University of Southern Queensland Faculty of Engineering and Surveying

Iterative Decoding for Error Resilient Wireless Data Transmission

A dissertation submitted by
Tawfiqul Hasan Khan
in fulfillment of the requirements of
\section*{Courses ENG4111 and 4112 Research Project}
towards the degree of
\section*{Bachelor of Engineering (Software)}

Submitted: November, 2006

Abstract

Both turbo codes and LDPC codes form two new classes of codes that offer energy efficiencies close to theoretical limit predicted by Claude Shannon. The features of turbo codes include parallel code catenation, recursive convolutional encoders, punctured convolutional codes and an associated decoding algorithm. The features of LDPC codes include code construction, encoding algorithm, and an associated decoding algorithm.

This dissertation specifically describes the process of encoding and decoding for both turbo and LDPC codes and demonstrates the performance comparison between theses two codes in terms of some performance factors. In addition, a more general discussion of iterative decoding is presented.

One significant contribution of this dissertation is a study of some major performance factors that intensely contribute in the performance of both turbo codes and LDPC codes. These include Bit Error Rate, latency, code rate and computational resources. Simulation results show the performance of turbo codes and LDPC codes under different performance factors.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG411 \& ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and Surveying, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Prof G Baker

Dean
Faculty of Engineering and Surveying

Certification

I certify that the ideas, designs and experimental work, results and analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Tawfiqul Hasan Khan

Student Number: D1231090

Signature

Date

Acknowledgements

I wish to extend my gratitude to Dr. Wei Xiang of the Faculty of Engineering and Surveying, University of Southern Queensland, as my supervisor and for his timely and dedicated assistance throughout the conduct of this project and dissertation. Without his knowledge, experience and supervision, completion of this task would have been much more difficult.

Special thanks are also due to my father Mazharul Hasan Khan and my mother Yasmeen Ahmed for their moral support.

Contents

Page

Abstract i
Certification iii
Acknowledgements iv
Contents v
List of Figures viii
List of Tables x
List of Appendices xii
Chapter 1 Introduction 1
1.1 Wireless communications 2
1.1.1 Cellular communication systems 3
1.1.2 Paging systems 6
1.1.3 Wireless data networks 7
1.1.4 Cordless telephony 8
1.1.5 Satellite telephony 9
1.1.6 Third generation systems 10
1.2 Other applications of error control coding 10
1.2.1 Hamming codes 11
1.2.2 The binary Golay code 12
1.2.3 Binary cyclic codes 12
1.3 Purpose and structure of thesis 13
Chapter 2 Error correction coding. 15
2.1 History 16
2.2 Basic concepts of error correcting coding 17
2.3 Shannon capacity limit 19
2.4 Block codes 20
2.5 Convolution codes 21
2.6 Concatenated codes 23
2.7 Iterative decoding for soft decision codes 23
2.7.1 Turbo codes 24
2.7.2 LDPC codes 26
2.8 Chapter summary 28
Chapter 3 Turbo codes: Encoder and decoder construction 29
3.1 Constituent block codes 29
3.1.1 Encoding of block codes 30
3.1.2 Systematic codes 31
3.2 Constituent convolution codes 32
3.2.1 Encoding of convolution codes 32
3.2.2 State diagram 33
3.2.3 Generator matrix 34
3.2.4 Trellis diagram 35
3.2.5 Punctured convolution codes 36
3.2.6 Recursive systematic codes 38
3.3 Classes of soft-input, soft- output decoding algorithms 41
3.3.1 Viterbi algorithm 41
3.3.2 Soft-output Viterbi algorithm (SOVA) 43
3.3.3 Maximum- a - Posteriori (MAP) algorithm 45
3.3.4 Max -Log- MAP and Log- MAP algorithms 49
3.4 Encoding of turbo codes 53
3.5 Overview of turbo decoding 56
3.5.1 Soft-input, soft- output decoding 56
3.5.2 Turbo decoder schematic 58
3.5.3 Example of turbo decoding 60
3.6 Chapter summary 61
Chapter 4 LPDC codes: Code construction and decoding 62
4.1 Code construction 62
4.2 Tanner graphs 65
4.3 Encoding algorithm 67
4.4 Overview of LPDC decoding 69
4.4.1 The sum-product algorithm 69
4.4.2 Example of LDPC decoding 73
4.5 Chapter summary 74
Chapter 5 Performance comparison between turbo codes and LDPC codes 75
5.1 Performance analysis of turbo codes 75
5.1.1 Simulation results 78
5.2 Performance analysis of LDPC codes 81
5.2.1 Simulation results 82
5.3 Performance comparison 85
5.4 Chapter summary 87
Chapter 6 Conclusions 88
6.1 Future work 89
References: 173

List of Figures

Page
Figure 2.1 A digital communication system 18
Figure 2.2 Systematic block encoding for error correction 19
Figure 2.3 Encoder Structure of a parallel Concatenated (turbo) code. 24
Figure 2.4 Block diagram of an iterative decoder for a parallel concatenated code. 25
Figure 3.1 An encoder of memory-2 rate- $1 / 2$ convolutional encoder. 33
Figure 3.2 State diagram of a memory-2 rate-1/2 convolutional encoder. 33
Figure 3.3 Six sections of the trellis of a memory-2 rate- $1 / 2$ convolutional encoder 36
Figure 3.4 An encoder of a memory-2 rate-2/3 PCC. 37
Figure 3.5 An encoder of a memory-2 rate-1/2 recursive systematic convolutional encoder. 38
Figure 3.6 State diagram of a memory-2 rate- $1 / 2$ recursive systematic convolutional encoder. 40
Figure 3.7 Six sections of the trellis of a memory- 2 rate- $1 / 2$ recursive systematic convolutional encoder. 40
Figure 3.8 Encoder Structure of turbo code. 54
Figure 3.9 Example of turbo encoder. 55
Figure 3.10 Turbo decoder schematic 59
Figure 3.11 Performance of rate-1/2 parallel concatenated (turbo) code with memory-4, rate-1/2 RSC codes, generators $(37,21)$ and block size $=$ 1024 60
Figure 4.1 Tanner graph of Gallager's $(3,4,20)$ code 66
Figure 4.2 Result of permutated rows and columns. 67
Figure 4.3 Performance of Gallager's $(3,4,20)$ code with iterative probabilistic decoding 74
Figure 5.1 Performance of parallel concatenated (turbo) code for different block interleaver size with memory-4, rate-1/2 RSC codes and generators $(37,21)$ 78
Figure 5.2 Performance of rate-1/2 and rate- $1 / 3$ parallel concatenated (turbo) code with memory-2, generators $(7,5)$ block interleaver size $=1024$ and iteration $=6$. 79
Figure 5.3 Performance of rate- $1 / 2$ parallel concatenated (turbo) code with different constraint length. 81
Figure 5.4 Performance of Gallager's $(3,4,20)$ code with iterative probabilistic decoding for different iteration number. 83
Figure 5.5 Performance of Gallager's $(3,6,96)$ code with iterative probabilistic decoding for different iteration number. 84
Figure 5.6 Performance of Gallager's (3, 6, 816) code with iterative probabilistic decoding for different iteration number. 85
Figure 5.7 Comparison between turbo codes and LDPC codes. 86

List of Tables

Page

Table 1 Quality of Service for rate $1 / 2$ turbo code in AWGN at $E_{b} / N_{o}=3.0 \mathrm{~dB} . \ldots80$
Table 2 Quality of Service for rate $1 / 2$ LDPC code in AWGN at $E_{b} / N_{o}=8.0 \mathrm{~dB}$ 83

Table 3 Performance of a rate-1/2 parallel concatenated (turbo) code with memory4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=1$164

Table 4 Performance of a rate-1/2 parallel concatenated (turbo) code with memory4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=2$.

Table 5 Performance of a rate-1/2 parallel concatenated (turbo) code with memory4 rate- $1 / 2$ RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=3$.164

Table 6 Performance of a rate-1/2 parallel concatenated (turbo) code with memory4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=6$

Table 7 Performance of a rate-1/2 parallel concatenated (turbo) code with memory4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=10$

Table 8 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=128$. Iteration $=6$.165
Table 9 Performance of a rate-1/2 parallel concatenated (turbo) code with memory- 4 rate-1/2 RSC codes, generators (37,21). Block interleaver size $=256$. Iteration $=6$ 166
Table 10 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=$ 2056. Iteration $=6$. 166
Table 11 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37,21). Block interleaver size $=$ 16384. Iteration $=6$ 166
Table 12 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=$ 2048. Iteration $=6$ 167
Table 13 Performance of Gallager's $(3,4,20)$ code for iteration 1 167
Table 14 Performance of Gallager's $(3,4,20)$ code for iteration 2 168
Table 15 Performance of Gallager's $(3,4,20)$ code for iteration 3 168
Table 16 Performance of Gallager's $(3,4,20)$ code for iteration 6 169
Table 17 Performance of Gallager's $(3,6,96)$ code for iteration 1 169
Table 18 Performance of Gallager's $(3,6,96)$ code for iteration 2 170
Table 19 Performance of Gallager's $(3,6,96)$ code for iteration 3 170
Table 20 Performance of Gallager's $(3,6,96)$ code for iteration 6 171
Table 21 Performance of Gallager's $(3,6,816)$ code for iteration 1 171
Table 22 Performance of Gallager's $(3,6,816)$ code for iteration 2 172
Table 23 Performance of Gallager's $(3,6,816)$ code for iteration 3 172
Table 24 Performance of Gallager's $(3,6,816)$ code for iteration 6 172

List of Appendices

Page

Appendix A ... 91

Appendix B ... 93
Appendix C ... 96
Appendix D... 163

Chapter 1

Introduction

In recent years, the demand for efficient and reliable digital data transmission and storage systems has increased to a great extent. The theory of error detecting and correcting codes is the branch of engineering and mathematics which deals with the reliable transmission and storage of data. Information media is not 100% reliable in practice, in the sense that noise frequently causes data to be distorted. To deal with this undesirable but inevitable situation, the concept of error control coding incorporates some form of redundancy into the digital data that allows a receiver to find and correct bit errors occurring in transmission and storage. Since such coding incurred in the communication or storage channel for error detection or error correction, it is often referred to as channel coding.

Error correcting codes are particularly suitable when the transmission channel is noisy. This is the case of wireless communication. It is well known that wireless links are very vulnerable to channel deficiency such as channel noise, multi-path effect and fading. Nowadays, all digital wireless communications use error correcting codes. And iterative decoding is one of the most powerful techniques to correct transmission errors. Iterative
decoding can be defined as a technique employing a soft-output decoding algorithm that is iterated several times to provide powerful error correcting capabilities desired by very noisy wired and wireless channels. Turbo codes and low-density parity-check codes are two error control codes based on iterative decoding. The features of turbo codes include parallel code concatenation, recursive convolutional encoding, non-uniform interleaving, and an associated iterative decoding algorithm. Low-density parity-check (LDPC) codes are another method of transmitting messages over noisy transmission channels. LDPC code was the first code to allow data transmission rates close to the Shannon Limit, where Shannon limit of a communication channel is the theoretical maximum information transfer rate of the channel.

This chapter begins with a brief overview of wireless personal communications. The basic concepts of some error correcting codes other than iteratively decodable codes are then presented later in this chapter.

1.1 Wireless communications

An Italian electrical engineer, Guglielmo Marconi made the first wireless transmission across water in 1897. Wireless is an old-fashioned term for a radio transceiver. Radio transceiver is a mixed receiver and transmitter device. The original application of wireless was to communicate where wires could not go. Throughout the next century, great strides were made in wireless communication technology. During the First World War, the idea of broadcasting emerged, but broadcast stations were generally too awkward to be either mobile or portable. During the Second World War, the contest for superior battle field communication capabilities gave birth to mobile and portable radio.

In modern usage, wireless is a method of communication that uses low-powered radio waves to transmit data between devices. The term refers to communication without cables or cords, mainly using radio frequency and infrared waves. Low-powered radio
waves are often unregulated. Wireless is now increasingly being used by unregulated computer users.

The development of mobile radio paved the way for personal communications. The first widespread non-military application of land mobile radio was pioneered in 1921 in Detroit, Michigan (Hamming 1950, pp. 147-160). The main purpose of it was to provide police car dispatch service. Until 1946, land mobile radio systems were unconnected to each other or to the Public Switched Telephone Network (PSTN). A major milestone was attained in 1946 with the development of the Radiotelephone in the U.S., which to be connected to the PSTN. At first, high powered transmitter and large tower were used to provide service to each market, and by this these markets could complete only one half-duplex call at a time. In 1950, Technological improvements doubled the number of concurrent calls, and the doubled the number again in the mid 1960's. During that time, automatic channel trunking was introduced and full-duplex auto-dial service became available. However, the auto-trunked markets quickly became saturated. For example, in 1976, only 12 trunked channels were available for the entire New York City market of approximately 10 million people. The system could only support 543 paying customers and the waiting list exceeded 3700 people (Rappaport 1996).

1.1.1 Cellular communication systems

A mobile or cellular telephone is a long-range, portable electronic device for personal telecommunications over long distances.It was quite obvious that a new approach to mobile telephony was necessary due to overcrowding in the radio spectrum. During the 1960's, the concept of cellular telephony was emerged in the U.S. at AT\&T Bell Laboratories and also in several other countries by various telecommunication companies as well. The proposal of cellular telephony to the Federal Communications Commission (FCC) was made by AT\&T in 1968 (Rappaport 1996). The idea behind cellular telephony is that a simple hexagon is used to represent a complex object. The geographical areas are covered by cellular radio antennas. These areas are called cells. Cells that are located far
apart can be assigned the same frequency. The first operational commercial cellular system in the world was fielded in Tokyo in 1979 by NTT (Mitsishi 1989, pp. 30-39). Service in Europe soon followed with the Nordic Mobile Telephone (NMT), which was developed by Ericsson and began operation in Scandinavia in 1981(Kucar 1991, pp. 7285). Service in the United States first began in Chicago in 1983 with the Advanced Mobile Phone System (AMPS), which was placed in service by Ameritech (Brodsky 1995).

By late 1980's, it was clear that the first generation cellular systems, which were based on analog signaling techniques, were becoming outdated. Progress in integrated circuit technology made digital communications not only practical, but more economical than analog technology. Digital communications allow the utilization of advanced source coding techniques that suit for greater spectral efficiency. Besides, with digital communications it is possible to use error correction coding to provide a degree of resistance to interference that plagues analog systems. Digital systems also enable multiplexing of dissimilar data types and more efficient network control.

Worldwide deployment of second generation digital cellular systems began in the early 1990's. The main difference to previous mobile telephone systems was that the radio signals that first generation networks used were analog, while second generation networks were digital. Second generation technologies can be divided into TDMA-based and CDMA-based standards depending on the type of multiplexing used. In the TDMA standard, also known as United States Digital Cellular (USDC) ${ }^{1}$, several users can transmit at the same frequency but at different times. In the CDMA standard, known initially as Interim Standard 95 (IS-95) and later as cdmaOne, several users can transmit at both the same frequency and time, but modulate their signals with high bandwidth spreading signals. Users can be separated in CDMA because the spreading signals are either orthogonal or have low crosscorrelation (Farely and Hoek M V D 2006).

Europe led the way in 1990 with the deployment of GSM (TDMA-based), the Pan European digital cellular standard. Before the deployment of GSM, there was no unified

[^0]standard in Europe. In Scandinavia there were two versions of NMT (NMT-450 and NMT-900), in Germany there was C-450, and elsewhere there was the Total Access Communication System (TACS) and R-2000 (Rappaport 1996), (Goodman 1997).

The situation in the United States was completely different than in Europe. In the U.S., there was but a single standard, AMPS. Since there was just one standard, there was no need to set aside new spectrum. However, the AMPS standard was becoming obsolete and it was obvious that a new technology would be required in crowded markets. The industry's response was to introduce several new incompatible, but bandwidth efficient, standards. Each of these standards was specified to be dual-mode systems. That is, they supported the original AMPS system along with one of the newer signaling techniques. Second generation systems in the U.S. can be divided into analog systems and digital systems. The second generation analog system is Narrowband AMPS (NAMPS), which is similar to AMPS except that the bandwidth required for each user is 10 kHz , rather than the 30 kHz required by AMPS (Farely and Hoek M V D 2006).

At the same time the 900 MHz band was being transitioned from AMPS to the new cellular standards. New spectrum became available in U.S. in the 1.9 GHz band. The systems that occupied this band used similar technology as their second generation siblings in the 900 MHz hand. Collectively, these systems were called Personal Communication Systems (PCS), implying a slightly different range of coverage and services than cellular (Farely and Hoek M V D 2006).

Cellular service has proven to be extremely successful. Cellular phones have evolved from a niche item reserved for the rich to a mass-market consumer product. The exponential growth in customer demand has led to extreme congestion in cellular networks serving large metropolitan areas. In theory, cellular has the potential to provide service to an arbitrary number of customers by dividing cells into smaller and smaller areas through the process of "cell-splitting" (Lee 1991, pp. 19-23).

However, practical and economic factors limit just how much a cell can be emaciated. Each cell must be serviced by a centrally located base station. Base stations are expensive and require unsightly antenna towers. Many local governments block the placement of base station towers for reasons of aesthetics and perceived health risks. In addition, the network architecture is becoming more complex by increasing frequency due to occurrence of more cells.

1.1.2 Paging systems

While cellular telephony was evolving, progress was also made with other wireless devices and services including paging, wireless data, cordless telephony, and satellite telephony. Paging is considered as an important component of the growing wireless market. With paging, messages are sent in one way direction, from a centrally located broadcasting tower to a pocket sized receiver possessed by the end user.

Paging was the first mobile communication service for citywide paging systems and it was operating as early as 1963 in the USA and Europe. In the 1970's, with the emergence of the POCSAG (Post Office Code Standardization Advisory Group) standard, alphanumeric paging became possible. Initially POCSAG supported a simple beep-only pager but later incorporated numeric and alpha text messaging. Although the POCSAG standard was reliable, it operated at extremely low data rates so only short messages were permitted. New high speed standards have recently been installed and that allow faster transmission, and longer messages (Budde 2002).

In 1993, Motorola's FLEX system began its service in the U.S.A. and in several foreign markets, while in Europe the ERNIES (European Radio Messaging System) began its operation. Newer paging system, such as Motorola's ReFLEX, allows two-way paging. It allows the user to send back short responses and even email. Motorola's InFLEXion protocol allows the delivery of voice-mail messages over the paging channel (Brodsky 1995).

1.1.3 Wireless data networks

Another emerging area of wireless communication technology is wireless data networks. The demand for wireless computer connectivity rises because of increasing popularity of both the Internet and laptop computers. Wireless data services are designed for packet-switched operation in contrast to the circuit-switched operation of cellular and cordless telephony. Each wireless data service can be categorized as either a wide-area messaging service or a wireless local area network (WLAN).

Wide-area messaging services use licensed bands, and customers pay operators based on their usage. Paging can be considered as a type of wide-area messaging service, although it is usually considered separately for historical reasons.Examples of messaging services include the Advanced Radio Data Information Service (ARDIS) and RAM Mobile Data (RMD). Both of them use the Specialized Mobile Radio (SMR) spectrum near 800/900 MHz (Padgett, Gunther and Hattori 1995, pp. 28-41).

A wireless LAN or WLAN is a wireless local area network, which is the linking of two or more computers without using wires. Unlike commercial messaging services, WLANs use unlicensed frequency bands such as the ISM (Industrial Scientific and Medical) bands that were allocated by the Federal Communications Commission (FCC) in 1985. In the U.S.A., the IEEE 802.11 spread-spectrum based WLAN standard has become increasingly popular, and in Europe the HIPERLAN standard is gaining acceptance (Pahlavan, Probert and Chase 1995, vol. 33, pp. 85-95). A new technology, named Bluetooth, has been introduced by an industry group to provide low cost, short range (10 meter) ad hoc communication networks in the unlicensed 2.4 MHz band between personal computers and other consumer electronic devices and appliances. Bluetooth is an industrial specification for wireless personal area networks (PANs), also known as IEEE 802.15.1.

1.1.4 Cordless telephony

Abstract

"A cordless telephone or portable telephone is a telephone with a wireless handset which communicates with a base station connected to a fixed telephone landline (POTS) via radio waves and can only be operated close to (typically less than 100 meters of) its base station".

(Cordless telephone 2006)

Cordless telephones were first emerged in the early 1980's as a consumer product. The benefit of cordless telephony is straight-forward, it allows the user to move around a house or business while talking on the phone, and it provides telecommunication service in rooms that might not be wired.

There are some limitations in first generation cordless phones. The analog signaling technique is prone to interference, spying, and fraud, especially as the number of users increased. In addition, the user is unable to use the phone when he or she goes out of the range of its base station. Modern cordless telephone standards have addressed these deficiencies. In the U.S.A, there are seven frequency bands that have been allocated by the Federal Communications Commission for uses and there are several proprietary cordless systems operating in the 900 MHz band. These systems use advanced digital signaling techniques such as spread spectrum. These are more robust against interference, and are more secure. In Europe, the DECT (Digital European Cordless Telephone) and CT-2 standards not only offer digital signaling, but allow connectivity beyond the home base station by employing a cellular-like infrastructure. A similar system in Japan, the Personal Handyphone System (PHS), has become extraordinarily successful (Rappaport 1996), (Goodman 1997).

1.1.5 Satellite telephony

Satellite telephony is similar to cellular telephony with the exception that the base stations are satellites in orbit around the earth. Depending on the architecture of a particular system, coverage may include the entire Earth, or only specific regions. Satellite telephony systems can be categorized according to the height of the orbit as either LEO (low earth orbit), MEO (medium earth orbit), or GEO (geosynchronous orbit).

GEO systems have been used for many years to communicate television signals. GEO telephony systems, such as INMARSAT, allow communications to and from remote locations, with the primary application being ship-to-shore communications. The advantage of GEO systems is that each satellite has a large footprint, and global coverage up to 75 degrees latitude can be provided with just 3 satellites (Padgett, Gunther and Hattori 1995, vol. 33, pp. 28-41). The disadvantage of GEO systems is that they have a long round-trip propagation delay of about 250 milliseconds and they require high transmission power (Miller 1998, vol. 35, pp. 26-35).

LEO satellites orbit the earth at high speed, low altitude orbits with an orbital time of 7090 minutes, an altitude of 640 to 1120 kilometres (400 to 700 miles), and provide coverage cells. With LEO systems, both the propagation time and the power requirements are greatly reduced, allowing for more cost effective satellites and mobile units (Satellite phone 2006).The main disadvantages of LEO systems are that more satellites are required and handoff frequently occurs as satellites enter and leave the field of view. A secondary disadvantage of LEO systems is the shorter lifespan of 5-8 years (compared to 12-15 in GEO systems) because of increasing amount of radiation in low earth orbit (Miller 1998, vol. 35, pp. 26-35).

MEO systems represent a compromise between LEO systems and GEO systems, balancing the advantages and disadvantages of each. Examples of LEO systems include Motorola's Iridium (66 satellites, 1998 startup date), Qualcomm/Loral's Globalstar (48 satellites, 1999 startup), Mobile Communications Holdings' Ellipso (14 satellites, 2000
startup), as well as the proposed Teledesic system (288 satellites, 2002 startup). Examples of MEO systems include ICO (10 satellites, 2000 start up), and TRW's Odyssey (12 satellites, 1998 startup) (Miller 1998, vol. 35, pp. 26-35).

1.1.6 Third generation systems

3G is short for third-generation technology. It is used in the context of mobile phone standards. At the close of the $20^{\text {th }}$ century, mobile communications are characterized by a diverse set of applications using many incompatible standards.

In order for today's mobile communications to become truly personal communications in the next century, it will be necessary to consolidate the standards and applications into a unifying framework. The eventual goal is to define a global third generation mobile radio standard originally termed the Future Public Land Mobile Telecommunications System (FPLNITS), and later renamed for brevity IMT-2000, for International Mobile Telecommunications by the year 2000 (Berruto, Gudmundson, Menolascino, Mohr and Pizarosso 1998, vol. 36, February, pp. 85-95).

1.2 Other applications of error control coding

In this section, some error control codes other than iteratively decodable codes are briefly introduced. The first two subsections introduce ECC concepts of two different linear binary codes and the following section introduces a minimum set of concepts necessary for the understanding of binary cyclic codes. Hamming codes are perhaps the most widely known class of block codes, with the possible exception of Reed-Solomon codes. The binary Golay code is the only nontrivial example of an optimal triple-error correcting code.

1.2.1 Hamming codes

Hamming codes are the first class of linear codes devised for error correction (Hamming 1950, pp. 147-160). These codes and their variations have been widely used for error control in digital communication and data storage system. The fundamental principal embraced by Hamming codes is parity. Hamming codes are capable of correcting one error or detecting two errors but not capable of doing both simultaneously.

For any positive integer $m \geq 3$, there exists a Hamming code with the following parameters.

Code length:	$n=2^{m}-1$
Number of information symbols:	$k=2^{m}-m-1$
Number of parity-check symbols:	$n-k=m$
Error-correcting capability:	$t=1$, where, $d_{\text {min }}=3$.

A Hamming code word is generated by multiplying the data bits by generator matrix G using modulo-2 arithmetic. This multiplication's result is called the code word vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ consisting of the original data bits and the calculated parity bits.

The generator matrix G is used in constructing Hamming codes consists of I (the identity matrix) and a parity generation matrix A :

$$
\begin{equation*}
G=[I: A] \tag{1.1}
\end{equation*}
$$

Hamming codes are a good mechanism to catch both single and double bit errors or to correct single bit error. This is accomplished by using more than one parity bit, each computed on the different combination of bits in the data.

1.2.2 The binary Golay code

The binary form of the Golay code is one of the most important types of linear binary block codes. It is of particular significance, since it is one of only a few examples of a nontrivial perfect code. A t-error-correcting code can correct a maximum number of t errors. One of the major properties of a perfect t-error-correcting code is that every word lies within a distance of t to exactly one code word.

Equivalently, the code has minimum distance, $d_{\min }=2 t+1$, and covering radius t, where the covering radius r is the smallest number such that every word lies within a distance of r to a codeword.

There are two closely related binary Golay codes. The extended binary Golay code encodes 12 bits of data in a 24-bit word in such a way that any triple-bit error can be corrected and any quadruple-bit error can be detected. The second one, the perfect binary Golay code, has codewords of length 23 and is obtained from the extended binary Golay code by deleting one coordinate position. Conversely, the extended binary Golay code can be obtained from the perfect binary Golay code by adding a parity bit (Morelos-Zaragoza 2002).

1.2.3 Binary cyclic codes

Cyclic codes form an important subclass of linear codes. These codes are attractive for two reasons: first, they can be efficiently encoded and decoded using simply shift-registers and combinatorial logic elements, based on their representation using polynomials; and second, because they have considerable inherent algebraic structure.

Cyclic codes were first studied by Prange in 1957 (Hamming 1950, pp. 147-160). Since then, many algebraic coding theorists are encouraging the study of cyclic codes for both random-error correction and burst-error correction.

BCH codes are family of cyclic codes. A BCH (Bose, Ray-Chaudhuri, Hocquenghem) code is a much studied code within the study of coding theory and more specifically errorcorrecting codes. In technical terms, a BCH code is a multilevel, cyclic, error-correcting, variable-length digital code that is used to correct multiple random error patterns.

1.3 Purpose and structure of thesis

It is well known that wireless links are very vulnerable to channel imperfection such as channel noise, multi-path effect and fading. Iterative decoding is a powerful technique to correct channel transmission errors, and thus improve the bandwidth efficiency of wireless channels.

The essential idea of iterative decoding is to use two or more soft-in/soft-out (SISO) component decoders to exchange soft decoding information. This soft decoding information is known as extrinsic information. It is the exchange of the extrinsic information that provides the powerful error correcting capabilities desired by very noisy wired and wireless channels.

Turbo codes and low-density parity-check (LDPC) codes are two error control codes based on iterative decoding. These codes are widely used in various international standards, such as W-CDMA, CDMA-2000, IEEE 802.11, and DVB-RCS. The purpose of this study is to investigate the performance of two error control codes, namely, turbo codes and LDPC codes based on iterative decoding and demonstrate the performance comparison between these two codes, in terms of error resilient performance, latency, and computational resources. In the first part of this thesis, the fundamental of wireless networks were presented along with some brief explanation of other error control codes. Chapter 2 begins with the history of turbo codes and LDPC codes, and then gives an overview of block, convolutional and concatenated codes.

Chapter 3 discusses the fundamentals of turbo codes and LDPC codes. Chapter 4 focuses on encoding and decoding strategies that are used to implement turbo processing systems, and describes the major classes of soft-input and soft-output decoding algorithms. Chapter 5 focuses on encoding and decoding strategies that are used to implement LDPC processing systems. Chapter 6 discusses the performance analysis for both turbo codes and LDPC codes along with some simulation results. In the end it demonstrates the performance comparison between these two codes. The conclusions and recommendations are found in Chapter 7.

Chapter 2

Error correction coding

The approach to error correction coding taken by modern digital communication systems started in the late 1940's with the revolutionary work of Shannon (Shannon 1948, vol. 27, pp. 379-423 and 623-656), Hamming (Hamming 1950, pp. 147-160), and Golay (Golay 1949, vol. 37, p. 657). In his paper, Shannon showed that it was possible to achieve reliable communications over noisy channel provided that the source's entropy is lower than the channel's capacity. Shannon did not explicitly state how channel capacity could be practically reached; he just stated that that it was attainable. The aim of this project is to investigate turbo codes and LDPC codes, which share many of the same concepts and terminologies of both block and convolutional codes. For this reason, it would be helpful to first provide an overview of block and convolutional codes before proceeding towards the discussion of turbo codes and LDPC codes. This chapter starts with the history of turbo codes and LDPC codes and then gives the concise history of block codes, convolutional codes and concatenated codes. Later in this chapter, the preliminary description of these two main iteratively decodable codes is presented. The code
construction and the algorithms that are used to decode turbo codes and LDPC codes are detailed in the following chapters.

2.1 History

Iterative decoding technique was first introduced in 1954 by P. Elias when he showed his work on iterated codes in his paper "Error-Free Coding" (Elias 1954, vol. PGIT-4, pp. 29-37). Later, in the 1960s, R. G. Gallager and J. L. Massey made an important contribution. In their papers, they referred to iterative decoding as probabilistic decoding (Gallager 1962, vol. 8, no. 1, pp. 21-28), (Massey 1963). The main concept then and as it is today, is to maximize the a-posteriori probability of sending data which is a noisy version of the coded sequence.

Over the past eight years, a substantial amount of research effort has been committed to the analysis of iterative decoding algorithms and the construction of iteratively decodable codes or "turbo-like codes" that approach the Shannon limit. Turbo codes were introduced by C. Berrou, A. Glavieux and P. Thitimajshima in their paper "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes" in 1993 (Berrou, Glavieux \& Thitimajshima 1993, pp. 1064-1070).

In 1962, R. G. Gallager in his paper "Low-Density Parity Check Codes" introduced a class of linear codes, known as low-density parity check (LPDC) codes, and presented two iterative probabilistic decoding algorithms (Gallager 1962, vol. 8, no. 1, pp. 21-28). Later, R. M. Tanner in his paper "A Recursive Approach to Low Complexity Codes" extended Gallager's probabilistic decoding algorithm to the more general case where the parity-checks are defined by sub codes, instead of simple single parity-check equations (Tanner 1981, vol. IT-27, no. 5, pp. 533-547). V. V. Zyablov and M. S. Pinsker in their paper "Estimation of the Error- Correction Complexity for Galleger Low-Density Codes" have showed that LDPC codes have a minimum distance that grows linearly with the code length and that errors up to minimum distance could be corrected with a decoding
algorithm with almost linear complexity (Zyablov \& Pinsker 1975, vol. 11, no. 1, pp. 2636). D. J. C. MacKay and R. M. Neal have showed that LPDC codes can get close to the Shannon limit as turbo codes (MacKay \& Neal 1996, vol. 32, pp. 1645-1646). Later in 2001, T. J. Richardson, M. A. Shokrollahi and R. L. Urbanke have showed irregular LPDC codes may outperform turbo codes of approximately the same length and rate, when the block length is large (Richardson, ShokroLLahi \& Urbanke 2001, vol. 47, no. 2, pp. 619-637).

However, such codes have been studied in detail only for the most basic communication system, in which a single transmitter sends data to a single receiver over a channel whose statistics are known to both the transmitter and the receiver. Such a simplistic model is not valid in the case of wireless networks, where multiple transmitters might want to communicate with multiple receivers at the same time over a channel which can vary rapidly. While the design of efficient error correction codes for a general wireless network is an extremely hard problem and hence the techniques of iterative decoding are still under experimentation and study.

2.2 Basic concepts of error correcting coding

Let us consider a digital communication channel transmitting binary series (0 s and 1 s) by entering them into the channel input. The channel consists of a modulator, the physical transmission medium and a demodulator. The modulator converts input 0 s and 1 s to pairs of signals suitable for transmission through the medium. During transmission, these signals are distorted and disturbed by noise. The infinite set of the received signals is then converted back to 0 s and 1 s by the demodulator using a decision rule. These decisions, however, are not free of errors. The probability of error would certainly be reduced if the transmitted power or the duration of the signals was increased. These methods are not used because neither poor efficiency nor low transfer rate is desirable. Fortunately, there is a procedure called Error Correcting Coding (ECC) to keep the probability of transmission
errors at an acceptably low level. Figure 2.1 shows the representation of a typical transmission by a block diagram.

All error correcting codes are based on the same basic principles. The encoder takes the information symbols from the source as input and adds redundant symbols to it. In a basic form, redundant symbols are appended to information symbols to obtain a coded sequence or codeword. Most of the errors that are introduced during the process of modulating a signal, transmission over a noisy medium and demodulation, can be corrected with the help of those redundant symbols. Such an encoding is said to be systematic. Figure 2.2 shows the systematic block encoding for error correction, where first k symbols are information symbols and remaining $n-k$ symbols are some functions of the information symbols. These $n-k$ redundant symbols are used for error correction or detection purposes. The set of all code sequence is called an Error Correcting Code (ECC) and it is denoted by C.

Figure 2.1: A digital communication system.

Figure 2.2: Systematic block encoding for error correction.

2.3 Shannon capacity limit

In 1948, Claude E. Shannon published his era making paper (Shannon 1948, vol. 27, pp. 379-423 and 623-656) on the limits of reliable transmission of data over unreliable channels and methodologies of achieving these limits. In that paper, he also formalized the concept of information and investigated bounds for the maximum amount of information that can be transmitted over unreliable channels. In the same paper Shannon introduced the concept of codes as ensembles of vectors that are to be transmitted.

Form Figure 2.1, let's assume the information source produces a message $\bar{u}=\left\{u_{i}\right\}, u_{i} \in\{0,1\}, 0 \leq i \leq k-1$, of k data bits. The data bits are passed through a channel encoder, which adds structured redundancy by performing a one-to-one mapping of the message \bar{u} to a code word $\bar{x}=\left\{x_{i}\right\}, x_{i} \in\left\{X_{0}, X_{1}\right\}, 0 \leq i \leq n-1$ of n code symbols, where X_{0} and X_{1} are symbols suitable for transmission over the channel. Hence, the code has a rate of $r=k / n$ bits per symbol. The codeword \bar{x} is transmitted over a channel with some capacity bits per channel use.

Given a communication channel, Shannon proved that there exists a number, called the capacity of the channel, such that reliable transmission is possible for rates arbitrarily close to the capacity, and reliable transmission is not possible for rates above the capacity.

The channel capacity depends on the type of channel and it measures the number of data bits that can be supported per channel use (Shokrollahi 2003, pp.2-3).

Now, let's presume the received version of the codeword \bar{y} is passed through a channel decoder, which estimates \tilde{u} of the message. If the channel allows for errors, then there is no general way of telling which codeword was sent with absolute certainty. However, one way to find the most likely codeword is simply list all the 2^{k} possible codewords, and calculate the conditional probability for the individual codewords. Then find the vector or vectors that yield the maximum probability and return one of them. This decoder is called the maximum likelihood decoder.

Shannon proved a random code can achieve channel capacity for sufficient long block lengths. However, random codes of sufficient length are not practical to implement. Practical codes must have some structure to allow the encoding and decoding algorithms to be executed with reasonable complexity. Codes that approach capacity are very good from a communication point of view, but Shannon's theorems are non-constructive and don't give a clue on how to find such codes (Shokrollahi 2003, pp.2-3).

2.4 Block codes

During the time that Shannon was defining the theoretical limits of reliable communication, Hamming and Golay were busy in developing the first practical error control schemes. Their work gave birth to a successful branch of applied mathematics known as coding theory. In 1946, Richard Hamming, was hired by Bell Labs to work on elasticity theory. However, Hamming found that he spent much of his time working on computers which were highly unreliable at that time. The computers were equipped with error detection capabilities, but they would halt the execution of the program while detecting an error. This led Hamming to search ways to encode the input so that the computer could correct isolated errors and continue running. His solution was to group the data into sets of four information bits and
then calculate three check bits which are a linearly combination of the information bits. The resulting seven bits code word was then fed into the computer. After reading the resulting codeword, the computer ran through an algorithm that could not only detect errors, but also determine the location of a single error. Thus the Hamming code was able to correct a single error in a block of seven encoded bits (Hamming 1950, pp. 147-160).

Although Hamming codes were a great progression, it had some undesirable properties. Firstly, it was not very efficient. It was requiring three check bits for every four data bits. Secondly, it had the ability to correct only a single error within the block. These problems were addressed by Marcel Golay, who generalized Hamming's construction. During his process, Golay discovered two very astonishing codes on which the binary Golay code has already mentioned concisely in Section 1.2.2. The second code is the ternary Golay code, which operates on ternary, rather than binary, numbers. The ternary Golay code protects blocks of six ternary symbols with five ternary check symbols and has the capability to correct two errors in the resulting eleven symbol code word (Golay 1949, vol. 37, p. 657).

