
University of Southern Queensland

Faculty of Engineering & Surveying

Investigation of TCP Performance Over
Wireless Internet.

A dissertation submitted by

Peh Wee Liang

in fulfilment of the requirements of

ENG 4112 Research Project

towards the degree of

Bachelor of Electrical and Electronic Engineering

Submitted: October, 2004

Abstract

The demand for providing Internet services over wireless links has grown rapidly in

recent years. Although TCP (Transmission Control Protocol) has been performing well

over the traditional wired networks where packet losses occur mostly because of

congestion, it cannot react efficiently in wireless networks, which suffer from

significant non-congestion-related losses due to reasons such as bit errors and handoffs.

The main reason for this poor performance of TCP is the fact that it cannot distinguish

between packet losses due to wireless errors from those due to congestion. It responds

to all losses by invoking congestion control and avoidance algorithms. Moreover, TCP

sender cannot keep the size of its congestion window at optimum level and always has

to retransmit packets after waiting for timeout, which significantly degrades end-to-end

delay performance of TCP.

This issue has attracted significant research interests and many schemes have been

proposed to address the issue. This project will investigate the performance of a few

representative mechanisms, which will improve both throughput and delay performance

of TCP in wireless environment significantly. That is, Snoop protocol, Explicit Loss

Notification (ELN), Explicit Congestion Notification (ECN).

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 & ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or
associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk
of the Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled "Research Project" is to
contribute to the overall education within the student’s chosen degree program. This
document, the associated hardware, software, drawings, and other material set out in the
associated appendices should not be used for any other purpose: if they are so used, it is
entirely at the risk of the user.

Prof G Baker
Dean
Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analysis and conclusion

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Peh Wee Liang

D11338609

 Signature

 Date

Acknowledgments

I would like to express my gratitude toward Dr. Hong Zhou and Dr. John Leis for their

constant information, suggestions and guidance. I am grateful for the opportunity of

working under them on such an interesting Undergraduate Research project.

My thanks is also extended to friends and classmates, who had advise and seen me

through the difficulties I had encountered throughout the course of the project.

Most importantly I would like to thank my family whose constant support, kind

patience and understanding I could not do without.

 Peh Wee Liang

University of Southern Queensland

October 2004

Contents

Abstract i

Acknowledgments iv

List of Figures viii

Chapter 1 Introduction 1

1.1 Project Background .. 1

1.2 Project Aims ... 2

1.3 Specific Objectives... 3

Chapter 2 Transmission Control Protocol (TCP) 4

2.1 Introduction .. 4

2.2 Flow Control... 6

2.3 Congestion Control... 10

2.3.1 Slow Start ... 10

2.3.2 Congestion Avoidance.. 12

2.3.3 Fast Retransmit ... 13

CONTENTS vi

2.4 TCP in Wireless Link ... 16

Chapter 3 Snoop Protocol 18

3.1 Introduction .. 18

3.2 Algorithms.. 20

3.3 Performance Analysis... 24

3.4 Advantages and Disadvantages .. 29

Chapter 4 Explicit Loss Notification (ELN) 32

4.1 Introduction .. 32

4.2 Algorithms.. 35

4.3 Performance Analysis... 43

4.4 Advantages and Disadvantages .. 50

Chapter 5 Explicit Congestion Notification (ECN) 52

5.1 Introduction .. 52

5.2 Algorithms.. 54

5.3 Performance Analysis... 59

5.4 Advantages and Disadvantages .. 62

CONTENTS vii

Chapter 6 Simulation Methodology 67

6.1 Selection of Simulation Tools .. 67

6.2 Introduction to Network Simulator 2 (NS2)... 70

6.2.1 Features... 71

6.2.2 Network Animator (NAM)... 74

6.2.3 Basic Command.. 76

Chapter 7 Installation of Linux and Network Simulator 2 (NS2) 82

7.1 Red Hat Linux Installation Process .. 82

7.2 Network Simulator 2 Installation Process .. 98

Chapter 8 Conclusions and Further Work 101

8.1 Conclusions .. 101

8.2 Further Work .. 104

References 107

Appendix A 112

List of Figures

Figure 2.1: Receiver Buffer .. 6

Figure 2.2: Flow Control part 1 .. 7

Figure 2.3: Flow Control part 2 .. 8

Figure 2.4: Flow Control part 3 .. 9

Figure 2.5: TCP transmission window.. 11

Figure 2.6: Fast Retransmit part 1... 13

Figure 2.7: Fast Retransmit part 2... 14

Figure 2.8: Fast Retransmit part 3... 15

Figure 2.9: Wireless link using TCP... 16

Figure 3.1: Adding the Snoop agent. .. 18

Figure 3.2: Snoop Protocol part 1 ... 20

Figure 3.3: Snoop Protocol part 2 ... 21

Figure 3.4: Snoop Protocol part 3 ... 22

LIST OF FIGURES ix

Figure 3.5: Snoop Protocol part 4 ... 23

Figure 3.6: Snoop Protocol test bed setup 1 ... 24

Figure 3.7: Variable delay between BS and MH .. 25

Figure 3.8: Variable delay between BS and FH ... 25

Figure 3.9: Snoop performance with different corruption rates 26

Figure 3.10: Snoop Protocol test bed setup 2 ... 27

Figure 3.11: Throughput received by the mobile host at different bit-error rates 28

Figure 3.12: Performance on a Web workload in different protocol configurations.... 30

Figure 4.1: ELN part 1 .. 35

Figure 4.2: ELN part 2 .. 36

Figure 4.3: ELN part 3 .. 37

Figure 4.4: ELN part 4 .. 38

Figure 4.5: ELN part 5 .. 39

Figure 4.6: ELN part 6 .. 40

Figure 4.7: ELN part 7 .. 41

Figure 4.8: ELN part 8 .. 42

Figure 4.9: ELN test bed setup ... 43

Figure 4.10: Throughput performance comparison .. 44

Figure 4.11: End-to-end delay for TCP-Reno (without wireless error)........................ 45

Figure 4.12: End-to-end delay for TCP-Reno (wireless packet loss rate = 0.1)........... 46

Figure 4.13: End-to-end delay for ELN-ACK (wireless packet loss rate = 0.1) 46

LIST OF FIGURES x

Figure 4.14: Window evolution for TCP-Reno (wireless packet loss rate = 0.1)......... 48

Figure 4.15: Window evolution for ELN-ACK (wireless packet loss rate = 0.1) 48

Figure 4.16: Throughput of TCP Reno and Reno enhanced with ELN........................ 50

Figure 5.1: ECN part 1.. 54

Figure 5.2: ECN part 2.. 55

Figure 5.3: ECN part 3.. 56

Figure 5.4: ECN part 4.. 57

Figure 5.5: ECN part 5.. 58

Figure 5.6: ECN test bed setup 1 .. 59

Figure 5.7: RED and ECN Goodput ... 60

Figure 5.8: Goodput with 30 flows ... 60

Figure 5.9: Goodput with 120 flows ... 61

Figure 5.10: ECN test bed setup 2 .. 62

Figure 5.11. Total number of packets sent by the FTP server to all ten clients............ 63

Figure 5.12: Total number of packets sent by the FTP server to all ten clients (with

longer delays).. 63

Figure 6.1: Trace Format Example ... 71

Figure 6.2: X Graph .. 73

Figure 6.3: NAM display .. 74

Figure 6.4: NAM display for a simple communication scenario.................................. 75

Figure 6.5: A Simple Network Topology and Simulation Scenario............................. 76

LIST OF FIGURES xi

Figure 7.1: Red Hat installation process (Boot Prompt)... 83

Figure 7.2: Red Hat installation process (Anaconda) ... 84

Figure 7.3: Red Hat installation process (Language Selection).................................... 84

Figure 7.4: Red Hat installation process (Keyboard Configuration) 85

Figure 7.5: Red Hat installation process (Mouse Configuration) 85

Figure 7.6: Red Hat installation process (Welcome to Red Hat Linux) 86

Figure 7.7: Red Hat installation process (Install Options).. 86

Figure 7.8: Red Hat installation process (Partition part 1) ... 87

Figure 7.9: Red Hat installation process (Partition part 2) ... 87

Figure 7.10: Red Hat installation process (Partition part 3) ... 88

Figure 7.11: Red Hat installation process (Partition part 4) ... 88

Figure 7.12: Red Hat installation process (Boot Loader Installation) 89

Figure 7.13: Red Hat installation process (GRUB Password)...................................... 89

Figure 7.14: Red Hat installation process (Network Configuration)............................ 90

Figure 7.15: Red Hat installation process (Firewall Configuration)............................. 90

Figure 7.16: Red Hat installation process (Language Support Selection) 91

Figure 7.17: Red Hat installation process (Time Zone Selection)................................ 91

Figure 7.18: Red Hat installation process (Account Configuration) 92

Figure 7.19: Red Hat installation process (Selecting Package Group)......................... 92

Figure 7.20: Red Hat installation process (Video Configuration) 93

Figure 7.21: Red Hat installation process (Installing Package part 1).......................... 93

Figure 7.22: Red Hat installation process (Installing Package part 2).......................... 94

LIST OF FIGURES xii

Figure 7.23: Red Hat installation process (Installing Package part 3).......................... 94

Figure 7.24: Red Hat installation process (Boot Disk Creation) 95

Figure 7.25: Red Hat installation process (Monitor Selection) 95

Figure 7.26: Red Hat installation process (X Configuration) 96

Figure 7.27: Red Hat installation process (Congratulations-Linux has been installed) 96

Figure 7.28: Red Hat installation process (Graphical Boot Loader Prompt)................ 97

Figure 8.1: Network topology 1.. 105

Figure 8.2: Network topology 2.. 105

Chapter 1

Introduction

1.1 Project Background

The term wireless refers to telecommunication technology in which radio waves such as

infrared waves and microwaves are used to carry a signal to connect communication

devices, instead of cables or wires. These devices include pagers, cell phones, portable

PCs, computer networks, location devices, satellite systems and handheld digital

assistants. Wireless technology is rapidly evolving, and is fast becoming an important

role in the lives of people around the world. Wireless technology enables users to

physically move while using an appliance, such as a handheld PC, paging device, or

phone. Without the physical connection of cables or wires, this technology allows users

to check stocks and email from their internet-enabled devices.

Wireless networking also arises with the ever-increasing need for businesses to lower

costs and support mobility of workers. Compared with wired networking, wireless

capability offers more timeliness, affordability, and efficiency. When performing

installations, there are many tangible cost savings with using less wire between the

user’s appliance and a server. If mountains, highways or other buildings obstruct the

Chapter 1: Project Aims 2

way of a connection, a wireless solution may be more economical than installing

physical cable. Wires and connectors can easily break through misuse and normal wear

and tear. Therefore using less cable reduces the downtime of the network and the costs

associated with replacing cables, and makes the network available for use much sooner.

http://wireless.ittoolbox.com/pub/wireless_overview.htm (2002)

Pilosof et al. (2002) noted that the result of the growth in usage of wireless networking,

has caused the focus to turn to deploying wireless Internet over hot spots such as

airports, hotels, cafes, and other areas from which people can have uninterrupted public

access to the Internet. As these networks see increasing public deployment, it is

important for the service providers to be able to ensure that access to the network by

different users and applications remains impartial. Since the majority of today’s

applications in Internet use Transmission Control Protocol (TCP), this project will focus

on the performance of TCP in wireless Internet.

1.2 Project Aims

The demand for providing Internet services over wireless links has grown rapidly in

recent years. Although TCP has been performed well over wired networks, it cannot

respond efficiently in wireless networks. As a result, this issue has attracted significant

research interests and, many modifications and new solutions have been proposed to

improve TCP’s performance.

http://wireless.ittoolbox.com/pub/wireless_overview.htm

Chapter 1: Specific Objectives 3

1.3 Specific Objectives

This research will investigate the performance of a few representative mechanisms, that

is, Snoop protocol, Explicit Loss Notification (ELN), Explicit Congestion Notification

(ECN). This project also aims to:

• Study protocols and representative mechanisms: TCP/IP, Snoop protocol,

Explicit Loss Notification (ELN) and Explicit Congestion Notification (ECN).

• Compare the performance with regular TCP with the representative

mechanisms.

• Identify the advantages and disadvantages of the representative mechanisms.

• Study simulation tool, Network Simulator (NS2) and Linux.

Chapter 2

Transmission Control Protocol
(TCP)

2.1 Introduction

Transmission Control Protocol (TCP) is the most widely used transport layer protocol in

the Internet. Most popular Internet applications, such as the Web and file transfer, use

the reliable services provided by TCP. Hassan and Jain (2001) noted that the

performance perceived by users of these Internet applications depends largely on the

performance of TCP.

In the Internet protocol suite, Internet Protocol (IP) is a best-effort service and TCP is a

reliable service. IP provides the basic packet forwarding while TCP implements the

flow controls, acknowledgements and retransmissions of lost or corrupted packets. This

split in services "decentralizes" the network and moves the responsibility for reliable

delivery to end systems. TCP is an end-to-end transport protocol, meaning that it runs in

end systems, not the network. IP is a network protocol.

http://www.linktionary.com/f/flow_control.html (2001)

http://www.linktionary.com/f/flow_control.html

Chapter 2: Introduction 5

TCP is made reliable via the use of sequence numbers and acknowledgments.

Conceptually, each octet of data is assigned a sequence number. The sequence number

of the first octet of data in a segment is transmitted with that segment and is called the

segment sequence number. Segments also carry an acknowledgment number, which is

the sequence number of the next expected data octet of transmissions in the reverse

direction. When the TCP transmits a segment containing data, it puts a copy on a

retransmission queue and starts a timer; when the acknowledgment for that data is

received, the segment is deleted from the queue. If the acknowledgment is not received

before the timer runs out, the segment is retransmitted. An acknowledgment by TCP

does not guarantee that the data has been delivered to the end user, but only that the

receiving TCP has taken the responsibility to do so. To govern the flow of data between

TCP, a flow control mechanism is employed. http://www.ietf.org/rfc/rfc0793.txt (1981)

As noted by Biswas (2003), TCP is almost globally accepted as the standard for end-to-

end reliable communication protocol. Therefore it is not feasible at any time to make

changes to the core of TCP protocol, and expect the globe community to move over to

the new version. Hence, efforts are being made to work around the shortcoming of TCP

by hiding the underlying inconsistencies of the wireless link from the protocol. Some of

the solutions that have been proposed are the Snoop Protocol, ELN and ECN, which

increase TCP’s performance by hiding the packet losses over the wireless link.

