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Abstract 
 
The demand for providing Internet services over wireless links has grown rapidly in 

recent years. Although TCP (Transmission Control Protocol) has been performing well 

over the traditional wired networks where packet losses occur mostly because of 

congestion, it cannot react efficiently in wireless networks, which suffer from 

significant non-congestion-related losses due to reasons such as bit errors and handoffs.  

 

The main reason for this poor performance of TCP is the fact that it cannot distinguish 

between packet losses due to wireless errors from those due to congestion. It responds 

to all losses by invoking congestion control and avoidance algorithms. Moreover, TCP 

sender cannot keep the size of its congestion window at optimum level and always has 

to retransmit packets after waiting for timeout, which significantly degrades end-to-end 

delay performance of TCP.  

 

This issue has attracted significant research interests and many schemes have been 

proposed to address the issue. This project will investigate the performance of a few 

representative mechanisms, which will improve both throughput and delay performance 

of TCP in wireless environment significantly. That is, Snoop protocol, Explicit Loss 

Notification (ELN), Explicit Congestion Notification (ECN).  
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Chapter 1 
 
Introduction 
 
1.1 Project Background 
 

The term wireless refers to telecommunication technology in which radio waves such as 

infrared waves and microwaves are used to carry a signal to connect communication 

devices, instead of cables or wires. These devices include pagers, cell phones, portable 

PCs, computer networks, location devices, satellite systems and handheld digital 

assistants. Wireless technology is rapidly evolving, and is fast becoming an important 

role in the lives of people around the world. Wireless technology enables users to 

physically move while using an appliance, such as a handheld PC, paging device, or 

phone. Without the physical connection of cables or wires, this technology allows users 

to check stocks and email from their internet-enabled devices.  

 

Wireless networking also arises with the ever-increasing need for businesses to lower 

costs and support mobility of workers. Compared with wired networking, wireless 

capability offers more timeliness, affordability, and efficiency. When performing 

installations, there are many tangible cost savings with using less wire between the 

user’s appliance and a server. If mountains, highways or other buildings obstruct the  
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way of a connection, a wireless solution may be more economical than installing 

physical cable. Wires and connectors can easily break through misuse and normal wear 

and tear. Therefore using less cable reduces the downtime of the network and the costs 

associated with replacing cables, and makes the network available for use much sooner. 

http://wireless.ittoolbox.com/pub/wireless_overview.htm (2002) 

 

Pilosof et al. (2002) noted that the result of the growth in usage of wireless networking, 

has caused the focus to turn to deploying wireless Internet over hot spots such as 

airports, hotels, cafes, and other areas from which people can have uninterrupted public 

access to the Internet. As these networks see increasing public deployment, it is 

important for the service providers to be able to ensure that access to the network by 

different users and applications remains impartial. Since the majority of today’s 

applications in Internet use Transmission Control Protocol (TCP), this project will focus 

on the performance of TCP in wireless Internet.  

 

 

 

1.2 Project Aims 
 

The demand for providing Internet services over wireless links has grown rapidly in 

recent years. Although TCP has been performed well over wired networks, it cannot 

respond efficiently in wireless networks. As a result, this issue has attracted significant 

research interests and, many modifications and new solutions have been proposed to 

improve TCP’s performance.  

 

 

 

 

 

http://wireless.ittoolbox.com/pub/wireless_overview.htm
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1.3 Specific Objectives 
 

This research will investigate the performance of a few representative mechanisms, that 

is, Snoop protocol, Explicit Loss Notification (ELN), Explicit Congestion Notification 

(ECN). This project also aims to: 

• Study protocols and representative mechanisms: TCP/IP, Snoop protocol, 

Explicit Loss Notification (ELN) and Explicit Congestion Notification (ECN). 

• Compare the performance with regular TCP with the representative 

mechanisms.  

• Identify the advantages and disadvantages of the representative mechanisms. 

• Study simulation tool, Network Simulator (NS2) and Linux. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 
 
 
Chapter 2 
 
Transmission Control Protocol 
(TCP) 
 
2.1 Introduction 
 

Transmission Control Protocol (TCP) is the most widely used transport layer protocol in 

the Internet. Most popular Internet applications, such as the Web and file transfer, use 

the reliable services provided by TCP. Hassan and Jain (2001) noted that the 

performance perceived by users of these Internet applications depends largely on the 

performance of TCP.  

 

In the Internet protocol suite, Internet Protocol (IP) is a best-effort service and TCP is a 

reliable service. IP provides the basic packet forwarding while TCP implements the 

flow controls, acknowledgements and retransmissions of lost or corrupted packets. This  

split in services "decentralizes" the network and moves the responsibility for reliable 

delivery to end systems. TCP is an end-to-end transport protocol, meaning that it runs in 

end systems, not the network. IP is a network protocol.  

http://www.linktionary.com/f/flow_control.html (2001) 

http://www.linktionary.com/f/flow_control.html
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TCP is made reliable via the use of sequence numbers and acknowledgments.  

Conceptually, each octet of data is assigned a sequence number.  The sequence number 

of the first octet of data in a segment is transmitted with that segment and is called the 

segment sequence number.  Segments also carry an acknowledgment number, which is 

the sequence number of the next expected data octet of transmissions in the reverse 

direction.  When the TCP transmits a segment containing data, it puts a copy on a 

retransmission queue and starts a timer; when the acknowledgment for that data is 

received, the segment is deleted from the queue.  If the acknowledgment is not received 

before the timer runs out, the segment is retransmitted. An acknowledgment by TCP 

does not guarantee that the data has been delivered to the end user, but only that the 

receiving TCP has taken the responsibility to do so. To govern the flow of data between 

TCP, a flow control mechanism is employed.  http://www.ietf.org/rfc/rfc0793.txt (1981) 

 

As noted by Biswas (2003), TCP is almost globally accepted as the standard for end-to-

end reliable communication protocol. Therefore it is not feasible at any time to make 

changes to the core of TCP protocol, and expect the globe community to move over to 

the new version. Hence, efforts are being made to work around the shortcoming of TCP 

by hiding the underlying inconsistencies of the wireless link from the protocol. Some of 

the solutions that have been proposed are the Snoop Protocol, ELN and ECN, which 

increase TCP’s performance by hiding the packet losses over the wireless link. 

 

Therefore in this project, the flow control, and congestion control mechanisms in TCP 

will be looked at in detail. The reasons for TCP’s poor performance in wireless Internet 

will also be discussed. 

 

 

 

 

 

http://www.ietf.org/rfc/rfc0793.txt
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2.2 Flow Control 
 

Flow-control mechanisms control packet flow so that a sender does not transmit more 

packets than a receiver can process. Flow controls are necessary because senders and 

receivers are often unmatched in capacity and processing power. A receiver might not 

be able to process packets at the same speed as the sender. If buffers fill, packets are 

dropped. The goal of flow-control mechanisms is to prevent the dropping of packets 

that must be retransmitted. 

 

      RevWindow 

 

 

                                            free space       TCP data 

 

 

                                                              RecBuffer 

 

Figure 2.1: Receiver Buffer 

 

Once the TCP connection is established, each host will advertise its receiver window 

size called the ’RevWindow’ as shown in Figure 2.1. It is the amount of receiving 

buffer available on each host. It is also the maximum amount of data the sender can 

send to the receiver at a time. The receiver advertises the size of its receiver window 

with each acknowledgement it sends to the sender. This causes the sender to not send 

excess data, and hence the receiver buffer never overflows.  When the receiver’s buffer 

is full, a window size of zero is advertised. The sender will stop sending data to the 

receiver without invoking any congestion control mechanism. 
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 reference to Figure 2.2, the initial receiver’s advertise window s

ender knows that it can only send up to a maximum of five pack

ackets are transmitted over the link, window size is reduced accord
TCP Receive
TCP Receive
TCP Receive
Window Size = 
Window Size = 
Window Size = 
ize is five. Thus 

ets at a time. As 

ingly. 



 
 
Chapter 2: Flow Control  8 
 

 r r 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As s

adve

rece

ackn

adve

data

only
TCP Sende
5 24 3 1

0

r r 
TCP Sende

ACK1

5 4 23 1

0

r r 
TCP Sende

ACK2ACK1

5 4 3

0

 

Figure 2.3: Flow Control part 2 

 

hown in Figure 2.3, after five packets are being transmitted by

rtise window size will be zero, thus telling the sender to stop sendi

iver will indicate its current window size to the sender 

owledgement (ACK) for every packet it received. In ACK1, 

rtised a window size of one. The reason why the sender is still not

 at the moment is because ACK1 has not reach the sender. Therefo

 see a window size of zero and it will not transmit any data. 
TCP Receive
TCP Receive
TCP Receive
Window Size = 
Window Size = 
12
Window Size = 
 the sender, the 

ng any data. The 

by sending an 

the receiver has 

 transmitting any 

re the sender can 



 
 
Chapter 2: Flow Control  9 
 

 r r 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In F

will 

mor

will 

trans

 

 

TCP Sende

ACK4ACK2 ACK3

3 24 15

1

r r 
TCP Sende

ACK5ACK4

5 4 123

3

r r 
TCP Sende
5

5

 

Figure 2.4: Flow Control part 3 
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2.3 Congestion Control 
 

Congestion control mechanisms allow network systems to detect network congestion (a 

condition in which there is more traffic on the network than can be handled by the 

network or network devices) and throttle back their transmission to alleviate the 

congestion. Congestion occurs on busy networks. When it occurs, end systems and the 

network must work together to minimize the congestion. In contrast, flow controls are 

used between end systems. A receiver uses flow controls to signal to the sender that it is 

overloaded. The sender then throttles back or stops its transmission. 

http://www.linktionary.com/f/flow_control.html (2001) 

 

Without congestion control, the receiver may indicate a large window, which 

encourages transmissions.  However if more data packets arrive than can be accepted, it 

will be discarded.  This will result in excessive retransmissions, adding unnecessarily to 

the load on the network and the TCP.  Indicating a small window may restrict the 

transmission of data to the point of under-utilizing the available bandwidth on the link. 

http://www.ietf.org/rfc/rfc0793.txt (1981) 

 

 

 

2.3.1 Slow Start 
 

Slow Start mechanism is a feature in TCP, used by the sender to control the 

transmission rate. This is accomplished through the return rate of acknowledgements 

from the receiver. The rate at which the sender can transmit data is determined by the 

rate of ACK transmitted by the receiver.  

