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Abstract

Electricity has become a integral part of life during the nineteenth and twentieth cen-

tury. As a society we have become more reliant on electric energy and it is considered

an essential service by the majority of customers.

As such electric utilities are under increasing pressure to provide a reliable source of

electric energy, with built in redundancy to guarantee continuity of supply. The addi-

tional redundancy coupled with the high growth in electric energy usage has resulted

in electric utilities placing both High and Low Voltage infrastructures closer to homes,

schools and places of work.

The general public are concerned with adverse health effects associated with exposure

to electric and magnetic fields (EMFs) radiated from this electricity infrastructure.

The scientific community despite years of research and large amounts of research fund-

ing, has found no direct link between EMFs and adverse effects on human health.

Despite this electric utilities are adopting a policy of ‘prudent avoidance’ which defines

limits on EMF exposure levels.

In order to comply with this policy there is a requirement to purchase software to

accurately estimate and model the EMF radiated from High and Low Voltage infras-

tructure. This project will develop a systematic procedure for evaluation and selection

of EMF software by developing theoretical models and carrying out laboratory tests to

verify the results obtained.
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Chapter 1

Introduction

1.1 Justification for the Project.

The general public and electric industry employees are concerned with exposure to

electric and magnetic fields (EMFs) radiating from electrical infrastructure. They are

particularly concerned that electric and magnetic fields may be associated with an

increased risk of illness, ranging from various forms of cancer to birth defects.

Electric and magnetic fields are a natural consequence as a result of the use and transfer

of electric energy. Electric fields are generated by the voltage applied to a conductor

while magnetic fields are generated by the electric current with-in a conductor. The

scientific community despite years of research and large amounts of research funding,

has found no direct link between EMFs and adverse effects on human health although

some epidemiology studies have found a weak association between long term EMF

exposure and an increased risk of childhood leukemia. Expert panels agree that we

are still lacking answers to certain scientific questions. These questions require further

research which is ongoing.

As a result of this uncertainty electric utilities including Ergon Energy, are adopting

a form of ‘prudent avoidance’ or ‘path of least regret’ by limiting new EMF exposures

to the levels society at large has found acceptable. The principal of prudent avoidance
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invests modest expenditure to relocate infrastructure away from sensitive areas.

Ergon Energy has issued guidelines for new electrical infrastructure to provide practical

guidance in the application of EMF management techniques and to undertake cost

monitoring of this procedure. As part of these guidelines Ergon Energy nominates

the “Ergon Energy Interim Reference Levels for New Electrical Infrastructure”. These

levels are largely based on levels specified by the International Commission on Non-

Ionizing Radiation Protection (ICNIRP) with some modifications.

In order to comply with these guidelines there is a requirement within Ergon Energy

to accurately estimate and model the EMF generated from electrical infrastructure

including underground cable routes, overhead power lines and high voltage sub stations.

The main aim of this project is to develop a systematic procedure for the evaluation

and selection of commercially EMF software, which will lead to a recommendation for

the purchasing of EMF modeling software in order to estimate the EMF generated

by High Voltage Sub Stations and Distribution, Sub-Transmission and Transmission

Networks.

This systematic procedure will then be applied to commercial EMF software programs

from the following manufacturers:

� Narda Safety and Test Solutions German based

� Electric Power Research Institute (EPRI) US based, and

� Engineering Services and Technology (SES) Canada based.

By carrying out this project an understanding of EMF research, standards, theory

modeling procedures and evaluation skills will also be developed.

1.2 Objective of the Project

The aim of this project is to develop a systematic procedure for the evaluation and

selection of EMF software.
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Specific Objectives are:

1. To carry out a literature review on the requirement for EMF monitoring, electro-

magnetic modeling on which EMF software is based and EMF standards;

2. To develop a number of theoretical models based on principals such as Maxwell

Laws and Biot-Savart Law to verify numerical results from commercially available

EMF software simulating simple conductor configuration;

3. To carry out laboratory tests on simple conductor configuration and compare test

results with theoretical models and commercial software prediction;

4. To develop a list of criteria against which commercially EMF software could be

evaluated;

5. To carry out an evaluation of a small number of software packages according to

the criteria developed above.

1.3 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 describes the background theory and literature review for the project.

Chapter 3 discusses the theoretical models developed to compare the results of mag-

netic fields measurement against results from software models.

Chapter 4 provides experimental verification.

Chapter 5 introduces three commercially available software programs, develops a set

of a selection criteria for the evaluation of EMF software and recommends the

software to be purchased.

Chapter 6 concludes the dissertation and suggests further work in the area of ‘soft-

ware integration’.



Chapter 2

Literature Review

This chapter will provide the results of a Literature Review on electric and magnetic

fields applicable to extra low frequency of 50Hz. The Literature Review is designed

to identify applicable background information, exposure standards and computation

theory in order to develop a systematic procedure for the evaluation and selection of

EMF software.

The chapter aims to,

� Provide background information on EMF’s and results of health studies applicable

to the power industry,

� Identify applicable standards which limit EMF exposure to the general public

and electric industry employees,

� Identify the computation theory used in EMF models, and

� Provide of the key points.

The Literature Review details identified in this chapter are used in chapter 3 to further

develop EMF computer models and algorithms in order to verify the numerical results

obtained from commercially available EMF software.



2.1 EMF Background Information 5

2.1 EMF Background Information

Generally there are two kinds of electric and magnetic fields. The first type is static

electric and magnetic fields (EMFs) which occur naturally in the atmosphere. Static

electric fields are naturally generated under thunder clouds, but are also associated with

direct current (DC) distribution in items such as electric trains. Static magnetic fields

naturally occur within the earth surface and we associate these fields with the north

and south pole. The second type of EMF’s are man made and are usually associated

with alternating current (AC) equipment and infrastructure used in electric energy

transmission and communication systems. (WHO 2006b) This report is specifically

aimed at electric and magnetic fields from man made sources and as such all references

and theory identified is applicable to alternating current at extra low frequency of 50Hz

(or 60Hz when references are made to American sources).

Electric and magnetic fields are intrinsically related to electric charge. Electric charge

is carried by fundamental particles called atoms, which consist of Electrons and Pro-

tons. These Electrons contain a negative charge, while Protons contain a positive

charge. (Dobney 1996)

Two groups of charges exert a force on each other if charged by different energy levels.

The energy levels can be a different amount or opposite polarity. This force represents

the electric field. As electric fields are caused by force which is measured in Volts, we

describe the electric field in units of Newton per Coulomb (N/C) or more commonly

in Volts per meter (V/m).

If a conducive material, such as Copper or Aluminum, is placed between two groups

of charges, which has a voltage difference or an electric potential between them, the

charges will attempt to equalise and electric current will flow. When this current flows,

the motion of charges produces an additional force on each other which is represented

as the magnetic field. As magnetic fields are caused by movement of charges or electric

current, which has units of Ampere (A), we measure magnetic field in units of Ampere

per meter(A/m). Usually when we mention magnetic fields we are concerned with the

magnetic flux density, which depends on the medium in which the magnetic field exist.

These terms are often interchangeable, however magnetic flux density will be used for
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this project. The unit of magnetic flux density is the Telsa. This is a relatively large

unit and is more commonly expressed as micro Telsa (µT ). Another unit associated

with magnetic flux density is the milliGauss (mG). Although the Gauss units are used

frequently in EMF Literature and specifications, the International System of Units (SI)

uses Telsa to quantify magnetic flux density and therefore will be used for this project.

Gauss and Telsa are directly proportional to each other with ten mG equal to one

µT . (Morgan 1988)

As electric and magnetic fields are intrinsically related to voltage and current, they are

produced by all electric items such as Power Lines, Transformers, Electric Wiring and

Appliances.

Some attributes of electric fields include;

� They are produced by different energy or voltage levels and therefore can exist in

wiring even if the appliance that is connected to the wiring is turned off,

� They are proportional to the voltage levels that created them, ie the greater the

voltage, the greater the electric field,

� Electric fields tend to spread out or diverge from a source,

� Because of this divergence, they are relatively easily shielded or weakened by

items such as walls, building, human skin and trees,

� Electric fields reduce in strength with increasing distance from the voltage source

that created them.

Some attributes of magnetic fields include;

� They are produced by movement of charges or current and therefore only exist

in wiring when the appliance is turned on,

� They are proportional to the current that created them, ie the greater the current,

the greater the magnetic field,

� Imaginary lines of magnetic fields encircle or curl around the current source that

created them,
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� Because magnetic fields curl around that current source, they are not easily

shielded or weakened by most items,

� They reduce in strength with increasing distance from the current source that

created them.

(adapted from (EMF-RAPID 1995))

= Electric Flux

Legend

= Cross section of Energised conductor

Figure 2.1: Electric fields diverging from conductor (adapted from (Kraus 1999))

The cross section of the energised conductor in figure 2.1 shows how the electric field di-

verges from it’s source. Generally electric fields which are produced by voltage sources

are associated with High Voltage infrastructure, while magnetic fields which are pro-

duced by current sources are associated with both High and Low Voltage Infrastructure.

The voltage of the Electric Power System is fairly constant and therefore the associated

electric fields are generally stable and are easily shielded by items such as structures,

vegetation or human skin. Safety requirements stipulate that High Voltage conduc-

tors be constructed at certain distances from the ground, which increases the distance

between electric field sources and the general public. Therefore electric fields do not

present a significant health risk and are generally excluded from most research.
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x

I

B

= Magnetic Flux

Legend

I = Current flow in conductor

Figure 2.2: Magnetic fields curling around conductor (adapted from (Kraus 1999))

The cross section of the current carrying conductor in figure 2.2 shows the magnetic

field encircling or curling around the conductor. This curling ensures that magnetic

fields are not easily shielded or weakened by items such as structures vegetation or

human skin.

Electric and magnetic fields reduce in strength with increasing distance from the source

of the field. The magnetic field impact on a person from a High Voltage power line may

be less than that of a household electrical appliance such as a stove or hair dryer. This

is because the magnetic field from the power line is initially at a higher value, it will be

significantly weakened by the time it reaches the home. In contrast the appliance has

a weaker magnetic field but a person can place themselves directly in that weaker field

while using the appliance. (Garrido 2003). This is demonstrated in figure 2.3 which

shows typical values of magnetic fields radiated from electric appliances measured at

normal user distance. For comparison figure 2.3 also includes typical magnetic field

values from Low Voltage(LV) power line, Electrical Substation and a High Voltage(HV)

power line. Inspection of figure 2.3 shows that in this typical case, the hairdryer has a

greater exposure level than the high voltage power line. As the chart also demonstrates

the electric stove, personal computer (PC), television (TV) and electrical blanket all

have a greater exposure value that the low voltage power line.
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Figure 2.3: Typical values of magnetic field exposure in domestic homes and neighbour-

hoods. For domestic appliances, values are measured at normal user distance. Substation

values are measured at the fence, LV power line values are measured 10 meters from centre

line and HV power line measured at edge of easement. (adapted from (ARPANSA 2004))

The existence of EMFs from electrical infrastructure coupled with the increasing de-

mand for electric energy, results in a greater EMF exposure for the general public.

Despite decades of EMF Research Projects into EMF exposure and health concerns, no

major public health risks have emerged, but uncertainties still remain. (WHO 2006a).

There are three main areas of research undertaken or currently underway,

� Laboratory studies on single cells or organs to see how they behave when exposed

to different levels of EMFs,

� Laboratory studies on animals or humans to check for effect of EMF exposure,

and

� Epidemiological studies that examine if people exposed to various levels of EMFs

have a above normal chance of contracting a disease such as cancer or other

general health issues such as increased risk of miscarriage during pregnancy.

The results of these studies are generally not conclusive and do not provide straight

forward answers. Scientists appear to agree that there is a legitimate basis for concern,
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but can’t provide a direct cause and effect relationship between EMF and adverse health

problems. In fact quite often one research findings will contradict another research

group results, which ultimately reduces our confidence in the research. The language

used in some EMF reviews is also not conclusive, quite often they include the terms

such as,

� Suggestive of an association,

� Has not been scientifically established,

� No firm evidence,

� We suspect but cannot be certain.

(adapted from (EMF-RAPID 1995, Morgan 1988))

If exposure to EMFs does increase the risk of disease, then it is expected the individual

risk is likely to be small (Sahl 1995). Some research reviews indicate that epidemi-

ological studies support an association between long term exposure to EMFs and an

increased risk of developing leukemia in children. (EMF-RAPID 2002, Gibbs 1991) This

has prompted the International Agency for Research on Cancer (IARC) to classify,

� Extremely low frequency magnetic fields as possibly carcinogenic to humans,

� Extremely low frequency electric fields as not carcinogenic to humans.

The IARC has observed that as a result of pooled analysis of nine well conducted

studies, no excess risk was seen for exposure to ELF magnetic fields below 0.4µT while

above this exposure value, there was a twofold excess risk. (IARC 2002) Some reports

indicate that this is applicable to 3% of American homes.(Syfers 2006) However a

leading United Kingdom epidemiologist, Sir Richard Doll, when concluding a study

between EMFs and the risk of cancer, considered that “...the evidence is currently not

strong enough to justify a firm conclusion that such fields (EMFs) cause leukemia in

children” (NRPB 2001).

While the results of the research are generally not conclusive there is however a possi-

bility that EMF has an association with adverse health effects. To combat this possible
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association, electric utilities have adopted a policy of prudent avoidance as the most ap-

propriate response while planning new or augmenting existing Electrical Infrastructure.

Initially Prudent Avoidance involved limiting EMF exposures to values that researchers

had found acceptable, however section 2.2 does detail a more precise definition involv-

ing limits for induced current in the body as a result of short term EMF exposure. It

is not based on firm scientific basis or engineering theory and is considered by many to

be of little benefit. Despite this prudent avoidance was defined by Sir Harry Gibbs in a

inquiry into High Voltage Transmission Line Development for the NSW Government, as

“...prudent to do whatever can be done without undue inconvenience and at modest ex-

pense to avert possible risk”. (Gibbs 1991) Even though it is considered that adopting a

policy of prudent avoidance provides no proven benefit, most electrical utilities in Aus-

tralia, including Ergon Energy, have adopted this policy. (Gibbs 1991, McManus 1992)

The policy of prudent avoidance will be further discussed in section 2.2, where EMF

short term exposure reference limits are identified.
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2.2 EMF Standards

The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), is a

Australian Federal Government agency that has the responsibility for protecting the

people and the environment from the potential harmful effects of radiation such as

exposure to 50Hz EMFs. They advise that there is currently no Australian Standards

which regulates the exposure to 50Hz magnetic fields. (ARPANSA 2006). However

there are guidelines available, both Australian and International, which recommend

limits on exposure to EMFs with the intention that they will provide some protection

against adverse health effects.