Therefore in this project, the flow control, and congestion control mechanisms in TCP

will be looked at in detail. The reasons for TCP’s poor performance in wireless Internet

will also be discussed.

http://www.ietf.org/rfc/rfc0793.txt

Chapter 2: Flow Control 6

2.2 Flow Control

Flow-control mechanisms control packet flow so that a sender does not transmit more

packets than a receiver can process. Flow controls are necessary because senders and

receivers are often unmatched in capacity and processing power. A receiver might not

be able to process packets at the same speed as the sender. If buffers fill, packets are

dropped. The goal of flow-control mechanisms is to prevent the dropping of packets

that must be retransmitted.

 RevWindow

 free space TCP data

 RecBuffer

Figure 2.1: Receiver Buffer

Once the TCP connection is established, each host will advertise its receiver window

size called the ’RevWindow’ as shown in Figure 2.1. It is the amount of receiving

buffer available on each host. It is also the maximum amount of data the sender can

send to the receiver at a time. The receiver advertises the size of its receiver window

with each acknowledgement it sends to the sender. This causes the sender to not send

excess data, and hence the receiver buffer never overflows. When the receiver’s buffer

is full, a window size of zero is advertised. The sender will stop sending data to the

receiver without invoking any congestion control mechanism.

Chapter 2: Flow Control 7

 r r

5

With

the s

the p

TCP Sende
34 2 1

5

r r
TCP Sende
345 2 1

3

r r
TCP Sende
4 3 2 15

1

Figure 2.2: Flow Control part 1

 reference to Figure 2.2, the initial receiver’s advertise window s

ender knows that it can only send up to a maximum of five pack

ackets are transmitted over the link, window size is reduced accord
TCP Receive
TCP Receive
TCP Receive
Window Size =
Window Size =
Window Size =
ize is five. Thus

ets at a time. As

ingly.

Chapter 2: Flow Control 8

 r r

As s

adve

rece

ackn

adve

data

only
TCP Sende
5 24 3 1

0

r r
TCP Sende

ACK1

5 4 23 1

0

r r
TCP Sende

ACK2ACK1

5 4 3

0

Figure 2.3: Flow Control part 2

hown in Figure 2.3, after five packets are being transmitted by

rtise window size will be zero, thus telling the sender to stop sendi

iver will indicate its current window size to the sender

owledgement (ACK) for every packet it received. In ACK1,

rtised a window size of one. The reason why the sender is still not

 at the moment is because ACK1 has not reach the sender. Therefo

 see a window size of zero and it will not transmit any data.
TCP Receive
TCP Receive
TCP Receive
Window Size =
Window Size =
12
Window Size =
 the sender, the

ng any data. The

by sending an

the receiver has

 transmitting any

re the sender can

Chapter 2: Flow Control 9

 r r

In F

will

mor

will

trans

TCP Sende

ACK4ACK2 ACK3

3 24 15

1

r r
TCP Sende

ACK5ACK4

5 4 123

3

r r
TCP Sende
5

5

Figure 2.4: Flow Control part 3

igure 2.4, when ACK1 reaches the sender, the window size is incre

notified the sender that it could now transmit one packet of data ac

e ACKs are transmitted over the link, window size will increase a

go on until all the ACK have reached the sender, thus telling the s

mit up to a maximum of five packets again.
TCP Receive
TCP Receive
TCP Receive
4 123
 Window Size =
Window Size =
Window Size =
ased to one. This

ross the link. As

ccordingly. This

ender that it can

Chapter 2: Congestion Control 10

2.3 Congestion Control

Congestion control mechanisms allow network systems to detect network congestion (a

condition in which there is more traffic on the network than can be handled by the

network or network devices) and throttle back their transmission to alleviate the

congestion. Congestion occurs on busy networks. When it occurs, end systems and the

network must work together to minimize the congestion. In contrast, flow controls are

used between end systems. A receiver uses flow controls to signal to the sender that it is

overloaded. The sender then throttles back or stops its transmission.

http://www.linktionary.com/f/flow_control.html (2001)

Without congestion control, the receiver may indicate a large window, which

encourages transmissions. However if more data packets arrive than can be accepted, it

will be discarded. This will result in excessive retransmissions, adding unnecessarily to

the load on the network and the TCP. Indicating a small window may restrict the

transmission of data to the point of under-utilizing the available bandwidth on the link.

http://www.ietf.org/rfc/rfc0793.txt (1981)

2.3.1 Slow Start

Slow Start mechanism is a feature in TCP, used by the sender to control the

transmission rate. This is accomplished through the return rate of acknowledgements

from the receiver. The rate at which the sender can transmit data is determined by the

rate of ACK transmitted by the receiver.

http://www.linktionary.com/f/flow_control.html
http://www.ietf.org/rfc/rfc0793.txt

Chapter 2: Congestion Control 11

 Window Size

 Slow Start Congestion Avoidance

 W

 W/2

 Half window size

Time

Figure 2.5: TCP transmission window

When a TCP connection is established, the Slow Start algorithm initializes a congestion

window to one segment. Kristoff (2003) found out that when the receiver returns ACKs,

it would cause the congestion window to increase by one segment for each ACK

returned. Thus, the sender can transmit the minimum of the congestion window and the

advertised window of the receiver, which is simply called the transmission window.

When the network is not congested and network response time is good, Slow Start

algorithm will increase the window exponentially to determine the available bandwidth

on the link as shown in figure 2.5. For the first successful transmission and

acknowledgement of a TCP segment, the algorithm will increased the window to two

segments. After successful transmission of these two segments and acknowledgements

completes, the window is increased to four segments. Then eight segments, then sixteen

segments and so on, up to the maximum window size advertised by the receiver or until

congestion finally does occur.

Chapter 2: Congestion Control 12

2.3.2 Congestion Avoidance

Congestion Avoidance is used to slow the transmission rate during Slow Start if the

network is forced to drop one or more packets due to overload or congestion.

Congestion Avoidance is used with Slow Start to keep the data transfer un-interrupted,

so it doesn't slow down and stay slow.

A retransmission timer expiring or the reception of duplicate ACKs in the Congestion

Avoidance algorithm can implicitly signal the sender that there is a network congestion

situation. This would cause the sender to set its transmission window to one half of the

current window size, but to at least two segments as shown in Figure 2.5. However if

congestion was indicated by a timeout, the congestion window is reset to one segment,

which automatically puts the sender into Slow Start mode. If congestion situation was

indicated by duplicate ACKs, the Fast Retransmit algorithm to be discussed in the next

section will be invoked.

Kristoff (2003) found out that as data is received during Congestion Avoidance, the

congestion window is increased. However, Slow Start is only used up to the halfway

point where congestion originally occurred. This halfway point was recorded earlier as

the new transmission window. After this halfway point, the congestion window is

increased by one segment for all segments in the transmission window that are

acknowledged. This mechanism will force the sender to more slowly grow its

transmission rate, as it will approach the point where congestion had previously been

detected.

Chapter 2: Congestion Control 13

2.3.3 Fast Retransmit

 r r

5

As s

lost

to d

trans

TCP Sende
34 2 1

r r
TCP Sende
345 2 1

r r
TCP Sende
 Packet loss

3 24 15

Figure 2.6: Fast Retransmit part 1

hown in Figure 2.6, as the data packets are transmitted over the lin

in the network. TCP sender will use the cumulative acknowledge

etermine which packet have reached the receiver, and provides

mitting lost packets, which will be discuss further below.
TCP Receive
TCP Receive
TCP Receive
k, packet three is

ments it receives

reliability by re-

Chapter 2: Congestion Control 14

 TCP Sender TCP Receiver
ACK2ACK1

4 125

 TCP Receiver TCP Sender ACK2ACK1 ACK2

 Duplicate ACKs
5 14 2

 TCP Receiver TCP Sender

 Duplicate ACKs

Figure 2.7: Fast Retransmit part 2

With reference to Figure 2.7, Biswas (2003) noted that the indication of packet loss is a

Duplicate ACK. Whenever a packet arrives out of sequence; only the ACK for last

packet received in sequence is sent back to the sender. Hence, when a Duplicate ACK

arrives, TCP sender identifies the cause to be either a packet loss or a delayed packet

receipt. If a third DUPACK is received, TCP confirms packet loss and performs a fast

retransmit.

15 4 2

ACK2ACK2 ACK2

Chapter 2: Congestion Control 15

 r r

 F

Imm

mod

by h

trip

TCP Sende
24 153

ast Retransmit

r r
TCP Sende
15 4 23

Fast Retransmit

r ACKr ACK
TCP Sende

54

3

Figure 2.8: Fast Retransmit part 3

ediately following Fast Retransmit, the sender will be in Conge

e with reference to Figure 2.8. Thus causing the sending window s

alf. The sender will then increases its window size by one unit eve

time.
TCP Receive
TCP Receive
TCP Receive
15 4 2

stion Avoidance

ize to be reduced

ry average round

Chapter 2: TCP in Wireless Link 16

2.4 TCP in Wireless Link

Traditionally, TCP has been tuned for networks comprising wired links and stationary

hosts. It assumes congestion in the network to be the primary cause for packet losses

and unusual delays, and adapts to it. Balakrishnan and Katz (1998) noted that TCP

reacts to packet losses by re-transmitting missing data, and simultaneously invoking

congestion control by reducing its transmission (congestion) window size and reducing

its retransmission timer. These measures will lower the level of congestion on the

intermediate links.

However Sharma and Hu (2002) argued that although TCP has been greatly enhanced

in its capability to adapt to high-speed links, many versions of TCP over wireless links

still couldn’t keep the comparative throughput as TCP in wired networks. The main

disadvantage is that traditional TCP assumes that all packet losses are due to network

congestion. It is important that this assumption needs significant modification in

wireless Internet applications because most packet losses are due to wireless link errors.

Figure 2.9: Wireless link using TCP.

Chapter 2: TCP in Wireless Link 17

Balakrishnan and Katz (1998) also found out that if packets are lost for reasons other

than congestion, these measures will result in an unnecessary reduction in end-to-end

throughput and hence, in sub-optimal performance. As shown in Figure 3,

communication over wireless links is often characterized by high bit-error rates due to

channel fading, noise or interference, and intermittent connectivity due to handoffs.

TCP performance in such networks suffers from significant throughput degradation and

very high interactive delays because the sender misinterprets corruption in the wireless

links for congestion.

Chapter 3

Snoop Protocol

3.1 Introduction

The Snoop Protocol was designed to solve the burst/intermittent packet loss due to high

bit error rates and short temporary disconnections experience by TCP in wireless link.

Figure 3.1: Adding the Snoop agent.

Chapter 3: Introduction 19

Snoop performs local retransmission and recovery. Biswas (2003) found out that it

shields the sender from the inconsistency of the wireless link, without sacrificing the

end-to-end semantics, or requiring any changes to the existing implementations of TCP.

It does not change or interfere with the content of the TCP packets that flow between

the Fixed Hosts (FH) and Mobile Hosts (MH). In wireless link, we expect to have

administrative control over the last hop router, or base station (BS). The Snoop agent is

designed to reside on the router between the wired and wireless link, referred to as the

gateway, or base station (BS) as shown in Figure 3.1. Snoop is TCP aware, and using its

knowledge of the congestion control mechanism in TCP along with its capability of

identifying packet losses.

Balakrishnan et al (1998) noted that the role of the snoop agent is to monitor the TCP

packets transmitted from a fixed host to a mobile host and vice versa. The agent caches

all those packets locally and in the case of receiving duplicate acknowledgments

(ACKs), retransmits the packets promptly and suppresses duplicate ACKs. The Snoop

protocol performs retransmission of lost packets locally (at the base station) and hence

avoids lengthy fast retransmission and congestion control at the sender side. By this

method, end-to-end semantics of TCP is maintained and performance of TCP is

improved.

The snoop module maintains a cache of TCP packets sent from the FH that haven’t yet

been acknowledged by the MH. When a new packet arrives from the FH, the snoop

module adds it to its cache and passes the packet on to the routing code, which performs

the normal routing functions. The snoop module also keeps track of all the

acknowledgments sent from the mobile host. When a packet loss is detected (either by

the arrival of a duplicate acknowledgment or by a local timeout), it retransmits the lost

packet to the MH if it has the packet cached. Thus, the base station (snoop) hides the

packet loss from the FH by not propagating duplicate acknowledgments, thereby

preventing unnecessary congestion control mechanism invocations.

Chapter 3: Algorithms 20

3.2 Algorithms

 Base Station r

5

The

The

direc

not y

TCP Sende
34 2 1

r
Base Station r
TCP Sende
345 2 1

r

Base Station r
TCP Sende
235 14

Figure 3.2: Snoop Protocol part 1

Snoop Protocol introduces a module, called the snoop agent, at the

agent monitors every packet that passes through the TCP conn

tions. The agent maintains a cache of TCP segments sent across the

et been acknowledged by the receiver as shown in Figure 3.2.
TCP Receive
TCP Receive
r
TCP Receive
 Base Station.

ection in both

 link that have

Chapter 3: Algorithms 21

 Base Station TCP Sender

TCP Receiver
1

1
2

5 34 2

 Base Station TCP Sender

 Packet loss
TCP Receiver

15

2

3

ACK1

234

 1
 Base Station TCP Sender

4

5

ACK1

ACK2

5 4 3 2 1

TCP Receiver

2 1

Figure 3.3: Snoop Protocol part 2

As the data packets are transmitted over the network, packet three is lost in the wireless

link. TCP Receiver has already received packet one and two, therefore ACK1 and ACK2

are return to the sender as shown in Figure 3.3.

