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Abstract

Water reservoirs have long been used throughout Australia and the globe as a means

of both providing communities with water security during periods of limited rainfall,

as well as a form of defence against severe flooding. In recent times, the effective

management of these water reservoirs has been questioned and is now, more than

ever, under scrutiny.

In order to address the issue of reservoir mismanagement, this thesis demonstrates

the methods and procedures undertaken in the development, formulation and ap-

plication of two Mixed Integer Linear Programming (MILP) models that have the

ability to determine strategies for the optimal management of a cascade reservoir

system, under the two extreme environmental conditions of drought and flood. For

the purposes of this thesis, the unique cascade configuration of a reservoir system

was primarily considered; where cascade refers to a multiple reservoir system in

which the spill from earlier reservoirs becomes a source of inflows to subsequent

reservoirs. Many physical reservoir systems exhibit this type of layout including

the Perseverance and Cressbrook system located near Toowoomba, which has been

considered as a case study throughout this thesis.

By applying the drought and flood models to the case study of the Perseverance and

Cressbrook cascade reservoir system, it was found that both models provided com-

prehensive approximations of the system behaviours under the differing extreme

conditions considered by each model. However, in order to conduct a successful

comparison of the management strategies employed by the drought and flood mod-

els, a common set of inflow records upon which both models could be considered

was required. Rather than using a portion of the historic inflow records sourced

for the case study considered, time series analysis was employed instead to select a

time series model that suitably represented the historic records, and then from this

model, an alternate set of inflows was simulated.

Using the simulated set of inflows, a comparison of the management strategies

employed by the two MILP models for a drought and flood was conducted; demon-

strating both similarities and differences between the optimal strategies employed

for the management of the cascade reservoir system. The comparison also revealed

that although “common sense” practices could be employed to operate the cascade

reservoir system, these practices were not optimal and thus did not result in the
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effective management of the system. Therefore, models like those developed, for-

mulated, and utilised in this thesis are necessary to ensure that a commodity as

heavily relied upon and sometimes as potentially dangerous as water is optimally

governed and regulated into the future.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The management and operation of a system responsible for the storage of a valuable

commodity will always be a topic open for investigation and potential improvement,

especially when the commodity is valuable enough to be referred to as“liquid gold”;

water. Water reservoirs have long been employed around Australia and the globe to

serve two main purposes; ensure communities have access to a reliable water supply

during periods of limited rainfall or drought and to help protect communities from

the impact of flood. This means that it is not only the operators of the reservoir sys-

tems that are interested in their optimal management during these extreme events,

but also the communities that rely upon the systems for one purpose or another.

Therefore, this thesis aims to formulate and develop two mathematical models that

can be employed to determine strategies for the optimal management of a cascade

reservoir system under the two opposing extreme environmental conditions of a

drought and flood. In this case, cascade refers to the unique layout of the reservoirs

in the system, where releases from the spillway (termed spill) of a previous reservoir

in the system become a source of inflows to subsequent reservoirs; thus influencing

the volume of water, or storage level, of those subsequent reservoirs. Figure 1.1,

provided at the end of this chapter, gives an example of the layout exhibited by

a physical cascade reservoir system and how spill from one reservoir influences the

storage level of the next.

The crucial nature of water and the consequences arising from any mismanagement

of reservoir systems has driven substantial research into the field of reservoir opera-

tion. One of the widely established and well defined research areas in the field is the

use of mathematics, in particular Operations Research and related techniques, to

develop optimal management strategies for the operation of water reservoir systems.

Many different approaches exist to model the operation of a reservoir system, each

with their own merits. This is demonstrated by the state-of-the-art review con-

ducted by Yeh (1985) that explored the vast number of techniques that can be

utilised to describe the operation of a reservoir system, including Linear Program-

ming models, Dynamic Programming models, Simulation models and Nonlinear
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Programming models. Although comprehensive, one shortcoming of this review by

Yeh (1985) was that it only considered models for the day to day management of a

reservoir system and did not investigate models capable of describing the operation

of a reservoir system during extreme environmental conditions, such as a drought

or flood. Sometime later, a second state-of-the-art review was released by Labadie

(2004) investigating the optimal operation of multi-reservoir systems. In the work,

Labadie (2004) praises Linear Programming (LP) models as being one of the most

favoured optimisation techniques due to their efficiency and ability to converge to

a global optimal solution. However, he goes on to discount Mixed Integer Linear

Programming (MILP) models, an extension of Linear Programming and the pre-

dominant modelling technique employed in this thesis, as being less computationally

efficient than pure LP models (Labadie, 2004). Although perhaps less computation-

ally efficient, Mixed Integer Linear Programming provides an alternate method for

representing constraints that would otherwise be nonlinear and, if included, severely

increase the complexity of the model; a concession also made by Labadie (2004).

Upon comparison to the review performed by Yeh (1985), the more recent work by

Labadie (2004) investigated the use of computer based techniques such as heuristic

methods alongside simulation and neural network models; an indication of the ad-

vances made in computer technology since the initial review performed in 1985.

In a research area as broad as that of environmental management, under which the

operation of a reservoir system falls, there are always situations and circumstances

that are yet to be explored. Some of these situations were outlined by ReVelle

(2000), who provided an insight into the research challenges in environmental man-

agement and defined some problems that, at the time, remained unsolved. An

example of some of the topics explored by ReVelle (2000) included techniques for

the management of parallel reservoirs, water quality, and solid wastes. In the in-

vestigation of management techniques for parallel reservoirs, a basic LP model was

provided as an example. This model is slightly more complex than the simple model

formulated by ReVelle and McGarity (1997) that formed a foundation for research

and experimentation in this thesis (explored thoroughly in Chapter 2). ReVelle

(2000) also extended his original model to incorporate rationing of water from reser-

voirs situated in parallel, which contribute towards a common water supply. The

parallel reservoir system configuration explored by ReVelle (2000) is different to

that investigated in this thesis, where the reservoirs are situated in series, otherwise

known as a cascade configuration. As mentioned previously, when positioned in a

cascade configuration, spill from previous reservoirs in the system becomes a source

of inflows to subsequent reservoirs; as demonstrated by Figure 1.1 at the end of

this chapter. Chen et al. (2013) also considered a cascade reservoir system, though

investigated the system during a flooding event. However, the methods employed
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by Chen et al. (2013) to manage the reservoir system were significantly different to

those methods explored in this thesis, as they introduced the idea of a Flood Limit-

ing Water Level as a parameter for assessing the tradeoffs between flood control and

conservation (Chen et al., 2013). Although the management strategies employed by

Chen et al. (2013) are fundamentally different to those proposed in this thesis for

the operation of a reservoir system in the event of a flood, the aim of both works

are the same; to optimally manage a cascade reservoir system during a flood event.

1.2 Simple Model

Every thesis has a point of origin. In this case, that starting point was a simple LP

model formulated by ReVelle and McGarity (1997) to describe the operation of a

reservoir. The objective of the proposed model was to determine, given a known set

of inflows, the minimum capacity of a reservoir required in order to ensure that a

constant water demand could be confidently supplied to a community each month.

This model was quite limited in its physical application; however it did provide a

foundation for further research and experimentation, along with an appreciation of

how such models behave and function. One suggestion that ReVelle and McGarity

(1997) offered when discussing multi-reservoir systems was that, if the reservoirs are

arranged in a cascade configuration, then to avoid over complicating the problem

the system should be treated as a single large reservoir. The work conducted as

part of this thesis suggests otherwise, and that such an assumption would be a vast

over simplification, resulting in many crucial and subtle details being omitted or

overlooked. For example, if the system is assumed to be one large reservoir, the

model would lack the ability to monitor the amount of spill from one reservoir to the

next; an important detail that influences the selection of an optimal of management

strategy for the system.

1.3 Drought Model

Droughts are an environmental phenomenon that occurs worldwide, where regions

experience below average rainfall for an extended period of time. These events place

increased stress on the water resources of the regions affected, especially when a

country like Australia is considered. Renowned as one of the driest continents

and continuously battling water shortage issues, Australia faces devastating conse-

quences from drought. To make matters worse, under predicted climate change the

duration and severity of these drought events are expected to increase (Easterling

et al., 2000), making it of the utmost importance that reliable and accurate strate-

gies exist to better manage water resources going into the future.

Due to the importance of ensuring that communities have access to a reliable water

supply, even during the height of a drought, significant research has been conducted
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in order to find strategies that can be employed to better manage a reservoir system

during a drought event. From the plethora of mathematical techniques presented

by the research, one method suggested by the authors Shih and ReVelle (1995)

formed the foundation of the work performed in this thesis. In their work, Shih and

ReVelle (1995) used a discrete hedging rule to formulate a MILP model to describe

the operation of a single reservoir during a drought event. This method followed

on from previous work conducted by the same authors, in which they investigated

the use of a continuous linear hedging rule for a single water reservoir (Shih and

ReVelle, 1994). After obtaining the optimal rule, the authors converted the con-

tinuous hedging rule into multiple discrete hedging rules, a form more suitable for

practical applications, which then featured in their 1995 work. The work by Shih

and ReVelle (1995) is the only work found of this kind that formulates a MILP

model to explore the impact of a drought event on a reservoir used solely for water

supply. Many other works focused on alternate aspects of the reservoir system, such

as maintaining hydroelectric output during drought (ReVelle, 2000), which are not

applicable for the scenario investigated as part of this thesis.

An example of such a work is provided by the authors Tu et al. (2003) who developed

a MILP model that considers both rule curves and hedging rules to optimize the

operation of a multipurpose, multi-reservoir system. This reservoir system was not

considered in isolation by Tu et al. (2003), but instead was assumed to be connected

to a large scale water distribution network, making the system far more complex

than that explored in this thesis. Although there are significant differences in the

size and complexity of the system considered, along with some of the methods used

by Tu et al. (2003), there are also similarities to the methods used in this thesis.

For example, Tu et al. (2003) differ from this thesis by employing network diagrams

and initially formulating the problem using the minimum cost method; however Tu

et al. (2003) did develop a MILP model to optimise the operation of the reservoir

system, a similar method to that employed in this thesis. The work by Tu et al.

(2003) could also become applicable if further research was to be conducted into the

reservoir system considered in this thesis, this time incorporating the entire water

distribution network of the region into the model.

In their more recent work, the authors Tu et al. (2008) devised a multi-objective

Mixed Integer Nonlinear Programming model for a multi-reservoir system that op-

timises water allocation and searches for new hedging rules to improve the current

reservoir operation procedures. By incorporating a nonlinear objective function and

nonlinear constraints into the model, Tu et al. (2008) have increased the complexity

of their original work substantially; however at the same time increased the capa-

bilities of the model. In the case of this thesis, the use of nonlinear constraints were

avoided as the physical layout and operating procedures of the system considered
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were not as complex as that investigated by Tu et al. (2008). However, if more

complex operating procedures were adopted by the managers of the reservoir sys-

tem investigated as part of this thesis, the method implemented by Tu et al. (2008)

may provide a better approximation for the behaviours exhibited by components of

the system.

As mentioned previously, many different methods exist to model the operation of

a water reservoir system during a drought event. One such method is described by

Shiau (2003) who suggests the use of hedging rules in combination with a measure,

known as the reservoir supply index, to minimise the effects of drought on water

reservoir systems. This reservoir supply index was developed to determine the onset

and termination of water rationing and is defined as the probability of an available

reservoir water supply being sufficient to meet an established demand (Shiau, 2003).

Effectively, the reservoir supply index is a probabilistic measure that evaluates the

probability of a reservoir having sufficient water supplies to meet some predefined

demand. In comparison to the work performed in this thesis, where the extent of

water rationing is determined by the level of the reservoir itself, Shiau (2003) sug-

gests the use of probabilities to predict the level of the reservoir into the future and

thus the amount of rationing required. Although the method proposed by Shiau

(2003) may provide some lead time as to when it is best to enforce rationing, the

probabilities could be misleading and either see rationing imposed when it is not

needed or in contrast, see no rationing imposed when it is needed. By using the

level of the reservoir itself to determine when rationing is enforced, and under the

assumption that the demand from the reservoir, along with the inflows to the reser-

voir are known, the occurrence of these types of errors have been minimised in this

thesis.

Another method for modelling a water reservoir system during periods of water

stress was suggested by the authors Srivastava and Awchi (2009). In their work,

the authors used system analysis to develop a strategy that improved the perfor-

mance of a reservoir system when the scenario of overstressed water utilisation

conditions and demands was considered (Srivastava and Awchi, 2009). The tech-

nique of system analysis incorporates a series of optimisation tools including Linear

Programming, Dynamic Programming, Simulation, Artificial Neural Networks and

hedging rules to determine an optimal management strategy for a reservoir system.

In this case, the hedging rules that appeared in the system analysis conducted by

Srivastava and Awchi (2009) were based upon the series of discrete hedging rules

devised by Shih and ReVelle (1995). Although the hedging rules are similar to those

used in this thesis, the technique of system analysis was exceedingly complicated

to warrant its application to the cascade reservoir system considered. That being

said, the process of utilising the original methods and techniques proposed by Shih
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and ReVelle (1995) and adapting their work to function under a different set of

circumstances was replicated in this thesis when developing both the drought and

flood MILP models.

1.4 Flood Model

Floods are also an environmental phenomenon that occurs worldwide, where peri-

ods of above average or extreme rainfall results in rivers and streams rising to a

point where the flows can no longer be contained and the excess water inundates

the surrounding regions. These events can prove deadly and often cause massive

amounts of damage to the regions affected; impacting natural ecosystems and com-

munities alike. Water reservoirs can be used as a form of defence against the worst

impacts of a flood, as they provide a means of stalling the progression of floodwa-

ters. Some reservoirs are designed with flood mitigation features, such as a gated

spillway, which enables the progress of a flood to be halted and the floodwaters

stored until the worst of the flooding event has passed, at which time releases from

the reservoir can begin. As with droughts, the severity of floods is expected to

increase under projected climate change (Easterling et al., 2000). Therefore, it is of

vital importance that dependable strategies exist for the management of reservoir

systems during a flood moving into the future.

Research into management strategies for the operation of reservoir systems during

flood events has not been as widely investigated as that of strategies during drought

events. This can be attributed to the fact that the behaviour of traditional reservoirs

during a flood is quite simplistic; floodwaters fill the reservoir to capacity, at which

time spill occurs (defined as releases from the reservoir over the spillway). This be-

haviour is easily modelled and there is limited scope for further research into such a

system. Therefore, the research that is conducted in the area is mainly focused on

developing optimal management strategies for systems containing more than one

reservoir. An example of such research is presented by Karbowski (1993). In this

work, Karbowski (1993) explored the problem of finding an optimal flood control

technique for a system of serially connected water reservoirs (a cascade reservoir

system), where the objective was to minimise the peak flow measured at some point

in the system. This objective is similar to that of the models constructed in this

thesis; to minimise the extent of spill from the second reservoir in a two reservoir

cascade system. In order to accomplish the objective of minimising the peak flow

at some point in the system, Karbowski (1993) investigated two methods; the first

where the active reservoir in the system was switched in an attempt to try and

minimise the number of reservoirs that are changing their storage levels over the

time period considered. The second method involved the synchronised operation
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of all the reservoirs in the system, where continuous spills from each reservoir oc-

curred causing long periods of gradual changes in the storage levels. Both methods

proposed had limited applicability to the system investigated in this thesis; however

may prove useful if a larger cascade system was to be considered in future work.

In more recent times, reservoirs have been constructed or upgraded to include flood

mitigation measures such as gated spillways. These measures enable spill to be with-

held until the river levels downstream of the reservoir have returned to a suitable

level. Along with increasing the capabilities of reservoirs from water storage devices

to flood defence mechanisms, these flood mitigation measures have also increased

the scope of research that could be conducted in the area. An example of such

research that has been performed into the operation of a reservoir featuring flood

mitigation measures during a flood event is provided by Kearney et al. (2011). This

work compared the existing mitigation strategy of Wivenhoe Dam in the Brisbane

Valley, which features a gated spillway, to a model designed by Kearney et al. (2011)

using the 2011 flood event in Queensland, Australia as a case study. Kearney et al.

(2011) employed the method of model predictive control to develop a flood mitiga-

tion strategy for the reservoir and then performed a simulation study to compare

the outcome of their model to the already existing mitigation strategy for Wiven-

hoe Dam. The method of model predictive control is significantly different to that

utilised in this thesis, where the discrete hedging rules and MILP model proposed

by Shih and ReVelle (1995) were adapted and altered to ensure their applicability

to a flood event.

After the 2011 flood event in Queensland, Australia, the operation of the regions

water reservoirs was placed under increased scrutiny. In order to make their oper-

ating procedures during a flood event more transparent to the public, the managers

of one of the largest water reservoir systems in Queensland released a manual titled

“Manual of Operational Procedures for Flood Mitigation at Wivenhoe and Somer-

set Dam” (Seqwater, 2011b). This manual outlined the procedures that should be

followed during a flood event in the Brisbane River catchment area, in which the

Somerset and Wivenhoe Dams are located. Some of the procedures described in the

manual were rather complex, involving gated spillways and measurements of river

levels at multiple locations downstream of the reservoir system; far beyond the scope

of the operating procedures considered in this thesis. However, if further research

was to be conducted, assuming that the reservoirs considered in this thesis now fea-

tured gated spillways, the operating procedures outlined by the manual could prove

useful. The managers of the same reservoir system also released a report detailing

how the reservoir system was actually operated during the 2011 flood event, titled

“January 2011 Flood Event: Report on the operation of Somerset Dam and Wiven-

hoe Dam” (Seqwater, 2011a). The report contained information regarding how and
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when the operation strategies outlined in the Manual were employed, along with

the measured inflows into the two reservoirs over the course of the event. These

inflows were originally going to be used as a form of proxy data for the reservoir

system considered in this thesis; however more suitable historic inflows were able

to be sourced from the Queensland Department of Natural Resources and Mines

(2012).

1.5 Time Series Analysis

Although historic inflows were able to be sourced for the cascade reservoir system

considered as part of this thesis, time series analysis was utilised to generate another

dataset based on the historic records. In order to formulate a time series model for

the data, the methods introduced by Dunn and Addie (2008) were employed. In

their work, they presented two selection tools that could be used to determine a suit-

able time series model to describe a given dataset. Once a model was selected, Dunn

and Addie (2008) outlined a battery of diagnostic tests that could be performed in

order to ensure that the model selected provided an approximate representation

of the historic inflow records by capturing the important information, or signal, of

the data. Dunn and Addie (2008) also outlined a method for generating a series of

one-step ahead forecasts from the time series model to test its accuracy when com-

pared to a portion of the original dataset. Each of these methods was performed in

this thesis and resulted in the development of a time series model that adequately

described the historic inflow records. This model was then employed to generate

another series of data which could be used as a common set of inflows when per-

forming a comparison of the management strategies employed by the drought and

flood models.

1.6 Case Study: Perseverance and Cressbrook Dams

The extent of this thesis is not limited to the development of MILP models, but

also includes the application of these models to an existing cascade reservoir sys-

tem in order to determine optimal strategies for the management of such a system

during a drought and flood event. In this case, two of the reservoirs that contribute

to the water supply of the Toowoomba region exhibit a cascade configuration; be-

ing the Perseverance and Cressbrook dams. Both of these reservoirs are located

approximately 35 kilometres northeast of Toowoomba and make up two thirds of

the regions reservoir system, with another solitary dam located to the north of

Toowoomba also contributing to the water supply network (Toowoomba Regional

Council, 2013). Figure 1.1 displays the geographical layout of the Perseverance

and Cressbrook cascade reservoir system, along with the location of both reservoir

spillways; represented by the small black rectangles. From this figure, it can be
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Figure 1.1: Configuration of Perseverance and Cressbrook cascade reservoir system
investigated as a Case Study.
Black Rectangles = Dam Spillway, Thinner Blue Arrows = Sources of Inflows,
Thicker Red Arrows = Direction of Spill from Perseverance to Cressbrook dam.

seen that Cressbrook dam is the larger of the two reservoirs, with an approximate

maximum available storage of 82 000 megalitres (ML), whilst Perseverance dam is

smaller with approximately 30 000 ML of maximum available storage (Toowoomba

Regional Council, 2013). As stated previously, when in a cascade configuration,

any spill that occurs from a previous reservoir in the system will contribute to

the inflows of subsequent reservoirs. Although the orientation of the reservoirs in

Figure 1.1 may suggest otherwise, any spill that occurs from Perseverance dam con-

tributes to the inflows into Cressbrook dam, as shown by the thicker red arrows.

Also demonstrated by the figure is the fact that Cressbrook dam is not reliant on

the spill from Perseverance dam as a sole source of inflows; it is also fed by inde-

pendent creeks and streams. The creeks and streams that feed both reservoirs are

denoted in Figure 1.1 using the thinner blue arrows. The physical cascade layout

of these two reservoirs, along with the features mentioned, make the Perseverance

and Cressbrook cascade reservoir system an ideal case study to which the drought

and flood MILP models developed in this thesis could be applied, and through the

application of the models, enable optimal management strategies for the system to

be determined.
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The aim of this thesis is to demonstrate the process undertaken during the formula-

tion and development of two MILP models that are applicable to a cascade reservoir

system, in order to determine the optimal management strategy for the system un-

der the two extreme environmental conditions of a drought or flood. In Chapter 2,

a simple LP model is investigated and then extended to a cascade reservoir system.

The exploration of this simple model formed a basis of understanding that was able

to be applied throughout the rest of this thesis. Chapter 3 details the procedure

of investigating and understanding a MILP model proposed to optimally manage a

single reservoir system during a drought event. The original model is then adapted

to be applicable to a cascade reservoir system before being applied to the case study

of Perseverance and Cressbrook dams. Chapter 4 follows a similar process as that

conducted in Chapter 3, however this time the models developed are applicable to

the optimal management of a cascade reservoir system during a flood event. Fol-

lowing this, time series analysis is utilised in Chapter 5 to formulate a time series

model to accurately describe the historic inflow records. This time series model

was then used to simulate an alternate set of inflow data, which forms a common

dataset for use in Chapter 6 where the differing management strategies employed

by the drought and flood model are compared. The thesis is then concluded in

Chapter 7.
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Chapter 2

Simple Model

2.1 Chapter Overview

The focus of this chapter is to demonstrate where this thesis began; with the explo-

ration and extension of a simple model used to describe the operation of a reservoir

system. To begin, the simple Linear Programming (LP) model presented by ReV-

elle and McGarity (1997) is stated and investigated. Labelled Model 1, this model

was rather limited in its applicability to a physical system and therefore required

extension in order for it to adequately describe the operation of a cascade reservoir

system. The extended form of the simple model, named Model 2, can also be found

in this chapter along with a review of the results from an experiment conducted

using the model. Although both Model 1 and Model 2 are simplistic and not as

comprehensive as other models explored later in this thesis, the work conducted

in this chapter formed a basis of understanding regarding how LP models can be

applied to describe the operation of a reservoir system.

2.2 Models

2.2.1 Model 1 - Simple Model developed by ReVelle and McGarity (1997)

In this section, the first of two models explored in this chapter is introduced. For-

mulated by ReVelle and McGarity (1997) to describe the fundamental behaviours

exhibited by a single reservoir system, Model 1 is given below in Equations (2.1) to

(2.5). Note that a description of the constraints and variables used to compose the

simple LP model are provided in Section 2.2.2:

minimise z = c (2.1)

such that

St = St−1 + It − q −Wt ∀t, (2.2)

St ≤ c ∀t, (2.3)

ST ≥ S0, (2.4)

St, St−1, It,Wt, c, q ≥ 0 ∀t. (2.5)
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2.2.2 Model 1 Description

Model 1 is a straightforward LP model that measures the storage level of a single

reservoir system over a time period of known length. The authors of Model 1 state

that the objective of this model is to determine the smallest reservoir capacity

required to sustain a steady release from the reservoir for use as a water supply

over the duration of the time period specified; while, at the same time ensuring

that the ending reservoir condition is no worse than the condition of the system at

the beginning of the time period (ReVelle and McGarity, 1997).

Variable Definitions

There are eight variables that are used in the formulation of Model 1. These vari-

ables can be defined below:

t, T = the index and the total length of the time period considered, in this case

assumed to be months,

St = the storage level of the reservoir at the end of month t, which is unknown

(megalitres, ML),

S0 = the unknown initial storage level of the reservoir (ML),

q = the specified steady month-to-month release from the reservoir for use as

a water supply (ML),

Wt = the unknown amount of spill from the reservoir in month t (ML),

c = the unknown reservoir storage capacity (ML),

It = the historical inflows to the reservoir in month t, which are specified

(ML).

In order to investigate how these variables feature and interact in Model 1, the

constraints that compose the model can be investigated.

Contraint Definitions

Model 1 consists of five constraints, including the objective function. In this case,

the objective function (Equation (2.1)) contains the single variable c and aims to

minimise the capacity of the reservoir subject to the other constraints in the model.

Equation (2.2) is the mass balance constraint and provides the storage level of

the reservoir in the current month. This value is calculated by adding the storage

level of the reservoir in the previous month with the inflows to the reservoir in the

current month, and then subtracting the releases made to the water supply and the

spill from the reservoir in the current month. Equation (2.3) makes sure that the

reservoir storage level does not exceed the capacity of the reservoir in any given

month, while Equation (2.4) states that the reservoir storage level at the end of

the time period considered must be greater than or equal to the storage level at

the beginning of the period. This ensures that the reservoir storage level is in the

same condition or better at the end of the time period than where it commenced.
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Equation (2.5) is included to ensure that particular variables remain nonnegative

and thus physically realistic.

2.2.3 Model 2 - Extension of Simple Model

Upon experimentation of Model 1, it was found that the model had limited applica-

bility to a physical system and required extension in order to suitably describe the

operation of a cascade reservoir system. This extended model, labelled Model 2, is

given below in Equations (2.6) to (2.28). Note that variables labelled with a star

(*) correspond to Reservoir 1, whilst variables without a star relate to Reservoir 2.

minimise z = C∗
D + CD (2.6)

such that

Reservoir 1 Constraints

S∗
t = S∗

t−1 + I∗t − q∗ −W ∗
t ∀t, (2.7)

S∗
0 ≤ C∗

D, (2.8)

S∗
t ≤ C∗

D ∀t, (2.9)

W ∗
t ≤ C∗

S ∀t, (2.10)

C∗ = C∗
S + C∗

D, (2.11)

C∗
S ≤ 0.1C∗

D, (2.12)

S∗
t−1 + I∗t − q∗ − C∗

D = p+t
∗ − p−t

∗ ∀t, (2.13)

p−t
∗ ≤My∗t ∀t, (2.14)

p+t
∗ ≤M(1− y∗t ) ∀t, (2.15)

W ∗
t ≤ p+t

∗ ∀t, (2.16)

S∗
t , S

∗
t−1, I

∗
t ,W

∗
t , p

+
t
∗
, p−t

∗ ≥ 0 ∀t. (2.17)
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Reservoir 2 Constraints

St = St−1 + It − q −Wt +W ∗
t ∀t, (2.18)

S0 ≤ CD, (2.19)

St ≤ CD ∀t, (2.20)

Wt ≤ CS ∀t, (2.21)

C = CS + CD, (2.22)

CS ≤ 0.1CD, (2.23)

St−1 + It − q − CD = p+t − p−t ∀t, (2.24)

p−t ≤Myt ∀t, (2.25)

p+t ≤M(1− yt) ∀t, (2.26)

Wt ≤ p+t ∀t, (2.27)

St, St−1, It,Wt, p
+
t , p

−
t ≥ 0 ∀t. (2.28)

2.2.4 Model 2 Description

Model 2 builds upon the framework provided by Model 1 to formulate a model

that is capable of describing the basic behaviour exhibited by components of a

cascade reservoir system. In this sense, the model measures the storage levels of

two reservoirs situated in a cascade configuration over a time period of known

length. The objective function of Model 2 also builds upon that stated for Model 1;

determining the smallest reservoir capacities required to sustain a steady release to

a water supply, where the water supply is shared between the two reservoirs, over

the duration of the time period considered.

A functionality that Model 1 did not possess was the ability to adequately describe

the spill of water from the two reservoirs. Also, due to the cascade configuration of

the reservoir system considered, Model 2 also needs to take into account the fact

that any spill from Reservoir 1 becomes an additional source of inflows to Reservoir

2. In order to enable Model 2 to successfully describe these behaviours of a cascade

reservoir system, a binary variable was added to the model; changing the nature of

Model 2 from a Linear Programming model to a Mixed Integer Linear Programming

(MILP) model. Another addition to Model 2 was the inclusion of a total reservoir

capacity that is able to be separated into the reservoir storage capacity and the

capacity of the reservoir spillway. These variables were included to better describe

the spill of water from the two reservoirs.

14



Variable Definitions

There are 14 variables used in the formulation of Model 2. Seven of these variables

were defined previously when describing Model 1 in Section 2.2.2, under the heading

Variable Definitions. The seven remaining variables that have not been defined

previously are listed below:

C = the total reservoir capacity, which is unknown (ML),

CD = the unknown reservoir storage capacity (ML),

CS = the unknown capacity of the reservoir spillway (ML),

p+t = an indicator variable whose value is greater than zero if spill is occurring

from the reservoir in month t, which is unknown (ML),

p−t = an indicator variable whose value is greater than zero if no spill is occur-

ring from the reservoir in month t, which is unknown (ML),

M = a large constant value, assumed to equal 10 000 in this case,

yt = an unknown binary variable that equals 0 if spill is occurring in month t

or 1 otherwise.

How these variables feature and interact can be explored through the investigation

of the constraints that compose Model 2.

Constraint Definitions

Model 2 consists of an objective function and 22 constraints, eleven of which are

repeated from Reservoir 1 to Reservoir 2. In this case, as Model 2 is applicable to

a dual cascade reservoir system, the objective function (Equation (2.6)) contains

both variables C∗
D and CD and aims to minimise the storage capacities of the two

reservoirs subject to the other constraints in the model. Equations (2.7) and (2.9)

have been defined previously in Section 2.2.2 for Model 1; the first is the mass

balance constraint, whilst the second ensures that the reservoir storage level does

not exceed the reservoir storage capacity in any given month. Equation (2.8) ensures

that the initial reservoir storage level does not exceed the reservoir storage capacity,

while Equation (2.10) makes certain that the amount of spill in a month does not

exceed the spillway capacity. Equation (2.11) is an equality constraint stating

that the total reservoir capacity is equal to the reservoir storage capacity plus the

reservoir spillway capacity. Equation (2.12) is then included to limit the size of

the spillway capacity to a proportion of the reservoir storage capacity, in this case

arbitrarily selected to be 10%. Equation (2.13) is used to measure the extent of

spill (if any) that occurs from a reservoir in a given month.

In order for spill to occur, the reservoir storage capacity must be exceeded. This

can be calculated by determining the sum of the reservoir storage level at the end of

the previous month and the inflows to the reservoir in the current month, and then

subtracting the steady month-to-month release of water to the community water

supply. If this value is greater than the reservoir storage capacity, then water must
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exit the reservoir as spill. If spill occurs, the extent of the spill is measured by the

variable p+t . On the other hand, if spill does not occur in the current month, then the

extent by which the storage level is below the reservoir storage capacity is measured

by the variable p−t . These variables are used in conjunction with Equations (2.14)

and (2.15) to determine the value of the binary variable yt. As stated earlier, the

value of the variable yt equals zero if spill is occurring in the current month or one

otherwise. This can be illustrated by an example; if spill is occurring in the current

month, then the variable p+t will have a value greater than zero, while the variable

p−t has a value of zero. In order to satisfy both Equation (2.14) and (2.15), the

variable yt must also have a value of zero. If the alternate situation is considered,

where no spill occurs in the current month, then the variable p+t will have a value

of zero, while the variable p−t has a value greater than zero. Once again, in order to

satisfy both constraints, the variable yt must have a value of one. Equation (2.16)

then states that the amount of spill that occurs in the current month must be at

most equal to the variable p+t . Equation (2.17) is included to ensure that particular

variables remain physically realistic and thus nonnegative. At this point, it should

be noted that Equations (2.19) to (2.28) are the same as Equations (2.8) to (2.17);

however are applicable to Reservoir 2. The only constraint that varies between the

two reservoirs is the mass balance constraint; Equations (2.7) and (2.18). In the

case of Reservoir 2, it contains the additional variable W ∗
t ; the amount of spill from

Reservoir 1 in the current month. As the two reservoirs are situated in a cascade

configuration, spill from Reservoir 1 becomes a source of inflows to Reservoir 2 and

as such needs to be included in the mass balance constraint of the second reservoir.

