
  i 

 

University of Southern Queensland 

Faculty of Health, Engineering & Sciences 

 

Make Garfield (6 axis robot arm) Smart 

through the design and implementation of 

Voice Recognition and Control 

 

A dissertation submitted by 

Kyle Tonkin 

in fulfilment of the requirements of 

Course ENG4111 Research Project part 1 & ENG4112 

Research Project part 2 

 

Towards the degree of 

Bachelor of Electrical Engineering 

 

Submitted: October, 2013 



  ii 

 

ABSTRACT 

 

The Voice is a powerful tool used in everyday life. It expresses our feelings, emotions and is 

unique to every individual. Developing a system to decipher its functionality and deal with the 

complexities involved in its digitalisation, becomes quite the task. Once harnessed, it has the 

potential to become one of the most popular methods of control throughout the world. 

Garfield (a 6 axis robotic arm) is in need of an extra method of control that can essentially 

make it ‘smarter’. In trend with current popularity, Voice Recognition has been selected as the 

method for control and the processes taken to implement such a system are explored in the 

following dissertation. Its outlines the design, development and implementation of a working 

voice recognition system used in conjunction with robotic arm software. In essence, this 

project explores the application of such a technology to the industrial robot industry and tests 

its performance as a whole. 

A signal processing methodology was investigated, designed and developed in order to 

implement the voice as a control tool on the robotic system. This included the research and 

development of a voice detection algorithm based on the principles of voice recognition and 

required integration with robotic control software to execute appropriate movement. 

Existing literature was explored in order to understand and apply the concepts of voice 

recognition and integrate it into a system responsive to user utterances. The basic outline of 

the processing techniques used followed those involved with Mel Frequency Cepstral 

Coefficients (Kumar & Rao 2011)  and the recognition techniques involved with Euclidean 

distances (Muda, Begam & Elamvazuthi 2010). In applying these techniques within the Matlab 

platform, some Voice Processing tools (Brookes 1998) were sort out and used. A number of 

final design parameters were evaluated and tested in order provide recommendation to 

further system users and set objectives for future work. 

The results of system performance testing discovered that jogging the system via the voice 

controlled method was viable with further improvement to the system response and quality 

of the control algorithm. Furthermore, possible solutions to the blemishes in the system are 

explored and avenues for further research and development stated. 

 

 

 

 

 

 



  iii 

 

University of Southern Queensland 

Faculty of Health, Engineering & Sciences 

 

ENG4111 Research Project Part 1 &  

ENG4112 Research Project Part 2 

 

Limitations of Use 

The Council of the University of Southern Queensland, its Faculty of Health, 

Engineering and Sciences, and the staff of the University of Southern Queensland, do 

not accept any responsibility for the truth, accuracy or completeness of material 

contained within or associated with this dissertation.  

Persons using all or any part of this material do so at their own risk, and not at the risk 

of the Council of the University of Southern Queensland, its Faculty of Health, 

Engineering and Sciences or the staff of the University of Southern Queensland.  

This dissertation reports an educational exercise and has no purpose or validity 

beyond this exercise. The sole purpose of the course pair entitled “Research Project” 

is to contribute to the overall education within the student's chosen degree program. 

This document, the associated hardware, software, drawings, and other material set 

out in the associated appendices should not be used for any other purpose: if they are 

so used, it is entirely at the risk of the user. 

Professor Frank Bullen  

Dean  

Faculty of Health, Engineering and Sciences  



  iv 

 

CERTIFICATION 

 

I certify that the ideas, designs and experimental work, results, analyses and 

conclusions set out in this dissertation are entirely my own effort, except where 

otherwise indicated and acknowledged.  

 

I further certify that the work is original and has not been previously submitted for 

assessment in any other course or institution, except where specifically stated.  

 

 

 

Student Name: Kyle James Tonkin  

 

Student Number: 0061005209 

 

 

____________________________  

Signature  

 

____________________________  

Date 



  v 

 

ACKNOWLEDGEMENTS 

 

I would firstly like to acknowledge the support and advice given to me by my 

supervisor, Dr Tobias Low.  Without his presence, I would not have been able to 

progress through the year and submit my final dissertation. His knowledge and skills 

have been flawless, helping me through all of the problems I have faced. 

I would also like to thank my family and friends, who have been there for me 

throughout the year and supported everything I have done. Hopefully they will remain 

there for me as I progress into the future. Thank you. 

          KYLE 

TONKIN 

University of Southern Queensland 

October 2013 

 

 

 

 

 

 

 

 

 

 



  vi 

 

Contents 

 

ABSTRACT ...................................................................................................................................... ii 

CERTIFICATION ............................................................................................................................. iv 

ACKNOWLEDGEMENTS ................................................................................................................. v 

List of Figures ................................................................................................................................ x 

List of Tables ................................................................................................................................ xi 

Nomenclature ............................................................................................................................ xiii 

Robotic Voice Recognition and Control ....................................................................................... 1 

1.1 Introduction ....................................................................................................................... 1 

1.2 Project Aim ......................................................................................................................... 4 

1.3 Project Objectives .............................................................................................................. 5 

1.4 Overview of Dissertation ................................................................................................... 6 

Literature Review ......................................................................................................................... 7 

2.1 Chapter Overview .............................................................................................................. 7 

2.2 The concept of Speech ....................................................................................................... 8 

2.3 Speech Processing .............................................................................................................. 9 

2.3.1 Sampling .................................................................................................................... 10 

2.3.2 Pre-emphasis ............................................................................................................. 10 

2.3.3 Framing ..................................................................................................................... 11 

2.3.4 Hamming Window .................................................................................................... 11 

2.3.5 Discrete Fourier Transform ....................................................................................... 12 

2.3.6 Mel Frequency Scale and FilterBank ......................................................................... 13 

2.3.7 Mel Frequency Coefficients ...................................................................................... 14 

2.3.8 Hidden Markov Model (HMM).................................................................................. 15 

2.3.9 Dynamic Time Warping (DTW) .................................................................................. 15 



  vii 

 
2.3.10 Artificial Neural Network (ANN).............................................................................. 16 

2.3.11 Vector Quantisation (VQ) ........................................................................................ 16 

2.4 Speech as a form of control ............................................................................................. 17 

2.5 The 6 axis Robot arm ....................................................................................................... 18 

2.5.1 History ....................................................................................................................... 18 

2.5.2 RobotStudio .............................................................................................................. 20 

2.5.3 RobotStudio Coding (RAPID) ..................................................................................... 21 

2.5.4 Previous Industrial Application ................................................................................. 23 

2.6 Communication Link (TCP/IP) .......................................................................................... 23 

2.7 Chapter Summary ............................................................................................................ 25 

Methodology .............................................................................................................................. 26 

3.1 Chapter Overview ............................................................................................................ 26 

3.2 Research and Development Methodology ...................................................................... 27 

3.3 Task Analysis .................................................................................................................... 28 

3.3.1 Hardware and Software identification ...................................................................... 29 

3.3.2 Voice Recognition Algorithm .................................................................................... 29 

3.3.3 Robotic arm Coding ................................................................................................... 31 

3.3.4 Communication Link ................................................................................................. 32 

3.3.5 Testing and Evaluation .............................................................................................. 32 

3.4 Consequential Effects ...................................................................................................... 33 

3.4.1 Sustainability ............................................................................................................. 33 

3.4.2 Safety ........................................................................................................................ 34 

3.4.3 Ethical Considerations ............................................................................................... 35 

3.5 Risk Assessment ............................................................................................................... 35 

3.6 Research Timeline ............................................................................................................ 36 

3.7 Chapter Summary ............................................................................................................ 36 

Design & Implementation .......................................................................................................... 37 



  viii 

 
4.1 Chapter Overview ............................................................................................................ 37 

4.2 Voice Recognition Methodology ...................................................................................... 37 

4.2.1 Pre-Emphasis ............................................................................................................. 38 

4.2.2 Silence Detection and Data Reduction ..................................................................... 40 

4.2.3 Framing and Windowing ........................................................................................... 43 

4.2.4 Discrete Fourier Transform ....................................................................................... 45 

4.2.5 Periodogram based Power Spectral Density (PSD) estimate .................................... 46 

4.2.6 Mel Filter Bank .......................................................................................................... 46 

4.2.7 Log filter bank energies and Discrete Cosine Transform .......................................... 47 

4.2.8 Model Building .......................................................................................................... 47 

4.2.9 Recognition using Euclidean Distance ...................................................................... 49 

4.3 Command Action Methodology ....................................................................................... 50 

4.3.1 Command Structure .................................................................................................. 50 

4.3.2 Building Commands .................................................................................................. 52 

4.3.3 Command Execution ................................................................................................. 56 

4.4 Interfacing and Communication ...................................................................................... 57 

4.5 Chapter Summary ............................................................................................................ 60 

Performance and Evaluation...................................................................................................... 61 

5.1 Chapter Overview ............................................................................................................ 61 

5.2 Performance Methodology .............................................................................................. 62 

5.3 Error rate Performance .................................................................................................... 63 

5.3.1 Methodology ............................................................................................................. 63 

5.3.2 Measurement and Testing ........................................................................................ 64 

5.3.3 Discussion of Results ................................................................................................. 69 

5.4 Command Usability (Quantitative) .................................................................................. 72 

5.4.1 Methodology ............................................................................................................. 72 

5.4.2 Measurement and Testing ........................................................................................ 73 



  ix 

 
5.4.3 Discussion of Results ................................................................................................. 77 

5.5 Real time algorithm and communication response ......................................................... 78 

5.5.1 Response Methodology and Results ......................................................................... 78 

5.5.2 Discussion of Results ................................................................................................. 82 

5.6 Qualitative Analysis of Results ......................................................................................... 83 

5.6.1 Ease of Use ................................................................................................................ 83 

5.6.2 Industrial Application ................................................................................................ 86 

5.6.3 Constraints ................................................................................................................ 87 

5.7 Chapter Summary ............................................................................................................ 87 

Conclusions & Further work ...................................................................................................... 88 

6.1 Chapter Overview ............................................................................................................ 88 

6.2 Conclusions ...................................................................................................................... 88 

6.3 Further Work .................................................................................................................... 90 

References ................................................................................................................................. 91 

Appendix A ................................................................................................................................. 93 

Appendix B ................................................................................................................................. 95 

Appendix C ............................................................................................................................... 101 

Appendix D ............................................................................................................................... 102 

Appendix E ............................................................................................................................... 138 

 

 

 

 

 

 

 



  x 

 

List of Figures 

Figure 1 - ABB 6 axis Robot Arm .................................................................................................. 3 

Figure 2 - Mel Frequency Scale .................................................................................................. 13 

Figure 3 - Triangular Spaced Filters ............................................................................................ 14 

Figure 4 - Module annotation .................................................................................................... 21 

Figure 5 – RAPID program Layout .............................................................................................. 22 

Figure 6 - System Block Diagram ................................................................................................ 28 

Figure 7 - Simple Process Diagram ............................................................................................. 30 

Figure 8 - Speech Signal of Command 'ONE' .............................................................................. 38 

Figure 9 - Command "ONE" Pre-emphasised............................................................................. 39 

Figure 10 - Silence Detection Code ............................................................................................ 40 

Figure 11 - Data Reduction ........................................................................................................ 41 

Figure 12 - Command 'ONE' after silence detection .................................................................. 42 

Figure 13 - Framing Diagram ...................................................................................................... 43 

Figure 14 - Hamming Window ................................................................................................... 44 

Figure 15 - Hamming Window applied to the frame ................................................................. 44 

Figure 16- Mel Filter Bank (Lyons 2009) .................................................................................... 46 

Figure 17- Model Diagram of utterance ‘One1’ ......................................................................... 47 

Figure 18- Command Model 'ONE' ............................................................................................ 48 

Figure 19 - Command-Action number pad ................................................................................ 50 

Figure 20 - Initial Robot Position ................................................................................................ 52 

Figure 21 - Axis 3 movement ..................................................................................................... 52 

Figure 22 - Axis 2 movement ..................................................................................................... 53 

Figure 23 - Axis 4 movement ..................................................................................................... 53 

Figure 24 - Axis 1 movement ..................................................................................................... 54 

Figure 25 - RAPID code for Higher command ............................................................................ 55 

Figure 26 - RAPID code for Lower command ............................................................................. 56 

file:///C:\Users\Kyle\Desktop\University\Semester%202%202013\Project\Dissertation(v1).docx%23_Toc370236510


  xi 

 
Figure 27 - MoveAbsJ Structure ................................................................................................. 56 

Figure 28 - Jointtarget structure ................................................................................................ 56 

Figure 29 - Socket connection screenshot ................................................................................. 58 

Figure 30 - Socket Connection RAPID ........................................................................................ 59 

Figure 31 - Socket Receive RAPID .............................................................................................. 59 

Figure 32 - Interaction between Matlab and RobotStudio ........................................................ 60 

Figure 33 - Clock initialisation and control ................................................................................ 72 

Figure 34 - Clock timing code ..................................................................................................... 79 

 

List of Tables 

Table 1 - Command List .............................................................................................................. 51 

Table 2 – Original System Recognition Error rates (No noise) ................................................... 64 

Table 3 - Original System Recognition Error rates (Background music) .................................... 64 

Table 4 - Original System Recognition Error rates (Background Fan) ........................................ 65 

Table 5 - Modified System Recognition Error rates (No noise) ................................................. 65 

Table 6 - Modified System Recognition Error rates (Background music) .................................. 66 

Table 7 - Modified System Recognition Error rates (Background Fan) ...................................... 66 

Table 8 - Complete Modified System Recognition Error rates (No noise) ................................. 67 

Table 9 - Complete Modified System Recognition Error rates (Background music) ................. 68 

Table 10 - Complete Modified System Recognition Error rates (Background Fan) ................... 69 

Table 11 - Timing for Angle increment 10 degrees .................................................................... 73 

Table 12 - Timing for Angle increment 15 degrees .................................................................... 74 

Table 13 - Timing for Angle increment 30 degrees .................................................................... 74 

Table 14 - Point to Point time approximation ........................................................................... 76 

Table 15 – Processing Time of Utterance .................................................................................. 79 

Table 16 - Recognition Time of utterances ................................................................................ 80 



  xii 

 
Table 17 - Connection Time of utterances ................................................................................. 81 

Table 18 - Research Timeline ..................................................................................................... 96 

Table 19 - Levels of risk occurrence ........................................................................................... 97 

Table 20 - Risk Severity Levels ................................................................................................... 97 

Table 21 - Risk Summary .......................................................................................................... 100 

Table 22 - Rejection element removal results (Background music) ........................................ 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  xiii 

 

Nomenclature 

 

 

VR  Voice Recognition 

ASR  Automatic Speech Recognition 

PSD  Power Spectral Density 

HMM  Hidden Markov Model 

VQ  Vector Quantisation 

ANN  Artificial Neural Networks 

MFCC  Mel Frequency Cepstral Coefficients 

DFT  Discrete Fourier Transform 

FFT  Fast Fourier Transform 

DCT   Discrete Cosine Transform 

WER  Word Error Rate 

 

 

 

 

 

 

 



Chapter 1  1 

 
 

Chapter 1  

 

Robotic Voice Recognition and Control 

 

1.1 Introduction 

 

Ever since humans have walked the earth, they have sought faster and more efficient ways in 

which to perform everyday tasks. It is only now, where human technology has reached a level 

allowing the creation of machines that can out-think and out-perform the average human 

being. Robotics has been an ever expanding industry since the early 1900’s and has been a 

major contributor to the success of our growth as a species. It’s involvement in mass 

production, medicine, exploration and transport has made it an invaluable tool, in which we 

simply cannot move in to the future without. Robotics has evolved dramatically in the past 

century, not only has the world seen faster, more accurate and reliable systems, but ones that 

have grown to display human like characteristics and thinking. It is with this expansion in the 

intelligence of robots, that a need arises for greater control of these machines (Gates 2007). 

Today there are a number of methods available that allow the standardised control of 

machines. Every machine is run by a distinct set of programs and procedures where code is 

executed to perform both simple and complex tasks. The computer interface and remotes or 

pendants are the main control methods available and are largely focussed on user input and 

interactivity. Newer machines are capable of determining inputs and conditions without user 

input, following the implementation of advanced sensors and machine learning techniques.  

All in all, voice as one of these control methods, forms a low percentage of those readily 

available today and is still yet to fully utilise the effectiveness of ‘the voice’ as a control 

technique. Developing a perfect system on the basis of voice recognition, that has the ability 



Chapter 1  2 

 
to follow commands without error and recognise utterances from all types of speakers, is one 

that is currently still in creation.  

Voice recognition has become a quite popular technique in recent years as a simple, hands 

free control method, whether it be used for voice dialling in mobile phones or for movement 

response in children’s toys. The development of voice recognition and control has been quite 

rapid as a result of this popularity and its application in industry is becoming more and more 

likely. As the algorithms increase in quality and are refined to lock on to specific speech 

patterns, greater accuracy is achieved and can be implemented without risk of failure (Rabiner 

2004). A major consideration for this technology is its response to ‘noise’ and unexpected 

inputs. Not only can these cause the wrong output, but put the safety of the operator at risk. 

Depending on what type of activity is being conducted, any mishap or wrong movement could 

result in millions of dollars of production losses or even loss of life. Knowing these risks, it 

becomes quite important that voice recognition is simulated thoroughly before being applied 

to a system and tested in the real world. 

Voice, even sound in general, is a quite complicated phenomenon. It is used every day without 

any effort or thought into how it is being produced. Every human being is unique, no matter 

how similar one person may be to another and with this diversity, comes a variety of speech 

patterns. These patterns vary in both frequency and magnitude and can be matched using a 

number of techniques. The most reliable technique involves finding the Cepstral properties of 

the recorded sound. These properties present subtle differences which can be used to 

distinguish between 2 phonemes or utterances, i.e. the words ‘one’ and ‘two’. It is important 

to understand that single word voice recognition is much simpler than continuous word 

recognition, as it does not require the constant determination and processing of word 

boundaries. Essentially, once the important properties of a particular utterance are obtained, 

they can be compared with a previously built model in order to determine the spoken word. 

The most commonly used method of matching is based on the Hidden Markov Model and its 

use of probability (Iqbal, Mahboob & Khiyal 2011). Once the word is spoken, analysed and 

matched, an output is determined and presented to the user, whether it be in the form of 

authentication, movement, words or even sound. There are a number of other methods 

which have shown considerable success when it comes to voice recognition, these will be 

explored later in the report.   



Chapter 1  3 

 
A number of software packages and programs have been previously developed that recognise, 

to an extent, the speaker’s voice and translate it either to text or to another specific output. 

Dragon Naturally Speaking is one of these programs that convert everything you say into text. 

This particular program is up to 99 percent accurate in interpreting the correct words, 

considering the amount of money invested in such a program this is quite reasonable 

(Communications 2013). In a recent journal involving voice recognition for Automatic Teller 

machine security, an 86.67% acceptance rate was recorded, as well as a 13.33% rejection rate. 

The system used in this instance was built using Matlab. It implemented a Mel Frequency 

Cepstral Coefficient and Hidden Markov Model based algorithm which was quite successful in 

determining voice properties in the presence of noise (Iqbal, Mahboob & Khiyal 2011). This 

section of the project becomes quite an important first step. Without the correct 

determination of verbal commands there will be nothing to call a response from the robot. 

Currently Garfield, the 6 axis robot arm, is 

controlled by an application called 

RobotStudio. This particular program uses 

various coding techniques to control a 

number of variables, which in turn allow the 

execution of movements. In order to improve 

the capabilities of Garfield, it seems 

appropriate that some other form of control 

be implemented. Considering the growing 

popularity of voice recognition and its ever 

expanding applications, integrating a system 

like this onto a 6 axis robot arm seems quite 

smart. Newer technologies are pointing 

towards a future in which we rely on robotics 

to sustain our world and learning about the 

methods involved in the control of these 

machines through such a project, seems quite 

suitable.  

In dealing with a 6 axis robot arm, a detailed knowledge of the programming language used 

for its operation is required. An understanding of its capabilities and its limitations is also 

imperative. Ideally using voice recognition technology as a method of control would require a 

fast response to input from the user. Considering the processing power of the average 

Figure 1 - ABB 6 axis Robot Arm 



Chapter 1  4 

 
computer and the time needed to execute an algorithm, response to input for this particular 

project can be expected to be relatively slow.  

Creating a reliable system with the resources available can be quite difficult and time 

consuming. Thus it is important to state that providing an input and obtaining a response from 

Garfield is the basic objective needed to be reached. From here, increasing the efficiency, 

response time and manoeuvrability of Garfield becomes the next focus in this project.  

 

 

1.2 Project Aim 

 

The primary aim of this project is to design, develop and implement a voice recognition and 

control system onto Garfield, the 6 axis robot arm. This prototypical software-based system 

will look at demonstrating the concepts of voice recognition and control and explore its 

limitations. The project will involve the creation of a voice recognition algorithm in Matlab and 

a program in RobotStudio which will integrate together over a TCP/IP socket connection. The 

system must provide an accurate means of control, allowing the user to display the 

capabilities of 6 axis robot arm control. With regards to speed, it is important that the arm 

responds quickly in real time to ensure the safety of the user. The system must first 

demonstrate a basic response to voice input and be simulated on RobotStudio software 

before being implemented onto the 6 axis robot arm itself. 

This project aims to investigate methods of voice recognition, analyse the best method for this 

application and implement it using various sound processing techniques and algorithms. This 

prototypical software will be tested, analysed, evaluated and further developed to improve 

such performance criteria as speed, accuracy and manoeuvrability. 

Upon completion of the project, it is intended that the prototypical software created in this 

process can be further developed and implemented for an alternative control method for 

Garfield, the 6 axis robot arm and be used as a possible learning tool for voice recognition 

systems within the University of Southern Queensland. 

 



Chapter 1  5 

 

1.3 Project Objectives 

 

The project aim was reviewed and split into a number of objectives for completion. 

 Identification of current voice recognition techniques 

 Identification and Investigation of best suited voice analysis method 

 Development of algorithm in Matlab addressing this method  

 Development of code using RobotStudio software to integrate with this method  

 Combine and Implement these two developments in simulation package 

 Evaluation of prototypical software 

 Investigate any modifications to improve system performance 

 Implement these modifications and Evaluate 

 Implement the prototypical software onto Garfield 

 Make recommendations for further development 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1  6 

 

1.4 Overview of Dissertation 

 

The dissertation is organised as follows: 

 

Chapter 2 Investigates the relevant research papers on the voice recognition subject 

area and explores the techniques used to apply this form of control. These 

techniques will involve signal processing, model building, program 

communication and simulation elements. There relevance to this particular 

application will be discussed and evaluated. 