Chapter 3: Algorithms 22

 Duplicate ACKs

r Base Station

 TCP Sende

5

45 3 2

ACK1
ACK2

ACK2

r

2 14

 Duplicate ACKs r Base Station
TCP Sende
34

ACK2

ACK2

ACK2

ACK1 ACK2

5

r

5 2 14

Suppress r Base Station
TCP Sende
 ACK2

5 4 3

Figure 3.4: Snoop Protocol part 3
TCP Receive
TCP Receive
Duplicate

ACKs

r
TCP Receive
2 15 4

Chapter 3: Algorithms 23

 Base Station r

Figu

dupl

Stati

ACK

In F

pack

the l
TCP Sende
3

3

45

r

1245

Base Station r
TCP Sende

ACK3 ACK4

5 4

3

Figure 3.5: Snoop Protocol part 4

re 3.4 showed that a packet loss is detected by the arrival of a sm

icate acknowledgments (ACKs) from the receiver. The Snoop age

on will then suppresses the duplicate acknowledgments to preven

s from reaching the sender.

igure 3.5, Snoop agent retransmits the lost packet from its cache

et that has been acknowledged from its cache. Since the Base Stat

oss packet, the sender does not need to trigger its congestion control
TCP Receive
ACK5

r
TCP Receive
5 2 14

all number of

nt at the Base

t the duplicate

 and clear the

ion retransmits

algorithms.

Chapter 3: Performance Analysis 24

3.3 Performance Analysis

Figure 3.6: Snoop Protocol test bed setup 1

In figure 3.6, Biswas (2003) conducted an experiment to analysis the performance of

Snoop module. Bandwidth between the Fixed Host (FH) and the Base Station (BS) was

set at 10 Mbps, and the bandwidth available between MH and BS was set at 2 Mbps.

There was no packet loss over the wired link, and a 2% packet loss on the wireless link.

A constant delay of 200ms was applicable on the link, whose delay was not varied.

Delay agent was used to add delay to the fixed network and the packets were corrupted

using the packet corruption unit. Three tests were performed on the Snoop module to

see its effectiveness in different scenarios. Two of them were with variable delays

between the base station and the fixed/mobile hosts, and one of them was with variable

packet loss over the wireless link.

Chapter 3: Performance Analysis 25

Figure 3.7: Variable delay between BS and MH

Figure 3.8: Variable delay between BS and FH

Chapter 3: Performance Analysis 26

With reference to Figure 3.7, Biswas (2003) found out that although TCP performance

deteriorates with increased delay over the wireless hop, Snoop still managed to obtain a

better throughput than the normal TCP. The performance improvement is close to two

times that of normal TCP.

Biswas (2003) also noted that with low delay on the wired link, the performance

improvement with Snoop is not as high as shown in Figure 3.8. Significance

performance improvement was noted when the delay was about 400ms. This was due to

the increased delay on the wired link, thus the Snoop agent would had more time for

itself to time out and perform local recovery when the wireless losses occurred. In this

test scenario, the peak performance of Snoop was about three times that of normal TCP.

Figure 3.9: Snoop performance with different corruption rates

Chapter 3: Performance Analysis 27

With reference to Figure 3.9, Biswas (2003) also found out that when packets were

corrupted over the wireless link, Snoop still managed to give a consistent performance

higher than normal TCP. Snoop produced a throughput of twice the normal TCP when

there was 2% corruption on the link. However the quantity of performance

improvement with snoop dropped with higher bit corruption rates, due to the delay on

the links did not allow snoop with enough time to attempt multiple local recoveries.

Figure 3.10: Snoop Protocol test bed setup 2

Showed in Figure 3.10 is a separate experiment done by Balakrishnan et al (1998). The

simulation parameters are set as when there was no packet loss, the maximum

throughput achieved by a TCP connection over the wireless link was about 1.6 Mbps.

The rated maximum raw bandwidth of the wireless link was 2 Mbps. Data transfer from

FH to MH was monitored. The maximum possible window size for the connection was

64 KBytes and the maximum TCP segment size was 1460 bytes.

Chapter 3: Performance Analysis 28

Figure 3.11: Throughput received by the mobile host at different bit-error rates

Figure 3.11 plots the sequence numbers of the received TCP packets versus time. It

shows the comparison of sequence number progression in a connection using the Snoop

protocol and a connection using normal TCP for a Poisson-distributed bit error rate of

3.9x10-6 (a bit error every 256 Kbits on average). Balakrishnan et al (1998) found out

that the Snoop protocol managed to maintain a high and consistent throughput

performance. On the other hand, normal TCP invoked congestion control procedures

unnecessarily for several times during the duration of the connection. This event

appeared as the flat and empty regions of the curve and deteriorates the throughput

considerably.

Chapter 3: Advantages and Disadvantages 29

3.4 Advantages and Disadvantages

The advantage as noted by Balakrishnan et al (1998) was that Snoop mechanisms

improved the performance of the connection in both directions, without sacrificing any

of the end-to-end semantics of TCP, modifying host TCP code in the fixed network or

re-linking existing applications. The combination of improved performance preserved

protocol semantics and full compatibility with existing applications. Snoop mechanism

also had the advantage that the connection would not be idle for much time after a

handoff since the new base station would forward cached packets as soon as the mobile

host is ready to receive them. Another advantage was that it resulted in low-latency

handoffs for non-TCP streams as well, especially continuous media streams. Snoop

protocol was similar to link-level retransmissions over the wireless links in that both

schemes perform retransmissions locally to the mobile host. It was closely coupled to

TCP, and so did not perform many redundant re-transmissions. Packets retransmitted by

the sender that arrived at a base station were already cached there. This happened most

often because the sender often transmits half a window’s worth of data and several of

these packets were already in the cache.

Balakrishnan and Katz (1998) also conducted experiments using TCP Reno, TCP

SACK and the Snoop protocol using the Web workload, varying the number of

concurrent TCP connections from 1 to 4, as well as using persistent-HTTP. Figure 3.12

shows the number of separate downloads using 1 to 4 concurrent connections per client

as well as the performance of persistent-HTTP for the three protocol. It depicts the

number of successfully completed individual downloads (connections) in 1000 seconds.

Chapter 3: Advantages and Disadvantages 30

Figure 3.12: Performance on a Web workload in different protocol configurations

As shown in Figure 3.12, the advantage of Snoop protocol was the increased in

performance of between three and six times than the other protocols. Balakrishnan and

Katz (1998) found out that not only did the Snoop protocol performed well for large

bulk transfers, but it also resulted in significant performance improvements for shorter

transfers (combined with occasional long ones) that characterized Web workloads

today. The performance improvement was between a factor of three and six for this

realistic workload under experimentally measured and realistic wireless error

conditions.

The disadvantage with Snoop protocol was that if the connection between the BS and

the MH was unreliable, the FH might get timed out when waiting for the

acknowledgement from the MH.

http://www.comp.leeds.ac.uk/sy22/web_pages/113/WirelessTCP.html#top

Chapter 3: Advantages and Disadvantages 31

Biswas (2003) also noted that Snoop protocol is designed for handling connections

where the bulk of the data is transferred from the FH to the MH. Therefore Snoop is

only effective when the FH is the sender and the MH is the receiver.

West and Vaidya (1997) found out that one of the greatest disadvantages of Snoop

protocol was that it requires the ACKs to follow the same path as the data in order to

shield the sender from losses. This was not a problem for network topologies containing

a single wireless path, which every packet must traverse. However it did became a

problem when multiple wireless paths were possible, or with asymmetric links where

the sender used a high bandwidth, high delay path (such as a satellite link) to send the

data and the receiver used a low bandwidth terrestrial path to return the ACKs. Snoop

had no method of informing the sender when the base station experiences a period of

high errors and this could lead to unnecessary time out, which invoke congestion

avoidance procedures.

Chapter 4

Explicit Loss Notification (ELN)

4.1 Introduction

Ding and Jamalipour (2001) found out that the poor performance of TCP in error-prone

wireless networks is mainly due to lack of explicit information at the transport layer on

the reason of a packet loss. For the wireless networks, if we can explicitly inform TCP

the reason of a packet loss, then TCP will be able to maintain its throughput (i.e. not to

reduce the congestion window size) if the packet has been lost not because of network

congestion.

Ding and Jamalipour (2001) mentioned that the methods discussed in the previous

section do not actually let the TCP sender determine clearly whether the packet is lost

due to wireless error or network congestion. This makes the TCP sender retransmits the

packet as usual (or quicker than usual) and then cannot keep the throughput high in the

error prone environment.

Chapter 4: Introduction 33

Although Snoop protocol is a good method to improve the performance of TCP in

wireless network on fixed host to mobile host direction, it retransmits the lost packet

like other link layer solutions, now locally but through its snoop agent. Therefore Snoop

protocol also suffers from not being able to completely shield the sender from the

wireless losses.

Based on Snoop protocol, a new protocol called Explicit Loss Notification (ELN) with

Acknowledgment (ELN-ACK), which can overcome the limitations of the Snoop

protocol. As noted by Ding and Jamalipour (2001), in ELN-ACK protocol

implementation, modifications are made to the structure of acknowledgment packet, and

the software part at base station, mobile host and fixed host. Those modifications,

however, can be maintained at minimal compared with other schemes. The method still

looks at the throughput and delay performance improvement of TCP on the fixed host to

mobile host direction.

Ding and Jamalipour (2001) also noted that, in ELN-ACK a new form of

acknowledgment packet called ACKELN is used. The sequence numbers of the four most

recently lost packets judged by the MH and one bit (called ELN bit) to indicate the

reason of the lost packet, are included in the ACKELN acknowledgment packet. The

ELN bit is judged at the BS. ELN agent at the BS checks the information stored in the

ELN bit to see if the packet has been lost before it is arrived at the BS. After the ELN

agent at BS processes the ACKELN, it continues to transmit back to FH. When the FH

(the original sender) receives the ACKELN, the TCP sender will know the reason of

packet loss from the ELN bit, explicitly.

Similar to the snoop agent used in the Snoop protocol, an ELN-ACK agent is

introduced at the BS as noted by Ding and Jamalipour (2001). It has two main

functions, the first one is to judge and store the packet loss information transmitted from

the FH. The second function is to judge the value of ELN bit. When the BS receives an

ACKELN, it will judge the reason for lost packet based on the stored information in the

Chapter 4: Introduction 34

acknowledgment packet. Data processing procedure at the ELN-ACK agent is very

similar to the one used in the Snoop protocol.

Ding and Jamalipour (2001) also found out that when the FH receives the ACKELN, it

acts with the information stored in the ELN bit. If the ELN bit is ‘1,’ it means that the

corresponding packet is lost due to wired segment congestion and thus it will proceed

with the same procedure as in the window algorithm. If the ELN bit is ‘0,’ it means that

the corresponding packet is lost due to wireless error and thus it retransmits the packet

immediately without any window reduction.

Chapter 4: Algorithms 35

4.2 Algorithms

Hole = 0

 Base Station r

5

In F

segm

rece

data
TCP Sende
34 2 1

Hole = 0 r
Base Station r
TCP Sende
345 2 1

r Hole = 0
Base Station r
TCP Sende
345 12

 Packet loss at wired link

Figure 4.1: ELN part 1

igure 4.1, the ELN agent is introduced at the base station. It mo

ents that arrive over the network. It keeps track of holes in the seque

ives data segments, where a hole is a missing interval in the sequenc

 packets are transmitted over the network, packet three is lost in the w
TCP Receive
TCP Receive
r
TCP Receive
nitors all TCP

nce space as it

e space. As the

ired link.

Chapter 4: Algorithms 36

Hole = 0

 Base Station TCP Sender

Hole = 3 TCP Receiver
1

2
57 6 4

 Base Station r

A n

beca

info

trans
TCP Sende
r

4

2

ACK1

7 6 5

Hole = 3
Base Station TCP Sender

 Packet loss at wireless link

7

5

4

A

ACK1

6

Figure 4.2: ELN part 2

ew data segment that is out of the normal increasing sequence c

use segments in between have been lost. ELN agent will store t

rmation as hole at the base station as shown in Figure 4.2. As the d

mitted over the network, packet five is lost in the wireless link.
TCP Receive
1

TCP Receiver

CK2

12

reates a hole,

he packet loss

ata packets are

Chapter 4: Algorithms 37

Hole = 3

 Duplicate ACKs Base Station r

Figu

base

forw

 TCP Sende

ACK1

6

ACK2

ACK2
7

r

2 14

Hole = 3

 Duplicate ACKs r Base Station
TCP Sende
7

ACK2

A

ACK1 ACK2

Figure 4.3: ELN part 3

re 4.3 showed that when duplicate ACKs, arrive from the receiver, t

 station consults its list of holes. It sets the ELN bit on the ACKEL

arding to the sender.

TCP Receive
CK2

r
TCP Receive
ELN bit = 1
6 2 14

he agent at the

N as ‘1’ before

Chapter 4: Algorithms 38

Hole = 3

 Duplicate ACKs r Base Station

Figu

know

take

TCP Sende

ACK2

ACK2

ACK2 ACK2

r

7 6 2 14

Hole = 3

 Duplicate ACKs Base Station r
TCP Sende

Figure 4.4: ELN part 4

re 4.3 showed that upon getting the ACKELN with ELN bit set as ‘

s that packet is lost at wired link. Therefore it will retransmit the l

 congestion control actions.

ACK2 ACK2
ACK2

3

7

TCP Receive

ACK2

r
TCP Receive
ELN bit = 1
1’. The source

oss packet and

6 2 14

Chapter 4: Algorithms 39

Hole = 0

 Duplicate ACKs Base Station r

Hole = 0

Figu

retra

Whe

will

r Base Station

ACK2 ACK2

3

ACK2

ACK2

r

7 6 2 14
TCP Sende
TCP Sende

Figure 4.5: ELN part 5

re 4.5 showed that once packet three, which is lost at the wired

nsmitted, ELN agent would clear the packet loss information at th

n the receiver successfully receives packet three, the normal transm

continue.

r

3 7

ACK2

ACK3

ACK2ACK2
TCP Receive
TCP Receive
link had been

e base station.

itting of ACKs

6 4 2 1

Chapter 4: Algorithms 40

Hole = 0

 Duplicate ACKs Base Station r

Figu

base

forw

 TCP Sende

ACK2 ACK3
ACK4

ACK4

r

2 13 7 6 4

Hole = 0

 Duplicate ACKs r Base Station
TCP Sende

ACK4

A

ACK3 ACK4

3 7

Figure 4.6: ELN part 6

re 4.6 showed that when duplicate ACKs, arrive from the receiver, t

 station consults its list of holes. It sets the ELN bit on the ACKEL

arding to the sender.
TCP Receive
CK4

r
TCP Receive
ELN bit = 0
6 2 14

he agent at the

N as ‘0’ before

Chapter 4: Algorithms 41

Hole = 0

 Duplicate ACKs r Base Station

Figu

know

not t

TCP Sende

ACK4

ACK4

ACK4 ACK4

r

2 17 63 4

Hole = 0

 Duplicate ACKs Base Station r
TCP Sende

Figure 4.7: ELN part 7

re 4.3 showed that upon getting the ACKELN with ELN bit set as ‘

s that packet is lost at wireless link. Therefore it will retransmit the l

ake any congestion control actions.