In Australia the National Health and Medical Research Council (NHMRC) published

the ‘Interim guidelines on limits of exposure to 50/60Hz electric and magnetic fields’

in 1989. These guidelines have since been rescinded by the NHMRC and responsibility

has been transferred to ARPANSA. These 1989 guidelines are currently under review

and ARPANSA are planning to replace them with an Extra Low Frequency (ELF)

Radiation Standard, which will provide exposure limits from 0Hz to 3kHz, as well

as precaution advice on how to manage EMFs exposure. The new ARPANSA ELF

standard is expected to be issued for public comment shortly.

The now rescinded interim guidelines produced by NHMRC were based on guide-

lines developed in 1989 by the International Non-ionizing Radiation Committee of

the International Radiation Protection Association (IRPA/INIRC). The IRPA/INIRC

guidelines have been superseded in 1998 by the ‘Guidelines for Limiting Exposure to

Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300GHz)’ pro-

duced by the International Commission on Non-Ionizing Radiation Protection (IC-

NIRP). (NHMRC 1989, ICNIRP 1998). The new ARPANSA ELF standard is expected

to follow international trends and reference the ICNIRP guidelines but be slightly dif-

ferent in content. Even though ARPANSA are describing the new document as a

standard, compliance will only become a mandatory requirement if referenced by a

regulating body such as State or Federal Government.

The ICNIRP Guidelines are designed to only prevent short term EMF induced current,

causing adverse health effects. ICNIRP describes adverse health effects as “detectable
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impairment of the health of the exposed individual or their offspring”. The exposure

limits in the ICNIRP guidelines do not provide protection against increased health risks

associated with long term EMF exposure. This is because ICNIRP, along with other

national agencies, has recognised that epidemiological research has provided suggestive

but unconvincing links between EMF and carcinogenic effects, such as cancer, and the

existing studies are an insufficient basis for settings more restrictive long term exposure

limits. (ICNIRP 1998, TRPC 2006)

The EMF exposure limits in the ICNIRP guidelines comprise of,

� Basic Restrictions which provide limits on the induced current allowed in the

body as a result of short term EMF exposure. This EMF induced current in a

body is very difficult to measure or predict.

� EMF Reference Levels which are provided for practical exposure assessment pur-

poses, to determine if the EMF Basic Restriction induced current limit will be

exceeded. If an EMF value is measured or modeled below the Reference Level

then compliance with the Basic Restriction induced current limit is assured. If

the exposure level is measured or modeled above the Reference Level then fur-

ther investigation is required to determine if the Basic Restriction induced current

limit is exceeded.

The ICNIRP guidelines provide both Basic Restriction induced current limits and Ref-

erence Levels which are different for the general public and occupational population.

The general public population exposure values contain a safety factor to further reduce

the values recommended for the occupational population exposure. The justification

for the varying exposure values is that the general public can comprise of both young

children and the elderly all with varying health status. In contrast the occupation

population generally consists of fit adults who are more aware of the potential health

risks and are trained to carry out appropriate safety precautions and health checks.

Table 2.1 lists the ICNIRP Guidelines Basic Restriction induced current limits and

Reference Levels for both the general public and occupational population to short term

EMF exposure.
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Ergon Energy currently has a procedure in place which provides practical guidance to

the application of EMF management techniques in regards to the siting and location of

new electrical infrastructure. These guidelines support the policy of prudent avoidance

and provide interim reference EMF limits which are largely based on the ICNIRP

guidelines. The Ergon Energy procedure undertakes cost monitoring and analysis to

ensure that level of cost incurred complies with the prudent avoidance philosophy of

modest expenditure. (ERGON 2005)

The ICNIRP short term exposure levels that are applicable to 50Hz electric and mag-

netic fields are shown in table 2.1.

Table 2.1: ICNIRP EMF Short Term Exposure Levels (50Hz)(Adapted from rounded off

values of table 4, 6 & 7 and figure 1 & 2 of the Guidelines for Limiting Exposure to Time-

Varying Electric, Magnetic and Electromagnetic Fields. (Up to 300GHz). (ICNIRP 1998))

Item Description Occupational General Public

Population Population

Basic Restriction Induced Current Limit 10mA/m2 2mA/m2

Reference Level Magnetic Field 500 µT 100 µT

Electric Field 10 kV/m 5 kV/m

Magnetic fields from alternating current sources are also alternating in proportion to the

frequency of the supply system. With these magnetic fields expanding and collapsing

50 times a second, it is common for the magnetic field axes to have varying rates of

expansion and collapse. This can lead to magnetic fields which are polarized with an

elliptical characteristic which presents difficulty in defining the level of magnetic field.

There are generally two methods of estimating and measuring EMF in order to compare

with the values listed in table 2.1. The first method is to specify the maximum field

vector which exists at a point. This is the value which would be read by a single axis

meter if the sensing coil or antenna was rotated and oriented in a direction to read the

maximum value which exists. Inspection of figure 2.4 shows in this particular case the

maximum value is 9µT .

The second method is to specify the Resultant or RMS value of magnetic field vector
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Figure 2.4: Example of polarized magnetic field with unequal resultant and maximum

values

which exists at a point. This is the value which would be read by a triaxial axis meter

if it had three sensing coils, one each for the X, Y and Z axis. Inspection of figure 2.4

shows in this particular case the Resultant value is 9.75µT , which is a difference of 8%.

Inspection of figure 2.5 shows a particular case when the Resultant and Maximum are

both equal to 5µT . The difference between the Resultant and the Maximum value can

be up to
√

2 or 141.4% which occurs when the minor and major axis are equal which

is known as circularly polarized. (Southern California Edison 1995, Enertech 2001)

The EMF resultant values are more commonly encountered and will be utilised in this

report.
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Figure 2.5: Example of polarized magnetic field with equal resultant and maximum values

2.3 EMF Modeling Theory

Generally when we discuss electric energy theory, we assume that electric energy is

transmitted from a source to a load through conductive medium such as copper or

aluminum wires. This is generally referred to as circuit theory and is considered to be

a generalized view of the electric energy transfer process. An alternative view is called

field theory which proposes that the energy is actually transmitted from the source to

the load by electric and magnetic fields. Field theory proposes that the conductive

medium is merely a wave guide to define the energy transfer path. As mentioned

in section 2.1, electric fields are caused by different electric charge energy levels and

magnetic fields are caused by the movement of electric charges. Modeling the electric

and magnetic fields is generally explained using charges and field theory.

Initially is was considered that electric and magnetic fields were separate identities but

in 1873 a scottish physicist, James Clerk Maxwell proposed that electric and magnetic

fields were coupled and essentially part of the same phenomenon. To support this

proposition, Maxwell using field theory proposed four equations which are now known
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as Maxwell’s Equations. Generally it is necessary to solve Maxwell’s Equations for

a particular installation to find the electric and magnetic fields. However this leads

to complex maths which does create greater precision, but has the disadvantage of

inaccuracies associated with unknown circulating currents. Electric and magnetic fields

are coupled as proposed by Maxwell, but at extra low frequency, they are also relatively

slow moving and therefore can be investigated using separate electric and magnetic field

equations with an acceptable level of accuracy. These equations will be developed in

the next sections. (Suplee 2000, Kraus 1999, Garrido 2003)
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2.3.1 Electric Fields Theory

As indicated in section 2.1, a force that exists between two charges or charge groups

is defined as the electric field. A french military engineer, Charles Augustin Coulomb,

using a very sensitive torsion balance, discovered in 1785, that two balls were attracted

or repulsed based on a force which was proportional to the charge between them and

inversely proportional to the distance squared between them. (Suplee 2000) This is

described mathematically as,

F = F r̂ =
Q1Q2

4πεr2
r̂ (N) (2.1)

If we divide equation 2.1 by Q2 we get the equation for an electric field from a single

point charge,

E =
F

Q2
=

Q1

4πεr2
r̂ (N/C)or(V/m) (2.2)

where,

Q1 = charge 1, (C)

Q2 = charge 2, (C)

r2 = radial distance from charge 1 to charge 2, (m)

r̂ = dimensionless unit vector in radial direction

ε = permittivity or dielectric constant, (F/m)

This discovery and subsequent equation is commonly known as Coulomb’s Law and is

one of the fundamental laws for solving electric fields problems. (Bennett 2001, Kraus

1999)

In general when we wish to model the electric fields from electric infrastructure such as

overhead power lines, we are concerned with measuring the total field from a transmis-

sion line rather than a single point charge on the line. We use line charges to describe

the transmission line net charges on an observation point. The term Q1 in equation

2.2 is replaced with charge density ρL which has units of C/m. If the line is sufficiently
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long, which is correct for most cases, then the equation for electric field due to a line

charges is,

E =
ρL

2πεr
r̂ (N/C)or(V/m) (2.3)

For a three phase overhead transmission line we can sum the electric fields contribution

of each conductor using the equation 2.3 to get the total electric field at an observation

point.

As was indicated in section 2.1, due to shielding effects, electric fields are generally

excluded from most EMF research. This is also due to the requirement to suspend high

voltage transmission lines to satisfy safety clearance between the transmission lines and

ground or nearby structures. Compliance with these safety clearances ensure that the

electric fields calculated by equation 2.3 does not exceed the electric field Reference

Levels for general population in table 2.1. Special safety control measures are in place

to manage the Reference Levels for the occupational population while working on or

near High Voltage Infrastructure.
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2.3.2 Magnetic Fields Theory

As indicated in section 2.1, the force caused by the movement of charges is defined as the

magnetic field. Two french scientists, Jean-Baptiste Biot and Felix Savart, discovered

in 1820 that the relationship between the magnetic field H at an observation point and

the current which caused it. This relationship is known as the Biot-Savart law and is

expressed as

dH =
Id`sinθ

4πr2
(A/m) (2.4)

We can modify equation 2.4 to calculate the magnetic flux density,

dB =
µId`sinθ

4πr2
(T ) (2.5)

where,

µ = permeability of the medium, (H/m)

I = current,(A)

d` = short section of current carrying conductor, (m)

dH = increment magnetic field at an observation point, (A/m)

dB = increment magnetic flux density at an observation point, (T )

θ = angle between an observation point and short section of conductor d`,

r = distance vector between section of conductor d` and an observation point, (m)

For small sections of current carrying conductor d`, the incremental magnetic flux

density dB, calculated by equation 2.5 is a tangent to an imaginary line of magnetic

field which encircle the current carrying conductor. The direction of the tangent is given

by the Right Hand Rule. The Right Hand Rule specifies when a conductor is gripped by

the right hand, with the thump pointing in the direction of current flow, the fingers point

in the direction of magnetic field lines which encircle the conductor. (Lonngren 2005)

If the magnetic field calculated by equation 2.4 is integrated, then the total magnetic

field can be calculated. This was discovered in the early eighteenth century by experi-

ments carried out by a french physicist Andre-Marie Ampere. The relationship between

current and magnetic fields is stated as,
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I =
∮

H • d` =
∫ ∫

J • dS (A) (2.6)

Maxwell added another term to Ampere’s law stated in equation 2.6, to include a time

changing displacement current density. This modified equation is,

I =
∫

s

(
J +

∂D

∂t

)
• dS (A) (2.7)

where,

dS = surface element, (m2)

I = current, (A)

d` = short section of current carrying conductor, (m)

H = Magnetic field, (A/m)
∮

= line integral around closed path
∫
s = integral over surface enclosed by path

J = current density, (A/m2)
∂D
∂t = time changing displacement current density, (A/m2)

This relationship described in equation 2.5, 2.6 and it’s modified version in equation

2.7 is commonly known as Ampere’s Law or the integral of the Biot-Savart Law, and

it relates a magnetic field distribution and the electric current which caused it. This

is one of the fundamental laws for solving magnetic fields problems. (Suh 2000) The

Biot-Savart Law (equation 2.5) is frequently used to calculate the magnetic fields from

electrical infrastructure such as transmission lines. The Biot-Savart Law when used

to calculate the magnetic fields from electrical infrastructure assumes that the free

space, in which the waves travel, is homogeneous, which means that it consists of one

permeability µ. (Suplee 2000, Kraus 1999, Berlec 1998)

The models developed using equation 2.5 and 2.6 are reliable and can accurately predict

the magnetic fields emitted by electric devices such appliances and coils. (Ohnishi 2002,

Garrido 2003) One study to compare the magnetic fields predicted by three computer

models against actual measurements of a 400kV dual circuit transmission line, found

that the maximum difference between predicted and measured results was ±7%. This
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difference was largely attributed to measurement errors. (Swanson 1995)
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2.4 Chapter Summary

This chapter provides background information on EMF’s and comments on health

studies completed or underway on EMF’s and associated health effects. Applicable

EMF standards and guidelines to the power industry are identified. This chapter also

identifies equations used in EMF computation methods. Key points discussed in this

chapter include.

� Electric and magnetic fields are intrinsically related. Electric fields have units of

volts per meter (V/m) while magnetic fields have units of Telsa (T ) which more

commonly expressed as micro Telsa (µT ), and

� Electric fields are proportional to the voltage source that caused them while

magnetic fields are proportional to the current source which caused them. Both

electric and magnetic fields are reduced as the distance from the source is in-

creased.

� Electric fields are not included in the majority of research as they are easily

shielded and, due to safety reasons associated with insulation levels, their source

are sufficiently removed from the general public and do not result in dangerous

exposure levels. As a result of this, only magnetic fields will be considered in this

project.

� Currently no Australian Standards exist to regulate EMF exposure although a

Federal Government agency ARPANSA, is currently developing EMF exposure

standard. Currently the short term exposure limits specified in guidelines pro-

duced by the international organization ICNIRP are generally adopted and im-

plemented by most electric utilities, and

� The IARC has classified long term magnetic fields exposure as possibly carcino-

genic to humans, the association between long term EMF exposure and health

risks is weak and not proven. Most electric utilities including Ergon Energy use

a policy of prudent avoidance to manage EMF exposure. This policy aims to re-

duce only short term EMF exposure below values specified in ICNIRP guidelines.

There are no long term EMF exposure values specified by ICNIRP.



2.4 Chapter Summary 24

� Electric fields are calculated by using Coulomb Law, while magnetic fields are

generally calculated using Ampere Law or Biot-Savart Law. One of Maxwell’s

equations is a modified version of Ampere Law.



Chapter 3

Theoretical Models

As part of the requirement to develop a systematic procedure for the evaluation and

selection of EMF software, it is required to compare the outputs of such software with

measurements that are applicable to real life situations. Due to safety reasons and

fluctuation of loads, it is difficult to accurately measure magnetic fields emitted from

high voltage power lines. Hence models of power lines are constructed in a laboratory

and connected to a fixed load. This produces stable magnetic fields which can be accu-

rately measured. This chapter will identify physical structures which are constructed

in order to carry out these experiments and also provide details on the theoretical

models and algorithms developed in order to verify the numerical results obtained from

commercially available EMF software. The chapter is organized in the following areas,

� Identify physical structures which will be used to compare EMF values from

theoretical models developed, physical models built and commercially available

EMF software outputs,

� Identify theory required to model EMF emitted by the physical structure,

� Develop computer algorithms to implement the theory identified,

� Summary of key points.
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The results of this chapter will be utilised in chapter 4 to carry out experiments which

will be used to verify the results of commercially available EMF software.
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3.1 Physical Structures

This section provides details on physical structures identified for the comparison of

magnetic field values. The physical structures will be used in the following areas,

� Constructed in the laboratory in order to measure actual magnetic field emitted

by the structures, which is used to verify the accuracy of commercially available

EMF software. This is developed further in section 4.