The general strategy of Hamming and Golay codes were the same. The ideas were to group q-ary symbols into blocks of k-digit information word and then add $n-k$ redundant symbols to produce an n-digit code word. The resulting code has the ability to correct t errors, and has code rate $r=k / n$. A code of this type is known as a block code, and is referred to as a (q, n, k, t) block code.

2.5 Convolution codes

Although, block codes have attained lots of success, they have several fundamental drawbacks. Firstly, because of their frame oriented characteristic, the entire code word must be received before decoding procedure starts. This can introduce an intolerable latency into the system, particularly for large block lengths. Secondly, the block codes require precise
frame synchronization. ${ }^{2}$ Thirdly, most of the algebraic-based decoders for block codes work with hard-bit decisions, rather than with "soft" outputs of the demodulator. With harddecision decoding, the output of the channel is taken to be binary, whereas the channel output is continuous-valued with soft-decision decoding. However, in order to achieve the performance bounds predicted by Shannon, continuous-valued channel output are required.

The drawbacks of block codes can be avoided by taking a different approach to coding and one of them was convolutional coding. Convolutional codes were first introduced in 1955 by Elias (Elias 1955, vol. 4, pp. 37-47). Rather than splitting data into distinct blocks, convolutional encoders add redundancy to a continuous stream of input data by using a linear shift register. In convolutional codes, each block of k bits is mapped into a block of n bits but these n bits are not only determined by the present k information bits but also by the previous information bits. This dependence can be captured by a finite state machine. The total number of bits that each output depends on is called the constraint length, and denoted by K_{c}. The rate of the convolutional encoder is the number of data bits k taken in by the encoder in one coding interval, divided by the number of n coded bits during the same interval. While the data is continuously encoded, it can be continuously decoded with only small latency. In addition, the decoding algorithms can make full rise of soft-decision information from the demodulator.

After the development of the Viterbi algorithm, convolutional coding began to be utilized in extensive application of communication systems. The constraint length $K_{c}=7$ "Odenwalder" convolutional code, which operates at rates $r=1 / 3$ and $r=1 / 2$, has become a standard for commercial satellite communication applications (Berlekamp, Peile and Pope 1987), (Odenwalder 1976). Convolutional codes were used by several deep space probes such as Voyager and Pioneer (Wicker 1995).

All of the second generation digital cellular standards incorporate convolutional coding; GSM uses a $K_{c}=5, r=1 / 2$ convolutional code, USDC use a $K_{c}=6, r=1 / 2$ convolutional code, and IS-95 uses a $K_{c}=9$ convolutional code with $r=1 / 2$ on the downlink and $r=1 / 3$

[^1]on the uplink (Rappaport 1996). Globalstar also uses a $K_{c}=9, r=1 / 2$ convolutional code, while Iridium uses a $K_{c}=7$ convolutional code with $r=3 / 4$ (Costello, Hagenauer, Imai and Wicker 1998, vol. 44, pp. 2531-2560).

2.6 Concatenated codes

Convolutional codes have a key weakness and that is vulnerability to burst errors. This weakness can be eased by using an interleaver, which scrambles the order of the coded bits prior to transmission. At the receiver end, a deinterleaver is used that places the received coded bits back into the proper order after demodulation and prior to decoding. The most common type of interleaver is the block interleaver, which is simply an $M_{b} \times N_{b}$ bit array. Data is placed into the array column-wise and then read out row-wise. A burst error of length up to N_{b} bits can be spread out by a block interleaver such that only one error occurs in every M_{b} bits. All of the second generation digital cellular standards use some form of block interleaving. A second type of interleaver is the convolutional interleaver, which allows continuous interleaving and deinterleaving and is ideally suited for use with convolutional codes (Ramesy 1970, vol. 16, pp. 338-345).

2.7 Iterative decoding for soft decision codes

Iterative decoding is defined as a technique employing a soft-output decoding algorithm that is iterated several times to improve the error performance of a coding scheme, with the aim of approaching true maximum-likelihood decoding (MLD), with less complexity. After designing the underlying error correcting code, the error performance can be improved by simply increasing the number of iteration. In terms of the application of iterative decoding algorithms, ECC schemes can be generally categorized into two classes, i.e., Turbo codes and LDPC codes. This section presents an overview of these two main iteratively decodable codes.

2.7.1 Turbo codes

Turbo codes are a new class of error correction codes that was introduced in 1993, by a group of researchers from France, along with a practical decoding algorithm. The turbo codes are very important in the sense that they enable reliable communications with power efficiencies close to the theoretical limit predicted by Claude Shannon. Hence, turbo codes have been projected for low-power applications such as deepspace and satellite communications, as well as for interference limited applications such as third generation cellular and personal communication services. Figure 2.3 shows the block diagram of turbo encoder.

Figure 2.3: Encoder structure of a parallel concatenated (turbo) code.

A turbo code is the parallel concatenation of two or more Recursive Systematic Convolutional (RSC) codes separated by an interleaver. Two identical rate $r=1 / 2$ RSC encoders work on the input data in parallel as shown in Figure 2.3. As shown in the figure, the upper encoder receives the data directly, while lower encoder receives the data after it has been interleaved by a permutation function α. In general, the interleaver α is a pseudo-random interleaver. It maps bits in position i to position $\alpha(i)$ according to a prescribed, but randomly generated rule. Because the encoders
are systematic (one of the outputs is the input itself) and receive the same input (although in a different order), the systematic output of the lower encoder is completely unnecessary and does not need to be transmitted. However, the parity outputs of both encoders are transmitted. The overall code rate of the parallel concatenated code is $r=1 / 3$, although higher code rate can be achieved by puncturing the parity output bit with a multiplexer (MUX) circuit.

Figure 2.4: Block diagram of an iterative decoder for a parallel concatenated code.

As an interleaver exists between two encoders, optimal decoding of turbo codes is incredibly complex and therefore impractical. However, a suboptimal iterative decoding algorithm was presented in (Berrou, Glavieux \& Thitimajshima 1993, pp. 1064-1070) which presents good performance at much lower complexity. The idea behind the decoding strategy is to break the overall decoding problem into two smaller problems with locally optimal solutions and to share information in an iterative fashion. The decoder associated with each of the constituent codes is modified so that it produces soft-outputs in the form of a-posteriori probabilities of
the data bits. The two decoders are cascaded as shown in Figure 2.4. As shown in the figure, the lower decoder receives the interleaved version of soft-output of the upper decoder. At the end of the first iteration, the deinterleaved version of soft-output of the lower decoder is fed back to the upper decoder and used as a-priori information in the next iteration. Decoding continues in an iterative fashion until the desired performance is achieved.

The original turbo code of (Berrou, Glavieux \& Thitimajshima 1993, pp. 1064-1070) used constraint length $K_{c}=5$ RSC encoders and a 65,536 bit interleaver. The parity bits were punctured in such a way that the overall code was a ($n=131,072, k=$ $65,532)$ linear block code. Simulation results showed that a bit error rate of 10^{-5} could be achieved at an E_{b} / N_{0} ratio of just 0.7 decibels (dB) after 18 iterations of decoding. Thus, the author claimed that turbo codes could come within a 0.7 dB of the Shannon limit. However, it is found that the performance of the turbo codes increases as the length of the codes n increases.

2.7.2 LDPC codes

LDPC codes are one of the hottest topics in coding theory today. Besides turbo codes, low-density parity-check (LDPC) codes form another class of Shannon limit-approaching codes. Unlike many other classes of codes, LDPC codes are very well equipped with very fast encoding and decoding algorithms by now. The design of the codes is such that these algorithms can recover the original codeword in the face of large amount of noise. New analytic and combinatorial tools make LDPC codes not only attractive from a theoretical point of view, but also perfect for practical applications.

In 1962, Robert Gallager (Gallager 1962, vol. 8, no. 1, pp. 21-28) invented low-density parity-check (LDPC) codes in his PhD thesis. Soon after the invention of LPDC codes, they were mostly forgotten, and reinvented several times for the next 30 years. The comeback of LPDC codes were one of the most fascinating aspects of their history. Recently, however,
they have been strongly promoted, and MacKay in his work showed that LDPC codes are capable of closely approaching the channel capacity. In particular, using random coding arguments MacKay showed that LDPC code collections can approach the Shannon capacity limit exponentially fast with increasing code length (MacKay \& Neal 1996, vol. 32, pp. 1645-1646).

LDPC codes are codes, specified by a matrix containing mostly 0 's and relatively few 1 's. There are basically two classes of LDPC codes based on the structure of this matrix, i.e., regular LDPC codes and irregular LDPC codes.

A regular LDPC code is a linear $\left(w_{c}, w_{r}, N\right)$ code with parity-check matrix \boldsymbol{H} having the Hamming weight of the columns and rows of \boldsymbol{H} is equal to w_{c} and w_{r}, where both w_{c} and w_{r} are much smaller than the code length N. In somewhat artificial sense, LDPC codes are not most favorable of minimizing the probability of decoding error for a given block length. It can be shown that the maximum rate at which they can be used is bounded by the channel capacity. However, the simplicity in the decoding scheme can compensate these disadvantages.

As previously mentioned, a regular LDPC code is defined as the null space of a paritycheck matrix \boldsymbol{H}. This parity-check matrix has some structural properties which are given below:

1. The parity-check matrix \boldsymbol{H} has constant Hamming weight of the columns and rows equal to w_{c} and w_{r}, where both w_{c} and w_{r} are much smaller than the code length.
2. The number of 1 's in common between any two columns, denoted by λ, is no greater than 1 . This implies that no two rows of \boldsymbol{H} have more than one 1 in common. Because both w_{c} and w_{r} are small compared with the code length and the number of rows in the matrix \boldsymbol{H}, hence the matrix has small density of 1 's.

This is the reason why \boldsymbol{H} is said to be a low-density parity-check matrix, and the code specified by \boldsymbol{H} is hence called a low-density parity check (LDPC) code.

An irregular LDPC codes are obtained, if the Hamming weights of the columns and rows of \boldsymbol{H} are chosen in accordance to some nonuniform distribution (Richardson, ShokroLLahi \& Urbanke 2001, vol. 47, no. 2, pp. 619-637). An irregular LDPC code has a very sparse parity check matrix in which the column weight may vary from column to column. In fact, the best known LDPC codes are irregular; they can do better than regular LDPC codes by 0.5 dB or more (Luby, M G, Miteznmacher, Shokrollahi, M A and Spielman, D A 2001, vol. 47, no. 2, pp. 585-598).

2.8 Chapter summary

This chapter has focused on the basic concepts of two classes of ECC codes, i.e., turbo codes and LDPC codes. Both turbo codes and LDPC codes utilize a soft-output decoding algorithm that is iterated several times to improve the bit error probability, with the aim of approaching Shannon capacity limit, with less complexity.. The basic concepts of error correcting codes and Shannon capacity limit were presented. Turbo codes have many of the common concepts and terminologies of block codes, convolutional codes and concatenated codes. LDPC codes also share some idea of block codes. Hence, an outline for each block codes, convolutional codes and concatenated codes was presented separately.

Presently turbo codes are being utilized in the applications of satellite communications, third generation cellular and personal communication services. . LDPC codes with new analytic and combinatorial tools have also become perfect for practical applications.

Chapter 3

Turbo codes: Encoder and decoder construction

This chapter focuses on the encoder construction and decoding algorithms of turbo codes. Turbo codes share many of the same concepts and terminologies of both block codes and convolutional codes. For this reason, it is helpful to first provide an overview of block codes and convolutional codes before proceeding to the discussion of turbo coeds.

3.1 Constituent block codes

Block codes process the information on a block-by-block basis, treating each block of information bits independently from others. Typically, a block code takes a k-digit information word, and transforms this into an n-digit codeword. At first, the encoder for a block code divides the information sequence into message blocks of k information bits each. A message block is then represented by the binary k-tuple $\bar{u}=\left(u_{0}, u_{l}, \ldots, u_{k-l}\right)$. So there are total of 2^{k} different possible messages. The encoder transforms each message \bar{u}
independently into an n-tuple $\bar{v}=\left(v_{0}, v_{l}, \ldots, v_{n-l}\right)$. Hence, corresponding to the 2^{k} different possible messages, there are 2^{n} different possible code words at the encoder output.

3.1.1 Encoding of block codes

The encoding process consists of breaking up the data into k-tuples u called messages, and then performing a one-to-one mapping of each message u_{i} to an n-tuple v_{i} called a code word. Let C denote a binary linear ($n, k, d_{\text {min }}$) code. Since C is a k-dimensional vector subspace, any codeword $\bar{v} \in C$ can be represented as a linear combination of the elements in the basis:

$$
\begin{equation*}
\bar{v}=u_{0} v_{0}+u_{1} v_{1}+\cdots+u_{k-1} v_{k-1}, \tag{3.1}
\end{equation*}
$$

where $u_{i} \in\{0,1\}, 0 \leq i<k-1$. Equation (3.1) can be described by the matrix multiplication

$$
\begin{equation*}
\bar{v}=\bar{u} G, \tag{3.2}
\end{equation*}
$$

where G is the $k \times n$ generator matrix.

$$
G=\left(\begin{array}{c}
\bar{v}_{0} \tag{3.3}\\
\bar{v}_{1} \\
\vdots \\
\bar{v}_{k-1}
\end{array}\right)=\left(\begin{array}{cccc}
v_{0,0} & v_{0,1} & \cdots & v_{0, n-1} \\
v_{1,0} & v_{1,1} & \cdots & v_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k-1,0} & v_{k-1,1} & \cdots & v_{k-1, n-1}
\end{array}\right) .
$$

Since C is k-dimensional vector space in V_{2}, there is an $(n-k)$ - dimensional dual space C^{T}, generated by the rows of a matrix \boldsymbol{H}, called the parity-check matrix, such that $G H^{\mathrm{T}}=0$, where H^{T} denotes the transpose of \boldsymbol{H}.

The Hamming distance $d_{H}\left(\bar{v}_{1}, \bar{v}_{2}\right)$ is the number of positions that two code words differ. It can be found by first taking the modulo-2 sum of the two code words and then counting the number of ones in the result. The minimum distance $d_{\text {min }}$ of a code is the smallest Hamming distance between any two words

$$
\begin{equation*}
d_{\text {min }}=\min _{\bar{v}_{1}, \bar{v}_{2} \in C}\left\{d_{H}\left(\bar{v}_{1}, \bar{v}_{2}\right) \mid \bar{v}_{1} \neq \bar{v}_{2}\right\} . \tag{3.4}
\end{equation*}
$$

A code with the minimum distance $d_{\text {min }}$ is capable of correcting all code words with t or fewer errors, where

$$
\begin{equation*}
t=\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor, \tag{3.5}
\end{equation*}
$$

where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.

The Hamming weight can be found by simply counting the number of ones in the code word. For linear codes, the minimum distance is the smallest Hamming weight of all code words except the all-zeros code word

$$
\begin{equation*}
d_{\min }=\min _{i>0} w\left(v_{i}\right) . \tag{3.6}
\end{equation*}
$$

3.1.2 Systematic codes

A code is said to be systematic if the message \bar{u} is contained within the codeword \bar{v}. The generator matrix G of a systematic code can be brought to systematic form

$$
\begin{equation*}
G_{s y s}=\left[I_{k} \mid P\right], \tag{3.7}
\end{equation*}
$$

where I_{k} is the $k \times k$ identity matrix and P is a $k \times(n-k)$ parity sub-matrix, such that

$$
P=\left(\begin{array}{cccc}
p_{0,0} & p_{0,1} & \cdots & p_{0, n-k-1} \tag{3.8}\\
p_{1,0} & p_{1,1} & \cdots & p_{1, n-k-1} \\
\vdots & \vdots & \ddots & \vdots \\
p_{k-1,0} & p_{k-1,1} & \cdots & p_{k-1, n-k-1}
\end{array}\right) .
$$

Since $G H^{\mathrm{T}}=0$, it follows that the systematic form, $H_{s y s}$, of parity-check matrix is

$$
\begin{equation*}
H_{s y s}=\left[P^{\mathrm{T}}\left|I_{n-k}\right|\right] . \tag{3.9}
\end{equation*}
$$

3.2 Constituent convolution codes

3.2.1 Encoding of convolution codes

A convolution encoder has memory, in the sense that the output symbols depend not only on the input symbols, but also on the previous inputs or outputs. The memory m of the encoder measured by the total length of shift registers M. Constraint length $K_{c}=m+1$, is defined as the number of inputs ($u[i], u[i-1], \ldots u[i-m]$) that affect the outputs ($\left.v^{(0)}[i], \ldots, v^{(n-1)}[i]\right)$ at time i. An encoder with m memory elements will be referred to as a memory- m encoder. Figure 3.1 shows an example of a convolutional encoder. For this encoder, memory $m=2$, the code rate $r=1 / 2$ and the constraint length $K_{c}=3$.

Figure 3.1: An encoder of memory-2 rate-1/2 convolutional encoder.

3.2.2 State diagram

A memory- m rate $1 / n$ convolution encoder can be represented by a state diagram. An encoder with m memory elements there are 2^{m} states. Figure 3.2 shows the state diagram of the memory- 2 rate- $1 / 2$ convolution code. As there is only one information bit, hence two branches enter and leave each state and they are labeled by $u[i] / v^{(0)}[i], \ldots, v^{(n-1)}[i]$.

Figure 3.2: State diagram of a memory-2 rate-1/2 convolutional encoder.

3.2.3 Generator matrix

For an encoder with memory $-m$ rate- $1 / 2$, the impulse responses can last at most $m+1$ time units and can be written as $\bar{g}^{(0)}=\left(g_{0}^{(0)}, g_{1}^{(0)}, \cdots, g_{m}^{(0)}\right)$ and $\bar{g}^{(1)}=\left(g_{0}^{(1)}, g_{1}^{(1)}, \cdots, g_{m}^{(1)}\right)$. The impulse responses $\bar{g}^{(0)}$ and $\bar{g}^{(1)}$ are called the generator sequences of the encoder. In general, when referring to a convolution code, the generators are expressed in octal form. In order to stress the dynamic nature of the encoder, the indeterminate D (for "Delay") is used and the generators are written as polynomials in $D, \bar{g}^{(0)}(D), \cdots, \bar{g}^{(n-1)}(D)$.

A convolutional encoder is a linear time-invariant system, with impulse responses given by the code generators, $\bar{g}^{(0)}(D), \cdots, \bar{g}^{(n-1)}(D)$, where

$$
\begin{equation*}
\bar{g}^{(j)}(D)=g_{0}^{(j)}+g_{1}^{(j)} D+g_{2}^{(j)} D^{2}+\cdots+g_{m}^{(j)} D^{m} \tag{3.10}
\end{equation*}
$$

for $0 \leq j<n$. In term of the generators of a code, the output sequences can be expressed as

$$
\begin{equation*}
v^{(j)}[i]=\sum_{l=0}^{m} u[i-l] g_{j}[l], \text { where } 0 \leq j<n \tag{3.11}
\end{equation*}
$$

In particular, for a rate- $1 / 2$ memory- m encoder, if the generator sequences $\bar{g}^{(0)}$ and $\bar{g}^{(1)}$ are interlaced, then they can be arranged in the matrix in such that

$$
G=\left[\begin{array}{ccccccc}
g_{0}^{(0)} g_{0}^{(1)} & g_{1}^{(0)} g_{1}^{(1)} & g_{2}^{(0)} g_{2}^{(1)} & \ldots & g_{m}^{(0)} g_{m}^{(1)} & & \tag{3.12}\\
& g_{0}^{(0)} g_{0}^{(1)} & g_{1}^{(0)} g_{1}^{(1)} & \ldots & g_{m-1}^{(0)} g_{m-1}^{(1)} & g_{m}^{(0)} g_{m}^{(1)} & \\
& & g_{0}^{(0)} g_{0}^{(1)} & \ldots & g_{m-2}^{(0)} g_{m-2}^{(1)} & g_{m-1}^{(0)} g_{m-1}^{(1)} & g_{m}^{(0)} g_{m}^{(1)} \\
& & \ldots & & & \ldots & \\
& & & \ldots & & & \ldots
\end{array}\right]
$$

where the blank areas are all zeros. We can then, write the encoding equations in matrix form as

$$
\begin{equation*}
\bar{v}=\bar{u} G, \tag{3.13}
\end{equation*}
$$

where all operations are modulo-2. The G matrix is then called the Generator matrix of the encoder.

Hence, the output sequences $\bar{v}^{(j)}(D), 0 \leq j<n$, as mentioned, are equal to the discrete convolution between the input sequence $\bar{u}(D)$ and the code generators $\bar{g}^{(0)}(D), \bar{g}^{(1)}(D), \cdots, \bar{g}^{(n-1)}(D)$. Let, $\bar{v}(D)=v^{(0)}(D)+D v^{(1)}(D)+\cdots+D^{n-1} v^{(n-1)}(D)$. Then the relationship between input and output can be written as follows:

$$
\begin{equation*}
\bar{v}(D)=\bar{u}(D) G(D), \tag{3.14}
\end{equation*}
$$

where, generators of a rate $1 / n$ convolutional code are arranged in matrix and referred to as a polynomial generator matrix $G(D)$.

3.2.4 Trellis diagram

A trellis diagram expands the state diagram to show how the states change with time. A trellis diagram is constructed by placing the state diagram of the code at each time interval with branches connecting states between time i and $i+1$, in correspondence with the encoder table. The inputs and outputs are showed only in the fist trellis as any two of the same state-to-state transitions have the same outputs and inputs. Thus, not all outputs are needed to be showed and hence reduce the clutter. Figure 3.3 shows six sections of the trellis of a memory- 2 rate- $1 / 2$ convolutional encoder.

Figure 3.3: Six sections of the trellis of a memory-2 rate-1/2 convolutional encoder.

3.2.5 Punctured convolution codes

If convolutional codes are rate of $1 / n$, the highest rate that can be achieved is $r=1 / 2$. For many applications it may be desirable to have higher rates such as $r=2 / 3$ or $r=3 / 4$. One way to attain these higher rates is to use an encoder that can take more than one input stream and thus having rate $r=k / n$, where $k>1$. However, this increases the complexity of decoder's add-compare-select (ACS) circuit exponentially in the number of input streams (Wicker 1995). Hence, it is desirable to keep the number of input streams at the encoder as low as possible. An alternative of using multiple encoder input streams is to use a single encoder input stream and a process called puncturing.

Puncturing is the process of systematically deleting, or not sending some output bits of a low-rate encoder. The code rate is determined by the number of deleted bits. For instance, one out of every four bits is deleted from the output of a rate $1 / 2$ convolutional encoder. Then for every two bits at the input of the encoder, three bits remain as outputs after puncturing. Hence, the punctured rate is $2 / 3$. The convolutional codes of rate $3 / 4$ can be
generated from the same encoder by deleting two out of every six output bits. One of the main benefits of puncturing is that it allows the same encoder to attain a wide range of coding rates by simply changing the number deleted bits (Hagenauer 1988, vol. 36, pp. 389-400).

When puncturing is used, the location of the deleted bits must be explicitly stated. A puncturing matrix P specifies the rules of deletion of output bits. P is a $k \times n_{p}$ binary matrix, with binary symbols $p_{i j}$ that indicate whether the corresponding output bit is transmitted ($p_{i j}$ $=1)$ or not $\left(p_{i j}=0\right)$. For example, the following matrix can be used to increase a rate $1 / 2$ code to rate $2 / 3$

$$
P=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Figure 3.4: An encoder of a memory-2 rate-2/3 PCC.

The corresponding encoder is depicted in Figure 3.4. A coded sequence

$$
\bar{v}=\left(\ldots, v_{i}^{(0)} v_{i}^{(1)}, v_{i+1}^{(0)} v_{i+1}^{(1)}, v_{i+2}^{(0)} v_{i+2}^{(1)}, v_{i+3}^{(0)} v_{i+3}^{(1)}, \ldots\right),
$$

of the rate- $1 / 2$ encoder is transformed into code sequence

$$
\bar{v}_{p}=\left(\ldots, v_{i}^{(0)} v_{i}^{(1)}, v_{i+1}^{(0)}, v_{i+2}^{(0)} v_{i+2}^{(1)}, v_{i+3}^{(0)}, \ldots\right),
$$

i.e., every other bit of the second output is deleted (Morelos-Zaragoza 2002).

One of the goals of puncturing is that for a variety of high-rate codes, the same decoder can be used. One way to achieve decoding of a punctured convolution code using the viterbi decoder of the low-rate code is by the insertion of "deleted" symbols in the positions that were sent. This process is known as depuncturing. A special flag is used to mark these deleted symbols.

3.2.6 Recursive systematic codes

If a data sequence being encoded becomes a part of the encoded output sequence, that codes are referred to as systematic.

Figure 3.5: An encoder of a memory-2 rate-1/2 recursive systematic convolutional encoder.

Convolutional codes can be made systematic without reducing the free distance. A rate $1 / 2$ convolutional code is made systematic by first calculating the remainder $\bar{y}(D)$ of the polynomial division $\bar{u}(D) / \bar{g}^{(0)}(D)$. The parity output is then found by the polynomial multiplication $\quad \bar{v}^{(1)}(D)=\bar{y}(D) \bar{g}^{(1)}(D)$, and the systematic output is simply $\bar{v}^{(0)}(D)=\bar{u}(D)$. Codes generated in this manner are referred to as recursive systematic convolutional (RSC) codes. RSC encoding proceeds by first computing the remainder variable

$$
\begin{equation*}
y[i]=u[i]+\sum_{l=1}^{m} y[i-l] g_{0}[l] \tag{3.15}
\end{equation*}
$$

and then finding the parity output

$$
\begin{equation*}
v^{(1)}[i]=\sum_{l=0}^{m} y[i-l] g_{1}[l] \tag{3.16}
\end{equation*}
$$

A systematic encoder is also an example of discrete-time linear time-invariant system. While conventional convolutional encoders are finite impulse response filters, RSC encoders are infinite impulse response (IIR) filters because the generator matrix contains rational functions. RSC encoders are finite state machines and can be represented by state and trellis diagrams. The state diagram of a memory- 2 rate- $1 / 2$ RSC encoder is shown in Figure 3.6 and the trellis diagram for this encoder is shown in Figure 3.7.

Figure 3.6: State diagram of a memory-2 rate-1/2 recursive systematic convolutional encoder.

Figure 3.7: Six sections of the trellis of a memory-2 rate-1/2 recursive systematic convolutional encoder.

It can be noticed that the state and the trellis diagrams for the RSC code are almost identical to those for the related non-systematic convolutional code. Actually, the only difference between the two state diagrams is that the input bits labeling the branches leaving nodes (10) and (01) are complements of one another. In conventional convolutional codes, the input bits labeling the two branches entering any node are the same. Conversely, for RSC codes, the input bits labeling the two branches entering any node are complements of one another. Since the structure of the trellis and the output bits labeling the branches remain the same when the code is made systematic and the minimum free distance remain unchanged.

3.3 Classes of soft-input, soft- output decoding algorithms

3.3.1 Viterbi algorithm

Viterbi Algorithm (VA) is the optimum-decoding algorithm for convolutional codes. It finds the sequence of symbols in the given trellis that is closest in distance to the received sequence of noisy symbols. This sequence computed is the global most likely sequence. Therefore, VD is also known as maximum likelihood decoder.

The likelihood between the received sequence \bar{r} after transmission over a noisy channel and the actual coded sequence \bar{v} is given by the conditional probability

$$
\begin{equation*}
P(\bar{r} \mid \bar{v})=\prod_{i=0}^{n-1} P\left(r_{i} \mid v_{i}\right) \tag{3.17}
\end{equation*}
$$

To compute the global most-likely sequence, the VA first recursively computes the survivor path entering each state. After the survivor paths entering all states are computed, the survivor path that has the minimum path metric is selected to be the global most likely path.

In VA, the branch metric is defined as the Hamming distance between the received noisy symbol, \bar{r} and the ideal noiseless output symbol, \bar{v}. At stage i, the branch metrics is

$$
\begin{equation*}
B M_{i}^{(b)}=d_{H}(\bar{r}[i], \bar{v}[i]), \tag{3.18}
\end{equation*}
$$

$b=\sum_{l=0}^{n-1} v_{l}[i] 2^{n-1-l}$, associated with the n outputs $\bar{v}[i]$ of every branch and the n received bits $\bar{r}[i]$.

For each state $S_{i}^{(k)}, k=0,1, \cdots, 2^{m}-1$, path metrics is defined as the as the distance between the survivor path and the sequence of noisy symbols. It is calculated as follows

$$
\begin{equation*}
M\left(S_{i}^{(k)}\right)=\min \left\{M\left(S_{i-1}^{\left(k_{1}\right)}\right)\right\}+B M_{i}^{\left(b_{1}\right)}, M\left(S_{i-1}^{\left(k_{2}\right)}\right)+B M_{i}^{\left(b_{2}\right)} \tag{3.19}
\end{equation*}
$$

After the most likely transition to state at i is computed, the path metric for state at i, $M\left(S_{i}^{(k)}\right)$, is updated and the survivor paths is updated as follows, with the output of the winning branch $\bar{v}_{k_{j}}, j \in\{1,2\}$,

$$
\begin{equation*}
\bar{y}_{i}^{(k)}=\left(\bar{y}_{i-1}^{\left(k_{j}\right)}, \bar{v}_{k_{j}}\right) . \tag{3.20}
\end{equation*}
$$

The path metrics and the survivor paths are updated for all states at each step. In the end, the survivor path with the minimum path metric is selected to be the most likely path.

VA is the optimal maximum likelihood detection method in AWGN channel when Euclidean distance is used as a distance measure. With respect to the VD algorithm with Hamming distance, two changes are required:

1. The branch metric is computed as follows,

$$
\begin{equation*}
B M_{i}^{(b)}=\left(r_{i}-m\left(v_{i}\right)\right)^{2} \tag{3.21}
\end{equation*}
$$

Let E denote the energy of transmitted symbol. The mapping rule is Binary PhaseShift Keying (BPSK),

$$
m\left(v_{i}\right)=\left\{\begin{array}{cl}
\sqrt{E} & \text { if, } v_{i}=0 \tag{3.22}\\
-\sqrt{E} & \text { if, } v_{i}=1
\end{array}\right.
$$

2. Instead of taking the minimum path metrics, the VD takes the maximum path metrics.

3.3.2 Soft-output Viterbi algorithm (SOVA)

A Viterbi algorithm is implemented to minimize the transmission errors of messages through the system by computing the most likely state sequence of a hard decision or soft decision input and then outputting it as a hard decision. The Viterbi Algorithm attempts to minimize bit errors of the output by estimating the original input bits. This is accomplished by calculating the different input possibilities of a specific output symbol and then assigning a confidence level to those inputs that have the most likely probability of actually having occurred. An extension of the classical Viterbi Algorithm is the Soft Output Viterbi Algorithm (SOVA), which attempts to minimize bit errors as well. The SOVA differs from the classical algorithm in that it outputs soft decisions, rather than hard decisions. The SOVA computes soft output of the information bits as a loglikelihood ratio (LLR),

$$
\begin{equation*}
\Lambda\left(u_{i}\right)=\log \left(\frac{\operatorname{Pr}\left\{u_{i}=1 \mid \bar{r}\right\}}{\operatorname{Pr}\left\{u_{i}=0 \mid \bar{r}\right\}}\right) \tag{3.23}
\end{equation*}
$$

Where \bar{r} refers to the received sequence.

In a SOVA decoder, the Viterbi algorithm needs to be executed twice. In the first time, decoding proceeds as with the conventional VA, with the exception that path metrics at each decoding stage are needed to be stored. This part is referred as forward processing. The second part is referred as backward processing. In the second part the VA transverses
the trellis backwards, and computes metrics and paths, starting at $i=N-1$ and ending at $i=0$. In this stage, there is no need to store the surviving paths, but only the metrics for each trellis state. Finally for each trellis stage, $i, 1 \leq i \leq N$, the soft-outputs are computed (Morelos-Zaragoza 2002).
$M_{\text {max }}$ can be used to denote the metric of the most likely sequence \hat{v} found by the Viterbi algorithm. A-Posteriori Probability (APP) of the associated information sequence \hat{u} given the received sequence \bar{r}, is proportional to $M_{\text {max }}$, while

$$
\begin{equation*}
\operatorname{Pr}\{\hat{u} \mid \bar{r}\}=\operatorname{Pr}\{\hat{v} \mid \bar{r}\} \approx e^{M_{\max }} . \tag{3.24}
\end{equation*}
$$

From (3.21) and (3.22), the APP of information bit u_{i} can be written as

$$
\operatorname{Pr}\left\{u_{i}=1 \mid \bar{r}\right\} \approx e^{M_{i}(1)},
$$

where $M_{i}(1)=M_{\text {max }}$. Now, let assume $M_{i}(0)$ denote the maximum metric of paths associated with the complement of information symbol u_{i}. Then the soft-output

$$
\begin{equation*}
\Lambda\left(u_{i}\right) \approx M_{i}(1)-M_{i}(0) . \tag{3.25}
\end{equation*}
$$

Hence, at time i, the soft-output can be obtained from the difference between the maximum metric of paths in the trellis with $\hat{u}_{i}=1$ and the maximum metric of paths with $\hat{u}_{i}=0$.

In the SOVA algorithm, at stage i, the most likely information symbol $u_{i}=j, j \in\{0,1\}$, is determined and the corresponding maximum metric which is found in the forward pass of the VA is set to $M_{i}\left(u_{i}\right)$. The path metric of the best competitor, $M_{i}\left(u_{i} \oplus 1\right)$, can computed as (Vucetic and Yuan 2000),

$$
\begin{equation*}
M_{i}\left(v_{i} \oplus 1\right)=\min _{k_{1}, k_{2}}\left\{M_{f}\left(S_{i-1}^{\left(k_{1}\right)}\right)+B M_{i}^{\left(b_{1}\right)}\left(u_{i} \oplus 1\right)+M_{b}\left(S_{i}^{\left(k_{2}\right)}\right)\right\}, \tag{3.26}
\end{equation*}
$$

where $k_{1}, k_{2} \in\left\{0,1,2, \cdots, 2^{m}-1\right\}$,

- $M_{f}\left(S_{i-1}^{\left(k_{1}\right)}\right)$ is the path metric of the forward survivor at time $i-1$ and state $S^{\left(k_{1}\right)}$,
- $B M_{i}^{\left(b_{1}\right)}\left(u_{i} \oplus 1\right)$ is the branch metric at time i for the complement information associated with a transition form state $S^{\left(k_{1}\right)}$ to $S^{\left(k_{2}\right)}$, and
- $M_{b}\left(S_{i}^{\left(k_{2}\right)}\right)$ is the path metric of the backward survivor at time i and state $S^{\left(k_{2}\right)}$.

Lastly, the soft-output is computed as

$$
\begin{equation*}
\Lambda\left(u_{i}\right)=M_{i}(1)-M_{i}(0) . \tag{3.27}
\end{equation*}
$$

3.3.3 Maximum- a - Posteriori (MAP) algorithm

The symbol-by-symbol maximum a-posteriori (MAP) algorithm was formally presented in 1974 by Bahl et al as an alternative to the Viterbi algorithm for decoding convolutional codes (Bahl, Cocke, Jelinek, and Raviv 1974, vol. IT-20, pp. 284-287). The MAP algorithm finds the most likely information bit that has been transmitted in a coded sequence. This is unlike the Viterbi algorithm which finds the most likely sequence that has been transmitted. The difference of error performance between the MAP and Viterbi algorithm is negligible when the decoded bit-error rate (BER) is small. The Map algorithm has been largely ignored as it is significantly more complex than Viterbi algorithm. However, at low signal-to-noise ratio (SNR) or E_{b} / N_{0} and high bit-error rate (BER), MAP can do better than SOVA by 0.5 dB or more. For turbo code it is very important as the output BER's from the first stages of iterative decoding can be very high. Hence, any improvement that can be obtained at these high BERs will directly result in performance increases.