 

 

 

http://www.linktionary.com/f/flow_control.html
http://www.ietf.org/rfc/rfc0793.txt
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                                                                     Half window size 

Time 

 

Figure 2.5: TCP transmission window 

 

When a TCP connection is established, the Slow Start algorithm initializes a congestion 

window to one segment. Kristoff (2003) found out that when the receiver returns ACKs, 

it would cause the congestion window to increase by one segment for each ACK 

returned. Thus, the sender can transmit the minimum of the congestion window and the 

advertised window of the receiver, which is simply called the transmission window.  

 

When the network is not congested and network response time is good, Slow Start 

algorithm will increase the window exponentially to determine the available bandwidth 

on the link as shown in figure 2.5. For the first successful transmission and 

acknowledgement of a TCP segment, the algorithm will increased the window to two 

segments. After successful transmission of these two segments and acknowledgements 

completes, the window is increased to four segments. Then eight segments, then sixteen 

segments and so on, up to the maximum window size advertised by the receiver or until 

congestion finally does occur.  
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2.3.2 Congestion Avoidance 
 

Congestion Avoidance is used to slow the transmission rate during Slow Start if the 

network is forced to drop one or more packets due to overload or congestion. 

Congestion Avoidance is used with Slow Start to keep the data transfer un-interrupted, 

so it doesn't slow down and stay slow.  

 

A retransmission timer expiring or the reception of duplicate ACKs in the Congestion 

Avoidance algorithm can implicitly signal the sender that there is a network congestion 

situation. This would cause the sender to set its transmission window to one half of the 

current window size, but to at least two segments as shown in Figure 2.5. However if 

congestion was indicated by a timeout, the congestion window is reset to one segment, 

which automatically puts the sender into Slow Start mode. If congestion situation was 

indicated by duplicate ACKs, the Fast Retransmit algorithm to be discussed in the next 

section will be invoked. 

 

Kristoff (2003) found out that as data is received during Congestion Avoidance, the 

congestion window is increased. However, Slow Start is only used up to the halfway 

point where congestion originally occurred. This halfway point was recorded earlier as 

the new transmission window. After this halfway point, the congestion window is 

increased by one segment for all segments in the transmission window that are 

acknowledged. This mechanism will force the sender to more slowly grow its 

transmission rate, as it will approach the point where congestion had previously been 

detected.  
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2.3.3 Fast Retransmit 
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Figure 2.7: Fast Retransmit part 2 

 

With reference to Figure 2.7, Biswas (2003) noted that the indication of packet loss is a 

Duplicate ACK. Whenever a packet arrives out of sequence; only the ACK for last 

packet received in sequence is sent back to the sender. Hence, when a Duplicate ACK 

arrives, TCP sender identifies the cause to be either a packet loss or a delayed packet 

receipt. If a third DUPACK is received, TCP confirms packet loss and performs a fast 

retransmit.  
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2.4 TCP in Wireless Link 
 

Traditionally, TCP has been tuned for networks comprising wired links and stationary 

hosts. It assumes congestion in the network to be the primary cause for packet losses 

and unusual delays, and adapts to it. Balakrishnan and Katz (1998) noted that TCP 

reacts to packet losses by re-transmitting missing data, and simultaneously invoking 

congestion control by reducing its transmission (congestion) window size and reducing 

its retransmission timer. These measures will lower the level of congestion on the 

intermediate links. 

 

However Sharma and Hu (2002) argued that although TCP has been greatly enhanced 

in its capability to adapt to high-speed links, many versions of TCP over wireless links 

still couldn’t keep the comparative throughput as TCP in wired networks. The main 

disadvantage is that traditional TCP assumes that all packet losses are due to network 

congestion. It is important that this assumption needs significant modification in 

wireless Internet applications because most packet losses are due to wireless link errors.  

 

 
 

Figure 2.9: Wireless link using TCP. 

 

 

 

 



 
 
Chapter 2: TCP in Wireless Link  17 
 

Balakrishnan and Katz (1998) also found out that if packets are lost for reasons other 

than congestion, these measures will result in an unnecessary reduction in end-to-end 

throughput and hence, in sub-optimal performance. As shown in Figure 3, 

communication over wireless links is often characterized by high bit-error rates due to 

channel fading, noise or interference, and intermittent connectivity due to handoffs. 

TCP performance in such networks suffers from significant throughput degradation and 

very high interactive delays because the sender misinterprets corruption in the wireless 

links for congestion.  

 



 
  
 

 
 
 
Chapter 3 
 
Snoop Protocol 
 
3.1 Introduction 
 

The Snoop Protocol was designed to solve the burst/intermittent packet loss due to high 

bit error rates and short temporary disconnections experience by TCP in wireless link. 

 

 
 

Figure 3.1: Adding the Snoop agent. 
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Snoop performs local retransmission and recovery. Biswas (2003) found out that it 

shields the sender from the inconsistency of the wireless link, without sacrificing the 

end-to-end semantics, or requiring any changes to the existing implementations of TCP.  

 

It does not change or interfere with the content of the TCP packets that flow between 

the Fixed Hosts (FH) and Mobile Hosts (MH). In wireless link, we expect to have 

administrative control over the last hop router, or base station (BS). The Snoop agent is 

designed to reside on the router between the wired and wireless link, referred to as the 

gateway, or base station (BS) as shown in Figure 3.1. Snoop is TCP aware, and using its 

knowledge of the congestion control mechanism in TCP along with its capability of 

identifying packet losses.  

 

Balakrishnan et al (1998) noted that the role of the snoop agent is to monitor the TCP 

packets transmitted from a fixed host to a mobile host and vice versa. The agent caches 

all those packets locally and in the case of receiving duplicate acknowledgments 

(ACKs), retransmits the packets promptly and suppresses duplicate ACKs. The Snoop 

protocol performs retransmission of lost packets locally (at the base station) and hence 

avoids lengthy fast retransmission and congestion control at the sender side. By this 

method, end-to-end semantics of TCP is maintained and performance of TCP is 

improved. 

 

The snoop module maintains a cache of TCP packets sent from the FH that haven’t yet 

been acknowledged by the MH. When a new packet arrives from the FH, the snoop 

module adds it to its cache and passes the packet on to the routing code, which performs 

the normal routing functions. The snoop module also keeps track of all the 

acknowledgments sent from the mobile host. When a packet loss is detected (either by 

the arrival of a duplicate acknowledgment or by a local timeout), it retransmits the lost 

packet to the MH if it has the packet cached. Thus, the base station (snoop) hides the 

packet loss from the FH by not propagating duplicate acknowledgments, thereby 

preventing unnecessary congestion control mechanism invocations. 
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3.2 Algorithms 
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Figure 3.2: Snoop Protocol part 1 
 

Snoop Protocol introduces a module, called the snoop agent, at the

agent monitors every packet that passes through the TCP conn
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Figure 3.3: Snoop Protocol part 2 
 

As the data packets are transmitted over the network, packet three is lost in the wireless 

link. TCP Receiver has already received packet one and two, therefore ACK1 and ACK2 

are return to the sender as shown in Figure 3.3.  
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3.3 Performance Analysis 
 

 
 

Figure 3.6: Snoop Protocol test bed setup 1 
 

In figure 3.6, Biswas (2003) conducted an experiment to analysis the performance of 

Snoop module. Bandwidth between the Fixed Host (FH) and the Base Station (BS) was 

set at 10 Mbps, and the bandwidth available between MH and BS was set at 2 Mbps. 

There was no packet loss over the wired link, and a 2% packet loss on the wireless link. 

A constant delay of 200ms was applicable on the link, whose delay was not varied. 

Delay agent was used to add delay to the fixed network and the packets were corrupted 

using the packet corruption unit. Three tests were performed on the Snoop module to 

see its effectiveness in different scenarios. Two of them were with variable delays 

between the base station and the fixed/mobile hosts, and one of them was with variable 

packet loss over the wireless link.  
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Figure 3.7: Variable delay between BS and MH 
 

 

 

 
 

 

Figure 3.8: Variable delay between BS and FH 
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With reference to Figure 3.7, Biswas (2003) found out that although TCP performance 

deteriorates with increased delay over the wireless hop, Snoop still managed to obtain a 

better throughput than the normal TCP. The performance improvement is close to two 

times that of normal TCP.  

 

Biswas (2003) also noted that with low delay on the wired link, the performance 

improvement with Snoop is not as high as shown in Figure 3.8. Significance 

performance improvement was noted when the delay was about 400ms. This was due to 

the increased delay on the wired link, thus the Snoop agent would had more time for 

itself to time out and perform local recovery when the wireless losses occurred. In this 

test scenario, the peak performance of Snoop was about three times that of normal TCP. 

 
 
 

 
 

 

Figure 3.9: Snoop performance with different corruption rates 
 

 
 

 

 



 
 
Chapter 3: Performance Analysis  27 
 

With reference to Figure 3.9, Biswas (2003) also found out that when packets were 

corrupted over the wireless link, Snoop still managed to give a consistent performance 

higher than normal TCP. Snoop produced a throughput of twice the normal TCP when 

there was 2% corruption on the link. However the quantity of performance 

improvement with snoop dropped with higher bit corruption rates, due to the delay on 

the links did not allow snoop with enough time to attempt multiple local recoveries.  

