University of Southern Queensland

Faculty of Health, Engineering and Sciences

# **RTK GNSS in Cadastral Surveying**

A dissertation submitted by

### Mr Michael Stuart Zahl

In fulfilment of the requirements of

### **Courses ENG4111 & ENG4112 – Research Project**

towards the degree of

### Bachelor of Spatial Science (BSpSc) Surveying

Project Report

October, 2013

#### **ABSTRACT**

Real Time Kinematic Global Navigation Satellite System observations have become an increasing prevalent method of surveying in all forms of the surveying and spatial science industry. One area where the use of RTK raises particular concern is for cadastral surveying, where it has been realised by many parties that clarification is needed with regards to how RTK technology is to be used. These concerns stem from a lack of understanding about the capabilities and limitations of RTK and also how it should be used in regards to best practice recommendations. The aim of this dissertation is to substantiate the Surveyors Board of Queensland guideline regarding the use of RTK for cadastral surveys. This dissertation will aim to augment several key areas of the guideline; short line observation, referencing and minimum backsight lengths with empirically tested data that will determine how and when RTK is applicable for these applications and recommend the best practices to achieve these. The aims of the testing are to determine what is the minimum length of a short line RTK is capable of accurately observing, what is the minimum observable length of a backsight line to accurately orientate a survey and at what lengths can RTK be used to accurately observe reference marks. Testing of these elements will be conducted with regard to the survey standards' accuracy referenced in the guideline and also compare the accuracy results to the capabilities of a total station (as the conventional method of cadastral surveying). Because the best practices for the observation of these three elements is yet unknown, various methods will be employed to ascertain which method yields the most accurate and precise results.

The results of the testing conducted found answers to meet the aims of this dissertation but it also served to identify the impact errors and inaccuracies can have on the observations. It was found that observation bias in the RTK measurements significantly affected the results of the observations and caused these to appear potentially far worse than the results may actually be. Moreover it was found that RTK is not an appropriate means of referencing; the errors in the distance led to errors in the bearing of the line that were too great to accept based on the 95% confidence interval. The minimum backsight length required for an RTK observation to meet TS bearing accuracy was identified as 180m which is slightly shorter than the recommendations of the SBQ. It was found though that in difficult circumstances where accuracy may allowably be reduced for the use of RTK, the minimum backsight length was determined to be 120m, which is slightly longer than the SBQ recommendations. Both of these minimum lengths were only found to be possible when using the most rigorous observation methods where anything less would not suit. Finally it was found that RTK observations of significantly shorter lengths than recommended by the survey standards' (640m) and adopted by some jurisdictions (120m) could still achieve the survey standards' accuracy; it was found that the length fell to just 40m. This was found to be observable when using only moderately rigorous methods and would be easily repeatable. Considering the effect observation bias had on the results, several recommendations were made regarding how best to minimise this impact, as well as the recommendation that a 99% confidence interval should be used when analysing the capability of RTK as the standard 95% confidence interval potentially allows for too great a degree of uncertainty. The conclusion of this dissertation found that the aims were met and the instances where RTK is applicable for short line and referencing observations and the minimum observable backsight length was established.

## UNIVERSITY OF SOUTHERN QUEENSLAND FACULTY OF HEALTH, ENGINEERING AND SCIENCES

### ENG4111 & ENG4112 Research Project

## **LIMITATIONS OF USE**

The Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility for the trust, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences or the staff of the University of Southern Queensland.

This dissertation reports and educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

## **CANDIDATES CERTIFICATIONS**

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own efforts, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Michael Stuart Zahl Student Number: (006)U1004776 with (Signature) 24<sup>th</sup> October 2013 (Date)

## **ACKNOWLEDGEMENTS**

Appreciation is due to:

#### **A/Prof Peter Gibbings**

As supervisor for this dissertation Mr Gibbings was heavily involved with helping to make this dissertation a success. It is through his guidance and extensive knowledge that the outcomes of this dissertation were at all possible.

#### **MinStaff Survey**

Thanks must go to MinStaff for sponsoring this dissertation and providing the resources and time to help complete the field work.

#### And to my Friends and Family

For their continued support, constructive criticism and help throughout.

# **Table of Contents**

| ABSTRAC   | Т                                                                     | 3  |
|-----------|-----------------------------------------------------------------------|----|
| LIMITATI  | ONS OF USE                                                            | 4  |
| CANDIDA   | TES CERTIFICATIONS                                                    | 5  |
| ACKNOW    | LEDGEMENTS                                                            | 6  |
| LIST OF F | igures 1                                                              | 0  |
| LIST OF T | 'ABLES 1                                                              | 2  |
| LIST OF A | APPENDICES 1                                                          | 3  |
| Abbrevi   | ATIONS & NOMENCLATURE 1                                               | 4  |
| CHAPTER   | 1: INTRODUCTION                                                       | 5  |
| 1.1       | THE PROBLEM 1                                                         | 5  |
| 1.2       | THE PROBLEM DEFINED1                                                  | 8  |
| 1.3       | RESEARCH AIMS                                                         | 3  |
| 1.4       | RESEARCH OBJECTIVES                                                   | 3  |
| 1.5       | RESEARCH SCOPE AND LIMITATIONS                                        | 3  |
| 1.6       | JUSTIFICATION OF DISSERTATION                                         | 5  |
| 1.7       | IMPLICATIONS                                                          | 5  |
| 1.7.1     | 1 CONSEQUENTIAL EFFECTS                                               | 5  |
| 1.7.2     | 2 ETHICAL RESPONSIBILITY                                              | 6  |
| 1.8       | REASONABLE PROFESSIONAL PRACTICE                                      | 6  |
| 1.9       | CONCLUSIONS                                                           | 7  |
| CHAPTER   | 2: LITERATURE REVIEW                                                  | 8  |
| 2.1       | INTRODUCTION                                                          | 8  |
| 2.2       | RTK GNSS FOR CADASTRAL SURVEYS; SURVEYORS BOARD OF QUEENSLAND         | 9  |
| 2.3       | RTK GNSS FOR CADASTRAL SURVEYS PLUS!; PETER GIBBINGS                  | 3  |
| 2.4       | GPS FOR CADASTRAL SURVEYING – PRACTICAL CONSIDERATIONS; C. ROBERTS    | 5  |
| 2.5       | GNSS AND CADASTRAL SURVEYS; SURVEYOR-GENERAL OF THE AUSTRALIAN CAPITA | L  |
| TERRIT    | TORY                                                                  | 8  |
| 2.6       | No. 9 GNSS FOR CADASTRAL SURVEYS; SURVEYOR GENERAL'S DIRECTIONS, NSW  | 0  |
| 2.7       | STANDARDS AND PRACTICES FOR CONTROL SURVEYS (SP1) v1.7; ICSM          | 1  |
| 2.8       | CODE OF PRACTICE - SBQ                                                | 2  |
| 2.9       | CONCLUSIONS                                                           | 2  |
| CHAPTER   | 3: Methodology                                                        | .4 |

| 3.   | 1     | INTRODUCTION                                        | 44 |
|------|-------|-----------------------------------------------------|----|
| 3.2  | 2     | OBSERVATION METHODS                                 | 44 |
|      | 3.2.1 | Observation Length                                  | 44 |
|      | 3.2.2 | SHORT LINE, REFERENCING AND BACKSIGHT LENGTH        | 47 |
|      | 3.2.2 | 2.1 Referencing                                     | 47 |
|      | 3.2.2 | 2.2 SHORT LINES AND BACKSIGHT LENGTHS               | 47 |
|      | 3.2.3 | CONTROL ARRAY                                       | 49 |
| 3.3  | 3     | TESTING SITE                                        | 50 |
|      | 3.3.1 | CHOSEN TESTING SITE                                 | 51 |
|      | 3.3.2 | USE OF USQ'S CORS AS BASE STATION                   | 52 |
|      | 3.3.3 | USE OF USQ'S LOCAL PLANE CO-ORDINATE SYSTEM         | 53 |
|      | 3.3.4 | ESTABLISH Control Array on USQ Local Plane          | 53 |
| 3.4  | 4     | RESOURCE PLANNING                                   | 54 |
| 3.5  | 5     | EQUIPMENT                                           | 54 |
|      | 3.5.1 | FIELD TESTING                                       | 54 |
|      | 3.5.2 | REDUCTIONS                                          | 54 |
| 3.0  | 6     | TESTING REGIME                                      | 55 |
|      | 3.6.1 | ESTABLISH CONTROL ARRAY                             | 56 |
|      | 3.6.2 | INDEPENDENT CONTROL ARRAY OBSERVATION               | 57 |
|      | 3.6.3 | OBSERVATIONS                                        | 58 |
|      | 3.6.3 | Controller settings                                 | 58 |
|      | 3.6.3 | S.2 SHORT LINE OBSERVATION AND BACKSIGHT LENGTH     | 58 |
|      | 3.6.3 | 8.3 Referencing                                     | 59 |
|      | 3.6.4 | TESTING CONCLUSION AND RESULT REDUCTIONS AND OUTPUT | 59 |
| 3.1  | 7     | CONCLUSIONS                                         | 60 |
| Снан | PTER  | 4: Results                                          | 61 |
| 4.   | 1     | INTRODUCTION                                        | 61 |
| 4.2  | 2     | ESTABLISH THE CONTROL ARRAY WITH TOTAL STATION      | 61 |
| 4.3  | 3     | RE-ESTABLISH ANANGA CORS                            | 65 |
| 4.4  | 4     | DETERMINE COMBINED SCALE FACTORS                    | 66 |
| 4.5  | 5     | 3s RTK Observations                                 | 67 |
|      | 4.5.1 | 3s Analysis                                         | 71 |
| 4.0  | 6     | 30s RTK OBSERVATIONS                                | 72 |

| 4.6                                                                                                             | 5.1 30s Analysis                                                                                                                                                                                                                                                                                                                                                 | 76 |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.7                                                                                                             | 60s RTK Observations                                                                                                                                                                                                                                                                                                                                             | 77 |
| 4.7                                                                                                             | 7.1 60s Analysis                                                                                                                                                                                                                                                                                                                                                 |    |
| 4.8                                                                                                             | 180s RTK Observations                                                                                                                                                                                                                                                                                                                                            |    |
| 4.8                                                                                                             | 8.1 180s Analysis                                                                                                                                                                                                                                                                                                                                                |    |
| 4.9                                                                                                             | Conclusions                                                                                                                                                                                                                                                                                                                                                      |    |
| СНАРТЕ                                                                                                          | r 5: Analysis and Discussion                                                                                                                                                                                                                                                                                                                                     | 89 |
| 5.1                                                                                                             | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                     |    |
| 5.2                                                                                                             | TOTAL STATION ACCURACY STANDARD                                                                                                                                                                                                                                                                                                                                  |    |
| 5.3                                                                                                             | ANALYSING THE DISTRIBUTION OF DATA                                                                                                                                                                                                                                                                                                                               |    |
| 5.3                                                                                                             | 3.1 INCORPORATING THE OBSERVATION BIAS INTO THE RESULTS                                                                                                                                                                                                                                                                                                          | 91 |
| 5.4                                                                                                             | Referencing by RTK                                                                                                                                                                                                                                                                                                                                               |    |
| 5.4                                                                                                             | .1 REFERENCING BEARINGS BY RTK                                                                                                                                                                                                                                                                                                                                   | 94 |
| 5.5                                                                                                             | MINIMUM SHORT LINE LENGTH THAT CAN BE OBSERVED BY RTK                                                                                                                                                                                                                                                                                                            | 96 |
| 5 5                                                                                                             | 1 EGEADLIGH WHEN <b>D</b> TV ODGEDWATIONG WHAT MEET TS A COUDACY                                                                                                                                                                                                                                                                                                 | 00 |
| 5.5                                                                                                             | D.1 ESTABLISH WHEN KIK OBSERVATIONS WILL MEET IS ACCURACY                                                                                                                                                                                                                                                                                                        |    |
| 5.6                                                                                                             | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK                                                                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7                                                                                                      | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK<br>Use of a 99% Confidence Interval                                                                                                                                                                                                                                                                                |    |
| 5.6<br>5.7<br>5.8                                                                                               | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK                                                                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE                                                                                     | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK                                                                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7<br>5.8<br>CHAPTER<br>6.1                                                                             | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK                                                                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2                                                                       | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK                                                                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2<br>6.3                                                                | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK                                                                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2<br>6.3<br>6.3                                                         | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK                                                                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2<br>6.3<br>6.3<br>6.3                                                  | 9.1 ESTABLISH WHEN KTK OBSERVATIONS WILL MEET TS ACCURACY   MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK.   USE OF A 99% CONFIDENCE INTERVAL   CONCLUSION   R 6: CONCLUSION   INTRODUCTION   MEETING THE AIMS AND OBJECTIVES   FINDINGS AND RECOMMENDATIONS   3.1   SHORT LINES   3.2   BACKSIGHT LENGTH                                                        |    |
| 5.6<br>5.7<br>5.8<br>CHAPTEL<br>6.1<br>6.2<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3                                   | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK.   USE OF A 99% CONFIDENCE INTERVAL.   CONCLUSION   R 6: CONCLUSION   INTRODUCTION.   MEETING THE AIMS AND OBJECTIVES   FINDINGS AND RECOMMENDATIONS   3.1   SHORT LINES   3.2   BACKSIGHT LENGTH   3.3   REFERENCING                                                                                              |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3                                    | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK   USE OF A 99% CONFIDENCE INTERVAL   CONCLUSION   R 6: CONCLUSION   INTRODUCTION   MEETING THE AIMS AND OBJECTIVES   FINDINGS AND RECOMMENDATIONS                                                                                                                                                                  |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3                             | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK   USE OF A 99% CONFIDENCE INTERVAL   CONCLUSION   R 6: CONCLUSION   INTRODUCTION   MEETING THE AIMS AND OBJECTIVES   FINDINGS AND RECOMMENDATIONS                                                                                                                                                                  |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.4<br>6.5        | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK   USE OF A 99% CONFIDENCE INTERVAL   CONCLUSION                                                                                                                                                                                                                                                                    |    |
| 5.6<br>5.7<br>5.8<br>CHAPTE<br>6.1<br>6.2<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3 | MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK.   USE OF A 99% CONFIDENCE INTERVAL   CONCLUSION   R 6: CONCLUSION   INTRODUCTION   MEETING THE AIMS AND OBJECTIVES   FINDINGS AND RECOMMENDATIONS   3.1   SHORT LINES   3.2   BACKSIGHT LENGTH   3.3   REFERENCING   3.4   OBSERVATION TECHNIQUE   FURTHER WORK   IMPROVEMENTS ON THIS DISSERTATION   CONCLUSIONS |    |

# LIST OF FIGURES

| Figure 1.1  | 20 |
|-------------|----|
| Figure 1.2  | 21 |
| Figure 1.3  | 21 |
| Figure 2.1  | 30 |
| Figure 2.2  | 34 |
| Figure 2.3  | 37 |
| Figure 2.4  | 39 |
| Figure 3.1  | 50 |
| Figure 3.2  | 51 |
| Figure 3.3  | 52 |
| Figure 3.4  | 52 |
| Figure 3.5  | 55 |
| Figure 3.6  | 56 |
| Figure 3.7  | 57 |
| Figure 4.1  | 67 |
| Figure 4.2  | 67 |
| Figure 4.3  | 68 |
| Figure 4.4  | 68 |
| Figure 4.5  | 69 |
| Figure 4.6  | 69 |
| Figure 4.7  | 70 |
| Figure 4.8  | 70 |
| Figure 4.9  | 71 |
| Figure 4.10 | 72 |
| Figure 4.11 | 72 |
| Figure 4.12 | 73 |
| Figure 4.13 | 73 |
| Figure 4.14 | 74 |
| Figure 4.15 | 74 |
| Figure 4.16 | 75 |
| Figure 4.17 | 75 |
| Figure 4.18 | 76 |
| Figure 4.19 | 77 |
| Figure 4.20 | 77 |
|             |    |

| Figure 4.21 |
|-------------|
| Figure 4.22 |
| Figure 4.23 |
| Figure 4.24 |
| Figure 4.25 |
| Figure 4.26 |
| Figure 4.27 |
| Figure 4.28 |
| Figure 4.29 |
| Figure 4.30 |
| Figure 4.31 |
| Figure 4.32 |
| Figure 4.33 |
| Figure 4.34 |
| Figure 4.35 |
| Figure 4.36 |
| Figure 4.37 |
| Figure 5.1  |
| Figure 5.2  |
| Figure 5.3  |
| Figure 5.4  |
| Figure 5.5  |
| Figure 5.6  |
| Figure 5.7  |
| Figure 5.8  |
| Figure 5.9  |
| Figure 5.10 |
| Figure 5.11 |

# LIST OF TABLES

| Table 4.1 | 61 |
|-----------|----|
| Table 4.2 | 64 |
| Table 4.3 | 64 |
| Table 4.4 | 65 |
| Table 4.5 | 65 |
| Table 4.6 | 66 |
| Table 4.7 | 67 |
| Table 5.1 |    |
| Table 5.2 | 95 |
| Table 5.3 | 97 |
| Table 5.4 |    |
|           |    |

## **LIST OF APPENDICES**

| APPENDIX A: Project Specifications                       | 112 |
|----------------------------------------------------------|-----|
| APPENDIX B: CORS RTK Checklist                           | 114 |
| APPENDIX C: Raw Data Survey Reports                      | 115 |
| APPENDIX D: Normal Distribution of Bearing and Distances | 166 |
| APPENDIX E: Total Station Calibration Certificate        | 202 |
| APPENDIX F: EDM Calibration                              | 203 |
| APPENDIX G: Risk Assessment                              | 209 |

## **ABBREVIATIONS & NOMENCLATURE**

- AR Ambiguity Resolution (initialisation)
- B&D Bearing and distance
- CI Confidence Interval
- CORS Continuously Operating Reference Station
- CQ Co-ordinate Quality
- DGPS Differential Global Positioning System
- EDM Electronic Distance Measurement
- FL/FR Face Left/Face Right
- FOC Full Operational Capability
- GNSS Global Navigation Satellite System
- GPS Global Positioning System
- ICSM Intergovernmental Committee on Surveying and Mapping
- MGA Map Grid of Australia
- PDOP Position Dilution of Precision
- PSM Permanent Survey Mark
- RTK Real Time Kinematic
- SBQ Surveyors Board of Queensland
- SF Scale Factor
- TBC Trimble Business Centre
- TS Total station
- USQ University of Southern Queensland

"SBQ guideline accuracy" and "SBQ accuracy" actually refers to the accuracy reference made by the SBQ in the guidelines, which refers to the *Cadastral Survey Requirements* document released by the Department of Environment and Resource Management and referred to in certain other guidelines such as the NSW and ACT.

## **CHAPTER 1: INTRODUCTION**

#### **1.1 <u>The Problem</u>**

Late in 2012 the Surveyors Board of Queensland (SBQ) released a document entitled *RTK GNSS for Cadastral Surveys* to be used as the guideline for, as the name suggests, the use of RTK for cadastral surveys. The publication of this document resulted from the realisation that clarification was needed for the Queensland surveying community (under the authority of SBQ) regarding how RTK GNSS (referred to from here forth as simply RTK) technology was to be used in accordance with the specifications and practices required for cadastral surveys. Craig Roberts clarifies the misunderstandings of surveyors in the area of RTK in *GPS for Cadastral Surveying – Practical Considerations*;

"This has been due to a number of reasons such.... a lapsed understanding of geodesy, confusion about GPS surveying capabilities and best practice techniques, uncertainty over how to best utilise existing GPS services and infrastructure, lack of time/resources to invest into GPS surveying training, and for the cadastral surveyor uncertainty over what is acceptable practice to satisfy current survey regulations in their particular state or territory" (Roberts, 2005, pg. 1).

The term *realisation that clarification was needed* stems from the lack of knowledge about how and when RTK should be applied for cadastral purposes, as RTK is inherently not as simplistic as conventional methods due to the ambiguities in observations and the general misunderstandings within the surveying industry about RTK limitations and actual use. This guideline is not explicit in many areas and does not feature empirically tested data to substantiate its processes and practices, particularly *section C. Observation Techniques, section F. Grid and Ground Distances* and *section G. Connections and Radiations* for which this research is concerned. This is due in part to the limited jurisdiction of the SBQ and the means by which they can guide survey practices. Overall this testing is necessary so as to determine how and when RTK should be used for cadastral applications and once the suitable situations (if existent) are established, the findings of this dissertation can be used to create stability and similarity in how surveyors use RTK.

The guideline is a necessary publication due in part to the *errors* associated with RTK and the errors this has led to when using RTK and in part to facilitate the understanding of the limitations and use of RTK in the cadastral surveying process. In particular, RTK use has become more prominent in the cadastral field however there are industry misconceptions about how appropriate RTK is for this purpose and when and how it should be implemented. The use of RTK for cadastral purposes is considered a reasonably fledgling concept, as there is relatively limited research into the area and there is still much confusion and misunderstanding surrounding it. The fact that these misconceptions actually exist become apparent from the opening lines of the SBQ guidelines;

"The Surveyors Board of Queensland has recently become aware of some issues with the use of GNSS/GPS, particularly Real-Time Kinematic (RTK), on cadastral surveys."

What these issues are will be investigated in Chapter 2: Literature Review.

As opposed to independent surveying works (works where the surveyor may not need to rely on others work i.e. stockpile volume, detail and contour etc.) cadastral surveys are a function of a surveyors own work and of historical works. A cadastral plan is not maintained by the entity that creates it; it becomes a distributable document (under the Trade Practices Act 1974, Part IIIA – Access to services, Division 3) which others can and will rely upon in future instances. The lodgement of a cadastral plan can of course only be done by an endorsed cadastral surveyor of the SBQ. This concept worked well with total stations (TS) being the principal method of carrying out cadastral surveys, because while practices were not generally uniform throughout the industry per se, accuracy and precision were easily established, understood and all processes were easily repeatable. Now that RTK has been introduced into mainstream cadastral surveying there are greater misperceptions between practices, methods and results between TS and RTK. The problem that arises here is that there are not only problems with RTK observations themselves, but the cadastral database will be made up of a combination of TS and RTK data which is collected by through different practices and which may be inherently incompatible.

Given these differences the SBQ guidelines needs to be reconsidered and extended to clarify certain issues more detail so that;

- a) there can again be practice uniformity in regard to minimum acceptable practices throughout the industry,
- b) there can be greater understanding of the application of RTK for cadastral surveying
- c) there can be greater understanding of how and when RTK should be applied
- d) all surveyors observe appropriate measurement techniques,
- e) so that there is a greater understanding of the limitations, processes and purposes of RTK surveying

These goals were met through the SBQ guideline which in a short overview were given;

"This document is designed to provide a summary of overarching principles that should govern how surveyors go about this task [use of RTK]. It is not exhaustive: rather it is essentially an interim document designed to bring attention to some common errors in practice and will be later supplemented by more detailed guidelines. It is also designed to be read in conjunction with best practice guidelines such as SP#1)."

(Surveyors Board of Queensland, pg. 2, 2012)

This basic description refers to the document as a "summary of overarching principals" (Surveyor Board of Queensland, pg. 2, 2012) as opposed to prescribed methods and practices that all surveyors should follow. This inherently causes problems because as the document is only a guideline rather than an enforced code, some surveyors will continue to observe their own practices and discontinuity will remain between the information collected and shown on cadastral plans – i.e. how one surveyor measures with RTK will be different to how another surveyor measures (this does not matter per se, so long as the methods are valid with respect to the SBQ guideline and other relevant standards). The guideline is realised as not being complete though, stating that it will be supplemented by more specific future guidelines.

While the guideline may not necessarily be complete or comprehensive, it does cover most areas regarding RTK use to varying degrees of detail – especially when read in conjunction with best practice guidelines as intended. The SBQ guideline covers multiple areas, but to further clarify (and where necessary quantify) every section of the guideline would be a dissertation in-and-of itself. The main focus of this project is concerned with *section C. Observation Techniques*, in part *section F. Grid and Ground Distances* and in part *section G. Connections and Radiations*. As mentioned before the

guideline is non-explicit in many aspects due to the SBQ only being able to detail elements considered within their domain, so it is the intention of this dissertation to substantiate *sections C., F. and G.* with rigorously tested physical practices and empirical data. This guidelines does not require all observations to be done exactly the same so long as their practices are appropriate and meet legislative specifications, however there is a great deal of confusion and measurements of different *quality* (accuracy, precision, time etc.). Therefore it is again the intention of this dissertation to clarify these elements of the guidelines so that it can be utilised and easily integrated throughout the surveying community. There will be some overlap with other sections of the guideline however it is not the intention of this dissertation to fully explore these concepts. It should also be noted that this dissertation will be carried out with respect to the other sections of the guideline to overall function in a manner indicative of the aims of the guideline.

Observation techniques relate not only on the techniques a surveyor utilises to observe a point (observation type, duration, equipment, etc.) but also to how he observes in regards to other points and the rest of the survey. This includes the main aspects this dissertation aims to investigate;

- boundary line observations (referred to from here forth as short lines in accordance with the guidelines definition)
- referencing (particularly observation time length)
- backsight length (directly relating to TS)

These 3 elements are common tasks a surveyor will encounter in the conduct of a cadastral survey and are areas of great confusion which is where a great deal of the misunderstanding and improper use of RTK is generated from.

#### **1.2** <u>The Problem Defined</u>

These three tasks will become the focus of this dissertation with the broad aim being to properly test and observe these in a manner which will provide the appropriate (accurate and precise) measurements and be applicable to real-world situations. But when these aspects are measured it is essential to understand just how good the results actually are, the obvious base of comparison being conventional methods; comparative to TS. When considering what answers will be generated in the end there must be a standard that surveyors can strive for to match or exceed.

From the methods detailed in the guideline and associated literature, this will form the basis of the practical standards. By reaching or exceeding the guidelines standards we are officially satisfying the requirements of the SBQ for utilising RTK GNSS in cadastral surveys. Furthermore given that TS observation quality is generally accepted to be more accurate than RTK over short distances (Gibbings, 2013) – and it is the conventional method for cadastral surveys – for the purposes of this dissertation it will be used as the standard against which to compare the RTK results; i.e. the observations will be of or not of TS quality. TS observations will be the base of comparison as, along with RTK, it is the most commonly used method of distance observation and the most common mean of performing cadastral surveys (it is essentially appreciated there will be differences between RTK and TS). Therefore there will be two quality standards, the absolute minimum standard to perform a cadastral survey as defined by the SBQ guidelines and the more rigorous TS quality standard.

#### • Short Lines;

Short lines generally refer to observations from one boundary corner to another. In all observations, whether by TS or RTK, there are inherent errors present which cause inaccuracies in the true (accurate and precise) position of the point. This ambiguity itself is a function of the errors in the observation; ranging from the propagated errors of the manufacturer's specification errors (measurement limitations), human errors, observation method errors and systematic, gross and random errors.

More specifically when considering RTK, the error of the observation will be a function of the ambiguity solution and environmental factors (multipath, ionosphere, troposphere etc.). All of these combine to create an error in the line of observation, a result affecting both the bearing and the distance. For RTK this ambiguity is manifested in the position of the point itself (error ellipse) and propagates between the two ends of the line to create an overall error. In TS this error manifests over the length of the line itself from an initial accuracy error given by the manufactures specifications combined with an error over the distance measured (i.e. 3mm + 3ppm). The accuracy error of a TS is of a lower magnitude than RTK over short distances, though the error increases in relation to distance (+ Xppm), so RTK will provide better results over long distances.



Figure 1.1 – Referencing diagram (Gibbings', 2013)

The concept behind testing short lines will be to determine what is the minimum length of a line that will be of similar accuracy to TS observed line, and hopefully, surpass the survey standards' accuracy; i.e. *SP1* or *Cadastral Survey Requirements*. Practically, determining this will be critical for the;

- re-measurement of existing short lines
  - so that distances similar to convention method accuracy are observed
  - so that cadastral plans are not falsely challenged/changed
- and the determination of new boundary lines
  - so that true bearing and distances (B&D) are given
  - no incorrect observations on plans are lodged

When TS and SBQ guideline accuracy is met, this will become the minimum distance and observation technique a surveyor should observe when measuring short lines, anything shorter than this (thus providing error outside of the standards) will need to be either a) observed more rigorously or b) observed in a manner similar to referencing or c) observed by convention methods.

#### • Referencing

Referencing refers to the measurement of a point, usually a corner mark, to reference and/or reinstate marks within close proximity to that cadastral mark. Generally these marks are less than 10-20m away and are used to verify the accuracy of an existing mark, for corner referencing and to assist in reinstating corners. There is no industry standard that defines within what proximity a mark must be to a corner to be called a reference mark, however for the purposes of this dissertation it was accepted to be up to 20m. This was chosen as any length greater than that 20m can be considered within the range of short lines (i.e. a boundary line).



Figure 1.2 – A referencing diagram where SP represents the corner itself while PSM, Pin, Ref Tree and PTR represent the marks that would be observed to reference and reinstate SP (Gibbings', 2013)

It is similar to the concept of short lines however when referencing errors are accentuated by the short length of the baseline as opposed to being distributed over greater lengths. Contrary to short line observations, where the errors are a function of the length of the line, referencing is both a function of the length of the line (as errors are accentuated over that short distance) but also a function of the observation time, as a longer observation tends to lead the greater convergence of measurements around that true value (explored in *Chapter 2*). Note; while 2mm positioning error is still 2mm positioning error over 5m or 5000m (especially when bearings are a function of distances in RTK observations), that 2mm will have a much greater influence on the error and reality of the bearing and misclose over 5m as opposed to 5000m.



Figure 1.3 - A diagram illustrating the impact 2mm error has on closed figures or 5m and 100m lines

In short line observations a surveyor is able to measure longer minimum lengths so as to achieve the survey standards' recommended accuracy – where anything that falls under that minimum distance can be achieved by conventional methods, in the case of referencing the surveyor will be measuring the very short distances, therefore being unable to simply move further away to *stretch out* errors (thereby creating better closes). The thought process in this case is that surveyors will accept errors in the B&D of the observed short lines however these should not be of a greater magnitude than the errors measurable by TS. Therefore the question becomes what must a surveyor do when using RTK for referencing to achieve the standards? This will be a function of the observation method, time, process and equipment. Essentially a surveyor is not able to change the minimum distance so the question of how to reference with RTK transitions to what can be changed to improve results?

#### • Backsight Distances

When establishing the orientation and scale for a job in the local plane, appropriate backsight/s of a suitable length must be observed to. This task is absolutely critical to re-establishing the survey azimuth and, especially in regard to RTK surveys, scaling the RTK measured lengths to the survey plan lengths (i.e. real world). This task is related to short line observations to some degree however BS lengths essentially must be of a greater degree of accuracy so as to correctly establish the survey. More so than referencing or short lines, the horizontal bearing aspect of measurements is of critical importance here as it will establish the orientation of the survey. Moreover if the current cadastral survey needs to be scaled from one co-ordinate system to another – or between TS and GNSS – the distance observation must be true too. The general rule when establishing a survey is to utilise the longest backsight available – between good marks – thereby minimising the B&D errors as much as possible. This however is up to the discretion of the surveyor and the longest line might not necessarily be chosen as opposed to the most appropriate.

By quantifying and qualifying these 3 entities it is the hope of this dissertation to clarify the SBQ guideline as much as possible in regards to observation techniques and indeed the application of RTK for cadastral surveys. As mentioned before, while this is a relatively narrow project scope, there will be overlap into other sections of the guideline. It is not the intention of this dissertation however to prove the sections outside of the project scope and the aim of the testing will be to follow the guideline as much as possible.

#### 1.3 <u>Research Aims</u>

The overall aim of this dissertation is to physically test the three outlined surveying tasks; short line observation, referencing and minimum backsight lengths so as to determine the minimally acceptable practices and values of observation these entities. This dissertation will carry out testing in accordance with reasonable professional practice (as outlined by the *Surveyors Board of Queensland – Code of Practice (Surveyors Act 2003)*), discussed in greater depth later. Moreover the aim of the actual testing is to achieve SBQ guideline accuracy for the use of RTK GNSS for cadastral surveys and determine whether RTK can in fact achieve TS standard similar observation accuracy. Essentially the testing will result in the empirical determination of how and when RTK is applicable and its limitations.

#### 1.4 <u>Research Objectives</u>

- To determine empirical results that will definitively establish what practices must be employed to achieve SBQ guideline and determine whether TS similar accuracy can be achieved with RTK
- To produce data which can be justified and substantiated so that this dissertation will have a basis in common practice – this will be achieved by conforming to the SBQ guideline
- To conduct testing in a manner which inherently covers the practices recommended by the SBQ guideline but also in a manner which is indicative of *reasonable professional practice* so that this research methodology can be carried over to real world situations
- Ultimately, to refer the finding of this dissertation to the SBQ to supplement the non-explicit and unquantified areas of *section C. Observation Techniques*, *section F. Grid and Ground Distances* and *section G. Connections and Radiations* of the guideline with empirically tested data

#### 1.5 <u>Research Scope and Limitations</u>

As was introduced in section 1.1 The Problem this dissertation specifically target aspects of the SBQ guideline; section C. Observation Techniques, section F. Grid and ground Distances and section G. Connections and Radiations. It is therefore the intention to only research and produce data relevant on these sections, which can be directly integrated into these sections to supplement it (not necessarily redefine it). There is the allowance however that there will be overlap into various other sections of the guideline in the course of this research, work and testing and perhaps even into other

areas of surveying. While this may occur, it is outside the scope of this project to delve deeper into these concepts than is needed to undertake the practices required to achieve the principal aims and objectives. Therefore these overlapping concepts may be researched for the benefit of the dissertation and/or the author/readers however it is not the intention to produce more information on each than is absolutely necessary.

This dissertation aims to extensively test the 3 entities; short line observations, referencing and minimum backsight lengths. The author acknowledges there are many other tasks required for a cadastral survey however given the limited time period, all testing is limited to empirically testing these 3 concepts.

Other concepts outside the scope of this dissertation include, but are not limited to (this is by no means an exhaustive list);

- Undertaking cadastral surveys
- Cadastral plan creation and lodgement
- GNSS operation refer to manufacturers' specifications
- Error minimisation
- Ambiguity solutions
- Geoid and ellipsoid models
- Co-ordinate systems
- Ideal observation conditions
- Control establishment
- Control array establishment
- Equipment calibration, testing and maintenance
- Equipment validation
- Differential Global Positioning System (DGPS)
- Legal traceability of measurements and survey integration

Consideration has been taken to limit the scope of this dissertation as much as possible to ensure it is clear and focussed, and that it is not used outside of its intended purpose (refer to *Limitation of Use*) though there may be some instances where this dissertation is applicable. It must be stated that the scope of this project is to directly test short line observations, referencing and minimum backsight lengths in regards to clarifying *section C., F.* and *G.* of the SBQ guideline with empirically tested data that meets the SBQ guideline standards for practice, *reasonable profession practice* standards and where possible, will be applicable to real world situations that can be reproduced. This

is the intended scope of this work, anything addition is unintended and purely coincidental.

#### 1.6 JUSTIFICATION OF DISSERTATION

This dissertation is a worthwhile and valuable undertaking given the desired project outcomes. By the full completion of the aims and objectives this research, regardless of the outcomes, will make a meaningful contribution to the professional surveying community in accordance with the objectives of courses ENG4111 and ENG4112. The intention of this dissertation is not to be privatised or kept as an 'in-house' practice but rather to spread the knowledge so that all can benefit.

By contributing the findings of this project to the SBQ for review and possible inclusion into the guideline, this dissertation will aid the understanding of RTK use for cadastral purposes throughout the industry and to a degree, standardise the methods by with surveyor undertake this task.

#### 1.7 IMPLICATIONS

#### 1.7.1 CONSEQUENTIAL EFFECTS

As professional we must consider the impact we leave on society and the environment in the course of our professions and lives. With sustainability and preservation in mind, we should in no way disrupt, destroy, corrupt or endorse unsustainable practices, and we should take proactive strides to limit our impacts and footprints as much as possible. We do accept that in some situations where we will have an impact and we accept responsibility for that; however it is also our responsibility to find alternative less impactive methods, observe best practices and perform our work in a professional and sustainable manner.

The intentions and testing of this dissertation are in no way designed to interfere with, contact, restrict or otherwise inhibit any persons or property. This dissertation will not require any contact with or co-operation from the public and can be carried out solely without impact. Moreover the given project objectives will in no way will cause disruption or change within society. This work is designed for use by cadastral surveyors, not the public therefore even the knowledge of and use of this material is limited to professionals who understand the implications of their practice.

The main area of concern with regards to undertaking this study is the possible impact on the environment when field testing. The actual methods of testing are discussed later however it will be solely my responsibility to ensure the environment is not heavily impacted nor destroyed, to ensure it is not polluted or otherwise adversely affected. While environmental impact is expected to be very minimal it must be guaranteed that the environment is returned to its original state at the end of works and that no lasting impression is made.

#### 1.7.2 ETHICAL RESPONSIBILITY

Additionally professionals have an ethical responsibility that they must adhere to under the requirements of their professions respective *Code of Ethics/Conduct/Practice*. It is therefore the intent of this dissertation to follow the standards as prescribed by the *Surveyors Board of Queensland – Code of Practice (Surveyors Act 2003)*. Importantly, in line with adhering to this Act, no work or impact can take the reaction of "it's not my worry if", "it's not illegal if" or "someone told me to"; I must take full responsibility for actions resulting from this dissertation and in no way act in a manner contradictory to the *Code of Practice*.

#### 1.8 <u>Reasonable Professional Practice</u>

As it is the intention of this dissertation to be submitted to the SBQ to potentially substantiate their guidelines, it would follow that this dissertation must be performed with the SBQ recommended practices and Code regarding practice. *Reasonable professional practice* is the expected level of professionalism and knowledge to be displayed by a surveyor throughout the due course of his work. It represents not the maximum ability or the minimum ability, but rather what the average, qualified surveyor would be expected to do in the given situation. Because *reasonable professional practice* represents average ability there is some degree of freedom as to the choices that can be made. It provides the legal basis within which the surveyor should act so as to obey relevant surveying legislation and to ensure that all work is carried out in respect to the welfare of society.

As such, the SBQ guideline will be adhered to throughout the testing regime and *SP1* to which it refers. Moreover, when conducting this testing the SBQ *Code of Practice* will be strictly followed so as to ensure all testing is carried out in a manner indicative of the doctrines of the SBQ and it can be initially accepted on the basis that it was carried out with due care and regard.

#### 1.9 CONCLUSIONS

The need to perform this dissertation arises from a fundamental misunderstanding within the surveying industry regarding the practices and minimum standards required to perform cadastral surveys by means of RTK GNSS. The SBQ attended to this need by releasing a guideline for the use of RTK however this guideline was very brief and non-explicit in many areas. One particular area where it failed to fully establish a complete guideline was *section C. Observation Techniques, section F. Grid and ground Distances* and *section G. Connections and Radiations*. This is not to say that the guideline is deficient per se, however this dissertation aims to add to and augment the guidelines to make it more thorough and empirically test some areas of the guideline.

While there are many task required to complete a full cadastral survey, 3 critical tasks that are commonly misunderstood were identified. These 3; short line observation, referencing and minimum backsight length are essential to cadastral surveying and if performed wrong, will result in incorrect observations and hence incorrect plans and existing plan challenges.

It is therefore the intention of this dissertation to explore these elements through field testing and reductions and definitively prove how these should be conducted in real world situations. More accurately, these elements will be explored to determine whether RTK can be used for cadastral purposes, and moreover, how and when it should be applied. The aim is to provide this through empirically tested data and by following reasonable professional practice as outlined by governing bodies, so that this testing is applicable to the real world and replicable. By achieving these goals it is then the aim to provide these findings to the SBQ for their internal review so that this research may become part of the guideline and supplement the inexplicit areas and further define the guideline.

By achieving these aims it is hoped that a meaningful and important contribution can be made to the surveying industry so there is greater uniformity in practices and methods. Furthermore it will hopefully ensure that surveyors have a minimum standard of how to use RTK (in regard to the 3 tested elements) to adhere to so as to achieve observational accuracy which meets the SBQ guideline and that is – or may be – similar to TS quality data.

## **CHAPTER 2: LITERATURE REVIEW**

#### 2.1 INTRODUCTION

This chapter is primarily concerned with establishing the existing background information for the use of RTK GNSS for cadastral surveying, to define *reasonable professional practice* (as this dissertation is very much focussed on this concept) and to identify any and all other information that may be relevant. Moreover this literature review serves to provide a great deal of background information so that should this dissertation be used for other purposes it is easy to identify where the information and basis of this research came from. Moreover the literature will provide a reliable and traceable base, consistent will recommended best practice techniques. The literature review for this dissertation will be somewhat different from others as rather than trying to define a new idea, development, research or entity (entity is used loosely here), this dissertation is focussed on describing and expanding an existing idea. The use of RTK for cadastral purposes is an idea that has been implemented and now, the research is trying to catch up so as to properly define its use and application.

The most important aspect of this chapter is investigating the SBQ guideline, in particular section C. Observation Techniques, section F. Grid and ground Distances and section G. Connections and Radiations. As these sections of the SBQ guidelines are the information around which this dissertation is built, it is critical that these sections in particular are analysed in depth. This will basically establish what practices and methods the SBQ recommend and what areas in particular need to be expanded. This will help to identify what exactly needs to done, though not necessarily how the testing regime would go about achieving which is why further research will be done into literature regarding this, particularly Standards and Practices for Cadastral Surveys (SP1) and the newest version of SP1.

The objective of this dissertation is to align all testing with *reasonable professional practice* therefore this concept needs to be defined too. Because this dissertation will eventually be submitted to the SBQ for their internal review, it is obviously prudent to conduct all testing in a manner indicative of their guidelines and practices.

## 2.2 <u>RTK GNSS FOR CADASTRAL SURVEYS;</u> SURVEYORS BOARD OF QUEENSLAND

As introduced in *Section 1.1*, the SBQ guideline was created to bring attention to many of the common errors in practices that cause misunderstandings about the use of RTK and result in poor if not inaccurate field observations. The guideline is intended to be read in conjunction with best practice guidelines rather than be a stand-alone document. Overall the guideline does provide useful information to surveyors on how to conduct their practices however on the whole it is inexplicit and does not nearly contain nearly enough depth to fully guide a surveyor through the cadastral survey process. One of the conditions placed on the information provided within the guideline is that it is only an interim document for the time being, with more detailed version to follow. Given this premise, this dissertation will begin to supplement the guidelines particularly focussing on *section C. Observation Techniques, section F. Grid and ground Distances* and *section G. Connections and Radiations*.

Referencing sections C. Observation Techniques it is apparent that only the base work for this section has been laid as the section only covers about half a page. This section briefly outlines some of the absolute minimum requisite standards a surveyor needs to achieve for an accurate survey to be undertaken before moving onto base station positioning and co-ordination. In this brief overview, the guideline mentions that a fixed ambiguity solution must be achieved and that a fixed solution is required for all observations (initialisation loss and re-initialisation is accepted though) throughout the survey. The GNSS base station must be set on an appropriate control mark or with due reference to appropriate control marks, and the survey - especially the base station position - should be carried out so as to minimalize multipath (otherwise TS may be more appropriate) and comply with manufactures' recommendations and specifications. Additionally it mentions that it is a matter of the surveyors' discretion as to the surveying conditions with respect to the number of satellites used (a minimum of 4 – which is required for initialisation), satellite geometry, DOP's (suggested as not greater than 8), base station requirements, baseline lengths, elevation mask and expected point accuracy and precision. In the later section G. Connections and Radiations the guideline touches on some of the aspects of this dissertation however the information is unquantified and in regards to the guideline as a whole, it needs to be more descriptive than simply 'use professional judgement and discretion'. From section C., what can be taken away that is applicable to this dissertation is basically abiding by the suggestions

of this section of the guideline. Paragraph 2 is applicable to this work however it falls back on proper survey planning and preparation to ensure that high order and class marks are used for base stations and the latest geoid models will of course be used to ensure the highest accuracy on the datum. Paragraph 3 can tentatively be ignored at this stage as it is the intention to only use one base station (as all works should be completed within range of a single base) for all testing to minimise the total amount of errors over the testing.

Section *F. Grid and Ground Distances* indicates the need for cadastral plans to show ground distances (s48 (B), Land Title Act 1994 & *Cadastral Survey Requirements*, DERM), and ground distances are not the same as geodetic plane distances, ellipsoidal distances or MGA grid distances which are measured by GNSS. It is integral that this is understood as there is a difference between these distances and while this difference may be negligible over short distances, cadastral plans must show ground distances. Therefore regardless of the length of the observed line, it must be reduced to the horizontal distance at mean terrain height. *Figure 2.1* shows the difference between MGA grid distance on a plan, lest the plans be incorrect.

| Endpoint MGA<br>coordinates:<br>499800.000 East<br>6946945.938 North | MGA Grid Distance: 400.000m | Endpoint MGA<br>coordinates:<br>500200,000 East<br>6946945,938 North |
|----------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|

Figure 2.1 - Ground and MGA grid distance comparison

Paragraph 2 of section *F*. can, at this time, be disregarded as it is not the intention to conduct testing on a local ground-based co-ordinate system. Paragraph 3 on the other hand provides some very useful information regarding short line observation. The paragraph goes into quite some degree of detail providing that lines calculated from two RTK points will typically be of the several centimetre level of accuracy. The guidelines link to the *SP1* here stating that accuracy at  $1\sigma$  was calculated to be 17mm and  $2\sigma$  (95% confidence interval) was 42mm, and provides that vector (vector is used quite loosely here as the definition of vector is not described) accuracy is required as 10mm + 50ppm. From the guidelines' recommendations, this leads to a minimum distance of 640m below which distances should be observed by a conventional total station. 640m is a rather long distance line to observe and if this was to be the minimally accepted distance, RTK would serve no benefit for urban cadastral works or acreages. The guideline continues however that the precision of observations can be improved by

means of longer observation times. This is justified by the work of *Janssen* and *Haasdyk*, who found through their research, indications of significant benefits to accuracy from averaging observations over longer time periods (one or two minutes) and reoccupation (10-30 minutes later). Subject to their findings some jurisdictions have adopted 120m as the minimum distance below which conventional total stations should be used.

With further regard to section G. the literature does delve briefly into corner referencing and backsight lengths. Firstly with referencing; the guideline promotes a best practice of making checks between radiated points particularly when working over small distances. The guideline suggests that this is done with conventional methods (i.e. TS and measuring tape) with these methods taking precedence over the RTK observations. This effectively defeats the point of conducting RTK surveys if the marks are to be resurveyed by conventional methods which will be given precedence. When conducting this dissertation the focus will be to find a practice for referencing that can be conducted entirely with RTK (checks included) so that conventional methods aren't additionally needed. Operating under best practices it would be possible to check the observations at a later time (allowing satellite geometry change) through reoccupation and with a different ambiguity solution. The guideline does not expand on the methods or practices one should observe when measuring reference marks with RTK nor does it give an indication of minimum lengths or occupation times. Hence to fully clarify this issue it will be necessary to conduct a variety of tests so that the most appropriate method can be identified and used as the best practice. The guideline moves onto how to observe backsight lines where the guideline actually gives numeric solutions stating that for RTK surveys, backsight lengths should be greater than 200m and never less than 100m unless the situation is unavoidable. While this does to some degree give the user an indication of the practices he must observed, the guideline does not define how it arrived at these quantities, nor how the backsights should be observed so that these intervals will be applicable. This is one of the gaps in the guidelines this dissertation aims to fill, and establishes the need for this testing. Finally reference trees, as outlined in paragraph 3 is beyond the scope of this dissertation per se, as this dissertation is focussed more upon actual observations methods however it should be realised that the guidelines recommendations should be followed.

An important note in regards to how the guideline is structured is that it does not define ideal RTK conditions or the conditions in which this guideline is appropriate (the assumption being that it is universally applicable, dependent on the surveyors' professional judgement). In general the guideline is given as the general guide to RTK use for cadastral surveys however a great deal of the guideline is given under surveyors' discretion, it may be undesirable to use this in all situations. From the SBQ guideline it is can be concluded that a lot of faith is inferred to the surveyors' ability to judge conditions and situations accurately. Much of the decision making process is given over to the surveyors discretion rather than based on situation standards or professional practices. Different conditions will obviously cause different observations and there can be a great deal of contrast between two separate cadastral surveys, even if both were completed to the standards of this guideline based upon the conditions of the survey. A surveyor has no control over the conditions of the survey, however just like it is stated within the guidelines most errors with RTK can be overcome with *redundancies in observations* (section *A. General Requirements* paragraph 3) and, moreover it is essential that proper discretion be observed by the surveyor to determine whether RTK is in fact the appropriate means to complete the cadastral survey.