2.3 Results and Discussion

In this section, an experiment to investigate how the storage capacities of two

reservoirs in a cascade configuration behave given varying community water supply

requirements is conducted using Model 2. This experiment not only provided a

means of applying and thus testing Model 2, but also offered a broader opportu-

nity to better understand how simple LP and MILP models can be applied to the

operation of reservoir systems.

In order to perform the experiment, the optimisation modelling software LINGO

version 14.0 was employed (LINDO Systems Inc, 2013). An example of the syntax

required to perform this experiment, along with an excerpt of the resulting output

can be found in Appendix A.

To enable a better investigation of Model 2 and assist in the interpretation of results

from the experiment, a series of assumptions were made. The first of these was to

assume that the experiment would be conducted over a period of six months and

that both reservoirs would be subject to constant inflows of 50 megalitres (ML) per
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month. Additionally, it was assumed that the releases from the reservoirs to the

community water supply varied in 10 ML increments from a possible demand of

0 ML to 200 ML per month.

The final assumption made regarding the parameters of the experiment was to spec-

ify that the two reservoirs shared the community water supply demand, according

to a known policy. In order to explore how the reservoir capacities behaved under

varying circumstances, three policies were invented; the first where the commu-

nity water supply was split equally between the two reservoirs at 50% each, the

second where Reservoir 1 was responsible for 70% of the community water supply

and Reservoir 2 for the remaining 30%, and the final policy where Reservoir 1 was

responsible for only 30% of the community water supply, while Reservoir 2 supplied

70%.

2.3.1 Policy 1

The first policy considered shared the community water supply demand equally be-

tween the two reservoirs, at 50% each. In order to investigate how the capacities of

the two reservoirs behaved under varying demand from the community, a series of

plots have been constructed; Figure 2.1 demonstrates the behaviour of the reservoir

capacities against community water supply separately, while Figure 2.2 displays the

capacities of the two reservoirs on the same axis as a means of comparison.

From Figure 2.1 it can be seen that when there was no demand for water from the

community, Model 2 predicted that a storage capacity of approximately 300 ML

was required for both reservoirs. This result is contrary to first thought, which

would suggest that if there is no demand by the community for water, then there

is no need for a reservoir. However, the model assumed that the reservoir system

was already in place and as such increased the reservoir capacity due to Equations

(2.12) and (2.23). These constraints limit the capacity of the reservoir spillway to

10% of the reservoir storage capacity. Therefore, Model 2 elected to increase the

storage capacity of the reservoir in order to maximise the capacity of the spillway

and thus the amount of water that could be released from the reservoirs as spill

each month.

As the demand for water from the community increased from 0 ML per month, Fig-

ure 2.1 demonstrates that the capacity of both reservoirs decreased until the com-

munity water supply demand reached 100 ML per month. At this point, Model 2

predicted the required capacity of both reservoirs to equal 0 ML; effectively stating

that a reservoir system was not necessary. Under the policy being investigated, it

was assumed that the community water supply demand was divided equally be-

tween the two reservoirs at 50% each. Therefore, when the total community water

supply requirement equalled 100 ML per month, the reservoirs were responsible

for providing 50 ML per month each; equating to the inflows to both reservoirs of
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Figure 2.1: Policy 1 - Reservoir Capacities against Community Water Demand.
Community Water Demand shared - Reservoir 1 at 50% and Reservoir 2 at 50%.

Left - Resevoir 1, Right - Reservoir 2.

50 ML per month and thus balancing the system. In context, this means that if it is

known that 100 ML per month in total will be readily available from a river system,

then the community could pump their requirements directly from the river without

the need for a reservoir system. However, in practice, it is known that access to a

steady water supply through rivers and streams cannot be assured and that some

form of storage is necessary to ensure water security. In that sense, this component

of the model is unrealistic; however this limitation is improved upon in subsequent

chapters.

Figure 2.1 also shows that once the community water supply demand was greater

than 100 ML per month, the capacities of both reservoirs increased at a constant

rate. This was attributed to the demand from the community now exceeding the

inflows to the reservoirs each month, meaning that some storage of water was re-

quired in order to meet the demand over the time period considered. From the

figure, it can be seen that for every increase of 10 ML (starting from 100 ML) in

community water supply demand, the reservoir capacity of Reservoir 1 and Reser-

voir 2 increased by 30 ML. The reason for this increase in the reservoir capacity was

identified by considering the impact of increasing the community demand by 10 ML

per month over a time period of six months; translating to an additional 60 ML
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Figure 2.2: Policy 1 - Comparison of Reservoir Capacities.
Community Water Demand shared - Reservoir 1 at 50% and Reservoir 2 at 50%.

needing to be supplied to the community in total. Under Policy 1, the demand from

the community was sourced equally from the two reservoirs, resulting in the total

increase of 60 ML being shared between the two reservoirs at 50% each; equating to

an extra 30 ML needing to be stored in each reservoir to ensure that the community

water supply demand could be met.

In addition to Figure 2.1, Figure 2.2 has been provided to compare the behaviour

of the two reservoir capacities on a common set of axes. Evident from this figure

is that the two reservoir capacities demonstrated much the same behaviour, except

that the capacity of Reservoir 1 was slightly smaller than that of Reservoir 2 when

the community water demand was less than 100 ML. This difference was attributed

to the reservoirs being located in a cascade configuration, and any spill from Reser-

voir 1 becoming a source of inflow to Reservoir 2. Therefore, in order to combat the

combined inflows to the second reservoir, the model elected to increase the storage

capacity of Reservoir 2 and in doing so, the capacity of the reservoir spillway, in

order to maximise the amount of spill from the reservoir when the inflows exceeded

demand.

Under Policy 1, Figure 2.1 and 2.2 demonstrate that there were two key behaviours

of the reservoir capacities. The first was witnessed when the inflows to the reservoir

system exceeded the demand from the community. In this case, the model selected
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the minimum storage capacity of the reservoirs that at the same time maximised the

size of the reservoir spillways, in order to release the unrequired, additional inflows.

On the other hand, the second behaviour occurred when the inflows to the reservoir

system were insufficient to meet the demand from the community each month. If

this transpired, the reservoirs were required to store an additional volume of water

in order to ensure that the community water demand could be maintained over

the time period considered and, as such the capacities of the reservoirs increased

proportional to this additional volume required. These two key behaviours of the

reservoir storage capacities were also apparent in the other policies considered; how-

ever were influenced by the unequal sharing of the community water demand and

were more difficult to identify.

2.3.2 Policy 2

The next policy to be investigated shared the community water supply demand

between Reservoir 1 and Reservoir 2 at 30% and 70% respectively. This sharing of

community water demand could occur as a result of convenience or for cost reasons

if one of the reservoirs was to be located closer to the community, or if one of the

reservoirs was supplied by more substantial tributaries. Similar to Policy 1, two

plots have been constructed to explore the capacities of the reservoirs against vary-

ing community water supply demand and are given in Figure 2.3 and Figure 2.4.

From Figure 2.3, it can be seen that when there was no demand for water from

the community, the model selected the same capacities for both reservoirs as those

observed under Policy 1; approximately 300 ML. This behaviour is to be expected

and witnessed again for the final policy, as the unequal sharing of community de-

mand has no impact if there is no demand to share (0 ML). As the demand from the

community increased, the capacity of both reservoirs decreased at constant rates

until the community water demand reached approximately 80 ML per month. At

this value, the community demand from Reservoir 2 began to exceed the inflows to

the reservoir and as such, the behaviour of the reservoir capacity changed to reflect

the need for water to be stored. On the other hand, the capacity of Reservoir 1

continued to decrease constantly until the critical demand volume of 100 ML per

month was reached.

Upon the community water supply demand reaching 100 ML per month, Figure 2.3

demonstrates that the capacities of both reservoirs underwent a significant change

in behaviour. In the case of Reservoir 1, the storage capacity of the reservoir spiked

to 200 ML, while the storage capacity of Reservoir 2 decreased to 0 ML; indicat-

ing that under this community water supply demand, Model 2 suggested that the

second reservoir was not required. This drastic change in the behaviour of the

reservoir capacities was attributed to the unequal sharing of the community water

supply demand. Under Policy 2, Reservoir 1 was responsible for supplying 30% of
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Figure 2.3: Policy 2 - Reservoir Capacities against Community Water Demand.
Community Water Demand shared - Reservoir 1 at 30% and Reservoir 2 at 70%.

Left - Resevoir 1, Right - Reservoir 2.

the community water demand, while the remaining 70% was sourced from Reservoir

2; translating to 30 ML and 70 ML per month being sourced from Reservoir 1 and

Reservoir 2 respectively when the total community water supply demand per month

equalled 100 ML. Therefore, by increasing the capacity of Reservoir 1 to 200 ML,

Model 2 also increased the capacity of the Reservoir 1 spillway to 20 ML (the spill-

way capacity is limited to 10% of the reservoir storage capacity by Equations (2.12)

and (2.23)). This meant that the community demand of 30 ML per month from

Reservoir 1 could be completely supplied out of the 50 ML of constant inflows to

the reservoir each month, while the remaining 20 ML of inflows became spill from

the reservoir. As the reservoirs were situated in a cascade configuration, the 20 ML

of spill from Reservoir 1 combined with the constant inflow of 50 ML per month

to Reservoir 2, thus providing a total inflow of 70 ML per month to the second

reservoir. This combined inflow of 70 ML per month equated to the community

demand of 70 ML per month from Reservoir 2; thus balancing the input and output

of the reservoir and causing Model 2 to deem it unnecessary.

As the demand for water from the community increased past 100 ML per month,

the two reservoir capacities demonstrated opposing behaviours. The storage ca-

pacity of Reservoir 1 began to decrease from 200 ML at a rate of 30 ML for each
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Figure 2.4: Policy 2 - Comparison of Reservoir Capacities.
Community Water Demand shared - Reservoir 1 at 30% and Reservoir 2 at 70%.

increase of 10 ML per month in community water demand. On the other hand, the

capacity of Reservoir 2 increased at a constant rate of 60 ML for each 10 ML per

month increase in the demand from the community.

Although depicted in Figure 2.3, Figure 2.4 better demonstrates the point at which

the inflows to Reservoir 1 no longer exceeded the community water supply demand.

At this value, a demand of approximately 170 ML per month, the behaviour of both

reservoir capacities changed. For Reservoir 1, this was due to the fact that water

needed to be stored in order to meet the required demand from the community over

the extent of the time period considered. This change in the Reservoir 1 storage

level behaviour also impacted the behaviour of the Reservoir 2 storage level, as the

spill from Reservoir 1 could no longer be relied upon as an additional source of

inflows to the second reservoir. Therefore, past a community water supply demand

of approximately 170 ML per month the storage capacity of Reservoir 1 increased

by 18 ML (30% of 60 ML) for every 10 ML per month increase in demand, while

the storage capacity of Reservoir 2 increased by 42 ML (70% of 60 ML) for every

10 ML per month increase in community water demand.
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Figure 2.5: Policy 3 - Reservoir Capacities against Community Water Demand.
Community Water Demand shared - Reservoir 1 at 70% and Reservoir 2 at 30%.

Left - Resevoir 1, Right - Reservoir 2.

2.3.3 Policy 3

The final policy to be investigated was when the community water supply demand

was shared unequally between Reservoir 1 and Reservoir 2 at 70% and 30% respec-

tively, or a reversal of that considered under Policy 2. As mentioned previously,

this situation could occur when a more substantial river or stream system supplied

one of the reservoirs, or if one reservoir was located closer to the community that

the reservoir system was responsible for supplying. As before, two plots have been

constructed to explore the behaviour of the reservoir capacities against varying com-

munity water demands.

From Figure 2.5 it can be seen that the behaviour of the reservoir storage capacities

under this policy were easier to interpret than those witnessed under Policy 2. As

already mentioned and expected for all policies, Model 2 selected the capacities of

both reservoirs to equal approximately 300 ML when it was assumed that there was

no demand from the community. The figure also demonstrates that as the com-

munity water supply demand increased, the capacities of both reservoirs decreased

at constant rates. As Reservoir 1 was responsible for supplying 70% of the com-

munity water demand under Policy 3, the critical value where the behaviour of the

reservoir storage capacity changed from attempting to release the excess inflows, to
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Figure 2.6: Policy 3 - Comparison of Reservoir Capacities.
Community Water Demand shared - Reservoir 1 at 70% and Reservoir 2 at 30%.

the storage of water in order to ensure the community demand could be maintained

across the time period, occurred at a smaller community water supply demand than

that seen under the previous policies. In this case, once the community water de-

mand reached approximately 70 ML per month, the inflows to Reservoir 1 were no

longer sufficient to supply the community alone and the reservoir needed to begin

the storage of water. On the other hand, as 30% of the community water supply

demand was sourced from Reservoir 2 under Policy 3, the transition in reservoir

storage capacity behaviour occurred at a much larger value of community demand

than seen previously; approximately 170 ML per month in this case.

Figure 2.6 provides further evidence of the clear distinction in reservoir capacity

behaviour, as the capacities of both reservoirs can be compared on a common set

of axes. This behaviour was evident in each of the policies investigated and marks

the point where the inflows to the reservoir were no longer sufficient to support

the community water supply demand and storage needed to occur. This transition

value was readily discernible in both Policy 1 and 3; however was harder to identify

in Policy 2 due to the influence of spill from Reservoir 1 supplementing the inflows

to Reservoir 2.
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2.4 Chapter Conclusion

This chapter has presented the work, models and material that formed the origin

of this thesis. To begin, the simple LP model formulated by ReVelle and McGarity

(1997) was presented and described. This model was found to be limited in its

ability to comprehensively describe the behaviours of a physical reservoir system

and therefore required extension in order to be applicable to a cascade reservoir

system. The extended model, named Model 2, was stated and a full description

of the variables and constraints that compose the model provided. Following this,

the results of an experiment to investigate how the capacities of two reservoirs in a

cascade reservoir system behave under varying community water supply demands

were provided. The experiment was replicated for three different policy types that

specified how the community water demand was shared between the two reservoirs.

From this experiment, it was found that the reservoir capacities behaved in two

distinct ways; one when the inflows to the reservoir exceeded the demand from

the community and the other when the inflows were insufficient to solely meet the

community demand. Also, it was noted that Model 2 had some limitations and did

not always provide informative results; in some cases suggesting that either one or

both of the reservoirs in the system were not needed. In future chapters, some of

these limitations are resolved.

Overall, the intention of this chapter was to demonstrate where this thesis began

and how small experiments with simple models allowed for the development of

knowledge and understanding that was able to be applied to more complex scenarios

and situations considered later in the thesis.
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Chapter 3

Drought Model

3.1 Chapter Overview

Extended periods of below average rainfall, known as drought, can place extreme

stress on the water resources of regions affected. Therefore, optimal management

strategies for reservoir systems, like those investigated in this chapter, are vital

to ensure that communities have access to a reliable water supply throughout the

extent of such an event.

To begin this chapter, a model proposed by Shih and ReVelle (1995), labelled Model

3, for the operation of a single reservoir system during drought is explored. This

Mixed Integer Linear Programming (MILP) model forms the foundation not only

for work performed in this chapter, but for work conducted in Chapter 4 as well.

Although very informative, Model 3 is only applicable to a single reservoir system

and therefore required extension in order for it to be effective in investigating the

cascade reservoir system considered as a case study in this thesis. This extended

form of the drought model, denoted as Model 4, is also thoroughly investigated in

this chapter, with each of the constraints and variables that compose the model

being identified and defined. An experiment is then conducted in order to ascertain

how components of the cascade reservoir system measured by Model 4 behave under

varying drought conditions. These results form the basis of a discussion and a series

of conclusions are made regarding the applicability of the extended model to the

case study considered of an existing cascade reservoir system.

3.2 Models

3.2.1 Model 3 - Drought Model developed by Shih and ReVelle (1995)

In this section, the Mixed Integer Linear Programming (MILP) model formulated

by Shih and ReVelle (1995) for the operation of a single reservoir during a drought

event is presented and explored. This model has been denoted as Model 3 and is

given by Equations (3.1) to (3.19) on the following page. Note that a description of
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the constraints and variables used to formulate the model are provided in Section

3.2.2.

maximise z =
T∑
t=1

y1t − ω
12∑
p=1

(V1p + V2p + V3p) (3.1)

such that

y1t ≥
(St−1 + Ît)− (V1p − ε)

M
∀t, p, (3.2)

y1t ≤ 1− V1p − (St−1 + Ît)

M
∀t, p, (3.3)

y2t ≥
(St−1 + Ît)− (V2p − ε)

M
∀t, p, (3.4)

y2t ≤ 1− V2p − (St−1 + Ît)

M
∀t, p, (3.5)

Rt = (1− α1).D.y1t + (α1 − α2).D.y2t + α2.D ∀t, (3.6)

St = St−1 + It −Rt −Wt ∀t, (3.7)

St ≤ C ∀t, (3.8)

S0 ≤ ST , (3.9)

Ut ≤
St

C
∀t, (3.10)

Wt ≤MUt ∀t, (3.11)

V1p ≥ (1 + β1)V2p ∀p, (3.12)

V2p ≥ (1 + β2)V3p ∀p, (3.13)

V3p ≥ α2.D ∀p, (3.14)

St−1 + Ît ≥ V3p + ε ∀t, p, (3.15)

y1t−1 + y1t+1 ≤ 1 + y1t ∀t, (3.16)

y1t ≤ y2t+1 ∀t, (3.17)

T∑
t=1

y2t = T − n ∀t, (3.18)

St, St−1, Ît, It, V1p, V2p, V3p, Rt,Wt ≥ 0 ∀t, p. (3.19)

3.2.2 Model 3 Description

As can be seen from the statement of Model 3 above, Shih and ReVelle (1995) have

formulated a model substantially more complex than Model 1 and 2 investigated in

the previous chapter.

In order to regulate the amount of water made available from the reservoir to satisfy

a community water supply during a drought, Shih and ReVelle (1995) have employed
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Figure 3.1: Graphical Representation of the Relationship between Reservoir Trigger
Volumes and Rationing Levels.
Adapted from that presented by Shih and ReVelle (1995); where,
V1t, V2t, V3t = Trigger Volumes, D = Total Community Demand,
α1, α2 = Restrictions on the Releases to the Community.

the technique of rationing levels. In the case of Model 3 it has been assumed that

there are three rationing levels; no rationing, phase one rationing and phase two

rationing. For these levels to be put into effect, the model seeks to identify three

trigger volumes, V1p, V2p, and V3p, for all months p. The values of these trigger

volumes are optimally derived by the model, except for the lower boundary trigger

volume, V3p, which is determined through the specification of other variables by the

operators of the reservoir system. The relationship between the trigger volumes

and rationing levels is summarised by Shih and ReVelle (1995) as follows:

“If the storage at the end of the previous period plus projected inflows

are together greater than V1p, then no water restrictions are announced.

If the storage at the close of the previous period plus projected inflows

fall between V1p and V2p, then rationing phase one is assumed to be

declared, reducing demand to α1 proportion of its expected value. If

the storage plus projected inflow fall below V2p, rationing phase two will

be declared and only the proportion α2 of usual demand will be expected

to occur.” (Shih and ReVelle, 1995)

Figure 3.1 above provides a graphical representation of the relationship between

the trigger volumes and the rationing levels of the reservoir. Also depicted by the

figure is the assumption that if the storage plus projected inflow decreases below

the lowest trigger volume of V3p, the outcome of the model is infeasible. For this

model, Shih and ReVelle (1995) state that they assume that the minimum trigger

volume will always be maintained in the reservoir. This assumption was felt to be
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unrealistic and has therefore been relaxed in the development of Model 4 later in

this chapter.

In order to enforce the technique of rationing, the objective of Model 3 is twofold.

The first component of the objective function (Equation (3.1)) aims to maximise

the number of months in which no rationing is enforced on the community water

supply, meaning that the full demand is able to be released. In conjunction with

this, the second component of the objective function attempts to minimise the

trigger volumes across all months p. By minimising the trigger volumes, the length

of time before rationing is imposed can be maximised. By incorporating these two

components in the objective function, the number of months in which rationing is

enforced is minimised, and as such the releases to the community are maximised.

Variable Definitions

There are 24 variables that compose Model 3. These variables are defined below:

t, T = the current month and the total number of months in the event horizon

which are known,

p = p ∈ {1, 2, ..., 12}, the month number of the year being considered. If the

event horizon encompasses more than one year, this variable provides an

index of the month number in the current year;

y1t = an unknown binary variable that is 1 if no rationing is applied in month

t or 0 otherwise;

y2t = an unknown binary variable that is 1 if the system is at phase one ra-

tioning or better in month t, or 0 otherwise,

ω = a small number, which is assumed to equal 0.01 in this case,

V1p = the unknown value of storage and inflow above which no restrictions on

water use are placed (megalitres, ML),

V2p = the unknown value of storage and inflow below which phase two rationing

is implemented for month p (ML),

V3p = the specified lower bound of storage plus inflow for month p (ML),

St = the storage in the reservoir at the end of month t, which is unknown

(ML),

It = the inflow to the reservoir in month t, which is known (ML),

Ît = the projected inflow to the reservoir in month t, which is known (ML),

ε = a small number, which is assumed to equal 0.1 in this case,

M = a big number, which is assumed to equal 100 000 in this case,

Rt = the releases to community water supply in month t, which is unknown

(ML),
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α1 = the specified percentage of total demand released to the community under

phase one rationing,

α2 = the specified percentage of total demand released to the community under

phase two rationing,

D = the specified total demand required by the community, which is assumed

constant over the event horizon (ML),

Wt = the spill from the reservoir in month t, which is unknown (ML),

C = the capacity of the reservoir, which is known (ML),

Ut = an unknown binary variable that is 1 if the reservoir is at full capacity

at the end of month t, or 0 otherwise,

β1 = a specified separation value, assumed throughout the chapter to be 0.05,

β2 = a specified separation value, assumed throughout the chapter to be 0.05,

n = the specified number of months in which it is deemed that phase two

rationing is acceptable.

The way in which these variables interact and behave can be investigated through

the exploration of the constraints featured in Model 3.

Contraint Definitions

Model 3 consists of 18 constraints, plus the objective function. As mentioned pre-

viously, the objective function (Equation (3.1)) is composed of two terms. The first

and primary term of the function is to maximise the number of months in which

no rationing is required. The secondary term then aims to minimise the total of

the trigger volumes. By minimising the trigger volumes, the frequency at which

rationing will be put into effect will be minimised. A weight is also placed on the

trigger volumes to reduce the impact of this secondary term on the primary term

of the function.

Equation (3.2) and (3.3) work together to calculate the value of the binary variable

y1t. If in the case of Equation (3.2), the reservoir storage level at the end of the

previous month plus the projected inflow this month, herein referred to as available

water, is greater than the trigger volume V1p, then y1t will equal one; indicating that

no rationing is required in the current month. On the other hand, Equation (3.3)

requires that y1t equal zero if the available water is less than V1p; meaning some

amount of rationing is required. Shih and ReVelle (1995) explain that if the small

value of ε was not included in these constraints, then when the available water

equals the trigger volume (St−1 + Ît = V1p) the value of y1t could be either zero or

one. To correct this, ε is included in the constraint to ensure that y1t must equal

one if this was to occur.

Similarly to Equation (3.2) and (3.3), Equation (3.4) and (3.5) work together to

determine the value of the binary variable y2t. Equation (3.4) sets the value of y2t to
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Figure 3.2: Revised Graphical Representation of the Relationship between Reservoir
Trigger Volumes and Rationing Levels, showing the Values of the Binary Variables
y1t and y2t under each Level.
Adapted from that presented by Shih and ReVelle (1995); where,
V1t, V2t, V3t = Trigger Volumes, D = Total Community Demand,
α1, α2 = Restrictions on the Releases to the Community.

equal one if the available water is greater than the trigger volume V2p. By equating

the value of y2t to one, this indicates that phase one rationing will be required in the

current month. However, if the available water is less than V2p, then Equation (3.5)

ensures that y2t is equal to zero, leading to phase two rationing being implemented

in the current month. Shih and ReVelle (1995) point out that the four constraints,

Equations (3.2) to (3.5), also assure that y1t will not equal one unless y2t equals one

and that if y2t equals zero, then y1t must equal zero; special characteristics impor-

tant to the formulation of the objective function. In order to better display how

the binary variables y1t and y2t influence the transition between the three rationing

levels, a revised form of Figure 3.1, labelled Figure 3.2, is presented above.

Equation (3.6) determines the amount of water to be released to the community

water supply in a given month. If both the binary variables y1t and y2t are equal

to one, then no rationing is required and the full demand of D can be released.

However, if y2t is equal to one while y1t is equal to zero, then phase one rationing is

enforced in the current month and a reduced proportion of the full demand, α1D, is

released. If both variables y1t and y2t are zero, then the constraints limit the release

of water to α2D, as phase two rationing is in effect.

Equation (3.7) has been encountered before in the previous chapter and is the mass

balance constraint. The constraint states that the storage level of the reservoir at

the end of the current month is equal to the sum of the storage level at the end
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of the previous month plus the inflow, minus the releases to the community wa-

ter supply and any spill in the current month. Equation (3.8) limits the storage

level of the reservoir each month to be less than the capacity of the reservoir, while

Equation (3.9) requires that the reservoir storage at the end of the event horizon

be greater than the reservoir storage to begin with. The addition of Equation (3.9)

prevents the borrowing of water from the initial storage volume and ensures that

the storage level of the reservoir is in the same or better condition at the end of the

event horizon than where it began.

Equations (3.10) and (3.11) combine to control the spill of water from the reser-

voir. In a physical system, if the reservoir storage level is not at full capacity, then

spill cannot occur. In this case, Equation (3.10) determines whether the reservoir

is at capacity; if so, the binary variable Ut is set to one, otherwise it equals zero.

Equation (3.11) then uses the value of Ut to determine the amount of spill that

occurs. If Ut is zero, then the spill is also forced to be zero, as the reservoir is not

at full capacity. However if Ut is one, then the right hand side of Equation (3.11)

is a large number and the amount of spill is constrained to that level; though the

actual extent of spill is calculated using the mass balance constraint.

In order to ensure that there is some degree of separation between the trigger vol-

umes, and that they are not all minimised to the same value, Equations (3.12) and

(3.13) are included. These constraints make certain that the trigger volume V1p is

at least β1 percentage away from V2p and that V2p is at least β2 percentage away

from V3p. Equation (3.14) specifies that V3p should be equal to or greater than α2

proportion of the full community water supply demand. This ensures that no more

water than what the reservoir has in storage can be released. Equation (3.15) then

states that in order to release α2 proportion of the full demand, the available water

should be greater than the lower boundary trigger volume V3p. This constraint

then also implies that α2D, or the release under phase two rationing, can always

be released from the reservoir.

Equation (3.16) is included to ensure that if in month t−1 and in month t+1 the full

demand from the community is released from the reservoir, then the full demand

must also be released in the current month as well. Shih and ReVelle (1995) explain

that the use of this constraint is to prevent a “flip flopping” or back and forth move-

ment between rationing and non-rationing. They go on to say that the constraint

does not prevent this from happening in the real situation, but prevents it in the

determination of the trigger volumes (Shih and ReVelle, 1995). Equation (3.17)

then ensures that if the full demand is released in the current month, then either

full demand or phase one rationing must occur in the subsequent month. This pre-

vents the releases to the community jumping from full demand to strict phase two

rationing between months; the community must at least have one month of phase
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one rationing before phase two rationing is enforced.

Equation (3.18) enables the managers of the reservoir system to specify the number

of months in which phase two rationing is allowed through the use of the variable

n. This variable n is subtracted from the total number of months in the event hori-

zon (T ) and then equated to the sum of the binary variable y2t; constraining the

model to select T − n months where phase one rationing or better is implemented.

Equation (3.19) then ensures that a range of variables remain nonnegative and thus

physically realistic.

3.2.3 Model 4 - Extension of Drought Model

Model 3, the MILP model presented by Shih and ReVelle (1995), has provided a

strong and comprehensive framework that can be built upon and extended in this

thesis to create a model that is applicable to a cascade reservoir system. This

extended model to investigate a drought event, denoted as Model 4, can be found

on the following page and is given by Equations (3.20) to (3.62). As seen in the

previous chapter, variables denoted with a star (*) correspond to Reservoir 1, whilst

those variables without a star denote variables associated with Reservoir 2.
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maximise z =
T∑
t=1

y∗1t +
T∑
t=1

y1t −
T∑
t=0

A∗
t −

T∑
t=0

At

− ω
12∑
p=1

(V ∗
1p + V ∗

2p + V ∗
3p)− ω

12∑
p=1

(V1p + V2p + V3p) (3.20)

such that

Reservoir 1 Constraints:

y∗1t ≥
(S∗

t−1 + Î∗t )− (V ∗
1p − ε)

M
∀t, p, (3.21)

y∗1t ≤ 1−
V ∗
1p − (S∗

t−1 + Î∗t )

M
∀t, p, (3.22)

y∗2t ≥
(S∗

t−1 + Î∗t )− (V ∗
2p − ε)

M
∀t, p, (3.23)

y∗2t ≤ 1−
V ∗
2p − (S∗

t−1 + Î∗t )

M
∀t, p, (3.24)

R∗
t = (1− α1).D

∗.y∗1t + (α1 − α2).D
∗.y∗2t + α2.D

∗ ∀t, (3.25)

S∗
t = S∗

t−1 + I∗t −R∗
t −W ∗

t ∀t, (3.26)

S∗
t ≤ C∗ ∀t, (3.27)

S∗
0 ≤ S∗

T , (3.28)

S∗
0 = C∗

0 , (3.29)

U∗
t ≤

S∗
t

C∗ ∀t, (3.30)

W ∗
t ≤MU∗

t ∀t, (3.31)

V ∗
1p ≥ (1 + β1)V

∗
2p ∀p, (3.32)

V ∗
2p ≥ (1 + β2)V

∗
3p ∀p, (3.33)

V ∗
3p ≥ α2.D

∗ ∀p, (3.34)

S∗
t−1 + Î∗t ≥ V ∗

3p + ε ∀t, p, (3.35)

y∗1t−1 + y∗1t+1 ≤ 1 + y∗1t ∀t, (3.36)

y∗1t ≤ y∗2t+1 ∀t, (3.37)

T∑
t=1

y∗2t = T − n∗ ∀t, (3.38)

Î∗t = I∗t ∀t, (3.39)

S∗
t + A∗

t ≥ α2.D
∗ ∀t ∈ {0, 1, ..., T}, (3.40)

S∗
t , S

∗
t−1, Î

∗
t , I

∗
t , V

∗
1p, V

∗
2p, V

∗
3p, R

∗
t ,W

∗
t , A

∗
t ≥ 0 ∀t, p. (3.41)
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Reservoir 2 Constraints:

y1t ≥
(St−1 + Ît)− (V1p − ε)

M
∀t, p, (3.42)

y1t ≤ 1− V1p − (St−1 + Ît)

M
∀t, p, (3.43)

y2t ≥
(St−1 + Ît)− (V2p − ε)

M
∀t, p, (3.44)

y2t ≤ 1− V2p − (St−1 + Ît)

M
∀t, p, (3.45)

Rt = (1− α1).D.y1t + (α1 − α2).D.y2t + α2.D ∀t, (3.46)

St = St−1 + It −Rt −Wt +W ∗
t ∀t, (3.47)

St ≤ C ∀t, (3.48)

S0 ≤ ST , (3.49)

S0 = C0, (3.50)

Ut ≤
St

C
∀t, (3.51)

Wt ≤MUt ∀t, (3.52)

V1p ≥ (1 + β1)V2p ∀p, (3.53)

V2p ≥ (1 + β2)V3p ∀p, (3.54)

V3p ≥ α2.D ∀p, (3.55)

St−1 + Ît ≥ V3p + ε ∀t, p, (3.56)

y1t−1 + y1t+1 ≤ 1 + y1t ∀t, (3.57)

y1t ≤ y2t+1 ∀t, (3.58)

T∑
t=1

y2t = T − n ∀t, (3.59)

Ît = It ∀t, (3.60)

St + At ≥ α2.D ∀t ∈ {0, 1, ..., T}, (3.61)

St, St−1, Ît, It, V1p, V2p, V3p, Rt,Wt, At ≥ 0 ∀t, p. (3.62)

3.2.4 Model 4 Description

The generic nature with which Model 3 was built by Shih and ReVelle (1995) has

allowed for it to be easily extended to a cascade reservoir system, with very few

changes required. Overall, the structure of the model has not changed from Model 3

to Model 4, as nearly all of the constraints simply needed to be replicated a second

time to account for the addition of a second reservoir to the system. That being

said, a few additions have been made to Model 4.