 
 
 

 
 
 

Figure 3.10: Snoop Protocol test bed setup 2 
 

Showed in Figure 3.10 is a separate experiment done by Balakrishnan et al (1998).  The 

simulation parameters are set as when there was no packet loss, the maximum 

throughput achieved by a TCP connection over the wireless link was about 1.6 Mbps. 

The rated maximum raw bandwidth of the wireless link was 2 Mbps. Data transfer from 

FH to MH was monitored. The maximum possible window size for the connection was 

64 KBytes and the maximum TCP segment size was 1460 bytes. 
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Figure 3.11: Throughput received by the mobile host at different bit-error rates 
 

Figure 3.11 plots the sequence numbers of the received TCP packets versus time. It 

shows the comparison of sequence number progression in a connection using the Snoop 

protocol and a connection using normal TCP for a Poisson-distributed bit error rate of 

3.9x10-6 (a bit error every 256 Kbits on average). Balakrishnan et al (1998) found out 

that the Snoop protocol managed to maintain a high and consistent throughput 

performance. On the other hand, normal TCP invoked congestion control procedures 

unnecessarily for several times during the duration of the connection. This event 

appeared as the flat and empty regions of the curve and deteriorates the throughput 

considerably.  
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3.4 Advantages and Disadvantages 
 
The advantage as noted by Balakrishnan et al (1998) was that Snoop mechanisms 

improved the performance of the connection in both directions, without sacrificing any 

of the end-to-end semantics of TCP, modifying host TCP code in the fixed network or 

re-linking existing applications. The combination of improved performance preserved 

protocol semantics and full compatibility with existing applications. Snoop mechanism 

also had the advantage that the connection would not be idle for much time after a 

handoff since the new base station would forward cached packets as soon as the mobile 

host is ready to receive them. Another advantage was that it resulted in low-latency 

handoffs for non-TCP streams as well, especially continuous media streams. Snoop 

protocol was similar to link-level retransmissions over the wireless links in that both 

schemes perform retransmissions locally to the mobile host. It was closely coupled to 

TCP, and so did not perform many redundant re-transmissions. Packets retransmitted by 

the sender that arrived at a base station were already cached there. This happened most 

often because the sender often transmits half a window’s worth of data and several of 

these packets were already in the cache. 

 

Balakrishnan and Katz (1998) also conducted experiments using TCP Reno, TCP 

SACK and the Snoop protocol using the Web workload, varying the number of 

concurrent TCP connections from 1 to 4, as well as using persistent-HTTP. Figure 3.12 

shows the number of separate downloads using 1 to 4 concurrent connections per client 

as well as the performance of persistent-HTTP for the three protocol. It depicts the 

number of successfully completed individual downloads (connections) in 1000 seconds. 
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Figure 3.12: Performance on a Web workload in different protocol configurations 
 
As shown in Figure 3.12, the advantage of Snoop protocol was the increased in 

performance of between three and six times than the other protocols. Balakrishnan and 

Katz (1998) found out that not only did the Snoop protocol performed well for large 

bulk transfers, but it also resulted in significant performance improvements for shorter 

transfers (combined with occasional long ones) that characterized Web workloads 

today. The performance improvement was between a factor of three and six for this 

realistic workload under experimentally measured and realistic wireless error 

conditions. 

 

The disadvantage with Snoop protocol was that if the connection between the BS and 

the MH was unreliable, the FH might get timed out when waiting for the 

acknowledgement from the MH.  

http://www.comp.leeds.ac.uk/sy22/web_pages/113/WirelessTCP.html#top
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Biswas (2003) also noted that Snoop protocol is designed for handling connections 

where the bulk of the data is transferred from the FH to the MH. Therefore Snoop is 

only effective when the FH is the sender and the MH is the receiver. 

 

West and Vaidya (1997) found out that one of the greatest disadvantages of Snoop 

protocol was that it requires the ACKs to follow the same path as the data in order to 

shield the sender from losses. This was not a problem for network topologies containing 

a single wireless path, which every packet must traverse. However it did became a 

problem when multiple wireless paths were possible, or with asymmetric links where 

the sender used a high bandwidth, high delay path (such as a satellite link) to send the 

data and the receiver used a low bandwidth terrestrial path to return the ACKs. Snoop 

had no method of informing the sender when the base station experiences a period of 

high errors and this could lead to unnecessary time out, which invoke congestion 

avoidance procedures. 

 
 



 
 
 
Chapter 4 
 
Explicit Loss Notification (ELN) 
 
4.1 Introduction 
 

Ding and Jamalipour (2001) found out that the poor performance of TCP in error-prone 

wireless networks is mainly due to lack of explicit information at the transport layer on 

the reason of a packet loss. For the wireless networks, if we can explicitly inform TCP 

the reason of a packet loss, then TCP will be able to maintain its throughput (i.e. not to 

reduce the congestion window size) if the packet has been lost not because of network 

congestion.  

 

Ding and Jamalipour (2001) mentioned that the methods discussed in the previous 

section do not actually let the TCP sender determine clearly whether the packet is lost 

due to wireless error or network congestion. This makes the TCP sender retransmits the 

packet as usual (or quicker than usual) and then cannot keep the throughput high in the 

error prone environment.  
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Although Snoop protocol is a good method to improve the performance of TCP in 

wireless network on fixed host to mobile host direction, it retransmits the lost packet 

like other link layer solutions, now locally but through its snoop agent. Therefore Snoop 

protocol also suffers from not being able to completely shield the sender from the 

wireless losses.  

 

Based on Snoop protocol, a new protocol called Explicit Loss Notification (ELN) with 

Acknowledgment (ELN-ACK), which can overcome the limitations of the Snoop 

protocol. As noted by Ding and Jamalipour (2001), in ELN-ACK protocol 

implementation, modifications are made to the structure of acknowledgment packet, and 

the software part at base station, mobile host and fixed host. Those modifications, 

however, can be maintained at minimal compared with other schemes. The method still 

looks at the throughput and delay performance improvement of TCP on the fixed host to 

mobile host direction.  

 

Ding and Jamalipour (2001) also noted that, in ELN-ACK a new form of 

acknowledgment packet called ACKELN is used. The sequence numbers of the four most 

recently lost packets judged by the MH and one bit (called ELN bit) to indicate the 

reason of the lost packet, are included in the ACKELN acknowledgment packet. The 

ELN bit is judged at the BS. ELN agent at the BS checks the information stored in the 

ELN bit to see if the packet has been lost before it is arrived at the BS. After the ELN 

agent at BS processes the ACKELN, it continues to transmit back to FH. When the FH 

(the original sender) receives the ACKELN, the TCP sender will know the reason of 

packet loss from the ELN bit, explicitly. 

 

Similar to the snoop agent used in the Snoop protocol, an ELN-ACK agent is 

introduced at the BS as noted by Ding and Jamalipour (2001). It has two main 

functions, the first one is to judge and store the packet loss information transmitted from 

the FH. The second function is to judge the value of ELN bit. When the BS receives an 

ACKELN, it will judge the reason for lost packet based on the stored information in the  
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acknowledgment packet. Data processing procedure at the ELN-ACK agent is very 

similar to the one used in the Snoop protocol. 

 

Ding and Jamalipour (2001) also found out that when the FH receives the ACKELN, it 

acts with the information stored in the ELN bit. If the ELN bit is ‘1,’ it means that the 

corresponding packet is lost due to wired segment congestion and thus it will proceed 

with the same procedure as in the window algorithm. If the ELN bit is ‘0,’ it means that 

the corresponding packet is lost due to wireless error and thus it retransmits the packet 

immediately without any window reduction.  
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4.2 Algorithms 
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4.3 Performance Analysis 
 

 

 

 

Figure 4.9: ELN test bed setup 

 

Ding and Jamalipour (2001) conducted a simple network simulation send TCP packets 

from a fixed host to a mobile host. The base station includes a finite-buffer drop-tail 

gateway, and the network consists wired and wireless links. ELN-ACK protocol has 

been implemented using C++ programming and Network Simulator was used to 

simulate the TCP packet transmission in wired cum wireless segments of the network.  

 

In the simulation, the buffer size in the base station was set at 5 packets. Bandwidth of 

bottleneck link from base station to mobile host was set at 100 packets/msec. 

Propagation delay was set at 0.2 msec. This includes the time between the release of a 

packet from the source and its arrival into the link buffer, the time between the 

transmission of the packet on the bottleneck link and its arrival at its destination and the 

time between the arrival of the packet at the destination and the arrival of the 

corresponding acknowledgment at the source. 
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Figure 4.10: Throughput performance comparison 
 

In Figure 4.10, ELN-ACK protocol was compared with different performance 

enhancing mechanisms such as Snoop protocol (snoop), Selective acknowledgement 

(Sack) and Split connection (Split). Two versions of TCP were also taken into 

consideration; which were TCP-Reno and TCP Tahoe.  

 

Based on the results shown in this figure Ding and Jamalipour (2001) found out that 

Snoop and ELN-ACK protocols provide significant performance improvement when 

the packet loss rate becomes larger than around 0.3%. The throughput performance of 

the Snoop and ELN-ACK protocols remains very close until the packet loss rate of 1%. 

Beyond that, the ELN-ACK outperforms the Snoop protocol. The increase in the 

performance of Snoop and ELN-ACK compared with other TCP methods is clear since 

these two protocols provide better differentiation of the packet loss types over wireless 

link and the that of wired link. On top of that, the ELN-ACK protocol was able to 

improve the throughput performance even more by sending information on the reason 

of packet loss to the TCP sender whereas the Snoop protocol tries to handle all wireless- 
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related losses at its snoop agent located in the base station. This goes to show that, 

ELN-ACK protocol was able to add extra features to the Snoop protocol and immunes 

all packet loss even when the packet loss rate is high and the snoop agent cannot handle 

them. 