The literature covers a range of other information related to cadastral surveys by RTK however these are all outside the range of this dissertation. While there will be overlap into these sections to some degree it is not the intention of the dissertation to quantify or qualify these sections. In general the guidelines of these sections will be followed where applicable in conjunction with best practices.

While the SBQ has relied heavily on surveyors' discretion, this is not necessarily an entirely bad concept. The purpose of the guideline and indeed this dissertation is to guide surveyors in their methods so they may achieve accurate observations rather than enforce a practice system. Every situation will be different and there may be cases where the guideline – no matter how detailed and refined – is not applicable. It is important to allow the surveyor to consider what must be done and if certain conditions can be met rather than giving an 'all-inclusive' standard.

Therefore from the literature it is possible to conclude that the guideline, in its current form needs to be heavily detailed and supplemented before it can be considered comprehensive. While the document does touch on some key areas it does not provide quantified data to validate its suggestions nor does it provide methods of achieving cadastral survey standards'. The dissertation will focus on qualifying how to conduct short line observations, referencing and determining minimum backsight lengths and will validate this with physically tested, empirical data. By achieving this, the guideline can become much more succinct and useful and will provide surveyors with the knowledge and guidance they require.

## 2.3 <u>RTK GNSS FOR CADASTRAL SURVEYS.... PLUS</u>!; PETER GIBBINGS

The inclusion of this presentation within the literature review is a necessity given Dr Gibbings involvement and experience in the field of RTK for cadastral surveys and his involvement with the writing of the SBQ guidelines. This presentation has been made at numerous professional seminars and Dr Gibbings' knowledge is well regarded; the presentation aims to educate surveyors on the application of RTK for cadastral surveys and covers numerous areas related to its use and appropriate implementation. Indeed the presentation covers much the same ground as the SBQ guidelines – although this may seemingly have been the intent given the references to the guideline.

The first point raised is the finding of the SBQ and others of some issues with using RTK and cadastral surveys which are given (without greater detail) as independent checks, redundant observations, equipment reliability, validation, checking, staff training (and knowledge) and many issues not just GNSS specific. These issues or their countermeasures are not stated within this presentation however these issues mentioned are either beyond the scope of this dissertation (equipment reliability, validation, checking, staff training), will be eliminated through proper planning and practices (independent checks, redundant observations) or were previously examined in section 2.2 of this dissertation or in a later section (most of the issues related to GNSS such as multipath elimination, ambiguity solutions etc.). While these issues are not delved into within the dissertation it can again be seem how often these issues are raised in relation to RTK for cadastral surveys.

The importance of using ground distances at mean terrain height as opposed to MGA grid distance is reiterated in much the same way as the guidelines. The benefit this section does provide though is the practical means of converting an observed MGA grid distance to ground distance, by conversion through the combined (height SF and grid SF) scale factor.



Figure 2.2 - Height play an important role in reducing a distance observed in the field to obtain the corrected distance on the ellipsoid (caption and figure Gibbings, 2013)

The accuracy specifications given by *SP1*; 10mm + 1-2ppm (1 $\sigma$ ) are then referred to though this is a significantly more rigid accuracy standard then was given by the SBQ guideline and would require a significantly longer line to be observed to achieve this accuracy. Gibbings' extends this by stating that more accurate observations are possible, that 25mm at 2 $\sigma$  may be possible, which is consistent with empirical testings which is then provided. More evidence of this testing is provided by the work of Edwards et al 2010 and Janssen and Haasdyk 2011. When investigating RTK GNSS accuracy Gibbings' finds that accuracy to 1 $\sigma$  is not enough, it is better to look at the 95% confidence interval (2 $\sigma$ ) however the remaining 5% and outliers should be remembered. This is a vexing predicament as at the 95% CI, 5 out of every 100 observations could potentially be erroneous, however if a 99% CI (3 $\sigma$ ) was instead chosen, the acceptable accuracy may be too great.

An important detail taken from this presentation though is the need to check for *bad* initialisations, which can occur in about 1 in 1000 initialisations. There is no way to initially tell whether the ambiguity solution is in fact *bad*, which is why the need for reoccupation and redundant observations are required (reoccupation recommended to be about 30 minutes later). This must inherently be incorporated into the testing regime.

Finally Gibbings' reiterates the findings of the SBQ regarding short line observation and the premise that better minimum distances then 640m (based on the survey standards' vector accuracy 10mm + 50ppm) can be observed. The SBQ findings in regards to referencing and backsight lengths are also reiterated, requiring independent conventional measurements to substantiate the RTK observations and BS lengths greater than 200m, respectively.

## 2.4 <u>GPS FOR CADASTRAL SURVEYING – PRACTICAL</u> CONSIDERATIONS; C. ROBERTS

This paper covers a variety of aspects regarding GPS theory which are all obviously pertinent to the testing that will be conducting throughout this dissertation. More importantly though Roberts' work is primarily concerned with a similar theme as this dissertation so it should provide a great deal of relevant information.

The first section refers to the importance of GNSS *initialisation* in the role of achieving cm-level positioning and obviously this needs to be carried over into all testing practices. The paragraph is more an introduction and description of RTK initialisation than anything else however it does highlight the need for initialisation. It is important to remember that there is the possibility for *bad* ambiguity solutions periodically, and it would seem prudent, from Roberts' and Gibbings' work, to loss initialisation and determine a new ambiguity solution between each set of observations (i.e. between the first observations and the reoccupation). Coupled with the information from section *1.4 High Productivity Surveying*, Roberts' states that ambiguity resolution (AR) in ideal conditions is correct 99.9% of the time, confirming Gibbings' previous findings (1 in 1000). It is recommended that a known point be observed to confirm the AR as a *bad* AR will result in an incorrect position of a decimetre or more.

Survey planning is then explored however it is again, more an overview and history. This section does provide some valuable information on *full operational capability* (FOC) though, which guarantees a minimum of four satellites (usually five) are visible anywhere on the Earth at any one time. Four satellites will be sufficient to gain a fixed ambiguity solution (initialisation) and since FOC was declared in 1995, survey planning – being the checking that enough satellites will be available during a job – has been considered obsolete. It is recommended that an RTK surveyor should always consider the best time to work and consider the obstructions in the area. Furthermore with the full GPS, GLONASS (Russian) and Galileo (European) satellite systems, survey planning is rarely required except in the most difficult of conditions.

The second chapter of Roberts' work focusses on some of the practical considerations of using RTK for cadastral surveys. Interestingly he states that RTK is not a replacement for traditional techniques but rather an enhancement suitable for certain conditions. Base station location is reviewed with practical considerations a surveyor must implement; ensuring that the base has a clear skyview to ensure the maximum number of satellites are observed to at any one time, that the rover remains within radio link range (may require a repeater) and critically, that the base is located in a multipath free environment. In particular regard to cadastral surveys Roberts' recommends that the base should be set upon a control mark (tied to the relevant survey plan) with known MGA co-ordinates, provided that it fulfils the previous requirements.

"Modern GPS systems have improved satellite tracking technology such that weaker signals can be observed under trees with moderate foliage. (Note that dense foliage will still cause cycle slips). Despite this advanced tracking capability, the signals are noisier, weaker and therefore more likely to be subject to multipath and diffraction. The surveyor should be aware that positions may not be accurate despite quality indicators showing good solutions.

To overcome this cadastral surveyors can place two or three marks in clearer locations, coordinate them using RTK GPS techniques and then radiate or intersect the cadastral detail required using a total station or theodolite." (Roberts, pg. 6, 2005)

Roberts' review of working under trees or high obstruction areas provides a good argument for the proper location of the base as well as an indication of the care that must be taken during RTK observations. While observing in high multipath/signal obstruction areas is beyond the scope of this dissertation it is important to consider the impact multipath/obstructions will have on measurements and plan accordingly – this may mean using integrated surveys to complete works.

The next few sections of Roberts' work actually looks at observation considerations. Section 2.3 *Coordinating marks* recommends the use of a tripod or other stabilisation equipment when observing a point to ensure there is no movement during the occupation and that the receiver remains above the observation point of the mark. Roberts' then reiterates the importance of observational rigor, by reoccupation of the point after at least 20 minutes have elapsed, to allow the satellite geometry to change, with a new AR.
The elevation mask angle is the angle of elevation above the horizon below which satellite signals are filtered out, usually due to atmospheric noise of that satellite signal or which are likely to be obstructed (Trimble, 2013). Roberts' refers to the NSW Surveyor General's Directions (2004), *No.9 GPS for Cadastral Surveys* which recommends that an elevation mask of no less than 15° be used, so as to reduce the effects of systematic errors, namely tropospheric and ionospheric delays, multipath and complete signal obstruction.



Figure 2.3 – Elevation mask angle showing satellite signal travel through the ionosphere and troposphere (Roberts, 2005)

*Figure 2.3* gives an indication of the need for a suitable elevation mask; as can be seen, the overhead satellite signal travels through significantly less atmosphere than the right hand satellite. Multipath is also a concern here as the signal may bounce off the ground or other reflective surface (particularly water) before reaching the base and receiver antennas thereby making the signal path length longer than it should be. Adopting the correct elevation angle is therefore critical.

Finally Roberts explores a critical topic; grid vs ground distances needed for cadastral purposes which was previously examined in the work by the SBQ and Gibbings. Roberts doesn't really go into any more detail than was previously found, and focusses on how RTK can be configured to work on a local ground co-ordinate system, a topic beyond the scope of this dissertation.

# 2.5 <u>GNSS and Cadastral Surveys</u>; Surveyor-General of <u>The Australian Capital Territory</u>

This guideline is very similar to the SBQ guideline and has been produced in much the same fashion as it too is non-explicit in some areas and does not contain actual recommended procedures or methods in some sections. It does however contain information regarding the use of RTK specifically for cadastral surveys and the information will be critical in determining the testing regime. The ACT guideline sets out to develop a method to ensure that the survey information observed using GNSS technology conforms to the standard as required within the ACT which would obviously be different than Queensland. Interestingly the guideline provides notice to surveyors that under the Nation Measurements Act 1960 approved methods of establishing legal traceability of positions determined by GNSS do not exist, therefore GNSS should not be used as the sole method of observation during a survey. This is interesting as it would be the surveyor's intent to use RTK exclusively (where possible, integrated surveys may be required) or conventional methods exclusively for the survey otherwise why bother using RTK at all? This centres on the aim of this dissertation, as establishing reliable survey practices, legislation may be changed to allow for exclusive GNSS use throughout a survey.

The guideline is very shallow in detail regarding recommended observation techniques where it merely states the techniques acceptable for cadastral surveying and some performance requirements of the GNSS equipment. The latter at the very least can be followed here, ensuring that the equipment is dual frequency, multiple constellations are used (GPS, GLONASS and Galileo) where possible and ensuring that RTK techniques does not preclude the use of well-established, good cadastral survey practice (*working from the whole to the part; establishing a control framework for the project that is fit for purpose; "running the boundary" where appropriate and avoiding unchecked radiations).* 

The guideline then provides some recommended best practices to observe when using RTK for cadastral surveys but these are mostly covered within *SP1*. Moreover these practices reflect *reasonable professional practices*, which is one of the major aims of this dissertation so these must be integrated to the testing regime. Following on, the guideline develops on these best practices for the purpose of RTK surveys. The ACT lists the accuracy expected at  $2\sigma$  in the order of 20mm +2ppm which is much more lax then the survey standards' accuracy. The elevation mask is again cited as a minimum of

13° - 15°. The need for an open skyview for the base station is reiterated as well as the need for a fixed AR. A new AR must be gained and it is advised that at least 30 minutes have passed before reoccupation of a point. Also the base station must be located in a low multipath area.

Three critical points are introduced in this section which are important to remember in regards to the testing regime. Firstly is the recommendation that the receiver should be set to observe a 1-second data collection rate using the averaging technique, and secondly that to observe Class C positions (the quality of a cadastral survey) a rover pole with bipod can be used, in favour of the surveyor holding the pole and in exception to a tripod. It is recommended though that a tripod be used when connecting to established survey control marks and especially when observations are being used for a site transformation. And finally, it is advised that no observations should be taken when the PDOP as stated from the controller is greater than 6.

The most important piece of information to be taken away from this section however is the ACT recommendation for observation length over various survey marks, which is provided below in Figure 2.4.

|     | Type of Point                                                                                 | <b>Occupation Duration</b>        |
|-----|-----------------------------------------------------------------------------------------------|-----------------------------------|
| 0   | Survey control mark<br>(connection to datum, site<br>transformations, etc)                    | 3 minutes                         |
| 000 | Survey control mark<br>(RTK session checks)<br>Cadastral reference mark<br>Cadastral monument | 1 minute                          |
| 0   | Occupations (eg: fencing)<br>Natural boundary                                                 | 15 seconds $\rightarrow$ 1 minute |
| 0   | Height critical point                                                                         | 3 minutes                         |

Figure 2.4 - Minimum recommended RTK occupation durations (Surveyor-General ACT, 2012)

This table gives an indication of the measurement techniques that should be implemented and this will form the basis of the testing regime. Similar to Gibbings' research, this occupation duration overview shows the importance that is placed upon the correct observation of survey control and critical marks and the consistent with the finding that there is a significant benefit to longer observation times, as opposed to brief *topo* observations.

The guideline also takes the time to differentiate between accuracy and precision in regards to using RTK;

Accuracy – level of alignment to a datum, as realised by the physical survey control mark infrastructure

Precision – the spread of results (at a certain confidence interval) relative to the base station

The final information of the ACT guidelines relevant to this dissertation is when the guidelines draw reference to the work of *Janssen and Haasdyk*, making aware to surveyors that the co-ordinate quality indicators provided by the rover are often overly optimistic and that the CQ indicators may report acceptable positions and observations even though a *bad* ambiguity resolution has occurred.

# 2.6 <u>No. 9 GNSS for Cadastral Surveys;</u> Surveyor <u>General's Directions, NSW</u>

This direction again is much the same as the SBQ guideline and the previous ACT Surveyor-General's directions, and outlines the recommended procedures for use of GNSS methods to undertake cadastral surveys in accordance with the *Surveying and Spatial Information Regulation 2012* (SSIR 2012) and the *Surveying and Spatial Information Act 2002* (SSIA 2002). As the SBQ guidelines, Gibbings' and Roberts' work and the ACT Surveyor-General's directions have already been reviewed, this review will only note important information that can be used for the purposes of this dissertation, rather than rehashing previous findings. It should be noted that most of this document is of a similar fashion as the Queensland and ACT guidelines so the importance of the guideline is in no way diminished. An interesting note though is the guideline stating that with increasing use of GPS surveying technology for cadastral surveys, the techniques involved do not provide the same field data records as traditional methods and it is becoming of greater concern to ensure that quality of field practices meet existing requirements or standards.

This guideline introduces the aspect of RTK observation bias which cannot be accounted for even by the most rigorous surveying practices, which results in increasing uncertainty in the computed baselines to the order of about 10mm. This is the accuracy threshold identified by the SSIR 2012 and so it is recommended that surveyors apply conventional methods in instances of short distances (below 100m). The guideline states that the use of RTK is necessary, these observations should be validated by including closed figures within the survey by TS or alternatively only using these for lower accuracy applications (the guideline does not specify whether a cadastral survey would qualify in this category though).

An interesting point the guideline raises is to only observe points for 2 minutes (at a one second data collection rate) to obtain an averaged position. The guideline through the work of the *NSW Land and Property Information* states that a 2 minute observation delivers *huge improvements* in positioning quality (than shorter observation times) whereas observations for longer than 2 minutes are generally not expected to provide any substantial further improvement.

The final aspect that this guideline raises is a RTK checklist. This checklist covers all aspects of surveying practice from equipment to best practices and is a useful additive to the testing regime. As the testing regime is intended to test within certain parameters some of the points outlined on this checklist may be disregarded. A copy of the checklist will be included in the *Appendix*.

# 2.7 <u>STANDARDS AND PRACTICES FOR CONTROL SURVEYS (SP1)</u> <u>v1.7; ICSM</u>

*SP1* covers a range of surveying applications and is considered a comprehensive guide to surveying practices and methods. It was produced by the Intergovernmental Committee on Surveying and Mapping (ICSM) and is constantly referred to in surveyors' code of practices and practice guidelines. In particular it covers sections regarding a) *Standards of Accuracy*, b) *Best Practice Guidelines for Surveys and Reductions*, c) *Recommended Marking Practices* and d) *Recommended Documentation Practices*. Of this manual, this dissertation is concerned with *Part B*, *2.6 Global Positioning System (GPS)*. This manual covers a lot of best practice, most of which have been outlined in or reference drawn to in previous sections of the literature review. Most of the previous sections of this literature review have base in *SP1* and because *SP1* was conducted by the ICSM it is of course applicable to this dissertation.

The relevant chapter and section of *SP1* to be focussed upon here, *Part B, 2.6* (with the condition of being read in conjunction with *Part* A) presents principles in general terms appropriate for GNSS surveying applications (seemingly of an all-purpose nature), not specifically RTK for cadastral purposes. This is probably due in part to the difference between each state and territory's cadastral regulations. Given the previous literary reviews which are based on the recommendations of *SP1*, there are no new findings to be brought forward here. The inclusion of this document is critically important however as it will substantiate the testing regime and provide the basis of *reasonable professional practice*, for which this dissertation is concerned.

# 2.8 <u>CODE OF PRACTICE - SBQ</u>

The SBQ *Code of Practice* is included briefly to verify that the testing in this dissertation will align with the practice requirements of the SBQ. This *Code* provides benefits for consumers of spatial information including survey services specifically, by providing public confidence in the record of surveys and in surveyors themselves. The *Code* is primarily concerned with the profession and public interest by establishing the distinguishing characteristics of a professional surveyor and their obligation to the public respectively.

In regards to professional competence the *Code* requires a surveyor to abide by the principles and standards of professional practice and apply best practice, a standard which is covered by acting in accordance with the recommendations of the SBQ guideline and *SP1* (this is the portion of the *Code* which is inherently related to this dissertation). The *Code* states that the surveyor must assume professional responsibility for all works carried out; the *Code* would direct the testing to be completed in accordance with best practices but that it is the surveyor responsibility to properly and appropriately implement this, hence the lengthy literature review to ensure this is achieved. It is also stated that all work must be honest and as the surveyor actually observed so as to not knowingly make false or misleading statements, this statement obviously being applied to this dissertation.

## 2.9 <u>CONCLUSIONS</u>

The previous sections of this chapter have analysed all the necessary literature that will be required to provide an academic, factual and reliable basis for this dissertation. The review of the SBQ guideline, the ACT and NSW guidelines and *SP1* have justified the methodology that will be outline in *Chapter 3*, and the works of Gibbings and Roberts provide for the real world implementation of the testing regime. These findings have been found to be consistent with the standards and recommendations of *SP1*, for which all (except the SBQ *Code of Practice*) of the literature is concerned.

Important aspects to be taken away from this chapter to be implemented into the testing regime are;

- The requirement for a fixed ambiguity solution for all observations
- *Bad* ambiguity solutions will be solved by reoccupation
- Reoccupation of marks should be at least 30 minutes later with an independent AR

- The rover elevation mask angle shall be set no lower than  $13^{\circ}$
- A 1 second data collection rate using observation averaging will be applied
- A bipod will be used to stabilise the rover for observations of 30 seconds or longer (in accordance with the Class-C requirements of cadastral surveys)
- No observations shall be taken when PDOP exceeds 6
- The base station will be placed with a clear skyview and with minimal multipath
- The observed MGA grid distances must be reduced to ground distances at mean terrain height
- The survey standards' suggests accuracy quality to be 10mm + 50ppm (this will be identified as the SBQ guidelines accuracy)
- The observation times should at least reach 2 minutes
- Due regard to the RTK checklist identified by *Surveyors General's Directions*, *NSW*

The above factors will form the testing regime and determine how the observations are completed. By incorporating these considerations into the testing, the observations will have been measured in a manner indicative of the SBQ guidelines and will be suitably repeatable to any who wish to verify the results that the testing yields.

# **CHAPTER 3: METHODOLOGY**

#### 3.1 INTRODUCTION

The intention of this dissertation is to physically test the 3 elements outlined in *Chapter 1*; short line observations, referencing and backsight lengths, so that empirical data can be observed and referred to the SBQ for review. To achieve this, field testing must be completed so as to provide the data needed. This section will define the testing regime; how the findings of *Chapter 2* have determined how the testing will be undertaken and the considerations that need to be implemented throughout. Moreover this chapter will give an overview of the dissertation timeline, the resource planning scheme and the necessary equipment.

#### 3.2 **Observation Methods**

#### 3.2.1 OBSERVATION LENGTH

In terms of observing the marks that will be established for the purposes of testing, there are many different techniques of observation and a variety of equipment that can be used to do so. The marks that will form the points of observation will henceforth be referred to as the 'control array', as the marks will be established and observed to create the control points for which RTK will observe. From Chapter 2 the guidelines recommend at least a 2 minute occupation on the marks and that a bipod will be appropriate means of rover pole stabilisation. Because the actual means of observing short lines, referencing and minimum backsight lengths is unknown at this stage, the guidelines recommendations will be followed as a basis of testing. However because the methods of observing these three aspects is essentially unknown - and the aim of this dissertation is to establish a practice - simply following one set of directions isn't enough. The observation testing will therefore reflect the absolute minimum a surveyor can do to observe a mark, ranging upwards in rigor and incorporating the guidelines recommendations. Regarding RTK, different observation techniques are usually concerned with variable lengths of occupation as opposed to changing other factors, therefore the testing will range from very minimum rigor occupations to much greater; 3 second observations to 180 second observations.

Though the SBQ guideline does not prescribe a time length that marks need to be observed for – the guideline leaves it open to interpretation, from other literature this has been established. While the NSW guidelines recommends that 120 second

observations are all that is required (as longer observations aren't expected to provide substantial further benefit) the longest observation length will be set at 180 seconds in accordance with the authors professional experience (observed control points are set to a default occupation time of 3 minutes) and in accordance with the findings of Figure 2.4; as longer occupation times will yield better accuracy. Conversely however surveyors can do the absolute minimum required to observe a point which would reflect a 3 second topo observation. This is the default observation time set for feature observation (from the author's experience) and reflects the least amount of rigor to obtain an averaged position; i.e. hold and measure. There is obviously a huge rigor difference between a 3 second observation and a 180 second observation which reflects the most and least a surveyor can do to measure a point via RTK. In accordance with reasonable professional practice it may not be necessary to use a 180 second occupation to get the desired results therefore observations within the middle of this range will be investigated. Practical the choices will be 30 seconds and 60 seconds; 30 seconds as from the findings of Figure 2.4, 15 - 60 second observations are recommended for lower accuracy occupations and 60 second observations are recommended for control marks.

Therefore the four different observation times will be tested;

- 3 second observations
- 30 second observations
- 60 second observations
- 180 second observations

The other aspect that must be considered in regards to the observations is the equipment used and how this will affect the results. In general RTK set up will consist of the receiver and pole (absolute minimum effort to reduce errors pertaining to movement during observations as this incorporates the human element), or include a bipod attachment (as recommended by the ACT guidelines) or use a tripod instead, depending on accuracy needs. This again has elements of absolute minimum and maximum – where the least a survey can do is hold the pole rather than set up a reliable bracing system.

Based on common workplace practices and the recommendations found through the literature review, observation equipment will either consist of a pole or a pole with bipod attachment. The thought of using a tripod was considered however given that

RTK is used because of its flexibility and because observation times are so short, it was discounted. It is acceptable to not use a tripod for the testing, and use a bipod instead as this method will still achieve the required accuracy standard, as defined by the ACT guideline.

Therefore testing will consist of combinations of equipment and observation times;

- 3sec ob. with held pole
- 30sec ob. with bipod
- 60sec ob. with bipod
- 180sec ob. with bipod

This will be used to represent the range of how an average surveyor would go about completing an RTK cadastral survey in the real world. While it is conceivable that a surveyor might observe a mark for 180sec with a tripod, this dissertation aims to reinforce the flexibility of RTK over TS so speed and efficiency will be considered more important than more rigorous testing methods.

Finally in regards to observations, it is mandatory as part of a cadastral survey to provide check and redundant observations so as to verify the accuracy of the survey. This is recommended in every article reviewed and will be adhered to here. It is not enough to simply observe all the test marks with different methods; the observations must be repeated to ensure that there are no errors in the data which can otherwise be eliminated (i.e. *bad* ambiguity solutions). From the literature review, all guidelines rely on a 95% confidence interval, therefore enough data must be collected so as to create a normal distribution and so that erroneous outriding observations can be identified and excluded. To establish a normal distribution the sample size must be greater than 25, therefore all variable observation techniques will be repeated 30 times, each with a different ambiguity solution – following the recommendation found previously. By observing each mark 30 times for each different observation time, this will collect data over a period of time, allowing the satellite geometry to change thereby satisfying the SBQ guideline requirements.

Moreover it is crucial that all distances are measured in the intended order of the control array, having completed done this the process will be repeated. This will be done as opposed to measuring the same mark 30 times then moving on to the next to ensure that the satellite geometry has changed and that by the end of testing there will certainly be enough geometry change to satisfy the minimum 30 minute requirement. This will align

with best practice as repeatedly measuring the same point would not allow for that 30 minute time period to elapse. Moreover a surveyor would conduct the cadastral survey then reoccupy as a check rather than measuring each point twice then moving on.

#### 3.2.2 SHORT LINE, REFERENCING AND BACKSIGHT LENGTH

To actually conduct the testing it will be necessary to observe survey marks that have been established to meet the testing objectives of this dissertation and have suitable three dimensional co-ordinates. Therefore the actual requirements of the testing marks need to be established.

### 3.2.2.1 <u>Referencing</u>

It was previously identified in *Chapter 1* that reference marks could be considered any mark less than 20m away from the corner mark, based on the author's professional experience and investigation of various cadastral plans. Commonly, reference marks are placed to directly reference that particular corner meaning the mark is within close proximity, i.e. 2m - 5m away; or the mark could be coincidental i.e. an existing mark or a mark placed for another purpose can be used to reference the corner. Whatever the case may be is irrelevant as once the corner is connected to these surrounding marks, the surrounding marks become reference marks of the corner. The testing regime concerning referencing aims to provide a practice for observing reference marks and determine if RTK can be used to observe all reference marks regardless of the distance from the corner. It may be found that RTK is applicable to all reference marks or only those over longer distances. As reference marks are considered to be anywhere from 2m - 20m away from the corner, marks at these distances will be observed as well as several marks in between to more accurately establish where RTK would be applicable to corner referencing.

Therefore the variable reference mark lengths will be established as;

- 2m
- 5m
- 10m
- 20m

#### 3.2.2.2 SHORT LINES AND BACKSIGHT LENGTHS

Just like referencing, it has previously been established what the guidelines (from the various states and SP1) recommend as best practice for the observation of short lines and the minimum distance of backsight lengths.

Discussing short distances first, the SBQ guideline states (based on SP1) that only distances greater than 640m should be observed by RTK which would satisfy the 95% CI. However the SBQ guidelines and the work of Gibbings' reference other jurisdictions believing that much better results can be achieved and significantly shorter distances can be observed with RTK; down to 120m, which these jurisdictions have adopted as the minimum. Therefore the testing for short lines will aim to determine whether 120m short lines can be accurately measured with a TS or whether this can in fact be improved upon, or conversely whether RTK cannot accurately measure 120m short lines. This would lead to a mark being established at 120m and observing it, but also establishing marks at shorter and longer distances, so as to determine the range of the RTK capability.

Moving onto backsight lengths, the SBQ guideline recommends that for the use of RTK backsight lengths should normally be 200m and greater and never less than 100m except in difficult terrain. Therefore a mark would be established at the recommended distance, 200m and marks would be established to determine how accurately RTK can determine a backsight bearing and distance at lengths less than the recommendation.

Therefore the lengths for short line and backsight length will be established as;

- 80m (test the limits of BS length and short line observation as it is below the recommended 120m minimum for short line observation and below the 100m minimum for RTK BS)
- 120m (recommended minimum distance for short line observation and around the minimum allowable length for RTK BS observation)
- 160m (determine accuracy of short line observations and BS lengths)
- 200m (recommended length for BS observations)

Furthermore it would seem prudent to determine the absolute maximum capabilities of RTK for measuring short lines and BS's. Therefore a 40m length will also be incorporated into the testing regime to determine if (although it may seem unlikely) RTK can be used to accurately measure a line of this length for cadastral purposes. In particular regard to urban situations, boundary lengths don't usually exceed 40m (in some cases the boundaries are less still) so is essential that this distance be observed to determine the appropriate application of RTK over particularly short lines. 40m lines would fall into the category of short lines rather than BS lengths because the surveyor would desire to use the longest BS possible and even when using TS, 40m BS's aren't

recommended. It may be found that 40m short lines can effectively establish the orientation for a cadastral survey, however the surveyor is still advised to adopt best practice and seek a longer BS length.

Therefore the testing regime for short line and backsight length will be established as;

- 40m
- 80m
- 120m
- 160m
- 200m

### 3.2.3 CONTROL ARRAY

Having established the observation methods and having determined the necessary distances to be observed, the actual physical marks need to be identified. It would be ideal if the required marks existed in the real world from previous cadastral surveys, however it is unlikely that such a survey with these marks exists – and it would take too long to search for one that did. Therefore the required marks will be established for the purposes of this dissertation (refer to *Figure 3.3*), as the purpose of this dissertation is to replicate a cadastral survey from a practical perspective. Overall this probably represents the best course of action as the marks will be established exactly as need be and it can be placed in an area where the marks will not be interfered with. This does mean however that the marks need to be placed and then measured. While this means that extra work will be involved in the testing regime, it does mean that the aim of comparing RTK to TS accuracy can inherently be accomplished as the control array will be established by TS.

A consideration to be taken into account here is that the comparison of RTK and TS observations is not concerned with the co-ordinates of the observations but rather the measured lines (TS) and reduced baselines (RTK) to be compared. This reflects cadastral practice as cadastral plans show distances and bearings not co-ordinates at each end of the line. Therefore this means that the control array to be established does not need MGA co-ordinates per se, the co-ordinates can be arbitrary if desired. This would lead to the TS measuring on one co-ordinate system and RTK (of course) measuring on MGA. So long as the TS observes ground distances and the RTK GNSS observations are reduced to ground distances at mean terrain height there will be no trouble converting between the two systems and the primary analysis will be to reduce

both sets of observations to distances and bearing and *forget* the co-ordinates. It would be essential to ensure that the co-ordinate system used by the TS is aligned to MGA grid north however so that there are no bearing difference arising from the different coordinate sets.



Figure 3.1 – Basic diagram of the control array

## 3.3 <u>TESTING SITE</u>

Before any testing can be started or indeed, before the control array can be established an appropriate location needs to be chosen to conduct the testing. From the findings of *Chapter 2* this location must allow a base station to be established that has a clear skyview and where multipath will not affect the return signal from satellites to the base. It has been decided that all marks of the control array will be established manually as it is unlikely that the necessary marks exist already. This means that a large open space will be required that is preferably unoccupied or at the very least, is unused by the public so that the testing will not conflict with any community interests.

As the survey marks need to be placed for the purposes of this dissertation, it is critical that the marks will pose no safety hazard to the public and that the placement of the marks has no environmental impact beyond regular survey mark placement for cadastral purposes. To address the public concern the marks will be driven flush at ground level with posting of each marks to identify the position, and the marks will be removed once testing is concluded. The environmental impact is harder to identify in this instance however overall there should be a very minimal impact. For testing purposes there needs to be about 10 marks established with 10 witness posts. With the placement of these, no vegetation will be removed or destroyed and at the end of testing all holes will be filled to completely reduce the impact of testing.

#### 3.3.1 <u>CHOSEN TESTING SITE</u>

The area chosen to conduct all testing that meets the space requirements is the USQ Campus Grounds, Toowoomba; more specifically the open field fronted by West Street and the USQ main drive. This area provides over a hectare of open space within which survey testing for various classes is conducted (refer to the following *Figures* for site photos). The area has some scattered trees and the USQ Student Village adjoins the field however there are no significant obstructions in the area that would affect a base station or rover (unless under a tree).



Figure 3.2 – Aerial photograph of the testing field (Google Images, 2013)

Moreover the field has substantial existing survey control (on the USQ Local Plane) and the Ananga Continually Operating Reference Station (CORS) which can be used. The field has no specific use beyond survey testing and practical experiments so there is no public use beyond crossing the field to reach the university, meaning the marks placed are unlikely to be accidentally disturbed provided each is properly staked. Overall the field is an ideal area in which to conduct the testing.



Figure 3.3 – The testing field looking towards West Street



Figure 3.4 – The testing field looking back towards Baker Street

#### 3.3.2 USE OF USQ'S CORS AS BASE STATION

USQ utilises the Ananga CORS as the base station for the majority of the universities RTK GNSS work. Given that Ananga is readily available and provides a reliable base station and radio link, this was be used for testing in preference to a stand-alone receiver

as the base station set-up. As the survey mark (described as the 0m mark from *Figure 3.1*) is being treated as the corner or one end of the line it is the point from which the baseline is computed, thereby artificially creating an independent 'corner' position every round. Practically this means that the testing follows best practice recommendations as it simulates a new base position for every round of testing ensuring that one *bad* ambiguity solution doesn't affect the rounds of testing completed with that AR.

Ananga specifications:

- Software: Trimble GPS Base Version 2.5
- Receiver: NET R5
- Radio: Trimble TDL450H

#### 3.3.3 USE OF USQ'S LOCAL PLANE CO-ORDINATE SYSTEM

The USQ Local Plane co-ordinate system is based on the Ananga base station as a central point and was used as a check to establish the control within the survey testing field. While it may be undesirable to work on two different co-ordinate systems, for the RTK observations and the TS measurements, the USQ Local Plane is aligned with the MGA system so the only difference is the co-ordinates of Ananga have been changed from real world to base the local plane and USQ control. The co-ordinate system would be appropriate for the TS testing and provide an independent check for the base station set-up.

The implication of having the *USQ Local Plane* and a number of established control marks on this system within the testing field would be that real world co-ordinates don't need to be carried into the testing field. This means that the initial point (0m) can be an established USQ control point and to reinstate that point, other existing marks can be used as backsights.

#### 3.3.4 ESTABLISH Control Array on USQ Local Plane

Therefore to initially establish the control array, an existing USQ control point will be used as the 0m and reinstated using other existing USQ control marks as backsights. The TS will be set-up on this mark and the testing marks will then be measured out and observed.

# 3.4 <u>Resource Planning</u>

The majority of testing will be carried out using the resources available from the USQ surveying storeroom. Additional resources, such as calibrated TS, will be provided by MinStaff Survey who, as the sponsor of this dissertation, have graciously agreed to provide any required equipment that USQ does not previously own. This will mean that no testing costs will be incurred and prevent the need to purchase the equipment through the finance office.

If requests for equipment are lodge in a timely manner all equipment will be available to use, therefore it is unlikely that there will ever be a problem with needing equipment and not having access to it.

# 3.5 <u>EQUIPMENT</u>

### 3.5.1 FIELD TESTING

- Trimble S8 DR Plus total station (1" & 2mm + 2ppm machine) (validated)
- TSC3 handheld controller
- 4x traverse prisms
- Multitrack LED prism
- Trimble R8 GNSS receiver unit and battery kits
- 5x tripods
- Adjustable observation pole
- Bipod
- Tape measure (8m and 50m)
- ≈12x Dumpy pegs (or other suitable control point) and GI nails or equivalent
- Marker Stakes
- Sledge hammer
- Flagging tape

### 3.5.2 <u>REDUCTIONS</u>

- TSC3 handheld controller and connection kit
- Appropriate CAD software package either Trimble Business Centre (TBC) or 12D
- Microsoft Excel software package



Figure 3.5 - Testing pictures of total station observation and RTK observations

## **3.6 <u>TESTING REGIME</u>**

The testing regime section will give a detailed description of the practices which were previously determined to be used for the testing of short lines, referencing and determining the minimum backsight length. As stated in *Chapter 2*, all testing will be carried out in a manner that will allow real world replication and the practices to be implemented align with the recommended best practices as outlined by the various guidelines and *SP1*. No measures will be taken to create ideal observation conditions thereby minimising the environmental impact of this dissertation, outside of necessary action – though a different approach will be considered.

The methods for testing have been established from a combination of literature articles as well as industry standards, the author's professional experience, consultation with experienced professions and consultation with dissertation supervisor Mr Peter Gibbings. The purpose is to conduct this testing in such a way that it can be repeated at will and is within the means and abilities of any surveyor to repeat in the real world instance of short line observation, referencing and backsight length observation. Of course the circumstances might vary however the processes and methods are entirely repeatable.

When establishing the control array it will be critical to observe the network from an independent survey mark that has a unique station set-up, as this will verify the accuracy of the initial control array observations.

Trimble equipment has been used for the TS (S8 DR Plus) and RTK (R8) observations however the observation and equipment set-up procedures and functionality will be universal across all brands of equipment. It is not the intention of this dissertation to give a step-by-step description of every action but rather an overview of all major components to the testing.

#### 3.6.1 ESTABLISH CONTROL ARRAY

- i. The existing control in the USQ testing field will be used to re-establish a singular control point which has good horizontal and vertical co-ordinates so as to define a base position (0m) by means of a *station set-up* and reading rounds. In keeping with best practice all available survey marks within the USQ co-ordinate system will be observed to establish this central 0m mark.
- ii. Having established the initial control point a dumpy and nail will be placed at every testing chainage (m); CH2, CH5, CH10, CH20, CH40, CH80, CH120, CH160 and CH200 (refer to *Figure 3.1*). It is not necessary that these distances are exact however CH2 and CH20 (referencing), CH120 (short lines) and CH200 (BS) should be as close as possible as these distances are specific to the respective minimum and maximum lengths. Of critical importance, the points must all must be observable from the initial point and the survey mark to be used for the independent measurements.



Figure 3.6 – Picture of the 2m testing mark

iii. Ensure that all marks have a clear point number and chainage so that there is no confusion as to what each mark represents.

iv. Once all the marks have been established, the TS will read rounds of observations (averaging 30 observations on FL and FR) to each test dumpy. Note that the distance observations to CH2 and CH5 must be verified with the tape measure given the minimum measuring distance of the TS. It is not essential that the marks be connected to one another however each must be related to the control.



Figure 3.7 – Picture of the control array with the reference marks in the foreground and the BS and short line lengths going into the background

#### 3.6.2 INDEPENDENT CONTROL ARRAY OBSERVATION

The control array needs to be verified from a secondary survey mark with an independent *station set-up* resolution. The network check will follow the same procedure for observations as outlined in the previous subsection. After the check observations have been read, the measurements from the two rounds of independent testing will be compared to ensure that the distances and bearings between each survey mark is congruent and there have been no systematic or gross errors in the testing.

#### 3.6.3 **Observations**

It is important to note in regards to testing:

- The observations must be carried out as quickly as possible (i.e. consecutive days) due to the control array being made up of non-permanent marks. This is to ensure that the observed co-ordinates of the job are less likely to be disturbed.
- Due care must be taken when setting-up all equipment and if interfered with, the process be started again from the beginning.
- It is possible to conduct testing for the 3 different tasks in one observation loop provided that the observation time and equipment is congruent throughout.
- It is possible to observe several test points at one time, with several rovers, for the longer observation lengths so that time is effectively managed
- When completing the 180s observations, once the referencing marks have been observed an independent AR will be gained and the 0m observed again before carrying on to ensure that the satellite geometry does not change significantly throughout that testing run
- Ensure that the point name convention for each observation of the same mark is different so there is no confusion, the controller does not override observations and the data can be easily interpreted – the name should be indicative of the observation time and equipment as well as the observation loop number, and will follow as;
  - Observation length & equipment\_observation round\_control point name
  - 3s obs; i.e. 3S\_1\_B32
  - 30s obs; i.e. 30BP\_10\_5M
  - 60s obs; i.e. 60BP\_18\_120M
  - 180s obs; i.e. 180BP\_26\_200M

#### 3.6.3.1 CONTROLLER SETTINGS

In particular when establishing the survey the MGA co-ordinate system will be set to zone 56, the geoid model will be QLD geoid 09 with a project height set to 690m (the approximate height of the testing area based on the existing control).

#### 3.6.3.2 SHORT LINE OBSERVATION AND BACKSIGHT LENGTH

- i. The position and accuracy of Ananga was verified by measuring to several survey marks in the area with good class and order co-ordinates
- Observe the initial USQ control mark then control marks CH20, CH40, CH80, CH120, CH160 and CH200 for 3 seconds holding the pole by hand. Once the loop is completed return to the start (B32) and cause the rover receiver to lose

initialisation (invert pole, cover receiver modem etc.). Wait until a new independent fixed ambiguity solution has been calculated and repeat the next loop.

- iii. Complete Step i. a total of 30 times for the 3s observations
- iv. Move onto the 30s observations and repeat *Step i*. however observe the CH's with the bipod attachment a total of 30 times
- v. Move onto the 60s observations and repeat *Step i*. however observe the CH's with the bipod attachment a total of 30 times
- vi. Move onto the 120s observations and repeat *Step i*. however observe the CH's with the bipod attachment a total of 30 times

#### 3.6.3.3 <u>Referencing</u>

- Observe the initial USQ control mark then control marks CH2, CH5, CH10, and CH20 for 3 seconds holding the pole by hand. Once the loop is completed return to the start (B32) and cause the rover receiver to lose initialisation (invert pole, cover receiver modem etc.). Wait until a new independent fixed ambiguity solution has been calculated and repeat the next loop.
- ii. Complete Step i. a total of 30 times
- iii. Move onto the 30s observations and repeat *Step i*. however observe the CH's with the bipod attachment a total of 30 times
- iv. Move onto the 60s observations and repeat *Step i*. however observe the CH's with the bipod attachment a total of 30 times
- v. Move onto the 120s observations and repeat *Step i*. however observe the CH's with the bipod attachment a total of 30 times

Remember that the testing can be conducted as the observation of B32, CH2, CH5, CH10, CH20, CH40, CH80, CH120, CH160 and CH200 rather than separately for each testing element.

#### 3.6.4 <u>TESTING CONCLUSION AND RESULT REDUCTIONS AND OUTPUT</u>

- i. Once the testing regime has been completed all survey marks and stakes that were placed for the purpose of this dissertation will be removed, in accordance with environmental considerations
- The observations as stored in the controllers will be reduced and produced as CSV files which can be manipulated in TBC, 12D and MS Excel (full output will consist of the *Survey Report* file, the JOB file and CSV)
- iii. At this point the CSV's will be analysed in MS Excel to ensure the point name and feature code convention is correct and generally tidy the data (i.e. remove

redundant/ unnecessary observations) though the raw data will not be changed in any way

- iv. The data will be brought into TBC and the baselines between the initial survey mark (B32) and each testing point will be established and from an *inverse analysis* the combined scale factor that needs to be applied to each line will be determined (grid  $\rightarrow$  ground)
- v. In MS Excel, the data will be input and converted from MGA and USQ Local *Plane* co-ordinates to ground distances and bearings
- vi. Having determined these ground distances and bearings the necessary raw data results and analysis can be output

## 3.7 <u>CONCLUSIONS</u>

This section has outlined in great detail how the testing will be carried out to observe short lines, referencing and backsight lengths. Moreover this section, through the finding of *Chapter 2*, has justified why testing will be carried out in the manner proposed. This testing regime will firstly, enable the observation of the three elements that need to tested for this dissertation but secondly, ensure that testing has been carried out in a manner indicative of best practice and *reasonable professional practice*.

This methodology does not aim to give a detailed expression of how to conduct an RTK and TS survey based on the software used, as this will differ depending on the brand of equipment used and the software version. This methodology was aimed at providing a step-by-step overview of the testing that will be conducted for this dissertation and to ensure that should this testing need to be repeated, or should the testing need to be replicated, it will be within any surveyor's ability to replicate and follow in whatever conditions. Basically it will now be clear to anyone who intends to use this dissertation or rely on the results, how these results were gained and exactly how the testing has gone about the testing practices.

# **CHAPTER 4: RESULTS**

#### 4.1 **INTRODUCTION**

The aim of this chapter will be to reduce the raw data of the testing regime to report the observation results in graphical form. The raw observation data from the RTK testing will not clearly show what was actually observed and hold little value to an observer, so it will only be reproduced in the appendices to verify the actual testing values. As the TS observations and Ananga position re-establishment is necessary to reproduce here both will be incorporated into this section so that it is possible to understand the true distances measured and ensure that Ananga was correctly re-established. The results will consist of  $\Delta E$  and  $\Delta N$  residual plots.

|           |          | Observatio |           |                     | Bearing |         |                    |         |
|-----------|----------|------------|-----------|---------------------|---------|---------|--------------------|---------|
| Point No. | Easting  | Northing   | Elevation | Point Code          | ΔE      | ΔN      | Ground<br>Distance | DMS     |
|           |          |            | Estab     | olish Control Array |         |         |                    |         |
| 999       | 5268.926 | 14702.834  | 684.680   | SVYMARK_B32         |         |         |                    |         |
| 1008      | 5267.133 | 14701.736  | 684.827   | SVYMARK_2M          | 1.793   | 1.098   | 2.102              | 58.3103 |
| 1007      | 5265.210 | 14699.580  | 684.895   | SVYMARK_5M          | 3.716   | 3.254   | 4.939              | 48.4732 |
| 1006      | 5261.803 | 14695.743  | 684.999   | SVYMARK_10M         | 7.123   | 7.091   | 10.051             | 45.0744 |
| 1005      | 5254.894 | 14688.084  | 685.165   | SVYMARK_20M         | 14.032  | 14.750  | 20.358             | 43.3416 |
| 1004      | 5238.190 | 14676.994  | 685.756   | SVYMARK_40M         | 30.736  | 25.840  | 40.155             | 49.5645 |
| 1003      | 5207.488 | 14651.465  | 686.583   | SVYMARK_80M         | 61.438  | 51.369  | 80.084             | 50.0602 |
| 1002      | 5176.658 | 14625.951  | 687.613   | SVYMARK_120M        | 92.268  | 76.883  | 120.102            | 50.1149 |
| 1001      | 5148.559 | 14597.077  | 688.367   | SVYMARK_160M        | 120.367 | 105.757 | 160.227            | 48.4148 |
| 1000      | 5132.246 | 14556.608  | 688.787   | SVYMARK_200M        | 136.680 | 146.226 | 200.159            | 43.0403 |
|           |          |            | Indepe    | ndent Control Array |         |         |                    |         |
| 1010      | 5268.919 | 14702.836  | 684.680   | SVYMARK_B32         |         |         |                    |         |
| 1011      | 5267.121 | 14701.740  | 684.824   | SVYMARK_2M          | 1.798   | 1.096   | 2.106              | 58.3806 |
| 1012      | 5265.200 | 14699.583  | 684.890   | SVYMARK_5M          | 3.719   | 3.253   | 4.941              | 48.4926 |
| 1013      | 5261.795 | 14695.748  | 684.998   | SVYMARK_10M         | 7.124   | 7.088   | 10.049             | 45.0842 |
| 1014      | 5254.887 | 14688.088  | 685.164   | SVYMARK_20M         | 14.032  | 14.748  | 20.357             | 43.3430 |
| 1015      | 5238.184 | 14676.991  | 685.757   | SVYMARK_40M         | 30.735  | 25.845  | 40.157             | 49.5623 |
| 1016      | 5207.483 | 14651.462  | 686.588   | SVYMARK_80M         | 61.436  | 51.374  | 80.085             | 50.0549 |
| 1017      | 5176.652 | 14625.949  | 687.618   | SVYMARK_120M        | 92.267  | 76.887  | 120.103            | 50.1143 |
| 1018      | 5148.557 | 14597.081  | 688.373   | SVYMARK_160M        | 120.362 | 105.755 | 160.222            | 48.4146 |
| 1019      | 5132.244 | 14556.605  | 688.794   | SVYMARK_200M        | 136.675 | 146.231 | 200.159            | 43.0355 |

#### 4.2 ESTABLISH THE CONTROL ARRAY WITH TOTAL STATION

Table 4.1 – The TS observations reduced to distances and bearings and a comparison between the control array establishment survey and the independent control array check

As can be seen from the table of results in *Table 4.1*, the observations all generally fall within reasonable consistency of the first set of observations that established the control and the independent set of observations that checked the control. There are several lengths such as the 2m and 160m lines which have a greater degree of error than would be desired (4mm and 5mm respectively) however the rest of the testing observations conform to the first round of testing which would indicate that at the very least there are no major errors present in the data. The survey control marks established within the USQ grounds aren't regularly maintained and the control file which listed the control co-ordinates was last updated in 2008 so it is possible that the control marks have been disturbed between then and now which might explain this discrepancy. Regardless, the 2m mark length was measured with a tape measure from the 0m (B32) mark and this confirmed that the original control establishment survey was correct (the tape measured distance being 2.103m). As the 200m mark length was found to be consistent through both rounds of testing, it was adopted as being the accurate and true length of the line and by using a 50m tape, the length from the 200m mark to the 160m mark was verified. The distance was found to be 39.931m, which would make the length of the 160m line 160.228m. The 50m tape was plastic and susceptible to stretching however it was relatively new and in good condition meaning that it could be reliably used to measure; therefore the length of the 160m line measured by the TS in the control establishment survey was adopted as true.