ACK4 ACK4
ACK4

5

73
TCP Receive

ACK4

r
TCP Receive
ELN bit = 0
0’. The source

oss packet and

6 2 14

Chapter 4: Algorithms 42

Hole = 0

 Duplicate ACKs Base Station r

Hole = 0

Figu

retra

trans

r Base Station

ACK4 ACK4

5

ACK4

ACK4

r

7 6 2 13 4
TCP Sende
TCP Sende

Figure 4.8: ELN part 8

re 4.8 showed that packet five, which is lost at the wireless

nsmitted. When the receiver successfully receives packet thre

mitting of ACKs will continue.

r

ACK4

ACK5

ACK4ACK4

73 3
TCP Receive
TCP Receive
link had been

e, the normal

6 4 2 1

Chapter 4: Performance Analysis 43

4.3 Performance Analysis

Figure 4.9: ELN test bed setup

Ding and Jamalipour (2001) conducted a simple network simulation send TCP packets

from a fixed host to a mobile host. The base station includes a finite-buffer drop-tail

gateway, and the network consists wired and wireless links. ELN-ACK protocol has

been implemented using C++ programming and Network Simulator was used to

simulate the TCP packet transmission in wired cum wireless segments of the network.

In the simulation, the buffer size in the base station was set at 5 packets. Bandwidth of

bottleneck link from base station to mobile host was set at 100 packets/msec.

Propagation delay was set at 0.2 msec. This includes the time between the release of a

packet from the source and its arrival into the link buffer, the time between the

transmission of the packet on the bottleneck link and its arrival at its destination and the

time between the arrival of the packet at the destination and the arrival of the

corresponding acknowledgment at the source.

Chapter 4: Performance Analysis 44

Figure 4.10: Throughput performance comparison

In Figure 4.10, ELN-ACK protocol was compared with different performance

enhancing mechanisms such as Snoop protocol (snoop), Selective acknowledgement

(Sack) and Split connection (Split). Two versions of TCP were also taken into

consideration; which were TCP-Reno and TCP Tahoe.

Based on the results shown in this figure Ding and Jamalipour (2001) found out that

Snoop and ELN-ACK protocols provide significant performance improvement when

the packet loss rate becomes larger than around 0.3%. The throughput performance of

the Snoop and ELN-ACK protocols remains very close until the packet loss rate of 1%.

Beyond that, the ELN-ACK outperforms the Snoop protocol. The increase in the

performance of Snoop and ELN-ACK compared with other TCP methods is clear since

these two protocols provide better differentiation of the packet loss types over wireless

link and the that of wired link. On top of that, the ELN-ACK protocol was able to

improve the throughput performance even more by sending information on the reason

of packet loss to the TCP sender whereas the Snoop protocol tries to handle all wireless-

Chapter 4: Performance Analysis 45

related losses at its snoop agent located in the base station. This goes to show that,

ELN-ACK protocol was able to add extra features to the Snoop protocol and immunes

all packet loss even when the packet loss rate is high and the snoop agent cannot handle

them.

Figure 4.11: End-to-end delay for TCP-Reno (without wireless error)

The delay of 200-packet transmission using TCP-Reno and the proposed ELN-ACK

protocols are shown in Figure 4.11 to 4.13. TCP-Reno produced quite good end-to-end

delay performance in absence of wireless error, as shown in Figure 4.11. Ding and

Jamalipour (2001) noted that the mean end-to-end delay is about 0.15 to 0.2 second.

There were two packets with delay around 0.5 second. This was due to network

congestion, causing these two packets to be retransmitted by the loss recovery

mechanism.

Chapter 4: Performance Analysis 46

Figure 4.12: End-to-end delay for TCP-Reno (wireless packet loss rate = 0.1)

Figure 4.13: End-to-end delay for ELN-ACK (wireless packet loss rate = 0.1)

Chapter 4: Performance Analysis 47

In Figure 4.12 and 4.13, the packet loss rate on the wireless link is 0.1, which means

that in every 200-packet transmission there are about 20 packets lost in the wireless

channel. Based on the simulation results in Figure 4.12, TCP-Reno had a mean

transmission delay of about 0.15 to 0.25 second. In the 200 packets transmission, there

were 24 packets whose transmission delay was significantly above 0.2 second. These

packets were lost either because of network congestion or wireless error in the network.

Of the 24 retransmitted packets, 11 packets have the delay around 0.4 to 0.6 second.

This means that these packets are retransmitted by loss recovery mechanism without

invoking time out, 13 other packets have a delay around 1 to 1.4 second, which means

that these packets are timed out. Due to the wireless packet loss, the TCP sender always

has to wait for time out before re-transmitting a lost packet.

On the other hand, Ding and Jamalipour (2001) found out that ELN-ACK algorithm can

efficiently avoid the timeout by re-transmitting a lost packet immediately. As shown in

Figure 4.13, there was no packet delay above 1 second in the ELN-ACK algorithm. All

lost packets were retransmitted by loss recovery mechanism or by fast retransmission.

From Figure 4.13, Ding and Jamalipour (2001) also found out that the mean end-to-end

delay for packet transmission was about 0.1 to 0.2 second. There were 23 packets with

end-to-end delay between 0.4 to 0.6 seconds. Most of these packets were lost in

wireless channel when it was first transmitted by the TCP-sender. Unlike the TCP-

Reno, the TCP sender knows that these packets were lost due to wireless error and not

due to network congestion. Thus the lost packet can be retransmitted efficiently without

incurring any window deduction, which avoids long idle time to wait for timeout.

Chapter 4: Performance Analysis 48

Figure 4.14: Window evolution for TCP-Reno (wireless packet loss rate = 0.1)

Figure 4.15: Window evolution for ELN-ACK (wireless packet loss rate = 0.1)

Chapter 4: Performance Analysis 49

Figures 4.14 and 4.15 show the congestion window size in the procession of

transmitting 200 packets for TCP-Reno and TCP with ELN-ACK, respectively. With

reference to Figure 4.14, Ding and Jamalipour (2001) noted that the main reason for the

occurrence of these timeouts in the TCP-Reno algorithm was the small congestion

window, which did not transmit enough duplicate acknowledgment to the TCP sender.

The number of duplicate ACKs arrived were also not sufficient to trigger a fast

retransmission. This caused a timeout-driven retransmission that keeps the link idle for

long periods of time. As shown in Figure 4.14, the congestion window size was not able

to increase big enough and was always reduced to one due to timeout. Therefore in a

high packet loss environment, the TCP-Reno cannot efficiently transmit packet.

When there is no wireless packet loss, TCP-Reno sender was able to retransmit packet

by using the loss recovery algorithm as the only packet loss in transmission was due to

network congestion. The window size is halved when loss recovery happens, but no

time out happens, because the congestion window was kept big enough and there were

sufficient duplicate ACKs transmitted back to trigger the loss recovery. From Figure

4.15, it can be seen that the ELN-ACK is an effective way that can retransmit the lost

packet quickly due to wireless error, keep the congestion window wide, and thereby

eliminating timeout and long idle time periods. Compared with TCP-Reno, ELN-ACK

algorithm significantly improves the end-to-end delay performance.

Chapter 4: Advantages and Disadvantages 50

4.4 Advantages and Disadvantages

Figure 4.16: Throughput of TCP Reno and Reno enhanced with ELN

Balakrishnan and Katz (1998) found out from their experiments, which measured the

performance of data transfer from the MH to the FH. The experiment was conducted

over a range of exponentially-distributed bit-error rates. As shown in Figure 4.14, there

were significant performance benefits of using the snoop protocol coupled with the

ELN mechanism. These measurements were made for wide-area transfers between UC

Berkeley and IBM Watson, across one wireless WaveLAN hop and 16 Internet hops. At

medium to high error rates, the performance improvement due to ELN is roughly a

factor of 2. At lower error rates, TCP Reno performs quite well as expected, and the

benefits of ELN are not as pronounced. The main advantage of ELN was that it helped

to maintain a large TCP congestion window even when wireless error rates were high,

reacting only to congestion.

Chapter 4: Advantages and Disadvantages 51

However Ewerlid (2001) noted that the main disadvantage of ELN mechanism was that

it required TCP-stack modifications at all endpoints. Therefore ELN mechanism

required standardization of modifications in TCP followed by widespread acceptance of

these changes.

Chapter 5

Explicit Congestion Notification
(ECN)

5.1 Introduction

Ramakrishnan et al (2001) noted that loss, as an indication of congestion in the network

is appropriate for pure best-effort data carried by TCP, with little or no sensitivity to

delay or loss of individual packets. In addition, TCP's congestion management

algorithms have techniques built-in to minimize the impact of losses, from a throughput

perspective. However, these mechanisms are not intended to help applications that are

in fact sensitive to the delay or loss of one or more individual packets. Interactive

traffic such as telnet, web-browsing, and transfer of audio and video data can be

sensitive to packet losses or to the increased latency of the packet caused by the need to

retransmit the packet after a loss.

Durresi et al (2002) found out that, congestion remains the main obstacle to Quality of

Service (QoS) on the Internet. Congestion is a critical problem especially in wireless

networks, where TCP congestion control performance is affected by intrinsic wireless

Chapter 5: Introduction 53

link characteristics such latency, bandwidth, packet loss due to congestion, and losses

due to transmission errors links. One of most promising schemes to improve TCP

congestion control is Explicit Congestion Notification (ECN). ECN is the only

mechanism that delivers explicit congestion signals to the source. So improving the

ECN feedback is essential for the future data, wireless networks and their QoS

guarantees.

As noted by Deshpande (1999), currently TCP assumes that all the losses are due to

congestion and does not distinguish between losses due to wireless link and those due to

congestion. As the wireless networks have higher bit-error rates than fixed networks,

determining whether a segment was lost due to congestion or wireless link may allow

TCP to achieve better performance in high Bit Error Rate (BER) environments than

currently possible. Adding ECN mechanism to TCP may help to improve TCP

performance in wireless link.

Active Queue Management (AQM) mechanism is used in ECN to detect congestion

before the queue overflows, and provide an indication of this congestion to the end

nodes. Thus, active queue management can reduce unnecessary queuing delay for all

traffic sharing that queue. Active queue management avoids some of the bad properties

of dropping on queue overflow, including the undesirable synchronization of loss across

multiple flows as noted by Ramakrishnan et al (2001). More importantly, active queue

management means that transport protocols with mechanisms for congestion control do

not have to rely on buffer overflow as the only indication of congestion.

AQM can set a Congestion Experienced (CE) bit in the packet header instead of

dropping the packet, when such a field is provided in the IP header and understood by

the transport protocol. The use of the CE bit with ECN allows the receiver to receive

the packet, avoiding the potential for excessive delays due to retransmissions after

packet losses.

Chapter 5: Algorithms 54

5.2 Algorithms

 Base Station r

5

6

a

In F

capa

Stati

is no

TCP Sende
124 3

 r
Base Station r
TCP Sende
4 3 15 2

r

Base Station r
TCP Sende
 Critical queue length

237 46 18 59

Figure 5.1: ECN part 1

igure 5.1, The ECN agent with AQM is introduced at the Base Stati

ble network. AQM keeps track of the average queue length at the inp

on. Critical queue length indicates congestion at the network. Base S

t yet full, but it is preparing to drop packet.
TCP Receive
TCP Receive
r
TCP Receive
on in the ECN

ut of the Base

tation’s buffer

Chapter 5: Algorithms 55

 Base Station TCP Sender

4

8

2

6

CE bit = 1

CE bit = 1

CE bit = 1

1

3

5

bd ce 9a 7

 CE bit = 1

TCP Receiver

ECE bit = 1 Base Station TCP Sender

4

8c

6

a
ECE bit = 1

ECE bit = 1

ACK3

ACK2

CE bit = 1

CE bit = 1

CE bit = 1

CE bit = 1

5

7

9

ACK1

 g f h de b

TCP Receiver

1 3 2

Figure 5.2: ECN part 2

Instead of dropping the packets, AQM sets the CE bit in the packet header to ‘1’,

indicating congestion at the network as shown in Figure 5.2. Upon receipt of a packet

with the CE bit set, TCP Receiver sends back an acknowledgment (ACK) with the

ECN-Echo (ECE) bit set to ‘1’ in its header.

Chapter 5: Algorithms 56

1 1 Base Station r

As s

prob

Send

and

next
TCP Sende

ACK1 ACK2

r

8

c

6

a
1

1

ACK5

ACK4

7

b

9

ACK3

gi hj f e d

15 4 3 2

1 1 Base Station r
TCP Sende

ACK3 ACK4

l

c

ACK

d

e

b

ACK5

i k j h g f

a 9

Figure 5.3: ECN part 3

hown in Figure 5.3, these effectively notify the TCP Sender of th

lem in the network. Upon receipt of the first ACK carrying the ECE

er must trigger congestion control mechanisms. Congestion window

the sender sets the Congestion Window Reduced (CWR) bit in the h

 data segment it transmits to ‘1’.
TCP Receive
r

1

1

ACK7

6

TCP Receive
CE bit = 1
CE bit = 1
CE bit = 1
CE bit = 1
CE bit = 1
 bit = 1
CE bit = 1

CE bit = 1
CE bit = 1
ECE bit =
e

bi

w

e

ECE bit =
ECE bit =
ECE bit = 1
ECE bit =
ECE bit =
ECE bit =
ECE bit =
ECE bit = 1
ECE bit =
CWR
CWR bit = 1
68 7

congestion

t. The TCP

ill be halve

ader of the

Chapter 5: Algorithms 57

1 1 Base Station r

As S

will

until

wind

rece
TCP Sende

ACK5 ACK6

l

r

1

1

ACK9

ACK8

h

g

f

ACK7

kn m j i

ae d c b

1
Base Station r
TCP Sende
ACK5 ACK6

lno m

i

k

j

ACK

ACK7

q p

h g

Figure 5.4: ECN part 4

hown in Figure 5.4, when Base Station detects queue length is no long

stop setting the CE bit. The receiver continues to set the ECE bit in

 it receives notification from the sender, via the CWR bit, that th

ow has been reduced. Upon receipt of the first packet carrying the C

iver stop setting the ECE bit.
TCP Receive
ACK9

8

r
TCP Receive
ECE bit =
e

 A

e

W

ECE bit =
ECE bit =
ECE bit = 1
ECE bit =
ECE bit = 1
ECE bit =
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
df e

r critical, it

CK to ‘1’,

congestion

R bit. The

Chapter 5: Algorithms 58

 Base Station r

As s

stop

TCP Sende

ACK7 ACK8

l

no

m

p

ACKb

ACKa

ACK9

t s r q

r

gk j i h

Base Station r
TCP Sende

ACK9 ACKa

n

o

p

ACK

ACKb

v u t s r q

m l

Figure 5.5: ECN part 5

hown in Figure 5.5, upon receipt of the first ACK without the ECE bi

 setting the CWR bit.
TCP Receive
ACKd

c

r
TCP Receive
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
CWR bit = 1
i k j

t. The sender

Chapter 5: Performance Analysis 59

5.3 Performance Analysis

Figure 5.6: ECN test bed setup 1

Kinicki and Zheng (2001) conducted an experiment with the above test bed setup in

Figure 5.6 to evaluate the performance of Random Early Detection (RED) mechanism

and ECN. RED detests congestion “early by maintaining an exponential-weighted

average queue size. RED probabilistically drops packets before the queue overflows to

signal congestion to TCP sources, whereas ECN is a RED extension that marks packets

to signal congestion. The experiment was conducted with Network Simulator 2 (NS2)

with average queue length threshold for triggering probabilistic drops/marks set at 5,

buffer size set at 50 packets and 100 seconds of simulation time. The goodput (Mbps) of

RED and ECN were evaluated. Goodput is the rate at which packets arrive at the

receiver. It differs from throughput as retransmissions are excluded from goodput.

