monitor.

6.1 Further Work and Recommendations

The time given for the project was limited and there is still further work that can be done to

complete the system. There are a few recommendations, detailed below, for future research into

this project.

6.1.1 Antennas

As stated before, dipole antennas with a spacing of λ/2 has to be constructed to avoid reflection.

Otherwise, the circuit can be designed to use only one antenna for the transmitter and receiver.

The thickness of the antenna could be increased to give a more rigid design and protect against

environmental factors such as wildlife damaging the antennas. If the size of the antenna is increased,

the total length has to be trimmed by a few percent to make it resonant and have no imaginary

component to its impedance (Stutzman W, 1998).

Also, the feed lines to the antennas have to be considered, a coaxial cable would be selected in this

situation. The impedance of the line has to be matched to 73Ω, to provide a good VSWR (Voltage

Standing Wave Ratio) and match impedance of the dipole antenna.

The prototype could be designed to use only one antenna per module, by connecting the transmitter

and receiver lines together. This wasn’t tested during the project as there was a risk that the receiver

wouldn’t have protection from the current coming from the transmitter. If this is the case, the

receiver would be damaged and not operate. As there are no datasheets or schematics for the

receiver module, testing would have to be conducted to determine if it is capable of using one

antenna.

Chris White, u1004803 Page 20

6.1.2 Circuit Construction

The design of the circuit could be improved by manufacturing a PCB (Printed Circuit Board) and

sorting the layout of the components. The neater design would reduce poor solder joints, bridging of

tracks and make it easier to test. The PCB could be designed have a ground plane which will act with

a monopole antenna.

6.1.3 Address Assignment

The addressing system and routing, as stated above, could have been implemented into the design.

Simple polling and BAAM could be tested in the silo environment. Simple polling is directly from the

Master to the Sensors without any routing. This technique would be faster but might have sensor

that are unreachable. On the other hand, BAAM would be slower due to the routing, but will be

more reliable when finding Sensor modules. These methods, or others, would have to be tested to

determine the optimal solution.

6.1.4 Security

The encryption process has not been implemented as it is one of the final stages of the project. The

method of using a key can be done, however transferring the key to other devices and other

encryption methods have not been researched.

Chris White, u1004803 Page 21

References

AMCA 2013, ‘Spectrum at 434 MHz for low powered devices’, TheAMCA, 30 July, viewed 11/09/13,
< http://www.acma.gov.au/theACMA/spectrum-at-434-mhz-for-low-powered-devices >

Beasley J, Miller G 2008, Modern Electronic Communication 9th edn, Pearson, Upper Saddle River,
 New Jersey.

Fusae, T 2001, Storage Aeration & Fumigation - Grain Management No 1 - V1.3, RFM Australia Pty

Ltd 2004, Toowoomba, viewed 16/03/2013,
<http://www.agridry.com.au/pdf/no1storagev1.4.2.pdf>

Jacobsen, Eric 2008, ‘Frequency Dependence in Free Space Propagation’, viewed 11/09/13,
 <http://www.dsprelated.com/showarticle/62.php>

Parsons, D & Hancock, N 2012, ELE3506 Electronic Measurement, University of Southern
 Queensland, Toowoomba. p 2.42

El Rachkidy, N.; Guitton, A.; Bakhache, B.; Misson, M., "Address assignment for wireless sensor
 networks in mines," Wireless Communications in Unusual and Confined Areas (ICWCUCA),
 2012 International Conference on , vol., no., pp.1,4, 28-30 Aug. 2012
URL: http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=6402494&isn
umber=6402322

Stutzman, W & Thiele G, 1998, Antenna Theory and Design, John Wiley and Sons, Inc, New York,
 USA.