One shortcoming that was noted previously regarding Model 3 was the assumption
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that the reservoir storage level could not decrease below the lower boundary trigger

volume, V3p. This assumption was felt to be unrealistic and overly restricting the

model; therefore was removed in the formulation of Model 4. In the place of this

assumption, a new variable has been included in the model. The variable, denoted

as At, measures the extent by which the reservoir storage level decreases below the

lower boundary trigger volume in any given month. Though it is now acceptable for

the reservoir storage level to decrease past V3p, it is not favourable. Therefore, the

variable At also features in the objective function of Model 4 (Equation (3.20)) as

a penalty term to minimise the number of months in which the reservoir level falls

below V3p. By removing the restricting assumption and including this additional

variable in the model, it is felt that Model 4 now more accurately reflects the real

world behaviour of a cascade reservoir system.

Variable Definitions

There are 25 variables used in the formulation of Model 4, with all of the variables

duplicated twice to account for the addition of a second reservoir to the system. All

of these variables have been previously defined for Model 3 in Section 3.2.2 under

the heading Variable Definitions, except for one:

At = the unknown extent by which the reservoir storage is below the lower

boundary trigger volume (V3p) in month t.

The way in which this additional variable interacts with the existing variables in

the model can be investigated through the examination of the constraints used to

formulate Model 4.

Constraint Definitions

Model 4 is made up of 42 constraints, plus the objective function; however 21 of

these constraints are repeated from Reservoir 1 to Reservoir 2. The majority of

these constraints have been defined previously in Section 3.2.2 under the heading

Constraint Definitions, except for Equations (3.29), (3.39) and (3.40) of Reservoir

1 and Equations (3.50), (3.60) and (3.61) of Reservoir 2. Also, the role of the ob-

jective function of Model 4 has been altered to include the additional variable At.

The objective function (Equation (3.20)) of Model 4 is very similar in structure to

that of Model 3; however now the primary objective is to maximise the number of

months in which no rationing is required from both reservoirs. A secondary compo-

nent of the objective function, to minimise the total of the trigger volumes, is also

the same as that seen in Model 3; though now it has been modified to minimise

the trigger volumes of both reservoirs. New additions to the objective function of

Model 4 are the terms containing the variable At. These terms are added in an

attempt to minimise the extent by which the reservoir storage levels decrease below

the lower boundary trigger volume, V3p. Of particular note regarding these terms is
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the fact that the sum of At is from t = 0 to T . The reason for this is that the initial

capacity of the reservoir may begin below V3p in some situations and this needs to

be taken into account.

Equations (3.29)and (3.50) are included in Model 4 to offer the managers of the

reservoir system an opportunity to specify the initial storage levels of both reser-

voirs (C0). However, if the managers do not have a defined initial capacity, this

constraint can be relaxed to the form S0 ≤ C, where C is the capacity of the reser-

voir being considered.

Similar to Equations (3.29) and (3.50), Equations (3.39) and (3.60) are included to

give the operators of the reservoir system the opportunity to assume that perfect

prior knowledge of the monthly inflow to the reservoir system is known. On the

other hand, if there is some uncertainty regarding the monthly inflow, these con-

straints can be relaxed.

Equations (3.40) and (3.61) are used to calculate the variable At, the extent by

which the reservoir storage level is below the lower boundary trigger volume V3p.

As mentioned previously, V3p is specified by the operators of the reservoir system

through the selection of the variables D and α2. In this case, the product of these

variables feature in Equations (3.40) and (3.61) in favour of V3p to simplify the

statement of the constraint. Therefore, if the reservoir storage level is above V3p,

then the value of At is zero. However, if the reservoir storage level decreases below

V3p, then the value of At equals α2D−St; the extent by which the reservoir level is

below V3p.

As seen in the previous chapter, the only constraint to vary between Reservoir 1

and Reservoir 2 is the mass balance constraint, given by Equation (3.26) and Equa-

tion (3.46) respectively. In the case of Reservoir 2, the mass balance constraint

contains the additional variable W ∗
t , which measures the amount of spill from

Reservoir 1 in the current month. As the reservoirs are orientated in a cascade

configuration, any spill from Reservoir 1 becomes a source of inflow to Reservoir 2

and therefore needs to be included in the mass balance constraint.

3.3 Results and Discussion

In this section, Model 4 is applied to the case study of the Perseverance and Cress-

brook cascade reservoir system and an experiment conducted to investigate how

this existing system can be optimally managed during a drought event. From the

results of the experiment, the key components of the cascade reservoir system mea-

sured by Model 4 that influence the operation of the system during a drought event

are explored and interpreted. At this point it is important to note that for the

purposes of this experiment, Perseverance dam is referred to as Reservoir 1, while

Cressbrook dam is labelled Reservoir 2.
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For this experiment, as with all of the experiments conducted in this thesis, the

optimisation modelling software LINGO version 14.0 was utilised (LINDO Systems

Inc, 2013). An example of the syntax required to perform this experiment using

LINGO, along with a portion of the output generated by the software can be found

in Appendix B. In this case, the software became a limiting factor as to the number

of months over which the experiment could be considered. The version of LINGO

obtained to perform the experiment was under an Academic License and therefore

the total number of constraints and variables that the software could consider was

limited. This limitation, coupled with the size of Model 4, meant that the experi-

ment could not be considered for a time period longer than 24 months or two years.

In order to enable a more thorough exploration of the management strategies em-

ployed by Model 4, a series of assumptions were made to simplify some of the

parameters of the experiment, while at the same time ensuring that the results

were still applicable to the case study under investigation. The first of these as-

sumptions regarded the inflows to the reservoir system. Rather than assuming that

the reservoirs were subject to constant inflows each month, as in the previous chap-

ter, historic inflows for the region were sourced from the Queensland Department of

Natural Resources and Mines (2012). The observations from Cressbrook Creek, the

major tributary flowing into Cressbrook dam, were only recorded from November

1965 to May 1981; leading to an approximate 16 year time period over which the

historic inflows could be sourced. Over this time period, the inflows were screened

and the years that offered the lowest flows were combined to produce a worst case

drought scenario. The combined years were October 1969 to September 1970 and

October 1977 to September 1978, in which the total flows were significantly lower

than any of the other years considered. After further research, no inflow obser-

vations were able to be found for the tributaries that supply Perseverance dam.

Therefore, due to the proximity of the two reservoirs, it was concluded that the

historic inflows sourced for Cressbrook dam could be used as a proxy source of

inflows for Perseverance dam; however a scale difference of 60% would be applied.

This scale difference was determined by prior knowledge regarding the size of the

tributaries that provide water to the two reservoirs. The monthly inflow to the two

reservoirs over the 24 month event horizon is presented in Table D.1 of Appendix D,

while a graphical representation of the inflows is provided by Figure 3.3 on the fol-

lowing page.

Another assumption made regarding the inflows was to specify that there was per-

fect prior knowledge of the monthly inflow to the reservoir system. This was

achieved through the use of Equations (3.39) and (3.60), and as mentioned pre-

viously, was an option that could be specified by the managers of the reservoir

system. Although, in practice this assumption may not be feasible, it was made in
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Figure 3.3: Monthly Inflow to Perseverance and Cressbrook Dams under Worst
Case Drought Scenario from Historic Records.

order to reduce the complexity of the model. A comparison of the results from a

model where these constraints have been relaxed or removed, to the results from

this experiment provides scope for future research.

The next assumption concerned the storage capacities of both reservoirs. The

Toowoomba Regional Council (2013) states that the maximum available storage

of Cressbrook dam is 81 842 megalitres (ML), while for Perseverance dam it is

30 140 ML. Using this information, it was assumed for the purposes of this thesis

that the capacity of Cressbrook dam and Perseverance dam were 82 000 ML and

30 000 ML respectively. Based on these values, it was concluded that the assumed

capacity of Perseverance dam was approximately one third the assumed size of

Cressbrook dam; a conclusion that was used to determine how the demand from

the community could be shared between the two reservoirs.

From further information provided by the Toowoomba Regional Council regarding

the average water usage per person, per day and the approximate population of the

Toowoomba region (Toowoomba Regional Council, 2013), a calculation was per-

formed to determine the approximate community demand for water each month.

From this information it was assumed that an approximate demand of 1000 ML

per month was needed in order to satisfy the community water requirements. It

was assumed that this demand was shared between the two reservoirs according
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to the size of their respective storage capacities. Therefore, for the purposes of

this experiment, Perseverance dam was responsible for supplying one third of the

community demand (333 ML) while the remaining two thirds was sourced from

Cressbrook dam (667 ML). These values represented a best case scenario that pro-

vided the community with a generous amount of water and enabled water use for

extraneous purposes such as watering gardens and washing vehicles. However, dur-

ing a drought, these generous volumes cannot always be met and water rationing

needs to be enforced in order to ensure that there is sufficient water available, over

the course of the event, to maintain vital water services. The three rationing levels

proposed by Shih and ReVelle (1995) in Model 3 are also included in Model 4; being

no rationing, phase one rationing and phase two rationing. The variables α1 and α2

can be used to define the percentage of the total demand released to the community

each month under phase one and phase two rationing respectively. In this case, it

was assumed that α1 was equal to 60%, while α2 was equal to 40%. This meant,

for the purposes of the experiment, that each month phase one rationing was en-

forced, 60% of the total demand was released to the community. This translated

to a release of 200 ML from Reservoir 1 or 400 ML from Reservoir 2 per month

of phase one rationing. If the stricter phase two rationing was applied, then 40%

of the total demand was released to the community per month. This equated to a

release of 133 ML from Reservoir 1 or 267 ML from Reservoir 2 per month of phase

two rationing.

Overall, it should be noted that the series of assumptions made above were selected

to best approximate the case study under investigation. Depending on the type of

system being explored, all or some of these values could be altered by the operators

and managers of a reservoir system to suit their own requirements.

In order to investigate the different management strategies employed by Model 4,

three scenarios were selected. In each of these scenarios, the initial reservoir ca-

pacities and the number of months in which phase two rationing is permitted were

altered, while the remaining parameters of the model were kept constant. The re-

sults from Model 4 for each of these combinations of initial reservoir capacities and

months of permissible phase two rationing can be found in the following sections.

3.3.1 Scenario 1: Unconstrained Initial Reservoir Capacities (S0 ≤ C), with no

Phase Two Rationing Permitted (n = 0)

The first combination of initial reservoir capacities and months of permissible phase

two rationing considered was to not constrain the initial capacity of both reservoirs,

while specifying that no phase two rationing was allowed. By not constraining the

initial reservoir capacities, Model 4 could select the optimal initial storage levels

of the reservoirs, given that no stricter rationing level than phase one could be
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Figure 3.4: Scenario 1 (S0 ≤ C and n = 0) - Comparison of Reservoir Levels
(ML).

enforced over the event horizon. In order to investigate the results of Model 4 un-

der the conditions specified, a series of figures have been constructed. The first of

these, Figure 3.4, provides a comparison of the reservoir water levels over the event

horizon while Figure 3.5 displays a comparison of the monthly releases to the com-

munity from both reservoirs. Also included is Figure 3.6 which shows the trigger

volumes of the two reservoirs, while Figures 3.7 and 3.8 provide a demonstration of

the relationship between the available storage, trigger volumes and releases to the

community for both reservoirs.

First to be considered is Figure 3.4, from which it can be seen that Model 4 selected

the optimal initial reservoir capacity of Reservoir 1 to equal approximately 1000 me-

galitres (ML). On the other hand, the initial reservoir capacity of Reservoir 2 was

optimally selected by the model to equal approximately 1500 ML. It should be

noted that both of these initial storage capacities were significantly smaller than

the total capacity of each reservoir, demonstrating that the assumed monthly com-

munity water demand was marginal in comparison to the overall capacities of the

reservoirs. However, as a drought event is considered in this chapter, it was reason-

able to assume that the water levels of the reservoirs in the system were critically

low.

Also of note from Figure 3.4, was that the behaviour of the water levels of both

reservoirs were approximately the same. That is, both reservoir storage levels ex-

hibited a decreasing trend for approximately the first half of the event horizon until
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Figure 3.5: Scenario 1 (S0 ≤ C and n = 0) - Comparison of Releases to Commu-
nity Water Supply (ML).

a series of inflows to the system increased the storage levels to above their ini-

tial conditions. In the subsequent months, the levels of both reservoirs decreased

sharply due to minimal inflows, until the final month of the event horizon. At this

time, a significant inflow occurred, replenishing the reservoir levels to above their

initial capacities once more.

From Figure 3.5, it can be seen that the model observed the specification that no

phase two rationing was permitted over the event horizon, as there were two dis-

tinct volumes of releases for both reservoirs. In the case of Reservoir 1, it can be

seen that for the first six months of the event horizon no rationing was enforced.

Following this, there was a period of nine months where the model managed the

use of water from the system by applying phase one rationing. After this period,

the model opted to release the full demand to the community for a further three

months, before applying phase one rationing again until the final month of the event

horizon where no rationing was enforced. On the other hand, when Reservoir 2 is

considered, it can be seen that the only months in which no rationing was required

were the first and last month of the event horizon. During the remaining months,

the releases were restricted under phase one rationing, meaning a reduced volume

was supplied to the community.
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Figure 3.6: Scenario 1 (S0 ≤ C and n = 0) - Comparison of Reservoir Trigger
Volumes (ML).

Figure 3.6 displays the three trigger volumes, V1p, V2p and V3p, for both reservoirs.

For simplicity, from this point in the chapter the three trigger volumes will be

referred to as V1, V2 and V3. As mentioned previously, the trigger volumes are

specified over the months p, where p ranges from 1 to 12. Therefore, the trigger

volume in January of the current year will be the same as the trigger volume of

January in the next and all subsequent years. In this case, the event horizon was

limited to a 24 month period, therefore the trigger volumes will be duplicated twice.

The repetitive behaviour of the trigger volumes is demonstrated in Figure 3.6.

A figure of this type is only provided once in this chapter to demonstrate the

repetitive behaviour of the trigger volumes. For the other two scenarios considered

in the following sections, the trigger volumes are presented in conjunction with the

available water of the reservoirs, as in Figures 3.7 and 3.8.

Figures 3.7 and 3.8 present the relationship between the available water and trigger

volumes for each reservoir respectively. These figures also demonstrate how this

relationship could be used to determine the level of rationing enforced, and thus

the volume of water released to the community each month. As defined previously,

the available water is equal to the reservoir storage level in the previous month,

plus the projected inflow to the reservoir in the current month.
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Figure 3.7: Scenario 1 (S0 ≤ C and n = 0) - Relationship between Available
Water + Trigger Volumes and Community Releases for Reservoir 1.
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Figure 3.8: Scenario 1 (S0 ≤ C and n = 0) - Relationship between Available
Water + Trigger Volumes and Community Releases for Reservoir 2.

45



When considering Figures 3.7 and 3.8, if the available water was above the trigger

volume V1 (described by the green line with crosses), then no rationing was enforced

in that month. However, if the available water decreased below V1, but was greater

than the trigger volume V2 (represented by the orange line with diamonds), phase

one rationing was implemented for the month. In Figures 3.7 and 3.8, the available

water did not decrease lower than the trigger volume V2, indicating that the most

severe rationing was not imposed over the event horizon, as specified by the con-

ditions of the scenario under investigation. Due to this, the model has minimised

the value of the trigger volumes V2 each month in line with the objective function.

Although the figures may depict that the trigger volumes V2 and V3 were equal,

there were separation values imposed (β1 and β2) that required V2 be at least 5%

greater than V3.

Figures 3.7 and 3.8 also demonstrate the relationship between the available water

and trigger volumes, with the amount of water released to the community. As can

be seen from Figure 3.7, no rationing was imposed on the releases to the commu-

nity from Reservoir 1 for the first six months of the event horizon, as the available

water was greater than the trigger volume V1. This meant that the full demand

from Reservoir 1 to the community of 333 ML could be supplied over this period.

However, once the available water decreased below V1, phase one rationing was en-

forced and the reduced volume of 200 ML per month, or 60% of the full demand,

was provided to the community. This was reversed after a further nine months,

when the available water exceeded V1 and the full demand from Reservoir 1 to the

community could be released again. This behaviour continued over the remainder

of the event horizon. The same relationship is also exhibited in Figure 3.8, though

for Reservoir 2 the full demand to the community of 667 ML could only be met

in the first and last month of the event horizon. For the remaining months, the

available water was not greater than the trigger volume V1, meaning phase one ra-

tioning was applied and that the reduced volume of 400 ML was made available to

the community.

By specifying as a condition of the scenario that phase two rationing was not per-

mitted, the model was restricted in the number of strategies that it could explore

to optimally manage the reservoir system. However, this was somewhat counter-

balanced by not constraining the initial reservoir capacities, as the model could

optimally select these capacities in order to ensure that the community demand

was able to be met over the event horizon. In the following sections, this abil-

ity to select the initial reservoir capacities is removed from the model; though the

availability to enforce phase two rationing is provided.
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Figure 3.9: Scenario 2 (S0 = 10 and n = 12) - Comparison of Reservoir Levels
(ML).

3.3.2 Scenario 2: Initial Reservoir Capacities of 10 ML (S0 = 10), with

12 Months of Phase Two Rationing Permitted (n = 12)

The next combination of initial reservoir capacities and months of permissible phase

two rationing was where the initial capacity of both reservoirs was specified to be

near to empty or 10 ML in this case. The other condition was to deem that 12

months of phase two rationing were acceptable. Although the model was not able

to optimally select the initial capacities of the reservoirs in this case, there were a

wider range of management strategies that could be considered due to phase two

rationing being permitted. In order to explore the results from Model 4 under Sce-

nario 2, a series of figures have been generated.

The first figure constructed to investigate the results of Model 4 under Scenario 2

is Figure 3.9. From the figure, it can be seen that the model observed the specified

initial condition that the initial reservoir capacity be set to 10 ML for both reser-

voirs. Also apparent, as mentioned in the previous section, was the fact that the

levels of both reservoirs behave similarly, though varied according to a difference

in magnitude. Under the conditions of the scenario, both reservoir levels displayed

an overall increasing trend across the event horizon until approximately month 18,

where a period of reduced inflows caused the reservoir levels to drop significantly.

Following this low flow period, the levels of both reservoirs showed a sharp increase
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for the final month of the event horizon. When this behaviour was compared to

Figure 3.3 presented earlier in the chapter, of the inflows under a worst case drought

event, it was seen that from month 18 to 23 there was a severe shortage of water

flowing into the reservoir system; thus causing the rapid decrease in reservoir level,

as water was still being removed from the reservoir to supply community demand.

Also clear from Figure 3.3 was that significant inflows occurred in the last month

of the event horizon, larger than the inflow in any other month considered, and

thus was identified to be responsible for the significant spike in the reservoir levels

mentioned previously.

Figure 3.10 presents the releases from each reservoir in order to meet the commu-

nity water supply demand. From the figure, it can be seen that there were three

distinct levels of releases made to the community over the event horizon. These

three levels corresponded to the releases when no rationing, phase one rationing

or phase two rationing was imposed. In this case, by specifying as a condition of

the scenario that the initial reservoir capacity equal 10 ML, the model was forced

to initialise the reservoir levels in a state that was less than their respective lower

boundary trigger volumes, V3. Therefore, under this initial reservoir capacity the

variable At would have penalised the objective function from the first month. In

order to increase the level of the reservoirs above their respective lower boundary

trigger volumes as quickly as possible and prevent this penalisation of the objective

function, the model has selected to enforce phase two rationing in both reservoirs

for the first three months. After this time, the behaviour of the releases from the

two reservoirs began to vary.

Over the event horizon, the releases to community water supply from Reservoir 1

were not constrained by rationing for a total of eight months. However, the months

where no rationing was enforced were not in consecutive order, with the releases

fluctuating on a month to month basis. On the other hand, the releases from Reser-

voir 1 were constrained by phase two rationing for a further nine months, in addition

to the first three months, meaning that the total permissible duration of 12 months

in which phase two rationing was allowed were exploited. The releases were also

subject to phase one rationing for three months throughout the event horizon, with

this phase of rationing used as a “stepping stone” from no rationing to the strict

phase two rationing; a behaviour specified in the construction of Model 4.

Also evident from Figure 3.10 is that the releases to community water supply from

Reservoir 2 were similarly restricted by phase two rationing for the maximum per-

missible 12 months. Under the conditions of Scenario 2, the model selected to

optimally manage Reservoir 2 by providing 10 months in which the community

water supply was restricted by phase one rationing. Only in two months was no

rationing applied, one of which was the last month of the event horizon where a
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Figure 3.10: Scenario 2 (S0 = 10 and n = 12) - Comparison of Releases to
Community Water Supply (ML).

large inflow occurred to boost the reservoir level.

After considering the results presented in Figure 3.10, it can be seen that the model

elected to use the maximum number of months in which phase two rationing was

permitted for both reservoirs. By utilising the full 12 months of phase two ra-

tioning allowed under the conditions of Scenario 2, the model was able to increase

the number of months in which no rationing was enforced and thus maximise the

amount of water released to the community. However, there was another strategy

that could have been considered. Currently, Model 4 is constructed with the pri-

mary objective of maximising the number of months in which no rationing occurs

and as such, maximising the amount of water able to be released to the community.

Another potential strategy that could be explored is to maximise the number of

months in which a consistent supply of water could be provided to the community.

An example of this would be to enforce phase one rationing over the total extent

of the event horizon, rather than conserving water using a number of months of

phase two rationing to later supply a month with no rationing. A comparison of

the current model objective against this alternate strategy could be explored and

form the basis of future research.

Figures 3.11 and 3.12 demonstrate the relationship between the available water and

trigger volumes for both reservoirs. These figures also display how the relationship
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Figure 3.11: Scenario 2 (S0 = 10 and n = 12) - Relationship between Available
Water + Trigger Volumes and Community Releases for Reservoir 1.
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Figure 3.12: Scenario 2 (S0 = 10 and n = 12) - Relationship between Available
Water + Trigger Volumes and Community Releases for Reservoir 2.
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between these results interacts with the rationing levels and thus, the releases made

to the community each month. One feature that is apparent from Figures 3.11 and

3.12, that was not seen in the previous section due to the conditions of Scenario 1,

is the fluctuation of the trigger volume V2. In the previous section, no phase two

rationing was permitted, therefore the model minimised V2 as it did not play a part

in the management strategies utilised. However, under Scenario 2, phase two ra-

tioning was permitted and the model used this fact to better manage the operation

of the reservoir system. This is clearly demonstrated by both figures, where the

available water can be seen to be between the trigger volume V2 (described by the

orange line with diamonds) and the lower boundary trigger volume V3 (represented

by the red line with stars or asterisks), meaning that phase two rationing was em-

ployed in those months.

Note, Figure 3.9 demonstrates that the model set the initial capacity of both reser-

voirs to 10 ML, however Figures 3.11 and 3.12 do not. The reason for this is that

Figures 3.11 and 3.12 display the available water; defined as the sum of the reservoir

level in the previous month (shown in Figure 3.9) and the inflow to the reservoir in

the current month (shown in Figure 3.3). Therefore, although these figures do not

show the reservoir level commencing below the lower boundary trigger volume, the

objective function was still penalised for the months in which this occurred.

Under the scenario explored in this section, Model 4 was able to consider a wider

range of management strategies than that seen previously, as phase two rationing

was permitted. However, by specifying the initial capacities of both reservoirs to

be near empty, phase two rationing was necessary for half of the event horizon in

order to ensure that a feasible management strategy could be determined. In the

following section, the initial capacities of the reservoirs are increased; leading to a

decrease in the number of months of phase two rationing needed to determine a

feasible management strategy.

3.3.3 Scenario 3: Initial Reservoir Capacities of α2D ML (S0 = α2D), with 6

Months of Phase Two Rationing Permitted (n = 6)

The final combination of initial reservoir capacities and months of permissible phase

two rationing considered in this chapter, was where the initial capacities of the reser-

voirs were specified to equal their respective lower boundary trigger volumes of V3,

or α2D. In this case, the initial capacities of Reservoir 1 and Reservoir 2 equalled

133 ML and 267 ML respectively. The second condition of the scenario was to deem

that six months of phase two rationing were acceptable for both reservoirs over the

24 month event horizon considered. Under this scenario, by increasing the initial

capacities of both reservoirs, feasible management strategies could be identified us-

ing a reduced number of months of phase two rationing. The impact of adjusting

these conditions on the results from Model 4 are shown in Figures 3.13 to 3.16.
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Figure 3.13: Scenario 3 (S0 = α2D and n = 6) - Comparison of Reservoir Levels
(ML).

The first of these figures, Figure 3.13, presents the level of each reservoir over the

24 month event horizon considered. From the figure, it can be seen that the first

condition of Scenario 3 was met, as the model selected the initial capacity of each

reservoir to equal their lower boundary trigger volumes, α2D, of 133 ML and 276 ML

respectively. From these initial capacities the levels of both reservoirs displayed an

overall increasing trend, until approximately month 18, where a period of limited

inflows significantly reduced the levels of both reservoirs. This occurrence was also

noted under the previous scenarios considered, with the cause being identified and

explored in the previous section.

Of particular note from Figure 3.13 is the fact that in two months the model elected

to decrease the level of Reservoir 2 below the lower boundary trigger volume of

276 ML. This occurred in month 4 and again in month 23. During these months,

the objective function would have been penalised by the variable At. This response

by the model highlights the fact that the community demand could not have been

met under the second condition of Scenario 3, that six months of phase two ra-

tioning be employed, unless the reservoir level decreased below the lower boundary

trigger volume in these months. Therefore, although the objective function has

been penalised, this management strategy was still optimal compared to any others

considered. That said, if the same situation was to be considered using Model 3, as
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Figure 3.14: Scenario 3 (S0 = α2D and n = 6) - Comparison of Releases to
Community Water Supply (ML).

formulated by Shih and ReVelle (1995), the current management strategy would be

deemed infeasible due to the fact that the reservoir level decreased below the lower

boundary trigger volume.

Figure 3.14 displays a comparison of the monthly releases from each reservoir to

the community water supply. As seen in the previous section, there were three

defined levels of releases corresponding to the three levels of rationing that could

be enforced. In the case of Reservoir 1, it can be seen that both no rationing and

phase two rationing were implemented individually for a total of six months over

the event horizon. For the remaining 12 months, phase one rationing was enforced.

On the other hand, there was only a solitary month in which no rationing was en-

forced on the releases to the community from Reservoir 2, being the last month of

the event horizon. For the most part, 17 months in total, phase one rationing was

implemented, while there were also six months of phase two rationing, as prescribed

by the conditions of the scenario.

When considering the releases in months 4 and 23 from Reservoir 2, it can be seen

from Figure 3.14 that the releases continued under phase one rationing although

the reservoir level was below the lower boundary trigger volume, and as such the

objective function was being penalised. Rather than restricting the releases during

these two months to phase two rationing, meaning that two other months currently

53



5 10 15 20

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Available Water & Trigger Volumes

Month Number

A
va

ila
bl

e 
W

at
er

 (
M

L)

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● Avail. Water
V1

V2
V3

● ●

●

● ●

●

● ●

●

●

● ● ● ● ●

● ● ●

● ● ●

● ●

●

5 10 15 20

15
0

20
0

25
0

30
0

Community Releases

Month Number

C
om

m
un

ity
 R

el
ea

se
s 

(M
L)

Available Water, Trigger Volumes & Community Releases for Reservoir 1 
(Scenario 3)

Figure 3.15: Scenario 3 (S0 = α2D and n = 6) - Relationship between Available
Water + Trigger Volumes and Community Releases for Reservoir 1.
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Figure 3.16: Scenario 3 (S0 = α2D and n = 6) - Relationship between Available
Water + Trigger Volumes and Community Releases for Reservoir 2.
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restricted by phase two rationing would move to the less strict phase one rationing,

the model selected to decrease the reservoir level below the lower boundary trigger

volume. Therefore, by selecting this management strategy as optimal, the model

determined that no other combination of months and rationing levels provided a

better management strategy under the conditions of Scenario 3.

Figures 3.15 and 3.16 present the relationship between the available water and the

trigger volumes for each reservoir. They also demonstrate how this relationship can

be used to determine the rationing levels implemented each month and as such,

the volume of water available for release to the community. When Figure 3.16 is

compared to Figure 3.12 in the previous section, it can be seen that there was only

one month in which no rationing could be enforced under the conditions of Scenario

3, compared to two months of no rationing under the conditions of Scenario 2. This

demonstrates that although the initial capacities of the reservoirs were greater under

Scenario 3 than those examined under Scenario 2, there were fewer months in which

the full community demand could be released. This difference can be attributed to

the fact that the number of months in which phase two rationing was permitted

were reduced under the current scenario. Therefore, as stricter rationing was not

being enforced as often, less water was being conserved, leading to a reduction in

the number of months in which the full demand could be released.

3.3.4 Comparison of Releases to Community under Scenarios 1, 2 and 3

Using the results from Model 4, under each of the scenarios considered, a compar-

ison of the total volume of water released to the community can be made. The

releases to the community, from both reservoirs, under each of the three scenarios

has been presented in Table 3.1. This table also presents the number of months in

which the three rationing levels were enforced for each reservoir. Using the num-

ber of months of rationing and the known volume released under each phase of

rationing, the total releases under each phase could be calculated and combined to

determine the total volume of water made available to the community over the 24

month event horizon.

In this case, each column of Table 3.1 corresponds to the results collected from

Model 4 under each of the scenarios considered. Therefore, from the first column of

Table 3.1, it can be seen that under Scenario 1 there were 10 months in which no

rationing was enforced upon releases from Reservoir 1 and 14 months where phase

one rationing was implemented. In this case, one of the conditions of Scenario 1

was to specify that no phase two rationing was to be enforced over the event hori-

zon; a condition Table 3.1 confirms has been implemented. Over the 10 months in

which no rationing was imposed, the full community demand from Reservoir 1 of

333 ML per month could be released, providing a total volume of 3330 ML of water

to the community over the event horizon. During the remaining 14 months of the
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Table 3.1: Comparison of the Releases to the Community from Reservoir 1 and

Reservoir 2, across the 3 Scenarios considered.

Scenario 1 Scenario 2 Scenario 3

RC1, RC, RC,

[# months2] [# months] [# months]

Reservoir 1

No Rationing
3330, [10] 2664, [8] 1998, [6]

(333 ML/month)

Phase 1 Rationing
2800, [14] 800, [4] 2400, [12]

(200 ML/month)

Phase 2 Rationing
0, [0] 1596, [12] 798, [6]

(133 ML/month)

Total 6130, [24] 5060, [24] 5196, [24]

Reservoir 2

No Rationing
1334, [2] 1334, [2] 667, [1]

(667 ML/month)

Phase 1 Rationing
8800, [22] 4000, [10] 6800, [17]

(400 ML/month)

Phase 2 Rationing
0, [0] 3204, [12] 1602, [6]

(267 ML/month)

Total 10134, [24] 8538, [24] 9069, [24]

Combined

Total

16264 13598 14265

1 - Release to Community (ML)
2 - Number of Months
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event, phase one rationing was applied, meaning that the releases were restricted

to 60% of the total demand or 200 ML per month. Over these 14 months, 2800 ML

were supplied to the community under phase one rationing. This means that under

Scenario 1, the community was supplied with 6130 ML from Reservoir 1 over the

event horizon, or approximately 76.7% of the potential releases that could have

been made from this reservoir.