The bearing inconsistencies were harder to eliminate or justify. The most likely cause of the discrepancies will be a function of the *station set-up* and the survey control coordinates. Errors in the co-ordinates (from the survey marks being potentially inaccurate or disturbed) will contribute to a different *station set-up* that will change the position of the TS (only to the mm level). This discrepancy is particularly pronounced over the 2m, 5m, and 10m distances as can be seen from the results where there is about 7' bearing difference in the 2m length (over 4mm), about 2' bearing difference in the 5m length (over 2mm) and 1' difference in the 10m length (over 2mm). This serves to highlight the importance of referencing and reinforce the impact small distance errors have on bearings over short distances. From the *survey report* of the TS observations the control array establishment survey will be taken as the true bearings to all points, as on review of the *survey report* it was found to have a lower *observation standard error* and the general *station set-up* observations were on a higher accuracy than the independent check survey. It should be noted that the vertical observations to control mark B26 in the control establishment survey have large delta values, however this was found to be

because of a mis-transcribed vertical control value, which was rectified for the independent check survey. Moreover the B26 observations in the establishment survey were excluded from the *station set-up* solution.

It should be noted from the *survey report* that there is evidence of several or more marks being been disturbed. It is important to remember however that the bearings and distances as measured by the TS are area of interest, not the co-ordinates. It makes absolutely no difference what the co-ordinates happen to be; in this case the co-ordinates are literally thousands of kilometers different due to the difference between the *USQ Local Plane* and MGA co-ordinate systems, so long as the observed bearings and ground distances are accurate.

| Station setu | up         |                      |           |                               |          |                 |                    |                 |            |              |                    |
|--------------|------------|----------------------|-----------|-------------------------------|----------|-----------------|--------------------|-----------------|------------|--------------|--------------------|
| Station      | B32        | lnstrument<br>height | 1.718     | Stat<br>type                  | ion<br>e | Station Station | on<br>us           | Scale<br>factor | 1.00000000 | Std<br>Error | ?                  |
| Orientation  | 1          |                      |           |                               |          |                 |                    |                 |            |              |                    |
| Station      | B3         | 32 Backsigl<br>point | ht        | B21 Orientation correction -( |          | -0°00'01"       | Orient.<br>Std Err | 0°00'1          | 0"         |              |                    |
| Residuals (  | (stations) |                      |           |                               |          |                 |                    |                 |            |              |                    |
| Point        | B21        | ΔΕ                   | -0.014    | ΔΝ                            |          | 0.0             | 02                 | ΔElev           | 0.005      | Used for     | Horizontal only    |
|              |            | ΔΗΑ                  | -0°00'27" | ΔVA                           |          | -0°00'1         | 4"                 | ΔSD             | 0.009      |              |                    |
| Point        | B21        | ΔE                   | -0.013    | ΔΝ                            |          | 0.0             | 01                 | ΔElev           | 0.003      | Used for     | Horizontal<br>only |
|              |            | ΔНА                  | -0°00'28" | ΔVA                           | L        | -0°00'0         | 7"                 | ΔSD             | 0.008      |              |                    |
| Point        | B22        | ΔЕ                   | -0.005    | ΔΝ                            |          | 0.0             | 06                 | ΔElev           | 0.007      | Used for     | Horizontal<br>only |
|              |            | ΔΗΑ                  | -0°00'17" | ΔVA                           | <b>`</b> | -0°00'1         | 8"                 | ΔSD             | -0.005     |              |                    |
| Point        | B22        | ΔЕ                   | -0.004    | ΔΝ                            |          | 0.0             | 06                 | ΔElev           | 0.004      | Used for     | Horizontal<br>only |
|              |            | ΔΗΑ                  | -0°00'17" | ΔVA                           |          | -0°00'1         | 0"                 | ΔSD             | -0.004     |              |                    |
| Point        | B52        | ΔΕ                   | -0.003    | ΔΝ                            |          | 0.0             | 07                 | ΔElev           | -0.001     | Used for     | Horizontal<br>only |
|              |            | ΔΗΑ                  | 0°00'07"  | ΔVA                           |          | 0°00'0          | 2"                 | ΔSD             | -0.007     |              |                    |
| Point        | B52        | ΔΕ                   | -0.002    | ΔΝ                            |          | 0.0             | 07                 | ΔElev           | -0.006     | Used for     | Horizontal<br>only |
|              |            | ΔΗΑ                  | 0°00'06"  | ΔVA                           |          | 0°00'1          | 4"                 | ΔSD             | -0.007     |              |                    |
| Point        | B26        | ΔE                   | -0.009    | ΔΝ                            |          | 0.0             | 09                 | ΔElev           | 2.992      | Used for     | Horizontal<br>only |
|              |            | ΔΗΑ                  | 0°00'30"  | ΔVA                           |          | -2°14'0         | 2"                 | ΔSD             | 0.121      |              |                    |
| Point        | B26        | ΔΕ                   | -0.010    | ΔΝ                            |          | 0.0             | 09                 | ΔElev           | 2.989      | Used for     | Horizontal<br>only |
|              |            | ΔΗΑ                  | 0°00'32"  | ΔVA                           |          | -2°13'5         | 2"                 | ΔSD             | 0.122      |              |                    |
| Point        | B35        | ΔΕ                   | -0.004    | ΔΝ                            |          | 0.0             | 01                 | ΔElev           | 0.001      | Used for     | Horizontal<br>only |
|              |            | ΔΗΑ                  | 0°00'07"  | ΔVA                           |          | -0°00'0         | 1"                 | ΔSD             | 0.003      |              |                    |

| Point | B35 | ΔΕ  | -0.005   | ΔΝ  | 0.001    | ΔElev | -0.007 | Used for | Horizontal only |
|-------|-----|-----|----------|-----|----------|-------|--------|----------|-----------------|
|       |     | ΔНА | 0°00'07" | ΔVΑ | 0°00'13" | ΔSD   | 0.004  |          |                 |

Table 4.2 - The observation residuals and orientation correction for the control array establishment survey

| Station se | tup        |                      |           |              |              |                        |          |                 |                    |              |                    |
|------------|------------|----------------------|-----------|--------------|--------------|------------------------|----------|-----------------|--------------------|--------------|--------------------|
| Station    | B35        | Instrument<br>height | 1.714     | Stat<br>type | ion<br>e     | Static<br>setup pl     | on<br>us | Scale<br>factor | 1.00000000         | Std<br>Error | ?                  |
| Orientatio | on         |                      |           |              |              |                        |          |                 |                    |              |                    |
| Station    | B          | 35 Backsig<br>point  | ht        | B24          | Orio<br>corr | rientation<br>rrection |          | -0°00'01"       | Orient.<br>Std Err | 0°00'1       | 4"                 |
| Residuals  | (stations) |                      |           |              |              |                        |          |                 |                    |              |                    |
| Point      | B24        | ΔΕ                   | -0.010    | ΔΝ           |              | 0.0                    | 02       | ΔElev           | -0.013             | Used for     | Horizontal<br>only |
|            |            | ΔΗΑ                  | 0°00'32"  | ΔVA          | <b>L</b>     | 0°00'5                 | 9"       | ΔSD             | 0.007              |              |                    |
| Point      | B24        | ΔΕ                   | -0.009    | ΔΝ           |              | 0.0                    | 02       | ΔElev           | -0.015             | Used for     | Horizontal<br>only |
|            |            | ΔНА                  | 0°00'32"  | ΔVA          |              | 0°01'0                 | 4"       | ΔSD             | 0.006              |              |                    |
| Point      | B26        | ΔΕ                   | -0.004    | ΔΝ           |              | 0.0                    | 11       | ΔElev           | -0.008             | Used for     | Horizontal<br>only |
|            |            | ΔНА                  | -0°00'32" | ΔVA          |              | 0°00'4                 | 3"       | ΔSD             | 0.009              |              |                    |
| Point      | B26        | ΔΕ                   | -0.005    | ΔΝ           |              | 0.0                    | 04       | ΔElev           | -0.010             | Used for     | Horizontal<br>only |
|            |            | ΔНА                  | -0°00'34" | ΔVA          | •            | 0°00'0                 | 3"       | ΔSD             | 0.009              |              |                    |
| Point      | B52        | ΔΕ                   | -0.001    | ΔΝ           |              | 0.0                    | 04       | ΔElev           | -0.001             | Used for     | Horizontal<br>only |
|            |            | ΔНА                  | -0°00'10" | ΔVA          | •            | 0°00'1                 | 5"       | ΔSD             | -0.001             |              |                    |
| Point      | B52        | ΔΕ                   | -0.001    | ΔΝ           |              | -0.0                   | 01       | ΔElev           | -0.006             | Used for     | Horizontal<br>only |
|            |            | ΔНА                  | -0°00'09" | ΔVA          |              | -0°00'0                | 0"       | ΔSD             | -0.001             |              |                    |
| Point      | B32        | ΔΕ                   | 0.007     | ΔΝ           |              | 0.0                    | 00       | ΔElev           | 0.000              | Used for     | Horizontal<br>only |
|            |            | ΔНА                  | 0°00'10"  | ΔVA          |              | -0°00'0                | 0"       | ΔSD             | 0.004              |              |                    |
| Point      | B32        | ΔΕ                   | 0.009     | ΔΝ           |              | 0.0                    | 00       | ΔElev           | -0.007             | Used for     | Horizontal<br>only |
|            |            | ΔНА                  | 0°00'12"  | ΔVA          |              | 0°00'1                 | 3"       | ΔSD             | 0.007              |              |                    |

Table 4.3 - The observation residuals and orientation correction for the independent control check survey

|           |          | Observatio | 'n        |                    |         | Distance | 9                  | Bearing |
|-----------|----------|------------|-----------|--------------------|---------|----------|--------------------|---------|
| Point No. | Easting  | Northing   | Elevation | Point Code         | Δε      | ΔN       | Ground<br>Distance | DMS     |
|           |          |            | Estab     | lish Control array |         |          |                    |         |
| 999       | 5268.926 | 14702.834  | 684.680   | SVYMARK_B32        |         |          |                    |         |
| 1008      | 5267.133 | 14701.736  | 684.827   | SVYMARK_2M         | 1.793   | 1.098    | 2.102              | 58.3103 |
| 1007      | 5265.210 | 14699.580  | 684.895   | SVYMARK_5M         | 3.716   | 3.254    | 4.939              | 48.4732 |
| 1006      | 5261.803 | 14695.743  | 684.999   | SVYMARK_10M        | 7.123   | 7.091    | 10.051             | 45.0744 |
| 1005      | 5254.894 | 14688.084  | 685.165   | SVYMARK_20M        | 14.032  | 14.750   | 20.358             | 43.3416 |
| 1004      | 5238.190 | 14676.994  | 685.756   | SVYMARK_40M        | 30.736  | 25.840   | 40.155             | 49.5645 |
| 1003      | 5207.488 | 14651.465  | 686.583   | SVYMARK_80M        | 61.438  | 51.369   | 80.084             | 50.0602 |
| 1002      | 5176.658 | 14625.951  | 687.613   | SVYMARK_120M       | 92.268  | 76.883   | 120.102            | 50.1149 |
| 1001      | 5148.559 | 14597.077  | 688.367   | SVYMARK_160M       | 120.367 | 105.757  | 160.227            | 48.4148 |
| 1000      | 5132.246 | 14556.608  | 688.787   | SVYMARK_200M       | 136.680 | 146.226  | 200.159            | 43.0403 |

The control array will then be established as follows, note in particular the ground distances and bearings;

Table 4.4 - The TS observations adopted as the true distances and bearings for the RTK control array

### 4.3 <u>Re-establish Ananga CORS</u>

As was established in in the Methodology it is important to ensure that the USQ Ananga CORS is producing accurate MGA co-ordinates. Therefore before any testing is conducted on the established control array, Ananga will be used to measure several existing PSM's to ensure its accuracy. Several PSM's in the local area will be observed and the accuracy of the measurements will be confirmed (the project height will be set at 690m).

| Point | 42253 | East | 394487.240 | North | 6946073.744 | Elevation | 690.691 | Code | PSM |
|-------|-------|------|------------|-------|-------------|-----------|---------|------|-----|
| Point | 40956 | East | 394651.683 | North | 6945868.391 | Elevation | 689.794 | Code | PSM |
| Point | 40403 | East | 394940.388 | North | 6945984.562 | Elevation | 684.598 | Code | PSM |
| Point | 40424 | East | 394860.174 | North | 6945489.267 | Elevation | 683.293 | Code | PSM |
| Point | 38566 | East | 394970.986 | North | 6946480.878 | Elevation | 681.007 | Code | PSM |

Table 4.5 - The PSM co-ordinates of the control marks that will be used to establish the accuracy of Ananga

| Point | 1000 | East | 394651.716 | North | 6945868.368 | Elevation | 689.506 | Code | STN_40956_L |
|-------|------|------|------------|-------|-------------|-----------|---------|------|-------------|
| Point | 1001 | East | 394651.715 | North | 6945868.369 | Elevation | 689.520 | Code | STN_40956_S |
| Point | 1002 | East | 394487.231 | North | 6946073.766 | Elevation | 690.429 | Code | STN_42253_S |
| Point | 1003 | East | 394487.232 | North | 6946073.767 | Elevation | 690.425 | Code | STN_42253_L |
| Point | 1004 | East | 394860.190 | North | 6945489.261 | Elevation | 683.028 | Code | STN_40424_L |
| Point | 1005 | East | 394860.192 | North | 6945489.249 | Elevation | 683.014 | Code | STN_40424_S |

| Point | 1006 | East | 394940.394 | North | 6945984.558 | Elevation | 684.312 | Code | STN_40403_S |
|-------|------|------|------------|-------|-------------|-----------|---------|------|-------------|
| Point | 1007 | East | 394940.393 | North | 6945984.555 | Elevation | 684.320 | Code | STN_40403_L |

Table 4.6 – The RTK observations of the PSM's; PSM 38566 was found to be gone and observations denoted by an '\_L' and '\_S' represent *3 min observed control points* and *30s topo shot* respectively

The discrepancies found in the vertical observations are obviously of concern. Upon rigorous investigation it has been found that these discrepancy were actually caused by the geoid model used; QLD geoid 09. This geoid is actually based upon the AUSgeoid98 model and has now been made out-dated by the AUSgeoid09 model – the geoid that should have been used. Upon investigation of the differences between the two geoid models (in ICSM and TBC) it was found that the differences in the observations between *Table 4.5* and *Table 4.6* were actually just the differences between the two geoid models. Therefore it can be concluded that the AUSgeoid09 geoid model should have been used for the testing, but the discrepancies are explainable. Finally the geoid model used makes little difference as this does not affect the horizontal coordinates for which this dissertation is concerned.

### 4.4 DETERMINE COMBINED SCALE FACTORS

To determine ground distances, the RTK observations need to be reduced to the mean terrain height and converted by the combined scale factor. The CSF needs to be calculated for each line and can be determined in a variety of ways, i.e. various software packages or the ICSM spreadsheets. For the purposes of this dissertation the CSF was determined from the *inverse report* in the TBC software. Every line from every observation set has a different CSF based on the height observed and the distance of the observation, but the changes between the CSF of each line length only differed minutely. Therefore the CSF's were checked and one set of CSF's was chosen; this will be appropriate as the differences in the CSF's is so small it will not affect the data at the sub-millimeter or sub-second level.

| Line Length | Combined Scale |
|-------------|----------------|
|             | Factor         |
| 2m          | 0.9996225056   |
| 5m          | 0.9996224023   |
| 10m         | 0.9996223594   |
| 20m         | 0.9996223375   |
| 40m         | 0.9996223710   |
| 80m         | 0.9996223477   |
|             |                |

| 120m | 0.9996223069 |
|------|--------------|
| 160m | 0.9996222682 |
| 200m | 0.9996221984 |

Table 4.7 - The combined scale factors that will be used to reduce the RTK observations to ground distances

## 4.5 <u>3S RTK OBSERVATIONS</u>



Figure 4.1 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 2m marks



Figure 4.2 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 5m marks



Figure 4.3 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 10m marks



Figure 4.4 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 20m marks



Figure 4.5 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 40m marks



Figure 4.6 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 80m marks



Figure 4.7 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 120m marks



Figure 4.8 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 160m marks



Figure 4.9 – The 3s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 200m marks

#### 4.5.1 <u>3s Analysis</u>

As can be seen from the residual graphs of the observations, there is quite a large scattering of data generally up to 15mm from the true value. The 3s data observations were taken over several hours in one day. The mean of the data always tending towards the east (positive  $\Delta E$  values) would reflect observation bias as the satellite geometry has not changed significantly over the several observation hours. There is a slight bias of observations fall towards the north of the true value, though this is most likely caused by the satellite geometry in Australia tending towards satellites in the northern sky (Roberts, 2005). The large scattering of data reflects the conclusions of the Literature *Review*; there is little data being observed and averaged so the weighted average observation technique doesn't have enough epochs of data to start to converge around a true mean. Moreover as the satellite geometry hasn't changed significantly the observations are focussed towards the east slightly, rather than a random distribution. Looking at the mean observation values as a representation of their respective data sets, the means all fall about 10mm - 15mm away from the true value, which, especially for those 10mm means, would suggest that 3s observations could in fact meet the accuracy recommendations referenced in the SBQ guidelines. This is a very early analysis but still interesting to note. Given the scattering of the data though it would be ill advised to accept a 3s observation as opposed to a more rigorous observation technique - should these be found to be more appropriate (as the research would suggest).



## 4.6 <u>30s RTK Observations</u>

Figure 4.10 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 2m marks



Figure 4.11 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 5m marks


Figure 4.12 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 10m marks



Figure 4.13 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 20m marks



Figure 4.14 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 40m marks



Figure 4.15 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 80m marks



Figure 4.16 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 120m marks



Figure 4.17 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 160m marks



Figure 4.18 – The 30s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 200m marks

#### 4.6.1 <u>30s Analysis</u>

The immediate, striking characteristic of the 30s observations residual plots is the observations are much less scattered and converge around the true value much better that the 3s. These observations were taken over several consecutive days and there appears to be an even spread either side of the y-axis and no apparent observation bias. Again looking at the mean as a representation, the average observation distance is significantly closer to the true value; falling from 10mm - 15mm in the 3s observations to around or less than 5mm in this instance. This result is to be anticipated though, as from the literature a longer occupation would lead to better observation averaging. This is not to say the observations are all perfect though, there are instances of residuals over 30mm from the true value, however these are much less frequent than occurred when observing for 3s and appear to be outriding observations in comparison to the majority which focus around the true value.

Given the survey standards' accuracy require a vector accuracy of 10mm + 50ppm, the mean observations of all these sets pass this standard which lends weight to the argument that RTK may be appropriate for cadastral purposes. It would also stand that the accuracy recommendation could stand too be far more rigorous if 30s observations meet these standards. The significant improvement in accuracy is not only apparent in line length, as the bearing will also be significantly improved as a result. It should be remembered that small errors over short distances will have large effects on the bearing

and these should be minimised as much as possible when reinstating boundaries and especially when describing new ones.



# 4.7 <u>60s RTK Observations</u>

Figure 4.19 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 2m marks



Figure 4.20 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 5m marks



Figure 4.21 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 10m marks



Figure 4.22 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 20m marks



Figure 4.23 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 40m marks



Figure 4.24 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 80m marks



Figure 4.25 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 120m marks



Figure 4.26 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 160m marks



Figure 4.27 – The 60s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 200m marks

#### 4.7.1 60s ANALYSIS

The results of the 60s observations are much the same as the 30s observations; there is a significant improvement in the accuracy of the data than the 3s observations. The means of the 60s observations all fall to within around 5mm of the true observation which reflects the improvement in accuracy however the observations are more scattered than the 30s observations. This is rather interesting because just as with the 30s observations, the data for these sets was collected over several days there appears to no indication of bias. The survey style and method and remain consistent. Moreover, while most of the data still converges around the true value, in these sets there are more observations falling significantly far from the true value than in the 30s observations. This is is possible to get measurements which have significant errors.

The cause for these errors again comes back to satellite geometry at the time of the observations. For the 30s day the observations were taken fairly rapidly over a few days but generally within the same time window each day. As the satellite constellation has a 12 hour cycle, for the 30sec observations the satellite geometry would have remained relatively consistent. For the 60sec observations on the other hand which took much longer, the satellite geometry would have changed quite significantly throughout, which leads to a greater distribution of the data as opposed to being focussed in a direction by the observation bias.



# 4.8 <u>180s RTK Observations</u>





Figure 4.29 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 5m marks



Figure 4.30 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 10m marks



Figure 4.31 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 20m marks



Figure 4.32 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 40m marks



Figure 4.33 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 80m marks



Figure 4.34 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 120m marks



Figure 4.35 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 160m marks



Figure 4.36 – The 180s RTK observations  $\Delta E$  and  $\Delta N$  residual plot of the 200m marks

#### 4.8.1 180s ANALYSIS

The 180sec observations provide surprising results when compared to the improvements found in the 30sec and 60sec observations. Rather than a greater convergence of data around the true value or even a reduced scattering of data, the observations have diverged quite significantly towards the east of the true value and the mean observations are further from the true value than the 30sec and 60sec observations. Overall the 180sec observations have greater accuracy than the 3sec observations however it is not to the significant level that would be expected. While the accuracy may not be significantly better than the 3sec observations, the precision is which, at the very least, lends support to the recommendation that observing for longer has significant benefits.

When looking at the observations there appear to be three clusters of observations (particularly pronounced in the 2m, 5m, 20m and 200m observations) which would reflect the changing days and satellite geometry over which the testing occurred. This serves to highlight two important factors regarding RTK observations; 1) the impact changing satellite geometries over time has on the observation of RTK measurements and 2) that even rigorous testing methods can potentially provide inaccurate results, based on the RTK conditions. This testing regime consisted of rigorous practices over many rounds of testing over many hours and even days, yet the results are still inaccurate in regards to the true value, are not precise and not even of the accuracy of the 30sec or 60sec observations.

### 4.9 <u>CONCLUSIONS</u>

The testing provided some varied and unexpected results to say the least. It was found that longer occupations did result in better accuracy than the short 3sec observations, as expected from the Literature Review however it was found that even rigorous observation techniques can produce results that are not of high accuracy or precision based on the effects of observation bias. When the 180sec observations are considered as three groups of observations based on the days of observation, it shows that while accuracy is still subject to errors such as observation bias, precision increases dramatically with more rigorous observation lengths. When inspecting the data there is evidence in the 30sec and 60sec observations that the outriding observations have a greater degree of error than the corresponding 180sec observations. While there is evidence that extraordinarily bad outriding observations can occur in any data set (take 180sec observations on the 40m mark for example), the results show that longer observation times will result in more precise data. Furthermore all observation sets there is evidence of outriding observations and this, at the very least highlights the critical importance of reoccupation at a later time, given a change in the satellite geometry and a new AR.

The key finding from the results is not so much the actual observations – or by extension the calculated residuals – but the impact of observation bias on the measurements. Observation bias is the effect satellite geometry has on the triangulation of GNSS co-ordinates depending on the current satellite geometry at that time of observation. It is because of the effect of satellite geometry that GNSS observations are not randomly scattered (i.e. when compared to a true value the observations are to the south, north, east and west in equal distribution) but will be biased towards a certain direction. Satellite path cycles are just under 12 hours long; if GNSS observations were taken over a 24 hour period (i.e. 2 full cycles) the results would appear to be randomly and evenly scattered, though the actual answer would be equal satellite bias in all directions as satellite bias changes as satellite geometry changes.



Figure 4.37 - A stylised residual plot of GNSS observations over a full satellite cycle used to highlight observation bias in all directions over the satellite cycle

The testing would support the findings of the *Literature Review* as the measurements certainly became more precise over longer observation times (regarding the 180sec observations as separate sets per day) and the accuracy did converge around the true value for the 30sec and 60 sec observations. It is well established that longer occupation times will provide significant benefits and this was confirmed through the testing. This was not the finding for the 180sec observations though and it went entirely against the findings of the results to that point. This would lead to the conclusion that the 30sec and 60sec observations are not as accurate as the residual plots would lead the observer to believe. It may in fact be a case of the observation bias and satellite geometry aligning to provide a result that appears accurate. This is interesting to consider as it could potentially mean that regardless of the observation practices implemented, the results can still be skewed based on the bias. Moreover this may mean that 180sec observations are the practice to adopt – as suggested by the article reviewed – even though the test results of this dissertation do not support that claim.

It is important to realise that outriding observations will always creep into RTK observations as was the case in all these observation sets. Whether these inconsistencies are caused by a *bad* ambiguity solution or rather by some other factor, this serves to highlight the importance of reoccupation and adopting best practices to reduce their occurrence and identify these when they occur. The testing was successfully completed in accordance with the aims of this dissertation and the testing method complied with best practice recommendations; the control array was established accurately and the testing rounds were completed so as to give the desired results.

# **CHAPTER 5: ANALYSIS AND DISCUSSION**

### 5.1 **INTRODUCTION**

This chapter aims to analysis and discuss the results of the previous chapter and seeks to meet the aims of this dissertation, answering whether RTK can be used for cadastral purposes and to what accuracy standards RTK is capable. This will involve creating graphs for referencing and short lines that illustrate the accuracy of the observation data sets against the survey standard accuracy and TS accuracy. This will determine at what length these accuracies are either met or not and whether it is appropriate to use RTK to observe these. The BS length analysis will examine how much the angular perpendicular offset affects the bearing of the line observed and whether RTK can measure a line to a suitable degree of accuracy to confirm a boundary line. From the findings of the analysis, recommendations will be made about the application of RTK for these purposes and in what situations it is appropriate.

## 5.2 TOTAL STATION ACCURACY STANDARD

For this dissertation it is the intention to compare the accuracy of the observations against the accuracy expected from a TS. Unlike RTK, TS's have an established accuracy to which it can measure, as outlined in the manufacturer's specifications. Because the accuracy of a total station depends on its make and model there is no standard accuracy which TS's are expected to meet. For this testing, a high accuracy TS (*Trimble S8 DR Plus*) was used however the accuracy of this machine is not indicative of the accuracy of all TS's. Upon review of various models of TS from various manufacturers, a general accuracy of 3mm + 3ppm for distance measurements and 5" for angular observations has been chosen to represent TS accuracy. While there are plenty of machines capable of better accuracy and many that don't reach this level this accuracy was chosen as it arguably represents the average machine and provides a standard of comparison.

### 5.3 ANALYSING THE DISTRIBUTION OF DATA

It was previously identified in the *Literature Review* that all accuracy standards are concerned with a 95% confidence interval – setting an accuracy standard which 95% of observations can meet. The number of rounds of observations completed during testing reflects this as the population size of the data is greater than 25. When working with a sample size at or below 25, the student-T distribution should be used for statistical analysis and as the size approaches 25 the distribution more closely represents a normal

distribution. For this dissertation, 30 rounds of testing were completed to ensure that a normal distribution could be used to analyse the data. It is from this normal distribution and the 95% CI that the errors of the observations sets  $(2\sigma)$  will be calculated and this will be used to determine whether the observation methods meet the survey accuracy standards. Moreover the actual distribution of the data will be determined to ensure that the data being used to come to these conclusions satisfies the 95% CI (the majority of these will be included in the *Appendix*).



Figure 5.1 – The normal distribution of the 30s observations on the 10m mark with the upper and lower  $2\sigma$  values

The graph identified in *Figure 5.1* is a typical representation of the normal distribution of the line length observations showing how the data falls within  $2\sigma$  of the mean as does the true value. The results are quite accuracy in this case as there is less than 20mm between the upper and lower SD limits.

The  $2\sigma$  value represents the accuracy limits within which 95% of observations would be expected to fall. It is important to remember though that this is the  $2\sigma$  error from the mean value of the observations, where it is in fact  $2\sigma$  from the true value which would represent the range in which acceptable observations should occur. If the mean and true observations were aligned this would signify that there was an even distribution of data around the true value – i.e. that there was no observation bias. From the *Results* though,

it has been proven that there is observation bias present in the results and this needs to be realised by incorporating this error into the total accuracy error of the line.

### 5.3.1 INCORPORATING THE OBSERVATION BIAS INTO THE RESULTS

From the *Results* it is clear that observation bias has affected the results and that *normal* (i.e. multipath, atmospheric conditions, ambiguity solution, number of satellites etc.) error is not the only error present in the data. To determine whether RTK is appropriate for cadastral purposes it is essential that the errors in the observations are based off the true value of the line rather than the mean observed distance of the line. This would mean that based on the observation bias present in the observations the line error would not just be  $2\sigma$ , but  $2\sigma$  plus the difference between the mean and true values of the line. It is possible for anyone to go and measure a line repeatedly using any methods and determine a line length and average measurement, which all fall within  $2\sigma$  of each other, however this does not mean that the true value of the line falls within that  $2\sigma$ .



Figure 5.2 – Highly precise observations that are low accuracy

Consider *Figure 5.2* for example; the observations are highly precise and there appear to be no outriders therefore the observations would all fall within  $2\sigma$  of the mean. This is not acceptable though as none of the observations are actually within  $2\sigma$  of the true value of the line length. If the mean observation and  $2\sigma$  was related to the true value of the line it would in fact be found that the observations are highly inaccurate and should not be used for high accuracy applications. Therefore it is essential that the true-mean value difference be incorporated into the error to ensure that the true error in the

observations is compared to the accuracy standards. This can be achieved by using the formula;

### *True error* = *True value* - *Mean observation* + $2\sigma$

This will be applied to all analyses to follow.

# 5.4 <u>Referencing by RTK</u>

This analysis serves to determine whether RTK can in fact be used for referencing in terms of line length accuracy and the observed bearing. To determine whether the line lengths meet the accuracy of a TS or *SP1* the difference between the observed and true lines needs to be determined (accounting for observation bias) and then apply  $2\sigma$  to determine in what range 95% of data will be observed. It is important to ensure that the absolute difference between the mean and true lines is calculated, as the error is still the error regardless of whether the line itself is shorter or longer than the mean. The total mean is calculated as the;

## Absolute difference + $2\sigma$

The below *Table 5.1* provides the numeric values of the total error in the observation lines. This severs to outline the mathematic process conducted to achieve these results and show how the errors differ between each observation time.

| 3sec Observations |               |                                               |          |         |             |         |  |  |  |
|-------------------|---------------|-----------------------------------------------|----------|---------|-------------|---------|--|--|--|
| Distance          | True Distance | Average Distance Error Absolute Difference 2σ |          | 2σ      | Total Error |         |  |  |  |
| 2                 | 2.102487336   | 2.114771861                                   | -0.01228 | 0.01228 | 0.01128382  | 0.02357 |  |  |  |
| 5                 | 4.93934935    | 4.949051325                                   | -0.00970 | 0.00970 | 0.00943239  | 0.01913 |  |  |  |
| 10                | 10.05084126   | 10.06272948                                   | -0.01189 | 0.01189 | 0.00855128  | 0.02044 |  |  |  |
| 20                | 20.35828      | 20.36308                                      | -0.00480 | 0.00480 | 0.00926     | 0.01406 |  |  |  |

| 30sec Observations |               |                  |          |             |            |         |  |  |  |
|--------------------|---------------|------------------|----------|-------------|------------|---------|--|--|--|
| Distance           | True Distance | Average Distance | 2σ       | Total Error |            |         |  |  |  |
| 2                  | 2.102487336   | 2.104879611      | -0.00239 | 0.00239     | 0.00420117 | 0.00659 |  |  |  |
| 5                  | 4.93934935    | 4.94167951       | -0.00233 | 0.00233     | 0.00443481 | 0.00676 |  |  |  |
| 10                 | 10.05084126   | 10.0556323       | -0.00479 | 0.00479     | 0.00446424 | 0.00926 |  |  |  |
| 20                 | 20.35828      | 20.35709         | 0.00119  | 0.00119     | 0.00408    | 0.00527 |  |  |  |

| 60sec Observations |               |                                            |          |         |            |             |  |  |  |
|--------------------|---------------|--------------------------------------------|----------|---------|------------|-------------|--|--|--|
| Distance           | True Distance | Average Distance Error Absolute Difference |          |         |            | Total Error |  |  |  |
| 2                  | 2.102487336   | 2.105034641                                | -0.00255 | 0.00255 | 0.01277026 | 0.01532     |  |  |  |
| 5                  | 4.93934935    | 4.941976917                                | -0.00263 | 0.00263 | 0.01163885 | 0.01427     |  |  |  |
| 10                 | 10.05084126   | 10.0560529                                 | -0.00521 | 0.00521 | 0.01146872 | 0.01668     |  |  |  |
| 20                 | 20.35828      | 20.35895                                   | -0.00067 | 0.00067 | 0.01126    | 0.01193     |  |  |  |

| 180sec Observations |                                                                           |             |          |         |            |             |  |  |  |
|---------------------|---------------------------------------------------------------------------|-------------|----------|---------|------------|-------------|--|--|--|
| Distance            | ice True Distance Average Distance Error Absolute Difference $2\sigma$ To |             |          |         |            | Total Error |  |  |  |
| 2                   | 2.102487336                                                               | 2.113761273 | -0.01127 | 0.01127 | 0.00724698 | 0.01852     |  |  |  |
| 5                   | 4.93934935                                                                | 4.950353995 | -0.01100 | 0.01100 | 0.00792166 | 0.01893     |  |  |  |
| 10                  | 10.05084126                                                               | 10.06380861 | -0.01297 | 0.01297 | 0.00939289 | 0.02236     |  |  |  |
| 20                  | 20.35828                                                                  | 20.36690    | -0.00862 | 0.00862 | 0.00922    | 0.01784     |  |  |  |

Table 5.1- The calculation of the total error in the referencing observations at 95% confidence interval



Figure 5.3 – The total error of the observation sets which show at what point RTK is appropriate for referencing in terms of the accuracy standards and TS accuracy

From the above analysis it is absolutely clear that RTK observational accuracy cannot meet the accuracy standard of a total station for referencing accuracy. It is apparent however that RTK is capable of observing very short line lengths to the acceptable accuracy of the survey standards'. In this instance the 30sec observations meet this accuracy standard for every length and the 60sec observations very nearly approached this at the 20m length. Considering the short length of the line this basically means that RTK observation accuracy needs to be within 10mm (and 11mm at 20m) of the true value to fall within these accuracy standards. It is interesting to again consider the more rigorous observations methods here, where accounting for the observation bias has put these observations well outside the accuracy limits of the surveys standards. Though the precision of these observations might be greater (hence the SD will be less) than the

shorter observations the observation bias has caused the observations to be outside the accuracy limits. Considering the degree to which small errors are accentuated over short distances it would not be advised to use RTK for referencing purposes. Although it may meet the survey standards' accuracy requirements, the errors in the observations would lead to massive bearing errors in the referencing. Moreover it is apparent that even the more rigorous testing methods do not meet the accuracy standards based on the observation bias and while the 30sec observations do meet these standards, that does not mean that that is the observation method that should be adopted by the industry.

#### 5.4.1 <u>Referencing Bearings by RTK</u>

At this point it would be prudent to consider the effect the errors in the observations would have on the observed bearing when referencing over such short distances. This will be achieved by investigating the perpendicular offset distance of the bearing difference between the true and observed bearing using trigonometry (the *sine rule*). From this investigation it will be possible to determine the perpendicular distance between the true and observed bearings. The perpendicular angle offset distance can be calculated as;

#### = *Observed distance* \* sin(*Observed bearing* – *True bearing*)

This perpendicular distance will still be affected by the observation bias; the above equation will give the difference between the bearings however the data still needs to meet the 95% confidence interval, therefore  $2\sigma$  of the offsets will be applied. In the case of errors over such short distances the bearing becomes less important as even small errors can dramatically affect the data, more emphasis is placed on measuring the correct distance and ensuring the reference mark has not been disturbed. These distance errors will then be compared to some general angular miscloses to establish just how accuracy the referencing bearings would be. The angular miscloses to be chosen are 10" as a representation of good bearing accuracy, 30" as a representation of wory poor observational accuracy.

|             | Perpendicular Angle Offset |                      |                     |                     |  |  |  |  |  |  |
|-------------|----------------------------|----------------------|---------------------|---------------------|--|--|--|--|--|--|
| Distance    | 3sec Offset                | 30sec Offset         | 60sec Offset        | 180sec Offset       |  |  |  |  |  |  |
| 2           | 0.015839477                | 0.005165924          | 0.010006806         | 0.008715814         |  |  |  |  |  |  |
| 5           | 0.035305851                | 0.034492645          | 0.03649105          | 0.010721463         |  |  |  |  |  |  |
| 10          | 0.021068905                | 0.005416823          | 0.011193101         | 0.008537715         |  |  |  |  |  |  |
| 20          | 0.019822053                | 0.005541538          | 0.011976483         | 0.00966895          |  |  |  |  |  |  |
|             |                            |                      |                     |                     |  |  |  |  |  |  |
| Line Length | Angular Misclose 10"       | Angular Misclose 30" | Angular Misclose 1' | Angular Misclose 5' |  |  |  |  |  |  |
| Distance    | Distance                   | Distance             | Distance            | Distance            |  |  |  |  |  |  |
| 2           | 0.000137                   | 0.000411             | 0.000823            | 0.004117            |  |  |  |  |  |  |
| 5           | 0.000343                   | 0.001028             | 0.002057            | 0.010292            |  |  |  |  |  |  |
| 10          | 0.000687                   | 0.002057             | 0.004114            | 0.020584            |  |  |  |  |  |  |
| 20          | 0.001371                   | 0.004114             | 0.008228            | 0.041168            |  |  |  |  |  |  |

Table 5.2– The calculation of the perpendicular angle offset distance between the observed and true bearing at the 95% confidence interval for referencing observations



Figure 5.4 – The perpendicular angle offset distance of the referencing observations as compared to 10" and 30" accuracy



Figure 5.5 – The perpendicular angle offset distance of the referencing observations as compared to 1' and 5' accuracy

The analysis of the perpendicular angle offset distances has shown just how poor the bearing accuracy of the RTK observations actually is. The 30sec observations approached 30" accuracy towards the 20m length however none of the bearings were within an acceptable accuracy range. Indeed the observations were generally only able to meet 5' bearing accuracy which is completely unacceptable when reporting on cadastral plans. It appears that RTK should not be used for referencing in any circumstances using any practices outlined in this dissertation.

# 5.5 MINIMUM SHORT LINE LENGTH THAT CAN BE OBSERVED BY RTK

This analysis will seek to determine the minimum length of a short line that RTK can measure and achieve the *SP1* standard accuracy and if it can potentially meet TS accuracy. It has previously been defined that the survey standards'' accuracy is 10mm + 50ppm while the TS accuracy will be represented as 3mm + 3ppm; the acceptable accuracies will be calculated over the length of the short lines. To determine the actual line error the same method as referencing will be used.

|          | 3sec Observations                                                              |           |          |         |         |         |  |  |  |  |
|----------|--------------------------------------------------------------------------------|-----------|----------|---------|---------|---------|--|--|--|--|
| Distance | Distance True Distance Average Distance Difference Absolute Difference 2σ Tota |           |          |         |         |         |  |  |  |  |
| 20       | 20.35828                                                                       | 20.36308  | -0.00480 | 0.00480 | 0.00926 | 0.01406 |  |  |  |  |
| 40       | 40.15479                                                                       | 40.15986  | -0.00507 | 0.00507 | 0.00910 | 0.01417 |  |  |  |  |
| 80       | 80.08372                                                                       | 80.09320  | -0.00948 | 0.00948 | 0.00810 | 0.01759 |  |  |  |  |
| 120      | 120.10154                                                                      | 120.11826 | -0.01673 | 0.01673 | 0.01056 | 0.02729 |  |  |  |  |
| 160      | 160.22721                                                                      | 160.23403 | -0.00683 | 0.00683 | 0.00769 | 0.01451 |  |  |  |  |
| 200      | 200.15860                                                                      | 200.16932 | -0.01072 | 0.01072 | 0.00954 | 0.02026 |  |  |  |  |

| 30sec Observations |               |                  |            |                     |         |             |  |  |  |
|--------------------|---------------|------------------|------------|---------------------|---------|-------------|--|--|--|
| Distance           | True Distance | Average Distance | Difference | Absolute Difference | 2σ      | Total Error |  |  |  |
| 20                 | 20.35828      | 20.35709         | 0.00119    | 0.00119             | 0.00408 | 0.00527     |  |  |  |
| 40                 | 40.15479      | 40.15480         | -0.00001   | 0.00001             | 0.00483 | 0.00484     |  |  |  |
| 80                 | 80.08372      | 80.08565         | -0.00193   | 0.00193             | 0.00414 | 0.00606     |  |  |  |
| 120                | 120.10154     | 120.10537        | -0.00383   | 0.00383             | 0.00649 | 0.01032     |  |  |  |
| 160                | 160.22721     | 160.22496        | 0.00225    | 0.00225             | 0.00437 | 0.00662     |  |  |  |
| 200                | 200.15860     | 200.15842        | 0.00018    | 0.00018             | 0.00633 | 0.00651     |  |  |  |

| 60sec Observations |                                |           |            |                     |         |             |  |  |  |
|--------------------|--------------------------------|-----------|------------|---------------------|---------|-------------|--|--|--|
| Distance           | True Distance Average Distance |           | Difference | Absolute Difference | 2σ      | Total Error |  |  |  |
| 20                 | 20.35828                       | 20.35895  | -0.00067   | 0.00067             | 0.01126 | 0.01193     |  |  |  |
| 40                 | 40.15479                       | 40.15571  | -0.00092   | 0.00092             | 0.01058 | 0.01150     |  |  |  |
| 80                 | 80.08372                       | 80.08455  | -0.00083   | 0.00083             | 0.01292 | 0.01375     |  |  |  |
| 120                | 120.10154                      | 120.10886 | -0.00732   | 0.00732             | 0.01283 | 0.02015     |  |  |  |
| 160                | 160.22721                      | 160.22706 | 0.00014    | 0.00014             | 0.01304 | 0.01319     |  |  |  |
| 200                | 200.15860                      | 200.16237 | -0.00377   | 0.00377             | 0.01495 | 0.01872     |  |  |  |

| 180sec Observations |               |                  |            |                     |         |             |  |  |  |
|---------------------|---------------|------------------|------------|---------------------|---------|-------------|--|--|--|
| Distance            | True Distance | Average Distance | Difference | Absolute Difference | 2σ      | Total Error |  |  |  |
| 20                  | 20.35828      | 20.36690         | -0.00862   | 0.00862             | 0.00922 | 0.01784     |  |  |  |
| 40                  | 40.15479      | 40.16701         | -0.01222   | 0.01222             | 0.01103 | 0.02324     |  |  |  |
| 80                  | 80.08372      | 80.09779         | -0.01408   | 0.01408             | 0.00929 | 0.02337     |  |  |  |
| 120                 | 120.10154     | 120.11935        | -0.01781   | 0.01781             | 0.01065 | 0.02847     |  |  |  |
| 160                 | 160.22721     | 160.23891        | -0.01171   | 0.01171             | 0.00916 | 0.02087     |  |  |  |
| 200                 | 200.15860     | 200.17237        | -0.01377   | 0.01377             | 0.00949 | 0.02326     |  |  |  |

Table 5.3- The calculation of the total error in the short line observations, determined as before for referencing



Figure 5.6 – The total error of the observation sets which show at what point RTK is appropriate for short line observation in terms of the accuracy standards and TS accuracy

Again it has been found from the testing the RTK observations cannot meet TS accuracy over such short distances. Conversely the analysis of the short line observations actually provides results which would move to disprove the recommendations of some jurisdictions that RTK can only be used to observe lines over 120m. Moreover it certainly dismisses the survey standards'' recommendation that RTK should only be used to measure lines greater than 640m.

From the testing of this dissertation it would appear that RTK can in fact be used to measure lines as short as 40m. Previously it was stated that in regard to referencing, RTK should not be recommended as the measurement method as the line errors were so substantial over such short distances. However when observing these longer lines it becomes apparent that the observations would meet the survey standards' accuracy recommendations and the errors would not be so effecting over longer distances.

Moreover in this case both the 30sec and 60sec observations meet the accuracy standards' accuracy recommendations when observing lines greater than 40m – though the 60sec observations tetter right on the brink of remaining within the accuracy standard. The 120m mark observations are of particular concern in this case as there is a

spike in the errors for all observation sets however this can arguably be contributed to the environmental conditions, as it is a constant factor throughout all data sets, meaning that the same cause of error is likely in all instances. In particular around the 160m mark all but the 180sec observations meet the accuracy standard, which at the very least confirms that RTK can be used to observe lines much shorter than 640m.

#### 5.5.1 ESTABLISH WHEN RTK OBSERVATIONS WILL MEET TS ACCURACY

*SP1* identified where RTK observations would meet and surpass the accuracy capable by conventional TS observations as 640m. It would therefore be prudent to repeat this based on the results of this dissertation to determine if the point where RTK would meet the proposed TS accuracy is actually less – just as the minimum line length was found to be less. By overlaying linear trend lines on the RTK observation results and extending these lines it will be possible to determine when RTK will meet TS accuracy.



Figure 5.7 – The total error of the observation over the various distances with a linear trend line set to establish at what distance RTK observations will meet TS accuracy

From the trend line analysis is becomes apparent that the RTK observations of this dissertation will never meet TS accuracy as the gradient of the trend lines is steeper than the gradient of the TS accuracy. This is quite disappointing because it means for the testing of this dissertation at least, it is hypothesised that the observations will never surpass TS accuracy. From the *Literature Review* this is obviously not the case however more testing would be required to determine this point.

# 5.6 MINIMUM LENGTH OF A BACKSIGHT MEASURED BY RTK

From the short line analysis it has been determined that RTK can in fact be used to accurately observe short lines of lengths greater than 40m, significantly less than the recommended 640m and 120m recommended by the *SP1* and adopted by various jurisdictions respectively. While RTK may be capable of measuring short lines to an acceptable accuracy over 40m, this does not mean that RTK can potentially be used to observe backsights over such a short distance. This is important to consider as backsights are not just concerned with line length accuracy but also the accuracy of the bearing. Therefore to determine whether RTK can be used for observing BS's at lengths shorter than the recommended 200m (SBQ guideline) another perpendicular angle offset distance analysis will be conducted for this data set.

When considering orientation, the observation of the BS's would require a far more rigorous accuracy standard than was adopted for referencing. In regards to referencing it is possible to observe a small error and find a very large bearing error, even though that bearing error is not actually present; so bearings become less significant in these instances. When observing BS's to orientate a survey, the surveyor must strive to achieve the greatest degree of accuracy possible. For this analysis the angular offset will be compared to TS accuracy and shown against less rigorous standards to determine how RTK should be used to observe BS's.

|          | Perpendicular Angle Offset                                   |          |          |          |  |  |  |  |  |  |
|----------|--------------------------------------------------------------|----------|----------|----------|--|--|--|--|--|--|
| Distance | Distance 5sec Offset 30sec Offset 60sec Offset 180sec Offset |          |          |          |  |  |  |  |  |  |
| 40       | 0.015276                                                     | 0.010544 | 0.009964 | 0.016009 |  |  |  |  |  |  |
| 80       | 0.017231                                                     | 0.007293 | 0.011189 | 0.009307 |  |  |  |  |  |  |
| 120      | 0.021018                                                     | 0.023456 | 0.010901 | 0.006722 |  |  |  |  |  |  |
| 160      | 0.021032                                                     | 0.006303 | 0.015224 | 0.006895 |  |  |  |  |  |  |
| 200      | 0.023232                                                     | 0.012522 | 0.016529 | 0.005742 |  |  |  |  |  |  |

| Line Length | Angular Misclose 5" | Angular Misclose 10" | Angular Misclose 20" | Angular Misclose 45" |
|-------------|---------------------|----------------------|----------------------|----------------------|
| Distance    | Distance            | Distance             | Distance             | Distance             |
| 40          | 0.001373            | 0.002743             | 0.005485             | 0.012345             |
| 80          | 0.002746            | 0.005485             | 0.010971             | 0.024685             |
| 120         | 0.004114            | 0.008228             | 0.016456             | 0.037028             |
| 160         | 0.005485            | 0.010970             | 0.021941             | 0.049371             |
| 200         | 0.006856            | 0.013713             | 0.027427             | 0.061713             |

Table 5.4– The calculation of the perpendicular angle offset distance between the observed and true bearing at the 95% confidence interval for backsight observations



Figure 5.8 - The perpendicular angle offset distance of the BS observations as compared to TS (5") accuracy



Figure 5.9 – The perpendicular angle offset distance of the BS observations as compared to 10" accuracy



Figure 5.10 – The perpendicular angle offset distance of the BS observations as compared to 20" accuracy; 160m appears to be the value at which bearing observation accuracy will be at least 20" – which is reasonably undesirable



Figure 5.11 - The perpendicular angle offset distance of the BS observations as compared to 45" accuracy; though this will probably never be used in practice it is interesting top outline an accuracy standard all observations can meet

The analysis of the backsight angle offset supports the findings in the *Literature Review* that RTK observations can be used to establish a cadastral survey. The 180sec observations proved to be the best method for observing minimum BS lengths as the offset error actually met the TS accuracy over about 180m, which is slightly shorter than the recommended 200m. Therefore the testing of this dissertation has at least proved that the survey standards'' recommendations regarding minimum BS lengths are accurate. The guidelines also suggests that in difficult conditions this minimum length can be reduced to 100m, however from the analysis of these results it becomes apparent that RTK cannot meet TS accuracy over such a short length. Why the guidelines would allow a shorter BS length in difficult conditions is not explicitly stated, though it could be to potentially allow for a lesser degree of accuracy – say 10". If this were to be the case, from the results of this testing a 100m BS would still not be sufficiently long to accurately observe the bearing of the line. Considering a lesser degree of accuracy is required in the observations, the testing shows that a minimum BS length of around 120m should be observed.