The MAP algorithm calculates the a-posteriori probability (APP) of each state transition, given the noisy observation \bar{r}. The state transitions in the trellis have probabilities

$$
\begin{equation*}
\operatorname{Pr}\left\{S_{i}^{(m)} \mid S_{i-1}^{(m)}\right\}, \tag{3.28}
\end{equation*}
$$

and for the output symbols \bar{v}_{i},

$$
\begin{equation*}
q_{i}\left(x_{i} \mid m^{\prime}, m\right) \equiv \operatorname{Pr}\left\{x_{i}=x \mid S_{i-1}^{\left(m^{\prime}\right)}, S_{i}^{(m)}\right\} \tag{3.29}
\end{equation*}
$$

where $x= \pm 1$, and $x_{i}=m\left(v_{i}\right)=(-1)^{v_{i}}, 0<i \leq N$.
The sequence \bar{x} is transmitted over AWGN channel and received as a sequence \bar{r}, with transition probabilities

$$
\begin{equation*}
\operatorname{Pr}\{\bar{r} \mid \bar{x}\}=\prod_{i=1}^{N} p\left(\bar{r}_{i} \mid \bar{x}_{i}\right)=\prod_{i=1}^{N} \prod_{j=0}^{n-1} p\left(r_{i, j} \mid x_{i, j}\right), \tag{3.30}
\end{equation*}
$$

where $p\left(r_{i, j} \mid x_{i, j}\right)$ is given by

$$
\begin{equation*}
p\left(r_{i} \mid v_{i}\right)=p_{n_{i}}\left(r_{i}-m\left(v_{i}\right)\right) \tag{3.31}
\end{equation*}
$$

Let, $B_{i}^{(j)}$ be the set of branches connecting state $S_{i-1}^{m^{\prime}}$ to state $S_{i}^{(m)}$ such that the associated information bit $u_{i}=j, j \in\{0,1\}$, Then

$$
\begin{equation*}
\operatorname{Pr}\left\{u_{i}|j| \bar{r}\right\}=\sum_{\left(m^{\prime}, m\right) \in B_{i}^{(j)}} \operatorname{Pr}\left\{S_{i-1}^{\left(m^{\prime}\right)}, S_{i}^{(m)}, \bar{r}\right\} \equiv \sum_{\left(m^{\prime} ; m\right) \in B_{i}^{(j)}} \sigma_{i}\left(m^{\prime}, m\right) . \tag{3.32}
\end{equation*}
$$

Here, the value of $\sigma_{i}\left(m^{\prime}, m\right)$ is equal to

$$
\begin{equation*}
\sigma_{i}\left(m^{\prime}, m\right)=\alpha_{i-1}\left(m^{\prime}\right) \cdot \gamma_{i}^{(j)}\left(m^{\prime}, m\right) \cdot \beta_{i}(m), \tag{3.33}
\end{equation*}
$$

where the joint probability $\alpha_{i}(m) \equiv \operatorname{Pr}\left\{S_{i}^{(m)}, \bar{r}_{p}\right\}$ is given recursively by

$$
\begin{equation*}
\alpha_{i}(m)=\sum_{m^{\prime}} \alpha_{i-1}\left(m^{\prime}\right) \cdot \sum_{j=0}^{1} \gamma_{i}^{(j)}\left(m^{\prime}, m\right), \tag{3.34}
\end{equation*}
$$

and is referred to as the forward metric.
The conditional probability $\gamma_{i}^{(j)}\left(m^{\prime}, m\right) \equiv \operatorname{Pr}\left\{S_{i}^{(m)}, \bar{r} \mid S_{i-1}^{\left(m^{\prime}\right)}\right\}$ is given by

$$
\begin{equation*}
\gamma_{i}^{(j)}\left(m^{\prime}, m\right)=\sum_{x} p_{i}\left(m \mid m^{\prime}\right) \operatorname{Pr}\left\{x_{i}=x \mid S_{i-1}^{\left(m^{\prime}\right)}, S_{i}^{(m)}\right\} \cdot \operatorname{Pr}\left\{r_{i} \mid x\right\} \tag{3.35}
\end{equation*}
$$

where $p_{i}\left(m \mid m^{\prime}\right)=\operatorname{Pr}\left\{S_{i}^{(m)} \mid S_{i-1}^{\left(m^{\prime}\right)}\right\}$, which for the AWGN channel can be put in the form

$$
\begin{equation*}
\gamma_{i}^{(j)}\left(m^{\prime}, m\right)=\operatorname{Pr}\left\{u_{i}=j\right\} \cdot \delta_{i j}\left(m, m^{\prime}\right) \cdot \exp \left(-\frac{1}{N_{0}} \sum_{q=0}^{n-1}\left(r_{i, q}-x_{i, q}\right)^{2}\right), \tag{3.36}
\end{equation*}
$$

where $\delta_{i j}\left(m, m^{\prime}\right)=1$ if $\left\{m^{\prime}, m\right\} \in B_{i}^{(j)}$, and $\delta_{i j}\left(m, m^{\prime}\right)=0$ otherwise. $\gamma_{i}^{(j)}\left(m^{\prime}, m\right)$ is referred to as the branch metric.

The conditional probability $\beta_{i}(m) \equiv \operatorname{Pr}\left\{\bar{r}_{f} \mid S_{i}^{(m)}\right\}$ is given by

$$
\begin{equation*}
\beta_{i}(m)=\sum_{m^{\prime}} \beta_{i+1}\left(m^{\prime}\right) \cdot \sum_{j=0}^{1} \gamma_{i+1}^{(j)}\left(m^{\prime}, m\right), \tag{3.37}
\end{equation*}
$$

and referred to as the backward metric.
Combining all the above equations, the soft output (LLR) of information bit u_{i} is given by

$$
\begin{equation*}
\Lambda\left(u_{i}\right)=\log \left(\frac{\operatorname{Pr}\left\{u_{i}=1 \mid \bar{r}\right\}}{\operatorname{Pr}\left\{u_{i}=0 \mid \bar{r}\right\}}\right)=\log \left(\frac{\sum_{m} \sum_{m^{\prime}} \alpha_{i-1}\left(m^{\prime}\right) \cdot \gamma_{i}^{(1)}\left(m^{\prime}, m\right) \cdot \beta_{i}(m)}{\sum_{m} \sum_{m^{\prime}} \alpha_{i-1}\left(m^{\prime}\right) \cdot \gamma_{i}^{(0)}\left(m^{\prime}, m\right) \cdot \beta_{i}(m)}\right), \tag{3.38}
\end{equation*}
$$

with the hard-decision output is given by $\hat{u}_{i}=\operatorname{sgn}\left(\Lambda\left(u_{i}\right)\right)$ and the reliability of the bit u_{i} is $\left|\Lambda\left(u_{i}\right)\right|$.

The MAP algorithm proceeds as follows

1. Forward recursion.
(a) Create an array $\alpha(j, i), 0 \leq j \leq 2^{m}-1,0 \leq i \leq N$. This array will store the results of the forward recursion and is initialized as follows:

$$
\alpha(j, 0)=\left\{\begin{array}{lll}
1 & \text { if } & j=0 \\
0 & \text { if } & j \neq 0
\end{array}\right.
$$

(b) Begin with time index $i=1$.
(c) For $m=0,1, \ldots, 2^{m}-1$, compute α according to

$$
\alpha_{i}(m)=\sum_{m^{\prime}} \alpha_{i-1}\left(m^{\prime}\right) \cdot \sum_{j=0}^{1} \gamma_{i}^{(j)}\left(m^{\prime}, m\right),
$$

(d) Increment i.
(e) If $i=N$, the end of trellis has been reached - continue to step 2 . Otherwise, return to step 1(c).
2. Backward recursion.
(a) Create an array $\beta(j, i), 0 \leq j \leq 2^{m}-1,0 \leq i \leq N$. This array will store the results of the backward recursion and is initialized as follows:

$$
\beta(j, N)=\left\{\begin{array}{lll}
1 & \text { if } & j=0 \\
0 & \text { if } & j \neq 0
\end{array}\right.
$$

Otherwise, if the trellis is not terminated

$$
\beta(j, N)=\frac{1}{2^{m}} \forall j
$$

(b) Begin with time index $i=N-1$.
(c) For $m=0,1, \ldots, 2^{m}-1$, compute β according to

$$
\beta_{i}(m)=\sum_{m^{\prime}} \beta_{i+1}\left(m^{\prime}\right) \cdot \sum_{j=0}^{1} \gamma_{i+1}^{(j)}\left(m^{\prime}, m\right),
$$

(d) Decrement i.
(e) If $i=0$, the end of trellis has been reached - continue to step 3. Otherwise, return to step 2(c).
3. For $i=(0, \ldots, N-1)$, compute the LLR according to

$$
\Lambda\left(u_{i}\right)=\log \left(\frac{\sum_{m} \sum_{m^{\prime}} \alpha_{i-1}\left(m^{\prime}\right) \cdot \gamma_{i}^{(1)}\left(m^{\prime}, m\right) \cdot \beta_{i}(m)}{\sum_{m} \sum_{m^{\prime}} \alpha_{i-1}\left(m^{\prime}\right) \cdot \gamma_{i}^{(0)}\left(m^{\prime}, m\right) \cdot \beta_{i}(m)}\right) .
$$

3.3.4 Max -Log- MAP and Log- MAP algorithms

In principle, the MAP algorithm is able to calculate precise estimates of the a-posteriori probability of each message bit. However, it has two severe practical problems. First, it is computationally intensive. Second it is sensitive to the round-off errors that occur when representing numerical values with finite precision. These two problems can be
assuaged by performing the entire algorithm in the log-domain, rather than waiting until the last step to take the logarithm of the likelihood ratio.

To reduce the computational complexity of the MAP algorithm, the logarithms of the metrics may be used. This result is called log-MAP algorithm. From (3.34) and (3.37) (Robertson, Villeburn and Hoeher 1995, pp. 1009-1013),

$$
\begin{align*}
& \log \alpha_{i}(m)=\log \left(\sum_{m^{\prime}} \sum_{j=0}^{1} \exp \left(\log \alpha_{i-1}\left(m^{\prime}\right)+\log \gamma_{i}^{(j)}\left(m^{\prime}, m\right)\right)\right), \\
& \log \beta_{i}(m)=\log \left(\sum_{m^{\prime}} \sum_{j=0}^{1} \exp \left(\log \beta_{i+1}\left(m^{\prime}\right)+\log \gamma_{i}^{(j)}\left(m^{\prime}, m\right)\right)\right) \tag{3.39}
\end{align*}
$$

Taking the logarithm of $\gamma_{i}^{(j)}\left(m^{\prime}, m\right)$ in (3.36),

$$
\begin{equation*}
\log \gamma_{i}^{(j)}\left(m^{\prime}, m\right)=\delta_{i j}\left(m^{\prime}, m\right)\left\{\log \operatorname{Pr}\left\{u_{i}=j\right\}-\frac{1}{N_{0}} \sum_{q=0}^{n-1}\left(r_{i, q}-x_{i, q}\right)^{2}\right\} \tag{3.40}
\end{equation*}
$$

By defining $\bar{\alpha}_{i}(m)=\log \alpha_{i}(m), \bar{\beta}_{i}(m)=\log \beta_{i}(m)$ and $\bar{\gamma}_{i}^{(j)}\left(m^{\prime} m\right)=\log \gamma_{i}^{(j)}\left(m^{\prime} m\right)$,
can be written as

$$
\begin{equation*}
\Lambda\left(u_{i}\right)=\log \left(\frac{\sum_{m} \sum_{m^{\prime}} \exp \left(\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}_{i}^{(0)}\left(m^{\prime}, m\right)+\bar{\beta}_{i}(m)\right)}{\sum_{m} \sum_{m^{\prime}} \exp \left(\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}_{i}^{(1)}\left(m^{\prime}, m\right)+\bar{\beta}_{i}(m)\right)}\right) \tag{3.41}
\end{equation*}
$$

and an algorithm that works in the log-domain is obtained.

A computationally efficient, suboptimal derivative of the MAP algorithm is the Max-Log-MAP algorithm. The main benefit of executing the algorithm in the Max-Log-MAP algorithm is that multiplication becomes addition. However in this case, addition is not
straight-forward. According to Jacobian logarithm, addition is performed in the logdomain as follows (Robertson, Villeburn and Hoeher 1995, pp. 1009-1013):

$$
\begin{align*}
\log \left(e^{\delta_{1}}+e^{\delta_{2}}\right) & =\max \left(\delta_{1}, \delta_{2}\right)+\log \left(1+e^{-\left|\delta_{1}-\delta_{2}\right|}\right) \\
& =\max \left(\delta_{1}, \delta_{2}\right)+f_{c}\left(\left|\delta_{1}-\delta_{2}\right|\right) \tag{3.42}
\end{align*}
$$

In addition, it can be noted that δ_{1} and δ_{2} are not similar and the correction function $f_{c}($.$) is close to zero. Thus, reasonable approximation to the above is found by,$

$$
\begin{equation*}
\log \left(e^{\delta_{1}}+e^{\delta_{2}}\right) \approx \max \left(\delta_{1}, \delta_{2}\right) \tag{3.43}
\end{equation*}
$$

As a result, the log-likelihood ratio of information bit u_{i} is given by

$$
\begin{align*}
\Lambda\left(u_{i}\right) \approx & \max _{m^{\prime}, m}\left\{\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}^{(0)}\left(m^{\prime}, m\right)+\bar{\beta}_{i}(m)\right\} \\
& -\max _{m, m}\left\{\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}^{(1)}\left(m^{\prime}, m\right)+\bar{\beta}_{i}(m)\right\} \tag{3.44}
\end{align*}
$$

The forward and backward computation can now be expressed as

$$
\begin{align*}
& \bar{\alpha}_{i}(m)=\max _{m^{\prime}} \max _{j \in\{0,1\}}\left\{\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}^{(j)}\left(m^{\prime}, m\right)\right\}, \\
& \bar{\beta}_{i}(m)=\max _{m^{\prime}} \max _{j \in[0,\}}\left\{\bar{\beta}_{i+1}\left(m^{\prime}\right)+\bar{\gamma}^{(j)}\left(m^{\prime}, m\right)\right\} . \tag{3.45}
\end{align*}
$$

Thus, the max-log-MAP algorithm proceeds as follows:

1. Forward recursion.
(a) Create an array $\bar{\alpha}(j, i), 0 \leq j \leq 2^{m}-1,0 \leq i \leq N$. This array will store the results of the forward recursion and is initialized as follows:

$$
\bar{\alpha}(j, 0)=\left\{\begin{array}{ccc}
1 & \text { if } & j=0 \\
-\infty & \text { if } & j \neq 0
\end{array}\right.
$$

(b) Begin with time index $i=1$.
(c) For $m=0,1, \ldots, 2^{m}-1$, compute $\bar{\alpha}$ according to

$$
\bar{\alpha}_{i}(m)=\max _{m^{\prime}} \max _{j \in\{0,1\}}\left\{\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}^{(j)}\left(m^{\prime}, m\right)\right\} .
$$

(d) Increment i.
(e) If $i=N$, the end of trellis has been reached - continue to step 2 . Otherwise, return to step 1(c).
2. Backward recursion.
(f) Create an array $\bar{\beta}(j, i), 0 \leq j \leq 2^{m}-1,0 \leq i \leq N$. This array will store the results of the backward recursion and is initialized as follows:

$$
\bar{\beta}(j, N)=\left\{\begin{array}{ccc}
1 & \text { if } & j=0 \\
-\infty & \text { if } & j \neq 0
\end{array}\right.
$$

Otherwise, if the trellis is not terminated

$$
\bar{\beta}(j, N)=0 \quad \forall j .
$$

(g) Begin with time index $i=N-1$.
(h) For $m=0,1, \ldots, 2^{m}-1$, compute β according to

$$
\bar{\beta}_{i}(m)=\max _{m^{\prime}} \max _{j \in\{0,1\}}\left\{\bar{\beta}_{i+1}\left(m^{\prime}\right)+\bar{\gamma}^{(j)}\left(m^{\prime}, m\right)\right\} .
$$

(i) Decrement i.
(j) If $i=0$, the end of trellis has been reached - continue to step 3. Otherwise, return to step 2(c).
3. For $i=(0, \ldots, N-1)$, determine the LLR according to

$$
\begin{aligned}
\Lambda\left(u_{i}\right) & \approx \max _{m^{\prime}, m}\left\{\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}^{(0)}\left(m^{\prime}, m\right)+\bar{\beta}_{i}(m)\right\} \\
& -\max _{m^{\prime}, m}\left\{\bar{\alpha}_{i-1}\left(m^{\prime}\right)+\bar{\gamma}^{(1)}\left(m^{\prime}, m\right)+\bar{\beta}_{i}(m)\right\} .
\end{aligned}
$$

For binary codes based on rate- $1 / n$ convolutional encoders, in terms of decoding complexity, SOVA requires half of that of the max-log-MAP algorithm. The log-MAP algorithm is approximately twice more complex compared to the max-log-MAP algorithm.

3.4 Encoding of turbo codes

Figure 3.8 shows the block diagram of an encoder of a parallel concatenated code, better known as a turbo code. The turbo encoder is composed of two RSC encoders, which are usually identical. The first encoder receives the actual data and the second encoder receives the data after being permuted by an interleaver. Turbo codes appear random only because of this interleaver. As the interleaver must have fixed structure and generally works data in a block-wise manner, turbo codes are by necessity block codes. If the interleaver has a fixed size and both RSC encoders start with the all-zeros state, then turbo codes are linear block code.

Figure 3.8: Encoder Structure of turbo code.

In Figure 3.8 rate- $1 / 2$ RSC codes are used and the encoders represent the term $\bar{g}_{1}(D) / \bar{g}_{2}(D)$ in the polynomial generator matrix $G(D)$. The inputs to the encoders are \bar{u} and $\Pi \bar{u}$, where Π denotes a permutation matrix ${ }^{3}$ associated with an interleaver.

The systematic output of the turbo encoder, $v_{i}^{(0)}$ is taken from the first (upper) RSC encoder. The two parity outputs, $v_{i}^{(1)}$ and $v_{i}^{(2)}$ are taken from the first (upper) and second (lower) RSC encoders' parity outputs, respectively, for $i=1,2, \ldots, N$, where N is the block length. The output streams are multiplexed to form the code word $v=\left(v_{0}^{(0)}, v_{0}^{(1)}, v_{0}^{(2)}, \ldots, v_{N-1}^{(0)}, v_{N-1}^{(1)}, v_{N-1}^{(2)}\right)$. In general, code rate of a turbo code is $1 / 3$. As with convolutional codes, this rate can be increased by puncturing. As for instance, a rate $1 / 2$ turbo code can be achieved from the rate $1 / 3$ turbo code by using the following puncturing matrix

[^2]\[

P=\left[$$
\begin{array}{ll}
1 & 1 \tag{3.46}\\
1 & 0 \\
0 & 1
\end{array}
$$\right]
\]

Figure 3.9: Example of turbo encoder.

3.5 Overview of turbo decoding

3.5.1 Soft-input, soft- output decoding

Soft-bit decisions typically are represented as (a-posteriori) log-likelihood ratios (LLRs) of the form

$$
\begin{equation*}
\Lambda\left(u_{i}\right)=\log \left(\frac{\operatorname{Pr}\left\{u_{i}=1 \mid \bar{r}\right\}}{\operatorname{Pr}\left\{u_{i}=0 \mid \bar{r}\right\}}\right) . \tag{3.47}
\end{equation*}
$$

A soft-input, soft-output (SISO) decoding algorithm accepts a priori information at its input and produces a-posteriori information at its output. Both the Viterbi algorithm and MAP algorithm can be modified to accept soft-input and produce soft-outputs.

The systems employed by the binary phase shift keying (BPSK) is characterized by the following input/output relationship

$$
\begin{equation*}
r^{\prime}=a \sqrt{E_{s}}(2 v-1)+n^{\prime}, \tag{3.48}
\end{equation*}
$$

where a is a fading amplitude, $\sqrt{E_{s}}(2 v-1)$ is the BPSK modulated code symbol $(v \in\{0,1\}), E_{s}{ }^{4}$ is the energy per code symbol, and n ' is a zero-mean Gaussian random variable with variance $\sigma^{2}=N_{0} / 2$. When a is a constant, the channel is said to be an additive white Gaussian noise (AWGN) channel. Otherwise, the channel is said to be a flat-fading channel, i.e. flat Rayleigh fading channel. An alternative and most convenient expression for (3.48) is

$$
\begin{equation*}
r=a(2 v-1)+n, \tag{3.49}
\end{equation*}
$$

[^3]where the noise variance is now $\sigma^{2}=N_{0} / 2 E_{s}$.
The log-likelihood at the output of a SISO decoder using any channel model can be expressed as
\[

$$
\begin{equation*}
\Lambda\left(u_{i}\right)=\Lambda_{c i}+\Lambda_{a}\left(u_{i}\right)+\Lambda_{i, e}(C), \tag{3.50}
\end{equation*}
$$

\]

where $\Lambda_{c i}$ is known as the channel LLR and given by

$$
\begin{aligned}
\Lambda_{c i} & =\log \left(\frac{p\left(r_{i} \mid x_{i}=-1\right)}{p\left(r_{i} \mid x_{i}=+1\right)}\right) \\
& =\left\{\begin{array}{cc}
(-1)^{r_{i}} \log \left(\frac{1-p}{p}\right), & \text { for a BSC channel with parameter } p, \\
\frac{4}{N_{0}} r_{i}, & \text { for an AWGN channel }\left(\sigma_{n}^{2}=N_{0} / 2\right) ; \text { and (3.51) } \\
\frac{4}{N_{0}} a_{i} r_{i}, & \text { for a flat Rayleigh fading channel, }
\end{array}\right.
\end{aligned}
$$

the quantity

$$
\begin{equation*}
\Lambda_{a}\left(u_{i}\right)=\log \left(\frac{\operatorname{Pr}\left\{x_{i}=-1\right\}}{\operatorname{Pr}\left\{x_{i}=+1\right\}}\right)=\log \left(\frac{\operatorname{Pr}\left\{u_{i}=0\right\}}{\operatorname{Pr}\left\{u_{i}=1\right\}}\right), \tag{3.52}
\end{equation*}
$$

is the a-priori LLR of the information symbol, and

$$
\begin{equation*}
\Lambda_{i, e}(C)=\log \left(\frac{\sum_{\substack{x \in C_{i}(1)}} \prod_{\substack{l=1 \\ l \neq i}}^{N} p\left(r_{l}, x_{l}\right)}{\sum_{\bar{x} \in C_{i}(0)} \prod_{\substack{l=1 \\ l \neq i}}^{N} p\left(r_{l}, x_{l}\right)}\right), \tag{3.53}
\end{equation*}
$$

is the extrinsic LLR, which is specified by the constraints imposed by the code on the other information symbols.

As mentioned previously, in turbo code's generation two binary rate-1/2 RSC encoders are used as components. In an iterative decoding procedure, the extrinsic information provided by $\Lambda_{i, e}(C)$ can be fed back to the decoder as a a-priori probability for a second round of decoding. According to equation (3.38) in section 3.3.3, the extrinsic LLR can be written as

$$
\begin{equation*}
\Lambda_{i, e}(C)=\log \left(\frac{\sum_{\left(m, m^{\prime}\right) \in B_{i}(1)} \alpha_{i-1}\left(m^{\prime}\right) \xi_{i}\left(m^{\prime}, m\right) \beta_{i}(m)}{\sum_{\left(m, m^{\prime}\right) \in B_{i}(0)} \alpha_{i-1}\left(m^{\prime}\right) \xi_{i}\left(m^{\prime}, m\right) \beta_{i}(m)}\right) \tag{3.54}
\end{equation*}
$$

where $\alpha_{i}(m)$ and $\beta_{i}(m)$ are given by (3.34) and (3.37), respectively.
A modified branch metric is needed to compute the extrinsic LLR,

$$
\begin{equation*}
\xi_{i}\left(m^{\prime}, m\right)=\delta_{i j}\left(m, m^{\prime}\right) \exp \left(\frac{E}{N_{0}} \sum_{q=1}^{n-1} r_{i, q}, x_{i, q}\right), \tag{3.55}
\end{equation*}
$$

where, as before, $\delta_{i j}\left(m, m^{\prime}\right)=1$ if $\left\{m^{\prime}, m\right\} \in B_{i}^{(j)}$, and $\delta_{i j}\left(m, m^{\prime}\right)=0$ otherwise.

3.5.2 Turbo decoder schematic

The schematic for turbo decoder is shown in Figure 3.10. Assuming zero decoder delay in the turbo-decoder, the decoder 1 computes a soft-output $\Lambda^{(1)}$ from the systematic data, code information of encoder 1 and a-priori information $\Lambda_{i, e}^{(2)}(C)$. From this output, the systematic data and a-priori information are $\Lambda_{i, e}^{(2)}(C)$ subtracted to get the extrinsic information $\Lambda_{i, e}^{(1)}(C)$ of the decoder 1 . The extrinsic information of the decoder 1 is interleaved, and used as a priori information by the decoder 2. Decoder 2 takes as input the interleaved version of $\Lambda_{i, e}^{(1)}(C)$, the code information of second encoder and the interleaved
version of systematic data. Decoder 2 generates a soft output $\Lambda^{(2)}$, from which the systematic data and a-priori information $\Lambda_{i, e}^{(1)}(C)$ are subtracted to get the extrinsic information $\Lambda_{i, e}^{(2)}(C)$ of the decoder 2. The extrinsic information produced by the decoder 2 is deinterleaved and used as the a priori input to the decoder 1 during the next iteration. The multiplications are the scaling factor and called channel reliability L_{c} to compensate the distortion. After certain number of iterations, the final estimate of the message is found by deinterleaving and hard-limiting the output of the second decoder.

$$
\hat{u}=\left\{\begin{array}{lll}
1 & \text { if } & \Lambda^{(2)} \geq 0 \\
0 & \text { if } & \Lambda^{(2)}<0
\end{array}\right.
$$

Figure 3.10: Turbo decoder schematic.

3.5.3 Example of turbo decoding

Figure 3.11 shows simulation results of turbo codes for a block size of 1024 . It can be noticed in the figure that the BER improves dramatically during the first few iterations. During later iterations, there is still improvement; however the amount of improvement begins to reduce.

Figure 3.11: Performance of rate-1/2 parallel concatenated (turbo) code with memory-4, rate-1/2 RSC codes, generators $(37,21)$ and block size $=1024$.

3.6 Chapter summary

This chapter has presented an overview of coding theory and of turbo decoding. In order to introduce notation and terminology, a review of block and convolutional codes has been presented. Two representations for convolutional codes have been discussed - the state diagram and the trellis diagram. It has been shown how the rate of the convolutional codes can be increased by using puncturing concept. An overview of the trellis-based soft-input soft-output decoding algorithms has been presented. The algorithms are based on either the Viterbi algorithm or the MAP algorithm. The soft-output Viterbi algorithm (SOVA) is an extension of the Viterbi algorithm that provides the reliability of the bit estimates. The MAP algorithm calculates the a-posteriori probabilities directly. The max-log-MAP and log-MAP algorithms perform the MAP algorithm in the log domain.

Once a foundation of the basic concepts of coding has been presented, turbo codes have been introduced. It has been shown that a turbo code is the parallel concatenation of two RSC codes that are given the same data in permuted order. The importance of soft-input soft-output components decoders is discussed in the context of the decoding of turbo codes. The concept of extrinsic information has been introduced, and the schematic for a typical turbo decoder has been presented.

Chapter 4

LPDC codes: Code construction and decoding

LDPC codes (also referred to as Gallager codes (Gallager 1962, vol. 8, no. 1, pp. 21-28) have greater performance than turbo codes in some cases. The implantations of iterative decoding algorithms are easy with LDPC codes as the per-iteration complexity much lower than that of turbo decoders. LDPC codes are also parallelizable in hardware. This chapter focuses on the code construction and decoding algorithm of LDPC codes.

4.1 Code construction

Throughout this chapter, N will be used to denote the length of the code and K to denote its dimension and the redundancy $M=N-K^{5}$. A low density parity check code is a linear block code which has a very sparse parity check matrix \boldsymbol{H}. Since the parity check matrices

[^4]that are considered are generally not in a systemic form, symbol \boldsymbol{A} will be used to represent parity check matrices, reserving the symbol \boldsymbol{H} for parity check matrices in systematic form. As previously mentioned in Section 2.7 .2 the parity check matrix should also be such that no two columns have more than one row in which elements in both columns are nonzero.

The weight of a binary vector is the number of nonzero elements in it. The column weight is the weight of a column of a matrix; likewise for row weight. An LDPC generator is said to be regular if the column weights are all the same and the row weights are also all the same. The first step to generate a regular LDPC code is the selection of column weight w_{c}, the block length N and the redundancy M. Then an $M \mathrm{x} N$ matrix \boldsymbol{A} is generated which has weight w_{c} in each column and row weight w_{r} in each row. In a regular LDPC code the row weight w_{r} has to be uniform and that requires $w_{c} N=w_{r} M$ to be true. Such a regular code is called a $\left(w_{c}, w_{r}, N\right)$ (also called $\left.\left(w_{c}, w_{r}\right)\right)$ code.

One way of constructing a parity check matrix for code $\left(w_{c}, w_{r}\right)$ is given below:
Construct the matrix A_{0},
with $N / w_{r}=M / w_{c}$ rows and N columns. This defines a $\left(1, w_{r}\right)$ regular parity check code. Then \boldsymbol{A} is formed by stacking permutations of A_{o},

$$
A=\left[\begin{array}{c}
\pi_{1}\left(A_{0}\right) \tag{4.2}\\
\pi_{2}\left(A_{0}\right) \\
\pi_{3}\left(A_{0}\right) \\
\vdots \\
\pi_{w_{c}}\left(A_{0}\right)
\end{array}\right]
$$

where each $\pi_{i}\left(A_{0}\right)$ denotes a matrix obtained by permuting the columns of A_{0}. Obviously, the distance structure of the code is determined by the choice of the permutations. However, a random choice of permutation usually produces a good code. Gallager showed that if each permutation is chosen at random out of the N ! possible permutations, then the average minimum distance $d_{\text {min }}$ increases linearly with N. Such codes are called good codes.

An example of an LDPC parity check matrix for a (3, 4)-regular LDPC code in Gallager's paper (Gallager 1962, vol. 8, no. 1, pp. 21-28),

$$
A=\left[\begin{array}{llllllllllllllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

It can be noticed, there are 13 linearly independent rows in the above matrix.

The above constructions do not ensure that all the rows of the matrix are linearly independent, so the $M \times N$ matrix created is the parity check matrix of a linear code with rate at least $R \equiv K / N$, where as previously mentioned $K=N-M$.

4.2 Tanner graphs

LDPC codes are linear codes obtained from sparse ${ }^{6}$ bipartite graphs which are also known as Tanner graphs (Morelos-Zaragoza 2002, p 159). For a linear (w_{c}, w_{r}, N) code C, there exists a Tanner graph G with N left nodes (called message nodes or code nodes), x_{l}, associated with code symbols, and at least $M=N-K$ right nodes (called check nodes or parity nodes), z_{m}, associated with parity check equations. The codewords are those vectors $\left(c_{1}, \ldots, c_{n}\right)$ such that for all check nodes the sum of the neighboring positions among the message nodes is zero. Figure 4.1 illustrates the graph for \boldsymbol{A} from the above example. A graph such as this, consisting of two distinct sets of nodes and having edges only between the nodes in different sets, is called a bipartite graph. For a regular LPDC code, the number edges from the code nodes or the number of degrees are equal to w_{c} and the degrees of the check nodes equal to w_{r}.

However, not every binary linear code has a representation by a sparse bipartite graph. If it does, then the code is called a low-density parity-check (LDPC) code.

Tanner graphs can be used to estimate codewords of an LPDC code C by iterative probabilistic decoding algorithms, based on either hard or soft decisions. In Section 4.4 the basic iterative decoding algorithm introduced by Gallager is presented.

[^5]

Figure 4.1: Tanner graph of Gallager's (3, 4, 20) code.

4.3 Encoding algorithm

An encoding algorithm for a binary linear code of dimension K and block length N is an algorithm that computes a codeword C from K original bits ($x_{1}, x_{2}, \ldots, x_{K}$). Although LDPC codes have an efficient decoding algorithm, with linear complexity in the code length, the encoding efficiency is quadratic in the block length, since it requires multiplication by the generator matrix which is not sparse. However, (Richardson T J and Urbanke R L 2001, vol. 47, no. 2, February, pp. 638-656) presents that it is possible to encode with a reasonable complexity, with some previously performed processing prior to encoding.

Before encoding, the following steps are performed. By row and column permutations, the parity check matrix \boldsymbol{H} is brought into the form as showed in Figure 4.2. It can be noticed from the figure, that the upper right corner of the newly formed \boldsymbol{H} is a lower triangular matrix. Because it is obtained only by permutations, the \boldsymbol{H} matrix is still sparse. The newly formed \boldsymbol{H} can be denoted as

Figure 4.2: Result of permutated rows and columns.

$$
H=\left[\begin{array}{lll}
A & B & T \tag{4.3}\\
C & D & E
\end{array}\right]
$$

and it can be said that \boldsymbol{H} is in approximate lower triangular form. From the Figure 4.2, g is the gap of this representation. T is a $(M-g) \times(M-g)$ lower triangular matrix with ones along the diagonal and hence is invertible. Now \boldsymbol{H} is multiplied by the matrix

$$
H=\left[\begin{array}{cc}
I & 0 \tag{4.4}\\
-E T^{-1} & I
\end{array}\right]
$$

to doing Gaussian elimination to clear the matrix E, which produces the form

$$
\tilde{H}=\left[\begin{array}{cc}
I & 0 \tag{4.5}\\
-E T^{-1} & I
\end{array}\right] H=\left[\begin{array}{ccc}
A & B & T \\
-E T^{-1} A+C & -E T^{-1} B+D & 0
\end{array}\right]
$$

For a message vector \mathbf{u} of length K, the codeword is as followed,

$$
c=\left[\begin{array}{l}
\mathrm{u} \tag{4.6}\\
\mathrm{p}_{1} \\
\mathrm{p}_{2}
\end{array}\right]
$$

where p_{1} and p_{2} represent parity information. The parity check equation $\tilde{H} c=0$ gives rise to two equations,

$$
\begin{align*}
& A \mathrm{u}+B \mathrm{p}_{1}+\mathrm{Tp}_{2}=0 \tag{4.7}\\
& \left(-E T^{-1} A+C\right) \mathrm{u}+\left(-E T^{-1} B+D\right) \mathrm{p}_{1}=0 \tag{4.8}
\end{align*}
$$

In (4.7), X can be used to denote $\left(-E T^{-1} B+D\right)$ by assigning $X=\left(-E T^{-1} B+D\right)$. So, from (4.7)

$$
\begin{equation*}
\mathrm{p}_{1}=-X^{-1}\left(-E T^{-1} A+C\right) \mathrm{u} . \tag{4.9}
\end{equation*}
$$

Here, it is assumed that X is nonsingular. If it turns out that X is singular, then columns of \tilde{H} can be permuted to obtain a nonsingular X.

The $g \times(N-M)$ matrix $-X^{-1}\left(-E T^{-1} A+C\right)$ can be previously computed and saved, so that p_{1} can be computed with a complexity of $O(g(N-M))$. Once p_{1} is obtained, p_{2} can calculated as followed,

$$
\begin{equation*}
\mathrm{p}_{2}=-T^{-1}\left(A \mathrm{u}+B \mathrm{p}_{1}\right) . \tag{4.10}
\end{equation*}
$$

The process of computing p_{1} and p_{2} comprises the encoding process. The overall encoding algorithm has the complexity of $O\left(N+g^{2}\right)$. Hence, it is clear that the complexity of the algorithm will be less with smaller g.

4.4 Overview of LPDC decoding

4.4.1 The sum-product algorithm

In this section, an iterative belief-propagation (IBP) decoding algorithm is presented. This algorithm is also known as "sum-product decoder". Mr. David J. C. MacKay in his paper "Good Error-Correcting Codes Based on Very Sparse Matrices" gave an extensive description of this decoding algorithm (MacKay 1999, vol. 45, no. 2, pp. 399432).

They referred to the elements z_{m} corresponding to each row $m=1 \ldots M$ of \boldsymbol{H} as checks. They assumed the set of bits \bar{v} and checks \bar{z} as making up a "belief
network", in which every bit v_{l} is the parent of w_{c} checks z_{m}, and every check z_{m} is the child of w_{r} bits.

This algorithm is appropriate for a binary channel model in which the noise bits are independent - for example, the memory-less binary-symmetric channel, or the Gaussian channel with binary inputs and real outputs. The following notation is convenient in describing algorithm. Let $h_{i j}$ denote the entry of \boldsymbol{H} in the i-th row and j th column. Let

$$
\begin{equation*}
L(m)=\left\{l: h_{m, l}=1\right\}, \tag{4.11}
\end{equation*}
$$

denote the set of bits l that participate in the m-th parity- check equation. Similarly, the set of checks in which bit l participates,

$$
\begin{equation*}
M(l)=\left\{m: h_{m, l}=1\right\} . \tag{4.12}
\end{equation*}
$$

The algorithm has two alternating parts, in which quantities $q_{m l}^{x}$ and $r_{m l}^{x}$ associated with each nonzero element in the \boldsymbol{H} matrix are iteratively updated. The quantity $q_{m l}^{x}$ is meant to be the probability that the l-th bit of \bar{v} has the value v, given the information obtained via check nodes other than check node m. The quantity $r_{m l}^{x}$ is meant to be the probability of check m being satisfied when bit l of \bar{v} is considered fixed at v and the other bits are independent with probabilities $\left\{q_{m l^{\prime}}, l^{\prime} \in L(m) \backslash l\right\}$. The algorithm would produce the exact posteriori probabilities of all the bits after a fixed number of iterations, if the Tanner graph is defined by the matrix \boldsymbol{H} contained no cycles. In the following, binary transmission over an AWGN channel is assumed. As before, the modulated symbols $m\left(v_{i}\right)$ are transmitted over an AWGN channel and received as $r_{i}=m\left(v_{i}\right)+n_{i}$, where n_{i} is a Gaussian distributed random variable with zero mean and variance $N_{0} / 2 E_{s}, 1 \leq i \leq N$.