Chapter 3 States the methodologies to be undertaken in order for project completion. It 

outlines the strategies used in creating the system software and its 

implementation onto Garfield. This chapter also looks at the relevant risks 

involved in this project and a formal assessment and evaluation of these. 

Resources needed for the project are also identified and discussed. 

Chapter 4 Details the design of the Voice Recognition and Control system as per the 

relevant theory explored in Chapter 2. The methods used in this process are 

explored and creation of the system followed all the way to the 

implementation stage. This involves investigating the processing algorithms, 

communication link, simulator code and command theory. 

Chapter 5 looks at simulation performance involving Error Rates, rejection and system 

response times. Evaluation of the system is also conducted to seek out and 

identify problems such as delay and misinterpretation. Future improvements 

for the system are also somewhat explored. 

Chapter 6  summarises the work done throughout the project and the final result. 

Further work and recommendations will also be made here. 

 

 

 

 

 



Chapter 2  7 

 
 

Chapter 2 

 

Literature Review 

 

2.1 Chapter Overview 

 

Over the years many people have dedicated time and money into researching the properties 

of speech which gives every person a sense of individuality. An understanding of how to 

manipulate these properties and effectively use them to transform the way we produce sound 

has been sought with high priority. With such an understanding, it has paved the way for voice 

to be used as a means of control and security. This technology has the potential, with the right 

technology, to replace a number of existing control methods to make our lives easier and 

quite possibly safer. 

This chapter examines the basic concepts of speech, in particular its spectral properties and 

how they are obtained. It also looks at the way in which these properties can be manipulated 

in order to distinguish between a number of different utterances or words. Relevant literature 

will be explored to extract the techniques involved in speech analysis and detail their physical 

operation. 

ABB’s 6 axis robotic arms are also explored, with regards to their development and current 

capabilities. The software required to run these robotic arms is investigated and literature 

detailing the communication link theory between Matlab and RobotStudio is also explored. 

 

 



Chapter 2  8 

 
 

2.2 The concept of Speech 

 

The human voice is a very unique concept and varies greatly from person to person. Even 

though everybody is different in this way, it just so happens that the same technique is 

applied by everyone in order to produce sound. From the moment you first breathe air into 

your lungs muscles in your throat are preparing for whichever word you are planning on 

saying or in some instances, planning on not saying. No matter how you approach the 

projection of speech there are always 3 distinct ways in which speech can be excited 

(Plannerer 2005): 

 Voiced excitation 

 Unvoiced or Voiceless excitation  

 Transient excitation 

 

Voiced Excitation 

When exhaling, air streams through the larynx, passing through the glottis (essentially the 

vocal chords and the space between them). During voiced excitation the glottis remains 

closed until enough pressure is present to cause it to open. In doing so, this creates a quasi-

periodic vibration which can differ in both period and magnitude. This essentially creates the 

frequency at which the sound is released. 

 

Unvoiced (or Voiceless) Excitation 

Unvoiced excitation happens when the glottis remains open during this process. Turbulent air 

is generated through friction between the air and a narrow passage in the pharynx (oral 

cavity). A noise signal is formed that is dependent on the narrowness (constriction) of this 

passage, which in turn gives it a desired spectral shape. 

 

 



Chapter 2  9 

 
 

Transient Excitation 

This excitation happens when the muscles in the pharynx (oral cavity) are expanded and 

contracted to produce changes in air pressure. When opening the mouth, this air pressure 

gives a certain burst that gives definition to particular syllables in words.  

In knowing these simple characteristics of speech we can now look at it from an analysis 

perspective. An utterance will be created using a range of these 3 excitations, with each 

excitation having important variables.  

 Firstly we can look for a fundamental frequency as generated by voiced excitation.  

 Secondly we can look for peaks in the spectral distribution of energy and zero 

crossings. 

 Thirdly we can look for short silences produced over time caused by the build up 

of pressure during transient excitation (Kumar & Rao 2011). 

From here we now know what to look for when conducting an analysis and with the right 

tools create a model that correctly identifies an utterance. The variables we have mentioned 

above can be found and manipulated using different techniques in signal processing.  

 

2.3 Speech Processing 

 

Today, speech processing has become an important part of people’s lives. It is involved in 

nearly every part of people’s day to day communication activities. Without this sort of 

understanding, the world would be a very different place and technology would be nowhere 

near as advanced as it is currently. Luckily enough, the technology that has been developed to 

model speech patterns is extremely accurate and efficient, allowing the reproduction and 

manipulation of sound in all types of industries. Knowing what was stated above in 2.2, it is 

easy to process and extract the essential information required to represent a signal (Muda, 

Begam & Elamvazuthi 2010). 

 

 



Chapter 2  10 

 

2.3.1 Sampling 

 

In order to obtain the information detailed in section 2.2, a short time signal must be recorded 

into a processing engine such as Matlab. This is generally done using a microphone and the 

user’s voice, or the sound can be generated by a program or instrument. During recording, the 

short time signal (sound) undergoes an analogue to digital conversion at a pre-defined 

sampling frequency. For the case of the human voice, 8 or 16 kHz is an appropriate sampling 

frequency depending on the desired accuracy and quality. This data can then be saved as a 

physical recording in the desired format (.wav). 

2.3.2 Pre-emphasis 

 

Once the signal has been sampled and data is saved, it requires a certain amount of filtering in 

order for further processing to continue. The now ‘digitised signal’ is run through a pre-

emphasis stage where the higher frequencies are magnified within the data set. This pre-

emphasis, essentially eliminates the -6 dB per octave decay of spectral energy (Plannerer 

2005).  

The pre-emphasis filter can be defined in the following equation.  

 

Y [n]  =  X [n] – 0.95 X [n-1]         ...equation (2.1) 

Where 

X[n] is the digitised signal   

Y[n] is the magnified output signal. 

0.95 represents the percentage of the original signal assumed to be present in the following 

sample.  

This filter ensures that the energies present in the signal at the higher frequencies are 

highlighted for further processing. 

 

 



Chapter 2  11 

 

2.3.3 Framing 

 

Once a time signal has been pre-emphasised, the need arises for it to be framed. Framing, 

divides the data into a series of overlapping segments that range from 20 to 40 ms in length. 

The importance of framing is based on the fact that, smaller time segments produce a more 

accurate stationary representation of the time signal ensuring the spectral estimate obtained 

later on is reliable. If the segments are to small there are not enough samples to give a reliable 

estimate and if the segments are too big the signal changes too much in order to obtain an 

accurate estimate (Lyons 2009). 

The segmentation will allow the signal to be processed over smaller time frames of N samples. 

Adjacent frames become separated by M, which is less than N. Typical values for N are = 128, 

256 or even 512 and that for M are of the order of M<N (i.e. 50, 100, 200). 

 

2.3.4 Hamming Window 

 

Now considering that the time signal has been segmented into a number of overlapping 

frames it becomes quite important that a hamming window is applied to each frame. The 

hamming window allows for the smooth transition between frames by reducing the side lobe 

that causes unwanted radiation in the frequency domain. This improves the time signal 

quality and removes unwanted frequencies caused by the framing process.   

Using the output frequency from before Y [n], it is multiplied by a windowing equation W[n] in 

order to obtain the result Y1 [n].  

This is shown in the following equation: 

 

W [n] = 0.54 – 0.46 cos (2πn/N-1)            ...equation (2.2) 

For:  

0 ≤ n ≤ N-1  

where:  

N = the Number of samples in the frame (frame length) 



Chapter 2  12 

 
 

Therefore   Y1 [n] = Y [n] x W[n]           ...equation (2.3) 

 

2.3.5 Discrete Fourier Transform 

 

The next step in the process involves addressing each frame of N samples created above and 

converting them from the time domain to the frequency domain. This will enable the 

distinction of the key frequencies present in the sound as explained in section 2.2.  

Currently the frames are in a form that is understood to be a function of time. Performing a 

Discrete Fourier Transform on each of these frames changes it to a function of frequency. This 

is also referred to as changing it to the frequency domain, where the frequency distribution 

and magnitude of this distribution in a sound is displayed. This form shows the most dominant 

frequencies present in the sound, which is an important factor is determining the major 

differences between two utterances. 

The Discrete Fourier Transform can be applied as follows (Kumar & Rao 2011): 

                         

                                                                                                                                                                   ...equation (2.4)   

for: 

 

where: 

K = length of the DFT analysis per frame (standard 256 or 512) 

 

 

 



Chapter 2  13 

 

2.3.6 Mel Frequency Scale and FilterBank  

 

Knowing that the human ear does not follow a linear frequency resolution and instead builds 

several clusters of frequencies and sums the spectral energies within these clusters, the non-

linear warping of the axis values can be modelled using the correct method. This method 

involves using the so-called Mel Scale. This particular scale aligns with those properties that 

need to be extracted from speech signals making it an effective analysis tool. The Mel Scale 

can be seen in the following diagram. 

Figure 2 - Mel Frequency Scale 

In order to find the right spectral properties within the speech signal a number of triangular 

filters are applied that calculate the sum of the function’s spectral components.  The equation 

below defines the Mel Frequency Scale as seen above; the filters are spaced according to this 

equation.  

 

fmel (f) = 2595 . log (1 + f/700 Hz)         ...equation (2.5) 

 

 

 



Chapter 2  14 

 

Figure 3 - Triangular Spaced Filters 

 

Applying this filter bank will give a number of spectral values depending on the amount of 

triangular filters used. The standard number of filters in voice processing is set at 26. Each of 

these filter values will represent the sum of the spectral components found inside the filter 

(Lyons 2009). 

 

2.3.7 Mel Frequency Coefficients 

 

Now having Mel values from each filter output, the log of the filter bank energies can be 

obtained and can be converted back to the time domain using the Discrete Cosine Transform. 

This, in turn produces the so-called Mel Cepstrum Coefficients, which represent the acoustic 

vectors for this particular pattern of speech. Every utterance analysed in this process now is 

outputted into a sequence of acoustic vectors for further interpretation (Lyons 2009). 

Following this common procedure there are a number of principles that can be applied to 

essentially perform the task of voice recognition. These are:  

 Hidden Markov Model 

 Dynamic Time Warping 

 Artificial Neural Network 

 Vector Quantisation  

 



Chapter 2  15 

 

2.3.8 Hidden Markov Model (HMM) 

 

The Hidden Markov Model has become the most popular way in which general purpose voice 

recognition is performed today. This popularity is due to its simplicity and computational 

feasibility in comparison to other methods. Essentially this statistical form of modelling 

outputs a sequence of symbols or quantities based on a stationary input signal. Considering 

that each window of speech being analysed is over such a short period of time, it can be seen 

as a stationary signal and applied using the HMM.  

Given a range of stationary inputs, HMM uses a combination of comparison and prediction to 

match the input with a pre-recorded input model. It will determine likelihood based on the 

statistical distribution from each observed vector input from the Discrete Cosine Transform. 

The most likely model representation will then be found and can be used to display the 

utterance that was used as the input. In general the models used by this process are easy to 

train, pushing the capabilities of a HMM to deal with vocabularies of 5000+ words. Although, 

the theory shown above is of a basic nature and more refined techniques would be needed to 

increase vocabulary size, speaker adaption and noise resistance (Iqbal, Mahboob & Khiyal 

2011). Re-creating this technique for a system described by this project would allow for great 

recognition results and larger vocabulary sizes, but the coding involved in this process may 

absorb too much time. 

2.3.9 Dynamic Time Warping (DTW) 

 

The Dynamic Time Warping process follows on from the basic process above, using the Delta 

energy and Delta Spectrum feature calculations to then find the optimal alignment between 

two time series. The special part about DTW is that these time series do not have to be of the 

same length and similarities can still be found through warping the series non-linearly. When 

applying this technique, a series of templates representing different utterances must be 

created and used as a comparison for the time series in question. The time series determined 

by the process above is compared with each template and a measure of the distance along 

the warp paths, created between the two series is taken and summed. The minimum 

summing distance determined by this process will then point to the most likely match in the 

templates and in turn be displayed or used to output a command. This process is effective in 



Chapter 2  16 

 
distinguishing between two different people but may be less effective when distinguishing 

between utterances, especially if they are of similar patterns. 

 

2.3.10 Artificial Neural Network (ANN) 

 

This particular method used in voice recognition has been quite successful in isolated word 

detection, speaker adaption and phoneme classification. It uses a method similar to that of 

the Hidden Markov Model, but does not make any assumptions on the statistical properties of 

the input features. Instead of basing its prediction on probability and the pre-recorded input 

model, ANN’s set out to ‘learn’ from the observed data and make a judgement based on what 

they know. This process does work well for isolated word detection but runs into problems 

when performing continuous word detection, limiting its power of computation. This would 

make it a good choice for the recognition stage of the project considering one word 

commands are to be used, although coding this particular type of network could be quite a 

hassle. 

 

2.3.11 Vector Quantisation (VQ) 

 

Vector Quantisation is a process of mapping vectors from a large vector space to a finite 

number of regions in that space. Each region or cluster contains a centre, called a codeword 

and this, along with other codeword’s is used to form a codebook (Kumar & Rao 2011). When 

using VQ, a codebook is created through training a speaker’s acoustic vectors into clusters for 

each specific utterance. Each speaker will have a specific codebook in which their utterances 

are trained. When it comes to recognising an unknown voice, the distances between the 

unknown vector and each codeword is calculated to give various VQ distortions or errors. The 

trained speaker corresponding to the least distortion is identified and outputted. This 

particular method is quite easy to implement in an algorithm, as well as being very accurate 

(Kumar & Rao 2011). 

 



Chapter 2  17 

 
There are a lot more techniques and tricks in the industry today that allow voice to be used as 

a tool for control. These are used in very complicated algorithms that have been developed 

over a number of years, with results that far surpass those obtained using these basic 

principles. In order to explore the concepts of this technology these basic methods needed to 

be used in order to obtain an understanding and some basic results. 

 

2.4 Speech as a form of control 

 

Understanding the properties of speech and the way in which it can be manipulated becomes 

a very important step in conducting this project. Following this, is an understanding of how 

voice can be used in order to control a robotic device. Knowing what has been said in the 

sections above, some knowledge of voice and sound properties can be applied in order to 

define parameters for control.  

It is well known that people have a voice that is unique to them and them only. It is quite 

common however for people to have a voice with the same pitch as another. Even though 

they may have the same pitch, they will have different spectral properties which affect both 

loudness and clarity. It is important to understand that when deciding to use properties of 

voice for a means of control, using consistent utterances of commands is vital, especially 

when basic methods of voice recognition are being implemented. It also makes it difficult to 

achieve successful results in the presence of noise.  

Creating a list of commands for the purpose of control is a major part of the design aspect. 

Not only must these words be straight forward and clear, but they must avoid any similarities 

between them. Having similar sounding and pronounced words can affect the success rate of 

the algorithm and confuse one action with another; this is mainly due to the simplicity of the 

algorithm.  

In order for voice to be used to control more than 1 variable, a number of considerations must 

be taken into account: 

 As mentioned previously, the commands used and what they stand for 

 The complexity of the algorithm, i.e. isolated word or multiple word recognition 

 The speaker – algorithm may only be trained using 1 speakers voice 



Chapter 2  18 

 

 Pitch or frequency can be difficult to manipulate by the average person 

 Background noise 

With these considerations in mind, the extent to which the voice can be used is limited and 

the flexibility of the system is impacted. In order to combat these limitations a number of 

solutions could be implemented. These include: 

 Using more advanced algorithms – which would allow larger vocabularies, the use of 

multiple word commands and multiple speaker recognition 

 Adding a simple tone or frequency generator to control an extra variable 

 Adding numbers prior to or after the commands 

 

The success of the voice recognition system will depend on which technique is chosen by the 

operator and how it performs in real time. 

 

 

2.5 The 6 axis Robot arm 

 

Robotic arms are a very popular choice for industrial work around the world in this present 

day. They are called upon to do a wide range of tasks whether it is, to simply lift, cut, weld or 

shape various materials and objects. Without them, the manufacturing industry would not 

only be less efficient and less productive compared to now but less successful and more 

expensive. It is clear that robotics will play an important part in the future of the human race 

and will require more complicated forms of control as a result. 

2.5.1 History 

 

The development of the 6 axis robot arm began in 1956, when two men named George Devol 

and Joe Engleberger established a company called Unimation. From this company came the 

first patent for the industrial robot arm which would be later sub-licensed around the world. 



Chapter 2  19 

 
From this point on a number of developments have been made with regards to the robot arm, 

these include: 

 1959 – ‘Unimate’ – first ever robot arm created which was controlled by a program on 

a magnetic drum. 

 1961 – First robot arm installed at GM factory to assists in the manufacture and 

movement of car parts. 

 1969 – First automated spot-welding robot was installed at GM factory. 

 1970- First world conference on Robotics which gave researchers and engineers an 

opportunity to present their work and share ideas. 

 1973 – 3000 industrial robots in operation. 

 1974 – First microprocessor controlled industrial robot created in Sweden and First 

mini computer controlled robot arm marketed in Cincinnati. 

 1975 – First Cartesian-Coordinate robot used in assembly applications. 

 1978 – First 6 axis arm with its own control system. 

 1981 – Direct drive introduced for movement and later on electro-drive motors for 

greater control. 

 1992 – First robot packaging application (6 robots packing pretzels) sold. 

 1999 – Laser beam guiding introduced with robot arm 

 2003 – 800 000 industrial robots in action around the world. 

 2004 – Remote pendant used for control of arm. 

 2006 – changes to material properties allowed reduction in weight and more 

responsive  

 Present Day – memory systems are becoming physically smaller but increasing in size 

(with regards to memory) and becoming faster (Robotics 2012).  

These particular developments reflect the important changes that pushed industrial robots 

into modern society. A number of other developments have taken place over the years which 

have led to improvements in efficiency, speed, accuracy, capability and safety. These would 

include the rising development of computers and processors, discovery of new material 

properties and use of more efficient processes, just to name a few. With these increases over 

the years profitability has risen exponentially and adding Voice recognition compatibility 

would only increase this more. It would also open the robotics industry up to a broader range 

of applications and increase its flexibility (Juang & Tsuhan 1998). 

 



Chapter 2  20 

 

2.5.2 RobotStudio 

 

Ever since the birth of the robot arm, methods for its control have been ever developing as 

technology has been expanding. From simple programs to artificially intelligent algorithms, 

the industrial robotics industry has come a long way in its short lifetime. Today, ABB robotic 

arms use a software tool called RobotStudio, which implements a simple programming 

language to initiate a range of functions, controlling all aspects of all 6 axes. It allows the user 

to move the end of the arm to any point in the 3-Dimensional space it is mechanically limited 

to. This movement is based around the Cartesian coordinate system where a 3D vector is used 

to move the arm to different points in the space. In this particular case the arm has two 3D 

vectors that it requires input for, these being: 

 The Base coordinate (x, y , z) 

 The Tool coordinate (x, y , z) 

The base coordinate moves the main body of the arm with reference to axis 1 (or the base) 

and the tool coordinates move the tool tip with reference to the centre of axis 6. The use of 

these two coordinate systems allows the arm to operate within an accuracy of approximately 

0.01 mm. The speed at which this machine can operate depends on the users input settings 

but is also based on the programs effective use of zones and angles when moving between 

designated points. This variable speed is measured in millimetres per second (mm/s). As 

mentioned in the previous sentence, it also has the capability of smoothing out its travel path 

with its clever use of zones which is also user defined. These zones allow the arm to pass near 

a point in the path (or set of data points) instead of travelling straight through it, to prevent 

any ‘square cornering’ and smoothen out its desired path. This not only increases the 

efficiency of the robot arm but reduces wear on the axis joints (Robotics 2013). 

The Cartesian coordinate system mentioned above, is the most effective method of executing 

a program at the desired accuracies that industry requires today. Another system, based on 

individual joint movement, can be employed as another form of control on these robotic 

arms. This system involves manually changing the effective angles of each axis rather than 

allocating a point in space to move towards. Implementing this type of movement does make 

it harder to move towards a fixed point with accuracy, especially if the angles for this point are 

unknown. Moving the joints individually can be more useful for jogging the machine towards a 

point and alternating the approaches in which the tooltip could reach this point. In saying this, 



Chapter 2  21 

 
the joint movement system would be perfect for maintenance inspections and defect 

checking, as each axis could be individually moved with ease without having to worry about 

‘which point in space would best show me the limits of  axis 4’. 

 

2.5.3 RobotStudio Coding (RAPID) 

 

The RobotStudio platform is run by a language called RAPID which has many similarities to 

those techniques found in C, C++, Java and Matlab. In general, the language is quite simple 

and has been created to ensure easy access to the many functions of the 6 axis robot system. 

The RAPID language has a modular based approach, where many different routines can be 

created and called upon when needed, making it quite simple to add in routines whenever or 

however many times they are needed (Robotics 2013). 

 

Each foundation program is held within a Module and is annotated as follows: 

 

MODULE Socket  //Start of module  ‘Module name’ 

ENDMODULE   //End of module declaration 

Figure 4 - Module annotation 

 

Following the declaration of the start of a Module, all data values contained with the module 

must be declared. These values can be: 

 Variable (VAR) – can be changed through program execution 

 Constant (CONST) – cannot be changed once program is executed 

 Persistent (PERS) – will retain value if it is changed during program execution and the 

program is restarted 

Within each Module that is created a number of Procedures can be called which deal with: 

 various movements 

 socket connections 



Chapter 2  22 

 

 error checking 

 configuration settings 

An example of this basic layout can be seen below: 

 

MODULE Socket  //Start of module  ‘Module name’ 

VAR num speed:= 100;  //Variable declaration (datatype = number) 

CONST string one:= “one”; //Constant declaration (datatype = string) 

PROC main()   //Start of procedure  ‘Procedure name’ 

ENDPROC   //End of procedure 

ENDMODULE   //End of module declaration 

Figure 5 – RAPID program Layout 

 

It is important to note that all declared procedures can be called from PROC main() and do 

not have to be created in order of operation. There order will depend on how they are listed 

within the main procedure and be executed chronologically (Robotics 2013). 

Creating programs or procedures within RobotStudio can be done in 2 distinct ways.  

Offline mode 

In this mode the procedures are listed within an editor for user read and write access. 

Multiple functions are also available to the user to help create the procedures (e.g. Path 

creation). Simulations can be run through this mode and visualised on screen. 

