
University of Southern Queensland

Faculty of Engineering & Surveying

Unmanned Aerial Vehicle Static
Object Detection

A dissertation submitted by

James Timings

In fulfilment of the requirements of

ENG4112 Research Project

Towards the degree of

Bachelor of Engineering (Electrical)

Submitted: October, 2013

Abstract

The Outback Challenge competition held in Kingaroy each year is used to test commercial

and private teams to come up with an Unmanned Aerial Vehicle capable of

This dissertation aims to outline the development and implementation of a vision processing

system capable of finding a lost bushwalker using the colour of his clothes.

Unmanned Aerial Vehicles have long been in the realm of big business and government

organisations. Their cost, limited ability, and fragility have kept their use from becoming

mainstream. However, all that is set to change now that UAVs are becoming cheap and

robust. A fully autonomous fixed wing aircraft, with a flight time of over an hour, can be had

for as little as $300.

As the technology of unmanned aerial vehicles (UAVs) becomes more commonplace, finding

functions for them to perform becomes the realm of the engineer. As of now, UAVs are not

widely used in civilian life and are therefore an exciting field to use as a base for a research

project.

Due to the popularity of smartphones, the cost of digital cameras and small powerful

computers is rapidly decreasing. As a result computer vision is another exciting field which is

becoming more available to the public. Features such as facial recognition and gesture

control are examples of implementations of computer vision in modern smart phones.

Together, UAVs and computer vision allow us to create systems which are able to do the

jobs that previously required manned vehicles to complete, thus increasing efficiency, speed

and safety.

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health,

Engineering & Sciences, and the staff of the University of Southern Queensland, do

not accept any responsibility for the truth, accuracy or completeness of material

contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk

of the Council of the University of Southern Queensland, its Faculty of Health,

Engineering & Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity

beyond this exercise. The sole purpose of the course pair entitled “Research Project”

is to contribute to the overall education within the student’s chosen degree program.

This document, the associated hardware, software, drawings, and other material set

out in the associated appendices should not be used for any other purpose: if they are

so used, it is entirely at the risk of the user.

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and
conclusions set out in this dissertation are entirely my own effort, except where
otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course or institution, except where specifically stated.

Jim Timings
0050050174

Signature

31st October 2013 .

Date

Acknowledgements

I would like to include a brief message of thanks to the following people, without whom this

project would not have been possible.

Dr Tobias Low

Mr Matthew Peacock

Mr Philip Timings

I would also like to thank my friends and family for their support during this project and

throughout my university career at USQ.

Contents

Contents .. 6

Chapter 1 – Background Information... 9

1.1 Introduction ... 9

1.2 Project Aim .. 9

1.3 Project Objective ... 10

1.4 Overview of Dissertation ... 10

Chapter 2 - Literature Review .. 12

2.1 Introduction ... 12

2.2 Outback Challenge Competition Objective ... 12

2.3 Image processing to find static objects ... 12

2.4 Context .. 14

Chapter 3 - Methodology ... 15

3.1 Chapter Overview .. 15

3.2 Task Analysis .. 15

3.2.1 Camera Stabilisation .. 16

3.2.2 Image Processing ... 17

3.2.3 Data Flow Controller.. 17

3.2.4 Navigation.. 19

3.2.5 Flight Control ... 19

3.2.6 Testing ... 20

3.2.6.1 Effectiveness of the Image Processing System .. 20

3.2.6.2 Camera Range.. 20

3.2.6.3 Location Using Image .. 21

3.3 Resources .. 21

3.3.1 Development Hardware .. 21

3.3.2 Development Software.. 21

3.3.3 Sustainability ... 22

3.3.4 Safety ... 22

3.3.5 Ethical Considerations ... 22

3.4 Risk Assessment .. 23

3.5 Chapter Summary .. 23

Chapter 4 - Results and Discussion .. 24

4.1 Chapter Overview .. 24

4.2 Image Processing Methodology .. 24

4.2.1 Taking a Photo ... 24

4.2.2 Colour Threshold ... 25

4.2.3 Blob Extraction .. 26

4.2.4 Obtaining Coordinates ... 29

4.3 System Configuration .. 34

4.3.1 UAV Software .. 34

4.3.2 UAV Hardware ... 36

4.3.3 Base Station Software ... 38

4.3.4 Base Station Hardware .. 39

4.4 System Performance ... 40

4.4.1 Processing Speed and Code Efficiency .. 40

4.4.1.1 Code Efficiency .. 41

4.4.1.2 Processing Speed ... 41

4.4.2 Bushwalker Identification .. 41

4.4.2.1 Detection Rate ... 42

4.4.2.2 Different Terrain .. 43

4.5 Chapter Summary .. 43

Chapter 5 - Conclusion .. 44

5.1 Chapter Overview .. 44

5.2 Future Work .. 44

5.2.1 Efficiency and Processing Speed ... 44

5.2.2 Discrimination Techniques .. 45

5.3 Other Areas of Research .. 45

5.4 Summary .. 46

Chapter 6 - References .. 47

Appendix A – Project Specification.. 49

Appendix B.1 – Project Timeline ... 50

Appendix B.2 – Risk Assessment ... 51

Appendix C.1 – Vision Processing System Code .. 55

Chapter 1 – Background

Information

1.1 Introduction

As the technology of unmanned aerial vehicles (UAVs) becomes more commonplace, finding

functions for them to perform becomes the realm of the engineer. As of now, UAVs are not

widely used in civilian life and are therefore an exciting field to use as a base for a research

project.

Due to the popularity of smartphones, the cost of digital cameras and small powerful

computers is rapidly decreasing. As a result computer vision is another exciting field which is

becoming more available to the public. Features such as facial recognition and gesture

control are examples of implementations of computer vision in modern smart phones.

Together, UAVs and computer vision allow us to create systems which are able to do the

jobs that previously required manned vehicles to complete, thus increasing efficiency, speed

and safety.

1.2 Project Aim

The primary aim of this project is to design, develop and implement a UAV that is capable of

scanning a specified area to find a lost bushwalker using a vision system. The system will be

given the bushwalker’s approximate area and the details of the bushwalker’s clothes prior to

launch. Using these details the system will enter a search pattern over the area. Using a

computer vision system, the computer will continuously take photos and scan them to find a

match for the bushwalker. When the bushwalker has been located, the system will send

data back to the base station indicating that the bushwalker has been found. The system

should then command the UAV to descend to a lower height over the calculated location in

order to take another photo to confirm the sighting. If the sighting is confirmed, the system

will again signal the base station, and confirm the coordinates of the lost bushwalker.

The project aims to research existing image processing techniques that will allow the system

to recognise the bushwalker based on the colour of clothing and approximate size. The

system must be able to find the bushwalker in a range of different light conditions and

environments. It will do this by applying filters to the photograph prior to analysis.

Once the project is completed, it can be used for the Outback Challenge competition which

pits teams against each other to find a missing bushwalker using a UAV. The system may

also have use in real world emergency scenarios to find people lost in the bush.

Conceivably, due to the low cost of the vehicle, several UAVs could be deployed to different

areas in order to maximise the search area.

1.3 Project Objective

The objective of the project is to develop a system that consists of an RGB camera and

computer module that can be added to a UAV. The RGB camera should be attached to a

stabilized camera gimbal which is capable of constantly facing the camera at the ground.

The system should be able to periodically take photos of the ground and then analyse the

photo to recognise a specific object (in this case a lost bushwalker). The system will use a

Raspberry Pi ARM based linux computer to complete the image analysis. Furthermore the

system must have an interface that does not require significant technical knowledge to

operate. The project must also have the following components:

 Complete a literature review of current research in the area of UAV static obstacle
detection.

 Implement an RGB camera of sufficient resolution to adequately detect the bushwalker
from an altitude of approximately 120m.

 Use remote data link for relaying sensor data and controlling the UAV.

 Integrate an existing control system for a hobby grade UAV for the purposes of
developing object detection algorithms.

 Graph, evaluate and verify the output of algorithms by running simulations.

 Run controlled experiments to determine effectiveness of object detection such as:
o Return a found result when the UAV flies over an area with the bushwalker present.
o Return a not found result when the UAV flies over an area with no bushwalker

present.
o Have two bushwalkers in proximity of each other and find each one separately.

1.4 Overview of Dissertation

This dissertation aims to look at existing state of the art systems which use vision processing

to complete tasks which would otherwise be difficult or impossible for an unmanned

machine to complete. It will do this by looking at existing research work which has already

been completed and use this data to come up with the most accurate and efficient system

possible. Furthermore the competition on which this project is based, the Outback

Challenge competition, will be explored in further detail to make sure the project is meeting

the requirements set by the competition.

The dissertation will also define a method for the completion of the project outcomes. This

will look into how the system should work and what problems will need to be overcome to

generate a meaningful result for the project. From this step a plan for the project will be

generated which will identify the best way to meet the requirements of the project.

The next step of the dissertation will be to look into the results of the project by exploring

the hardware, software and testing procedures used in the project. From here the results of

the project will be examined to see if they satisfy the initial requirements defined early on.

Finally, future works and research will be looked into to discover if, time permitting, the

project goals could be extended and the system further expanded to fulfil its existing

purpose more quickly and efficiently. Other areas which the system could find potential use

will also be looked into.

Chapter 2 - Literature Review

2.1 Introduction

The field of object detection is one which has had much work completed on it over the

years. Its use is very wide, from counting manufactured parts in a processing plant, to

detecting human activity on surveillance cameras.

This chapter will look at the Outback Challenge competition which requires the entrants to

launch an aircraft able to autonomously find a lost bushwalker using a vision system.

It will also visit existing methods of static image detection and their goals. Work which has

been previously done in this area can be built upon or modified in order to achieve the best

possible outcome for the project.

2.2 Outback Challenge Competition Objective

Outback Joe is lost in the Australian outback and desperately needs assistance. Teams must

deploy a UAV to find him and deliver an emergency package via an air-drop.