Initialization

Let $p_{l}^{0}=P\left(v_{l}=0\right)$, (the prior probability that v_{l} is 0) and let $p_{l}^{1}=P\left(v_{l}=1\right)=1-p_{l}^{0}$.
For $l \in\{1,2, \cdots N\}$, initialize the a-prior probabilities of the code node,

$$
\begin{equation*}
p_{l}^{1}=\frac{1}{1+\exp \left(r_{l} \frac{4}{N_{0}}\right)}, \tag{4.13}
\end{equation*}
$$

and $p_{l}^{0}=1-p_{l}^{1}$. For every (l, m) such that $h_{m, l}=1$,

$$
\begin{equation*}
q_{m, l}^{0}=p_{l,}^{0} \quad q_{m, l}^{1}=p_{l,}^{1} \tag{4.14}
\end{equation*}
$$

Horizontal step

In the horizontal step of the algorithm, it runs through the checks m and compute for two probabilities each $l \in L(m)$: first, $r_{m l}^{0}$, the probability of the observed value z_{m} arising when $v_{l}=0$, given that the other bits $\left\{v_{l}: l^{\prime} \neq l\right\}$ have separable distribution given by the probabilities $\left\{q_{m l^{\prime}}^{0}, q_{m l^{\prime}}^{1}\right\}$, defined by:

$$
\begin{align*}
r_{m l}^{0}= & \sum_{\left\{v_{l}: l \in L(m) \backslash l\right\}} P\left(z_{m} \mid v_{l}=0,\left\{v_{l^{\prime}}: l^{\prime} \in L(m) \backslash l\right\}\right) \tag{4.15}\\
& \times \prod_{l \in L(m) \backslash l} q_{m l^{\prime}}^{v_{l}}
\end{align*}
$$

and second, $r_{m l}^{1}$, the probability of the observed value z_{m} arising when $v_{l}=1$, defined by

$$
\begin{equation*}
r_{m l}^{1}=\sum_{\left\{v_{l} \cdot l \in L(m) \backslash l\right\}} P\left(z_{m} \mid v_{l}=1,\left\{v_{l}: l^{\prime} \in L(m) \backslash l\right\}\right) \tag{4.16}
\end{equation*}
$$

$$
\times \prod_{l^{\prime} \in L(m) \backslash l} q_{m l^{\prime}}^{v_{l^{\prime}}}
$$

The conditional probabilities in these summations are either zero or one, depending on whether the observed z_{m} matches the hypothesized values for v_{l} and the $\left\{v_{l}\right\}$.

These probabilities can be computed in various ways based on (4.15) and (4.16). A particular convenient implementation of this computation uses forward and backward passes in which products of the differences $\delta q_{m l}=q_{m l}^{0}-q_{m l}^{1}$ are computed. We obtain $\delta r_{m l}=r_{m l}^{0}-r_{m l}^{1}$ from the identity

$$
\begin{equation*}
\delta r_{m, l}=(-1)^{z_{m}} \prod_{l \in L(m) l} \delta q_{m, l} \tag{4.17}
\end{equation*}
$$

Finally, $r_{m l}^{0}+r_{m l}^{1}=1$, and hence $r_{m l}^{0}=\left(1+\delta r_{m l}\right) / 2$ and $r_{m l}^{1}=\left(1-\delta r_{m l}\right) / 2$.

Vertical Step

The vertical step takes the computed values of $r_{m l}^{0}$ and $r_{m l}^{1}$ and updates the values of the probabilities $q_{m l}^{0}$ and $q_{m l}^{0}$. For each l, m, compute
and normalize, with $\alpha=1 /\left(q_{m l}^{0}+q_{m l}^{1}\right)$,

$$
\begin{equation*}
q_{m, l}^{0}=\alpha q_{m, l}^{0}, \quad q_{m, l}^{1}=\alpha q_{m, l}^{1} . \tag{4.19}
\end{equation*}
$$

For each l, compute the a-posteriori probabilities

$$
\begin{equation*}
q_{l}^{0}=p_{l}^{0} \prod_{m \in M(l)} r_{m, l}^{0}, \quad \quad q_{l}^{1}=p_{l}^{1} \prod_{m \in M(l)} r_{m, l}^{1}, \tag{4.20}
\end{equation*}
$$

and normalize, with $\alpha=1 /\left(q_{l}^{0}+q_{l}^{1}\right)$,

$$
\begin{equation*}
q_{l}^{0}=\alpha q_{l}^{0}, \quad q_{l}^{1}=\alpha q_{l}^{1} \tag{4.21}
\end{equation*}
$$

These quantities are used to create a tentative decoding \hat{v}, the consistency of which is used to decide whether the decoding algorithm can halt.

Decoding

If the Tanner graph of the code is really without cycles, the values of the pseudo posteriori probabilities q_{l}^{0} and q_{l}^{1} at each iteration would correspond exactly to the posteriori probabilities of bit l given the states of all the checks in a truncated belief network centered on bit l and extending out to a radius equal to twice the number of iterations. The decoding procedure set \hat{v}_{i} to 1 if $q_{l}^{1}>0.5$, for $i=1,2, \ldots N$.

4.4.2 Example of LDPC decoding

Figure 4.3 shows a simulation result for Gallager's $(3,4,20)$ code. For convenience all information data have been made zero. It can be noticed in the figure that the BER improves as the iteration number increases. During later iterations, there is still improvement; however the amount of improvement begins to reduce.

Figure 4.3: Performance of Gallager's $(\mathbf{3}, 4,20)$ code with iterative probabilistic decoding.

4.5 Chapter summary

This chapter has presented an overview of LDPC code construction and decoding. An idea of code construction has been presented, and the concept of Tanner graph has been introduced. In contrast to the turbo code case, which has linear encode complexity, the complexity of the encoding efficiency is quadratic for LDPC codes. Here, an encoding procedure with a reasonable complexity has been presented. One of the potential drawbacks to LDPC codes is the large number of decoding iterations that may be required, resulting in increased latency and decoding hardware complexity. At the end of the chapter, an overview of iterative probabilistic decoding algorithm has been presented.

Chapter 5

Performance comparison between turbo codes and LDPC codes

This chapter focuses on the performance analysis of turbo codes and LDPC codes. It gives an overview of some major performance factors that have impacts on turbo codes and LDPC codes to some extent. Later in this chapter, simulation results are presented along with discussions and comparisons between turbo codes and LDPC codes.

5.1 Performance analysis of turbo codes

The bit error probability of a (n, k) linear block code over an additive white Gaussian noise (AWGN) channel can be bounded as (Proakis 1995)

$$
\begin{equation*}
P_{b} \leq \sum_{i=1}^{2^{k}-1} \frac{w_{i}}{k} Q\left(\sqrt{\frac{2 d_{i} R E_{b}}{N_{0}}}\right), \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(z)=\frac{1}{\sqrt{2 \pi}} \int_{z}^{\infty} e^{-x^{2} / 2} d x, \quad x \geq 0 \tag{5.2}
\end{equation*}
$$

is the Gaussian Q - function, w_{i} is the weight of the message sequence of the i th message, d_{i} is the Hamming weight of the codeword and E_{b} / N_{0} is the signal- to- noise ratio (SNR) per bit.

The computation of (5.1) requires knowledge of the weights of all $2^{k}-1$ nonzero codewords and their corresponding messages. The computational complexity of (5.1) prevents its use for all but the smallest values of k. Grouping together codewords of the same Hamming weight, the bound on the probability of bit error can be written as

$$
\begin{equation*}
P_{b} \leq \sum_{d=d_{\min }}^{n} \frac{W_{d}}{k} Q\left(\sqrt{d \frac{2 R E_{b}}{N_{0}}}\right)=\sum_{d=d_{\min }}^{n} \frac{\tilde{w}_{d} N_{d}}{k} Q\left(\sqrt{d \frac{2 R E_{b}}{N_{0}}}\right) \tag{5.3}
\end{equation*}
$$

where N_{d} is the number of codewords of weight d and \tilde{w}_{d} is the average weight of the N_{d} messages that produce weight d codewords. At high signal to noise ratios, the bit error probability is approximated by the first term of (5.3)

$$
\begin{equation*}
P_{b} \approx \frac{\tilde{w}_{d_{\text {min }}}}{} N_{d_{\text {min }}} Q\left(\sqrt{d_{\text {min }} \frac{2 R E_{b}}{N_{0}}}\right), \tag{5.4}
\end{equation*}
$$

which is called the minimum distance asymptote.

In (5.4), the message length k appears in the denominator of the leading coefficient. For sufficiently large interleavers, $k \approx L$. Here, L represents the size of interleaver. Hence, the asymptotic BER of a turbo code is (approximately) inversely proportional to the size of its interleaver. The BER of a turbo could therefore be lowered by increasing the size of the interleaver or conversely raised by decreasing its size. Undeniably, the size of the interleaver has a significant impact on the performance of turbo codes. Although the most desirable selection is the largest possible interleaver, larger interleavers introduce longer decoding latencies, require more memory in the decoder and increase computational complexities. Hence, the interleaver size must be chosen to match the bit error, latency and decoder memory requirements of the system.

Turbo codes can approach the Shannon limit as their constraint length K_{c} increases but the complexity of their best known decoding algorithms grows exponentially with the constraint length. In particular, constraint length does not significantly influence the performance of turbo codes at low signal-to-noise ratios. For this reason, turbo codes typically use simple constituent codes with constraint length $3 \leq K_{c} \leq 5$. However, for a sufficiently large block of frame, constraint length can be a secondary determinant of the location of the "BER floor" region of the performance (Wu 1999).

Another factor that influences the performance of turbo codes is code rate. The performance of turbo codes degrades as code rate increases. If puncturing is used to increase the code rate then the puncturing manner is also a performance factor for turbo codes. The joint optimization of interleaver and puncturing matrix is perhaps the most important aspect of turbo code design (Acikel and Ryan).

The communication delay or "latency" in a turbo coded system is directly proportion to the frame size. As previously mentioned, the more increment will be made in frame or interleaver size the more communication delay will occur.

5.1.1 Simulation results

In this section, the effect of interleaver size, code rate, constraint length and latency are investigated by means of simulation.

Figure 5.1: Performance of parallel concatenated (turbo) code for different block interleaver size with memory-4, rate-1/2 RSC codes and generators (37, 21).

Figure 5.1 shows the simulated performance for five different interleaver sizes: $L=$ 128, $L=256, L=1024, L=2056, L=16384$. Here, the turbo code is composed of a pair of $K_{c}=5$ RSC encoders with feedback generator (37) and feed forward generator (21) ${ }_{o}$. The interleavers are designed at random. The code rate is $1 / 2$ and iteration number is 6.The encoded bits are BPSK modulated and AWGN channel is considered.

Figure 5.2: Performance of rate-1/2 and rate- $1 / 3$ parallel concatenated (turbo) code with memory-2, generators $(7,5)$ block interleaver size $=1024$ and iteration $=6$.

Figure 5.2 shows the simulated performance for two different code rates: $r=1 / 2, r=$ $1 / 3$. Here, in both cases the turbo code is composed of a pair of $K_{c}=3$ RSC encoders with feedback generator (7) ${ }_{o}$ and feed forward generator (5) ${ }_{o}$. The interleavers are designed at random and the size of the interleaver is $L=1024$. In both cases, the decoding algorithm was run for 6 times. The encoded bits are BPSK modulated and AWGN channel is considered.

In Figure 5.1, an acceptable range of BER's can be obtained for the rate $1 / 2$ turbo code in an AWGN channel by holding E_{b} / N_{0} to a constant value of 3.0 dB . The BER and latency is listed in Table 1 for the rate $1 / 2$ turbo code in AWGN channel with E_{b} / N_{0} set to 3.0 dB .

Interleaver Size (bits)	Latency	BER
128	31 msec	$6.72 \mathrm{E}-04$
256	63 msec	$1.30 \mathrm{E}-04$
1024	235 msec	$3.190 \mathrm{E}-05$
2056	501 msec	$1.60 \mathrm{E}-05$
16384	4.06 sec	$5.39 \mathrm{E}-06$

Table 1 Quality of Service for rate $1 / 2$ turbo code in $A W G N$ at $E_{b} / \mathbf{N}_{o}=3.0 \mathrm{~dB}$.

Figure 5.3 shows the simulated performance for two different constraint length: K_{c} $=3, K_{c}=5$. For $K_{c}=3$, the turbo code is composed of a pair of $K_{c}=3$ RSC encoders with feedback generator (7) ${ }_{o}$ and feed forward generator (5) ${ }_{o}$. For $K_{c}=5$, the turbo code is composed of a pair of $K_{c}=5$ RSC encoders with feedback generator (37) ${ }_{o}$ and feed forward generator (21) ${ }_{o}$. In all cases, the interleaver size $L=1024$, code rate is $1 / 2$ and iteration number is 6 . The encoded bits are BPSK modulated and AWGN channel is considered.

Figure 5.3: Performance of rate-1/2 parallel concatenated (turbo) code with different constraint length.

5.2 Performance analysis of LDPC codes

LDPC codes have excellent distance properties. Gallager showed that for random LDPC codes, the minimum distance $d_{\text {min }}$ between codewords increases with N when column and row weights are held fixed (Moon, T K 2005), and it makes the low density parity check matrix very sparse. The best results can be obtained from LDPC codes by making the weight per column w_{c} as small as possible. It has been proved that as the block length $N \rightarrow \infty$ and the low-density parity check matrix becomes more sparse, LDPC codes can reach channel capacity. Unsurprisingly, code with large block length improves the performance of LDPC codes.

Because the codes are constructed from very sparse matrices, they have simple and practical decoding algorithms, which work, empirically, at good communication rates. The decoding complexity of LDPC codes has the complexity linearly proportional to the block length.

Another factor that influences the performance of LDPC codes is the number of cycles exists in the matrices. The original matrices shouldn't have cycles with not more than length of 4 . This constraint has been found to be beneficial. If there exists cycles with length of $6,8, \ldots$, the columns should be deleted to further improve the performance. However, it is found that these modifications do not make very impressive difference.

There are, obviously, some potential disadvantages to LDPC codes. As previously mentioned, the best code performance is obtained for very long codes. This long block length of code and the need for iterative decoding introduce latency which is unacceptable in many applications. The latency is the time taken by the decoder to decode one frame of received information block. Another disadvantage is that, since the \boldsymbol{H} matrix is not necessarily sparse, the encoding operation may have complexity $O\left(N^{2}\right)$. In a bruteforce approach, the time to create a Gallager code scales as N^{3}, where N is the block length (Shokrollahi 2003, pp.2-3).

5.2.1 Simulation results

Figure 5.4 shows the simulated performance of Gallager's (3, 4, 20) code for different iteration numbers. Here, $N=20, K=5, M=15, w_{c}=3$ and $w_{r}=4$. For convenience all-zero codeword $C=0$ is sent. The information bits are BPSK modulated and AWGN channel is considered. Here, the code rate, $R=0.25$.

Figure 5.4: Performance of rate-1/4 Gallager's $(3,4,20)$ code with iterative probabilistic decoding for different iteration number.

In Figure 5.4, an acceptable range of BER's can be obtained for the rate $1 / 4$ LDPC code in AWGN channel by holding E_{b} / N_{0} to a constant value of 8.0 dB . The latency is listed in Table 2 for the rate $1 / 4$ LDPC code in AWGN channel with E_{b} / N_{0} set to 8.0 dB.

Iteration number	Latency
500	31 msec
1000	47 msec
1500	63 msec
2000	78 msec
10000	375 msec

Table 2 Quality of Service for rate $1 / 2$ LDPC code in AWGN at $\mathbf{E}_{\mathbf{b}} / \mathbf{N}_{\mathrm{o}}=8.0 \mathrm{~dB}$.

Figure 5.5 shows the simulated performance of Gallager's ($3,6,96$) code for different iteration numbers. Here, $N=96, K=48, M=48, w_{c}=3$ and $w_{r}=6$. For convenience all-zero codeword $C=0$ is sent. The information bits are BPSK modulated and AWGN channel is considered. Here, the code rate, $R=0.5$.

Figure 5.5: Performance of rate-1/2 Gallager's $(\mathbf{3}, \mathbf{6}, 96)$ code with iterative probabilistic decoding for different iteration number.

Figure 5.6 shows the simulated performance of Gallager's $(3,6,816)$ code for different iteration numbers. Here, $N=816, K=408, M=408, w_{c}=3$ and $w_{r}=6$. For convenience all-zero codeword $C=0$ is sent. The information bits are BPSK modulated and AWGN channel is considered. Here, the code rate, $R=0.5$.

Gallegers $(3,6,816)$ code

Figure 5.6: Performance of rate- $1 / 2$ Gallager's $(3,6,816)$ code with iterative probabilistic decoding for different iteration number.

Form Figure 5.4, 5.5 and 5.6, it is clearly seen that for LDPC codes as the block length N increases the BER improves.

5.3 Performance comparison

Form Figure 5.7, we can see that at error probabilities of about 10^{-5}, LDPC codes are not able to get quite so close to the Shannon limit as turbo codes. However, turbo codes as originally presented are known to have an error "floor" at about 10^{-6}, that implies that the error probability of these turbo codes no longer decreases rapidly with increasing E_{b} / N_{0} below this floor. In LDPC codes, there is no evidence of such error "floor". Hence it is possible that at very low-bit error probabilities, LDPC codes outperform turbo codes.

Figure 5.7: Comparison between turbo codes and LDPC codes.

LDPC codes may also have an advantage over turbo codes in terms of their decoding complexity. In some cases, LDPC codes have greater performance than turbo codes with iterative decoding algorithms which are easy to implement and are also parallelizable in hardware. Per-iteration complexity of turbo codes is much higher than the per-iteration complexity of LDPC codes. In addition, for turbo codes the decoding becomes more complex as the interleaver size and the constraint length increases.

LDPC codes of any rate and block length can be created simply by specifying the shape of the parity check matrix, while the rate of turbo codes is dependent on of the structure of puncturing matrix. Hence, flexibility in the code rate for LDPC codes is obtained only through considerable design effort.

On the other hand, LDPC codes have a significantly higher encoding complexity than turbo codes. For turbo codes, the encoding has the complexity linearly proportional to the block length. However, the encoding of LDPC codes is generically quadratic in the code dimension, although this can be reduced somewhat (Moon, T K 2005). Besides, LDPC decoding may require many more iterations than turbo decoding and this may introduce latency and increase decoding hardware complexity.

5.4 Chapter summary

This chapter has presented the performance analysis of turbo codes and LDPC codes individually at first. Then the performance comparison between these two codes has been presented. In order to get the best performance from both turbo codes and LDPC codes some trade-offs have to be made. The impacts on the error performance of both of these codes for some major performance factors have been presented here along with some simulation results.

Chapter 6

Conclusions

In modern days, wireless is a method of communication that uses low-powered radio waves to transmit data between devices. But these wireless links are very vulnerable to channel deficiency such as channel noise, mutli path effect and fading. Iterative decoding is particularly suitable when the transmission channel is noisy. The concept of iterative decoding may be defined as a method of utilizing a soft-output decoding algorithm that is iterated several times to keep the probability of error at an acceptably low level. Turbo codes and low-density parity-check codes are two error control codes based on iterative decoding. In this dissertation, the concepts of both turbo codes and LDPC codes have been presented. This dissertation gives an overview of code construction, iterative decoding procedures and performance analysis for both turbo codes and LDPC codes. Turbo codes are a novel error correction technique that was first introduced by a group of researchers from France in 1993 (Berrou, Glavieux \& Thitimajshima 1993, pp. 1064-1070). The essential features of turbo codes are parallel concatenation, recursive systematic convolutional encoding, random interleavers and iterative decoding. Low-density parity-check (LDPC) codes were originally proposed by

Robert Gallager in 1962 (Gallager 1962, vol. 8, no. 1, pp. 21-28). The essential features of LDPC codes are code construction, tanner graphs, encoding codes and iterative belief propagation (IBP) decoding algorithm.

It has been showed that both turbo codes and LDPC codes have the ability to perform at their best but under some conditions. Tradeoffs between some major performance factors have to be made to get the best output from turbo codes and LDPC codes. Turbo codes have been shown to exhibit remarkable performance when the interleaver size is large and a sufficient number of decoding iterations is performed. However, decoding complexity and latency are an invariant to interleaver size. By properly choosing the interleaver size, a tradeoff between performance and efficiency can be made. LDPC codes can approach to Shannon capacity limit, if the block length $N \rightarrow \infty$ and the low-density parity check matrix becomes more sparse. However, this long block length of code and the need for iterative decoding introduce latency. Unsurprisingly, the increasing number of decoding iterations improves the performance of LDPC codes which also introduces communication delay.

In some cases, LDPC codes can outperform turbo codes. For LDPC codes, the decoding complexity of per information bits is linearly proportional to block size, whereas for turbo codes the decoding becomes more complex as the frame size increases. Conversely, the encoding complexity for LDPC codes is quadratic and for turbo codes it is linear.

6.1 Future work

While doing this project I have been able to comprehend and implement two error correcting codes, i.e., turbo codes and LDPC codes. I have also been able to demonstrate the performance comparison between these two codes in terms of bit error rate, latency, code rate and computational resources. However it is shown that for both turbo codes and LDPC codes, the researchers mostly depend on the simulation results to analyze the
performance. In this dissertation, the performance analyses of these two codes under some major performance factors have been presented along with some simulation results. Suggestions for extensions of this work might include the analytical techniques of performance analysis for both turbo codes and LDPC codes; i.e. extrinsic information transfer (EXIT) charts for turbo codes, EXIT charts for LDPC codes, Density evolution.

Another inclusion can be the investigation of irregular LDPC codes. Although a brief overview of irregular LDPC codes has been presented here, an intensive analysis can be made on this type of codes based on this project dissertation. As it is showed that irregular LPDC codes may outperform turbo codes of approximately the same length and rate, when the block length is large.

Appendix A

Project specification

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG 4111/4112 Research Project PROJECT SPECIFICATION

FOR: Tawfiqul Hasan Khan

TOPIC: Iterative Decoding for Error Resilient Wireless Data Transmission
SUPERVISORS: Dr. Wei Xiang
ENROLMENT: ENG 4111 - S1, D, 2006
ENG 4112 - S2, D, 2006
PROJECT AIM: This project seeks to investigate the performance of two error control codes, turbo codes and low-density parity-check codes based on iterative decoding and demonstrate the performance comparison between these two codes.

PROGRAMME: Issue A, $15^{\text {th }}$ March 2006

1. Study the background of Error Control Codes.
2. Implement and analyze Viterbi algorithm, Soft output Viterbi algorithm and Maximum-a-posteriori (MAP) algorithm and Soft-Input Soft-Output (SISO) algorithm.
3. Examine and implement Turbo codes and their iterative decoders.
4. Examine and implement low-density parity check (LDPC) codes and their iterative decoders.
5. Demonstrate the performance comparison between turbo codes and LPDC codes in terms of bit error rate, latency and computational resources.

Time permitted:

6. Ascertain the advantages and disadvantages of turbo codes and LPDC codes, in terms of error resilient performance, latency and computational resources.

AGREED: \qquad (student) \qquad (Supervisors)
\qquad
\qquad
\qquad

Appendix B

List of Acronyms

ACS Add-Compare-Select
AMPS Advanced Mobile Phone System
APP A-Posteriori Probability
ARDIS Advanced Radio Data Information Service
AWGN Additive White Gaussian Noise (channel)
BCH Bose, Ray-Chaudhuri, Hocquenghem
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CDMA Code Division Multiple Access
ERNIES European Radio Messaging System
EXIT Extrinsic Information Transfer
FER Finite Impulse Response
FPLNITS Future Public Land Mobile Telecommunications System
GSM Global System Mobile
IBP Iterative Belief Propagation
IEEE Institute of Electrical and Electronics Engineering
IIR Infinite Impulse Response
LDPC Low-density parity check
LEO Low Earth Orbit
LLR Log-Likelihood Ratio
MAP Maximum-a-posteriori
MEO Medium Earth Orbit
MLD Maximum-Likelihood Decoding
NMT Nordic Mobile Telephone
PAN Personal Area Network
PCC Punctured Convolutional codes
POCSAG Post Office Code Standardization Advisory Group
PSTN Public Switched Telephone Network
RMD RAM Mobile Data
RSC Recursive Systematic Convolutional
SISO Soft-Input, Soft-Output

SOVA Soft-Output Viterbi Algorithm
SMR Specialized Mobile Radio
SNR Signal to noise power Ratio
TACS Total Access Communication System
TDMA Time Division Multiple Access
USDC United States Digital Cellular
VA Viterbi Algorithm
VD Viterbi Decoder
WLAN Wireless Local Area Network

Appendix C

List of codes

The name of all ' C ' files and 'text' files are listed below along with their brief descriptions:

File name

1. main_turbo_punc.c
2. main_turbo.c
3. main_ldpc.c

Description

It is a turbo simulation program. The punctured matrix has been used to make the code rate $1 / 2$.It uses two RSC codes encoder to generate codes. It utilizes two Soft-Input Soft-Output MAP decoders to decode the code. A user defined length of random interleaver has been used to make sure that MAP decoder can estimate information symbols independently at each iteration. It writes the output into "turbo_punc.txt" file. Hence, the executable file "main_turbo_punc.exe" of this program has to be stored into the computer first before running.

It is a turbo simulation program. Here, the code rate is $1 / 3$. It utilizes two Soft-Input Soft-Output MAP decoders to decode the code. A user defined length of random interleaver has been used to make sure that MAP decoder can estimate information symbols independently at each iteration. It writes the output into "turbo.txt" file. Hence, the executable file "main_turbo.exe" of this program has to be stored into the computer first before running.

It is an LDPC simulation program. It uses the lowdensity parity-check matrix and iterative belief propagation (IBP) decoding algorithm for decoding LDPC codes. It writes the output into
"LDPC_output.txt" file. Hence, the executable file "main_ldpc.exe" of this program has to be stored into the computer first before running.
4. gal (3, 4, 20, 5) r1_4.txt
5. gal $(3,6,96,48)$ r1_2.txt

It is a text file which contains the information of a specific low-density parity-check matrix. Here, $N=$ 20, $K=5, R=0.25, w_{c}=3$ and $w_{r}=4$. Source: $<$ http://www.inference.phy.cam.ac.uk/mackay/codes/ data.html >

It is a text file which contains the information of a specific low-density parity-check matrix. Here, $N=$ 96, $K=48, R=0.5, w_{c}=3$ and $w_{r}=6$. Source: $<$ http://www.inference.phy.cam.ac.uk/mackay/codes/ data.html >
6. gal $(3,6,816,408)$ r1_2.txt

It is a text file which contains the information of a specific low-density paritycheck matrix. Here, $N=816, K=408, R=$ 0.5 , $w_{c}=3$ and $w_{r}=6$. Source: < http://www.inference.phy.cam.ac.uk/mackay /codes/data.html >

```
///////////////////////////////////////////////////////////////////////////////
//
// Name: main_turbo_punc.c
// Author: Tawfiqul Hasan Khan
// Description: It is a turbo simulation program. The punctured matrix has been
// used to make the code rate 1/2.It uses two RSC codes encoder to
// generate codes. It utilizes two Soft-Input Soft-Output MAP
// decoder to decode the code. An user defined length of random
// interleaver has been used to make sure that MAP decoder can
// estimate information symbols independently at each iteration.
// Date of creation: 13/7/2006
//////////////////////////////////////////////////////////////////////////////
```

\#include <stdio.h>
\#include <math.h>
\#include <string.h>
\#include <stdlib.h>
\#include <limits.h>
int ITERATIONS; // Global variable for number of iterations
int NUM_STATE; // Global variable for state number
double variance; // Global variable for variance
/* Declaration of puntured matrix */
int punc_mat[3][2]=\{1, 1,
1,0 ,
0, 1 \};
/* Declaration of structure for trllis*/
typedef struct \{
int from_state[2]; // Initial state
int fin_state[2]; // Final state
int output[2]; // Output coded symbols (branch label)
\}trel;
/* Declaration of structure for decoding*/
typedef struct\{

double alpha;	// Forward metric
double beta;	// Back ward metric
double gamma[2];	// Branch metric
double gamma_I[2];	// Branch metric

\}state_metric;
/* Functions prototypes */
int random_generator();
void* create_interleave_deinterleave(unsigned *interleave_mat,
unsigned *deinterleave_mat, int size);
double gaussian_noise(double mean, double variance);
void encoder(trel *trel_state,int *data,int *parity, unsigned size, int force,
int memory);
void create_encode_table(trel *trel_state, int state_num,int memory);
void interleave (int *data, unsigned size, unsigned *interleave_mat);
void deinterleave(int *data, unsigned size, unsigned *deinterleave_mat);
void decode(trel * trel_state, double *channel_data, double *channel_parityl,
double *channel_parity2, int size, int *data,
unsigned *interleave_mat, unsigned *deinterleave_mat);
void deinterleave_double(double *channel_data, int size,
unsigned *deinterleave_mat);
void interleave_double(double *channel_data, int size, unsigned *interleave_mat);
void decoder_map (trel * trel_state, double *channel_data, double *channel_parity,

```
int size, state_metric **stage_metric, double *Log[],
```

int decode_num, int loop);

```
int generator[10];
```

/* Main function*/
int main(int argc, char *argv[]) \{

```
    int *data, *parity1,*parity2; // Variables for data, parity1 &
parity2
    double *channel_data, *channel_parity1,*channel_parity2; // Variables for
channel data, channel parity1, channel parity2
    trel *trel_state;
    unsigned *interleave_mat; // Iterleaver matrix
    unsigned *deinterleave_mat; // Deinterleaver matrix
    int size; // Interleaver or frame size
    double rate; // The code rate
    /* Declaration of some necessary variables*/
    unsigned long seed;
    int i,j;
    int memory;
    int temp1,temp2;
    int total_size;
    int total_error;
    int temp_data;
    double dB,init_dB,fin_dB,inc_dB;
    int max_sim;
    FILE * fp;
```

 ////////////////////////// USER INPUT ////////////////////////////////
 printf("Enter the data size:");
 scanf("\%d",\&size);
 printf("Enter seed:");
 scanf("\%ld", \&seed);
 printf("Enter number of memory:");
 scanf("\%d", \&memory);
 printf("Enter number of iteration:");
 scanf("\%d",\&ITERATIONS);
 printf("Enter feedback generator in octal:");
 scanf("\%o", \&generator[0]);
 printf("Enter feedforward generator in octal:");
 scanf("\%०", \&generator[1]);
 /////////////////////// INITIALIZATION /////////////////////////////
 data= (int*)malloc(size*sizeof(int));
 if (data==NULL) \{
 printf("ERROR: Could not allocate memory space for data\n");
 exit(0);
 \}
 parityl= (int*) malloc(size*sizeof(int));
 if(parity1==NULL) \{
 printf("ERROR: Could not allocate memory space for parity1 \n");
 exit(0);
 \}
 parity2= (int*)malloc(size*sizeof(int));
 if(parity2==NULL) \{
    ```
    printf("ERROR: Could not allocate memory space for parity2\n");
    exit(0)
    }
    channel_data= (double*)malloc(size*sizeof(double));
    if(channel_data==NULL) {
    printf("ERROR: Could not allocate memory space for channel_data\n");
    exit(0);
}
    channel_parity1= (double*)malloc(size*sizeof(double));
    if(channel_parity1==NULL) {
        printf("ERROR: Could not allocate memory space for
channel_parity1\n");
        exit(0);
    }
    channel_parity2= (double*)malloc(size*sizeof(double));
    if(channel_parity2==NULL) {
        printf("ERROR: Could not allocate memory space for
channel_parity2\n");
        exit(0);
    }
    interleave_mat= (int*)malloc(size*sizeof(int));
    if(interleave_mat==NULL) {
        printf("ERROR: Could not allocate memory space for interleave_mat\n");
        exit(0);
    }
    deinterleave_mat= (int*)malloc(size*sizeof(int));
    if(deinterleave_mat==NULL) {
        printf("ERROR: Could not allocate memory space for
deinterleave_mat\n");
        exit(0);
    }
NUM_STATE= pow(2,memory);
trel_state= (trel *)malloc(NUM_STATE*sizeof(trel));
if(trel_state==NULL) {
    printf("Could not allocate space for trel\n");
    exit(0);
}
fp=fopen("turbo_punc.txt","w");
if(fp==NULL) {
    printf("ERROR: Could not open file");
    exit(0);
}
//////////////////// Setting value for simulation ////////////////////////
init_dB=0.0;
fin_dB=6.0;
inc_dB=0.5;
max_sim=LONG_MAX;
rate=0.5;
```

```
//////////////////////// CREATE ENCODE TABLE //////////////////////////////
    create_encode_table(trel_state,NUM_STATE,memory);
    ////////////// CREATE INTERLEAVE AND DEINTERLEAVE MATRIX //////////////////
    srand(seed);
    create_interleave_deinterleave(interleave_mat,deinterleave_mat,size);
    //////////////////////// STARTING SIMULATION //////////////////////////////
    printf("\n\n\t\t==================================\n");
    printf("\t\t|| WELCOME to TURBO SIMULATION | | \n");
    printe("\t\
    printf("\t\t
    printf("\t\t
    printf("\t\t
    printf("\t\t====================================\n");
    printf("\t\t |\n");
    printf("\t\t Block Size:%18d | \n",size);
    printf("\t\t Memory Length:%15d \\n",memory);
    printf("\t\t| State Number:%16d | \n",NUM_STATE);
    printf("\t\t Iteration Number:%12d | \n",ITERATIONS);
    printf("\t\t
        |\n");
```



```
    /////////////////// Starting simulation /////////////////////////////////
    for (dB=init_dB; dB<fin_dB+1.0e-1; dB += inc_dB){
        total_size=0;
        total_error=0;
        variance = 1.0/(2.0*rate*pow(10.0,dB/10.0));
        while (total_error<=1000 && total_size< max_sim){
        for (i=0;i<size;i++) {
            data[i] =random_generator(); /* Generating RANDOM data*/
        }
            /* First RSC encoder*/
        encoder(trel_state,data,parity1,size,1,memory);
        interleave(data,size,interleave_mat);
        /* Second RSC encoder*/
        encoder(trel_state,data,parity2,size,0,memory);
        deinterleave(data,size,deinterleave_mat);
        for (i=0;i<size;i++) {
            channel_data[i]= pow(-1,data[i])*(-1.0);
            channel_parity1[i]= pow(-1,parity1[i])*(-1.0);
            channel_parity2[i]= pow(-1,parity2[i])*(-1.0);
        }
        /* Adding gaussian noise, mean=0, variance=No/2Es */
        for (i=0;i<size;i++) {
            channel_data[i] = channel_data[i]+
gaussian_noise(0,variance);
```

```
                            channel_parity1[i] = channel_parity1[i]+
gaussian_noise(0,variance);
                            channel_parity2[i] = channel_parity2[i]+
gaussian_noise(0,variance);
    }
    /* Decoding with two SISO MAP decoder*/
    decode (trel_state,channel_data,channel_parity1,channel_parity2,
                                    size,data,interleave_mat,deinterleave_mat);
    /* Checking error*/
    for (i=0;i<size;i++) {
            temp_data = (channel_data[i] == 1) ? 1 : 0;
            if (data[i] != temp_data)
                    total_error++;
    }
    total_size = total_size+size;
        }
        /* Printing simulation results in the console */
        printf ("%5.2lf %10.7e %6ld %21ld %d\n", dB,
            (total_error/(double)total_size), total_error, total_size,
                size);
            fprintf(fp,"%5.2lf %10.7e %6ld %21ld %d\n", dB,
                        (total_error/(double)total_size), total_error, total_size,
                                    size);
        }
    ///////////////////////////////////DEALLOCATING MEMORY/////////////////////
    free(data);
    free(parity1);
    free(parity2);
    free(channel_data);
    free(channel_parity1);
    free(channel_parity2);
    free(interleave_mat);
    free(deinterleave_mat);
    free(trel_state);
    fclose(fp);
}
//////////////////////////////////////////////////////////////////////////////
// Function name: random_generator()
// Description: Generate random numbers
////////////////////////////////////////////////////////////////////////////////
int random_generator()
{
    double temp;
    temp=(double) rand() /LONG_MAX;
        if(temp>0.5) {
            return 1;
        } else {
            return 0;
    }
}
```

```
///////////////////////////////////////////////////////////////////////////////
// Function name: create_interleave_deinterleave
// Description: Create interleave and deinterleave matrix
//////////////////////////////////////////////////////////////////////////////
void* create_interleave_deinterleave(unsigned *interleave_mat,unsigned
*deinterleave_mat, int size)
{
    int *temp, temp_pos,i;
    temp= (int*)malloc(size*sizeof(int));
    if(temp==NULL) {
        return NULL;
    }
    for (i=0; i<size; i++){
        temp[i] = 0;
    }
    /* Writing interleaver */
    for (i=0; (i<size); i++) {
        do {
            temp_pos = rand()%size;
        } while ( temp[temp_pos] );
        temp[temp_pos] = 1;
        interleave_mat[i] = temp_pos;
    }
    /* Writing deinterleaver */
    for (i=0; (i<size); i++) {
        deinterleave_mat[interleave_mat[i]]=i;
    }
    free(temp);
    return;
}
///////////////////////////////////////////////////////////////////////////////
// Function name: gaussian_noise
// Description: Create gaussian noise with O mean and given variance
////////////////////////////////////////////////////////////////////////////
double gaussian_noise(double mean, double variance)
{
    double s1, s2, rand_n, r, g_noise;
    do {
        rand_n = (double) (rand())/LONG_MAX;
        s1 = rand_n * 2 - 1.0;
        rand_n = (double) (rand())/LONG_MAX;
        s2 = rand_n * 2 - 1.0;
        r = s1 * s1 + s2 * s2;
    } while( r >= 1 );
    g_noise =mean + sqrt(variance)*(s1 * sqrt( (-2.0*log(r))/r ));
    return g_noise;
}
```

/// // Function name: decode
// Description: Utilizes two SISO MAP decoder to decode the codes
///
void decode (trel * trel_state, double *channel_data, double *channel_parity1, double *channel_parity2, int size, int *data, unsigned *interleave_mat, unsigned *deinterleave_mat)
\{

> double *Log[2];
state_metric **stage_metric1; /* For decoder 1*/
state_metric **stage_metric2; /* For decoder 2*/
int i,j,input,state,loop;
double Lc;
// Create matrix for LLR
for (input=0;input<2;input++) \{
Log[input] = (double*)malloc(size*sizeof(double));
\}
stage_metric1 = (state_metric**) malloc(size*sizeof(state_metric*));
stage_metric2 = (state_metric**) malloc(size*sizeof(state_metric*));
for (i=0;i<size;i++) \{
stage_metric1[i]
$=($ state_metric*) malloc(NUM_STATE*Sizeof(state_metric));
stage_metric2[i]
=(state_metric*) malloc(NUM_STATE*Sizeof(state_metric));
\}
/* Initialization of iteration arrays */
for (state=0;state<NUM_STATE; state++) \{
stage_metric1[0][state].alpha = stage_metric1[size-1][state].beta = stage_metric2[0][state].alpha $=($ state==0) ? $1.0: 0.0$;
\}
/* Initialization of extrinsic information array for decoder 2, that will be used in decoder 1 */
for (i=0;i<size;i++) \{
$\log [1][i]=0.0$;
\}
Lc = 2.0/variance;
/* Run the decoding for number of ITERATION times*/
for (loop=0;loop<ITERATIONS; loop++) \{
//////////////////////// 1st decoder ////////////////////////////
decoder_map(trel_state, channel_data, channel_parity1,size,stage_metric1, Log, 1, loo p) ;

> /