 

 
 

Figure 4.11: End-to-end delay for TCP-Reno (without wireless error) 

 

The delay of 200-packet transmission using TCP-Reno and the proposed ELN-ACK 

protocols are shown in Figure 4.11 to 4.13. TCP-Reno produced quite good end-to-end 

delay performance in absence of wireless error, as shown in Figure 4.11. Ding and 

Jamalipour (2001) noted that the mean end-to-end delay is about 0.15 to 0.2 second. 

There were two packets with delay around 0.5 second. This was due to network 

congestion, causing these two packets to be retransmitted by the loss recovery 

mechanism. 
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Figure 4.12: End-to-end delay for TCP-Reno (wireless packet loss rate = 0.1) 
 

 

Figure 4.13: End-to-end delay for ELN-ACK (wireless packet loss rate = 0.1) 
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In Figure 4.12 and 4.13, the packet loss rate on the wireless link is 0.1, which means 

that in every 200-packet transmission there are about 20 packets lost in the wireless 

channel. Based on the simulation results in Figure 4.12, TCP-Reno had a mean 

transmission delay of about 0.15 to 0.25 second. In the 200 packets transmission, there 

were 24 packets whose transmission delay was significantly above 0.2 second. These 

packets were lost either because of network congestion or wireless error in the network. 

Of the 24 retransmitted packets, 11 packets have the delay around 0.4 to 0.6 second. 

This means that these packets are retransmitted by loss recovery mechanism without 

invoking time out, 13 other packets have a delay around 1 to 1.4 second, which means 

that these packets are timed out. Due to the wireless packet loss, the TCP sender always 

has to wait for time out before re-transmitting a lost packet.  

 

On the other hand, Ding and Jamalipour (2001) found out that ELN-ACK algorithm can 

efficiently avoid the timeout by re-transmitting a lost packet immediately. As shown in 

Figure 4.13, there was no packet delay above 1 second in the ELN-ACK algorithm. All 

lost packets were retransmitted by loss recovery mechanism or by fast retransmission. 

From Figure 4.13, Ding and Jamalipour (2001) also found out that the mean end-to-end 

delay for packet transmission was about 0.1 to 0.2 second. There were 23 packets with 

end-to-end delay between 0.4 to 0.6 seconds. Most of these packets were lost in 

wireless channel when it was first transmitted by the TCP-sender. Unlike the TCP-

Reno, the TCP sender knows that these packets were lost due to wireless error and not 

due to network congestion. Thus the lost packet can be retransmitted efficiently without 

incurring any window deduction, which avoids long idle time to wait for timeout. 
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Figure 4.14: Window evolution for TCP-Reno (wireless packet loss rate = 0.1) 
 
 

 

Figure 4.15: Window evolution for ELN-ACK (wireless packet loss rate = 0.1) 
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Figures 4.14 and 4.15 show the congestion window size in the procession of 

transmitting 200 packets for TCP-Reno and TCP with ELN-ACK, respectively. With 

reference to Figure 4.14, Ding and Jamalipour (2001) noted that the main reason for the 

occurrence of these timeouts in the TCP-Reno algorithm was the small congestion 

window, which did not transmit enough duplicate acknowledgment to the TCP sender. 

The number of duplicate ACKs arrived were also not sufficient to trigger a fast 

retransmission. This caused a timeout-driven retransmission that keeps the link idle for 

long periods of time. As shown in Figure 4.14, the congestion window size was not able 

to increase big enough and was always reduced to one due to timeout. Therefore in a 

high packet loss environment, the TCP-Reno cannot efficiently transmit packet. 

 

When there is no wireless packet loss, TCP-Reno sender was able to retransmit packet 

by using the loss recovery algorithm as the only packet loss in transmission was due to 

network congestion. The window size is halved when loss recovery happens, but no 

time out happens, because the congestion window was kept big enough and there were 

sufficient duplicate ACKs transmitted back to trigger the loss recovery. From Figure 

4.15, it can be seen that the ELN-ACK is an effective way that can retransmit the lost 

packet quickly due to wireless error, keep the congestion window wide, and thereby 

eliminating timeout and long idle time periods. Compared with TCP-Reno, ELN-ACK 

algorithm significantly improves the end-to-end delay performance. 
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4.4 Advantages and Disadvantages 
 
 

 
 

Figure 4.16: Throughput of TCP Reno and Reno enhanced with ELN 
 
Balakrishnan and Katz (1998) found out from their experiments, which measured the 

performance of data transfer from the MH to the FH. The experiment was conducted 

over a range of exponentially-distributed bit-error rates. As shown in Figure 4.14, there 

were significant performance benefits of using the snoop protocol coupled with the 

ELN mechanism. These measurements were made for wide-area transfers between UC 

Berkeley and IBM Watson, across one wireless WaveLAN hop and 16 Internet hops. At 

medium to high error rates, the performance improvement due to ELN is roughly a 

factor of 2. At lower error rates, TCP Reno performs quite well as expected, and the 

benefits of ELN are not as pronounced. The main advantage of ELN was that it helped 

to maintain a large TCP congestion window even when wireless error rates were high, 

reacting only to congestion. 
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However Ewerlid (2001) noted that the main disadvantage of ELN mechanism was that 

it required TCP-stack modifications at all endpoints. Therefore ELN mechanism 

required standardization of modifications in TCP followed by widespread acceptance of 

these changes. 

 



 
 
 
Chapter 5 
 
Explicit Congestion Notification 
(ECN) 
 
5.1 Introduction 
 

Ramakrishnan et al (2001) noted that loss, as an indication of congestion in the network 

is appropriate for pure best-effort data carried by TCP, with little or no sensitivity to 

delay or loss of individual packets.  In addition, TCP's congestion management 

algorithms have techniques built-in to minimize the impact of losses, from a throughput 

perspective.  However, these mechanisms are not intended to help applications that are 

in fact sensitive to the delay or loss of one or more individual packets.  Interactive 

traffic such as telnet, web-browsing, and transfer of audio and video data can be 

sensitive to packet losses or to the increased latency of the packet caused by the need to 

retransmit the packet after a loss. 

 

Durresi et al (2002) found out that, congestion remains the main obstacle to Quality of 

Service (QoS) on the Internet. Congestion is a critical problem especially in wireless 

networks, where TCP congestion control performance is affected by intrinsic wireless  
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link characteristics such latency, bandwidth, packet loss due to congestion, and losses 

due to transmission errors links. One of most promising schemes to improve TCP 

congestion control is Explicit Congestion Notification (ECN). ECN is the only 

mechanism that delivers explicit congestion signals to the source. So improving the 

ECN feedback is essential for the future data, wireless networks and their QoS 

guarantees. 

 

As noted by Deshpande (1999), currently TCP assumes that all the losses are due to 

congestion and does not distinguish between losses due to wireless link and those due to 

congestion. As the wireless networks have higher bit-error rates than fixed networks, 

determining whether a segment was lost due to congestion or wireless link may allow 

TCP to achieve better performance in high Bit Error Rate (BER) environments than 

currently possible. Adding ECN mechanism to TCP may help to improve TCP 

performance in wireless link.  

 

Active Queue Management (AQM) mechanism is used in ECN to detect congestion 

before the queue overflows, and provide an indication of this congestion to the end 

nodes.  Thus, active queue management can reduce unnecessary queuing delay for all 

traffic sharing that queue.  Active queue management avoids some of the bad properties 

of dropping on queue overflow, including the undesirable synchronization of loss across 

multiple flows as noted by Ramakrishnan et al (2001).  More importantly, active queue 

management means that transport protocols with mechanisms for congestion control do 

not have to rely on buffer overflow as the only indication of congestion. 

 

AQM can set a Congestion Experienced (CE) bit in the packet header instead of 

dropping the packet, when such a field is provided in the IP header and understood by 

the transport protocol.  The use of the CE bit with ECN allows the receiver to receive 

the packet, avoiding the potential for excessive delays due to retransmissions after 

packet losses.   
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5.2 Algorithms 
 

 Base Station r 
 

 

 
5

 

 

 

 

 

 
6

 

 

 
 

 

 

 

 

 

    

a

In F

capa

Stati

is no

 

TCP Sende
124 3

 r 
Base Station r 
TCP Sende
4 3 15 2

r 

Base Station r 
TCP Sende
      Critical queue length 

237 46 18 59

 

Figure 5.1: ECN part 1 
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Figure 5.2: ECN part 2 

 

Instead of dropping the packets, AQM sets the CE bit in the packet header to ‘1’, 

indicating congestion at the network as shown in Figure 5.2. Upon receipt of a packet 

with the CE bit set, TCP Receiver sends back an acknowledgment (ACK) with the 

ECN-Echo (ECE) bit set to ‘1’ in its header. 
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Figure 5.3: ECN part 3 
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Figure 5.4: ECN part 4 
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Figure 5.5: ECN part 5 

hown in Figure 5.5, upon receipt of the first ACK without the ECE bi
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5.3 Performance Analysis 
 

 

 

Figure 5.6: ECN test bed setup 1 

 

Kinicki and Zheng (2001) conducted an experiment with the above test bed setup in 

Figure 5.6 to evaluate the performance of Random Early Detection (RED) mechanism 

and ECN. RED detests congestion “early by maintaining an exponential-weighted 

average queue size. RED probabilistically drops packets before the queue overflows to 

signal congestion to TCP sources, whereas ECN is a RED extension that marks packets 

to signal congestion. The experiment was conducted with Network Simulator 2 (NS2) 

with average queue length threshold for triggering probabilistic drops/marks set at 5, 

buffer size set at 50 packets and 100 seconds of simulation time. The goodput (Mbps) of 

RED and ECN were evaluated. Goodput is the rate at which packets arrive at the 

receiver. It differs from throughput as retransmissions are excluded from goodput. 
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Figure 5.8: Goodput with 30 flows 
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Figure 5.7: RED and ECN Goodput 
 

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.2 0.4 0.6 0.8 1

max_p

G
oo

dp
ut

 (M
bp

s)

ECN (max_th=15)
RED (max_th=15)
ECN (max_th=30)
RED (max_th=30)

  



 
 
Chapter 5: Performance Analysis   61 
 

 
 

Figure 5.9: Goodput with 120 flows 
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was set at 30. Kinicki and Zheng (2001) noted that ECN provided higher goodput than 

RED. When the number of flows generating the demand is high, ECN performed better 

with a more aggressive maximum dropping/marking probability (max_p) setting. 