Table 3.1 also provides results pertaining to the management of Reservoir 2 and,

when the first column is considered, demonstrates that of the 24 months that com-

pose the event horizon, in two months no rationing was enforced, while for the

remaining 22 months, phase one rationing was applied. Therefore, this confirms

that the condition of Scenario 1, that no phase two rationing be enforced, has been

implemented for this reservoir as well. Under phase one rationing, the releases from

the reservoir were restricted to 60% of the total demand; equating to 400 ML per

month from Reservoir 2. Therefore, over the 22 month period in which phase one

rationing was enforced, the community was supplied with 8800 ML of releases. For

the remaining two months, the full demand from Reservoir 2 of 667 ML per month

was released, providing 1334 ML to the community. Overall, the community was

provided with 10134 ML from Reservoir 2 across the event horizon, equating to

approximately 63.3% of the potential releases from the reservoir. When this total

figure is combined with the total figure from Reservoir 1, it can be seen that the

community was supplied with 16264 ML overall, translating to 67.8% of the total

potential releases that could have been made over the 24 month event horizon from

the two reservoirs. This combined total community release can be compared to

those calculated under the other scenarios investigated.

The second column of Table 3.1 presents a comparison of the releases made to the

community from both reservoirs under the conditions of Scenario 2. Under this

scenario, it was specified that a maximum of 12 months of phase two rationing was

permissible. From the table, it can be seen that phase two rationing was employed

to constrain the releases from both reservoirs for this maximum number of months.

Under the strictest rationing, 40% of the total demand from each reservoir was able

to be released; calculated to equal 133 ML per month from Reservoir 1 and 267 ML

per month from Reservoir 2. This lead to a total of 1596 ML being released to the

community from Reservoir 1 and 3204 ML from Reservoir 2 over the 12 months in

which phase two rationing was enforced.

When the results presented for Scenario 2 are compared to those for Scenario 1, it

can be seen that under Scenario 2 less water was released to the community in total

over the 24 month event horizon; 13598 ML, or 56.7% of the total potential releases,

compared to 16264 ML, or 67.8% of the total potential releases under Scenario 1.
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This difference can be attributed to the varying number of months in which each ra-

tioning level was enforced. That being said, the model was able to provide the same

number of months in which no rationing was applied to releases from Reservoir 2

under Scenario 2 compared to Scenario 1; however the number of months in which

no rationing was enforced upon the releases from Reservoir 1 under Scenario 2 was

reduced to eight, a decrease of two months compared to Scenario 1.

The third column of Table 3.1 presents a comparison of the releases to the commu-

nity under the third and final scenario considered. As part of the conditions of this

scenario, it was specified that the number of months in which phase two rationing

was permitted be reduced to six, while the initial capacities of both reservoirs be

increased compared to the conditions considered under Scenario 2. From the third

column of Table 3.1 it can be seen that the maximum number of months in which

phase two rationing was permitted under Scenario 3 (six) have been utilised for

both reservoirs. As mentioned previously, under the strictest phase two rationing,

40% of the optimal community demand can be released per month. This resulted

in releases of 133 ML per month from Reservoir 1 and 267 ML per month from

Reservoir 2, or, total releases of 798 ML and 1602 ML to the community over the

six months in which phase two rationing was implemented on the releases from the

two reservoirs respectively.

Upon comparing the releases to the community under Scenario 3 to the releases

under the previous two scenarios considered, it can be seen that Scenario 3 re-

sulted in more water being provided to the community than that witnessed under

Scenario 2; however less than that seen originally under Scenario 1. In the case

of Scenario 3, 14265 ML was released to the community over the 24 month event

horizon, or 59.4% of the total potential releases. This is an increase from 56.7%

of the total potential releases seen under Scenario 2, even though the number of

months in which no rationing was applied to the releases from both reservoirs has

decreased. This result could suggest that although it is important to maximise

the number of months in which no rationing was enforced, greater volumes can be

made available to the community if more consistent releases are made. However,

it is difficult to justify this conclusion based on a comparison of the results under

Scenario 3 to Scenario 2, as both the initial reservoir capacities and the number of

months in which phase two rationing were permitted have been altered. Therefore,

it is recommended that further research and experiments be conducted to determine

if this alternate strategy is indeed viable.

From reviewing the results presented in this chapter, it can be concluded that

Model 4 has provided a comprehensive and detailed approximation for the opera-

tion of the Perseverance and Cressbrook cascade reservoir system considered as a

case study. Under each of the scenarios considered, the model has determined the
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optimal strategy for the operation of the system, with each being somewhat differ-

ent to the last and somewhat different to the next. This highlights the fact that for

each unique set of conditions, there are adjustments that need to be made in order

to optimise the way in which the system performs. However, it must be noted that

a series of assumptions were made before conducting this experiment using Model 4;

some of which may not be feasible when applied to a physical system. An example

of such an assumption is the assumed perfect prior knowledge of the inflows to both

reservoirs. Therefore, any results from the model must be treated with caution and

are limited to use as a guidance tool only, in order to provide the managers and

operators of a cascade reservoir system with an approximate representation of how

the system will behave during a drought event.

Also demonstrated by the results from Model 4 is that there may be alternate meth-

ods of ensuring that the releases to the community are maximised. One alternate

strategy is to provide releases at one consistent volume over the event horizon rather

than using strict rationing to conserve water for a number of months so that at a

later point in the timeline no rationing is required. As mentioned previously, before

adopting this method, further testing and experimentation is required.

Overall, the results from Model 4 show that a comprehensive approximation for the

operation of a cascade reservoir system during a drought event can be provided by

a MILP model; although the optimal management strategy is somewhat sensitive

to changes in the specified parameters.

3.4 Chapter Conclusion

In this chapter, a model was formulated to determine how the Perseverance and

Cressbrook cascade reservoir system considered as a case study in this thesis could

be optimally managed under a drought event. To begin, a Mixed Integer Linear

Programming (MILP) model, formulated by Shih and ReVelle (1995) and named

Model 3, for the operation of a single reservoir system during a drought event was

explored. As Model 3 had been robustly constructed, it was easily extended to the

cascade reservoir system considered in this thesis. This extended model, labelled

Model 4, was stated and defined rigorously using many of the same variables and

constraints that were featured in Model 3. However, there was one constraint re-

laxed from Model 3 to Model 4, enabling Model 4 to better approximate the real

world behaviour of a cascade reservoir system. Following this, the results of an ex-

periment to investigate how different components of the reservoir system measured

by Model 4 behaved under varying scenarios were explored. The experiment was

repeated three times using three different scenarios, where the initial capacities of

the reservoirs and the number of months in which strict phase two rationing was

permitted were varied. From these experiments it was found that Model 4 provided
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a comprehensive approximation to the Perseverance and Cressbrook cascade reser-

voir system considered as a case study; though the model was limited by some of

the assumptions made preceding the conduct of the experiment and that the opti-

mal management strategies determined by the model were sensitive to changes in

the specified parameters. Also, it was noted that there may be alternate methods

to that employed currently by Model 4 to maximise the releases of water to the

community over the event horizon considered.

By building upon the knowledge and understanding developed in the previous chap-

ter, and utilising an existing model, a MILP model to investigate the operation of

a cascade reservoir system during drought was able to be constructed. A similar

procedure is employed in the next chapter, where Model 4 forms a framework on

which a model can be developed that is applicable to the same reservoir system;

however this time is considered during a flood event.
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Chapter 4

Flood Model

4.1 Chapter Overview

Flooding events, triggered by periods of above average or extreme rainfall, often

result in vast amounts of damage to the regions affected and can sometimes prove

deadly. In order to prevent the worst impacts of such an event, reservoir systems

can be employed as a type of defensive measure by stalling the progression of the

floodwaters. However, if used for this purpose, it is crucial that optimal strategies

for the operation of these reservoir systems, like those explored in this chapter,

are available to assist operators in managing the movement of water through the

systems.

At the beginning of this chapter, an adapted version of Model 3, a drought model

previously presented in Chapter 3 and originally proposed by Shih and ReVelle

(1995), is investigated. This adapted Mixed Integer Linear Programming (MILP)

model, named Model 5, uses the fundamental structure of Model 3, whilst making

some significant alterations to ensure that it is now applicable to a single reservoir

system during a flood event. Following this, Model 5 is further extended so that it

can be applied to a cascade reservoir system. This extended flood model, labelled

Model 6, is used to perform a series of experiments (similar to those seen in the

previous chapter) to monitor how particular features of the cascade reservoir system

measured by the model behave when the initial capacities of the reservoirs are

varied. Based upon the results from these experiments, a discussion is undertaken

and a series of conclusions made regarding the appropriateness and applicability

of the extended flood model to the case study of the existing Perseverance and

Cressbrook cascade reservoir system considered throughout this thesis.

4.2 Models

4.2.1 Model 5 - Flood Model adapted from that developed by Shih and ReVelle

(1995)

In this section, a Mixed Integer Linear Programming (MILP) model for the op-

eration of a single reservoir during a flood event, named Model 5, is defined and

investigated. This model was adapted from Model 3 seen in the previous chapter,
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which itself was originally presented by Shih and ReVelle (1995) for the operation

of a single reservoir during a drought event. Given by Equations (4.1) to (4.19),

Model 5 is presented below, with a description of the constraints and variables used

to formulate the model provided in Section 4.2.2.

minimise
T∑
t=1

Wt − ω
T∑
t=1

(V1t + V2t + V3t) (4.1)

such that

y1t ≥
(St−1 + Ît)− (V1t − ε)

M
∀t, (4.2)

y1t ≤ 1− V1t − (St−1 + Ît)

M
∀t, (4.3)

y2t ≥
(St−1 + Ît)− (V2t − ε)

M
∀t, (4.4)

y2t ≤ 1− V2t − (St−1 + Ît)

M
∀t, (4.5)

Rt = D.L ∀t, (4.6)

Pt = (1− α1).K.y2t + (α1 − α2).K.y1t + α2.K ∀t, (4.7)

St = St−1 + It −Rt −Wt − Pt ∀t, (4.8)

S0 = C0, (4.9)

St ≤ C ∀t, (4.10)

Ut ≤
St

C
∀t, (4.11)

Wt ≤MUt ∀t, (4.12)

V1t ≤ (1− β1)V2t ∀t, (4.13)

V2t ≤ (1− β2)V3t ∀t, (4.14)

V3t ≤ C ∀t, (4.15)

y1t−1 + y1t+1 ≤ 1 + y1t ∀t, (4.16)

y1t ≥ y2t+1 ∀t, (4.17)

T∑
t=1

Ut = T − n ∀t, (4.18)

St, St−1, Ît, It, V1t, V2t, V3t, Rt, Pt,Wt ≥ 0 ∀t. (4.19)
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4.2.2 Model 5 Description

In the event of a flood, the role of reservoir systems, and therefore the types of

strategies employed to optimally manage these systems, are different to those im-

plemented during a drought event. For example, during a flood, reservoirs can

become defensive mechanisms that are used to delay the progress of flood waters

and thus better control the levels of tributaries downstream of the reservoir system

that could already be at full capacity as a result of the event. Therefore, although

Model 3 provided a foundation for the structure of Model 5, many of the original

constraints needed to be reversed or redefined in order to ensure that Model 5 is

applicable to the operation of a reservoir system during a flood event.

The first significant change from Model 3 to Model 5 is the unit of time over which

the event horizon is considered. Due to the nature of flooding events and the rapid-

ness with which they occur, it was not feasible to continue describing the system

on a monthly basis, as seen in Model 3. Therefore, in order to ensure a realistic

representation of the reservoir system during a flood event, the time increment t

of Model 5 is now considered on an hourly basis. Another difference between the

two models concerns the releases to the community water supply. In Model 3, the

releases made to the community were variable and depended upon the rationing

level enforced each month. In the case of Model 5, it has been assumed that the

releases to the community remain constant over the event horizon. This assumption

was able to be made, as during a flood event there is typically an excessive volume

of water available to the community, both through rainfall and water storage in

reservoir systems, meaning that no rationing of water use is required.

Although the rationing of water available to the community is not necessary during

a flood, the concept of rationing levels introduced in Model 3 is still employed in

Model 5 through the inclusion of a new facility. In order to provide the operators of

the reservoir system with more management options, and at the same time extend

the complexity of the scenario considered, it has been assumed that a pumping

facility is now included as part of the reservoir system. This pumping facility can

be used to move water throughout the system and in the case of Model 5, pumps

water from the reservoir to an external location assumed to have infinite storage. A

simple schematic of the movement of water around the reservoir system is provided

by Figure 4.1, which includes the pumping of water to an external location. By

transferring water from the system in this manner, the reservoir storage level can

be reduced, thereby maximising the number of hours before spill occurs from the

reservoir and at the same time minimising the extent of spill each hour. Although

currently unrealistic and potentially unnecessarily included in Model 5, the reason

for the addition of this pumping facility is made clearer in Model 6, where a cascade

reservoir system is considered.
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Reservoir 
Inflow Spill 

Pumping 

Figure 4.1: Simple Schematic of the Reservoir System considered in Model 5.

In the case of the pumping facility, it has been assumed there are three levels of

restrictions that can be imposed on the volume of water pumped from the reservoir

each hour; phase one pumping restrictions, phase two pumping restrictions and full

capacity pumping. Analogous to Model 3, Model 5 also seeks to identify three trig-

ger volumes, V1t, V2t and V3t for all hours t, that denote the storage plus projected

inflow (termed available water) at which changes between the pumping restrictions

occur. The values of these trigger volumes are optimally selected by the model,

except for the upper boundary trigger volume, V3t, which is maximised to equal the

storage capacity of the reservoir. Figure 4.2 provides a graphical representation of

the relationship between the trigger volumes and the pumping restrictions. From

this figure, it can be seen that if the available water is below the trigger volume V1t,

then the volume of water that can be pumped from the reservoir is restricted to α2

proportion of the pumping facility capacity, K. Once the available water increases

past V1t, but is less than V2t, then an additional volume of water can be pumped

from the reservoir; now restricted to α1 proportion of the pumping facility capac-

ity. Once the available water surpasses V2t, then the full capacity of the pumping

facility is able to be drained from the reservoir each hour. This pumping restriction

scheme is used to ensure that if the flood event is not as severe as first predicted,

the reservoir is not emptied through the pumping of large volumes of water at the

beginning of the event, and there is still sufficient water available in the reservoir

to support the community post flood.

The objective function of Model 5 (Equation (4.1)) can be separated into two terms.

The first term aims to minimise the spill from the reservoir each hour over the event

horizon considered. By minimising the spill from the reservoir each hour, the flood-

waters from the event are instead being stored by the reservoir, rather than being

released into rivers and streams that could already be at full capacity as a result

of flooding. Therefore, by storing and effectively stalling the progression of the

floodwaters, the amount of damage downstream of the reservoir can be minimised.
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Figure 4.2: Graphical Representation of the Relationship between Reservoir Trigger
Volumes and Pumping Restrictions.
Adapted from that presented by Shih and ReVelle (1995); where,
V1t, V2t, V3t = Trigger Volumes, K = Capacity of Pumping Facility,
α1, α2 = Restrictions on the Pumping Capacity.

The second component of the objective function attempts to maximise the reservoir

trigger volumes across all hours t. As mentioned previously, this ensures that the

reservoir is not prematurely emptied and that appropriate storage remains in the

reservoir to supply the community after the flood event has passed. By combining

these two terms in the objective function, it ensures that the devastating effects of

a flood event are reduced downstream of the reservoir and that, if the event was

not as severe as first thought, suitable storage remains in the reservoir to supply

the community.

Variable Definitions

There are 26 variables that are used in the formulation of Model 5. These variables

have been defined below:

t, T = the current hour and the total number of hours in the event horizon

which are known,

Wt = the spill from the reservoir in hour t, which is unknown (megalitres, ML),

ω = a small number, which is assumed to equal 0.01 in this case,

V1t = the unknown value of storage and inflow, below which water pumped

from the reservoir is constrained under phase one pumping restrictions

for hour t (ML),

V2t = the unknown value of storage and inflow, below which water pumped

from the reservoir is constrained under phase two pumping restrictions

for hour t (ML),
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V3t = the specified upper bound of storage plus inflow for hour t (ML),

y1t = an unknown binary variable that is 1 if either phase two pumping re-

strictions, or full capacity pumping is enforced on the pumping facility

in hour t, or 0 otherwise,

y2t = an unknown binary variable that is 1 if no restrictions are imposed on

the pumping facility and full capacity pumping can be met in hour t, or

0 otherwise,

St = the unknown volume of water stored in the reservoir at the end of hour

t (ML),

It = the unknown inflow to the reservoir in hour t (ML),

Ît = the projected inflow to the reservoir in hour t, which is unknown (ML),

ε = a small number, which is assumed to equal 0.1 in this case,

M = a large number, which is assumed to equal 100 000 in this case,

Rt = the releases made to the community water supply in hour t, in this case

calculated by known, constant values (ML),

D = the specified total demand required by the community, which is assumed

constant over the event horizon (ML),

L = the percentage of the total demand required by the community that is

supplied by each reservoir. For Model 5, as the system is composed of

only one reservoir, the value of this variable is assumed to be 100%,

α1 = the specified percentage of full capacity pumping that is permitted under

phase two restrictions,

α2 = the specified percentage of full capacity pumping that is permitted under

phase one restrictions,

Pt = the unknown volume of water pumped from the reservoir in hour t (ML),

K = the maximum volume of water that can be pumped from the reservoir

by the pumping facility each hour, assumed to be known and constant

over the event horizon (ML),

C = the capacity of the reservoir, which is known (ML),

Ut = an unknown binary variable that is 1 if the reservoir is full at the end of

hour t, or 0 otherwise,

β1 = a specified separation value, assumed throughout the chapter to be 0.05,

β2 = a specified separation value, assumed throughout the chapter to be 0.05,

n = the specified number of hours in which it is acceptable for spill to occur

from the reservoir.

The way in which these variables behave and interact in Model 5 can be explored

through an investigation of the constraints that compose the model.

66



Constraint Definitions

There are 18 constraints that compose Model 5, plus the objective function. As

mentioned previously, the objective function (Equation (4.1)) consists of two terms.

The first term and primary aim of the objective function is to minimise the volume

of spill from the reservoir each hour. The secondary term then attempts to maximise

the sum of the three trigger volumes across all hours t; however, a weight is placed

on the sum of the trigger volumes in order to reduce the impact of this secondary

term on the primary aim of the objective function.

Equations (4.2) and (4.3) operate together to determine the value of the binary

variable y1t. When considered independently, Equation (4.2) determines that the

value of y1t will be one if the available water is greater than the trigger volume V1t

in hour t; where the available water was defined in Chapter 3 to equal the reservoir

storage level at the end of the previous hour, plus the projected inflow in the current

hour (St−1 + Ît). By setting the value of the binary variable y1t equal to one, the

volume of water that can be pumped from the reservoir in the current hour is either

limited, under phase two pumping restrictions, or unconstrained to full capacity

pumping, depending upon the value of the binary variable y2t. In the alternate

case, in which the available water is less than the trigger volume V1t, Equation (4.3)

sets the value of y1t to equal zero and in doing so enforces the stricter phase one

restrictions on the volume of water that can be pumped from the reservoir each hour.

The arrangement of pumping restrictions is reversed to that seen in the previous

chapter, where phase two rationing was the most severe and phase one rationing was

a “middle ground” between strict rationing and no rationing. However, throughout

Models 5 and 6 proposed for a flooding event, phase one restrictions see the least

amount of water being pumped from the reservoir, while phase two restrictions do

not limit the pumping volume as severely.

Analogous to Equations (4.2) and (4.3), Equations (4.4) and (4.5) work together

to determine the value of the binary variable y2t. In this case, Equation (4.4)

sets the value of y2t to equal one if the available water is greater than the trigger

volume V2t in the current hour. By setting y2t to equal one, this indicates that the

full capacity of the pumping facility can be drained from the reservoir in the current

hour. On the other hand, Equation (4.5) ensures that if the reverse occurs and the

available water is less than V2t, then the binary variable y2t is set equal to zero;

signifying that some form of restriction is imposed on the volume of water that can

be pumped from the reservoir in the current hour. As mentioned in the previous

chapter, the addition of the small value ε is necessary in Equations (4.2) and (4.4)

to ensure that if the available water equals a trigger volume in the current hour

(i.e. St−1 + Ît = V1t), the value of either binary variable y1t or y2t is one. If ε was not

included in these constraints, then the values of the binary variables could be either
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Figure 4.3: Adapted Graphical Representation of the Relationship between Reser-
voir Trigger Volumes and Pumping Restrictions, showing the Values of the Binary
Variables y1t and y2t under each Phase of Restrictions.
Adapted from that presented by Shih and ReVelle (1995); where,
V1t, V2t, V3t = Trigger Volumes, K = Capacity of Pumping Facility,
α1, α2 = Restrictions on the Pumping Capacity.

one or zero in this situation. Also, it should be noted that the relationship between

these four constraints (Equations (4.2) to (4.5)) ensures that y2t will not equal one

unless y1t equals one in the current hour and that if y1t equals zero, then y2t must

also equal zero; an important relationship when determining the level of restriction

imposed on the pumping facility. In order to demonstrate the relationship between

the binary variables, y1t and y2t, and the level of pumping restrictions enforced, an

adapted version of Figure 4.2, labelled Figure 4.3 has been provided above.

Equation (4.6) determines the volume of water released to the community each hour.

In the case of a flood event, it has been assumed that the releases to the community

are constant over the event horizon and equal the product of the total community

demand (D) and the percentage of this total demand supplied by the reservoir (L).

As the system considered during the formulation of Model 5 only consists of a single

reservoir, the variable L is equal to 100%. This denotes that the total community

demand is sourced from the one reservoir. The addition of the variable L in the

model will be made clearer when Model 6 is considered (Section 4.2.3).

In order to determine the volume of water pumped from the reservoir in a given

hour, Equation (4.7) is included. From the constraint, if the values of both binary

variables y1t and y2t are zero, then the volume of water that can be pumped from

the reservoir in the current hour is limited under phase one restrictions; translating

to α2 proportion of the pumping facility capacity (K). However, if the value of the

binary variable y1t is one while the value of y2t is zero, then phase two restrictions
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are enforced on the pumping volume in hour t. This enables an increased volume

of α1K to be drained from the reservoir in the current hour. In order for the

full capacity of the pumping facility to be drained from the reservoir in hour t,

Equation (4.7) demonstrates that both the variables y1t and y2t must be equal to

one.

Equation (4.8) is the mass balance constraint of Model 5 and is used to determine

the storage level of the reservoir each hour. From the constraint it can be seen that

the reservoir storage level in the current hour is equal to the sum of the storage

level in the previous hour and the inflow to the reservoir in the current hour, minus

the releases to the community, spill from the reservoir, and the volume of water

pumped from the reservoir in the current hour.

Equation (4.9) is included in Model 5 to offer the operators of the reservoir system

the opportunity to specify the initial capacity of the reservoir. This feature was

first introduced in Model 4 in the previous chapter and, in this case, enables the

managers of the system to investigate how the results of Model 5 behave when the

initial capacity of the reservoir is varied. However, if the operators of the reservoir

system do not wish to specify the starting capacity, this constraint can be relaxed

to the form S0 ≤ C and the model will itself select the optimal initial condition of

the reservoir level. Equation (4.10) is then included to ensure that the storage level

of the reservoir does not surpass the capacity of the reservoir in any given hour.

Equations (4.11) and (4.12) combine to control the spill of water from the reservoir.

In a typical physical reservoir system, where the reservoir does not possess any

spillway control measures such as a gated spillway, spill cannot occur from the

reservoir until the reservoir has reached full capacity. Therefore, in order to ensure

that spill does not occur from the reservoir in Model 5 until the full capacity has been

reached, Equation (4.11) is utilised. This constraint determines if the reservoir is at

full capacity in the current hour and if so, sets the value of the binary variable Ut

equal to one. On the other hand, for the hours where the reservoir has not reached

full capacity, the variable is given a value of zero. The value of Ut is then utilised

in Equation (4.12) to ascertain the extent of the spill that occurs from the reservoir

in hour t. If the value of Ut is zero, then the right hand side of Equation (4.12) is

also zero, meaning that no spill occurs in the current hour. However, if the value

of Ut is one, then the right hand side of Equation (4.12) is equal to a large number,

enabling spill to occur in hour t. In this case, the extent of the spill that occurs

each hour is calculated by the mass balance constraint, Equation (4.8).

To ensure that the three trigger volumes are not all maximised to the same value

and that there is a degree of separation between them, Equations (4.13) and (4.14)

are included in Model 5. Equation (4.13) makes certain that the trigger volume

V1t is at least β1 percentage less than V2t, while Equation (4.14) maintains V2t is
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at least β2 percentage less than V3t. Equation (4.15) then specifies that the upper

boundary trigger volume V3t is less than or equal to the capacity of the reservoir.

However, as the values of the trigger volumes are maximised as part of the objective

function, in practice the value of V3t is consistently maximised to be equal to the

reservoir capacity C.

Equation (4.16) makes sure that if in hours t−1 and t+1, the volume of water being

drained from the reservoir is either limited under phase two pumping restrictions or

unconstrained to full capacity pumping, then phase two pumping restrictions or full

capacity pumping must also be enforced in the current hour t. This constraint was

originally proposed by Shih and ReVelle (1995) in Model 3, who explained that the

objective of this constraint is to prevent a back and forwards movement between

the most severe and less severe phases of restrictions when determining the value of

the trigger volumes. However, they also note that this constraint does not prevent

the back and forwards behaviour from occurring in the real situation.

Equation (4.17) is used to ensure that if in the current hour, pumping from the

reservoir is limited under phase one restrictions, then full capacity pumping cannot

be enacted in the next hour. This is to ensure that the pumping facility has at

least one hour at which phase two pumping restriction volumes are drained from

the reservoir before moving to full capacity pumping; without which, damage could

be caused to the pumping facility.

Equation (4.18) is included in Model 5 as another tool that can be utilised by

the operators of the reservoir system. This constraint enables the managers of the

system to select the number of hours in which they deem that it is not suitable

for spill to occur from the reservoir, through the specification of the variable n. In

this case, the variable n is subtracted from the total number of hours in the event

horizon T . This difference is then the number of months in which it is deemed

suitable for spill to occur from the reservoir.

Finally, Equation (4.19) ensures that a range of variables used in the formulation

of Model 5 remain nonnegative, thus ensuring that the values of these variables

remain physically realistic.

4.2.3 Model 6 - Extension of Flood Model

In this section, a MILP model for the operation of a cascade reservoir system during

a flood event is formulated. This extended model, labelled Model 6, is assembled

using the structure of Model 4, presented in the previous chapter, as a framework

and is composed of many of the same constraints developed in Model 5. Given by

Equations (4.20) to (4.63), Model 6 can be found on the following page. As seen

throughout this thesis, variables denoted with a star (*) correspond to Reservoir 1,

whilst the variables without a star are associated with Reservoir 2.
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minimise J − ω
T∑
t=1

(V ∗
1t + V ∗

2t + V ∗
3t)− ω

T∑
t=1

(V1t + V2t + V3t)− γ
T∑
t=1

Pt (4.20)

such that

Reservoir 1 Constraints:

y∗1t ≥
(S∗

t−1 + Î∗t )− (V ∗
1t − ε)

M
∀t, (4.21)

y∗1t ≤ 1−
V ∗
1t − (S∗

t−1 + Î∗t )

M
∀t, (4.22)

y∗2t ≥
(S∗

t−1 + Î∗t )− (V ∗
2t − ε)

M
∀t, (4.23)

y∗2t ≤ 1−
V ∗
2t − (S∗

t−1 + Î∗t )

M
∀t, (4.24)

R∗
t = D.L∗ ∀t, (4.25)

S∗
t = S∗

t−1 + I∗t −R∗
t −W ∗

t + Pt ∀t, (4.26)

S∗
0 = C∗

0 , (4.27)

S∗
t ≤ C∗ ∀t (4.28)

U∗
t ≤

S∗
t

C∗ ∀t, (4.29)

W ∗
t ≤MU∗

t ∀t, (4.30)

V ∗
1t ≤ (1− β1)V ∗

2t ∀t, (4.31)

V ∗
2t ≤ (1− β2)V ∗

3t ∀t, (4.32)

V ∗
3t ≤ C∗ ∀t, (4.33)

B∗
t = (1− α1).K.y

∗
2t + (α1 − α2).K.y

∗
1t + α2.K ∀t, (4.34)

y∗1t−1 + y∗1t+1 ≤ 1 + y∗1t ∀t, (4.35)

y∗1t ≥ y∗2t+1 ∀t, (4.36)

T∑
t=1

U∗
t ≥ 0 ∀t, (4.37)

Î∗t = I∗t ∀t, (4.38)

Q∗
t + S∗

t = C∗ ∀t, (4.39)

S∗
t , S

∗
t−1, Î

∗
t , I

∗
t , V

∗
1t, V

∗
2t, V

∗
3t, R

∗
t , P

∗
t ,W

∗
t , B

∗
t , Q

∗
t ≥ 0 ∀t. (4.40)
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Reservoir 2 Constraints:

y1t ≥
(St−1 + Ît)− (V1t − ε)

M
∀t, (4.41)

y1t ≤ 1− V1t − (St−1 + Ît)

M
∀t, (4.42)

y2t ≥
(St−1 + Ît)− (V2t − ε)

M
∀t, (4.43)

y2t ≤ 1− V2t − (St−1 + Ît)

M
∀t, (4.44)

Rt = D.L ∀t, (4.45)

St = St−1 + It −Rt −Wt +W ∗
t − Pt ∀t, (4.46)

S0 = C0, (4.47)

St ≤ C ∀t, (4.48)

Ut ≤
St

C
∀t, (4.49)

Wt ≤MUt ∀t, (4.50)

V1t ≤ (1− β1)V2t ∀t, (4.51)

V2t ≤ (1− β2)V3t ∀t, (4.52)

V3t ≤ C ∀t, (4.53)

Bt = (1− α1).K.y2t + (α1 − α2).K.y1t + α2.K ∀t, (4.54)

y1t−1 + y1t+1 ≤ 1 + y1t ∀t, (4.55)

y1t ≥ y2t+1 ∀t, (4.56)

T∑
t=1

Ut ≥ 0 ∀t, (4.57)

Ît = It ∀t, (4.58)

Q∗
t ≥ α2.K.zt ∀t, (4.59)

Pt ≤ Bt ∀t, (4.60)

Pt ≤ K.zt ∀t, (4.61)

Wt +Wt+1 ≤ J ∀t, (4.62)

St, St−1, Ît, It, V1t, V2t, V3t, Rt, Pt,Wt,W
∗
t , Bt, Qt ≥ 0 ∀t. (4.63)

4.2.4 Model 6 Description

At this point, the need to express Model 5 in a generic nature becomes clearer; to

enable the model to be readily extended in order to describe a cascade reservoir

system during a flood event. For the main part, the structure of Model 5 has not

been substantially altered in the construction of Model 6; with many of the con-

straints that compose Model 5 replicated a second time to account for the addition
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Inflow 

Inflow 
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Pumping 

Figure 4.4: Simple Schematic of the Reservoir System considered in Model 6.

of a second reservoir to the system. That being said, some new inclusions have

been made to Model 6 to ensure an accurate representation of the reservoir system

during a flood event.

While describing Model 5, two components of the model were mentioned to be un-

realistic or unnecessary; however it was stated that their use would become clearer

upon investigation of Model 6. These components were the addition of a pump-

ing facility to drain water from the reservoir to an unknown external location with

infinite storage, and the inclusion of the variable L, the proportion of the total

community water supply demand sourced from the reservoir. Although perhaps

extraneous in Model 5, both of these components provide important functionality

in Model 6.