As the requirement for bearing accuracy diminishes though, it can be seen that any observation method will meet this standard over increasingly short lines. Given the necessary accuracy required to correctly establish the orientation of a survey plan, it is recommended that the surveyor should seek to meet TS quality accuracy and measure backsights of greater than 180m. It would obviously be prudent to follow best practices and observe longer BS's if the option is available, however the testing has established that when observing for 180 seconds, a minimum BS length of 180m meets TS accuracy and a minimum length of 120m can be used when accuracy is to a lower required standard (i.e. repeating a cadastral survey achieved by compass or to a minute level).

It is interesting and again necessary to consider the actual data in this analysis, as in the previous analyses of the results the 180sec observations tend to have poor accuracy whereas the 30sec observations tend to be much better. This comes back to observation precision where the observations of longer length have greater precision than the shorter observations. This results in a smaller spread of data and a lower standard deviation therefore while the actual results may be inaccurate the observations are much more precise. This means that although the observation bias correction may be larger than the other data sets the  $2\sigma$  value is lower (the 95% confidence interval is tighter) resulting in a smaller total error in the line. This is apparent in both the angle offsets for referencing

and backsight observations. This does not necessarily mean that the total error in more precise observations will always be less than the other data sets (apparent in the short line observations); it means the  $2\sigma$  value will be less.

# 5.7 <u>Use of a 99% Confidence Interval</u>

The findings of the *Literature Review* have consistently stated that a 95% confidence interval should be used when analysing the accuracy of the observations. This means that based on the above analysis in all cases a surveyor can be 95% certain that his observations will be within  $2\sigma$  of the true value (though the CI incorporates the observation bias too). In practical terms it means that 95 of 100 observations will be within the acceptable accuracy of the survey standards". The literature requires as 95% confidence as this means that it is highly unlikely that an observation will fall outside this range, however the surveyor must also consider a 5 observations that could potentially be fall outside the acceptable accuracy range.

For this dissertation a 95% confidence interval was adopted based on the recommendations of the reviewed literature and to ensure continuity between the testing in this dissertation and the recommendations of existing guidelines. If a 99% CI ( $3\sigma$ ) had been adopted for this testing it would have been found that RTK would not be appropriate for short line observation in the same circumstances as identified in the above analysis and that the minimum backsight length could potentially be required to be longer. It would seem prudent however to adopt a 99% CI because while it may mean that RTK's application to surveying tasks is reduced and/or limited, it would ensure that all but the most significant outriding observations fall into an acceptable accuracy range.

# 5.8 <u>CONCLUSION</u>

The analysis of the results has led to the determination of how and when RTK is applicable to cadastral survey purposes; short line observations, referencing and minimum backsight length.

Looking at short line observations first it is apparent that RTK can meet the survey standards' accuracy for lines when observing much shorter than the recommended 640m (*SP1*) and 120m adopted by some jurisdictions. The testing makes it apparent that RTK can in fact observe lines of 40m or greater. Though the 180sec observations failed to meet the accuracy standards because of the effect of observation bias, it is recommended that observations of 30sec or greater with a bipod used to stabilise the

pole be incorporated as the testing method. Observing by this method would confirm the recommendations made by the ACT guidelines in *Figure 2.4* of the *Literature Review*. Longer observation lengths are particularly recommended based on the precision benefits.

Minimum backsight lengths were found to confirm the recommendations of the SBQ guidelines. The recommended minimum length of backsight lines in ideal conditions was found to be 180m or greater and the absolute minimum length in difficult conditions was found to 120m, as opposed to 200m and 100m respectively. From the testing the ideal observation technique was found to be 180 seconds with a bipod for stabilisation as this lead to significant precision improvements and allowed for a much narrower  $2\sigma$  value. Based on the observation of control marks, this recommended survey method would again confirm the ACT guidelines recommendations.

Finally from the results of the testing it has become apparent that RTK is not appropriate for referencing in any situation given any observation technique. It was basically found that while the observations may meet *SP1* accuracy standards, the impact the error in the line would have on the bearing of the reference mark would simply be too great to accept the line.

From this evaluation the application of RTK for cadastral purposes has been successfully identified. Through the results of the testing it has become apparent the observation bias has made a critical impact of the results of this dissertation and that it is important to account for the errors and discrepancies this bias will introduce into the data. Based on this research it is now possible to make recommendations about how and when RTK should be used and address the issues regarding how it should be used.

# **CHAPTER 6: CONCLUSION**

# 6.1 **INTRODUCTION**

This section will aim to conclude this dissertation by summarising the work that was completed, address how the dissertation met the original aims, establish the further work required to develop and improve this work and conclude how and when RTK is appropriate for cadastral surveys.

# 6.2 <u>MEETING THE AIMS AND OBJECTIVES</u>

This dissertation encompassed the complete testing of short line observations, referencing and minimum backsight lengths so as to determine how these should be completed in cadastral surveys. The dissertation moved from describing the concept of these three aspects, to finding and critiquing the existing information regarding these aspects, to determining and implementing a comprehensive testing regime to represent *reasonable professional practice* that would allow the replication of this testing by any surveyor, to an analysis and determination of how and when RTK is appropriate to finally stating RTK's applicability to cadastral surveys. From this the minimally acceptable practices for observing these three aspects have been determined. All testing was completed empirically with physically tested data making up the results and analysis of this dissertation.

The testing was conducting with the aim of determining whether RTK observations could actually achieve the accuracy vector of 10mm + 50ppm from the *Cadastral Survey Requirements*, referenced to in the SBQ guidelines and whether it could potentially meet TS accuracy too. By incorporating these accuracy standards into the results it was determined in what instances RTK would meet or fail the accuracy. Moreover because the testing was conducted in a manner indicative of best practice, the research findings of this dissertation can be submitted to the Surveyors Board of Queensland to substantiate their guideline in respect to the three aspects of this dissertation.

## 6.3 **FINDINGS AND RECOMMENDATIONS**

This dissertation has established, through the comprehensive testing regime, how and when RTK is appropriate for observing short lines, referencing and minimum backsight lengths. From the analysis of the results it is now possible to conclude with how and when RTK should be used.

#### 6.3.1 SHORT LINES

Based on the findings of this dissertation, short lines of 40m or more can be measured with RTK provided that the two ends of the line are observed for greater than 30 seconds. This method of observation will meet the accuracy recommendation of the survey standards'. The surveyor must ensure that the marks are reoccupied at least 30 minutes later to allow for a sufficient change in satellite geometry. It is recommended that the rover pole be stabilised by a bipod and that the reoccupation occurs with a new ambiguity resolution – if not a new base station set-up (based on best practice recommendations).

### 6.3.2 BACKSIGHT LENGTH

The results of this dissertation have led to the finding that backsight lengths for TS should ideally be 180m or greater in length, to meet rigorous TS accuracy bearings. As an absolute minimum RTK can be used to measure BS lengths of 120m however this should only be done in difficult conditions and upon the surveyor accepting that the bearing will not be of TS accuracy, but rather within 10". If a surveyor were to measure BS's with RTK he is advised to occupy the station for 180 seconds and use a bipod to stabilise the rover pole. Furthermore a surveyor should seek longer BS lengths if these are available.

#### 6.3.3 <u>Referencing</u>

The findings of this dissertation indicate that RTK should not be used for referencing in any circumstance as RTK simply cannot observe the mark to within an acceptable bearing accuracy. While it may be possible to observe the reference mark to an accuracy which satisfies survey standards'' accuracy, the error in the short line will cause a massive bearing error in the observation over such a short distance. Regardless of the observation technique used, RTK failed to meet an acceptable accuracy standard.

#### 6.3.4 **Observation Technique**

It is recommended that surveyors follow survey guidelines first and foremost, and the findings of this dissertation when considering observation techniques. An important recommendation regarding observation technique based on the findings of this dissertation is that a surveyor should leave at least 30 minutes before reoccupying the survey marks but should consider reoccupation a third time or perhaps on a different day to minimise the impact of observation bias.

# 6.4 <u>Further Work</u>

This research, testing and analysis of this dissertation have completed the outlined aims and objectives however the results and outcomes are by no means perfect. It was found that a significant error in the observations was the effect of observation bias. This cannot be minimised in the field by any means of observation technique as the bias is a function of the satellite geometry at the time. This bias it is means that the distribution of GNSS observations is not randomly scattered, that the distribution is too, a function of observation bias. Based on this understanding it is possible to predict observation bias, but more importantly it is also possible to implement observation procedures that will minimise the effect of observation bias. From the various survey guidelines it is recommended that reoccupation occur at least 30 minutes after the initial observation of the point. It would be interesting to investigate how leaving the reoccupation for a longer time period, i.e. 2 or 3 hours, and reoccupying more than once would improve the accuracy of the data and diminish observation bias. An extension of this would be to investigate how reoccupation up to several days later would improve the results.

Another area that has already been addressed in this dissertation is the consideration of using a 99% confidence interval ( $3\sigma$ ) to analyse the data rather than a 95% CI. Considering that 5 of every 100 observations could potentially fail to meet the accuracy standards, it is important to investigate ways of reducing sources of possible error. If the acceptable error was to be set to  $3\sigma$  this would lead to a different set of recommendations regarding how and when RTK is applicable for cadastral works; potentially it may mean that RTK is not at all appropriate at this stage giving its accuracy limitations.

The final consideration towards future work would be the consideration of developing a stricter guideline. At the moment 10mm + 50ppm is a fairly loose accuracy guideline and a surveyor should consider observing a more rigid accuracy standard coupled with a 99% CI for future RTK surveys. This could potentially limit RTK's use however it would result in much more accurate data.

## 6.5 IMPROVEMENTS ON THIS DISSERTATION

If this dissertation were to be repeated the primary change to be made would be to stagger the testing observations over several days in different time windows. In this manner it would be hoped that observations from the complete satellite cycle could be observed to reduce the impact of observation bias. The number of rounds of testing and
the actual procedures meet the requirements of *SP1* however it would be interesting to consider the accuracy of the data if the observation bias was reduced or eliminated from the data sets. Moreover it could potentially mean that a different observation regime could be developed which inherently eliminates the effect of observation bias.

## 6.6 <u>CONCLUSIONS</u>

This dissertation set out to establish how to observe short lines, referencing and minimum backsight lengths in regards to adopting *reasonable professional practice* so as to refer the findings of this dissertation to the SBQ to fill in some of the non-explicit areas of their guidelines. Based on the testing regime and analysis outcomes this dissertation has successfully fulfilled this aim. Based on the previous recommendations outlined in this chapter and the *Analysis*, these can now be referred to the SBQ in the hopes of this information gaining inclusion into the guidelines for use.

### **REFERENCES**

Delmas, P Tessier, C Debain, C & Chapuis, R 2008, 'GNSS bias correction for localisation systems', *Proceedings of the 11<sup>th</sup> International Conference*, Information Fusion, Cologne, pp. 1-6

Department of Environment and Resource Management, June 2010, *Cadastral survey requirements*, version 6, Queensland Government

Gibbings, P. 2013, *RTK GNSS for Cadastral Surveys.... plus!*, University of Southern Queensland, Toowoomba,

Inter-governmental Committee on Surveying and Mapping & Geodesy Technical Sub Committee, March 2012, *Standards and Practices for Control Surveys Special Publication 1 (Draft)*, version 2.0,

Inter-governmental Committee on Surveying and Mapping, September 2007, *Standards and Practices for Control Surveys (SP1)*, version 1.7,

Jacobs, P G 2005, 'Assessing RTK GPS for a suburban survey practice', UG dissertation, University of Southern Queensland, Toowoomba

Janssen, V & Haasdyk J 2011, Assessment of Network RTK Performance using CORSnet-NSW, University of New South Wales, NSW, Australia, viewed 15 June 2013,

<<u>http://www.lpi.nsw.gov.au/\_\_\_data/assets/pdf\_\_file/0004/165703/2011\_Janssen\_\_and\_\_Ha</u>asdyk\_IGNSS2011\_assessment\_of\_NRTK\_performance\_using\_CORSnet-NSW.pdf>

Land Title Act 1994 (Qld)

National Measurement Act 1960 (Cwlth)

Roberts, C 2005, *GPS for cadastral surveying – Practical considerations*, School of Surveying and Spatial Information Systems, University of New South Wales, NSW, Australia

Strahley, M 2011, 'A comparison of depth sounder positioning techniques', UG dissertation, University of Southern Queensland, Toowoomba

Surveying and Spatial Information Act 2002 (NSW)

Surveying and Spatial Information Regulation 2012 (NSW)

Surveyor-General of the Australian Capital Territory 2012, *GNSS and Cadastral Surveys*, Environment and Sustainable Development, ACT Government, ACT

Surveyor General's Directions 2013, No. 9 GNSS for Cadastral Surveys, NSW, Australia

Surveyors Act 2003 (Qld)

Surveyors Board of Queensland, 2003, *Code of practice*. [online] Available at: http://sbq.com.au/public/more-information/code-of-practice/

Surveyors Board of Queensland, November 2012, *RTK GNSS Guidelines for Cadastral Surveys - Guideline*. [online] viewed 16 April 2013, Available at: http://sbq.com.au/member/board-publications/policies-guidelines/rtk-gnss-guidelines-for-cadastral-surveys/

*Toowoomba campus QLD* 2013, aerial photograph, Google maps, Australia viewed <12 October 2013, <u>https://maps.google.com.au/</u>>

Trade Practices Act 1974 (Cwlth)

Trimble 2013, *Products by Industry – Engineering & Survey*, Trimble Navigation Limited, viewed 8 October 2013

Worrall, A 2007, 'Development of quality assurance procedures for cadastral surveying using GPS technology', UG dissertation, University of Southern Queensland, Toowoomba

#### **APPENDIX A: Project Specifications**

University of Southern Queensland

# FACULTY OF ENGINEERING & SURVEYING

# ENG4111/4112 Research Project PROJECT SPECIFICATION

FOR: Michael Zahl

**TOPIC:** RTK GPS/GNSS for Cadastral Surveying

- SUPERVISOR/S: A. Prof. Peter Gibbings
- **ENROLMENT:** ENG4111 Research Project Part 1 S1, ONC, 2013 ENG4112 Research Project Part 2 – S2, ONC, 2013
- **BACKGROUND:** Because of the evolution and improvement of RTK GPS/GNSS, current surveying tasks are becoming more regularly performed by this method. Once it was considered that point positioning technology would never reach the measuring standards of conventional theodolites/total stations. Today RTK GPS/GNSS is being more closely incorporated into the industry in all forms one particular instance being cadastral surveying. On the 30<sup>th</sup> of November last year, the Surveyors Board of Queensland (SBQ) released a guideline document regarding the use of RTK GNSS on cadastral surveys. While this document cleared much of the confusion around the issue there are still elements in which the document was not explicit, therefore this research project will be used to define these areas empirically.
- **PROJECT AIM:** This project aims to define the inexplicit aspects of the recently released guidelines by the SBQ; *RTK GNSS for Cadastral Surveys*, empirically through field testing and office reductions and through theoretical analysis, via literature reviews of existing research on the subject. SBQ has provided a guideline on the use of RTK GNSS. This research aims to provide minimum standards, limitations and precautions for use of RTK and will supplement the

recently released guideline. More broadly, the research can be used to further clarify the guidelines. It is important to note that this research will not cover every element of the guidelines but rather specifically chosen aspects.

SPONSORSHIP: MinStaff Survey

#### **PROGRAMME:** Issue C, 27/03/2013

- 1. Research existing background and historical information relating to the use of RTK GPS/GNSS in cadastral surveying: what current research exists and the findings and evaluations made by these sources and how this ties in with the research I will do.
- 2. Critically analyse existing research and confirm exactly what information exists and what will be required to find the results needed to answer the project questions.
- 3. Design a practical field measurement programme that will provide data that can be analysed and evaluated. This field work may be carried out over existing cadastral boundaries or known points so that measurements can be compared to real world, accurate data. Specifically;
  - a. the overall accuracy of RTK GPS/GNSS
  - b. minimum lengths of lines
  - c. close corner referencing
  - d. areas of uncertainty around measured points and how it corresponds to other points
  - e. observation time/type/technique (3s v 30s v 2min/topo) v OCP/bipod v tripod v tribrach/Continuously Operating Reference Stations (CORS) can be added to the mix)
  - f. at what length are conventional methods more appropriate as well as minimum backsight lengths

Measuring these will be carried out over baselines of varying lengths and by adjusting the observation time and type of the measurements. In particular, by setting up two rovers on a corner mark and the corresponding reference mark the accuracy of the created baseline will be easily observable. Different lengths will be used to examine whether errors increase over longer baselines, all the while different observation techniques will be employed. Even if the data appears reliable in the field, it will still be post-processed and the areas of uncertainty around each observation point will be examined.

This project has to essentially be reverse engineered to give the outcomes and results I am looking for. I will need to start with what the final outcome will look like (and the associated questions/answers which will come from the literature review and gaps in the SBQ guidelines) and manufacture what testing and analysis would be necessary to make those conclusions. Then I would need to determine what data is necessary for this step and finally create a testing regime to provide that data. This is not a case of falsifying the data to give the answers I want but rather determining what conditions are required to provide a chance to draw the conclusions I want.

- 4. Analyse field data, provide an evaluation and present findings in a manner suitable for professional evaluation or submission to key stakeholders such as the SBQ.
- 5. Based on results from examining field data identify practical solutions to the causes of the inaccuracies in RTK cadastral work and what measurement methods have provided the most reliable data. The objective being to take this data and expand on the SBQ guidelines and provide more detail to the practical components of the guidelines.
- 6. Analyse how these findings can be implemented into the current surveying industry and what benefits it will provide. Critically assess whether the research is necessary and provides a practical solution to the inexplicit aspects of the SBQ guidelines.

# **APPENDIX B: CORS RTK Checklist**



Surveyor General's Directions



#### CORS RTK CHECKLIST

| ISSUE                | GUIDELINE                                                                 |          |  |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|
| Equipment            | Is the GNSS receiver canable of Class C or better (10mm + 50npm)          | 01 11/4  |  |  |  |  |  |  |  |
| -1-1                 | Single frequency receiver must only measure lines under 10km              |          |  |  |  |  |  |  |  |
| 9                    | Single frequency for surveys not requiring strict accuracy                |          |  |  |  |  |  |  |  |
|                      | Dual frequency recommended                                                |          |  |  |  |  |  |  |  |
| Verification         | Receiver, method and software verified annually against GNSS test         |          |  |  |  |  |  |  |  |
|                      | network, an approved local network or minimum 4 established permanent     |          |  |  |  |  |  |  |  |
|                      | marks of Class B order 2 or better                                        |          |  |  |  |  |  |  |  |
| Validation           | every day and at each survey location by connection to a minimum of 2     |          |  |  |  |  |  |  |  |
|                      | established permanent marks                                               |          |  |  |  |  |  |  |  |
|                      | or by comparison with a measured EDM baseline                             |          |  |  |  |  |  |  |  |
| 6                    | Or against two AUSPOS stations (if >500m apart,>2hrs data, rapid orbits)  |          |  |  |  |  |  |  |  |
|                      | Or against a static GNSS measured line done to Class C standard or better |          |  |  |  |  |  |  |  |
| Orientation          | MGA orientation from two independent connections to established           |          |  |  |  |  |  |  |  |
| 2143 00947 (2430464) | permanent marks (can be CORS station if Class 3 or better).               |          |  |  |  |  |  |  |  |
|                      | Or, for rural surveys only, from a minimum two CORS RTK coordinated       |          |  |  |  |  |  |  |  |
|                      | survey marks if they are 1000m from established permanent survey marks.   |          |  |  |  |  |  |  |  |
|                      | >500m apart and permanent survey or reference marks                       |          |  |  |  |  |  |  |  |
|                      | Or, from plan on record showing comparison distance between at least two  |          |  |  |  |  |  |  |  |
|                      | existing survey monuments                                                 |          |  |  |  |  |  |  |  |
| Best Practice        | Never to be used to derive a line or distance to a reference mark under   |          |  |  |  |  |  |  |  |
|                      | 100m                                                                      |          |  |  |  |  |  |  |  |
|                      | Working from the whole to the part within a closed figure                 |          |  |  |  |  |  |  |  |
|                      | Always "run the boundary" where appropriate                               |          |  |  |  |  |  |  |  |
| 10<br>10             | minimum 2 minutes observation                                             | -        |  |  |  |  |  |  |  |
| Č                    | Multipath, obstructions or height required always increase observation    |          |  |  |  |  |  |  |  |
|                      | times                                                                     |          |  |  |  |  |  |  |  |
|                      | Minimum of two independent observations (i.e. using two CORS stations)    |          |  |  |  |  |  |  |  |
|                      | Independent observations at least 30 minutes apart                        |          |  |  |  |  |  |  |  |
| 1                    | Use correctly adjusted tripods or bipods only                             |          |  |  |  |  |  |  |  |
|                      | Check antenna height independently (mm & inches)                          |          |  |  |  |  |  |  |  |
|                      | Use the best antenna models available                                     |          |  |  |  |  |  |  |  |
|                      | PDOP should be <5                                                         |          |  |  |  |  |  |  |  |
|                      | At least 4 satellites should be available (more is always better)         |          |  |  |  |  |  |  |  |
|                      | Weather conditions should be stable                                       |          |  |  |  |  |  |  |  |
|                      | Ensure ambiguities are resolved                                           |          |  |  |  |  |  |  |  |
|                      | Elevation mask minimum 15°                                                |          |  |  |  |  |  |  |  |
| 2                    | Always use AUSGeoid09 parameters                                          |          |  |  |  |  |  |  |  |
|                      | CORS correction signal must be continuous during observation              |          |  |  |  |  |  |  |  |
| 0                    | Range poles only to be used for defining natural boundaries               |          |  |  |  |  |  |  |  |
| Plan                 | Lines derived from GNSS should be clearly indicated on plan               |          |  |  |  |  |  |  |  |
|                      | distances shown over 5 km should be Grid distances                        |          |  |  |  |  |  |  |  |
|                      | Distances shown under 5 km should be ground distances                     | <u> </u> |  |  |  |  |  |  |  |
| 1                    | SCIMS coordinate box should indicate an estimate of class for placed and  |          |  |  |  |  |  |  |  |
|                      | surveyed permanent marks                                                  |          |  |  |  |  |  |  |  |

# **APPENDIX C: Raw Data Survey Reports**

# Appendix C1: Total Station Observations 21 Aug 2013

| Survey C | Controller Re | duced P | oints    |         |           |              |         |               |                |      |          |           |
|----------|---------------|---------|----------|---------|-----------|--------------|---------|---------------|----------------|------|----------|-----------|
| Point    | B32           | East    | 5268.926 | 6 North | 14702.    | 834          | Elevat  | <b>ion</b> 68 | 34.680         | Code | •        | PSM       |
| Point    | B21           | East    | 5226.460 | North   | 14769.    | 760          | Elevat  | ion 68        | 36.040         | Code | ,        | PSM       |
| Point    | B22           | East    | 5344.963 | 3 North | 14708     | 080          | Elevat  | ion 68        | 32,950         | Code | •        | PSM       |
| Point    | <br>          | Fast    | 5265 825 | 5 North | 14619     | 162          | Flevat  | ion 68        | 85 560         | Code | •        | PSM       |
| Point    | B02           | Fast    | 5197 401 | 1 North | 14675     | 343          | Elevat  | ion 68        | 36 370         | Code | <u> </u> | PSM       |
| Point    | B35           | Fast    | 5183 581 | 1 North | 14631     | 412          | Elevat  | ion 68        | 37 305         | Code | ,<br>,   | PSM       |
| Point    | B24           | East    | 51/6 210 | North   | 14602     | 033          | Elevat  | ion 68        | 88 355         | Code |          |           |
| Point    | 1000          | Fact    | 5122.246 |         | 14550 600 | Elex         | (otion  |               | 7 Cod          |      | ,<br>    |           |
| Point    | 1000          | East    | 5132.240 | lanth   | 14556.606 | Elev         |         | 000.70        |                | e 3  |          | ADK 400M  |
| Point    | 1001          | East    | 5148.559 | North   | 14597.077 | Ele          | /ation  | 688.36        |                | e s  |          | ARK_160M  |
| Point    | 1002          | East    | 5176.658 | North   | 14625.951 | Elev         | ation   | 687.613       | 3 Cod          | e  S | SVYN     | 1ARK_120M |
| Point    | 1003          | East    | 5207.488 | North   | 14651.465 | Ele          | vation  | 686.58        | 33   <b>Co</b> | de   | SVY      | MARK_80M  |
| Point    | 1004          | East    | 5238.190 | North   | 14676.994 | Ele          | vation  | 685.75        | 56 <b>Co</b>   | de   | SVY      | MARK_40M  |
| Point    | 1005          | East    | 5254.894 | North   | 14688.084 | Ele          | vation  | 685.16        | 65 <b>Co</b>   | de   | SVY      | MARK_20M  |
| Point    | 1006          | East    | 5261.803 | North   | 14695.743 | Ele          | vation  | 684.99        | 99 <b>Co</b>   | de   | SVY      | MARK_10M  |
| Point    | 1007          | East    | 5265.210 | North   | 14699.58  | 0 <b>EI</b>  | evatior | n 684.8       | 95 <b>C</b>    | ode  | SV       | YMARK_5M  |
| Point    | 1008          | East    | 5267.133 | North   | 14701.73  | 6 <b>EI</b>  | evatior | n 684.8       | 827 <b>C</b> o | ode  | SV       | YMARK_2M  |
| Point    | 1009          | East    | 5183.582 | 2 North | 14631.    | 413          | Elevat  | ion 68        | 37.307         | Code | •        | B35       |
| Point    | 1010          | East    | 5268.919 | North   | 14702.836 | 6 Ele        | evation | 684.6         | 30 <b>Co</b>   | de   | SVY      | MARK_B32  |
| Point    | 1011          | East    | 5267.121 | North   | 14701.74  | 0 <b>EI</b>  | evatior | n 684.8       | 324 <b>C</b> o | ode  | SV       | YMARK_2M  |
| Point    | 1012          | East    | 5265.200 | North   | 14699.58  | 3 <b>E</b> I | evatior | n 684.8       | 890 <b>C</b> a | ode  | SV       | YMARK_5M  |
| Point    | 1013          | East    | 5261.795 | North   | 14695.748 | Ele          | vation  | 684.99        | 98 <b>Co</b>   | de   | SVY      | MARK_10M  |
| Point    | 1014          | East    | 5254.887 | North   | 14688.088 | Ele          | vation  | 685.16        | 64 <b>Co</b>   | de   | SVY      | MARK_20M  |
| Point    | 1015          | East    | 5238.184 | North   | 14676.991 | Ele          | vation  | 685.75        | 57 <b>Co</b>   | de   | SVY      | MARK_40M  |
| Point    | 1016          | East    | 5207.483 | North   | 14651.462 | Ele          | vation  | 686.58        | 38 <b>Co</b>   | de   | SVY      | MARK_80M  |
| Point    | 1017          | East    | 5176.652 | North   | 14625.949 | Elev         | vation  | 687.618       | B Cod          | e S  | SVYN     | IARK_120M |
| Point    | 1018          | East    | 5148.557 | North   | 14597.081 | Elev         | vation  | 688.373       | B Cod          | e S  | SVYN     | IARK_160M |
| Point    | 1019          | East    | 5132.244 | North   | 14556.605 | Elev         | /ation  | 688.794       | 1 Cod          | e S  | SVYN     | 1ARK_200M |
| Point    | 1020          | East    | 5146.221 | 1 North | 14602.    | 930          | Elevat  | <b>ion</b> 68 | 38.369         | Code | )        | B24       |

| Survey ( | Controller Redu | ced Poin | ts         |       |             |           |         |      |             |
|----------|-----------------|----------|------------|-------|-------------|-----------|---------|------|-------------|
| Point    | 42253           | East     | 394487.240 | North | 6946073.744 | Elevation | 690.691 | Code | PSM         |
| Point    | 40956           | East     | 394651.683 | North | 6945868.391 | Elevation | 689.794 | Code | PSM         |
| Point    | 40403           | East     | 394940.388 | North | 6945984.562 | Elevation | 684.598 | Code | PSM         |
| Point    | 40424           | East     | 394860.174 | North | 6945489.267 | Elevation | 683.293 | Code | PSM         |
| Point    | 38566           | East     | 394970.986 | North | 6946480.878 | Elevation | 681.007 | Code | PSM         |
| Point    | ANANGA1         | East     | 394586.985 | North | 6946490.639 | Elevation | 718.427 | Code | 1           |
| Point    | 1000            | East     | 394651.716 | North | 6945868.368 | Elevation | 689.506 | Code | STN_40956_L |
| Point    | 1001            | East     | 394651.715 | North | 6945868.369 | Elevation | 689.520 | Code | STN_40956_S |
| Point    | 1002            | East     | 394487.231 | North | 6946073.766 | Elevation | 690.429 | Code | STN_42253_S |
| Point    | 1003            | East     | 394487.232 | North | 6946073.767 | Elevation | 690.425 | Code | STN_42253_L |
| Point    | 1004            | East     | 394860.190 | North | 6945489.261 | Elevation | 683.028 | Code | STN_40424_L |
| Point    | 1005            | East     | 394860.192 | North | 6945489.249 | Elevation | 683.014 | Code | STN_40424_S |
| Point    | 1006            | East     | 394940.394 | North | 6945984.558 | Elevation | 684.312 | Code | STN_40403_S |
| Point    | 1007            | East     | 394940.393 | North | 6945984.555 | Elevation | 684.320 | Code | STN_40403_L |
| Point    | B32_1           | East     | 394855.808 | North | 6946193.598 | Elevation | 684.439 | Code | 3S RUN1     |
| Point    | 2M_1            | East     | 394854.009 | North | 6946192.499 | Elevation | 684.567 | Code | 3S RUN1     |
| Point    | 5M_1            | East     | 394852.096 | North | 6946190.342 | Elevation | 684.630 | Code | 3S RUN1     |
| Point    | 10M_1           | East     | 394848.684 | North | 6946186.503 | Elevation | 684.734 | Code | 3S RUN1     |
| Point    | 20M_1           | East     | 394841.797 | North | 6946178.863 | Elevation | 684.911 | Code | 3S RUN1     |
| Point    | 40M_1           | East     | 394825.076 | North | 6946167.763 | Elevation | 685.501 | Code | 3S RUN1     |
| Point    | 80M_1           | East     | 394794.404 | North | 6946142.242 | Elevation | 686.325 | Code | 3S RUN1     |
| Point    | 120M_1          | East     | 394763.567 | North | 6946116.744 | Elevation | 687.370 | Code | 3S RUN1     |
| Point    | 160M_1          | East     | 394735.476 | North | 6946087.874 | Elevation | 688.130 | Code | 3S RUN1     |
| Point    | 200M_1          | East     | 394719.177 | North | 6946047.430 | Elevation | 688.537 | Code | 3S RUN1     |
| Point    | 200M_2          | East     | 394719.176 | North | 6946047.425 | Elevation | 688.545 | Code | 3S RUN2     |
| Point    | 160M_2          | East     | 394735.481 | North | 6946087.884 | Elevation | 688.116 | Code | 3S RUN2     |
| Point    | 120M_2          | East     | 394763.555 | North | 6946116.756 | Elevation | 687.379 | Code | 3S RUN2     |
| Point    | 80M_2           | East     | 394794.383 | North | 6946142.250 | Elevation | 686.348 | Code | 3S RUN2     |
| Point    | 40M_2           | East     | 394825.078 | North | 6946167.769 | Elevation | 685.507 | Code | 3S RUN2     |
| Point    | 20M_2           | East     | 394841.767 | North | 6946178.861 | Elevation | 684.934 | Code | 3S RUN2     |
| Point    | 10M_2           | East     | 394848.665 | North | 6946186.517 | Elevation | 684.770 | Code | 3S RUN2     |
| Point    | 5M_2            | East     | 394852.080 | North | 6946190.353 | Elevation | 684.651 | Code | 3S RUN2     |
| Point    | 2M_2            | East     | 394854.001 | North | 6946192.514 | Elevation | 684.573 | Code | 3S RUN2     |
| Point    | B32_2           | East     | 394855.808 | North | 6946193.603 | Elevation | 684.439 | Code | 3S RUN2     |
| Point    | B32_3           | East     | 394855.804 | North | 6946193.605 | Elevation | 684.435 | Code | 3S RUN3     |
| Point    | 2M_3            | East     | 394854.015 | North | 6946192.509 | Elevation | 684.573 | Code | 3S RUN3     |
| Point    | 5M_3            | East     | 394852.097 | North | 6946190.345 | Elevation | 684.654 | Code | 3S RUN3     |

# Appendix C2: RTK Observations 8 Aug 2013

| Point | 10M_3  | East | 394848.681 | North | 6946186.504 | Elevation | 684.764 | Code | 3S RUN3 |
|-------|--------|------|------------|-------|-------------|-----------|---------|------|---------|
| Point | 20M_3  | East | 394841.780 | North | 6946178.845 | Elevation | 684.933 | Code | 3S RUN3 |
| Point | 40M_3  | East | 394825.071 | North | 6946167.767 | Elevation | 685.497 | Code | 3S RUN3 |
| Point | 80M_3  | East | 394794.390 | North | 6946142.246 | Elevation | 686.336 | Code | 3S RUN3 |
| Point | 120M_3 | East | 394763.569 | North | 6946116.734 | Elevation | 687.379 | Code | 3S RUN3 |
| Point | 160M_3 | East | 394735.494 | North | 6946087.884 | Elevation | 688.140 | Code | 3S RUN3 |
| Point | 200M_3 | East | 394719.167 | North | 6946047.429 | Elevation | 688.562 | Code | 3S RUN3 |
| Point | 200M_4 | East | 394719.159 | North | 6946047.438 | Elevation | 688.544 | Code | 3S RUN4 |
| Point | 160M_4 | East | 394735.456 | North | 6946087.890 | Elevation | 688.131 | Code | 3S RUN4 |
| Point | 120M_4 | East | 394763.538 | North | 6946116.745 | Elevation | 687.417 | Code | 3S RUN4 |
| Point | 80M_4  | East | 394794.366 | North | 6946142.252 | Elevation | 686.342 | Code | 3S RUN4 |
| Point | 40M_4  | East | 394825.065 | North | 6946167.773 | Elevation | 685.527 | Code | 3S RUN4 |
| Point | 20M_4  | East | 394841.768 | North | 6946178.860 | Elevation | 684.913 | Code | 3S RUN4 |
| Point | 10M_4  | East | 394848.663 | North | 6946186.518 | Elevation | 684.756 | Code | 3S RUN4 |
| Point | 5M_4   | East | 394852.072 | North | 6946190.343 | Elevation | 684.648 | Code | 3S RUN4 |
| Point | 2M_4   | East | 394853.998 | North | 6946192.503 | Elevation | 684.587 | Code | 3S RUN4 |
| Point | B32_4  | East | 394855.810 | North | 6946193.595 | Elevation | 684.454 | Code | 3S RUN4 |
| Point | B32_5  | East | 394855.811 | North | 6946193.615 | Elevation | 684.434 | Code | 3S RUN5 |
| Point | 2M_5   | East | 394854.014 | North | 6946192.497 | Elevation | 684.572 | Code | 3S RUN5 |
| Point | 5M_5   | East | 394852.096 | North | 6946190.343 | Elevation | 684.657 | Code | 3S RUN5 |
| Point | 10M_5  | East | 394848.687 | North | 6946186.511 | Elevation | 684.753 | Code | 3S RUN5 |
| Point | 20M_5  | East | 394841.780 | North | 6946178.859 | Elevation | 684.932 | Code | 3S RUN5 |
| Point | 40M_5  | East | 394825.075 | North | 6946167.775 | Elevation | 685.519 | Code | 3S RUN5 |
| Point | 80M_5  | East | 394794.386 | North | 6946142.247 | Elevation | 686.352 | Code | 3S RUN5 |
| Point | 120M_5 | East | 394763.546 | North | 6946116.741 | Elevation | 687.381 | Code | 3S RUN5 |
| Point | 160M_5 | East | 394735.480 | North | 6946087.890 | Elevation | 688.132 | Code | 3S RUN5 |
| Point | 200M_5 | East | 394719.160 | North | 6946047.434 | Elevation | 688.556 | Code | 3S RUN5 |
| Point | 200M_6 | East | 394719.164 | North | 6946047.433 | Elevation | 688.550 | Code | 3S RUN6 |
| Point | 160M_6 | East | 394735.464 | North | 6946087.887 | Elevation | 688.129 | Code | 3S RUN6 |
| Point | 120M_6 | East | 394763.546 | North | 6946116.739 | Elevation | 687.406 | Code | 3S RUN6 |
| Point | 80M_6  | East | 394794.372 | North | 6946142.253 | Elevation | 686.325 | Code | 3S RUN6 |
| Point | 40M_6  | East | 394825.077 | North | 6946167.767 | Elevation | 685.495 | Code | 3S RUN6 |
| Point | 20M_6  | East | 394841.759 | North | 6946178.857 | Elevation | 684.920 | Code | 3S RUN6 |
| Point | 10M_6  | East | 394848.672 | North | 6946186.511 | Elevation | 684.759 | Code | 3S RUN6 |
| Point | 5M_6   | East | 394852.073 | North | 6946190.339 | Elevation | 684.655 | Code | 3S RUN6 |
| Point | 2M_6   | East | 394853.999 | North | 6946192.499 | Elevation | 684.565 | Code | 3S RUN6 |
| Point | B32_6  | East | 394855.819 | North | 6946193.591 | Elevation | 684.413 | Code | 3S RUN6 |
| Point | B32_7  | East | 394855.814 | North | 6946193.594 | Elevation | 684.425 | Code | 3S RUN7 |
| Point | 2M_7   | East | 394854.020 | North | 6946192.497 | Elevation | 684.563 | Code | 3S RUN7 |
| Point | 5M_7   | East | 394852.096 | North | 6946190.348 | Elevation | 684.637 | Code | 3S RUN7 |

| Point | 10M_7   | East | 394848.687 | North | 6946186.509 | Elevation | 684.736 | Code | 3S RUN7  |
|-------|---------|------|------------|-------|-------------|-----------|---------|------|----------|
| Point | 20M_7   | East | 394841.788 | North | 6946178.863 | Elevation | 684.905 | Code | 3S RUN7  |
| Point | 40M_7   | East | 394825.083 | North | 6946167.772 | Elevation | 685.491 | Code | 3S RUN7  |
| Point | 80M_7   | East | 394794.388 | North | 6946142.244 | Elevation | 686.329 | Code | 3S RUN7  |
| Point | 120M_7  | East | 394763.562 | North | 6946116.742 | Elevation | 687.379 | Code | 3S RUN7  |
| Point | 160M_7  | East | 394735.490 | North | 6946087.886 | Elevation | 688.125 | Code | 3S RUN7  |
| Point | 200M_7  | East | 394719.163 | North | 6946047.431 | Elevation | 688.546 | Code | 3S RUN7  |
| Point | 200M_8  | East | 394719.172 | North | 6946047.440 | Elevation | 688.540 | Code | 3S RUN8  |
| Point | 160M_8  | East | 394735.464 | North | 6946087.895 | Elevation | 688.109 | Code | 3S RUN8  |
| Point | 120M_8  | East | 394763.558 | North | 6946116.759 | Elevation | 687.345 | Code | 3S RUN8  |
| Point | 80M_8   | East | 394794.378 | North | 6946142.259 | Elevation | 686.322 | Code | 3S RUN8  |
| Point | 40M_8   | East | 394825.076 | North | 6946167.782 | Elevation | 685.522 | Code | 3S RUN8  |
| Point | 20M_8   | East | 394841.768 | North | 6946178.862 | Elevation | 684.924 | Code | 3S RUN8  |
| Point | 10M_8   | East | 394848.674 | North | 6946186.507 | Elevation | 684.762 | Code | 3S RUN8  |
| Point | 5M_8    | East | 394852.072 | North | 6946190.351 | Elevation | 684.648 | Code | 3S RUN8  |
| Point | 2M_8    | East | 394853.987 | North | 6946192.504 | Elevation | 684.588 | Code | 3S RUN8  |
| Point | B32_8   | East | 394855.783 | North | 6946193.612 | Elevation | 684.431 | Code | 3S RUN8  |
| Point | B32_9   | East | 394855.790 | North | 6946193.610 | Elevation | 684.435 | Code | 3S RUN9  |
| Point | 2M_9    | East | 394854.007 | North | 6946192.502 | Elevation | 684.585 | Code | 3S RUN9  |
| Point | 5M_9    | East | 394852.086 | North | 6946190.349 | Elevation | 684.661 | Code | 3S RUN9  |
| Point | 10M_9   | East | 394848.677 | North | 6946186.517 | Elevation | 684.762 | Code | 3S RUN9  |
| Point | 20M_9   | East | 394841.780 | North | 6946178.863 | Elevation | 684.935 | Code | 3S RUN9  |
| Point | 40M_9   | East | 394825.082 | North | 6946167.783 | Elevation | 685.518 | Code | 3S RUN9  |
| Point | 80M_9   | East | 394794.379 | North | 6946142.246 | Elevation | 686.339 | Code | 3S RUN9  |
| Point | 120M_9  | East | 394763.570 | North | 6946116.730 | Elevation | 687.379 | Code | 3S RUN9  |
| Point | 160M_9  | East | 394735.481 | North | 6946087.891 | Elevation | 688.132 | Code | 3S RUN9  |
| Point | 200M_9  | East | 394719.170 | North | 6946047.427 | Elevation | 688.544 | Code | 3S RUN9  |
| Point | 200M_10 | East | 394719.167 | North | 6946047.432 | Elevation | 688.546 | Code | 3S RUN10 |
| Point | 160M_10 | East | 394735.464 | North | 6946087.884 | Elevation | 688.128 | Code | 3S RUN10 |
| Point | 120M_10 | East | 394763.568 | North | 6946116.739 | Elevation | 687.357 | Code | 3S RUN10 |
| Point | 80M_10  | East | 394794.383 | North | 6946142.248 | Elevation | 686.326 | Code | 3S RUN10 |
| Point | 40M_10  | East | 394825.065 | North | 6946167.764 | Elevation | 685.511 | Code | 3S RUN10 |
| Point | 20M_10  | East | 394841.767 | North | 6946178.855 | Elevation | 684.915 | Code | 3S RUN10 |
| Point | 10M_10  | East | 394848.666 | North | 6946186.505 | Elevation | 684.750 | Code | 3S RUN10 |
| Point | 5M_10   | East | 394852.077 | North | 6946190.340 | Elevation | 684.641 | Code | 3S RUN10 |
| Point | 2M_10   | East | 394853.998 | North | 6946192.500 | Elevation | 684.578 | Code | 3S RUN10 |
| Point | B32_10  | East | 394855.812 | North | 6946193.594 | Elevation | 684.438 | Code | 3S RUN10 |
| Point | B32_11  | East | 394855.812 | North | 6946193.595 | Elevation | 684.445 | Code | 3S RUN11 |
| Point | 2M_11   | East | 394854.020 | North | 6946192.505 | Elevation | 684.588 | Code | 3S RUN11 |
| Point | 5M_11   | East | 394852.097 | North | 6946190.347 | Elevation | 684.662 | Code | 3S RUN11 |

| Point | 10M_11  | East | 394848.689 | North | 6946186.505 | Elevation | 684.754 | Code | 3S RUN11 |
|-------|---------|------|------------|-------|-------------|-----------|---------|------|----------|
| Point | 20M_11  | East | 394841.790 | North | 6946178.857 | Elevation | 684.923 | Code | 3S RUN11 |
| Point | 40M_11  | East | 394825.096 | North | 6946167.763 | Elevation | 685.502 | Code | 3S RUN11 |
| Point | 80M_11  | East | 394794.394 | North | 6946142.241 | Elevation | 686.335 | Code | 3S RUN11 |
| Point | 120M_11 | East | 394763.575 | North | 6946116.728 | Elevation | 687.380 | Code | 3S RUN11 |
| Point | 160M_11 | East | 394735.487 | North | 6946087.883 | Elevation | 688.129 | Code | 3S RUN11 |
| Point | 200M_11 | East | 394719.166 | North | 6946047.428 | Elevation | 688.557 | Code | 3S RUN11 |
| Point | 200M_12 | East | 394719.172 | North | 6946047.440 | Elevation | 688.559 | Code | 3S RUN12 |
| Point | 160M_12 | East | 394735.472 | North | 6946087.884 | Elevation | 688.129 | Code | 3S RUN12 |
| Point | 120M_12 | East | 394763.559 | North | 6946116.746 | Elevation | 687.384 | Code | 3S RUN12 |
| Point | 80M_12  | East | 394794.375 | North | 6946142.242 | Elevation | 686.353 | Code | 3S RUN12 |
| Point | 40M_12  | East | 394825.067 | North | 6946167.772 | Elevation | 685.518 | Code | 3S RUN12 |
| Point | 20M_12  | East | 394841.768 | North | 6946178.854 | Elevation | 684.927 | Code | 3S RUN12 |
| Point | 10M_12  | East | 394848.673 | North | 6946186.500 | Elevation | 684.761 | Code | 3S RUN12 |
| Point | 5M_12   | East | 394852.072 | North | 6946190.347 | Elevation | 684.656 | Code | 3S RUN12 |
| Point | 2M_12   | East | 394853.991 | North | 6946192.495 | Elevation | 684.579 | Code | 3S RUN12 |
| Point | B32_12  | East | 394855.808 | North | 6946193.604 | Elevation | 684.424 | Code | 3S RUN12 |
| Point | B32_13  | East | 394855.812 | North | 6946193.596 | Elevation | 684.423 | Code | 3S RUN13 |
| Point | 2M_13   | East | 394853.997 | North | 6946192.478 | Elevation | 684.559 | Code | 3S RUN13 |
| Point | 5M_13   | East | 394852.086 | North | 6946190.342 | Elevation | 684.645 | Code | 3S RUN13 |
| Point | 10M_13  | East | 394848.687 | North | 6946186.501 | Elevation | 684.747 | Code | 3S RUN13 |
| Point | 20M_13  | East | 394841.792 | North | 6946178.851 | Elevation | 684.922 | Code | 3S RUN13 |
| Point | 40M_13  | East | 394825.094 | North | 6946167.767 | Elevation | 685.515 | Code | 3S RUN13 |
| Point | 80M_13  | East | 394794.405 | North | 6946142.232 | Elevation | 686.345 | Code | 3S RUN13 |
| Point | 120M_13 | East | 394763.557 | North | 6946116.710 | Elevation | 687.391 | Code | 3S RUN13 |
| Point | 160M_13 | East | 394735.482 | North | 6946087.883 | Elevation | 688.151 | Code | 3S RUN13 |
| Point | 200M_13 | East | 394719.161 | North | 6946047.421 | Elevation | 688.545 | Code | 3S RUN13 |
| Point | 200M_14 | East | 394719.159 | North | 6946047.425 | Elevation | 688.542 | Code | 3S RUN14 |
| Point | 160M_14 | East | 394735.462 | North | 6946087.888 | Elevation | 688.136 | Code | 3S RUN14 |
| Point | 120M_14 | East | 394763.560 | North | 6946116.744 | Elevation | 687.374 | Code | 3S RUN14 |
| Point | 80M_14  | East | 394794.384 | North | 6946142.243 | Elevation | 686.311 | Code | 3S RUN14 |
| Point | 40M_14  | East | 394825.075 | North | 6946167.770 | Elevation | 685.512 | Code | 3S RUN14 |
| Point | 20M_14  | East | 394841.762 | North | 6946178.863 | Elevation | 684.923 | Code | 3S RUN14 |
| Point | 10M_14  | East | 394848.664 | North | 6946186.510 | Elevation | 684.751 | Code | 3S RUN14 |
| Point | 5M_14   | East | 394852.070 | North | 6946190.345 | Elevation | 684.642 | Code | 3S RUN14 |
| Point | 2M_14   | East | 394853.990 | North | 6946192.501 | Elevation | 684.585 | Code | 3S RUN14 |
| Point | B32_14  | East | 394855.819 | North | 6946193.601 | Elevation | 684.423 | Code | 3S RUN14 |
| Point | B32_15  | East | 394855.815 | North | 6946193.593 | Elevation | 684.433 | Code | 3S RUN15 |
| Point | 2M_15   | East | 394854.022 | North | 6946192.497 | Elevation | 684.579 | Code | 3S RUN15 |
| Point | 5M_15   | East | 394852.098 | North | 6946190.343 | Elevation | 684.647 | Code | 3S RUN15 |