Flex Pendent  

This mode gives complete control to the remote flex pendant where editing of the procedures 

can also occur. A number of quick setting functions are also available to reduce programming 

time and increase efficiency. Control of the robot can also be given to the Flex Pendent and 

the procedures run remotely from this handheld device. 

Control must be allocated to either of these two methods before changes can be made, as 

one cannot be changed whilst the other is in control. 

 



Chapter 2  23 

 

2.5.4 Previous Industrial Application 

 

Implementing a technique such as voice control on this sort of system has been done before 

as seen in (Pires 2005). Here an ABB 6 axis robotic arm similar to that of Garfield was 

programmed and controlled to perform welding functions in the lab. 

 The robot arm was controlled using Automatic Speech Recognition (ASR) software. 

Microsoft’s speech engine, Microsoft Speech Application Programming Interface 

(SAPI), Microsoft’s Speech SDK (v5.1) and .NET 2003 framework were the packages 

used for the software platform. 

  This particular project used simple commands to firstly recognise the robots name (in 

case other robots were included), then it identified the user and finally it performed 

the commanded tasks. 

 The user called upon routines to follow as opposed to directing the arm about (mainly 

due to the precision involved in the welding process).  

This particular paper showed great success with this software implementation on the 

industrial robot and showed the potential of voice recognition programs within the industry 

(Pires 2005). 

 

2.6 Communication Link (TCP/IP) 

 

In order for any machine to communicate with another, a link is always established in real 

time for the handling of instructions and data. An essential part of this Voice recognition and 

control system is the ability for the two programs in question to communicate with each other 

seamlessly. In order to do so, a connection using TCP/IP protocol seems to be the right idea. 

This protocol is supported by both Matlab and RobotStudio and allows interaction between 

the two programs in a client/server relationship.  

Socket messaging is quite a simple way for programs to communicate. It has the ability to 

send arrays of data and most importantly strings. This paves the way for commands to be 

transferred across the data link and recognised on the other side. Even using integers as a 

representation of a command could be much simpler. 

 

 



Chapter 2  24 

 
Socket messaging can be implemented using the following code: 

 

Server Socket  t = tcpip('0.0.0.0', 30000, 'NetworkRole', 'server'); 

 

 

    

fopen(t); 

Opens Socket connection and waits for client connection. 

data = fread(t, t.BytesAvailable, 'double'); 

Reads data once connection is made. 

Client socket  data  = ? (command data) 

   Define ‘data’ ready for sending. 

t=tcpip('localhost', 30000, 'NetworkRole', 'client'); 

fopen(t) 

Create client interface and open it. 

fwrite(t, data, 'double'); 

Write ‘data’ to the socket. 

Once this is done the socket can be closed and the link broken once the program has finished 

sending data and/or commands. 

 

 

 

 

 

 

 

 

IP Address Port Enables 

support for 

server sockets 

Defines 

socket type 



Chapter 2  25 

 

2.7 Chapter Summary 

 

This section has identified the literature outlining relevant methods involved in creating a 

Voice Recognition system for a 6 axis Robot Arm. It has explored the concepts of speech signal 

processing, application to application communication and the use of RobotStudio. The search 

for a greater form of control has been proven to be on-going and requires the investigation 

into more futuristic methods. The use of the voice as a tool for control is quite viable and 

developing a system which can demonstrate its functionality is of high priority.  

Allowing the voice to control the actual individual movements involved with 6 axis robotic 

arms has been proposed by this project and will be investigated in the following chapters. The 

methods proposed in (Plannerer 2005) and (Lyons 2009), as well as (Kumar & Rao 2011) will 

be investigated for the purposes of real time voice control. 



Chapter 3  26 

 

Chapter 3 

 Methodology 

 

3.1 Chapter Overview 

 

This chapter looks at covering the research and development methodology utilised for the 

development and implementation of the voice recognition system on Garfield, the 6 axis 

robot arm. This chapter also contains the risk assessment and identification of hazards and 

suggests suitable strategies for their minimisation. Any resources required for the completion 

of stages of the project are also outlined in this chapter. 

 

 

 

 

 

 

 

 



Chapter 3  27 

 

3.2 Research and Development Methodology 

 

The research and development methodology presented here was developed with the project 

objectives in mind. These objectives have been broken down into a series of major tasks to 

highlight what needs to be achieved. 

Implementing a Voice Recognition and Control system on the 6 axis robot arm, Garfield has 

called for the design and production of a system that is simple to use, reliable and works in 

real time. This system needs to able to distinguish the relevant voice commands from sample 

inputs in order to produce movement on the robotic arm.  

For the basic development of this system, there is the need to research and obtain, both 

hardware and software components. These two components will form the basis of the system 

and allow its completion. 

At a hardware level, the system requires a microphone in order to record voice models and 

receive commands. It is to be connected to a suitable computer that has both a compatible 

sound card and the software programs in which it is to interface with. This computer will most 

likely be one that has access to the Robot arm simulation software and eventually change to 

the computer in charge of operating Garfield. 

On a software level, the system requires a platform that: 

 Waits for and receives a range of inputs 

 Manipulates these inputs into a form that can be compared and identified 

 Produce an output that reflects the true nature of each input (in real time) 

 Communicate this output over a TCP/IP socket between 2 separate pieces of 

software 

 Recognise these outputs and use them as viable inputs in order to create 

movement with the arm. 

The requirements stated above are an important part of the software layer for this project. 

Choosing the right programs for this purpose and considering their compatibility with each 

other is another major step in this process.  

 



Chapter 3  28 

 
A simple block diagram of the interaction between the hardware and software levels is shown 

below.  

Figure 6 - System Block Diagram 

In order to evaluate the performance of this system, the design of suitable testing 

methodologies and analysis strategies have to be considered. The tests involved with such a 

system should present information that reflects recognition accuracies and rejection rates, as 

well as information on response times for real time operation. Parameters used during testing 

will be kept constant and those uncontrollable variables dealt with to ensure the integrity of 

the results. Evaluation of the system based on the results achieved will be included and be 

used to form recommendations for further work and future development. 

 

3.3 Task Analysis 

 

All in all the development of this project can be refined to the following processes: 

1. Identification of required hardware and software for this application. 

2. Research and development of Voice recognition techniques. 

3. Design and Implementation of Voice Recognition Algorithm. 

4. Design and Implementation of Robot arm code. 

5. Design of communication link between programs (integrate the system into one). 

6. Train, Test and evaluate the system in simulation 

7. If time is available, test on Garfield itself. 



Chapter 3  29 

 
Ensuring these 7 steps are achieved and appropriate results are obtained, the project can be 

deemed successful. They will act as milestones in the development of the system and in turn, 

indicators of project progress. The following is an analysis of the details of each of the tasks 

above and identifies the resources required for each. 

 

3.3.1 Hardware and Software identification 

 

A number of items must be identified and obtained before different parts of the system begin 

development.  

In saying this, the voice recognition system will require the following resources: 

 Microphone – model yet to be determined (preferably of high quality) 

 Computer – Lab computers with access to required simulation software. The 

computer must be appropriate with regards to processing speed and sound card 

quality. 

 Matlab – most recent version or closest to, with complete toolbox 

 RobotStudio – software required to run ABB 6 axis robot arms 

 TCP/IP socket protocols – for communication between programs 

These resources will be used throughout the following processes in order to achieve 

completion. 

 

3.3.2 Voice Recognition Algorithm 

 

The system will require the use of appropriate voice recognition techniques mentioned in 

chapter 2. It is imperative that these techniques are developed into an algorithm to create the 

front end of this system. The algorithm must communicate and receive input from the 

microphone in order to initiate the detection of specific commands. It must also be able to 

reject noise and unknown commands safely or at an effective Error Rate.  



Chapter 3  30 

 
From here it will be required to interface with the simulation software required in testing for 

the 6 axis robot arm. Incoming inputs will need to be recognised and matched with specific 

outputs to communicate across this interface.  

This algorithm will use functions associated with the Voicebox Toolbox (Brookes 1998) to 

create a form of voice recognition. 

A simple block diagram of the two features of the algorithm is shown below in figure below. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Simple Process Diagram 

Building the command models is done using the simple process simulated by the block 

diagram on the left in figure 7.  10 utterances must be recorded for each command to achieve 

Output Recognition 

Results 

 

Wait for user input 

command  

 

Start 

 

Load command and 

process 

 

Recognise 

command? 
NO 

YES 

Test Build 

Start 

Record and Store 

command 

Process Command 

 

Repeat Process for all 

commands 

i =10? NO 

YES 

Build Command Model 



Chapter 3  31 

 
fair results. Testing an utterance against these command models is shown by the block 

diagram on the right. 

 

This will require the following resources: 

 Microphone 

 Computer with pre-installed Matlab software and coding 

 

3.3.3 Robotic arm Coding 

 

This process will involve preparing a program based on the ABB programming language used 

by RobotStudio. The routines created in this process will perform command specific actions 

that are called for by the inputs from the Matlab algorithm. The actions could be any of the 

following: 

 Axis 1 – Left or Right 

 Axis 2 – Up or Down 

 Axis 3 – Up or Down 

 Axis 4 – Clockwise or Anticlockwise 

 Increase or Decrease Speed 

 End procedure 

 Perform Demonstration 

The coding will be based on the following principle: 

 Each command will move the robot a specific distance in whichever direction the 

command defines. It will not just call a program with pre-defined points in the 3D 

space to execute, unless demonstration of this idea is needed. 

 

It is important that consideration of the final integrated system be taken into account when 

designing this code, so that it can adapt easily when being controlled by another program. 

 



Chapter 3  32 

 
The resources required for this include: 

 Computer with pre-installed RobotStudio Software  

 Input source to test coding 

 Manual or Library of commands and routines 

 Network license for Software 

 

3.3.4 Communication Link 

 

This step in the project is quite important for the complete integration of the system. Without 

a link between the two programs for the voice recognition and RobotStudio code, the system 

will not function. This particular link will use a tool common to both applications that can be 

applied to send and receive messages. TCP/IP socket messaging is the ideal method of 

communication between these programs as it uses Ethernet connection protocol to relay 

messages between the client and server. It is essential that this link is developed quickly to 

allow more focus on the other parts of the project. 

 

3.3.5 Testing and Evaluation 

 

To validate the performance of the voice recognition system, testing must be conducted 

under a number of conditions. These conditions include: 

 no background noise – generally total silence with only the user speaking 

 Background noise – the user speaking with industrial background noise 

 Background noise – random noise/commands 

Applying these conditions to the algorithm in question and comparing the results will allow 

appropriate evaluation of the system. Once the system is deemed reliable enough, it can be 

applied to Garfield in a real life situation.  



Chapter 3  33 

 
Testing the response time of the system is another important part of the project, as it will give 

the user an idea of how well the system would suit specific jobs that may require its use. 

These response times will be calculated over a range of movement increments and compared. 

From the results of this stage, a qualitative analysis can be conducted and future 

improvements can be recognised and applied to the system for more testing. This will 

increase the reliability of these methods and create a better platform for further expansion.  

The resources required for this task are: 

 All system components 

 User voice input 

 

 

3.4 Consequential Effects 

 

3.4.1 Sustainability 

 

The Institute of Engineers Australia (Engineers 1997) provides a set of guidelines that 

addresses the aspects of sustainability within Australia. This particular institution forms the 

largest collective group of professional engineers within Australia with world renowned 

accreditation available for its members. The guidelines they have laid out form the basis of 

evaluation processes that relate to the environmental, socioeconomic and cultural 

sustainability of a project, over its lifetime.  

When discussing the affects of Voice Recognition and Control technology, the industries in 

which it is being implemented need to be taken into account. The industrial sector is a major 

user of 6 axis robot technology in the present day and this particular sector is responsible for a 

lot of finite resource consumption and waste. Implementing this sort of technology into this 

sector could possibly improve methods of control which could improve efficiencies and in turn 

lower resource consumption and waste products.  



Chapter 3  34 

 
With regards to environmental safeguards within the project dimensions, avoiding excessive 

emissions created by the equipment could be of benefit, as well as utilising power saving 

techniques when operating in the laboratory. 

This sort of technology is one that could slowly develop into that seen in current day science 

fiction movies where robots are fully autonomous and have a mind of their own. Generally 

these types of robots are portrayed as out of control and dangerous but on the other hand 

these artificial humanoids could be a great use in everyday life. Performing those tasks which 

are boring, repetitive and even dangerous. Society by this time, would be completely different 

than what it is today and there is no way of knowing exactly how it could have impacted. 

The most likely people impacted by this technology would firstly be those involved with 

industrial robotics and then quite possibly it could evolve and impact those everyday people. 

In this case, before the technology is even implemented around the world a consensus should 

be reached by the people to decide whether or not they feel it is appropriate for such 

autonomy to be present. Will it be ethical for us to create and almost living machine? 

Project costing for this project is quite low considering the hardware and software required 

for all aspects of the project have been made readily available by the university. 

The impact of this technology on the labour force could be quite substantial. Due to the 

improved interaction between machines and human beings more jobs will be semi automated 

taking away the number of people required to do specific processes. On the lower level, low 

income earners will be affected dramatically but on the higher level, big business will prosper 

with increased productivity and efficiency. 

Overall this project has the potential to influence a large proportion of people and provide a 

better understanding of robotics and automation in the process. 

3.4.2 Safety 

 

There is a number of safety aspects involved with this project that could result in injury or 

death. The likelihood of a fault or bug in the developed code is quite high, raising the risk put 

on the user when operating Garfield. It is possible for a command to be misjudged by the 

robot arm when it’s in operation, which could cause damage or injury (i.e. the spillage of 

harmful materials in industry). Parts could also be broken and equipment damaged due to 



Chapter 3  35 

 
crashes and put the user at risk. Measures have been taken to ensure the safety of users in 

case of such an occurrence. Shielding surrounds the 6 axis arm in case this sort of error 

reaches the real life implementation stage, otherwise bugs and errors are generally picked up 

during simulation.  

The equipment used in the project was required to conform to relevant Australian and 

international safety standards. Where it was necessary, precautions were taken to minimise 

the risk of the operator and any others in the vicinity. 

 

3.4.3 Ethical Considerations 

 

These considerations are based on the code of ethics provided by Engineers Australia which 

lists guidelines for engineering practices. The guidelines cover such qualities as integrity, 

leadership, competence and sustainability. It is essential that this code of ethics be followed 

closely at all times during the project. This will ensure that the outcomes reached and ideas 

presented are done with the best interests of the community and environment in mind. 

 

3.5 Risk Assessment 

 

The major risks involved in conducting work on this project need to be carefully considered. 

Once these have been identified, strategies will need to be developed in order to minimise 

the risk and prevent the occurrence of injury or harm. Not only will these risks be a danger to 

the user but also to the project itself. Any event that causes work to be lost or damaged 

during the project must be identified as a risk and dealt with appropriately. The details of 

these risks and there appropriate solutions will be found in Appendix B.2.  

 

 



Chapter 3  36 

 

3.6 Research Timeline 

 

The tasks laid out in the Gantt chart found in Appendix B, show the expected start and finish 

times of particular sections of the project and reflect those pointed out in the methodology. 

 

3.7 Chapter Summary 

 

Research and Development methodologies have been explored throughout this chapter, 

ready for further expansion in later sections. The project was organised into a number 

objectives that must be completed in order to achieve success, along with the resources 

required for each of these. The objectives were also scheduled within a timeline to set dates 

of achievement.  

A formal risk assessment was undertaken, underlining those risks that are most likely to 

hinder project completion and cause injury or harm. Strategies were developed in order to 

manage these risks and ensure the safe completion of the project.  

 

 

 

 

 

 

 



Chapter 4  37 

 

Chapter 4 

 

Design & Implementation 

 

 

4.1 Chapter Overview 

 

The following chapter contains detail on the design and implementation of the Voice 

recognition and Control system, based on the methodologies and theoretical content defined 

in the literature in Chapter 2 and requirements highlighted in Chapter 3. This chapter will 

outline the processing methodology used by the recognition system, the interfacing method 

used for communication with the robot software and its implementation as a complete 

system. 

 

4.2 Voice Recognition Methodology 

 

The voice recognition and control system used in this project requires a certain level of 

understanding, about the processing techniques involved with each of the utterances used. In 

order to expand this understanding, the need arises to explore the processing techniques 

used on the data and how it is manipulated to create a voice based recognition system. The 

details of this voice based systems implementation will be discussed in later sections. 

The signal processing techniques used for this project (as seen in section 2.3) can be divided 

into the following stages: 

 Pre-emphasis  

 Silence Detection and Data reduction 

 Framing and Windowing 

 Discrete Fourier Transform 



Chapter 4  38 

 

 Periodogram-based power spectral estimate 

 Mel Filter Bank 

 Log filter bank energies and Discrete Cosine transform (Finalised MFCC) 

 Model Building 

 Recognition using Euclidean Distance 

It is important to understand that the following processes aim to extract those features in the 

voice that are essential in identifying the linguistic content of the speech and also discarding 

those features that represent things such as background noise and emotion. 

These stages will now be investigated in detail. 

 

4.2.1 Pre-Emphasis 

 

In order for the processing techniques to begin, 10 voice samples of each command were 

recorded at a sampling frequency of 16 kHz and stored in ‘command’ arrays. These voice 

samples were selected to last for the duration of 2 seconds, considering that the average 

utterance of a word only lasts between 200 and 800 milliseconds.  

  Figure 8 - Speech Signal of Command 'ONE' 



Chapter 4  39 

 
The above figure shows the utterance of the command ‘ONE’ before pre-emphasis. In its 

current form little can be done in terms of recognition, therefore it requires further 

processing and normalisation to obtain the data relevant to the problem.  

To prepare it for further processing and obtain the best results from each signal, each 

utterance is run through a pre-emphasis filter with the following characteristics: 

 

Y [n]  =  X [n] – 0.95 X [n-1]              ...equation 2.3 

Where  Y[n] = output signal 

 X[n] = input signal 

The value of 0.95 is the standard value for a pre-emphasis filter and can be changed if higher 

frequencies need to be emphasised more or less. 

 

The result from the filtering process can be seen in the figure below. 

Figure 9 - Command "ONE" Pre-emphasised 

 



Chapter 4  40 

 

4.2.2 Silence Detection and Data Reduction 

 

Following the process of Pre-emphasis, the speech signal can now be shortened to obtain the 

most important samples for the recognition process. This means reducing the total number of 

samples in each utterance by removing the ‘silence’ before each utterance. In order to do so, 

a small detection technique is applied to the front end of the signal. 

 

This detection technique involves: 

 Setting up a threshold to determine the difference between the ‘utterance’ and 

‘background’ or ‘ambient’ noise. 

 Searching the front end of the data sample for breaches of this threshold. 

 Determining whether the breach is actually the ‘utterance’ or some form of random 

noise. 

 

The threshold limit selected for the project was an |amplitude| of *0.04* units. This threshold 

was determined to be a reasonable borderline between ambient noise and the utterance 

itself. The following excerpt of code from Appendix D shows the detection process.   

 

 

 

% Silence Detection 

% Wait for clear start of signal 

while abs(Preemphtest(i))< 0.004 || abs(Preemphtest(i+20))< 0.004 || 

abs(Preemphtest(i+40))< 0.004 || abs(Preemphtest(i+60))< 0.004 || 

abs(Preemphtest(i+80))< 0.004 || abs(Preemphtest(i+100))< 0.004 

    i = i+1; 

end 

 

 

Figure 10 - Silence Detection Code 

 



Chapter 4  41 

 
It can be seen that whilst the conditions remain under the threshold the ‘i’ counter will 

continue to increment. Once all of the conditions are breached in the same iteration, it is clear 

that some form of utterance is present in the data and the increment is stopped.  

 

 

 

From here the code will take the incremented value (where the utterance starts) and extract 

the succeeding 8000 samples from each utterance data set. 

 

% Signal will start from the calculated position 

atest = Preemphtest(i:length(Preemphtest)); 

  

% Reduce samples from 32000 to 8000 for remainder of processing (as 

command 

% will be present within the 8000 samples) 

atest(8001:length(atest))= []; 

  

Preemphtest = atest; 

 

Figure 11 - Data Reduction 



Chapter 4  42 

 
This reduces the amount of samples from 32000 back to 8000, which will decrease the 

calculation time and improve the response time. The result of this process can be seen in the 

following figure. 

Figure 12 - Command 'ONE' after silence detection 

 

Employing this simplistic method comes with its disadvantages, as it can cause the code stop 

at any instance of random noise before the utterance has occurred. It can also stop if ambient 

noise is present that exceeds the threshold. A degree of care needs to be taken in this case to 

ensure almost no noise is present during the recording of utterances for the model building 

stage and that thresholds are adjusted to reject noisy commands in the testing stage. 

 

 

 

 

 

 



Chapter 4  43 

 

4.2.3 Framing and Windowing 

 

The next step in the process is to break up each dataset of 8000 samples into a number of M 

frames of size N, with a step size between these frames of Δ = N/2. The following parameters 

could then be chosen: 

 Segment Length = N = 320 samples 

 Step size = Δ = 160 samples 

 Number of frames = M = 49 

These parameters produce frames that are 20 ms long which is believed to be the optimum 

length for obtaining a good spectral estimate from the frame. If the frames are any longer, the 

signal changes too much within the frame to get an accurate stationary estimate of the time 

signal. If they are any shorter, there are not enough samples in the frame to obtain a reliable 

estimate of the time signal properties.  

The framing process can be seen in the following diagram. 

 

 

 

 

 

 

 

 

 

Figure 13 - Framing Diagram 

Once each frame has been assigned to values from the dataset, a window must be applied to 

each frame. In this case the ‘hamming’ window has been selected as it is the standard window 

type for any Mel Cepstral Feature extraction. The fundamental equation for this window can 

be found in section 2.3. 

 

 

 

Number of Samples 

0 160 320 480 640 800 960 

Frame 1 

Frame 2 

Frame 3 

Frame 4 

Frame 5 



Chapter 4  44 

 
 A 320 point hamming window can be seen in the following diagram. 

 

Figure 14 - Hamming Window 

Applying this window to each of the frames is done before the Fast Fourier Transform to 

smooth out the response on the edges of the frames. It essentially minimises the side lobe 

and prevents any unwanted radiation in the frequency domain, improving the quality of the 

sound and accuracy of the feature extraction (Plannerer 2005). The result of multiplying the 

hamming window with the first frame is shown below. 