The UAV system must be able to find Outback Joe in a predefined search area located in

Kingaroy in Southern Queensland. The mission boundary is 2 x 3 nautical miles. The aircraft

must comply with the following rules:

 The UAV must not fly below 200 ft.

 The UAV must not fly above 400 ft unless prior approval has been granted.

 The UAV is limited to a maximum altitude of 1500 ft AGL.

 In the instance that the UAV flies outside the search area boundary, the UAV must

automatically terminate its mission and crash into the ground.

The onboard system must be able to detect a human shaped dummy wearing a high visibility

shirt, jeans, and an Akubra hat. Once the UAV system has detected Outback Joe, the team

must provide the location to the judges. If 3 incorrect locations are provided to the judges

then the aircraft must return to base.

If the correct location is given then the system is given the go-ahead to drop the bottle of

water to Outback Joe. The bottle must contain at least 500mL of water and be able to be

opened and measured by a scrutineer on the range.

2.3 Image processing to find static objects

Now that we have defined what the system needs to do: namely analyse an image to look

for certain characteristics that the bushwalker has, we can research existing methods which

have been used to discover the presence of a certain object within an image.

Many object detection systems work by using a database of images which the system must

use to identify the shape of the image (Malik, J. ; Puzicha, J.) and (Salve, S.G. ; Jondhale,

K.C.). This system works by taking an image and using edge detection to find solid objects.

Figure 2.3.1 shows a picture of a rabbit statue which has been processed using edge

detection.

Figure 2.3.1 – Edge detection

As shown in the above example, the image has been processed to discover the object’s

edge. Once this edge has been identified, the process can then use shape detection to

match the shape of the rabbit to a database of images. If the rabbit matches one of the

database images then it receives a positive match and the rabbit is identified.

Using this method requires significant system resources as the system must cycle through

the database each time it analyses an image. Although this method would work well for the

proposed detection system of this project, the limited computer processing power of the

computer would limit its speed significantly. Furthermore, the shape of the bushwalker

from the UAVs perspective could change significantly depending on the pose the bushwalker

is in. For this instance the simpler method of blob size detection would work better and be

more efficient on the processing time of the image.

The method of using a colour threshold filter, and then blob extraction is based on the

method for shape detection. However, instead of using blob extraction result to determine

the shape of an object, instead only the size is used. This uses significantly less processing

power and is much less complicated than shape detection. However using this technique

would only be useful in this scenario because we know accurately how far the object is away

from the camera. Furthermore we have more than one blob to detect, so size and the

proximity of another suitably sized blob are used to discriminate the results. So whilst this

method would normally not be accurate to determine the presence of an object within an

image, in this case is actually quite accurate because of other information that has been

collected along with the image. Unfortunately no existing published research using this

method has could be found so the method is based on shape detection methodology

research.

2.4 Context

As evidenced by previous work (Torralba, A), the context of the scene is as important as the

object we’re looking for. For example, if we are looking at something far away, we know

that the object will appear smaller – we can use other objects in the environment to gauge

the size of the object. This is relevant to object detection as the system must be able to not

only recognise the object at one particular size, but at a size depending on how close it is to

the viewer (in this case a camera).

It seems that little work has been previously completed on using a camera to gauge location

in a photograph. This is most likely due to the fact that there is significant difference

between cameras depending on lens and focal length of the camera. Therefore the

workings of determining the location of the bushwalker using a photo will need to be

implemented from scratch. Furthermore the camera will need to be calibrated to allow for

accurate readings.

As modern computers are normally very powerful when it comes to raw processing of

calculations, it seems that little work has been completed on using computers with low

power for image processing for this type of application.

Chapter 3 - Methodology

3.1 Chapter Overview

Now that the project has a clearly defined outcome and research into previous systems has

been explored, we can look at how to achieve the project deliverables. This chapter will look

at the methodology of the project and what work will need to be undertaken to achieve the

outcomes of the project.

3.2 Task Analysis

The methods for finding the bushwalker during flight are separated into two separate

functions, namely image processing, and navigation. A flowchart showing the two functions

is displayed below in figure 3.1.1:

 Figure 3.3.1 - An overview of the UAV functions

Image processing is performed by a computer which is used to analyse photographs that are

taken during flight. The process is as per figure 3.1.1 above. Two important techniques will

be used to analyse each image taken during the flight of the UAV: a Threshold Colour Filter,

and Blob Extraction algorithm. Each photo will be scanned using a threshold colour filter to

find the colour of the shirt and pants of the bushwalker. If no instances of the colours are

found then the image is discarded and a new photo is taken. If an instance of both is found

then the image is passed to the blob detection filter to find the size of the blobs contained in

the photo.

Knowing the altitude of the craft at the time, the algorithm will be able to estimate an

approximate size of the bushwalker’s shirt and pants in the image. If it detects a blob that’s

within the tolerance of the size of the shirt, and also a blob that’s within tolerance of the

pants, and the two blobs are close together, then a match is identified.

The image is further analysed to determine the location of the blob with respect to the UAV.

3.2.1 Camera Stabilisation

Although camera stabilization is a relatively simple task for the UAV, it is important to be

tuned properly in order to maximise accuracy of the bushwalker detection system. The

camera must always be facing directly downwards, otherwise detection of the location of

the bushwalker could be skewed. Furthermore, if the stabilisation system does not

adequately balance out the movement of the UAV whilst it is in flight, then there’s the

chance for the photos to become blurry which would cause the vision processing to produce

erroneous results.

The existing system plugs directly into the control board of the UAV. The control board has

built in functionality for a camera gimbal using PWM outputs to servos.

The gimbal system that was chosen was a low-cost carbon fibre frame with a total of two

servos used to control the roll and tilt of the camera. This means that roll or tilt movements

by the airframe during flight are effectively neutralised by the system. No effort is made to

neutralise yaw movement as it is calculated out in the software. Figure 3.3.1.1 shows the

camera gimbal used.

Figure 3.3.1.1 – Camera Stabilisation Gimbal

3.2.2 Image Processing

The RGB (Red Green Blue) colour model is a method of creating a colour using different

values of intensity of red, green and blue light. Using this method of light mixing allows the

creation of every light colour in the visible light spectrum. Computers use digital values of

RGB in order to store and display colour information for each pixel on a computer monitor.

A standard pixel on a PC display is made up of 3 bytes of data, with each byte representing

the value of intensity of red, green and blue light. This means that each pixel is capable of

displaying 16.7 million unique colours.

Using this knowledge the image can be analysed to detect certain colours. For example, to

find the bushwalker’s yellow shirt, first of all we must determine what yellow is using RGB.

Pure yellow is Red: 255, Green: 255, and Blue: 0. Therefore, using a value of anything greater

than 250, 250, 0, we can inspect each pixel to see if it meets these requirements. Any pixel

colour value that does meet the requirement is given a 1, and a value that does not meet

the requirement is given a 0. This way we end up with a binary image showing yellow

sections as high. An example of the process is shown in figure 7.1.1:

Figure 7.1.1 – A before and after picture where the colour threshold filter has been applied

From the colour threshold filter we now have two binary images with yellow and blue

sections displayed. Using a method of image processing known as blob extraction, the

image can by analysed to find ‘blobs’, i.e. areas in which a cluster of pixels are joined

together. Using this method allows the image to be scanned to find regions of interest in

the image.

Using a two pass method, the algorithm goes through the image pixel by pixel to discover

whether it is connected to other pixels or not. A blob is identified by a unique number.

When a group of pixels is identified as a blob, the program is able to count the number of

pixels and use this value to check whether the blob is the bushwalker or not.

3.2.3 Data Flow Controller

To minimise weight, energy consumption and RF interference, only one telemetry system

will be used for all communication between the base station and the UAV. Specifically this

will be a 100mW 915MHz telemetry system based on the Zigbee protocol.

In order to allow the Vision Processing Unit (VPU), Flight Control Board (FCB) and Base

Station to communicate using a single serial line, a Data Flow Controller (DFC) system was

developed to facilitate changing the direction of data flow between devices. Figure 3.3.3.1

shows the configuration of the data flow controller.

Figure 3.3.3.1 – Data Flow Controller connected to Vision Processing Unit, Wireless

Telemetry Module and Control Board.

The system is controlled by the VPU using digital IO lines to determine the data flow

required. For the majority of the time the system will be set to communicate between the

control board and base station. This allows the base station to get information back from

the FCB to allow the user to see the status of the aircraft.

When the VPU takes a new photo, it needs to record altitude, coordinates and heading along

with the photo in order to complete the calculations required to identify the location of the

bushwalker. Therefore the data flow controller is switched to allow communication

between the Control Board and Vision Processing Unit. Once the heading, coordinates and

altitude have been recorded, the data controller switches to allow communication between

the flight controller and the base station. Generally it takes less than 0.1 seconds for the

VPU to be updated with the required data.

In the instance that the VPU has identified and located the bushwalker, the DFC will switch

flow from the VPU to the base station to allow a notification of the location to be

transmitted to the base station. Additional filtering of the signal is required on the base

station using software.

3.2.4 Navigation

If the program identifies the bushwalker within the image, the next step is to use the image

to find the coordinates of the bushwalker. In order to get an accurate coordinate using the

image alone, the program must have the following data:

 The coordinates of the UAV when the photo was taken

 The heading of the UAV

 The altitude of the UAV; and

 The lens shape

Using this data, the program can estimate where the bushwalker is in the photograph.

Additional experimentation and calibration of the camera must be completed to gain

accuracy of this calculated value. This is discussed further below in the chapter 4.

3.2.5 Flight Control

The UAV will be flown autonomously using a 3D Robotics APM Universal Autopilot board.

This board allows the autonomous control of virtually any vehicle including multicopters,

helicopters, boats, cars and, as in this case, fixed wing aircraft.