| Point | 10M_15  | East | 394848.691 | North | 6946186.495 | Elevation | 684.745 | Code | 3S RUN15 |
|-------|---------|------|------------|-------|-------------|-----------|---------|------|----------|
| Point | 20M_15  | East | 394841.778 | North | 6946178.856 | Elevation | 684.906 | Code | 3S RUN15 |
| Point | 40M_15  | East | 394825.091 | North | 6946167.779 | Elevation | 685.505 | Code | 3S RUN15 |
| Point | 80M_15  | East | 394794.399 | North | 6946142.249 | Elevation | 686.333 | Code | 3S RUN15 |
| Point | 120M_15 | East | 394763.583 | North | 6946116.733 | Elevation | 687.367 | Code | 3S RUN15 |
| Point | 160M_15 | East | 394735.486 | North | 6946087.881 | Elevation | 688.123 | Code | 3S RUN15 |
| Point | 200M_15 | East | 394719.164 | North | 6946047.425 | Elevation | 688.551 | Code | 3S RUN15 |
| Point | 200M_16 | East | 394719.150 | North | 6946047.423 | Elevation | 688.555 | Code | 3S RUN16 |
| Point | 160M_16 | East | 394735.477 | North | 6946087.887 | Elevation | 688.122 | Code | 3S RUN16 |
| Point | 120M_16 | East | 394763.553 | North | 6946116.749 | Elevation | 687.370 | Code | 3S RUN16 |
| Point | 80M_16  | East | 394794.381 | North | 6946142.263 | Elevation | 686.336 | Code | 3S RUN16 |
| Point | 40M_16  | East | 394825.073 | North | 6946167.778 | Elevation | 685.498 | Code | 3S RUN16 |
| Point | 20M_16  | East | 394841.774 | North | 6946178.860 | Elevation | 684.913 | Code | 3S RUN16 |
| Point | 10M_16  | East | 394848.673 | North | 6946186.516 | Elevation | 684.748 | Code | 3S RUN16 |
| Point | 5M_16   | East | 394852.077 | North | 6946190.346 | Elevation | 684.643 | Code | 3S RUN16 |
| Point | 2M_16   | East | 394854.010 | North | 6946192.503 | Elevation | 684.574 | Code | 3S RUN16 |
| Point | B32_16  | East | 394855.812 | North | 6946193.597 | Elevation | 684.426 | Code | 3S RUN16 |
| Point | B32_17  | East | 394855.813 | North | 6946193.605 | Elevation | 684.426 | Code | 3S RUN17 |
| Point | 2M_17   | East | 394854.006 | North | 6946192.505 | Elevation | 684.580 | Code | 3S RUN17 |
| Point | 5M_17   | East | 394852.088 | North | 6946190.349 | Elevation | 684.647 | Code | 3S RUN17 |
| Point | 10M_17  | East | 394848.687 | North | 6946186.510 | Elevation | 684.746 | Code | 3S RUN17 |
| Point | 20M_17  | East | 394841.780 | North | 6946178.862 | Elevation | 684.917 | Code | 3S RUN17 |
| Point | 40M_17  | East | 394825.081 | North | 6946167.768 | Elevation | 685.511 | Code | 3S RUN17 |
| Point | 80M_17  | East | 394794.386 | North | 6946142.253 | Elevation | 686.341 | Code | 3S RUN17 |
| Point | 120M_17 | East | 394763.563 | North | 6946116.723 | Elevation | 687.384 | Code | 3S RUN17 |
| Point | 160M_17 | East | 394735.493 | North | 6946087.883 | Elevation | 688.130 | Code | 3S RUN17 |
| Point | 200M_17 | East | 394719.162 | North | 6946047.433 | Elevation | 688.548 | Code | 3S RUN17 |
| Point | 200M_18 | East | 394719.173 | North | 6946047.431 | Elevation | 688.547 | Code | 3S RUN18 |
| Point | 160M_18 | East | 394735.471 | North | 6946087.887 | Elevation | 688.135 | Code | 3S RUN18 |
| Point | 120M_18 | East | 394763.555 | North | 6946116.747 | Elevation | 687.389 | Code | 3S RUN18 |
| Point | 80M_18  | East | 394794.375 | North | 6946142.259 | Elevation | 686.334 | Code | 3S RUN18 |
| Point | 40M_18  | East | 394825.070 | North | 6946167.778 | Elevation | 685.515 | Code | 3S RUN18 |
| Point | 20M_18  | East | 394841.767 | North | 6946178.867 | Elevation | 684.915 | Code | 3S RUN18 |
| Point | 10M_18  | East | 394848.659 | North | 6946186.514 | Elevation | 684.755 | Code | 3S RUN18 |
| Point | 5M_18   | East | 394852.060 | North | 6946190.348 | Elevation | 684.643 | Code | 3S RUN18 |
| Point | 2M_18   | East | 394853.994 | North | 6946192.508 | Elevation | 684.576 | Code | 3S RUN18 |
| Point | B32_18  | East | 394855.815 | North | 6946193.596 | Elevation | 684.432 | Code | 3S RUN18 |
| Point | B32_19  | East | 394855.813 | North | 6946193.592 | Elevation | 684.426 | Code | 3S RUN19 |
| Point | 2M_19   | East | 394854.017 | North | 6946192.499 | Elevation | 684.572 | Code | 3S RUN19 |
| Point | 5M 19   | East | 394852.096 | North | 6946190.332 | Elevation | 684.640 | Code | 3S RUN19 |

| Point | 10M_19  | East | 394848.689 | North | 6946186.508 | Elevation | 684.747 | Code | 3S RUN19 |
|-------|---------|------|------------|-------|-------------|-----------|---------|------|----------|
| Point | 20M_19  | East | 394841.778 | North | 6946178.856 | Elevation | 684.914 | Code | 3S RUN19 |
| Point | 40M_19  | East | 394825.086 | North | 6946167.770 | Elevation | 685.509 | Code | 3S RUN19 |
| Point | 80M_19  | East | 394794.386 | North | 6946142.247 | Elevation | 686.336 | Code | 3S RUN19 |
| Point | 120M_19 | East | 394763.562 | North | 6946116.738 | Elevation | 687.373 | Code | 3S RUN19 |
| Point | 160M_19 | East | 394735.479 | North | 6946087.883 | Elevation | 688.118 | Code | 3S RUN19 |
| Point | 200M_19 | East | 394719.165 | North | 6946047.439 | Elevation | 688.549 | Code | 3S RUN19 |
| Point | 200M_20 | East | 394719.170 | North | 6946047.428 | Elevation | 688.552 | Code | 3S RUN20 |
| Point | 160M_20 | East | 394735.472 | North | 6946087.886 | Elevation | 688.110 | Code | 3S RUN20 |
| Point | 120M_20 | East | 394763.546 | North | 6946116.750 | Elevation | 687.385 | Code | 3S RUN20 |
| Point | 80M_20  | East | 394794.372 | North | 6946142.258 | Elevation | 686.348 | Code | 3S RUN20 |
| Point | 40M_20  | East | 394825.060 | North | 6946167.772 | Elevation | 685.507 | Code | 3S RUN20 |
| Point | 20M_20  | East | 394841.762 | North | 6946178.855 | Elevation | 684.917 | Code | 3S RUN20 |
| Point | 10M_20  | East | 394848.669 | North | 6946186.506 | Elevation | 684.755 | Code | 3S RUN20 |
| Point | 5M_20   | East | 394852.080 | North | 6946190.349 | Elevation | 684.651 | Code | 3S RUN20 |
| Point | 2M_20   | East | 394853.997 | North | 6946192.500 | Elevation | 684.593 | Code | 3S RUN20 |
| Point | B32_20  | East | 394855.813 | North | 6946193.592 | Elevation | 684.436 | Code | 3S RUN20 |
| Point | B32_21  | East | 394855.808 | North | 6946193.604 | Elevation | 684.431 | Code | 3S RUN21 |
| Point | 2M_21   | East | 394854.011 | North | 6946192.502 | Elevation | 684.578 | Code | 3S RUN21 |
| Point | 5M_21   | East | 394852.098 | North | 6946190.346 | Elevation | 684.649 | Code | 3S RUN21 |
| Point | 10M_21  | East | 394848.671 | North | 6946186.529 | Elevation | 684.751 | Code | 3S RUN21 |
| Point | 20M_21  | East | 394841.790 | North | 6946178.852 | Elevation | 684.918 | Code | 3S RUN21 |
| Point | 40M_21  | East | 394825.088 | North | 6946167.766 | Elevation | 685.500 | Code | 3S RUN21 |
| Point | 80M_21  | East | 394794.390 | North | 6946142.240 | Elevation | 686.333 | Code | 3S RUN21 |
| Point | 120M_21 | East | 394763.570 | North | 6946116.734 | Elevation | 687.370 | Code | 3S RUN21 |
| Point | 160M_21 | East | 394735.491 | North | 6946087.879 | Elevation | 688.120 | Code | 3S RUN21 |
| Point | 200M_21 | East | 394719.164 | North | 6946047.426 | Elevation | 688.550 | Code | 3S RUN21 |
| Point | 200M_22 | East | 394719.155 | North | 6946047.430 | Elevation | 688.545 | Code | 3S RUN22 |
| Point | 160M_22 | East | 394735.475 | North | 6946087.895 | Elevation | 688.127 | Code | 3S RUN22 |
| Point | 120M_22 | East | 394763.552 | North | 6946116.739 | Elevation | 687.364 | Code | 3S RUN22 |
| Point | 80M_22  | East | 394794.378 | North | 6946142.245 | Elevation | 686.332 | Code | 3S RUN22 |
| Point | 40M_22  | East | 394825.078 | North | 6946167.767 | Elevation | 685.502 | Code | 3S RUN22 |
| Point | 20M_22  | East | 394841.771 | North | 6946178.854 | Elevation | 684.906 | Code | 3S RUN22 |
| Point | 10M_22  | East | 394848.660 | North | 6946186.513 | Elevation | 684.749 | Code | 3S RUN22 |
| Point | 5M_22   | East | 394852.084 | North | 6946190.346 | Elevation | 684.649 | Code | 3S RUN22 |
| Point | 2M_22   | East | 394853.993 | North | 6946192.504 | Elevation | 684.575 | Code | 3S RUN22 |
| Point | B32_22  | East | 394855.819 | North | 6946193.610 | Elevation | 684.430 | Code | 3S RUN22 |
| Point | B32_23  | East | 394855.820 | North | 6946193.593 | Elevation | 684.425 | Code | 3S RUN23 |
| Point | 2M_23   | East | 394854.011 | North | 6946192.497 | Elevation | 684.566 | Code | 3S RUN23 |
| Point | 5M 23   | East | 394852.080 | North | 6946190.339 | Elevation | 684.642 | Code | 3S RUN23 |

| Point | 10M_23  | East | 394848.690 | North | 6946186.508 | Elevation | 684.747 | Code | 3S RUN23 |
|-------|---------|------|------------|-------|-------------|-----------|---------|------|----------|
| Point | 20M_23  | East | 394841.775 | North | 6946178.847 | Elevation | 684.919 | Code | 3S RUN23 |
| Point | 40M_23  | East | 394825.089 | North | 6946167.761 | Elevation | 685.508 | Code | 3S RUN23 |
| Point | 80M_23  | East | 394794.400 | North | 6946142.244 | Elevation | 686.340 | Code | 3S RUN23 |
| Point | 120M_23 | East | 394763.571 | North | 6946116.731 | Elevation | 687.365 | Code | 3S RUN23 |
| Point | 160M_23 | East | 394735.488 | North | 6946087.871 | Elevation | 688.127 | Code | 3S RUN23 |
| Point | 200M_23 | East | 394719.166 | North | 6946047.422 | Elevation | 688.542 | Code | 3S RUN23 |
| Point | 200M_24 | East | 394719.161 | North | 6946047.426 | Elevation | 688.544 | Code | 3S RUN24 |
| Point | 160M_24 | East | 394735.478 | North | 6946087.878 | Elevation | 688.125 | Code | 3S RUN24 |
| Point | 120M_24 | East | 394763.549 | North | 6946116.735 | Elevation | 687.382 | Code | 3S RUN24 |
| Point | 80M_24  | East | 394794.383 | North | 6946142.246 | Elevation | 686.320 | Code | 3S RUN24 |
| Point | 40M_24  | East | 394825.077 | North | 6946167.767 | Elevation | 685.504 | Code | 3S RUN24 |
| Point | 20M_24  | East | 394841.776 | North | 6946178.847 | Elevation | 684.905 | Code | 3S RUN24 |
| Point | 10M_24  | East | 394848.665 | North | 6946186.504 | Elevation | 684.740 | Code | 3S RUN24 |
| Point | 5M_24   | East | 394852.073 | North | 6946190.342 | Elevation | 684.630 | Code | 3S RUN24 |
| Point | 2M_24   | East | 394853.991 | North | 6946192.496 | Elevation | 684.565 | Code | 3S RUN24 |
| Point | B32_24  | East | 394855.808 | North | 6946193.599 | Elevation | 684.427 | Code | 3S RUN24 |
| Point | B32_25  | East | 394855.810 | North | 6946193.597 | Elevation | 684.431 | Code | 3S RUN25 |
| Point | 2M_25   | East | 394854.016 | North | 6946192.503 | Elevation | 684.574 | Code | 3S RUN25 |
| Point | 5M_25   | East | 394852.092 | North | 6946190.340 | Elevation | 684.640 | Code | 3S RUN25 |
| Point | 10M_25  | East | 394848.681 | North | 6946186.500 | Elevation | 684.744 | Code | 3S RUN25 |
| Point | 20M_25  | East | 394841.787 | North | 6946178.854 | Elevation | 684.914 | Code | 3S RUN25 |
| Point | 40M_25  | East | 394825.091 | North | 6946167.766 | Elevation | 685.511 | Code | 3S RUN25 |
| Point | 80M_25  | East | 394794.392 | North | 6946142.248 | Elevation | 686.335 | Code | 3S RUN25 |
| Point | 120M_25 | East | 394763.574 | North | 6946116.728 | Elevation | 687.368 | Code | 3S RUN25 |
| Point | 160M_25 | East | 394735.490 | North | 6946087.863 | Elevation | 688.116 | Code | 3S RUN25 |
| Point | 200M_25 | East | 394719.156 | North | 6946047.415 | Elevation | 688.542 | Code | 3S RUN25 |
| Point | 200M_26 | East | 394719.162 | North | 6946047.428 | Elevation | 688.541 | Code | 3S RUN26 |
| Point | 160M_26 | East | 394735.474 | North | 6946087.881 | Elevation | 688.111 | Code | 3S RUN26 |
| Point | 120M_26 | East | 394763.545 | North | 6946116.737 | Elevation | 687.368 | Code | 3S RUN26 |
| Point | 80M_26  | East | 394794.370 | North | 6946142.261 | Elevation | 686.335 | Code | 3S RUN26 |
| Point | 40M_26  | East | 394825.068 | North | 6946167.769 | Elevation | 685.510 | Code | 3S RUN26 |
| Point | 20M_26  | East | 394841.755 | North | 6946178.850 | Elevation | 684.917 | Code | 3S RUN26 |
| Point | 10M_26  | East | 394848.663 | North | 6946186.501 | Elevation | 684.747 | Code | 3S RUN26 |
| Point | 5M_26   | East | 394852.083 | North | 6946190.348 | Elevation | 684.641 | Code | 3S RUN26 |
| Point | 2M_26   | East | 394854.001 | North | 6946192.496 | Elevation | 684.575 | Code | 3S RUN26 |
| Point | B32_26  | East | 394855.785 | North | 6946193.609 | Elevation | 684.432 | Code | 3S RUN26 |
| Point | B32_27  | East | 394855.811 | North | 6946193.592 | Elevation | 684.433 | Code | 3S RUN27 |
| Point | 2M_27   | East | 394854.010 | North | 6946192.510 | Elevation | 684.575 | Code | 3S RUN27 |
| Point | 5M_27   | East | 394852.093 | North | 6946190.336 | Elevation | 684.642 | Code | 3S RUN27 |

| Point | 10M_27     | East | 394848.687 | North | 6946186.502 | Elevation | 684.749 | Code | 3S RUN27      |
|-------|------------|------|------------|-------|-------------|-----------|---------|------|---------------|
| Point | 20M_27     | East | 394841.777 | North | 6946178.851 | Elevation | 684.909 | Code | 3S RUN27      |
| Point | 40M_27     | East | 394825.089 | North | 6946167.760 | Elevation | 685.504 | Code | 3S RUN27      |
| Point | 80M_27     | East | 394794.382 | North | 6946142.237 | Elevation | 686.338 | Code | 3S RUN27      |
| Point | 120M_27    | East | 394763.571 | North | 6946116.744 | Elevation | 687.365 | Code | 3S RUN27      |
| Point | 160M_27    | East | 394735.485 | North | 6946087.878 | Elevation | 688.126 | Code | 3S RUN27      |
| Point | 200M_27    | East | 394719.168 | North | 6946047.435 | Elevation | 688.550 | Code | 3S RUN27      |
| Point | 200M_28    | East | 394719.162 | North | 6946047.433 | Elevation | 688.554 | Code | 3S RUN28      |
| Point | 160M_28    | East | 394735.474 | North | 6946087.903 | Elevation | 688.119 | Code | 3S RUN28      |
| Point | 120M_28    | East | 394763.555 | North | 6946116.751 | Elevation | 687.371 | Code | 3S RUN28      |
| Point | 80M_28     | East | 394794.389 | North | 6946142.251 | Elevation | 686.344 | Code | 3S RUN28      |
| Point | 40M_28     | East | 394825.076 | North | 6946167.775 | Elevation | 685.512 | Code | 3S RUN28      |
| Point | 20M_28     | East | 394841.758 | North | 6946178.864 | Elevation | 684.922 | Code | 3S RUN28      |
| Point | 10M_28     | East | 394848.667 | North | 6946186.510 | Elevation | 684.748 | Code | 3S RUN28      |
| Point | 5M_28      | East | 394852.089 | North | 6946190.339 | Elevation | 684.645 | Code | 3S RUN28      |
| Point | 2M_28      | East | 394854.001 | North | 6946192.505 | Elevation | 684.578 | Code | 3S RUN28      |
| Point | B32_28     | East | 394855.812 | North | 6946193.604 | Elevation | 684.438 | Code | 3S RUN28      |
| Point | B32_29     | East | 394855.815 | North | 6946193.604 | Elevation | 684.444 | Code | 3S RUN29      |
| Point | 2M_29      | East | 394853.996 | North | 6946192.512 | Elevation | 684.589 | Code | 3S RUN29      |
| Point | 5M_29      | East | 394852.091 | North | 6946190.359 | Elevation | 684.649 | Code | 3S RUN29      |
| Point | 10M_29     | East | 394848.684 | North | 6946186.522 | Elevation | 684.760 | Code | 3S RUN29      |
| Point | 20M_29     | East | 394841.780 | North | 6946178.855 | Elevation | 684.927 | Code | 3S RUN29      |
| Point | 40M_29     | East | 394825.080 | North | 6946167.770 | Elevation | 685.511 | Code | 3S RUN29      |
| Point | 80M_29     | East | 394794.394 | North | 6946142.241 | Elevation | 686.340 | Code | 3S RUN29      |
| Point | 120M_29    | East | 394763.561 | North | 6946116.756 | Elevation | 687.372 | Code | 3S RUN29      |
| Point | 160M_29    | East | 394735.479 | North | 6946087.878 | Elevation | 688.119 | Code | 3S RUN29      |
| Point | 200M_29    | East | 394719.174 | North | 6946047.431 | Elevation | 688.549 | Code | 3S RUN29      |
| Point | 200M_30    | East | 394719.177 | North | 6946047.430 | Elevation | 688.550 | Code | 3S RUN30      |
| Point | 160M_30    | East | 394735.473 | North | 6946087.890 | Elevation | 688.129 | Code | 3S RUN30      |
| Point | 120M_30    | East | 394763.552 | North | 6946116.750 | Elevation | 687.373 | Code | 3S RUN30      |
| Point | 80M_30     | East | 394794.378 | North | 6946142.250 | Elevation | 686.344 | Code | 3S RUN30      |
| Point | 40M_30     | East | 394825.073 | North | 6946167.771 | Elevation | 685.502 | Code | 3S RUN30      |
| Point | 20M_30     | East | 394841.767 | North | 6946178.858 | Elevation | 684.914 | Code | 3S RUN30      |
| Point | 10M_30     | East | 394848.661 | North | 6946186.507 | Elevation | 684.748 | Code | 3S RUN30      |
| Point | 5M_30      | East | 394852.081 | North | 6946190.345 | Elevation | 684.638 | Code | 3S RUN30      |
| Point | 2M_30      | East | 394853.996 | North | 6946192.490 | Elevation | 684.569 | Code | 3S RUN30      |
| Point | B32_30     | East | 394855.815 | North | 6946193.595 | Elevation | 684.431 | Code | 3S RUN30      |
| Point | 30BP_1_B32 | East | 394855.814 | North | 6946193.596 | Elevation | 684.441 | Code | 30SBP<br>RUN1 |
|       |            |      |            |       |             |           |         |      |               |

| Point | 30BP_1_5M   | East   | 394852.089 | North | 6946190.339 | Elevation | 684.640 | Code | 30SBP<br>RUN1 |
|-------|-------------|--------|------------|-------|-------------|-----------|---------|------|---------------|
| Point | 30BP_1_10M  | East   | 394848.685 | North | 6946186.498 | Elevation | 684.745 | Code | 30SBP<br>RUN1 |
| Point | 30BP_1_20M  | East   | 394841.786 | North | 6946178.851 | Elevation | 684.916 | Code | 30SBP<br>RUN1 |
| Point | 30BP_1_40M  | East   | 394825.093 | North | 6946167.762 | Elevation | 685.506 | Code | 30SBP<br>RUN1 |
| Point | 30BP_1_80M  | East   | 394794.393 | North | 6946142.235 | Elevation | 686.337 | Code | 30SBP<br>RUN1 |
| Point | 30BP_1_120M | I East | 394763.572 | North | 6946116.738 | Elevation | 687.371 | Code | 30SBP<br>RUN1 |
| Point | 30BP_1_160M | I East | 394735.490 | North | 6946087.881 | Elevation | 688.126 | Code | 30SBP<br>RUN1 |
| Point | 30BP_1_200M | I East | 394719.181 | North | 6946047.435 | Elevation | 688.538 | Code | 30SBP<br>RUN1 |
| Point | 30BP_2_B32  | East   | 394855.811 | North | 6946193.597 | Elevation | 684.437 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_2M   | East   | 394854.017 | North | 6946192.487 | Elevation | 684.567 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_5M   | East   | 394852.100 | North | 6946190.328 | Elevation | 684.636 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_10M  | East   | 394848.689 | North | 6946186.498 | Elevation | 684.749 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_20M  | East   | 394841.792 | North | 6946178.846 | Elevation | 684.910 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_40M  | East   | 394825.085 | North | 6946167.750 | Elevation | 685.509 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_80M  | East   | 394794.396 | North | 6946142.232 | Elevation | 686.337 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_120M | I East | 394763.576 | North | 6946116.736 | Elevation | 687.374 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_160M | I East | 394735.498 | North | 6946087.870 | Elevation | 688.117 | Code | 30SBP<br>RUN2 |
| Point | 30BP_2_200M | I East | 394719.172 | North | 6946047.433 | Elevation | 688.548 | Code | 30SBP<br>RUN2 |
| Point | 30BP_3_B32  | East   | 394855.805 | North | 6946193.589 | Elevation | 684.438 | Code | 30SBP<br>RUN3 |
| Point | 30BP_3_2M   | East   | 394854.017 | North | 6946192.485 | Elevation | 684.574 | Code | 30SBP<br>RUN3 |
| Point | 30BP_3_5M   | East   | 394852.093 | North | 6946190.333 | Elevation | 684.638 | Code | 30SBP<br>RUN3 |
| Point | 30BP_3_10M  | East   | 394848.685 | North | 6946186.494 | Elevation | 684.754 | Code | 30SBP<br>RUN3 |
| Point | 30BP_3_20M  | East   | 394841.783 | North | 6946178.839 | Elevation | 684.919 | Code | 30SBP<br>RUN3 |
| Point | 30BP_3_40M  | East   | 394825.086 | North | 6946167.756 | Elevation | 685.505 | Code | 30SBP<br>RUN3 |
| Point | 30BP_3_80M  | East   | 394794.398 | North | 6946142.234 | Elevation | 686.334 | Code | 30SBP<br>RUN3 |
| Point | 30BP_3_120M | I East | 394763.571 | North | 6946116.731 | Elevation | 687.362 | Code | 30SBP<br>RUN3 |

| Point | 30BP_3_160M | í East | 394735.492 | North | 6946087.867 | Elevation | 688.121 | Code | 30SBP<br>RUN3 |
|-------|-------------|--------|------------|-------|-------------|-----------|---------|------|---------------|
| Point | 30BP_3_200M | East   | 394719.161 | North | 6946047.438 | Elevation | 688.542 | Code | 30SBP<br>RUN3 |
| Point | 30BP_4_B32  | East   | 394855.813 | North | 6946193.593 | Elevation | 684.428 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_2M   | East   | 394854.018 | North | 6946192.494 | Elevation | 684.575 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_5M   | East   | 394852.099 | North | 6946190.337 | Elevation | 684.638 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_10M  | East   | 394848.686 | North | 6946186.500 | Elevation | 684.747 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_20M  | East   | 394841.783 | North | 6946178.853 | Elevation | 684.919 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_40M  | East   | 394825.090 | North | 6946167.756 | Elevation | 685.508 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_80M  | East   | 394794.398 | North | 6946142.241 | Elevation | 686.336 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_120M | l East | 394763.578 | North | 6946116.738 | Elevation | 687.359 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_160M | East   | 394735.488 | North | 6946087.884 | Elevation | 688.116 | Code | 30SBP<br>RUN4 |
| Point | 30BP_4_200M | East   | 394719.178 | North | 6946047.428 | Elevation | 688.546 | Code | 30SBP<br>RUN4 |
| Point | 30BP_5_B32  | East   | 394855.812 | North | 6946193.600 | Elevation | 684.428 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_2M   | East   | 394854.023 | North | 6946192.495 | Elevation | 684.573 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_5M   | East   | 394852.100 | North | 6946190.333 | Elevation | 684.643 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_10M  | East   | 394848.692 | North | 6946186.502 | Elevation | 684.747 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_20M  | East   | 394841.784 | North | 6946178.849 | Elevation | 684.921 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_40M  | East   | 394825.096 | North | 6946167.758 | Elevation | 685.501 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_80M  | East   | 394794.401 | North | 6946142.240 | Elevation | 686.326 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_120M | East   | 394763.580 | North | 6946116.740 | Elevation | 687.359 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_160M | East   | 394735.494 | North | 6946087.877 | Elevation | 688.121 | Code | 30SBP<br>RUN5 |
| Point | 30BP_5_200M | East   | 394719.183 | North | 6946047.431 | Elevation | 688.550 | Code | 30SBP<br>RUN  |

|       | 1           |        |            |       |             |           |         |      |               |
|-------|-------------|--------|------------|-------|-------------|-----------|---------|------|---------------|
| Point | ANANGA1     | East   | 394586.985 | North | 6946490.639 | Elevation | 718.427 | Code | 1             |
| Point | 30BP_6_B32  | East   | 394855.808 | North | 6946193.593 | Elevation | 684.427 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_2M   | East   | 394854.016 | North | 6946192.497 | Elevation | 684.577 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_5M   | East   | 394852.092 | North | 6946190.341 | Elevation | 684.640 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_10M  | East   | 394848.688 | North | 6946186.505 | Elevation | 684.751 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_20M  | East   | 394841.789 | North | 6946178.853 | Elevation | 684.913 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_40M  | East   | 394825.093 | North | 6946167.759 | Elevation | 685.511 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_80M  | East   | 394794.395 | North | 6946142.243 | Elevation | 686.337 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_120N | 1 East | 394763.575 | North | 6946116.735 | Elevation | 687.376 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_160N | 1 East | 394735.490 | North | 6946087.876 | Elevation | 688.127 | Code | 30SBP<br>RUN6 |
| Point | 30BP_6_200N | 1 East | 394719.180 | North | 6946047.425 | Elevation | 688.546 | Code | 30SBP<br>RUN6 |
| Point | 30BP_7_B32  | East   | 394855.808 | North | 6946193.589 | Elevation | 684.428 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_2M   | East   | 394854.014 | North | 6946192.494 | Elevation | 684.569 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_5M   | East   | 394852.091 | North | 6946190.342 | Elevation | 684.636 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_10M  | East   | 394848.685 | North | 6946186.504 | Elevation | 684.749 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_20M  | East   | 394841.782 | North | 6946178.849 | Elevation | 684.918 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_40M  | East   | 394825.089 | North | 6946167.762 | Elevation | 685.504 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_80M  | East   | 394794.396 | North | 6946142.242 | Elevation | 686.339 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_120N | 1 East | 394763.576 | North | 6946116.734 | Elevation | 687.378 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_160N | 1 East | 394735.493 | North | 6946087.878 | Elevation | 688.125 | Code | 30SBP<br>RUN7 |
| Point | 30BP_7_200N | 1 East | 394719.178 | North | 6946047.424 | Elevation | 688.557 | Code | 30SBP<br>RUN7 |
| Point | 30BP_8_B32  | East   | 394855.810 | North | 6946193.595 | Elevation | 684.433 | Code | 30SBP<br>RUN8 |
| Point | 30BP_8_2M   | East   | 394854.018 | North | 6946192.495 | Elevation | 684.570 | Code | 30SBP<br>RUN8 |
| Point | 30BP_8_5M   | East   | 394852.094 | North | 6946190.335 | Elevation | 684.648 | Code | 30SBP<br>RUN8 |
| Point | 30BP_8_10M  | East   | 394848.685 | North | 6946186.500 | Elevation | 684.755 | Code | 30SBP<br>RUN8 |

## Appendix C3: RTK Observations 13 Aug 2013

| Point | 30BP_8_20M   | East   | 394841.783 | North | 6946178.847 | Elevation | 684.912 | Code | 30SBP<br>RUN8  |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 30BP_8_40M   | East   | 394825.087 | North | 6946167.760 | Elevation | 685.508 | Code | 30SBP<br>RUN8  |
| Point | 30BP_8_80M   | East   | 394794.403 | North | 6946142.244 | Elevation | 686.349 | Code | 30SBP<br>RUN8  |
| Point | 30BP_8_120M  | East   | 394763.568 | North | 6946116.730 | Elevation | 687.368 | Code | 30SBP<br>RUN8  |
| Point | 30BP_8_160M  | East   | 394735.486 | North | 6946087.875 | Elevation | 688.131 | Code | 30SBP<br>RUN8  |
| Point | 30BP_8_200M  | East   | 394719.180 | North | 6946047.426 | Elevation | 688.548 | Code | 30SBP<br>RUN8  |
| Point | 30BP_9_2M    | East   | 394854.019 | North | 6946192.502 | Elevation | 684.574 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_5M    | East   | 394852.095 | North | 6946190.337 | Elevation | 684.645 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_10M   | East   | 394848.686 | North | 6946186.499 | Elevation | 684.749 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_20M   | East   | 394841.784 | North | 6946178.847 | Elevation | 684.914 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_40M   | East   | 394825.091 | North | 6946167.760 | Elevation | 685.510 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_80M   | East   | 394794.400 | North | 6946142.240 | Elevation | 686.347 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_120M  | East   | 394763.576 | North | 6946116.734 | Elevation | 687.376 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_160M  | East   | 394735.493 | North | 6946087.882 | Elevation | 688.120 | Code | 30SBP<br>RUN9  |
| Point | 30BP_9_200M  | East   | 394719.184 | North | 6946047.426 | Elevation | 688.549 | Code | 30SBP<br>RUN9  |
| Point | 30BP_10_B32  | East   | 394855.813 | North | 6946193.593 | Elevation | 684.436 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_2M   | East   | 394854.015 | North | 6946192.492 | Elevation | 684.569 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_5M   | East   | 394852.092 | North | 6946190.338 | Elevation | 684.642 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_10M  | East   | 394848.687 | North | 6946186.502 | Elevation | 684.755 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_20M  | East   | 394841.784 | North | 6946178.851 | Elevation | 684.915 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_40M  | East   | 394825.088 | North | 6946167.762 | Elevation | 685.506 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_80M  | East   | 394794.396 | North | 6946142.241 | Elevation | 686.338 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_120N | A East | 394763.572 | North | 6946116.737 | Elevation | 687.363 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_160N | 1 East | 394735.486 | North | 6946087.885 | Elevation | 688.122 | Code | 30SBP<br>RUN10 |
| Point | 30BP_10_200N | 1 East | 394719.179 | North | 6946047.430 | Elevation | 688.540 | Code | 30SBP<br>RUN10 |
| Point | 30BP_11_B32  | East   | 394855.809 | North | 6946193.593 | Elevation | 684.431 | Code | 30SBP<br>RUN11 |

| Point | 30BP_11_2M   | East    | 394854.018 | North    | 6946192.493 | Elevation   | 684.576         | Code | 30SBP<br>RUN11 |
|-------|--------------|---------|------------|----------|-------------|-------------|-----------------|------|----------------|
| Point | 30BP_11_5M   | East    | 394852.093 | North    | 6946190.337 | Elevation   | 684.647         | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_10M  | East    | 394848.687 | North    | 6946186.505 | Elevation   | 684.748         | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_20M  | East    | 394841.789 | North    | 6946178.849 | Elevation   | 684.917         | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_40M  | East    | 394825.092 | North    | 6946167.759 | Elevation   | 685.506         | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_80M  | East    | 394794.398 | North    | 6946142.245 | Elevation   | 686.340         | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_120M | East    | 394763.569 | North    | 6946116.733 | Elevation   | 687.363         | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_B32_ | 2 East  | 394855.807 | 7 North  | 6946193.592 | Elevation   | 684.427         | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_160M | _2 East | 394735.48  | 34 North | 6946087.88  | 1 Elevation | <b>6</b> 88.125 | Code | 30SBP<br>RUN11 |
| Point | 30BP_11_200M | _2 East | 394719.17  | 7 North  | 6946047.42  | 7 Elevation | n 688.553       | Code | 30SBP<br>RUN11 |
| Point | 30BP_12_B32  | East    | 394855.810 | North    | 6946193.599 | Elevation   | 684.430         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_2M   | East    | 394854.018 | North    | 6946192.495 | Elevation   | 684.580         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_5M   | East    | 394852.093 | North    | 6946190.342 | Elevation   | 684.655         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_10M  | East    | 394848.688 | North    | 6946186.504 | Elevation   | 684.764         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_20M  | East    | 394841.788 | North    | 6946178.850 | Elevation   | 684.919         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_40M  | East    | 394825.095 | North    | 6946167.764 | Elevation   | 685.506         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_80M  | East    | 394794.397 | North    | 6946142.244 | Elevation   | 686.334         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_120M | l East  | 394763.572 | North    | 6946116.739 | Elevation   | 687.388         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_160M | í East  | 394735.490 | North    | 6946087.883 | Elevation   | 688.120         | Code | 30SBP<br>RUN12 |
| Point | 30BP_12_200M | l East  | 394719.182 | North    | 6946047.421 | Elevation   | 688.551         | Code | 30SBP<br>RUN12 |
| Point | 30BP_13_B32  | East    | 394855.806 | North    | 6946193.600 | Elevation   | 684.429         | Code | 30SBP<br>RUN13 |
| Point | 30BP_13_2M   | East    | 394854.010 | North    | 6946192.500 | Elevation   | 684.569         | Code | 30SBP<br>RUN13 |
| Point | 30BP_13_5M   | East    | 394852.092 | North    | 6946190.341 | Elevation   | 684.636         | Code | 30SBP<br>RUN13 |
| Point | 30BP_13_10M  | East    | 394848.681 | North    | 6946186.498 | Elevation   | 684.750         | Code | 30SBP<br>RUN13 |
| Point | 30BP_13_20M  | East    | 394841.782 | North    | 6946178.851 | Elevation   | 684.922         | Code | 30SBP<br>RUN13 |
| Point | 30BP_13_40M  | East    | 394825.086 | North    | 6946167.756 | Elevation   | 685.513         | Code | 30SBP<br>RUN13 |

| Point | 30BP_13_80M  | East | 394794.390 | North | 6946142.245 | Elevation | 686.338 | Code | 30SBP<br>RUN13 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 30BP_13_120M | East | 394763.571 | North | 6946116.739 | Elevation | 687.364 | Code | 30SBP<br>RUN13 |
| Point | 30BP_13_160M | East | 394735.489 | North | 6946087.877 | Elevation | 688.121 | Code | 30SBP<br>RUN13 |
| Point | 30BP_13_200M | East | 394719.181 | North | 6946047.425 | Elevation | 688.558 | Code | 30SBP<br>RUN13 |
| Point | 30BP_14_B32  | East | 394855.809 | North | 6946193.591 | Elevation | 684.444 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_2M   | East | 394854.013 | North | 6946192.496 | Elevation | 684.579 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_5M   | East | 394852.093 | North | 6946190.345 | Elevation | 684.647 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_10M  | East | 394848.683 | North | 6946186.504 | Elevation | 684.749 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_20M  | East | 394841.785 | North | 6946178.853 | Elevation | 684.915 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_40M  | East | 394825.087 | North | 6946167.755 | Elevation | 685.511 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_80M  | East | 394794.392 | North | 6946142.238 | Elevation | 686.342 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_120M | East | 394763.571 | North | 6946116.729 | Elevation | 687.381 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_160M | East | 394735.487 | North | 6946087.883 | Elevation | 688.133 | Code | 30SBP<br>RUN14 |
| Point | 30BP_14_200M | East | 394719.181 | North | 6946047.429 | Elevation | 688.540 | Code | 30SBP<br>RUN14 |
| Point | 30BP_15_B32  | East | 394855.809 | North | 6946193.597 | Elevation | 684.430 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_2M   | East | 394854.015 | North | 6946192.498 | Elevation | 684.574 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_5M   | East | 394852.097 | North | 6946190.334 | Elevation | 684.644 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_10M  | East | 394848.687 | North | 6946186.505 | Elevation | 684.745 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_20M  | East | 394841.785 | North | 6946178.858 | Elevation | 684.915 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_40M  | East | 394825.092 | North | 6946167.770 | Elevation | 685.498 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_80M  | East | 394794.393 | North | 6946142.245 | Elevation | 686.338 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_120M | East | 394763.574 | North | 6946116.741 | Elevation | 687.371 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_160M | East | 394735.486 | North | 6946087.890 | Elevation | 688.132 | Code | 30SBP<br>RUN15 |
| Point | 30BP_15_200M | East | 394719.182 | North | 6946047.432 | Elevation | 688.549 | Code | 30SBP<br>RUN15 |
| Point | 30BP_16_B32  | East | 394855.809 | North | 6946193.592 | Elevation | 684.428 | Code | 30SBP<br>RUN16 |
| Point | 30BP_16_2M   | East | 394854.014 | North | 6946192.498 | Elevation | 684.576 | Code | 30SBP<br>RUN16 |

| Point | 30BP_16_5M   | East   | 394852.096 | North | 6946190.343 | Elevation | 684.641 | Code | 30SBP<br>RUN16 |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 30BP_16_10M  | East   | 394848.690 | North | 6946186.506 | Elevation | 684.750 | Code | 30SBP<br>RUN16 |
| Point | 30BP_16_20M  | East   | 394841.786 | North | 6946178.856 | Elevation | 684.918 | Code | 30SBP<br>RUN16 |
| Point | 30BP_16_40M  | East   | 394825.090 | North | 6946167.763 | Elevation | 685.505 | Code | 30SBP<br>RUN16 |
| Point | 30BP_16_80M  | East   | 394794.397 | North | 6946142.246 | Elevation | 686.339 | Code | 30SBP<br>RUN16 |
| Point | 30BP_16_120M | l East | 394763.571 | North | 6946116.746 | Elevation | 687.372 | Code | 30SBP<br>RUN16 |
| Point | 30BP_16_160M | East   | 394735.489 | North | 6946087.879 | Elevation | 688.128 | Code | 30SBP<br>RUN16 |
| Point | 30BP_16_200M | l East | 394719.160 | North | 6946047.424 | Elevation | 688.546 | Code | 30SBP<br>RUN16 |
| Point | 30BP_17_B32  | East   | 394855.811 | North | 6946193.601 | Elevation | 684.433 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_2M   | East   | 394854.017 | North | 6946192.500 | Elevation | 684.572 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_5M   | East   | 394852.099 | North | 6946190.341 | Elevation | 684.639 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_10M  | East   | 394848.686 | North | 6946186.506 | Elevation | 684.747 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_20M  | East   | 394841.785 | North | 6946178.851 | Elevation | 684.910 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_40M  | East   | 394825.089 | North | 6946167.759 | Elevation | 685.510 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_80M  | East   | 394794.395 | North | 6946142.247 | Elevation | 686.340 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_120M | East   | 394763.569 | North | 6946116.738 | Elevation | 687.368 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_160M | East   | 394735.494 | North | 6946087.883 | Elevation | 688.128 | Code | 30SBP<br>RUN17 |
| Point | 30BP_17_200M | East   | 394719.183 | North | 6946047.422 | Elevation | 688.549 | Code | 30SBP<br>RUN17 |
| Point | 30BP_18_B32  | East   | 394855.817 | North | 6946193.594 | Elevation | 684.419 | Code | 30SBP<br>RUN18 |
| Point | 30BP_18_2M   | East   | 394854.019 | North | 6946192.494 | Elevation | 684.561 | Code | 30SBP<br>RUN18 |
| Point | 30BP_18_5M   | East   | 394852.099 | North | 6946190.342 | Elevation | 684.639 | Code | 30SBP<br>RUN18 |
| Point | 30BP_18_10M  | East   | 394848.688 | North | 6946186.498 | Elevation | 684.747 | Code | 30SBP<br>RUN18 |
| Point | 30BP_18_20M  | East   | 394841.783 | North | 6946178.846 | Elevation | 684.915 | Code | 30SBP<br>RUN18 |
| Point | 30BP_18_40M  | East   | 394825.090 | North | 6946167.759 | Elevation | 685.497 | Code | 30SBP<br>RUN18 |
| Point | 30BP_18_80M  | East   | 394794.395 | North | 6946142.243 | Elevation | 686.342 | Code | 30SBP<br>RUN18 |
| Point | 30BP_18_120M | l East | 394763.571 | North | 6946116.739 | Elevation | 687.369 | Code | 30SBP<br>RUN18 |

| Point | 30BP_18_160M | East | 394735.489 | North | 6946087.877 | Elevation | 688.127 | Code | 30SBP<br>RUN18 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 30BP_18_200M | East | 394719.157 | North | 6946047.422 | Elevation | 688.545 | Code | 30SBP<br>RUN18 |
| Point | 30BP_19_B32  | East | 394855.810 | North | 6946193.604 | Elevation | 684.430 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_2M   | East | 394854.015 | North | 6946192.494 | Elevation | 684.572 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_5M   | East | 394852.094 | North | 6946190.337 | Elevation | 684.645 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_10M  | East | 394848.687 | North | 6946186.502 | Elevation | 684.756 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_20M  | East | 394841.788 | North | 6946178.857 | Elevation | 684.915 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_40M  | East | 394825.089 | North | 6946167.761 | Elevation | 685.509 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_80M  | East | 394794.396 | North | 6946142.245 | Elevation | 686.338 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_120M | East | 394763.575 | North | 6946116.745 | Elevation | 687.372 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_160M | East | 394735.488 | North | 6946087.879 | Elevation | 688.124 | Code | 30SBP<br>RUN19 |
| Point | 30BP_19_200M | East | 394719.181 | North | 6946047.428 | Elevation | 688.546 | Code | 30SBP<br>RUN19 |
| Point | 30BP_20_B32  | East | 394855.807 | North | 6946193.597 | Elevation | 684.430 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_2M   | East | 394854.011 | North | 6946192.501 | Elevation | 684.571 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_5M   | East | 394852.095 | North | 6946190.340 | Elevation | 684.639 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_10M  | East | 394848.689 | North | 6946186.507 | Elevation | 684.747 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_20M  | East | 394841.787 | North | 6946178.854 | Elevation | 684.912 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_40M  | East | 394825.090 | North | 6946167.761 | Elevation | 685.503 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_80M  | East | 394794.393 | North | 6946142.244 | Elevation | 686.326 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_120M | East | 394763.578 | North | 6946116.741 | Elevation | 687.357 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_160M | East | 394735.494 | North | 6946087.881 | Elevation | 688.124 | Code | 30SBP<br>RUN20 |
| Point | 30BP_20_200M | East | 394719.179 | North | 6946047.435 | Elevation | 688.547 | Code | 30SBP<br>RUN20 |
| Point | 30BP_21_B32  | East | 394855.814 | North | 6946193.599 | Elevation | 684.431 | Code | 30SBP<br>RUN21 |
| Point | 30BP_21_2M   | East | 394854.016 | North | 6946192.499 | Elevation | 684.571 | Code | 30SBP<br>RUN21 |
| Point | 30BP_21_5M   | East | 394852.093 | North | 6946190.340 | Elevation | 684.639 | Code | 30SBP<br>RUN21 |
| Point | 30BP_21_10M  | East | 394848.691 | North | 6946186.507 | Elevation | 684.749 | Code | 30SBP<br>RUN21 |

| Point | 30BP_21_20M  | East | 394841.783 | North | 6946178.853 | Elevation | 684.916 | Code | 30SBP<br>RUN21 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 30BP_21_40M  | East | 394825.088 | North | 6946167.762 | Elevation | 685.506 | Code | 30SBP<br>RUN21 |
| Point | 30BP_21_80M  | East | 394794.396 | North | 6946142.245 | Elevation | 686.337 | Code | 30SBP<br>RUN21 |
| Point | 30BP_21_120M | East | 394763.528 | North | 6946116.842 | Elevation | 687.359 | Code | 30SBP<br>RUN21 |
| Point | 30BP_21_160M | East | 394735.487 | North | 6946087.885 | Elevation | 688.126 | Code | 30SBP<br>RUN21 |
| Point | 30BP_21_200M | East | 394719.184 | North | 6946047.433 | Elevation | 688.543 | Code | 30SBP<br>RUN21 |
| Point | 30BP_22_B32  | East | 394855.812 | North | 6946193.598 | Elevation | 684.432 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_2M   | East | 394854.020 | North | 6946192.494 | Elevation | 684.571 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_5M   | East | 394852.098 | North | 6946190.343 | Elevation | 684.643 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_10M  | East | 394848.690 | North | 6946186.505 | Elevation | 684.749 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_20M  | East | 394841.788 | North | 6946178.854 | Elevation | 684.919 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_40M  | East | 394825.093 | North | 6946167.766 | Elevation | 685.504 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_80M  | East | 394794.397 | North | 6946142.243 | Elevation | 686.328 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_120M | East | 394763.575 | North | 6946116.740 | Elevation | 687.363 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_160M | East | 394735.486 | North | 6946087.883 | Elevation | 688.126 | Code | 30SBP<br>RUN22 |
| Point | 30BP_22_200M | East | 394719.176 | North | 6946047.429 | Elevation | 688.543 | Code | 30SBP<br>RUN22 |
| Point | 30BP_23_B32  | East | 394855.809 | North | 6946193.595 | Elevation | 684.427 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_2M   | East | 394854.015 | North | 6946192.493 | Elevation | 684.573 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_5M   | East | 394852.100 | North | 6946190.338 | Elevation | 684.637 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_10M  | East | 394848.691 | North | 6946186.505 | Elevation | 684.745 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_20M  | East | 394841.786 | North | 6946178.854 | Elevation | 684.911 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_40M  | East | 394825.095 | North | 6946167.760 | Elevation | 685.503 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_80M  | East | 394794.396 | North | 6946142.241 | Elevation | 686.331 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_120M | East | 394763.576 | North | 6946116.741 | Elevation | 687.363 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_160M | East | 394735.492 | North | 6946087.884 | Elevation | 688.126 | Code | 30SBP<br>RUN23 |
| Point | 30BP_23_200M | East | 394719.182 | North | 6946047.433 | Elevation | 688.547 | Code | 30SBP<br>RUN23 |

| Point | 30BP_24_B32  | East   | 394855.808 | North | 6946193.601 | Elevation | 684.427 | Code | 30SBP<br>RUN24 |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 30BP_24_2M   | East   | 394854.018 | North | 6946192.502 | Elevation | 684.566 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_5M   | East   | 394852.097 | North | 6946190.341 | Elevation | 684.638 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_10M  | East   | 394848.690 | North | 6946186.508 | Elevation | 684.748 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_20M  | East   | 394841.786 | North | 6946178.854 | Elevation | 684.915 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_40M  | East   | 394825.088 | North | 6946167.761 | Elevation | 685.502 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_80M  | East   | 394794.394 | North | 6946142.242 | Elevation | 686.335 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_120M | l East | 394763.576 | North | 6946116.741 | Elevation | 687.352 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_160M | l East | 394735.490 | North | 6946087.880 | Elevation | 688.113 | Code | 30SBP<br>RUN24 |
| Point | 30BP_24_200M | l East | 394719.181 | North | 6946047.435 | Elevation | 688.535 | Code | 30SBP<br>RUN24 |
| Point | 30BP_25_B32  | East   | 394855.812 | North | 6946193.594 | Elevation | 684.427 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_2M   | East   | 394854.023 | North | 6946192.499 | Elevation | 684.576 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_5M   | East   | 394852.102 | North | 6946190.339 | Elevation | 684.641 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_10M  | East   | 394848.690 | North | 6946186.509 | Elevation | 684.748 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_20M  | East   | 394841.787 | North | 6946178.851 | Elevation | 684.912 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_40M  | East   | 394825.090 | North | 6946167.759 | Elevation | 685.494 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_80M  | East   | 394794.395 | North | 6946142.244 | Elevation | 686.327 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_120M | l East | 394763.577 | North | 6946116.744 | Elevation | 687.363 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_160M | l East | 394735.492 | North | 6946087.879 | Elevation | 688.123 | Code | 30SBP<br>RUN25 |
| Point | 30BP_25_200M | l East | 394719.187 | North | 6946047.426 | Elevation | 688.541 | Code | 30SBP<br>RUN25 |
| Point | 30BP_26_B32  | East   | 394855.813 | North | 6946193.601 | Elevation | 684.429 | Code | 30SBP<br>RUN26 |
| Point | 30BP_26_2M   | East   | 394854.013 | North | 6946192.505 | Elevation | 684.571 | Code | 30SBP<br>RUN26 |
| Point | 30BP_26_5M   | East   | 394852.095 | North | 6946190.348 | Elevation | 684.641 | Code | 30SBP<br>RUN26 |
| Point | 30BP_26_10M  | East   | 394848.689 | North | 6946186.510 | Elevation | 684.746 | Code | 30SBP<br>RUN26 |
| Point | 30BP_26_20M  | East   | 394841.782 | North | 6946178.856 | Elevation | 684.918 | Code | 30SBP<br>RUN26 |
| Point | 30BP_26_40M  | East   | 394825.088 | North | 6946167.759 | Elevation | 685.504 | Code | 30SBP<br>RUN26 |

| Point | 30BP_26_80M  | East | 394794.393 | North | 6946142.252 | Elevation | 686.325 | Code | 30SBP<br>RUN26 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 30BP_26_120M | East | 394763.571 | North | 6946116.748 | Elevation | 687.355 | Code | 30SBP<br>RUN26 |
| Point | 30BP_26_160M | East | 394735.486 | North | 6946087.889 | Elevation | 688.124 | Code | 30SBP<br>RUN26 |
| Point | 30BP_26_200M | East | 394719.177 | North | 6946047.432 | Elevation | 688.550 | Code | 30SBP<br>RUN26 |

| I     |              |      |            |       |             |           |         |      |                |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | ANANGA1 E    | Cast | 394586.985 | North | 6946490.639 | Elevation | 718.427 | Code | 1              |
| Point | 30BP_27_B32  | East | 394855.802 | North | 6946193.609 | Elevation | 684.434 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_2M   | East | 394854.002 | North | 6946192.506 | Elevation | 684.581 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_5M   | East | 394852.084 | North | 6946190.352 | Elevation | 684.647 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_10M  | East | 394848.672 | North | 6946186.515 | Elevation | 684.760 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_20M  | East | 394841.773 | North | 6946178.865 | Elevation | 684.923 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_40M  | East | 394825.078 | North | 6946167.777 | Elevation | 685.519 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_80M  | East | 394794.383 | North | 6946142.260 | Elevation | 686.350 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_120M | East | 394763.559 | North | 6946116.751 | Elevation | 687.380 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_160M | East | 394735.476 | North | 6946087.895 | Elevation | 688.122 | Code | 30SBP<br>RUN27 |
| Point | 30BP_27_200M | East | 394719.165 | North | 6946047.441 | Elevation | 688.559 | Code | 30SBP<br>RUN27 |
| Point | 30BP_28_B32  | East | 394855.795 | North | 6946193.606 | Elevation | 684.435 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_2M   | East | 394854.010 | North | 6946192.511 | Elevation | 684.580 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_5M   | East | 394852.088 | North | 6946190.351 | Elevation | 684.648 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_10M  | East | 394848.670 | North | 6946186.513 | Elevation | 684.756 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_20M  | East | 394841.772 | North | 6946178.866 | Elevation | 684.923 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_40M  | East | 394825.079 | North | 6946167.773 | Elevation | 685.512 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_80M  | East | 394794.380 | North | 6946142.256 | Elevation | 686.340 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_120M | East | 394763.556 | North | 6946116.754 | Elevation | 687.376 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_160M | East | 394735.475 | North | 6946087.893 | Elevation | 688.126 | Code | 30SBP<br>RUN28 |
| Point | 30BP_28_200M | East | 394719.162 | North | 6946047.435 | Elevation | 688.562 | Code | 30SBP<br>RUN28 |
| Point | 180BP_1_B32  | East | 394855.807 | North | 6946193.604 | Elevation | 684.437 | Code | 180SBP<br>RUN1 |
| Point | 180BP_1_2M   | East | 394854.004 | North | 6946192.511 | Elevation | 684.578 | Code | 180SBP<br>RUN1 |
| Point | 180BP_1_5M   | East | 394852.083 | North | 6946190.350 | Elevation | 684.645 | Code | 180SBP<br>RUN1 |
| Point | 180BP_1_10M  | East | 394848.678 | North | 6946186.515 | Elevation | 684.754 | Code | 180SBP<br>RUN1 |