 

In Figure 5.8 and 5.9, Kinicki 

the num

maybe caused by buffer contention at the router and flow lockout. However when there 

were many flows, increasing average queue length threshold for triggering forced drops 

(max_th) would improve ECN goodput. This may also be caused by the increased in 

max_p; therefore the number of packets marked increases. Hence TCP source will react 

faster to congestion. 
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5.4 Advantages and Disadvantages 
 

 

 
 

Figure 5.10: ECN test bed setup 2 

 

One of the advantages of ECN can be found from the experiments conducted by 

Pentikousis and Badr (2003). The experiment was carried out using Network Simulator 

(NS2) for the topology as shown in Figure 5.9, all clients have the same TCP 

configuration and simultaneously initiate 20-MB downloads from the server. These 

large transfers allow TCP/ECN to display its best potential. The queue management 

mechanism used at router B was either Drop Tail (DT) or RED, as indicated in the 

results. If DT is used at router B, the only parameter set was the maximum buffer size. 

The tests were conducted with Queue Length (QL) ranging from 4 to 256 packets. The 

bandwidth B is the capacity of the bottleneck link along the connection path, which was 

set at 1.5 Mb/s. The minimum (minth) thresholds of the “RED region” were from 1 to 

80. The terms “conservative” and “aggressive” (marked as “C” and “A” in the figures) 

were used to denote a maximum dropping probability of 2% and 10%, respectively. 
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Figure 5.11. Total number of packets sent by the FTP server to all ten clients. 
 
 
 

 
 
 

Figure 5.12: Total number of packets sent by the FTP server to all ten clients (with 
longer delays) 
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With reference to Figure 5.10 and 5.11, the number of packets dropped at the gateway 

was shown in white. The shaded area showed duplicate and retransmitted packets. The 

total application payload was shown in black. Pentikousis and Badr (2003) found out 

that DT, conservative and aggressive RED, and conservative ECN cause more packet 

drops as QL decreases. On the other hand, aggressive ECN drops fewer packets with 

QL = 64 than QL = 128. It was also remarkable that with QL = 32, aggressive ECN 

drops an extremely small fraction of packets when compared to the others. ECN in itself 

cannot prevent packet drops entirely, but it can reduce them dramatically. In general, 

TCP performs better when aggressive ECN is used: the sender sends fewer total 

segments, with, furthermore, a higher proportion of delivered-to-dropped packets. 

Anot ame 

oodput efficiency and level of packet losses as a DT-based network in which routers 

sed buffers at least twice as large. This can be an important incentive for network 

operators, especially if they can enable ECN by simply upgrading the software of 

existing routers. With DT they would have to double the buffer space provided to the 

outgoing link in order to realize the same level of packet drops. An additional benefit 

from using ECN with half the buffer size was that the maximum possible queuing delay 

was halved as well 

 

Introducing longer delays at the bottleneck link increases the delays in the TCP 

congestion control feedback loop, forcing TCP senders to become less aggressive. 

Meanwhile, the number of packets buffered in the network increases as well. Thus, for a 

iven QL the increase in propagation delay caused fewer packets drops. This was

lustrated in Figure 5.11, which also showed that when QL was 32 or 16, the relative 

ad s. 

s of packets dropped across all 

onfigurations. 

 

 

her advantage was that an all-ECN network could allow TCP to achieve the s

g

u

g  

il

vantage for a TCP/ECN sender was actually improving in terms of packet losse

Aggressive ECN was still the best choice in term

c

 

 



 
 
Chapter 5: Advantages and Disadvantages  65 

stion 

formation in a timely manner and can diminish packet drops, thus increasing the 

nt transmissions. 

onnection interested in reliable delivery cannot ignore packet drops 

ompletely, but in the absence of monitoring and controls, a non-compliant connection 

ould cause congestion problems in either an ECN or a non-ECN environment. A  

 

Pentikousis and Badr (2003) also noted that many network operators charge their 

customers by the amount of traffic they carry through their routers. The revenues 

foregone by dropping a packet under RED could be significant in many cases: a packet 

dropped while the router is in the RED region is a packet that will not be charged to the 

customer under such pricing models. On the other hand, network costs could be reduced 

with aggressive ECN, which yields high goodput efficiency and fewer packet drops, 

and, hence, higher operating margins. 

 

Secondly, the simulation demonstrated that an all-ECN network allows for a fairer 

allocation of resources by effectively mitigating lockouts. ECN can convey conge

in

delivered-to-dropped packet ratio. It showed that aggressive ECN was more successful 

than conservative ECN in reducing packet drops, promoting a fairer environment, 

increasing network efficiency, and delivering higher and more even performance to 

individual connections. A rough rule of thumb, the aggressive ECN can deliver the 

same level of goodput efficiency and number of packet drops with only half the buffer 

space of DT at most. The TCP/ECN sender had a competitive advantage over ECN-

unaware senders because it reacted faster to incipient congestion and can thus avoid 

unsuccessful segme

 

However Floyd (1994) noted that there were two disadvantages or potential problems 

with ECN concerning non-compliant ECN connections and the potential loss of ECN 

messages in the network. A non-compliant TCP connection could set the ECN field to 

indicate that it was ECN-capable, and then ignore ECN notifications. Non-compliant 

connections could also ignore Source Quench messages. However, for a network that 

uses only packet drops for congestion notification, a non-compliant connection could 

also refrain from making appropriate window decreases in response to packet drops. A 

non-compliant c

c

c
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on notification. The gateway will continue to set 

e ECN field in randomly chosen packets as long as congestion persists at the gateway. 

 

problem with ECN messages that had no counterpart with packet drops was that an 

ECN message (e.g., a Source Quench message, or a TCP ACK packet with the ECN 

field set) could be dropped by the network, and the congestion notification could fail to 

reach the end node. Therefore neither Source Quench messages nor the use of ECN 

fields in packet headers could guarantee that the TCP source would receive each 

notification of congestion. However, with RED gateways, the gateway does not rely on 

the source to respond to each congesti

th

In addition, a gateway implementing RED algorithms is particularly unlikely to drop a 

high fraction of packets.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
Chapter 6 
 
Simulation Methodology 
 
6.1 Selection of Simulation Tools 
 
For the design and implementation of communication protocols and algorithms, the use 

of simulation tools means a substantial productivity increase. Using simulations, 

protocols do not need to be implemented in explicit detail. In most cases, simulation of 

one or more protocol layer provides significant and sufficient results. 

 

The deployment and the debugging of wireless applications on a real network can be 

rather difficult if large networks are considered. Therefore simulation is an important 

tool that can often help to improve or validate protocols. All simulators provide a 

complete toolkit to the developers that enable metrics collection and various wireless 

network diagnostics. The main characteristics that divide them are mainly; accuracy, 

speed, ease of use, and monetary expense. 

 

Ubik and Klaban (2003) noted that simulation should create a model of a system, which 

is used to explain system behavior and to see how the system performs under varying 

conditions in order to design the system with desirable performance characteristics.  
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Simulation should also represent the system on a smaller scale for easier study when 

compared to the full-scale physical system. By using simulation, the researcher should 

be allow to study a system in well-defined and well-known conditions, repeatability if 

necessary in order to understand events. 

 

Cavin et al (2002) noted that there were several popular simulators, such as OPNET 

Modeler, Network Simulator 2 (NS2) or GloMoSim available for network simulations. 

Each of them provided advanced simulation environments to test and debug any kind of 

networking protocols, including wireless applications. However for the simulations to 

be helpful, it was necessary that the simulated behaviors match as closely as possible 

the physical situation. This latter requirement implied to address several issues. Firstly, 

the application was likely to rely on existing components, such as collision detection 

module, radio propagation or MAC protocols. The correct modeling of these 

components in the simulator was crucial. Each algorithm that was being evaluated was 

modeled in detail, but the interaction with the other layers was often not taken into 

account. Secondly, the simulation parameters and its environment (mobility schemes, 

power ranges, connectivity) must be realistic. Incorrect initial conditions, for example 

may lead to unexpected results not exploitable in a real network.  

 

OPNET Modeler is a network simulator developed by OPNET. It can simulate all kinds 

of wired networks, and implement 802.11 compliant MAC layer. Although OPNET is 

designed for companies to analysis or restructure their network, it is still possible to 

implement specific algorithm by reusing a lot of existing components. Most part of the 

deployment is made through a hierarchical graphic user interface.  

 

NS2 is an open-source simulation tool from Lawrence Berkeley Laboratory that runs on 

Linux. It is a discreet event simulator targeted at networking research and provides 

substantial support for simulation of routing, multicast protocols and IP protocols, such 

as UDP, TCP, RTP and SRM over wired and wireless (local and satellite) networks. It 

has many advantages that make it a useful tool, such as support for multiple protocols  
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and the capability of graphically detailing network traffic. Additionally, NS2 supports 

several algorithms in routing and queuing. LAN routing and broadcasts are part of 

routing algorithms. Queuing algorithms include fair queuing, deficit round-robin and 

FIFO.  

 

GloMoSim is a scalable simulation environment for wireless and wired networks 

systems developed initially at UCLA Computing Laboratory. It is designed using the 

parallel discrete-event simulation capability provided by a C-based parallel simulation 

language. GloMoSim currently supports protocols for purely wireless networks. It is 

build using a layered approach. Standard Application Programming Interface (API) is 

used between the different layers. This allows the rapid integration of models developed 

at different layers by users. 