The first component, whose use was somewhat unrealistic in Model 5, although

offered an important extension to Model 6, was the inclusion of a pumping facility

to the reservoir system. In the case of Model 5, where a single reservoir system

was considered, any water pumped from the reservoir was assumed to be removed

from the system; an unrealistic assumption. However, when the reservoir system is

extended to include two reservoirs in a cascade configuration, the incorporation of

a pumping facility provides an opportunity for additional control of the movement

of water within the system. Therefore, in the formulation of Model 6, it is as-

sumed that the pumping facility offers the one directional movement of water from

Reservoir 2 backwards through the system to Reservoir 1. In order to demonstrate

this movement of water through the reservoir system via the pumping facility, a

simple schematic has been provided in Figure 4.4. By assuming that this pumping

facility is included in the system, water can be drained from Reservoir 2, back to

Reservoir 1, reducing the level of Reservoir 2 and thus the length of time before

spill occurs from the system into downstream tributaries.
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The second component of Model 5 that may have seemed unnecessary was the use

of the variable L, the proportion of the community water supply sourced from a

reservoir in the system. In the case of Model 5 where a single reservoir system was

considered, the only option was for the entire community demand to be sourced

from the one reservoir (L = 100%). However, when a cascade reservoir system is

considered, the proportion of the community demand could be equally or unequally

shared between the two reservoirs, as seen in the previous chapters. Therefore, as

the proportion of the community demand sourced from the reservoirs in the sys-

tem could differ, the inclusion of this variable was important in the formulation of

Model 6. The proportion of the community demand shared between the two reser-

voirs considered as a case study is defined later in Section 4.3, where the results of

the experiments conducted using Model 6 are explored.

When the objective function of Model 6 (Equation (4.20)) is compared to that of

Model 5, it can be seen that some additions have been made. Although some of the

terms that feature in the objective function of Model 5 still appear in the objective

function of Model 6, such as the maximisation of the reservoir trigger volumes for

all hours t, there are two terms that were not seen previously. The first of these

terms aims to minimise the volume of spill from Reservoir 2, herein referred to as

the spill from the system, in the current hour plus the spill in the next hour. It is

assumed that the river levels downstream of the system will be above average due

to the flood event, meaning that any spill from the system in the current hour will

not only increase the river levels now, but continue to influence river levels into the

next hour as well. In order to account for this assumption, the spill from the system

in consecutive hours needs to be minimised.

At this point, it should be noted that the spill from the system refers to the spill

from Reservoir 2 alone. In the case of Model 6, it is assumed that the reservoir

system is composed of Reservoir 1, Reservoir 2 and a pumping facility. Therefore,

under this assumption, the spill from Reservoir 1 to Reservoir 2 and any pumping

of water from Reservoir 2 to Reservoir 1 is deemed movement of water within the

system. On the other hand, water that spills from Reservoir 2 exits the system

and impacts upon rivers and creeks downstream, thus referred to as spill from the

system.

The second additional term that features in the objective function of Model 6 aims

to maximise the volume of water pumped from Reservoir 2 to Reservoir 1 each

hour. As mentioned previously, by draining water from Reservoir 2 and pumping

it backwards through the system to Reservoir 1, the storage level of Reservoir 2

is minimised, while the length of time before spill occurs from Reservoir 2, now

termed the spill from the system, is maximised. Through the combination of the

terms that compose the objective function, the overall aim of Model 6 is threefold.
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Firstly, the objective of the model is to minimise the volume of spill from the sys-

tem in consecutive hours, while at the same time lowering the level of Reservoir 2

through the use of the pumping facility, to maximise the number of hours before

spill begins to occur. Also, by maximising the reservoir trigger volumes, the model

is attempting to ensure that Reservoir 2 is not prematurely drained in the case that

the flood event is not as severe as first predicted. Together, these three objectives

are balanced to provide an optimal management strategy for the reservoir system.

Variable Definitions

There are 30 variables used in the formulation of Model 6, some of which are

duplicated twice to account for the addition of Reservoir 2 to the system. Out of

these 30 variables, 25 of these have been previously defined for Model 5 in Section

4.2.2 under the heading Variable Definitions. Of the five newly defined variables

below, Pt was also used previously in Model 5, though now is utilised for a different

purpose under Model 6:

J = an unknown variable that measures the extent of spill from the system

(i.e. Reservoir 2) in the current hour t plus the spill in the next hour

t+1. It is used to provide an approximation of the behaviour of the river

levels downstream of the reservoir system (ML),

γ = a large number, which is known,

Bt = the unknown volume of water that could potentially be pumped from

Reservoir 1 and Reservoir 2 in hour t (ML),

Pt = the unknown volume of water that is pumped from Reservoir 2 to Reser-

voir 1 in hour t,

Qt = an unknown variable that measures the extent by which Reservoir 1 is

below full capacity in hour t (ML),

zt = an unknown binary variable that is 1 if there is a sufficient volume avail-

able in Reservoir 1 for pumping of water from Reservoir 2 to occur in

hour t, or 0 otherwise.

The way in which these newly defined variables interact with each other and the pre-

viously defined variables can be explored through an investigation of the additional

constraints included in Model 6.

Constraint Definitions

There are 43 constraints that compose Model 6, plus the objective function. Of

these 43 constraints, 17 are repeated from Reservoir 1 to Reservoir 2, leaving 3

constraints unique to the operation of Reservoir 1 and 6 constraints unique to the

operation of Reservoir 2. Many of the constraints that compose Model 6 have been

previously described for Model 5 in Section 4.2.2 under the heading Constraint

Definitions. This being said, additional constraints have been included in Model 6,
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being Equations (4.34), (4.38) and (4.39) of Reservoir 1 and Equations (4.54) and

(4.58) to (4.62) of Reservoir 2. Also, as previously mentioned, the structure of

the objective function (Equation (4.20)) has been altered. The primary objective

of Model 6 is to minimise the variable J , or the volume of water spilled from the

system (or Reservoir 2) in the current hour, plus the next hour. The secondary ob-

jectives of the model are to maximise the sum of the reservoir trigger volumes across

all hours t, along with maximising the volume of water pumped from Reservoir 2

backwards through the system to Reservoir 1. These two secondary objectives share

an inverse relationship, as to maximise the volume of water pumped between the

reservoirs in the current hour, the trigger volumes need to be minimised and vice

versa. In order to specify which of these secondary objectives is more favourable the

weights of the terms can be adjusted. In this case, the weight (γ) of the pumping

term (Pt) is larger than that of the weight (ω) of the trigger volumes. This means

that the volume of water pumped from Reservoir 2 will be maximised each hour,

as opposed to maximising the trigger volumes and thus minimising the drainage of

water from Reservoir 2.

The first additional constraint included in Model 6 to be considered is Equa-

tion (4.34) of Reservoir 1, which is also repeated for Reservoir 2 as Equation (4.54).

This constraint is very similar to Equation (4.7) in Model 5, which determines the

volume of water pumped from the reservoir each hour. In the case of Model 6,

these constraints measure the volume of water that could potentially be pumped

from each reservoir under the pumping restrictions imposed in hour t. Therefore,

although Model 6 does not have the capability of pumping water from Reservoir 1 to

Reservoir 2, the volume of water that could be pumped in this direction is measured

by Equation (4.34) each hour. This constraint is included to offer the operators of

the reservoir system an opportunity to monitor the volume of water that could po-

tentially be pumped from Reservoir 1 to Reservoir 2. However, the need for this

type of multi-directional pumping is questionable in the reservoir system consid-

ered, as it would increase the storage level of Reservoir 2 and thus increase the spill

from the system each hour, along with potentially hastening the first hour in which

spill occurs.

Equations (4.38) and (4.58) for Reservoir 1 and Reservoir 2 respectively, are in-

cluded in Model 6 to provide the operators of the reservoir system the opportunity

to assume perfect prior knowledge of the inflows, to each reservoir, over the event

horizon considered. However, if there is some uncertainty regarding the hourly in-

flows to the system, these constraints can be relaxed.

Although Equations (4.37) and (4.57) have not been added to Model 6, they have

been altered compared to that seen in Model 5. Originally in Model 5, these con-

straints enabled the operators of the reservoir system to select the number of months
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in which they deemed it acceptable for spill to occur from the system. However,

from initial experimentation with Model 6, it was found that this constraint was

over restricting the model and feasible management strategies were not able to be

determined. Therefore, it was decided that this constraint would be relaxed and

that Model 6 would optimally determine the number of months in which spill would

occur from the system.

Equation (4.39) only appears in the constraints for Reservoir 1 and is used to mea-

sure the extent by which the storage level of the reservoir is below full capacity each

hour. The difference between the capacity of Reservoir 1 and the storage level in

hour t is stored by the variable Q∗
t , which in turn is used in other constraints to

determine the volume of water that can be pumped from Reservoir 2 to Reservoir 1.

Equations (4.59), (4.60) and (4.61) appear solely in the constraints for Reservoir 2

and work together to determine the volume of water pumped from Reservoir 2

backwards through the system to Reservoir 1 in hour t. To begin, the model checks

to determine if there is sufficient storage remaining in Reservoir 1 for water to be

pumped from Reservoir 2. If this check was not performed and water continued to

be pumped from Reservoir 2 despite there being insufficient capacity remaining in

Reservoir 1 to store the water, then any water entering Reservoir 1 would be spilled

from the reservoir immediately. Due to the cascade configuration of the reservoir

system, the water spilled from Reservoir 1 will return to Reservoir 2 as inflow; de-

feating the purpose of pumping water backwards through the system. Therefore,

Equation (4.59) compares the value of the variable Q∗
t , the storage remaining in

Reservoir 1, to the minimum volume that can be pumped from Reservoir 2 each

hour (α2K). If there is sufficient storage remaining in Reservoir 1 for pumping to

occur in hour t, Equation (4.59) sets the value of the binary variable zt equal to

one. On the other hand, if the minimum volume of water that can be pumped from

Reservoir 2 exceeds the storage remaining in Reservoir 1, the constraint ensures

that the value of zt equals zero. Equations (4.60) and (4.61) then employ the value

of zt to determine the volume of water pumped from Reservoir 2 in the current

hour. If zt is equal to zero, then Equation (4.61) states that the volume pumped

from Reservoir 2, Pt, must also be equal to zero. On the other hand, if the value of

zt is one, then Equation (4.61) states that volume pumped from Reservoir 2 must

be at most the capacity of the pumping facility, K. However, depending on the

level of pumping restrictions imposed in the current hour, the full capacity of the

pumping facility may not be able to be released; therefore Equation (4.60) ensures

that the volumed pumped from Reservoir 2 in hour t is, at most, equal to the po-

tential volume that could be pumped from the reservoir in that hour, Bt.

Equation (4.62) also only appears in the constraints for Reservoir 2 and is used to

determine the value of the variable J . As mentioned previously, J is minimised as
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part of the objective function and is equal to the sum of the spill from the reservoir

in the current hour, plus the spill from the reservoir in the next hour.

Of all the constraints that are replicated between the reservoirs, only the mass

balance constraints vary between Reservoir 1 and Reservoir 2. Upon a compari-

son of the mass balance constraint of Reservoir 1 (Equation (4.26)) to Reservoir 2

(Equation (4.46)), two differences can be seen. The first is that the mass balance

constraint of Reservoir 2 also contains, as an additional source of inflow, the spill

from Reservoir 1 in hour t, W ∗
t . Also, in the mass balance constraint of Reservoir 1,

it can be seen that the volume pumped from Reservoir 2 each hour, Pt, is a source

of inflows. On the other hand, the mass balance constraint of Reservoir 2 shows

this volume being drained from the reservoir each hour.

4.3 Results and Discussion

In this section, Model 6 is applied to the case study of the existing Perseverance

and Cressbrook cascade reservoir system in the Toowoomba region (originally pre-

sented in Figure 1.1) by means of an experiment, with the aim of determining the

optimal strategy for the management of the system during a flood event. From the

results of this experiment, the key components measured by Model 6 that influence

the management of the reservoir system during a flood event are investigated and

an interpretation of the behaviour of these components is provided. At this point,

it should be noted that for the purposes of this experiment, Perseverance dam is

labelled Reservoir 1, while Cressbrook dam is labelled Reservoir 2.

In order to perform this experiment, along with the experiments performed in the

previous chapters, the optimisation modelling software LINGO version 14.0 (LINDO

Systems Inc, 2013) was utilised. An example of the syntax employed to perform

this experiment, along with a portion of the resulting output can be found in Ap-

pendix C. As mentioned in the previous chapter, the version of LINGO sourced to

perform the experiments throughout this thesis was restricted under an Academic

License, meaning that the number of variables and constraints that the software

could consider were limited. This restriction by the software, together with the size

of Model 6, meant that the event horizon over which the experiment was considered

could not be any longer than 24 time units, which in the case of Model 6 equated

to 24 hours or one day.

To ensure that a thorough investigation of the results from the experiment con-

ducted using Model 6 could be performed, a series of assumptions were needed to

be made. These assumptions simplify some of the conditions under which the ex-

periment was conducted; while at the same time provide a feasible representation

of the reservoir system considered as a case study. The first of these assumptions

concerns the inflows to the reservoir system. As mentioned in the previous chapter,
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historic inflows for Cressbrook Creek, the major tributary flowing into Cressbrook

dam, were able to be sourced from the Queensland Department of Natural Re-

sources and Mines (2012), though the inflows correspond to a period from late 1965

to mid 1981 and were recorded on a monthly basis. As Model 6 is applicable to

a flood event, it was assumed that the monthly inflows recorded by the Queens-

land Department of Natural Resources and Mines (2012) could be used as hourly

inflows for the purposes of the experiment, to provide a worst case flood scenario.

Therefore, after considering the 16 years of historic inflows, a two year period was

selected in which the largest inflows to the region were seen. These years were Octo-

ber 1973 to September 1974 and October 1975 to September 1976. Also mentioned

in the previous chapter was that no historic inflows were able to be sourced for the

independent creeks or streams flowing into Perseverance dam. However, due to the

proximity of the two reservoirs, it was assumed that the historic inflows into Cress-

brook dam could be used to approximate the inflows to Perseverance dam, though

a scale difference was needed to be applied. Using prior knowledge of the size of

the tributaries that supply Perseverance dam, it was assumed that the inflows to

the reservoir would be reduced to 60% of the monthly inflows to Cressbrook dam.

This same assumption has also been made for the purposes of the experiment using

Model 6. From the historic records, the assumed hourly inflow to both Persever-

ance and Cressbrook dams over the 24 hour event horizon is presented in Table D.2

of Appendix D, while a graphical representation of the inflows is provided by Fig-

ure 4.5 above.

Another assumption made regarding the hourly inflow to the reservoir system was

to specify that perfect prior knowledge was available. This assumption was achieved

through the use of Equations (4.38) and (4.58) of Model 6, and as mentioned earlier,

was an option available to the managers of the reservoir system. Although perhaps

not feasible in a physical system, the assumed perfect prior knowledge of the inflows

to the reservoir system helped to reduce the complexity of the model and simplify

the results of the experiment.

In the previous chapter, a series of assumptions were made in order to simplify some

of the parameters of the experiment conducted using Model 4. In order to ensure

the continuity of the methodologies employed throughout this thesis, many of the

same assumptions have been made in this chapter. One such assumption, based

upon information presented by the Toowoomba Regional Council (2013), was to

assume that the capacities of Cressbrook dam and Perseverance dam were equal to

82 000 megalitres (ML) and 30 000 ML respectively. Also, it was assumed that the

community water supply demand was shared between the two reservoirs according

to their respective storage capacities. In the case of Model 6, the proportion of the

demand shared between the two reservoirs has been included in the model through
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Figure 4.5: Hourly Inflow to Perserverance and Cressbrook Dams under the Worst
Case Flood Scenario from Historic Records.

the use of the variable L. Therefore, under this assumption, Perseverance dam was

responsible for supplying one third of the community water supply (L∗ = 1
3
), while

the remaining two thirds of the demand was sourced from Cressbrook dam (L = 2
3
).

One significant difference between Model 6 and Model 4 was the assumption that

during a flood event, the releases made to the community water supply from the

reservoir system remain constant over the event horizon and that no rationing was

enforced. This assumption was able to be made, as during a flood event there is

typically an excessive volume of water available to the community, both in the form

of rainfall and water stored in the reservoir system. Therefore, no restrictions need

to be placed on the volume of water supplied to the community and as such it has

been assumed that they can use up to 400 ML per hour. Although in the physical

system this community usage is unrealistic on an hourly basis, for the purpose of

this experiment, the usage was inflated in order for it be on a comparable scale with

the size of the inflows to the system each hour. This volume was then shared be-

tween the two reservoirs according to the proportions L defined previously, meaning

that 133 ML (D.L∗) each hour was made available to the community from Perse-

verance dam, while 267 ML (D.L) each hour was provided to the community from

Cressbrook dam.

A significant assumption made when formulating the models in this chapter and

upon commencing the experiment of Model 6, was that the reservoir system consid-

ered as a case study now incorporated a pumping facility. As mentioned earlier, in
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the case of Model 6, this pumping facility enabled water to be drained from Reser-

voir 2 and pumped backwards through the system to Reservoir 1, thus decreasing

the storage level of Reservoir 2 and minimising the spill from the system each hour.

For the purposes of this experiment, it was assumed that the maximum capacity of

this pumping facility (K) was 1000 ML per hour, meaning that at most 1000 ML

could be pumped from Reservoir 2 into Reservoir 1 each hour. However, as men-

tioned previously, the volume of water able to be pumped through the facility each

hour was limited by a set of restrictions; the severity of which was determined by

the available water. Analogous to the rationing levels originally proposed by Shih

and ReVelle (1995) in the formulation of Model 3, there were three levels of restric-

tions that could have been imposed on the volume of water pumped by the facility

each hour; phase one pumping restrictions, phase two pumping restrictions and full

capacity pumping. In the case of Model 6, the strictest limitation on the pumping

volume occurred under phase one restrictions, where the volume able to be pumped

each hour was limited to α2 percentage of the full capacity K. Under phase two

restrictions, the volume of water able to be pumped each hour increased to α1 per-

centage of the full capacity, while under full capacity pumping the full capacity of

the pumping facility could be drained from Reservoir 2 each hour. In the case of

the experiment conducted using Model 6, the values of α1 and α2 were assumed to

equal 60% and 40% respectively. Therefore, if phase one pumping restrictions were

enforced, then 400 ML per hour was able to be pumped by the facility, while under

phase two restrictions this volume was increased to 600 ML per hour.

At this point, it should be noted that the series of assumptions above were made

to offer the best approximation of the reservoir system considered as a case study,

while not over complicating the conditions of the experiment. Depending upon

the type of system being investigated, all or some of these assumed values can be

changed by the operators and managers of the system to suit their own unique

circumstances.

In order to enable an examination of the different management strategies employed

by Model 6, the experiment of the model was repeated three times, with different

initial reservoir capacities trialled under each replication. For each of these trials,

all of the parameters of the model were kept the same and only the choice of the

initial reservoir storage levels was altered. The results of the trials for each of the

initial capacities can be found in the following sections:

4.3.1 Trial 1: Unconstrained Initial Capacities (S0 ≤ C)

In the first trial conducted using Model 6 it was decided to not specify the initial

capacities of both reservoirs, but rather relax Equations (4.38) and (4.58) to the

form S0 ≤ C in order to enable the model to select the optimal starting conditions.
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Figure 4.6: Trial 1 (S0 ≤ C) - Comparison of Reservoir Levels (ML).

From this choice of initial capacity, key components of the reservoir system mea-

sured by Model 6 could then be investigated through the use of a series of figures.

The first of these figures, Figure 4.6, enables a comparison to be made between

the storage levels of both reservoirs over the event horizon considered. Figure 4.7

then displays the volume of water spilled from both Reservoir 1 and Reservoir 2

each hour on a common set of axes, while Figure 4.8 demonstrates the relationship

between the available water, trigger volumes and pumping volume for Reservoir 2.

From Figure 4.6, it can be seen that by not constraining the initial capacities of

the reservoirs, Model 6 has selected to initialise the storage levels of Reservoir 1

and Reservoir 2 to approximately 6000 ML and 79 500 ML respectively. When

first considering the initial capacity of Reservoir 2 it may seem counter intuitive for

the storage level of the reservoir to commence at near to capacity; however upon

considering Figure 4.8 later in this section, the need to initialise the storage level

at this volume is made clearer.

Figure 4.6 also displays the behaviour of both reservoir levels over the event horizon.

From the initial capacity of approximately 6000 ML, it can be seen that the level of

Reservoir 1 increased steadily over the first three hours of the event horizon, until

hour four, at which time a substantial inflow filled the reservoir to capacity. On the

other hand, the level of Reservoir 2 was seen to decrease over the first three hours

of the event from an initial capacity of approximately 79 500 ML. This decrease
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Figure 4.7: Trial 1 (S0 ≤ C) - Comparison of Spill from Reservoir 1 and Reservoir
2 (ML).

in reservoir level can be attributed to water being pumped backwards through the

system from Reservoir 2 to Reservoir 1. However, once again at the fourth hour,

a substantial inflow filled Reservoir 2 to full capacity. Also depicted by the figure

is the fact that once at full capacity, the storage levels of both reservoirs remained

steady at that value. This indicates that from the fourth hour onwards, there was

no hour in which the inflow to the reservoirs was less than the volume of water

being released from each reservoir to the community water supply.

Figure 4.7 displays the volume of water spilled from the two reservoirs across the

24 hour event horizon considered. Over the first three hours, the figure demon-

strates that no spill occurred from either reservoir. This is supported by Figure 4.6,

which showed that neither reservoir reached full capacity until hour four; therefore,

before this time it was physically impossible for spill to occur. From hour four,

there is a period of three hours over which the behaviour of the spill from the two

reservoirs varied; however at hour seven, the behaviour of the spill from both reser-

voirs began to approximate each other, though a difference of scale was imposed.

Figure 4.7 also demonstrates that the peak spill from Reservoir 1, of approximately

12 000 ML, occurred in hour 18. On the other hand, the peak spill from Reservoir 2,

or the spill from the system, occurred in the fourth hour of the event horizon and

equalled approximately 50 000 ML. A comparison of how this peak spill compares

83



5 10 15 20

80
00

0
90

00
0

10
00

00
11

00
00

12
00

00

Available Water & Trigger Volumes

Hour Number

A
va

ila
bl

e 
W

at
er

 (
M

L)

Avail. Water
V1

V2
V3

5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

Pumping Volume

Hour Number

P
um

pi
ng

 V
ol

um
e 

(M
L)

Available Water, Trigger Volumes and Pumping Volume for Reservoir 2 
(Trial 1: Unconstrained Initial Capacity)

Figure 4.8: Trial 1 (S0 ≤ C) - Relationship between Available Water + Trigger
Volumes and Pumping Volume for Reservoir 2.

to the peak spills observed under the other trials considered is made in Section 4.3.4

later in this chapter.

Figure 4.8 provides an opportunity to examine how the relationship between the

available water and trigger volumes of Reservoir 2 interact and determine the vol-

ume of water that could be pumped from the reservoir each hour. In this case,

as seen in the previous chapter, the reservoir trigger volumes V1t, V2t and V3t are

represented by the green line with crosses, orange line with diamonds and red line

with stars or asterisks respectively. Also, for the simplicity of notation, the three

trigger volumes will, from this point, be referred to as V1, V2 and V3.

The motivation behind the decision by Model 6 to initialise the storage level of

Reservoir 2 at near to capacity is better illustrated by Figure 4.8. In this case, the

figure shows that the available water began between the trigger volumes V2 and V3

for the first three hours of the event horizon, meaning that full capacity pumping

could be enacted over this period. However, in the third hour the available water

was seen to decrease to the value of the trigger volume V2. Therefore, if the initial

reservoir capacity was specified to be less than that selected by the model, then

in the third hour, the available water would have decreased below V2; enforcing

restrictions on the pumping volume. Also, the figure demonstrates that after the

third hour of the event horizon, pumping from Reservoir 2 ceased. At this point in

84



the event horizon, Figure 4.8 shows that the available water exceeded the trigger

volume V3; however this occurrence did not limit the volume of water that could be

pumped from Reservoir 2 each hour. The cause of the pumping being ceased can

be seen from Figure 4.6 presented previously, which demonstrated that Reservoir 1

was filled to capacity in the fourth hour. Therefore, as Reservoir 1 had insufficient

capacity to store the water being pumped from Reservoir 2, pumping stopped.

By not constraining the initial capacities of the reservoirs in this trial, Model 6 was

given the opportunity to optimally select these volumes. However, from the results

of this trial it has been seen that the initial capacity of Reservoir 2 selected by the

model was close to full capacity and resulted in large volumes of spill from the sys-

tem. Upon further consideration of these results and reviewing the structure of the

objective function of Model 6, it can be concluded that the model has selected this

initial capacity of Reservoir 2 as it is the minimum reservoir capacity that enables

the maximisation of both the trigger volumes and the volume of water pumped

from the reservoir. Although resulting in the “optimal” management strategy from

a modelling point of view, this strategy may not result in the best outcome for

the physical system. Once the results from the other trials have been reviewed,

a comparison of the optimal management strategies employed by Model 6 will be

conducted in Section 4.3.4 later in this chapter.

4.3.2 Trial 2: Initial Capacities of 0 ML (S0 = 0)

In this trial of Model 6, the initial capacities of both reservoirs were no longer un-

constrained but were specified to equal 0 ML; effectively, the reservoirs were both

empty. Although perhaps an unrealistic starting condition for some reservoir sys-

tems, the results from this trial enable interesting comparisons to be made between

the management strategies selected by the model under this “best case” scenario

compared to the other starting conditions considered. Once again, a series of figures

have been constructed to help explore the key components of the reservoir system

measured by Model 6 during the flood event.

Figure 4.9 is the first to be considered and displays the storage levels of the two

reservoirs over the event horizon of 24 hours. Starting from empty, as specified

by the initial conditions of the trial, the figure shows the storage level of Reser-

voir 1 increased slowly over the first three hours of the horizon until hour four was

reached. At this point, a large inflow event nearly filled the reservoir to capacity.

Upon a review of Figure 4.5 presented earlier in the chapter, it can be seen that

the fourth hour corresponded to the largest inflow of water to the system over the

event horizon; an inflow of approximately 28 000 ML and 45 000 ML to Reservoir 1

and Reservoir 2 respectively. As the capacity of Reservoir 1 is 30 000 ML, this

inflow effectively filled the reservoir in one hour, as depicted by Figure 4.9. In the

next hour following this inflow event, the available storage volume remaining in
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Figure 4.9: Trial 2 (S0 = 0) - Comparison of Reservoir Levels (ML).

Reservoir 1 was utilised, filling the reservoir to full capacity.

Figure 4.9 also demonstrates that the storage level of Reservoir 2 behaved in a

similar manner to that of Reservoir 1. As specified by the trial parameters, at the

beginning of the event horizon the reservoir was empty. Over the first two hours, the

storage level of Reservoir 2 increased slowly, however the figure shows it returned

to the initial capacity of 0 ML in hour three as a result of water being drained from

the reservoir due to pumping. In the following hour, the reservoir was subject to

the large inflow described previously, that filled the reservoir to approximately half

capacity. From this point, the storage level of Reservoir 2 increased each hour until

the capacity of the reservoir was reached in hour 14. As seen in the investigation

of the previous trial and presented again in this figure, once the reservoirs reached

full capacity, their volume was maintained at this level, indicating that the inflows

to the reservoirs were greater than or equal to the releases being made to the com-

munity water supply each hour.

In order to compare the behaviour of the spill from both reservoirs over the event

horizon, Figure 4.10 has been included. From the figure, it can be seen that spill

began from Reservoir 1 in the fifth hour, while spill from Reservoir 2 was delayed

until the fourteenth hour. These results are supported by Figure 4.9 which confirms

that Reservoir 1 and Reservoir 2 reached full capacity at hour five and fourteen re-

spectively; meaning that spill from the reservoirs before this time was a physical

86



● ● ● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●
●

● ●

5 10 15 20

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Hour Number

R
es

er
vo

ir 
1 

S
pi

ll 
(M

L)

● Reservoir 1
Reservoir 2

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

R
es

er
vo

ir 
2 

S
pi

ll 
(M

L)

Comparison of Spill from Reservoir 1 and 2 
(Trial 2: Initial Capacity = 0 ML)

Figure 4.10: Trial 2 (S0 = 0) - Comparison of Spill from Reservoir 1 and Reservoir
2 (ML).

impossibility. Also, Figure 4.10 demonstrates that from the fifteenth hour, the spill

from both reservoirs exhibited the same behaviour, though a difference in the scale

of the spill was observed. Therefore, under the conditions of this trial, the peak

volume of spill from both reservoirs was seen to occur in hour 18 and equalled ap-

proximately 12 000 ML from Reservoir 1 and 32 500 ML from Reservoir 2.

Figure 4.11 presents the relationship between the available water and trigger vol-

umes of Reservoir 2 and how this relationship could be used to determine the volume

of water pumped from Reservoir 2 each hour. From the figure, it can be seen that

the pumping facility began under the limitations of phase one pumping restrictions,

as the available water was less than the trigger volume V1 in the first two hours of

the event. This meant that the volume of water able to be pumped from Reservoir 2

each hour was constrained to 400 ML. However, also demonstrated by the figure is

that during the first two hours of the event horizon, not water was pumped from

Reservoir 2. This lack of pumping can be attributed to the specified initial reservoir

capacity of 0 ML and the resulting lack of water in the reservoir at the beginning

of the event horizon; effectively, there was no water to be pumped.

In hour three, the figure shows that the trigger volume V1 was minimised to equal

the value of the available water; changing the restrictions imposed on the pumping

facility from phase one to phase two and thus enabling a maximum of 600 ML to
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Figure 4.11: Trial 2 (S0 = 0) - Relationship between Available Water + Trigger
Volumes and Pumping Volume for Reservoir 2.

be drained from Reservoir 2 each hour. Although relaxing the restrictions on the

pumping facility, only approximately 200 ML was pumped from Reservoir 2 in the

third hour. Upon a comparison to Figure 4.9, it can be seen that in hour three the

storage level of Reservoir 2 was returned to 0 ML, meaning that the approximate

200 ML pumped from the reservoir in hour three was the total volume of water

stored in the reservoir at that time. However, in order to pump this volume from

the reservoir, the restrictions on the pumping facility did not have to be lifted to

phase two; a maximum of 400 ML per hour could have been pumped under the more

severe phase one restrictions. That being said, a requirement in the formulation of

Model 6 ensures that the volume of water pumped from Reservoir 2 cannot jump

from phase one pumping restrictions in the current hour to full capacity pumping

in the next; a transition period of at least one hour of phase two restrictions is

required. Therefore, in order to observe this requirement of the model, phase two

pumping restrictions needed to be enforced in hour three to ensure that full ca-

pacity pumping could be enacted in the subsequent hour. This can be seen from

Figure 4.11, as the trigger volume V2 has been minimised to equal the value of the

available water in hour four, thus enabling the full capacity of the pumping facility

to be drained from Reservoir 2. Following this hour of full capacity pumping, no
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further water was drained from Reservoir 2 due to Reservoir 1 reaching full capac-

ity.

In the case of this trial, by specifying the initial capacities of both reservoirs to

equal 0 ML, the strategy selected by Model 6 for the optimal management of the

reservoir system was different to that seen in the previous trial; resulting in the

maximisation of the number of months in which no spill occurred and the min-

imisation of the peak spill from each reservoir compared to that seen previously.

However, an initial reservoir capacity of 0 ML is unrealistic for most reservoir sys-

tems that are fundamentally designed as a secure water source for communities and

only used secondarily as a defence mechanism against flood events. In the next

trial, a more realistic starting condition is investigated, with the initial storage level

of each reservoir selected to equal half of their respective total capacities.