Schurgers, C.; Kulkarni, G.; Srivastava, M.B., "Distributed on-demand address assignment in wireless
 sensor networks," Parallel and Distributed Systems, IEEE Transactions on , vol.13, no.10,
 pp.1056,1065, Oct 2002,
URL: http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=1041881&isn
umber=22330

http://www.acma.gov.au/theACMA/spectrum-at-434-mhz-for-low-powered-devices
http://www.agridry.com.au/pdf/no1storagev1.4.2.pdf
http://www.dsprelated.com/showarticle/62.php
http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=6402494&isnumber=6402322
http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=6402494&isnumber=6402322
http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=1041881&isnumber=22330
http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=1041881&isnumber=22330

Chris White, u1004803 Page 22

Appendix A – Project Specification

University of Southern Queensland

Facility of Engineering and Surveying

ENG 4111/2 Research Project

Project Specification

For: Christopher White

Topic: Wireless Grain Silo

Supervisors: Dr John Leis

Sponsorship: Agridry International Ltd.

Project Aim: To design a module to communicate data to and from a grain silo approximately 100

meters away. Transmission of the data will be either RF or powerline carrier, which

will send the controller signals to the silos and send back the temperature and

humidity information.

Program: (Issue B, 21/03/13)

1. Design the ‘office’ module at the controller end

2. Design the ‘master’ module at the silo end

3. Create a protocol to allow the ‘office’ and ‘master’ modules to communicate

4. Implement error checking to avoid collision or interference

5. Test to ensure they work and test limits

6. Design ‘sensor’ modules for each of the silos

7. Research into ways of communicating from ‘master’ to’ sensor’ (RF or powerline carrier)

8. Create a protocol for ‘master’ and ‘sensor’ communication

9. Implement polling or pseudo-random methods to obtain information from silos

As time and resources permit:

10. Evaluate the performance of the prototype, if necessary alter the communication protocols

and error checking mechanisms

11. Design the system so that it can be installed and maintained easily.

12. Design a user-friendly interface that displays the silo information.

 Student Name: Christopher White

 Supervisor Name: Dr John Leis

 Examiner/Co-Examiner: Chris Snook

Chris White, u1004803 Page 23

Appendix B - Circuit schematics

Chris White, u1004803 Page 24

Appendix C – Office code
#include <SoftwareSerial.h> // use SoftwareSerial library

byte data = 0;
byte ack = 0;

int state = 0; //starting state

long time1 = 0L;
long time2 = 0L;

const byte rapid = B01000001; //possible settings
const byte econ = B01000010;
const byte both = B01000011;
const byte off = B01000000;

byte officeA = B00100100; //24 in HEX Arduino addresses
byte masterA = B00011000; //18

const byte header = B00110100; // 34

const int TXLED = 11; // Pin assignments for the board
const int RXLED = 9;
const int Trans = 4;
const int RX = 12;
const int TX = 3;

SoftwareSerial SerialA(RX,TX); //Use Software serial library and define RX and TX pins

void setup()
{
SerialA.begin(1200);
Serial.begin(9600);
digitalWrite(Trans,LOW);
pinMode(TX,OUTPUT);
pinMode(Trans,OUTPUT);
pinMode(RXLED,OUTPUT);
pinMode(TXLED,OUTPUT);
pinMode(RX,INPUT);
}

void loop()
{

 data = rapid;

 switch (state)
{
 case 0:
 Send(masterA,officeA,data); //using Send function, send data to Master from Office
 time1 = millis(); //time1 is the number of milliseconds since the program stated

 while (millis()-time1 <= 1000); //read data for 1000ms

Chris White, u1004803 Page 25

 {
 ack = Rec(masterA); // check for acknowledgement packet from Master
 if (ack == data) // check against the data sent
 {
 time2 = millis(); // read current time
 state = 1;
 }
 }
 break;

 case 1:

 digitalWrite(TXLED,HIGH); //Indicate with LED

 if (millis()-time2 > 10*1000 && time2 != 0) // wait for 10 seconds
 {
 digitalWrite(TXLED,LOW);
 delay(500);
 time2 = 0; //reset variables
 state = 0;
 }
 break;
}
}