```
for (i=0;i<size;i++){
```

 Log[0][i]=Log[0][i]-Lc*channel_data[i] - Log[1][i];
 \}
/*Interleaving */
interleave_double (Log[0],size, interleave_mat);
interleave_double(channel_data,size,interleave_mat);
///////////////////////// 2nd decoder ////////////////////////////
decoder_map (trel_state, channel_data, channel_parity2, size,stage_metric2,Log,2,loo p) ;
///
if(loop<ITERATIONS-1) \{
for (i=0;i<size;i++) \{ Log[1][i]=Log[1][i]-Lc*channel_data[i] - Log[0][i];
\}
\}
deinterleave_double(channel_data,size, deinterleave_mat);
deinterleave_double(Log[1],size, deinterleave_mat);
deinterleave_double(Log[0],size, deinterleave_mat);
\}
/* Makeing decisions */
for (i=0;i<size;i++) \{
if (Log[1][i] > 0)
channel_data[i] = 1.0;
else
channel_data[i] = -1.0;
\}
 for (i=0;i<size;i++) \{
free(stage_metric1[i]);
free(stage_metric2[i]);
\}
free(stage_metric1);
free(stage_metric2); for (input=0; input<2; input++) free(Log[input]);
\}
 // Function name: deinterleave_double
// Description: deinterleave the given matrix
//
void deinterleave_double(double *channel_data, int size, unsigned
*deinterleave_mat)
\{
int i;
double *temp;
temp $=$ (double*) malloc(size*sizeof(double)); if (temp==NULL) \{
printf("ERROR: Could not allocate place for temp\n");

```
    }
    for (i=0;i<size;i++){
        temp[i] = channel_data[i];
    }
    for (i=0;i<size;i++){
        channel_data[deinterleave_mat[i]] = temp[i];
    }
    free (temp);
}
////////////////////////////////////////////////////////////////////////////////
// Function name: interleave_double
// Description: interleave the given matrix
///////////////////////////////////////////////////////////////////////////
void interleave_double(double *channel_data, int size,unsigned *interleave_mat)
{
    int i;
    double *temp;
    temp = (double*)malloc(size*sizeof(double));
    if (temp==NULL) {
        printf("ERROR: Could not allocate place for temp\n");
    }
    for (i=0;i<size;i++){
        temp[i] =channel_data[i];
    }
    for (i=0;i<size;i++) {
        channel_data[interleave_mat[i]] = temp[i];
    }
    free(temp);
}
////////////////////////////////////////////////////////////////////////////
// Function name: create_encode_table
// Description: Create encoder table based on the memory length and generator
matrices
/////////////////////////////////////////////////////////////////////////////
void create_encode_table(trel * trel_state,int state_num,int memory)
{
    register int i, j, result, temp, feed;
    int K; //the constraint length
    int data, init_state,temp_output,temp_state;
    for (init_state=0;init_state<state_num;init_state++) {
        for (data=0;data<2;data++) {
            feed=0;
            K=memory+1;
            temp=init_state<<1 | data ;
            for(i=1;i<=K;i++){
                feed=feed ^ ((generator[0]>>(K-i))&0x01) & ((temp>>(K-i)) &
0x01);
```

```
}
temp_output=0;
temp=init_state<<1 | feed ;
for(i=1;i<=K;i++) {
            temp_output=temp_output ^ ((generator[1]>>(K-i))&0x01) &
((temp>>(K-i)) & 0x01);
    }
    trel_state[init_state].output[data]=temp_output;
    temp= pow(2,memory)-1;
    temp_state=init_state;
    trel_state[init_state].fin_state[data] = ((temp_state<<1)| feed) &
temp;
trel_state[trel_state[init_state].fin_state[data]].from_state[data]
= init_state;
        }
    }
}
////////////////////////////////////////////////////////////////////////////////
// Function name: encoder
// Description: Encode data based on encoder table
////////////////////////////////////////////////////////////////////////////
void encoder(trel *trel_state,int *data,int *parity,unsigned size, int force,
int memory)
{
    int i,j;
    int state;
    state=0;
    for (i=0;i<size;i++){
            // force the encoder to zero state at the end
        if (i>=size-memory && force) {
            if (trel_state[state].fin_state[0]&1) {
                    data[i] =1;
            }else{
                data[i] =0;
            }
        }
        j = data[i];
                /* Calculate output due to new mesg bit */
            parity[i] = trel_state[state].output[j];
            /* Calculate the new state */
            state = trel_state[state].fin_state[j];
    }
}
```

```
///////////////////////////////////////////////////////////////////////////////
// Function name: interleave
// Description: interleave the given matrix
////////////////////////////////////////////////////////////////////////////////
void interleave(int *data,unsigned size,unsigned *interleave_mat)
{
        int i,*temp;
    temp = (int*)malloc(size*sizeof(int));
    if (temp==NULL) {
    printf("ERROR: Could not allocate place for temp\n");
    }
    for (i=0;i<size;i++){
        temp[i] = data[i];
    }
    for (i=0;i<size;i++){
        data[interleave_mat[i]] = temp[i];
    }
    free(temp);
}
////////////////////////////////////////////////////////////////////////////
// Function name: deinterleave
// Description: deinterleave the given matrix
///////////////////////////////////////////////////////////////////////////////
void deinterleave(int *data,unsigned size,unsigned *deinterleave_mat)
{
    int i,*temp;
    temp = (int*)malloc(size*sizeof(int));
    if(temp==NULL) {
        printf("ERROR: Could not allocate place for temp\n");
    }
    for (i=0;i<size;i++) {
        temp[i] = data[i];
    }
    for (i=0;i<size;i++){
        data[deinterleave_mat[i]] = temp[i];
    }
    free(temp);
}
```

```
///////////////////////////////////////////////////////////////////////////////
// Function name: decoder_map
// Description: Decode codes in according to Maximum-a posteriori algorithm
////////////////////////////////////////////////////////////////////////////////
void decoder_map(trel * trel_state,double *channel_data, double *channel_parity,
int size, state_metric **stage_metric, double *Log[],int decode_num, int loop)
{
    int i,input,state,index,punc_index;
    double soft_input;
    double soft_output;
    double denominator;
    double min,temp;
    double num_deno[2];
    double Lc;
    Lc = 2.0/variance;
    if(decode_num==1) {
        index=1;
        punc_index=1;
    }else{
        index=0;
        punc_index=2;
    }
    for (i=0;i<size;i++){
        /* Calculate branch metric using punctured matrix*/
        for ( input=0;input<2;input++) {
                soft_input = (input == 0) ? -1.0 : 1.0;
                for ( state=0;state<NUM_STATE;state++) {
                            soft_output = (trel_state[state].output[input] == 0) ? -1.0
: 1.0;
    if (punc_mat[punc_index][i%2]==1){
stage_metric[i][state].gamma_I[input]=exp(0.25*Lc*channel_parity[i]*soft_output)
;
        }else{
                        stage_metric[i][state].gamma_I[input]=1.0;
        }
        stage_metric[i][state].gamma[input]=
exp(0.25*soft_input*(Log[index][i]+
Lc*channel_data[i]))*stage_metric[i][state].gamma_I[input];
            }
        }
    }
    /* Calculate Forward metrics */
    for ( i=1;i<size;i++) {
    denominator=0;
    /* Calculate denominator */
    for (state=0;state<NUM_STATE;state++) {
                denominator+= stage_metric[i-
1][trel_state[state].from_state[0]].alpha
```

```
    * stage_metric[i-
1][trel_state[state].from_state[0]].gamma[0]
                    + stage_metric[i-
1][trel_state[state].from_state[1]].alpha
* stage_metric[i-
1][trel_state[state].from_state[1]].gamma[1];
    }
        /* Using normalization*/
        for (state=0;state<NUM_STATE;state++) {
            stage_metric[i][state].alpha = ( stage_metric[i-
1][trel_state[state].from_state[0]].alpha
                                    * stage_metric[i-
1][trel_state[state].from_state[0]].gamma[0]
                                    + stage_metric[i-
1][trel_state[state].from_state[1]].alpha
                                    * stage_metric[i-
1][trel_state[state].from_state[1]].gamma[1] )
                                    / denominator;
    }
    }
    /* Calculate Backward metrics */
    if (loop==0 && decode_num==2) {
        denominator=0;
        /* Calculate denominator */
        for (state=0;state<NUM_STATE;state++) {
            denominator += stage_metric[size-
1][trel_state[state].from_state[0]].alpha
                                    * stage_metric[size-
1][trel_state[state].from_state[0]].gamma[0]
                                    + stage_metric[size-
1][trel_state[state].from_state[1]].alpha
                                    * stage_metric[size-
1][trel_state[state].from_state[1]].gamma[1];
            }
            /* Using normalization*/
        for (state=0;state<NUM_STATE;state++) {
            stage_metric[size-1][state].beta = (stage_metric[size-
1][trel_state[state].from_state[0]].alpha
                                    stage_metric[size-
1][trel_state[state].from_state[0]].gamma[0]
                                    + stage_metric[size-
1][trel_state[state].from_state[1]].alpha
                                    * stage_metric[size-
1][trel_state[state].from_state[1]].gamma[1] )
                                    / denominator;
        }
    }
    for (i=size-1;i>=1;i--){
        denominator=0;
        /* Calculate denominator */
        for (state=0; state<NUM_STATE; state++) {
            denominator +=
stage_metric[i][trel_state[state].from_state[0]].alpha
```

```
stage_metric[i][trel_state[state].from_state[0]].gamma[0]
    +
stage_metric[i][trel_state[state].from_state[1]].alpha
stage_metric[i][trel_state[state].from_state[1]].gamma[1];
    }
    /* Using normalization*/
    for (state=0;state<NUM_STATE;state++) {
        stage_metric[i-1][state].beta = (
stage_metric[i][trel_state[state].fin_state[0]].beta
                                    * stage_metric[i][state].gamma[0]
                                    +
stage_metric[i][trel_state[state].fin_state[1]].beta
                                    * stage_metric[i][state].gamma[1] ) /
denominator;
```

 \}
 \}
 /* Compute the extrinsic LLRs */
 for (i=0;i<size;i++) \{
 min=0;
 /* Find the minimum product of forward metics, backward metrics,
 branch metrics */
for (input=0; input<2; input++) \{
for (state=0;state<NUM_STATE; state++) \{
temp = stage_metric[i][state].alpha
* stage_metric[i][state].gamma_I[input]
*
stage_metric[i][trel_state[state].fin_state[input]].beta;
if ((temp $<\min \& \&$ temp $!=0)|\mid \min ==0)$
min $=$ temp;
\}
\}
// if all else fails, make min real small
if $(\min =0| | \min >1)$
min $=1 \mathrm{E}-100$;
for (input=0;input<2;input++) \{
num_deno[input]=0.0;
for (state=0; state<NUM_STATE; state++) \{
num_deno[input] += (stage_metric[i][state].alpha *
stage_metric[i][state].gamma_I[input]
stage_metric[i][trel_state[state].fin_state[input]].beta);
\}
\}
if (num_deno[0] == 0)
num_deno[0] = min;
else if (num_deno[1] == 0)
num_deno[1] = min;
$\log \left[\right.$ decode_num-1][i] $=\left(\log \left(n u m _d e n o[1] / n u m _d e n o[0]\right)\right) ;$
\}
for (i=0;i<size;i++) \{
Log[decode_num-1][i]=Log[decode_num-1][i] + Lc*channel_data[i] +
Log[index][i];
\}
\}
//////////////// /////////////// END ///

```
////////////////////////////////////////////////////////////////////////////////
//
// Name: main_turbo.c
// Author: Tawfiqul Hasan Khan
// Description: It is a turbo simulation program. Here, the code rate is 1/3
// It utilizes two Soft-Input Soft-Output MAP
// decoder to decode the code. An user defined length of random
// interleaver has been used to make sure that MAP decoder can
// estimate information symbols independently at each iteration.
// Date of creation: 10/7/2006
//////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
int ITERATIONS; // Global variable for number of iterations
int NUM_STATE; // Global variable for state number
double variance; // Global variable for variance
```

```
/* Declaration of structure for trllis*/
typedef struct {
    int from_state[2]; // Initial state
    int fin_state[2]; // Final state
    int output[2]; // Output coded symbols (branch label)
}trel;
/* Declaration of structure for decoding*/
typedef struct{
    double alpha; // Forward metric
    double beta; // Back ward metric
    double gamma[2]; // Branch metric
    double gamma_I[2]; // Branch metric
}state_metric;
/* Functions prototypes */
int random_generator();
void* create_interleave_deinterleave(unsigned *interleave_mat,
                                    unsigned *deinterleave_mat, int size);
double gaussian_noise(double mean, double variance);
void encoder(trel *trel_state,int *data,int *parity,unsigned size, int force,
    int memory);
void create_encode_table(trel *trel_state,int state_num,int memory);
void interleave(int *data,unsigned size,unsigned *interleave_mat);
void deinterleave(int *data,unsigned size,unsigned *deinterleave_mat);
void decode(trel * trel_state,double *channel_data, double *channel_parity1,
    double *channel_parity2, int size, int *data,
    unsigned *interleave_mat,unsigned *deinterleave_mat);
void deinterleave_double(double *channel_data, int size,
    unsigned *deinterleave_mat);
void interleave_double(double *channel_data, int size,unsigned *interleave_mat);
void decoder_map(trel * trel_state,double *channel_data, double *channel_parity,
int size, state_metric **stage_metric, double *Log[],
int decode_num, int loop);
```

int generator[10];

```
/* Main function*/
int main(int argc, char *argv[]){
    int *data, *parity1,*parity2; // Variables for data, parity1 &
parity2
    double *channel_data, *channel_parity1,*channel_parity2; // Variables for
channel data, channel parity1, channel parity2
    trel *trel_state;
    unsigned *interleave_mat; // Iterleaver matrix
    unsigned *deinterleave_mat; // Deinterleaver matrix
    int size;
    double rate; // The code rate
    /* Declaration of some necessary variables*/
    unsigned long seed;
    int i,j;
    int memory;
    int temp1,temp2;
    int total_size;
    int total_error;
    int temp_data;
    double dB,init_dB,fin_dB,inc_dB;
    int max_sim;
    FILE *fp;
    //////////////////////////// USER INPUT ///////////////////////////////////
    printf("Enter the data size:");
    scanf("%d",&size);
    printf("Enter seed:");
    scanf("%ld",&seed);
    printf("Enter number of memory:");
    scanf("%d",&memory);
    printf("Enter number of iteration:");
    scanf("%d",&ITERATIONS);
    printf("Enter feedback generator in octal:");
    scanf("%o",&generator[0]);
    printf("Enter feedforward generator in octal:");
    scanf("%o",&generator[1]);
```


//////////////////////// INITIALIZATION ////////////////////////////

```
    data= (int*)malloc(size*sizeof(int));
    if(data==NULL) {
        printf("ERROR: Could not allocate memory space for data\n");
        exit(0);
    }
    parity1= (int*)malloc(size*sizeof(int));
    if(parity1==NULL) {
        printf("ERROR: Could not allocate memory space for parity1\n");
        exit(0);
    }
    parity2= (int*)malloc(size*sizeof(int));
    if(parity2==NULL) {
        printf("ERROR: Could not allocate memory space for parity2\n");
        exit(0);
```

```
    }
    channel_data= (double*)malloc(size*sizeof(double));
    if(channel_data==NULL) {
        printf("ERROR: Could not allocate memory space for channel_data\n");
        exit(0);
    }
    channel_parity1= (double*)malloc(size*sizeof(double));
    if(channel_parity1==NULL) {
        printf("ERROR: Could not allocate memory space for
channel_parity1\n");
        exit(0);
    }
    channel_parity2= (double*)malloc(size*sizeof(double));
    if(channel_parity2==NULL) {
        printf("ERROR: Could not allocate memory space for
channel_parity2\n");
        exit(0);
    }
    interleave_mat= (int*)malloc(size*sizeof(int));
    if(interleave_mat==NULL) {
        printf("ERROR: Could not allocate memory space for interleave_mat\n");
        exit(0);
    }
    deinterleave_mat= (int*)malloc(size*sizeof(int));
    if(deinterleave_mat==NULL) {
        printf("ERROR: Could not allocate memory space for
deinterleave_mat\n");
        exit(0);
    }
    NUM_STATE= pow(2,memory);
    trel_state= (trel *)malloc(NUM_STATE*sizeof(trel));
    if(trel_state==NULL) {
        printf("Could not allocate space for trel\n");
        exit(0);
    }
    fp=fopen("turbo.txt","w");
    if(fp==NULL) {
    printf("ERROR: Couldn't open file");
    exit(0);
    }
    ///////////////////// Setting value for simulation ////////////////////////
    init_dB=0.0;
    fin_dB=4.50;
    inc_dB=0.5;
    max_sim=LONG_MAX;
    rate=0.3333;
    //////////////////////// CREATE ENCODE TABLE //////////////////////////////
    create_encode_table(trel_state,NUM_STATE,memory);
```


///////////// CREATE INTERLEAVE AND DEINTERLEAVE MATRIX ////////////////

```
    srand(seed);
    create_interleave_deinterleave(interleave_mat, deinterleave_mat,size);
    //////////////////////// STARTING SIMULATION //////////////////////////////
    printf("\n\n\t\t===================================\n");
    printf("\t\t|| ||\n");
    printf("\t\t| WELCOME to TURBO SIMULATION ||\n");
        Created By
    TAWFIQUL HASAN KHAN \\");
    printf("\t\t
    printf("\t\t
    printf("\t\t====================================\n");
    printf("\t\t| |\n");
    printf("\t\t Block Size:%18d |n",size);
    printf("\t\t| Memory Length:%15d | \n",memory);
    printf("\t\t State Number:%16d | \n",NUM_STATE);
    printf("\t\t| Iteration Number:%12d | \n",ITERATIONS);
    printf("\t\t
printf("======================================================================\n");
    printf(" dB BER Total Error Total bits Block
size\n");
printf("======================================================================\n");
    /////////////////// Starting simulation //////////////////////////////////
    for (dB=init_dB; dB<fin_dB+1.0e-1; dB += inc_dB){
        total_size=0;
        total_error=0;
        variance = 1.0/(2.0*rate*pow(10.0,dB/10.0));
        while (total_error<=1000 && total_size< max_sim){
            for (i=0;i<size;i++) {
            data[i] =random_generator(); /* Generating RANDOM data*/
                }
            /* First RSC encoder*/
                encoder(trel_state,data,parity1,size,1,memory);
                interleave(data,size,interleave_mat);
                /* Second RSC encoder*/
                encoder(trel_state,data,parity2,size,0,memory);
                deinterleave(data,size,deinterleave_mat);
                for (i=0;i<size;i++){
                    channel_data[i]= pow(-1,data[i])*(-1.0);
                    channel_parity1[i]= pow(-1,parity1[i])*(-1.0);
                    channel_parity2[i]= pow(-1,parity2[i])*(-1.0);
                }
                /* Adding gaussian noise, mean=0, variance=No/2Es */
                for (i=0;i<size;i++) {
                            channel_data[i] = channel_data[i]+
gaussian_noise(0,variance);
                            channel_parity1[i] = channel_parity1[i]+
gaussian_noise(0,variance);
                            channel_parity2[i] = channel_parity2[i]+
gaussian_noise(0,variance);
```

```
    }
    /* Decoding with two SISO MAP decoder*/
    decode (trel_state,channel_data,channel_parity1,channel_parity2,
                            size,data,interleave_mat,deinterleave_mat);
        /* Checking error*/
        for (i=0;i<size;i++) {
        temp_data = (channel_data[i] == 1) ? 1 : 0;
        if (data[i] != temp_data)
        total_error++;
        }
            total_size = total_size+size;
        }
        /* Printing simulation results in the console */
        printf ("%5.2lf %10.7e %6ld %21ld %d\n", dB,
            (total_error/(double)total_size), total_error, total_size,
                size);
            fprintf (fp,"%5.2lf %10.7e %6ld %21ld %d\n", dB,
                (total_error/(double)total_size), total_error, total_size,
                size);
    }
    ///////////////////////////////////DEALLOCATING MEMORY//////////////////////
    free(data);
    free(parity1);
    free(parity2);
    free(channel_data);
    free(channel_parity1);
    free(channel_parity2);
    free(interleave_mat);
    free(deinterleave_mat);
    free(trel_state);
    fclose(fp);
}
///////////////////////////////////////////////////////////////////////////////
// Function name: random_generator()
// Description: Generate random numbers
////////////////////////////////////////////////////////////////////////////
int random_generator()
{
    double temp;
    temp=(double) rand()/LONG_MAX;
    if(temp>0.5) {
        return 1;
    } else {
        return 0;
    }
}
```

```
////////////////////////////////////////////////////////////////////////////////
// Function name: create_interleave_deinterleave
// Description: Create interleave and deinterleave matrix
/////////////////////////////////////////////////////////////////////////
void* create_interleave_deinterleave(unsigned *interleave_mat,unsigned
*deinterleave_mat, int size)
{
    int *temp, temp_pos,i;
    temp= (int*)malloc(size*sizeof(int));
    if(temp==NULL) {
        return NULL;
    }
    for (i=0; i<size; i++){
        temp[i] = 0;
    }
    /* Writing interleaver */
    for (i=0; (i<size); i++){
        do {
            temp_pos = rand()%size;
        } while ( temp[temp_pos] );
        temp[temp_pos] = 1;
        interleave_mat[i] = temp_pos;
    }
    /* Writing deinterleaver */
    for (i=0; (i<size); i++) {
        deinterleave_mat[interleave_mat[i]]=i;
    }
    free(temp);
    return;
}
///////////////////////////////////////////////////////////////////////////////
// Function name: gaussian_noise
// Description: Create gaussian noise with 0 mean and given variance
///////////////////////////////////////////////////////////////////////////////
double gaussian_noise(double mean, double variance)
{
    double s1, s2, rand_n, r, g_noise;
    do {
        rand_n = (double) (rand())/LONG_MAX;
        s1 = rand_n * 2 - 1.0;
        rand_n = (double) (rand())/LONG_MAX;
        s2 = rand_n * 2 - 1.0;
        r = s1 * s1 + s2 * s2;
        } while( r >= 1 );
    g_noise =mean + sqrt(variance)*(s1 * sqrt( (-2.0*log(r))/r ));
    return g_noise;
}
```

//
// Function name: decode
// Description: Utilizes two SISO MAP decoder to decode the codes ///

```
void decode (trel * trel_state,double *channel_data, double *channel_parity1,
double *channel_parity2, int size, int *data,unsigned *interleave_mat,unsigned
*deinterleave_mat)
{
        double *Log[2];
        state_metric **stage_metric1; /* For decoder 1*/
        state_metric **stage_metric2; /* For decoder 2*/
        int i,j,input,state,loop;
        double Lc;
        // Create matrix for LLR
        for (input=0;input<2;input++) {
        Log[input] = (double*)malloc(size*sizeof(double));
        }
        stage_metric1 = (state_metric**) malloc(size*sizeof(state_metric*));
        stage_metric2 = (state_metric**)malloc(size*sizeof(state_metric*));
        for (i=0;i<size;i++) {
        stage_metric1[i]
=(state_metric*)malloc(NUM_STATE*sizeof(state_metric));
        stage_metric2[i]
=(state_metric*)malloc(NUM_STATE*sizeof(state_metric));
        }
        /* Initialization of iteration arrays */
        for (state=0;state<NUM_STATE; state++) {
            stage_metric1[0][state].alpha = stage_metric1[size-1][state].beta =
stage_metric2[0][state].alpha = (state==0) ? 1.0 : 0.0;
        }
        /* Initialization of extrinsic information array for decoder 2, that will
        be used in decoder 1 */
        for (i=0;i<size;i++){
        Log[1][i] = 0.0;
    }
    Lc = 2.0/variance;
    /* Run the decoding for number of ITERATION times*/
    for (loop=0;loop<ITERATIONS;loop++) {
```

 //////////////////////// 1st decoder ///////////////////////////
 decoder_map(trel_state, channel_data, channel_parity1,size,stage_metric1,Log, 1,loo p) ;

```
for (i=0;i<size;i++){
```

```
    Log[0][i]=Log[0][i]-Lc*channel_data[i] - Log[1][i];
}
/*Interleaving */
interleave_double(Log[0],size,interleave_mat);
interleave_double(channel_data,size,interleave_mat);
///////////////////////// 2nd decoder //////////////////////////////
decoder_map(trel_state,channel_data,channel_parity2,size,stage_metric2,Log,2,loo
p) ;
    ////////////////////////////////////////////////////////////////
            if(loop<ITERATIONS-1) {
            for (i=0;i<size;i++){
            Log[1][i]=Log[1][i]-Lc*channel_data[i] - Log[0][i];
            }
            }
            deinterleave_double(channel_data,size,deinterleave_mat);
            deinterleave_double(Log[1],size,deinterleave_mat);
            deinterleave_double(Log[0],size,deinterleave_mat);
        }
    /* Makeing decisions */
    for (i=0;i<size;i++) {
            if ( Log[1][i] > 0)
            channel_data[i] = 1.0;
            else
                    channel_data[i] = -1.0;
    }
//////////////////////////// free memory ///////////////////////////////////////
    for (i=0;i<size;i++){
            free(stage_metric1[i]);
            free(stage_metric2[i]);
    }
    free(stage_metric1);
    free(stage_metric2);
    for ( input=0;input<2;input++)
        free(Log[input]);
}
///////////////////////////////////////////////////////////////////////////////
// Function name: deinterleave_double
// Description: deinterleave the given matrix
/////////////////////////////////////////////////////////////////////////////
void deinterleave_double(double *channel_data, int size,unsigned
*deinterleave_mat)
{
    int i;
    double *temp;
    temp = (double*)malloc(size*sizeof(double));
    if(temp==NULL) {
```

```
    printf("ERROR: Could not allocate place for temp\n");
    }
    for (i=0;i<size;i++){
        temp[i] = channel_data[i];
    }
    for (i=0;i<size;i++){
        channel_data[deinterleave_mat[i]] = temp[i];
    }
    free(temp);
}
////////////////////////////////////////////////////////////////////////////
// Function name: interleave_double
// Description: interleave the given matrix
/////////////////////////////////////////////////////////////////////////////
void interleave_double(double *channel_data, int size,unsigned *interleave_mat)
{
    int i;
    double *temp;
    temp = (double*)malloc(size*sizeof(double));
    if(temp==NULL) {
        printf("ERROR: Could not allocate place for temp\n");
    }
    for (i=0;i<size;i++) {
        temp[i] =channel_data[i];
    }
    for (i=0;i<size;i++) {
        channel_data[interleave_mat[i]] = temp[i];
    }
    free(temp);
}
////////////////////////////////////////////////////////////////////////////////
// Function name: create_encode_table
// Description: Create encoder table based on the memory length and generator
matrices
//////////////////////////////////////////////////////////////////////////
void create_encode_table(trel * trel_state,int state_num,int memory)
{
    register int i, j, result, temp, feed;
    int K; //the constraint length
    int data, init_state,temp_output,temp_state;
    for (init_state=0;init_state<state_num;init_state++) {
        for (data=0;data<2;data++) {
                feed=0;
                K=memory+1;
                temp=init_state<<1 | data ;
            for(i=1;i<=K;i++) {
                    feed=feed ^ ((generator[0]>>(K-i))&0x01) & ((temp>>(K-i)) &
0x01);
```

```
}
temp_output=0;
temp=init_state<<1 | feed ;
for(i=1;i<=K;i++){
    temp_output=temp_output ^ ((generator[1]>>(K-i))&0x01) &
((temp>>(K-i)) & 0x01);
    }
    trel_state[init_state].output [data]=temp_output;
    temp= pow(2,memory)-1;
    temp_state=init_state;
    trel_state[init_state].fin_state[data] = ((temp_state<<1)| feed) &
temp;
trel_state[trel_state[init_state].fin_state[data]].from_state[data]
= init_state;
        }
    }
}
///////////////////////////////////////////////////////////////////////////
// Function name: encoder
// Description: Encode data based on encoder table
//////////////////////////////////////////////////////////////////////////////
void encoder(trel *trel_state,int *data,int *parity,unsigned size, int force,
int memory)
{
    int i,j;
    int state;
    state=0;
    for (i=0;i<size;i++) {
            // force the encoder to zero state at the end
        if (i>=size-memory && force){
            if (trel_state[state].fin_state[0]&1){
                    data[i] =1;
            }else{
                                    data[i] =0;
                    }
            }
            j = data[i];
                /* Calculate output due to new mesg bit */
                parity[i] = trel_state[state].output[j];
                /* Calculate the new state */
        state = trel_state[state].fin_state[j];
    }
}
```

```
////////////////////////////////////////////////////////////////////////////////
// Function name: interleave
// Description: interleave the given matrix
/////////////////////////////////////////////////////////////////////////
void interleave(int *data,unsigned size,unsigned *interleave_mat)
{
    int i,*temp;
    temp = (int*)malloc(size*sizeof(int));
    if(temp==NULL) {
        printf("ERROR: Could not allocate place for temp\n");
    }
    for (i=0;i<size;i++){
        temp[i] = data[i];
    }
    for (i=0;i<size;i++) {
        data[interleave_mat[i]] = temp[i];
    }
    free(temp);
}
///////////////////////////////////////////////////////////////////////////
// Function name: deinterleave
// Description: deinterleave the given matrix
///////////////////////////////////////////////////////////////////////////
void deinterleave(int *data,unsigned size,unsigned *deinterleave_mat)
{
    int i,*temp;
    temp = (int*)malloc(size*sizeof(int));
    if(temp==NULL) {
        printf("ERROR: Could not allocate place for temp\n");
    }
    for (i=0;i<size;i++){
        temp[i] = data[i];
    }
    for (i=0;i<size;i++){
        data[deinterleave_mat[i]] = temp[i];
    }
    free (temp);
}
```

//
// Function name: decoder_map
// Description: Decode codes in according to Maximum-a posteriori algorithm ///
void decoder_map(trel * trel_state, double *channel_data, double *channel_parity, int size, state_metric **stage_metric, double *Log[],int decode_num, int loop)
\{
int i,input,state,index,punc_index;
double soft_input;
double soft_output;
double denominator;
double min,temp;
double num_deno[2];
double Lc;
Lc = 2.0/variance;
if (decode_num==1) \{
index=1;
punc_index=1;
\}else\{
index=0;
punc_index=2;
\}
for (i=0;i<size;i++) \{
/* Calculate branch metric */ for (input=0;input<2;input++) \{ soft_input $=($ input $==0)$? $-1.0: 1.0$; for (state=0; state<NUM_STATE; state++) \{ soft_output $=($ trel_state[state].output[input] $==0$) ? -1.0

```
: 1.0;
```

stage_metric[i][state].gamma_I[input]=exp(0.25*Lc*channel_parity[i]*soft_output)
;
stage_metric[i][state].gamma[input]=
exp(0.25*soft_input* (Log[index][i] +
Lc*channel_data[i]))*stage_metric[i][state].gamma_I[input];
\}
\}
\}
/* Calculate Forward metrics */
for (i=1;i<size;i++) \{
denominator=0;
/* Calculate denominator */
for (state $=0$; state<NUM_STATE; state++) \{
denominator+= stage_metric[i-
1][trel_state[state].from_state[0]].alpha
* stage_metric[i-
1][trel_state[state].from_state[0]].gamma[0]
+ stage_metric[i-
1][trel_state[state].from_state[1]].alpha
* stage_metric[i-
1] [trel_state[state].from_state[1]].gamma[1];
\}
/* Using normalization*/
for (state=0; state<NUM_STATE; state++) \{
stage_metric[i][state].alpha $=$ (stage_metric[i-
1] [trel_state[state].from_state [0]]. alpha
stage_metric[i-
1] [trel_state[state].from_state [0]].gamma [0]

+ stage_metric[i-
1] [trel_state[state].from_state [1]].alpha * stage_metric[i-

1] [trel_state[state].from_state [1]].gamma[1])

\}
\}
/* Calculate Backward metrics */
if (loop $==0$ \&\& decode_num==2) \{
denominator=0;
/* Calculate denominator */
for (state=0; state<NUM_STATE; state++) \{
denominator $+=$ stage_metric[size-
1] [trel_state[state].from_state [0]].alpha

* stage_metric[size-

1] [trel_state[state].from_state[0]].gamma[0]

+ stage_metric[size-
1] [trel_state[state].from_state[1]].alpha
* stage_metric[size-

1] [trel_state[state].from_state [1]].gamma[1];
\}
/* Using normalization*/
for (state=0; state<NUM_STATE; state++) \{
stage_metric[size-1][state].beta $=$ (stage_metric[size-
1] [trel_state[state].from_state [0]]. alpha
stage_metric[size-
1] [trel_state[state].from_state [0]].gamma [0]

+ stage_metric[size-
1] [trel_state[state].from_state[1]].alpha
stage_metric[size-
1] [trel_state[state].from_state [1]].gamma[1])
/ denominator;
\}
\}
for (i=size-1; i>=1; i--) \{
denominator=0;
/* Calculate denominator */
for (state=0; state<NUM_STATE; state++) \{
denominator $+=$
stage_metric[i][trel_state[state].from_state[0]].alpha
stage_metric[i][trel_state[state].from_state[0]].gamma[0]
$+$
stage_metric[i][trel_state[state].from_state[1]].alpha
stage_metric[i][trel_state[state].from_state[1]].gamma[1];
\}

```
    /* Using normalization*/
    for (state=0;state<NUM_STATE;state++) {
        stage_metric[i-1][state].beta = (
stage_metric[i][trel_state[state].fin_state[0]].beta
                            * stage_metric[i][state].gamma[0]
                            +
stage_metric[i][trel_state[state].fin_state[1]].beta
                            * stage_metric[i][state].gamma[1] ) /
denominator;
            }
    }
    /* Compute the extrinsic LLRs */
    for (i=0;i<size;i++){
        min=0;
    /* Find the minimum product of forward metics, backward metrics,
branch metrics */
        for ( input=0;input<2;input++) {
        for (state=0;state<NUM_STATE;state++) {
            temp = stage_metric[i][state].alpha
                        * stage_metric[i][state].gamma_I[input]
stage_metric[i][trel_state[state].fin_state[input]].beta;
                        if ((temp < min && temp != 0)||min == 0)
                        min = temp;
        }
        }
        // if all else fails, make min real small
        if (min == 0 || min > 1)
        min = 1E-100;
        for (input=0;input<2;input++) {
        num_deno[input]=0.0;
        for(state=0;state<NUM_STATE;state++) {
            num_deno[input] += (stage_metric[i][state].alpha *
stage_metric[i][state].gamma_I[input]
                            *
stage_metric[i][trel_state[state].fin_state[input]].beta );
        }
            }
            if (num_deno[0] == 0)
                num_deno[0] = min;
            else if (num_deno[1] == 0)
                num_deno[1] = min;
            Log[decode_num-1][i] = (log(num_deno[1]/num_deno[0]));
    }
    for (i=0;i<size;i++){
                Log[decode_num-1][i]=Log[decode_num-1][i] + Lc*channel_data[i] +
Log[index][i];
    }
}
```


// //
// Name: main_ldpc.c
// Author: Tawfiqul Hasan Khan
// Description: It is an LDPC simulation program. It uses the low-density
// parity-check matrix and iterative belief propagation (IBP)
// decoding algorithm for decoding LDPC.
// Date of creation: 13/7/2006
//

```
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <stdlib.h>
int ITERATIONS; // Global variable for number of iterations
double variance; // Global variable for variance
/* Declaration of structure for parent nodes */
typedef struct parent_node {
    int size; // column weigth in low-density parity
check matrix
    int *index_child; // indexes of children
}node_parent;
/* Declaration of structure for child nodes */
typedef struct {
    int size; // row weigth in low-density parity
check matrix
    int *index_parent; // indexes of parents
    int syndrome;
}node_child;
/* Function prototypes*/
void perl_decoder(int N,int M, double *channel_data, node_parent *node_code,
node_child *node_check, int *decoded_data);
double gaussian_noise(double mean, double variance);
```

```
/* Main function*/
main()
{
```

| int N; | // Transmitted blocklength of a code |
| :--- | :--- |
| int K; | // Source blocklength of a code |
| int M; | // Number of rows in A. M=N-K |
| int L; | // Number of columns of A. L=N |
| float rate; | |
| int *data, *decoded_data; | |
| double *channel_data; | |
| node_parent *node_code; | |
| node_child *node_check; | |
| int max_size_t; | // maximam number of l's per column |
| int max_size_tr; | // maximum nuber of 1 's per row |