  

NS2 was chosen for this project, as it is an event-driven network simulator, which is 

popular with the networking research community. It includes numerous models of 

common Internet protocols including several newer protocols, such as reliable multicast 

and TCP selective acknowledgement. Network animator, Nam, also provides packet-

level animation and protocol specific graph for design and debugging of network 

protocols. Additionally, different levels of configuration are present in NS2 due to its 

open source nature, including the capability of creating custom applications and 

protocols as well as modifying several parameters at different layers. 

 

The freeware nature of NS2 is also attractive compared to the need to enter into an 

OPNET Modeler license agreement and associated direct costs. On top of that, NS2's 

code source is split between C++ for its core engine and OTcl, an object oriented 

version of TCL for configuration and simulation scripts. The combination of the two 

languages offers an interesting compromise between performance and ease of use. A 

highly dynamic newsgroups and source codes are also available on the web to provide 

assistance to most of the problems encounter while using NS2. 
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6.2 Introduction to Network Simulator 2 (NS2) 
 

Ns2 is an event driven, object oriented network simulator which support networking 

research (traffic studies, protocol design and comparison) and education. The wide 

range of platform support provided in NS includes Unix (FreeBSD, Linux, SunOS and 

Solaris) and Windows (Cygwin for win9x/2000/XP). NS2 provides a collaborative 

environment, as its software is freely distributed and open source. Ns2 has users span 

across 50 countries with about 300 posts to its mailing list every month. NS2 also has 

periodical release with over 100 test suites and examples. Users are able to share code, 

protocols and models. This allows easy comparison of similar protocols, which in turn 

increase the reliability of the results. A stability validation is also available at its website 

(http://www.isi.edu/nsnam/ns/ns-tests.html).  
 

NS2 is written in C++ and Otcl to separate the control and data path implementations. 

The simulator supports a class hierarchy in C++ and a corresponding hierarchy within 

the Otcl interpreter. NS2 uses two languages due to different tasks having different 

requirements and simulation of protocols requires efficient manipulation of bytes and 

packet headers making the run-time speed very important. On top of that, there is a need 

to vary some parameters in network studies and to quickly examine a number of 

scenarios. Therefore the time taken to change the model and run it again is of great 

important. 

 

C++ is used in NS2 for detailed protocol implementation and in general for cases where 

every packet of a flow needs to be processed. For example, if you want to implement a 

new queuing discipline, then C++ is the language of choice. On the other hand, Otcl is 

suitable for configuration and setup. Otcl runs quite slowly, but it can be changed very 

quickly making the construction of simulations easier. In NS2, the compiled C++ 

objects can be made available to the Otcl interpreter. In this way, the ready-made C++ 

objects can be controlled from the OTcl level.  
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6.2.1 Features 
 
To calculate the results from the simulations, data can be collected using tracing 

objects. Tracing objects are designed to record packet arrival time at which they are 

located. The traces also enable recording of packets whenever an event such as packet 

drop or arrival occurs in a queue or a link. 

 

set trace_file [open out.tr w] 

$ns trace-all $trace_file 

$ns flush-trace 

close $trace_file 

 

All events from the simulation can be recorded to a file with the above commands. It 

would generate a trace file called "out.tr" that can be used for simulation analysis. 

Figure 6.1 shows the trace format and example trace data from "out.tr".  

 
 

Event 
 

 
Time 

 
From 
Node 

 

 
To 

node 

 
Pkt 

Type

 
Pkt 
Size 

 
Flags

 
Fid 

 
Src 

Addr 

 
Dst 

Addr 

 
Seq 
Num

 
Pkt 
Id 

  
+ 1.64375 0 2 cbr 310 ------- 0 0.0 3.1 225 201 
- 1.64375 0 2 cbr 310 ------- 0 0.0 3.1 225 201 
r 1.64471 2 1 cbr 310 ------- 1 3.0 1.0 195 201 
r 1.64566 2 0 ack 40 ------- 2 3.2 0.1 82 602 
+ 1.64566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611 
- 1.64566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611 
 
+ : enqueue (at queue)  src_addr : node.port 
- : dequeue (at queue)  dst_addr : node.port 
d : drop (at queue)  
r : receive (at to_node) 
 

Figure 6.1: Trace Format Example 
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Each trace line starts with an event (+, -, d, r) descriptor followed by the simulation time 

(in seconds) of that event, and from and to node, which identify the link on which the 

event occurred. The next information in the line before flags (appeared as "------" since 

no flag is set) is packet type and size (in Bytes). Currently, NS2 implements only the 

Explicit Congestion Notification (ECN) bit, and the remaining bits are not used. The 

next field is flow id (fid) of IPv6 that a user can set for each flow at the input OTcl 

script. Even though fid field may not use in a simulation, users can use this field for 

analysis purposes. The fid field is also used when specifying stream color for the NAM 

display. The next two fields are source and destination address in forms of "node.port". 

The next field shows the network layer protocol's packet sequence number. Even 

though User Datagram Protocol (UDP) implementations do not use sequence number, 

NS2 keeps track of UDP packet sequence number for analysis purposes. The last field 

shows the unique id of the packet.  

 

When the simulation topology is relatively simple and the number of sources is limited, 

an effective method would be to trace all events from the simulation to a specific file 

and then calculating the desired quantities from this file by using perl or awk and 

Matlab. However, with complex topologies and many sources, this method of collecting 

data can become slow. The trace files may also consume a large amount of disk space. 
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A plotting program called the ‘xgraph’ is available in the NS2 package, which can be 

used to create graphic representations of simulation results. As shown in the commands 

below, the ‘xgraph’ can be call from within the finish procedure. 

 

proc finish {} { 

        global trace_file 

        #Close the output files 

        close $trace_file 

        #Call xgraph to display the results 

        exec xgraph out.tr -geometry 800x400 & 

        exit 0 

} 

 

 
 

Figure 6.2: X Graph 
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6.2.2 Network Animator (NAM) 
 
NAM is a network animator tool that works with NS2. It takes in a NAM trace file 

generated by NS2 during a simulation run of the network and animates the process.  

 

 
 

Figure 6.3: NAM display 
 
 
 
 
 
 
 
 

http://www.isi.edu/nsnam/ns/
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NAM provides a visual view of the simulation, which includes the overall topology  

(nodes and links). It can also monitor individual nodes, links and the status (queued and 

dropped) of packets in transmission. It does allow simple editing of the topology layout, 

and it also has layout algorithm that will automatically try and layout the nodes to 

maximize the distances between them. Adding colour to the packets for a particular 

flow of traffic is possible, but this has to be done through code in the NS2 simulation.  

 
 

 
 
 

Figure 6.4: NAM display for a simple communication scenario 
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6.2.3 Basic Command 
 
The following steps are used to generate simulation script in NS2: 

• Create an object of the ns2 simulator. 

• Create objects for network nodes, links and queues attached to links and specify 

their parameters, thus creating the network topology. 

• Create objects for TCP sender and TCP receiver and specify maximum window 

size. 

• Create objects for sending application and receiving application and attach them 

to objects for TCP sender and TCP receiver, respectively. 

• Schedule events, such as start and end times of data streams and when the 

simulation should stop. 

• Start simulation. 
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Figure 6.5: A Simple Network Topology and Simulation Scenario 
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The network consists of 4 nodes (n0, n1, n2, n3) as shown in above Figure 6.5. The 

duplex links between n0 and n2, and n1 and n2 have 2 Mbps of bandwidth and 15 ms of 

delay. The duplex link between n2 and n3 has 1.8 Mbps of bandwidth and 25 ms of 

delay. Each node uses a DropTail queue, of which the maximum size is 10. A "udp" 

agent that is attached to n0 is connected to a "null" agent attached to n3. A "null" agent 

just frees the packets received. A "tcp" agent is attached to n1, and a connection is 

established to a tcp "sink" agent attached to n3. As default, the maximum size of a 

packet that a "tcp" agent can generate is 1KByte. A tcp "sink" agent generates and sends 

ACK packets to the sender (tcp agent) and frees the received packets. A "ftp" and a 

"cbr" traffic generator are attached to "tcp" and "udp" agents respectively, and the "cbr" 

is configured to generate 1 KByte packets at the rate of 1 Mbps. The "cbr" is set to start 

at 0.1 sec and stop at 4.5 sec, and "ftp" is set to start at 1.5 sec and stop at 3.0 sec. The 

Otcl script for the simulation topology in Figure 6.5 is as follow: 
 

#Create a simulator object 
set ns [new Simulator] 
 
#Define different colors for data flows (for NAM) 
$ns color 1 Blue 
$ns color 2 Red 
 
#Open the NAM trace file 
set tracefd  [open simple.tr w] 
$ns trace-all $tracefd 
set namtracefd [open simple.nam w] 
$ns namtrace-all $namtracefd 
 
#Define a 'finish' procedure 
proc finish {} { 
        global ns tracefd namtracefd 
        $ns flush-trace 
        #Close the NAM trace file 
        close $tracefd 
        close $namtracefd 
        #Execute NAM on the trace file 
        exec nam out.nam & 
        exit 0 
} 
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#Create four nodes 
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 
 
#Create links between the nodes 
$ns duplex-link $n0 $n2 2Mb 15ms DropTail 
$ns duplex-link $n1 $n2 2Mb 15ms DropTail 
$ns duplex-link $n2 $n3 1.8Mb 25ms DropTail 
 
#Set Queue Size of link (n2-n3) to 10 
$ns queue-limit $n2 $n3 10 
 
#Give node position (for NAM) 
$ns duplex-link-op $n0 $n2 orient right-down 
$ns duplex-link-op $n1 $n2 orient right-up 
$ns duplex-link-op $n2 $n3 orient right 
 
#Monitor the queue for link (n2-n3). (for NAM) 
$ns duplex-link-op $n2 $n3 queuePos 0.5 
 
#Setup a UDP connection 
set udp [new Agent/UDP] 
$ns attach-agent $n0 $udp 
set null [new Agent/Null] 
$ns attach-agent $n3 $null 
$ns connect $udp $null 
$udp set fid_ 2 
 
#Setup a TCP connection 
set tcp [new Agent/TCP] 
$tcp set class_ 2 
$ns attach-agent $n1 $tcp 
set sink [new Agent/TCPSink] 
$ns attach-agent $n3 $sink 
$ns connect $tcp $sink 
$tcp set fid_ 1 
 
#Setup a FTP over TCP connection 
set ftp [new Application/FTP] 
$ftp attach-agent $tcp 
$ftp set type_ FTP 
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#Setup a CBR over UDP connection 
set cbr [new Application/Traffic/CBR] 
$cbr attach-agent $udp 
$cbr set type_ CBR 
$cbr set packet_size_ 1000 
$cbr set rate_ 1mb 
$cbr set random_ false 
 
#Schedule events for the CBR and FTP agents 
$ns at 0.1 "$cbr start" 
$ns at 1.5 "$ftp start" 
$ns at 3.0 "$ftp stop" 
$ns at 4.5 "$cbr stop" 
 
#Call the finish procedure after 5 seconds of simulation time 
$ns at 5.0 "finish" 
 
#Run the simulation 
$ns run 
 
 
 
 
In order to start run the above Otcl script, save it as myexample.tcl in a prefer 

directory. Make sure that the current path is pointing to the prefer directory where 

myexample.tcl is saved. Start NS2 with the command ns myexample.tcl at the 

command prompt. The following is the explanation of the above Otcl script. 