//==

void Send(byte addTo,byte addFrom,byte data1) //create Send function
{
 byte sync = B01010101;
 byte chsum = 0;
 chsum = (((header ^ addTo) ^ addFrom) ^ data1);

 digitalWrite(TXLED,HIGH); //turn on LED
 digitalWrite(Trans,HIGH); //enable power for transmitter
 SerialA.write(sync); // Send bytes
 SerialA.flush();
 delay(3);
 SerialA.write(sync);
 SerialA.flush();
 delay(3);
 SerialA.write(sync);
 SerialA.flush();
 delay(3);
 SerialA.write(header);
 SerialA.flush();
 delay(3);
 SerialA.write(addTo);
 SerialA.flush();
 delay(3);
 SerialA.write(addFrom);
 SerialA.flush();
 delay(3);
 SerialA.write(data1);
 SerialA.flush();

Chris White, u1004803 Page 26

 delay(3);
 SerialA.write(chsum);
 digitalWrite(TX,LOW); //set level low for serial
 digitalWrite(Trans,LOW); //disable power for transmitter
 digitalWrite(TXLED,LOW); //turn off LED
}

byte Rec(byte addFrom) //create Receive function
{
 int bufl=15; //buffer length
 byte buf[bufl-1]; //buffer.
 int hstart = -1; //header position

if (SerialA.available() >= bufl) // wait for serial to have enough values
{
 digitalWrite(RXLED,HIGH); // turn on LED
 for(int i=1;i<bufl;i++)
 {
 buf[i]=0; //set all of buffer to zero
 buf[i] = SerialA.read(); //put values in buffer
 if((buf[i] == header) && (hstart == -1)) //find header
 {hstart = (i);}
 }
 digitalWrite(RXLED,LOW); // turn off LED

 // read checksum byte, check if address is for Office and where it is from.

 if (buf[hstart + 4] == (((buf[hstart] ^ buf[hstart+1]) ^ buf[hstart+2]) ^ buf[hstart+3]) &&
(buf[hstart + 1] == officeA) && (buf[hstart + 2] == addFrom))
 {
 return buf[hstart+3]; //return the data packet
 }
}
}

Chris White, u1004803 Page 27

Appendix D – Master Code
#include <SoftwareSerial.h>

SoftwareSerial SerialA(7,8); //Use Software serial library and define RX and TX pins

int state = 1;
int k = 0;
byte header = B00110100; // 34

byte data = 0; //to store the data
byte data2 = 0; //to store the data
byte temp_data = 0; //to store the data
byte silo[5];

const byte rapid = B01000001; //possible settings
const byte econ = B01000010;
const byte both = B01000011;
const byte off = B01000000;

const byte rapid_off = B00100001;
const byte econ_off = B00100010;

long time2 = 0L;

byte officeA = B00100100; //24 Arduino addresses
byte masterA = B00011000; //18 in HEX

const int TXLED = 12; // Pin assignments
const int RXLED = 11;
const int Trans = 3;
const int RX = 7;
const int TX = 8;

void setup()
{
 SerialA.begin(1200); //set baud rates
 Serial.begin(9600);
 digitalWrite(Trans,LOW); //set transistor low
 pinMode(TX,OUTPUT); //set pin modes
 pinMode(Trans,OUTPUT);
 pinMode(RXLED,OUTPUT);
 pinMode(TXLED,OUTPUT);
 pinMode(RX,INPUT);

 for (int i=0;i<6;i++)
 {
 silo[i]= 0;
 }
}

Chris White, u1004803 Page 28

void loop()
{
 switch (state)
 {
 case 0: //sending acknowledgement to Office

 data = Rec(officeA); // check for data from Office

 if (data == rapid || data == econ || data == both || data == off) //check setting
 {
 delay(50); // short delay
 Send(officeA,masterA,data); //sent data to Office from Master
 temp_data = data; //store data into tempory variable
 data = 0; //reset data
 time2 = millis(); //set time2 to milliseconds since program started
 }

 if (millis() - time2 >= 5000 && time2 != 0) //if no signal arrives after 5 sec
 {
 state = 1;
 } // change state

 break;

 case 1: //sending data to silos
 k++;
 temp_data = rapid; //when not using Office in testing

 for (byte j=101;j<106;j++) // go through silos addresses
 {
 Send(j,masterA,temp_data); //send data to silos from Master with 'temp' data