It uses Global Position System (GPS), Inertial Measurement Unit (IMU), barometer, and

magnetometer inputs in order to control the flight of the vehicle. All data is processed using

an Atmel 8 bit microprocessor (MPU). Table 3.3.5.1 shows the sensor-type and type of data

which it provides to the MPU.

Sensor Data

GPS Relays position and height data relative to the earth using satellite
telemetry.

IMU Uses solid state 3-axis accelerometers and 3 axis gyroscopes to determine
the level of the UAV relative to earth.

Barometer An electronic pressure measurement device used to determine altitude
(more accurately than the GPS unit)

Magnetometer An electronic magnetic field indicator used to determine the direction of
the UAV

Table 3.3.5.1

Using this data the board is able to control all control surfaces of the UAV using pulse width

modulation signals sent to servos and speed controller of the aircraft, which control ailerons,

elevator, rudder and throttle.

Due to the open source software on which the board runs, the internal code is publically

available and can be edited in order to suit different applications. It’s this flexibility that

makes it the best choice for the project. The board software can be edited to enable the

output of location, height and heading values to the raspberry pi unit via a hardware serial

port on the MPU. It is also able to receive data from the raspberry pi allowing the raspberry

pi to give the board new waypoints to navigate to.

3.2.6 Testing

Significant testing was required to gain data for the project such as:

 The effectiveness of the image processing system.

 The camera range.

 Ability to determine location using an image.

 Communication between the vision processing system and the flight control board.

These are further discussed in chapter 4.

3.2.6.1 Effectiveness of the Image Processing System

In order to determine the effectiveness of the vision system, a large range of experimental

photos were taken in different light conditions in order to validate the system’s ability to

detect the bushwalker. This tested the camera to find whether the colour detection system

remained reliable in different weather conditions, and at different times of the day. Once

this data was collected, the system can be calibrated depending on what sort of weather

conditions, and what time of day it is.

3.2.6.2 Camera Range

The camera being used in the aircraft must be lightweight, but also have the ability to

capture sufficient detail so that the bushwalker can be detected from altitude. However, the

camera will have a limit at which the distance is too great to be able to adequately

determine whether the bushwalker is present or not within the image. In order to test this

limit, photos must be taken at different altitudes to make sure that the vision system is still

functional. Ideally the system should be flown at 20 m increments in altitude and several

hundred images captured at each altitude. The images can then be set to be processed

through the image system to find whether the system can still accurately find the

bushwalker or not.

3.2.6.3 Location Using Image

Once the vision system has determined that an image contains the bushwalker, it must then

use the image to determine the location of the bushwalker relative to itself. To gain test

data for this, several location markers should be positioned on the field, and then the

aircraft should be flown over to take photos, also recording the altitude, heading and

location of the aircraft while the photos are being taken. Using the data, an algorithm can

be developed which can calculate a location of an object from the image.

3.3 Resources

3.3.1 Development Hardware

Table 3.4.1.1 shows a list of resources required in order to successfully realise the project

goals:

Resource Approximate Cost

Personal computer to be used to write and test code.
Also to communicate with the UAV for inflight data etc

$1000

Raspberry pi linux computer for on-board image
analysis

$40

Hobby grade model aircraft $200

Flight control board with telemetry $100

Lithium polymer batteries $20

Radio control system for manual control of UAV $50

Arduino MEGA microcontroller board for data control $50

RGB camera for image collection $50

General tools including soldering iron etc. $100

Total: $1610

Table 3.4.1.1 – Resources required for the project

Although the cost may seem quite significant, items such as the PC and general hardware

have all been purchased previously and therefore add no cost to the project.

All items that needed to be purchased were readily available and were delivered within 2

weeks or less. More details on the hardware used in the project can be seen in chapter 4.

3.3.2 Development Software

Other software used includes:

Software Use

Debian A Linux based operating system which has been compiled to run on the
Raspberry Pi’s ARM processor.

GCC An open source compiler included on the Raspberry Pi Debian operating

system. All software run on the Raspberry Pi Vision Processing Unit was
compiled using GCC.

Mission
Planner

Open source software developed to interface with the ardupilot flight
control board. Mission Planner has the ability to translate telemetry data
from the aircraft, as well as upload waypoints and control values to the
board.

AutoCAD Used to draw diagrams and models to aid in design.

Python Programming language used to translate incoming messages from vision
detection unit. Also used for colour detection software used to find colour
threshold values.

3.3.3 Sustainability

Consideration must be given to the sustainability of the project, especially the parts of the

UAV that are built from non-renewable resources. Some examples of non-renewables that

were used in the UAV are:

- Lead based solder

- Lithium polymer batteries

- Non sustainable energy supplies

Any items used in the project that are not considered to be of a non-renewable nature were

used sparingly and handled and disposed of in the correct manner.

3.3.4 Safety

All equipment used in the project complies with relevant Australian safety standards. All

potential risks were identified prior to implementation into the UAV. The result of the risk

assessment can be seen in section 3.6 below.

During testing of the UAV, all CASA regulations and laws pertaining to the use of UAVs were

strictly adhered to.

3.3.5 Ethical Considerations

To comply with ethical considerations of any works completed in the project, it is important

that due diligence in the testing and operation of the UAV was maintained.

The code of ethics provided by the Institute of Engineers Australia (Engineers Australia 2010)

was adhered to in matters of integrity, safety and sustainability. This was kept in mind in all

areas of the project work to achieve the best outcome for all concerned parties.

3.4 Risk Assessment

During the course of the project there is a risk that some activities may pose a potential

hazard. In order to minimise the risk of an accident causing harm to people or property the

activities must be identified so that control measures can be put in place. A full risk

assessment has been conducted for the project and can be seen in Appendix A.

3.5 Chapter Summary

This chapter has served to identify areas of preliminary research and work required to

complete the construction of apparatus and meet the goals of the project. Safety, ethics,

and environmental concerns were also discussed to make sure that the project work is

conducted in a manner that minimises any negative effects that may occur as a result of the

works. This was done by introducing proven strategies that have been designed to promote

an ethical and safe working environment.

Chapter 4 - Results and

Discussion

4.1 Chapter Overview

The purpose of this chapter is to explore the techniques used and the results that were

discovered as part of the project. Each component of the system is explained separately and

then tested to evaluate its performance.

Two clear metrics for performance can be identified to ascertain the success of the vision

processing system to meet its aims:

 Can the system adequately identify the bushwalker.

 Is the processing time of the identification algorithm completed in sufficient time to

match the speed of the UAV airframe.

These items will be addressed in this chapter.

4.2 Image Processing Methodology

As discussed in chapter 3, there are two main components to the vision processing system

which must be implemented in order to function, these are the colour threshold filter and

blob extraction algorithm. All functions are completed by the Raspberry Pi computer, and

are coded in c++ language using leafpad text editor and cmake c++ compiler. The software is

compiled to an executable file which is accessed after the computer has booted into its

operating system. The software is designed to work autonomously; so that apart from

turning the UAV on at the field, no further input should be required. The complete vision

processing code can be viewed in Appendix C.

4.2.1 Taking a Photo

The Raspberry Pi camera is instructed to take a photo by the vision processing software with

a delay time of zero seconds, and using a sport mode filter. The sport mode tightens the

exposure time so that minimal blur is caused by the movement of the UAV. The camera

captures a 5 MegaPixel (1944 by 2592 pixel) photo and stores it directly into the Raspberry

Pi Random Access Memory (RAM) ready for access by the vision processing system. The

camera is mounted on a stabilised gimbal which keeps the lens facing directly downward at

all times. This allows the vision processing system to have a reference to process each

image so that it can determine real world coordinates of the bushwalker when he is

discovered in the photo.

4.2.2 Colour Threshold

The colour threshold technique used in the vision processing system involves analysing the

values of each pixel to discover whether it falls into the desired range required to identify

the clothing of the lost bushwalker.

In order to correctly identify the range of colours that the colour threshold filter should

search for, images of the bushwalker are entered into software to analyse the image. The

image must have all background data removed manually prior to it being analysed by the

software. Figure 4.2.1.1 shows the image after all background data has been deleted ready

for analysis.

Figure 4.2.1.1 – Background data removed

The image analysis software runs in Python, and scans each pixel to find the highest and

lowest values of the colours within the image. In order to successfully identify colour ranges

for the shirt and pants separately, the image must be broken up into two images, one

containing only the shirt and one containing only the pants. Test photos taken in different

light conditions are analysed with the software to obtain the full range of colour values to

scan during flight.

Once these values have been obtained, they are able to be entered into the vision

processing algorithm. The image shown in figure 4.2.1.1 has been analysed and its values

shown in table 4.2.1.1 below.

 Red Min Red Max Green Min Green Max Blue Min Blue Max

Shirt 214 244 209 237 74 133

Pants 4 25 14 32 112 134

Table 4.2.1.1 – Example colour range found during software analysis.

Using the values, the colour threshold filter is able to scan an image pixel by pixel. If it

discovers a pixel that falls within one of the ranges, it writes a high value in a new array at

that pixel’s coordinate. It continues scanning the photo pixel by pixel until it reaches the end

of the image. We now have two 2d arrays, one with shirt data and one with pants data.

Figure 4.2.1.2 shows the result of this process once it has been run on the image in figure

4.2.1.1.

Figure 4.2.1.2 – Resultant 2d Binary Arrays, pants on the left and shirt on the right.

These arrays will be passed to the Blob Extraction algorithm.

4.2.3 Blob Extraction

Blob extraction (or Connected-component labelling) is a method of labelling pixels that have

matching properties and are adjacent to each other. By doing this we can identify the size

and location of a blob within a picture.

There are two methods of blob extraction – single and double pass. The method used for

the vision processing system is double pass. This may seem like a less efficient system, but

in this instance there is actually significant processor saving to be had by using the double

pass method.