Figure 15 - Hamming Window applied to the frame 



Chapter 4  45 

 

4.2.4 Discrete Fourier Transform 

 

At this point in the processing stage the data is ready to undergo a change to the frequency 

domain through the Discrete Fourier Transform (DFT) as defined earlier in section 2.3.  

 

 

for 

 

 

Where:  

 

 ‘i’ denotes the current frame 

 ‘N’ denotes the sample size 

 ‘K’ denotes the length of the DFT analysis 

 s(n) is the time domain signal 

 h(n) is the hamming window 

  is the complex DFT 

 

This change of domain allows the spectral components of the utterance to be accessed and 

manipulated for the recognition process. The DFT can be performed in Matlab using a Fast 

Fourier Transform algorithm that reduces calculation time.  

A 512 point DFT is performed on each frame to reveal a set of 512 coefficients, in which the 

first 257 are kept and the rest disregarded (remaining coefficients have little importance in 

the feature extraction process).  For this particular task outside help can be obtained through 

the use of VOICEBOX : Speech Processing Toolbox (Brookes 1998). The rfft.m function, that 

can be found in Appendix D, was used in order to do all of the above processing in 4.2.4 in one 

easy step. 



Chapter 4  46 

 

4.2.5 Periodogram based Power Spectral Density (PSD) estimate 

The PSD estimate is a calculation based on those formulae defined earlier in section 2.3. This 

process, along with the DFT, acts to mimic the operation of the cochlea (the organ in the 

human ear). It extracts those frequencies that human’s base their perception of speech upon, 

which becomes very useful when dealing with automatic speech recognition (ASR).  

The 257 coefficients obtained from the DFT in 4.2.4 are applied to these calculations to obtain 

a Power Spectral Density Estimate for the current frame. This is done by taking the absolute 

value of the complex Fourier transform, squaring it and multiplying it by 1/frame length.  

 

From the above equation a set of 257 coefficients representing the PSD estimate are 

calculated. 

 

4.2.6 Mel Filter Bank 

 

The Mel filter bank is a bank of linearly spaced, overlapping, triangular filters that stretch 

across the frequency spectrum. The Mel scale to which these filters are spaced aligns with 

that of the human ear. This makes the algorithm more sensitive to pitch changes at lower 

frequencies and essentially simulates the operation of the human ear. The diagram in the 

figure below shows the simple concept of the Mel filters and their application to the PSD 

estimate (Lyons 2009). 

Figure 16- Mel Filter Bank (Lyons 2009) 



Chapter 4  47 

 
In order to create a filter bank based on the data obtained previously, another function, 

melbankm.m was used. This function was also taken from the VOICEBOX : Speech Processing 

Toolbox (Brookes 1998) to obtain a filter bank of 26 filters (26 is the standard number). 

Multiplying this with the result from the rfft.m function would now obtain a set of 26 

coefficients demonstrating the sum of the components within each of the 26 triangular filters.  

 

4.2.7 Log filter bank energies and Discrete Cosine Transform 

 

In keeping with the spectrum of the human ear the log of the filter bank energies must be 

taken. This due to the fact that loudness is not heard on a linear scale and the respective 

energy levels may give false information when comparing on a linear scale.  

Since the application of the filter bank, correlation between the data has increased due to the 

overlapping triangular filters. In order to decorrelate the data and reduce the effects of 

correlation the Discrete Cosine Transform is applied to the frame, in turn achieving an 

accurate representation of the feature vectors that needed to be calculated. These, in 

essence, are the Mel Frequency Cepstral Coefficients (MFCC) (Lyons 2009).  

For the purpose of this speech recognition algorithm the first 13 coefficients of this result 

relating to spectral power were kept for the recognition process and the rest discarded. This 

meant that 13 coefficients per frame were kept and collectively stored in their respective 

command matrices. 

 

4.2.8 Model Building 

 

The creation of the command ‘Models’ is an important part of the recognition process, 

without appropriate Models for comparison, the system will have no chance of determining 

the correct command for output to the RobotStudio simulation package. In order to build the 

command matrices, each set of 13 feature vectors (1 column) from each frame was placed 

side by side for each utterance of each command as follows: 

 

 

 

 

 

Figure 17- Model Diagram of utterance ‘One1’ 

13 

X 

1 

13 

X 

1 

13 

X 

1 

13 

X 

1 

13 

X 

1 

13 

X 

1 

Command ‘One1’ 

13 

X 

49 



Chapter 4  48 

 
Once all of the matrices were built for each individual utterance a matrix was built for each 

command, meaning one command matrix would contain 10 utterances matrices above. This 

can be seen below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18- Command Model 'ONE' 

This process was done for each and every command. 

Set of 10 

utterances 

Command ‘One1’ 

13 

X 

49 

Command ‘One2’ 

13 

X 

49 

Command ‘One3’ 

13 

X 

49 

Command ‘One’ 

13*N 

X 

49 

 

Where N = number of utterances 

Individual 

utterances 



Chapter 4  49 

 

4.2.9 Recognition using Euclidean Distance 

 

The most important part of the Recognition process is determining the right method to 

compare models and determine the correct output. For most current voice recognition 

packages, Hidden Markov Models (as explained in section 2.3) are used quite successfully for 

recognition and model comparison. This method is based on probabilities and can be quite 

confusing to anyone planning on using it for the first time. Originally it was planned to use a 

Hidden Markov Model but due to timing constraints and knowledge barriers it became quite 

clear that implementing such a recognition technique on this project would be quite the task. 

As it so happens, a simple method of utterance distinction was chosen to be used and has 

produced impressive results. 

This particular recognition technique uses the Euclidean Distance calculation between the 

feature vectors of the utterance in question and the databases of utterances created in 4.2.8.  

The calculation is as follows: 

 

 

The error created from each comparison between the test utterance and the utterances of 

the model is stored in a matrix. From these, the minimum error is then computed for each of 

the command matrices and the smallest error amongst these is chosen as the most likely 

solution.  

If this error happens to exceed the threshold, the test utterance is considered an unknown 

command and outputs an error; otherwise the corresponding command is identified and 

outputs the command from the recogniser. 

 

 

 

 

 

 

 

 



Chapter 4  50 

 

4.3 Command Action Methodology 

 

Any robotic system requires a number of techniques to fully utilise the functions of the device 

that is being controlled. This could be done through manipulating speed, direction, program 

efficiency and/or execution time. This section explores the processing techniques and 

commands used to obtain the desired response from ‘Garfield’ when presented with 

commands from the voice recognition process. 

 

4.3.1 Command Structure 

 

All robots respond to pre-determined commands or procedures. These procedures can range 

from simple movements to complex ones and need to be simulated before applying them in 

real world situations. Ensuring that the right movements are chosen for these commands is 

quite essential, as any misinterpretation of a command and its action could cause injury or 

damage to the system. 

 Although, in the event of a fault or breakdown, the system does have pre-installed limitations 

and warnings to disrupt program execution and prevent any further movement of the robotic 

arm. It becomes quite important to ensure that some form of extra protection against any 

unknown commands be implemented and tested, to increase the safety of the system. 

The commands chosen for this particular system have remained quite basic as to increase the 

integrity of the voice recognition algorithm. The use of larger words with more complicated 

pronunciations is for advanced systems where voice recognition elements are investigated 

more deeply and many more properties extracted. Considering the system was developed 

based on the content in earlier sections a simple numbers based approach has been taken in 

order to control the first 4 major axes of the robotic arm. Other commands have been 

included that share little similarity with the numbers 

and been used for extra variable control. The figure 

below has been created to help with the ‘command - 

action’ interpretation. 

It can be seen that the numbers 1 to 9 translate late 

to a specific direction in which each axis is to turn 

and be manipulated. Using opposite numbers to 

move in alternative directions is the base of the logic 

here. 

Figure 19 - Command-Action number pad 

 



Chapter 4  51 

 
The commands used to control various movements and variables of the robot can be 

summarised in the following table: 

Command Sent String Action 

ONE ‘one’ Rotate axis 3 forward 

TWO ‘two’ Rotate axis 2 forward 

THREE ‘three’ Rotate axis 4 clockwise 

FOUR ‘four’ Rotate axis 1 anti-clockwise 

FIVE ‘five’ Perform Axis limit demonstration 

SIX ‘six’ Rotate axis 1 clockwise 

SEVEN ‘seven’ Rotate axis 4 anti-clockwise 

EIGHT ‘eight’ Rotate axis 2 backward 

NINE ‘nine’ Rotate axis 3 backward 

STOP ‘stop’ Return robot to initial position 

END ‘end’ End Command loop and return 

Robot to initial position 

HIGHER ‘higher’ Increase arm speed (+100) 

LOWER ‘lower’ Decrease arm speed (-100) 

 

Table 1 - Command List 

The idea of these commands is to give the operator near complete control of where he or she 

wants the robot to move and in which way. This means that independent movement and 

control of the 6 axes is essential, requiring individual commands for each axis.  It is important 

to note that this type of control does not make it easier to reach a defined point or target 

object, it essentially allows for greater user defined control of where each axis needs to be 

positioned. This can have a number of advantages, which will be explored in later sections. 



Chapter 4  52 

 

4.3.2 Building Commands 

The process of interpreting a command from the Matlab code and instructing the robot to do 

something plays a major role in this project. More importantly, creating a system that can 

show flexibility throughout the 3D space instead of just executing a pre-defined program is of 

high priority. 

In this section the procedures for each of the commands will be investigated and explored. 

END 

The ‘END’ command is there to exit the voice 

recognition routine from any state. After it has 

been said no more commands will be 

recognised and accepted at the input and the 

robot itself will be returned to the home 

position. 

STOP  

The ‘STOP’ command has a high priority within 

the system program. Whenever a situation 

arises where the system recognises this 

command, the robot is to move from its current 

location to the initial position where all axes are 

reset to zero degrees.  

Figure 20 - Initial Robot Position 

ONE & NINE 

The commands ‘ONE’ and ‘NINE are associated with axis 3 control. This axis is involved in the 

vertical movement of the robotic arm and is limited (with reference to the centre of axis 1) to: 

 a positive angle (in the forward direction) of 55˚ 

  a negative angle (in the backward direction) of -235˚ 

Figure 21 - Axis 3 movement 



Chapter 4  53 

 
TWO & EIGHT 

The commands ‘TWO’ and ‘EIGHT’ are associated with axis 2 control. This axis is centred off 

the base of the robotic system and controls an element of vertical movement. The limitations 

of this axis are: 

 A positive angle (in a clockwise direction) of 63˚ 

 A negative angle (in an anti-clockwise direction) of -136˚ 

Figure 22 - Axis 2 movement 

 

THREE & SEVEN 

The commands ‘THREE’ and ‘SEVEN’ are associated with axis 4 control. This axis acts as the 

pivotal motion for the ‘wrist’ of the arm where the limitations of the axis are: 

 A positive angle (in a clockwise direction) of 200˚ 

 A negative angle (in an anti-clockwise direction of -200˚ 

 

Figure 23 - Axis 4 movement 



Chapter 4  54 

 
FOUR & SIX 

The commands ‘FOUR’ and ‘SIX’ are associated with axis 1 control. This axis is the base of the 

robotic system and controls the horizontal movement through a centre pivot. The limitations 

of this axis are: 

 A positive angle (in a clockwise direction) of 180˚ 

 A negative angle (in an anti-clockwise direction) of -180˚ 

 

Figure 24 - Axis 1 movement 

 

 

FIVE 

The command ‘FIVE’ executes a demonstration of each of the first 4 axes of Garfield; in 

particular the limitations in which they can reach. This means, avoiding error warnings caused 

by the mechanical limits of the robot arm. Each limit is explored without breaching the 

maximum or minimum value in order of axes (i.e. 1 2 3 4) and then the arm is returned to the 

initial position ready for the next command. 

 

Once executed, all of the number based commands above are displaced by a set angle that 

can be defined by the user. This set angle can only be changed once simulation has ended and 

therefore places limitations on the accuracy and efficiency of the system. Setting the angle 

quite high results in less commands but reduces the accuracy when trying to move to a fixed 

point or object. Setting the angle quite low increases this accuracy but decreases efficiency, as 

it will take more utterances of the same command to reach the same distance as it took one 

command with the higher angle.  



Chapter 4  55 

 
With more time and effort a different strategy could be developed using the same concepts, 

but for now it is important to find a balance between accuracy and efficiency when using this 

system. 

 

HIGHER 

The ‘HIGHER’ command is a simple command to increase the speed of the robot by +100 

mm/s. In order to do so, the speed variable will not only be incremented when this procedure 

is called but the current speed checked to see if it’s at a maximum. This can be seen in the 

following code: 

 

Speed = 100     //Initial Speed variable defined at program start 

PROC commandhigher() 

IF speed = 1000 THEN 

TPwrite "Speed at maximum";  //Command to write information to the Flex pendent 

ELSEIF speed <1000 THEN 

speed := speed + 100;   //Increment Speed 

TPwrite "Speed increased to " \Num:=speed ; 

ENDIF 

ENDPROC 

Figure 25 - RAPID code for Higher command 

 

LOWER 

The ‘LOWER’ command is a simple command to decrease the speed of the robot by -100 

mm/s. In order to do so, the speed variable will not only be decremented when this procedure 

is called but the current speed checked to see if it’s at a minimum. This can be seen in the 

following code: 

 

Speed = 100      //Initial Speed variable defined at program 

start 

PROC commandlower() 

IF speed = 100 THEN 



Chapter 4  56 

 
TPwrite "Speed at minimum";  //Command to write information to the Flex pendent 

ELSEIF speed >100 THEN 

speed := speed - 100;   //Decrement Speed 

TPwrite "Speed decreased to " \Num:=speed ; 

ENDIF 

ENDPROC 

Figure 26 - RAPID code for Lower command 

 

4.3.3 Command Execution 

 

In order for each of the commands defined in the command structure to work, the 

RobotStudio functions needed to be manipulated in order to achieve appropriate movement. 

The main function used in this movement process was MoveAbsJ, its structure can be seen 

below. 

 

MoveAbsJ   ToJointPos, Speed, Zone, Tool ; 

 

 

 

 

Figure 27 - MoveAbsJ Structure 

 

MoveAbsJ is used to adjust the angles (in degrees) of each of the individual axes without using 

any form of linear (X, Y, Z) positioning. The angles of each of the 6 axes and any externally 

connected axes can be manually changed within their pre-defined boundaries or mechanical 

limitations by editing the following: 

 

[[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]] 

Figure 28 - Jointtarget structure 

RobotStudio command Jointtarget 

(axis angles) 

Movement  

Speed 

Zone  

Refinement 

Tool used 



Chapter 4  57 

 
The above figure shows a form of data known as a jointtarget, specifically created to be 

executed within the MoveAbsJ command. The first 6 digits represent each of the 6 axes of the 

robotic arm and can be varied using values in degrees. The remaining 6 digits are for any 

externally connected axes to be used during normal operation of the arm in industry (ie. 

conveyors, turntables, etc). 

‘Speed’ is a variable in units of mm/s that also must be defined each time the command is 

executed. The speed is being stored as a variable that can be manipulated upon command 

(‘higher’ and ‘lower’) and then be used within the command. 

 ‘Zone’ refers to the area around a point in space, in which the end point of the tool must 

reach when moving towards or through it. This allows the use of smoother movements when 

executing many point to point commands and for our purpose is set to fine (i.e. must travel all 

the way to the point).  

The last defined variable is the ‘tool’ type, where different tools can be defined and called 

upon. For this project tool0 is used, where this essentially means there is no tool connected.  

 

4.4 Interfacing and Communication 

 

This section describes the processes involved and steps taken in order for Matlab and 

RobotStudio to interface and communicate with each other.  

Matlab to Matlab 

As described in section 2.6 above, TCP/IP socket communication has been implemented 

across the two applications Matlab and RobotStudio. In order to first understand the 

messaging process a socket was created between two separate windows of Matlab using the 

following socket settings. 

 Port number = 1234 

 Computer IP address = 139.86.166.26 (or 0.0.0.0 if network is not being used) 

 Number of retries = 40  

A server was firstly setup with the above port number setting, number of retries and a 

message ready to be sent. In this instance the message is a string of the command (i.e. ‘one’). 

This required executing the server.m function that can be found in Appendix D.  

A client was then setup up on the alternate window with the same port number and number 

of retries, as well as the IP address of the server. Once the server was running an executing its 

retries the client was run using the client.m function found in Appendix D. Connection could 

then be made between the two applications and the message (‘one’) be written by the server 



Chapter 4  58 

 
and read by the client. The following screenshot shows the successful connection in the 

command window. 

 

Figure 29 - Socket connection screenshot 

 

Once this process was proven to work it was time to begin integration of this system into 

RobotStudio.  

 

Matlab to RobotStudio 

For the creation of the Matlab side of the communication link, the server configuration 

properties remained the same, as well as the code used to do so. The main challenge here was 

to configure the socket properties for RobotStudio in its own RAPID language. In order to set 

up the client socket the following code was used. 

 

PROC Socketconnect1() 

SocketCreate client_socket; 

SocketConnect client_socket, "139.86.166.26", 1234 \Time:=1; 

ERROR 

IF ERRNO = ERR_SOCK_TIMEOUT THEN 

IF retry_no < 40 THEN 

WaitTime 1; 

retry_no := retry_no + 1; 

TPwrite ""\Num:=retry_no; 



Chapter 4  59 

 
RETRY; 

ELSE 

RAISE; 

ENDIF 

ENDIF 

ENDPROC 

Figure 30 - Socket Connection RAPID 

 

This code allowed the RobotStudio program to remain in a continuous loop of trying to 

connect to the server. If the amount of retries exceeded 40, the program would output a 

socket connection error and require restarting. This meant that the program could wait up to 

approximately 40 seconds for an incoming connection from Matlab, which is ideal for the 

command output control and could easily be extended by changing a couple of variables. 

 

Once connection had been made with the server the following code was executed in order to 

read the incoming message. 

 

SocketReceive client_socket \Str := message; 

SocketClose client_socket; 

retry_no := 0; 

Figure 31 - Socket Receive RAPID 

 

At this point, the socket is closed and the message received is processed to determine which 

action corresponds to the transferred command. The action is then performed and the RAPID 

program re-enters the loop waiting for connection from the server. 

The following screenshot shows the two programs interacting through the socket 

communication process: 



Chapter 4  60 

 
 

 

Figure 32 - Interaction between Matlab and RobotStudio 

 

As can be seen on the left hand side, Matlab has processed a command, recognised it and 

output it through the server socket. On the Flex Pendant screen we can see the recognition of 

the command ‘higher’ and the value to which the speed has been increased to due to this 

command. The numbers 1, 2 & 3 show the number of retries the RAPID program went 

through before finding that the server was ready for connection. 

 

4.5 Chapter Summary 

 

This chapter has provided detailed information on the design, development and 

implementation of the voice recognition and control system. It has explored; the signal 

processing techniques used to extract vocal features, the communication technique to be 

used between the software platforms and the coding techniques used for interpreting outputs 

and executing robotic movement. It has also provided the command structure to be used for 

testing and evaluation in Chapter 5. 



Chapter 5  61 

 

Chapter 5 
 

 

Performance and Evaluation 

 

5.1 Chapter Overview 

 

This chapter aims to explore the performance of the voice recognition and control system 

throughout the testing and simulation stages. The results of these tests and simulations are to 

be evaluated and further work and improvement considered. Any improvements 

implemented onto the system will be discussed and appropriate tests conducted to 

demonstrate increased performance. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5  62 

 

5.2 Performance Methodology 

 

Evaluating the performance of the system under specific conditions is designed to 

demonstrate both; the suitability of the proposed techniques used and how well the system 

would respond to different environments. The evaluation consisted of a number of 

components, these being: 

 Testing Error Rates of both the original system and the modified system. This would 

be done under 3 conditions (No noise, background noise, random noise). 

 Testing the usability of the commands with the robot arm between the initial position 

and a fixed point. (A time based test with using various angle increments) 

 Testing response time of the system to the command given (real time operation) 

 Qualitative Analysis of operation 

 

Essentially, these tests will aim to provide an insight into how functional the algorithm is and 

where it can be improved, as well as the possible real world applications of this sort of control 

method. 

 



Chapter 5  63 

 

5.3 Error rate Performance 

 

5.3.1 Methodology 

 

Assessing the error rate of the recognition algorithm will give a crude approximation of the 

reliability of the system with regards to correctly processing an individual command. In the 

early stages of building the algorithm, small testing was conducted using only a few 

commands to try and grasp an early result or breakthrough. The original system was tested 

using 10 utterances of each command and the results recorded. A few minor changes were 

made and some different processes used to create a modified system with a much higher 

success rate. 

Once the modified system was built up further to accommodate more commands and some 

more minor adjustments made, 10 utterances of each command were input into the 

algorithm under the following 3 conditions: 

 

 Little to no background noise (closed off room) 

 Background noise (music) 

 Background noise (fan) 

 

Each of these conditions displays 3 typical situations involving changes in ambient noise, 

whether it is in a laboratory or a workshop. In order for the performance test to be deemed 

reliable each command could not be said more than twice in a row, as to prevent repeating at 

the same pitch and tone for all 10 utterances of each command. This somewhat varies the 

properties of the utterance making it more difficult for the algorithm to recognise and in turn, 

testing its limitations. 

Before testing the algorithm the user must first train the algorithm ready for recognition. This 

process can take a couple of minutes. 

Ideally the error rate would be expected to be quite low for any advanced systems where all 

or almost all utterances were recognised. Expectations for this particular algorithm are 

however quite low and recognition failures are expected. 

 

 

 



Chapter 5  64 

 

5.3.2 Measurement and Testing 

 

The following tables display the results of those error rate tests describe above. 

Original System 

Command No. Times  

correct 

No. Times 

incorrect 

Error Rate = 

No. Errors/ 

No.Utterances *100% 

‘One’ 6 4 40% 

‘Two’ 5 5 50% 

‘Three’ 3 7 70% Total Error Rate 

‘Stop’ 7 3 30% 47.5% 

 

Table 2 – Original System Recognition Error rates (No noise) 

 

Command No. Times  

correct 

No. Times 

incorrect 

Error Rate = 

No. Errors/ 

No.Utterances *100% 

‘One’ 3 7 70% 

‘Two’ 4 6 60% 

‘Three’ 2 8 80% Total Error Rate 

‘Stop’ 2 8 80% 72.5% 

 

Table 3 - Original System Recognition Error rates (Background music) 

 

 

 

 

 



Chapter 5  65 

 
 

Command No. Times  

correct 

No. Times 

incorrect 

Error Rate = 

No. Errors/ 

No.Utterances *100% 

‘One’ 3 7 70% 

‘Two’ 3 7 70% 

‘Three’ 3 7 70% Total Error Rate 

‘Stop’ 2 8 80% 72.5% 

 

Table 4 - Original System Recognition Error rates (Background Fan) 

 

Modified System  

It should be noted that the Error Rate is based on the number of times the algorithm 

incorrectly identified a command. 