� As a basis for identified theory and software algorithms to predict magnetic fields

outputs in order to verify the accuracy of commercially available EMF software.

This is developed further in section 3.2 & 3.3, and

� As a basis for commercially available EMF software in order to compare the

magnetic fields outputs with predicted and measured results. This is developed

further in section 4.

The majority of Electric Transmission and Distribution Networks consist of three con-

ductors with a conductor allocated to one phase of a three phase power supply system.

This is commonly known as a three phase system and has three sinusoidal voltages,

which are ideally of the same magnitude, but are electrically separated from each other

by 120◦. (Ramakrishnan 1996)

These electric networks are usually classed as,

� Transmission Networks. These networks are energised in voltages ranging from

110kV to 230kV and above. They generally transmit electric energy from a

generation plant to a city, large town or large industrial customer. Transmis-

sion Networks are mainly installed on overhead, suspended conductors and are

generally separated from residential areas.

� Sub-Transmission Networks. These networks are energised in voltages ranging

from 33kV to 66kV and transmit electric energy to smaller towns, within cities

or to a large industrial customer. Sub-Transmission Networks can be under-
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ground especially in built up areas but are more commonly installed on overhead,

suspended conductors.

� Distribution Networks. These networks are energised in voltages ranging from

11kV to 22kV , however in rural areas single wire earth return systems (SWER)

are common, particularly in low demand areas and are energised at 12.7 or

19.1kV . Distribution Networks are generally underground in built-up residen-

tial areas and overhead in less populated and rural areas. Distribution Networks

generally supply electric energy to small pole top transformers or packaged sub-

stations ranging in size from 50kV A to 1500kV A. From these sub-stations electric

energy is distributed to each customer by single or three phase conductors ener-

gised at 415V or 240V .

Distribution Networks are usually interconnected in residential locations, work places

and public areas. As such, infrastructure within the Distribution Network class pro-

vide the dominate source of magnetic fields exposure to the general public. Distribution

Networks are usually located in dedicated service corridors or along road ways. The

Physical Structure used in this project is designed to simulate a typical overhead Dis-

tribution Network.

The physical layout of overhead Distribution Networks depends on the voltage level,

local environment or terrain and stringing tension. Typical 22/11kV Distribution Net-

works have horizontal suspended conductors placed 500mm apart. The layout of these

conductors will vary to include both horizontal and vertical conductors.

Taking this into consideration, the following two types of Physical Structures are used

in order to compare results,

� Structure A: This structure consists of three horizontal suspended conductors

500mm apart. This structure models horizontal conductors that are assumed

to be infinitely long and contain no sag. The current distribution from these

conductors is assumed to be symmetrical. Magnetic field values are calculated or

measured on a cross section grid at regular distances from the conductors.

� Structure B: This structure consists of three conductors spaced 500mm apart
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containing vertical and horizontal conductors. These conductors have a finite

length and the current distribution from these conductors is assumed to be non

symmetrical. These magnetic fields values are calculated or measured on a cross

section grid at regular distances from the conductors.

The physical structures offer the dual advantage of being to construct in the labora-

tory in order to measure magnetic fields while also similar to structures encountered

in Distribution Networks. Although a Distribution Network is typically energised at

22/11kV , due to safety concerns, the Physical Structures constructed in the Laboratory

are energised at 415V . As we are concerned with measuring magnetic fields associated

with current flow only, and not electric fields, the energisation of these physical struc-

tures at 415V , will not effect the experiment objectives.
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3.2 Model Theory

This section will further develop the general magnetic field theory identified in section

2.3.2, in order to generate computer algorithms in section 3.3. The physical models,

Structure A and Structure B, identified in section 3.1 require two different but related

types of magnetic field calculation theory,

� Structure A has symmetrical current distribution and the conductors can be as-

sumed to be infinitely long.

� Structure B has non symmetrical current distribution and the conductors are

finite in length.

Section 2.3.2 identified that electric current can be calculated using Ampere Law or it’s

modified form in Maxwell equation. The Maxwell equation 2.7 is reproduced below,

I =
∫

s

(
J +

∂D

∂t

)
• dS (A) (3.1)

For low frequency magnetic fields, such as our current system frequency of 50Hz, the

time changing displacement current density ∂D
∂t in equation 3.1 added by Maxwell is

approximately zero. When calculating symmetrical magnetic fields and assuming that

the conductors are infinitely long, equation 3.1 is manipulated to solve magnetic flux

density (B) and is simplified as,

B =
µI

2πr
(T ) (3.2)

adapted from (Fishbane 1996)

where,

B= Magnetic flux density an an observation point, (T )

µ = permeability of the medium, (H/m)

I = current, (A)

r = distance vector between the conductor L and an observation point, (m)
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The equation 3.2 is only applicable for calculation of external magnetic fields in symmet-

rical, infinitely long conductors. If there is more than one conductor, then the magnetic

field contribution from each conductor is calculated and summated to give the total

magnetic field at an observation point. There are internal magnetic fields inside each

conductor, however due to the relatively small diameter of the conductors compared to

the distance between the conductors and the observation point, it is assumed that the

contribution from the internal magnetic fields is negligible. The equation 3.2 is used

for calculation of magnetic fields emitted from Structure A and is easily implemented

in a computer algorithm once the dimensions of r and the current I are known. The

Structure A computer algorithms will be developed in section 3.3.

The equation 3.2 is not applicable to the calculation of magnetic fields emitted from

Structure B as the structure is non symmetrical and contains both vertical and horizon-

tal conductors of finite length. For this calculation we use the Biot Savart Law identified

in Section 2.3.2. The Biot Savart Law from equation 2.5 is reproduced below,

dB =
µId`sinθ

4πr2
(T ) (3.3)

The total magnetic field at an observation point P , is calculated by summing each dB,

ie

B =
∫

dB =
∫

µId`sinθ

4πr2
(T ) (3.4)

and finally we can rearrange equation 3.4, and multiply by r to allow the use of cross

products. ie

B =
∫

dB =
µ

4π

∫
Id`× r

r3
(T ) (3.5)

adapted from (Fishbane 1996)

Equation 3.5, can be implemented in a computer algorithm by choosing d` sufficiently

small. This is achieved by using n segments. As n segments approaches ∞, d` or ∆`

approaches zero, the flux density B can be calculated as,
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B =
µ

4π
lim

n→∞

n∑

i=1

I∆`× r

r3
(T ) (3.6)

adapted from (Garcia 1996) where,

µ = permeability of the medium, (H/m)

I = current, (A)

d` = short section of current carrying conductor, (m)

dB = Increment Magnetic flux density at an observation point, (T )

B = Total magnetic flux density at an observation point, (T )

r = distance vector between section of conductor d` and an observation point, (m)

n = segment number

The equation 3.6 is applicable for calculation of external magnetic fields in both sym-

metrical and non symmetrical conductors. Similarly to the symmetrical case, there

are internal magnetic fields inside each conductor, however due to the relatively small

diameter of the conductors compared to the distance between the conductors and the

observation point, it is assumed that the contribution from the internal magnetic fields

is negligible. The equation 3.6 is used for calculation of magnetic fields emitted from

Structure B and is implemented in a computer algorithm once the dimensions of r, the

current I and the total conductor length is divided into small segments ∆`. When this

is known, equation 3.6 is implemented in a continuous loop over the entire structure to

calculate the magnetic field contribution from each segment ∆`. If there is more than

one conductor, then the magnetic field contribution from each conductor is summated

to give the total magnetic field at an observation point P . The computer algorithms

will be developed in section 3.3.
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3.3 Model Algorithms

This section will identify computer algorithms required to implement equations de-

veloped in section 3.2. The aim of the equations developed and associated computer

algorithms is to model magnetic fields emitted from two Structures. The two equations

developed are,

� Equation 3.2 for calculation of magnetic fields in symmetrical current distribution

where the current carrying conductors are assumed to be infinitely long. This

equation will be applied to magnetic field calculations for Structure A.

� Equation 3.6 for calculation of magnetic fields in non symmetrical current distri-

bution where the current carrying conductors are finite in length. This equation

will be applied to magnetic field calculations for Structure B.

For the implementation of equation 3.2 to calculate magnetic flux density in symmetri-

cal fields in Structure A, there are two unknowns which need to be defined or calculated.

The conductor in Structure A is assumed to be infinitely long and therefore the calcu-

lation is reduced to a two dimensional problem as we are assuming that the associated

magnetic fields is homogenous for the entire length of the conductor.

The first unknown is the current in the conductor I. This is usually available by direct

measurement or can be a derived value based on the applied voltage and connected

load. The second unknown is the distance vector r. This distance vector r in equation

3.2 is the distance between the observation point P and the current carrying conduc-

tor a. By assuming symmetrical current distribution and infinitely long conductors,

the distance vector r can by calculated by applying Pythagorean theorem to the ver-

tical and horizontal distances between observation point P and the conductor a. This

demonstrated in figure 3.1.
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Figure 3.1: Structure A. Calculation of vector r in single conductor, symmetrical magnetic

fields

The distance vector ra is calculated as,

ra =
√

(xp− xa)2 + (yp− ya)2 (m) (3.7)

In Structure A there are three conductors, one for each phase. The magnetic field

contribution from each conductor is determining separately, using equation 3.7 to first

calculate the distance vector r and then input this into equation 3.2 to get the separate

magnetic field contribution from each conductor. This magnetic field contribution from

each conductor is then summated at the observation point P to get the total magnetic

field at the observation point P . This is demonstrated in figure 3.2.

The steps required to implement equation 3.2 and equation 3.7 in a computer algorithm,

are listed in table 3.1.

MATLAB version 6.5 was used to implement the steps in table 3.1. For a complete list

of the MATLAB code refer to Appendix B. The magnetic flux density calculated by

the computer algorithm, for Structure A, is listed in chapter 4.
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For the implementation of equation 3.6 to calculate magnetic flux density in non sym-

metrical fields of Structure B, there are three unknowns which need to be defined or

calculated. The conductor in Structure B has a finite length and therefore the calcula-

tion is required to be carried out in three dimensions.

The first unknown is the current in the conductor I. In a similar manner to the

symmetrical case, this is usually available by direct measurement or can be a derived

value based on the applied voltage and connected load. The second unknown is the

distance vector r. This distance vector r in equation 3.6 is the distance between the

observation point P and the segment of the current carrying conductor ∆`. This is

demonstrated in figure 3.3. As the current distribution is non symmetrical, the distance

vector r must be calculated by applying Pythagorean theorem in turn, to all conductor

segments ∆`. The last remaining unknown is the length of the conductor segment ∆`.

This is a direct result of choosing n in equation 3.6. As n → ∞ in equation 3.6, then

∆` → 0. Generally it is not practical for ∆` → 0, however acceptable accuracy can be

obtained by choosing ∆` small in comparison to the conductor length.

The next step is to calculate the cross product ∆`× r. This cross product is calculated

separately along each axis using the following equations.

∆`× r(x) = ∆`(y)× r(z)−∆`(z)× r(y) (3.8)

∆`× r(y) = ∆`(z)× r(x)−∆`(x)× r(z) (3.9)

∆`× r(z) = ∆`(x)× r(y)−∆`(y)× r(x) (3.10)

adapted from (Hughes-Hallett, Gleason McCallum, et al. 1998)

where,

∆`× r(x)= Cross product in x direction

∆`× r(y)= Cross product in y direction

∆`× r(z)= Cross product in z direction

In Structure B there are three conductors, one for each phase. The magnetic field

contribution from each conductor is determining separately, by first calculating the

distance vector r, inputting this value into the cross product equations 3.8 to 3.10
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and finally inputting this value into equation 3.6. This is repeated for all segments

in the conductor. When this is carried out, the magnetic field contribution from each

conductor is then summated, to get the total magnetic field at the observation point

P .

The steps required to implement equation 3.6 in a computer algorithm, are listed in

table 3.2.

MATLAB version 6.5 was used to implement the steps in table 3.2. For a complete list

of the MATLAB code refer to Appendix C. The magnetic flux density calculated by

the computer algorithm, for Structure B, is listed in chapter 4.
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3.4 Chapter Summary

This chapter provides details on Theoretical Models which included identifying struc-

tures, equations and algorithms required to verify the numerical results obtained from

commercially available EMF software. Key points discussed in this chapter include.

� Identify Structure A which will be used to model symmetrical magnetic fields,

� Identify Structure B which will be used to model non symmetrical magnetic fields,

� Identify equations which will be used to model both symmetrical and non sym-

metrical magnetic fields,

� Develop Theoretical Models in the form of computer algorithms to calculate the

magnetic field emitted by the structures at an observation point using equations

identified.

The results of this chapter will be utilised in chapter 4 to carry out experiments which

will used to verify the results of commercially available EMF software.



3.4 Chapter Summary 38

6

-

y

x

va vb vc

vP

!!!!!!!!!!!!!!!!!!!!!!

"
"

"
"

"
"

"
"

"
"

"
"

"
""













(ra) (rb) (rc)

Legend
a, b, c = Current carrying conductors
P = Observation point
r = Distance vector

Figure 3.2: Structure A. Calculation of vector r in three conductor, symmetrical magnetic

fields

6

-
@

@@R

y

z
x

@
@

@
@

@
@

@
@@

(ra)

6d`

-
dB

a

-
I

vP

Legend
a = Current carrying conductor
P = Observation point
r = Distance vector
dB = Increment magnetic flux

Figure 3.3: Structure B. Calculation of vector r in non symmetrical magnetic fields



3.4 Chapter Summary 39

Table 3.1: Steps required for generation of computer algorithm to calculate symmetrical

magnetic fields using equations 3.2 and equation 3.7

Stage Details

Step 1 Input data:

– Specify each conductor horizontal & vertical dimensions

– Specify observation point horizontal & vertical dimensions

– Specify current flow in each conductor

Step 2 Field strength calculation:

– Calculate horizontal component of magnetic field strength

– Calculate vertical component of magnetic field strength

– Repeat calculation for each conductor

Step 3 Net field Strength:

– Sum individual horizontal magnetic field strength

– Sum individual vertical magnetic field strength

Step 4 Convert summated horizontal and vertical magnetic

field strength to magnetic flux density

Step 5 Calculate Resultant and Maximum values

of magnetic flux density
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Table 3.2: Steps required for generation of computer algorithm to calculate non symmetrical

magnetic fields using equation 3.6

Stage Details

Step 1 Input data:

– Specify each conductor x, y & z dimensions

– Specify observation point x, y & z dimensions

– Specify current flow in each conductor

Step 2 Determine segments ∆` dimensions:

– Calculate array with x dimensions for each segment

– Calculate array with y dimensions for each segment

– Calculate array with z dimensions for each segment

– Repeat for each conductor

Step 3 Distance vector:

– Calculate r for each segment to observation point

– Calculate r3 for each segment to observation point

Step 4 Cross Product:

– Calculate x direction I∆`× r

– Calculate y direction I∆`× r

– Calculate z direction I∆`× r

– Repeat for each segment and conductor

Step 5 Calculation

Use results of Step 3 & 4 to implement equation 3.6

Sum calculation for each segment

Sum calculation for each conductor



Chapter 4

Experimental Verification

As part of the requirement to develop a systematic procedure for the evaluation and

selection of EMF software, it is required to compare the outputs of such software

with measurements obtained under controlled laboratory conditions in order to verify

that the outputs predicted are accurate. This chapter will use the physical structures

identified and the theoretical models developed in chapter 3 in order to carry out

this verification of the numerical results obtained from commercially available EMF

software. The chapter is organized in the following areas,

� Provide methodology, procedure and results for experiments carried out in the

laboratory in order to measure actual magnetic fields emitted by the structures

identified in section 3.1,

� Provide results of commercially available EMF software, when modeling magnetic

fields emitted by physical structures identified in section 3.1,

� Provide results of MATLAB computer algorithms identified in section 3.3 which

model magnetic fields emitted by the physical structures identified in section 3.1,

� Compare the outputs of the commercially available EMF software with the out-

puts from the MATLAB computer algorithms and actual experiment measure-

ments,

� Summary of key points.
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The results of this chapter will be included in the selection criteria developed in chapter

5 in order to evaluate commercially available EMF software.
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4.1 Experiments

This section provides method, procedures, construction details and results on experi-

ments carried out in order to measure magnetic fields emitted by physical structures

under controlled laboratory conditions.