 

set ns [new Simulator]: 

This function will generates an NS simulator object instance, and assigns it to variable 

ns. 

 

$ns color fid color :  

This function will set color of the packets for a flow specified by the flow id (fid). The 

member function of "Simulator" object is for the NAM display, and has no effect on the 

actual simulation. 
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$ns namtrace-all file-descriptor :  

This member function tells the simulator to record simulation traces in NAM input 

format. It also gives the file name that the trace will be written to later by the command 

$ns flush-trace. Similarly, the member function trace-all is for recording the simulation 

trace in a general format. 

 

proc finish {}:  

This function is called after this simulation is over by the command $ns at 5.0 "finish". 

In this function, post-simulation processes are specified. 

 

set n0 [$ns node]:  

The member function node creates a node. A node in NS is compound object made of 

address and port classifiers. Users can create a node by separately creating an address 

and a port classifier objects and connecting them together. 

 

$ns duplex-link node1 node2 bandwidth delay queue-type :  

This function creates two simplex links of specified bandwidth and delay, and connects 

the two specified nodes. In NS, the output queue of a node is implemented as a part of a 

link; therefore users should specify the queue-type when creating links. In the above 

simulation script, DropTail queue is used. If the reader wants to use a RED queue, 

simply replace the word DropTail with RED. Like a node, a link is a compound object, 

and users can create its sub-objects and connect them and the nodes. 

 

$ns queue-limit node1 node2 number :  

This line sets the queue limit of the two simplex links that connect node1 and node2 to 

the number specified. 

 

$ns duplex-link-op node1 node2 : 

The next couple of lines are used for the NAM display. 
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set tcp [new Agent/TCP]:  

This line shows how to create a TCP agent. But in general, users can create any agent or 

traffic sources in this way.  

 

$ns attach-agent node agent :  

This member function attaches an agent object created to a node object. This function 

will call the attach member function of specified node, which attaches the given agent 

to itself.  

 

$ns connect agent1 agent2 :  

When two agents that will communicate with each other are created, a logical network 

connection is established between them. This line establishes a network connection by 

setting the destination address to one another's network and port address pair.  
 

$ns at time "string" :  

This member function of a simulator object will schedule the execution of the specified 

string at given simulation time. The scheduler will call a ‘start’ member function of the 

traffic source object, which will start to transmit data. In NS2, traffic source does not 

transmit actual data, but it signal the underlying agent that it has some amount of data to 

transmit, and the agent, just knowing how much of the data to transfer, creates packets 

and sends them.  
 

$ns run : 

After all network configurations, scheduling and post-simulation procedure 

specifications are done; this line will execute the simulation.   

 



 
 
 
Chapter 7 
 
Installation of Linux and 
Network Simulator 2 (NS2) 
 
7.1 Red Hat Linux Installation Process 
 
Before the start of the installation process, the computer must have enough un-

partitioned disk space for the installation of Red Hat Linux. Or there are one or more 

partitions that can be deleted, thereby freeing up enough disk space to install Red Hat 

Linux 7.2 

 

A workstation installation, choosing to install GNOME or KDE, requires at least 1.5 

GB of free space. Choosing both GNOME and KDE requires at least 1.8 GB of free 

disk space. A server installation requires 1 GB for a minimal installation without X (the 

graphical environment), at least 1.3 GB of free space if all components (package 

groups) other than X are installed, and at least 1.8 GB to install all packages including 

GNOME and KDE.  
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A laptop installation, when you choose to install GNOME or KDE, requires at least 1.5 

GB of free space. If you choose both GNOME and KDE, you will need at least 1.8 GB 

of free disk space. A custom installation requires 350 MB for a minimal installation and 

at least 3.5 GB of free space if every package is selected. For more information about 

system requirements, users may want to visit Red Hat Linux 7.2: The Official Red Hat 

Linux x86 Installation Guide at http://www.redhat.com/docs/manuals/linux/RHL-7.2-

Manual/install-guide/index.html 

 

To install Linux, turn on computer and insert disk 1 of Red Hat Linux 7.2. At the boot 

prompt, press the 'Enter' key. After the basic Linux Kernel is loaded, anaconda (Red Hat 

installation program) should load. An easy-to- use graphical user interface will guide 

the user through the install process. 

 

 

 
 

Figure 7.1: Red Hat installation process (Boot Prompt) 
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Figure 7.2: Red Hat installation process (Anaconda) 
 

 
 
 

Figure 7.3: Red Hat installation process (Language Selection) 
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Figure 7.4: Red Hat installation process (Keyboard Configuration) 
 

 
 

Figure 7.5: Red Hat installation process (Mouse Configuration) 
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Figure 7.6: Red Hat installation process (Welcome to Red Hat Linux) 
 

 
 

Figure 7.7: Red Hat installation process (Install Options) 
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Figure 7.8: Red Hat installation process (Partition part 1) 
 

 
 

Figure 7.9: Red Hat installation process (Partition part 2) 
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Figure 7.10: Red Hat installation process (Partition part 3) 
 

 
 

Figure 7.11: Red Hat installation process (Partition part 4) 
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Figure 7.12: Red Hat installation process (Boot Loader Installation) 
 

 
 

Figure 7.13: Red Hat installation process (GRUB Password) 
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Figure 7.14: Red Hat installation process (Network Configuration) 
 

 
 

Figure 7.15: Red Hat installation process (Firewall Configuration) 
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Figure 7.16: Red Hat installation process (Language Support Selection) 
 

 
 

Figure 7.17: Red Hat installation process (Time Zone Selection) 
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Figure 7.18: Red Hat installation process (Account Configuration) 
 

 
 

Figure 7.19: Red Hat installation process (Selecting Package Group) 
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Figure 7.20: Red Hat installation process (Video Configuration) 
 

 
 

Figure 7.21: Red Hat installation process (Installing Package part 1) 
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Figure 7.22: Red Hat installation process (Installing Package part 2) 
 

 
 

Figure 7.23: Red Hat installation process (Installing Package part 3) 
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Figure 7.24: Red Hat installation process (Boot Disk Creation) 
 

 
 

Figure 7.25: Red Hat installation process (Monitor Selection) 
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Figure 7.26: Red Hat installation process (X Configuration) 
 

 
 

Figure 7.27: Red Hat installation process (Congratulations-Linux has been installed) 
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Figure 7.28: Red Hat installation process (Graphical Boot Loader Prompt) 
 
 

If a user is added, user can login using their username and password. Once at the shell 

prompt, type ‘startx’ to load the graphical interface. Gnome should start at this time.  
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7.2 Network Simulator 2 Installation Process 
 

NS2 software can be downloaded at www.isi.edu/nsnam/ns. NS2 can be built from 

pieces or all at once. Click on ‘Download and Build ns’. Under ‘Getting everything at 

once’ there is an ns-allinone package (current release is 2.27) available for the 

download. It requires about 250MB of disk space to build. The path for the download 

directory in this project is download_directory = /home/peh.  

 

To install and build NS2, execute the following commands: 

• cd download_directory 

• mkdir ns 

• download ns-allinone-2.27.tar.gz in download_directory/ns directory 

• gunzip ns-allinone-2.27.tar.gz 

• tar xvf ./ns-allinone-2.27.tar 

• cd ns-allinone-2.27 

• ./install 

 

After successful installation of the ns-allinone package, a message will be generated: 

 

****************************Message-start*******************************    
 
Nam has been installed successfully. 
Please compile your gt-itm & sgb2ns separately. 
Ns-allinone package has been installed successfully. 
Here are the installation places: 
tcl8.4.5:       /home/peh/ns/ns-allinone-2.27/{bin,include,lib} 
tk8.4.5:                /home/peh/ns/ns-allinone-2.27/{bin,include,lib} 
otcl:           /home/peh/ns/ns-allinone-2.27/otcl-1.8 
tclcl:          /home/peh/ns/ns-allinone-2.27/tclcl-1.15 
ns:             /home/peh/ns/ns-allinone-2.27/ns-2.27/ns 
nam:    /home/peh/ns/ns-allinone-2.27/nam-1.10/nam 
xgraph: /home/peh/ns/ns-allinone-2.27/xgraph-12.1 
  
---------------------------------------------------------------------------------- 
  
 

 

http://www.isi.edu/nsnam/ns
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Please put /home/peh/ns/ns-allinone-2.27/bin:/home/peh/ns/ns-allinone-
2.27/tcl8.4.5/unix:/home/peh/ns/ns-allinone-2.27/tk8.4.5/unix 
into your PATH environment; so that you'll be able to run itm/tclsh/wish/xgraph. 
  