4.3.3 Trial 3: Initial Capacities of Half Reservoir Capacity (S0 = 1
2
C)

In the final trial of Model 6 explored in this chapter, a more realistic initial ca-

pacity to that investigated in the previous section was selected for both reservoirs.

Therefore, under the conditions of the trial, it was specified that the storage level

of both reservoirs be initialised to half of their respective total capacities; an initial

capacity of 15 000 ML for Reservoir 1 and 41 000 ML for Reservoir 2. In order to

aid in the examination of the key components of the reservoir system measured by

Model 6, three figures have been provided.

The first to be investigated is Figure 4.12 which presents the storage levels of Reser-

voir 1 and Reservoir 2 over the event horizon of 24 hours. From the figure, it can

be seen that the storage level of Reservoir 1 increased from the initial capacity of

15 000 ML over the first three hours of the horizon, until hour four, at which time

the significant inflow event examined in the previous section filled the reservoir to

capacity. On the other hand, the storage level of Reservoir 2 began at 41 000 ML

and decreased, as a result of water being pumped from the reservoir, over the first

three hours. However, as seen for Reservoir 1, Reservoir 2 was also filled to capacity

due to the size of the inflows that occurred in the fourth hour. Upon comparison

to Figure 4.6, it can be seen that the behaviour of the storage levels in this trial

are similar to that seen under Trial 1, though the initial capacities of the reservoirs

differ. This demonstrates that the strategy determined by Model 6 for the optimal

management of the reservoir system under the conditions of this trial, although

different to the optimal strategy selected under Trial 1, results in similar reservoir

storage level behaviours.

From Figure 4.13, it is seen that no spill occurred from either reservoir over the

first three hours of the event horizon, due to neither reservoir being at full capacity

during this time. A difference that was noted between the behaviour of the spill

from Reservoir 1 in this trial, compared to the spill seen in previous trials, was
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Figure 4.12: Trial 3 (S0 = 1
2
C) - Comparison of Reservoir Levels (ML).
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Figure 4.13: Trial 3 (S0 = 1
2
C) - Comparison of Spill from Reservoir 1 and Reservoir

2 (ML).
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Figure 4.14: Trial 3 (S0 = 1
2
C) - Relationship between Available Water + Trigger

Volumes and Pumping Volume for Reservoir 2.

that the peak spill, of approximately 16 000 ML, occurred from the reservoir in

the fourth hour of the event. This difference in the timing of the peak spill can be

attributed to the increase in initial capacity of the reservoir compared to that seen

in previous trials. However, the initial capacity of Reservoir 2 did not affect the

timing of the peak spill from the system, which occurred in hour 18 and equalled

approximately 32 500 ML; the same as that seen under the conditions of the previ-

ous trial considered. Figure 4.13 also displays that from hour seven, the behaviour

of the spill from the two reservoirs approximated each other, although the spill from

Reservoir 2 was systematically greater than that from Reservoir 1.

The final figure considered for this trial is Figure 4.14 which presents the rela-

tionship between the available water and trigger volumes of Reservoir 2 and how

this relationship interacted with the volume of water that was pumped from the

reservoir each hour. In this case, the figure shows that the trigger volume V2 was

minimised to equal the value of the available water for the first three hours of the

event horizon. By minimising the trigger volume to this value, it ensures that the

pumping facility began in a state of full capacity pumping, with no restrictions

placed on the volume of water able to be drained from Reservoir 2 each hour. By

initialising the pumping facility in this state, the model has avoided the necessity

to employ at least one hour of phase two pumping restrictions before enacting full
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capacity pumping, when transitioning from phase one restrictions; a specification

of Model 6 encountered under the conditions of the previous trial. Therefore, as

no restrictions were enforced, the full capacity of the pumping facility, 1000 ML,

was drained from Reservoir 2 over the first three hours of the event. However, at

the fourth hour, Figure 4.12 demonstrates that Reservoir 1 reached full capacity,

meaning that there was insufficient storage remaining in the reservoir for pumping

to continue.

The conditions considered under this final trial provided more realistic initial ca-

pacities for the two reservoirs than that seen under the previous trial, where both

reservoirs were assumed to be empty at the beginning of the event. That being

said, although the initial capacities of the reservoirs were increased in this trial,

some of the results were similar to that seen under the conditions of Trial 2, while

others were similar to those seen under the parameters of Trial 1. A more detailed

comparison between the results of Model 6 from all three trials is conducted in the

next section.

4.3.4 Comparison of Spill from Reservoirs 1 and 2 under Trials 1, 2 and 3

A comparison of the spill from Reservoir 1 and Reservoir 2, under the conditions

of the three trials considered, can be conducted through the use of the results from

Model 6 presented in the previous sections. In order to present a summary of the

spill from each reservoir, under the conditions of each trial, Table 4.1 has been

constructed. This table displays the minimum, median, mean and maximum spill

from Reservoir 1 and Reservoir 2, for the three trials. Due to the distribution of the

spill being heavily skewed, the median provides a better measure for the centre of

the dataset in this case. Also presented in Table 4.1 for each trial is the total spill

from each of the reservoirs over the event horizon. For ease, the total spill from

each reservoir can be considered separately at first.

To begin, a comparison of the total spill from Reservoir 1, or spill within the system,

can be conducted. Table 4.1 shows that the minimum total spill from Reservoir 1,

of 49 611 ML, occurred under the conditions of Trial 2, while the maximum total

spill, of 66 407 ML, was seen under the conditions of Trial 3. After considering these

spills against the initial reservoir capacities imposed under each trial, it can be seen

that there is a direct correspondence between the initial volume in the reservoir

and the total spill from the reservoir. For example, under Trial 2, the minimum

initial capacity of 0 ML also corresponded to the minimum volume of spill from the

reservoir, while the maximum initial capacity of 15 000 ML under Trial 3 coincided

with the maximum amount of spill from Reservoir 1. In the remaining trial, Trial 1,

Model 6 selected the initial capacity of Reservoir 1 to be approximately 6 000 ML,

falling between the other two initial capacities; a fact also reflected in the spill from

the reservoir of 57 106 ML, which lies between the spill seen under the conditions
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Table 4.1: Summary Statistics of Volume Spilled under each Trial from Reservoir

1 and Reservoir 2.

Spill (ML)

Reservoir 1 Reservoir 2

(Within the System) (From the System)

Trial 1

Minimum 0 0

Median 706.46 1838.56

Mean 2379.41 7546.91

Maximum 12287.84 48198.08

Total 57105.94 181125.80

Trial 2

Minimum 0 0

Median 621.98 0

Mean 2067.11 3999.90

Maximum 12287.84 32722.24

Total 49610.62 95997.52

Trial 3

Minimum 0 0

Median 706.46 1838.56

Mean 2766.96 6333.23

Maximum 16219.16 32722.24

Total 66407.12 151997.50
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of the other two trials.

This correspondence between the initial capacity and total volume of spill is also

seen for Reservoir 2. In this case, the table demonstrates that the minimum total

spill from Reservoir 2, or spill from the system, of 95 998 ML also occurred under

the conditions of Trial 2, where the initial capacity of the reservoir was minimised

to equal 0 ML. However, the maximum total spill from the system, of 181 126 ML,

occurred under the conditions of Trial 1, where the model elected to select the initial

capacity of the reservoir to equal approximately 79 500 ML; the maximum initial

capacity of Reservoir 2 for the three trials. In the remaining trial, Trial 3, the initial

capacity of Reservoir 2 was selected to equal 41 000 ML, while the spill from the

reservoir, and thus from the system, totalled 151 998 ML; both initial capacity and

total releases lying between those of the other trials.

From an exploration of the results presented in Table 4.1, it has been established

that a direct correspondence exists between the initial capacity and the total spill

from both Reservoir 1 and Reservoir 2; making the selection of the initial capacities

of the reservoirs an important consideration when trying to minimise the spill from

the system. As such, this provides an opportunity for future research, as a formula

could be developed to determine the expected spill from the system given the initial

capacities of both Reservoir 1 and Reservoir 2. However, in order to construct this

formula, more experiments of Model 6 would need to be conducted to ensure that

a better approximation of the relationship between the initial capacity and spill

could be identified. Also, the usefulness of the formula could be limited, as it would

only be applicable under the series of assumptions made before the conduct of this

experiment.

Also of interest from the summary of the spill presented in Table 4.1 is the peak

spill from each reservoir, under the conditions of the three trials. First to be con-

sidered is Reservoir 1. From the table, it can be seen that the maximum, or peak,

spill from Reservoir 1 under the conditions of Trial 3 was 16 219 ML. Interestingly,

the peak spill from the reservoir under the conditions of the other two trials were

the same and equalled 12 288 ML. Upon considering Figures 4.7, 4.10 and 4.13

presented previously, it can be seen that the hour in which the peak spill occurred

from Reservoir 1 changes under Trials 1 and 2 compared to Trial 3. In the case of

Trial 3, the peak spill from the reservoir occurred in hour four and corresponded to

the hour in which a significant inflow event transpired filling the reservoir to capac-

ity. While, on the other hand, under the conditions of Trial 1 and Trial 2, the peak

inflow occurred in hour 18, many hours after the reservoir had reached full capac-

ity. Therefore, this result suggests that the smaller initial capacities of Reservoir 1

under Trial 1 and Trial 2 ensured that the reservoir had sufficient available storage

remaining at the fourth hour to hold back a greater proportion of the significant
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inflow event, thereby minimising the spill in that hour. However, by specifying an

initial capacity of 15 000 ML in Trial 3, there was less available storage remaining

at the time of the inflow event, leading to an increase in the amount of spill that oc-

curred. This result enables the conclusion that there is a tipping point relationship

between the initial capacity and the peak spill from Reservoir 1, as opposed to the

correspondence relationship witnessed earlier between the initial capacity and total

spill. A tipping point relationship suggests that the peak spill from Reservoir 1 will

be minimised to 12 288 ML and occur in hour 18 until a particular initial capacity

is reached; the tipping point. At this tipping point, the peak spill from the reser-

voir will begin to increase as the initial capacity increases and the time at which

the peak spill occurs will change to the fourth hour to coincide with the significant

inflow event.

This tipping point behaviour is also exhibited upon investigation of the maximum,

or peak, spill from Reservoir 2; also presented in Table 4.1. Under the conditions

of Trial 1, the peak spill from Reservoir 2 occurred in the fourth hour and equalled

48 198 ML, whereas the peak spill from the reservoir under the remaining two trials

was minimised to equal 32 722 ML and occurred in the eighteenth hour. From

these results, it can be concluded that the initial capacities of Reservoir 2 under

Trial 1 and Trial 2 were less than the tipping point, leading to the peak spill being

minimised to 32 722 ML and occurring in hour 18. On the other hand, the initial

capacity selected by Model 6 under the conditions of Trial 3 was greater than the

tipping point, meaning that the peak spill from the reservoir occurred in the fourth

hour and equalled 48 198 ML.

From a review of the results presented throughout this chapter, it can be ascer-

tained that Model 6 has provided a thorough and comprehensive approximation

for the operation of the cascade reservoir system considered as a case study, dur-

ing a flood event. For each of the trials considered, the model has identified the

optimal strategy for the management of the system under the constraints of the

model, and given the assumptions made prior to the experiment. Although one

particular solution was highlighted to be “optimal” from a modelling perspective

and not completely sound in a physical sense, Model 6 still provides the operators

and managers with an approximation of their reservoir system and a plausible out-

come of the event. At this point, it must be reiterated that a series of assumptions

were made before conducting the experiment using Model 6; some of which may not

be feasible in a physical system. Examples of such assumptions are the assumed

perfect prior knowledge of the inflows to both reservoirs and also the assumed size

of these inflows. Therefore, the use of any results from the model must be treated

with caution and should be utilised as a guidance tool; provided with the goal of

supplying the managers and operators with an approximate representation of their
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reservoir system and an ability to investigate potential behaviours, under a variety

of scenarios, that could be witnessed during a flood event.

Also, scope for future research was identified through a review of the results from

Model 6. As mentioned previously, more experiments could be conducted using the

model to approximate the relationship between the initial capacities and total spill

from the reservoir system. This relationship could then be reduced to a formula that

enables the total spill from the system to be predicted from the initial capacities

of the two reservoirs. Another opportunity for future investigation is to conduct

a comparison of Model 6 in its current state with a model that does not include

a pumping facility. Due to the assumption made in the experiment of Model 6

regarding the size of the inflows to the system, Reservoir 1 filled to capacity very

quickly, meaning that the effectiveness and impact of the pumping facility on the

management strategies may have been limited. Although beyond the scope of this

thesis, it would be a worthwhile investigation to determine the impact of removing

the pumping facility from the system.

4.4 Chapter Conclusion

In this chapter, a model was constructed to ascertain strategies for how the existing

Perseverance and Cressbrook cascade reservoir system considered as a case study

in this thesis could be optimally managed during a flood event. To start, a Mixed

Integer Linear Programming (MILP) model, named Model 5, was formulated us-

ing the structure of Model 3 presented in the previous chapter as a framework.

Originally constructed to be applied to a single reservoir system during a drought

event, the constraints of Model 3 required significant alterations to ensure that the

newly formulated Model 5 would be applicable to a single reservoir system during

a flood event. Also, in order to increase the complexity of the problem considered,

an additional assumption was made to incorporate a pumping facility as part of the

reservoir system. The usefulness of this pumping facility was made clearer upon the

formulation of Model 6; an extended version of Model 5 to consider the operation

of a cascade reservoir system during a flood event. In this case, it was assumed that

the pumping facility enabled water to be drained from Reservoir 2 and pumped

backwards through the system to Reservoir 1, thus helping to minimise the volume

of spill each hour from Reservoir 2. Following this, an experiment was then per-

formed using Model 6 to investigate how key components of the reservoir system

behaved under the specification of varying initial capacities. Three different initial

capacities were trialled, with the experiment repeated for each case. From the re-

sults of the trials, it was found that relationships exist between the initial capacity

of the reservoirs and both the maximum spill and total spill from the reservoirs
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over the event horizon. Also, it was found that Model 6 provided a thorough ap-

proximation for the operation of the cascade reservoir system during a flood event;

however, opportunities also exist for potential future work, both in developing a

function to describe the relationship between initial capacity and total spill, along

with a comparison of Model 6 in its current form to a model without the inclusion

of a pumping facility.

Utilising the skills, knowledge and understanding that was developed throughout

the previous chapters with regard to the application of linear programming models

to reservoir systems, in this chapter, two MILP models were able to be constructed

from the ground up. By employing the basic framework and some of the techniques

presented in Model 3 of Chapter 3, Model 5 was able to be constructed and then

extended to form Model 6. The inclusion of the pumping facility to the model

increased the complexity of the situation and stretched all previous experience with

MILP models. Overall, the skills and knowledge developed in the previous chapters

were vital in creating the models considered in this chapter for the operation of a

cascade reservoir system during a flood event.
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Chapter 5

Using Time Series to Simulate Inflows

5.1 Chapter Overview

In this chapter, time series analysis is utilised to simulate an alternate set of in-

flow data, based upon the historic record of inflows sourced from the Queensland

Department of Natural Resources and Mines (2012), for the existing Perseverance

and Cressbrook cascade reservoir system considered as a case study throughout this

thesis. This set of simulated inflows will then be used in the subsequent chapter to

perform a comparison of the drought model (Model 4 described in Chapter 3) and

flood model (Model 6 presented in Chapter 4) developed previously. In order to

derive a time series model from the historic records, two model selection tools out-

lined by Dunn and Addie (2008) are employed. Upon the selection of an adequate

model, a set of diagnostic tests are performed to ensure that the model is suitable

and provides a reasonable approximation for the historic inflows. To complete the

examination of the time series model, a validation test proposed by Dunn and Ad-

die (2008) is conducted using a series of one-step ahead forecasts. The chapter is

then concluded by performing a simulation using the selected time series model to

generate an alternate set of inflows for the reservoir system.

5.2 Selection of Time Series Model

In this section, two model selection tools, the sample Autocorrelation Function

(sample ACF) and sample Partial Autocorrelation Function (sample PACF), are

utilised to deduce an appropriate time series model to describe the historic inflows

to the Perseverance and Cressbrook cascade reservoir system considered as a case

study. As mentioned in the previous chapters, the historic inflows were sourced

from the Queensland Department of Natural Resources and Mines (2012) and cor-

responded to a period from November 1965 to May 1981; where monthly recordings

were made of flows along Cressbrook Creek, the major tributary feeding into Cress-

brook dam. However, from 1979 onwards, the recordings became inconsistent and

many monthly observations were missing. Therefore, for the purposes of selecting

a time series model, only the historic inflows from January 1966 to December 1978

were considered; providing a 13 year period of inflows or 156 monthly observations
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Figure 5.1: Logarithm Transformed Historic Inflows from Jan 1966 to Dec 1978.
Sourced: Queensland Department of Natural Resources and Mines (2012).

in total.

Before considering the model selection tools, the inflow data was assessed to deter-

mine if it exhibited stationary behaviour; a behaviour that if shown, substantially

reduces the complexity of selecting a time series model for any dataset. There-

fore, by applying a logarithm transformation to the historic inflow records, it was

found that the inflow data exhibited stationary behaviour. This meant that the

statistics of the inflow records, such as the mean and variance, did not change over

time; properties of the data depicted by Figure 5.1, which shows the logarithm

transformed historic inflows to the Perseverance and Cressbrook cascade reservoir

system over the 13 year time period considered. Also displayed by the figure is that

an anomalous inflow event transpired in the final year of inflow records, where no

inflows occurred to the system in a number of months. Due to this period of min-

imal inflow, this year was selected to form part of the worst case drought scenario

considered in Chapter 3, when performing an experiment using Model 4.

In order to ensure the eventual validation of the time series model selected to de-

scribe the historic inflow data, the inflows needed to be separated into two portions.

The first portion, which incorporated the majority of the inflow data, was referred

to as the training series and in this case was composed of an 11 year period from

January 1966 to December 1976. As the name of the training series suggests, the
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Figure 5.2: Historic Inflows Separated into Training Series and Testing Series.

time series model for the historic inflows was selected or “trained” on the basis of

the information presented in this portion of the inflow records. The second portion

of the inflow data, named the testing series, was much smaller and was selected

to consist of only the last two years of inflow records. This portion of the historic

inflow data was key in the validation of the selected time series model, as it was

against the testing series that forecasts from the model were compared to assess

both the forecasting ability of the model, along with how well the model “fitted”

the data (performed in Section 5.4 later in this chapter). The separation of the

historic inflow records into both the training and testing series is presented in Fig-

ure 5.2. From this figure, it can be seen that the testing series encompassed the

months in the final year of inflow records where no inflows occurred. However,

by electing to include this atypical inflow event as part of the testing series, the

capability to assess the forecasting ability of the time series model may have been

impaired. The limitations surrounding the use of the testing series selected are

discussed more thoroughly in Section 5.4.

At this point, it should be noted that the time series analysis performed throughout

this chapter was conducted using the statistical computing software environment,

R version 2.15.1 (R Core Team, 2012). For each of the different analysis procedures

performed throughout the chapter, a separate section is provided in Appendix E in

order to document the source code utilised. In this case, the source code used to
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Figure 5.3: The Sample Autocorrelation Function (Sample ACF) for the Historic
Inflow Training Series.

perform the formatting of the data outlined previously, such as defining the historic

inflow records as a time series and separating the data into the training and testing

series, can be found in Section E.1 of Appendix E.

In order to determine the type and order of the time series model that best de-

scribed the historic inflow data, two model selection tools were considered; the

sample autocorrelation function (sample ACF) and sample partial autocorrelation

function (sample PACF). From these tools, the appropriate type of time series

model under the Box-Jenkins methodology could be selected; being an autoregres-

sive (AR) model, a moving average (MA) model or a combination of both model

types (ARMA) model. It is beyond the scope of this thesis to rigorously define these

model types; however, in a general sense, an autoregressive model is composed of a

linear combination of the previous observations in the series, while a moving aver-

age model is expressed as a function of the previous forecasting errors (Dunn and

Addie, 2008).

The first model selection tool considered was the sample ACF, from which the order,

k, of a MA model that best described the historic inflow data could be determined.

Dunn and Addie (2008) state that:

“If the sample ACF has k non-zero components from 1 to k, then an

MA(k) model is appropriate.” (Dunn and Addie, 2008)

The sample ACF for the historic inflow data is presented in Figure 5.3. From the

figure, it can be seen that the sample ACF was measured at each lag, where the
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term lag refers to the time difference in the ACF. The value of the sample ACF at

each lag corresponded to the correlation between any term in the series, with the

term x time steps prior (or after when the time series is stationary, as was the case

for the historic inflow data), where x is the number of the lag being considered.

Also, from the figure, it can be seen that two horizontal dashed lines appear on the

plot. These lines represent the approximate 95% confidence interval of the sample

ACF. Therefore, if an autocorrelation value fell within this interval, it could be

considered as zero and any deviation from zero seen in Figure 5.3 was as a result

of sampling error only. Figure 5.3 also demonstrates that the value of the sample

ACF at lag zero was equal to one. Regardless of the data considered this value will

always equal one and indicates that each term of the series is perfectly correlated

with itself.

Therefore, from Figure 5.3, there were two lags at which the value of the sample

ACF was greater than the 95% confidence interval. These occurred at lag one

and again at lag eight; indicating that a MA(1) (first order moving average) or a

MA(8) (eighth order moving average) model could have been suitable to describe

the historic inflow data. However, the more parsimonious models often provide

a suitable description of the data, while reducing the concerns associated with

overfitting or over expressing the time series model. Taking parsimony into account,

along with the small extent by which the value of the sample ACF was greater than

the approximate 95% confidence interval at lag eight, it was concluded that the

higher order MA(8) model would not be considered as a viable time series model

for the inflow data.

The second model selection tool considered was the sample PACF. Similar to the

role of the sample ACF, the sample PACF was utilised to determine the order, k,

of an AR model that provided the best description of the historic inflow data. In

this case, Dunn and Addie (2008) state:

“If the sample PACF has k non-zero components from 1 to k, then an

AR(k) model is appropriate.” (Dunn and Addie, 2008)

Figure 5.4 presents the sample PACF for the historic inflow data. In contrast to the

sample ACF, the sample PACF measured the correlation between the current term

and a future term of the series, after removing the effect of the joint correlations

with the intermediate terms. Similar to the sample ACF, a value of the sample

PACF that fell within the 95% confidence interval (dashed lines on Figure 5.4)

could again be considered to equal zero. One difference between the two autocor-

relation functions was that there was no term at lag zero for the sample PACF.

From Figure 5.4, it can be seen that at lag one the value of the sample PACF ex-

ceeded the approximate 95% confidence interval. The figure also demonstrates that

at lag seven, the value of the function was approximately equal to the lower bound
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Figure 5.4: The Sample Partial Autocorrelation Function (Sample PACF) for the
Historic Inflow Traning Series.

of the confidence interval. Due to the small extent by which this term exceeded the

confidence interval and the approximate nature of the interval, this term was not

considered to be significantly different to zero.

Therefore, after considering the sample ACF and sample PACF, it was concluded

that the historic inflow data could be described through the use of a MA(1) or an

AR(1) time series model. Also, these two individual components could be merged

together to form an autoregressive, moving average model, or ARMA(1,1) model.

In order to determine which of these three possible time series models provided

the best representation of the historic inflow data, the Akaike Information Crite-

ria (AIC) was utilised. The AIC is used in many areas of statistics and balances

the size of the errors (using log-likelihood) against the overfitting of parameters in

the model (using a penalty term). Therefore, while fitting additional terms to the

model will always reduce the size of the errors, the AIC penalises the addition of

unnecessary terms, or terms not contributing significant information.

The statistical software R was used to fit each of the three model types to the his-

toric inflow data, with a comparison then conducted using the AIC of each model

to determine which minimised the value of the AIC; thus meeting the criteria of

minimising the size of the errors, whilst helping to guard against the impacts of

overfitting. The source code used to fit each of these models, along with the result-

ing output, can be found in Section E.2 of Appendix E. An example of the output

generated by the model fitting process in R can be seen in Figure 5.5, where an
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Call:

arima(x = inflow.ts.train, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.4228 6.5073

s.e. 0.0807 0.1986

sigma^2 estimated as 1.75: log likelihood = -224.33, aic = 454.66

Figure 5.5: Example Output from the Time Series Model fitting process in R, where
an AR(1) Model is fitted to the Historic Inflow Training Series.

AR(1) model was fitted to the historic inflow data.

As a result of the model fitting process, R provided the value of the coefficients in-

cluded in the model, along with their respective standard errors. Also, R generated

some tools that could be used in the model selection process, such as an estimate

of the model variance (labelled sigma^2 in Figure 5.5), the log likelihood, and most

useful in this case, the AIC. From the output, it can be seen that the AIC of the

AR(1) model was approximately 454.66. This value can be compared against the

AIC of the other two model types in Table 5.1. From the table, it can be seen that

the smallest AIC corresponded to the AR(1) model. This result suggests that the

AR(1) model did a better job of minimising the errors, and thus approximating the

historic inflow records than the MA(1) model considered, as both the AR(1) and

MA(1) models contained the same number of parameters. Therefore, the difference

in the AIC between the AR(1) and MA(1) models could only be as a result of the

models abilities to minimise the error. However, due to the ARMA(1, 1) model

containing more parameters, this model would always do a better job of minimis-

ing the errors than the AR(1) model. Thus, the difference between the AIC of

the AR(1) model and ARMA(1, 1) model was due to the penalty imposed on the

ARMA(1, 1) model for containing these extra parameters, one of which contributed

minimal improvement to the model fit.

Table 5.1: Comparison of the AIC for each Model Type fitted to the Historic Inflow

Traing Series.

Model Type AIC

AR(1) 454.66

MA(1) 458.21

ARMA(1, 1) 456.55
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The AR(1) model selected on the basis of the AIC for the historic inflow data

can be stated below through the use of the coefficient estimates provided by R in

Figure 5.5. Therefore, if the historic inflows are {It}, where t is the unit of time,

then the fitted AR(1) model is

It − 6.5073 = 0.4228(It−1 − 6.5073) + et

This can be rearranged to produce the model

It = 3.756 + 0.4228It−1 + et

for t ≥ 1, where {et}t≥1 is a series of independently, identically distributed (iid)

random variables, denoting the noise in the time series.

By considering the sample ACF and sample PACF, along with the AIC, it was de-

termined that an AR(1) model provided an adequate approximation for the historic

inflow data; however, it could not be assured that the model provided a “good” rep-

resentation of the inflow records. Therefore, a series of diagnostic tests needed to

be performed.

5.3 Diagnostic Tests

In this section, a number of diagnostic tests are performed to ascertain whether

the AR(1) model selected to describe the historic inflow records provided a “good”

representation of the data set. In their work, Dunn and Addie (2008) define a

“good” model as a model that is able to capture the important features, or signal,

of the data. They go on to state that if the model can successfully capture the signal,

then upon the signals removal from the data, all that should remain is independent

and unpredictable, random noise; termed white noise. This unpredictability of the

noise, or residual values, is vital, as if the noise is in some way predictable, this

indicates that some element of the signal was not accounted for by the selected

model and improvements, such as the addition of extra terms to the model, could

be made to capture this. Dunn and Addie (2008) also indicate that a “good” model

is parsimonious, and not overly complicated. In order to test for this condition,

the significance of each term in a model can be considered and any insignificant

terms removed. This test of significance is one of the diagnostic terms performed

throughout this section; however to begin, the residual Autocorrelation Function

(residual ACF) and residual Partial Autocorrelation Function (residual PACF) are

considered.

Residual ACF and PACF

Figure 5.6 presents both the residual ACF and residual PACF for the AR(1) model

selected to describe the historic inflow data. The residual ACF and residual PACF
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Figure 5.6: Residual ACF and PACF for the AR(1) Model fitted to the Historic
Inflow Training Series.

behave in much the same way as the sample ACF and sample PACF considered

previously; however in this case the autocorrelation functions were fitted to the

residual values of the AR(1) time series model selected. As mentioned previously, if

the selected model provided a “good” representation of the historic inflow records,

the residuals of the model would appear as white noise and as such would not be

predictable or able to be forecast. This would have been reflected in the residual

ACF and residual PACF by all terms lying within the approximate 95% confidence

interval. However, both the residual ACF and residual PACF indicated that some

element of the residuals may have been able to be forecast, meaning that this

forecasting ability needed to tested for its inclusion in the signal of the model;

achieved through the addition of extra terms to the AR(1) model selected.

From Figure 5.6, it can be seen that the value of the residual PACF at lag eight

was greater than the approximate 95% confidence interval, indicating that there

was some element of the residuals that was able to be forecast from the inclusion

of this term in the time series model. The residual ACF also indicated that at lag

eight there was some element of the residuals able to be forecast; however due to

the minimal extent by which the value of the residual ACF at that lag was greater

than the 95% confidence interval, it was assumed to be as a result of sampling error

only and was not considered further.
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Box-Pierce test

data: resid(model.1)

X-squared = 23.7008, df = 25, p-value = 0.5367

Figure 5.7: Example of the Output from performing a Box-Pierce Test on the
residuals of the AR(1) Model in R.

As a result of the value of the residual PACF exceeding the approximate 95%

confidence interval at lag eight, an AR(8) model was fitted to the historic inflow

data. The source code required to fit the AR(8) model to the data in R and the

consequent output is included in Section E.3 of Appendix E. From the output of

the model fitting process, the AIC of the AR(8) model was found to equal 459.29.

This value was greater than the AIC of the AR(1) model (454.66, from Table 5.1),

meaning that the penalty imposed on the additional terms in the AR(8) model did

not outweigh the benefit gained by those same additional terms minimising the size

of the errors. Therefore, the AR(1) model remained the best suited to describe the

historic inflow data and was continued to be examined through the use of further

diagnostic tests.

Box-Pierce Test (Q-Statistic)

The next diagnostic test, the Box-Pierce test, can be used to assess if the residuals

of a time series model are independent. Dunn and Addie (2008) state that if the

residuals of the model behave as a white noise process, then the Box-Pierce statistic,

or Q-statistic, will approximately follow a chi-square (χ2) distribution, with m−N
degrees of freedom; where m is the number of autocorrelation coefficients specified

when computing the statistic and N is the number of autoregressive and moving

average components estimated for the time series model.

In order to perform the Box-Pierce test on the residuals of the AR(1) model, the

statistical software R was utilised. At this point, it should be noted that R does

not compare the result to a chi-square distribution with m−N degrees of freedom,

but rather m degrees of freedom; an option, Dunn and Addie (2008) state, that

is favoured by some authors. Also, the value of the parameter m is variable and

is often selected by default to equal 15; however for larger time series it is recom-

mended to increase this value. In this case, when testing the residuals of the AR(1)

model fitted to the historic inflow data, the parameter m was selected to equal 25.

The source code used to perform the Box-Pierce test in R is located in Section E.3

of Appendix E, while the output from the test performed on the residuals of the

AR(1) model is presented in Figure 5.7.

From the output of the test, Figure 5.7 shows that R provided the test statistic,

labelled X-squared, degrees of freedom and p-value. In the case of the Box-Pierce
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Figure 5.8: Cumulative Periodogram of the Residuals for the AR(1) Model fitted
to the Historic Inflow Training Series.

test performed, the null hypothesis was that the residuals of the model were in-

dependent; while the alternative hypothesis was that they were not. Therefore, a

p-value of 0.5367 indicated that there was insufficient evidence to reject the null

hypothesis. This enabled the assumption that the residuals of the AR(1) model

were independent. Therefore, the Box-Pierce test confirmed the independence of

the residuals of the AR(1) model selected to describe the historic inflows; how-

ever more testing needed to be conducted before the model could be concluded to

provide a “good” representation of the inflow records.

Cumulative Periodogram

Another diagnostic test that can be applied to the residuals of a time series model,

this time to ensure that the residuals form a white noise process, is to calculate

the cumulative periodogram and administer a Kolmogorov-Smirnov test. Dunn

and Addie (2008) present the cumulative periodogram as a plot in their work and

suggest that if the residuals form an approximate white noise process, as would

be expected if the model provides an adequate representation of the data, the

cumulative periodogram of the residuals will lie within the 95% confidence bands

labelled on the plot.