4.1.1 Experiment Method

In order to measure the magnetic fields for various conditions, five separate experiments

were carried out using two different structures identified in section 3.1.

It is essential to ensure that only the magnetic fields radiated from the particular

structure is measured and not magnetic fields from external sources. To reduce the

impact of magnetic fields from external sources, the following control measures were

implemented,

� The experiments were conducted during university holidays. The reasoning of

this requirement was to measure the magnetic fields when the building had a

low level of occupancy, which reduced radiated magnetic fields from additional

sources such as lighting, air conditioning, laboratory equipment and computers.

� The back ground magnetic fields from the general building equipment was mea-

sured at regular intervals before and after each experiment. The results varied

but were generally within the range of 0.1− 0.2µT . This relatively low value will

have a negligible effect when compared to the magnetic field radiated by each

experiment structure.

� The experiments structures with-in the laboratory was located away from any

high current sources such as power system sub-main cabling and distribution

board. All electrical items which were not required for the experiments were

turned off.

The main aim of Experiment 1 and 2 is to obtain a comparison of measured and modeled

magnetic fields radiated from Structure A. Structure A consists of three equally spaced



4.1 Experiments 44

horizontal conductors which result in radiated symmetrical magnetic fields which curl

around each conductors as shown in figure 2.2. The construction method of Structure

A attempts to reduce errors by ensuring that the current carrying conductors are under

tension which reduces sag. The load for Experiment 1 is three phase 415V 12.8A per

phase. For Experiment 2 this load is doubled to 415V 24.6A per phase. The magnetic

field measurements for Experiment 1 and 2 were taken at 15 observation points along

three measurement profiles below the horizontal conductors. Refer to figure 4.1 and

photographs located in appendix D for construction details of Structure A.

The main aim of Experiment 3, 4 and 5 is to obtain a comparison of measured and

modeled magnetic fields radiated from Structure B. Unlike Structure A, the magnetic

fields radiated by Structure B are non symmetrical as the structure consists of a mixture

of three equally spaced horizontal and vertical conductors. As per Experiment 1 and

2, the magnetic fields also curl around the conductors as shown in figure 2.2, however

there is now both horizontal and vertical magnetic fields which alter the overall nett

magnetic fields at any particular observation point. Due to construction constraints, it

is not practical to build a precise model of Structure B with conductors orthogonal to

each other and as such the radiated magnetic field measured will contain some inherent

errors when compared to the modeled results. The load for Experiment 3 and 4 is three

phase 415V 24.6A per phase. In Experiment 3 the measurement profile is located equal

distances from the vertical conductors while in Experiment 4, the measurement profile

is located 500mm from the vertical conductors. Experiments 1 to 4 were energised at

415V three phase. In order to gain some comparison of measured and modeled magnetic

fields from single phase networks, Experiment 5 was energised at 240V . The load for

Experiment 5 is 13.13A. This load is transferred to the load bank by the two outer

conductors with the middle conductor not connected. The magnetic field measurements

for Experiment 3, 4 and 5 were taken at 15 observation points along five measurement

profiles below the horizontal conductors. Refer to figure 4.2 and photographs located

in appendix E for construction details of Structure B.

A summary of the above details for each experiment is listed in table 4.1. The equip-

ment used to carry out each experiment is listed in table 4.2. The procedures used to

carry out these experiments will be discussed in the next section 4.1.2.
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Table 4.1: Specifications for Experiments 1, 2, 3, 4, & 5.

Exp. Structure Supply Load Comments

No. (V ) (A)

1 A 415 12.8 Three phase, Symmetrical fields

3 measurement profiles -250mm below conductors

2 A 415 24.6 Three phase, Symmetrical fields

3 measurement profiles -250mm below conductors

3 B 415 24.6 Three phase, Non Symmetrical fields

5 measurement profiles -250mm below conductors

at a distance of 500mm from the vertical sections

4 B 415 24.6 Three phase, Non Symmetrical fields

5 measurement profiles -250mm below conductors

located in the centre between vertical sections

5 B 240 13.1 Single phase, Non Symmetrical fields

Centre conductor not energised

5 measurement profiles -250mm below conductors

at a distance of 500mm from the vertical sections

4.1.2 Experiments Equipment & Procedures

The equipment used to carry out the experiments was sourced mostly from USQ Elec-

trical Laboratory, while the magnetic field meter was supplied by Ergon Energy. This

meter was a EMDEX II triaxial meter manufactured by Enertech in California. The

meter is a true RMS instrument and derives its name triaxial from its construction,

as it contains three separate orthogonally oriented magnetic field sensor coils, one for

the X axis, one for the Y axis and finally one for the Z axis. The EMDEX II is

widely used for measuring magnetic fields in experiments involving power line frequen-

cies (Swanson 1995, Karipidis, K. & Martin, L. 2005) and is specifically designed to

measure AC fields in the 40-800Hz spectrum while rejecting other frequencies outside

this range including the earths DC magnetic field (Enertech 2001). The meter was

orientated so that the vertical and horizontal measurement profiles were located in the

centre of its three sensor coils.
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A summary of all equipment used in the experiments is listed in table 4.2.

Table 4.2: List of equipment required to generate and measure magnetic fields for Experi-

ments 1, 2, 3, 4, & 5.

Item Details Comments

Power Supply 415V , 50Hz Three phase laboratory outlet,

32Amax protected by residual current device

Load Bank Donaldson Electric Resistive heating elements

Works 27kW Three banks of 9kW elements, switched

separately, three phase cooling fan

Power Fluke 43B Analyser used to measure line volts

Measurement Power Quality Analyser phase current and power factor

Magnetic field EMDEX II Triaxial meter continuous recording,

Measurement includes EMCCalc software allows results

to be stored and analysed

Conductors 10mm2 PVC Single insulation, 7 strands of 1.70mm dia.

Although the experiments do have different loads, conductor configuration and mea-

surement profiles, there are similar procedures involved in carrying out these experi-

ments. The procedures are detailed in the table 4.3.

The construction details of the experiments will be discussed in section 4.1.3, while the

results recorded will be identified in the next section 4.1.4.
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Table 4.3: List of experiment procedures required to carry out Experiments 1, 2, 3, 4, & 5.

Stage Details

Step 1 This stage involves construction of structure and connection of

power supply and load bank. Mark vertical and horizontal profiles

to enable accurate location of EMF meter. Measure

and record background magnetic field noise.

Step 2 Energised structure and select load based on table 4.1.

Switch on ventilation fans on load bank.

Step 3 Measure and record current and power factor in each phase

using the power analyser. Prior to recording measurements ensure load

current has stabilised by allowing the load bank resistive

heater elements to warm up.

Step 4 Using the magnetic field meter, measure the magnetic field along each

horizontal profile. At each cross section with a vertical profile record

an event on the magnetic field meter. Monitor voltage, current

and power factor.

Step 5 Transfer results from magnetic field meter to EMCCalc software

From the EMCCalc software, obtain the magnetic field results at each

event and store in excel data base for processing.

4.1.3 Experiments Construction Details

The construction details of Structure A used in Experiments 1 & 2 is as per figure 4.1.

This construction involves three parallel horizontal conductors supported on timber

supports. Figure 4.1 is a cross section of the conductors at the vertical measurement

profile. Magnetic fields are recorded along three horizontal profiles with each profile

located at increments of 250mm below the conductors. A total of 15 magnetic field

measurements are taken on each horizontal profile, with each measurement 100mm

apart. To improve the accuracy of Experiments 1 & 2, the conductors are installed

under tension and secured to horizontal supports using fasteners to ensure that there

is minimum sag.
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Figure 4.1: Sectional view of Structure A used to generate symmetrical magnetic fields.

Measurement of magnetic fields taken at 15 observation points which are equal spaced along

three horizontal profiles (1, 2 & 3) below conductors.

The construction details of Structure B used in Experiments 3, 4 & 5 using Structure

B is as per figure 4.2. This construction involves three parallel horizontal and vertical

conductors supported on timber supports. Figure 4.2 is a isometric view of the conduc-

tors and measurement profiles. As indicated in figure 4.3, the horizontal measurement

profiles are located at 1500mm from the vertical conductors for Experiment 4 while

they are located 500mm from the vertical conductors for Experiments 3 & 5. Similar

to Structure A, a total of 15 magnetic field measurements are taken on each horizontal

profile, with each measurement 100mm apart, although there are now five horizontal

profiles with each profile increments of 250mm below the highest conductors.

The results recorded along each of the horizontal measurement profiles will be identified

in section 4.1.4.
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Figure 4.2: Isometric view of Structure B used to generate non symmetrical magnetic fields.

Measurement of magnetic fields taken at 15 observation points which are equally spaced

along five horizontal profiles (1, 2, 3, 4 & 5) below conductors. (Vertical profiles omitted

for clarity)

4.1.4 Measured Magnetic Fields Results

This section provides the results of measurements obtained from Experiments 1, 2, 3,

4, & 5. As there are three horizontal profiles for Experiments 1 & 2, and five horizontal

profiles for Experiments 3, 4, & 5 it is not practical to include all results in this section.

Therefore only the magnetic fields measured along the -750mmm horizontal profile are

included, with all other results listed in appendix F.

The measurements obtained along the −750mm horizontal profile for each experiment

are listed in table 4.4.

The Measured results in table 4.4 will be discussed in section 4.4.
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Figure 4.3: Side elevation view of Structure B phase C, used to generate non symmetrical

magnetic fields. Horizontal measurement profiles for Experiment 3 & 5 is located 500mm

from vertical conductors while Experiment 4 is located in the centre of vertical conductors.

4.2 Commercial EMF Software results

This section will provide the magnetic fields estimated by three commercially available

EMF software programs. The three commercial EMF software programs are from the

following manufacturers,

� Electric Power Research Institute (EPRI), and

� Safe Engineering Services & Technology (CDEGS), and

� Narda Safety and Test Solutions (Narda).

Additional details on each manufacturer and various software attributes will be dis-

cussed in chapter 5.
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Table 4.4: Measured magnetic fields for Experiments 1, 2, 3, 4, & 5. Measurements are

taken at equal distances along -750mm horizontal profile.

Profile Magnetic Fields Measured µT

mm Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

-700 2.18 4.12 7.10 4.92 4.26

-600 2.68 4.48 8.14 5.48 4.78

-500 2.88 5.08 8.86 5.82 5.10

-400 2.86 5.52 9.14 6.18 5.34

-300 3.00 5.80 9.12 6.62 5.34

-200 3.02 5.98 9.28 6.76 5.26

-100 3.06 6.06 9.52 6.82 5.20

0 3.16 6.02 9.46 6.90 5.22

100 3.06 6.06 9.52 6.80 5.20

200 3.02 5.98 9.28 6.74 5.26

300 3.00 5.80 9.12 6.46 5.34

400 2.86 5.52 9.14 6.20 5.34

500 2.88 5.08 8.80 5.82 5.10

600 2.68 4.66 7.96 5.38 4.64

700 2.22 4.20 7.00 4.84 4.14

4.2.1 Narda Model Results

The Narda results which are located in table 4.5 and appendix F are generated from

a demonstration copy of Narda EFC-400 low frequency software version 2006 Build

(2567) LF. The demonstration copy allowed the user to enter the majority of details

and run the program. As it is a demonstration program, the outputs generated could

not be saved or exported. When the calculation process was started, the program

produced a warning message advising that ‘Calculation results of demo are false’. The

magnetic field results produced were extracted off contour plots by placing the cursor

at each profile location and recording the magnetic field values identified. Magnetic

field values were then stored on an excel database.
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Table 4.5: Narda Modeled magnetic fields for Experiments 1, 2, 3, 4, & 5. Modeled results

are estimated at equal distances along -750mm horizontal profile.

Profile Magnetic Fields Modeled µT

mm Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

-700 2.08 4.05 7.00 2.84 6.07

-600 2.27 4.42 7.86 3.41 6.36

-500 2.45 4.76 8.49 4.04 6.46

-400 2.60 5.05 8.81 4.63 6.29

-300 2.71 5.27 8.96 5.13 5.93

-200 2.80 5.42 9.10 5.50 5.53

-100 2.85 5.51 9.23 5.70 5.24

0 2.86 5.54 9.29 5.77 5.13

100 2.85 5.50 9.19 5.69 5.24

200 2.80 5.39 9.02 5.48 5.53

300 2.71 5.23 8.85 5.12 5.93

400 2.60 5.00 8.66 4.62 6.29

500 2.45 4.70 8.31 4.01 6.46

600 2.27 4.36 7.69 3.39 6.36

700 2.08 3.99 6.83 2.81 6.07

The Narda results in table 4.5 will be discussed in section 4.4.
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4.2.2 EPRI Model Results

The EPRI results located in table 4.6 and appendix F are generated from EMFWork-

station Subcalc module. This is a demonstration model version 2.01 dated July 24

1996. The demonstration copy allowed the user to enter the majority of details only.

No outputs could be generated, but a tool option allowed the magnetic field values to

be measured by placing the cursor at each profile location and recording the magnetic

field values provided. Magnetic field values were then stored on an excel database.

Table 4.6: EPRI Modeled magnetic fields for Experiments 1, 2, 3, 4, & 5. Modeled results

are estimated at equal distances along -750mm horizontal profile.