 Serial.print("%");
 long time1 = millis(); //read time

 while (millis()-time1 <= 1000); //read data for 1000ms
 {
 Serial.println("*");
 delay(50);
 data2 = Rec(j); // read acknowledgement

 silo[j-100] = data2; //set that is has been acknowledged
 Serial.println(silo[j-100]);
 data2 = 0;
 }
 }
 //check if all acknowledged or 3 attempts made

 if ((silo[0] != 0 && silo[1] != 0 && silo[2] != 0 && silo[3] != 0 && silo[4] != 0) || k == 5)
 {
 k = 0;

Chris White, u1004803 Page 29

 temp_data = 0;
 state = 2;
 }
 time2 = 0;

 break;

 case 2:

 for (int i=1;i<=5;i++) //Report settings
 {
 Serial.print("Silo");
 Serial.print(i);
 Serial.print(" : ");
 Serial.println(silo[i]);

 /*
 switch (silo[i])
 {
 case rapid_off:
 Serial.println("Rapid - Off");
 break;

 case econ_off:
 Serial.println("Econo - Off");
 break;

 case rapid:
 Serial.println("Rapid - On");
 break;

 case econ:
 Serial.println("Econo - On");
 break;

 default:
 Serial.println("None");
 break;
 }

 */
 }
 state = 0;
 break;
 }
}

//===

void Send(byte addTo,byte addFrom,byte data1)
{

Chris White, u1004803 Page 30

 byte sync = B01010101;
 byte chsum = 0;
 chsum = (((header ^ addTo) ^ addFrom) ^ data1);

 digitalWrite(TXLED,HIGH);
 digitalWrite(Trans,HIGH);
 SerialA.write(sync);
 SerialA.flush();
 delay(3);
 SerialA.write(sync);
 SerialA.flush();
 delay(3);
 SerialA.write(sync);
 SerialA.flush();
 delay(3);
 SerialA.write(header);
 SerialA.flush();
 delay(3);
 SerialA.write(addTo);
 SerialA.flush();
 delay(3);
 SerialA.write(addFrom);
 SerialA.flush();
 delay(3);
 SerialA.write(data1);
 SerialA.flush();
 delay(3);
 SerialA.write(chsum);
 digitalWrite(TX,LOW);
 digitalWrite(Trans,LOW);
 digitalWrite(TXLED,LOW);
}

byte Rec(byte addFromR)
{
 int bufl=15; //buffer length
 byte buf[bufl-1]; //buffer.
 int hstart = -1; //header position

 if (SerialA.available() >= bufl)
 {
 digitalWrite(RXLED,HIGH);
 for(int i=1;i<bufl;i++)
 {
 buf[i] = SerialA.read(); //put values in buffer
 if((buf[i] == header) && (hstart == -1)) //find header
 {
 hstart = (i);
 }
 }

Chris White, u1004803 Page 31

 digitalWrite(RXLED,LOW);

 if (buf[hstart + 4] == (((buf[hstart] ^ buf[hstart+1]) ^ buf[hstart+2]) ^ buf[hstart+3]) && (buf[hstart
+ 1] == masterA) && (buf[hstart + 2] == addFromR)) //read the checksum byte
 {
 return buf[hstart+3];
 }
 }
}