Command No. Times  

correct 

No. Times 

incorrect 

No. Times 

rejected 

Error Rate = 

No. Errors/ 

No.Utterances 

*100% 

‘One’ 9 0 1 0% 

‘Two’ 9 0 1 0% 

‘Three’ 8 1 1 10% Total Error Rate 

‘Stop’ 10 0 0 0% 2.5% 

 

Table 5 - Modified System Recognition Error rates (No noise) 

 

 

 

 

 

 



Chapter 5  66 

 

Command No. Times  

correct 

No. Times 

incorrect 

No. Times 

rejected 

Error Rate = 

No. Errors/ 

No.Utterances 

*100% 

‘One’ 0 0 10 0% 

‘Two’ 1 0 9 0% 

‘Three’ 0 0 10 0% Total Error 

Rate 
‘Stop’ 0 0 10 0% 0% 

 

Table 6 - Modified System Recognition Error rates (Background music) 

 

Command No. Times  

correct 

No. Times 

incorrect 

No. Times 

rejected 

Error Rate = 

No. Errors/ 

No.Utterances 

*100% 

‘One’ 1 0 9 0% 

‘Two’ 2 0 8 0% 

‘Three’ 3 0 7 0% Total Error Rate 

‘Stop’ 0 0 10 0% 0% 

 

Table 7 - Modified System Recognition Error rates (Background Fan) 

Once testing had been completed on the modified system and reasonable results were 

obtained, the algorithm was expanded to increase the vocabulary size to house the full range 

of commands. This was then tested as seen in the following tables. 

 

 

 

 

 

 



Chapter 5  67 

 
Complete Modified System 

 

Command No. Times  

correct 

No. Times 

incorrect 

No. Times 

rejected 

Error Rate = 

No. Errors/ 

No.Utterances 

*100% 

‘One’ 9 0 1 0% 

‘Two’ 10 0 0 0% 

‘Three’ 10 0 0 0% 

‘Four’ 8 2 0 20% 

‘Five’ 9 1 0 10% 

‘Six’ 9 0 1 0% 

‘Seven’ 10 0 0 0% 

‘Eight’ 10 0 0 0% 

‘Nine’ 10 0 0 0% 

‘Stop’ 10 0 0 0% 

‘End’ 10 0 0 0% 

‘Lower’ 8 1 1 10% Total Error 

Rate 
‘Higher’ 10 0 0 0% 3.08% 

 

Table 8 - Complete Modified System Recognition Error rates (No noise) 

 

 

 

 

 

 

 

 



Chapter 5  68 

 

Command No. Times  

correct 

No. Times 

incorrect 

No. Times 

rejected 

Error Rate = 

No. Errors/ 

No.Utterances 

*100% 

‘One’ 0 0 10 0% 

‘Two’ 1 0 9 0% 

‘Three’ 0 0 10 0% 

‘Four’ 1 0 9 0% 

‘Five’ 0 0 10 0% 

‘Six’ 0 0 10 0% 

‘Seven’ 0 0 10 0% 

‘Eight’ 0 0 10 0% 

‘Nine’ 0 0 10 0% 

‘Stop’ 0 0 10 0% 

‘End’ 0 0 10 0% 

‘Lower’ 0 0 10 0% Total Error 

Rate 
‘Higher’ 0 0 10 0% 0% 

 

Table 9 - Complete Modified System Recognition Error rates (Background music) 

 

 

 

 

 

 

 

 

 

 



Chapter 5  69 

 

Command No. Times  

correct 

No. Times 

incorrect 

No. Times 

rejected 

Error Rate = 

No. Errors/ 

No.Utterances 

*100% 

‘One’ 2 0 8 0% 

‘Two’ 1 0 9 0% 

‘Three’ 1 0 9 0% 

‘Four’ 0 0 10 0% 

‘Five’ 0 0 10 0% 

‘Six’ 1 0 9 0% 

‘Seven’ 0 0 10 0% 

‘Eight’ 0 0 10 0% 

‘Nine’ 0 0 10 0% 

‘Stop’ 2 0 8 0% 

‘End’ 0 0 10 0% 

‘Lower’ 0 1 9 10% Total Error 

Rate 
‘Higher’ 0 0 10 0% 0.77% 

 

Table 10 - Complete Modified System Recognition Error rates (Background Fan) 

 

 

5.3.3 Discussion of Results 

 

The results contained in Table 2 show a clear problem with the processes used for the 

algorithm and clear need for improvement and restructuring. At this current state, the 

algorithm would not be capable of performing at a suitable level for commanding a robotic 

arm. An Error Rate of 47.5% is far too high, when it comes to achieving the desired result and 

the completion of the project objectives.  

 

 



Chapter 5  70 

 
Further testing conducted under the noisy conditions as seen in Table 3 and Table 4, only re-

enforced the belief that more needed to be done to the algorithm in order to be ready for 

socket communication with RobotStudio. The higher error rates around 72.5%, give the 

impression that the algorithm is also being affected by the different background noise. 

Considering the high probability of errors, the data produced under noisy conditions could be 

in some way correlated to that of the no noise data and be caused by other factors within the 

code, not just noise. 

In stepping forward and improving the original system, a rejection element was included to 

prevent any unwanted commands sneaking through the system or any commands being 

confused with other commands. This rejection element involved setting a pre-defined limit for 

the dissimilarity value, any value beyond this limit would not be considered and output an 

error. It was quite effective when similarities were low, but as the vocabulary expanded and 

similar utterances were added, some commands snuck through. 

It was also found that the original system had not been calculating and comparing the 

utterances in the correct manor. Simple syntax errors and some arithmetic mistakes were not 

in fact calculating the 13 Mel Cepstral Coefficients needed for the voice recognition process. A 

considerable amount of time was spent reviewing this stage of the project to ensure that the 

right information was being extracted and processed. Once it had been reviewed and 

modified it produced the results shown above in Tables 5, 6 and 7. 

A clear sign of improvement was evident during the next batch of testing. Not only did the 

error rates drop to 2.5% but the commands would also be rejected if there similarity was not 

close enough. In saying this, the overall effectiveness of the algorithm increased dramatically 

and could now be deemed reliable enough to execute voice based commands under no noise 

conditions. 

The results obtained in table Tables 6 and 7, showed the effectiveness of the rejection 

element added to the algorithm. Any incoming command showing too much dissimilarity 

compared to the command models recorded under no-noise conditions was in fact rejected 

almost 100% of the time. This result is good for the safety of the algorithm when put into 

practice but not ideal for any real world situation where industrial noise will always be 

present. In this case, one proposed solution to combating this situation is to record those 

command models under noisy conditions and relax the silence detection threshold during 

processing. This would still obtain those important characteristics of speech held by each 

utterance, but with heavier background noise effects. Error rates would be expected to drop if 

the noise is variable but could remain the same if it was continuous and processes correctly. 

Now that a stable algorithm had been developed for the four commands further commands 

could be added to complete the command structure. The results shown in Table 8 display the 

error rate percentages of the completed algorithm under no noise conditions. A total error 

rate of 3.08% was recorded, indicating that there was not too much change after the addition 

of more commands to the vocabulary, but the chance of mistaking one command for another 

was slightly increased. 



Chapter 5  71 

 
It is important to add, that during the course of testing, it was found that any extra effort 

made when uttering a command or any prolonged the utterance of the word, would cause an 

error or in some cases, the utterance to be confused with another. Successful tests were 

achieved when the utterance remained within a certain similarity boundary of those that 

were recorded as reference. Making sure some vocal variation was made for the same 

utterance when recording the models became an important task, as this expanded the 

similarity boundaries of each of the utterances. Thus, making the algorithm more effective 

and reliable for a range of utterances.  

The introduction of background noise with the input utterances during the testing stage 

brought forward the results seen in Table 9 and 10. These showed once again the power of 

the rejection element and its effectiveness against dissimilarity. An extra test was performed 

(as seen in the table in Appendix C) to show the results without this element. A number of 

commands were found to be confused with each other under the presence of Background 

noise, re-enforcing the importance of this element within the algorithm.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5  72 

 

5.4 Command Usability (Quantitative) 

Using the voice as a command tool has its limitations, especially when the commands are 

restricted to a single utterance. It not only limits the number of axes that can be controlled 

but the number of variables in general that can be changed. The current system as described 

in section 4.3, allows the movement of a single axis, in a single direction per command. The 

distance in which this is carried out is dependent upon the desired accuracy of the system and 

the specific uses for the voice control. It is important that the relationship between time and 

accuracy be investigated to see which angle increment should be used. 

 

5.4.1 Methodology 

 

The main focus of this testing was to find out how much time it would take for the individual 

axes of the robotic arm to move at a set speed after receiving the command input.  This time 

would vary depending on the specific angles distances used and comparing these times would 

allow for appropriate evaluation.  

The angle increments used in the testing process were: 

 10 degrees 

 15 degrees 

 30 degrees 

In order to conduct the following testing a timing mechanism must be set up in order to 

record the elapsed time between when the Robotic arm receives the command and when it 

finishes executing the command. This was done by inserting various parts of the following 

code into the appropriate start and end places of the command movements. 

VAR clock clock2;  //Declare clock variable  ClkReset clock2;             

//Reset clock 

VAR num time;  //Declare time variable  ClkStart clock2;              

//Start clock 

 

ClkStop clock2;   //Stop clock 

time := ClkRead(clock2);  //Read clock time 

TPWrite  “”\Num := time; //Write time to flex pendent 

Figure 33 - Clock initialisation and control 



Chapter 5  73 

 
Each axis movement was then tested and the time recorded for each of the angles stated 

above. Once this first stage of testing is complete two points will be selected and navigated 

towards using the command system. This will test the functionality of the robot arm and how 

this application can apply to real world situations. It will be expected that the smaller angles 

will take less time to execute and create better accuracy when it comes to moving towards a 

designated point, but will overall take more time considering the amount of times the 

command must be executed.  

 

5.4.2 Measurement and Testing 

 

The following results were obtained from each angle increment at a set speed of 300 mm/s. 

Screenshots of this testing can be found in Appendix E. 

Angle = 10˚ 

Test Number Command ‘one’ 

time 

Command ‘two’ 

time 

Command 

‘three’ time 

Command ‘four’ 

time 

1 0.584 0.600 0.448 0.604 

2 0.584 0.604 0.446 0.608 

3 0.584 0.600 0.464 0.604 

4 0.588 0.600 0.448 0.604 

5 0.584 0.604 0.464 0.602 

Average ≈0.585 ≈0.602 ≈0.454 ≈0.604 

Table 11 - Timing for Angle increment 10 degrees 

 

 

 

 

 



Chapter 5  74 

 
Angle = 15˚ 

Test Number Command ‘one’ 

time 

Command ‘two’ 

time 

Command 

‘three’ time 

Command ‘four’ 

time 

1 0.844 0.988 0.644 0.988 

2 0.832 0.984 0.644 0.988 

3 0.848 0.984 0.644 0.976 

4 0.844 0.988 0.638 0.992 

5 0.832 0.984 0.644 0.988 

Average ≈0.840 ≈0.986 ≈0.643 ≈0.986 

Table 12 - Timing for Angle increment 15 degrees 

Angle = 30˚ 

Test Number Command ‘one’ 

time 

Command ‘two’ 

time 

Command 

‘three’ time 

Command ‘four’ 

time 

1 1.588 1.876 1.156 1.852 

2 1.596 1.872 1.172 1.860 

3 1.576 1.876 1.176 1.852 

4 1.588 1.868 1.164 1.872 

5 1.576 1.872 1.172 1.872 

Average ≈1.585 ≈1.873 ≈1.168 ≈1.862 

Table 13 - Timing for Angle increment 30 degrees 

 



Chapter 5  75 

 
The robot arm can now be tested to find the amount of time it takes to reach a designated 

point in space using the voice controlled algorithm at the different angle increment tested 

above. 

The point is defined as follows (in jointtarget form): 

 

[90, 60, 60, 90, 0, 0] 

 

If we consider the fastest possible time without a break, between when the process is finished 

and when the next command is ready, we can assume that: 

 the next command is already recognised and awaiting socket connection from 

RobotStudio 

 The time taken to make connection is less than approximately 0.1 s 

 The time will equal (the number of commands required to achieve the appropriate 

point angle) * (Average time to execute command) for each of the axes 

 We start from the initial point [0,0,0,0,0,0]  

 Commands: one & nine, two & eight, three & seven, four & six will take the same 

amount of time to process as they are only moving in the opposite direction. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5  76 

 
Based on the data extracted from the tables above, the following approximations were 

calculated and presented in the following table. 

 

Point to point calculations 

Test Axis 1 

Command 

‘four’ 

Axis 2 

Command 

‘two’ 

Axis 3 

Command 

‘one’ 

Axis 4 

Command 

‘three’ 

Number of 

Commands 

said 

Total 

Time 

(seconds) 

Time at 

10˚ 

increment 

90˚ = 9 *10˚ 

= 9* 0.604 

= 5.436 

60˚ = 6*10˚ 

= 6* 0.602 

= 3.612 

60˚ = 6*10˚ 

= 6*0.585 

= 3.510 

90˚ = 9*10˚ 

= 9* 0.454 

= 4.086 

9+6+6+9 = 

30 

30*0.1       

= 3.000 

 

 

= 19.644 

Time at 

15˚ 

increment 

90˚ = 6 *15˚ 

= 6* 0.986 

= 5.916 

60˚ = 4*15˚ 

= 4* 0.986 

= 3.944 

60˚ = 4*15˚ 

= 4*0.840 

= 3.360 

90˚ = 6*15˚ 

= 6* 0.643 

= 3.858 

6+4+4+6 = 

20 

20*0.1 

= 2.000 

 

 

= 19.078 

Time at 

30˚ 

increment 

90˚ = 3 *30˚ 

= 3* 1.862 

= 5.586 

60˚ = 2*30˚ 

= 2* 1.873 

= 3.746 

60˚ = 2*30˚ 

= 2*1.585 

= 3.170 

90˚ = 3*30˚ 

= 3* 1.168 

= 3.504 

3+2+2+3 = 

10 

10*0.1 

= 1.000 

 

 

= 17.006 

Table 14 - Point to Point time approximation 

These approximations have been calculated assuming the processing time to make a 

connection is relatively low. This relatively low time is only possible when the command has 

been recorded, processed and output to RobotStudio before the previous command had 

finished executing.  

 

 

 

 



Chapter 5  77 

 

5.4.3 Discussion of Results 

 

It can be seen in the tables above that each increment used in the testing process varies in 

execution time. Obviously, without looking at the results, the further the arm has to travel, 

the longer it is going to take to finish the a designated movement. Looking at these times and 

applying it to a real situation, where say the user needs to move the arm towards a pre-

defined point using his/her voice, the information becomes a lot more useful. This process can 

be seen in table 14 above where the different angle increments were applied to an actual 

movement towards a point and approximate completion times recorded.  

From the data approximated, the largest angle (30˚) has proven to take the least time to get 

to the designated point, with the smallest angle (10˚) taking the most time. This was to be 

expected considering the smaller angle had to be processed more often than the larger angle. 

If the conditions changed to a more lifelike circumstance where commands take over 2 

seconds to input before they are processed ready for output to RobotStudio the timing gap 

between the smaller angle and the larger angle would be much larger. In the long run, time is 

saved by increasing the angle increment, but in doing so it reduces the accuracy of the system 

and at 30˚ only allows 6 movement steps in either direction for axis 1. Reducing the increment 

to 10˚ increases the accuracy, allowing 18 steps in either direction but increases the time it 

takes to get to pre-defined points. In observing both of these results, operation would be 

more successful at lower angle increment values, especially when it comes to gaining greater 

control of the robotic arm. Although, depending on the operation it is being used for, the 

large increment could suit better i.e. for a Robotic Functionality Demonstration.  

In comparison to current methods of jogging, like using the flex pendent, the voice control 

technique used here is essentially a step back. In saying this, taking this concept and 

dedicating more time and money towards it, a system which can respond in real time and 

following command effectively would exceed the current technologies.   

It is possible to change the approach of this movement, making a command move an axis in 

the direction perceived until the stop command is spoken. In terms of functionality, this would 

be a lot more efficient and reduce the amount of commands required to move the same 

distance. Although, this approach would entail reducing the processing time and increasing 

the response time of the system to deal with real time control. Difficulties with such a system 

would be high but it is a possibility for future voice controlled systems. 

 

 

 

 



Chapter 5  78 

 

5.5 Real time algorithm and communication response 

 

An important factor involved in creating a system like this, is its response to command inputs 

in real time. Without the proper response times, operation becomes difficult especially with 

continual movement operation. The real time response of the algorithm and its 

communication with RobotStudio will be investigated and approximated below. 

 

5.5.1 Response Methodology and Results 

 

In order to obtain an effective approximation of the time taken to: 

 Input the command 

 Process the command 

 Recognise the command 

 Output and Communicate the command 

We must consider each operation individually and determine an appropriate duration for 

each. 

 

Input 

The time allocated towards the input of a command can be defined by the user with the 

Matlab algorithm. Currently this value is set at 2 seconds after the execution of the ‘enter’ key 

to ensure the entirety of the utterance is captured. As mentioned in section 4.2.1 the 

utterance of a word generally last between 200 and 800 milliseconds, meaning that the input 

time could be reduced by up to a second or more. If this was the case, user response to the 

‘enter’ key execution would have to be almost instantaneous and any delay, could happen to 

miss recording the actual utterance of a command. 

 

 

 

 

 

 



Chapter 5  79 

 
Processing 

The processing time involved in extracting the Mel Frequency Cepstral Coefficients can be 

obtained using the clock functions contained in Matlab. These functions can be set at the start 

and end of the processing to obtain execution times and are represented in the code below. 

 % Start timing clock 

ticID = tic; 

 

*Processing of Utterance* 

% Stop timing clock 

elapsedTime = toc(ticID); 

 

Figure 34 - Clock timing code 

The variable ‘elapsedTime’ contains the current value for time between stopping and starting 

the clock. The processing time test for a random input was completed a number of times 

below. 

 Table 15 – Processing Time of Utterance 

 

Recognition 

The next part of the algorithm involves testing the input utterance against a number of 

different command models using the Euclidean distance calculations. The difficulty in timing 

this particular section is that, each model is tested in the command order specified in section 

4.3.1, meaning that the recognition time of command ‘one’ will be partially faster than the 

recognition time of the command ‘lower’. The times for both of these commands were 

recorded in order to determine a best and worst case scenario for the recognition timing. 

Test Number Time (s) 

1 0.0456 

2 0.0523 

3 0.0521 Average Time (s) 

4 0.0486 0.0497 



Chapter 5  80 

 
In order to test these recognition times, the same clock functions above were employed. 

 

Table 16 - Recognition Time of utterances 

 

Output and Communication 

Once the command had been recognised, it was time to output through the socket for 

RobotStudio to read and execute the command process. This process was found to be quite 

difficult to time considering that the client connection from RobotStudio was continually 

retrying to connect to the server socket created by Matlab. Every connection would occur at a 

different time, depending on when the server was ready for connection. Worst case scenario 

meant that the client would retry just before the server was ready and have to wait almost 1 

second before reconnection to ensure enough time had passed to close connection before 

retrying.  

Results from testing the connection speeds could also be obtain using the clock function in 

Matlab. The clock was started before connection and stopped once connection had been 

successful. The results can be seen in the following table.  

 

 

 

 

Test Number Time (s) 

‘one’ ‘lower’ 

1 0.1161 0.1197 

2 0.1181 0.1187 

3 0.1180 0.1197 Average Times (s) 

4 0.1179 0.1186 Min (‘one’)= 0.1175 

Max (‘lower’) = 0.1192 



Chapter 5  81 

 

 

Table 17 - Connection Time of utterances 

 

Timing Approximation 

Each of the timing aspects explored above can now be merged together for an appropriate 

real time estimate of the systems response to a command. 

Total = input + processing + (worst case) recognition + (worst case) connection  

Total = 2 +0.0497 + 0.1192 + 0.9218 

Total = 3.091 seconds (worst case) system response time 

 

 

 

 

 

 

 

 

 

 

Test Number Time (s) 

1 0.1488 

2 0.0530 

3 0.2256 Average Time (s) 

4 0.9218 0.3373 



Chapter 5  82 

 

5.5.2 Discussion of Results 

 

It can be clearly seen that the worst case scenario of approximately 3 seconds before 

connection is made to the RobotStudio Software can be improved. Considering an utterance 

only takes a matter of hundreds of milliseconds to occur, time can be majorly reduced in 

obtaining the sample input. A system that can continually record and buffer information, 

whilst searching for commands could be employed to do so and save up to a second or more 

on this response time. Improvement made to processing techniques can also be of minimal 

benefit to the system and help increase its performance. Synchronising the connections 

perfectly between the 2 platforms to exchange information could also be a major step in 

reducing the time taken to get the command and execute its relevant procedure. Employing 

these ideas could reduce the response time to under a second, which would drastically 

improve the functionality of the system and its potential for future use.  

With regards to use in a Real Time system, this 3 second delay is not desirable and would 

require major improvement as stated in the above paragraph. At delays of this magnitude, the 

probability of damaging equipment or even user injury is much greater due to late reaction 

times. If speeds of up to 1000mm/s are being used then the robot has already travelled 3 

metres before it considers the response. Luckily the movement involved with the current 

system is incremented and not continuous preventing such an occurrence. 

For the purposes of this project, the approximated response time is satisfactory to perform 

the demonstrations required and meet the project objectives. If a continuous movement 

scheme was implemented here, then a faster response time would be necessary to allow the 

appropriate execution of the command ‘stop’, so the user could tell the arm to stop in a 

desired position. 

 

 

 

 

 

 

 

 

 

 



Chapter 5  83 

 

5.6 Qualitative Analysis of Results 

 

It is essential to the evaluation of the system that the results are looked at in a qualitative 

manor. This allows an overall grasp of the concept of the project and its benefits to the user. 

Such things like, ease of use, industrial applications and constraints will all be explored. 