Profile Magnetic Fields Modeled µT

mm Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

-700 2.12 4.02 7.03 4.47 4.10

-600 2.33 4.40 7.83 4.80 4.55

-500 2.51 4.75 8.36 5.08 4.83

-400 2.67 5.04 8.62 5.30 4.91

-300 2.79 5.27 8.72 5.47 4.85

-200 2.88 5.44 8.81 5.57 4.73

-100 2.93 5.54 8.92 5.63 4.63

0 2.95 5.58 8.96 5.63 4.59

100 2.93 5.55 8.88 5.59 4.63

200 2.88 5.47 8.73 5.51 4.73

300 2.79 5.31 8.59 5.38 4.85

400 2.67 5.09 8.45 5.20 4.91

500 2.51 4.81 8.17 4.96 4.83

600 2.33 4.46 7.62 4.66 4.55

700 2.12 4.09 6.83 4.33 4.10

The EPRI results in table 4.6 will be discussed in section 4.4.
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4.2.3 CDEGS Model Results

The CDEGS results located in table 4.7 and appendix F are generated from CDEGS

software using the HiFREQ module. This is a licensed copy version 12 dated 2006.

Magnetic field values were extracted from profile plots and stored on an excel database.

Table 4.7: CDEGS Modeled magnetic fields for Experiments 1, 2, 3, 4, & 5. Modeled

results are estimated at equal distances along -750mm horizontal profile.

Profile Magnetic Fields Modeled µT

mm Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

-700 2.40 4.40 7.40 4.60 4.16

-600 2.60 4.80 8.20 4.90 4.61

-500 2.75 5.10 8.70 5.20 4.91

-400 2.90 5.40 9.00 5.40 4.98

-300 3.00 5.60 9.10 5.55 4.91

-200 3.10 5.80 9.20 5.70 4.81

-100 3.15 5.90 9.30 5.78 4.71

0 3.20 5.95 9.40 5.80 4.69

100 3.15 5.90 9.30 5.78 4.71

200 3.10 5.80 9.20 5.70 4.81

300 3.00 5.60 9.10 5.55 4.91

400 2.90 5.40 9.00 5.40 4.98

500 2.75 5.10 8.70 5.20 4.91

600 2.60 4.80 8.20 4.90 4.61

700 2.40 4.40 7.40 4.60 4.16

The CDEGS results in table 4.7 will be discussed in section 4.4.
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4.3 MATLAB Results

The MATLAB results located in table 4.8 are generated using two different algorithms

developed in section 3.3, which are used to model magnetic fields emitted by physical

structures under controlled laboratory conditions.

Table 4.8: MATLAB modeled magnetic fields for Experiments 1, 2, 3, 4, & 5. Modeled

results are estimated at equal distances along -750mm horizontal profile.

Profile Magnetic Fields Measured µT

mm Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

-700 2.10 4.01 2.07 1.61 1.29

-600 2.30 4.40 2.27 1.71 1.41

-500 2.48 4.75 2.48 1.80 1.54

-400 2.64 5.06 2.69 1.88 1.67

-300 2.77 5.29 2.86 1.95 1.79

-200 2.85 5.46 3.00 2.01 1.88

-100 2.91 5.56 3.08 2.04 1.93

0 2.92 5.60 3.11 2.05 1.95

100 2.91 5.56 3.08 2.04 1.93

200 2.85 5.46 3.00 2.01 1.88

300 2.77 5.29 2.86 1.95 1.79

400 2.64 5.06 2.69 1.88 1.67

500 2.48 4.75 2.48 1.80 1.54

600 2.30 4.40 2.27 1.71 1.41

700 2.10 4.01 2.07 1.61 1.29

The MATLAB results in table 4.8 will be discussed in section 4.4.
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4.4 Discussion of Results

This section will compare and discuss the results of the following,

� Magnetic fields measured during experiments under controlled laboratory condi-

tions detailed in section 4.1.4,

� Magnetic fields estimated by Narda software listed in section 4.2.1,

� Magnetic fields estimated by EPRI software listed in section 4.2.2,

� Magnetic fields estimated by CDEGS software listed in section 4.2.3,

� Magnetic fields estimated by computer algorithms executed in MATLAB code

listed in section 4.3.

The discussion is carried out separately for three phase symmetrical magnetic fields

(Experiment 1 & 2), three phase non symmetrical magnetic fields (Experiment 3 & 4)

and finally for single phase non symmetrical fields (Experiment 5).

4.4.1 Experiments 1 and 2

The combined results of magnetic fields measured and estimated for Experiment 1 is

located in figure 4.4 and for Experiment 2 is located in figure 4.5. The main difference

between these two experiments is the load of Experiment 1 is 12.8A per phase and

this load is doubled in Experiment 2 to 24.6A per phase. These two experiments are

designed to generate symmetrical magnetic fields radiated from Structure A, which is

constructed to a high degree of accuracy. This allows the conductor dimensions entered

into each model to be a close approximation of what was actually constructed which

reduces error and thus improves the accuracy of the estimation.

Inspection of figure 4.4 reveals that the magnetic field measured in Experiment 1 along

the −750mm horizontal profile varies from 2.18µT to 3.16µT . In general the results

produced from the CDEGS, Narda and EPRI models for Experiment 1 are an accurate

representation of the measured values and similar to each other for all measurement
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points along the −750mm horizontal profile. The CDEGS results for Experiment 1 is

the most precise estimate of the measured values. There is a small difference between

the CDEGS values and the outputs from the MATLAB, Narda and EPRI results of

approximately 0.3µT for all measurement profiles. This difference between the the

CDEGS results and the MATLAB, Narda and EPRI results is attributed to the cal-

culation method. The CDEGS method uses a calculation method which approximates

Maxwell equations. A detailed analysis of this calculation method is outside the scope

of this project, however the calculation method is described in detail by the manufac-

ture SES (Dawalibi, F. & Selby, A. 1993). In comparison the MATLAB, Narda and

EPRI methods all use a calculation method based on the Biot-Savart Law detailed in

section 3.3.
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Figure 4.4: Comparison of Experiment 1, Structure A, symmetrical magnetic fields results

based on a load of 415V 12.8A per phase. Measurement of magnetic fields taken at equally

spaced distances along horizontal profile 750mm below conductors.

In accordance with equation 3.2 for symmetrical magnetic fields, the magnetic flux

density B, is directly proportional to the current I. The current in Experiment 2 is

double that of Experiment 1 so therefore in accordance with equation 3.2, there must

be a doubling of the range of measured magnetic flux density. Inspection of figure 4.5

reveals that the magnetic field measured in Experiment 2 along the −750mm horizontal
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profile varies from 4.12µT to 6.02µT . As expected, this is approximately double the

magnetic field from the previous experiment. In general the results produced from the

CDEGS, Narda and EPRI models for Experiment 2 are an accurate representation of

the measured values and similar to each other for all measurements points along the

−750mm horizontal profile. There is a difference between the CDEGS values and the

outputs from the MATLAB, Narda and EPRI results of approximately 0.45µT , which

once again is attributed to the calculation method. As in Experiment 1, the CDEGS

results for Experiment 2 is the most precise estimate of the measured values.
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Figure 4.5: Comparison of Experiment 2, Structure A, symmetrical magnetic fields results

based on a load of 415V 24.6A per phase. Measurement of magnetic fields taken at equally

spaced distances along horizontal profile 750mm below conductors.
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4.4.2 Experiments 3 and 4

The combined results of magnetic fields measured and estimated for Experiment 3 is

listed in figure 4.6 and for Experiment 4 is listed in figure 4.7. The load for these two

experiments is fixed at 24.6A per phase. The difference between Experiment 3 and 4 is

the location of the measurement profile. This is detailed in figure 4.3 which shows that

Experiment 3 has the measurement profile located 500mm from the vertical conductors,

while Experiment 4 has the measurement profiles located in the centre of the vertical

conductors. These two experiments are designed to generate non symmetrical magnetic

fields radiated from Structure B. Due to construction constraints of Structure B, there

will be some inaccuracies between the measurements observed and predicted.

Inspection of figure 4.6 reveals that the magnetic fields measured in Experiment 3 along

the −750mm horizontal profile varies from 7.10µT to 9.52µT . This range of values

measured in Experiment 3 is approximately 3 to 3.5µT higher than the values measured

in Experiment 2 for the same load current and the same distance from the horizontal

conductors. This increase is attributed to the close location of the vertical conductors

to the measurement profile as shown in figure 4.3. In general the results produced from

the CDEGS, Narda and EPRI models for Experiment 3 are an accurate representation

of the measured values and similar to each other for all measurement points along the

−750mm horizontal profile. In a departure from the results observed in Experiment

1 and 2, the Narda and EPRI results do vary from each other close to the centre of

the conductors despite using the same computation method. Inspection of figure 4.6

reveals that the Narda results are more accurate than the EPRI results. The MATLAB

results are not an accurate representation of the magnetic fields measured. This is

attributed to polarity errors in the MATLAB algorithm. In this experiment there is

a larger difference between the measured values and the various software estimates

compared to Experiments 1 & 2. This is attributed to inconsistencies between the

structure constructed and the conductor dimensions entered into the various models.

As in Experiment 1 and 2, the CDEGS results for Experiment 3 is the most precise

estimate of the measured values.

Inspection of figure 4.7 reveals that the magnetic fields measured in Experiment 4
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Figure 4.6: Comparison of Experiment 3, Structure B, non symmetrical magnetic fields

results based on a load of 415V 24.6A per phase. Measurement of magnetic fields taken at

equally spaced distances along horizontal profile 750mm below conductors. Profile located

500mm from vertical conductors.

along the −750mm horizontal profile varies from 4.92µT to 6.90µT . When compared

to Experiment 2, the range of values measured is approximately equal for the same

load current and the same distance from the horizontal conductors. Inspection of figure

4.3 shows that for experiment 4, the vertical conductors are equal distances from the

location of the measurement profile. As the current is traveling up one vertical section

and down the other vertical section, by using the right hand rule the magnetic fields

from the two vertical sections will effectively cancel each other out. This effectively

leaves only the magnetic fields from the horizontal sections which for this conductor

configuration, reduce the non symmetrical fields to a symmetrical fields situation similar

to Experiment 2.

Experiment 4 has produced vastly different results. The CDEGS, Narda and EPRI

models produced similar results towards the centre of measurements but these results

are approximately 1.3µT below the value measured. The CDEGS and EPRI results

are similar to each other for all measurements points along the −750mm horizontal
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profile. The difference between the CDEGS and EPRI modeled and measured results

reduces to approximately 0.5µT at the outer measurement points. This is attributed to

inconsistencies between the structure constructed where excess sag of the conductors

causes higher fields to be measured compared to models which assumes ideal condi-

tions. The difference between the Narda and measured results increases from an initial

1.13µT to approximately 2.08µT at the outer measurement points. This is attributed

a combination of inconsistencies between the structure constructed and the conductor

dimensions entered into the Narda model and may also be attributed to the demonstra-

tion version of the software producing false results. The MATLAB results are not an

accurate representation of the magnetic fields measured. This is once again attributed

to polarity errors in the MATLAB algorithm.
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Figure 4.7: Comparison of Experiment 4, Structure B, non symmetrical magnetic fields

results based on a load of 415V 24.6A per phase. Measurement of magnetic fields taken at

equally spaced distances along horizontal profile 750mm below conductors. Profile located

equal distances from vertical conductors.
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4.4.3 Experiment 5

The results of magnetic fields measured and estimated for Experiment 5 are listed in

figure 4.8. Experiment 5 is a single phase load energised at 240V with 13.13A flowing

in the two outer conductors of Structure B. The middle conductor is not energised and

does not form part of the experiment. The measurement profile is detailed in figure 4.3

which shows that Experiment 5 has the measurement profile located 500mm from the

vertical conductors. Experiment 5 is designed to generate non symmetrical magnetic

fields radiated from Structure B. Due to construction constraints of Structure B, there

will be some inaccuracies between the measurements observed and predicted.

Inspection of figure 4.8 reveals that the magnetic field measured in Experiment 5 along

the −750mm horizontal profile varies from 4.26µT to 5.34µT . This experiment is

energised by a single phase voltage and contains conductors spaced 1000mm apart,

therefore there is no direct comparison between the results obtained from Experiment

1–4 and Experiment 5.

Experiment 5 has produced vastly different results. The results from the CDEGS and

EPRI models are similar to each other but have a difference of approximately 1.0µT

higher when compared to the measured results. The Narda results are similar to the

measured values towards the centre of the structure, but are vastly different at the

edges of the structure. The various inaccuracies in this experiment are attributed to

inconsistencies between the structure constructed where excess sag of the conductors

causes higher fields to be measured than the conductor dimensions entered into the

various models. The Narda inconsistencies are also attributed to the demonstration

version of the software producing false results. It is considered that the errors associated

with the CDEGS and EPRI inaccuracies are increased, especially towards the centre of

the structure, as the middle conductor is not energised. The current carrying conductors

are located ±500mm along the horizontal profile and inspection of figure 4.8 reveals

that the error between the measured value and CDEGS and EPRI results in this area

is relatively small at approximately 0.2µT . As in experiments 2 & 3, the MATLAB

results are not an accurate representation of the magnetic fields measured. This is once

again attributed to polarity errors in the MATLAB algorithm.
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Figure 4.8: Comparison of Experiment 5, Structure B, non symmetrical magnetic fields

results based on a load of 240V 13.13A. Middle conductor is not energised. Measurement

of magnetic fields taken at equal spaced distances along horizontal profile 750mm below

conductors. Profile located 500mm from vertical conductors.

4.5 Chapter Summary

This chapter provides details and results of five experiments carried out under con-

trolled laboratory conditions in order to verify the numerical results obtained from

commercially available EMF software. The outputs of the commercially available EMF

software are compared against actual measured values. A comparison and subsequent

discussion of results indicates the following key points,

� For the three phase symmetrical magnetic fields of Experiments 1 & 2, the results

produced from the CDEGS, Narda and EPRI software are an accurate representa-

tion of the measured values. The MATLAB algorithms for symmetrical magnetic

fields is able to verify that the results measured and modeled by the commercially

available EMF software is accurate and reliable.

� For the three phase non symmetrical magnetic fields of Experiment 3, the results
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produced from the CDEGS, Narda and EPRI software are an accurate represen-

tation of the measured values. Differences between the measured and modeled

results are attributed to inconsistencies between the structure constructed and

the conductor dimensions entered into the various models. The MATLAB algo-

rithms for non symmetrical magnetic fields is not able to verify the results. This

is attributed to polarity errors within the MATLAB algorithm.

� For the three phase non symmetrical magnetic fields of Experiment 4, the results

produced from the CDEGS and EPRI software are generally an accurate repre-

sentation of the measured values although these results produce a larger error

when compared to the results of previous experiments. As in Experiment 3 this

error is attributed to inconsistencies between the structure constructed and the

conductor dimensions entered into the CDEGS and EPRI models. The Narda

software results are not an accurate representation of the measured values. The

Narda inconsistencies are attributed to the demonstration version of the software

producing false results. The MATLAB algorithms for non symmetrical magnetic

fields is not able to verify the results. This is attributed to polarity errors in the

MATLAB algorithm.