Integral to this system is that we filter blob results for a certain range of blob sizes. In order

to do this, the aircraft was flown over the bushwalker at different altitudes in order to

record photographs over a range of altitudes to develop an algorithm that can predict the

required blob size based on the aircraft altitude. Table 4.2.2.1 shows size vs altitude of the

photographs.

Altitude (meters
above ground
level)

95 102 122 154

Shirt Pixel Count 224 207 102 70

Table 4.2.2.1 – Altitude vs Shirt Pixel Count

Using the data of these photographs, we can develop a graph which shows a range of values

vs the altitude. Figure 4.2.2.1 shows the resultant graph.

Figure 4.2.2.1 – Altitude vs Number of Pixels

Now the system can predict the range of pixel count values it is looking for depending on its

altitude. It should be noted that at this stage the vision processing system can only

determine its distance above ground using altitude; therefore it is assumed that the area

that is being flown is flat. In order for the system to remain reliable over areas which are not

flat, the system must contain height datum data which the system can use to calculate its

distance from the ground using altitude data. This is outside the scope of works for this

project, but is an area that could be looked into as part of future works on this system.

Now that the blob size has been calculated, we can begin the blob extraction. The system

uses a modified version of the 2-pass blob extraction method. The traditional 2-pass

method completes a first scan to label all pixels, and then a second scan to relabel all pixels

that were not identified as being connected in the first scan. The same method is used in

the bushwalker detection system, except that instead of automatically progressing to the

second scan after the first, the system looks at an index of connected components from the

first scan. Now, by adding the values of each separate component, we can gain the size of

each blob only. Using the data that we gained earlier which determined the size of the blob

we’re looking for, we can at this stage make a decision on whether the photo contains the

bushwalker or not. This is fast way of checking the blob size values, and means that we will

not continue to the second pass unless a match for the blob size has been found. Figure

4.2.2.2 shows a block diagram of the process.

y = -1.6073x + 352.46

-50

0

50

100

150

200

250

300

0 50 100 150 200 250

N
u

m
b

e
r

o
f

p
ix

e
ls

Altitude Above Ground

Altitude vs Number of Pixels

Use 8 - connectivity
connected component
extraction to identify pixels
that are part of a single blob.

Index all blobs which
are connected but
have different values.

Using altitude, identify
blob size values for
shirt.

Index all blobs which are
connected but have
different values.

Obtain 2d shirt array from
colour threshold algorith
and begin first pass of blob-
extraction.

Complete first pass

Obtain blob count totals
using index.

Do any of the blob
sizes match the size
determined by the
altitude?

End algorithm -
bushwalker not
found.

Continue to second pass
of algorithm. Look for
pants blob within vicinity
of shirt blob.

Figure 4.2.2.2 – Blob Extraction Algorithm Process

To begin with, only the shirt array is scanned. If a suitable blob size is not found during the

first pass, the photo and all arrays are discarded and the process goes back to the beginning

to process a new photograph. However, if a blob is found that does fit within the calculated

range, then a second pass is initiated to find the location of the shirt blob within the photo.

The location finds the first instance of the blob identification value, and returns an x,y

coordinate of the pixel within the photo.

We can now scan the photo for pants. Using the x,y coordinate of the shirt blob, a small

area around the shirt is scanned. Figure 4.2.2.3 shows the respective area scanned for the

shirt and pants.

Figure 4.2.2.3 – Scanned area for shirt and pants.

The scan area for the pants is determined using the altitude. The scan for the pants uses

considerably less processing resources than the shirt scan due to the much smaller scanning

area.

4.2.4 Obtaining Coordinates

Now that we have identified that the bushwalker is in the photo, and have his position, we

must now identify his location using geographic latitude and longitude – this is the system

used by GPS and can effectively determine any location around the world. To do this we use

the GPS coordinates, aircraft heading and aircraft altitude that were recorded initially when

the photograph was taken.

The first step is to convert the x,y location of the bushwalker in the photo to a polar

coordinate. We do this by examining the quadrant of the photo that the bushwalker is in.

This is a matter of subtracting the x,y coordinate values from the central position of the

photograph. If we have a positive value of x, then the coordinate is on the right side, else it

is on the left side. If we get a positive value of y, then the coordinate is on the bottom half

of the photo, and a negative value indicates the top half.

As the camera is facing directly downwards, we can assume that the UAV is at the centre of

the photo. We can now find the magnitude and angle in relation to the centre of the photo

as per the shown in figure 4.2.3.1.

Figure 4.2.3.1 – The UAV in relation to the found bushwalker.

Using these values, we can identify the magnitude and angle in relation to the UAV in the

photo. Eg.

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √Δ𝑥2 + Δ𝑦2

= √8732 + 3602

= 944

And angle:

(xPos – xCentre) is less than zero AND (yPos – yCentre) is less than zero, so we are in the 4th

quadrant. Therefore, add 270 degrees.

= 270 + tan−1
𝑜𝑝𝑝

𝑎𝑑𝑗

= 270 + tan−1
360

873

= 292 degrees.

We can now introduce the heading to the equation. Let’s say our aircraft is actually flying at

90 degrees, i.e due east. Figure 4.2.3.2 shows an example of this scenario.

Figure 4.2.3.2 – the UAV is flying eastward when it takes the photograph of the bushwalker.

In order to gain the true bearing of the bushwalker from the centre of the photo, we simply

add the aircraft heading and the bushwalker bearing together, and if the result is over 360°,
then we subtract 360.

i.e 292° + 90° - 360 = 22°

Now we can introduce altitude. The reason we take altitude into consideration is similar to
the blob detection system, we can estimate size. In this instance we are estimating distance.
A similar graph and subsequent algorithm was developed in order to measure distance in
the photo. Table 4.2.3.1 shows the photographs with two objects a known distance from
each other and their respective altitudes.

Altitude
(meters
above
ground
level)

85 98 125 145

Pixel
distance
between
objects

292 263 210 172

Table 4.2.3.1 – Altitude vs Shirt Pixel Count

We can chart these values to determine an algorithm to calculate distance, figure 4.2.3.5

Figure 4.2.3.5 – A graph showing Altitude Vs Pixel Distance

For the example, we can assume the UAV is at an altitude of 100 m. Using our formula, we

can calculate that each meter is equal to:

y = -0.5022x + 230.89

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

A
lt

it
u

d
e

 (
m

 a
b

o
ve

 g
ro

u
n

d
)

Distance (pixels)

Altitude Vs Pixel Distance

Pixel Distance (pixels/meter) = (Altitude - 230.89) / -5.022

Therefore, Pixel Distance = (100 – 230.89) / -5.022

= 26 pixels / meter

If we apply this now to our pixel magnitude, we can calculate the distance in meters:

944 / 26 = 36.3 m.

Finally we can introduce our latitude and longitude. To keep things simple, we will use an

approximation of latitude and longitude as if we were on the equator. This will introduce

some error (approximately 15 m in the worst case scenario), but will have sufficient accuracy

for the purpose of the project.

Our approximation is as follows:

One latitude degree = 110600 m

One Longitude degree = 111300 m

To discover the coordinates of the bushwalker we must convert the polar coordinates back

to x and y positions relative to the centre of the photograph.

The software must take into account which quadrant we are in, this will determine whether

we are to add or subtract from the latitude and longitude coordinates. As we are now in the

first quadrant, all our values will be adding to the latitude and longitude coordinates.

X position = 36.3 sin 22 = 13.6 m

Y position = 36.3 cos 22 = 33.7 m

If we have determined that the UAV GPS coordinate is at Latitude: -16.916128 and

Longitude: 145.771599 then:

Bushwalker latitude = UAV latitude + X Position / Latitude degree

= -16.916128 + 13.6 / 110600 = -16.916005

Bushwalker longitude = UAV longitude + Y Position / Longitude degree

= 145.771599 + 33.7 / 111300 = 145.771902

Figure 4.2.3.6 demonstrates the bushwalker’s found location.

Figure 4.2.3.6 – Bushwalker coordinates found.

4.3 System Configuration

4.3.1 UAV Software

The UAV is running several pieces of software during flight - these are listed below.

Vision Processing Software

This software was written using c++ programming language. Originally the programming

language to be used was python – which is user friendly and natively installed on the

Raspberry Pi computer. Unfortunately, as Python runs on a virtual machine rather than

running natively on the system processor, it was too slow to be considered for the final

version of the software. It was for this reason that c++ programming language was chosen,

as it compiles specifically for the Raspberry Pi computer, giving it a significant speed

advantage. For example, for the colour threshold process to complete it took approximately

20 seconds to do a complete pass of a five megapixel photo. The same process in c++ takes

approximately 0.22 seconds.

GCC

This is the software used to compile the c++ code and create an executable able to be run

from the command line interface on the raspberry pi.

Leafpad

A basic text editor with the ability to auto-indent and number each line.

Raspi-still

Software written specifically to interface with the Raspberry Pi camera. The software has

the ability to apply several different filters, change the exposure time, and change the

rotation of the photo and the file type that the file is stored in. The software was configured

to take a photo with a sport mode exposure which decreases the exposure time of the

camera. It was also set to rotate the photo by 180 degrees as the camera was upside down

with relation to the heading of the aircraft.

4.3.2 UAV Hardware

Figure 4.3.2.1 shows a diagram of the UAV and its associated hardware.

Figure 4.3.2.1 – Cross section of the UAV aircraft showing the internal hardware.

The following list briefly describes each piece of hardware in the UAV. Refer to figure 4.3.2.1
to see each piece of equipment.

1) 3D Robotics Flight Control Unit – An Arduino based dedicated flight controller board

with gyro, accelerometer, barometer, and magnetometer to control automated

flight of the UAV.

2) UBlox GPS unit – a GPS decoder plus GPS aerial to obtain location data.

3) Lithium Polymer Battery – 2 x 2200mAh 3 cell lithium polymer batteries for

dedicated supply to the aircraft motor. The batteries allow approximately 36 km

range on one charge. More batteries can be added to increase range, however

aircraft balance must be maintained.