Figure 5.8 presents the cumulative periodogram of the residuals for the AR(1)

model fitted to the historic inflow data. From the figure, it can be seen that the

cumulative periodogram remained within the 95% confidence bounds, presented as

dashed blue lines. The function employed to generate the cumulative periodogram
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in R is presented in Section E.3 of Appendix E. Therefore, from this result it was

concluded that the residuals of the AR(1) model reflected a white noise process;

continuing to confirm that the model provided a suitable representation of the

historic inflow data.

Test of Parameter Significance

The next diagnostic test considers the statistical significance of the parameters

that compose a time series model. If a parameter is found to be not statistically

significant, or, in other words, not significantly different to zero, then it should be

removed from the model. As part of fitting a time series model in R, estimates

of the parameters, along with their respective standard errors and variances are

calculated. These standard errors can be utilised in determining the significance of

the parameters in a model. Dunn and Addie (2008) state that as a rough guide,

if the estimated value of the parameter is twice the size of its respective standard

error it can be deemed to be significant. However, they also point out that in order

to be more precise, a statistical test of significance (t-test) should be conducted.

In the case of the AR(1) model fitted to the historic inflow data, two parameters

were estimated; the constant term, labelled as the intercept by R, and the AR

term. The constant term was of no interest when considering the structure of the

model and as such the significance of the term was irrelevant, although a t-score

for the parameter was still calculated as part of the statistical test. The steps

performed in order to calculate the t-scores in R are outlined in Section E.3 of

Appendix E. From the output provided by R, the t-score of the AR term was found

to equal approximately 5.24. As this t-score was greater than the critical value of

the test (1.96), it was concluded that the AR term was statistically significant and

should be retained in the model. This diagnostic test ascertained that the AR(1)

model selected to describe the historic inflow data was parsimonious and did not

included any redundant terms; further supporting the conclusion that the AR(1)

model provided a “good” representation of the historic inflow records. However,

there was one final diagnostic test that needed to be performed in order to validate

a key assumption made during the conduct of the prior tests of the model.

Normality of Residuals

Throughout the diagnostic testing of the time series model conducted previously,

it was assumed that the residuals of the model were normally distributed. In this

final diagnostic test, this fundamental assumption of normality was examined, first

through the use of a normal Q-Q plot and then by considering a histogram of the

residuals.

Figure 5.9 presents the Q-Q plot of the residuals from the AR(1) model fitted to

the historic inflow data. From the figure, it can be seen that the residuals were

located close to the diagonal line included on the plot; however there was some
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Figure 5.9: Q-Q Plot of the Residuals for the AR(1) Model fitted to the Historic
Inflow Training Series.

deviation away from the line amongst the more extreme observations. Dunn and

Addie (2008) state that the closer the residuals are to the diagonal line, the greater

evidence there is to suggest that the residuals of the model follow a normal distri-

bution. Therefore, from Figure 5.9 there was sufficient evidence to suggest that the

residuals were approximately normally distributed.

In order to further investigate the normality of the residuals from the AR(1) model,

a histogram was constructed. This histogram is presented in Figure 5.10 and demon-

strates that the distribution of the residuals approximately followed the typical bell

shape curve associated with a normal distribution. Therefore, from the evidence de-

picted in both Figure 5.9 and Figure 5.10, it was confirmed that the residuals of the

AR(1) model selected to describe the historic inflow data approximately followed

a normal distribution and thus, the assumption made throughout the previous di-

agnostic testing regarding normality was validated. Note that the source code to

generate both of these plots in R is provided in Section E.3 of Appendix E.

As a result of satisfying the battery of diagnostic tests performed in this section, it

was concluded that the AR(1) model was a “good” model for the historic inflows,

as it captured the important information, or signal, of the data. This was confirmed

by some of the diagnostic tests performed, which showed that upon removal of the

signal, the residuals of the model were random, independent and not predictable.
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Figure 5.10: Histogram of the Residuals for the AR(1) Model fitted to the Historic
Inflow Training Series.

Also, the model itself was parsimonious and proven to contain no redundant or

extraneous terms. The final trial of the AR(1) model was to access its forecasting

ability by performing a validation technique outlined by Dunn and Addie (2008).

5.4 Model Validation and Inflow Simulation

To begin this section, a validation technique presented by Dunn and Addie (2008)

is performed to assess the forecasting ability of the AR(1) model demonstrated to

provide an approximate representation of the historic inflow data. As mentioned

at the beginning of this chapter, the full set of historic inflows was split into two

components; the training series and the testing series. The training series was com-

posed of the majority of the historic inflow records and, from this data, the AR(1)

model was selected. On the other hand, the last two years of inflows were isolated

from the data set to form the testing series and were not considered in the model

selection process until this point.

The objective of this validation test is outlined by Dunn and Addie (2008) who

explain that the test is to determine the forecasting ability of a model on a portion

of data that the model has not “seen” before. If a model was to be trialled on a

segment of data that was part of the training series, this may result in a false rep-

resentation of the models forecasting ability. Therefore, it is important to validate
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Figure 5.11: Comparison of the Forecast Inflows from the AR(1) Model to the
Historic Inflows that compose the Testing Series.

a time series model on data that was not used in the formulation of the model,

but remains representative of the behaviours that could be exhibited by the data

set (Dunn and Addie, 2008). In this case, the testing series contained four months

in which no inflows occurred. By including this period of no inflows in the testing

series, the series no longer represented the inflow behaviour witnessed in the train-

ing series and therefore comparisons against that portion of data do not provide an

accurate representation of the forecasting ability of the AR(1) model. However, due

to time constraints and the realisation of this limitation late in the review of this

thesis, the training and testing series could not be redefined to exclude this period

of no inflows, and thus the testing series in its original form was utilised; though,

caution was taken when interpreting the outcome of the validation test.

In order to perform this validation test, a series of one-step ahead forecasts were

iteratively calculated from the AR(1) model for each of the observations that com-

posed the testing series. The forecasts were then compared to the historic data of

the testing series both through a plot and by calculating the mean and variance of

the difference between the two sets of data. The source code implemented to per-

form this validation technique in R has been provided in Section E.4 of Appendix E.

To compare the forecasts from the AR(1) model to the historic inflows, Figure 5.11

has been included. From the figure, it can be seen that the AR(1) model provided
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Time Series:

Start = 1

End = 24

Frequency = 1

[1] 561.20064 875.07938 521.60832 134.62786 147.66130 519.16900

[7] 524.22474 104.43264 1245.44917 9984.91848 13932.76839 1837.02321

[13] 1423.42558 1950.39564 616.39802 444.31853 80.25243 880.77173

[19] 1785.00120 465.27555 426.11480 149.86000 547.53137 797.62418

Figure 5.12: Resulting Output from the Simulation of Inflows performed using the
AR(1) Model in R.

a suitable approximation of the historic inflows that composed the testing series;

however the more extreme observations were not accurately forecast by the model,

for example, during the months in which no inflow occurred. As mentioned previ-

ously, this inability to accurately forecast these events was to be expected, as the

behaviour displayed by the testing series is atypical of the behaviour witnessed in

the training series. In these months where no inflows occurred, the best one-step

ahead forecast that the AR(1) model could provide was the mean, or constant value

of the series, which equalled approximately 4. The mean and variance of the differ-

ence between the forecasts and the historic inflows that composed the testing series

also provided some useful information; calculated to equal approximately -0.733 and

5.077 respectively. A negative mean difference indicated that the forecasts from the

AR(1) model were, for the main part, over estimates of the observed inflows; a con-

clusion supported by Figure 5.11, which shows the forecasts being typically larger

than the observed inflows. Also, the size of the variance indicated that there were

sizeable differences between the forecasts from the model and the observed historic

inflows of the testing series.

Therefore, due to the anomalous data included as part of the testing series, there

were obvious differences between the forecasts and the historic data. Taking the

limitation imposed through the selection of the testing series into account, the val-

idation technique outlined by Dunn and Addie (2008) still demonstrated that the

AR(1) model provided a reasonable approximation of the historic inflow records;

an approximation that was comprehensive enough to facilitate the simulation of an

alternate set of inflows based upon the time series model.

As outlined at the beginning of the chapter, the purpose for the testing and de-

velopment of a time series model to approximate the historic inflow records was to

enable the simulation of an alternate set of inflow data. This simulated series of in-

flows will provide a common set of data on which the drought model (Model 4) and

flood model (Model 6), developed in previous chapters, can be tested and enable the

behaviour of the two models to be compared. In order to simulate this alternate set

of inflows across 24 months, R was utilised once more. The source code employed
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Figure 5.13: Simulated Series of Inflows from the AR(1) Model found to provide an
approximate representation of the Historic Inflows.

to conduct the simulation and then to convert the results into a usable, physical

unit, in this case megalitres (ML), can be seen in Section E.5 of Appendix E, while

the resulting output of the simulation generated by R is presented in Figure 5.12.

Therefore, using the AR(1) model selected, tested and validated, an alternate se-

ries of inflows based upon the behaviour exhibited by the historic inflow records,

sourced from the Queensland Department of Natural Resources and Mines (2012),

has been simulated. Along with being tabulated in Table D.3 of Appendix D, these

inflows have also been presented graphically in Figure 5.13. From the figure, it can

be seen that there are periods of both large and limited inflows across the 24 month

time period simulated. This variation in inflow will help in the exploration of the

different behaviours and management strategies employed by the drought and flood

models investigated in the next chapter.

From the extent of testing performed on the AR(1) model, it can be concluded with

confidence that the model provided a reasonable approximation of the historic in-

flow records compared to the other parsimonious model considered. However, there

are a range of more complex models and techniques that could provide a better

approximation of the inflow data, though it was beyond the scope of this thesis to

pursue those methods.
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5.5 Chapter Conclusion

The aim of this chapter was to simulate an alternate set of inflow data based upon

many years of historic records, through the use of time series analysis. To begin,

the historic inflow data for Cressbrook Creek, the main tributary that flows into

Cressbrook dam, one of the reservoirs considered as a case study throughout this

thesis, was sourced from the Queensland Department of Natural Resources and

Mines (2012). Using the 13 years of complete data available, the historic records

were separated into two portions. The first of these portions, which contained the

majority of the inflow data, was labelled the training series and used to develop

the time series model. The remaining portion of data, labelled the testing series,

consisted of the final two years of records and was withheld to be utilised later in

the model validation process. At this point, the sample Autocorrelation Function

(sample ACF) and sample Partial Autocorrelation Function (sample PACF), two

model selection tools, were employed to help determine the type and order of the

time series model that best described the historic inflows. Using these tools, along

with the Akaike Information Criteria (AIC), it was concluded that an autoregressive

model of the first order, or an AR(1) model, provided the best approximation of

the historic inflow records.

In order to ensure that the AR(1) model was a “good” model to describe the

historic inflow data, a sequence of diagnostic tests were performed. These tests

investigated properties of the residuals of the AR(1) model, along with tested the

significance of the terms that composed the model. Upon completion of these tests,

it was determined that the AR(1) model did provide a “good” description of the

historic records and was able to explain the majority of the important information,

or signal, of the data. The final trial of the model was to perform a validation

technique outlined by Dunn and Addie (2008). This validation process was used to

determine the forecasting ability of the AR(1) model by comparing a series of one-

step ahead forecasts from the model against the withheld portion of the inflow data

that composed the testing series. However, by including a period of atypical inflows

(a period of months in which no inflow occurred) as part of the testing series, the

validation process was impaired and the results from the process were not necessarily

representative of the true forecasting ability of the AR(1) model. Due to time

constraints and the realisation of this limitation late in the review process of this

thesis, changes were unable to be made to the training and testing series to exclude

this portion of the historic records. However, taking this limitation into account, the

validation technique still managed to demonstrate that the AR(1) model provided

a suitable approximation for the historic inflow data; an approximation that was

comprehensive enough to facilitate the simulation of an alternate set of inflows using

the model. These simulated inflows will be used in the subsequent chapter to provide
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a common set of data upon which a comparison of the drought model (Model 4)

and flood model (Model 6), developed in previous chapters, can be conducted.
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Chapter 6

Drought Model and Flood Model Comparison

6.1 Chapter Overview

In this chapter, a comparison is undertaken of the two Mixed Integer Linear Pro-

gramming (MILP) models formulated to describe the operation of a cascade reser-

voir system under the extreme conditions of a drought and flood event (Model 4

from Chapter 3 and Model 6 from Chapter 4 respectively). In order to ensure a

useful comparison of the Drought and Flood Models, an experiment is conducted

whereby the optional parameters of the models are selected to be similar, while

both consider a common set of inflows to the case study of the Perseverance and

Cressbrook cascade reservoir system. This common set of inflows was simulated

using time series analysis in the previous chapter and is based upon the historic

inflow records sourced from the Queensland Department of Natural Resources and

Mines (2012). From the results of the experiment, the behaviour of the key param-

eters measured by the Drought and Flood Models are explored independently. The

chapter is concluded with an investigation of the management strategies employed

by the two models.

6.2 Application of Models

In this section, Model 4 and Model 6 developed in Chapter 3 and Chapter 4 re-

spectively, and herein referred to as the Drought Model and the Flood Model, are

both applied to the case study of the Perseverance and Cressbrook cascade reservoir

system by means of an experiment. The goal of this experiment is to ultimately

compare the similarities and differences between the management strategies em-

ployed by the two models, when both are considered on a common set of inflows,

with similar optional parameters. However, before conducting this comparison, the

key parameters measured by the Drought Model and Flood Model can be consid-

ered separately. As seen in previous chapters, for the purposes of the experiment,

Perseverance dam is referred to as Reservoir 1, while Cressbrook dam is labelled

Reservoir 2. Figure 6.1, a simple copy of Figure 1.1, presents the physical layout of

the Perseverance and Cressbrook cascade reservoir system and has been repeated in

this chapter for ease of reference and as a reminder of the key features that compose
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Figure 6.1: Repeated Copy of Figure 1.1 showing the Configuration of the Perse-
verance and Cressbrook cascade reservoir system investigated as a Case Study.
Black Rectangles = Dam Spillway, Thinner Blue Arrows = Sources of Inflows,
Thicker Red Arrows = Direction of Spill from Perseverance to Cressbrook dam.

the reservoir system considered as a case study.

In order to conduct the comparison of the Drought and Flood Models, separate

experiments were performed for each using the optimisation modelling software

LINGO version 14.0 (LINDO Systems Inc, 2013); where the two models were con-

sidered using the same inflows, with similar optional parameters. This software

was also employed in the previous chapters when exploring each of the models in-

dividually, where it was mentioned that the Academic License acquired limited the

number of variables and constraints that the software could consider. Therefore,

due to the size of both the Drought Model and Flood Model, together with the

restrictions imposed by the software, a total of 24 time units could only be consid-

ered for each experiment; corresponding to 24 months or two years in the case of

the Drought Model and 24 hours or 1 day for the Flood Model. Examples of the

syntax required to perform both the experiment of the Drought Model and Flood

Model, along with examples of the resulting output, are provided in Appendix B

and Appendix C respectively.

In the previous experiments of the Drought and Flood Models, the historic in-

flow data provided by the Queensland Department of Natural Resources and Mines

(2012) was screened to determine the combination of records that corresponded to
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Figure 6.2: Alternate Set of Inflows to Reservoir 1 and Reservoir 2 Simulated using
Time Series Analysis.

the worst case drought and flood scenario. However, in order to facilitate a useful

comparison of the Drought Model and Flood Model, both need to be considered

on a common set of inflow data. Therefore, utilising time series analysis, an alter-

nate set of inflows was simulated based upon the historic records sourced from the

Queensland Department of Natural Resources and Mines (2012) for the monthly

inflow along Cressbrook Creek, the major tributary that flows into Cressbrook dam.

The procedures followed to first determine a suitable time series model to describe

the historic data, and then to simulate the alternate set of inflows can be found in

Chapter 5. One assumption made in the previous chapters regarding the inflows

to the reservoir system considered as a case study, was to specify that the inflows

to Perseverance dam, or Reservoir 1, are equal to 60% of the inflows to Cressbrook

dam, or Reservoir 2. This assumption was based upon prior knowledge of the size

of the independent creeks and streams that supply Perseverance dam compared to

the size of those that supply Cressbrook dam. The simulated inflows to both reser-

voirs are presented in Table D.4 of Appendix D and are also displayed graphically

in Figure 6.2. Note that the generic “Time Unit” is used to describe the scale over

which the inflows are measured in Figure 6.2. This is due to the different time

scales over which a drought and flood event are measured; droughts are typically

long term events and therefore have been considered on a monthly basis, whereas
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flood events can occur rapidly and were thus measured on an hourly scale.

Before conducting the individual experiments of the previously labelled Model 4

and Model 6 in Chapters 3 and 4 respectively, a series of assumptions were made.

These assumptions were selected in order to provide the best approximation of the

Perseverance and Cressbrook cascade reservoir system considered as a case study,

while at the same time simplifying the conditions of the experiment. Therefore,

in order to maintain the continuity of the methodologies employed throughout the

research presented in this thesis, many of the same assumptions were made for

the comparative experiments performed in this chapter. One such assumption was

that perfect prior knowledge of the inflows to the reservoir system was available.

Although this assumption may not be feasible in a physical system, perfect prior

knowledge of the inflows reduced the complexity of both the Drought and Flood

Model, and helped to simplify the results of the experiment.

Based upon information presented by the Toowoomba Regional Council (2013), an-

other assumption made in previous chapters and thus maintained for the purposes

of this experiment was to specify that the capacity of Perseverance and Cressbrook

dam equalled 30 000 megalitres (ML) and 82 000 ML respectively. These capacities

were also assumed to determine how the water supply demand from the community

was shared between the two reservoirs. Therefore, as the capacity of Perseverance

dam was assumed to be approximately one third the capacity of Cressbrook dam,

it was also assumed that one third of the community water supply demand was

sourced from Perseverance dam, while the remaining two thirds was acquired from

Cressbrook dam.

Due to the opposing nature of drought and flood events, the Drought and Flood

Models have been formulated with unique assumptions that are specific to each

scenario. In the case of the Drought Model, it was assumed that the volume of

water made available to the community from the reservoir system each month was

subject to rationing; the extent of which was determined by the available water of

the system (defined as the reservoir storage level in the previous month, plus the

projected inflows in the current month). On the other hand, it has been assumed in

the formulation of the Flood Model that the reservoir system featured a pumping

facility that had the ability to pump water backwards through the system from

Reservoir 2 to Reservoir 1. A detailed and thorough description of these assump-

tions and how they contribute to both models can be found in Sections 3.2.2 and

3.3 for the Drought Model and Sections 4.2.2 and 4.3 for the Flood Model.

Along with the unique assumptions specific to each of the models, both the Drought

Model and Flood Model also have optional parameters that are able to be specified

by the operators of the reservoir system. In order to ensure that a useful compar-

ison could be conducted between the two models, these parameters needed to be
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selected to have similar values. In the case of the Drought Model, both the initial

capacity of the reservoirs and the number of months in which phase two rationing is

enforced are able to be specified by the reservoir operators; while, when the Flood

Model is considered, the only optional parameter able to be selected is the initial

capacity of the reservoirs. Therefore, to ensure that the experiment was conducted

under similar conditions for both models, the initial reservoir capacities have been

left unconstrained (S0 ≤ C), along with the number of months in which phase two

rationing is permitted (n ≥ 0) as part of the Drought Model. This meant that

the models would have the opportunity to optimally select the values of these pa-

rameters, subject to the conditions of the experiment and inflows specified; in turn

helping to better differentiate between the management strategies employed by the

two models.

However, before comparing the differing management strategies utilised by the two

models, the behaviour of key parameters measured by the Drought and Flood Model

can be explored separately in the following sections.

6.2.1 Exploration of the Behaviour of the Drought Model Parameters

The first of the two models considered was the Drought Model. Of the variables

measured by the Drought Model, there were four key parameters of interest from

both reservoirs; being the reservoir storage level, available water, reservoir trigger

volumes and the releases to the community water supply. In order to thoroughly

investigate these parameters, a series of figures have been constructed. The first of

these, Figure 6.3, enables a comparison of the behaviour exhibited by the storage

levels of the two reservoirs, while Figures 6.4 and 6.5 display the behaviour of the

available water with the reservoir trigger volumes, and how the relationship between

these two parameters determines the extent of rationing enforced each month.

From Figure 6.3, it can be seen that the Drought Model selected the initial capac-

ity of Reservoir 1 to equal approximately 29 800 ML; 200 ML below full capacity.

Commencing from this initial capacity, the storage level of the reservoir fluctuates

marginally in magnitude over the 24 month event horizon considered, with a min-

imum capacity of approximately 29 100 ML occurring in the eighth month. The

figure also demonstrates that Reservoir 1 was at full capacity from month 10 to

15, and again in month 19; indicating that spill from the reservoir may have been

occurring in these months.

Figure 6.3 also presents the storage level of Reservoir 2 and demonstrates that the

Drought Model selected the initial capacity of this reservoir to equal approximately

2000 ML. From this starting condition, the reservoir level exhibited a decreasing

trend over the first nine months of the event horizon. This trend can be attributed

to the volume of water supplied to the community exceeding the inflow to the
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Figure 6.3: Drought Model (S0 ≤ C and n ≥ 0) - Behaviour of Reservoir 1 and
Reservoir 2 Storage Levels (ML).

reservoir each month. However, in months 10 and 11 there was a substantial in-

crease in the reservoir capacity. When this period is identified in Figure 6.2, it can

be seen that these months corresponded to a period of significant inflows to the

system; therefore resulting in the spike in reservoir level witnessed for both Reser-

voir 1 and 2. Following this spike, the storage level of Reservoir 2 stabilised and

reached approximately 42 000 ML, or roughly half of the reservoir capacity, by the

end of the 24 month event horizon.

Figures 6.4 and 6.5 have been constructed in order to explore the relationship be-

tween the available water and reservoir trigger volumes, and how this relationship

influences the volume of water made available to the community each month. From

Figure 6.4, it can be seen that the available water of Reservoir 1 was significantly

greater than the reservoir trigger volumes across the event horizon. Due to the

substantial difference in size between the available water and trigger volumes of

the reservoir, the trigger volumes appear in Figure 6.4 as one solid line near 0 ML,

when in fact they were separated by a difference of 5% and ranged from 133 ML

(V3) to approximately 147 ML (V1) (for the simplicity of comparisons between the

Drought Model and Flood Model, the trigger volumes have been referred to as V1,

V2 and V3). Therefore, as the available water was greater than the trigger volume V1

across the event horizon, this resulted in no rationing being enforced on the volume
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Figure 6.4: Drought Model (S0 ≤ C and n ≥ 0) - Behaviour of Available Water
+ Trigger Volumes and the Relationship with the Community Releases for Reservoir
1.
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of water released from Reservoir 1 for use by the community. This is also reflected

by the figure, which shows the community releases from Reservoir 1 maximised to

333 ML per month, or the most generous releases available from the reservoir, for

the extent of the 24 month event horizon.

Figure 6.5 demonstrates that the available water and trigger volumes of Reservoir 2

behaved in a similar way to that seen in Figure 6.4 for Reservoir 1, with the available

water being greater than the reservoir trigger volumes over the extent of the event

horizon. As the available water was consistently greater than the trigger volume

V1, the full demand from the community could be made available from Reservoir 2

across the event horizon. This occurrence is also displayed by Figure 6.5, which

shows the community releases maximised to a constant value 667 ML, correspond-

ing to the most generous releases from Reservoir 2, for the duration of the event.

From a review of the results of the experiment performed using the Drought Model,

it can be seen that no rationing was enforced on the volume of water made available

to the community, from either reservoir, over the event horizon; although the model

selected significantly different initial capacities for the two reservoirs. In the case

of Reservoir 1, the Drought Model selected an initial capacity of approximately

29 800 ML, which was only 200 ML less than the full capacity of the reservoir

(30 000 ML). On the other hand, the initial capacity of Reservoir 2 was selected

to equal approximately 2000 ML; very close to empty for a reservoir with a total

capacity of 82 000 ML. Although varying the initial capacities of both reservoirs,

the management strategy employed by the model ensured that the full community

demand could be made available over the extent of the 24 month event horizon,

without the need for rationing. A more thorough exploration of the management

strategy employed by the Drought Model will be conducted later in this chapter in

Section 6.2.3.

6.2.2 Exploration of the Behaviour of the Flood Model Parameters

Similar to the exploration of the behaviour of the Drought Model parameters, there

were some key parameters of interest when investigating the Flood Model. These

five parameters were the storage level of both reservoirs, spill from both reservoirs,

available water and reservoir trigger volumes of Reservoir 2 and the volume of water

pumped from Reservoir 2 backwards through the system to Reservoir 1 each hour.

At this point it is important to note the difference in the time frame under which

the Drought Model and Flood Model were considered; drought events can last for

long durations and therefore have been measured in months, whereas flood events

can occur rapidly and thus have been measured in hours. Once again, in order

to aid with the exploration of these key parameters, a series of figures have been

assembled.
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Figure 6.6: Flood Model (S0 ≤ C) - Behaviour of Reservoir 1 and Reservoir 2
Storage Levels (ML).

The first of these figures, Figure 6.6, displays the behaviour of the storage level of

Reservoir 1 and Reservoir 2 over the event horizon considered of 24 hours. From

the figure, it can be seen that the Flood Model selected to initialise the capacity

of Reservoir 1 to be empty, or 0 ML. From this starting condition, the level of the

reservoir exhibited an overall increasing trend until hour 14 was reached, at which

time the reservoir was filled to capacity (30 000 ML). Reservoir 1 then remained at

capacity until the seventeenth hour of the event horizon, at which time a combina-

tion of reduced inflows and the continued supply of water to satisfy the community

demand (assumed to be a constant value of 133 ML per hour) resulted in the reser-

voir level decreasing to approximately 29 900 ML, or 100 ML below capacity (an

event difficult to distinguish from Figure 6.6). Following this hour, the reservoir

returned to full capacity, although a similar event reduced the reservoir level again

in hour 22.

Also presented in Figure 6.6 is the storage level of Reservoir 2, which can be seen to

commence at approximately 57 500 ML. From this initial capacity, the figure shows

that the storage level of Reservoir 2 displayed an overall decreasing trend for the

first nine hours. This decrease in reservoir level can be primarily attributed to the

pumping of water from Reservoir 2 backwards through the system to Reservoir 1.
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Figure 6.7: Flood Model (S0 ≤ C) - Behaviour of Spill from Reservoir 1 and
Reservoir 2 (ML).

However, once hour 10 was reached, the storage level of the reservoir began to in-

crease from a capacity of approximately 50 000 ML. Once again, this significant

change in the behaviour of the reservoir storage level could be attributed to the

substantial inflows that occurred in hour 10 and 11, identified previously in Fig-

ure 6.2. Following this spike, the storage level of Reservoir 2 steadily increased over

the remaining 13 hours of the event horizon; reaching full capacity (82 000 ML) in

the final hour.

Figure 6.7 displays the behaviour of the spill from Reservoir 1 and Reservoir 2 over

the event horizon. The figure demonstrates that over the first 13 hours of the flood

event, no spill occurred from Reservoir 1. As mentioned previously, Reservoir 1

did not reach full capacity until the fourteenth hour of the event, meaning that it

was a physical impossibility for spill to occur prior to this time. Also mentioned

previously, was that in hours 17 and 22 the storage level of Reservoir 1 decreased

to below full capacity, again preventing any spill from the reservoir taking place;

an occurrence reflected in Figure 6.7 which exhibits a lack of spill in those hours.

The figure also demonstrates that no spill from Reservoir 2 transpired over the 24

hour event horizon. This behaviour is supported from a review of Figure 6.6, which

shows that the reservoir did not reach full capacity until the final hour of the flood

event, again meaning that it was physically impossible for any spill to eventuate
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Figure 6.8: Flood Model (S0 ≤ C) - Behaviour of Available Water + Trigger
Volumes and the Relationship with the Pumping Volume from Reservoir 2.

from the reservoir before this time.

The final figure to be considered in the individual exploration of the Flood Model

parameters is Figure 6.8. This figure demonstrates the behaviour of the available

water and trigger volumes of Reservoir 2, and how the relationship between these

two parameters can be used to determine the volume of water pumped backwards

through the system from Reservoir 2 to Reservoir 1 each hour. From Figure 6.8, it

can be seen that in the first hour of the event horizon, the available water and the

trigger volume V1 shared the same value. This signifies that the volume of water

able to be pumped from Reservoir 2 was limited under phase two restrictions to

60% of the pumping facility capacity, or 600 ML. However, when the actual volume

of water drained from the reservoir in the first hour is considered (also shown in

Figure 6.8), it was found that only approximately 250 ML was pumped from Reser-

voir 2 to Reservoir 1. The reason for not pumping the maximum volume that could

have been removed from Reservoir 2 in the first hour is illustrated by considering

the available water in hour two. From the figure, it can be seen that in the second

hour, the available water equals the reservoir trigger volume V2; enabling the full

capacity of the pumping facility to be pumped from Reservoir 2. Therefore, if more

than approximately 250 ML was to be pumped from Reservoir 2 in the first hour,

the available water in the second hour would have been less than the trigger volume
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V2 (assuming it remained the same); limiting the volume of water that could have

been pumped in that hour to 600 ML and potentially altering the optimal manage-

ment strategy determined by the Flood Model.

From the second hour, Figure 6.8 shows that the available water was equal to the

trigger volume V2, enabling the full capacity of the pumping facility (1000 ML) to be

drained from Reservoir 2 and pumped backwards through the system to Reservoir 1

each hour. However, upon reaching the fourteenth hour, it can be seen that pump-

ing ceased. This can be attributed to Reservoir 1 reaching full capacity, meaning

that any water pumped from Reservoir 2 to Reservoir 1 would immediately spill

from Reservoir 1 and, due to the cascade configuration of the reservoir system, be-

come another source of inflows to Reservoir 2; effectively defeating the purpose of

the backwards pumping of water through the system.

During the exploration of Figure 6.6 previously, it was seen that in hours 17 and

22 the storage level of Reservoir 1 decreased to below full capacity, potentially en-

abling pumping to resume. However, upon further investigation, it was found that

the storage level did not decrease by more than approximately 85 ML below the

full capacity of the reservoir in either hour. As part of the formulation of the Flood

Model, the model checks to ensure that there is at least 400 ML (the volume of

water able to be pumped under the strictest phase one restrictions) available in

Reservoir 1; if not, pumping is not initiated. Therefore, in hours 17 and 22, there

was insufficient capacity available in Reservoir 1 to initiate the use of the pumping

facility, as potentially, some extent of the water pumped from Reservoir 2 could be

returned to the reservoir as spill from Reservoir 1.

Therefore, from a review of the behaviour of the key parameters measured by the

Flood Model, it can be ascertained that the model determined an optimal strategy

for the management of the Perseverance and Cressbrook cascade reservoir system

during a flood event. In the next section, an assessment of how this management

strategy compares to that employed by the Drought Model is conducted.

6.2.3 Comparison of Drought Model and Flood Model Management Strategies

In this section, a comparison of the strategies employed by the Drought Model

and Flood Model to optimally manage the case study of the Perseverance and

Cressbrook cascade reservoir system is undertaken. Using the behaviour of the key

parameters of the Drought and Flood Models explored in the previous sections, this

comparison outlines the commonalities and differences in the strategies utilised by

the two models.

Due to the vast difference in the nature of the environmental events that the Drought

Model and Flood Model describe, the objectives of, and thus strategies employed

by, the two models are also vastly different. In the case of the Drought Model,

the primary objective is to maximise the number of months in which no rationing
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is enforced on the provision of water to the community from both reservoirs; in

effect maximising the amount of water available to the community each month. In

order to achieve this objective, a suitable volume of water needs to be stored and

maintained in each reservoir across the 24 month event horizon. On the other hand,

the primary objective of the Flood Model is to minimise the amount of spill from

Reservoir 2 (termed spill from the system) in consecutive hours of the 24 hour event

horizon, as a proxy to minimising the extent of damage that occurs downstream

of the reservoir system during the flood event. To ensure this goal is realised, the

storage capacity of the reservoirs can be utilised to stall the progression of the flood-

waters and to provide better control of the spill from the system.