� For the single phase non symmetrical magnetic fields of Experiment 5, the results

produced from the CDEGS and EPRI software are generally an accurate represen-

tation of the measured values although these results produce a large error closer

to the centre of the structure. As in Experiments 3 & 4, this error is attributed to

inconsistencies between the structure constructed and the conductor dimensions

entered into the CDEGS and EPRI models. The Narda software results is not an

accurate representation of the measured values. The Narda inconsistencies are

attributed to the demonstration version of the software producing false results.

The MATLAB algorithms for non symmetrical magnetic fields is not able to verify

the results. This is attributed to polarity errors in the MATLAB algorithm,

The results of this chapter will be utilised in chapter 5 to evaluate commercially avail-

able EMF software.



Chapter 5

Commercial EMF Software

Evaluation and Selection

This chapter will identify three commercially available EMF softwares and develop

a selection criteria in order to evaluate each software program. The selection criteria

developed is designed to solve the main aim of this project which is to develop a system-

atic procedure for the evaluation and selection of EMF software, in order to estimate

the EMF generated by High Voltage Sub Stations and Distribution, Sub-Transmission

and Transmission Networks. Part of the selection criteria will use the results of the

experiments undertaken in chapter 4. The selection criteria and subsequent evaluation

is developed based on Ergon Energy needs and requirements. Other prospective pur-

chasers may need to modify this section to suit their own particular requirements. The

chapter is organized in the following areas,

� Identify commercially EMF software solutions and provide background informa-

tion which will allow an understanding and appreciation of the manufactures

experience and attributes,

� Develop a selection criteria in order to identify the strengths and weakness of

each software program, and

� Formulate a response to each item of the selection criteria,
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� Recommend the purchase of a software program

� Summary of key points.
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5.1 EMF Software Solutions

The three commercially EMF modeling software solutions that have been identified are

from the following manufactures,

� Narda Safety and Test Solutions (Narda),

� Electric Power Research Institute (EPRI),

� Safe Engineering Services & Technology (CDEGS).

There is a vast difference between each software program and the experience of each

particular manufacturer. The following section provides a general introduction to each

software program offered along with background information on each manufacturer and

associated agents.

5.1.1 Narda EFC 400

Narda Safety Test Solutions was created in 2000 when Narda, a Division of L-3 Commu-

nications, based in New York, acquired Safety Test Solutions, a German manufacturer.

Narda are predominately a manufacturer and retailer of EMF measuring devices and in-

struments. They also market and sell a suite of EMF modeling software called EFC-400.

Narda currently have an Australian agent called Airmet Scientific who are suppliers

of equipment dedicated to the protection of personnel in the workplace. Airmet are

predominately a hazardous equipment sales and support company.

The EMF modeling software EFC-400 is marketed and sold by Narda, but was actually

developed by another German organization called Forschungsgellschoht fuer Energie

und Umwelttechnologie Gmbtl (FGEU). FGEU was founded in 1992 and state their

objectives are research analysis and provider of information in the field of environmental

protection.

Narda offer two EMF program solutions namely the EFC-400LF and EFC-400ST. The

EFC-400ST is a scaled down package suitable only for high voltage substations while
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the EFC-400LF package carries out all the functions of the EFC-400ST and also models

the transmission and distribution lines. As the main aim of this project is to estimate

the EMF generated by High Voltage Sub Stations and Distribution, Sub-Transmission

and Transmission Networks, the restricted EFC-400ST solution will not satisfy the

main aim of the project and therefore will not be considered.

The EFC-400LF software advantages and disadvantages will be compared against the

selection criteria in section 5.3. (adapted from (Narda Safety and Test Solutions 2006)).

5.1.2 EPRI EMF Workstation SUBCALC

The Electric Power Research Institute (EPRI), established in 1973, is a independent

not for profit US based research institute with a main purpose to carry out research in

energy and environmental areas as directed by its funding members.

Its members are mostly electric utilities from the US but has 18% of members coming

from outside the US. It carries out research in a wide variety of electrical areas. As a

result of this research and the needs of its members, it produces EMF modeling software

called EMF Workstation 2005 which has a SUBCALC component specifically designed

for calculating EMFs from high voltage substations.

EPRI has licensed a company called Enertech Consultants to develop and market the

EMF Workstation Software to any interested parties except electric utilities, which

includes Ergon Energy. A electric utility may only purchase the software directly from

EPRI or become a member of one of the EPRI EMF Programs which grants unlimited

licenses of the software as a membership entitlement.

EPRI WorkStation consists of various software modules for modeling the EMF gener-

ated in residential environments, powerlines and substations. There are currently six

modules available which are listed in table 5.1.

The EPRI WorkStation software advantages and disadvantages will be compared against

the selection criteria in section 5.3. (adapted from (Electrical Power Research Institute

2006))
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Table 5.1: List of EPRI sub packages and modules

Item Details

RESICALC Calculate EMF around the home

SUBCALC Calculate EMF radiated from HV substations

EMFX Provides information on field sources &

measurements Power Line Calculator

Determines the electric characteristics of power lines

Enviro Estimates lateral EMF profiles

Expocalc Exposure Assessment Program for

Transmission Line Electric & Magnetic Fields

5.1.3 SES CDEGS - HiFREQ

The Safe Electric Services and Technologies (SES) is a Canadian owned solution provider

specialising in grounding, earthing, lightning, electromagnetic interference and EMC

analysis & mitigation problems. It was founded in 1979 by its current President, Dr

Farid Dawalibi, who is heavily involved in the training and development of the soft-

ware. CDEGS have an Australian agent called Power Earth who are based in New

South Wales.

SES produce a software package called Current Distribution, Electromagnetic Fields,

Grounding and Soil Structure Analysis (CDEGS) which they describe as a powerful

set of integrated engineering software training tools designed to accurately analyse

problems involving grounding and electromagnetic fields. CDEGS is essentially a user

interface that accommodates various input processors, output processors and engineer-

ing modules. This allows flexibility in the configuration, but can add complexity to the

operation of CDEGS.

There are two main methods of purchasing the CDEGS software package. The first

method is to purchase the complete range of CDEGS software and associated modules.

The second method is to purchase various sub-packages which appear to be focused

on three activities, Grounding, Power Line and EMF calculations. There are currently

nine sub-packages available which are listed in table 5.2.
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Table 5.2: List of CDEGS sub-packages

Area Sub-package

Grounding Calculations Multiground

Multiground +

Multiground Z

Multiground Z+

Power Line Calculations Multilines

Multilines +

EMF Calculations Multifields

Multifields +

The above sub-packages are bundled with various input and output processors. Ergon

Energy currently own a sub-package called Multiground (Malz option). This is currently

used by Ergon Energy’s Substation Design Engineers to design high voltage substation

earth grids and estimate resultant step and touch voltages under fault conditions.

Generally it was considered that the HIFREQ engineering module attached to the Mul-

tifields sub-packages would provide the best solution. If the Multifields sub-packages

was added to the existing sub-packages, approximately 80% of the total software would

be purchased. It is considered that it would be prudent to purchase the remaining 20%

and therefore the full range of CDEGS software was included in the evaluation.

The CDEGS software advantages and disadvantages will be compared against the se-

lection criteria in section 5.3. (adapted from (Safe Engineering Services & Technologies

2006))

5.2 Selection Criteria

This section will develop a selection criteria which will allow commercially available

EMF software to be evaluated based on the requirements identified in consultation

with the key users and stake holders.
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The consultation included Ergon Energy Design, Information Technology (IT) and

Environment Groups. It is not intended that the selection criteria will develop an

exhaustive list of each software attributes, but will allow each software to be judged on

its ability to address or solve key needs identified by the stake holders. There is a large

range of product material available for each commercial EMF software, particularly for

the CDEGS and Narda options which can be consulted for further and more indebt

analysis.

Criteria 1: Provide a general description on operation of the software.

Key points include,

� how easy is it to build a model including ease of data input,

� facilities available when working on the software such as different views,

shortcuts, component libraries, grouping facilities, background maps, mea-

surement tools

Criteria 2: Base Calculation

Does the software calculate electric and magnetic fields and what is the theory

on which the computation is based?

Criteria 3: Can the software model electric and magnetic fields in High Voltage sub-

stations and their components in three dimensional (3D)?

Specific components of interest include,

� high voltage busbar

� currents in earth mat

� high and low voltage circuit breakers

� high and low voltage transformers

� capacitor banks

� air core reactors

� structural elements

Criteria 4: Can the software model Transmission, Sub-Transmission and Distribution

Power Lines with or without overhead earth wire (OHEW)?
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Criteria 5: Can the software model underground cables with different earthing ar-

rangements?

Criteria 6: Can the software model electric fields based on various distribution volt-

ages including neutral return, unbalanced systems including Single Wire Earth

Return (SWER), Multiple Earth Neutral (MEN), Active compensation, ABC,

multiple voltages on one structure?

Criteria 7: Can the software model different EMF shielding including different mate-

rials, shapes and edges?

Criteria 8: Can the software import data in Computer Aided Drafting (CAD) format?

Can it interface to CAD packages such as Microstation or AutoCAD?

Criteria 9: Does the manufacturer provide training on use of the software?

Criteria 10: Will the software operate on Ergon Energy computer Wide Area Network

(WAN)?

Criteria 11: Does the software provide a combination of technical and non technical

outputs suitable for insertion into an environmental report? Can the outputs be

easily modified to match existing report formats. Can the outputs be exported

and integrated into a third party software such as Coral Draw, Matcad, MATLAB

or Excel.

Criteria 12: What level of technical support is available from the software manufac-

turer or local agent?

Criteria 13: Is there any supporting references from existing users to support the

software?

Criteria 14: How do the costs of each software program compare with each other?

Criteria 15: Based on experiments carried out in chapter 4, are the results of the

softwares reliable?
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5.3 Response to Selection Criteria

Each of the three EMF modeling software solutions identified is vastly different in

both operation and interface. As such the final software selection will most likely be

a compromise of conflicting needs and requirements. This section of the report will

formulate a response to the selection criteria developed in section 5.2 by using the

experience gained while carrying out the modeling tasks in section 4.2 and information

freely available from each manufacturer.

Criteria 1: General description on how the software works, ease of data input, fa-

cilities available such as different views, shortcuts, libraries, grouping facilities,

background maps, measurement tools etc.

� Narda EFC-400LF is a ‘drag and drop’ model based EMF calculation pro-

gram, where the user selects and places a model of the object from a library.

New libraries can be added or imported from the manufactures web site.

Existing tower and cables library models can be edited using the inbuilt line

editor. The overall site model is built based on a combination of separate

library items which are inserted into the workspace.

� EPRI EMF Workstation is also a model based EMF calculation program. It

uses a ‘drag and drop’ method to generate a model, where the user selects

a model such as a circuit breaker or a transmission tower and places it in

a scaled model of the area to be investigated. Edit tools are available to

modify each model to suit particular requirements.

� CDEGS provides more of a hands on approach than a ‘drag and drop’ op-

eration. The user builds up a model of the site by drawing items such as

busbars, conductors, fence, underground pipes and entering data such as

voltages, current, soil resistivity etc. One of the input processors SESCAD,

which is a computer aided drafting toolbox, allows to user to carry out basic

CAD operations such as copying, pasting stretching etc, as well as assign

properties such as current sources and insulation properties. Then the user

inputs this data into an engineering model which carries out the required

calculations. Finally an output processor is used to interpret the results and
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to create and export plots.

Criteria 2: Does the software calculate electric and magnetic fields and what is the

theory on which the computation is based?

� Narda EFC-400LF will calculate electric and magnetic fields based on a

maximum 32000 x 32000 points of calculations. It also has other limits

which include 50000 conductors, 100 transmission lines and 1000 buildings.

Narda software bases its calculations on the Biot-Savart Law.

� EPRI EMF Workstation will only calculate magnetic fields based on a max-

imum area of 832m2. It also bases its calculations on the Biot-Savart Law.

� CDEGS will calculate both electric and magnetic fields based on 7000 ele-

ments. The different modules in the CDEGS uses mathematical techniques

which are in generally based on Maxwell equations.

Criteria 3: Can the software model EMF in substations and their components in 3D?

� Narda EFC-400LF is ideal for drawing in 3D. It uses models of substation

components in a similar way to the EPRI SUBCALC. Narda have advised

that their basic library of substation elements can be easily supplemented

with new elements as required

� EPRI EMF Workstation has a SUBCCALC module that is ideal for draw-

ing and modeling EMF substations in 3D. It comes with a large library of

components such as transformers, circuit breakers busbars etc. These com-

ponents are available as a menu item and can be selected and dropped onto

a model.

� The CDEGS software can model all substation components such as the trans-

former and reactors. The components have to have their current carrying

conductors dimensions entered onto the model. A wide range of drafting

tools are available to limit the work required. The transformer and reac-

tors are represented as lumped impedances or can be represented as coils.

Building items and switchboard frames can be represented in the model as

a mesh where EMF reduction values can be included in the model.

Criteria 4: Can the software model Transmission, Sub-Transmission and Distribution

Power Lines with or without overhead earth wire (OHEW)?



5.3 Response to Selection Criteria 75

� Narda EFC-400LF can can model these power lines and also automatically

calculate ground currents. Library items can be modified to include earth

conductors if not already included.

� EPRI EMF Workstation can model these power lines with an OHEW. The

manufacturers state the program has the ability to also model ground cur-

rents from items such as water pipes, service cables and ground wires.

� CDEGS can model these power lines including all types of grounding wires,

conductor paths and pipes.

Criteria 5: Can the software model underground cables with different earthing ar-

rangements?

� Narda EFC-400LF can model EMF generated from cables. From the in-

formation available it is considered that different types of earthing arrange-

ments would require a specific block to be generated by the manufacturers.

� Based on the information available, it is not considered possible for EPRI

to model underground cables.

� CDEGS Multilines can model residual and fault current distributions be-

tween a central grounding system including neutral, shields wires and metal-

lic sheaths. It is considered that by using the various CDEGS energisation

types, different earthing arrangements can be included in a model to calcu-

late the EMF radiated.

Criteria 6: Can the software model electric fields based on various distribution volt-

ages including neutral return, unbalanced systems including SWER, MEN, Active

compensation, ABC, multiple voltages on one structure?

� Narda EFC-400LF can compute electric fields, and from the manufactures

literature provided it is assumed that the above voltage configurations can

be modeled.

� EPRI EMF Workstation can not model electric fields.

� CDEGS can model electric from on overhead or underground conductors

energized by any number of current and voltage sources. It is considered

that by using the various CDEGS energisation types, all of the above voltage

configurations can be modeled.
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Criteria 7: Can the software measure different EMF shielding including different

shapes and edges?

� Narda EFC-400LF assumes buildings are a ground wire grid and assumes

negligible radiation inside the building. It is considered that this feature

is predominately used in antenna calculations such as mobile phone signal

strength models.