Chapter 5: Performance Analysis 60

Figure 5.8: Goodput with 30 flows

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 100 200 300 400 500 600
Number of flows

G
oo

dp
ut

 (M
bp

s)

ECN (max_p=0.1)
RED (max_p=0.1)
ECN (max_p=0.5)
RED (max_p=0.5)

Figure 5.7: RED and ECN Goodput

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.2 0.4 0.6 0.8 1

max_p

G
oo

dp
ut

 (M
bp

s)

ECN (max_th=15)
RED (max_th=15)
ECN (max_th=30)
RED (max_th=30)

Chapter 5: Performance Analysis 61

Figure 5.9: Goodput with 120 flows

 Figure 5.7, the average queue length threshold for triggering probabilistic

rops/marks was set at 5, average queue length threshold for triggering forced drops

and Zheng (2001) found out that for a fixed demand, as

ber of flows increased, the performance of both RED and ECN decreased. This

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

0 0.2 0.4 0.6 0.8 1

max_p

G
oo

dp
ut

 (M
bp

s)

10

ECN (max_th=15)
RED (max_th=15)
ECN (max_th=30)
RED (max_th=30)

In

d

was set at 30. Kinicki and Zheng (2001) noted that ECN provided higher goodput than

RED. When the number of flows generating the demand is high, ECN performed better

with a more aggressive maximum dropping/marking probability (max_p) setting.

In Figure 5.8 and 5.9, Kinicki

the num

maybe caused by buffer contention at the router and flow lockout. However when there

were many flows, increasing average queue length threshold for triggering forced drops

(max_th) would improve ECN goodput. This may also be caused by the increased in

max_p; therefore the number of packets marked increases. Hence TCP source will react

faster to congestion.

Chapter 5: Advantages and Disadvantages 62

5.4 Advantages and Disadvantages

Figure 5.10: ECN test bed setup 2

One of the advantages of ECN can be found from the experiments conducted by

Pentikousis and Badr (2003). The experiment was carried out using Network Simulator

(NS2) for the topology as shown in Figure 5.9, all clients have the same TCP

configuration and simultaneously initiate 20-MB downloads from the server. These

large transfers allow TCP/ECN to display its best potential. The queue management

mechanism used at router B was either Drop Tail (DT) or RED, as indicated in the

results. If DT is used at router B, the only parameter set was the maximum buffer size.

The tests were conducted with Queue Length (QL) ranging from 4 to 256 packets. The

bandwidth B is the capacity of the bottleneck link along the connection path, which was

set at 1.5 Mb/s. The minimum (minth) thresholds of the “RED region” were from 1 to

80. The terms “conservative” and “aggressive” (marked as “C” and “A” in the figures)

were used to denote a maximum dropping probability of 2% and 10%, respectively.

Chapter 5: Advantages and Disadvantages 63

Figure 5.11. Total number of packets sent by the FTP server to all ten clients.

Figure 5.12: Total number of packets sent by the FTP server to all ten clients (with
longer delays)

Chapter 5: Advantages and Disadvantages 64

With reference to Figure 5.10 and 5.11, the number of packets dropped at the gateway

was shown in white. The shaded area showed duplicate and retransmitted packets. The

total application payload was shown in black. Pentikousis and Badr (2003) found out

that DT, conservative and aggressive RED, and conservative ECN cause more packet

drops as QL decreases. On the other hand, aggressive ECN drops fewer packets with

QL = 64 than QL = 128. It was also remarkable that with QL = 32, aggressive ECN

drops an extremely small fraction of packets when compared to the others. ECN in itself

cannot prevent packet drops entirely, but it can reduce them dramatically. In general,

TCP performs better when aggressive ECN is used: the sender sends fewer total

segments, with, furthermore, a higher proportion of delivered-to-dropped packets.

Anot ame

oodput efficiency and level of packet losses as a DT-based network in which routers

sed buffers at least twice as large. This can be an important incentive for network

operators, especially if they can enable ECN by simply upgrading the software of

existing routers. With DT they would have to double the buffer space provided to the

outgoing link in order to realize the same level of packet drops. An additional benefit

from using ECN with half the buffer size was that the maximum possible queuing delay

was halved as well

Introducing longer delays at the bottleneck link increases the delays in the TCP

congestion control feedback loop, forcing TCP senders to become less aggressive.

Meanwhile, the number of packets buffered in the network increases as well. Thus, for a

iven QL the increase in propagation delay caused fewer packets drops. This was

lustrated in Figure 5.11, which also showed that when QL was 32 or 16, the relative

ad s.

s of packets dropped across all

onfigurations.

her advantage was that an all-ECN network could allow TCP to achieve the s

g

u

g

il

vantage for a TCP/ECN sender was actually improving in terms of packet losse

Aggressive ECN was still the best choice in term

c

Chapter 5: Advantages and Disadvantages 65

stion

formation in a timely manner and can diminish packet drops, thus increasing the

nt transmissions.

onnection interested in reliable delivery cannot ignore packet drops

ompletely, but in the absence of monitoring and controls, a non-compliant connection

ould cause congestion problems in either an ECN or a non-ECN environment. A

Pentikousis and Badr (2003) also noted that many network operators charge their

customers by the amount of traffic they carry through their routers. The revenues

foregone by dropping a packet under RED could be significant in many cases: a packet

dropped while the router is in the RED region is a packet that will not be charged to the

customer under such pricing models. On the other hand, network costs could be reduced

with aggressive ECN, which yields high goodput efficiency and fewer packet drops,

and, hence, higher operating margins.

Secondly, the simulation demonstrated that an all-ECN network allows for a fairer

allocation of resources by effectively mitigating lockouts. ECN can convey conge

in

delivered-to-dropped packet ratio. It showed that aggressive ECN was more successful

than conservative ECN in reducing packet drops, promoting a fairer environment,

increasing network efficiency, and delivering higher and more even performance to

individual connections. A rough rule of thumb, the aggressive ECN can deliver the

same level of goodput efficiency and number of packet drops with only half the buffer

space of DT at most. The TCP/ECN sender had a competitive advantage over ECN-

unaware senders because it reacted faster to incipient congestion and can thus avoid

unsuccessful segme

However Floyd (1994) noted that there were two disadvantages or potential problems

with ECN concerning non-compliant ECN connections and the potential loss of ECN

messages in the network. A non-compliant TCP connection could set the ECN field to

indicate that it was ECN-capable, and then ignore ECN notifications. Non-compliant

connections could also ignore Source Quench messages. However, for a network that

uses only packet drops for congestion notification, a non-compliant connection could

also refrain from making appropriate window decreases in response to packet drops. A

non-compliant c

c

c

Chapter 5: Advantages and Disadvantages 66

on notification. The gateway will continue to set

e ECN field in randomly chosen packets as long as congestion persists at the gateway.

problem with ECN messages that had no counterpart with packet drops was that an

ECN message (e.g., a Source Quench message, or a TCP ACK packet with the ECN

field set) could be dropped by the network, and the congestion notification could fail to

reach the end node. Therefore neither Source Quench messages nor the use of ECN

fields in packet headers could guarantee that the TCP source would receive each

notification of congestion. However, with RED gateways, the gateway does not rely on

the source to respond to each congesti

th

In addition, a gateway implementing RED algorithms is particularly unlikely to drop a

high fraction of packets.

Chapter 6

Simulation Methodology

6.1 Selection of Simulation Tools

For the design and implementation of communication protocols and algorithms, the use

of simulation tools means a substantial productivity increase. Using simulations,

protocols do not need to be implemented in explicit detail. In most cases, simulation of

one or more protocol layer provides significant and sufficient results.

The deployment and the debugging of wireless applications on a real network can be

rather difficult if large networks are considered. Therefore simulation is an important

tool that can often help to improve or validate protocols. All simulators provide a

complete toolkit to the developers that enable metrics collection and various wireless

network diagnostics. The main characteristics that divide them are mainly; accuracy,

speed, ease of use, and monetary expense.

Ubik and Klaban (2003) noted that simulation should create a model of a system, which

is used to explain system behavior and to see how the system performs under varying

conditions in order to design the system with desirable performance characteristics.

Chapter 6: Selection of Simulation Tools 68

Simulation should also represent the system on a smaller scale for easier study when

compared to the full-scale physical system. By using simulation, the researcher should

be allow to study a system in well-defined and well-known conditions, repeatability if

necessary in order to understand events.

Cavin et al (2002) noted that there were several popular simulators, such as OPNET

Modeler, Network Simulator 2 (NS2) or GloMoSim available for network simulations.

Each of them provided advanced simulation environments to test and debug any kind of

networking protocols, including wireless applications. However for the simulations to

be helpful, it was necessary that the simulated behaviors match as closely as possible

the physical situation. This latter requirement implied to address several issues. Firstly,

the application was likely to rely on existing components, such as collision detection

module, radio propagation or MAC protocols. The correct modeling of these

components in the simulator was crucial. Each algorithm that was being evaluated was

modeled in detail, but the interaction with the other layers was often not taken into

account. Secondly, the simulation parameters and its environment (mobility schemes,

power ranges, connectivity) must be realistic. Incorrect initial conditions, for example

may lead to unexpected results not exploitable in a real network.

OPNET Modeler is a network simulator developed by OPNET. It can simulate all kinds

of wired networks, and implement 802.11 compliant MAC layer. Although OPNET is

designed for companies to analysis or restructure their network, it is still possible to

implement specific algorithm by reusing a lot of existing components. Most part of the

deployment is made through a hierarchical graphic user interface.

NS2 is an open-source simulation tool from Lawrence Berkeley Laboratory that runs on

Linux. It is a discreet event simulator targeted at networking research and provides

substantial support for simulation of routing, multicast protocols and IP protocols, such

as UDP, TCP, RTP and SRM over wired and wireless (local and satellite) networks. It

has many advantages that make it a useful tool, such as support for multiple protocols

Chapter 6: Selection of Simulation Tools 69

and the capability of graphically detailing network traffic. Additionally, NS2 supports

several algorithms in routing and queuing. LAN routing and broadcasts are part of

routing algorithms. Queuing algorithms include fair queuing, deficit round-robin and

FIFO.

GloMoSim is a scalable simulation environment for wireless and wired networks

systems developed initially at UCLA Computing Laboratory. It is designed using the

parallel discrete-event simulation capability provided by a C-based parallel simulation

language. GloMoSim currently supports protocols for purely wireless networks. It is

build using a layered approach. Standard Application Programming Interface (API) is

used between the different layers. This allows the rapid integration of models developed

at different layers by users.

NS2 was chosen for this project, as it is an event-driven network simulator, which is

popular with the networking research community. It includes numerous models of

common Internet protocols including several newer protocols, such as reliable multicast

and TCP selective acknowledgement. Network animator, Nam, also provides packet-

level animation and protocol specific graph for design and debugging of network

protocols. Additionally, different levels of configuration are present in NS2 due to its

open source nature, including the capability of creating custom applications and

protocols as well as modifying several parameters at different layers.

The freeware nature of NS2 is also attractive compared to the need to enter into an

OPNET Modeler license agreement and associated direct costs. On top of that, NS2's

code source is split between C++ for its core engine and OTcl, an object oriented

version of TCL for configuration and simulation scripts. The combination of the two

languages offers an interesting compromise between performance and ease of use. A

highly dynamic newsgroups and source codes are also available on the web to provide

assistance to most of the problems encounter while using NS2.

Chapter 6: Introduction to Network Simulator 2 (NS2) 70

6.2 Introduction to Network Simulator 2 (NS2)

Ns2 is an event driven, object oriented network simulator which support networking

research (traffic studies, protocol design and comparison) and education. The wide

range of platform support provided in NS includes Unix (FreeBSD, Linux, SunOS and

Solaris) and Windows (Cygwin for win9x/2000/XP). NS2 provides a collaborative

environment, as its software is freely distributed and open source. Ns2 has users span

across 50 countries with about 300 posts to its mailing list every month. NS2 also has

periodical release with over 100 test suites and examples. Users are able to share code,

protocols and models. This allows easy comparison of similar protocols, which in turn

increase the reliability of the results. A stability validation is also available at its website

(http://www.isi.edu/nsnam/ns/ns-tests.html).

NS2 is written in C++ and Otcl to separate the control and data path implementations.

The simulator supports a class hierarchy in C++ and a corresponding hierarchy within

the Otcl interpreter. NS2 uses two languages due to different tasks having different

requirements and simulation of protocols requires efficient manipulation of bytes and

packet headers making the run-time speed very important. On top of that, there is a need

to vary some parameters in network studies and to quickly examine a number of

scenarios. Therefore the time taken to change the model and run it again is of great

important.