# Appendix C4: RTK Observations 14 Aug 2013 – Set 1

| Point | 180BP_1_20M  | East     | 394841.772 | North          | 6946178.86  | 3 Elevatio | <b>on</b> 6 | 84.921        | Code        | ;   | 180SBP<br>RUN1      |
|-------|--------------|----------|------------|----------------|-------------|------------|-------------|---------------|-------------|-----|---------------------|
| Point | 180BP_2_B32  | East     | 394855.799 | North          | 6946193.60  | 9 Elevatio | on 6        | 84.437        | Code        | ,   | 180SBP<br>RUN2      |
| Point | 180BP_2_2M   | East     | 394854.003 | North          | 6946192.51  | Elevatio   | n 68        | 34.578        | Code        |     | 180SBP<br>RUN2      |
| Point | 180BP_2_5M   | East     | 394852.080 | North          | 6946190.354 | Elevatio   | n 68        | 34.648        | Code        |     | 180SBP<br>RUN2      |
| Point | 180BP_2_10M  | East     | 394848.675 | North          | 6946186.52  | 1 Elevatio | <b>on</b> 6 | 84.753        | Code        | 9   | 180SBP<br>RUN2      |
| Point | 180BP_2_20M  | East     | 394841.774 | North          | 6946178.86  | 7 Elevatio | <b>on</b> 6 | 84.922        | Code        | 9   | 180SBP<br>RUN2      |
| Point | 180BP_3_B32  | East     | 394855.801 | North          | 6946193.60  | 8 Elevatio | <b>on</b> 6 | 84.438        | Code        | ;   | 180SBP<br>RUN3      |
| Point | 180BP_3_2M   | East     | 394854.006 | North          | 6946192.51  | Elevatio   | n 68        | 34.578        | Code        |     | 180SBP<br>RUN3      |
| Point | 180BP_3_10M  | East     | 394852.075 | North          | 6946190.351 | Elevation  | 684.6       | 46 <b>C</b> o | ode         | RUI | 180SBP<br>N3_ACT_5M |
| Point | 180BP_3_20M  | East     | 394848.670 | North          | 6946186.509 | Elevation  | 684.74      | 7 <b>Co</b>   | de          | RUN | 180SBP<br>3_ACT_10M |
| Point | 180BP_3_20M_ | ACT East | t 394841.  | 767 <b>Nor</b> | th 6946178  | .856 Elev  | ation       | 684.91        | 7 <b>Co</b> | le  | 180SBP<br>RUN3      |
| Point | 180BP_4_B32  | East     | 394855.797 | North          | 6946193.60  | 4 Elevatio | <b>n</b> 6  | 84.433        | Code        | ,   | 180SBP<br>RUN4      |
| Point | 180BP_4_2M   | East     | 394854.005 | North          | 6946192.507 | 7 Elevatio | n 68        | 34.584        | Code        |     | 180SBP<br>RUN4      |
| Point | 180BP_4_5M   | East     | 394852.083 | North          | 6946190.356 | 5 Elevatio | n 68        | 34.649        | Code        |     | 180SBP<br>RUN4      |
| Point | 180BP_4_10M  | East     | 394848.672 | North          | 6946186.52  | 0 Elevatio | <b>on</b> 6 | 84.752        | Code        | e   | 180SBP<br>RUN4      |
| Point | 180BP_4_20M  | East     | 394841.768 | North          | 6946178.86  | 1 Elevatio | <b>on</b> 6 | 84.920        | Code        | 9   | 180SBP<br>RUN4      |
| Point | 180BP_5_B32  | East     | 394855.801 | North          | 6946193.60  | 1 Elevatio | <b>n</b> 6  | 84.437        | Code        | ;   | 180SBP<br>RUN5      |
| Point | 180BP_5_2M   | East     | 394853.998 | North          | 6946192.508 | Belevatio  | n 68        | 34.589        | Code        |     | 180SBP<br>RUN5      |
| Point | 180BP_5_5M   | East     | 394852.075 | North          | 6946190.354 | Elevatio   | n 68        | 84.657        | Code        |     | 180SBP<br>RUN5      |
| Point | 180BP_5_10M  | East     | 394848.668 | North          | 6946186.51  | 4 Elevatio | <b>on</b> 6 | 84.752        | Code        | 9   | 180SBP<br>RUN5      |
| Point | 180BP_5_20M  | East     | 394841.773 | North          | 6946178.86  | 4 Elevatio | <b>on</b> 6 | 84.928        | Code        | 9   | 180SBP<br>RUN5      |
| Point | 180BP_6_B32  | East     | 394855.803 | North          | 6946193.60  | 6 Elevatio | <b>n</b> 6  | 84.455        | Code        | ;   | 180SBP<br>RUN6      |
| Point | 180BP_6_2M   | East     | 394854.005 | North          | 6946192.51  | Elevatio   | n 68        | 34.583        | Code        |     | 180SBP<br>RUN6      |
| Point | 180BP_6_5M   | East     | 394852.086 | North          | 6946190.332 | 2 Elevatio | n 68        | 34.651        | Code        |     | 180SBP<br>RUN6      |
| Point | 180BP_6_10M  | East     | 394848.674 | North          | 6946186.52  | 4 Elevatio | <b>on</b> 6 | 84.763        | Code        | 9   | 180SBP<br>RUN6      |
| Point | 180BP_6_20M  | East     | 394841.771 | North          | 6946178.87  | 1 Elevatio | <b>on</b> 6 | 84.931        | Code        |     | 180SBP<br>RUN6      |

| Point | 180BP_7_B32   | East   | 394855.801 | North   | 6946193.612 | Elevation   | 684.440 | Code | 180SBP<br>RUN7  |
|-------|---------------|--------|------------|---------|-------------|-------------|---------|------|-----------------|
| Point | 180BP_7_2M    | East   | 394854.004 | North   | 6946192.508 | Elevation   | 684.582 | Code | 180SBP<br>RUN7  |
| Point | 180BP_7_5M    | East   | 394852.082 | North   | 6946190.356 | Elevation   | 684.647 | Code | 180SBP<br>RUN7  |
| Point | 180BP_7_10M   | East   | 394848.673 | North   | 6946186.517 | Elevation   | 684.756 | Code | 180SBP<br>RUN7  |
| Point | 180BP_7_20M   | East   | 394841.766 | North   | 6946178.867 | Elevation   | 684.923 | Code | 180SBP<br>RUN7  |
| Point | 180BP_8_B32   | East   | 394855.802 | North   | 6946193.607 | Elevation   | 684.437 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8_2M    | East   | 394854.008 | North   | 6946192.511 | Elevation   | 684.586 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8_5M    | East   | 394852.082 | North   | 6946190.353 | Elevation   | 684.647 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8_10M   | East   | 394848.680 | North   | 6946186.523 | Elevation   | 684.746 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8_20M   | East   | 394841.770 | North   | 6946178.867 | Elevation   | 684.915 | Code | 180SBP<br>RUN8  |
| Point | 180BP_9_B32   | East   | 394855.793 | North   | 6946193.607 | Elevation   | 684.431 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9_2M    | East   | 394854.003 | North   | 6946192.511 | Elevation   | 684.574 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9_5M    | East   | 394852.081 | North   | 6946190.351 | Elevation   | 684.645 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9_10M   | East   | 394848.676 | North   | 6946186.513 | Elevation   | 684.743 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9_20M   | East   | 394841.773 | North   | 6946178.870 | Elevation   | 684.921 | Code | 180SBP<br>RUN9  |
| Point | 180BP_10_B32  | East   | 394855.797 | North   | 6946193.609 | Elevation   | 684.433 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10_2M   | East   | 394853.995 | North   | 6946192.506 | Elevation   | 684.579 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10_5M   | East   | 394852.080 | North   | 6946190.354 | Elevation   | 684.648 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10_10M  | l East | 394848.667 | North   | 6946186.509 | Elevation   | 684.744 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10_20M  | l East | 394841.774 | North   | 6946178.861 | Elevation   | 684.922 | Code | 180SBP<br>RUN10 |
| Point | 180BP_1.2_B32 | 2 East | 394855.802 | North   | 6946193.612 | Elevation   | 684.428 | Code | 180SBP<br>RUN1  |
| Point | 180BP_1.2_40M | 1 East | 394825.080 | North   | 6946167.776 | Elevation   | 685.507 | Code | 180SBP<br>RUN1  |
| Point | 180BP_1.2_80M | 1 East | 394794.376 | North   | 6946142.253 | Elevation   | 686.346 | Code | 180SBP<br>RUN1  |
| Point | 180BP_1.2_120 | M East | 394763.56  | 5 North | 6946116.75  | Elevation   | 687.368 | Code | 180SBP<br>RUN1  |
| Point | 180BP_1.2_160 | M East | 394735.46  | 9 North | 6946087.896 | 5 Elevation | 688.127 | Code | 180SBP<br>RUN1  |
| Point | 180BP_1.2_200 | M East | 394719.16  | 1 North | 6946047.427 | 7 Elevation | 688.557 | Code | 180SBP<br>RUN1  |

| Point | 180BP_2.2_B32  | East   | 394855.798 | North | 6946193.602 | Elevation | 684.435 | Code | 180SBP<br>RUN2 |
|-------|----------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 180BP_2.2_40M  | East   | 394825.076 | North | 6946167.769 | Elevation | 685.504 | Code | 180SBP<br>RUN2 |
| Point | 180BP_2.2_80M  | East   | 394794.381 | North | 6946142.253 | Elevation | 686.350 | Code | 180SBP<br>RUN2 |
| Point | 180BP_2.2_120M | East   | 394763.568 | North | 6946116.754 | Elevation | 687.357 | Code | 180SBP<br>RUN2 |
| Point | 180BP_2.2_160M | l East | 394735.477 | North | 6946087.894 | Elevation | 688.123 | Code | 180SBP<br>RUN2 |
| Point | 180BP_2.2_200M | l East | 394719.166 | North | 6946047.437 | Elevation | 688.564 | Code | 180SBP<br>RUN2 |

| 1     |              |      |            |       |             |           |         |      |                 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|-----------------|
| Point | ANANGA1 E    | ast  | 394586.985 | North | 6946490.639 | Elevation | 718.427 | Code | 1               |
| Point | 30BP_29_B32  | East | 394855.789 | North | 6946193.586 | Elevation | 684.433 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_2M   | East | 394854.000 | North | 6946192.485 | Elevation | 684.580 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_5M   | East | 394852.086 | North | 6946190.327 | Elevation | 684.649 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_10M  | East | 394848.676 | North | 6946186.491 | Elevation | 684.753 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_20M  | East | 394841.772 | North | 6946178.838 | Elevation | 684.921 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_40M  | East | 394825.076 | North | 6946167.752 | Elevation | 685.512 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_80M  | East | 394794.383 | North | 6946142.232 | Elevation | 686.351 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_120M | East | 394763.563 | North | 6946116.730 | Elevation | 687.370 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_160M | East | 394735.479 | North | 6946087.872 | Elevation | 688.120 | Code | 30SBP<br>RUN29  |
| Point | 30BP_29_200M | East | 394719.174 | North | 6946047.414 | Elevation | 688.549 | Code | 30SBP<br>RUN29  |
| Point | 30BP_30_B32  | East | 394855.793 | North | 6946193.584 | Elevation | 684.433 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_2M   | East | 394853.999 | North | 6946192.486 | Elevation | 684.584 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_5M   | East | 394852.085 | North | 6946190.331 | Elevation | 684.648 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_10M  | East | 394848.676 | North | 6946186.492 | Elevation | 684.755 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_20M  | East | 394841.767 | North | 6946178.840 | Elevation | 684.924 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_40M  | East | 394825.072 | North | 6946167.753 | Elevation | 685.514 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_80M  | East | 394794.380 | North | 6946142.230 | Elevation | 686.340 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_120M | East | 394763.555 | North | 6946116.727 | Elevation | 687.370 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_160M | East | 394735.479 | North | 6946087.872 | Elevation | 688.122 | Code | 30SBP<br>RUN30  |
| Point | 30BP_30_200M | East | 394719.172 | North | 6946047.413 | Elevation | 688.554 | Code | 30SBP<br>RUN30  |
| Point | 180BP_11_B32 | East | 394855.790 | North | 6946193.582 | Elevation | 684.433 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11_2M  | East | 394854.002 | North | 6946192.486 | Elevation | 684.577 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11_5M  | East | 394852.083 | North | 6946190.334 | Elevation | 684.644 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11_10M | East | 394848.674 | North | 6946186.492 | Elevation | 684.752 | Code | 180SBP<br>RUN11 |

# Appendix C5: RTK Observations 14 Aug 2013 – Set 2

| Point | 180BP_11_20M | East | 394841.773 | North | 6946178.839 | Elevation | 684.914 | Code | 180SBP<br>RUN11 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|-----------------|
| Point | 180BP_12_B32 | East | 394855.789 | North | 6946193.581 | Elevation | 684.437 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12_2M  | East | 394853.997 | North | 6946192.490 | Elevation | 684.575 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12_5M  | East | 394852.081 | North | 6946190.328 | Elevation | 684.645 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12_10M | East | 394848.680 | North | 6946186.497 | Elevation | 684.750 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12_20M | East | 394841.772 | North | 6946178.842 | Elevation | 684.920 | Code | 180SBP<br>RUN12 |
| Point | 180BP_13_B32 | East | 394855.795 | North | 6946193.585 | Elevation | 684.437 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13_2M  | East | 394854.002 | North | 6946192.484 | Elevation | 684.578 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13_5M  | East | 394852.084 | North | 6946190.327 | Elevation | 684.642 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13_10M | East | 394848.672 | North | 6946186.492 | Elevation | 684.751 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13_20M | East | 394841.770 | North | 6946178.839 | Elevation | 684.914 | Code | 180SBP<br>RUN13 |
| Point | 180BP_14_B32 | East | 394855.795 | North | 6946193.582 | Elevation | 684.438 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14_2M  | East | 394854.000 | North | 6946192.488 | Elevation | 684.584 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14_5M  | East | 394852.082 | North | 6946190.330 | Elevation | 684.650 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14_10M | East | 394848.673 | North | 6946186.493 | Elevation | 684.750 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14_20M | East | 394841.767 | North | 6946178.840 | Elevation | 684.934 | Code | 180SBP<br>RUN14 |
| Point | 180BP_15_B32 | East | 394855.798 | North | 6946193.579 | Elevation | 684.434 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15_2M  | East | 394854.008 | North | 6946192.487 | Elevation | 684.585 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15_5M  | East | 394852.083 | North | 6946190.330 | Elevation | 684.647 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15_10M | East | 394848.676 | North | 6946186.489 | Elevation | 684.762 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15_20M | East | 394841.780 | North | 6946178.840 | Elevation | 684.930 | Code | 180SBP<br>RUN15 |
| Point | 180BP_16_B32 | East | 394855.793 | North | 6946193.581 | Elevation | 684.434 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16_2M  | East | 394853.995 | North | 6946192.491 | Elevation | 684.581 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16_5M  | East | 394852.088 | North | 6946190.339 | Elevation | 684.656 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16_10M | East | 394848.673 | North | 6946186.518 | Elevation | 684.756 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16_20M | East | 394841.774 | North | 6946178.840 | Elevation | 684.922 | Code | 180SBP<br>RUN16 |

| Point | 180BP_17_B32   | East   | 394855.800 | North   | 6946193.590 | Elevation   | 684.436 | Code | 180SBP<br>RUN17 |
|-------|----------------|--------|------------|---------|-------------|-------------|---------|------|-----------------|
| Point | 180BP_17_2M    | East   | 394854.004 | North   | 6946192.488 | Elevation   | 684.576 | Code | 180SBP<br>RUN17 |
| Point | 180BP_17_5M    | East   | 394852.087 | North   | 6946190.335 | Elevation   | 684.641 | Code | 180SBP<br>RUN17 |
| Point | 180BP_17_10M   | East   | 394848.675 | North   | 6946186.495 | Elevation   | 684.743 | Code | 180SBP<br>RUN17 |
| Point | 180BP_17_20M   | East   | 394841.771 | North   | 6946178.839 | Elevation   | 684.924 | Code | 180SBP<br>RUN17 |
| Point | 180BP_18_B32   | East   | 394855.789 | North   | 6946193.587 | Elevation   | 684.434 | Code | 180SBP<br>RUN18 |
| Point | 180BP_18_2M    | East   | 394854.005 | North   | 6946192.490 | Elevation   | 684.586 | Code | 180SBP<br>RUN18 |
| Point | 180BP_18_5M    | East   | 394852.084 | North   | 6946190.327 | Elevation   | 684.641 | Code | 180SBP<br>RUN18 |
| Point | 180BP_18_10M   | East   | 394848.677 | North   | 6946186.489 | Elevation   | 684.754 | Code | 180SBP<br>RUN18 |
| Point | 180BP_18_20M   | East   | 394841.773 | North   | 6946178.837 | Elevation   | 684.907 | Code | 180SBP<br>RUN18 |
| Point | 180BP_19_B32   | East   | 394855.799 | North   | 6946193.582 | Elevation   | 684.433 | Code | 180SBP<br>RUN19 |
| Point | 180BP_19_2M    | East   | 394854.006 | North   | 6946192.487 | Elevation   | 684.574 | Code | 180SBP<br>RUN19 |
| Point | 180BP_19_5M    | East   | 394852.085 | North   | 6946190.329 | Elevation   | 684.637 | Code | 180SBP<br>RUN19 |
| Point | 180BP_19_10M   | East   | 394848.677 | North   | 6946186.493 | Elevation   | 684.758 | Code | 180SBP<br>RUN19 |
| Point | 180BP_19_20M   | East   | 394841.769 | North   | 6946178.841 | Elevation   | 684.920 | Code | 180SBP<br>RUN19 |
| Point | 180BP_20_B32   | East   | 394855.800 | North   | 6946193.581 | Elevation   | 684.424 | Code | 180SBP<br>RUN20 |
| Point | 180BP_20_2M    | East   | 394854.004 | North   | 6946192.490 | Elevation   | 684.579 | Code | 180SBP<br>RUN20 |
| Point | 180BP_20_5M    | East   | 394852.079 | North   | 6946190.332 | Elevation   | 684.651 | Code | 180SBP<br>RUN20 |
| Point | 180BP_20_10M   | East   | 394848.671 | North   | 6946186.490 | Elevation   | 684.752 | Code | 180SBP<br>RUN20 |
| Point | 180BP_20_20M   | East   | 394841.769 | North   | 6946178.842 | Elevation   | 684.904 | Code | 180SBP<br>RUN20 |
| Point | 180BP_11.2_B3  | 2 East | 394855.798 | North   | 6946193.575 | Elevation   | 684.431 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11.2_40M | M East | 394825.080 | ) North | 6946167.745 | Elevation   | 685.513 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11.2_80M | M East | 394794.389 | North   | 6946142.230 | Elevation   | 686.331 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11.2_120 | M East | 394763.56  | 2 North | 6946116.732 | 2 Elevation | 687.363 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11.2_160 | M East | 394735.47  | 5 North | 6946087.86  | 5 Elevation | 688.124 | Code | 180SBP<br>RUN11 |
| Point | 180BP_11.2_200 | M East | 394719.16  | 9 North | 6946047.412 | 2 Elevation | 688.547 | Code | 180SBP<br>RUN11 |

| Point | 180BP_12.2_B32  | East   | 394855.792 | North | 6946193.581 | Elevation | 684.437 | Code | 180SBP          |
|-------|-----------------|--------|------------|-------|-------------|-----------|---------|------|-----------------|
|       |                 |        |            |       |             |           |         |      | RUN12           |
| Point | 180BP_12.2_40M  | East   | 394825.067 | North | 6946167.760 | Elevation | 685.519 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12.2_80M  | East   | 394794.392 | North | 6946142.227 | Elevation | 686.329 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12.2_120M | 1 East | 394763.568 | North | 6946116.733 | Elevation | 687.361 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12.2_160M | 1 East | 394735.476 | North | 6946087.869 | Elevation | 688.126 | Code | 180SBP<br>RUN12 |
| Point | 180BP_12.2_200M | 1 East | 394719.172 | North | 6946047.418 | Elevation | 688.539 | Code | 180SBP<br>RUN12 |

| Point | ANANGA1 E     | Cast    | 394586.985 | North   | 69         | 946490.6 | 539 I  | Elevat      | ion     | 718.427    | Code    | 1                    |
|-------|---------------|---------|------------|---------|------------|----------|--------|-------------|---------|------------|---------|----------------------|
| Point | 180BP_21_B32  | East    | 394855.80  | 3 Nort  | h e        | 6946193  | 3.594  | Eleva       | ation   | 684.432    | Code    | 180SBP<br>RUN21      |
| Point | 180BP_21_2M   | East    | 394854.009 | North   | n 6        | 5946192  | .503   | Eleva       | tion    | 684.576    | Code    | 180SBP<br>RUN21      |
| Point | 180BP_21_5M   | East    | 394852.087 | North   | n 6        | 5946190  | .347   | Eleva       | ition   | 684.638    | Code    | 180SBP<br>RUN21      |
| Point | 180BP_21_10M  | East    | 394848.68  | 2 Nort  | h          | 6946186  | 5.514  | Eleva       | ation   | 684.748    | Code    | 180SBP<br>RUN21      |
| Point | 180BP_21_20M  | East    | 394841.77  | 9 Nort  | h          | 6946178  | 8.856  | Eleva       | ation   | 684.915    | Code    | 180SBP<br>RUN21      |
| Point | 180BP_22_B32  | East    | 394855.80  | 5 Nort  | h e        | 6946193  | 8.593  | Eleva       | ation   | 684.437    | Code    | 180SBP<br>RUN22      |
| Point | 180BP_22_2M   | East    | 394854.015 | North   | n 6        | 5946192  | .503   | Eleva       | tion    | 684.575    | Code    | 180SBP<br>RUN22      |
| Point | 180BP_22_5M   | East    | 394852.097 | North   | <b>1</b> 6 | 5946190  | .351   | Eleva       | ition   | 684.642    | Code    | 180SBP<br>RUN22      |
| Point | 180BP_22_10M  | East    | 394848.68  | 8 Nort  | h          | 6946186  | 5.516  | Eleva       | ation   | 684.749    | Code    | 180SBP<br>RUN22      |
| Point | 180BP_23_20M  | East    | 394841.783 | North   | 694617     | 78.864   | Eleva  | ation       | 684.9   | 014 Code   | RUN22_A | 180SBP<br>CT_22_20M  |
| Point | 180BP_24_B32  | East 3  | 94855.805  | lorth   | 694619     | 93.595   | Eleva  | ation       | 684.4   | 434 Code   | RUN24_4 | 180SBP<br>ACT_23_B32 |
| Point | 180BP_23_2M   | East    | 394854.009 | North   | n 6        | 5946192  | .503   | Eleva       | tion    | 684.576    | Code    | 180SBP<br>RUN23      |
| Point | 180BP_23_5M   | East    | 394852.088 | North   | n 6        | 5946190  | .340   | Eleva       | tion    | 684.644    | Code    | 180SBP<br>RUN23      |
| Point | 180BP_23_10M  | East    | 394848.68  | 2 Nort  | h          | 6946186  | 5.503  | Eleva       | ation   | 684.745    | Code    | 180SBP<br>RUN23      |
| Point | 180BP_23_B32_ | _2 East | 394855.8   | 06 Nor  | th         | 694619   | 93.597 | Elev        | vation  | 684.432    | Code    | 180SBP<br>RUN23      |
| Point | 180BP_23_20M_ | ACT Eas | it 39484   | 1.785 N | North      | 6946     | 178.8  | 47 <b>E</b> | levatio | on 684.913 | 3 Code  | 180SBP<br>RUN23      |
| Point | 180BP_24_B32_ | ACT Eas | t 394855   | 5.806 N | lorth      | 6946     | 193.59 | 93 El       | evatio  | n 684.434  | 4 Code  | 180SBP<br>RUN24      |
| Point | 180BP_24_2M   | East    | 394854.010 | North   | n 6        | 5946192  | .502   | Eleva       | ition   | 684.569    | Code    | 180SBP<br>RUN24      |
| Point | 180BP_24_5M   | East    | 394852.093 | North   | n 6        | 5946190  | .345   | Eleva       | ition   | 684.641    | Code    | 180SBP<br>RUN24      |
| Point | 180BP_24_10M  | East    | 394848.68  | 3 Nort  | h          | 6946186  | 5.502  | Eleva       | ation   | 684.754    | Code    | 180SBP<br>RUN24      |
| Point | 180BP_24_20M  | East    | 394841.78  | 4 Nort  | h          | 6946178  | 8.852  | Eleva       | ation   | 684.914    | Code    | 180SBP<br>RUN24      |
| Point | 180BP_25_B32  | East    | 394855.812 | 2 Nort  | h e        | 6946193  | 8.593  | Eleva       | ation   | 684.434    | Code    | 180SBP<br>RUN25      |
| Point | 180BP_25_2M   | East    | 394854.011 | North   | n 6        | 5946192  | .499   | Eleva       | ition   | 684.579    | Code    | 180SBP<br>RUN25      |
| Point | 180BP_25_5M   | East    | 394852.095 | North   | n 6        | 5946190  | .341   | Eleva       | ition   | 684.657    | Code    | 180SBP<br>RUN25      |

# Appendix C6: RTK Observations 14 Aug 2013 – Set 3

| Point | 180BP_25_10M | East | 394848.690 | North | 6946186.511 | Elevation | 684.753 | Code | 180SBP<br>RUN25 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|-----------------|
| Point | 180BP_25_20M | East | 394841.780 | North | 6946178.841 | Elevation | 684.910 | Code | 180SBP<br>RUN25 |
| Point | 180BP_26_B32 | East | 394855.808 | North | 6946193.596 | Elevation | 684.436 | Code | 180SBP<br>RUN26 |
| Point | 180BP_26_2M  | East | 394854.015 | North | 6946192.507 | Elevation | 684.579 | Code | 180SBP<br>RUN26 |
| Point | 180BP_26_5M  | East | 394852.096 | North | 6946190.348 | Elevation | 684.638 | Code | 180SBP<br>RUN26 |
| Point | 180BP_26_10M | East | 394848.686 | North | 6946186.513 | Elevation | 684.746 | Code | 180SBP<br>RUN26 |
| Point | 180BP_26_20M | East | 394841.784 | North | 6946178.855 | Elevation | 684.915 | Code | 180SBP<br>RUN26 |
| Point | 180BP_27_B32 | East | 394855.809 | North | 6946193.595 | Elevation | 684.428 | Code | 180SBP<br>RUN27 |
| Point | 180BP_27_2M  | East | 394854.008 | North | 6946192.502 | Elevation | 684.574 | Code | 180SBP<br>RUN27 |
| Point | 180BP_27_5M  | East | 394852.087 | North | 6946190.350 | Elevation | 684.649 | Code | 180SBP<br>RUN27 |
| Point | 180BP_27_10M | East | 394848.682 | North | 6946186.506 | Elevation | 684.749 | Code | 180SBP<br>RUN27 |
| Point | 180BP_27_20M | East | 394841.781 | North | 6946178.851 | Elevation | 684.907 | Code | 180SBP<br>RUN27 |
| Point | 180BP_28_B32 | East | 394855.805 | North | 6946193.599 | Elevation | 684.428 | Code | 180SBP<br>RUN28 |
| Point | 180BP_28_2M  | East | 394854.013 | North | 6946192.502 | Elevation | 684.564 | Code | 180SBP<br>RUN28 |
| Point | 180BP_28_5M  | East | 394852.099 | North | 6946190.344 | Elevation | 684.639 | Code | 180SBP<br>RUN28 |
| Point | 180BP_28_10M | East | 394848.681 | North | 6946186.509 | Elevation | 684.744 | Code | 180SBP<br>RUN28 |
| Point | 180BP_28_20M | East | 394841.779 | North | 6946178.855 | Elevation | 684.914 | Code | 180SBP<br>RUN28 |
| Point | 180BP_29_B32 | East | 394855.804 | North | 6946193.599 | Elevation | 684.434 | Code | 180SBP<br>RUN29 |
| Point | 180BP_29_2M  | East | 394854.011 | North | 6946192.496 | Elevation | 684.576 | Code | 180SBP<br>RUN29 |
| Point | 180BP_29_5M  | East | 394852.094 | North | 6946190.344 | Elevation | 684.630 | Code | 180SBP<br>RUN29 |
| Point | 180BP_29_10M | East | 394848.688 | North | 6946186.512 | Elevation | 684.749 | Code | 180SBP<br>RUN29 |
| Point | 180BP_29_20M | East | 394841.783 | North | 6946178.859 | Elevation | 684.923 | Code | 180SBP<br>RUN29 |
| Point | 180BP_30_B32 | East | 394855.805 | North | 6946193.598 | Elevation | 684.434 | Code | 180SBP<br>RUN30 |
| Point | 180BP_30_2M  | East | 394854.011 | North | 6946192.502 | Elevation | 684.569 | Code | 180SBP<br>RUN30 |
| Point | 180BP_30_5M  | East | 394852.086 | North | 6946190.347 | Elevation | 684.642 | Code | 180SBP<br>RUN30 |
| Point | 180BP_30_10M | East | 394848.681 | North | 6946186.504 | Elevation | 684.750 | Code | 180SBP<br>RUN30 |
| -     |                 |        |            |       |             |           |         |      |                 |
|-------|-----------------|--------|------------|-------|-------------|-----------|---------|------|-----------------|
| Point | 180BP_30_20M    | East   | 394841.781 | North | 6946178.864 | Elevation | 684.925 | Code | 180SBP<br>RUN30 |
| Point | 180BP_21.2_B32  | East   | 394855.810 | North | 6946193.594 | Elevation | 684.436 | Code | 180SBP<br>RUN21 |
| Point | 180BP_21.2_40M  | East   | 394825.082 | North | 6946167.766 | Elevation | 685.505 | Code | 180SBP<br>RUN21 |
| Point | 180BP_21.2_80M  | East   | 394794.389 | North | 6946142.250 | Elevation | 686.331 | Code | 180SBP<br>RUN21 |
| Point | 180BP_21.2_120M | 1 East | 394763.571 | North | 6946116.745 | Elevation | 687.368 | Code | 180SBP<br>RUN21 |
| Point | 180BP_21.2_160N | 1 East | 394735.482 | North | 6946087.884 | Elevation | 688.120 | Code | 180SBP<br>RUN21 |
| Point | 180BP_21.2_200M | 1 East | 394719.172 | North | 6946047.428 | Elevation | 688.538 | Code | 180SBP<br>RUN21 |
| Point | 180BP_22.2_B32  | East   | 394855.802 | North | 6946193.604 | Elevation | 684.442 | Code | 180SBP<br>RUN22 |
| Point | 180BP_22.2_40M  | East   | 394825.132 | North | 6946167.754 | Elevation | 685.494 | Code | 180SBP<br>RUN22 |
| Point | 180BP_22.2_80M  | East   | 394794.405 | North | 6946142.254 | Elevation | 686.334 | Code | 180SBP<br>RUN22 |
| Point | 180BP_22.2_120N | 1 East | 394763.575 | North | 6946116.742 | Elevation | 687.358 | Code | 180SBP<br>RUN22 |
| Point | 180BP_22.2_160N | 1 East | 394735.481 | North | 6946087.888 | Elevation | 688.140 | Code | 180SBP<br>RUN22 |
| Point | 180BP_22.2_200M | 1 East | 394719.176 | North | 6946047.428 | Elevation | 688.554 | Code | 180SBP<br>RUN22 |

| 1     |                |      |             |        |                      |           |         |      |                |
|-------|----------------|------|-------------|--------|----------------------|-----------|---------|------|----------------|
| Point | ANANGA1 Ea     | st 3 | 94586.985 N | orth 6 | 5946490.639 <b>H</b> | Elevation | 718.427 | Code | 1              |
| Point | 180BP_3.2_B32  | East | 394855.796  | North  | 6946193.602          | Elevation | 684.436 | Code | 180SBP<br>RUN3 |
| Point | 180BP_3.2_40M  | East | 394825.076  | North  | 6946167.765          | Elevation | 685.513 | Code | 180SBP<br>RUN3 |
| Point | 180BP_3.2_80M  | East | 394794.385  | North  | 6946142.247          | Elevation | 686.338 | Code | 180SBP<br>RUN3 |
| Point | 180BP_3.2_120M | East | 394763.558  | North  | 6946116.749          | Elevation | 687.365 | Code | 180SBP<br>RUN3 |
| Point | 180BP_3.2_160M | East | 394735.476  | North  | 6946087.874          | Elevation | 688.130 | Code | 180SBP<br>RUN3 |
| Point | 180BP_3.2_200M | East | 394719.170  | North  | 6946047.420          | Elevation | 688.550 | Code | 180SBP<br>RUN3 |
| Point | 180BP_4.2_B32  | East | 394855.794  | North  | 6946193.604          | Elevation | 684.430 | Code | 180SBP<br>RUN4 |
| Point | 180BP_4.2_40M  | East | 394825.076  | North  | 6946167.767          | Elevation | 685.509 | Code | 180SBP<br>RUN4 |
| Point | 180BP_4.2_80M  | East | 394794.381  | North  | 6946142.245          | Elevation | 686.343 | Code | 180SBP<br>RUN4 |
| Point | 180BP_4.2_120M | East | 394763.556  | North  | 6946116.727          | Elevation | 687.379 | Code | 180SBP<br>RUN4 |
| Point | 180BP_4.2_160M | East | 394735.472  | North  | 6946087.878          | Elevation | 688.127 | Code | 180SBP<br>RUN4 |
| Point | 180BP_4.2_200M | East | 394719.169  | North  | 6946047.425          | Elevation | 688.546 | Code | 180SBP<br>RUN4 |
| Point | 180BP_5.2_B32  | East | 394855.802  | North  | 6946193.591          | Elevation | 684.433 | Code | 180SBP<br>RUN5 |
| Point | 180BP_5.2_40M  | East | 394825.076  | North  | 6946167.760          | Elevation | 685.509 | Code | 180SBP<br>RUN5 |
| Point | 180BP_5.2_80M  | East | 394794.383  | North  | 6946142.250          | Elevation | 686.343 | Code | 180SBP<br>RUN5 |
| Point | 180BP_5.2_120M | East | 394763.562  | North  | 6946116.737          | Elevation | 687.371 | Code | 180SBP<br>RUN5 |
| Point | 180BP_5.2_160M | East | 394735.479  | North  | 6946087.882          | Elevation | 688.122 | Code | 180SBP<br>RUN5 |
| Point | 180BP_5.2_200M | East | 394719.172  | North  | 6946047.424          | Elevation | 688.549 | Code | 180SBP<br>RUN5 |
| Point | 180BP_6.2_B32  | East | 394855.794  | North  | 6946193.593          | Elevation | 684.436 | Code | 180SBP<br>RUN6 |
| Point | 180BP_6.2_40M  | East | 394825.078  | North  | 6946167.761          | Elevation | 685.507 | Code | 180SBP<br>RUN6 |
| Point | 180BP_6.2_80M  | East | 394794.380  | North  | 6946142.249          | Elevation | 686.335 | Code | 180SBP<br>RUN6 |
| Point | 180BP_6.2_120M | East | 394763.557  | North  | 6946116.729          | Elevation | 687.368 | Code | 180SBP<br>RUN6 |
| Point | 180BP_6.2_160M | East | 394735.471  | North  | 6946087.880          | Elevation | 688.126 | Code | 180SBP<br>RUN6 |
| Point | 180BP_6.2_200M | East | 394719.170  | North  | 6946047.419          | Elevation | 688.542 | Code | 180SBP<br>RUN6 |

# Appendix C7: RTK Observations 15 Aug 2013 – Set 1

| Point | 180BP_7.2_B32   | East   | 394855.792 | North   | 6946193.595 | Elevation | 684.438 | Code | 180SBP<br>RUN7  |
|-------|-----------------|--------|------------|---------|-------------|-----------|---------|------|-----------------|
| Point | 180BP_7.2_40M   | East   | 394825.069 | North   | 6946167.767 | Elevation | 685.502 | Code | 180SBP<br>RUN7  |
| Point | 180BP_7.2_80M   | East   | 394794.373 | North   | 6946142.242 | Elevation | 686.340 | Code | 180SBP<br>RUN7  |
| Point | 180BP_7.2_120M  | East   | 394763.552 | North   | 6946116.736 | Elevation | 687.368 | Code | 180SBP<br>RUN7  |
| Point | 180BP_7.2_160M  | East   | 394735.469 | North   | 6946087.877 | Elevation | 688.115 | Code | 180SBP<br>RUN7  |
| Point | 180BP_7.2_200M  | East   | 394719.173 | North   | 6946047.427 | Elevation | 688.540 | Code | 180SBP<br>RUN7  |
| Point | 180BP_8.2_B32   | East   | 394855.789 | North   | 6946193.585 | Elevation | 684.428 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8.2_40M   | East   | 394825.072 | North   | 6946167.762 | Elevation | 685.509 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8.2_80M   | East   | 394794.381 | North   | 6946142.243 | Elevation | 686.338 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8.2_120M  | East   | 394763.556 | North   | 6946116.745 | Elevation | 687.376 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8.2_160M  | East   | 394735.476 | North   | 6946087.882 | Elevation | 688.119 | Code | 180SBP<br>RUN8  |
| Point | 180BP_8.2_200M  | East   | 394719.163 | North   | 6946047.425 | Elevation | 688.541 | Code | 180SBP<br>RUN8  |
| Point | 180BP_9.2_B32   | East   | 394855.798 | North   | 6946193.593 | Elevation | 684.435 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9.2_40M   | East   | 394825.066 | North   | 6946167.763 | Elevation | 685.507 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9.2_80M   | East   | 394794.382 | North   | 6946142.242 | Elevation | 686.334 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9.2_120M  | East   | 394763.554 | North   | 6946116.737 | Elevation | 687.366 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9.2_160M  | East   | 394735.469 | North   | 6946087.876 | Elevation | 688.120 | Code | 180SBP<br>RUN9  |
| Point | 180BP_9.2_200M  | East   | 394719.166 | North   | 6946047.415 | Elevation | 688.550 | Code | 180SBP<br>RUN9  |
| Point | 180BP_10.2_B32  | East   | 394855.801 | North   | 6946193.591 | Elevation | 684.430 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10.2_40M  | East   | 394825.071 | North   | 6946167.760 | Elevation | 685.500 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10.2_80M  | East   | 394794.372 | North   | 6946142.242 | Elevation | 686.332 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10.2_120M | I East | 394763.556 | 5 North | 6946116.744 | Elevation | 687.363 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10.2_160M | I East | 394735.474 | North   | 6946087.887 | Elevation | 688.117 | Code | 180SBP<br>RUN10 |
| Point | 180BP_10.2_200M | I East | 394719.172 | 2 North | 6946047.420 | Elevation | 688.541 | Code | 180SBP<br>RUN10 |

| 1     |                 |      |                     |        |                     |           |         |      |                 |
|-------|-----------------|------|---------------------|--------|---------------------|-----------|---------|------|-----------------|
| Point | ANANGA1 Eas     | t 39 | 4586.985 <b>N</b> o | orth 6 | 946490.639 <b>E</b> | levation  | 718.427 | Code | 1               |
| Point | 180BP_13.2_B32  | East | 394855.790          | North  | 6946193.595         | Elevation | 684.437 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13.2_40M  | East | 394825.067          | North  | 6946167.758         | Elevation | 685.504 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13.2_80M  | East | 394794.365          | North  | 6946142.240         | Elevation | 686.338 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13.2_120M | East | 394763.551          | North  | 6946116.733         | Elevation | 687.374 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13.2_160M | East | 394735.468          | North  | 6946087.870         | Elevation | 688.125 | Code | 180SBP<br>RUN13 |
| Point | 180BP_13.2_200M | East | 394719.157          | North  | 6946047.417         | Elevation | 688.551 | Code | 180SBP<br>RUN13 |
| Point | 180BP_14.2_B32  | East | 394855.787          | North  | 6946193.584         | Elevation | 684.435 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14.2_40M  | East | 394825.064          | North  | 6946167.753         | Elevation | 685.505 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14.2_80M  | East | 394794.370          | North  | 6946142.237         | Elevation | 686.337 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14.2_120M | East | 394763.545          | North  | 6946116.721         | Elevation | 687.378 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14.2_160M | East | 394735.465          | North  | 6946087.869         | Elevation | 688.122 | Code | 180SBP<br>RUN14 |
| Point | 180BP_14.2_200M | East | 394719.160          | North  | 6946047.418         | Elevation | 688.545 | Code | 180SBP<br>RUN14 |
| Point | 180BP_15.2_B32  | East | 394855.783          | North  | 6946193.590         | Elevation | 684.435 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15.2_40M  | East | 394825.064          | North  | 6946167.758         | Elevation | 685.508 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15.2_80M  | East | 394794.378          | North  | 6946142.236         | Elevation | 686.337 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15.2_120M | East | 394763.548          | North  | 6946116.728         | Elevation | 687.363 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15.2_160M | East | 394735.468          | North  | 6946087.867         | Elevation | 688.122 | Code | 180SBP<br>RUN15 |
| Point | 180BP_15.2_200M | East | 394719.160          | North  | 6946047.405         | Elevation | 688.540 | Code | 180SBP<br>RUN15 |
| Point | 180BP_16.2_B32  | East | 394855.786          | North  | 6946193.594         | Elevation | 684.429 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16.2_40M  | East | 394825.061          | North  | 6946167.758         | Elevation | 685.510 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16.2_80M  | East | 394794.373          | North  | 6946142.239         | Elevation | 686.333 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16.2_120M | East | 394763.548          | North  | 6946116.734         | Elevation | 687.364 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16.2_160M | East | 394735.466          | North  | 6946087.877         | Elevation | 688.122 | Code | 180SBP<br>RUN16 |
| Point | 180BP_16.2_200M | East | 394719.162          | North  | 6946047.423         | Elevation | 688.551 | Code | 180SBP<br>RUN16 |