� EPRI EMF Workstation Expocalc has the ability to perform electric field

shielding calculations from objects such as transmission towers, buildings

and trees.

� CDEGS can model structures by identifying them as a mesh. This process

requires various details about the composition of the materials to be known.

Criteria 8: Can the software import data in Computer Aided Drafting (CAD) format?

Can it interface to CAD packages such as Microstation or AutoCAD?

� Narda EFC-400LF can import data including Data Exchange Format (DXF)

which is a two dimensional graphics file format, created by the manufactures

of AutoCad and is supported by virtually all computer based CAD prod-

ucts including Microstation and AutoCAD. It can also export data such as

isolines, hatch patterns and solids in DXF format.

� EPRI EMF Workstation does not have the ability to import or export data

in CAD format.

� CDEGS can also import and export data from most CAD packages in DXF

format.

Criteria 9: Does the manufacture provide training?

� Narda EFC-400LF training can be provided by the manufactures FGEU in

Europe. It is a two day course and FGEU can come to Australia to deliver

specific training as required. However FGEU advise that training is generally

not required as the program is easy to use.

� EPRI regular holds 3-day training session on the software. It is assumed

that this training takes place in the United States.
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� CDEGS regularly undertakes training in Canada and has recently completed

training in Brisbane and Sydney. The training course is titled Power System

Grounding & Electromagnetic Interference Analysis and is a five day course

that covers all aspects of the CDEGS software.

Criteria 10: Will the software operate on Ergon Energy computer Wide Area Network

(WAN) and able to be accessed from all offices?

� Narda EFC-400LF can only be located on a local area network within a

building. The manufacturer has reported that it is not suitable for installa-

tion on a wide area network although it is considered that this could possibly

be overcome with appropriate network management tools similar to the ex-

isting CDEGS configuration.

� EPRI will not operate on a computer network. It is loaded onto a single

computer. If Ergon become a full member, then there is no restriction on

the number of licences. If Ergon only purchase one or two copies, then they

are fixed to a particular machine.

� Ergon Energy currently operates a CDEGS sub-package called Multiground

on the Ergon Energy computer network. The new software would operate in

the same manner where a third party network management software restricts

access, based on the exact licence configuration.

Criteria 11: Does the software provide a combination of technical and non technical

outputs suitable for insertion into an environmental report? Can the outputs be

easily modified to match existing report formats. Can the outputs be exported

and integrated into a third party software such as Coral Draw, Matcad, MATLAB

or excel.

� Narda EFC-400LF can produce a wide range of colour graphics that can be

superimposed onto area maps. The outputs are suitable for insertion in both

technical and non-technical reports. Narda can produce a range of 2D and

3D contour plots which are very professional in appearance.

� EPRI can produce multi coloured magnetic fields graphs with infrastruc-

ture superimposed on the graph. Calculated magnetic field values can be

exported in a low level ASCII format.



5.3 Response to Selection Criteria 78

� CDEGS output processor GRServer can provide a range of technical and

non-technical outputs for engineering technical reports and more general

reports suitable for the public. In addition the graphics can be saved in

common format which can be cut and pasted in word documents. CDEGS

can also produce a range of text reports which detail results of calculations.

Criteria 12: What level of technical support is available from the software manufac-

turer or local agent?

� Narda EFC-400LF technical support is carried out by a separate German

company called FGEU. With the time difference between Australia and Ger-

many it is considered that the technical support will be carried out mostly

by email. This will require a separate contract with FGEU.

� EPRI support is free if Ergon become a full member. If Ergon does not

become a full member, then any support is available on a per cost basis.

� CDEGS offer both general support and engineering support and have a free

phone number available. With the time difference between Australia and

Canada, there is a 3 to 4 hour window available, to contact SES. The Engi-

neering support service offered by SES will allow Ergon Energy Engineers to

talk directly to SES Engineers to solve problems and if required CDEGS files

can be emailed directly to SES where they can check for potential problems.

Criteria 13: Is there any supporting references from existing users to support the

software?

� Narda also have a large range of customers. References from the National

Grid in the UK spoke highly of the software. SPI in Victoria have also

purchased the software but are in the early stages of using it.

� EPRI advised they have a large range of users, however contact details are

confidential.

� CDEGS also have a large range of users. Current Ergon Energy internal

staff who operate the earthing program advise that in general the program

is suitable. Powerlink Queensland also use the program for earthing and

EMF studies and in general are happy with it.
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Criteria 14: How does the cost of each software program compare with each other?

The cost options presented in this section are based on offers received by Ergon

Energy from each manufacture. The prices quoted in table 5.3 are based on

a relative percentage range of the most cost effective option in order protect

the confidentiality of offers received and to ensure probity in future software

purchasing. A review of prospective users within Ergon Energy indicated that a

single concurrent user license would be restrictive and access for two concurrent

users would be favorable. The various pricing information listed in table 5.3

includes options for one or two license systems. Also included in table 5.3 is a

yearly cost for any available ongoing support service.

Table 5.3: Details of commercially available EMF software prices. Prices are based

on a relative percentage range with the most cost effective single license option rated

at 100% and all other prices scaled to this amount. Costing based on exchange rate

of AU$1 to US$0.75 and AU$1 to ¿0.60.

Option Manufacture Single Two Comments

License License

1 Narda 100% 175% First 12 months support

EFC-400LF from FGEU included.

Support 10% 12%

2 EPRI 762% 914% Support for non members based

EMF Workstation on as required contract.

Two License cost based on full

Support As req. inc. membership of EPRI.

3 SES 286% 286% First 12 months support

CDEGS included in purchase price.

Price for CDEGS upgrade

Support 37% 57% to existing earthing modules.

Criteria 15: Based on experiments carried out in chapter 4, are the results of the

software reliable?

� A review of figures 4.4 to 4.8 indicates that the Narda software is able to

accurately model the magnetic fields emitted in Experiments 1 to 3. The
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software is not able to accurately model the magnetic fields emitted in Exper-

iments 4 & 5 although this could be attributed to random false calculations

associated with the evaluation version of the software used. Based on these

experiments carried using an evaluation version of the software, it can not

be determined if the results produced from the Narda software are reliable.

� A review of figures 4.4 to 4.8 indicates that the EPRI software is able to

accurately model the magnetic fields emitted in Experiments 1 to 5. The

results produced are within an acceptable tolerance, however they do have

a lower precision when compared to the results from the CDEGS software,

but have a higher precision when compared to the results produced by the

Narda software. Based on these experiments, it is considered that the results

produced from the EPRI software are reliable.

� A review of figures 4.4 to 4.8 indicates that the CDEGS software is able to

accurately model the magnetic fields emitted in Experiments 1 to 5. The

results produced are within an acceptable tolerance, have a higher precision

when compared to the results from both the EPRI and Narda software.

Based on these experiments, it is considered that the results produced from

the CDEGS software are reliable and CDEGS is more precise compared to

the EPRI or Narda software.

The choice of software will largely depend on what type of modeling and investigation

activities Ergon Energy want to undertake and the ability of the person entering the

data. In order to assist with this decision the following points, based on the response

to the selection criteria, are noted.

� EPRI EMF Workstation program appears to be fairly easy to use. However this

ease of use can result in an inflexible program which will operate in fixed confines

of the software substation model. The pricing structure of the EPRI SUBCALC

is not attractive as the cost is a direct multiple of the number of licenses required

which is geared towards encouraging Ergon Energy to become a member of an

EPRI EMF work group rather than a one off purchase of the software. Ergon

Energy has previously considered membership of EPRI and has judged that there

is no strategic advantage to Ergon Energy joining EPRI.
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� Ergon Energy substation design currently use almost a third of the CDEGS op-

tions. It is considered that by including the remainder of the CDEGS modules,

it will facilitate a more holistic approach to Substation Electrical Engineering de-

sign and investigation. This however is an disadvantage to the casual user which

can be overcome by training and in house support.

� The existing CDEGS software is already supported by Ergon IT service provider.

This provides an advantage as the remaining CDEGS modules can operate in a

familiar configuration.

� The CDEGS software and processes can appear complicated compared to the

drag and drop style of the EPRI SUBCALC and the Narda EFC-400LF. Existing

Ergon Energy users of CDEGS have reported that the software is user friendly

once the user is familiar with the operation and configuration of the software.

As the users of the selected software will most likely be of professional or para-

professional qualifications, it is considered that with appropriate training and a

range of resources such as help manuals,‘How To’engineering guides and‘Cheat

Sheets’ Ergon Energy can develop and maintain a CDEGS knowledge base with

expertise and skills to assist casual users.

� The EPRI EMF Workstation and the Narda EFC-400LF are both EMF modeling

programs and designed solely for this task. The CDEGS software is a broader

electrical engineering software that is used to solve electric fields, grounding and

power line calculations. The CDEGS software can also preform additional tasks

such as, model faults in transmission lines and induced EMF in metallic pipelines

or fences, residual and fault current distributions in cables and shields, power

line corona effects and audible noise. The CDEGS software comes with a package

called SES-Enviro which is specifically aimed at Electromagnetic Environmen-

tal Impact Analysis of overhead Transmission Lines. Also included are packages

called Autogrid-Pro and AutoGroundDesign for grounding calculations and SES-

TLC for power line calculations. It is considered that these tools will be a valuable

asset to Ergon Energy during the planning and design of new electrical infras-

tructure.

� The support service offered by CDEGS although of a higher cost is considered
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superior to the service provided by Narda/FGEU and EPRI.

5.4 Recommendation

In investigating the above software programs it is apparent that the three solutions

identified are vastly different to each other and manufactured by companies of com-

pletely different interests and backgrounds.

The software from EPRI, EMF Workstation, does produce reliable results, does allow

for EMF shielding to be considered, appears to be easy to use and has user friendly

models already built in. However EMF workstation does not calculate electric fields.

This coupled with the high cost when multiple licences are required and the fact that

it is not compatible with CAD software effectively eliminates EPRI from further con-

sideration.

The software from Narda EFC-400LF and the software from CDEGS are considered as

the two viable options. The Narda software is easier to use and has very good output

graphics. The Narda also has a very systematic procedure for entering conductors,

where it asks for the start point, stop point and attributes for each conductor. This

allows a casual operator with very low level training to enter data; however this can

also lead to disadvantages, such as lack of flexibility in the program and skills used in

fault finding.

The CDEGS software has a more hands on approach compared to the drag and drop

of the Narda EFC-400LF and thus allows the user to be more involved in the model

generation and gain an appreciation of the calculation process. The CDEGS option also

provides Ergon Energy with greater options as the software can be used to supplement

the currently owned CDEGS software and allows Ergon Energy to build on existing

design skills and processes where the introduction of a Narda EFC-400LF will require

a new range of skills and processes to be developed and managed both from a operator

and system maintenance aspect.

Both the Narda and the CDEGS options will interface with the existing CAD packages
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used by Ergon Energy. The Narda option may be easier to use for the casual user

when compared to the CDEGS option, however this is offset as the key users will be

required to carry out existing earthing studies on CDEGS and already have a working

knowledge of CDEGS operations.

The CDEGS software is supported already on the Ergon Energy computer network and

will be easily integrated into the existing network arrangements where there is a risk

that the Narda software may not integrate into the computer network. CDEGS support

arrangements, although more expensive than Narda/FGEU services, do provide greater

advantages to Ergon Energy.

Based on the experiments carried out it is considered that the CDEGS software is

able to accurately model the magnetic fields radiated by the various structures. Using

the evaluation version of the Narda software, it could not be determined if the results

produced from the Narda software are reliable.

When taking these items into consideration, it is therefore recommended the purchase

of two licence version of the CDEGS software for a cost of 286%.

5.5 Chapter Summary

This chapter provides details on three commercially available EMF software programs.

As part of the systematic procedure for the evaluation and selection of the EMF soft-

ware, a selection criteria was developed in order to identify each software advantages

and disadvantages which resulted in a recommendation to purchase CDEGS software.

Key points discussed in this chapter include.

� Identify three commercially available EMF software programs from from EPRI,

SES and Narda,

� Identify background information on each of the manufactures,

� Develop a selection criteria in order to evaluate the advantages and disadvantages

of each software program,
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� Develop a response to the selection criteria based on the experience gained while

carrying out the modeling experiments and information available from each man-

ufacturer,

� Discussion of the advantages and disadvantages identified in the response to the

selection criteria,

� Recommend the purchase of two licence version of the CDEGS software for a cost

of 286%.



Chapter 6

Conclusions and Further Work

The main aim of this project is to develop a systematic procedure for the evaluation

and selection of commercial EMF software, which will provide a recommendation for

the purchasing of EMF modeling software in order to estimate the EMF generated

by High Voltage Sub Stations and Distribution, Sub-Transmission and Transmission

Networks.

This systematic procedure was applied to commercial EMF software programs from

three manufacturers. A comparison of the results from commercial EMF software

compared against measurements obtained from five experiments and predications from

theoretical models developed indicated that the results from EPRI and CDEGS are

reliable and accurate. The Narda results were obtained using an evaluation version of

the software which introduced errors and therefore it could not be determined if the

results produced from the Narda software were accurate.

The theoretical models developed for calculating symmetrical fields was accurate when

compared to the measurements produced. However, the theoretical models developed

for non symmetrical fields was not able to reproduce accurate results when compared

to the experiment measurements. This is attributed to coding errors which will require

further development and testing.

In addition to achieving the main aim of the project it also allowed an understanding
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of EMF research, standards, theory, modeling procedures and evaluation skills to be

developed.

6.1 Achievement of Project Objectives

The following objectives have been addressed:

Literature Review Chapter 2 presented background information on EMF. Items

identified included the source of EMF, properties and units of measurement.

Australian and International Standards & Guidelines were also identified. This

chapter presented information on research into adverse health effects associated

with exposure to EMF and identified the policy which is commonly used to man-

age this exposure. The chapter concluded by identifying laws which are used to

calculate electric and magnetic fields.

Theoretical Models Chapter 3 presented two structures which enable symmetrical

and non symmetrical magnetic fields to be measured. Laws identified in Chap-

ter 2 were developed into equations and expanded into Theoretical Models in the

form of computer algorithms to predict the magnetic fields emitted from these

structures.

Experimental Verification Chapter 4 presented details and results of five experi-

ments carried out in order to verify the numerical results obtained from commer-

cially available EMF software by comparing them against actual measured values

and predications from Theoretical Models.

Commercial EMF Software Evaluation and Selection Chapter 5 presented de-

tails on the three commercially available EMF software programs. A selection

criteria was developed in order to evaluate each software by identifying there ad-

vantages and disadvantages. This resulted in the recommendation to purchase

CDEGS software.
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6.2 Further Work for CDEGS EMF Software

The main aim of this project was to develop a systematic procedure for the evaluation

and selection of EMF software, which ultimately led to the purchase of CDEGS soft-

ware. Due to coding errors associated with the MATLAB Biot Savart algorithm, it

was not possible to verify the accuracy of the results for the non symmetrical magnetic

fields. These coding errors are possibly attributed to polarity errors. Further work is

required to fine tune this algorithm with a view to improving accuracy and repairing

the coding errors. Future projects could revise the code and include items such as

a input interface to prompt the user for the number of conductors, dimensions, cur-

rent and observation points. The code could also be amended to include a compliance

checker where the magnetic field estimated at an observation point is compared against

maximum exposure values specified. A useful addition would be to add a section to

calculate the electric field at the observation points.