```
/* Declaration of some necessary variables*/
int total_size;
int total_error;
double dB,init_dB,fin_dB,inc_dB;
int max_sim;
long seed;
int error;
FILE *fp, *fp2;
int i,j;
char filename[20];
///////////////////////// FILE Input //////////////////////////////////////
printf("Enter file of low-density parity check matrix:");
scanf("%s",filename);
fp=fopen(filename,"r");
if (fp == NULL) {
    printf("incorrect input file name ...\n");
    exit(0);
}
fp2=fopen("LDPC_output.txt","w");
if(fp2==NULL) {
    printf("incorrect input file name ...\n");
    exit(0);
}
/* Reading the matrix*/
fscanf(fp, "%d %d", &N, &K);
M=N-K;
L=N;
////////////////////////// INITIALIZATION /////////////////////////////////
data=(int*)malloc(K*sizeof(int));
if(data==NULL) {
    printf("Error: cannot allocate spcae for data\n");
}
decoded_data= (int*)malloc(N*sizeof(int));
if(decoded_data==NULL) {
    printf("Error: cannot allocate space for decoded_data");
}
channel_data=(double*)malloc(N*sizeof(double));
if(channel_data==NULL) {
    printf("Error: cannot allocate space for channel_data");
}
fscanf(fp, "%d %d", &max_size_t, &max_size_tr);
node_code=(node_parent*)malloc(N*sizeof(node_parent));
node_check=(node_child*)malloc(M*sizeof(node_child));
for (i=0; i<L; i++) {
    fscanf(fp, "%d", &node_code[i].size);
    node_code[i].index_child=(int*)malloc(node_code[i].size*sizeof(int));
```

```
    }
    for (i=0; i<M; i++) {
        fscanf(fp, "%d", &node_check[i].size);
node_check[i].index_parent=(int*)malloc(node_check[i].size*sizeof(int));
    }
    for (i=0; i<L; i++)
    {
        for (j=0; j<node_code[i].size; j++){
            fscanf(fp, "%d", &node_code[i].index_child[j]);
        }
    }
    for (i=0; i<M; i++)
    {
        for (j=0; j<node_check[i].size; j++) {
                fscanf(fp, "%d", &node_check[i].index_parent[j]);
        }
    }
    fclose(fp);
    //////////////////////////// USER INPUT /////////////////////////////////
    printf("Enter the number of iteration:");
    scanf("%d",&ITERATIONS);
////////////////// Setting value for simulation ///////////////////// init_dB=0.5;
fin_dB=10;
inc_dB=0.5;
max_sim=LONG_MAX;
rate \(=\) (float) \(\mathrm{K} /\) (float) N ;
```



``` printf(" \(\backslash \mathrm{n} \backslash \mathrm{n} \backslash t \backslash t================================\ \mathrm{n} ")\);
printf("\t\t printf("\t\t printf("\t\t printf("\t\t printf("\t\t printf("\t\t WELCOME to LDPC SIMULATION
Created By
TAWFIQUL HASAN KHAN
printf(" \(\backslash t \backslash t=================================\ n ")\); (\n");
printf("\t\t| | \n");
printf("\t\t|N:\%27d|\n",N);
printf("\t\t K:\%27d \n", K);
printf("\t\t M:\%27d \n", M);
printf("\t\t| Rate:\%24lf | \n", rate);
printf("\t\t| Iteration Number:\%12d|\n", ITERATIONS);
printf("\t\t
| \n");
```



```
printf(" dB BER Total Error Total bits Block
size\n");
printf(" \(================================================================1 \mathrm{n}\) ");
```

/////////////// check // /*
printf("\%d \%d\n", L, M);

```
        printf("%d %d\n", max_size_t, max_size_tr);
        for (i=0; i<L; i++)
        printf("%4d", size_t_mat[i]);
    printf("\n");
    for (i=0; i<M; i++)
        printf("%4d", size_tr_mat[i]);
    printf("\n");
    for (i=0; i<L; i++)
    {
        for (j=0; j<size_t_mat[i]; j++)
        printf("%4d", set_t_mat[i][j]);
        printf("\n");
    }
    printf("\n");
    for (i=0; i<M; i++)
    {
        for (j=0; j<size_tr_mat[i]; j++)
                printf("%4d", set_tr_mat[i][j]);
        printf("\n");
        }
        printf("\n");
    */
////////////////////////////////// check end /////////////////////////////////
    srandom(seed);
        /////////////////////// STARTING SIMULATION ////////////////////////////
        dB=init_dB;
        for (dB=init_dB; dB<fin_dB+1.0e-1; dB += inc_dB){
            total_size=0;
            total_error=0;
            variance = 1.0/(2.0*rate*pow(10.0,dB/10.0));
            //sigma=1.0/(2.0*0.3333*dB);
            //sigma = 1.0/(2.0*3*(dB/);
            // snr_rms = 2.0*rate*(pow(10.0,(snr/10.0))); // SNR per bit
            // snr_rms = 2.0*(pow(10.0,(snr/10.0))); // SNR per symbol
            //snr_rms = 2.0*sqrt(2.0*rate*(pow(10.0,(snr/10.0)))); // SNR per
bit
            while (total_error<=1000 && total_size< max_sim){
                /* FOR CONVENIENCE, MAKE DATA EQUAL TO ZERO */
                    for (i=0; i<K; i++) {
                                    data[i] = 0;
                }
                /* BPSK MAPPING: "0" --> +1, "1" --> -1 */
                    for (i=0; i<N; i++) {
                        channel_data[i] = 1.0;
                }
                /* ADDITIVE WHITE GAUSSIAN NOISE CHANNEL */
                for (i=0; i<N; i++){
                channel_data[i] = channel_data[i]+
gaussian_noise(0,variance);
            }
        /* ITERATIVE DECODING BY BELIEF PROPAGATION */
        perl_decoder(N,
M, channel_data,node_code,node_check,decoded_data);
    /* Checking error */
```

```
        for (i=0; i<N; i++){
        if (decoded_data[i]){
                        total_error++;
        }
            }
            total_size = total_size+N;
        }
        printf ("%5.2lf %10.7e %6ld %21ld %d\n", dB,
        (total_error/(double)total_size), total_error, total_size,
            N) ;
        fprintf (fp2,"%5.2lf %10.7e %6ld %21ld %d\n", dB,
        (total_error/(double)total_size), total_error, total_size,
            N) ;
    }
    //////////////////////////////////DEALLOCATING MEMORY/////////////////////
    free(data);
    free(decoded_data);
    free(channel_data);
    for(i=0; i<L; i++){
        free(node_code[i].index_child);
    }
    for(i=0; i<M; i++) {
        free(node_check[i].index_parent);
    }
    free(node_code);
    free(node_check);
    fclose(fp);
    fclose(fp2);
}
///////////////////////////////////////////////////////////////////////////////
// Function name: perl_decoder()
// Description: Iterative decoding by belief propagation in code's B
// ayesian network Based on Pearl's book and MacKay's paper
///////////////////////////////////////////////////////////////////////////////
void perl_decoder(int N,int M, double *channel_data, node_parent *node_code,
node_child *node_check, int *decoded_data)
{
```

```
int i,j,l,loop;
```

int i,j,l,loop;
double *p_l1,*p_l0;
double *p_l1,*p_l0;
double **q_ml0, **q_ml1;
double **q_ml0, **q_ml1;
double **r_ml0, **r_ml1;
double **r_ml0, **r_ml1;
double **deltar_ml;
double **deltar_ml;
double alpha;
double alpha;
double *q_l0, *q_l1;
double *q_l0, *q_l1;
double Lc;
double Lc;
// -------------------
// -------------------
// INITIALIZATION STEP
// INITIALIZATION STEP
// -------------------
// -------------------
p_l1=(double*)malloc(N*sizeof(double));
p_l1=(double*)malloc(N*sizeof(double));
if(p_l1==NULL) {
if(p_l1==NULL) {
printf("Error: cannot allocate space for p_l1");
printf("Error: cannot allocate space for p_l1");
}
}
p_l0=(double*)malloc(N*sizeof(double));
p_l0=(double*)malloc(N*sizeof(double));
if(p_l0==NULL) {
if(p_l0==NULL) {
printf("Error: cannot allocate space for p_l0");

```
    printf("Error: cannot allocate space for p_l0");
```

\}
q_l0=(double*) malloc (N*sizeof(double));
if(q_10==NULL) \{
printf("Error: cannot allocate space for q_lo");
\}
q_ll=(double*) malloc (N*sizeof(double));
if(q_l1==NULL) \{
printf("Error: cannot allocate space for q_l1");
\}
q_ml0 $=($ double**) malloc (M*sizeof(double*));
if (q_ml0==NULL) \{
printf("Error: cannot allocate space for q_mlo");
\}
q_ml1=(double**) malloc (M*sizeof(double*));
if(q_ml1==NULL) \{
printf("Error: cannot allocate space for q_mll");
\}
deltar_ml=(double**) malloc (M*sizeof(double*));
if(deltar_ml==NULL) \{
printf("Error: cannot allocate space for deltar_ml");
\}
r_ml0= (double**)malloc(M*sizeof(double*));
if(r_ml0==NULL) \{
printf("Error: cannot allocate space for r_mlo");
\}
r_mll=(double**) malloc (M*sizeof(double*));
if (r _ml1==NULL) \{
printf("Error: cannot allocate space for r_mll"); \}
for (i=0; i<M; i++) \{
q_mlo[i]=(double*)malloc (${ }^{*}$ *izeof(double)); q_ml1[i]=(double*)malloc(N*sizeof(double)); deltar_ml[i]=(double*)malloc (N*sizeof(double)); r_mlo[i]= (double*)malloc(N*sizeof(double)); r_mll[i]= (double*)malloc (N*sizeof(double));
\}

Lc=2.0/variance;
// Prior probabilities
for (i=0;i<N;i++)
\{
p_l1[i] $=1.0 /\left(1.0+\exp \left(c h a n n e l _d a t a[i] * L c\right)\right) ;$ p_l0[i] = 1.0 - p_l1[i];
\}
for (i=0; i<M; i++) \{ for (j=0; j<node_check[i].size; j++)
\{
q_mlo[i][j] $=0.0$;

```
            q_ml1[i][j] = 0.0;
        }
    }
    for (i=0; i<N; i++){ // run over code
nodes
    for (j=0; j<node_code[i].size; j++) {
    // run over
children nodes
            q_ml0[node_code[i].index_child[j]-1][i] = p_l0[i];
            q_ml1[node_code[i].index_child[j]-1][i] = p_l1[i];
    }
    }
    for(loop=0;loop<ITERATIONS;loop++) {
    ///////////// Horizontal step //////////////////////////////////////////
    for (i=0; i<M; i++) {
        for (j=0; j<node_check[i].size; j++)
        {
            deltar_ml[i][node_check[i].index_parent[j]-1] = 1.0;
            for (l=0; l<node_check[i].size; l++)
            {
                if (node_check[i].index_parent[l] !=
node_check[i].index_parent[j]) {
                    deltar_ml[i][node_check[i].index_parent[j]-1] *= (
q_ml0[i][node_check[i].index_parent[l]-1] -
q_ml1[i][node_check[i].index_parent[l]-1]);
                            }
                            }
                            r_ml0[i][node_check[i].index_parent[j]-1] = 0.5 * ( 1.0 +
deltar_ml[i][node_check[i].index_parent[j]-1] );
    r_ml1[i][node_check[i].index_parent[j]-1] = 0.5 * ( 1.0 -
deltar_ml[i][node_check[i].index_parent[j]-1] );
    }
    }
    ////////////// Vertical step ////////////////////// //////////////////
        for (i=0; i<N; i++) {
        for (j=0; j<node_code[i].size; j++)
        {
            q_ml0[node_code[i].index_child[j]-1][i] = p_l0[i];
            q_ml1[node_code[i].index_child[j]-1][i] = p_l1[i];
            for (l=0; l<node_code[i].size; l++){
                        if (node_code[i].index_child[l] !=
node_code[i].index_child[j])
                            q_ml0[node_code[i].index_child[j]-1][i] *=
r_ml0[node_code[i].index_child[l]-1][i];
                            q_ml1[node_code[i].index_child[j]-1][i] *=
r_ml1[node_code[i].index_child[l]-1][i];
```

```
    }
    alpha = 1.0 / (q_ml0[node_code[i].index_child[j]-
1][i]+q_ml1[node_code[i].index_child[j]-1][i]);
    q_ml0[node_code[i].index_child[j]-1][i] *= alpha;
            q_ml1[node_code[i].index_child[j]-1][i] *= alpha;
            }
        }
    for (i=0; i<N; i++)
    {
            q_l0[i] = p_l0[i];
            q_l1[i] = p_l1[i];
            for (j=0; j<node_code[i].size; j++)
            {
            q_l0[i] *= r_ml0[node_code[i].index_child[j]-1][i];
            q_l1[i] *= r_ml1[node_code[i].index_child[j]-1][i];
            }
            alpha = 1.0 / (q_l0[i]+q_l1[i]);
            q_l0[i] *= alpha;
            q_l1[i] *= alpha;
            if (q_l1[i] > 0.5)
                    decoded_data[i] = 1;
            else
                    decoded_data[i] = 0;
        }
    }
    for (i=0; i<M; i++) {
        free(q_ml0[i]);
        free(q_ml1[i]);
        free(deltar_ml[i]);
        free(r_ml0[i]);
        free(r_ml1[i]);
    }
free(p_l1);
free(p_l0);
free(q_l0);
free(q_l1);
free(q_ml0);
free(q_ml1);
free(deltar_ml);
free(r_ml0);
free(r_ml1);
}
```

```
///////////////////////////////////////////////////////////////////////////////
// Function name: gaussian_noise
// Description: Create gaussian noise with 0 mean and given variance
////////////////////////////////////////////////////////////////////////////////
double gaussian_noise(double mean, double variance)
{
    double s1, s2, rand_n, r, g_noise;
    do {
        rand_n = (double) (rand())/LONG_MAX;
        s1 = rand_n * 2 - 1.0;
        rand_n = (double) (rand())/LONG_MAX;
        s2 = rand_n * 2 - 1.0;
        r = s1 * s1 + s2 * s2;
    } while( r >= 1 );
    g_noise =mean + sqrt(variance)*(s1 * sqrt( (-2.0*log(r))/r ));
    return g_noise;
}
```

//
//
// Filename: $\quad \operatorname{gal}(3,4,20,5)$ r1_4.txt
// Description:
//
//
/
//
//
//
//
//

205
34
$\begin{array}{llllllllllllllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
$\begin{array}{lllllllllllllll}4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4\end{array}$
1611
1712
1813
1914
2615
2711
2812
21013
$\begin{array}{lll}3 & 6 & 14\end{array}$
3715
3912
31011
4613
4814
4915
41012
5714
5811
5913
51015
1234
5678
$91011 \quad 12$
13141516
17181920
15913
261017
371418
4111519

[^6]```
///
1/
// Filename: gal (3,6,96,48)r1_2.txt
// Description: It is a text file which contains the information of a
//
// 96, K=48, R=0.5, w}\mp@subsup{w}{c}{=}=3\mathrm{ and }\mp@subsup{w}{r}{}=6\mathrm{ . The format
// of the files specifying the structure of these
// matrices (or the Tanner graphs) is the same as that
// used by David MacKay, that is, the "alist" (adjacency
// list) format. (Mackay, D J C)
//
///
9648
36
3
```




```
6}666666\mp@code{6
6}666666666
\begin{tabular}{lll}
10 & 30 & 40 \\
5 & 32 & 45
\end{tabular}
\(16 \quad 18 \quad 39\)
\(12 \quad 22 \quad 38\)
\(15 \quad 1947\)
21734
\(9 \quad 24 \quad 42\)
\(1 \quad 2933\)
\begin{tabular}{lll}
4 & 27 & 36 \\
3 & 26 & 35
\end{tabular}
\(11 \quad 31 \quad 43\)
\begin{tabular}{lll}
7 & 21 & 44
\end{tabular}
\(8 \quad 2048\)
\(14 \quad 23 \quad 46\)
\(6 \quad 28 \quad 37\)
\(13 \quad 2541\)
143243
\begin{tabular}{ll}
5 & 23 \\
\hline
\end{tabular}
23136
1283
\begin{tabular}{lll}
7 & 25 & 47 \\
10 & 21 & 33 \\
15 & 30 & 35 \\
16 & 26 & 48 \\
3 & 22 & 46 \\
12 & 20 & 41
\end{tabular}
```

| 8 | 18 | 38 |
| :---: | :---: | :---: |
| 4 | 19 | 45 |
| 6 | 24 | 40 |
| 9 | 27 | 39 |
| 13 | 17 | 42 |
| 11 | 29 | 44 |
| 8 | 24 | 34 |
| 6 | 25 | 36 |
| 9 | 19 | 43 |
| 1 | 20 | 46 |
| 14 | 27 | 42 |
| 7 | 22 | 39 |
| 13 | 18 | 35 |
| 4 | 26 | 40 |
| 16 | 29 | 38 |
| 15 | 21 | 48 |
| 11 | 23 | 45 |
| 3 | 17 | 47 |
| 5 | 28 | 44 |
| 12 | 32 | 33 |
| 2 | 30 | 41 |
| 10 | 31 | 37 |
| 10 | 18 | 36 |
| 4 | 23 | 44 |
| 9 | 29 | 40 |
| 2 | 27 | 38 |
| 8 | 30 | 42 |
| 12 | 28 | 43 |
| 11 | 20 | 37 |
| 1 | 19 | 35 |
| 15 | 31 | 39 |
| 16 | 32 | 41 |
| 5 | 26 | 33 |
| 3 | 25 | 45 |
| 13 | 21 | 34 |
| 14 | 24 | 48 |
| 7 | 17 | 46 |
| 6 | 22 | 47 |
| 7 | 27 | 40 |
| 11 | 18 | 33 |
| 2 | 32 | 35 |
| 10 | 28 | 47 |
| 5 | 24 | 41 |


| 12 | 25 | 37 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 19 | 39 |  |  |  |
| 14 | 31 | 44 |  |  |  |
| 16 | 30 | 34 |  |  |  |
| 13 | 20 | 38 |  |  |  |
| 9 | 22 | 36 |  |  |  |
| 6 | 17 | 45 |  |  |  |
| 4 | 21 | 42 |  |  |  |
| 15 | 29 | 46 |  |  |  |
| 8 | 26 | 43 |  |  |  |
| 1 | 23 | 48 |  |  |  |
| 1 | 25 | 42 |  |  |  |
| 15 | 22 | 40 |  |  |  |
| 8 | 21 | 41 |  |  |  |
| 9 | 18 | 47 |  |  |  |
| 6 | 27 | 43 |  |  |  |
| 11 | 30 | 46 |  |  |  |
| 7 | 31 | 35 |  |  |  |
| 5 | 20 | 36 |  |  |  |
| 14 | 17 | 38 |  |  |  |
| 16 | 28 | 45 |  |  |  |
| 4 | 32 | 37 |  |  |  |
| 13 | 23 | 33 |  |  |  |
| 12 | 26 | 44 |  |  |  |
| 3 | 29 | 48 |  |  |  |
| 2 | 24 | 39 |  |  |  |
| 10 | 19 | 34 |  |  |  |
| 8 | 20 | 36 | 56 | 80 | 81 |
| 6 | 19 | 47 | 52 | 67 | 95 |
| 10 | 25 | 44 | 60 | 71 | 94 |
| 9 | 28 | 40 | 50 | 77 | 91 |
| 2 | 18 | 45 | 59 | 69 | 88 |
| 15 | 29 | 34 | 64 | 76 | 85 |
| 12 | 21 | 38 | 63 | 65 | 87 |
| 13 | 27 | 33 | 53 | 79 | 83 |
| 7 | 30 | 35 | 51 | 75 | 84 |
| 1 | 22 | 48 | 49 | 68 | 96 |
| 11 | 32 | 43 | 55 | 66 | 86 |
| 4 | 26 | 46 | 54 | 70 | 93 |
| 16 | 31 | 39 | 61 | 74 | 92 |
| 14 | 17 | 37 | 62 | 72 | 89 |
| 5 | 23 | 42 | 57 | 78 | 82 |
| 3 | 24 | 41 | 58 | 73 | 90 |


| 6 | 31 | 44 | 63 | 76 | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 27 | 39 | 49 | 66 | 84 |
| 5 | 28 | 35 | 56 | 71 | 96 |
| 13 | 26 | 36 | 55 | 74 | 88 |
| 12 | 22 | 42 | 61 | 77 | 83 |
| 4 | 25 | 38 | 64 | 75 | 82 |
| 14 | 18 | 43 | 50 | 80 | 92 |
| 7 | 29 | 33 | 62 | 69 | 95 |
| 16 | 21 | 34 | 60 | 70 | 81 |
| 10 | 24 | 40 | 59 | 79 | 93 |
| 9 | 30 | 37 | 52 | 65 | 85 |
| 15 | 20 | 45 | 54 | 68 | 90 |
| 8 | 32 | 41 | 51 | 78 | 94 |
| 1 | 23 | 47 | 53 | 73 | 86 |
| 11 | 19 | 48 | 57 | 72 | 87 |
| 2 | 17 | 46 | 58 | 67 | 91 |
| 8 | 22 | 46 | 59 | 66 | 92 |
| 6 | 20 | 33 | 61 | 73 | 96 |
| 10 | 23 | 39 | 56 | 67 | 87 |
| 9 | 19 | 34 | 49 | 75 | 88 |
| 15 | 18 | 48 | 55 | 70 | 91 |
| 4 | 27 | 41 | 52 | 74 | 89 |
| 3 | 30 | 38 | 57 | 71 | 95 |
| 1 | 29 | 40 | 51 | 65 | 82 |
| 16 | 26 | 47 | 58 | 69 | 83 |
| 7 | 31 | 37 | 53 | 77 | 81 |
| 11 | 17 | 35 | 54 | 79 | 85 |
| 12 | 32 | 45 | 50 | 72 | 93 |
| 2 | 28 | 43 | 60 | 76 | 90 |
| 14 | 25 | 36 | 63 | 78 | 86 |
| 5 | 21 | 44 | 64 | 68 | 84 |
| 13 | 24 | 42 | 62 | 80 | 94 |




| 46 | 232 | 365 |
| :---: | :---: | :---: |
| 135 | 246 | 316 |
| 21 | 137 | 315 |
| 73 | 264 | 390 |
| 134 | 161 | 282 |
| 25 | 200 | 407 |
| 7 | 224 | 333 |
| 113 | 178 | 342 |
| 122 | 168 | 299 |
| 92 | 216 | 300 |
| 52 | 195 | 285 |
| 32 | 186 | 374 |
| 82 | 258 | 288 |
| 104 | 228 | 281 |
| 49 | 271 | 402 |
| 130 | 242 | 328 |
| 89 | 172 | 312 |
| 2 | 260 | 364 |
| 63 | 208 | 284 |
| 131 | 158 | 375 |
| 83 | 243 | 373 |
| 16 | 252 | 329 |
| 35 | 138 | 331 |
| 18 | 150 | 320 |
| 56 | 213 | 274 |
| 120 | 181 | 279 |
| 43 | 269 | 406 |
| 88 | 196 | 283 |
| 71 | 259 | 273 |
| 111 | 176 | 309 |
| 85 | 241 | 359 |
| 4 | 212 | 347 |
| 101 | 143 | 295 |
| 107 | 263 | 326 |
| 13 | 190 | 389 |
| 30 | 222 | 353 |
| 65 | 185 | 318 |
| 98 | 230 | 357 |
| 67 | 223 | 354 |
| 97 | 193 | 336 |
| 84 | 202 | 358 |
| 55 | 162 | 385 |
| 68 | 210 | 308 |
| 51 | 152 | 287 |
| 116 | 147 | 291 |
| 100 | 154 | 394 |
| 102 | 231 | 381 |
| 81 | 235 | 363 |
| 99 | 261 | 352 |
| 117 | 237 | 361 |
| 93 | 272 | 401 |
| 10 | 214 | 384 |
| 94 | 221 | 378 |
| 26 | 144 | 395 |
| 69 | 146 | 379 |
| 6 | 217 | 292 |
| 14 | 205 | 372 |
| 125 | 247 | 296 |
| 62 | 164 | 360 |
| 112 | 183 | 332 |
| 9 | 262 | 396 |
| 74 | 141 | 311 |
| 106 | 198 | 286 |
| 19 | 160 | 367 |


| 28 | 175 | 322 |
| :---: | :---: | :---: |
| 11 | 239 | 339 |
| 8 | 166 | 369 |
| 15 | 225 | 297 |
| 29 | 254 | 400 |
| 27 | 174 | 307 |
| 48 | 177 | 293 |
| 126 | 233 | 314 |
| 3 | 219 | 371 |
| 87 | 187 | 345 |
| 90 | 153 | 334 |
| 59 | 170 | 341 |
| 54 | 203 | 317 |
| 119 | 211 | 362 |
| 41 | 182 | 338 |
| 129 | 234 | 408 |
| 37 | 155 | 346 |
| 31 | 169 | 294 |
| 22 | 240 | 343 |
| 91 | 145 | 330 |
| 53 | 265 | 403 |
| 95 | 251 | 356 |
| 124 | 148 | 323 |
| 79 | 156 | 388 |
| 115 | 266 | 399 |
| 105 | 220 | 398 |
| 80 | 191 | 302 |
| 60 | 165 | 366 |
| 77 | 197 | 380 |
| 121 | 159 | 305 |
| 61 | 151 | 335 |
| 109 | 244 | 298 |
| 17 | 194 | 313 |
| 128 | 149 | 303 |
| 96 | 171 | 337 |
| 70 | 180 | 327 |
| 38 | 142 | 350 |
| 103 | 257 | 304 |
| 24 | 188 | 321 |
| 40 | 163 | 276 |
| 20 | 255 | 386 |
| 114 | 206 | 393 |
| 86 | 139 | 275 |
| 36 | 226 | 383 |
| 127 | 268 | 289 |
| 5 | 267 | 280 |
| 110 | 236 | 377 |
| 123 | 184 | 351 |
| 45 | 215 | 278 |
| 64 | 248 | 324 |
| 47 | 167 | 368 |
| 76 | 270 | 277 |
| 39 | 192 | 355 |
| 136 | 245 | 310 |
| 44 | 229 | 370 |
| 1 | 256 | 290 |
| 136 | 159 | 283 |
| 18 | 233 | 301 |
| 119 | 172 | 333 |
| 101 | 259 | 342 |
| 81 | 164 | 408 |
| 13 | 165 | 344 |
| 74 | 153 | 305 |
| 35 | 150 | 396 |


| 2 | 155 | 399 |
| :---: | :---: | :---: |
| 86 | 149 | 349 |
| 67 | 232 | 352 |
| 92 | 242 | 379 |
| 129 | 272 | 336 |
| 22 | 190 | 281 |
| 111 | 268 | 322 |
| 46 | 193 | 335 |
| 91 | 207 | 407 |
| 95 | 271 | 290 |
| 118 | 212 | 286 |
| 10 | 175 | 296 |
| 107 | 249 | 330 |
| 11 | 171 | 405 |
| 14 | 148 | 280 |
| 52 | 191 | 313 |
| 131 | 209 | 288 |
| 24 | 187 | 341 |
| 113 | 203 | 326 |
| 44 | 160 | 402 |
| 115 | 178 | 350 |
| 6 | 188 | 381 |
| 66 | 170 | 277 |
| 134 | 139 | 347 |
| 1 | 266 | 406 |
| 80 | 168 | 383 |
| 9 | 201 | 353 |
| 50 | 185 | 339 |
| 121 | 184 | 299 |
| 130 | 198 | 401 |
| 41 | 157 | 390 |
| 37 | 262 | 345 |
| 85 | 230 | 354 |
| 79 | 146 | 395 |
| 8 | 237 | 317 |
| 76 | 253 | 340 |
| 27 | 228 | 363 |
| 93 | 247 | 403 |
| 54 | 152 | 324 |
| 33 | 169 | 285 |
| 97 | 223 | 400 |
| 5 | 260 | 318 |
| 36 | 231 | 372 |
| 127 | 239 | 308 |
| 98 | 263 | 276 |
| 83 | 250 | 359 |
| 84 | 158 | 370 |
| 100 | 225 | 404 |
| 42 | 154 | 362 |
| 124 | 167 | 394 |
| 88 | 218 | 355 |
| 71 | 220 | 360 |
| 72 | 243 | 316 |
| 112 | 258 | 382 |
| 47 | 163 | 315 |
| 82 | 204 | 274 |
| 123 | 261 | 298 |
| 99 | 210 | 384 |
| 114 | 145 | 289 |
| 65 | 162 | 393 |
| 106 | 226 | 309 |
| 40 | 195 | 378 |
| 23 | 140 | 292 |
| 62 | 143 | 311 |


| 60 | 248 | 278 |
| :---: | :---: | :---: |
| 108 | 216 | 369 |
| 34 | 251 | 295 |
| 53 | 245 | 391 |
| 56 | 246 | 374 |
| 120 | 227 | 351 |
| 43 | 199 | 377 |
| 61 | 221 | 282 |
| 25 | 224 | 294 |
| 55 | 202 | 357 |
| 125 | 213 | 334 |
| 73 | 229 | 297 |
| 29 | 264 | 367 |
| 19 | 252 | 371 |
| 59 | 234 | 273 |
| 90 | 217 | 366 |
| 21 | 254 | 329 |
| 12 | 192 | 397 |
| 68 | 206 | 388 |
| 78 | 138 | 368 |
| 75 | 196 | 314 |
| 28 | 177 | 380 |
| 39 | 182 | 323 |
| 128 | 161 | 320 |
| 38 | 244 | 321 |
| 20 | 256 | 385 |
| 109 | 222 | 287 |
| 63 | 142 | 373 |
| 94 | 208 | 328 |
| 49 | 180 | 398 |
| 64 | 255 | 331 |
| 122 | 174 | 343 |
| 58 | 194 | 375 |
| 7 | 238 | 303 |
| 103 | 166 | 332 |
| 51 | 151 | 338 |
| 26 | 240 | 361 |
| 77 | 200 | 386 |
| 126 | 215 | 327 |
| 69 | 219 | 358 |
| 15 | 179 | 319 |
| 105 | 211 | 356 |
| 17 | 265 | 284 |
| 16 | 176 | 364 |
| 117 | 236 | 348 |
| 110 | 241 | 291 |
| 45 | 257 | 389 |
| 116 | 183 | 325 |
| 57 | 267 | 387 |
| 4 | 186 | 306 |
| 3 | 156 | 279 |
| 32 | 137 | 307 |
| 133 | 269 | 376 |
| 70 | 235 | 293 |
| 96 | 270 | 275 |
| 87 | 141 | 302 |
| 89 | 147 | 392 |
| 135 | 214 | 346 |
| 132 | 144 | 365 |
| 31 | 197 | 337 |
| 104 | 189 | 300 |
| 30 | 173 | 304 |
| 48 | 205 | 310 |
| 102 | 181 | 312 |


| 31 | 255 | 307 |
| :---: | :---: | :---: |
| 12 | 259 | 313 |
| 46 | 196 | 299 |
| 8 | 199 | 290 |
| 74 | 260 | 396 |
| 79 | 157 | 358 |
| 55 | 250 | 329 |
| 24 | 262 | 367 |
| 131 | 238 | 273 |
| 99 | 166 | 278 |
| 111 | 189 | 277 |
| 6 | 231 | 335 |
| 77 | 148 | 369 |
| 57 | 251 | 399 |
| 58 | 211 | 406 |
| 62 | 269 | 383 |
| 7 | 226 | 280 |
| 101 | 202 | 287 |
| 36 | 252 | 276 |
| 100 | 216 | 322 |
| 78 | 270 | 298 |
| 129 | 197 | 366 |
| 21 | 228 | 387 |
| 121 | 187 | 295 |
| 26 | 173 | 274 |
| 3 | 164 | 300 |
| 92 | 156 | 332 |
| 72 | 220 | 365 |
| 81 | 139 | 286 |
| 96 | 249 | 403 |
| 76 | 218 | 378 |
| 19 | 258 | 324 |
| 22 | 188 | 357 |
| 41 | 143 | 379 |
| 11 | 241 | 351 |
| 17 | 152 | 279 |
| 63 | 194 | 391 |
| 47 | 215 | 334 |
| 33 | 263 | 315 |
| 122 | 204 | 301 |
| 126 | 140 | 353 |
| 10 | 176 | 331 |
| 34 | 268 | 360 |
| 38 | 185 | 337 |
| 119 | 168 | 341 |
| 1 | 240 | 354 |
| 68 | 183 | 328 |
| 83 | 219 | 377 |
| 104 | 146 | 305 |
| 69 | 266 | 349 |
| 18 | 158 | 359 |
| 136 | 213 | 333 |
| 51 | 248 | 398 |
| 49 | 167 | 314 |
| 70 | 272 | 350 |
| 39 | 191 | 327 |
| 113 | 175 | 308 |
| 9 | 267 | 372 |
| 90 | 178 | 384 |
| 97 | 221 | 326 |
| 125 | 142 | 407 |
| 30 | 237 | 364 |
| 23 | 222 | 302 |
| 16 | 201 | 371 |


| 45 | 243 | 294 |
| :---: | :---: | :---: |
| 28 | 264 | 292 |
| 94 | 165 | 374 |
| 85 | 217 | 344 |
| 128 | 169 | 356 |
| 88 | 181 | 296 |
| 112 | 239 | 316 |
| 5 | 141 | 395 |
| 95 | 223 | 373 |
| 84 | 172 | 363 |
| 66 | 208 | 303 |
| 67 | 236 | 380 |
| 87 | 150 | 283 |
| 44 | 161 | 346 |
| 133 | 145 | 389 |
| 120 | 170 | 394 |
| 64 | 138 | 402 |
| 105 | 206 | 291 |
| 110 | 232 | 297 |
| 91 | 190 | 338 |
| 43 | 247 | 330 |
| 25 | 195 | 355 |
| 116 | 203 | 390 |
| 107 | 171 | 320 |
| 60 | 227 | 352 |
| 123 | 160 | 405 |
| 93 | 244 | 318 |
| 89 | 200 | 317 |
| 13 | 182 | 312 |
| 115 | 163 | 370 |
| 80 | 261 | 397 |
| 134 | 180 | 339 |
| 132 | 257 | 393 |
| 50 | 154 | 336 |
| 52 | 179 | 400 |
| 37 | 233 | 382 |
| 103 | 162 | 284 |
| 98 | 265 | 311 |
| 124 | 174 | 408 |
| 56 | 198 | 361 |
| 14 | 242 | 325 |
| 48 | 256 | 386 |
| 29 | 224 | 376 |
| 15 | 230 | 310 |
| 114 | 246 | 342 |
| 53 | 151 | 348 |
| 109 | 155 | 304 |
| 130 | 177 | 309 |
| 65 | 225 | 285 |
| 102 | 253 | 362 |
| 117 | 234 | 293 |
| 135 | 212 | 282 |
| 75 | 137 | 321 |
| 20 | 209 | 347 |
| 118 | 192 | 281 |
| 42 | 210 | 289 |
| 54 | 184 | 368 |
| 106 | 186 | 323 |
| 4 | 159 | 404 |
| 86 | 214 | 381 |
| 35 | 235 | 306 |
| 71 | 245 | 388 |
| 40 | 147 | 343 |
| 2 | 144 | 345 |


| 59 | 153 | 375 |
| :---: | :---: | :---: |
| 127 | 207 | 288 |
| 27 | 271 | 401 |
| 61 | 149 | 275 |
| 82 | 229 | 385 |
| 108 | 254 | 319 |
| 32 | 193 | 392 |
| 73 | 205 | 340 |
| 86 | 166 | 402 |
| 59 | 237 | 274 |
| 3 | 194 | 387 |
| 92 | 248 | 382 |
| 129 | 271 | 313 |
| 71 | 184 | 285 |
| 132 | 263 | 361 |
| 102 | 249 | 293 |
| 46 | 173 | 384 |
| 22 | 247 | 406 |
| 135 | 145 | 325 |
| 44 | 183 | 398 |
| 77 | 170 | 305 |
| 114 | 156 | 308 |
| 121 | 140 | 376 |
| 63 | 169 | 351 |
| 17 | 209 | 399 |
| 19 | 244 | 368 |
| 117 | 196 | 302 |
| 69 | 220 | 281 |
| 124 | 153 | 294 |
| 84 | 149 | 357 |
| 81 | 189 | 370 |
| 56 | 165 | 360 |
| 58 | 137 | 356 |
| 24 | 268 | 358 |
| 36 | 243 | 347 |
| 5 | 206 | 341 |
| 123 | 190 | 296 |
| 23 | 171 | 407 |
| 31 | 158 | 344 |
| 96 | 262 | 374 |
| 97 | 192 | 315 |
| 15 | 148 | 350 |
| 119 | 197 | 306 |
| 111 | 232 | 362 |
| 116 | 238 | 403 |
| 95 | 185 | 379 |
| 122 | 259 | 348 |
| 54 | 151 | 342 |
| 118 | 208 | 278 |
| 20 | 163 | 390 |
| 108 | 200 | 345 |
| 6 | 168 | 324 |
| 32 | 224 | 286 |
| 16 | 245 | 343 |
| 78 | 267 | 273 |
| 80 | 138 | 337 |
| 39 | 255 | 391 |
| 65 | 222 | 372 |
| 115 | 188 | 335 |
| 48 | 157 | 383 |
| 2 | 191 | 330 |
| 76 | 241 | 364 |
| 93 | 160 | 304 |
| 28 | 150 | 392 |