 

5.6.1 Ease of Use 

 

An important part of the Voice Recognition and Control system is its ability to provide easier 

interaction between the user and the Robotic arm. Without this special form of wireless 

interaction, the system would be just another basic form of control. The fact that the flex 

pendent would no longer be required, making the operation essentially ‘hands free’, creates a 

sense of freedom for the user and allows he/she to concentrate on the task at hand, instead 

of fiddling around with code and buttons. In observing this system and considering its 

usability, a number of factors need to be considered, these are: 

 Learnability – ability of user to operate the system upon first encounter 

 Efficiency – ability of the user to learn from the system and perform tasks quicker over 

time 

 Memorability – involves the ability of the user to leave the system for some time, 

return to it and operate it (i.e. not forget commands and constraints) 

 Errors – User errors and how severe they can be 

  Satisfaction – Overall ease of use and enjoyment obtained from the system 

 

These factors will now be explored and discussed, based on observations obtained throughout 

the design, implementation and testing stages of the project and the results found above. 

Learnability 

First impressions of the idea of a voice control system, revolve around the system listening to 

your every command and operating based on these commands. The difficulty in creating a 

system with such a large vocabulary and multiple user interaction is that it requires a lot of 

time, money and resources. In conducting this project my aim was to develop a basic voice 

recognition platform that accepted a small range of commands built for interaction with the 

robot axes. In doing so, I could focus on improving interaction rather than developing a better 

recognition model. As a first time user of such a system (once it had been completed), I found 

it quite easy to operate and adjust the code to obtain movement in the robotic simulation. 



Chapter 5  84 

 
Without considering the setup of the simulation, Matlab scripts and communication between 

them, a first time user would find it a little difficult to understand. The key steps in using the 

system could be defined as follows: 

 Run the Database script to record the reference utterances for recognition (follow the 

command window prompts for recording). 

 Run the code script to process the recorded utterances and create reference models 

(this step also produces graphs to examine the recordings and make sure no errors 

are present). 

 Run the codetest script to begin the voice recognition stage of the system. After each 

‘enter’ keypress the user will have 2 seconds to record the command utterance. 

Knowing the processes involved with voice recognition and the functions used within the 

Matlab scripts, a proper understanding of the systems functionality can be obtained. As long 

as these simple steps are followed and attention is paid to command window outputs the first 

time usability of the system should be satisfactory. 

 

Efficiency 

As stated above, a proper understanding of the system as a whole will be a valuable 

contribution when it comes to improving the efficiency of the system. The user will learn over 

time the “in’s and out’s” of the system and discover how to adjust it to suit specific 

operations. From a user point of view, knowing the system allows much more efficient 

execution of commands and completion of tasks. The slightly lengthy response times on the 

simulator can be exploited and the next command is ready for output to the system as needed 

for higher efficiency and better completion times. The ability of the user to edit the angle 

increments explored in section 5.4 will allow for improvement in efficiency when performing 

various tasks, whether it be moving the axes for servicing or trying to pick up an object near a 

specific point. Overall the learning efficiency aspect of the system is quite high, considering 

the documentation provided in this report and the comments provided throughout the 

Matlab and RobotStudio scripts. 

 

Memorability 

An important property of this system and its functions is its ability to remain in the user’s 

memory over time and be used at a later date. In comparison to other basic and boring 

methods of control, voice recognition appeals to all (as seen in the literature review). Its 

popularity in recent years has given it an edge over other methods of control, essentially 

increasing the probability that it processes will be remembered over time. The simplicity 

involved in the command process of the system also increases this probability and allows the 

user to pick up on its function, even after a long period of time. It is often those things that 



Chapter 5  85 

 
are more interesting and technologically ‘new’ that people take the time to learn and perfect 

and in this case, robot voice recognition and control is one of these. 

 

Errors 

Throughout the design of this system, errors were a daily occurrence. Some took a matter of 

hours to fix and others a matter of minutes. Observing the current system, errors are not 

experienced as much as they had been previously. The most common involves the rejection of 

a command due to breaches in dissimilarity between the tested command and the command 

models. In fixing this error, the utterance needs to be repeated once again to initialise 

movement. Continued rejection errors could mean any of the following situations: 

 Rejection limit is too low (back noise is high) 

 Command models have not been recorded correctly 

 Test Utterance has not been recorded correctly 

 The user is not the pre-programmed user (database must be recorded again) 

These errors are generally fixed quite easily by; re-entering the command, recording the 

models properly or focusing on proper pronunciations of the commands.  

Another error experienced by the system for first time users could be timeout errors or end of 

retries involved in the communication between the 2 software platforms. The values of these 

are set by the user to around about 40 seconds each, if connection is not made within this 

time or a command not said for this amount of time, an error will be created and require the 

system to be re-initialised. Avoiding this can be done by setting the amount of retries to a high 

value and giving the user more time to perform mid-command operation. 

At times, the system has the tendency to mistake commands for other commands, depending 

on how the utterance is said. If clear pronunciation is not used, the system can find it difficult 

recognise commands and achieve the recognition percentages found in section 5.3. Ensuring 

commands a clear and consistent, is a big part to the success of the voice recognition side of 

the algorithm. 

 

Satisfaction 

As the designer and user of this system, I obtain a great deal of satisfaction out of operating it 

and seeing my work come together in an integrated system. Once again focusing on the 

popularity of the voice recognition technology, any user operating this system would obtain a 

degree of satisfaction from it. Assuming some background information is known about this 

particular system and the errors are kept to a minimum any operation would bring a high 

degree of satisfaction. Considering its application to a number of different tasks, this 

satisfaction could vary, as there are a number of current systems on the market that are more 



Chapter 5  86 

 
reliable and efficient than this particular system. A number of improvements discussed 

throughout chapter 5 would need to be implemented in order for this system to be 

competitive. 

 

Overall the usability of the voice recognition and control system is satisfactory for simple 

movement activity. Its potential for success in industrial applications is moderate considering 

the direction this technology is taking. With greater improvements in recognition rates, noise 

rejection and usability it is on track to develop into a massive technology of the future. 

 

5.6.2 Industrial Application 

 

The testing done on this system has been based on the movement of an industrial 6 axis robot 

arm. As a whole, the system has proven to be effective in controlling the individual axes of the 

arm and given it a form of wireless control in order to make it ‘smarter’. The question now 

becomes, what can this be used for? 

The act of individually moving each axis independently is a form known as jogging. This 

jogging mechanism is used throughout the robotic arm industry by the user to move the arm 

to an estimated position to get an idea of the movement. It is also used to run through 

programs step by step as part of the debugging process, ensuring the movement are correct. 

It is clear that the method applied in this project relates to this step by step movement and 

could be implemented by companies as an alternate control form. Instead of using the remote 

flex pendant, jogging could be done using vocal commands and leave your hands free to 

adjust objects or use tools during the process. Currently the algorithm developed in this 

project would not suffice for this kind of operation due to its tendency to produce errors and 

occasionally mix up commands. Improvements would need to be made and the vocabulary 

expanded to reach this sort of application, but as it can be seen, the potential is there. 

As done before by Pires (Pires 2005), voice recognition of this sort can also be used to just 

execute a welding process instead of individual axis control. This is a safer method, as it limits 

the probability of errors and can obtain higher accuracies, but is also limited to what it can do, 

as all movement must be pre-defined. 

Improvements in the response times obtained in 5.4 and 5.5 would also need to be improved 

for real time control in an industrial application. Without these improvements the safety 

factors would remain low and deem the system unsafe. 

 

 



Chapter 5  87 

 

5.6.3 Constraints 

 

A number of factors have limited the capabilities of the voice recognition and control system 

developed in this project. These factors involve: 

 Vocabulary size – Only 13 commands are available to use. Adding more increases the 

chances of recognising the wrong command. 

 Recognition Process – The use of only 13 MFCC out of the possible 39 has restricted 

the reliability of recognition. 

 Incremental Axis movement – has reduced accuracies and point to point execution 

times. 

  Time – Designing, Implementing and Testing this system over 6 months. 

 Resources – limited computational power, subject and programming knowledge. 

These have all affected the overall design, implementation, testing and performance of the 

developed system, along with many other smaller factors. With this in mind we should 

understand that errors WILL occur during normal operation and steps outlined 5.6.1 should be 

adhered to carefully. The user will require a considerable amount of time to understand the 

subject matter and processes undertaken within the Matlab scripts before they learn to 

operate it to its potential.  

It is important to state that this project was built from scratch, taking code excerpts from the 

VoiceBox Toolbox where I could and implemented onto the RobotStudio simulation software. 

Unfortunately not enough time was there to test the algorithm on Garfield itself but will be 

recommended for future investigation. 

 

 

5.7 Chapter Summary 

 

Chapter 5 has explored a number of testing procedures to investigate the performance of the 

system and judge its viability as a method of control. Error rates and Response times obtained 

throughout the testing were deemed appropriate and ready for implementation onto 

Garfield, with improvements to be explored in future research. A qualitative analysis has been 

completed, exploring the overall usability, its application to industry and constraints of the 

system. 

 



Chapter 6  88 

 

Chapter 6 
 

 

Conclusions & Further work 

 

6.1 Chapter Overview 

 

This chapter outlines the final result of this project, as well as recommendations for further 

improvement and research beyond the scope of this project. 

 

6.2 Conclusions 

 

The entire design process and objectives stated in earlier chapters has been executed in this 

project. A voice recognition and control system has been developed to make Garfield (the 6 

axis robotic arm) smarter. Simulation testing has proven to show the functionality of the 

system and evaluate its performance as a whole, which has been deemed satisfactory. 

The exploration of relevant literature relating to voice recognition and its processes has been 

conducted and reported with Chapter 2 of this report. Continued research was conducted and 

reported throughout the many stages of the project as new strategies were developed and 

implemented. This literature was found through access to professional databases and 

technical reference manuals relevant to the project. This allowed for an appropriate analysis 

of any past work, current technologies, techniques and relevant processes to the voice 

recognition field. It was found that the best way in which to develop such a system was to use 

the Mel Frequency Cepstral Coefficients (MFCC) contained in each utterance and compare 

them to a set of reference utterances. Comparison of these was done through Euclidean 

Distance measures and a relative error was obtained in order to distinguish the best match. It 

was found that TCP/IP socket messaging was an appropriate method of communication 

between the 2 applications (Matlab and RobotStudio) and would provide the essential link for 

command handling.  

 



Chapter 6  89 

 
Following on from chapter 2 an appropriate methodology was implemented in order to 

address the project specifications and complete the project objectives. A risk assessment was 

conducted in order to address the safety issues involved with such a project and a research 

timeline developed to ensure the deadline was met. The design process based on relevant 

literature was implemented in chapter 4 using signal processing techniques and 

communication theory, then tested and evaluated in chapter 5.  

The outcomes of the performance evaluation indicated that the recognition algorithm 

operated best under conditions involving no background noise. Any noise present caused high 

rejection rates and little command recognition. It showed that the rejection element was an 

important contributor to the success of the algorithm and prevented most unknown or noisy 

utterances from being recognised as proper commands.  

The results involving the evaluation of command usability showed that larger angle 

increments were quicker to process and saved time on a point to point basis but lacked 

accuracy, whereas the smaller angle increments to longer to process on a point to point basis 

and were more accurate. This showed that the angle increment affected time spent 

manoeuvring the robotic arm and could be adjusted depending on the task that it was 

assigned.  

The real time response of the voice recognition algorithm was deemed satisfactory for the 

current method of control. Any work with continuous movement would require faster system 

response to uphold levels of safety and protect the machine from operational damage. 

A qualitative analysis of the project brought forward results based on system usability, 

industrial application and constraints. It was found that the project had: 

 Moderate learnability, requiring the user to have a solid understanding of the 

processes in order to operate the system.   

 High efficiency, allowing the user to increase productivity as he/she learnt to operate 

the system better 

 Adequate Memorability, allowing the user to operate the system easily after spending 

a considerable amount of time away from it 

 Occasional Errors, usually involved with careless use of commands and not knowing 

the processes within the system well enough 

 Great Satisfaction, allowing the user to enjoy themselves whilst using the system 

Industrial application for this project involved using it as a jogging mechanism during the 

testing stages of processes or maintenance of a machine. Here the user does not have to 

worry about coding and using the flex pendent for the jog operations and can instead, use 

his/her hands for more important matters. The constraints involved in the project have also 

been identified and potential improvement on these to be discussed in 6.3. 

The entire design, implementation and testing process has been observed above. The success 

of the system has been demonstrated and its real-world implementation discussed. The 



Chapter 6  90 

 
importance issues involving recognition error rates, timing and usability have been explored 

and evaluated to give an effective overview of the system. Overall, the goals of this project 

have been met and the system leaves room for improvement. Excerpts of the final source 

code can be found in Appendix D. 

 

6.3 Further Work 

The completion of this project has left a number of areas within it that could be open to 

further work. Improvements in these areas would not only increase the overall robustness of 

the system but allow it to be used in more applications and expand into others areas of 

robotics. 

During the design stage of the project, a number of techniques have been implemented to 

obtain Mel Frequency Cepstral Coefficients. Considering only 13 of a possible 39 coefficients 

have been calculated, extra work could be done here to obtain more and improve the 

representation of each of the command utterances. This is because these extra coefficients 

represent more properties of each utterance. The recognition stage of the algorithm could 

also be improved through further work involving those discussed in sections 2.3.8-2.3.11 as 

this could not be done with the time available. This would allow for the expansion of the 

command vocabulary and allow control of more variables and axes. The addition of a noise 

rejection element to the front end of the system would allow the algorithm to work under 

noisy conditions (as seen in an industrial workplace) and increase its functionality. Other than 

these, the processing speeds could be improved with better design modularity and data 

processing techniques. 

With regards to the RobotStudio section of the project there are a number of improvements 

that could be made. The first involves changing the desired movement from incremental to 

continuous. This would require the continuous execution of axis movement and use flags or 

interrupts to stop these movements. This would essentially decrease the amount of times the 

user speaks a command and produce greater point to point accuracy. This change would 

require improvements to system response as well to ensure commands were processed and 

executed almost immediately in real time.  

 

Conducting further testing on the system and improving small undesirables would be a major 

part of future work. This would lead to being able to test the system on the real world robotic 

arm Garfield. This testing would give a greater sense of the potential of the technology and 

also greater satisfaction towards the hard work that has been put in throughout this project to 

get it working.  All of the work above requires a lot more time and effort than expected and 

would be great to see implemented in future years. 

 



References  91 

 
 

References 

 

Brookes, M 1998, VOICEBOX: Speech Processing Toolbox for MATLAB, $Id: rfft.m 713 2011-10-

16 14:45:43Z dmb $, Department of Electrical and ELectronic Enginnering, Imperial College, 

Exhibiton Road, London, UK, viewed 12/08/2013 

<http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html>. 

 

Communications, N 2013, Dragon Speech Recognition Software, viewed 23/05/2013, 

<http://australia.nuance.com/dragon/index.htm>. 

 

Engineers, Io 1997, Towards sustainable engineering practice: engineering frameworks for 

sustainability, Canberra, Australia. 

 

Gates, B 2007, A Robot in every home, Scientific American 2013, viewed 16/05/2013, 

<file:///C:/Users/Kyle/Desktop/University/Semester%201%202013/Project/A%20Robot%20in

%20Every%20Home%20%20%20Article%20%20%20Scientific%20American.htm>. 

 

Iqbal, S, Mahboob, T & Khiyal, MSH 2011, 'Voice Recognition using HMM with MFCC for 

Secure ATM', International Journal of Computer Science Issues (IJCSI), vol. 8, no. 6, pp. 297-

303, EBSCOhost, iih, item: 73204491. 

 

Juang, BH & Tsuhan, C 1998, 'The past, present, and future of speech processing', Signal 

Processing Magazine, IEEE, vol. 15, no. 3, pp. 24-48. 

 

Kumar, S & Rao, PM 2011, 'Design Of An Automatic Speaker Recognition System Using MFCC, 

Vector Quantization And LBG Algorithm', International Journal on Computer Science & 

Engineering, vol. 3, no. 8, pp. 2942-54, EBSCOhost, a9h, item: 67367968. 

 

Lyons, J 2009, Mel Frequency Cepstral Coefficient (MFCC) tutorial, Practical Cryptography, 

viewed 10/09/2013,  

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html%3e
http://australia.nuance.com/dragon/index.htm%3e


References  92 

 
<http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-

cepstral-coefficients-mfccs/>. 

 

Muda, L, Begam, M & Elamvazuthi, I 2010, 'Voice recognition algorithms using mel frequency 

cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques', arXiv preprint 

arXiv:1003.4083. 

 

Pires, JN 2005, Robot-by-voice: experiments on commanding an industrial robot using the 

human voice, (Mechanical Engineering Department and Mechanical Engineering Research 

Center (A Research Center from the Portuguese Foundation for Science and Technology), 

University of Coimbra, Coimbra, Portugal), Emerald Group Publishing Limited,<. 

 

Plannerer, B 2005, An introduction to speech recognition. 

 

Rabiner, BHJLR 2004, Automatic Speech Recognition – A Brief History of the Technology  

Development, Georgia Institute of Technology, Atlanta, Rutgers University and the University 

of California, Santa Barbara, viewed 15/07/2013 

http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/354_LALI-ASRHistory-final-10-

8.pdf>. 

 

Robotics, A 2013, Operating Manual - RobotStudio, ABB AB Robotics Products Sweden. 

 

Robotics, IIFo 2012, History of Industrial Robots, c/o VDMA Robotics + Automation. 

 

 

 

 

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/%3e
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/%3e
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/354_LALI-ASRHistory-final-10-8.pdf%3e
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/354_LALI-ASRHistory-final-10-8.pdf%3e


Appendix A  93 

 
 

 

Appendix A 

 

 

Project Specification 



Appendix A  94 

 

University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

ENG 4111/4112 Research Project 

PROJECT SPECIFICATION 

FOR:    KYLE TONKIN 

TOPIC:    MAKE GARFIELD (THE 6-AXIS ROBOT ARM) SMART 

SUPERVISORS:   Dr. TOBIAS LOW 

ENROLMENT:   ENG 4111 – S1, D, 2013  

    ENG 4112 – S2, D, 2013  

PROJECT AIM:  This project will look at researching and designing a 

smarter and safer robot arm (Garfield) through the 

implementation of visual control and/or voice command. 

SPONSORSHIP:  UNIVERSITY OF SOUTHERN QUEENSLAND 

PROGRAMME: (Issue A, 13 March 2013) 

1) Research Background information on ‘Garfield’ (the 6-axis robot arm) and its 

operation as well as the principles and implementation of voice command on 

robot systems. 

2) Create a program to process and recognise voice commands. 

3) Implement an interfacing system with the robot simulation software allowing 

the use of voice command through TCP socket messaging between MATLAB 

and RPG5 (RAPID) programming. 

4) Analyse the effects and reliability of voice control when implemented. 

5) Achieve a robot arm responsive to voice commands. 

6) Analyse the effects of these new improvements and their application to 

industry. 

As time permits: 

7) Investigate further improvements available to enhance the functionality of 

Garfield 

AGREED    (student)    (supervisor) 

  Date:       /      / 2013   Date:      /      / 2013 

Examiner/Co-examiner:     



Appendix B  95 

 

 

Appendix B 

 

 

Project Management Errata 



Appendix B  96 

 

B.1 Project Timeline 
 

Table 18 - Research Timeline 

 

 

 

 

 

 

 

 



Appendix B  97 

 

B.2 Risk Assessment 

The following table contains the different levels of risk occurrence: 

Level Risk Level Description 

1 Very Unlikely Might occur under the right 

conditions 

2 Unlikely May occur at some point 

3 Likely Will occur at some point 

4 Very Likely Will certainly occur in most 

conditions 

Table 19 - Levels of risk occurrence 

The following table contains the level of severity of a risk: 

Level Risk Severity Description 

1 Insignificant Very low impact on well-being, 

project completion or 

environment. 

2 Minor Minor impact on well-being, 

project completion or 

environment. 

3 Moderate Moderate impact on well-being, 

project completion or 

environment. 

4 Major Major impact on well-being, 

project completion or 

environment. 

5 Catastrophic Catastrophic impact on well-

being, project completion or 

environment.  

Table 20 - Risk Severity Levels 



Appendix B  98 

 

Hazard Identification 

The following risks have been identified as risks to well-being, project completion and 

environment. 

 

1. Working Conditions 

Identified Risks  

 Muscle Strain (Repetitive strain injuries, Carpel Tunnel Syndrome). 

 Eye Strain. 

 Breathing difficulties. 

 Headaches. 

Solutions 

 Ergonomically designed workstation for comfort and safety, as well as 

correctly placing furniture at ergonomic heights. 

 The use of regular breaks and exercises to prevent any further injury. 

 Appropriate lighting levels should be maintained to avoid eye strain as 

well as appropriate placement of screen to avoid glare from windows 

and shutters. 

 Proper ventilation throughout the work area and temperature 

control. 

 

2. Stress 

Identified Risks 

 Long hours without much social freedom. Can lead to illness. 

 Building pressure of upcoming due dates and deadlines. Can also lead 

to illness. 

Solutions 

 Create a balanced schedule with time for everything 

 Eat Healthy and ensure regular sleeping patterns 

 



Appendix B  99 

 
3. Electric Shock 

Identified Risks 

 Power cords and power boards around workstation (possibly 

overloaded). Personal injury from this can cause burns and affect 

productivity. 

 Electrical equipment can cause electric shock (statically or 

dynamically). Can also cause burns or heart attacks. 

Solutions 

 Ensure all equipment is standardised and power boards are not 

overloaded or damaged. 

 Do not try to access electrical equipment i.e. computers, printers or 

robots unless qualified to do so. 

 

4. Personal Injury or illness (unforeseen) 

Identified Risks 

 Unexpected cases of illness, injury or disease i.e. colds, broken leg or 

chicken pox. These will lead to a decrease in productivity and possibly 

project failure. 

Solutions 

 Avoid getting run down and stressed and ensure time is created in the 

schedule to allow for spare time if need be. 

  

5. Equipment Failure and Data loss 

  Identified Risks 

 The breakdown of equipment can cause data loss or even injury in 

some cases. This can affect project completion and also your well-

being. 

 Data loss can occur at any stage which can affect project completion 

and scheduling.  

 

 

 



Appendix B  100 

 
Solutions 

 Document procedures in case of data loss so time can be recuperated 

and retain receipts and warranties to replace equipment. 

 Continually back up data in case of system crashes. Weekly or even 

daily. 