The experiments carried out involved measuring the magnetic fields measured along

various horizontal profiles below current carrying conductors. On hindsight only one

set of measurements along the 700mm horizontal profile was used in the evaluation.

It would have been more benefit to only obtain results of one measurement horizontal

profile but increase the type of measurements by using a single element instrument and

orientate the instrument to measure both the X, Y and Z axis and also the maximum

or peak value.

The selected software will need to be further verified, from the effective but relatively

simple experiments carried out in this project, to include a comparison of real life

scenarios involving both High Voltage Substations and power lines. The main aim of

these additional experiments is to allow the user to have confidence in the results and to

determine the range of tolerances to be included with future EMF predications. A follow

up project is already underway to compare the CDEGS magnetic fields predication

with measurements obtained from a 66kV to 11kV substation containing two 40MV A

transformers, two 11kV capacitor banks and a indoor 11kV switchboard with feeder

cables.

The CDEGS software has to be integrated into existing design procedures, standards
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and quality assurance systems. CDEGS design standards need to be developed to

ensure that all models, where possible, are carried out on a similar work space and

configuration. Items that need to be standardized include grouping of conductors,

scales, modeling of transformers, air core reactors, capacitor banks, allocation of colours

in plots and type of plots produced. Standard report templates if developed, will also

provide consistent modeling practices and allow efficient use of resources.

For these reasons the EMF software project can be considered an on going project.
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Appendix B

MATLAB code for symmetrical

Magnetic Field
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Listing B.1: MATLAB m file for symmetrical magnetic fields.
% ampere− Works out magnetic f l u x dens i ty at a rb i t r a r y
% point in x−y plane due to 3 i n f i n i t e l y long
% ( in z d i r e c t i o n ) conductors quasi−s t a t i c
% cond i t i on s assumed ; supe rpo s i t i on o f equat ions
% based on Maxwell ’ s Equation (Ampere ’ s law ) .
% modi f i ed by Sean Mc Guinness (0019621304)
% from code developed by Dr Tony Ahfock (USQ)
c l e a r a l l ; he lp ampere ; % Clear memory ; p r i n t header
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% User Input Data , d e f i n e cu r r en t s and conductor dimensions
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% current in f i r s t conductor ( a , b & c )
% po s i t i o n r e l a t i v e to o r i g i n (m)
i a =24.6* cos (0)+ i *24 .6* s i n ( 0 ) ; xa=−0.5 ; ya=1 ;
ib =24.6* cos (−120* pi /180)+ i *24 .6* s i n (−120* pi /180 ) ; xb=0.0 ; yb=1;
i c =24.6* cos (120* pi /180)+ i *24 .6* s i n (120* pi /180 ) ; xc =0.50; yc=1;
%
xp=0.0; yp=0.25; % po s i t i o n o f obse rvat i on po int (m)
%
mu0=4*pi *1e−7; %permeab i l i t y o f f r e e space
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Compute the f i e l d s t r ength in (A/m) at obse rvat i on po int
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
hax=ia *(xp−xa )/(2* pi * ( ( xp−xa)ˆ2+(yp−ya )ˆ2)) ;% i a x−component
hay=−i a *(yp−ya )/(2* pi * ( ( xp−xa)ˆ2+(yp−ya )ˆ2)) ;% i a y−component
hbx=ib *(xp−xb )/(2* pi * ( ( xp−xb)ˆ2+(yp−yb )ˆ2)) ;% ib x−component
hby=−ib *(yp−yb )/(2* pi * ( ( xp−xb)ˆ2+(yp−yb )ˆ2)) ;% ib y−component
hcx=i c *(xp−xc )/(2* pi * ( ( xp−xc )ˆ2+(yp−yc )ˆ2)) ;% i c x−component
hcy=−i c *(yp−yc )/(2* pi * ( ( xp−xc )ˆ2+(yp−yc )ˆ2)) ;% i c y−component
%
hx=(hax+hbx+hcx ) ; % net f i e l d s t r e g th in the x−d i r e c t i o n
hy=(hay+hby+hcy ) ; % net f i e l d s t r ength in the y−d i r e c t i o n
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Compute the magnetic f i e l d dens i ty in (uT)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bx=mu0*hx*1000000 % x−component o f f l u x dens i ty (uT) at xp , yp
by=mu0*hy*1000000 % y−component o f f l u x dens i ty (uT) at xp , yp
%
rbx=r e a l ( bx);% r e a l part o f bx
ibx=imag (bx);% imaginary part o f bx
rby=r e a l ( by);% r e a l part o f by
iby=imag (by);% imaginary part o f by
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Compute the r e s u l t a n t magnetic f i e l d dens i ty in (uT)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% f i nd i ng the major o f the ’ p o l a r i z a t i o n e l l i p s e ’
th =[0 : p i /180:2* pi ] ;
%loop f o r a l l po in t s
f o r i i =1:361

bth ( i i )=( rbx* rbx+ibx * ibx )* ( cos ( th ( i i ) ) )* cos ( th ( i i ) ) ;
bth ( i i )=bth ( i i )+( rby* rby+iby * iby )* ( s i n ( th ( i i ) ) )* s i n ( th ( i i ) ) ;
bth ( i i )=bth ( i i )+2*( ibx * iby+rbx* rby )* ( s i n ( th ( i i ) ) )* cos ( th ( i i ) ) ;

end
%f i nd maximum value to the ’ p o l a r i z a t i o n e l l i p s e ’
maxb=sq r t (max( bth ) )
%c a l c u l a t e the r e s u l t a n t
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absbx=abs (bx ) ;
absby=abs (by ) ;
r e su l t an tb=sq r t ( absbx*absbx+absby*absby )
%EOF



Appendix C

MATLAB code for non

symmetrical Magnetic Field
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Listing C.1: MATLAB m file for Non symmetrical magnetic fields.
% bio t s av Compute magnetic f i e l d f o r a three conductors
% us ing the Biot−Savart law f o r St ruc ture B.
% Structure B c o n s i s t s o f h o r i z on t a l & v e r t i c a l
% conductors . The coord inate ax i s f o r t h i s m f i l e
% i s tak ing an imagenery c r o s s s e c t i o n o f three
% p a r a l l e l conductors , then l e f t to r i g h t
% ( or ea s t to west ) a c r o s s conductors i s the X axis ,
% top to bottom ( or north to south ) i s
% the y ax i s and the depth along the wi re s i s the Z ax i s .
% modi f i ed by Sean Mc Guinness (0019621304)
% with the a s s i s t a n c e o f Dr Tony Ahfock (USQ)
% o r i g i n a l f i l e based on b io t sav .m from
% ’MATLAB Pro j e c t s f o r S c i e n t i s t s and Engineers ’
% by Fishbane , Gas iorowicz & Thornton
% Applied Sca l e : 1 Matlab un i t − 1m
c l e a r a l l ; he lp b i o t s av ; % Clear memory ; p r i n t header
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% User Input Data , d e f i n e cu r r en t s and conductor dimensions
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mu0 = 4* pi *1e−7; % Permeab i l i ty o f f r e e space (T*m/A)
%Current per phase in Amps
Ia = 24.6* cos (0)+ i *24 .6* s i n ( 0 ) ; %A phase
Ib = 24.6* cos (−120* pi /180)+ i *24 .6* s i n (−120* pi /180);%B phase
I c = 24.6* cos (120* pi /180)+ i *24 .6* s i n (120* pi /180 ) ; %C phase
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Use fu l constant
Constant (1 ) = mu0/(4* pi ) * Ia ;
Constant (2 ) = mu0/(4* pi ) * Ib ;
Constant (3 ) = mu0/(4* pi ) * I c ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%obse rvat i on po int P where r e s u l t s are measured
xP=0; %va r i e s between 0 .7m 0 to −0.7m i e 0 i s below cent r e
yP=0.250;%same f o r experiment 3 , 4 & 5
zP=4.500;%exp 4 = 4 .5m, exp 3&5 = 5 .5m
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f p r i n t f ( ’ Observation po int X ax i s i s %g m\n ’ , xP)
f p r i n t f ( ’ Observation po int Y ax i s i s %g m\n ’ , yP)
f p r i n t f ( ’ Observation po int Z ax i s i s %g m\n ’ , zP)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%@ Loop over the ho r i z on t a l segments in the conductors in z plane
ZSegments = 9000;% i e segment every 9m/9000=1 mm
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%@ Loop over the v e r t i c a l segments in the conductors in y plane
YSegments = 1000;% i e v e r t i c a l s e c t i o n i s 1000mm high
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%@ se t up zero ar rays f o r conductor x , y & z va lues
%(speeds up exceut ion o f the program to a s s i gn f i r s t )
x=ze ro s (3 , ZSegments ) ;
yH=ze ro s (3 , ZSegments ) ;
yV=ze ro s (3 , YSegments ) ;
z=ze ro s (3 , ZSegments ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%ca l c u l a t e X va lue s array f o r p a r a l l e l conductors 0 .5m apart
x ( 1 , 1 : ZSegments)=−0.5;% i e −0.5m o f f c en t r e
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x ( 2 , 1 : ZSegments )=0; %i e cent r e conductor
x ( 3 , 1 : ZSegments )=0.5;% i e 0 .5m o f f c en t r e
%f o r smal l segments o f change in each conductor dlx = zero
dlx ( 1 : 3 , 1 : ZSegments )=0;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%ca l c u l a t e Y array va lue s f o r conductors . In t h i s experiment
%the y va lues vary f o r both ho r i z on t a l (yH) and v e r t i c a l (yV)
%conductors . F i r s t array f o r the ho r i z on t a l conductors
f o r k=1:ZSegments

i f (k<3000) |(k>6000)% i e lowest ho r i z on t a l s e c t i o n s
yH( 1 : 3 , k)=1;%1m o f f the ground

e l s e i f (k>3000)&(k<6000)% lowest ho r i z on t a l s e c t i o n s
yH( 1 : 3 , k)=2;%2m o f f the ground

e l s e i f ( k==3000)|(k==6000)% v e r t i c a l s e c t i o n s
yH( 1 : 3 , k)=0;%3m & 6m are ve r t . conductors

end
end
%f o r smal l segments o f horz . conductors change o f y = zero
dlyH ( 1 : 3 , 1 : ZSegments )=0;
%array f o r v e r t i c a l conductors which are l oac t ed at
%ZSegments 3000 & 6000
f o r k = 1 :3
yV(k , 1 : YSegments )= [ 1 . 0 0 1 : 0 . 0 0 1 : 2 . 0 0 0 ] ;%1m to 2m high
end
%i e smal l segments o f y change by 1mm
dlyV ( 1 : 3 , 1 : YSegments )=0.001 ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%ca l c u l a t e Z array va lues f o r conductors
%r e s u l t s in d l z 1mm long
f o r k = 1 :3
z (k , 1 : ZSegments )= [ 1 : 1 : ZSegments ] / 1000 ;
end
%i e each conductor P has smal l segments o f z change by 1mm
dlz ( 1 : 3 , 1 : ZSegments )=0.001 ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%no user input beyond t h i s po int
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%@ Loop over each conductor and eva luate B(x , y , z )
%at the obse rvat i on po int
bx = 0 ; by = 0 ; bz=0; % I n i t i a l i z e B to zero
%@ loop f o r each phase conductor
f o r xP = 0 : 0 . 1 : 0 . 7 0 0
%loop f o r ho r i z on t a l p r o f i l e po in t s
%from cent r e to outer edge at 700mm
%i n i t i a l i z e B to zero f o r each measurement po int
bx = 0 ; by = 0 ; bz=0;

f o r p =1:3
%loop f o r each o f the three conductors p (a , b & c )
f o r k=1:ZSegments %loop over each Z segment
%@ Compute components o f the r vec to r ( vec to r between

%% segment on conductors and obse rvat i on po int )
rx = xP − x (p , k ) ;
ry = yP − yH(p , k ) ;
rz = zP − z (p , k ) ;
%@ Compute r ˆ3 from r vec to r
r3 = sq r t ( rx ˆ2 + ry ˆ2 + rz ˆ2 )ˆ3 ;
%@ Compute x , y&z components o f c r o s s product d l X r

% Method f o r c r o s s product us ing the Algebra i c d e f i n a t i o n
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% see page 642 o f
%(Hughes−Hal l e t t , Gleason , McCallum , e t a l . 1998)
%c a l c u l a t e s x , y&z va lues s e p e r a t e l y
d l X rx = dlyH (p , k )* rz − d l z (p , k )* ry ;

d l X ry = dlz (p , k )* rx − dlx (p , k )* rz ;
d l X rz = dlx (p , k )* ry − dlyH (p , k )* rx ;

%@ Increment sum of x , y & z components
bx = bx + Constant (p)* dl X rx / r3 ;

by = by + Constant (p)* dl X ry / r3 ;
bz = bz + Constant (p)* d l X rz / r3 ;
%3m & 6m are ve r t . conductors

i f ( k==3000)|(k==6000)
f o r q=1:YSegments

%@ Compute components o f the r vec to r
%(vec to r between segment on conductors
%and obse rvat i on po int )

rx = xP − x (p , k ) ;
ry = yP − yV(p , q ) ;
rz = zP − z (p , k ) ;

%@ Compute r ˆ3 from r vec to r
r3 = sq r t ( rx ˆ2 + ry ˆ2 + rz ˆ2 )ˆ3 ;
%@ Compute x , y&z components o f c r o s s

%product d l X r
%c a l c u l a t e s x , y&zva lue s s e p e r a t e l y
d l X rx = dlyV (p , q )* rz − d l z (p , k )* ry ;

d l X ry = dlz (p , k )* rx − dlx (p , k )* rz ;
d l X rz = dlx (p , k )* ry − dlyV (p , q )* rx ;

%@ Increment sum of x , y & z components
bx = bx + Constant (p)* dl X rx / r3 ;

by = by + Constant (p)* dl X ry / r3 ;
bz = bz + Constant (p)* d l X rz / r3 ;

end
end

end
end

BMag = sq r t ( bxˆ2 + byˆ2 + bz ˆ2 ) ;
obs M = abs (BMag)*1000000;%1000000 conver t s to micro Telsa
f p r i n t f ( ’When Observation po int i s %g meters the \n ’ ,xP)
f p r i n t f ( ’ Observation po int magnetic f i e l d i s %g micro T\n ’ , obs M)
end
%EOF

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Appendix D

Photographs of Experiments

Structure A
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Appendix E

Photographs of Experiments

Structure B
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Appendix F

Experiment and Model Results
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