C++ is used in NS2 for detailed protocol implementation and in general for cases where

every packet of a flow needs to be processed. For example, if you want to implement a

new queuing discipline, then C++ is the language of choice. On the other hand, Otcl is

suitable for configuration and setup. Otcl runs quite slowly, but it can be changed very

quickly making the construction of simulations easier. In NS2, the compiled C++

objects can be made available to the Otcl interpreter. In this way, the ready-made C++

objects can be controlled from the OTcl level.

Chapter 6: Introduction to Network Simulator 2 (NS2) 71

6.2.1 Features

To calculate the results from the simulations, data can be collected using tracing

objects. Tracing objects are designed to record packet arrival time at which they are

located. The traces also enable recording of packets whenever an event such as packet

drop or arrival occurs in a queue or a link.

set trace_file [open out.tr w]

$ns trace-all $trace_file

$ns flush-trace

close $trace_file

All events from the simulation can be recorded to a file with the above commands. It

would generate a trace file called "out.tr" that can be used for simulation analysis.

Figure 6.1 shows the trace format and example trace data from "out.tr".

Event

Time

From
Node

To

node

Pkt

Type

Pkt
Size

Flags

Fid

Src

Addr

Dst

Addr

Seq
Num

Pkt
Id

+ 1.64375 0 2 cbr 310 ------- 0 0.0 3.1 225 201
- 1.64375 0 2 cbr 310 ------- 0 0.0 3.1 225 201
r 1.64471 2 1 cbr 310 ------- 1 3.0 1.0 195 201
r 1.64566 2 0 ack 40 ------- 2 3.2 0.1 82 602
+ 1.64566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611
- 1.64566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

+ : enqueue (at queue) src_addr : node.port
- : dequeue (at queue) dst_addr : node.port
d : drop (at queue)
r : receive (at to_node)

Figure 6.1: Trace Format Example

Chapter 6: Introduction to Network Simulator 2 (NS2) 72

Each trace line starts with an event (+, -, d, r) descriptor followed by the simulation time

(in seconds) of that event, and from and to node, which identify the link on which the

event occurred. The next information in the line before flags (appeared as "------" since

no flag is set) is packet type and size (in Bytes). Currently, NS2 implements only the

Explicit Congestion Notification (ECN) bit, and the remaining bits are not used. The

next field is flow id (fid) of IPv6 that a user can set for each flow at the input OTcl

script. Even though fid field may not use in a simulation, users can use this field for

analysis purposes. The fid field is also used when specifying stream color for the NAM

display. The next two fields are source and destination address in forms of "node.port".

The next field shows the network layer protocol's packet sequence number. Even

though User Datagram Protocol (UDP) implementations do not use sequence number,

NS2 keeps track of UDP packet sequence number for analysis purposes. The last field

shows the unique id of the packet.

When the simulation topology is relatively simple and the number of sources is limited,

an effective method would be to trace all events from the simulation to a specific file

and then calculating the desired quantities from this file by using perl or awk and

Matlab. However, with complex topologies and many sources, this method of collecting

data can become slow. The trace files may also consume a large amount of disk space.

Chapter 6: Introduction to Network Simulator 2 (NS2) 73

A plotting program called the ‘xgraph’ is available in the NS2 package, which can be

used to create graphic representations of simulation results. As shown in the commands

below, the ‘xgraph’ can be call from within the finish procedure.

proc finish {} {

 global trace_file

 #Close the output files

 close $trace_file

 #Call xgraph to display the results

 exec xgraph out.tr -geometry 800x400 &

 exit 0

}

Figure 6.2: X Graph

Chapter 6: Introduction to Network Simulator 2 (NS2) 74

6.2.2 Network Animator (NAM)

NAM is a network animator tool that works with NS2. It takes in a NAM trace file

generated by NS2 during a simulation run of the network and animates the process.

Figure 6.3: NAM display

http://www.isi.edu/nsnam/ns/

Chapter 6: Introduction to Network Simulator 2 (NS2) 75

NAM provides a visual view of the simulation, which includes the overall topology

(nodes and links). It can also monitor individual nodes, links and the status (queued and

dropped) of packets in transmission. It does allow simple editing of the topology layout,

and it also has layout algorithm that will automatically try and layout the nodes to

maximize the distances between them. Adding colour to the packets for a particular

flow of traffic is possible, but this has to be done through code in the NS2 simulation.

Figure 6.4: NAM display for a simple communication scenario

Chapter 6: Introduction to Network Simulator 2 (NS2) 76

6.2.3 Basic Command

The following steps are used to generate simulation script in NS2:

• Create an object of the ns2 simulator.

• Create objects for network nodes, links and queues attached to links and specify

their parameters, thus creating the network topology.

• Create objects for TCP sender and TCP receiver and specify maximum window

size.

• Create objects for sending application and receiving application and attach them

to objects for TCP sender and TCP receiver, respectively.

• Schedule events, such as start and end times of data streams and when the

simulation should stop.

• Start simulation.

 2 Mbps, 15ms

 1.8 Mbps, 25 ms

 2 Mbps, 15ms

n0

n2 n3

n1

Figure 6.5: A Simple Network Topology and Simulation Scenario

Chapter 6: Introduction to Network Simulator 2 (NS2) 77

The network consists of 4 nodes (n0, n1, n2, n3) as shown in above Figure 6.5. The

duplex links between n0 and n2, and n1 and n2 have 2 Mbps of bandwidth and 15 ms of

delay. The duplex link between n2 and n3 has 1.8 Mbps of bandwidth and 25 ms of

delay. Each node uses a DropTail queue, of which the maximum size is 10. A "udp"

agent that is attached to n0 is connected to a "null" agent attached to n3. A "null" agent

just frees the packets received. A "tcp" agent is attached to n1, and a connection is

established to a tcp "sink" agent attached to n3. As default, the maximum size of a

packet that a "tcp" agent can generate is 1KByte. A tcp "sink" agent generates and sends

ACK packets to the sender (tcp agent) and frees the received packets. A "ftp" and a

"cbr" traffic generator are attached to "tcp" and "udp" agents respectively, and the "cbr"

is configured to generate 1 KByte packets at the rate of 1 Mbps. The "cbr" is set to start

at 0.1 sec and stop at 4.5 sec, and "ftp" is set to start at 1.5 sec and stop at 3.0 sec. The

Otcl script for the simulation topology in Figure 6.5 is as follow:

#Create a simulator object
set ns [new Simulator]

#Define different colors for data flows (for NAM)
$ns color 1 Blue
$ns color 2 Red

#Open the NAM trace file
set tracefd [open simple.tr w]
$ns trace-all $tracefd
set namtracefd [open simple.nam w]
$ns namtrace-all $namtracefd

#Define a 'finish' procedure
proc finish {} {
 global ns tracefd namtracefd
 $ns flush-trace
 #Close the NAM trace file
 close $tracefd
 close $namtracefd
 #Execute NAM on the trace file
 exec nam out.nam &
 exit 0
}

Chapter 6: Introduction to Network Simulator 2 (NS2) 78

#Create four nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]

#Create links between the nodes
$ns duplex-link $n0 $n2 2Mb 15ms DropTail
$ns duplex-link $n1 $n2 2Mb 15ms DropTail
$ns duplex-link $n2 $n3 1.8Mb 25ms DropTail

#Set Queue Size of link (n2-n3) to 10
$ns queue-limit $n2 $n3 10

#Give node position (for NAM)
$ns duplex-link-op $n0 $n2 orient right-down
$ns duplex-link-op $n1 $n2 orient right-up
$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for link (n2-n3). (for NAM)
$ns duplex-link-op $n2 $n3 queuePos 0.5

#Setup a UDP connection
set udp [new Agent/UDP]
$ns attach-agent $n0 $udp
set null [new Agent/Null]
$ns attach-agent $n3 $null
$ns connect $udp $null
$udp set fid_ 2

#Setup a TCP connection
set tcp [new Agent/TCP]
$tcp set class_ 2
$ns attach-agent $n1 $tcp
set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink
$ns connect $tcp $sink
$tcp set fid_ 1

#Setup a FTP over TCP connection
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ftp set type_ FTP

Chapter 6: Introduction to Network Simulator 2 (NS2) 79

#Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp
$cbr set type_ CBR
$cbr set packet_size_ 1000
$cbr set rate_ 1mb
$cbr set random_ false

#Schedule events for the CBR and FTP agents
$ns at 0.1 "$cbr start"
$ns at 1.5 "$ftp start"
$ns at 3.0 "$ftp stop"
$ns at 4.5 "$cbr stop"

#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation
$ns run

In order to start run the above Otcl script, save it as myexample.tcl in a prefer

directory. Make sure that the current path is pointing to the prefer directory where

myexample.tcl is saved. Start NS2 with the command ns myexample.tcl at the

command prompt. The following is the explanation of the above Otcl script.

set ns [new Simulator]:

This function will generates an NS simulator object instance, and assigns it to variable

ns.

$ns color fid color :

This function will set color of the packets for a flow specified by the flow id (fid). The

member function of "Simulator" object is for the NAM display, and has no effect on the

actual simulation.

Chapter 6: Introduction to Network Simulator 2 (NS2) 80

$ns namtrace-all file-descriptor :

This member function tells the simulator to record simulation traces in NAM input

format. It also gives the file name that the trace will be written to later by the command

$ns flush-trace. Similarly, the member function trace-all is for recording the simulation

trace in a general format.

proc finish {}:

This function is called after this simulation is over by the command $ns at 5.0 "finish".

In this function, post-simulation processes are specified.

set n0 [$ns node]:

The member function node creates a node. A node in NS is compound object made of

address and port classifiers. Users can create a node by separately creating an address

and a port classifier objects and connecting them together.

$ns duplex-link node1 node2 bandwidth delay queue-type :

This function creates two simplex links of specified bandwidth and delay, and connects

the two specified nodes. In NS, the output queue of a node is implemented as a part of a

link; therefore users should specify the queue-type when creating links. In the above

simulation script, DropTail queue is used. If the reader wants to use a RED queue,

simply replace the word DropTail with RED. Like a node, a link is a compound object,

and users can create its sub-objects and connect them and the nodes.

$ns queue-limit node1 node2 number :

This line sets the queue limit of the two simplex links that connect node1 and node2 to

the number specified.

$ns duplex-link-op node1 node2 :

The next couple of lines are used for the NAM display.

Chapter 6: Introduction to Network Simulator 2 (NS2) 81

set tcp [new Agent/TCP]:

This line shows how to create a TCP agent. But in general, users can create any agent or

traffic sources in this way.

$ns attach-agent node agent :

This member function attaches an agent object created to a node object. This function

will call the attach member function of specified node, which attaches the given agent

to itself.

$ns connect agent1 agent2 :

When two agents that will communicate with each other are created, a logical network

connection is established between them. This line establishes a network connection by

setting the destination address to one another's network and port address pair.

$ns at time "string" :

This member function of a simulator object will schedule the execution of the specified

string at given simulation time. The scheduler will call a ‘start’ member function of the

traffic source object, which will start to transmit data. In NS2, traffic source does not

transmit actual data, but it signal the underlying agent that it has some amount of data to

transmit, and the agent, just knowing how much of the data to transfer, creates packets

and sends them.

$ns run :

After all network configurations, scheduling and post-simulation procedure

specifications are done; this line will execute the simulation.

Chapter 7

Installation of Linux and
Network Simulator 2 (NS2)

7.1 Red Hat Linux Installation Process

Before the start of the installation process, the computer must have enough un-

partitioned disk space for the installation of Red Hat Linux. Or there are one or more

partitions that can be deleted, thereby freeing up enough disk space to install Red Hat

Linux 7.2

A workstation installation, choosing to install GNOME or KDE, requires at least 1.5

GB of free space. Choosing both GNOME and KDE requires at least 1.8 GB of free

disk space. A server installation requires 1 GB for a minimal installation without X (the

graphical environment), at least 1.3 GB of free space if all components (package

groups) other than X are installed, and at least 1.8 GB to install all packages including

GNOME and KDE.

Chapter 7: Red Hat Linux Installation Process 83

A laptop installation, when you choose to install GNOME or KDE, requires at least 1.5

GB of free space. If you choose both GNOME and KDE, you will need at least 1.8 GB

of free disk space. A custom installation requires 350 MB for a minimal installation and

at least 3.5 GB of free space if every package is selected. For more information about

system requirements, users may want to visit Red Hat Linux 7.2: The Official Red Hat

Linux x86 Installation Guide at http://www.redhat.com/docs/manuals/linux/RHL-7.2-

Manual/install-guide/index.html

To install Linux, turn on computer and insert disk 1 of Red Hat Linux 7.2. At the boot

prompt, press the 'Enter' key. After the basic Linux Kernel is loaded, anaconda (Red Hat

installation program) should load. An easy-to- use graphical user interface will guide

the user through the install process.

Figure 7.1: Red Hat installation process (Boot Prompt)

Chapter 7: Red Hat Linux Installation Process 84

Figure 7.2: Red Hat installation process (Anaconda)

Figure 7.3: Red Hat installation process (Language Selection)

Chapter 7: Red Hat Linux Installation Process 85

Figure 7.4: Red Hat installation process (Keyboard Configuration)

Figure 7.5: Red Hat installation process (Mouse Configuration)

Chapter 7: Red Hat Linux Installation Process 86

Figure 7.6: Red Hat installation process (Welcome to Red Hat Linux)

Figure 7.7: Red Hat installation process (Install Options)

Chapter 7: Red Hat Linux Installation Process 87

Figure 7.8: Red Hat installation process (Partition part 1)

Figure 7.9: Red Hat installation process (Partition part 2)

Chapter 7: Red Hat Linux Installation Process 88

Figure 7.10: Red Hat installation process (Partition part 3)

Figure 7.11: Red Hat installation process (Partition part 4)

Chapter 7: Red Hat Linux Installation Process 89

Figure 7.12: Red Hat installation process (Boot Loader Installation)

Figure 7.13: Red Hat installation process (GRUB Password)

Chapter 7: Red Hat Linux Installation Process 90

Figure 7.14: Red Hat installation process (Network Configuration)

Figure 7.15: Red Hat installation process (Firewall Configuration)

Chapter 7: Red Hat Linux Installation Process 91

Figure 7.16: Red Hat installation process (Language Support Selection)

Figure 7.17: Red Hat installation process (Time Zone Selection)

Chapter 7: Red Hat Linux Installation Process 92

Figure 7.18: Red Hat installation process (Account Configuration)

Figure 7.19: Red Hat installation process (Selecting Package Group)

Chapter 7: Red Hat Linux Installation Process 93

Figure 7.20: Red Hat installation process (Video Configuration)

Figure 7.21: Red Hat installation process (Installing Package part 1)

Chapter 7: Red Hat Linux Installation Process 94

Figure 7.22: Red Hat installation process (Installing Package part 2)

Figure 7.23: Red Hat installation process (Installing Package part 3)

Chapter 7: Red Hat Linux Installation Process 95

Figure 7.24: Red Hat installation process (Boot Disk Creation)

Figure 7.25: Red Hat installation process (Monitor Selection)

Chapter 7: Red Hat Linux Installation Process 96

Figure 7.26: Red Hat installation process (X Configuration)

Figure 7.27: Red Hat installation process (Congratulations-Linux has been installed)

Chapter 7: Red Hat Linux Installation Process 97

Figure 7.28: Red Hat installation process (Graphical Boot Loader Prompt)

If a user is added, user can login using their username and password. Once at the shell

prompt, type ‘startx’ to load the graphical interface. Gnome should start at this time.