4) Electronic Speed Controller – A variable speed drive for the brushless motor which

directly controls thrust.

5) Switch Mode Voltage Regulator – Step down voltage regulator supplying 5V from

battery to all systems in the UAV, not including the main motor.

6) Arduino MEGA Data Flow Controller – An Atmel MEGA 2560 microcontroller based

prototyping board programmed to control data flow between internal systems and

the telemetry link back to the base station.

7) Raspberry Pi Vision Processing Unit – A Raspberry Pi ARM computer used to receive

images and process them to locate a missing bushwalker.

8) Camera Stabilisation Gimbal – A two servo unit controlled by the flight controller

board to counteract roll and pitch of the UAV to keep the camera facing directly

downwards.

9) Raspberry Pi 5MP Camera – A small charge-coupled based camera which is able to

capture 5MP pictures using the Raspberry Pi’s on-board graphics accelerator.

10) Brushless Motor – 1150kV brushless electric motor, providing drive to the propeller.

Also not pictured is the 915MHz telemetry unit which is installed on the wing section to keep

it away from interference from other electronic components.

Figure 4.3.2.2 shows a wiring diagram of the hardware systems.

Figure 4.3.2.2 – Wiring diagram of the UAV system

Table 4.3.2.1 shows the cable schedule which relates to the wiring diagram.

Table 4.3.2.1 – Cable Schedule of UAV system

4.3.3 Base Station Software

The base station must run two main pieces of software simultaneously in order to decipher

all data returning from the UAV. The following section details the software required and its

purpose.

Mission Planner:

Mission Planner is open source software created by Michael Osborne. It interfaces directly

with the ardupilot flight control board via the wireless telemetry system and translates

incoming flight data (heading, location etc.). It also allows the user to enter waypoints using

a graphical point and click system for the UAV to follow. Figure 4.3.3.1 shows a screenshot

of Mission Planner being used in the Flight Planner mode, allowing the user to choose and

then upload a flight plan for the UAV.

Cable ID Cable Type Qty Length Function Colour From Terminal To Terminal

6/7 UART3
0.180 mm²

1C
2 150 mm

TTL Data IO from Flow Controller to

Wireless Telemetry Module

Yellow /

Green
Data Flow Controller

150 mm2
0.180 mm²

1C
Data Flow Controller

Grey USB0

White Digital IO Pin 2

Blue Digital IO Pin 3

UART14/5

8 PWM IN
0.180 mm²

1C
5 80 mm

USB0 Data Flow Controller

VPU to Control Board Selector

1 USB0 4C USB DATA 1 100 mm Data / Power Supply Vision Processing Unit

TTL Data IO from Flow Controller to

Control Board

14 GPS DATA
0.180 mm²

1C
4

15 PWM OUT

Tx3 / Rx3 Wireless Telemetry Module Tx3 / Rx3

PWM data from RC Receiver to

Control Board

Red /

Brown /

Orange

100 mm GPS Data Multi Arduplane Control Board GPS Socket GPS Unit
Data Cable

Socket

0.180 mm²

1C
6

PWM output data from Control

Board to Servos / Speed Controller /

Camera Gimbal

Multi Arduplane Control Board
Output Pins 1 to

6

Servos / Speed Controller / Camera

Gimbal

16 KEYB Wireless Dongle for Keyboard Vision Processing Unit USB1

11

Arduplane Control Board Input Pins 1 to 5

Vision Processing Unit
MicroUSB Power

Socket

5V DC Supply Red / Black5V DC
0.25 mm²

1C
2 150 mm

9 5V DC

RC Receiver

0.180 mm²

1C
2 150 mm 5V DC Supply

Pins 1 to 5

Red / Black Arduplane Control Board Common DC Rail

2 DIGI1
0.180 mm²

1C
1 100 mm

3 DIGI2
0.180 mm²

1C
1 100 mm

UBEC Power Supply DC Output Arduplane Control Board Common DC Rail

5V DC Supply Red / Black

VPU to Telemetry Selector Vision Processing Unit Digital IO Pin 1 Data Flow Controller

Vision Processing Unit Digital IO Pin 2 Data Flow Controller

Yellow /

Blue
Tx1 / Rx1Tx1 / Rx1 Arduplane Control Board

5V DC
0.180 mm²

1C
2 150 mm Arduplane Control Board Common DC Rail RC Receiver Common DC Rail

13 CAM DATA
0.070 mm²

1C
12 100 mm Camera Data Grey Vision Processing Unit Camera Socket Camera Module

Data Cable

Socket

12

Figure 4.3.3.1 – Mission Planner

Python:

Python is used for two main purposes on the base station computer, for obtaining colour

threshold limits for the image processing system, and also to decode messages that are

being sent by the Raspberry Pi whilst the UAV is scanning.

4.3.4 Base Station Hardware

The base station consists of a laptop computer running windows, and a camera tripod to

mount the telemetry aerial to. A photo of the base station can be seen in figure 4.3.4.1

below.

Figure 4.3.4.1 – Base station, consisting of tripod, table, laptop and telemetry unit.

4.4 System Performance

The processing time per image is limited by the cruising speed of the airframe, and the

amount of area that can be captured in each image. At 120m, each photograph captures

approximately 100 m in the direction of heading. The airframe has been tested to

approximately 20 m/s maximum airspeed. This means that time taken from taking the

image to complete all processing must take less than five seconds. Ideally, even less than 5

seconds, so that there is some overlap between each image being taken. The processing

speed is discussed in the next topic.

4.4.1 Processing Speed and Code Efficiency

Two measures were put in place to decrease the time taken for each image to be processed.

Firstly, the code was developed in such a way that unnecessary processing was removed

from the algorithms. Secondly the raspberry pi computer was overclocked to increase

processing speed.

4.4.1.1 Code Efficiency

Several techniques were implemented to decrease processing time through code. These are

 Writing photograph data to a ram drive to decrease disc access time.

 Initialising all arrays once only on boot-up of the software and re-using the same

memory allocation for each new image.

 Determining early on whether an image meets certain requirements (such as total

shirt pixel values) and if not, exiting the process early and capturing a new image.

 Processing the entire image for the shirt, but only processing a small area to look for

pants once a shirt blob has been identified.

4.4.1.2 Processing Speed

The Raspberry Pi computer has a low powered ARM CPU that has a default clock frequency

of 700 MHz, core frequency of 250 MHz and 400 MHz RAM frequency. Whilst this frequency

is sufficient for the system for the most part, more performance can be gained from the unit

if it is overclocked.

Fortunately data exists already on the stability of the pi in its overclocked state. With an

ambient temperature of 28 degrees, and overclocked to 1000MHz CPU, 450 MHz core, and

450 Mhz RAM, the CPU will heat up to approximately 55 degrees, well below its 85 degree

maximum temperature threshold. The CPU will also underclock itself in the instance that

the CPU temperature exceeds 85 degrees. This overclock will increase processing

performance by approximately 50%, which cuts the processing time of vision processing

down significantly. For these reasons the system is overclocked with the settings listed

above.

In order to aid in cooling, air vents have been placed in the UAV fuselage to channel air

directly onto the CPU. No further measures were put in place for active heat dissipation of

the UAV.

4.4.2 Bushwalker Identification

Now that a system for identifying the bushwalker has been developed, the system must be

tested to gauge the ability of the system to accurately and repeatedly detect the

bushwalker. In order to do this, test images are obtained over different terrains and in

different light conditions to see if problems can be detected and subsequently solved.

4.4.2.1 Detection Rate

During the daytime with good lighting conditions, and using a dummy bushwalker with blue

pants and yellow high-vis shirt, the system is 100% accurate in detecting the bushwalker,

and rejecting photos that are not of the bushwalker. This result is regardless of the different

background terrains that were tested. Results of this can be seen in figure 4.4.2.1.1 below.

Figure 4.4.2.1.1 – Photos on a clear day at 1.30pm with red box indicating that the vision

processing system has detected the bushwalker.

However, problems arise at dusk when black jeans are used instead of the blue pants.

Figure 4.4.2.1.2 show the result of the vision processing system under these conditions.

Figure 4.4.2.1.2 – Photos on a cloudy day at 5.30pm in winter with red box indicating that

the vision processing system has detected the bushwalker.

As shown in figure 4.4.2.1.1 the photos are very blurry, and the black pants don’t show up

clearly. Even though detection of the bushwalker remains at 100%, we end up with some

false detections, including the second photo in figure 4.4.2.1.1 which is a yellow lid wheelie

bin, not the bushwalker.

Whilst this is a useable result, there’s no question that this is a limitation of the system in

terms of potentially detecting objects that are not desired to be detected. For this reason

further work would need to be completed on the system to integrate another filter such as

shape detection. It should also be noted that the bright yellow colour seems to be fairly rare

in general photographs – if different coloured shirt or pants were used (especially darker

colours) then there could potentially be more false detections. More testing would need to

be completed in order to fully explore any issues that may arise as a result of using different

coloured clothes.

4.4.2.2 Different Terrain

As finding different terrain types over which to fly the UAV proved to be quite difficult (areas

around Cairns that were suitable to fly the UAV over seemed to be exclusively green), test

images were formed using a simple bitmap editing program, and images from google maps.

An image from google images of the 2012 Outback Challenge competition was also used. Of

these images, the terrain types were tested with the vision processing system, and each

posed no problem with detecting the bushwalker as long as the blue pant, yellow shirt

dummy was used. Figure 4.4.2.2 shows an example of the bushwalker being detected over

two other terrain types.

Figure 4.4.2.1 – Detection over different terrain. Left: an image made using terrain from

google maps. Right: an image taken during the 2012 competition.

4.5 Chapter Summary

This chapter has looked at how the image processing system works in terms of colour

threshold, blob extraction and coordinate translation. We have also looked at the software

and hardware used in the system. It has been shown that the project was able to meet most

of the objectives set for it, with some limitations on the system such as inaccuracies at low

light levels. However for the most part, the project can be deemed successful.