 

Risk Summary 

The hazards identified in the previous sections have been ranked by the criteria stated in table 

2 and table 3. 

Hazard Risk Level Severity Level 

Working Conditions 2  2 

Stress 3  2 

Electric Shock 1  5 

Personal Injury or Illness 2  4 

Equipment failure or Data 

loss 

1  3 

Table 21 - Risk Summary 

 

 

 



Appendix C  101 

 

Appendix C 

 

Extra Results  
 

This table contains the results obtained from Background noise testing without the rejection 

element. 

Command No. Times  

correct 

No. Times 

incorrect 

No. Times 

rejected 

Error Rate = 

No. Errors/ 

No.Utterances 

*100% 

‘One’ 1 9 - 90% 

‘Two’ 5 5 - 50% 

‘Three’ 3 7 - 70% 

‘Four’ 4 6 - 60% 

‘Five’ 8 2 - 20% 

‘Six’ 5 5 - 50% 

‘Seven’ 4 6 - 60% 

‘Eight’ 7 3 - 30% 

‘Nine’ 2 8 - 80% 

‘Stop’ 8 2 - 20% 

‘End’ 7 3 - 30% 

‘Lower’ 0 10 - 100% Total Error 

Rate 
‘Higher’ 0 10 - 100% 58.5% 

 

Table 22 - Rejection element removal results (Background music) 

 

 



Appendix D  102 

 
 

 

Appendix D 

 

 

Source Code 
 

Database Building (excerpt)  

%% %% Research Project Part I & II 
% Kyle Tonkin - 2013 

  
% Command Recording 
clc; clear; 

  
fs = 16000; 
duration = 2; 

  
% Command Initialisation 
one = []; 
two = []; 
three = []; 
four = []; 
five = []; 
six = []; 
seven = []; 
eight = []; 
nine = []; 
stop = []; 
end1 = []; 
high = []; 
low = []; 

  
%% Build database entries *THIS WAS REPEATED FOR EACH COMMAND* 

  
% Entries for word 'one' 
input ('press enter for recording of "one"') 

  
for i = 1:10 

  
y = wavrecord(duration*fs,fs); 

  
one = [one y]; 

  



Appendix D  103 

 
file = sprintf ('%s%d.wav','one',i); 

  
wavwrite(y,file); 

  
if i~=10 
input ('press enter for next recording') 
else 
end 

  
end 

 

Database Processing (excerpt of command 1) 

clc; clear; 

  
f = (1:8000)'; 
fs = 16000; 
duration = 2; 
x = 0.5/8000:0.5/8000:0.5; 

  
% Command Matrice Initialisation 
one = []; 
two = []; 
three = []; 
four = []; 
five = []; 
six = []; 
seven = []; 
eight = []; 
nine = []; 
stop = []; 
end1 = []; 
high = []; 
low = []; 

  
z = 1; 

  
%% Signal Analysis 

  
% Obtain recorded voice files from folder  

 

*THIS WAS DONE FOR EACH RECORDED COMMAND* 

 
one = wavread('one1.wav'); 
one = [one wavread('one2.wav')]; 
one = [one wavread('one3.wav')]; 
one = [one wavread('one4.wav')]; 
one = [one wavread('one5.wav')]; 
one = [one wavread('one6.wav')]; 
one = [one wavread('one7.wav')]; 
one = [one wavread('one8.wav')]; 
one = [one wavread('one9.wav')]; 
one = [one wavread('one10.wav')]; 

 



Appendix D  104 

 
%% Pre-emphasis 

  
% Filter coefficients 
B = [1 -0.95]; 

  
% Pre-emphasis Application 
Preemph1 = filter(B,1,one); 
 

Preemph1(1,:) = 0; 

 

%% Silence Detection 
% Command 'ONE' 

  
for k = 1:10 

  
    i = 2; 

  
while abs(Preemph1(i,k))< 0.003 || abs(Preemph1(i+20,k))< 0.003 || 

abs(Preemph1(i+40,k))< 0.003 || abs(Preemph1(i+60,k))< 0.003 || 

abs(Preemph1(i+80,k))< 0.003 || abs(Preemph1(i+100,k))< 0.003 
    i = i+1; 
end 

  
a = Preemph1(i:length(Preemph1),k); 

  
if k == 1 
    a1= a; 
    a1(8001:length(a1))= []; 
elseif k==2 
    a2= a; 
    a2(8001:length(a2))= []; 
elseif k==3 
    a3= a; 
    a3(8001:length(a3))= []; 
elseif k==4 
    a4= a; 
    a4(8001:length(a4))= []; 
elseif k==5 
    a5= a; 
    a5(8001:length(a5))= []; 
elseif k==6 
    a6= a; 
    a6(8001:length(a6))= []; 
elseif k==7 
    a7= a; 
    a7(8001:length(a7))= []; 
elseif k==8 
    a8= a; 
    a8(8001:length(a8))= []; 
elseif k==9 
    a9= a; 
    a9(8001:length(a9))= []; 
    elseif k==10 
    a10= a; 
    a10(8001:length(a10))= []; 
end 
end 



Appendix D  105 

 
  
Preemph1 = [a1 a2 a3 a4 a5 a6 a7 a8 a9 a10]; 

  

  
figure('units','normalized','outerposition',[0 0 1 1]) 
set(gcf,'numbertitle','off','name','Command One')  
subplot(3,4,1) 
plot(x,a1) 
title('Utterance 1') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,2) 
plot(x,a2) 
title('Utterance 2') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,3) 
plot(x,a3) 
title('Utterance 3') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,4) 
plot(x,a4) 
title('Utterance 4') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,5) 
plot(x,a5) 
title('Utterance 5') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,6) 
plot(x,a6) 
title('Utterance 6') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,7) 
plot(x,a7) 
title('Utterance 7') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,8) 
plot(x,a8) 
title('Utterance 8') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,9) 
plot(x,a9) 
title('Utterance 9') 
xlabel('Time (s)') 
ylabel('Amplitude') 
subplot(3,4,10) 
plot(x,a10) 
title('Utterance 10') 
xlabel('Time (s)') 
ylabel('Amplitude') 

  
ylim([-0.2 0.2]) 

  
linkaxes 



Appendix D  106 

 
 
%% Frame by frame analysis 
seglength = 320; % Length of frames 
stepsize = seglength/2; % Frame step size 
nframes = length(Preemph1)/stepsize-1; 

  
% 320 point Hamming window 
np = seglength; 
h = (0.54 - 0.46*cos(2*pi*(0:np-1)/(np-1))'); 

  

  
dxenergy1 = []; 
dxenergy2 = []; 
dxenergy3 = []; 
dxenergy4 = []; 
dxenergy5 = []; 
dxenergy6 = []; 
dxenergy7 = []; 
dxenergy8 = []; 
dxenergy9 = []; 
dxenergy10 = []; 
dxenergy11 = []; 
dxenergy12 = []; 
dxenergy13 = []; 

  

  
% Command 'ONE' 

  
for k = 1:10 
% Initialize Variables 
samp1 = 1; samp2 = seglength; %Initialize frame start and end 

  
for i = 1:nframes 
% Get current frame for analysis 
frame = Preemph1(samp1:samp2,k); 

  
% Analysis on frames 

  
% Multiply by Hamming window and compute 512 point DFT 
% Keep first 257 coefficients 
frame = rfft(h.*frame,512); 

  
% Periodgram estimate of power spectrum 
frame = (1/seglength).*((abs(frame)).^2); 

  
% Mel Filter bank  
frameA = melbankm(26,512,16000); 

  
% Energy in each filterbank 
energy = frameA*frame;  

  
% Convert to log filter bank energies 
energy = log(energy); 

  
% Perform discrete cosine transform 
dxenergy = dct_kyle(energy'); 

  
dxenergy = dxenergy'; 



Appendix D  107 

 
  
% Keep 13 lower coefficients 
dxenergy = dxenergy(1:13); 

  
z = 14; 
figure(z) 
subplot(3,4,k) 
plot(samp1:samp2-63,abs(frame)) 
hold on 
% Step up to next frame of speech 
samp1 = samp1 + stepsize; 
samp2 = samp2 + stepsize; 

  
dxenergy1 = [dxenergy1 dxenergy]; 
end 

  
if k == 1 
    one1 = dxenergy1; 
elseif k== 2 
    one2 = dxenergy1; 
elseif k==3 
    one3 = dxenergy1; 
elseif k==4 
    one4 = dxenergy1; 
elseif k==5 
    one5 = dxenergy1; 
elseif k == 6 
    one6 = dxenergy1; 
elseif k== 7 
    one7 = dxenergy1; 
elseif k==8 
    one8 = dxenergy1; 
elseif k==9 
    one9 = dxenergy1; 
elseif k==10 
    one10 = dxenergy1; 
end 
% Re-initialise 
dxenergy1 = []; 

  
end 

  
linkaxes 

  
z = z+1; 

 

%% MFCC Command Matrices 

  
% Command Model 'ONE' 
oneDB = [one1; one2; one3; one4; one5; one6; one7; one8; one9; one10]; 

 

 

 

Command Recognition 



Appendix D  108 

 
% Voice recognition code 

  
% Server Variables 
output_port = 12345; 
number_of_retries = 2; 

  

  
% Enter Voice Input Loop 
for m = 1:100 

  
% Initialise Variables 
% Frequency 

  
fs = 16000; 
duration = 2; 
x = 0.5/8000:0.5/8000:0.5; 

  
% Filter coefficients 
B = [1 -0.95]; 

  
% Initialise 'i' increment 
i=1; 

  
%% Obtain and Process Command 

  
% Command Input 
input ('press enter for command') 

  
ytest = wavrecord(duration*fs,fs); 

  
%figure(1) 
%plot(1/16000:1/16000:2, ytest) 
%plot(1/16000:1/16000:2, Preemphtest) 
%ylabel('Amplitude') 
%xlabel('Time (s)') 
%title('Command "One" Waveform') 
%title('Command "One" Waveform (Pre-Emphasised)') 

  
%axis tight 

  
% Pre-emphasis of command 

  
Preemphtest = filter(B,1,ytest); 

  
% Set initial value of Preemphtest matrix to zero 
Preemphtest(1) = 0; 

  
%figure(2) 
%plot(Preemphtest) 

  
% Silence Detection 
% Wait for clear start of signal 
while abs(Preemphtest(i))< 0.003 || abs(Preemphtest(i+20))< 0.003 || 

abs(Preemphtest(i+40))< 0.003 || abs(Preemphtest(i+60))< 0.003 || 

abs(Preemphtest(i+80))< 0.003 || abs(Preemphtest(i+100))< 0.003 
    i = i+1; 
end 

  



Appendix D  109 

 
% Signal will start from the calculated position 
atest = Preemphtest(i:length(Preemphtest)); 

  
% Reduce samples from 16000 to 8000 for remainder of processing 

(command 
% will be present within the 8000 samples) 
atest(8001:length(atest))= []; 

  
Preemphtest = atest; 

  
%figure(3) 
%plot(x, atest) 
%ylabel('Amplitude') 
%xlabel('Time (s)') 
%title('Command "One" Waveform after silence detection') 

  
%% Frame by frame analysis 
% Initialise variables 
% Frame Length 
seglength = 320;  
% Frame step size 
stepsize = seglength/2; 
% Number of frames 
nframes = length(Preemphtest)/stepsize-1; 
% Create Hamming window 
np = seglength; 
h = (0.54 - 0.46*cos(2*pi*(0:np-1)/(np-1))'); 

  
%plot(0.02/320:0.02/320:0.02,h) 
%axis tight 
%title('320 point Hamming Window') 
%xlabel('Time (s)') 
%ylabel('Amplitude') 

  
% Initialise energy matrix 
dxenergy1 = []; 

  
%Initialize frame start and end 
samp1 = 1; samp2 = seglength;  

  
for i = 1:nframes 
% Get current frame for analysis 
frame = Preemphtest(samp1:samp2); 

  
% Analysis on frames 

  
% Multiply by Hamming window and compute 512 point DFT 
% Keep first 257 coefficients 
frame = rfft(h.*frame,512); 

  
% Periodogram estimate of power spectrum 
frame = (1/seglength).*((abs(frame)).^2); 

  

  
% Mel Filter bank  
frameA = melbankm(26,512,fs); 

  
% Energy in each filterbank 



Appendix D  110 

 
energy = frameA*frame;  

  
% Convert to log filter bank energies 
energy = log(energy); 

  
% Perform discrete cosine transform 
dxenergy = dct_kyle(energy'); 

  
dxenergy = dxenergy'; 

  
% Keep 13 lower coefficients 
dxenergy = dxenergy(1:13); 

  
%figure(4) 
%plot(samp1:samp2-63,abs(frame)) 
%hold on 
% Step up to next frame of speech 
samp1 = samp1 + stepsize; 
samp2 = samp2 + stepsize; 

  

  
dxenergy1 = [dxenergy1 dxenergy]; 
end 
% Classify matrix 'ytest1' 
ytest1 = dxenergy1; 

  

  

  
%% Recognition using Euclidean Distance between MFCC coefficients 

  

  
% Number of coefficients 
p = 13; 

  
% Initialise 1st command matrix 
S11 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((oneDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S11 = [S11 S]; 

  
end 
S11 = S11./1000; 

  

  
%% Initialise 2nd command matrix 
S22 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  



Appendix D  111 

 
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((twoDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S22 = [S22 S]; 
end 
S22 = S22./1000; 

  

  
%% Initialise 3rd command matrix 
S33 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((threeDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S33 = [S33 S]; 
end 
S33 = S33./1000; 

  

  
%% Initialise 4th command matrix 
S44 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((fourDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S44 = [S44 S]; 
end 
S44 = S44./1000; 

  

  
%% Initialise 5th command matrix 
S55 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((fiveDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  



Appendix D  112 

 
S55 = [S55 S]; 
end 
S55 = S55./1000; 

  

  
%% Initialise 6th command matrix 
S66 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((sixDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S66 = [S66 S]; 
end 
S66 = S66./1000; 

  

  
%% Initialise 7th command matrix 
S77 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((sevenDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S77 = [S77 S]; 
end 
S77 = S77./1000; 

  

  
%% Initialise 8th command matrix 
S88 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((eightDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S88 = [S88 S]; 
end 
S88 = S88./1000; 

  

  
%% Initialise 9th command matrix 
S99 = []; 



Appendix D  113 

 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((nineDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S99 = [S99 S]; 
end 
S99 = S99./1000; 

  
%% Initialise 10th command matrix 
S101 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((stopDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S101 = [S101 S]; 
end 
S101 = S101./1000; 

  
%% Initialise 11th command matrix 
S111 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((end1DB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S111 = [S111 S]; 
end 
S111 = S111./1000; 

  
%% Initialise 12th command matrix 
S121 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((highDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  



Appendix D  114 

 
S121 = [S121 S]; 
end 
S121 = S121./1000; 

  
%% Initialise 13th command matrix 
S131 = []; 
% Initialise 'i' increment for loop 
i = 0; 

  
% Calculate Euchlidean distances of each of the 10 utterances 
for k = 1:10 
S = sum((lowDB(i+1:(k*p),:) - ytest1).^2); 
S = sum(S); 

  
i = i+13; 

  
S131 = [S131 S]; 
end 
S131 = S131./1000; 

  
%% Calculate closest match for each command 
S1 = min(S11) 
S2 = min(S22) 
S3 = min(S33) 
S4 = min(S44) 
S5 = min(S55) 
S6 = min(S66) 
S7 = min(S77) 
S8 = min(S88) 
S9 = min(S99) 
S10 = min(S101) 
S11 = min(S111) 
S12 = min(S121) 
S13 = min(S131) 

  
% Arrange them into a matrix 
MSET = [S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13]; 

  
% Find closest of all the commands 
MSETmin = min(MSET); 

  
% Test for error 
if MSETmin > 40 

  
    fprintf('\n\nERROR\n\n') 

  
% Determine the corresponding command and Output 
elseif MSETmin == MSET(1) 

     
    % Print command to command window 
    fprintf('\n\nThe command is one\n\n') 

     
    % Start timing clock 
ticID = tic; 
    % Create command string ready for output 
    message = 'one'; 

    
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  



Appendix D  115 

 
     
    %s = wavread('one1.wav'); 
    %sound(s, 16000) 
        % Stop timing clock 
elapsedTime = toc(ticID); 

     
elseif MSETmin == MSET(2) 

     
    % Print command to command window 
    fprintf('\n\nThe command is two\n\n') 
    % Create command string ready for output 
    message = 'two'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('two1.wav'); 
    %sound(s, 16000) 

     
elseif MSETmin == MSET(3) 

     
    % Print command to command window 
    fprintf('\n\nThe command is three\n\n') 
    % Create command string ready for output 
    message = 'three'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('three1.wav'); 
    %sound(s, 16000) 

     
elseif MSETmin == MSET(4) 

     
    % Print command to command window 
    fprintf('\n\nThe command is four\n\n') 
    % Create command string ready for output 
    message = 'four'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('four1.wav'); 
    %sound(s, 16000) 

     
elseif MSETmin == MSET(5) 

     
    % Print command to command window 
    fprintf('\n\nThe command is five\n\n') 
    % Create command string ready for output 
    message = 'five'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('five1.wav'); 
    %sound(s, 16000) 

     
elseif MSETmin == MSET(6) 

    
    % Print command to command window 
    fprintf('\n\nThe command is six\n\n') 



Appendix D  116 

 
    % Create command string ready for output 
    message = 'six'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('six1.wav'); 
    %sound(s, 16000) 

     
elseif MSETmin == MSET(7) 

     
    % Print command to command window 
    fprintf('\n\nThe command is seven\n\n') 
    % Create command string ready for output 
    message = 'seven'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

    
    %s = wavread('seven1.wav'); 
    %sound(s, 16000) 

     
elseif MSETmin == MSET(8) 

     
    % Print command to command window 
    fprintf('\n\nThe command is eight\n\n') 
    % Create command string ready for output 
    message = 'eight'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('eight1.wav'); 
    %sound(s, 16000) 

     

     
elseif MSETmin == MSET(9) 

     
    % Print command to command window 
    fprintf('\n\nThe command is nine\n\n') 
    % Create command string ready for output 
    message = 'nine'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('nine1.wav'); 
    %sound(s, 16000) 

     

  
elseif MSETmin == MSET(10) 

     
    % Print command to command window 
    fprintf('\n\nThe command is stop\n\n') 
    % Create command string ready for output 
    message = 'stop'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('stop1.wav'); 
    %sound(s, 16000) 

     



Appendix D  117 

 
elseif MSETmin == MSET(11) 

     
    % Print command to command window 
    fprintf('\n\nThe command is end\n\n') 
    % Create command string ready for output 
    message = 'end'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread(end11.wav'); 
    %sound(s, 16000) 

     
    break; 

     
elseif MSETmin == MSET(12) 

     
    % Print command to command window 
    fprintf('\n\nThe command is higher\n\n') 
    % Create command string ready for output 
    message = 'higher'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('high1.wav'); 
    %sound(s, 16000) 

     
elseif MSETmin == MSET(13) 

     
    % Print command to command window 
    fprintf('\n\nThe command is lower\n\n') 

  
    % Create command string ready for output 
    message = 'lower'; 
    % Set up scoket communication 
    server(message,output_port, number_of_retries)  

     
    %s = wavread('low1.wav'); 
    %sound(s, 16000) 

     
else 
    fprintf('\n\nERROR\n\n') 

     
end 

  
end 

 

 

 

 



Appendix D  118 

 

DCT Function 

function X = dct_kyle(Data) 

  
S_=size(Data); 
N=S_(2); 

  
 Sk(1:N)=1; Sk(1)=1/sqrt(2); 
   for k=0:N-1 
     X(k+1)=0; 
    for i=0:N-1 
        X(k+1)=X(k+1)+(Data(i+1).*cos(pi.*k.*(i+0.5)./N)); 
    end 
     X(k+1)=Sk(k+1).*sqrt(2/N).*X(k+1); 
   end 
end 

 

 

Voicebox Functions (Brookes 1998) 

 

MELBANKM 

function [x,mc,mn,mx]=melbankm(p,n,fs,fl,fh,w) 

%MELBANKM determine matrix for a mel/erb/bark-spaced filterbank 

[X,MN,MX]=(P,N,FS,FL,FH,W) 

% 

% Inputs: 

%       p   number of filters in filterbank or the filter spacing in k-

mel/bark/erb [ceil(4.6*log10(fs))] 

%       n   length of fft 

%       fs  sample rate in Hz 

%       fl  low end of the lowest filter as a fraction of fs [default = 0] 

%       fh  high end of highest filter as a fraction of fs [default = 0.5] 

%       w   any sensible combination of the following: 

%             'b' = bark scale instead of mel 

%             'e' = erb-rate scale 

%             'l' = log10 Hz frequency scale 

%             'f' = linear frequency scale 

% 

%             'c' = fl/fh specify centre of low and high filters 



Appendix D  119 

 
%             'h' = fl/fh are in Hz instead of fractions of fs 

%             'H' = fl/fh are in mel/erb/bark/log10 

% 

%             't' = triangular shaped filters in mel/erb/bark domain (default) 

%             'n' = hanning shaped filters in mel/erb/bark domain 

%             'm' = hamming shaped filters in mel/erb/bark domain 

% 

%             'z' = highest and lowest filters taper down to zero [default] 

%             'y' = lowest filter remains at 1 down to 0 frequency and 

%                   highest filter remains at 1 up to nyquist freqency 

% 

%             'u' = scale filters to sum to unity 

% 

%             's' = single-sided: do not double filters to account for 

negative frequencies 

% 

%             'g' = plot idealized filters [default if no output arguments 

present] 

% 

% Note that the filter shape (triangular, hamming etc) is defined in the mel 

(or erb etc) domain. 

% Some people instead define an asymmetric triangular filter in the frequency 

domain. 

% 

%              If 'ty' or 'ny' is specified, the total power in the fft is 

preserved. 

% 

% Outputs:  x     a sparse matrix containing the filterbank amplitudes 

%                 If the mn and mx outputs are given then size(x)=[p,mx-mn+1] 

%                 otherwise size(x)=[p,1+floor(n/2)] 

%                 Note that the peak filter values equal 2 to account for the 

power 

%                 in the negative FFT frequencies. 

%           mc    the filterbank centre frequencies in mel/erb/bark 

%           mn    the lowest fft bin with a non-zero coefficient 

%           mx    the highest fft bin with a non-zero coefficient 

%                 Note: you must specify both or neither of mn and mx. 