Chapter 7: Network Simulator 2 Installation Process 98

7.2 Network Simulator 2 Installation Process

NS2 software can be downloaded at www.isi.edu/nsnam/ns. NS2 can be built from

pieces or all at once. Click on ‘Download and Build ns’. Under ‘Getting everything at

once’ there is an ns-allinone package (current release is 2.27) available for the

download. It requires about 250MB of disk space to build. The path for the download

directory in this project is download_directory = /home/peh.

To install and build NS2, execute the following commands:

• cd download_directory

• mkdir ns

• download ns-allinone-2.27.tar.gz in download_directory/ns directory

• gunzip ns-allinone-2.27.tar.gz

• tar xvf ./ns-allinone-2.27.tar

• cd ns-allinone-2.27

• ./install

After successful installation of the ns-allinone package, a message will be generated:

****************************Message-start*******************************

Nam has been installed successfully.
Please compile your gt-itm & sgb2ns separately.
Ns-allinone package has been installed successfully.
Here are the installation places:
tcl8.4.5: /home/peh/ns/ns-allinone-2.27/{bin,include,lib}
tk8.4.5: /home/peh/ns/ns-allinone-2.27/{bin,include,lib}
otcl: /home/peh/ns/ns-allinone-2.27/otcl-1.8
tclcl: /home/peh/ns/ns-allinone-2.27/tclcl-1.15
ns: /home/peh/ns/ns-allinone-2.27/ns-2.27/ns
nam: /home/peh/ns/ns-allinone-2.27/nam-1.10/nam
xgraph: /home/peh/ns/ns-allinone-2.27/xgraph-12.1

--

http://www.isi.edu/nsnam/ns

Chapter 7: Network Simulator 2 Installation Process 99

Please put /home/peh/ns/ns-allinone-2.27/bin:/home/peh/ns/ns-allinone-
2.27/tcl8.4.5/unix:/home/peh/ns/ns-allinone-2.27/tk8.4.5/unix
into your PATH environment; so that you'll be able to run itm/tclsh/wish/xgraph.

IMPORTANT NOTICES:

(1) You MUST put /home/peh/ns/ns-allinone-2.27/otcl-1.8, /home/peh/ns/ns-allinone-2.27/lib,
into your LD_LIBRARY_PATH environment variable.
If it complains about X libraries, add path to your X libraries into LD_LIBRARY_PATH.
If you are using csh, you can set it like:
 setenv LD_LIBRARY_PATH <paths>
 If you are using sh, you can set it like:
export LD_LIBRARY_PATH=<paths>

(2) You MUST put /home/peh/ns/ns-allinone-2.27/tcl8.4.5/library into your TCL_LIBRARY
environmental variable. Otherwise ns/nam will complain during startup.

(3) [OPTIONAL] To save disk space, you can now delete directories tcl8.4.5 and tk8.4.5. They are now
installed under /home/peh/ns/ns-allinone-2.27/{bin,include,lib}

After these steps, you can now run the ns validation suite with
cd ns-2.27; ./validate
For trouble shooting, please first read ns problems page
http://www.isi.edu/nsnam/ns/ns-problems.html. Also search the ns mailing list archive
for related posts.

****************************Message-end*******************************

The environment variables in the .cshrc file inside Linux needs to be set. This allows

the variables to be automatically set, every time the user log into the account. The

following commands can be used.

• cd

• open the .cshrc file for editing

• add the following lines:

set path=($path download_directory/ns/ns-allinone-2.27/bin)

set path=($path download_directory/ns/ns-allinone-2.27/tcl8.4.5/unix)

set path=($path download_directory/ns/ns-allinone-2.27/tk8.4.5/unix)

set LD_LIBRARY_PATH=download_directory/ns/ns-allinone-2.27/otcl-

1.8:download_directory/ns/ns-allinone-2.27/lib:/usr/openwin/lib

set TCL_LIBRARY=download_directory/ns/ns-allinone-2.27/tcl8.4.5/library

• save the changes

• source .cshrc

Chapter 7: Network Simulator 2 Installation Process 100

Perform the validation tests:

• cd download_directory/ns/ns-allinone-2.27/ns-2.27

• ./validate

The validation tests will take about four hours to execute. After the successful

completion of the tests the output should contain the following lines:

****************Message-start************************

Test output agrees with reference output
All test output agrees with reference output.
These messages are NOT errors and can be ignored:
warning: using backward compatibility mode
This test is not implemented in backward compatibility mode

validate overall report: all tests passed

****************Message-end*************************

After this point the installation of NS2 is successfully completed.

Chapter 8

Conclusions and Further Work

8.1 Conclusions

TCP has been performing well over the traditional wired networks where packet losses

are usually caused by network congestion. However in wireless networks, this

assumption would be inadequate. As the reason of packet loss in wireless networks is

caused by the high bit error rate over the wireless link, thus TCP performance is

degraded under these new conditions. The main reason of TCP poor performance is

due to the fact that TCP cannot distinguish between packet losses due to wireless errors

from those due to congestion. This will significantly degrades TCP end-to-end delay

performance, as there is an increase in delay of re-transmitting of the lost packets.

In this project, the performances of improved mechanisms are evaluated. Experimental

results show that the mechanisms such as Snoop protocol, Explicit Loss Notification

(ELN) and Explicit Congestion Notification (ECN) can improve both delay

performance and throughput of TCP in wireless networks significantly.

Chapter 8: Conclusions 102

In Snoop Protocol, Biswas (2003) found out that although TCP performance

deteriorates with increased delay over the wireless hop, Snoop still managed to obtain a

better throughput than the normal TCP. The performance improvement is close to two

times that of normal TCP. Biswas (2003) also found out that when packets were

corrupted over the wireless link, Snoop still managed to give a consistent performance

higher than normal TCP.

The advantage as noted by Balakrishnan et al (1998) is that Snoop mechanisms

improved the performance of the connection in both directions, without sacrificing any

of the end-to-end semantics of TCP, modifying host TCP code in the fixed network or

re-linking existing applications. However, West and Vaidya (1997) found out that one

of the greatest disadvantages of Snoop protocol was that it requires the ACKs to follow

the same path as the data in order to shield the sender from losses. This was not a

problem for network topologies containing a single wireless path, which every packet

must traverse. However it did became a problem when multiple wireless paths were

possible, or with asymmetric links where the sender used a high bandwidth, high delay

path (such as a satellite link) to send the data and the receiver used a low bandwidth

terrestrial path to return the ACKs. Snoop had no method of informing the sender when

the base station experiences a period of high errors and this could lead to unnecessary

time out, which invoke congestion avoidance procedures.

In ELN, Ding and Jamalipour (2001) found out that the throughput performance of the

Snoop and ELN-ACK protocols remains very close until the packet loss rate of 1%.

Beyond that, the ELN-ACK outperforms the Snoop protocol. ELN-ACK protocol was

able to improve the throughput performance even more by sending information on the

reason of packet loss to the TCP sender whereas the Snoop protocol tries to handle all

wireless-related losses at its snoop agent located in the base station. This goes to show

that, ELN-ACK protocol was able to add extra features to the Snoop protocol and

immunes all packet loss even when the packet loss rate is high and the snoop agent

cannot handle them.

Chapter 8: Conclusions 103

The main advantage of ELN was that it helped to maintain a large TCP congestion

window even when wireless error rates were high, reacting only to congestion. However

the disadvantage of ELN mechanism was that it required TCP-stack modifications at all

endpoints. Therefore ELN mechanism required standardization of modifications in TCP

followed by widespread acceptance of these changes.

In ECN, Pentikousis and Badr (2003) found out that ECN network allows for a fairer

allocation of resources. ECN can convey congestion information in a timely manner and

can diminish packet drops, thus increasing the delivered-to-dropped packet ratio. It

showed that aggressive ECN was successful in reducing packet drops, promoting a

fairer environment, increasing network efficiency, and delivering higher and more even

performance to individual connections.

The advantage noted by Pentikousis and Badr (2003) was that many network operators

charge their customers by the amount of traffic they carry through their routers and

dropping a packet could be significant in many cases. Therefore, network costs could be

reduced with aggressive ECN, which yields high goodput efficiency and fewer packet

drops, and, hence, higher operating margins. On the other hand, Floyd (1994) noted that

there were two disadvantages with ECN concerning non-compliant ECN connections

and the potential loss of ECN messages in the network. A non-compliant TCP

connection could set the ECN field to indicate that it was ECN-capable, and then ignore

ECN notifications. For a network that uses only packet drops for congestion

notification, a non-compliant connection could also refrain from making appropriate

window decreases in response to packet drops. A non-compliant connection interested

in reliable delivery cannot ignore packet drops completely, but in the absence of

monitoring and controls, a non-compliant connection could cause congestion problems

in either an ECN or a non-ECN environment. Network with ECN messages that had no

counterpart with packet drops could drop the messages and the congestion notification

could fail to reach the end node. Even with the use of ECN fields in packet headers, it

could not guarantee that the TCP source would receive each notification of congestion.

Chapter 8: Further Work 104

Network Simulator 2 (NS2) was chosen for this project, as it is an event-driven network

simulator, which is popular with the networking research community. It includes

numerous models of common Internet protocols including several newer protocols, such

as reliable multicast and TCP selective acknowledgement. Additionally, different levels

of configuration are present in NS2 due to its open source nature, including the

capability of creating custom applications and protocols as well as modifying several

parameters at different layers. On top of that, NS2's code source is split between C++

for its core engine and OTcl, an object oriented version of TCL for configuration and

simulation scripts. The combination of the two languages offers an interesting

compromise between performance and ease of use. A highly dynamic newsgroups and

source codes are also available on the web to provide assistance to most of the problems

encounter while using NS2.

8.2 Further Work

Implement the representative mechanisms (Snoop, ELN and ECN) using NS2 and

compare the performance of TCP Reno with the representative mechanisms under

various conditions. Propose and implement possible solutions to improve the

representative mechanisms.

In the simulation, the mobility issues are not considered. The focus is on the impact of

link loss on the performance of TCP Reno and the improvement mechanisms. Hence, in

the simulation environment, a link with the error rates of 0.1%, 1.0% and 10.0% is used

to represent wireless link. The simulation environment also consists of a 10 Mbps, 20

ms delay wired channel and a 2Mbps wireless channel with a negligible delay. The

packet size is to be set at 1024 bytes and the simulation time is 150sec. The maximum

possible window size for the connection is to be set at 64 Kbytes.

Chapter 8: Further Work 105

 . .
 . .
 . .
 . .
 . .

FH2

BS

MH1

MH5FH5

FH1

MH2

Figure 8.1: Network topology 1

 . .
 . .
 . .

FH2

FH10

FH3

FH4 MH4

MH3

MH10

BS

MH1FH1

MH2

Figure 8.2: Network topology 2

Chapter 8: Further Work 106

With reference to Figure 8.1 and 8.2, the wired-cum-wireless topology is used in this

project. In network topology 1, five Fixed Hosts (FHs) are directly attached to the Base

Station (BS) through a wired network and five Mobile Hosts (MHs) are one hop away

from the wireless access point. Whereas in network topology 2, ten FHs are directly

attached to the BS through a wired network and ten MHs are one hop away from the

wireless access point. Both the network topologies are to be simulated using the NS2.

Six simulation models will be investigated in the experiment:

1) TCP Reno only

2) TCP Reno with Snoop

3) TCP Reno with ECN

4) TCP Reno with Snoop and ECN.

5) TCP Reno with ELN

6) TCP Reno with Snoop and ELN.

Each of the six simulation models will be investigated in scenario 1 and 2, with the

simulation environment remain unchanged. During each run, the throughput, goodput,

delay, fairness performance and changes in congestion window size of the models will

be examined.