# Appendix C8: RTK Observations 15 Aug 2013 – Set 2

| Point | 180BP_17.2_B32  | East | 394855.78  | 7 North  | 6946193.593   | Elevation   | n 684.425   | Code   | 180SBP<br>RUN17      |
|-------|-----------------|------|------------|----------|---------------|-------------|-------------|--------|----------------------|
| Point | 180BP_17.2_40M  | East | 394825.06  | 52 North | 6946167.750   | 5 Elevation | n 685.508   | Code   | 180SBP<br>RUN17      |
| Point | 180BP_17.2_80M  | East | 394794.37  | 71 North | 6946142.242   | 2 Elevatio  | n 686.339   | Code   | 180SBP<br>RUN17      |
| Point | 180BP_17.2_120M | East | 394763.5   | 49 North | 6946116.73    | 2 Elevatio  | on 687.369  | Code   | 180SBP<br>RUN17      |
| Point | 180BP_17.2_160M | East | 394735.4   | 72 North | 6946087.88    | 0 Elevatio  | on 688.120  | Code   | 180SBP<br>RUN17      |
| Point | 180BP_17.2_200M | East | 394719.1   | 60 North | 6946047.41    | 3 Elevatio  | on 688.544  | Code   | 180SBP<br>RUN17      |
| Point | 180BP_18.2_B32  | East | 394855.78  | 4 North  | 6946193.590   | Elevation   | n 684.431   | Code   | 180SBP<br>RUN18      |
| Point | 180BP_18.2_40M  | East | 394825.06  | 51 North | 6946167.762   | 2 Elevatio  | n 685.511   | Code   | 180SBP<br>RUN18      |
| Point | 180BP_18.2_80M  | East | 394794.37  | 70 North | 6946142.244   | Elevatio    | n 686.343   | Code   | 180SBP<br>RUN18      |
| Point | 180BP_18.2_120M | East | 394763.5   | 52 North | 6946116.74    | 1 Elevatio  | on 687.364  | Code   | 180SBP<br>RUN18      |
| Point | 180BP_18.2_160M | East | 394735.4   | 65 North | 6946087.87    | 8 Elevatio  | on 688.119  | Code   | 180SBP<br>RUN18      |
| Point | 180BP_18.2_200M | East | 394719.1   | 60 North | 6946047.41    | 2 Elevatio  | on 688.546  | 5 Code | 180SBP<br>RUN18      |
| Point | 180BP_19.2_B32  | East | 394855.78  | 8 North  | 6946193.601   | Elevation   | n 684.430   | Code   | 180SBP<br>RUN19      |
| Point | 180BP_19.2_40M  | East | 394825.06  | 58 North | 6946167.762   | 2 Elevation | n 685.505   | Code   | 180SBP<br>RUN19      |
| Point | 180BP_19.2_80M  | East | 394794.37  | 79 North | 6946142.24    | Elevatio    | n 686.332   | Code   | 180SBP<br>RUN19      |
| Point | 180BP_19.2_120M | East | 394763.5   | 55 North | 6946116.73    | 3 Elevatio  | on 687.361  | Code   | 180SBP<br>RUN19      |
| Point | 180BP_19.2_200M | East | 394735.469 | North    | 6946087.875 J | Elevation   | 688.118 Coo | le RUN | 180SBP<br>19_ACT_160 |
| Point | 180BP_20.2_B32  | East | 394855.78  | 8 North  | 6946193.598   | Elevation   | n 684.427   | Code   | 180SBP<br>RUN20      |
| Point | 180BP_20.2_40M  | East | 394825.07  | 71 North | 6946167.766   | 5 Elevation | n 685.500   | Code   | 180SBP<br>RUN20      |
| Point | 180BP_20.2_80M  | East | 394794.37  | 73 North | 6946142.24    | 5 Elevatio  | n 686.330   | Code   | 180SBP<br>RUN20      |
| Point | 180BP_20.2_120M | East | 394763.5   | 50 North | 6946116.74    | 2 Elevatio  | on 687.356  | 5 Code | 180SBP<br>RUN20      |
| Point | 180BP_20.2_160M | East | 394735.4   | 65 North | 6946087.88    | 2 Elevatio  | on 688.122  | 2 Code | 180SBP<br>RUN20      |
| Point | 180BP_20.2_200M | East | 394719.1   | 57 North | 6946047.42    | 2 Elevatio  | on 688.546  | 5 Code | 180SBP<br>RUN20      |
| Point | 60BP_1_B32 Eas  | st   | 394855.787 | North    | 6946193.596   | Elevation   | 684.434     | Code   | 60SBP<br>RUN1        |
| Point | 60BP_1_2M Eas   | t    | 394853.992 | North    | 6946192.508   | Elevation   | 684.571     | Code   | 60SBP<br>RUN1        |
| Point | 60BP_1_5M Eas   | t    | 394852.072 | North    | 6946190.339   | Elevation   | 684.642     | Code   | 60SBP<br>RUN1        |

| Point | 60BP_1_10M  | East   | 394848.665 | North | 6946186.501 | Elevation | 684.751 | Code | 60SBP<br>RUN1 |
|-------|-------------|--------|------------|-------|-------------|-----------|---------|------|---------------|
| Point | 60BP_1_20M  | East   | 394841.762 | North | 6946178.850 | Elevation | 684.913 | Code | 60SBP<br>RUN1 |
| Point | 60BP_1_40M  | East   | 394825.063 | North | 6946167.760 | Elevation | 685.498 | Code | 60SBP<br>RUN1 |
| Point | 60BP_1_80M  | East   | 394794.376 | North | 6946142.236 | Elevation | 686.347 | Code | 60SBP<br>RUN1 |
| Point | 60BP_1_120M | East   | 394763.552 | North | 6946116.732 | Elevation | 687.373 | Code | 60SBP<br>RUN1 |
| Point | 60BP_1_160M | East   | 394735.472 | North | 6946087.881 | Elevation | 688.128 | Code | 60SBP<br>RUN1 |
| Point | 60BP_1_200M | East   | 394719.163 | North | 6946047.409 | Elevation | 688.562 | Code | 60SBP<br>RUN1 |
| Point | 60BP_2_200M | l East | 394719.186 | North | 6946047.419 | Elevation | 688.561 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_160M | l East | 394735.500 | North | 6946087.887 | Elevation | 688.128 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_120M | l East | 394763.549 | North | 6946116.741 | Elevation | 687.383 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_80M  | East   | 394794.406 | North | 6946142.251 | Elevation | 686.351 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_40M  | East   | 394825.097 | North | 6946167.765 | Elevation | 685.511 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_20M  | East   | 394841.787 | North | 6946178.855 | Elevation | 684.919 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_10M  | East   | 394848.691 | North | 6946186.508 | Elevation | 684.746 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_5M   | East   | 394852.087 | North | 6946190.348 | Elevation | 684.637 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_2M   | East   | 394854.011 | North | 6946192.501 | Elevation | 684.576 | Code | 60SBP<br>RUN2 |
| Point | 60BP_2_B32  | East   | 394855.815 | North | 6946193.598 | Elevation | 684.433 | Code | 60SBP<br>RUN2 |

| 1     |                 |      |              |         |             |            |               |       |      |      |                     |
|-------|-----------------|------|--------------|---------|-------------|------------|---------------|-------|------|------|---------------------|
| Point | ANANGA1 Eas     | t    | 394586.985 N | orth    | 6946490.639 | Elevation  | 718           | 427   | Code |      | 1                   |
| Point | 180BP_23.2_B32  | East | 394855.804   | North   | 6946193.59  | 4 Elevati  | <b>on</b> 684 | 1.422 | Code |      | 180SBP<br>RUN23     |
| Point | 180BP_23.2_40M  | East | 394825.081   | North   | 6946167.76  | 60 Elevati | <b>on</b> 68  | 5.505 | Code |      | 180SBP<br>RUN23     |
| Point | 180BP_23.2_80M  | East | 394794.392   | North   | 6946142.24  | 2 Elevati  | <b>on</b> 68  | 5.336 | Code |      | 180SBP<br>RUN23     |
| Point | 180BP_23.2_120M | East | 394763.567   | North   | 6946116.73  | 36 Elevat  | <b>ion</b> 68 | 7.364 | Code |      | 180SBP<br>RUN23     |
| Point | 180BP_23.2_160M | East | 394735.484   | 4 North | 6946087.8   | 81 Elevat  | ion 68        | 8.120 | Code |      | 180SBP<br>RUN23     |
| Point | 180BP_23.2_200M | East | 394719.181   | North   | 6946047.42  | 25 Elevat  | ion 68        | 8.552 | Code |      | 180SBP<br>RUN23     |
| Point | 180BP_24.2_B32  | East | 394855.807   | North   | 6946193.58  | 9 Elevati  | <b>on</b> 684 | 1.428 | Code |      | 180SBP<br>RUN24     |
| Point | 180BP_24.2_40M  | East | 394825.087   | North   | 6946167.76  | 1 Elevati  | <b>on</b> 68  | 5.503 | Code |      | 180SBP<br>RUN24     |
| Point | 180BP_24.2_80M  | East | 394794.389   | North   | 6946142.24  | 5 Elevati  | <b>on</b> 68  | 5.339 | Code |      | 180SBP<br>RUN24     |
| Point | 180BP_24.2_160M | East | 394763.561   | North   | 6946116.733 | Elevation  | 687.370       | Co    | de   | RUN2 | 180SBP<br>24_ACT120 |
| Point | 180BP_24.2_120M | East | 394735.488   | North   | 6946087.876 | Elevation  | 688.12        | Co    | de   | RUN2 | 180SBP<br>24_ACT160 |
| Point | 180BP_24.2_200M | East | 394719.180   | ) North | 6946047.4   | 32 Elevat  | <b>ion</b> 68 | 8.544 | Code |      | 180SBP<br>RUN24     |
| Point | 180BP_25.2_B32  | East | 394855.806   | North   | 6946193.59  | 4 Elevati  | <b>on</b> 684 | 4.432 | Code |      | 180SBP<br>RUN25     |
| Point | 180BP_25.2_40M  | East | 394825.091   | North   | 6946167.76  | Elevati    | ion 68        | 5.503 | Code |      | 180SBP<br>RUN25     |
| Point | 180BP_25.2_80M  | East | 394794.396   | North   | 6946142.24  | 8 Elevati  | <b>on</b> 68  | 5.340 | Code |      | 180SBP<br>RUN25     |
| Point | 180BP_25.2_120M | East | 394763.567   | North   | 6946116.73  | 37 Elevat  | <b>ion</b> 68 | 7.363 | Code |      | 180SBP<br>RUN25     |
| Point | 180BP_25.2_160M | East | 394735.486   | 5 North | 6946087.8′  | 76 Elevat  | <b>ion</b> 68 | 8.118 | Code |      | 180SBP<br>RUN25     |
| Point | 180BP_25.2_200M | East | 394719.177   | North   | 6946047.42  | 24 Elevat  | <b>ion</b> 68 | 8.538 | Code |      | 180SBP<br>RUN25     |
| Point | 180BP_26.2_B32  | East | 394855.807   | North   | 6946193.59  | 4 Elevati  | <b>on</b> 684 | 4.432 | Code |      | 180SBP<br>RUN26     |
| Point | 180BP_26.2_40M  | East | 394825.090   | North   | 6946167.75  | 7 Elevati  | <b>on</b> 68  | 5.499 | Code |      | 180SBP<br>RUN26     |
| Point | 180BP_26.2_80M  | East | 394794.390   | North   | 6946142.24  | -3 Elevati | <b>on</b> 68  | 5.331 | Code |      | 180SBP<br>RUN26     |
| Point | 180BP_26.2_160M | East | 394763.575   | North   | 6946116.736 | Elevation  | 687.364       | Co    | de   | RUN2 | 180SBP<br>26_ACT120 |
| Point | 180BP_26.2_120M | East | 394735.487   | North   | 6946087.888 | Elevation  | 688.11        | Co    | de   | RUN2 | 180SBP<br>26_ACT160 |
| Point | 180BP_26.2_200M | East | 394719.183   | 3 North | 6946047.42  | 28 Elevat  | ion 68        | 8.539 | Code |      | 180SBP<br>RUN26     |

# Appendix C9: RTK Observations 15 Aug 2013 – Set 3

| Point | 180BP_27.2_B3 | 32 Eas | t   | 394855.80 | 8 N        | lorth | 6946193.598 | Elevatio   | <b>n</b> 684.431 | Code | 180SBP<br>RUN27 |
|-------|---------------|--------|-----|-----------|------------|-------|-------------|------------|------------------|------|-----------------|
| Point | 180BP_27.2_40 | M Eas  | st  | 394825.08 | 2 N        | North | 6946167.765 | Elevatio   | n 685.505        | Code | 180SBP<br>RUN27 |
| Point | 180BP_27.2_80 | M Eas  | st  | 394794.39 | 3 N        | North | 6946142.246 | Elevatio   | n 686.329        | Code | 180SBP<br>RUN27 |
| Point | 180BP_27.2_12 | 0M Ea  | ast | 394763.5  | 74         | North | 6946116.743 | Belevatio  | on 687.362       | Code | 180SBP<br>RUN27 |
| Point | 180BP_27.2_16 | 0M Ea  | ast | 394735.4  | 90         | North | 6946087.885 | 5 Elevatio | <b>n</b> 688.114 | Code | 180SBP<br>RUN27 |
| Point | 180BP_27.2_20 | 0M Ea  | ast | 394719.1  | 31         | North | 6946047.432 | 2 Elevatio | on 688.540       | Code | 180SBP<br>RUN27 |
| Point | 180BP_28.2_B3 | 32 Eas | t   | 394855.80 | 3 N        | lorth | 6946193.603 | Elevation  | n 684.429        | Code | 180SBP<br>RUN28 |
| Point | 180BP_28.2_40 | M Eas  | st  | 394825.08 | 5 N        | North | 6946167.767 | Elevatio   | n 685.501        | Code | 180SBP<br>RUN28 |
| Point | 180BP_28.2_80 | M Eas  | st  | 394794.39 | 5 N        | North | 6946142.252 | Elevatio   | n 686.345        | Code | 180SBP<br>RUN28 |
| Point | 180BP_28.2_12 | 0M Ea  | nst | 394763.5  | 74         | North | 6946116.745 | 5 Elevatio | on 687.361       | Code | 180SBP<br>RUN28 |
| Point | 180BP_28.2_16 | 0M Ea  | ast | 394735.4  | 88 I       | North | 6946087.885 | 5 Elevatio | on 688.114       | Code | 180SBP<br>RUN28 |
| Point | 180BP_28.2_20 | 0M Ea  | ast | 394719.1  | 77         | North | 6946047.430 | Elevatio   | on 688.546       | Code | 180SBP<br>RUN28 |
| Point | 180BP_29.2_B3 | 32 Eas | t   | 394855.80 | 5 <b>N</b> | lorth | 6946193.595 | Elevation  | n 684.430        | Code | 180SBP<br>RUN29 |
| Point | 180BP_29.2_40 | M Eas  | st  | 394825.08 | 9 N        | North | 6946167.763 | Elevatio   | n 685.502        | Code | 180SBP<br>RUN29 |
| Point | 180BP_29.2_80 | M Eas  | st  | 394794.39 | 2          | North | 6946142.248 | Elevatio   | n 686.334        | Code | 180SBP<br>RUN29 |
| Point | 180BP_29.2_12 | 0M Ea  | ast | 394763.5  | 72         | North | 6946116.742 | 2 Elevatio | <b>n</b> 687.362 | Code | 180SBP<br>RUN29 |
| Point | 180BP_29.2_16 | 0M Ea  | ast | 394735.4  | 88 1       | North | 6946087.883 | Blevatio   | <b>n</b> 688.121 | Code | 180SBP<br>RUN29 |
| Point | 180BP_29.2_20 | 0M Ea  | ast | 394719.1  | 30         | North | 6946047.428 | Belevatio  | 688.541          | Code | 180SBP<br>RUN29 |
| Point | 180BP_30.2_B3 | 32 Eas | t   | 394855.80 | 5 <b>N</b> | lorth | 6946193.596 | Elevation  | n 684.428        | Code | 180SBP<br>RUN30 |
| Point | 180BP_30.2_40 | M Eas  | st  | 394825.08 | 7 N        | North | 6946167.763 | Elevatio   | n 685.502        | Code | 180SBP<br>RUN30 |
| Point | 180BP_30.2_80 | M Eas  | st  | 394794.39 | 2 N        | North | 6946142.242 | Elevatio   | n 686.338        | Code | 180SBP<br>RUN30 |
| Point | 180BP_30.2_12 | 0M Ea  | ast | 394763.5  | 72         | North | 6946116.749 | Elevatio   | <b>n</b> 687.356 | Code | 180SBP<br>RUN30 |
| Point | 180BP_30.2_16 | 0M Ea  | ist | 394735.4  | 35         | North | 6946087.887 | 7 Elevatio | <b>n</b> 688.114 | Code | 180SBP<br>RUN30 |
| Point | 180BP_30.2_20 | 0M Ea  | ast | 394719.1  | 72         | North | 6946047.434 | Elevatio   | <b>n</b> 688.546 | Code | 180SBP<br>RUN30 |
| Point | 60BP_15_B32   | East   | 39  | 94855.809 | Noi        | rth   | 6946193.600 | Elevation  | 684.430          | Code | 60SBP<br>RUN15  |
| Point | 60BP_15_2M    | East   | 39  | 94854.013 | Nor        | rth   | 6946192.500 | Elevation  | 684.572          | Code | 60SBP<br>RUN15  |

| Point | 60BP_15_5M   | East   | 394852.100 | North | 6946190.344 | Elevation | 684.639 | Code | 60SBP<br>RUN15 |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_15_10M  | East   | 394848.688 | North | 6946186.510 | Elevation | 684.742 | Code | 60SBP<br>RUN15 |
| Point | 60BP_15_20M  | East   | 394841.784 | North | 6946178.858 | Elevation | 684.908 | Code | 60SBP<br>RUN15 |
| Point | 60BP_15_40M  | East   | 394825.083 | North | 6946167.766 | Elevation | 685.496 | Code | 60SBP<br>RUN15 |
| Point | 60BP_15_80M  | East   | 394794.400 | North | 6946142.252 | Elevation | 686.347 | Code | 60SBP<br>RUN15 |
| Point | 60BP_15_120M | l East | 394763.572 | North | 6946116.747 | Elevation | 687.376 | Code | 60SBP<br>RUN15 |
| Point | 60BP_15_160M | l East | 394735.483 | North | 6946087.891 | Elevation | 688.126 | Code | 60SBP<br>RUN15 |
| Point | 60BP_15_200M | [ East | 394719.162 | North | 6946047.439 | Elevation | 688.550 | Code | 60SBP<br>RUN15 |
| Point | 60BP_16_200M | [ East | 394719.163 | North | 6946047.425 | Elevation | 688.551 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_160M | í East | 394735.470 | North | 6946087.877 | Elevation | 688.120 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_120M | [ East | 394763.555 | North | 6946116.741 | Elevation | 687.375 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_80M  | East   | 394794.385 | North | 6946142.241 | Elevation | 686.344 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_40M  | East   | 394825.065 | North | 6946167.764 | Elevation | 685.499 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_20M  | East   | 394841.765 | North | 6946178.856 | Elevation | 684.913 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_10M  | East   | 394848.672 | North | 6946186.502 | Elevation | 684.739 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_5M   | East   | 394852.079 | North | 6946190.334 | Elevation | 684.630 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_2M   | East   | 394853.994 | North | 6946192.496 | Elevation | 684.564 | Code | 60SBP<br>RUN16 |
| Point | 60BP_16_B32  | East   | 394855.784 | North | 6946193.593 | Elevation | 684.424 | Code | 60SBP<br>RUN16 |

| Point | ANANGA1     | East   | 394586.985 | North   | 6946490.639 | Elevation | 718.427 | Code | 1             |
|-------|-------------|--------|------------|---------|-------------|-----------|---------|------|---------------|
| Point | 60BP_3_B32  | East   | 394855.798 | North   | 6946193.606 | Elevation | 684.439 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_2M   | East   | 394853.991 | North   | 6946192.493 | Elevation | 684.581 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_5M   | East   | 394852.068 | North   | 6946190.334 | Elevation | 684.649 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_10M  | East   | 394848.661 | North   | 6946186.500 | Elevation | 684.760 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_20M  | East   | 394841.756 | North   | 6946178.849 | Elevation | 684.917 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_40M  | East   | 394825.064 | North   | 6946167.759 | Elevation | 685.511 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_80M  | East   | 394794.365 | North   | 6946142.234 | Elevation | 686.347 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_120M | 1 East | 394763.544 | North   | 6946116.724 | Elevation | 687.376 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_160M | 1 East | 394735.463 | North   | 6946087.875 | Elevation | 688.123 | Code | 60SBP<br>RUN3 |
| Point | 60BP_3_200N | 1 East | 394719.173 | North   | 6946047.413 | Elevation | 688.562 | Code | 60SBP<br>RUN3 |
| Point | 60BP_4_200N | 1 East | 394719.153 | North   | 6946047.423 | Elevation | 688.559 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_160N | 1 East | 394735.492 | 2 North | 6946087.886 | Elevation | 688.129 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_120N | 1 East | 394763.572 | North   | 6946116.735 | Elevation | 687.382 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_80M  | East   | 394794.404 | North   | 6946142.251 | Elevation | 686.355 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_40M  | East   | 394825.091 | North   | 6946167.764 | Elevation | 685.507 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_20M  | East   | 394841.791 | North   | 6946178.854 | Elevation | 684.921 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_10M  | East   | 394848.692 | North   | 6946186.508 | Elevation | 684.748 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_5M   | East   | 394852.099 | North   | 6946190.348 | Elevation | 684.640 | Code | 60SBP<br>RUN4 |
| Point | 60BP_4_2M   | East   | 394854.023 | North   | 6946192.507 | Elevation | 684.572 | Code | 60SBP<br>RUN4 |
| Point | 60BP_5_B32  | East   | 394855.815 | North   | 6946193.594 | Elevation | 684.432 | Code | 60SBP<br>RUN5 |
| Point | 60BP_5_2M   | East   | 394853.991 | North   | 6946192.489 | Elevation | 684.581 | Code | 60SBP<br>RUN5 |
| Point | 60BP_5_5M   | East   | 394852.068 | North   | 6946190.338 | Elevation | 684.646 | Code | 60SBP<br>RUN5 |
| Point | 60BP_5_10M  | East   | 394848.663 | North   | 6946186.498 | Elevation | 684.749 | Code | 60SBP<br>RUN5 |
| Point | 60BP_5_20M  | East   | 394841.760 | North   | 6946178.844 | Elevation | 684.911 | Code | 60SBP<br>RUN5 |

# Appendix C10: RTK Observations 16 Aug 2013 – Set 1

| Point | 60BP_5_40M  | East | 394825.066 | North | 6946167.760 | Elevation | 685.502 | Code | 60SBP<br>RUN5 |
|-------|-------------|------|------------|-------|-------------|-----------|---------|------|---------------|
| Point | 60BP_5_80M  | East | 394794.369 | North | 6946142.238 | Elevation | 686.337 | Code | 60SBP<br>RUN5 |
| Point | 60BP_5_120M | East | 394763.548 | North | 6946116.725 | Elevation | 687.376 | Code | 60SBP<br>RUN5 |
| Point | 60BP_5_160M | East | 394735.461 | North | 6946087.873 | Elevation | 688.123 | Code | 60SBP<br>RUN5 |
| Point | 60BP_5_200M | East | 394719.155 | North | 6946047.415 | Elevation | 688.540 | Code | 60SBP<br>RUN5 |
| Point | 60BP_6_200M | East | 394719.159 | North | 6946047.424 | Elevation | 688.550 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_160M | East | 394735.460 | North | 6946087.881 | Elevation | 688.125 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_120M | East | 394763.574 | North | 6946116.743 | Elevation | 687.362 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_80M  | East | 394794.404 | North | 6946142.253 | Elevation | 686.341 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_40M  | East | 394825.092 | North | 6946167.763 | Elevation | 685.505 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_20M  | East | 394841.787 | North | 6946178.860 | Elevation | 684.913 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_10M  | East | 394848.688 | North | 6946186.510 | Elevation | 684.745 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_5M   | East | 394852.097 | North | 6946190.350 | Elevation | 684.648 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_2M   | East | 394854.023 | North | 6946192.511 | Elevation | 684.577 | Code | 60SBP<br>RUN6 |
| Point | 60BP_6_B32  | East | 394855.818 | North | 6946193.596 | Elevation | 684.430 | Code | 60SBP<br>RUN6 |
| Point | 60BP_7_B32  | East | 394855.781 | North | 6946193.594 | Elevation | 684.443 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_2M   | East | 394853.998 | North | 6946192.494 | Elevation | 684.582 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_5M   | East | 394852.067 | North | 6946190.335 | Elevation | 684.655 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_10M  | East | 394848.662 | North | 6946186.509 | Elevation | 684.751 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_20M  | East | 394841.763 | North | 6946178.855 | Elevation | 684.914 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_40M  | East | 394825.062 | North | 6946167.770 | Elevation | 685.512 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_80M  | East | 394794.372 | North | 6946142.239 | Elevation | 686.335 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_120M | East | 394763.549 | North | 6946116.736 | Elevation | 687.375 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_160M | East | 394735.464 | North | 6946087.883 | Elevation | 688.133 | Code | 60SBP<br>RUN7 |
| Point | 60BP_7_200M | East | 394719.153 | North | 6946047.427 | Elevation | 688.545 | Code | 60SBP<br>RUN7 |
| Point | 60BP_8_200M | East | 394719.156 | North | 6946047.429 | Elevation | 688.537 | Code | 60SBP<br>RUN8 |

| Point | 60BP_8_160M  | East   | 394735.463 | North | 6946087.882 | Elevation | 688.128 | Code | 60SBP<br>RUN8  |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_8_120M  | East   | 394763.581 | North | 6946116.742 | Elevation | 687.372 | Code | 60SBP<br>RUN8  |
| Point | 60BP_8_80M   | East   | 394794.401 | North | 6946142.247 | Elevation | 686.337 | Code | 60SBP<br>RUN8  |
| Point | 60BP_8_40M   | East   | 394825.089 | North | 6946167.764 | Elevation | 685.505 | Code | 60SBP<br>RUN8  |
| Point | 60BP_8_20M   | East   | 394841.788 | North | 6946178.857 | Elevation | 684.911 | Code | 60SBP<br>RUN8  |
| Point | 60BP_8_10M   | East   | 394848.684 | North | 6946186.506 | Elevation | 684.747 | Code | 60SBP<br>RUN8  |
| Point | 60BP_8_5M    | East   | 394852.100 | North | 6946190.346 | Elevation | 684.647 | Code | 60SBP<br>RUN8  |
| Point | 60BP_8_2M    | East   | 394854.014 | North | 6946192.507 | Elevation | 684.579 | Code | 60SBP<br>RUN8  |
| Point | 60BP_8_B32   | East   | 394855.806 | North | 6946193.593 | Elevation | 684.440 | Code | 60SBP<br>RUN8  |
| Point | 60BP_9_B32   | East   | 394855.783 | North | 6946193.595 | Elevation | 684.443 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_2M    | East   | 394853.987 | North | 6946192.503 | Elevation | 684.584 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_5M    | East   | 394852.068 | North | 6946190.346 | Elevation | 684.648 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_10M   | East   | 394848.657 | North | 6946186.510 | Elevation | 684.754 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_20M   | East   | 394841.758 | North | 6946178.854 | Elevation | 684.919 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_40M   | East   | 394825.061 | North | 6946167.766 | Elevation | 685.503 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_80M   | East   | 394794.367 | North | 6946142.247 | Elevation | 686.334 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_120M  | East   | 394763.547 | North | 6946116.747 | Elevation | 687.368 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_160M  | East   | 394735.463 | North | 6946087.882 | Elevation | 688.131 | Code | 60SBP<br>RUN9  |
| Point | 60BP_9_200M  | East   | 394719.153 | North | 6946047.412 | Elevation | 688.542 | Code | 60SBP<br>RUN9  |
| Point | 60BP_10_200M | A East | 394719.156 | North | 6946047.412 | Elevation | 688.534 | Code | 60SBP<br>RUN10 |
| Point | 60BP_10_160N | A East | 394735.493 | North | 6946087.879 | Elevation | 688.117 | Code | 60SBP<br>RUN10 |
| Point | 60BP_10_120N | A East | 394763.575 | North | 6946116.747 | Elevation | 687.368 | Code | 60SBP<br>RUN10 |
| Point | 60BP_10_80M  | East   | 394794.398 | North | 6946142.249 | Elevation | 686.319 | Code | 60SBP<br>RUN10 |
| Point | 60BP_10_40M  | East   | 394825.088 | North | 6946167.757 | Elevation | 685.507 | Code | 60SBP<br>RUN10 |
| Point | 60BP_10_20M  | East   | 394841.781 | North | 6946178.854 | Elevation | 684.917 | Code | 60SBP<br>RUN10 |
| Point | 60BP_10_10M  | East   | 394848.684 | North | 6946186.504 | Elevation | 684.751 | Code | 60SBP<br>RUN10 |

| Point | 60BP_10_5M   | East   | 394852.092 | North | 6946190.348 | Elevation | 684.646 | Code | 60SBP<br>RUN10 |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_10_2M   | East   | 394854.015 | North | 6946192.506 | Elevation | 684.576 | Code | 60SBP<br>RUN10 |
| Point | 60BP_10_B32  | East   | 394855.809 | North | 6946193.593 | Elevation | 684.432 | Code | 60SBP<br>RUN10 |
| Point | 60BP_11_B32  | East   | 394855.783 | North | 6946193.599 | Elevation | 684.435 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_2M   | East   | 394853.989 | North | 6946192.508 | Elevation | 684.576 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_5M   | East   | 394852.068 | North | 6946190.342 | Elevation | 684.646 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_10M  | East   | 394848.663 | North | 6946186.503 | Elevation | 684.760 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_20M  | East   | 394841.760 | North | 6946178.859 | Elevation | 684.928 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_40M  | East   | 394825.064 | North | 6946167.766 | Elevation | 685.521 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_80M  | East   | 394794.371 | North | 6946142.248 | Elevation | 686.331 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_120N | 1 East | 394763.544 | North | 6946116.740 | Elevation | 687.374 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_160N | 1 East | 394735.460 | North | 6946087.881 | Elevation | 688.117 | Code | 60SBP<br>RUN11 |
| Point | 60BP_11_200N | 1 East | 394719.157 | North | 6946047.424 | Elevation | 688.551 | Code | 60SBP<br>RUN11 |
| Point | 60BP_12_200N | 1 East | 394719.154 | North | 6946047.422 | Elevation | 688.554 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_160N | 1 East | 394735.489 | North | 6946087.881 | Elevation | 688.130 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_120N | 1 East | 394763.577 | North | 6946116.739 | Elevation | 687.364 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_80M  | East   | 394794.398 | North | 6946142.241 | Elevation | 686.334 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_40M  | East   | 394825.088 | North | 6946167.764 | Elevation | 685.514 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_20M  | East   | 394841.782 | North | 6946178.851 | Elevation | 684.918 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_10M  | East   | 394848.682 | North | 6946186.512 | Elevation | 684.751 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_5M   | East   | 394852.093 | North | 6946190.344 | Elevation | 684.644 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_2M   | East   | 394854.011 | North | 6946192.502 | Elevation | 684.572 | Code | 60SBP<br>RUN12 |
| Point | 60BP_12_B32  | East   | 394855.812 | North | 6946193.591 | Elevation | 684.435 | Code | 60SBP<br>RUN12 |
| Point | 60BP_13_B32  | East   | 394855.792 | North | 6946193.589 | Elevation | 684.434 | Code | 60SBP<br>RUN13 |
| Point | 60BP_13_2M   | East   | 394853.992 | North | 6946192.495 | Elevation | 684.582 | Code | 60SBP<br>RUN13 |
| Point | 60BP_13_5M   | East   | 394852.071 | North | 6946190.337 | Elevation | 684.642 | Code | 60SBP<br>RUN13 |

| Point | 60BP_13_10M  | East | 394848.666 | North   | 6946186.497 | Elevation | 684.749    | Code   | 60SBP<br>RUN13     |
|-------|--------------|------|------------|---------|-------------|-----------|------------|--------|--------------------|
| Point | 60BP_13_20M  | East | 394841.759 | North   | 6946178.850 | Elevation | 684.913    | Code   | 60SBP<br>RUN13     |
| Point | 60BP_13_40M  | East | 394825.064 | North   | 6946167.763 | Elevation | 685.504    | Code   | 60SBP<br>RUN13     |
| Point | 60BP_13_80M  | East | 394794.372 | North   | 6946142.245 | Elevation | 686.340    | Code   | 60SBP<br>RUN13     |
| Point | 60BP_13_120M | East | 394763.547 | North   | 6946116.740 | Elevation | 687.369    | Code   | 60SBP<br>RUN13     |
| Point | 60BP_13_160M | East | 394735.465 | North   | 6946087.876 | Elevation | 688.130    | Code   | 60SBP<br>RUN13     |
| Point | 60BP_13_200M | East | 394719.154 | North   | 6946047.421 | Elevation | 688.544    | Code   | 60SBP<br>RUN13     |
| Point | 60BP_14_200M | East | 394719.157 | North   | 6946047.422 | Elevation | 688.543    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_160M | East | 394735.501 | North   | 6946087.875 | Elevation | 688.125    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_120M | East | 394763.582 | North   | 6946116.739 | Elevation | 687.362    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_180M | East | 394794.404 | North 6 | 5946142.246 | Elevation | 686.338 Co | ode RU | 60SBP<br>N14_ACT80 |
| Point | 60BP_14_40M  | East | 394825.088 | North   | 6946167.769 | Elevation | 685.510    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_20M  | East | 394841.779 | North   | 6946178.852 | Elevation | 684.921    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_10M  | East | 394848.678 | North   | 6946186.513 | Elevation | 684.746    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_5M   | East | 394852.088 | North   | 6946190.346 | Elevation | 684.638    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_2M   | East | 394854.018 | North   | 6946192.509 | Elevation | 684.568    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_14_B32  | East | 394855.819 | North   | 6946193.603 | Elevation | 684.419    | Code   | 60SBP<br>RUN14     |
| Point | 60BP_30_B32  | East | 394855.825 | North   | 6946193.600 | Elevation | 684.420    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_2M   | East | 394853.998 | North   | 6946192.498 | Elevation | 684.564    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_5M   | East | 394852.073 | North   | 6946190.342 | Elevation | 684.635    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_10M  | East | 394848.670 | North   | 6946186.502 | Elevation | 684.748    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_20M  | East | 394841.762 | North   | 6946178.852 | Elevation | 684.915    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_40M  | East | 394825.067 | North   | 6946167.762 | Elevation | 685.508    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_80M  | East | 394794.369 | North   | 6946142.242 | Elevation | 686.351    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_120M | East | 394763.549 | North   | 6946116.741 | Elevation | 687.365    | Code   | 60SBP<br>RUN30     |
| Point | 60BP_30_160M | East | 394735.461 | North   | 6946087.887 | Elevation | 688.118    | Code   | 60SBP<br>RUN30     |

| Point | 60BP_30_200M | East | 394719.154 | North | 6946047.425 | Elevation | 688.539 | Code | 60SBP<br>RUN30 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|

| 1     |              |        |            |       |             |           |         |      |                |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | ANANGA1      | East   | 394586.985 | North | 6946490.639 | Elevation | 718.427 | Code | 1              |
| Point | 60BP_17_B32  | East   | 394855.801 | North | 6946193.593 | Elevation | 684.432 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_2M   | East   | 394854.011 | North | 6946192.494 | Elevation | 684.569 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_5M   | East   | 394852.092 | North | 6946190.338 | Elevation | 684.640 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_10M  | East   | 394848.684 | North | 6946186.503 | Elevation | 684.755 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_20M  | East   | 394841.778 | North | 6946178.846 | Elevation | 684.917 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_40M  | East   | 394825.085 | North | 6946167.760 | Elevation | 685.509 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_80M  | East   | 394794.396 | North | 6946142.243 | Elevation | 686.339 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_120M | 1 East | 394763.563 | North | 6946116.742 | Elevation | 687.373 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_160M | 1 East | 394735.487 | North | 6946087.885 | Elevation | 688.128 | Code | 60SBP<br>RUN17 |
| Point | 60BP_17_200M | 1 East | 394719.173 | North | 6946047.432 | Elevation | 688.554 | Code | 60SBP<br>RUN17 |
| Point | 60BP_18_200M | 1 East | 394719.177 | North | 6946047.435 | Elevation | 688.558 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_160M | 1 East | 394735.469 | North | 6946087.875 | Elevation | 688.132 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_120M | 1 East | 394763.549 | North | 6946116.730 | Elevation | 687.383 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_80M  | East   | 394794.385 | North | 6946142.240 | Elevation | 686.360 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_40M  | East   | 394825.073 | North | 6946167.765 | Elevation | 685.511 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_20M  | East   | 394841.768 | North | 6946178.851 | Elevation | 684.916 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_10M  | East   | 394848.670 | North | 6946186.506 | Elevation | 684.754 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_5M   | East   | 394852.072 | North | 6946190.343 | Elevation | 684.644 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_2M   | East   | 394853.998 | North | 6946192.498 | Elevation | 684.577 | Code | 60SBP<br>RUN18 |
| Point | 60BP_18_B32  | East   | 394855.791 | North | 6946193.598 | Elevation | 684.431 | Code | 60SBP<br>RUN18 |
| Point | 60BP_19_B32  | East   | 394855.802 | North | 6946193.594 | Elevation | 684.432 | Code | 60SBP<br>RUN19 |
| Point | 60BP_19_2M   | East   | 394854.007 | North | 6946192.500 | Elevation | 684.573 | Code | 60SBP<br>RUN19 |
| Point | 60BP_19_5M   | East   | 394852.092 | North | 6946190.346 | Elevation | 684.647 | Code | 60SBP<br>RUN19 |
| Point | 60BP_19_10M  | East   | 394848.682 | North | 6946186.511 | Elevation | 684.747 | Code | 60SBP<br>RUN19 |

# Appendix C11: RTK Observations 16 Aug 2013 – Set 2

| Point | 60BP_19_20M  | East | 394841.781 | North | 6946178.854 | Elevation | 684.915 | Code | 60SBP<br>RUN19 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_19_40M  | East | 394825.083 | North | 6946167.765 | Elevation | 685.505 | Code | 60SBP<br>RUN19 |
| Point | 60BP_19_80M  | East | 394794.394 | North | 6946142.243 | Elevation | 686.340 | Code | 60SBP<br>RUN19 |
| Point | 60BP_19_120M | East | 394763.568 | North | 6946116.734 | Elevation | 687.368 | Code | 60SBP<br>RUN19 |
| Point | 60BP_19_160M | East | 394735.487 | North | 6946087.879 | Elevation | 688.118 | Code | 60SBP<br>RUN19 |
| Point | 60BP_19_200M | East | 394719.179 | North | 6946047.429 | Elevation | 688.544 | Code | 60SBP<br>RUN19 |
| Point | 60BP_20_200M | East | 394719.179 | North | 6946047.429 | Elevation | 688.542 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_160M | East | 394735.490 | North | 6946087.883 | Elevation | 688.121 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_120M | East | 394763.553 | North | 6946116.735 | Elevation | 687.366 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_80M  | East | 394794.382 | North | 6946142.245 | Elevation | 686.343 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_40M  | East | 394825.074 | North | 6946167.764 | Elevation | 685.504 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_20M  | East | 394841.764 | North | 6946178.851 | Elevation | 684.915 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_10M  | East | 394848.667 | North | 6946186.507 | Elevation | 684.753 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_5M   | East | 394852.085 | North | 6946190.341 | Elevation | 684.639 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_2M   | East | 394854.001 | North | 6946192.493 | Elevation | 684.573 | Code | 60SBP<br>RUN20 |
| Point | 60BP_20_B32  | East | 394855.795 | North | 6946193.597 | Elevation | 684.430 | Code | 60SBP<br>RUN20 |
| Point | 60BP_21_B32  | East | 394855.810 | North | 6946193.593 | Elevation | 684.430 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_2M   | East | 394854.013 | North | 6946192.507 | Elevation | 684.572 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_5M   | East | 394852.091 | North | 6946190.347 | Elevation | 684.643 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_10M  | East | 394848.679 | North | 6946186.503 | Elevation | 684.759 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_20M  | East | 394841.776 | North | 6946178.851 | Elevation | 684.924 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_40M  | East | 394825.079 | North | 6946167.763 | Elevation | 685.510 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_80M  | East | 394794.391 | North | 6946142.239 | Elevation | 686.340 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_120M | East | 394763.572 | North | 6946116.735 | Elevation | 687.373 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_160M | East | 394735.483 | North | 6946087.892 | Elevation | 688.136 | Code | 60SBP<br>RUN21 |
| Point | 60BP_21_200M | East | 394719.171 | North | 6946047.425 | Elevation | 688.544 | Code | 60SBP<br>RUN21 |

| Point | 60BP_22_200M | East | 394719.180 | North | 6946047.431 | Elevation | 688.541 | Code | 60SBP<br>RUN22 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_22_160M | East | 394735.482 | North | 6946087.886 | Elevation | 688.124 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_120M | East | 394763.556 | North | 6946116.734 | Elevation | 687.373 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_80M  | East | 394794.384 | North | 6946142.249 | Elevation | 686.336 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_40M  | East | 394825.068 | North | 6946167.771 | Elevation | 685.500 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_20M  | East | 394841.767 | North | 6946178.853 | Elevation | 684.917 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_10M  | East | 394848.670 | North | 6946186.507 | Elevation | 684.748 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_5M   | East | 394852.079 | North | 6946190.337 | Elevation | 684.644 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_2M   | East | 394853.999 | North | 6946192.498 | Elevation | 684.578 | Code | 60SBP<br>RUN22 |
| Point | 60BP_22_B32  | East | 394855.792 | North | 6946193.594 | Elevation | 684.426 | Code | 60SBP<br>RUN22 |
| Point | 60BP_23_B32  | East | 394855.792 | North | 6946193.598 | Elevation | 684.431 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_2M   | East | 394854.009 | North | 6946192.499 | Elevation | 684.577 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_5M   | East | 394852.091 | North | 6946190.348 | Elevation | 684.642 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_10M  | East | 394848.682 | North | 6946186.509 | Elevation | 684.750 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_20M  | East | 394841.777 | North | 6946178.849 | Elevation | 684.913 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_40M  | East | 394825.082 | North | 6946167.766 | Elevation | 685.504 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_80M  | East | 394794.387 | North | 6946142.246 | Elevation | 686.333 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_120M | East | 394763.565 | North | 6946116.742 | Elevation | 687.367 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_160M | East | 394735.483 | North | 6946087.887 | Elevation | 688.127 | Code | 60SBP<br>RUN23 |
| Point | 60BP_23_200M | East | 394719.176 | North | 6946047.426 | Elevation | 688.545 | Code | 60SBP<br>RUN23 |
| Point | 60BP_24_200M | East | 394719.187 | North | 6946047.430 | Elevation | 688.534 | Code | 60SBP<br>RUN24 |
| Point | 60BP_24_160M | East | 394735.470 | North | 6946087.875 | Elevation | 688.123 | Code | 60SBP<br>RUN24 |
| Point | 60BP_24_120M | East | 394763.552 | North | 6946116.740 | Elevation | 687.359 | Code | 60SBP<br>RUN24 |
| Point | 60BP_24_80M  | East | 394794.370 | North | 6946142.245 | Elevation | 686.327 | Code | 60SBP<br>RUN24 |
| Point | 60BP_24_40M  | East | 394825.068 | North | 6946167.761 | Elevation | 685.511 | Code | 60SBP<br>RUN24 |
| Point | 60BP_24_20M  | East | 394841.764 | North | 6946178.850 | Elevation | 684.921 | Code | 60SBP<br>RUN24 |

| Point | 60BP_24_10M  | East   | 394848.667 | North | 6946186.507 | Elevation | 684.749 | Code | 60SBP<br>RUN24 |
|-------|--------------|--------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_24_5M   | East   | 394852.076 | North | 6946190.336 | Elevation | 684.642 | Code | 60SBP<br>RUN24 |
| Point | 60BP_24_2M   | East   | 394854.002 | North | 6946192.502 | Elevation | 684.569 | Code | 60SBP<br>RUN24 |
| Point | 60BP_24_B32  | East   | 394855.788 | North | 6946193.599 | Elevation | 684.428 | Code | 60SBP<br>RUN24 |
| Point | 60BP_25_B32  | East   | 394855.786 | North | 6946193.602 | Elevation | 684.430 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_2M   | East   | 394854.006 | North | 6946192.504 | Elevation | 684.577 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_5M   | East   | 394852.093 | North | 6946190.344 | Elevation | 684.643 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_10M  | East   | 394848.686 | North | 6946186.506 | Elevation | 684.752 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_20M  | East   | 394841.780 | North | 6946178.854 | Elevation | 684.922 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_40M  | East   | 394825.087 | North | 6946167.769 | Elevation | 685.519 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_80M  | East   | 394794.392 | North | 6946142.246 | Elevation | 686.352 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_120N | A East | 394763.568 | North | 6946116.736 | Elevation | 687.361 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_160N | A East | 394735.487 | North | 6946087.877 | Elevation | 688.114 | Code | 60SBP<br>RUN25 |
| Point | 60BP_25_200N | A East | 394719.177 | North | 6946047.424 | Elevation | 688.544 | Code | 60SBP<br>RUN25 |
| Point | 60BP_26_200N | A East | 394719.178 | North | 6946047.428 | Elevation | 688.552 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_160N | A East | 394735.466 | North | 6946087.883 | Elevation | 688.129 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_120N | 4 East | 394763.562 | North | 6946116.743 | Elevation | 687.363 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_40M  | East   | 394825.063 | North | 6946167.764 | Elevation | 685.510 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_20M  | East   | 394841.760 | North | 6946178.855 | Elevation | 684.915 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_10M  | East   | 394848.667 | North | 6946186.506 | Elevation | 684.749 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_5M   | East   | 394852.071 | North | 6946190.339 | Elevation | 684.641 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_2M   | East   | 394853.993 | North | 6946192.490 | Elevation | 684.572 | Code | 60SBP<br>RUN26 |
| Point | 60BP_26_B32  | East   | 394855.789 | North | 6946193.592 | Elevation | 684.434 | Code | 60SBP<br>RUN26 |
| Point | 60BP_27_B32  | East   | 394855.789 | North | 6946193.593 | Elevation | 684.435 | Code | 60SBP<br>RUN27 |
| Point | 60BP_27_2M   | East   | 394854.016 | North | 6946192.508 | Elevation | 684.576 | Code | 60SBP<br>RUN27 |
| Point | 60BP_27_5M   | East   | 394852.096 | North | 6946190.340 | Elevation | 684.645 | Code | 60SBP<br>RUN27 |

| Point | 60BP_27_10M  | East | 394848.687 | North | 6946186.507 | Elevation | 684.752 | Code | 60SBP<br>RUN27 |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_27_20M  | East | 394841.782 | North | 6946178.849 | Elevation | 684.915 | Code | 60SBP<br>RUN27 |
| Point | 60BP_27_40M  | East | 394825.082 | North | 6946167.763 | Elevation | 685.508 | Code | 60SBP<br>RUN27 |
| Point | 60BP_27_80M  | East | 394794.390 | North | 6946142.241 | Elevation | 686.333 | Code | 60SBP<br>RUN27 |
| Point | 60BP_27_120M | East | 394763.567 | North | 6946116.744 | Elevation | 687.366 | Code | 60SBP<br>RUN27 |
| Point | 60BP_27_160M | East | 394735.482 | North | 6946087.884 | Elevation | 688.122 | Code | 60SBP<br>RUN27 |
| Point | 60BP_27_200M | East | 394719.177 | North | 6946047.428 | Elevation | 688.550 | Code | 60SBP<br>RUN27 |
| Point | 60BP_28_200M | East | 394719.178 | North | 6946047.426 | Elevation | 688.546 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_160M | East | 394735.479 | North | 6946087.877 | Elevation | 688.122 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_120M | East | 394763.556 | North | 6946116.742 | Elevation | 687.370 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_80M  | East | 394794.375 | North | 6946142.244 | Elevation | 686.341 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_40M  | East | 394825.066 | North | 6946167.770 | Elevation | 685.511 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_20M  | East | 394841.754 | North | 6946178.856 | Elevation | 684.909 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_10M  | East | 394848.661 | North | 6946186.505 | Elevation | 684.740 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_5M   | East | 394852.079 | North | 6946190.341 | Elevation | 684.633 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_2M   | East | 394853.994 | North | 6946192.494 | Elevation | 684.569 | Code | 60SBP<br>RUN28 |
| Point | 60BP_28_B32  | East | 394855.819 | North | 6946193.599 | Elevation | 684.428 | Code | 60SBP<br>RUN28 |
| Point | 60BP_29_B32  | East | 394855.819 | North | 6946193.600 | Elevation | 684.427 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_2M   | East | 394854.012 | North | 6946192.500 | Elevation | 684.572 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_5M   | East | 394852.093 | North | 6946190.350 | Elevation | 684.644 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_10M  | East | 394848.681 | North | 6946186.505 | Elevation | 684.749 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_20M  | East | 394841.779 | North | 6946178.858 | Elevation | 684.917 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_40M  | East | 394825.077 | North | 6946167.777 | Elevation | 685.509 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_80M  | East | 394794.389 | North | 6946142.255 | Elevation | 686.355 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_120M | East | 394763.569 | North | 6946116.752 | Elevation | 687.360 | Code | 60SBP<br>RUN29 |
| Point | 60BP_29_160M | East | 394735.473 | North | 6946087.899 | Elevation | 688.128 | Code | 60SBP<br>RUN29 |

| -     |              |      |            |       |             |           |         |      |                |
|-------|--------------|------|------------|-------|-------------|-----------|---------|------|----------------|
| Point | 60BP_29_200M | East | 394719.179 | North | 6946047.438 | Elevation | 688.548 | Code | 60SBP<br>RUN29 |