Chris White, u1004803 Page 32

Appendix E – Sensor code
#include <SoftwareSerial.h>

int state = 0;
byte header = B00110100; // 34

byte data = 0; //to store the data
byte data2 = 0; //to store the data
byte temp = 0; //to store the data
byte silo_state[10];

const byte rapid = B01000001;//65
const byte econ = B01000010;//66
const byte both = B01000011;//67
const byte manu = B01000100;//68
const byte off = B01000000;//64

const byte rapid_off = B00100001;//33
const byte econ_off = B00100010;//34

long time1 = 0L;
long time2 = 0L;

byte officeA = B00100100; //24
byte masterA = B00011000; //18 in HEX
byte silo = 0;

const int TXLED = 11;
const int RXLED = 9;
const int Trans = 4;
const int RX = 12;
const int TX = 3;

SoftwareSerial SerialA(RX,TX); //RX,TX for RF module

void setup()
{
 SerialA.begin(1200);
 Serial.begin(9600);
 digitalWrite(Trans,LOW);
 pinMode(TX,OUTPUT);
 pinMode(Trans,OUTPUT);
 pinMode(RXLED,OUTPUT);
 pinMode(TXLED,OUTPUT);
 pinMode(RX,INPUT);
}

void loop()
{
 switch (state)
 {
 case 0: //set silo states
 silo_state[1] = rapid_off;
 silo_state[2] = econ_off;

Chris White, u1004803 Page 33

 silo_state[3] = rapid_off;
 silo_state[4] = rapid;
 silo_state[5] = econ;

 state = 1;
 break;

 case 1: //report silo states

 for (int i=1;i<=5;i++)
 {

 Serial.print("Silo");
 Serial.print(i);
 Serial.print(" : ");

 switch (silo_state[i])
 {
 case rapid_off:
 Serial.println("Rapid - Off");
 break;

 case econ_off:
 Serial.println("Econo - Off");
 break;

 case rapid:
 Serial.println("Rapid - On");
 break;

 case econ:
 Serial.println("Econo - On");
 break;
 }
 };
 state = 2;
 break;

 case 2:
 data = Rec(masterA,silo); //receive data from Master
 delay(50);
 //-----------------------------------
 if (data == rapid)
 {
 switch (silo_state[silo -100])
 {
 case econ:
 Send(masterA,silo,econ_off); //send acknowledgement to master
 silo_state[silo-100] = econ_off;
 break;

 case rapid:
 Send(masterA,silo,rapid); //send acknowledgement to master
 break;

Chris White, u1004803 Page 34

 case econ_off:
 Send(masterA,silo,econ_off); //send acknowledgement to master
 break;

 case rapid_off:
 Send(masterA,silo,rapid); //send acknowledgement to master
 silo_state[silo-100] = rapid;
 break;
 }
 }

 //-----------------------------------

 if (data == econ)
 {
 switch (silo_state[silo - 100])
 {
 case econ:
 Send(masterA,silo,econ); //send acknowledgement to master
 break;

 case rapid:
 Send(masterA,silo,rapid_off);
 silo_state[silo-100] = rapid_off;
 break;

 case econ_off:
 Send(masterA,silo,econ);
 silo_state[silo-100] = econ;
 break;

 case rapid_off:
 Send(masterA,silo,rapid_off);
 break;
 }
 }
 //------------------------------

 if (data == both)
 {
 switch (silo_state[silo -100])
 {
 case econ:
 Send(masterA,silo,econ);
 break;

 case rapid:
 Send(masterA,silo,rapid);
 break;

 case econ_off:
 Send(masterA,silo,econ);
 silo_state[silo-100] = econ;
 break;

Chris White, u1004803 Page 35

 case rapid_off:
 Send(masterA,silo,rapid);
 silo_state[silo-100] = rapid;
 break;
 }
 }
 //-----------------------------------

 if (data == off)
 {
 switch (silo_state[silo -100])
 {
 case econ:
 Send(masterA,silo,econ_off);
 silo_state[silo-100] = econ_off;
 break;

 case rapid:
 Send(masterA,silo,rapid_off);
 silo_state[silo-100] = rapid_off;
 break;

 case econ_off:
 Send(masterA,silo,econ_off);
 break;

 case rapid_off:
 Send(masterA,silo,rapid_off);
 break;
 }
 }
 //-----------------------------------

 if (millis()-time1 >= 5*1000) //every 5 seconds
 {
 Serial.println("-------");
 time1 = millis();
 state = 1; //change state (report silo states)
 }
 break;
 }
}