| 126 | 155 | 279 |
| :---: | :---: | :---: |
| 62 | 210 | 307 |
| 67 | 235 | 322 |
| 120 | 240 | 311 |
| 51 | 226 | 326 |
| 1 | 152 | 401 |
| 85 | 146 | 318 |
| 70 | 239 | 352 |
| 125 | 167 | 300 |
| 7 | 198 | 327 |
| 127 | 159 | 373 |
| 37 | 172 | 367 |
| 113 | 234 | 359 |
| 74 | 261 | 323 |
| 14 | 203 | 408 |
| 34 | 218 | 289 |
| 101 | 181 | 339 |
| 53 | 251 | 371 |
| 105 | 233 | 363 |
| 35 | 162 | 328 |
| 82 | 182 | 336 |
| 104 | 199 | 275 |
| 75 | 174 | 333 |
| 57 | 264 | 353 |
| 68 | 180 | 287 |
| 79 | 219 | 298 |
| 26 | 141 | 346 |
| 73 | 214 | 334 |
| 33 | 236 | 338 |
| 131 | 177 | 331 |
| 42 | 217 | 396 |
| 60 | 266 | 378 |
| 98 | 175 | 301 |
| 83 | 246 | 388 |
| 128 | 201 | 314 |
| 38 | 228 | 283 |
| 13 | 215 | 284 |
| 90 | 142 | 297 |
| 47 | 265 | 366 |
| 87 | 269 | 389 |
| 11 | 154 | 380 |
| 66 | 147 | 385 |
| 4 | 260 | 365 |
| 55 | 230 | 292 |
| 130 | 193 | 288 |
| 30 | 242 | 400 |
| 88 | 250 | 280 |
| 91 | 161 | 405 |
| 103 | 252 | 354 |
| 12 | 223 | 290 |
| 43 | 212 | 404 |
| 10 | 139 | 332 |
| 40 | 178 | 320 |
| 25 | 204 | 395 |
| 45 | 270 | 312 |
| 72 | 213 | 309 |
| 29 | 179 | 291 |
| 9 | 256 | 375 |
| 94 | 143 | 329 |
| 107 | 229 | 340 |
| 100 | 187 | 299 |
| 112 | 205 | 394 |
| 136 | 227 | 316 |
| 64 | 257 | 397 |


| 52 | 231 | 319 |
| :---: | :---: | :---: |
| 41 | 144 | 349 |
| 21 | 258 | 277 |
| 134 | 164 | 386 |
| 49 | 272 | 377 |
| 110 | 211 | 355 |
| 109 | 216 | 303 |
| 99 | 254 | 310 |
| 8 | 207 | 321 |
| 61 | 176 | 317 |
| 106 | 225 | 276 |
| 133 | 253 | 381 |
| 89 | 186 | 295 |
| 50 | 195 | 393 |
| 18 | 202 | 282 |
| 27 | 221 | 369 |
| 42 | 230 | 404 |
| 131 | 152 | 281 |
| 70 | 271 | 383 |
| 21 | 224 | 407 |
| 135 | 218 | 332 |
| 96 | 189 | 399 |
| 79 | 186 | 380 |
| 108 | 210 | 282 |
| 2 | 199 | 344 |
| 24 | 249 | 390 |
| 136 | 196 | 298 |
| 33 | 206 | 277 |
| 67 | 246 | 275 |
| 71 | 237 | 402 |
| 37 | 190 | 358 |
| 10 | 179 | 369 |
| 93 | 255 | 367 |
| 18 | 223 | 297 |
| 113 | 170 | 319 |
| 104 | 258 | 294 |
| 41 | 264 | 374 |
| 14 | 175 | 333 |
| 95 | 174 | 341 |
| 73 | 201 | 305 |
| 44 | 137 | 405 |
| 64 | 250 | 364 |
| 38 | 236 | 317 |
| 46 | 239 | 309 |
| 49 | 147 | 280 |
| 15 | 182 | 291 |
| 25 | 146 | 331 |
| 35 | 229 | 403 |
| 63 | 247 | 368 |
| 76 | 144 | 350 |
| 88 | 202 | 406 |
| 123 | 191 | 391 |
| 62 | 198 | 340 |
| 60 | 155 | 299 |
| 40 | 254 | 300 |
| 109 | 211 | 316 |
| 85 | 178 | 353 |
| 98 | 145 | 345 |
| 22 | 205 | 335 |
| 19 | 272 | 396 |
| 99 | 215 | 289 |
| 118 | 140 | 308 |
| 50 | 159 | 355 |
| 1 | 139 | 292 |


| 66 | 265 | 334 |
| :---: | :---: | :---: |
| 56 | 267 | 306 |
| 12 | 238 | 283 |
| 121 | 194 | 290 |
| 68 | 177 | 276 |
| 132 | 245 | 329 |
| 84 | 154 | 349 |
| 59 | 253 | 392 |
| 133 | 157 | 286 |
| 27 | 240 | 348 |
| 16 | 243 | 339 |
| 122 | 221 | 352 |
| 87 | 268 | 354 |
| 106 | 209 | 328 |
| 61 | 192 | 384 |
| 94 | 225 | 393 |
| 74 | 213 | 303 |
| 51 | 176 | 363 |
| 13 | 171 | 323 |
| 72 | 172 | 371 |
| 54 | 252 | 366 |
| 11 | 219 | 394 |
| 58 | 165 | 387 |
| 82 | 166 | 287 |
| 65 | 248 | 378 |
| 119 | 242 | 376 |
| 91 | 162 | 310 |
| 124 | 261 | 400 |
| 31 | 143 | 362 |
| 26 | 169 | 338 |
| 20 | 149 | 343 |
| 48 | 188 | 285 |
| 28 | 241 | 395 |
| 100 | 150 | 326 |
| 3 | 167 | 397 |
| 77 | 141 | 342 |
| 78 | 161 | 361 |
| 111 | 207 | 304 |
| 5 | 183 | 359 |
| 101 | 256 | 381 |
| 92 | 204 | 372 |
| 52 | 156 | 336 |
| 130 | 222 | 314 |
| 4 | 184 | 302 |
| 110 | 200 | 357 |
| 23 | 185 | 346 |
| 6 | 235 | 288 |
| 45 | 260 | 301 |
| 107 | 160 | 293 |
| 80 | 180 | 351 |
| 57 | 195 | 307 |
| 112 | 214 | 324 |
| 102 | 193 | 273 |
| 89 | 203 | 311 |
| 134 | 142 | 360 |
| 7 | 164 | 320 |
| 117 | 257 | 330 |
| 86 | 138 | 370 |
| 53 | 148 | 274 |
| 29 | 269 | 373 |
| 127 | 226 | 321 |
| 105 | 158 | 385 |
| 39 | 153 | 318 |
| 36 | 151 | 327 |


| 126 | 263 | 389 |
| :---: | :---: | :---: |
| 75 | 220 | 386 |
| 17 | 208 | 365 |
| 120 | 259 | 278 |
| 103 | 168 | 325 |
| 90 | 244 | 296 |
| 8 | 262 | 347 |
| 47 | 251 | 337 |
| 116 | 234 | 382 |
| 9 | 227 | 379 |
| 97 | 232 | 284 |
| 69 | 163 | 279 |
| 81 | 212 | 295 |
| 43 | 228 | 322 |
| 129 | 266 | 388 |
| 30 | 197 | 356 |
| 128 | 216 | 313 |
| 32 | 187 | 312 |
| 55 | 173 | 375 |
| 114 | 181 | 377 |
| 34 | 233 | 408 |
| 115 | 270 | 401 |
| 125 | 231 | 315 |
| 83 | 217 | 398 |
| 105 | 224 | 290 |
| 3 | 271 | 274 |
| 113 | 195 | 386 |
| 61 | 173 | 300 |
| 111 | 158 | 286 |
| 79 | 160 | 366 |
| 106 | 245 | 371 |
| 52 | 259 | 352 |
| 84 | 159 | 345 |
| 107 | 253 | 295 |
| 108 | 156 | 350 |
| 34 | 201 | 383 |
| 28 | 222 | 355 |
| 90 | 189 | 344 |
| 97 | 171 | 299 |
| 44 | 144 | 326 |
| 80 | 251 | 372 |
| 48 | 184 | 388 |
| 83 | 226 | 381 |
| 54 | 221 | 308 |
| 95 | 244 | 405 |
| 47 | 256 | 382 |
| 96 | 148 | 305 |
| 88 | 214 | 374 |
| 73 | 137 | 293 |
| 29 | 155 | 406 |
| 128 | 225 | 384 |
| 98 | 232 | 325 |
| 2 | 231 | 320 |
| 57 | 162 | 390 |
| 114 | 212 | 292 |
| 21 | 220 | 328 |
| 62 | 268 | 329 |
| 85 | 206 | 304 |
| 17 | 235 | 376 |
| 19 | 247 | 339 |
| 18 | 198 | 379 |
| 66 | 203 | 294 |
| 75 | 250 | 337 |
| 129 | 179 | 309 |


| 50 | 138 | 334 |
| :---: | :---: | :---: |
| 7 | 163 | 287 |
| 32 | 257 | 394 |
| 20 | 266 | 332 |
| 39 | 176 | 392 |
| 103 | 152 | 389 |
| 136 | 249 | 380 |
| 15 | 269 | 378 |
| 55 | 141 | 359 |
| 30 | 200 | 373 |
| 9 | 241 | 368 |
| 26 | 238 | 278 |
| 89 | 246 | 298 |
| 10 | 218 | 330 |
| 69 | 157 | 327 |
| 93 | 252 | 316 |
| 38 | 172 | 275 |
| 64 | 183 | 289 |
| 112 | 161 | 348 |
| 126 | 181 | 370 |
| 1 | 270 | 284 |
| 100 | 267 | 319 |
| 74 | 204 | 365 |
| 82 | 193 | 340 |
| 22 | 228 | 354 |
| 42 | 151 | 306 |
| 131 | 210 | 362 |
| 71 | 211 | 407 |
| 77 | 174 | 358 |
| 123 | 227 | 313 |
| 60 | 207 | 387 |
| 70 | 229 | 377 |
| 135 | 197 | 399 |
| 99 | 168 | 283 |
| 118 | 217 | 395 |
| 78 | 254 | 343 |
| 5 | 146 | 408 |
| 41 | 194 | 323 |
| 124 | 260 | 336 |
| 117 | 145 | 322 |
| 8 | 167 | 367 |
| 37 | 242 | 403 |
| 16 | 234 | 397 |
| 25 | 142 | 356 |
| 31 | 140 | 311 |
| 109 | 180 | 385 |
| 35 | 236 | 393 |
| 101 | 216 | 307 |
| 133 | 263 | 346 |
| 56 | 143 | 363 |
| 132 | 264 | 402 |
| 53 | 248 | 291 |
| 127 | 223 | 401 |
| 120 | 233 | 398 |
| 110 | 237 | 391 |
| 36 | 219 | 312 |
| 134 | 175 | 279 |
| 23 | 205 | 288 |
| 81 | 178 | 318 |
| 58 | 262 | 301 |
| 63 | 272 | 404 |
| 122 | 239 | 396 |
| 13 | 186 | 333 |
| 40 | 139 | 361 |


| 130 | 154 | 273 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 240 | 276 |  |  |  |
| 119 | 188 | 375 |  |  |  |
| 72 | 187 | 315 |  |  |  |
| 11 | 191 | 277 |  |  |  |
| 43 | 255 | 317 |  |  |  |
| 125 | 190 | 341 |  |  |  |
| 121 | 208 | 369 |  |  |  |
| 27 | 213 | 351 |  |  |  |
| 115 | 215 | 342 |  |  |  |
| 104 | 147 | 349 |  |  |  |
| 45 | 170 | 364 |  |  |  |
| 102 | 192 | 353 |  |  |  |
| 65 | 182 | 347 |  |  |  |
| 12 | 166 | 400 |  |  |  |
| 86 | 165 | 280 |  |  |  |
| 14 | 261 | 281 |  |  |  |
| 46 | 150 | 302 |  |  |  |
| 49 | 230 | 335 |  |  |  |
| 91 | 209 | 321 |  |  |  |
| 4 | 185 | 314 |  |  |  |
| 51 | 265 | 360 |  |  |  |
| 33 | 243 | 357 |  |  |  |
| 24 | 196 | 285 |  |  |  |
| 59 | 202 | 338 |  |  |  |
| 94 | 149 | 310 |  |  |  |
| 67 | 177 | 297 |  |  |  |
| 92 | 164 | 282 |  |  |  |
| 87 | 169 | 303 |  |  |  |
| 116 | 258 | 331 |  |  |  |
| 68 | 199 | 324 |  |  |  |
| 76 | 153 | 296 |  |  |  |
| 136 | 169 | 318 | 470 | 592 | 741 |
| 34 | 145 | 400 | 461 | 553 | 709 |
| 89 | 259 | 298 | 411 | 627 | 682 |
| 48 | 258 | 395 | 507 | 636 | 805 |
| 126 | 186 | 344 | 436 | 631 | 757 |
| 72 | 166 | 284 | 452 | 639 | 786 |
| 23 | 242 | 289 | 474 | 648 | 722 |
| 83 | 179 | 276 | 537 | 663 | 761 |
| 77 | 171 | 330 | 522 | 666 | 731 |
| 68 | 156 | 314 | 516 | 560 | 734 |
| 82 | 158 | 307 | 505 | 614 | 789 |
| 9 | 226 | 274 | 514 | 595 | 799 |
| 51 | 142 | 365 | 501 | 611 | 783 |
| 73 | 159 | 377 | 479 | 566 | 801 |
| 84 | 249 | 380 | 442 | 574 | 728 |
| 38 | 252 | 336 | 454 | 603 | 763 |
| 113 | 251 | 308 | 425 | 659 | 715 |
| 40 | 138 | 323 | 543 | 562 | 717 |
| 80 | 222 | 304 | 426 | 588 | 716 |
| 121 | 234 | 390 | 450 | 623 | 724 |
| 19 | 225 | 295 | 531 | 548 | 712 |
| 99 | 150 | 305 | 418 | 587 | 745 |
| 8 | 207 | 335 | 438 | 638 | 778 |
| 119 | 162 | 280 | 434 | 554 | 808 |
| 22 | 217 | 358 | 518 | 575 | 764 |
| 70 | 245 | 297 | 491 | 622 | 732 |
| 86 | 181 | 403 | 544 | 602 | 793 |
| 81 | 230 | 338 | 464 | 625 | 693 |
| 85 | 221 | 379 | 521 | 652 | 706 |
| 52 | 270 | 334 | 510 | 672 | 730 |
| 98 | 268 | 273 | 439 | 621 | 765 |
| 28 | 260 | 407 | 453 | 674 | 723 |


| 2 | 184 | 311 | 493 | 556 | 807 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 211 | 315 | 480 | 677 | 692 |
| 39 | 144 | 397 | 484 | 576 | 767 |
| 124 | 187 | 291 | 435 | 656 | 776 |
| 97 | 176 | 372 | 476 | 559 | 762 |
| 117 | 233 | 316 | 500 | 571 | 737 |
| 133 | 231 | 328 | 457 | 655 | 725 |
| 120 | 206 | 399 | 517 | 583 | 784 |
| 95 | 175 | 306 | 530 | 565 | 758 |
| 10 | 193 | 392 | 495 | 545 | 746 |
| 43 | 215 | 357 | 515 | 670 | 790 |
| 135 | 164 | 350 | 420 | 569 | 696 |
| 129 | 255 | 337 | 519 | 640 | 796 |
| 17 | 152 | 275 | 417 | 572 | 802 |
| 131 | 199 | 310 | 503 | 664 | 702 |
| 87 | 271 | 378 | 460 | 624 | 698 |
| 31 | 238 | 326 | 533 | 573 | 803 |
| 13 | 172 | 370 | 542 | 591 | 721 |
| 60 | 244 | 325 | 469 | 610 | 806 |
| 27 | 160 | 371 | 529 | 634 | 688 |
| 101 | 212 | 382 | 482 | 651 | 772 |
| 93 | 183 | 393 | 448 | 613 | 700 |
| 58 | 218 | 279 | 508 | 675 | 729 |
| 41 | 213 | 376 | 432 | 594 | 770 |
| 1 | 257 | 286 | 488 | 643 | 710 |
| 5 | 241 | 287 | 433 | 615 | 780 |
| 92 | 223 | 401 | 410 | 600 | 809 |
| 108 | 209 | 361 | 496 | 582 | 751 |
| 111 | 216 | 404 | 538 | 607 | 684 |
| 75 | 208 | 288 | 466 | 581 | 713 |
| 35 | 236 | 309 | 424 | 577 | 781 |
| 130 | 239 | 353 | 528 | 570 | 738 |
| 53 | 204 | 385 | 458 | 617 | 798 |
| 7 | 167 | 347 | 506 | 593 | 718 |
| 55 | 147 | 348 | 467 | 557 | 811 |
| 59 | 227 | 319 | 489 | 597 | 815 |
| 71 | 248 | 322 | 428 | 668 | 735 |
| 116 | 262 | 327 | 472 | 547 | 752 |
| 45 | 196 | 398 | 414 | 558 | 748 |
| 6 | 197 | 300 | 520 | 612 | 788 |
| 20 | 220 | 408 | 492 | 568 | 705 |
| 78 | 143 | 277 | 478 | 609 | 743 |
| 14 | 229 | 389 | 487 | 658 | 719 |
| 132 | 180 | 303 | 462 | 578 | 816 |
| 109 | 246 | 285 | 421 | 628 | 749 |
| 16 | 228 | 293 | 455 | 629 | 756 |
| 104 | 178 | 278 | 490 | 551 | 686 |
| 107 | 170 | 367 | 456 | 642 | 697 |
| 64 | 141 | 301 | 431 | 669 | 779 |
| 29 | 200 | 405 | 485 | 616 | 744 |
| 37 | 190 | 320 | 498 | 680 | 699 |
| 57 | 191 | 346 | 430 | 599 | 689 |
| 47 | 177 | 340 | 471 | 585 | 714 |
| 123 | 146 | 396 | 409 | 650 | 800 |
| 90 | 264 | 349 | 504 | 605 | 813 |
| 44 | 195 | 342 | 511 | 579 | 704 |
| 33 | 265 | 364 | 541 | 646 | 733 |
| 91 | 224 | 331 | 502 | 662 | 694 |
| 100 | 153 | 356 | 512 | 619 | 804 |
| 26 | 148 | 299 | 412 | 633 | 812 |
| 67 | 182 | 363 | 463 | 561 | 736 |
| 69 | 237 | 339 | 523 | 608 | 810 |
| 102 | 154 | 345 | 446 | 567 | 701 |
| 115 | 263 | 302 | 440 | 550 | 703 |


| 56 | 185 | 332 | 441 | 667 | 695 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 54 | 189 | 374 | 497 | 586 | 708 |
| 65 | 202 | 282 | 536 | 589 | 754 |
| 62 | 192 | 292 | 525 | 626 | 742 |
| 49 | 140 | 290 | 481 | 632 | 768 |
| 63 | 272 | 386 | 416 | 645 | 797 |
| 118 | 243 | 373 | 513 | 661 | 726 |
| 30 | 269 | 321 | 486 | 564 | 795 |
| 106 | 250 | 354 | 483 | 654 | 681 |
| 79 | 205 | 394 | 539 | 606 | 687 |
| 50 | 157 | 360 | 524 | 641 | 690 |
| 15 | 210 | 406 | 451 | 552 | 691 |
| 112 | 235 | 383 | 535 | 584 | 766 |
| 127 | 254 | 355 | 534 | 637 | 775 |
| 46 | 151 | 283 | 444 | 630 | 685 |
| 76 | 198 | 343 | 526 | 644 | 739 |
| 24 | 163 | 329 | 477 | 563 | 683 |
| 122 | 203 | 381 | 422 | 676 | 711 |
| 105 | 165 | 366 | 459 | 678 | 794 |
| 61 | 256 | 359 | 445 | 665 | 814 |
| 66 | 253 | 387 | 427 | 649 | 760 |
| 11 | 155 | 391 | 449 | 590 | 755 |
| 94 | 139 | 317 | 443 | 618 | 787 |
| 42 | 214 | 352 | 468 | 660 | 774 |
| 110 | 173 | 296 | 423 | 596 | 792 |
| 25 | 240 | 312 | 447 | 604 | 782 |
| 128 | 201 | 362 | 437 | 580 | 750 |
| 103 | 194 | 375 | 429 | 620 | 759 |
| 74 | 219 | 333 | 473 | 679 | 791 |
| 88 | 247 | 313 | 465 | 657 | 740 |
| 125 | 188 | 402 | 475 | 653 | 773 |
| 114 | 232 | 341 | 499 | 673 | 707 |
| 96 | 149 | 294 | 413 | 671 | 720 |
| 32 | 174 | 384 | 509 | 635 | 785 |
| 36 | 161 | 281 | 494 | 546 | 747 |
| 12 | 267 | 369 | 415 | 598 | 771 |
| 3 | 261 | 351 | 540 | 601 | 769 |
| 21 | 168 | 368 | 532 | 647 | 777 |
| 18 | 266 | 388 | 419 | 549 | 753 |
| 134 | 137 | 324 | 527 | 555 | 727 |
| 19 | 260 | 389 | 433 | 569 | 705 |
| 39 | 228 | 353 | 456 | 650 | 721 |
| 123 | 168 | 301 | 516 | 592 | 784 |
| 2 | 207 | 313 | 423 | 590 | 765 |
| 78 | 264 | 344 | 491 | 628 | 729 |
| 117 | 236 | 333 | 502 | 647 | 764 |
| 49 | 208 | 306 | 523 | 621 | 770 |
| 70 | 267 | 400 | 530 | 578 | 696 |
| 100 | 203 | 351 | 419 | 586 | 760 |
| 71 | 178 | 321 | 471 | 575 | 757 |
| 61 | 265 | 399 | 506 | 573 | 795 |
| 103 | 159 | 285 | 442 | 651 | 703 |
| 114 | 146 | 404 | 430 | 623 | 810 |
| 40 | 144 | 349 | 464 | 626 | 802 |
| 111 | 244 | 382 | 448 | 656 | 746 |
| 60 | 183 | 308 | 470 | 546 | 726 |
| 91 | 143 | 401 | 429 | 655 | 816 |
| 62 | 193 | 370 | 505 | 599 | 785 |
| 97 | 145 | 383 | 465 | 582 | 706 |
| 104 | 259 | 299 | 422 | 634 | 691 |
| 11 | 175 | 278 | 460 | 601 | 735 |
| 36 | 191 | 323 | 439 | 654 | 685 |
| 110 | 137 | 395 | 475 | 591 | 689 |
| 80 | 164 | 362 | 463 | 641 | 686 |


| 21 | 232 | 350 | 512 | 629 | 739 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | 204 | 373 | 484 | 619 | 710 |
| 120 | 199 | 366 | 450 | 668 | 722 |
| 75 | 141 | 298 | 532 | 648 | 812 |
| 108 | 142 | 339 | 432 | 615 | 800 |
| 83 | 243 | 282 | 409 | 616 | 799 |
| 131 | 194 | 326 | 473 | 627 | 761 |
| 25 | 170 | 317 | 452 | 661 | 754 |
| 98 | 184 | 341 | 424 | 622 | 813 |
| 92 | 167 | 352 | 421 | 563 | 796 |
| 115 | 158 | 360 | 438 | 611 | 695 |
| 33 | 139 | 346 | 476 | 612 | 737 |
| 3 | 270 | 297 | 417 | 675 | 684 |
| 86 | 240 | 375 | 487 | 567 | 749 |
| 81 | 156 | 329 | 497 | 566 | 777 |
| 46 | 252 | 314 | 538 | 610 | 725 |
| 87 | 230 | 384 | 494 | 597 | 811 |
| 24 | 165 | 331 | 517 | 585 | 779 |
| 13 | 249 | 371 | 521 | 560 | 720 |
| 116 | 238 | 368 | 489 | 642 | 766 |
| 42 | 272 | 342 | 481 | 676 | 740 |
| 95 | 231 | 365 | 485 | 574 | 798 |
| 76 | 256 | 319 | 420 | 631 | 738 |
| 128 | 173 | 393 | 414 | 636 | 698 |
| 53 | 172 | 316 | 446 | 638 | 805 |
| 28 | 258 | 394 | 541 | 551 | 783 |
| 90 | 162 | 296 | 525 | 674 | 788 |
| 119 | 166 | 305 | 459 | 624 | 787 |
| 8 | 269 | 283 | 431 | 550 | 694 |
| 51 | 150 | 356 | 437 | 559 | 791 |
| 107 | 160 | 328 | 461 | 580 | 789 |
| 133 | 226 | 391 | 441 | 607 | 797 |
| 56 | 152 | 407 | 509 | 645 | 744 |
| 113 | 241 | 309 | 411 | 596 | 758 |
| 27 | 206 | 358 | 542 | 643 | 683 |
| 44 | 229 | 275 | 427 | 555 | 808 |
| 109 | 268 | 294 | 443 | 672 | 753 |
| 79 | 174 | 376 | 474 | 581 | 717 |
| 14 | 215 | 276 | 486 | 553 | 815 |
| 22 | 246 | 364 | 451 | 637 | 730 |
| 12 | 171 | 336 | 499 | 568 | 692 |
| 57 | 218 | 290 | 543 | 579 | 809 |
| 93 | 163 | 359 | 479 | 646 | 718 |
| 15 | 200 | 312 | 518 | 633 | 743 |
| 73 | 271 | 408 | 526 | 587 | 778 |
| 122 | 227 | 354 | 436 | 556 | 714 |
| 16 | 153 | 402 | 537 | 630 | 751 |
| 35 | 237 | 347 | 449 | 659 | 792 |
| 4 | 161 | 390 | 425 | 606 | 804 |
| 59 | 202 | 392 | 466 | 552 | 747 |
| 94 | 250 | 287 | 534 | 584 | 748 |
| 48 | 155 | 388 | 515 | 669 | 711 |
| 41 | 219 | 324 | 520 | 609 | 793 |
| 68 | 266 | 396 | 492 | 644 | 704 |
| 129 | 247 | 310 | 501 | 589 | 794 |
| 26 | 210 | 292 | 535 | 673 | 768 |
| 72 | 224 | 340 | 495 | 680 | 755 |
| 9 | 195 | 303 | 480 | 549 | 734 |
| 89 | 248 | 320 | 490 | 614 | 776 |
| 106 | 196 | 300 | 428 | 658 | 712 |
| 69 | 216 | 332 | 544 | 604 | 700 |
| 52 | 235 | 335 | 458 | 635 | 693 |
| 55 | 185 | 345 | 514 | 562 | 773 |
| 23 | 217 | 379 | 453 | 548 | 681 |


| 84 | 192 | 385 | 539 | 608 | 707 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 124 | 205 | 289 | 469 | 653 | 699 |
| 6 | 214 | 361 | 527 | 666 | 750 |
| 30 | 181 | 295 | 500 | 670 | 745 |
| 135 | 220 | 405 | 524 | 576 | 752 |
| 54 | 177 | 380 | 508 | 545 | 803 |
| 63 | 187 | 284 | 529 | 679 | 709 |
| 17 | 147 | 355 | 444 | 667 | 708 |
| 88 | 138 | 372 | 483 | 677 | 774 |
| 96 | 223 | 387 | 477 | 665 | 763 |
| 64 | 262 | 397 | 467 | 639 | 715 |
| 127 | 253 | 348 | 493 | 571 | 767 |
| 66 | 179 | 334 | 410 | 558 | 775 |
| 10 | 242 | 281 | 445 | 595 | 732 |
| 82 | 188 | 343 | 472 | 572 | 782 |
| 99 | 245 | 318 | 468 | 602 | 786 |
| 47 | 254 | 307 | 462 | 625 | 731 |
| 32 | 148 | 377 | 510 | 618 | 762 |
| 37 | 197 | 337 | 435 | 603 | 807 |
| 112 | 233 | 363 | 426 | 662 | 701 |
| 134 | 212 | 398 | 454 | 598 | 687 |
| 18 | 213 | 381 | 498 | 557 | 733 |
| 74 | 182 | 357 | 418 | 577 | 716 |
| 130 | 209 | 325 | 412 | 617 | 772 |
| 5 | 157 | 302 | 416 | 554 | 727 |
| 7 | 190 | 279 | 511 | 570 | 719 |
| 102 | 211 | 286 | 482 | 664 | 697 |
| 38 | 222 | 291 | 513 | 613 | 736 |
| 1 | 180 | 386 | 540 | 600 | 690 |
| 85 | 225 | 406 | 536 | 583 | 756 |
| 121 | 239 | 273 | 457 | 561 | 790 |
| 136 | 234 | 378 | 522 | 632 | 702 |
| 118 | 255 | 369 | 528 | 649 | 723 |
| 29 | 198 | 304 | 531 | 564 | 814 |
| 45 | 140 | 274 | 447 | 660 | 688 |
| 34 | 186 | 277 | 507 | 640 | 759 |
| 65 | 201 | 367 | 478 | 620 | 801 |
| 77 | 176 | 280 | 440 | 663 | 780 |
| 50 | 189 | 311 | 415 | 657 | 769 |
| 20 | 221 | 338 | 488 | 565 | 771 |
| 101 | 251 | 374 | 503 | 593 | 806 |
| 105 | 169 | 322 | 496 | 671 | 724 |
| 126 | 257 | 330 | 455 | 594 | 742 |
| 125 | 151 | 315 | 434 | 605 | 713 |
| 43 | 261 | 288 | 504 | 652 | 728 |
| 132 | 263 | 293 | 519 | 678 | 741 |
| 31 | 154 | 403 | 413 | 547 | 682 |
| 67 | 149 | 327 | 533 | 588 | 781 |
| 45 | 223 | 281 | 455 | 645 | 785 |
| 41 | 200 | 297 | 410 | 651 | 682 |
| 123 | 263 | 404 | 486 | 557 | 737 |
| 120 | 189 | 291 | 539 | 597 | 786 |
| 132 | 167 | 283 | 531 | 556 | 789 |
| 129 | 209 | 282 | 449 | 660 | 732 |
| 42 | 259 | 308 | 465 | 668 | 777 |
| 126 | 159 | 289 | 511 | 573 | 800 |
| 30 | 150 | 391 | 428 | 546 | 801 |
| 21 | 216 | 388 | 543 | 552 | 812 |
| 44 | 137 | 349 | 500 | 595 | 754 |
| 35 | 251 | 373 | 501 | 667 | 741 |
| 27 | 184 | 385 | 414 | 624 | 808 |
| 79 | 155 | 301 | 453 | 601 | 685 |
| 60 | 235 | 290 | 489 | 616 | 722 |
| 29 | 161 | 402 | 509 | 639 | 778 |


| 125 | 203 | 392 | 480 | 589 | 738 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 136 | 154 | 276 | 514 | 596 | 681 |
| 61 | 254 | 354 | 521 | 574 | 772 |
| 72 | 207 | 338 | 508 | 592 | 711 |
| 87 | 262 | 387 | 416 | 641 | 705 |
| 98 | 217 | 337 | 429 | 564 | 718 |
| 49 | 211 | 296 | 541 | 669 | 690 |
| 74 | 156 | 342 | 437 | 662 | 816 |
| 84 | 220 | 355 | 502 | 562 | 811 |
| 112 | 201 | 293 | 490 | 555 | 733 |
| 25 | 173 | 275 | 525 | 582 | 695 |
| 26 | 269 | 298 | 473 | 583 | 684 |
| 6 | 138 | 312 | 497 | 640 | 780 |
| 107 | 264 | 335 | 427 | 636 | 802 |
| 114 | 242 | 347 | 535 | 609 | 813 |
| 118 | 270 | 383 | 463 | 630 | 714 |
| 110 | 143 | 321 | 421 | 568 | 703 |
| 16 | 258 | 397 | 443 | 594 | 746 |
| 86 | 260 | 273 | 466 | 643 | 768 |
| 59 | 188 | 329 | 422 | 590 | 700 |
| 46 | 205 | 384 | 520 | 572 | 720 |
| 134 | 271 | 380 | 536 | 619 | 810 |
| 78 | 208 | 374 | 468 | 646 | 765 |
| 33 | 272 | 365 | 519 | 674 | 776 |
| 113 | 160 | 274 | 413 | 673 | 750 |
| 88 | 229 | 326 | 499 | 635 | 805 |
| 19 | 199 | 311 | 441 | 679 | 788 |
| 18 | 197 | 343 | 527 | 584 | 736 |
| 93 | 179 | 364 | 538 | 571 | 790 |
| 53 | 186 | 363 | 471 | 655 | 779 |
| 10 | 249 | 406 | 529 | 563 | 742 |
| 40 | 232 | 360 | 517 | 648 | 709 |
| 119 | 233 | 389 | 537 | 653 | 804 |
| 81 | 151 | 292 | 467 | 670 | 760 |
| 103 | 231 | 394 | 478 | 611 | 758 |
| 130 | 183 | 304 | 452 | 644 | 815 |
| 14 | 256 | 377 | 419 | 661 | 708 |
| 50 | 163 | 332 | 469 | 626 | 696 |
| 116 | 247 | 328 | 474 | 656 | 735 |
| 32 | 237 | 319 | 484 | 606 | 712 |
| 38 | 225 | 279 | 523 | 598 | 713 |
| 100 | 157 | 357 | 461 | 649 | 734 |
| 39 | 239 | 314 | 494 | 575 | 814 |
| 76 | 243 | 299 | 516 | 549 | 724 |
| 23 | 139 | 324 | 487 | 566 | 783 |
| 91 | 219 | 310 | 492 | 593 | 721 |
| 111 | 152 | 284 | 459 | 587 | 803 |
| 56 | 149 | 370 | 485 | 634 | 759 |
| 115 | 268 | 316 | 456 | 664 | 719 |
| 95 | 244 | 356 | 493 | 622 | 809 |
| 82 | 172 | 368 | 481 | 603 | 716 |
| 2 | 180 | 408 | 524 | 581 | 744 |
| 92 | 162 | 317 | 436 | 567 | 791 |
| 24 | 140 | 381 | 448 | 628 | 794 |
| 99 | 240 | 399 | 454 | 623 | 756 |
| 11 | 142 | 340 | 439 | 553 | 694 |
| 90 | 176 | 400 | 451 | 586 | 689 |
| 97 | 266 | 350 | 491 | 638 | 769 |
| 48 | 168 | 390 | 435 | 663 | 798 |
| 1 | 253 | 382 | 447 | 602 | 739 |
| 3 | 146 | 322 | 530 | 599 | 795 |
| 117 | 165 | 327 | 442 | 578 | 691 |
| 128 | 214 | 307 | 424 | 642 | 793 |
| 65 | 147 | 361 | 472 | 604 | 688 |


| 52 | 171 | 313 | 488 | 585 | 797 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 55 | 177 | 318 | 513 | 605 | 745 |
| 133 | 195 | 358 | 534 | 591 | 693 |
| 102 | 250 | 341 | 433 | 672 | 764 |
| 54 | 218 | 305 | 430 | 637 | 807 |
| 57 | 248 | 278 | 434 | 559 | 749 |
| 47 | 190 | 323 | 477 | 631 | 729 |
| 75 | 196 | 315 | 432 | 647 | 806 |
| 66 | 245 | 376 | 415 | 629 | 784 |
| 94 | 193 | 386 | 444 | 621 | 747 |
| 64 | 181 | 346 | 483 | 610 | 770 |
| 34 | 252 | 334 | 462 | 570 | 796 |
| 17 | 267 | 300 | 507 | 659 | 743 |
| 108 | 224 | 294 | 503 | 613 | 686 |
| 80 | 221 | 280 | 476 | 561 | 761 |
| 131 | 228 | 393 | 426 | 577 | 731 |
| 83 | 210 | 285 | 544 | 560 | 792 |
| 135 | 191 | 366 | 431 | 650 | 740 |
| 89 | 222 | 336 | 482 | 612 | 687 |
| 73 | 187 | 330 | 458 | 633 | 697 |
| 37 | 236 | 345 | 475 | 652 | 730 |
| 28 | 213 | 339 | 440 | 565 | 704 |
| 36 | 241 | 401 | 522 | 675 | 787 |
| 13 | 261 | 379 | 423 | 618 | 715 |
| 127 | 215 | 320 | 533 | 676 | 752 |
| 69 | 206 | 303 | 496 | 617 | 728 |
| 71 | 148 | 306 | 446 | 666 | 717 |
| 109 | 230 | 348 | 505 | 551 | 727 |
| 63 | 166 | 396 | 540 | 632 | 699 |
| 15 | 198 | 372 | 412 | 665 | 702 |
| 124 | 170 | 288 | 460 | 547 | 692 |
| 68 | 202 | 331 | 417 | 607 | 707 |
| 58 | 234 | 405 | 506 | 654 | 766 |
| 121 | 246 | 378 | 532 | 658 | 683 |
| 12 | 257 | 295 | 411 | 615 | 751 |
| 104 | 227 | 398 | 498 | 671 | 698 |
| 51 | 255 | 351 | 504 | 657 | 726 |
| 20 | 175 | 359 | 450 | 554 | 710 |
| 8 | 212 | 309 | 457 | 580 | 775 |
| 9 | 265 | 407 | 464 | 600 | 725 |
| 122 | 204 | 369 | 542 | 608 | 767 |
| 62 | 194 | 352 | 526 | 614 | 723 |
| 70 | 178 | 344 | 518 | 625 | 755 |
| 77 | 144 | 277 | 495 | 588 | 782 |
| 5 | 226 | 367 | 528 | 627 | 763 |
| 106 | 238 | 325 | 420 | 680 | 774 |
| 105 | 145 | 286 | 425 | 550 | 753 |
| 85 | 185 | 371 | 510 | 620 | 799 |
| 67 | 174 | 403 | 470 | 678 | 773 |
| 31 | 164 | 353 | 409 | 558 | 771 |
| 101 | 182 | 302 | 445 | 576 | 762 |
| 7 | 192 | 395 | 515 | 545 | 781 |
| 4 | 158 | 362 | 512 | 569 | 701 |
| 43 | 169 | 287 | 418 | 579 | 706 |
| 22 | 153 | 333 | 438 | 548 | 748 |
| 96 | 141 | 375 | 479 | 677 | 757 |

## Appendix D

Tables

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | ---: | :---: |
| 0 | $1.50 \mathrm{E}-01$ | 1072 | 7168 | 1024 |
| 0.5 | $1.34 \mathrm{E}-01$ | 1097 | 8192 | 1024 |
| 1 | $1.19 \mathrm{E}-01$ | 1099 | 9216 | 1024 |
| 1.5 | $1.03 \mathrm{E}-01$ | 1058 | 10240 | 1024 |
| 2 | $7.59 \mathrm{E}-02$ | 1011 | 13312 | 1024 |
| 2.5 | $3.70 \mathrm{E}-02$ | 1024 | 27648 | 1024 |
| 3 | $1.21 \mathrm{E}-02$ | 1005 | 82944 | 1024 |
| 3.5 | $2.74 \mathrm{E}-03$ | 1002 | 365568 | 1024 |
| 4 | $5.39 \mathrm{E}-04$ | 1001 | 1857536 | 1024 |

Table 3 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=1$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | ---: | :---: |
| 0 | $1.56 \mathrm{E}-01$ | 1117 | 7168 | 1024 |
| 0.5 | $1.35 \mathrm{E}-01$ | 1106 | 8192 | 1024 |
| 1 | $1.14 \mathrm{E}-01$ | 1047 | 9216 | 1024 |
| 1.5 | $1.00 \mathrm{E}-01$ | 1025 | 10240 | 1024 |
| 2 | $6.14 \mathrm{E}-02$ | 1006 | 16384 | 1024 |
| 2.5 | $1.49 \mathrm{E}-02$ | 1007 | 67584 | 1024 |
| 3 | $6.63 \mathrm{E}-04$ | 1002 | 1512448 | 1024 |
| 3.5 | $4.96 \mathrm{E}-05$ | 1001 | 20193280 | 1024 |

Table 4 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators $(37,21)$. Block interleaver size $=1024$. Iteration $=2$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | ---: | :---: |
| 0 | $1.49 \mathrm{E}-01$ | 1070 | 7168 | 1024 |
| 0.5 | $1.40 \mathrm{E}-01$ | 1004 | 7168 | 1024 |
| 1 | $1.26 \mathrm{E}-01$ | 1029 | 8192 | 1024 |
| 1.5 | $1.00 \mathrm{E}-01$ | 1028 | 10240 | 1024 |
| 2 | $5.24 \mathrm{E}-02$ | 1020 | 19456 | 1024 |
| 2.5 | $4.89 \mathrm{E}-03$ | 1041 | 212992 | 1024 |
| 3 | $5.70 \mathrm{E}-05$ | 1001 | 17569792 | 1024 |

Table 5 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size =1024. Iteration = 3 .