Chapter 5 - Conclusion

5.1 Chapter Overview

This chapter looks into possible further research work that could be explored in order to

improve the project outcomes.

5.2 Future Work

As a useable project for the Outback Challenge competition, the project has met all the

requirements and should perform satisfactorily in searching for and finding the lost

bushwalker. The project demonstrated that using a mixture of colour threshold and blob

size extraction the bushwalker could be successfully identified from the UAV using a

standard RGB digital camera. However, the project could still be improved to make the

detection system more efficient, and have higher discrimination of the bushwalker.

5.2.1 Efficiency and Processing Speed

Future testing should be completed to look into the resolution of the photographs to see

whether reducing the resolution would indeed still net the same results. For example

reducing the resolution from 5MP to 2MP would effectively cut the processing time by more

than half. However it would need to be proven that no accuracy was lost. Certainly there is

likely to be a peak point at which the resolution is still high enough that the bushwalker can

be easily identified. This point would represent the most efficient use of the processing

ability of the onboard computer.

Multitasking is another area in which no effort was spent to identify potential improvements

in processing speed. It could be easily seen by looking at the processor use meter on the

raspberry pi, that whilst a photo was being taken (approximately 1 second of time) that the

processor was not being used at all. This is likely because the graphics processor was doing

most of the work of image compression, and the central processor was doing very little

during this time. It is therefore feasible that the process could trigger a new photo to be

taken while it is still processing an existing photo, thereby not wasting processing time whilst

the photo is being taken. This would make a significant improvement to the processing

speed of each image, as 1 second equates to approximately one third of a complete image

process.

Rather than improving the efficiency of the system, instead additional processing speed

could be added to the system by using two computers instead of the single computer used

in the existing system. As the Raspberry Pi uses a modest 2W of power during maximum

processing speed, an additional Raspberry Pi could be added to the system in order to

effectively double the processing speed without significantly increasing the requirement for

power by the system. This would work well in that both computers could share the same

camera and take turns processing images. Of all of the proposed speed increase measures

this one would be the simplest.

5.2.2 Discrimination Techniques

Whilst the system was proven to work well during good light conditions, there could still be

improvements made to help during low light conditions, and to further discriminate the

results to reduce false detections. The below techniques will look at future works that could

potentially improve the ability of the system to discover the bushwalker and reduce the

number of false detections during low light conditions.

The simplest and easiest improvement to implement would be to use a camera with better

low light capabilities. This would likely be a camera with a larger CCD sensor which is able to

capture more of the available light in each shot and therefore obtain a clearer and more

accurate photo to process. This would reduce the blurriness experienced using the

raspberry pi camera during low light conditions which caused blob corruption during

processing and thus false detections.

Furthermore the use of shape detection to identify the bushwalker would take significant

effort to implement but would produce a much more accurate result. Using shape detection

would also allow the user to use the system more easily in other applications. In this

instance using Gaussian edge detection instead of colour threshold would likely produce a

faster system when using shape detection. However it would still likely be more processor

intensive than the existing system and therefore would require greater processing power as

discussed in section 5.2.1.

5.3 Other Areas of Research

Due to the system’s relative inexpensiveness and simplicity – its abilities could easily be

turned to other applications. Detailed reports of these other applications are outside the

scope of this project and would require more research to be completed before the system

could be deemed as worthy for the application. Some of these systems are briefly discussed

below.

Above ground asset inspection such as powerline inspection which is normally completed by

manned helicopters could be a potential future use for the system. As the system already

has the ability to guide itself using the vision processing system, it could feasibly identify a

powerline or powerpole / transmission tower to navigate to and photograph. The system

could be fitted with different cameras such as infrared or heat detection cameras in order to

discover potential trouble spots on the line. The research into this would need to include

programming the ability of the vision processing system to identify the powerlines.

Obviously the navigation system of the aircraft could be loaded with the GPS coordinates of

the powerlines so that it would only need minimal help from the vision processing system in

order to aid its progress.

Rescue work is also an area which the system could be used. For example a team of UAVs

could be used to search areas to find bushfires to prevent them spreading. This is an area

that typically requires manned vehicles, so in using a UAV the risk of an air crash which

endangers lives is reduced. In order to tune the system to discover fires, or other objects, a

different programming algorithm should be used. Research into the best algorithm, and

indeed the best sensor type would need to be conducted in order to find the best system for

this purpose. Potentially using an infrared camera instead of a traditional colour camera

may produce better results.

Further research should also be completed in the use of Gaussian edge detection and shape

detection to investigate its usefulness. Whilst it is dismissed in this report as being too

complicated and processor intensive, it may produce better results and for that reason it

would be worth researching.

5.4 Summary

This chapter has explored future works that could be done to increase the performance of

the system. It has also looked into potential areas of research which could be done to

further enhance the applications the UAV could be applied to. Overall, a UAV platform with

an on-board vision processing computer could have very many uses. With increases in

computer performance and refinement of the existing platform there is no telling what uses

may be gleaned from the system. It is certainly a very dynamic and exciting field to be

involved with as it becomes more commonplace and UAV technology matures.

Chapter 6 - References
CMake - Cross Platform Make. 2013. CMake - Cross Platform Make. [ONLINE] Available

at: http://www.cmake.org/. [Accessed 31st August 2013].

DIY Drones. 2013. DIY Drones. [ONLINE] Available at: http://www.diydrones.com/. [Accessed

10th January 2013].

Evangelio, R and Sikora, T. (2010), ‘Static Object Detection Based on a Dual Background

Model and a Finite-State Machine.’

http://jivp.eurasipjournals.com/content/2011/1/858502. [Online; accessed 20th May 2013].

Evangelio, R.H. ; Patzold, M. ; Sikora, T. (2011), ‘A system for automatic and interactive

detection of static objects.’

http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=5712365.

[Online; accessed 20th May 2013].

GCC, the GNU Compiler Collection - GNU Project - Free Software Foundation (FSF).

2013. GCC, the GNU Compiler Collection - GNU Project - Free Software Foundation (FSF).

[ONLINE] Available at: http://gcc.gnu.org/. [Accessed 18th March 2013].

GitHub · Build software better, together.. 2013. GitHub · Build software better, together..

[ONLINE] Available at: https://github.com/. [Accessed 18th March 2013].

Malik, J. ; Puzicha, J. (2002), ‘Shape matching and object recognition using shape contexts.’

http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=993558.

[Online; accessed 20th May 2013].

OpenCV | OpenCV. 2013. OpenCV | OpenCV. [ONLINE] Available at: http://opencv.org/.

[Accessed 31st July 2013].

Python Programming Language – Official Website. 2013. Python Programming Language –

Official Website. [ONLINE] Available at: http://www.python.org. [Accessed 20th March

2013].

Radio Control Planes - Hobbyking . 2013. Radio Control Planes, Helicopters, Cars, Boats, FPV

and Quadcopters - Hobbyking . [ONLINE] Available at:

http://hobbyking.com/hobbyking/store/index.asp. [Accessed 12th January 2013].

Raspberry Pi | An ARM GNU/Linux box for $25. Take a byte!. 2013. Raspberry Pi | An ARM

GNU/Linux box for $25. Take a byte!. [ONLINE] Available at: http://www.raspberrypi.org.

[Accessed 18th March 2013].

Salve, S.G. ; Jondhale, K.C. (2010), ‘Shape matching and object recognition using shape

contexts.’

http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=5565098.

[Online; accessed 20th May 2013].

http://www.cmake.org/
http://www.diydrones.com/
http://jivp.eurasipjournals.com/content/2011/1/858502
http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=5712365
http://gcc.gnu.org/
https://github.com/
http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=993558
http://opencv.org/
http://www.python.org/
http://hobbyking.com/hobbyking/store/index.asp
http://www.raspberrypi.org/
http://ieeexplore.ieee.org.ezproxy.usq.edu.au/stamp/stamp.jsp?tp=&arnumber=5565098

Wang, J and Ooi, WT. (1999), ‘Detecting Static Objects in Busy Scenes.’

http://www.ecommons.cornell.edu/bitstream/1813/7384/1/99-1730.pdf. [Online; accessed

20th May 2013].

http://www.ecommons.cornell.edu/bitstream/1813/7384/1/99-1730.pdf

Appendix A – Project Specification

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/4112 Research Project
Project Specification

For James Timings
Topic UAV Static Obstacle Detection
Supervisor Tobias Low
Enrolment ENG4111 – S1, 2013

ENG4112 – S2, 2013
Project Aim This project seeks to develop a system to allow an unmanned aerial vehicle to

detect a lost bushwalker (dummy) below it, and navigate itself to the
bushwalker to confirm the sighting.

Programme Issue B, 1st May 2013

 Complete a literature review of current research in the area of UAV static obstacle
detection.

 Implement an RGB camera of sufficient resolution to adequately detect the bushwalker
from an altitude of approximately 120m.

 Use remote data link for relaying sensor data and controlling the UAV.

 Integrate an existing control system for a hobby grade UAV for the purposes of
developing object detection algorithms.

 Graph, evaluate and verify the output of algorithms by running simulations.

 Run controlled experiments to determine effectiveness of object detection such as:
o Return a found result when the UAV flies over an area with the bushwalker present.
o Return a not found result when the UAV flies over an area with no bushwalker

present.
o Have two bushwalkers in proximity of each other and find each one separately.