//===

void Send(byte addTo,byte addFrom,byte data1)
{
 byte sync = B01010101;
 byte chsum = 0;
 chsum = (((header ^ addTo) ^ addFrom) ^ data1);

 digitalWrite(TXLED,HIGH);
 digitalWrite(Trans,HIGH);
 SerialA.write(sync);
 SerialA.flush();

Chris White, u1004803 Page 36

 delay(3);
 SerialA.write(sync);
 SerialA.flush();
 delay(3);
 SerialA.write(sync);
 SerialA.flush();
 delay(3);
 SerialA.write(header);
 SerialA.flush();
 delay(3);
 SerialA.write(addTo);
 SerialA.flush();
 delay(3);
 SerialA.write(addFrom);
 SerialA.flush();
 delay(3);
 SerialA.write(data1);
 SerialA.flush();
 delay(3);
 SerialA.write(chsum);
 digitalWrite(TX,LOW);
 digitalWrite(Trans,LOW);
 digitalWrite(TXLED,LOW);
}

byte Rec(byte addFrom, byte &addTo)
{
 int bufl=15; //buffer length
 byte buf[bufl-1]; //buffer.
 int hstart = -1; //header position

 if (SerialA.available() >= bufl)
 {
 digitalWrite(RXLED,HIGH);
 for(int i=1;i<bufl;i++)
 {
 buf[i]=0; //set all of buffer to zero
 buf[i] = SerialA.read(); //put values in buffer
 if((buf[i] == header) && (hstart == -1)) //find header
 {
 hstart = (i);
 }
 }
 digitalWrite(RXLED,LOW);

 if (buf[hstart + 4] == (((buf[hstart] ^ buf[hstart+1]) ^ buf[hstart+2]) ^ buf[hstart+3]) &&
(buf[hstart + 2] == addFrom)) //read the checksum byte
 {
 addTo = buf[hstart+1];
 return buf[hstart+3];
 }
 }
}

Chris White, u1004803 Page 37

Appendix F – Risk Assessment
Hazard At risk Risk level Exposure Consequences Control

During Project

Damaging Lab equipment
(Oscilloscope & Power supply)

Equipment,
Myself

Very slight Occasionally Minor/ major equipment
damage
Minor/ major injury

Be mindful of connecting
instruments to circuits.

Testing outside - trip hazard of
measuring tape

Other people Slight Rarely Minor injury Test in a wide open space
(area outside Z block). Look
out for pedestrians and direct
them.

Testing outside – sun damage Myself Slight Occasionally Minor – Major injury Wear sunscreen when going
outside for long periods

Damaging Arduino Equipment Very Slight Frequently Minor – major equipment
damage

Be wary of connections. Use
low voltages if possible.

Electrocution (Lab)

Myself Extremely Slight Occasionally Major injury/death Be careful of high voltage
devices, ensure they are
connected properly

Soldering - burns Myself Slight Occasionally Minor injury Have a tidy workspace and use
appropriate equipment when
soldering

Soldering - fumes Myself Slight Occasionally Minor injury Make sure exhaust fan is
turned on when soldering

Chris White, u1004803 Page 38

Soldering - eyes Myself Slight Occasionally Minor – Major injury Wear eye protection

After Project

Electrocution (placed in Office/ Silos) Others, Myself Extremely Slight Occasionally Major injury/death Make the design fool – proof.
Ensure wires are connected
properly

Water damage to equipment

Equipment Slight Occasionally Minor/ Major equipment
damage

Incorporate water-proof cases
in the design of the modules

Physical damage

Equipment Slight Occasionally Minor/ Major equipment
damage

Make case durable and good
solder joints.

EMI (Electromagnetic Interference) Equipment,
other
equipment.

Slight Frequently Minor equipment
malfunction/interference

Design circuit to follow
regulations.