References

Balakrishnan, H. and Katz, R. H. (1998), Explicit Loss Notification and Wireless Web

Performance. Proc. IEEE Globecom Internet Mini-Conference, Sydney, Australia

[Online], November 1998.

http://nms.lcs.mit.edu/~hari/papers/globecom98/

current May 2004

Balakrishnan, H., Seshan, S., and Katz, R. H. (1998), Improving Reliable Transport and

Handoff Performance in Cellular Wireless Network [Online], November 1998.

http://nms.lcs.mit.edu/~hari/papers/globecom98/

current May 2004

Biswas, I. (2003), Undergraduate Research Opportunity Program (UROP) Project

Report Enhancing, and Implementing the SNOOP Protocol in Linux [Online]

http://www.cir.nus.edu.sg/research/software/snoop/linux-snoop-thesis.pdf

current May 2004

Brakmo, L. and Peterson, L. (1995), TCP Vegas: End-to-end congestion Avoidance on

a global Internet [Online]

http://netlab.snu.ac.kr/lecture/computer_networks/2004Spring/TCP-

congestion%20control.ppt

current May 2004

http://nms.lcs.mit.edu/~hari/papers/globecom98/
http://nms.lcs.mit.edu/~hari/papers/globecom98/
http://www.cir.nus.edu.sg/research/software/snoop/linux-snoop-thesis.pdf
http://netlab.snu.ac.kr/lecture/computer_networks/2004Spring/TCP-congestion control.ppt
http://netlab.snu.ac.kr/lecture/computer_networks/2004Spring/TCP-congestion control.ppt

References 108

Cavin, D., Sasson, Y. and Schiper, A. (2002),

On the Accuracy of MANET Simulators [Online]

http://lsewww.epfl.ch/Documents/acrobat/CSA02b.pdf

current May 2004

Chung, J. and Claypool, M., NS by Example [Online],

http://nile.wpi.edu/NS/

current Nov 2003

Deshpande, N. (1999), TCP Extensions for Wireless Networks [Online]

http://www.cse.ohio-state.edu/~jain/cis788-99/ftp/tcp_wireless/index.html

current May 2004

Ding, W. and Jamalipour, A. (2001), Delay Performance of the New Explicit Loss

Notification TCP Technique for Wireless Networks [Online]

http://csl.ee.iastate.edu/~cpre543/paper/wenq01glo.pdf

current May 2004

Durresi, A., Sridharan, M., Liu, C., and Jain, R. (2002), Improved Explicit Congestion

Notification for Satellite Networks [Online]

http://www.cse.ohio-state.edu/~jain/papers/ftp/itcom01.pdf

current May 2004

Ewerlid, A. (2001), Reliable Communication over Wireless Links [Online], April 2001

http://www.signal.uu.se/Publications/pdf/c0100.pdf

current Sept 2004

Floyd, S. (1994), TCP and Explicit Congestion Notification [Online], October 1994

http://www-nrg.ee.lbl.gov/papers/tcp_ecn.4.pdf

current Sept 2004

http://lsewww.epfl.ch/Documents/acrobat/CSA02b.pdf
http://nile.wpi.edu/NS/
http://www.cse.ohio-state.edu/~jain/cis788-99/ftp/tcp_wireless/index.html
http://csl.ee.iastate.edu/~cpre543/paper/wenq01glo.pdf
http://www.cse.ohio-state.edu/~jain/papers/ftp/itcom01.pdf
http://www.signal.uu.se/Publications/pdf/c0100.pdf
http://www-nrg.ee.lbl.gov/papers/tcp_ecn.4.pdf

References 109

Flow-Control Mechanisms [Online], 2001

http://www.linktionary.com/f/flow_control.html

current May 2004

Hassan, M. and Jain, R. (2001), TCP Performance in Future Networking Environments.

Guest Editorial, IEEE Communications Magazine [Online], April 2001, pp. 51.

http://www.cis.ohio-state.edu/~jain/papers/tcp_ed.htm

current May 2004

Information Sciences Institute (1981), TRANSMISSION CONTROL PROTOCOL,

DARPA INTERNET PROGRAM, PROTOCOL SPECIFICATION, University of

Southern California. [Online]

http://www.ietf.org/rfc/rfc0793.txt

current May 2004

Kinicki, R. and Zheng, Z. (2001), A Performance Study of Explicit Congestion

Notification (ECN) with Heterogeneous TCP Flows [Online], July 2001

http://www.cs.wpi.edu/~rek/ICN01talk.ppt

current Sept 2004

Kristoff, J. (2003), The Transmission Control Protocol [Online], February 2003

http://condor.depaul.edu/~jkristof/technotes/tcp.html

current Sept 2004

Lucio, G. F., Paredes-Farrera, M., Jammeh, E., Fleury, M. and Reed M. J. (2002),

OPNET Modeler and Ns-2: Comparing the Accuracy Of Network Simulators for

Packet-Level Analysis using a Network Testbed [Online]

http://esewww.essex.ac.uk/~fleum/weas.pdf

current May 2004

http://www.linktionary.com/f/flow_control.html
http://www.cis.ohio-state.edu/~jain/papers/tcp_ed.htm
http://www.ietf.org/rfc/rfc0793.txt
http://www.cs.wpi.edu/~rek/ICN01talk.ppt
http://condor.depaul.edu/~jkristof/technotes/tcp.html
http://esewww.essex.ac.uk/~fleum/weas.pdf

References 110

Moraru, B., Copaciu, F., Lazar, G. and Dobrota, V. (2002),

Practical Analysis of TCP Implementations: Tahoe, Reno, NewReno [Online]

http://conference.iasi.roedu.net/site/conference/papers/MORARU_B-

Practical_Analysis_of_TCP_Implementations_Tahoe_R..pdf

current May 2004

Nishida, Y. (2003), TCP and Congestion Control (Day 2) [Online]

http://www.soi.wide.ad.jp/class/20020032/slides/15/index_31.html

current May 2004

NS-2 simulation tool home page [Online]

http://www.isi.edu/nsnam/ns/

current Nov 2003

Pentikousis, K. and Badr, H. (2003), An Evaluation of TCP with Explicit Congestion

Notification [Online], 2003

http://www.cs.sunysb.edu/~kostas/art/ecneval.pdf

current Sept 2004

Pilosof, S., Ramjee, R., Raz, D., Shavitt Y. and Sinha, P. (2002), Understanding TCP

fairness over Wireless LAN [Online]

http://www.bell-labs.com/user/ramjee/papers/tcpfair03.pdf

current May 2004

Ramakrishnan, K., Floyd. S., and Black, D. (2001), RFC 3168 - The Addition of

Explicit Congestion Notification (ECN) to IP [Online], September 2001

http://www.faqs.org/rfcs/rfc3168.html

current Aug 2004

http://conference.iasi.roedu.net/site/conference/papers/MORARU_B-Practical_Analysis_of_TCP_Implementations_Tahoe_R..pdf
http://conference.iasi.roedu.net/site/conference/papers/MORARU_B-Practical_Analysis_of_TCP_Implementations_Tahoe_R..pdf
http://www.soi.wide.ad.jp/class/20020032/slides/15/index_31.html
http://www.cs.sunysb.edu/~kostas/art/ecneval.pdf
http://www.bell-labs.com/user/ramjee/papers/tcpfair03.pdf
http://www.faqs.org/rfcs/rfc3168.html

References 111

Red Hat Linux 7.2 The Official Red Hat Linux x86 Installation Guide [Online]

http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/install-guide/

current Dec 2003

Sharma, N. K. and Hu, F. (2002), Enhancing Wireless Internet Performance.

IEEE Communications Surveys & Tutorials [Online], December 2002

http://www.comsoc.org/livepubs/surveys/Public/2002/Dec/hu.html

current May 2004

SY22 Computer Networks [Online]

http://www.comp.leeds.ac.uk/sy22/web_pages/113/WirelessTCP.html#top

current Sept 2004

Tutorial for Network Simulator “ns” [Online]

http://www.isi.edu/nsnam/ns/tutorial/

current Nov 2003

Ubik, S. and Klaban, J. (2003), Experience with using simulations for congestion

control research [Online], December 5, 2003

http://www.ten.cz/doc/techzpravy/2003/congestion/congestion.pdf

current Aug 2004

West, S. M. and Vaidya, N. H. (1997), TCP Enhancements for Heterogeneous

Networks [Online], April 1997

http://www.crhc.uiuc.edu/~nhv/old.papers/mobile-computing/97-003.ps.Z.

current Sept 2004

Wireless Overview [Online], (2002)

http://wireless.ittoolbox.com/pub/wireless_overview.htm

current May 2004

http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/install-guide/
http://www.comsoc.org/livepubs/surveys/Public/2002/Dec/hu.html
http://www.isi.edu/nsnam/ns/tutorial/
http://www.ten.cz/doc/techzpravy/2003/congestion/congestion.pdf
http://www.crhc.uiuc.edu/~nhv/old.papers/mobile-computing/97-003.ps.Z
http://wireless.ittoolbox.com/pub/wireless_overview.htm

Appendix A

Project Specification

 113

University of Southern Queensland

Faculty of Engineering and Surveying

ENG 4111/4112 Research Project
PROJECT SPECIFICATION

FOR: Peh Wee Liang

TOPIC: Investigation of TCP performance over Wireless Internet.

SUPERVISOR: Dr. Hong Zhou

SPONSORSHIP: Faculty of Engineering, USQ

PROJECT AIM: The project seeks to investigate the TCP performance over

Wireless Internet and that of a few representative mechanisms
that are, Snoop protocol, Explicit Loss Notification (ELN) and
Explicit Congestion Notification (ECN).

PROGRAMME: Issue B, 1st October 2004

1. Study protocols and representative mechanisms: TCP/IP, Snoop protocol,
Explicit Loss Notification (ELN) and Explicit Congestion Notification (ECN).

2. Compare the performance of regular TCP with the representative mechanisms.

3. Identify the advantages and disadvantages of the representative mechanisms.

4. Study simulation tool, Network Simulator (NS2) and Linux.

As time permits

5. Implement the representative mechanisms in NS2.

6. Propose and implement possible solutions to improve the representative
mechanisms.

AGREED: (Student) (Supervisor)

 / / / /

	Chapter 1 (draft 2).pdf
	Chapter 1 (draft 2).pdf
	Chapter 1
	1.1 Project Background
	1.2 Project Aims
	1.3 Specific Objectives

	Chapter 2 (draft 2).pdf
	Chapter 2
	2.1 Introduction
	2.2 Flow Control
	2.3 Congestion Control
	2.3.1 Slow Start
	2.3.2 Congestion Avoidance
	2.3.3 Fast Retransmit

	2.4 TCP in Wireless Link

	Chapter 3 (draft 2).pdf
	Chapter 3 (draft 2) test 2.pdf
	Chapter 3 (draft 2) test.pdf
	Chapter 3
	3.1 Introduction

	Figure 3.1: Adding the Snoop agent.
	3.2 Algorithms

	Figure 3.2: Snoop Protocol part 1
	Figure 3.3: Snoop Protocol part 2
	Figure 3.4: Snoop Protocol part 3
	Figure 3.5: Snoop Protocol part 4
	3.3 Performance Analysis

	Figure 3.6: Snoop Protocol test bed setup 1
	Figure 3.7: Variable delay between BS and MH
	Figure 3.8: Variable delay between BS and FH
	Figure 3.9: Snoop performance with different corruption rate
	Figure 3.10: Snoop Protocol test bed setup 2
	Figure 3.11: Throughput received by the mobile host at diffe
	3.4 Advantages and Disadvantages

	Figure 3.12: Performance on a Web workload in different prot

	Chap 3 test.pdf
	3.4 Advantages and Disadvantages
	Figure 3.12: Performance on a Web workload in different prot

	Chap 3 test 2.pdf
	Figure 3.11: Throughput received by the mobile host at diffe
	3.4 Advantages and Disadvantages

	Figure 3.12: Performance on a Web workload in different prot

	Chapter 4 (draft 2).pdf
	Chapter 4
	4.1 Introduction
	4.2 Algorithms
	4.3 Performance Analysis

	Figure 4.9: ELN test bed setup
	Figure 4.10: Throughput performance comparison
	Figure 4.11: End-to-end delay for TCP-Reno (without wireless
	Figure 4.12: End-to-end delay for TCP-Reno (wireless packet
	Figure 4.13: End-to-end delay for ELN-ACK (wireless packet l
	Figure 4.14: Window evolution for TCP-Reno (wireless packet
	Figure 4.15: Window evolution for ELN-ACK (wireless packet l
	4.4 Advantages and Disadvantages

	Figure 4.16: Throughput of TCP Reno and Reno enhanced with E

	Chapter 5 (draft 2).pdf
	Chapter 5
	5.1 Introduction
	5.2 Algorithms

	Figure 5.1: ECN part 1
	5.3 Performance Analysis

	Figure 5.6: ECN test bed setup 1
	Figure 5.7: RED and ECN Goodput
	Figure 5.8: Goodput with 30 flows
	Figure 5.9: Goodput with 120 flows
	5.4 Advantages and Disadvantages

	Figure 5.10: ECN test bed setup 2
	Figure 5.11. Total number of packets sent by the FTP server
	Figure 5.12: Total number of packets sent by the FTP server

	Chapter 6 (draft 2).pdf
	Chapter 6
	Selection of Simulation Tools
	6.2 Introduction to Network Simulator 2 (NS2)
	6.2.1 Features

	Figure 6.1: Trace Format Example
	Figure 6.2: X Graph
	6.2.2 Network Animator (NAM)

	Figure 6.3: NAM display
	Figure 6.4: NAM display for a simple communication scenario
	6.2.3 Basic Command

	Figure 6.5: A Simple Network Topology and Simulation Scenari

	Chapter 7 (draft 2).pdf
	Chapter 7
	7.1 Red Hat Linux Installation Process

	Figure 7.1: Red Hat installation process (Boot Prompt)
	Figure 7.2: Red Hat installation process (Anaconda)
	Figure 7.4: Red Hat installation process (Keyboard Configura
	Figure 7.5: Red Hat installation process (Mouse Configuratio
	Figure 7.6: Red Hat installation process (Welcome to Red Hat
	Figure 7.7: Red Hat installation process (Install Options)
	Figure 7.8: Red Hat installation process (Partition part 1)
	Figure 7.9: Red Hat installation process (Partition part 2)
	Figure 7.10: Red Hat installation process (Partition part 3)
	Figure 7.11: Red Hat installation process (Partition part 4)
	Figure 7.12: Red Hat installation process (Boot Loader Insta
	Figure 7.13: Red Hat installation process (GRUB Password)
	Figure 7.14: Red Hat installation process (Network Configura
	Figure 7.15: Red Hat installation process (Firewall Configur
	Figure 7.16: Red Hat installation process (Language Support
	Figure 7.17: Red Hat installation process (Time Zone Selecti
	Figure 7.18: Red Hat installation process (Account Configura
	Figure 7.19: Red Hat installation process (Selecting Package
	Figure 7.20: Red Hat installation process (Video Configurati
	Figure 7.21: Red Hat installation process (Installing Packag
	Figure 7.22: Red Hat installation process (Installing Packag
	Figure 7.23: Red Hat installation process (Installing Packag
	Figure 7.24: Red Hat installation process (Boot Disk Creatio
	Figure 7.25: Red Hat installation process (Monitor Selection
	Figure 7.26: Red Hat installation process (X Configuration)
	Figure 7.27: Red Hat installation process (Congratulations-L
	Figure 7.28: Red Hat installation process (Graphical Boot Lo
	7.2 Network Simulator 2 Installation Process

	Chapter 8 (draft 2).pdf
	Chapter 8
	8.1 Conclusions
	8.2 Further Work

	References (draft 2).pdf
	References
	Appendix A
	PROJECT SPECIFICATION