**APPENDIX D: Normal Distribution of Bearing and Distances** 














































































































































## **APPENDIX E: Total Station Calibration Certificate**

| ULTIMATE POSITIONIN<br>ABN 12 135 812 903<br>33 Allison St<br>Bowen Hills, OLD, 4006       | 5 GROUP PTY LTD                                           |                                                                    |                       |                      |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|-----------------------|----------------------|
| 07.3852 1245 Phone                                                                         |                                                           |                                                                    |                       |                      |
| 07 3252 1275 Fax                                                                           | ~                                                         |                                                                    |                       |                      |
| www.utimatepositioning.co                                                                  |                                                           |                                                                    |                       |                      |
|                                                                                            | CALIBR                                                    | ATION CERTIFICAT                                                   | E                     |                      |
|                                                                                            |                                                           |                                                                    |                       |                      |
|                                                                                            |                                                           |                                                                    |                       |                      |
| Date of Inspection:                                                                        | 19.12.2012                                                |                                                                    |                       |                      |
| Client details:                                                                            | Minstaff Surveys                                          |                                                                    |                       |                      |
| Contact name:                                                                              | Survey Section                                            |                                                                    |                       |                      |
| Make/ Model:                                                                               | Trimble S8 DR Plus                                        |                                                                    |                       |                      |
| Serial number:                                                                             | 99310128                                                  |                                                                    |                       |                      |
| Ultimate Positioning co<br>Certificate of Calibra                                          | onfirms the instrument men<br>tion that accompanies the   | tioned was inspected said instrument.                              | by ourselves and comp | olies with Trimble's |
| Ultimate Positioning co<br>Certificate of Calibra<br>Yours faithfully,                     | onfirms the instrument mention that accompanies the       | tioned was inspected said instrument.                              | by ourselves and comp | olies with Trimble's |
| Ultimate Positioning co<br>Certificate of Calibra<br>Yours faithfully,                     | onfirms the instrument men<br>tion that accompanies the   | tioned was inspected said instrument.                              | by ourselves and comp | olies with Trimble's |
| Ultimate Positioning cc<br>Certificate of Calibra<br>Yours faithfully,<br>Julio Maldonado  | onfirms the instrument men<br>tion that accompanies the   | tioned was inspected said instrument.                              | by ourselves and comp | olies with Trimble's |
| Ultimate Positioning co<br>Certificate of Calibrat<br>Yours faithfully,<br>Julio Maldonado | onfirms the instrument men<br>tion that accompanies the s | tioned was inspected said instrument.                              | by ourselves and comp | olies with Trimble's |
| Ultimate Positioning or<br>Certificate of Calibra<br>Yours faithfully,<br>Julio Maldonado  | onfirms the instrument men<br>tion that accompanies the s | tioned was inspected i<br>said instrument.<br>registered as a supp | by ourselves and comp | olies with Trimble's |

|--|--|

## **APPENDIX F: EDM Calibration**

| Deliver     | COMMENT | 21       | 20                   | 19       | 18       | 17       | 16       | 15       | 14       | : :        | 1        | 12       | H         | 10       | 9          | 8        |          | 1 0       | 0        | 4        | ω        |
|-------------|---------|----------|----------------------|----------|----------|----------|----------|----------|----------|------------|----------|----------|-----------|----------|------------|----------|----------|-----------|----------|----------|----------|
| y Inst      | S       | U        | רט                   | 4        | ω        | ω        | ω        | N        |          | <b>.</b> • | 0        | N        | -         | F        | . <b>н</b> | -        | • •      | • 0       | • •      | 0        | 0        |
| tructions:- |         | 0.000    | 0.000                | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000      | 0 000    | 0.000    | 0.000     | 0.000    | 0.000      | 0.000    | 0.000    | 0.000     | 0.000    | 0.000    | 0.000    |
|             |         | ø        | ი ი                  | G        | 6        | CT       | 4        | 6        |          | л 4        | •        | ω        | 6         | G        | -          | ι<br>ω   |          |           |          | 4        | ω        |
|             |         | 0.000    | 0.000                | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    | 0.000    |            | 0 000    | 0.000    | 0.000     | 0.000    | 0.000      | 0.000    | 0.000    | 0.000     | 0.000    | 0.000    | 0.000    |
|             |         | 433.0014 | 611.4814<br>433.6614 | 177.8226 | 749.7988 | 316.1418 | 138.3202 | 967.3809 | 202.1241 | 533 3341   | 355 9015 | 217.5841 | 1083.6538 | 649.9972 | 472.1762   | 333.8563 | 110.2/3/ | 1148.5272 | 714.8689 | 537.0483 | 398.7299 |
|             |         | 0.01     | 6.82                 | 7.16     | 7.76     | 8.03     | 8.20     | 8.46     | 0.00     | 0.0        | 8 67     | 8.87     | 9.00      | 9.13     | 9.43       | 9.59     | 10.01    | 11.27     | 11.27    | 11.18    | 11.06    |
|             |         | -0.001/  | -0.0034              | -0.0019  | -0.0038  | -0.0021  | -0.0004  | -0.0087  | -0.0070  | 0.0000     | -0.0060  | -0.0069  | -0.0114   | -0.0107  | -0.0090    | -0.0100  | -0.0032  | -0.0102   | -0.0092  | -0.0073  | -0.0077  |
|             |         | -0.0003  | -0.0001              | -0.0022  | 0.0000   | -0.0008  | -0.0001  | -0.0003  | -0.0010  |            | -0 0002  | -0.0007  | -0.0001   | -0.0008  | 0.0000     | -0.0002  | -0.0002  | 0.0000    | -0.0002  | -0.0001  | 0.0000   |
|             |         | 0.0000   | 0.0000               | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000     | 0 0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000     | 0.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000   | 0.0000   |
|             |         | 0.0000   | 0.0000               | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.000      | 0 0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000     | 0.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000   | 0.0000   |
|             |         | 433.002  | 611.48               | 177.83   | 749.8    | 316.14   | 138.3    | 967.38   | 333.7.   |            | 355 8    | 217.5    | 1083.6    | 649.9    | 472.1      | 333.8    | LTP'S    | 1148.5    | 714.8    | 537.0    | 398.72   |

| REDUCED DISTANCE -<br>observed Distance red<br>to horizontal base li<br>CORRECTED DISTANCE -<br>Reduced Distance adju                                                       |                                                                            |                                                        | REDUCED OBSERVATIONS<br>LINE OBSERVED REDUC<br>STN TO STN DIST<br>0 1 64.8<br>0 2 181.1<br>0 3 398.3<br>1 2 116.2<br>1 2 116.2<br>1 4 537.0<br>1 5 6114.8<br>2 3 33.8<br>1 5 64.9<br>2 3 316.2<br>3 35.5<br>3 5 316.1<br>3 5 316.1<br>4 6 6 611.4<br>6 6 611.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| near   NOTE                                                                                                                                                                 | <br> |                                                        | ED       ABSOLUTE         NCE       DISTANCE         )       (m)         738       64.8740         465       181.1470         266       398.7250         2738       714.8660         279       1142.7250         468       537.0450         676       714.8660         716       472.1710         916       64.9.920         916       64.9.18510         916       64.9.1920         917       1083.6520         924       355.37190         924       353.7190         925       533.7190         926       138.3200         198       136.1410         928       174.9.8010         198       174.9.8010         921       611.4810         622       433.6600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STA                                    |
| 1: ( TEST 3 )<br>PAILURE OCCURS<br>CORRECTED DISTY<br>DISTANCE IS GRU<br>SPECIFIED STAN                                                                                     | SCALE FACTOR<br>STANDARD DEVIA                                             | ADDITIVE CONSTU<br>STANDARD DEVIA                      | REDUCED - CONSTRAIN<br>ABS DIST DI<br>-0.20 (mm)<br>-0.50 11<br>1.60 55<br>1.60 55<br>1.60 55<br>1.60 55<br>1.60 55<br>1.60 55<br>1.10 10<br>0.10 10<br>0.50 44<br>0.50 11<br>1.10 55<br>0.50 11<br>1.10 10<br>1.10 10<br>1. | ************************************** |
| IF THE VALUE OF THE<br>ANCE MINUS THE ABSOLUTE<br>EATER THAN TWICE THE<br>DARD DEVIATION                                                                                    | 0.99999783 ( -2.1<br>TION 0.813 ppm                                        | ANT 0.53 mm<br>TION 0.47 mm                            | ED ADJUSTMENT<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( A PRIORI ) = 1 mm +                  |
|                                                                                                                                                                             | 7 ppm )                                                                    |                                                        | ALARM<br>(NOTE 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***<br>1 ppm                           |
| NOTE 2: ( TEST 4 )<br>FALLURE OCCURS IF THE ADJUSTED<br>DIST. (VIA LEAST SQUARES) MINUS TH<br>REDUCED DISTANCE IS GREATER THAN<br>TWICE THE SPECIFIED STANDARD<br>DEVIATION | SCALE FACTOR 0.99999756                                                    | ADDITIVE CONSTANT 0.66mm<br>STANDARD DEVIATION 0.38 mm | FREE         ADJUSTED         DIST         ALARM<br>(ADIST)         ADIST -<br>(m)         ALARM<br>(NOTE 2)           64.8747         0.87         (NOTE 2)           181.1469         0.39         537.466         -0.21           714.8670         -0.34         -0.56         116.2716           114.2716         0.087         116.2716         0.131           114.2716         0.065         -0.98         333.8503         -0.11           1083.6534         1.27         0.11         1083.6534         1.27           310.8503         -0.01         -0.65         533.7195         -0.01           967.3803         -0.047         1.05         1.36.3203         -0.47           3136.1408         -0.73         1.63         1.63         1.79           174.8198         -0.05         1.63         1.4814         -0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |

| for Scale and Additive  <br>Constant  <br>ADJUSTED DISTANCE -  <br>Most Probable Value<br>minus Additive Constant  <br> |
|-------------------------------------------------------------------------------------------------------------------------|
| INDICATES A LACK OF ACCURACY                                                                                            |
| INDICATES A LACK OF PRECISION                                                                                           |

| CALCULATED AND ISSUED ON BEHALF OF THE QLD EI<br>DEFARTMENT OF NATURAL RESOURCES & WATER | Index Scale Pactor | The Instrument DOES / DOES NOT appear to be<br>THE FOLLOWING CORRECTIONS MAY BE USED FOR LOW | GENERAL COMMENTS: - | RESULTS OF TESTS :-<br>Test 1 : PASS | Type of Prisms used: TRIMBLE Index: - | Index 0.53 mm ** +/- 1.00 mm *<br>Scale 0.9999978 ** +/- 1.74 ppm * | This Calibration *** | No Previo                              | Previous Calibration (if available) | AGAINST ABSOLUTE VALUES (Linear Regression) | RESULTS OF CALIBRATIONS: - | ## This Baseline holds a current Regulation<br>National Measurement Regulations 1999 in | Serial No : 58475021 Computed ; | Instrument: S8 High Pres ## Baseline ( |                                      |                       |  |
|------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------|---------------------|--------------------------------------|---------------------------------------|---------------------------------------------------------------------|----------------------|----------------------------------------|-------------------------------------|---------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------|-----------------------|--|
| DM CALIBRATION OPPICER, ISAAC STILLER,                                                   | or +/- ppm.        | e performing within the Required Speci:<br>WER ORDER MEASUREMENTS: **                        |                     | Test 2 : PASS Test                   | -0.035 Has Prism Constant been 1      | Index 0.6<br>Scale 0.999                                            |                      | us Calibration Data within 2 years Ava | Baseline Used:                      | on) USING LEA                               |                            | n 13 Certificate ( see Reg. 13 Base ID<br>n Accordance with the National Measure        | for: MINSTAFF                   | Used: CABOOLTURE - QldBase.0.1.2030    | CALIBRATION OF EDME - SUMMARY OF REA | ***** REPORT ON ***** |  |
| AS A DELEGATE OF THE DIRECTOR GENERAL,                                                   |                    | fications.                                                                                   |                     | 3 : PASS Test 4 : PASS               | Deducted ?: Y                         | 6 mm ** +/- 0.81 mm *<br>9976 **                                    |                      | ilable !!!!                            | Date of Observations:               | ST SQUARES (Free Adjustment)                |                            | No. above ) under the ment Act 1960                                                     | Date of Computation : 8/4/2013  | Date of Observations: 26/3/2013        | SULTS                                |                       |  |



|                                          |                                                                                                                                          |                                                             |                                                                                        |                                                                                              | Droigot No.                                                                                                 | Undergra                                               | derek akerdian                                                                 |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|
| Project:                                 | RIK GNSS for Cadastral Surveying                                                                                                         |                                                             |                                                                                        |                                                                                              | I IOJECTINO.                                                                                                | e la como                                              | quate studies                                                                  |
| SH&EWMS No:                              | 01                                                                                                                                       |                                                             |                                                                                        |                                                                                              | Work Activity:                                                                                              | Surveying                                              | Services                                                                       |
| Revision No:                             | 02                                                                                                                                       |                                                             |                                                                                        |                                                                                              |                                                                                                             |                                                        |                                                                                |
| ALL PE<br>OPPORT                         | rsons involved in the work<br>funity to provide input prior t                                                                            | ks must h.<br>Fo start of                                   | ave the<br>Works V                                                                     | SH&EWMS EXPL<br>A A TOOLBOX T/                                                               | AINED, COMMU                                                                                                | NICATED T                                              | o them and given an                                                            |
| SH&EWMS DET                              | AILS                                                                                                                                     |                                                             |                                                                                        |                                                                                              |                                                                                                             |                                                        |                                                                                |
| Brief Description                        | of Work Activity: Establish c                                                                                                            | ontrol network                                              | . TS and RT                                                                            | V abaaaatiaaa                                                                                |                                                                                                             |                                                        |                                                                                |
| Location:                                | Toowoomba, USQ Campus                                                                                                                    |                                                             |                                                                                        | V ODSEMPTIONS                                                                                |                                                                                                             |                                                        | 1/08/2013                                                                      |
| Employer/Contrac<br>Trading Address:     |                                                                                                                                          |                                                             |                                                                                        | N ODSERVATIONS                                                                               | Date:                                                                                                       |                                                        | 110012010                                                                      |
| Personnel Respor                         |                                                                                                                                          |                                                             | ABN:                                                                                   |                                                                                              | Date:<br>Date to be I                                                                                       | Reviewed:                                              |                                                                                |
| Codes of Practice<br>These must be compl | ctor:<br>nsible for Monitoring this Activity:                                                                                            | Michael Z                                                   | ABN:                                                                                   |                                                                                              | Date:<br>Date to be I                                                                                       | Reviewed:                                              |                                                                                |
| Plant and Equipm                         | ctor:<br>nsible for Monitoring this Activity:<br>/ Standards Consulted:<br>ied with.                                                     | Michael Z<br>Work He:<br>Traffic Ma                         | ABN:<br>ahl<br>alth and Sat                                                            | r observations<br>fety Act 2011, Aus<br>r Construction or N                                  | Date:<br>Date to be I<br>Stralian Standard (                                                                | Reviewed:<br>3012 & Risk                               | Management Code of Prac                                                        |
|                                          | ctor:<br>nsible for Monitoring this Activity:<br>I Standards Consulted:<br>I ed with.<br>nent Required for this Activity:                | Michael Z<br>Work He<br>Traffic Ma<br>S6/S8 Tri<br>and mobi | ABN:<br>ahl<br>alth and Sa<br>nagement fo<br>mble Robot<br>le communic                 | r observations<br>fety Act 2011, Aus<br>r Construction or M<br>ic Total Station &<br>ations. | Date:<br>Date to be I<br>stralian Standard :<br>Aaintenance Work<br>Accessories, Trim                       | Reviewed:<br>3012 & Risk<br>Code of Pra                | Management Code of Prac<br>ctice 2008, MUTCD Part 3<br>GNSS & Accessories, 4WD |
| Details of Mainten                       | stor:<br>Isible for Monitoring this Activity:<br>Isid with.<br>Ient Required for this Activity:<br>Iance Checks Required for this Activi | Michael Z<br>Work He<br>Traffic Ma<br>S6/S8 Tri<br>and mobi | ABN:<br>ahl<br>alth and Sa<br>nagement fo<br>nagement fo<br>le communic<br>le communic | r conservations<br>r Construction or M<br>r Total Station &<br>ations.                       | Date:<br>Date to be I<br>biralian Standard ()<br>Aaintenance Work<br>Accessories, Trim<br>Accessories, Trim | Reviewed:<br>3012 & Risk<br>Code of Pra<br>nble R8 RTK | Management Code of Prac<br>ctice 2008, MUTCD Part 3<br>GNSS & Accessories, 4WD |

## APPENDIX G: RISK ASSESSMENT

Replicated with permission from MinStaff Survey

| MSUS Required ( Yes / No) Yes (Spray Paint) – Copy Attached                                                                                                                                                                                                                                                                                        |                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Personnel Qualifications Required for this Activity:<br>Relevant <u>WorkCover</u> Ticket for task has been undertaken                                                                                                                                                                                                                              |                                                                                         |
| Review and Corrective Actions:<br>SH&EWMS will be reviewed to the Schedule of Task Observations using the Task Observations heet to ensure the work is being carried out to the statement, or<br>Supervisor/Foreman to camy out remedial work for close out. If a failure is identified in the SH&EWMS, works will stop, the SH&EWMS will be amend | rrective action will be noted which are pas<br>ad and the changes communicated to the v |
| Specific Training Required for this Activity:<br>All personnel to have completed a Site Induction. Must be trained in<br>this SH&EWMS and have all relevant certification for this task. Internal training (appropriate use of Spray Paint)                                                                                                        | e & White card), <u>Minstaff</u> Survey Ir                                              |
| Personnel consulted on development of SH&EWMS:                                                                                                                                                                                                                                                                                                     |                                                                                         |
| Name: Title: Signature:                                                                                                                                                                                                                                                                                                                            |                                                                                         |
| Michael Zahl Undergraduate                                                                                                                                                                                                                                                                                                                         |                                                                                         |
| Jake Laing Operations Manager                                                                                                                                                                                                                                                                                                                      |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |
| APPROVED BY SENIOR MANAGEMENT                                                                                                                                                                                                                                                                                                                      |                                                                                         |
| The hierarchy of controls needs to be considered when identifying control measures. The highest level of contr<br>reasonably practicable.                                                                                                                                                                                                          | I should be implemented wherever                                                        |
| Name: Title: Signature:                                                                                                                                                                                                                                                                                                                            |                                                                                         |

|                                                                                                                    |                              | т             | т                     | Μ                       | -                  | -                       |                | E - Rare        |
|--------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|-----------------------|-------------------------|--------------------|-------------------------|----------------|-----------------|
|                                                                                                                    |                              | m             | т                     | M                       | -                  | F                       |                | D - Unlikely    |
|                                                                                                                    |                              | m             | m                     | т                       | м                  | ſ                       |                | C - Possible    |
| W Low risk, acceptable to proceed                                                                                  | Low                          | m             | m                     | т                       | т                  | M                       |                | B - Likely      |
| rate Moderate risk, acceptable to proceed with suitable cor                                                        | Moder                        | m             | m                     | m                       | т                  | т                       | ain            | A - Almost Cert |
| h High risk, acceptable to proceed only with strict contr                                                          | ic Higt                      | tastroph<br>1 | Major Ca<br>2         | Moderate<br>3           | Minor<br>4         | Insignificant<br>5      | ĕ              | LIKELIHO        |
| me Extreme risk, immediateaction required, works must not p at this level.                                         | Extren                       |               |                       | CONSEQUENCE             |                    |                         |                |                 |
| ATRIX                                                                                                              | RISK M                       |               |                       | OF RISK                 | (: LEVEL C         | ALYSIS MATRIX           | <b>RISK AN</b> | QUALITATIVE     |
| w environmental impact, not noticeable                                                                             | Very low                     |               |                       |                         |                    | No injuries             | •              | Insignificant   |
| confined to area impacted by work operations                                                                       | <ul> <li>Impact c</li> </ul> |               | s 3 incident)         | treatment only (Clas    | equire first aid i | Incident that may re    | •              | Minor           |
| verity which has short term and reversible effects                                                                 | Low sev                      | er (Class 2   | d medical practitions | atment by a qualifie    | es medical tre     | Incident that requir    | •<br>incident  | Moderate        |
| n severity which has or may have persistent but reversible effects                                                 | • Medium                     | s (Class 2    | illness/health effect | ne Injury or ongoing    | ident, Lost Tin    | Life threatening inc    | •<br>incident  | Major           |
| everity which has or may have permanent and/or irreversible effect                                                 | <ul> <li>High set</li> </ul> |               |                       | lass 1 incident)        | ent disability (C  | Fatality or permane     | •              | Catastrophic    |
| Environment                                                                                                        |                              |               |                       | Health & Safety         | •                  |                         |                |                 |
| jury, disadvantage or gain.'                                                                                       | y, being a loss, inju        | ualitative    | event expressed q     | ie outcome of an o      | NCE 'Th            | CONSEQUE                |                | •               |
| Once a month to once a year                                                                                        | Infrequent                   | esult.        | ation of factors to r | d require a combin:     | urrence. Woul      | Little chance of occi   | •              | Rare            |
| Once a week to once a month                                                                                        | Occasionally                 | trols.        | lures of systems/con  | ld require multiple fai | expected. Woul     | Could occur but not e   | •              | Unlikely        |
| Approximately once daily                                                                                           | Frequently                   | •             |                       |                         |                    | Could occur.            | •              | Possible        |
| Many times daily                                                                                                   | Continuously                 | •             | nce.                  | I chance of occurre     | here is a good     | Not a certainty but the | •              | Likely          |
| urs Exposure factor                                                                                                | Hazard event occu            | •             | t circumstances.      | ted to occur in mos     | utcome, expec      | Almost inevitable ou    | •              | Almost certain  |
| URE 'Consider the exposure (frequency) factor when determining the likelihood of the risk/hazard event occurring.' | EXPOS                        |               | occur                 | consequence will        | it the stated c    | "Likelihood tha         | LIHOOD         | LIKE            |

|                                           | Elimination    |            | Highest Level of Control      |
|-------------------------------------------|----------------|------------|-------------------------------|
| <ul> <li>Traffic Interferences</li> </ul> | Substitution   |            | Substitution                  |
|                                           |                | CONTROLS   |                               |
| -                                         | inginee        |            | inginee                       |
|                                           | gning          | EPTA       | g                             |
| m                                         |                |            |                               |
|                                           |                | H          |                               |
| <ul> <li>Ensure<br/>clothing,</li> </ul>  | Adm            | STRICT CON | Adm                           |
| high visibility<br>signage etc is         | inistration    | TROL/SHORT | inistration                   |
| Ш                                         |                |            |                               |
|                                           |                | ATIO       |                               |
| Ξ                                         |                |            |                               |
| Project                                   | PersonalProtec |            | Lowest Leve<br>PersonalProted |
| Admin<br>PPF                              | tive Equipment | BLE        | I of Control                  |

| Admii<br>PPF | Project                                                  | Ξ    | -      | Π   | Awareness of all road<br>users<br>Frontion of Signator                                                                                       | • • | П      |       | D |             | Traffic Interference                       |                               |
|--------------|----------------------------------------------------------|------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-------|---|-------------|--------------------------------------------|-------------------------------|
| Admii        | Project<br>Survevor                                      | Μ    | ω      | Π   | Lifting Equipment<br>Help from another team<br>member                                                                                        | ••  | M      | ω     | D |             | Muscular Strain/Injury                     | Site traffic control          |
| Admin        | Driver                                                   | 3    | ى<br>س | Ē   | Check caps daily<br>Driver is responsible for<br>vehicle                                                                                     | ••  | Z      | ω     | D |             | • Fuel Leak                                |                               |
| Admin        | Project<br>Surveyor                                      | Ξ    | 2      | m   | Avoid driving on rural<br>roads at dawn, dusk &<br>night                                                                                     |     | m      | 2     | С |             | <ul> <li>Strike an Animal</li> </ul>       |                               |
|              | Surveyor                                                 |      |        |     | Report defects, regularly<br>check all <u>brres</u> and fluid<br>levels/servicing<br>Carry fire extinguisher<br>Maintain Service<br>Schedule |     |        |       |   |             |                                            |                               |
| Admin        | Manager<br>Project                                       | I    | -      | Π   | Appropriate driver<br>training                                                                                                               | • • | т      |       | С |             | Vehicle Failure                            |                               |
| Admir        | Operations                                               | Ξ    | -      | m   | Nil alcohol and drugs                                                                                                                        | ••• | m      | -     | С |             | Driver Error                               |                               |
| Admii        | Project<br>Surveyor                                      | Ξ    | -      |     | Regular rest stops<br>Advise of estimated<br>arrival time                                                                                    |     | ш      | -     | C |             | • Fatigue                                  | Driving                       |
| CON          | Responsible<br>To ensure<br>management<br>method applied | P 9  | Ratin  | ۲×  |                                                                                                                                              |     | "<br>R | 0     | c | References  | Environmental Hazards<br>What can go wrong | Break the job down into steps |
| Hiera        | Person                                                   | Risk | idual  | Res | Control Measures                                                                                                                             |     | ating  | isk F | R | Legislative | Potential Safety and                       | Procedure                     |

| L ACCEPTABLE M ACCEPT   | Procedure Potential S<br>Break the job down into steps Environmenta<br>What can go wr |                |                                                                                                                                                                                                         |                                                           | Office Work <ul> <li>Calculations</li> <li>Drafting</li> <li>Writing Reports</li> </ul> | Maintaining Equipment                                                                                          | • Plant &<br>Failure                                                                                                                                                                         | Sline trine                                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| ABLE WITH C             | afety and<br>al Hazards<br><sup>ong</sup>                                             |                |                                                                                                                                                                                                         |                                                           | al overuse                                                                              | train/Injury                                                                                                   | Equipment                                                                                                                                                                                    | and falls                                                                                                                                    |
| ONTROLS                 | Legislative<br>References                                                             |                |                                                                                                                                                                                                         |                                                           |                                                                                         |                                                                                                                |                                                                                                                                                                                              |                                                                                                                                              |
| H ACCE                  |                                                                                       |                |                                                                                                                                                                                                         |                                                           | D                                                                                       | D                                                                                                              | C                                                                                                                                                                                            | C                                                                                                                                            |
| PTABL                   | Risk R                                                                                | ×<br>c =       |                                                                                                                                                                                                         |                                                           | 4                                                                                       | ω                                                                                                              | -                                                                                                                                                                                            | ω                                                                                                                                            |
| E WI                    | ating                                                                                 | 찌              |                                                                                                                                                                                                         |                                                           | -                                                                                       | S                                                                                                              | ш                                                                                                                                                                                            | Т                                                                                                                                            |
| TH STRICT CONTROL/SHORT | Control Measures                                                                      |                | <ul> <li>Cones around survey<br/>stations</li> <li>Spotter utilisation</li> <li>High visibility clothing<br/>(including long sleeve<br/>short and long pants)</li> <li>Dual Flashing Beacons</li> </ul> | Under Traffic Control – As per<br>approved TMP for works. | <ul> <li>Ergonomic office</li> <li>Lighting</li> <li>Breaks</li> </ul>                  | <ul> <li>Lifting Equipment</li> <li>Help from another team<br/>member</li> <li>Appropriate training</li> </ul> | <ul> <li>Report defects, regularly<br/>check all tyres and fluid<br/>levels/servicing</li> <li>Maintain Servicing &amp;<br/>Calibration schedule</li> <li>Carry fire extinguisher</li> </ul> | <ul> <li>Work on level ground</li> <li>Clean and tidy workplace</li> <li>PPE (including long<br/>sleeve short and long<br/>nants)</li> </ul> |
| DURA                    | Resid<br>Ra                                                                           | X              |                                                                                                                                                                                                         |                                                           | E4                                                                                      | Π<br>ω                                                                                                         |                                                                                                                                                                                              | D                                                                                                                                            |
| TION                    | ual Ris<br>ating                                                                      | °<br>₽         |                                                                                                                                                                                                         |                                                           | -<br>-                                                                                  | A                                                                                                              | т                                                                                                                                                                                            | Z                                                                                                                                            |
| E UNACCEPTA             | k Person<br>Responsible<br>To ensure                                                  | method applied |                                                                                                                                                                                                         |                                                           | Operations<br>Manager                                                                   | Project<br>Surveyor                                                                                            | Operations<br>Manager                                                                                                                                                                        | Project<br>Surveyor                                                                                                                          |
| NBLE                    | Hierarchy<br>control                                                                  |                |                                                                                                                                                                                                         |                                                           | Eng.<br>Admin                                                                           | Admin                                                                                                          | Admin                                                                                                                                                                                        | Admin &<br>PPE                                                                                                                               |

|     |                                                                                                                                                                                                                                                      |                                                                       |                                    | instruments and<br>targets<br>Placing survey<br>marks                                                                             | Carry equipment     Set up and remove | Fieldwork<br>• Locate survey                                               |                | Procedure<br>Break the job down into steps                         | L ACCEPTABLE        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|---------------------|
|     | <ul> <li>Ingestion/Inhalation/Skin<br/>and eye damage caused<br/>by working with Spray<br/>Paint</li> </ul>                                                                                                                                          | Getting Lost                                                          | <ul> <li>Hearing Damage</li> </ul> | <ul> <li>Adverse Effects from the<br/>Weather – UV, cold &amp;<br/>heat</li> </ul>                                                | Cuts/Abrasions/Splinters              | Muscular Strain/Injury                                                     |                | Potential Safety and<br>Environmental Hazards<br>What can go wrong | M ACCEPTABLE WITH C |
|     |                                                                                                                                                                                                                                                      |                                                                       |                                    |                                                                                                                                   |                                       |                                                                            |                | Legislative<br>References                                          | CONTROLS <u>H</u> A |
| -   | C                                                                                                                                                                                                                                                    | D                                                                     | С                                  | Β                                                                                                                                 | œ                                     | D                                                                          | LΧ             | 2                                                                  | CCEP                |
| -   | ω                                                                                                                                                                                                                                                    | -                                                                     | دی                                 | N                                                                                                                                 | 4                                     | ట                                                                          | C =            | sk Ra                                                              | TABL                |
| -   | т                                                                                                                                                                                                                                                    | Π                                                                     | Ξ                                  | Π                                                                                                                                 | Ξ                                     | м                                                                          | R              | ting                                                               | E                   |
|     |                                                                                                                                                                                                                                                      | ••                                                                    |                                    |                                                                                                                                   |                                       | • • • •                                                                    |                |                                                                    | TH ST               |
|     | Use Downwind<br>Appropriate Ventilation<br>Use spray paint as per<br>manufacturers specs<br>Safety glasses<br>Hard Hats<br>Work gloves<br>Dispose of appropriately-<br>as outlined on MSDS<br>(EPA Standards)<br>Long sleeve shirt and<br>long pants | Advise time of return<br>Mobile phones, two way<br>radios <u>et</u> c | Hearing Protection                 | PPE, jacket Long<br>sleeved shift and long<br>pants, Wide-Brim hats.<br>Drinking water; >2L<br>p/surveyor p/day<br>Sun Block 30 + | Shovels, crowbars<br>Wearing Gloves   | Warm up exercises<br>Lifting Equipment<br>Help from another team<br>member |                | Control Measures                                                   | RICT CONTROL/SHORT  |
|     | D                                                                                                                                                                                                                                                    | Ш                                                                     | ш                                  | D                                                                                                                                 | п                                     | m                                                                          | LX             | Resi                                                               | DUR                 |
| _   | <b>ن</b>                                                                                                                                                                                                                                             | <b>د</b>                                                              | ω                                  | N                                                                                                                                 | 4                                     | ω<br>-                                                                     | C =            | dual F<br>Vating                                                   | ATION               |
| _   | 5                                                                                                                                                                                                                                                    | т<br>()                                                               | M                                  | I                                                                                                                                 |                                       | M                                                                          | 20             | Risk                                                               |                     |
| _   | Project<br>Surveyor &<br>Operations<br>Manager                                                                                                                                                                                                       | Project<br>Surveyor                                                   | Project                            | Surveyor<br>Project<br>Surveyor                                                                                                   | Project                               | Project<br>Surveyor                                                        | method applied | Person<br>Responsible<br>To ensure                                 | UNACCEPTA           |
| 192 | Eng/PPE/<br>Admin                                                                                                                                                                                                                                    | Admin                                                                 | PPE                                | Admin &<br>PPE                                                                                                                    | PPE                                   | Admin                                                                      |                | Hierarchy<br>control                                               | BLE                 |

| I         ACCEPTABLE         MACCEPTABLE WITH CONTROL         NUMBER         Risk Raing<br>References         Risk Raing<br>References         Control Massures<br>References         Control Massures<br>References         References<br>References         References<br>References         References<br>References         References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L ACCEPTABLE         M ACCEPTABLE WITH CONTROLS         HACCEPTABLE WITH CONTROLS         NUNCCEPTABLE         NUNCCEPTABLE         NUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 193       |                                           |          |        |       |                        |                                                                                                                                                                                                                          |      |      |            |           |         |                                                                                                                                                         |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------|----------|--------|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------------|-----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Image: Control term         Image: Control term         Image: Control term         Image: Control term         Control term         Control term         Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L         ACCEPTABLE         M         ACCEPTABLE WTH CONTROL S         HACCEPTABLE WTH STRICT CONTROL/SHORT         DURATION         EUNACCEPTABLE WTH STRICT CONTROL/SHORT         UNACCEPTABLE         Massace         Residual Risk<br>Response         Residual Risk<br>Response         Residual Risk<br>Response         Response         Ferrardh<br>Response         Response         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Admin &   | Project<br>Surveyor                       |          |        |       | r of E                 | <ul> <li>Park the vehicle clear<br/>traffic lanes</li> <li>Personnel utilise verg</li> <li>Personnel wear hi-<br/>clothing at all times (lo<br/>sleeve and long pants</li> <li>Flashing light to<br/>operable</li> </ul> |      |      |            | 4.3 MUTCD | Part 3  | • Being struck by a vehicle                                                                                                                             | <ul> <li>Work on or beside<br/>the road</li> </ul> |
| $ \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L ACCEPTABLE         M ACCEPTABLE WITH CONTROLS         HACCEPTABLE WITH STRICT CONTROL/SHORT         DURATION         EUNACCEPTABLE           Procedure<br>Breaktheijdo down into steps         Potential<br>Environmental Hazards         Safety<br>and<br>References         Risk Rating<br>L X C = R         Control Measures<br>L X C = R         Residual Risk<br>Environmental References         Person<br>Tensure<br>metadageniet         Hierarch<br>Tensure<br>metadageniet           • Diriving         • Plencing<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Underground<br>Under | Admin     | Project                                   | -<br>    | 2      |       | lain<br>lion<br>ten    | <ul> <li>Wash vehicle and att<br/>Weed Inspecti<br/>Certificate wh<br/>travelling betwe<br/>sites/properties</li> </ul>                                                                                                  | rπ   |      |            |           |         | <ul> <li>Spread of weeds<br/>whilst driving<br/>between sites and<br/>properties</li> </ul>                                                             |                                                    |
| L ACCEPTABLE         M ACCEPTABLE WITH CONTROLS         HACCEPTABLE WITH STRICT CONTROLSHOT         DURATION         EVALUATION         Residual Residual Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L ACCEPTABLE         M ACCEPTABLE WITH CONTROLS         HACCEPTABLE WITH STRICT CONTROL/SHORT         DURATION         EUNACCEPTABLE           Procedure<br>Break the job down into steps         Potential<br>Environmental Hazards         References         Risk Rating<br>LX         Control Measures         Residual Risk<br>Rating<br>LX         Person<br>Period<br>LX         Person<br>LX         Herarch<br>Responsible<br>Control<br>Desister         Person<br>LX         Pers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Admin     | Project /                                 | <u>م</u> | 3      | 10    | E                      | <ul> <li>Assess Road Conditio</li> <li>Drive to Conditions</li> </ul>                                                                                                                                                    | -    |      | (7)<br>(4) |           |         | <ul> <li>Bogged Vehicle</li> </ul>                                                                                                                      |                                                    |
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L ACCEPTABLE       M ACCEPTABLE WITH CONTROLS       H ACCEPTABLE WITH CONTROLSHORT       UNACCEPTABLE WITH STRICT CONTROL/SHORT       UNACCEPTABLE       M ACCEPTABLE WITH CONTROL/SHORT       UNACCEPTABLE       M ACCEPTABLE       M ACCEPTABLE       M ACCEPTABLE WITH CONTROL/SHORT       UNACCEPTABLE       WINACCEPTABLE       M ACCEPTABLE       M ACCEPTABLE WITH CONTROL/SHORT       UNACCEPTABLE       M ACCEPTABLE       M A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Admin     | Project<br>Surveyor                       | -<br>S T |        | m<br> | ing E                  | <ul> <li>Vehicle fitted with Mi<br/>Flag</li> <li>Defensive Driving</li> <li>Head lights on</li> <li>Keep to left when drivi<br/>over crests</li> <li>Drive to conditions</li> <li>Obey speed limits</li> </ul>          | m    |      |            |           |         | • Collision                                                                                                                                             | • Driving                                          |
| L       ACCEPTABLE       M       ACCEPTABLE WITH CONTROLS       H       ACCEPTABLE WITH STRICT CONTROL/SHORT       DURATION       E       UNACCEPTABLE         Procedure       Potential       Safety       and       Legislative       Risk Rating       Control Measures       Residual Risk       Person       Hierarchy         Break the job down into steps       Unaction go wrong       What can go wrong       References       LX C = IR       LX C = IR <td< td=""><td>L ACCEPTABLE       M ACCEPTABLE WITH CONTROLS       H ACCEPTABLE WITH STRICT CONTROL/SHORT       DURATION       E UNACCEPTABLE         Procedure<br/>Break the job down into steps       Potential       Safety and<br/>Environmental Hazards<br/>What can go wrong       Legislative<br/>References       Risk Rating<br/>References       Control Measures<br/>Rating       Residual Risk<br/>Responsible<br/>To ensure<br/>management       Person<br/>Hierarchy<br/>To ensure<br/>management       Hierarchy<br/>To ensure<br/>management</td><td>Admin</td><td>Project<br/>Surveyor</td><td></td><td>2</td><td></td><td>ipal D<br/>lion<br/>Dial</td><td><ul> <li>Contact Princ,<br/>Contractor/Client for<br/>Ground Penetrat<br/>Permit</li> <li>U/G Survey Search (D<br/>before you Dig)</li> </ul></td><td></td><td></td><td></td><td></td><td></td><td><ul> <li>Plercing<br/>Underground<br/>Utilities/Services<br/>whilstpenetrating the<br/>ground; survey<br/>pegs/star<br/>pickets/dumpies etc.</li> </ul></td><td></td></td<> | L ACCEPTABLE       M ACCEPTABLE WITH CONTROLS       H ACCEPTABLE WITH STRICT CONTROL/SHORT       DURATION       E UNACCEPTABLE         Procedure<br>Break the job down into steps       Potential       Safety and<br>Environmental Hazards<br>What can go wrong       Legislative<br>References       Risk Rating<br>References       Control Measures<br>Rating       Residual Risk<br>Responsible<br>To ensure<br>management       Person<br>Hierarchy<br>To ensure<br>management       Hierarchy<br>To ensure<br>management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Admin     | Project<br>Surveyor                       |          | 2      |       | ipal D<br>lion<br>Dial | <ul> <li>Contact Princ,<br/>Contractor/Client for<br/>Ground Penetrat<br/>Permit</li> <li>U/G Survey Search (D<br/>before you Dig)</li> </ul>                                                                            |      |      |            |           |         | <ul> <li>Plercing<br/>Underground<br/>Utilities/Services<br/>whilstpenetrating the<br/>ground; survey<br/>pegs/star<br/>pickets/dumpies etc.</li> </ul> |                                                    |
| L ACCEPTABLE         M         ACCEPTABLE WITH CONTROLS         H ACCEPTABLE WITH STRICT CONTROL/SHORT         DURATION         E UNACCEPTABLE           Procedure         Potential         Safety         and         Legislative         Risk Rating         Control Measures         Residual Risk         Person         Hierarchi           Procedure         Environmental Hararda         Defense         Risk Rating         Control Measures         Residual Risk         Person         Hierarchi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L ACCEPTABLE M ACCEPTABLE WITH CONTROLS H ACCEPTABLE WITH STRICT CONTROL/SHORT DURATION L UNACCEPTABLE Procedure Pro                                                                                                                                                                                                       | COLING    | To ensure<br>management<br>method applied |          | aung   | × ,   | _                      |                                                                                                                                                                                                                          | ~    | "    | X          | - Feb     | Neielei | What can go wrong                                                                                                                                       |                                                    |
| L ACCEPTABLE M ACCEPTABLE WITH CONTROLS H ACCEPTABLE WITH STRICT CONTROL/SHORT DURATION E UNACCEPTABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L ACCEPTABLE M ACCEPTABLE WITH CONTROLS H ACCEPTABLE WITH STRICT CONTROL/SHORT DURATION L UNACCEPTABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hierarchy | Person                                    | isk      | fual R | Resid | 7                      | <b>Control Measures</b>                                                                                                                                                                                                  | рŋ   | Rati | Risk       | tive      | Legisla | Potential Safety and                                                                                                                                    | Procedure<br>Break the job down into steps         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3LE       | UNACCEPTAB                                |          | TION   | DURA  | RT                     | STRICT CONTROL/SHO                                                                                                                                                                                                       | WITH | BLE  | EPTA       | LS HACC   | CONTRO  | M ACCEPTABLE WITH                                                                                                                                       | L ACCEPTABLE                                       |
| 1    2    3    4    5    6    7      sing the tool SH&EWMS Review Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EWMS    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a    a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1    2    3    4    5    6    7    8      sing the tool SH&EVMUS Review Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMUS    and and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMUS      sing the tool SH&EVMUS Review Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMUS      grad, confirm that the SH&EVMUS nominated above has been explained and its contents are clearly understood and accepted or required qualifications to undertake this activity are current. We also clearly understand the controls in this SH&EVMUS      as documented; otherwise work is to cease immediately.      Surveyor    UG    ESpSc, Construction    Signature    Date    Time      induction, in-house training    15/08/2013    12 noon    N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Michael Zahl                    | Name                             | We the undersiç<br>We also confirm<br>must be applied       |         | Review u                   | Date: | Name &<br>Initials | Review No: | REVIEWS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|-------------------------------------------------------------|---------|----------------------------|-------|--------------------|------------|---------|
| 2  3  4  5  6  7    Als Review Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMS  Image: Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMS  Image: Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMS    Als Review Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMS  Image: Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EVMS    Induction to undertake this activity are current. We also clearly understand the controls in this SH& therwise work is to cease immediately.  Date    UG  BSpSc, Construction  Image: Construction induction, in-house training  Image: Construction induction, in-house training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2  3  4  5  6  7  8    IS Review Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EWMS  Image: Construction of the Prepare, Review and Accept SH&EWMS  Image: Construction of the Prepare, Review and Accept SH&EWMS    Is Review Checklist and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EWMS  Image: Construction of the Prepare, Review and Accept SH&EWMS  Image: Construction of the Prepare, Review and Accept SH&EWMS    Is Review Ork is to cease immediately.  Image: Construction of the Prepare, Review and the controls in this SH&EWMS  Image: Construction of the Prepare, Review and the controls in this SH&EWMS    Is Review Work is to cease immediately.  Image: Construction of the Prepare, Review and the controls in this SH&EWMS  Image: Construction of the Prepare, Review and the controls in this SH&EWMS    Is Review Work is to cease immediately.  Image: Construction of the Prepare, Review and the controls in this SH&EWMS  Image: Construction of the Prepare, Review and the controls in this SH&EWMS    Is Review Work is to cease immediately.  Image: Construction of the Prepare, Review and the controls in this SH&EWMS  Image: Construction of the Prepare, Review and the Controls in this SH&EWMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Surveyor                        | P                                | ned, confirm that that our required as documented; o        | SIGNOFF | sing the tool SH&EWN       |       |                    |            |         |
| 3    4    5    6    7      and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EWMS    and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EWMS    and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EWMS      orminated above has been explained and its contents are clearly understood and accundertake this activity are current. We also clearly understand the controls in this SH& o cease immediately.      G    BSpSc, Construction    Signature    Date    12 n      G    BSpSc, Construction    12 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3    4    5    6    7    8      and guidance from Knowledge Resource using the Prepare, Review and Accept SH&EWMS    and accepted and its contents are clearly understood and accepted understand the controls in this Activity are current. We also clearly understand the controls in this SH&EWMS    Image: Construction of the Signature of the Signature of the Shoe clearly understand the controls in this SH&EWMS      G    BSSSc.    Construction construction of the standard o | in Q                            | osition                          | the SH&EWMS no<br>qualifications to u<br>therwise work is t |         | <b>MS Review Checklist</b> |       |                    | 2          |         |
| 4  5  6  7    Image: Signature struction structi | 4  5  6  7  8    Image: Second Contents are clearly understood and accepted in this second clearly understand the controls in this SH&EWMS ely.  Image: Signature clearly understand the controls in this SH&EWMS ely.  Image: Signature clearly understand the controls in this SH&EWMS ely.    Image: Signature clearly understand the controls in this SH&EWMS ely.  Image: Signature clearly understand the controls in this SH&EWMS ely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G BSpSc, C<br>duction, in-house | Qualification Rec<br>this Activi | ominated above h<br>undertake this act<br>o cease immediat  |         | and guidance from h        |       |                    | ω          |         |
| 5  6  7    e using the Prepare, Review and Accept SH&EWMS    e using the Prepare, Review and Accept SH&EWMS    d and its contents are clearly understood and accept shallow clearly understand the controls in this SH&    Ve also clearly understand the controls in this SH&    Signature  Date    15/08/2013  12 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  6  7  8    e using the Prepare, Review and Accept SH&EWMS  and its contents are clearly understood and accepted.    ve also clearly understand the controls in this SH&EWMS    Signature  Date  Time    15/08/2013  12 noon  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onstruction<br>training         | ty ity                           | ivity are current. \<br>ely.                                |         | Knowledge Resourc          |       |                    | 4          |         |
| 6  7    Review and Accept SH&EWMS    s are clearly understood and accept share    derstand the controls in this SH&    15/08/2013  12 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6  7  8    Review and Accept SH&EWMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | Signature                        | ed and its contents<br>We also clearly unc                  |         | e using the Prepare, F     |       |                    | 5          |         |
| 7<br>SH&EWMS<br>sh&EWMS<br>trefs in this SH&<br>tre 12 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7  8    SH&EWMS  Image: SH&EWMS    SH&EWMS  Image: SH&EWMS    te  Time    te  Time    3  12 noon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15/08/201                       | Da                               | s are clearly und<br>derstand the com                       |         | Review and Accept          |       |                    | 6          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | con Revenue Reve<br>Revenue Revenue Reven                                                                                                                                                                                                                                                                                                                                                 | 3 12 n                          | fe                               | rols in this SH&                                            |         | SH&EWMS                    | 1     |                    | 7          |         |