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | :---: | :---: | :---: | :---: |
| 0 | $1.5513393 \mathrm{e}-01$ | 1112 | 7168 | 1024 |
| 0.5 | $1.392746-01$ | 1003 | 7168 | 1024 |
| 1 | $1.1718750 \mathrm{e}-01$ | 1080 | 9216 | 1024 |
| 1.5 | $9.7034801 \mathrm{e}-02$ | 1093 | 11264 | 1024 |
| 2 | $4.8925781 \mathrm{e}-02$ | 1002 | 20480 | 1024 |
| 2.5 | $6.3006004 \mathrm{e}-04$ | 1001 | 163352 | 1024 |
| 3 | $3.1897770 \mathrm{e}-05$ | 1001 | 31381504 | 1024 |

Table 6 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=6$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | :---: | :---: |
| 0 | $1.66 \mathrm{E}-01$ | 1020 | 6144 | 1024 |
| 0.5 | $1.2 \mathrm{E}-01$ | 1021 | 1024 |  |
| 1 | $1.16 \mathrm{E}-01$ | 1071 | 9216 | 1024 |
| 1.5 | $1.02 \mathrm{E}-01$ | 1040 | 10240 | 1024 |
| 2 | $4.75 \mathrm{E}-02$ | 1071 | 22528 | 1024 |
| 2.5 | $3.13 \mathrm{E}-04$ | 1001 | 323072 | 1024 |
| 3 | $3.17 \mathrm{E}-05$ | 1001 | 31611904 | 1024 |

Table 7 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=1024$. Iteration $=10$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | ---: | :---: |
| 0 | $1.43 \mathrm{E}-01$ | 1004 | 7040 | 128 |
| 0.5 | $1.27 \mathrm{E}-01$ | 1010 | 7936 | 128 |
| 1 | $1.14 \mathrm{E}-01$ | 1010 | 8832 | 128 |
| 1.5 | $8.55 \mathrm{E}-02$ | 1007 | 11776 | 128 |
| 2 | $4.19 \mathrm{E}-02$ | 1009 | 24064 | 128 |
| 2.5 | $8.32 \mathrm{E}-03$ | 1007 | 121088 | 128 |
| 3 | $6.72 \mathrm{E}-04$ | 1001 | 1488896 | 128 |
| 3.5 | $7.21 \mathrm{E}-05$ | 1001 | 13878656 | 128 |
| 4 | $2.26 \mathrm{E}-05$ | 1001 | 44232832 | 128 |

Table 8 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=128$. Iteration $=6$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | ---: | :---: |
| 0 | $1.51 \mathrm{E}-01$ | 1007 | 6656 | 256 |
| 0.5 | $1.34 \mathrm{E}-01$ | 1032 | 7680 | 256 |
| 1 | $1.21 \mathrm{E}-01$ | 1022 | 8448 | 256 |
| 1.5 | $8.89 \mathrm{E}-02$ | 1001 | 11264 | 256 |
| 2 | $4.78 \mathrm{E}-02$ | 1003 | 20992 | 256 |
| 2.5 | $4.26 \mathrm{E}-03$ | 1004 | 235520 | 256 |
| 3 | $1.30 \mathrm{E}-04$ | 1001 | 7689216 | 256 |
| 3.5 | $2.90 \mathrm{E}-05$ | 1001 | 34548736 | 256 |
| 4 | $1.12 \mathrm{E}-05$ | 1001 | 89264896 | 256 |

Table 9 Performance of a rate- $1 / 2$ parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=\mathbf{2 5 6}$. Iteration $=6$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | ---: | :---: |
| 0 | $1.53 \mathrm{E}-01$ | 1257 | 8224 | 2056 |
| 0.5 | $1.38 \mathrm{E}-01$ | 1132 | 8224 | 2056 |
| 1 | $1.28 \mathrm{E}-01$ | 1054 | 8224 | 2056 |
| 1.5 | $9.72 \mathrm{E}-02$ | 1199 | 12336 | 2056 |
| 2 | $6.66 \mathrm{E}-02$ | 1096 | 16448 | 2056 |
| 2.5 | $1.58 \mathrm{E}-04$ | 1001 | 6342760 | 2056 |
| 3 | $1.60 \mathrm{E}-05$ | 1002 | 62710056 | 2056 |

Table 10 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=\mathbf{2 0 5 6}$. Iteration $=6$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | :---: | :---: | ---: |
| 0 | $1.49 \mathrm{E}-01$ | 2448 | 16384 | 16384 |
| 0.5 | $1.40 \mathrm{E}-01$ | 2288 | 16384 | 16384 |
| 1 | $1.26 \mathrm{E}-01$ | 2071 | 16384 | 16384 |
| 1.5 | $9.89 \mathrm{E}-02$ | 1620 | 16384 | 16384 |
| 2 | $6.04 \mathrm{E}-02$ | 1980 | 32768 | 16384 |
| 2.5 | $6.10 \mathrm{E}-05$ | 1001 | 16416768 | 16384 |
| 3 | $5.39 \mathrm{E}-06$ | 1001 | $1.86 \mathrm{E}+08$ | 16384 |

Table 11 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators $(37,21)$. Block interleaver size $=16384$. Iteration $=6$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | ---: | ---: | :--- |
| 0.00 | $1.62 \mathrm{E}-01$ | 331 | 2048 | 2048 |
| 0.50 | $1.39 \mathrm{E}-01$ | 285 | 2048 | 2048 |
| 1.00 | $1.13 \mathrm{E}-01$ | 232 | 2048 | 2048 |
| 1.50 | $1.01 \mathrm{E}-01$ | 207 | 2048 | 2048 |
| 2.00 | $6.74 \mathrm{E}-02$ | 138 | 2048 | 2048 |
| 2.50 | $2.48 \mathrm{E}-04$ | 101 | 407552 | 2048 |
| 3.00 | $2.52 \mathrm{E}-05$ | 101 | 4003840 | 2048 |
| 3.50 | $4.67 \mathrm{E}-06$ | 101 | 21606400 | 2048 |
| 4.00 | $1.40 \mathrm{E}-06$ | 102 | 72859648 | 2048 |
| 4.50 | $1.38 \mathrm{E}-06$ | 102 | 74006272 | 2048 |

Table 12 Performance of a rate-1/2 parallel concatenated (turbo) code with memory-4 rate-1/2 RSC codes, generators (37, 21). Block interleaver size $=2048$. Iteration $=6$.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | ---: | ---: | :---: |
| 0.5 | $1.91 \mathrm{E}-01$ | 1002 | 5240 | 20 |
| 1 | $1.75 \mathrm{E}-01$ | 1003 | 5740 | 20 |
| 1.5 | $1.58 \mathrm{E}-01$ | 1001 | 6320 | 20 |
| 2 | $1.32 \mathrm{E}-01$ | 1001 | 7600 | 20 |
| 2.5 | $1.21 \mathrm{E}-01$ | 1003 | 8280 | 20 |
| 3 | $9.89 \mathrm{E}-02$ | 1001 | 10120 | 20 |
| 3.5 | $8.52 \mathrm{E}-02$ | 1004 | 11780 | 20 |
| 4 | $6.99 \mathrm{E}-02$ | 1001 | 14320 | 20 |
| 4.5 | $5.37 \mathrm{E}-02$ | 1001 | 18640 | 20 |
| 5 | $4.28 \mathrm{E}-02$ | 1002 | 23400 | 20 |
| 5.5 | $3.15 \mathrm{E}-02$ | 1002 | 31840 | 20 |
| 6 | $2.14 \mathrm{E}-02$ | 1001 | 46820 | 20 |
| 6.5 | $1.25 \mathrm{E}-02$ | 1001 | 80320 | 20 |
| 7 | $8.54 \mathrm{E}-03$ | 1001 | 117240 | 20 |
| 7.5 | $4.54 \mathrm{E}-03$ | 1001 | 220380 | 20 |
| 8 | $2.57 \mathrm{E}-03$ | 1001 | 389300 | 20 |
| 8.5 | $1.28 \mathrm{E}-03$ | 1001 | 784380 | 20 |
| 9 | $5.26 \mathrm{E}-04$ | 1001 | 1903320 | 20 |
| 9.5 | $2.04 \mathrm{E}-04$ | 1001 | 4899480 | 20 |
| 10 | $7.48 \mathrm{E}-05$ | 1001 | 13383100 | 20 |

Table 13 Performance of Gallager's $(\mathbf{3}, 4,20)$ code for iteration 1.

| Eb/No(dB) | Bit-error rate (BER) | Total error | Total block size | Interleaver size |
| :--- | ---: | :---: | ---: | :---: |
| 0.5 | $1.74 \mathrm{E}-01$ | 1003 | 5760 | 20 |
| 1 | $1.63 \mathrm{E}-01$ | 1005 | 6180 | 20 |
| 1.5 | $1.38 \mathrm{E}-01$ | 1001 | 7240 | 20 |
| 2 | $1.23 \mathrm{E}-01$ | 1001 | 8120 | 20 |
| 2.5 | $9.42 \mathrm{E}-02$ | 1006 | 10680 | 20 |
| 3 | $8.18 \mathrm{E}-02$ | 1005 | 12280 | 20 |
| 3.5 | $6.00 \mathrm{E}-02$ | 1002 | 16700 | 20 |
| 4 | $4.56 \mathrm{E}-02$ | 1001 | 21940 | 20 |
| 4.5 | $3.64 \mathrm{E}-02$ | 1001 | 27520 | 20 |
| 5 | $2.24 \mathrm{E}-02$ | 1005 | 44800 | 20 |
| 5.5 | $1.42 \mathrm{E}-02$ | 1001 | 70260 | 20 |
| 6 | $8.74 \mathrm{E}-03$ | 1003 | 114760 | 20 |
| 6.5 | $5.08 \mathrm{E}-03$ | 1001 | 197100 | 20 |
| 7 | $2.66 \mathrm{E}-03$ | 1005 | 377860 | 20 |
| 7.5 | $1.30 \mathrm{E}-03$ | 1001 | 771300 | 20 |
| 8 | $4.98 \mathrm{E}-04$ | 1003 | 2012060 | 20 |
| 8.5 | $1.96 \mathrm{E}-04$ | 1001 | 5108840 | 20 |
| 9 | $6.89 \mathrm{E}-05$ | 1001 | 14532100 | 20 |
| 9.5 | $2.10 \mathrm{E}-05$ | 1001 | 47589000 | 20 |
| 10 | $5.30 \mathrm{E}-06$ | 1001 | 189044260 | 20 |

Table 14 Performance of Gallager's $(3,4,20)$ code for iteration 2.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | ---: | ---: | ---: |
| 0.5 | $1.66 \mathrm{E}-01$ | 1002 | 6040 | 20 |
| 1 | $1.56 \mathrm{E}-01$ | 1002 | 6420 | 20 |
| 1.5 | $1.33 \mathrm{E}-01$ | 1003 | 7520 | 20 |
| 2 | $1.17 \mathrm{E}-01$ | 1002 | 8580 | 20 |
| 2.5 | $8.58 \mathrm{E}-02$ | 1001 | 11660 | 20 |
| 3 | $7.27 \mathrm{E}-02$ | 1001 | 13760 | 20 |
| 3.5 | $5.30 \mathrm{E}-02$ | 1002 | 18920 | 20 |
| 4 | $4.07 \mathrm{E}-02$ | 1002 | 24640 | 20 |
| 4.5 | $3.09 \mathrm{E}-02$ | 1001 | 32400 | 20 |
| 5 | $1.89 \mathrm{E}-02$ | 1004 | 53220 | 20 |
| 5.5 | $1.03 \mathrm{E}-02$ | 1002 | 97020 | 20 |
| 6 | $6.87 \mathrm{E}-03$ | 1001 | 145640 | 20 |
| 6.5 | $3.44 \mathrm{E}-03$ | 1002 | 291200 | 20 |
| 7 | $1.79 \mathrm{E}-03$ | 1001 | 560540 | 20 |
| 7.5 | $7.51 \mathrm{E}-04$ | 1001 | 1332640 | 20 |
| 8 | $2.76 \mathrm{E}-04$ | 1003 | 3633140 | 20 |
| 8.5 | $1.03 \mathrm{E}-04$ | 1001 | 9758640 | 20 |
| 9 | $2.93 \mathrm{E}-05$ | 1003 | 34234060 | 20 |
| 9.5 | $7.24 \mathrm{E}-06$ | 1003 | 138451040 | 20 |

Table 15 Performance of Gallager's $(\mathbf{3}, 4,20)$ code for iteration 3.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | ---: | ---: | ---: | :---: |
| 0.5 | $1.57 \mathrm{E}-01$ | 1005 | 6420 | 20 |
| 1 | $1.52 \mathrm{E}-01$ | 1003 | 6620 | 20 |
| 1.5 | $1.21 \mathrm{E}-01$ | 1003 | 8280 | 20 |
| 2 | $1.01 \mathrm{E}-01$ | 1002 | 9940 | 20 |
| 2.5 | $7.86 \mathrm{E}-02$ | 1004 | 12780 | 20 |
| 3 | $5.97 \mathrm{E}-02$ | 1001 | 16760 | 20 |
| 3.5 | $4.64 \mathrm{E}-02$ | 1003 | 21620 | 20 |
| 4 | $3.66 \mathrm{E}-02$ | 1001 | 27320 | 20 |
| 4.5 | $2.33 \mathrm{E}-02$ | 1006 | 43200 | 20 |
| 5 | $1.41 \mathrm{E}-02$ | 1003 | 71240 | 20 |
| 5.5 | $8.10 \mathrm{E}-03$ | 1004 | 123900 | 20 |
| 6 | $4.65 \mathrm{E}-03$ | 1002 | 215520 | 20 |
| 6.5 | $2.52 \mathrm{E}-03$ | 1005 | 399160 | 20 |
| 7 | $1.15 \mathrm{E}-03$ | 1005 | 875100 | 20 |
| 7.5 | $3.91 \mathrm{E}-04$ | 1005 | 2569680 | 20 |
| 8 | $1.61 \mathrm{E}-04$ | 1002 | 6227880 | 20 |
| 8.5 | $4.99 \mathrm{E}-05$ | 1003 | 20104420 | 20 |
| 9 | $1.49 \mathrm{E}-05$ | 1002 | 67291220 | 20 |
| 9.5 | $3.37 \mathrm{E}-06$ | 1002 | 297664340 | 20 |

Table 16 Performance of Gallager's $(3,4,20)$ code for iteration 6.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| ---: | ---: | ---: | ---: | :---: |
| 0.5 | $1.21 \mathrm{E}-01$ | 302 | 2496 | 96 |
| 1 | $1.08 \mathrm{E}-01$ | 310 | 2880 | 96 |
| 1.5 | $8.59 \mathrm{E}-02$ | 305 | 3552 | 96 |
| 2 | $7.49 \mathrm{E}-02$ | 302 | 4032 | 96 |
| 2.5 | $5.52 \mathrm{E}-02$ | 302 | 5472 | 96 |
| 3 | $4.15 \mathrm{E}-02$ | 303 | 7296 | 96 |
| 3.5 | $2.71 \mathrm{E}-02$ | 302 | 11136 | 96 |
| 4 | $1.80 \mathrm{E}-02$ | 301 | 16704 | 96 |
| 4.5 | $1.05 \mathrm{E}-02$ | 302 | 28704 | 96 |
| 5 | $7.13 \mathrm{E}-03$ | 301 | 42240 | 96 |
| 5.5 | $3.53 \mathrm{E}-03$ | 301 | 85344 | 96 |
| 6 | $1.49 \mathrm{E}-03$ | 301 | 201408 | 96 |
| 6.5 | $6.09 \mathrm{E}-04$ | 302 | 496128 | 96 |
| 7 | $2.32 \mathrm{E}-04$ | 301 | 1297920 | 96 |
| 7.5 | $6.94 \mathrm{E}-05$ | 301 | 4339776 | 96 |
| 8 | $1.86 \mathrm{E}-05$ | 301 | 16203840 | 96 |
| 8.5 | $5.07 \mathrm{E}-06$ | 301 | 59365344 | 96 |

Table 17 Performance of Gallager's $(3,6,96)$ code for iteration 1.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| ---: | ---: | ---: | ---: | ---: |
| 0.5 | $1.12 \mathrm{E}-01$ | 311 | 2784 | 96 |
| 1 | $1.00 \mathrm{E}-01$ | 308 | 3072 | 96 |
| 1.5 | $7.71 \mathrm{E}-02$ | 311 | 4032 | 96 |
| 2 | $5.63 \mathrm{E}-02$ | 308 | 5472 | 96 |
| 2.5 | $3.5 \mathrm{E}-02$ | 302 | 8640 | 96 |
| 3 | $2.17 \mathrm{E}-02$ | 304 | 14016 | 96 |
| 3.5 | $1.22 \mathrm{E}-02$ | 303 | 24768 | 96 |
| 4 | $6.44 \mathrm{E}-03$ | 301 | 46752 | 96 |
| 4.5 | $2.75 \mathrm{E}-03$ | 302 | 110016 | 96 |
| 5 | $8.5 \mathrm{E}-04$ | 301 | 351840 | 96 |
| 5.5 | $3.22 \mathrm{E}-04$ | 301 | 935520 | 96 |
| 6 | $9.68 \mathrm{E}-05$ | 301 | 3108096 | 96 |
| 6 | $2.00 \mathrm{E}-05$ | 301 | 15073920 | 96 |
| 7 | $5.07 \mathrm{E}-06$ | 302 | 59564832 | 96 |

Table 18 Performance of Gallager's $(\mathbf{3}, 6,96)$ code for iteration 2.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| ---: | ---: | ---: | ---: | ---: |
| 0.5 | $1.07 \mathrm{E}-01$ | 307 | 2880 | 96 |
| 1 | $9.53 \mathrm{E}-02$ | 311 | 3264 | 96 |
| 1.5 | $6.82 \mathrm{E}-02$ | 301 | 4416 | 96 |
| 2 | $4.19 \mathrm{E}-02$ | 302 | 7200 | 96 |
| 2.5 | $3.02 \mathrm{E}-02$ | 301 | 9888 | 96 |
| 3 | $1.35 \mathrm{E}-02$ | 303 | 22464 | 96 |
| 3.5 | $6.40 \mathrm{E}-03$ | 308 | 48096 | 96 |
| 4 | $2.95 \mathrm{E}-03$ | 301 | 102144 | 96 |
| 4.5 | $7.94 \mathrm{E}-04$ | 301 | 379296 | 96 |
| 5 | $2.75 \mathrm{E}-04$ | 304 | 115328 | 96 |
| 5.5 | $6.55 \mathrm{E}-05$ | 301 | 4592544 | 96 |
| 6 | $1.49 \mathrm{E}-05$ | 301 | 20140320 | 96 |
| 6.5 | $2.81 \mathrm{E}-06$ | 301 | 107117280 | 96 |

Table 19 Performance of Gallager's $(\mathbf{3}, 6,96)$ code for iteration 3.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| ---: | ---: | ---: | ---: | ---: |
| 0.5 | $1.04 \mathrm{E}-01$ | 318 | 3072 | 96 |
| 1 | $8.44 \mathrm{E}-02$ | 316 | 3744 | 96 |
| 1.5 | $5.47 \mathrm{E}-02$ | 315 | 5760 | 96 |
| 2 | $3.11 \mathrm{E}-02$ | 305 | 9792 | 96 |
| 2.5 | $1.95 \mathrm{E}-02$ | 307 | 18144 | 96 |
| 3 | $6.59 \mathrm{E}-03$ | 305 | 46272 | 96 |
| 3.5 | $4.64 \mathrm{E}-03$ | 303 | 65280 | 96 |
| 4 | $8.65 \mathrm{E}-04$ | 306 | 353952 | 96 |
| 4.5 | $2.54 \mathrm{E}-04$ | 302 | 1188960 | 96 |
| 5 | $8.33 \mathrm{E}-05$ | 306 | 362480 | 96 |
| 5.5 | $1.69 \mathrm{E}-05$ | 303 | 17885760 | 96 |
| 6 | $3.42 \mathrm{E}-06$ | 301 | 87926592 | 96 |
| 6.5 | $5.95 \mathrm{E}-07$ | 302 | 507929376 | 96 |

Table 20 Performance of Gallager's $(3,6,96)$ code for iteration 6.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| ---: | ---: | ---: | ---: | ---: |
| 0.5 | $1.27 \mathrm{E}-01$ | 415 | 3264 | 816 |
| 1 | $1.05 \mathrm{E}-01$ | 344 | 3264 | 816 |
| 1.5 | $8.87 \mathrm{E}-02$ | 362 | 4080 | 816 |
| 2 | $7.60 \mathrm{E}-02$ | 310 | 4080 | 816 |
| 2.5 | $5.46 \mathrm{E}-02$ | 312 | 5712 | 816 |
| 3 | $4.48 \mathrm{E}-02$ | 329 | 7344 | 816 |
| 3.5 | $2.66 \mathrm{E}-02$ | 304 | 11424 | 816 |
| 4 | $1.96 \mathrm{E}-02$ | 320 | 16320 | 816 |
| 4.5 | $1.04 \mathrm{E}-02$ | 305 | 29376 | 816 |
| 5 | $6.51 \mathrm{E}-03$ | 303 | 46512 | 816 |
| 5.5 | $3.30 \mathrm{E}-03$ | 302 | 91392 | 816 |
| 6 | $1.95 \mathrm{E}-03$ | 303 | 190944 | 816 |
| 6.5 | $6.16 \mathrm{E}-04$ | 301 | 488784 | 816 |
| 7 | $2.20 \mathrm{E}-04$ | 301 | 1365984 | 816 |
| 7.5 | $8.28 \mathrm{E}-05$ | 301 | 3635280 | 816 |
| 8 | $2.8 \mathrm{E}-05$ | 301 | 1444208 | 816 |
| 8.5 | $4.69 \mathrm{E}-06$ | 301 | 64220832 | 816 |

Table 21 Performance of Gallager's $(3,6,816)$ code for iteration 1.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| ---: | ---: | ---: | ---: | ---: |
| 0.5 | $1.22 \mathrm{E}-01$ | 399 | 3264 | 816 |
| 1 | $9.31 \mathrm{E}-02$ | 304 | 3264 | 816 |
| 1.5 | $7.31 \mathrm{E}-02$ | 358 | 4896 | 816 |
| 2 | $5.29 \mathrm{E}-02$ | 302 | 5712 | 816 |
| 2.5 | $3.02 \mathrm{E}-02$ | 305 | 8976 | 816 |
| 3 | $2.04 \mathrm{E}-02$ | 316 | 15504 | 816 |
| 3.5 | $1.05 \mathrm{E}-02$ | 307 | 29376 | 816 |
| 4 | $5.27 \mathrm{E}-03$ | 301 | 57120 | 816 |
| 4.5 | $1.86 \mathrm{E}-03$ | 302 | 162384 | 816 |
| 5 | $5.03 \mathrm{E}-04$ | 301 | 598944 | 816 |
| 5.5 | $1.38 \mathrm{E}-04$ | 302 | 2192592 | 816 |
| 6 | $2.64 \mathrm{E}-05$ | 301 | 11422368 | 816 |
| 6.5 | $4.05 \mathrm{E}-06$ | 301 | 74281296 | 816 |

Table 22 Performance of Gallager's $(3,6,816)$ code for iteration 2.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| ---: | ---: | ---: | ---: | ---: |
| 0.5 | $1.16 \mathrm{E}-01$ | 379 | 3264 | 816 |
| 1 | $8.60 \mathrm{E}-02$ | 351 | 4080 | 816 |
| 1.5 | $5.81 \mathrm{E}-02$ | 332 | 5712 | 816 |
| 2 | $3.82 \mathrm{E}-02$ | 312 | 8160 | 816 |
| 2.5 | $2.50 \mathrm{E}-02$ | 306 | 12240 | 816 |
| 3 | $9.00 \mathrm{E}-03$ | 301 | 33456 | 816 |
| 3.5 | $4.26 \mathrm{E}-03$ | 306 | 71808 | 816 |
| 4 | $7.85 \mathrm{E}-04$ | 301 | 383520 | 816 |
| 4.5 | $1.31 \mathrm{E}-04$ | 301 | 2305200 | 816 |
| 5 | $2.26 \mathrm{E}-05$ | 302 | 13378320 | 816 |
| 5.5 | $1.92 \mathrm{E}-06$ | 301 | 156603456 | 816 |

Table 23 Performance of Gallager's $(3,6,816)$ code for iteration 3.

| Eb/No(dB) | Bit-error rate <br> (BER) | Total error | Total block <br> size | Interleaver <br> size |
| :--- | :---: | :--- | :---: | :--- |
| 0.50 | $8.58 \mathrm{E}-02$ | 140 | 1632 | 816 |
| 1.00 | $9.19 \mathrm{E}-02$ | 150 | 1632 | 816 |
| 1.50 | $4.58 \mathrm{E}-02$ | 112 | 2448 | 816 |
| 2.00 | $4.82 \mathrm{E}-02$ | 118 | 2448 | 816 |
| 2.50 | $4.21 \mathrm{E}-03$ | 103 | 24480 | 816 |
| 3.00 | $7.52 \mathrm{E}-04$ | 108 | 143616 | 816 |
| 3.50 | $2.72 \mathrm{E}-05$ | 101 | 3711984 | 816 |
| 4.00 | $1.32 \mathrm{E}-06$ | 101 | 76603632 | 816 |
| 4.50 | $5.62 \mathrm{E}-08$ | 101 | 1797770400 | 816 |

Table 24 Performance of Gallager's $(\mathbf{3}, \mathbf{6}, \mathbf{8 1 6})$ code for iteration 6.

## References:

[1] Acikel, O and Ryan, W E, ‘Punctured turbo codes for BPSK/QPSK channels’, IEEE trans. Commun..
[2] Bahl, L R, Cocke, F, Jelinek, F and Raviv, J 1974, 'Optimal Decoding of Linear Codes for Minimizing Symbol Error rate', IEEE Trans. Info. Theory., vol. IT-20, March, pp. 284-287.
[3] Berlekamp, E R, Peile, R E and Pope, S P 1987, ‘The application of error control to communications', IEEE Commun. Magazine, vol. 25, March, pp. 44-57.
[4] Berrou, C, Glavieux, A \& Thitimajshima, P 1993, 'Near Shannon limit ErrorCorrecting Coding and Decoding: Turbo-Codes', Proc. 1993 IEEE Int. Conf. Comm. (ICC’93), Geneva, Switzerland, May, pp. 1064-1070.
[5] Berruto, E, Gudmundson, M, Menolascino, R, Mohr, W and Pizarosso, M 1998, 'Research activities on UMTS radio interface, network architectures, and planning', IEEE Commun. Magazine, vol. 36, February, pp. 85-95.
[6] Brodsky, I 1995, 'Wireless: The Revolution in Personal Telecommunications', Boston, MA: Artech House Publishers.
[7] Budde, P 2002, Wireless Technology - Paging, Viewed 5 ${ }^{\text {th }}$ August 2006, <http://www22.verizon.com/about/community/learningcenter/articles/printerfriendl $\mathrm{y} 1 / 0 \% 2 \mathrm{C} 4066 \% 2 \mathrm{C} 1156 \% 2 \mathrm{C} 00 . \mathrm{html}>$.
[8] Costello, D J, Hagenauer, J, Imai, H and Wicker, S B 1998, 'Applications of error control coding', IEEE Trans. Inform. Theory, vol. 44, October, pp. 2531-2560.
[9] Cordless telephone, Viewed $4^{\text {th }}$ August 2006, [http://en.wikipedia.org/wiki/Cordless_telephone](http://en.wikipedia.org/wiki/Cordless_telephone).
[10] Davidson, P \& Griffin, R W 2003, Management an Australian Perspective, $2^{\text {nd }}$ edition, Kyodo printing co, Singapore.
[11] Divsalar, D Jin, H and McEliece, R J 1998, 'Coding Theorems for 'Turbo-like' Codes', Porc. 1998 Allerton Conf. on Commun., Control, and Computing, Univ. Illinois; Urbana-Champaigh, pp. 201-210.
[12] Elias, P 1954, 'Error-Free Coding', IRE Trans., vol. PGIT-4, pp. 29-37.
[13] Elias, P 1955, 'Coding for noisy channels', IRE Conv. Record, vol. 4, pp. 37-47.
[14] Farely, T and Hoek, M V D 2006, Cellular Telephones Basics, Viewed 4 ${ }^{\text {th }}$ August 2006, 〈http://www.privateline.com/mt_cellbasics/>.
[15] Gallager, R G 1962, 'Low-Density Parity-Check Codes', IRE Trans. Info. Theory, vol. 8, no. 1, Jan, pp. 21-28.
[16] Golay, M J E 1949, 'Notes of digital coding', Proc. IEEE, vol. 37, p. 657.
[17] Goodman, D J 1997, Wireless Personal Communication Systems, MA: Addison Wesley.
[18] Hagenauer, J 1988, 'Rate compatible punctured convolutional codes (RCPC-codes) and their application', IEEE Trans. Commun., vol. 36, September, pp. 389-400.
[19] Hamming, R W 1950, 'Error Detecting and Error Correcting Codes’, Bell Syst. Tech. J.,29, pp. 147-160.
[20] Kucar, A D 1991, 'Mobile radio: An overview', IEEE Commun. Magazine, November, pp. 72-85.
[21] Lee, L N 1977, 'Concatenated Coding Systems Employing a Unit-Memory Convolutional Code and a Byte-Oriented Decoding Algorithm', IEEE Trans. Commun., COM-25, October, pp. 1064-1074.
[22] Lee, W C Y 1991, 'Smaller cells for greater performance', IEEE Commun. Magazine, November, pp. 19-23.
[23] Lin, S \& Costello, D J 2004, Error Control Coding, ${ }^{\text {nd }}$ edition, Person Prentice Hall, New Jersey.
[24] Luby, M G, Miteznmacher, Shokrollahi, M A and Spielman, D A 2001, ‘Improved Low-Density Parity-Check Codes Using Irregular Graphs', ZEEE Trans. Znformation Theory, vol. 47, no. 2, February, pp. 585-598.
[25] MacKay, D J C, Encyclopedia of Sparse Graph Codes, Viewed $5^{\text {th }}$ Spetember 2006, < http://www.inference.phy.cam.ac.uk/mackay/codes/data.html >
[26] MacKay, D J C \& Neal, R M 1996, 'Near Shannon Limit Performance of Low Density Parity Check Codes', Electronic Letters, vol. 32, pp. 1645-1646.
[27] MacKay, D J C 1999, 'Good Error-Correcting Codes Based on Very Sparse Matrices', IEEE Trans. Info. Theory, vol. 45, no. 2, March, pp. 399-432.
[28] Massey J L 1963, ‘Threshold Decoding', MIT Press.
[29] Miller, B 1998, 'Satellites free the mobile phone', IEEE Spectrum, vol. 35, March, pp. 26-35.
[30] Mitsishi, T 1989, 'Automobile and portable telephones in Japan', NTT review, vol. 1, May, pp. 30-39.
[31] Morelos-Zaragoza, R H 2002, The Art of Error Correcting Coding, John Wiley \& Sons, England.
[32] Moon, T K 2005, Error correction coding : mathematical methods and algorithms, Wiley-Interscience, Hoboken, N.J..
[33] Odenwalder, J P 1976, 'Error Control Coding Handbook', Linkabit Corporation.
[34] Padgett, J E, Gunther, C G and Hattori, T 1995, 'Overview of wireless personal communications', IEEE Commun. Magazine, vol. 33, January, pp. 28-41.
[35] Pahlavan, K, Probert, T H and Chase, M E 1995, ‘Trends in local wireless networks', IEEE Commun. Magazine, vol. 33, March, pp. 85-95.
[36] Proakis, J 1995, Digital Communications, $3^{\text {rd }}$ edition, New York, NY: McGrawHill, Inc..
[37] Ramesy, J L 1970, 'Realization of optimum interleavers', IEEE Trans. Inform. Theory, vol. 16, May, pp. 338-345.
[38] Rappaport, T S 1996, 'Wireless Communications: Principles and Practice', Upper Saddle River, NJ: Prentice Hall PTR.
[39] Richardson T J and Urbanke R L 2001, 'Efficient encoding of low-density paritycheck codes', IEEE Trans. InformationTheory, vol. 47, no. 2, February, pp. 638656.
[40] Richardson, T J, ShokroLLahi, M A \& Urbanke, R L 2001, 'Design of Capacity Approaching Irregular Low-Density Parity-Check Codes', IEEE Trans. Info. Theory, vol. 47, no. 2, February, pp. 619-637.
[41] Robertson, P, Villeburn, E and Hoeher, P 1995, 'A Comparison of Optimal and Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain', Proc. 1995 IEEE Int. Conf. Comm., pp. 1009-1013.
[42] Satellite phone, Viewed $4^{\text {th }}$ August 2006, [http://en.wikipedia.org/wiki/Satellite_telephone](http://en.wikipedia.org/wiki/Satellite_telephone).
[43] Shannon, C E 1948, 'A mathematical theory of communication', Bell Sys. Tech. J., vol. 27, pp. 379-423 and 623-656.
[44] Shokrollahi, A 2003, 'LDPC Codes: An Introduction', Digital Fountain, Inc, pp.23.
[45] Tanner, R M 1981, 'A Recursive Approach to Low Complexity Codes', IEEE Trans. Info. Theory, vol. IT-27, no. 5, September, pp. 533-547.
[46] Vucetic, B and Yuan, J 2000, Turbo Codes: Princples and Applications, Kluwer Academic.
[47] Wicker, S 1995, Error Control Systems for Digital Communications and Storage, Englewood Cliffs, NJ: Prentice Hall, Inc..
[48] Wu, Y 1999, 'Implementation of parallel and serial concatenated codes', prelim report, Virginia Tech, Blacksburg, VA.
[49] Zyablov, V V \& Pinsker, M S 1975, 'Estimation of the Error-Correction Complexity for Galleger Low-Density Codes', Prob. Pered. Inform., vol. 11, no. 1, pp. 26-36.


[^0]:    ${ }^{1}$ USDC is also known as Interim Standards IS-54 and IS-136

[^1]:    ${ }^{2}$ Frame synchronization means that the decoder has knowledge of which symbol is the first symbol in a received code word.

[^2]:    ${ }^{3}$ A permutation matrix is a binary matrix with only one nonzero entry per row and per column.

[^3]:    ${ }^{4} E_{s}$ is related to the energy per bit $E_{b}$ and the code rate $n$ by $E_{s}=n E_{b}$

[^4]:    ${ }^{5}$ In previous chapters, $n, k$, and $m$ are used to describe the code. In this chapter we use $n$ and $m$ as indices, suggesting by them that they are index length and redundancy components.

[^5]:    ${ }^{6}$ To be more precise, sparseness only applies to sequences of matrices. A sequence of $m \times n$-matrices is called $c$-sparse if $m n$ tends to infinity and the number of nonzero elements in these matrices is always less than $c$, where $c=\max (m, n)$.

[^6]:    8121620
    $\begin{array}{llll}1 & 6 & 12 & 18\end{array}$
    271116
    $\begin{array}{llll}3 & 8 & 13 & 19\end{array}$

    | 4 | 9 | 14 |
    | :--- | :--- | :--- |

    5101520