IMPORTANT NOTICES: 
  
(1) You MUST put /home/peh/ns/ns-allinone-2.27/otcl-1.8, /home/peh/ns/ns-allinone-2.27/lib,  
into your LD_LIBRARY_PATH environment variable. 
If it complains about X libraries, add path to your X libraries into LD_LIBRARY_PATH. 
If you are using csh, you can set it like: 
 setenv LD_LIBRARY_PATH <paths> 
 If you are using sh, you can set it like: 
export LD_LIBRARY_PATH=<paths> 
  
(2) You MUST put /home/peh/ns/ns-allinone-2.27/tcl8.4.5/library into your TCL_LIBRARY 
environmental variable. Otherwise ns/nam will complain during startup. 
  
(3) [OPTIONAL] To save disk space, you can now delete directories tcl8.4.5 and tk8.4.5. They are now 
installed under /home/peh/ns/ns-allinone-2.27/{bin,include,lib} 
  
After these steps, you can now run the ns validation suite with 
cd ns-2.27; ./validate 
For trouble shooting, please first read ns problems page  
http://www.isi.edu/nsnam/ns/ns-problems.html. Also search the ns mailing list archive 
for related posts. 
  
****************************Message-end*******************************    
 

The environment variables in the .cshrc file inside Linux needs to be set. This allows 

the variables to be automatically set, every time the user log into the account. The 

following commands can be used. 

• cd 

• open the  .cshrc file for editing 

• add the following lines: 

set  path=($path download_directory/ns/ns-allinone-2.27/bin) 

set  path=($path download_directory/ns/ns-allinone-2.27/tcl8.4.5/unix) 

set  path=($path download_directory/ns/ns-allinone-2.27/tk8.4.5/unix) 

set  LD_LIBRARY_PATH=download_directory/ns/ns-allinone-2.27/otcl-

1.8:download_directory/ns/ns-allinone-2.27/lib:/usr/openwin/lib 

set   TCL_LIBRARY=download_directory/ns/ns-allinone-2.27/tcl8.4.5/library 

• save the changes 

• source .cshrc 
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Perform the validation tests: 

• cd download_directory/ns/ns-allinone-2.27/ns-2.27 

• ./validate 

 

The validation tests will take about four hours to execute. After the successful 

completion of the tests the output should contain the following lines: 

 

****************Message-start************************ 
 
Test output agrees with reference output 
All test output agrees with reference output. 
These messages are NOT errors and can be ignored: 
warning: using backward compatibility mode 
This test is not implemented in backward compatibility mode 
  
validate overall report: all tests passed 

 
****************Message-end*************************   
 

After this point the installation of NS2 is successfully completed. 



 
 
 
Chapter 8 
 
Conclusions and Further Work 
 
8.1 Conclusions 
 
TCP has been performing well over the traditional wired networks where packet losses 

are usually caused by network congestion. However in wireless networks, this 

assumption would be inadequate. As the reason of packet loss in wireless networks is 

caused by the high bit error rate over the wireless link, thus TCP performance is 

degraded under these new conditions.  The main reason of TCP poor performance is 

due to the fact that TCP cannot distinguish between packet losses due to wireless errors 

from those due to congestion. This will significantly degrades TCP end-to-end delay 

performance, as there is an increase in delay of re-transmitting of the lost packets. 

 

In this project, the performances of improved mechanisms are evaluated. Experimental 

results show that the mechanisms such as Snoop protocol, Explicit Loss Notification 

(ELN) and Explicit Congestion Notification (ECN) can improve both delay 

performance and throughput of TCP in wireless networks significantly. 
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In Snoop Protocol, Biswas (2003) found out that although TCP performance 

deteriorates with increased delay over the wireless hop, Snoop still managed to obtain a 

better throughput than the normal TCP. The performance improvement is close to two 

times that of normal TCP. Biswas (2003) also found out that when packets were 

corrupted over the wireless link, Snoop still managed to give a consistent performance 

higher than normal TCP. 

 

The advantage as noted by Balakrishnan et al (1998) is that Snoop mechanisms 

improved the performance of the connection in both directions, without sacrificing any 

of the end-to-end semantics of TCP, modifying host TCP code in the fixed network or 

re-linking existing applications. However, West and Vaidya (1997) found out that one 

of the greatest disadvantages of Snoop protocol was that it requires the ACKs to follow 

the same path as the data in order to shield the sender from losses. This was not a 

problem for network topologies containing a single wireless path, which every packet 

must traverse. However it did became a problem when multiple wireless paths were 

possible, or with asymmetric links where the sender used a high bandwidth, high delay 

path (such as a satellite link) to send the data and the receiver used a low bandwidth 

terrestrial path to return the ACKs. Snoop had no method of informing the sender when 

the base station experiences a period of high errors and this could lead to unnecessary 

time out, which invoke congestion avoidance procedures. 

 

In ELN, Ding and Jamalipour (2001) found out that the throughput performance of the 

Snoop and ELN-ACK protocols remains very close until the packet loss rate of 1%. 

Beyond that, the ELN-ACK outperforms the Snoop protocol. ELN-ACK protocol was 

able to improve the throughput performance even more by sending information on the 

reason of packet loss to the TCP sender whereas the Snoop protocol tries to handle all 

wireless-related losses at its snoop agent located in the base station. This goes to show 

that, ELN-ACK protocol was able to add extra features to the Snoop protocol and 

immunes all packet loss even when the packet loss rate is high and the snoop agent 

cannot handle them. 
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The main advantage of ELN was that it helped to maintain a large TCP congestion 

window even when wireless error rates were high, reacting only to congestion. However 

the disadvantage of ELN mechanism was that it required TCP-stack modifications at all 

endpoints. Therefore ELN mechanism required standardization of modifications in TCP 

followed by widespread acceptance of these changes. 

 

In ECN, Pentikousis and Badr (2003) found out that ECN network allows for a fairer 

allocation of resources. ECN can convey congestion information in a timely manner and 

can diminish packet drops, thus increasing the delivered-to-dropped packet ratio. It 

showed that aggressive ECN was successful in reducing packet drops, promoting a 

fairer environment, increasing network efficiency, and delivering higher and more even 

performance to individual connections. 

 

The advantage noted by Pentikousis and Badr (2003) was that many network operators 

charge their customers by the amount of traffic they carry through their routers and 

dropping a packet could be significant in many cases. Therefore, network costs could be 

reduced with aggressive ECN, which yields high goodput efficiency and fewer packet 

drops, and, hence, higher operating margins. On the other hand, Floyd (1994) noted that 

there were two disadvantages with ECN concerning non-compliant ECN connections 

and the potential loss of ECN messages in the network. A non-compliant TCP 

connection could set the ECN field to indicate that it was ECN-capable, and then ignore 

ECN notifications. For a network that uses only packet drops for congestion 

notification, a non-compliant connection could also refrain from making appropriate 

window decreases in response to packet drops. A non-compliant connection interested 

in reliable delivery cannot ignore packet drops completely, but in the absence of 

monitoring and controls, a non-compliant connection could cause congestion problems 

in either an ECN or a non-ECN environment. Network with ECN messages that had no 

counterpart with packet drops could drop the messages and the congestion notification 

could fail to reach the end node. Even with the use of ECN fields in packet headers, it 

could not guarantee that the TCP source would receive each notification of congestion. 
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Network Simulator 2 (NS2) was chosen for this project, as it is an event-driven network 

simulator, which is popular with the networking research community. It includes 

numerous models of common Internet protocols including several newer protocols, such 

as reliable multicast and TCP selective acknowledgement. Additionally, different levels 

of configuration are present in NS2 due to its open source nature, including the 

capability of creating custom applications and protocols as well as modifying several 

parameters at different layers. On top of that, NS2's code source is split between C++ 

for its core engine and OTcl, an object oriented version of TCL for configuration and 

simulation scripts. The combination of the two languages offers an interesting 

compromise between performance and ease of use. A highly dynamic newsgroups and 

source codes are also available on the web to provide assistance to most of the problems 

encounter while using NS2. 

 

 

 

8.2 Further Work 
 

Implement the representative mechanisms (Snoop, ELN and ECN) using NS2 and 

compare the performance of TCP Reno with the representative mechanisms under 

various conditions. Propose and implement possible solutions to improve the 

representative mechanisms.  

 

In the simulation, the mobility issues are not considered. The focus is on the impact of 

link loss on the performance of TCP Reno and the improvement mechanisms. Hence, in 

the simulation environment, a link with the error rates of 0.1%, 1.0% and 10.0% is used 

to represent wireless link. The simulation environment also consists of a 10 Mbps, 20 

ms delay wired channel and a 2Mbps wireless channel with a negligible delay. The 

packet size is to be set at 1024 bytes and the simulation time is 150sec. The maximum 

possible window size for the connection is to be set at 64 Kbytes. 
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Figure 8.1: Network topology 1 
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Figure 8.2: Network topology 2 
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With reference to Figure 8.1 and 8.2, the wired-cum-wireless topology is used in this 

project. In network topology 1, five Fixed Hosts (FHs) are directly attached to the Base 

Station (BS) through a wired network and five Mobile Hosts (MHs) are one hop away 

from the wireless access point. Whereas in network topology 2, ten FHs are directly 

attached to the BS through a wired network and ten MHs are one hop away from the 

wireless access point. Both the network topologies are to be simulated using the NS2. 

 

Six simulation models will be investigated in the experiment: 

1) TCP Reno only 

2) TCP Reno with Snoop  

3) TCP Reno with ECN 

4) TCP Reno with Snoop and ECN. 

5) TCP Reno with ELN 

6) TCP Reno with Snoop and ELN. 

 

Each of the six simulation models will be investigated in scenario 1 and 2, with the 

simulation environment remain unchanged. During each run, the throughput, goodput, 

delay, fairness performance and changes in congestion window size of the models will 

be examined.  
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