Appendix B.1 – Project Timeline

Task Description Completion Date

Topic definition 8th March 2013

Specifications 13th March 2013

Literature review 3rd May 2013

Build and test UAV 10th May 2013

Collect test images 10th May 2013

Develop image processing system 24th May 2013

Preliminary report 29th May 2013

Implement image processing system to UAV 21st June 2013

Develop navigation system 12th July 2013

Implement navigation system to UAV 26th July 2013

Test complete system 23rd August 2013

Project presentation 26th September 2013

Final dissertation 23rd October 2013

Appendix B.2 – Risk Assessment

The activities that are deemed most hazardous are identified below:

 Flying the UAV in an area where it could potentially lose control and crash

 Contacting a spinning propeller

 Receiving a shock from low voltage electronics

 Receiving a burn from a soldering iron

 Lithium polymer batteries short circuiting and combusting

 Tripping or falling whilst working outdoors

 Repetitive strain injuries from long term computer use

Now that the hazards have been identified we can use a risk matrix to identify the level of

risk. Figure 8.1 shows a risk matrix

Consequence
↓

Likelihood
→

Rare Possible Almost Certain

Catastrophic MEDIUM HIGH HIGH

Moderate LOW MEDIUM HIGH

Insignificant LOW LOW MEDIUM

Figure 8.1 – Risk matrix

Using the risk matrix we can assess the activities to determine a risk rating for each activity.

If an activity is a LOW rating then no control measures are required. Figure 8.2 classifies

each activity based on its risk rating. Those above a LOW must have control measures

impletemented.

Activity Consequence + Likelihood Risk

Flying the UAV in an area
where it could potentially
lose control and crash

Moderate + Possible MEDIUM

Contacting a spinning
propeller

Catastrophic + Possible HIGH

Receiving a shock from low
voltage electronics

Insignificant + Rare LOW

Receiving a burn from a
soldering iron

Moderate + Rare LOW

Lithium polymer batteries
short circuiting and
combusting

Catastrophic + Rare MEDIUM

Tripping or falling whilst
working outdoors

Moderate + Rare LOW

Repetitive strain injuries
from long term computer
use

Moderate + Possible MEDIUM

Figure 8.2 – Activities with risk rating assigned

Four activities require control measures in order to reduce their risk rating to a LOW.

 Flying the UAV in an area where it could potentially lose control and crash:

This is of moderate likelihood as the control software will be being tested for the first time

whilst in the air. Although every effort will be made to make sure that the software is robust

and will not cause problems with the control of the UAV by thoroughly testing it prior to

launch, there is still a possible likelihood of the software becoming unstable.

However, the consequence is only Moderate if the UAV crashes into a person or property.

Crashing into the ground has no risk except for the UAV, which is expendable. Therefore the

control measure required is to fly the UAV well away from people and property to minimise

the risk of external damage. If test flying in an open area away from people, the risk

consequence can be reduced to a Low.

 Contacting a spinning propeller

The propeller on model aircraft is very small, but can spin at speeds of up to 10000 RPM.

This is potentially very damaging to fingers and hands which could go near the propeller

whilst it is spinning. Figure 8.1 shows the aircraft propeller.

To control this risk, the motor must not have power to it until it is ready to launch. When

the motor has power to it, it produces an audible alarm to indicate that it is armed and could

spin. In this instance hands must be kept well away from the aircraft at all times. As the

aircraft is to be hand launched, however, the person launching the aircraft must be fully

briefed on the technique and risks prior to launch.

With these controls in place, the risk can be brought down to Moderate + Rare equalling a

Low risk.

Figure 8.1 – Aircraft propeller capable of speeds of up to 10000 RPM.

 Lithium polymer batteries short circuiting and combusting

As lithium polymer batteries have a low internal resistance and a high discharge rate, they

can potentially cause a significant amount of heat energy if they are allowed to short circuit

through high gauge wires. Therefore they could potentially cause catastrophic damage to

persons or property.

The likelihood of an unintentional short circuit occurring is rare, as modern plugs and

recharging systems have safeguards against such an event. However, if the systems in place

were to fail then there is a potential risk. Therefore to negate this risk, all batteries should

be recharged and stored in a bag designed for this purpose. Using the bag we can reduce

the consequence to Moderate. Figure 8.2 shows an image of the safe-bag.

Figure 8.2 – charging bag

 Repetitive strain injuries from long term computer use

This is a potential risk with any long-term office use environment. Fortunately there are

tried and proven methods to minimise the risk. Figure 8.3 shows a diagram of how to

properly set up an office environment to minimise repetitive strain injuries.

Figure 8.3 – An example of ergonomic desk layout to minimise the risk of repetitive strain

injuries

Appendix C.1 – Vision Processing System Code

//test a jpeg for bushwalker

#pragma pack(2)

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <vector>

#include <opencv2/core/core.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <iostream>

#include <cstdio>

#include <ctime>

#include <stdlib.h>

using namespace cv;

using namespace std;

vector<char> buffer;

int dimX;

int dimY;

int j = 0;

int k = 0;

int regionCounter = 0;

int blobNumber = 0;

int blobSet = 0;

int tempArray[4];

int unionArray[4];

int shirtSamies[20000];

int shirtsamiesCount = 0;

int shirtblobVal[20000];

int pantsSamies[20000];

int pantssamiesCount = 0;

int pantsblobVal[20000];

int shirtpixelCount = 0;

int pantspixelCount = 0;

char imageCommand[256];

bool pixelTest = false;

bool pantsFound = false;

int imageNumber = 120;

int separationValue = 80;

Mat img;

int shirtBlueMin = 0;

int shirtBlueMax = 130;

int shirtGreenMin = 220;

int shirtGreenMax = 255;

int shirtRedMin = 220;

int shirtRedMax = 255;

int pantsBlueMin = 90;

int pantsBlueMax = 110;

int pantsGreenMin = 100;

int pantsGreenMax = 110;

int pantsRedMin = 85;

int pantsRedMax = 100a;

int areaVal = 28;

int shirtpixelCountLimit = 20000;

int** shirtArray;

int** pantsArray;

//declare functions

void prelimSetup();

void colourThreshold();

void shirtBlobDetection();

void checkForPants(int shirtValue);

int main(int argc, char** argv)

{

 if(argc != 2)

 {

 cout <<" Usage: blob ImageToLoadAndDisplay" << endl;

 return -1;

 }

 img = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file

 if(! img.data) // Check for invalid input

 {

 img = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file

 if(! img.data) // Check for invalid input

 {

 cout << "Could not open or find the image" << std::endl ;

 return -1;

 }

 dimX = img.cols; //set x dimension from image

 dimY = img.rows; //set y dimension from image

 prelimSetup();

 while(1){

 clock_t startTime = clock();

 //reset all values

 for (int i = 0; i < 20000; i++){

 shirtblobVal[i] = 0;

 shirtSamies[i] = 0;

 }

 stringstream ss;

 string dir = "/home/pi/timetest/";

 string type = ".jpg";

 ss << dir << imageNumber << type;

 string filename = ss.str();

 ss.str("");

 img = imread(filename, CV_LOAD_IMAGE_COLOR); // Read the file

 cout << "Image Number: " << imageNumber << '\n';

 colourThreshold();

 if(shirtpixelCount > shirtpixelCountLimit || shirtpixelCount < 40){

 clock_t endTime = clock();

 clock_t clockTicksTaken = endTime - startTime;

 double timeInSeconds = clockTicksTaken / (double) CLOCKS_PER_SEC;

 cout << '\n' << "loop skipped - time taken " << timeInSeconds << '\n';

 imageNumber++;

 continue;

 }

 shirtBlobDetection();

 clock_t endTime = clock();

 clock_t clockTicksTaken = endTime - startTime;

 double timeInSeconds = clockTicksTaken / (double) CLOCKS_PER_SEC;

 cout << '\n' << "time taken " << timeInSeconds << '\n';

 imageNumber++;

 } //end of while loop

 return 0;

}

void prelimSetup()

{

 //setup file to record coordinate data

 ofstream coords;

 coords.open ("foundData.txt");

 coords << "Image Values: " << "\n";

 coords << "Shirt: " << "B: " << shirtBlueMin << ":" << shirtBlueMax << " G: " << shirtGreenMin

<< ":" << shirtGreenMax << " R: " << shirtRedMin << ":" << shirtRedMax << "\n";

 coords << "Pants: " << "B: " << pantsBlueMin << ":" << pantsBlueMax << " G: " << pantsGreenMin

<< ":" << pantsGreenMax << " R: " << pantsRedMin << ":" << pantsRedMax << "\n";

 coords << "Image Number" << "\t" << "Man Found Coordinates" << "\n";

 coords.close();

 //pre-populate array for shirt colour threshold filter

 shirtArray = new int*[dimY];

 for(int y = 0; y < dimY; ++y)

 {

 shirtArray[y] = new int[dimX];

 for(int x = 0; x < dimX; ++x)

 {

 shirtArray[y][x]=0;

 }

 }

 //pre populate array for pants colour threshold filter

 pantsArray = new int*[dimY];

 for(int y = 0; y < dimY; ++y)

 {

 pantsArray[y] = new int[dimX];

 for(int x = 0; x < dimX; ++x)

 {

 pantsArray[y][x]=0;

 }

 }

}

void colourThreshold() //write a monochrome array of colours within a certain threshold for shirt

{

 shirtpixelCount = 0;

 unsigned char *input = (unsigned char*)(img.data);

 for(int y = 0; y < dimY; y++){

 int i = 0;

 for(int x = 0; x < dimX * 3; x=x+3){

 if (input[img.step * y + x] < shirtBlueMax && input[img.step * y + x + 1] >

shirtGreenMin && input[img.step * y + x + 2] > shirtRedMin){

 shirtArray[y][i]=1;

 shirtpixelCount++;

 }

 else {

 shirtArray[y][i]=0;

 }

 i = i+1;

 }

 }

 cout << '\n' << "pixel shirt: " << shirtpixelCount << '\n';

}

void shirtBlobDetection()

{

 regionCounter = 1;

 for(int y = 0; y < dimY; ++y)

 {

 for(int x = 0; x < dimX; ++x)

 {

 //check if the current pixel value is greater than 0.

 if(shirtArray[y][x] > 0){

 //check if we're at a wall (y= 0, x = 0 or x = dimX) and if not, set tempArray

to equal the four pixels around the current one.