% 



Appendix D  120 

 
% References: 

% 

% [1] S. S. Stevens, J. Volkman, and E. B. Newman. A scale for the measurement 

%     of the psychological magnitude of pitch. J. Acoust Soc Amer, 8: 185–19, 

1937. 

% [2] S. Davis and P. Mermelstein. Comparison of parametric representations 

for 

%     monosyllabic word recognition in continuously spoken sentences. 

%     IEEE Trans Acoustics Speech and Signal Processing, 28 (4): 357–366, Aug. 

1980. 

  

  

%      Copyright (C) Mike Brookes 1997-2009 

%      Version: $Id: melbankm.m 713 2011-10-16 14:45:43Z dmb $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  

% Note "FFT bin_0" assumes DC = bin 0 whereas "FFT bin_1" means DC = bin 1 



Appendix D  121 

 
  

if nargin < 6 

    w='tz'; % default options 

    if nargin < 5 

        fh=0.5; % max freq is the nyquist 

        if nargin < 4 

            fl=0; % min freq is DC 

        end 

    end 

end 

sfact=2-any(w=='s');   % 1 if single sided else 2 

wr=' ';   % default warping is mel 

for i=1:length(w) 

    if any(w(i)=='lebf'); 

        wr=w(i); 

    end 

end 

if any(w=='h') || any(w=='H') 

    mflh=[fl fh]; 

else 

    mflh=[fl fh]*fs; 

end 

if ~any(w=='H') 

    switch wr 

                    case 'f'       % no transformation 

        case 'l' 

            if fl<=0 

                error('Low frequency limit must be >0 for l option'); 

            end 

            mflh=log10(mflh);       % convert frequency limits into log10 Hz 

        case 'e' 

            mflh=frq2erb(mflh);       % convert frequency limits into erb-rate 

        case 'b' 

            mflh=frq2bark(mflh);       % convert frequency limits into bark 

        otherwise 



Appendix D  122 

 
            mflh=frq2mel(mflh);       % convert frequency limits into mel 

    end 

end 

melrng=mflh*(-1:2:1)';          % mel range 

fn2=floor(n/2);     % bin index of highest positive frequency (Nyquist if n is 

even) 

if isempty(p) 

    p=ceil(4.6*log10(fs));         % default number of filters 

end 

if any(w=='c')              % c option: specify fiter centres not edges 

if p<1 

    p=round(melrng/(p*1000))+1; 

end 

melinc=melrng/(p-1); 

mflh=mflh+(-1:2:1)*melinc; 

else 

    if p<1 

    p=round(melrng/(p*1000))-1; 

end 

melinc=melrng/(p+1); 

end 

  

% 

% Calculate the FFT bins corresponding to [filter#1-low filter#1-mid filter#p-

mid filter#p-high] 

% 

switch wr 

        case 'f' 

        blim=(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    case 'l' 

        blim=10.^(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    case 'e' 

        blim=erb2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    case 'b' 

        blim=bark2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

    otherwise 



Appendix D  123 

 
        blim=mel2frq(mflh(1)+[0 1 p p+1]*melinc)*n/fs; 

end 

mc=mflh(1)+(1:p)*melinc;    % mel centre frequencies 

b1=floor(blim(1))+1;            % lowest FFT bin_0 required might be negative) 

b4=min(fn2,ceil(blim(4))-1);    % highest FFT bin_0 required 

% 

% now map all the useful FFT bins_0 to filter1 centres 

% 

switch wr 

        case 'f' 

        pf=((b1:b4)*fs/n-mflh(1))/melinc; 

    case 'l' 

        pf=(log10((b1:b4)*fs/n)-mflh(1))/melinc; 

    case 'e' 

        pf=(frq2erb((b1:b4)*fs/n)-mflh(1))/melinc; 

    case 'b' 

        pf=(frq2bark((b1:b4)*fs/n)-mflh(1))/melinc; 

    otherwise 

        pf=(frq2mel((b1:b4)*fs/n)-mflh(1))/melinc; 

end 

% 

%  remove any incorrect entries in pf due to rounding errors 

% 

if pf(1)<0 

    pf(1)=[]; 

    b1=b1+1; 

end 

if pf(end)>=p+1 

    pf(end)=[]; 

    b4=b4-1; 

end 

fp=floor(pf);                  % FFT bin_0 i contributes to filters_1 fp(1+i-

b1)+[0 1] 

pm=pf-fp;                       % multiplier for upper filter 

k2=find(fp>0,1);   % FFT bin_1 k2+b1 is the first to contribute to both upper 

and lower filters 



Appendix D  124 

 
k3=find(fp<p,1,'last');  % FFT bin_1 k3+b1 is the last to contribute to both 

upper and lower filters 

k4=numel(fp); % FFT bin_1 k4+b1 is the last to contribute to any filters 

if isempty(k2) 

    k2=k4+1; 

end 

if isempty(k3) 

    k3=0; 

end 

if any(w=='y')          % preserve power in FFT 

    mn=1; % lowest fft bin required (1 = DC) 

    mx=fn2+1; % highest fft bin required (1 = DC) 

    r=[ones(1,k2+b1-1) 1+fp(k2:k3) fp(k2:k3) repmat(p,1,fn2-k3-b1+1)]; % 

filter number_1 

    c=[1:k2+b1-1 k2+b1:k3+b1 k2+b1:k3+b1 k3+b1+1:fn2+1]; % FFT bin1 

    v=[ones(1,k2+b1-1) pm(k2:k3) 1-pm(k2:k3) ones(1,fn2-k3-b1+1)]; 

else 

    r=[1+fp(1:k3) fp(k2:k4)]; % filter number_1 

    c=[1:k3 k2:k4]; % FFT bin_1 - b1 

    v=[pm(1:k3) 1-pm(k2:k4)]; 

    mn=b1+1; % lowest fft bin_1 

    mx=b4+1;  % highest fft bin_1 

end 

if b1<0 

    c=abs(c+b1-1)-b1+1;     % convert negative frequencies into positive 

end 

% end 

if any(w=='n') 

    v=0.5-0.5*cos(v*pi);      % convert triangles to Hanning 

elseif any(w=='m') 

    v=0.5-0.46/1.08*cos(v*pi);  % convert triangles to Hamming 

end 

if sfact==2  % double all except the DC and Nyquist (if any) terms 

    msk=(c+mn>2) & (c+mn<n-fn2+2);  % there is no Nyquist term if n is odd 

    v(msk)=2*v(msk); 

end 



Appendix D  125 

 
% 

% sort out the output argument options 

% 

if nargout > 2 

    x=sparse(r,c,v); 

    if nargout == 3     % if exactly three output arguments, then 

        mc=mn;          % delete mc output for legacy code compatibility 

        mn=mx; 

    end 

else 

    x=sparse(r,c+mn-1,v,p,1+fn2); 

end 

if any(w=='u') 

    sx=sum(x,2); 

    x=x./repmat(sx+(sx==0),1,size(x,2)); 

end 

% 

% plot results if no output arguments or g option given 

% 

if ~nargout || any(w=='g') % plot idealized filters 

    ng=201;     % 201 points 

    me=mflh(1)+(0:p+1)'*melinc; 

    switch wr 

                case 'f' 

            fe=me; % defining frequencies 

            xg=repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng); 

        case 'l' 

            fe=10.^me; % defining frequencies 

            xg=10.^(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-me(1:end-

2),1,ng)+repmat(me(1:end-2),1,ng)); 

        case 'e' 

            fe=erb2frq(me); % defining frequencies 

            xg=erb2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-

me(1:end-2),1,ng)+repmat(me(1:end-2),1,ng)); 

        case 'b' 



Appendix D  126 

 
            fe=bark2frq(me); % defining frequencies 

            xg=bark2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-

me(1:end-2),1,ng)+repmat(me(1:end-2),1,ng)); 

        otherwise 

            fe=mel2frq(me); % defining frequencies 

            xg=mel2frq(repmat(linspace(0,1,ng),p,1).*repmat(me(3:end)-

me(1:end-2),1,ng)+repmat(me(1:end-2),1,ng)); 

    end 

  

    v=1-abs(linspace(-1,1,ng)); 

    if any(w=='n') 

        v=0.5-0.5*cos(v*pi);      % convert triangles to Hanning 

    elseif any(w=='m') 

        v=0.5-0.46/1.08*cos(v*pi);  % convert triangles to Hamming 

    end 

    v=v*sfact;  % multiply by 2 if double sided 

    v=repmat(v,p,1); 

    if any(w=='y')  % extend first and last filters 

        v(1,xg(1,:)<fe(2))=sfact; 

        v(end,xg(end,:)>fe(p+1))=sfact; 

    end 

    if any(w=='u') % scale to unity sum 

        dx=(xg(:,3:end)-xg(:,1:end-2))/2; 

        dx=dx(:,[1 1:ng-2 ng-2]); 

        vs=sum(v.*dx,2); 

        v=v./repmat(vs+(vs==0),1,ng)*fs/n; 

    end 

    plot(xg',v','b'); 

    set(gca,'xlim',[fe(1) fe(end)]); 

    xlabel(['Frequency (' xticksi 'Hz)']); 

end 

 



Appendix D  127 

 

RFFT.M 

function y=rfft(x,n,d) 

%RFFT     Calculate the DFT of real data Y=(X,N,D) 

% Data is truncated/padded to length N if specified. 

%   N even: (N+2)/2 points are returned with 

%           the first and last being real 

%   N odd:  (N+1)/2 points are returned with the 

%           first being real 

% In all cases fix(1+N/2) points are returned 

% D is the dimension along which to do the DF 

%      Copyright (C) Mike Brookes 1998 

%      Version: $Id: rfft.m 713 2011-10-16 14:45:43Z dmb $ 

% 

%   VOICEBOX is a MATLAB toolbox for speech processing. 

%   Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

%   This program is free software; you can redistribute it and/or modify 

%   it under the terms of the GNU General Public License as published by 

%   the Free Software Foundation; either version 2 of the License, or 

%   (at your option) any later version. 

% 

%   This program is distributed in the hope that it will be useful, 

%   but WITHOUT ANY WARRANTY; without even the implied warranty of 

%   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

%   GNU General Public License for more details. 

% 

%   You can obtain a copy of the GNU General Public License from 

%   http://www.gnu.org/copyleft/gpl.html or by writing to 

%   Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 

  

 



Appendix D  128 

 
s=size(x); 

if prod(s)==1 

    y=x 

else 

    if nargin <3 || isempty(d) 

        d=find(s>1,1); 

        if nargin<2 

            n=s(d); 

        end 

    end 

    if isempty(n)  

        n=s(d); 

    end 

    y=fft(x,n,d); 

    y=reshape(y,prod(s(1:d-1)),n,prod(s(d+1:end)));  

    s(d)=1+fix(n/2); 

    y(:,s(d)+1:end,:)=[]; 

    y=reshape(y,s); 

end 

 

Server.M 

 

%% Socket code - Server 
% SERVER Write a message over the specified port 
%  
% Usage - server(message, output_port, number_of_retries) 
function server(message, output_port, number_of_retries) 

  
    import java.net.ServerSocket 
    import java.io.* 

  
    if (nargin < 3) 
        number_of_retries = 20; % set to -1 for infinite 
    end 
    retry             = 0; 

  
    server_socket  = []; 
    output_socket  = []; 

  
    while true 

  



Appendix D  129 

 
        retry = retry + 1; 

  
        try 
            if ((number_of_retries > 0) && (retry > 

number_of_retries)) 
                fprintf(1, 'Too many retries\n'); 
                break; 
            end 

  
            fprintf(1, ['Try %d waiting for client to connect to this 

' ... 
                        'host on port : %d\n'], retry, output_port); 

  
            % wait for 1 second for client to connect server socket 
            server_socket = ServerSocket(output_port); 
            server_socket.setSoTimeout(1000); 

  
            output_socket = server_socket.accept; 

  
            fprintf(1, 'Client connected\n'); 

  
            output_stream   = output_socket.getOutputStream; 
            d_output_stream = DataOutputStream(output_stream); 

  
            % output the data over the DataOutputStream 
            % Convert to stream of bytes 
            fprintf(1, 'Writing %d bytes\n', length(message)) 
            d_output_stream.writeBytes(char(message)); 
            d_output_stream.flush; 

             
            % clean up 
            server_socket.close; 
            output_socket.close; 
            break; 

             
        catch 
            if ~isempty(server_socket) 
                server_socket.close 
            end 

  
            if ~isempty(output_socket) 
                output_socket.close 
            end 

  
            % pause before retrying 
            pause(1); 
        end 
    end 
end 

 

Client.M 

%% Socket Client 
% CLIENT connect to a server and read a message 
% 
% Usage - message = client(host, port, number_of_retries) 



Appendix D  130 

 
function message = client(host, port, number_of_retries) 

  
    import java.net.Socket 
    import java.io.* 

  
    if (nargin < 3) 
        number_of_retries = 20; % set to -1 for infinite 
    end 

     
    retry        = 0; 
    input_socket = []; 
    message      = []; 

  
    while true 

  
        retry = retry + 1; 
        if ((number_of_retries > 0) && (retry > number_of_retries)) 
            fprintf(1, 'Too many retries\n'); 
            break; 
        end 
        try 
            fprintf(1, 'Retry %d connecting to %s:%d\n', ... 
                    retry, host, port); 

  
            % throws if unable to connect 
            input_socket = Socket(host, port); 

  
            % get a buffered data input stream from the socket 
            input_stream   = input_socket.getInputStream; 
            d_input_stream = DataInputStream(input_stream); 

  
            fprintf(1, 'Connected to server\n'); 

  
            % read data from the socket - wait a short time first 
            pause(0.5); 
            bytes_available = input_stream.available; 
            fprintf(1, 'Reading %d bytes\n', bytes_available); 

             
            message = zeros(1, bytes_available, 'uint8'); 
            for i = 1:bytes_available 
                message(i) = d_input_stream.readByte; 
            end 

             
            message = char(message); 

             
            % cleanup 
            input_socket.close; 
            break; 

             
        catch 
            if ~isempty(input_socket) 
                input_socket.close; 
            end 
            % pause before retrying 
            pause(1); 
        end 
    end 
end 

 



Appendix D  131 

 

RobotStudio Code 

 

MODULE Socket 

 

VAR string message; 

 

VAR num retry_no := 0; 

 

VAR socketdev client_socket; 

 

VAR num speed := 100; 

 

 

CONST num retry1:= 40; 

 

CONST string one := "one"; 

CONST string two := "two"; 

CONST string three := "three"; 

CONST string four := "four"; 

CONST string five := "five"; 

CONST string six := "six"; 

CONST string seven := "seven"; 

CONST string eight := "eight"; 

CONST string nine := "nine"; 

CONST string stop := "stop"; 

CONST string end := "end"; 

CONST string higher := "higher"; 

CONST string lower := "lower"; 

 

CONST string error1 := "ERROR - Axis 1 limit"; 

CONST string error2 := "ERROR - Axis 2 limit"; 

CONST string error3 := "ERROR - Axis 3 limit"; 

CONST string error4 := "ERROR - Axis 4 limit"; 

CONST string demo := "Preparing for Demo"; 

CONST string demos := "Demo in Progress"; 

CONST string demof := "Demo Complete"; 

 

VAR num inc:= 0; 

VAR num inc1:= 0; 

VAR num inc2:= 0; 

VAR num inc3:= 0; 

 

 

PROC main() 

 

!Execute CFG data code below if retry error occurs 

 

!WriteCfgData "/SYS/SYS_MISC/NoOfRetry","Value",retry1; 

 

!WarmStart; 

 

FOR i FROM 1 to 1000 DO 

 

next: 

SocketConnect1; 

SocketReceive1; 

 

! One Command - axis 3 forward 

IF message = one  THEN 



Appendix D  132 

 
TPwrite one; 

IF inc2 = -234.9 THEN 

inc2:= inc2 + 14.9; 

ELSEIF inc2 <40 THEN 

inc2:= inc2+20; 

ELSEIF inc2 <50 THEN 

inc2:= inc2+14.9; 

ELSE 

TPwrite error3; 

GOTO next; 

ENDIF 

commandone; 

 

! Two Command - axis 2 forward 

ELSEIF message = two THEN 

TPwrite two; 

IF inc1 < 120 THEN 

inc1:= inc1+20; 

ELSEIF inc1 < 130 THEN 

inc1:= inc1+15.9; 

ELSE 

TPwrite error2; 

GOTO next; 

ENDIF 

commandtwo; 

 

! Three Command - axis 4 clockwise 

ELSEIF message = three THEN 

TPwrite three; 

IF inc3 = -199 THEN 

inc3:= inc3 + 19.9; 

ELSEIF inc3 <180 THEN 

inc3:= inc3+30; 

ELSEIF inc3<190 THEN 

inc3:= inc3+19.9; 

ELSE 

TPwrite error4; 

ENDIF 

commandthree; 

 

! Four Command - axis 1 clockwise 

ELSEIF message = four THEN 

TPwrite four; 

IF inc = -179.9 THEN 

inc:= inc + 29.9; 

ELSEIF inc < 150 THEN 

inc:= inc+30; 

ELSEIF inc < 170 THEN 

inc:= inc+29.9; 

ELSE 

TPwrite error1; 

GOTO next; 

ENDIF 

commandfour; 

 

! Five Command - Axis Limit demo 

ELSEIF message = five THEN 

TPwrite five; 

TPwrite demo; 

commandfive; 

 



Appendix D  133 

 
! Six Command - axis 1 anticlockwise 

ELSEIF message = six THEN 

TPwrite six; 

IF inc = 179.9 THEN 

inc:= inc - 29.9; 

ELSEIF inc > -150 THEN 

inc:= inc-30; 

ELSEIF inc > -170 THEN 

inc:= inc-29.9; 

ELSE 

TPwrite error1; 

GOTO next; 

ENDIF 

commandsix; 

 

! Seven Command - axis 4 anticlockwise 

ELSEIF message = seven THEN 

TPwrite seven; 

IF inc3 = 199 THEN 

inc3:= inc3 - 19.9; 

ELSEIF inc3 >-180 THEN 

inc3:= inc3-30; 

ELSEIF inc3>-190 THEN 

inc3:= inc3-19.9; 

ELSE 

TPwrite error4; 

ENDIF 

commandseven; 

 

! Eight Command - axis 2 backward 

ELSEIF message = eight THEN 

TPwrite eight; 

IF inc1 = 135.9 THEN 

inc1:= inc1 - 15.9; 

ELSEIF inc1 > -50 THEN 

inc1:= inc1-20; 

ELSE 

TPwrite error2; 

GOTO next; 

ENDIF 

commandeight; 

 

! Nine Command - axis 3 backward 

ELSEIF message = nine THEN 

TPwrite nine; 

IF inc2 = 54.9 THEN 

inc2:= inc2 - 14.9;  

ELSEIF inc2 > -220 THEN 

inc2:= inc2 - 20; 

ELSEIF inc2 > -230 THEN 

inc2:= inc2 - 14.9; 

ELSE 

TPwrite error3; 

GOTO next; 

ENDIF 

commandnine; 

 

! Stop Command - Return to Home position 

ELSEIF message = stop THEN 

TPwrite stop; 

commandstop; 



Appendix D  134 

 
 

! End Command - return to home and exit loop 

ELSEIF message = end THEN 

TPwrite end; 

commandend; 

break; 

 

! Higher Command - increase speed 

ELSEIF message = higher THEN 

TPwrite higher; 

commandhigher; 

 

! Lower Command - decrease speed 

ELSEIF message = lower THEN 

TPwrite lower; 

commandlower; 

 

! ERROR 

ELSE 

TPwrite "error"; 

ExitCycle; 

ENDIF 

 

 

ENDFOR 

 

ENDPROC 

 

 

PROC SocketConnect1() 

 

SocketCreate client_socket; 

 

SocketConnect client_socket, "139.86.166.26", 1234 \Time:=1; 

 

ERROR 

IF ERRNO = ERR_SOCK_TIMEOUT THEN 

 

IF retry_no < 20 THEN 

 

WaitTime 1; 

 

retry_no := retry_no + 1; 

 

TPwrite ""\Num:=retry_no; 

RETRY; 

ELSE 

RAISE; 

ENDIF 

ENDIF 

ENDPROC 

 

 

 

PROC SocketReceive1() 

 

SocketReceive client_socket \Str := message; 

 

SocketClose client_socket; 

 

retry_no := 0; 



Appendix D  135 

 
 

ENDPROC 

 

 

 

PROC commandone() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

 

PROC commandtwo() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

 

PROC commandthree() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

 

PROC commandfour() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

 

ENDPROC 

 

 

PROC commandfive() 

 

MoveAbsj [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

TPwrite demos; 

 

MoveAbsj [[179,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[-179,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], v1000, 

fine, tool0; 

MoveAbsj [[0,135,-150,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[0,-60,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], v1000, 

fine, tool0; 



Appendix D  136 

 
MoveAbsj [[0,0,54,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[0,60,-234,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], v1000, 

fine, tool0; 

MoveAbsj [[0,0,0,200,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[0,0,0,-200,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v1000, fine, tool0; 

MoveAbsj [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], v1000, 

fine, tool0; 

 

TPwrite demof; 

ENDPROC 

 

 

PROC commandsix() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

 

PROC commandseven() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

 

PROC commandeight() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

 

PROC commandnine() 

 

MoveAbsj 

[[inc,inc1,inc2,inc3,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

PROC commandstop() 

 

MoveAbsj [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

! Re-initialise angle variables 

inc:= 0; 

inc1:= 0; 

inc2:= 0; 



Appendix D  137 

 
inc3:= 0; 

 

ENDPROC 

 

 

PROC commandend() 

 

MoveAbsj [[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 

v10,\V:=speed, fine, tool0; 

 

ENDPROC 

 

 

PROC commandhigher() 

 

IF speed = 1000 THEN 

TPwrite "Speed at maximum"; 

ELSEIF speed <1000 THEN 

speed := speed + 100; 

TPwrite "Speed increased to " \Num:=speed ; 

ENDIF 

 

ENDPROC 

 

 

PROC commandlower() 

 

IF speed = 100 THEN 

TPwrite "Speed at minimum"; 

ELSEIF speed >100 THEN 

speed := speed - 100; 

TPwrite "Speed decreased to " \Num:=speed ; 

ENDIF 

 

ENDPROC 

 

ENDMODULE



Appendix E  138 

 

Appendix E 

Full code source file contained on submitted CD’s.  

Screenshots for Timing results can be found on submitted CD’s. 

Simulation video also available on submitted CD’s. 

 