 if (x == 0){tempArray[0]=0;}

 else{tempArray[0]=shirtArray[y][x-1];}

 if (x == 0 || y == 0){tempArray[1]=0;}

 else{tempArray[1]=shirtArray[y-1][x-1];}

 if (y == 0){tempArray[2]=0;}

 else{tempArray[2]=shirtArray[y-1][x];}

 if (y == 0 || x == dimX){tempArray[3]=0;}

 else{tempArray[3]=shirtArray[y-1][x+1];}

 //if they're zero, then it's the start of a new blob.

 if(tempArray[0] == 0 && tempArray[1] == 0 && tempArray[2] == 0 && tempArray[3]

== 0){

 shirtArray[y][x] = regionCounter;

 shirtblobVal[shirtArray[y][x]]++;

 regionCounter++;

 shirtblobVal[regionCounter]=0;

 //otherwise it's part of an existing blob, so give it the same value as the

lowest surrounding pixel

 }else{

 j = 0;

 for(int i = 0; i < 4; i++){

 if(tempArray[i] != 0){

 if(j == 0){

 shirtArray[y][x] = tempArray[i];

 j = 1;

 }else{

 if(tempArray[i] < shirtArray[y][x]){

 shirtArray[y][x] = tempArray[i];

 }

 j++;

 }

 }

 }

 shirtblobVal[shirtArray[y][x]]++;

 //this bit will check for samies

 if(j > 1){

 unionArray[0]=0;

 unionArray[1]=0;

 unionArray[2]=0;

 unionArray[3]=0;

 k = 0;

 for(int i = 0; i < 4; i++){ //are array values different?

 if(tempArray[i] != 0){

 unionArray[k]=tempArray[i];

 k++;

 }

 }

 for(int i = 0; i < k-1; i++){

 if(unionArray[i] != unionArray[i+1]){

 shirtSamies[shirtsamiesCount]=unionArray[i];

 shirtSamies[shirtsamiesCount+1]=unionArray[i+1];

 shirtsamiesCount = shirtsamiesCount + 2;

 }

 }

 }

 }

 } //end of test for zero pixel

 } //end of x for loop

 } //end of y for loop

 //this bit takes all the pixels that were in the samies array and adds them to one single value

 for (int i = regionCounter; i > 0; i=i-1){

 for(int j = shirtsamiesCount + 1; j > 0; j=j-2){

 if (shirtSamies[j-1] == i && shirtblobVal[shirtSamies[j-1]] != 0){

 shirtblobVal[shirtSamies[j-1]] =

shirtblobVal[shirtSamies[j]]+shirtblobVal[shirtSamies[j-1]];

 shirtblobVal[shirtSamies[j]] = 0;

 }

 if (shirtSamies[j] == i && shirtblobVal[shirtSamies[j]] != 0){

 shirtblobVal[shirtSamies[j]] =

shirtblobVal[shirtSamies[j]]+shirtblobVal[shirtSamies[j-1]];

 shirtblobVal[shirtSamies[j-1]] = 0;

 }

 }

 }

 for (int i = 0; i < regionCounter + 1; i++){

 if (shirtblobVal[i] > 40 && shirtblobVal[i] < 280){

 checkForPants(i);

 }

 }

}

void pantsBlobDetection(int shirtX, int shirtY)

{

 int xMin = 0;

 int xMax = 0;

 int yMin = 0;

 int yMax = 0;

 if(shirtX - areaVal < 0)

 xMin = 0;

 else xMin = shirtX - areaVal;

 if(shirtX + areaVal > dimX)

 xMax = dimX;

 else xMax = shirtX + areaVal;

 if(shirtY - areaVal < 0)

 yMin = 0;

 else yMin = shirtY - areaVal;

 if(shirtY + areaVal > 0)

 yMax = dimY;

 else yMax = shirtY + areaVal;

 //Look for pants:

 //reset all values

 for (int i = 0; i < 3600; i++){

 pantsblobVal[i] = 0;

 pantsSamies[i] = 0;

 }

 pantspixelCount = 0;

 //colour threshold filter for pants

 unsigned char *input = (unsigned char*)(img.data);

 for(int y = yMin; y < yMax; y++){

 int i = xMin;

 for(int x = xMin * 3; x < xMax * 3; x=x+3){

 if (input[img.step * y + x] > pantsBlueMin && input[img.step * y + x] < pantsBlueMax &&

input[img.step * y + x + 1] > pantsGreenMin && input[img.step * y + x + 1] < pantsGreenMax &&

input[img.step * y + x + 1] > pantsRedMin && input[img.step * y + x + 1] > pantsRedMax){

 pantsArray[y][i]=1;

 pantspixelCount++;

 }

 else {

 pantsArray[y][i]=0;

 }

 i = i+1;

 }

 }

 cout << '\n' << "pixel pants: " << pantspixelCount << '\n';

 regionCounter = 1;

 for(int y = yMin; y < yMax; ++y)

 {

 for(int x = xMin; x < xMax; ++x)

 {

 //check if the current pixel value is greater than 0.

 if(pantsArray[y][x] > 0){

 //check if we're at a wall (y= 0, x = 0 or x = dimX) and if not, set tempArray

to equal the four pixels around the current one.

 if (x == 0){tempArray[0]=0;}

 else{tempArray[0]=pantsArray[y][x-1];}

 if (x == 0 || y == 0){tempArray[1]=0;}

 else{tempArray[1]=pantsArray[y-1][x-1];}

 if (y == 0){tempArray[2]=0;}

 else{tempArray[2]=pantsArray[y-1][x];}

 if (y == 0 || x == dimX){tempArray[3]=0;}

 else{tempArray[3]=pantsArray[y-1][x+1];}

 //if they're zero, then it's the start of a new blob.

 if(tempArray[0] == 0 && tempArray[1] == 0 && tempArray[2] == 0 && tempArray[3]

== 0){

 pantsArray[y][x] = regionCounter;

 pantsblobVal[pantsArray[y][x]]++;

 regionCounter++;

 pantsblobVal[regionCounter]=0;

 //otherwise it's part of an existing blob, so give it the same value as the

lowest surrounding pixel

 }else{

 j = 0;

 for(int i = 0; i < 4; i++){

 if(tempArray[i] != 0){

 if(j == 0){

 pantsArray[y][x] = tempArray[i];

 j = 1;

 }else{

 if(tempArray[i] < pantsArray[y][x]){

 pantsArray[y][x] = tempArray[i];

 }

 j++;

 }

 }

 }

 pantsblobVal[pantsArray[y][x]]++;

 //this bit will check for samies

 if(j > 1){

 unionArray[0]=0;

 unionArray[1]=0;

 unionArray[2]=0;

 unionArray[3]=0;

 k = 0;

 for(int i = 0; i < 4; i++){ //are array values

different?

 if(tempArray[i] != 0){

 unionArray[k]=tempArray[i];

 k++; //check to see if

any elements of the array are different

 }

 }

 for(int i = 0; i < k-1; i++){

 if(unionArray[i] != unionArray[i+1]){

 pantsSamies[pantssamiesCount]=unionArray[i];

 pantsSamies[pantssamiesCount+1]=unionArray[i+1];

 //cout << '\n' << pantssamiesCount << ": " <<

unionArray[i] << ", " << unionArray[i+1];

 //cout << '\n' << pantsSamies[pantssamiesCount] <<

", " << pantsSamies[pantssamiesCount+1];

 pantssamiesCount = pantssamiesCount + 2;

 }

 }

 }

 }

 } //end of test for zero pixel

 } //end of x for loop

 } //end of y for loop

 //this bit takes all the pixels that were in the samies array and adds them to one blob

 for (int i = regionCounter; i > 0; i=i-1){

 for(int j = pantssamiesCount + 1; j > 0; j=j-2){

 if (pantsSamies[j-1] == i){

 pantsblobVal[pantsSamies[j-1]] =

pantsblobVal[pantsSamies[j]]+pantsblobVal[pantsSamies[j-1]];

 pantsblobVal[pantsSamies[j]] = 0;

 }

 if (pantsSamies[j] == i){

 pantsblobVal[pantsSamies[j]] =

pantsblobVal[pantsSamies[j]]+pantsblobVal[pantsSamies[j-1]];

 pantsblobVal[pantsSamies[j-1]] = 0;

 }

 }

 }

 //were pants found? If so set pantsFound to true

 for(int i = 1; i < regionCounter; i++){

 if(pantsblobVal[i] < 280 && pantsblobVal[i] > 30){

 pantsFound = true;

 }

 }

}

void checkForPants(int shirtValue)

{

 cout << '\n' << "check for pants..." << '\n';

 int shirtxBlobLocation = 0;

 int shirtyBlobLocation = 0;

 int shirtCounter = 0;

 for(int y = 0; y < dimY; ++y){

 for(int x = 0; x < dimX; ++x){

 if(shirtArray[y][x] == shirtValue){

 shirtxBlobLocation = x;

 shirtyBlobLocation = y;

 shirtCounter++;

 x = dimX;

 y = dimY;

 }

 }

 }

 pantsBlobDetection(shirtxBlobLocation, shirtyBlobLocation);

 if (pantsFound == true){

 cout << '\n' << "MAN FOUND!: " << shirtxBlobLocation << ":" << shirtyBlobLocation << '\n';

 CvPoint P1;

 P1.x=shirtxBlobLocation - 50;

 P1.y=shirtyBlobLocation - 50;

 CvPoint P2;

 P2.x=shirtxBlobLocation + 50;

 P2.y=shirtyBlobLocation + 50;

 rectangle(img, P1, P2, CV_RGB(255,0,0), 2, 8, 0);

 stringstream ss;

 string dir = "/home/pi/temp/";

 string type = ".jpg";

 ss << dir << imageNumber << type;

 string filename = ss.str();

 ss.str("");

 imwrite(filename, img);

 }

 pantsFound = false;

}