Subject to the series of assumptions regarding the conditions under which the ex-

periments of the Drought Model and Flood Model were conducted, including the

specification of similar optional parameters and both models being considered on

a common set of inflows, both the Drought Model and Flood Model were able to

fully satisfy their relative objectives. When the Drought Model is considered, no

rationing was enforced on the volume of water released to the community, from

either reservoir, over the event horizon; thus ensuring that the entire community

demand was met in each and every month of the drought event. Also, in the case

of the Flood Model, the storage level of Reservoir 2 remained below full capacity

for the duration of the flood event until the final hour, leading to no spill occurring

from the system and the complete withholding of all floodwaters over the course

of the event; successfully preventing any further damage downstream of the reser-

voir system. Both of these outcomes are somewhat influenced by the assumptions

regarding the conditions under which the experiments were conducted; however,

subject to these conditions, the models still need to select the strategy that will

optimally manage the cascade reservoir system.

A key and common feature of both the Drought and Flood Model is the way in

which both optimally manage the cascade reservoir system considered as a whole,

rather than selecting optimal strategies for each reservoir independently. This is

an important and critical element of both models, as it allows for some amount of

interaction between the reservoirs and enables the sharing and balancing of water

resources. For example, the initial storage level of Reservoir 1 was selected by the

Drought Model to be close to full capacity. This meant that in a number of months,

the excess water spilled from Reservoir 1 increased the extent of inflows to Reser-

voir 2 and helped to prevent the need to enforce rationing on the volume of water

released to the community. Another example is from the Flood Model, where the

initial capacity of Reservoir 1 was selected by the model to equal 0 ML, or empty.

By minimising the initial capacity of Reservoir 1, it meant that the volume of water

pumped backwards through the system from Reservoir 2 could be maximised, along
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with prolonging the commencement of spill from Reservoir 1; together reducing the

storage level of Reservoir 2 and at the same time the number of hours before spill

occurred from the system.

Although the methods employed by the models in the selection of the initial ca-

pacity of Reservoir 1 can be readily identified, the volume selected by the models

for the initial capacity of Reservoir 2 can sometimes seem counterintuitive. For

example, the initial capacity of Reservoir 2 was selected by the Drought Model to

equal approximately 2000 ML. When first considered, the “common sense” solution

would be to initialise the storage level of the reservoir at full capacity, meaning

there would be plentiful water supplies to meet the community demand across the

event horizon. However, instead the Drought Model selected the minimum initial

capacity of Reservoir 2 that ensured the goals of the model were fully met with-

out penalty to the objective function. A similar behaviour is exhibited when the

Flood Model is considered. Again, a “common sense” approach would be to specify

the initial capacity of Reservoir 2 to equal 0 ML, so that the maximum volume of

floodwater could be withheld by the reservoir, ensuring that the extent of spill from

the system is minimised. However, the Flood Model selected the initial capacity of

Reservoir 2 to equal approximately 57 500 ML; the maximum initial storage level

of the reservoir that ensured the primary aim of the model was met completely,

without penalty to the objective function. Therefore, although “common sense”

indicates that there are straightforward strategies that could be employed in an at-

tempt to manage a cascade reservoir system, these strategies may not result in the

optimal management of the system. Also, these strategies may not be feasible when

a physical system is considered, as reservoirs are not typically empty at the time

a flood event occurs, nor are they typically at full capacity when a drought com-

mences.

At this point, it is important to reiterate that both the Drought Model and Flood

Model were designed and formulated to provide an approximate representation of a

cascade reservoir system under the extreme conditions of a drought and flood event,

while also allowing for the provision of certain assumptions and the specification

of optional parameters. In this case, the optional parameters of both models were

unconstrained to enable these values to be selected by the models themselves, thus

helping to differentiate between the different management strategies the models

employed. However, the strength of both the Drought Model and the Flood Model

lies in the ability of the reservoir system managers to be able to select the value of

these optional parameters, trial the models under varying conditions, and generate

an approximate representation of the system behaviour for each “what if” scenario.
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6.3 Chapter Conclusion

In this chapter, an experiment was conducted to ultimately compare the manage-

ment strategies of the Drought Model (Model 4 from Chapter 3) and the Flood

Model (Model 6 from Chapter 4), when both Mixed Integer Linear Programming

(MILP) models were subject to an equivalent set of conditions. This equivalent set

of conditions involved selecting the optional parameters of both models to be similar

and ensuring that the models were considered on a common set of inflows. In this

case, the optional parameters of the models, being the initial reservoir capacities for

both models and the number of months in which phase two rationing is permitted

(the Drought Model only), were specified to be unconstrained. This enabled the

models themselves to optimally select the value of these parameters and helped to

better differentiate between the management strategies employed. Also, in order

to ensure a useful comparison between the Drought and Flood Models, they both

needed to be considered using a common set of inflows. In this case, the common

set of inflows utilised were simulated using time series analysis (in Chapter 5) from

the historic inflow records (sourced from the Queensland Department of Natural

Resources and Mines (2012)).

In previous chapters, a series of assumptions were outlined when performing ex-

periments using the afore labelled Model 4 and Model 6 in order to reduce the

complexity of the conditions under which the experiment was conducted, while still

providing an accurate approximation of the Perseverance and Cressbrook cascade

reservoir system considered as a case study. To ensure the continuity of the method-

ologies employed throughout this thesis, many of the same assumptions were made

when conducting the experiments of the models in this chapter. Using the results of

the experiments, the behaviour of key parameters measured by the Drought Model

and Flood Model were explored individually, before the management strategies of

the two models were compared. From the investigation and comparison of the man-

agement strategies, it was found that some of the strategies employed by the two

models were similar, while there were also some clear differences; primarily due

to the different objectives of the two models, which in turn can be attributed to

the vastly different environmental phenomena that the Drought and Flood Model

consider. Also, it was noted that although there may be “common sense” strategies

that could be utilised in an attempt to manage the reservoir system, these strategies

may not always result in the optimal management of the system.
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Chapter 7

Conclusion

The objective of the research presented in this thesis has been to demonstrate the

procedure undertaken in order to develop, formulate and then utilise two Mixed

Integer Linear Programming (MILP) models that have the ability to determine

strategies for the optimal management of a cascade reservoir system, under the two

extreme environmental conditions of a drought and flood. Throughout this research,

the unique cascade configuration of a reservoir system was considered; where cas-

cade refers to a multiple reservoir system in which the spill from earlier reservoirs

becomes a source of inflows to subsequent reservoirs. Many physical reservoir sys-

tems exhibit this type of layout, such as the Somerset and Wivenhoe reservoirs in

the Brisbane Valley, along with the Perseverance and Cressbrook reservoir system

located near Toowoomba (presented in Figure 1.1 and again in Figure 6.1); the latter

of the two systems forming the case study considered throughout this thesis. The

motivation behind selecting the lesser known Perseverance and Cressbrook cascade

reservoir system to form the case study of this research, over a more substantial

system that exhibited the same configuration, was in part due to proximity and

the greater interest that resulted from a reliance on the water supplied by the local

system, and also to demonstrate that any reservoir system, no matter how small or

simple, can benefit from the implementation of better management strategies.

To begin, Chapter 2 outlined where the research presented in this thesis originated;

with the investigation and extension of a basic Linear Programming (LP) model

that provided a simple approximation for the operation of a single reservoir system.

This simple model, labelled Model 1 for the purposes of the thesis, was developed

by ReVelle and McGarity (1997) and after exploration was found to be limited

in its ability to comprehensively describe a physical system. That being said, the

model provided a useful example of how LP models could be utilised to monitor the

behaviour of key variables that contribute to the operation of a reservoir system.

As Model 1 was developed to only consider a single reservoir in isolation, it required

extension in order for it to be applicable to a cascade reservoir system. However,

during the formulation of the extended model, named Model 2, binary variables were
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added to some constraints to ensure the model could adequately describe some be-

haviours of a cascade reservoir system; changing the nature of Model 2 from a LP

model to a Mixed Integer Linear Programming (MILP) model. An experiment was

then conducted using Model 2 to investigate how the storage capacities of the two

reservoirs in the system behaved under varying community water supply demand.

Three different policy types were considered as part of the experiment, where each

of the policies partitioned the community water supply demand differently between

the two reservoirs. From the results of the experiment, it was found that two distinct

behaviours were exhibited by the reservoir storage capacities; one unique behaviour

when the inflows to a reservoir exceeded the community water supply demand from

the reservoir, and the other when the inflows to a reservoir were insufficient to meet

the demand from the community. Also, it was highlighted that Model 2 had some

limitations and did not always provide a physically feasible result; under some con-

ditions suggesting that either one or both of the reservoirs in the system were not

required.

Although the models considered in Chapter 2 were simplistic and not as compre-

hensive as models explored in later chapters, the intention of Chapter 2 was to

demonstrate how small experiments with simple models helped foster a basis of un-

derstanding that could be employed in subsequent chapters when applying MILP

models to more complex and sophisticated scenarios.

In Chapter 3, the first of the more complex scenarios were explored; with the aim

of developing a MILP model that could describe the operation of, along with de-

termine optimal management strategies for, a cascade reservoir system during a

drought event. To begin, a MILP model constructed by Shih and ReVelle (1995),

named Model 3 for the purposes of this thesis, to describe the operation of a single

reservoir system throughout the course of a drought was investigated. Due to the

comprehensive nature with which Model 3 was originally developed by Shih and

ReVelle (1995), the model was, with relative simplicity, extended in order to de-

scribe a cascade reservoir system during a drought event.

Following the definition and exploration of the extended drought model, labelled

Model 4, the model was applied to the Perseverance and Cressbrook cascade reser-

voir system considered as a case study through the means of an experiment. This

experiment was replicated three times, with a different plausible scenario considered

under each replication of the experiment. For each of these scenarios, the optional

parameters of the model were varied to explore the different behaviours exhibited

by the key parameters of the reservoir system measured by Model 4. From the out-

come of the experiment, it was determined that Model 4 provided a comprehensive

approximation of a cascade reservoir system during a drought event, with opti-

mal management strategies determined by the model for each scenario considered.
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However, some limitations of the model were also evident; primarily attributed to

the assumed conditions under which the experiment was conducted. Also, it was

noted that the optimal management strategies determined by Model 4 for the Per-

severance and Cressbrook cascade reservoir system were sensitive to changes in the

optional parameters selected. Future scope for further research was also discov-

ered, as it was ascertained that alternate methods to those currently employed by

Model 4 could exist to determine optimal management strategies for the reservoir

system.

The complexity of the scenarios explored throughout this thesis increased again in

Chapter 4, with the management of a cascade reservoir system being considered

under the inverse environmental phenomena to a drought; a flood. To commence

Chapter 4, a model was developed, labelled Model 5, which made use of the frame-

works of Model 3 and Model 4 from Chapter 3, but at the same time effectively

reversed the objectives of these models to construct a MILP model with the ability

to describe the operation of a single reservoir system during a flood event. Model 5

was then built upon and extended further in order to formulate Model 6; a MILP

model that provides an approximation for, along with determine strategies for the

optimal management of, a cascade reservoir system during a flood event. In order

to extend the functionality of a typical cascade reservoir system, along with the

complexity of Model 6, it was assumed that a pumping facility was included as part

of the reservoir system that could be employed to drain water from Reservoir 2

(Cressbrook dam) and pump it backwards through the system to Reservoir 1 (Per-

severance dam).

Model 6 was trialled using much the same technique as Model 4 in Chapter 3,

with an experiment replicated three times to determine how key parameters of the

Perseverance and Cressbrook cascade reservoir system measured by the model be-

haved under varying initial reservoir capacities (the only optional parameter in the

case of Model 6). Based upon the results of the experiment, it was found that dif-

ferent relationships link the initial reservoir capacities selected with the spill from

the reservoirs over the course of a flood event. Also, the experiment proved that

Model 6 provided a comprehensive approximation for the operation of the Persever-

ance and Cressbrook cascade reservoir system considered as a case study during a

flood event, while determining optimal strategies for the management of the system.

The experiment of Model 6 also highlighted opportunities for future work. These

opportunities include developing a function to describe the relationship between the

initial capacities of the reservoirs selected and the total spill from the reservoirs,

along with a comparison between the optimal management strategies determined

by Model 6 currently, with the optimal management strategies of a model that does

not consider a pumping facility as part of the reservoir system.
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Therefore, the formulation of Model 4 and Model 6 resulted in two MILP models

that can be employed to determine the optimal management strategies for a cas-

cade reservoir system under the extreme environmental conditions of a drought or

a flood; subject to a series of assumptions. Thus, it is important to note that the

optimal strategies determined by both models under one set of assumptions will

not be the same under an alternate set of assumptions; leading to the existence of

an infinite set of optimal strategies for any cascade reservoir system. This existence

of an infinite set of optimal strategies due to the assumptions made is unavoidable

and a common occurrence in most types of modelling. Therefore, even through

the adoption of one of the more complex methods mentioned in Chapter 1, such

as a Mixed Integer Nonlinear Programming model or utilising the Neural Network

approach, the optimal strategies determined by these methods may vary dependent

upon the set of assumptions specified. Thus, the strength of MILP models, such

as Model 4 and Model 6, is that with relative ease the operators of a reservoir

system can generate approximate representations of their particular system under

any conceivable scenario; providing an example of the behaviours that could be

expected and a plausible management strategy, subject to the assumed conditions,

that optimally achieves a predefined objective. Considering the relative complexity

of other model types compared with MILP models, an aim of future research is to

compare the optimal management strategies from other model types, such as non-

linear or inventory models, with the strategies from a MILP model and weigh the

benefit from a potentially better representation of the system against the complex-

ity of formulating and then applying the more complex model types to a cascade

reservoir system.

One limitation that affected the application of both Model 4 and Model 6 was the

Academic License of LINGO version 14.0 (LINDO Systems Inc, 2013) utilised. This

license limited the number of constraints and variables that the software could con-

sider and as such, the time frame over which both models could be investigated

was limited to 24 time units; equating to an event horizon of 24 months duration

for Model 4 and 24 hours duration for Model 6 respectively. Therefore, an aim of

future research is to apply both models to the Perseverance and Cressbrook cascade

reservoir system considered as a case study over a more substantial time period.

For example Model 4 could be considered across a horizon of 10 years, over which

time multiple drought events occur, facilitating better inference regarding when the

rationing of water supplies should commence, given a drought event is imminent.

On the other hand, Model 6 could be trialled under a scenario with sustained mod-

erate inflows across multiple weeks, potentially enabling the pumping facility to

have more influence on the optimal management strategies for the reservoir system.
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Moving from the development and formulation of MILP models, time series analy-

sis was utilised in Chapter 5, with the aim of simulating an alternate set of inflow

data, based upon the historic records sourced from the Queensland Department

of Natural Resources and Mines (2012), that could be used as a common set of

inflows when performing a comparison of the management strategies employed by

the drought model (Model 4) and flood model (Model 6) later in this thesis. To

commence Chapter 5, the 13 year period in which complete inflow records were

recorded was separated into two portions. The first and largest of the portions was

labelled the training series, and it was from this data that a suitable time series

model was selected. The remaining, smaller portion of the data, named the testing

series, was withheld to be used later when validating the selected time series model.

Two model selection tools were then employed to determine the type and order of

time series model that provided the best approximate representation of the historic

inflow records. Using an information criterion, in conjunction with these two model

selection tools, an AR(1) model was determined to provide the best representation

of the historic inflow records. Following the selection of the AR(1) model, a series

of diagnostic tests were performed in order to ensure that it was a “good” model

to describe the inflow records, by it capturing the important information, or signal,

of the inflow data.

Before using the AR(1) time series model to simulate an alternate set of inflow data,

a validation procedure outlined by Dunn and Addie (2008) was performed. How-

ever, due to the selection of an atypical period of inflows in the testing series that

did not display the behaviours witnessed as part of the training series, the capabil-

ity of the validation process to measure the forecasting ability of the AR(1) model

was impaired. Due to time constraints, this limitation was unable to be rectified

and this portion of the inflow records unable to be excluded from the testing series.

Taking the limitation of the testing series into account, the results of the validation

process still indicated that the AR(1) model provided an adequate approximation

of the historic inflow data. Thus, from this model, an alternate set of inflows were

able to be simulated for use in the Chapter 6, where a comparison of the drought

and flood model was performed.

Although the AR(1) time series model selected to describe the historic inflow records

did suitably capture the signal of the data for the purposes of a simulation, other

types of time series models could have provided a better approximation of the in-

flow records. In this case, only a limited number of simple model types under the

Box-Jenkins methodology were considered, while a range of more complex time se-

ries models, such as the non-stationary or non-linear time series models explored

by Dunn and Addie (2008), were not. Thus, if as part of future research a more
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accurate representation of the historic inflow records was required, then these al-

ternate types of time series models could be considered and compared against the

parsimonious AR(1) model to determine if a better model existed to capture the

signal of the inflow records.

Using Model 4 and Model 6, herein referred to as the Drought Model and Flood

Model, a comparison of the management strategies employed by the two models

was conducted in Chapter 6; where both considered a cascade reservoir system un-

der a common set of inflows, and similar optional parameters. In the case of the

comparison performed, the optional parameters of both MILP models were selected

to be unconstrained. By not constraining these optional parameters, the models

themselves were able to select their optimal values, which in turn helped to further

differentiate between the management strategies employed. Also, in order to facili-

tate a useful comparison of the strategies employed to optimally manage the cascade

reservoir system, both the Drought Model and Flood Model were considered on the

common set of inflows simulated in Chapter 5 using time series analysis.

Under these similar conditions, an experiment revealed that there were some sim-

ilarities between the management strategies employed by the two models, but also

clear differences. These differences were primarily attributable to the different ob-

jectives of the models, which in turn were a product of the two vastly different

environmental phenomena that the Drought Model and Flood Model considered.

Also evident from the comparison of the Drought and Flood Models was that al-

though “common sense” strategies exist and could be utilised to operate a cascade

reservoir system; these strategies may not always result in the optimal management

of the system.

Therefore, this thesis has resulted in the successful demonstration of the processes,

procedures and methods undertaken in the development and formulation of two

MILP models that have the ability to determine strategies for the optimal manage-

ment of a cascade reservoir system, under the two extreme environmental conditions

of a drought and flood. Both of these models have been tested through application

to the case study of the physical Perseverance and Cressbrook cascade reservoir

system; resulting in comprehensive approximations of the system behaviours. Also,

time series analysis has been utilised to generate a model that provided a suitable

representation of the historic inflow records sourced for the case study considered.

This time series model was then employed to simulate an alternate set of inflows

for use as a common data set when comparing the management strategies of the

MILP models; a comparison that demonstrated both similarities and differences

between the management strategies employed by the Drought Model and Flood

Model. This comparison also revealed that although “common sense” strategies

140



could be employed to operate a reservoir system, these strategies often do not re-

sult in the optimal management of the system and models like those developed,

formulated and utilised in this thesis are necessary to ensure that a commodity

as valuable and potentially as dangerous as water is optimally regulated into the

future.
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Appendix A

Example of LINGO Input and Output

Model 2: The Simple Model

An example of both the input syntax and output generated when the experiment

of the simple model (Model 2) was performed using the optimisation modelling

software LINGO (LINDO Systems Inc, 2013) can be found in this appendix. In

order to minimise the size of this thesis, only a subset of the input and output

has been provided in the following sections. A full example of the input syntax

and output generated can be found in the Example of LINGO Input and Output

directory accompanying this thesis, in the folder Model 2 - The Simple Model. An

example of the input for Model 1 is also included in the accompanying directory,

following the path Initial Model Examples\Example of Model 1 Input. Note that for

ease of opening and reading the accompanying input and output files, text copies

(extension .txt) of the original LINGO files have been included.

In order to assist with the interpretation of the LINGO input and output, each of

the variables that compose Model 2 have been translated into the form in which

they appear in the input syntax and listed below. In this case, the variable q did

not appear in Chapter 2 when defining the constraints or variables that compose

Model 2; however the variable was used in the input syntax to define the total

community water supply demand. Also, binary variables are denoted in the input

syntax by being enclosed within @BIN().

t = 1, 2,..., 6

S∗
t = s1f, s2f,..., s6f

St = s1s, s2s,..., s6s

S∗
0 = s0f

S0 = s0s

q∗ = qf

q = qs

W ∗
t = w1f, w2f,..., w6f

Wt = w1s, w2s,..., w6s

I∗t = i1f, i2f,..., i6f

It = i1sf, i2sf,..., i6sf
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C∗ = Cap1

C = Cap2

C∗
D = CapDam1

CD = CapDam2

C∗
S = CapSp1

CS = CapSp2

p+t
∗

= p1pf, p2pf,..., p6pf

p+t = p1ps, p2ps,..., p6ps

p−t
∗

= p1mf, p2mf,..., p6mf

p−t = p1ms, p2ms,..., p6ms

M = 10000

y∗t = y1f, y2f,..., y6f

yt = y1s, y2s,..., y6s

A.1 Example of LINGO Input for the Simple Model

MIN = CapDam1 + CapDam2;

s0f + i1f - qf - w1f - s1f = 0;

s1f + i2f - qf - w2f - s2f = 0;

...

s5f + i6f - qf - w6f - s6f = 0;

s0f - CapDam1 <= 0;

s1f - CapDam1 <= 0;

...

s6f - CapDam1 <= 0;

w1f - CapSp1 <= 0;

w2f - CapSp1 <= 0;

...

w6f - CapSp1 <= 0;

Cap1 - CapSp1 - CapDam1 = 0;

CapSp1 - 0.1*CapDam1 <= 0;
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s0f + i1f - qf - CapDam1 - p1pf + p1mf = 0;

s1f + i2f - qf - CapDam1 - p2pf + p2mf = 0;

...

s5f + i6f - qf - CapDam1 - p6pf + p6mf = 0;

p1mf - 10000*y1f <= 0;

p1pf + 10000*y1f <= 10000;

p2mf - 10000*y2f <= 0;

p2pf + 10000*y2f <= 10000;

...

p6mf - 10000*y6f <= 0;

p6pf + 10000*y6f <= 10000;

w1f - p1pf <= 0;

w2f - p2pf <= 0;

...

w6f - p6pf <= 0;

i1f=50;

i2f=50;

...

i6f=50;

s0s + i1sf - qs - w1s - s1s = 0;

s1s + i2sf - qs - w2s - s2s = 0;

...

s5s + i6sf - qs - w6s - s6s = 0;

s0s - CapDam2 <= 0;

s1s - CapDam2 <= 0;

...

s6s - CapDam2 <= 0;

w1s - CapSp2 <= 0;

w2s - CapSp2 <= 0;

...

w6s - CapSp2 <= 0;
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Cap2 - CapSp2 - CapDam2 = 0;

CapSp2 - 0.1*CapDam2 <= 0;

s0s + i1sf - qs - CapDam2 - p1ps + p1ms = 0;

s1s + i2sf - qs - CapDam2 - p2ps + p2ms = 0;

...

s5s + i6sf - qs - CapDam2 - p6ps + p6ms = 0;

p1ms - 10000*y1s <= 0;

p1ps + 10000*y1s <= 10000;

p2ms - 10000*y2s <= 0;

p2ps + 10000*y2s <= 10000;

...

p6ms - 10000*y6s <= 0;

p6ps + 10000*y6s <= 10000;

w1s - p1ps <= 0;

w2s - p2ps <= 0;

...

w6s - p6ps <= 0;

i1s=50;

i2s=50;

...

i6s=50;

i1sf - i1s - w1f = 0;

i2sf - i2s - w2f = 0;

...

i6sf - i6s - w6f = 0;

q=0;

q-qf-qs=0;

qf-0.5*q=0;

@BIN(y1f);

@BIN(y2f);

...

@BIN(y6f);
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@BIN(y1s);

@BIN(y2s);

...

@BIN(y6s);
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A.2 Example of LINGO Output for the Simple Model

Global optimal solution found.

Objective value: 570.2479

Objective bound: 570.2479

Infeasibilities: 0.000000

Extended solver steps: 3

Total solver iterations: 444

Elapsed runtime seconds: 0.22

Model Class: MILP

Total variables: 74

Nonlinear variables: 0

Integer variables: 12

Total constraints: 97

Nonlinear constraints: 0

Total nonzeros: 244

Nonlinear nonzeros: 0

Variable Value Reduced Cost

CAPDAM1 272.7273 0.000000

CAPDAM2 297.5207 0.000000

S0F 0.000000 0.9917355

I1F 50.00000 0.000000

QF 0.000000 0.000000

W1F 0.000000 0.000000

S1F 50.00000 0.000000

I2F 50.00000 0.000000

W2F 0.000000 0.000000

S2F 100.0000 0.000000

I3F 50.00000 0.000000

W3F 0.000000 0.000000

S3F 150.0000 0.000000

I4F 50.00000 0.000000

W4F 0.000000 0.000000
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Appendix B

Example of LINGO Input and Output

Model 4: The Drought Model

An example of both the input syntax and output generated when the experiment

of the drought model (Model 4) under the conditions of Scenario 1 was performed

using the optimisation modelling software LINGO (LINDO Systems Inc, 2013) can

be found in this appendix. In order to minimise the size of this thesis, only a

subset of the input and output has been provided in the following sections. A full

example of the input syntax and output generated for each of the drought model

scenarios considered in Chapter 3 and the model comparison experiment performed

in Chapter 6, can be found in the Example of LINGO Input and Output directory

accompanying this thesis, in the folder Model 4 - The Drought Model. An example

of the input for Model 3 is also included in the accompanying directory, following

the path Initial Model Examples\Example of Model 3 Input. Note that for ease of

opening and reading the accompanying input and output files, text copies (extension

.txt) of the original LINGO files have been included.

In order to assist with the interpretation of the LINGO input and output, each of

the variables that compose Model 4 have been translated into the form in which

they appear in the input syntax and listed below. In this case, binary variables are

denoted in the input syntax by being enclosed within @BIN().

t = 1, 2,..., 24

p = 1, 2,..., 12

y∗1t = y1D1M1, y1D1M2,..., y1D1M24

y1t = y1D2M1, y1D2M2,..., y1D2M24

y∗2t = y2D1M1, y2D1M2,..., y2D1M24

y2t = y2D2M1, y2D2M2,..., y2D2M24

ω = 0.01

V ∗
1p = V1D1M1, V1D1M2,..., V1D1M12

V1p = V1D2M1, V1D2M2,..., V1D2M12

V ∗
2p = V2D1M1, V2D1M2,..., V2D1M12

V2p = V2D2M1, V2D2M2,..., V2D2M12
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V ∗
3p = V3D1M1, V3D1M2,..., V3D1M12

V3p = V3D2M1, V3D2M2,..., V3D2M12

S∗
t = D1S1, D1S2,..., D1S24

St = D2S1, D2S2,..., D2S24

S∗
0 = D1S0

S0 = D2S0

I∗t = D1I1, D1I2,..., D1I24

It = D2I1, D2I2,..., D2I24

Î∗t = D1Ihat1, D1Ihat2,..., D1Ihat24

Ît = D2Ihat1, D2Ihat2,..., D2Ihat24

ε = 0.1

M = 100000

R∗
t = D1R1, D1R2,..., D1R24

Rt = D2R1, D2R2,..., D2R24

α1 = 0.6

α2 = 0.4

D∗ = 333

D = 667

W ∗
t = D1W1, D1W2,..., D1W24

Wt = D2W1, D2W2,..., D2W24

C∗ = 30000

C = 82000

U∗
t = D1U1, D1U2,..., D1U24

Ut = D2U1, D2U2,..., D2U24

β1 = 0.05

β2 = 0.05

n = 0, 1,..., 24

A∗
t = D1A0, D1A1,..., D1A24

At = D2A0, D2A1,..., D2A24

B.1 Example of LINGO Input for the Drought Model under

Scenario 1

MAX = y1D1M1+y1D1M2+y1D1M3+y1D1M4+y1D1M5+y1D1M6+y1D1M7+y1D1M8+y1D1M9

+y1D1M10+y1D1M11+y1D1M12+y1D1M13+y1D1M14+y1D1M15+y1D1M16+y1D1M17

+y1D1M18+y1D1M19+y1D1M20+y1D1M21+y1D1M22+y1D1M23+y1D1M24+y1D2M1

+y1D2M2+y1D2M3+y1D2M4+y1D2M5+y1D2M6+y1D2M7+y1D2M8+y1D2M9

+y1D2M10+y1D2M11+y1D2M12+y1D2M13+y1D2M14+y1D2M15+y1D2M16+y1D2M17

+y1D2M18+y1D2M19+y1D2M20+y1D2M21+y1D2M22+y1D2M23+y1D2M24
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- 0.01*(V1D1M1+V1D1M2+V1D1M3+V1D1M4+V1D1M5+V1D1M6+V1D1M7+V1D1M8

+V1D1M9+V1D1M10+V1D1M11+V1D1M12+V2D1M1+V2D1M2+V2D1M3+V2D1M4

+V2D1M5+V2D1M6+V2D1M7+V2D1M8+V2D1M9+V2D1M10+V2D1M11+V2D1M12

+V3D1M1+V3D1M2+V3D1M3+V3D1M4+V3D1M5+V3D1M6+V3D1M7+V3D1M8+V3D1M9

+V3D1M10+V3D1M11+V3D1M12)

- 0.01*(V1D2M1+V1D2M2+V1D2M3+V1D2M4+V1D2M5+V1D2M6+V1D2M7+V1D2M8

+V1D2M9+V1D2M10+V1D2M11+V1D2M12+V2D2M1+V2D2M2+V2D2M3+V2D2M4

+V2D2M5+V2D2M6+V2D2M7+V2D2M8+V2D2M9+V2D2M10+V2D2M11+V2D2M12

+V3D2M1+V3D2M2+V3D2M3+V3D2M4+V3D2M5+V3D2M6+V3D2M7+V3D2M8+V3D2M9

+V3D2M10+V3D2M11+V3D2M12)

- (D1A0+D1A1+D1A2+D1A3+D1A4+D1A5+D1A6+D1A7+D1A8+D1A9+D1A10+D1A11

+D1A12+D1A13+D1A14+D1A15+D1A16+D1A17+D1A18+D1A19+D1A20+D1A21

+D1A22+D1A23+D1A24)

- (D2A0+D2A1+D2A2+D2A3+D2A4+D2A5+D2A6+D2A7+D2A8+D2A9+D2A10+D2A11

+D2A12+D2A13+D2A14+D2A15+D2A16+D2A17+D2A18+D2A19+D2A20+D2A21

+D2A22+D2A23+D2A24);

D1S0 <= 30000;

D2S0 <= 82000;

!Constraint 1 - Dam 1;

100000*y1D1M1 -D1S0 -D1Ihat1 + V1D1M1 >= 0.1;

100000*y1D1M2 -D1S1 -D1Ihat2 + V1D1M2 >= 0.1;

...

100000*y1D1M24 -D1S23 -D1Ihat24 + V1D1M12 >= 0.1;

!Constraint 1 - Dam 2;

100000*y1D2M1 -D2S0 -D2Ihat1 + V1D2M1 >= 0.1;

100000*y1D2M2 -D2S1 -D2Ihat2 + V1D2M2 >= 0.1;

...

100000*y1D2M24 -D2S23 -D2Ihat24 + V1D2M12 >= 0.1;

!Constraint 2 - Dam 1;

100000*y1D1M1 +V1D1M1 - D1S0 - D1Ihat1 <= 100000;

100000*y1D1M2 +V1D1M2 - D1S1 - D1Ihat2 <= 100000;

...

100000*y1D1M24 +V1D1M12 - D1S23 - D1Ihat24 <= 100000;
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!Constraint 2 - Dam 2;

100000*y1D2M1 +V1D2M1 - D2S0 - D2Ihat1 <= 100000;

100000*y1D2M2 +V1D2M2 - D2S1 - D2Ihat2 <= 100000;

...

100000*y1D2M24 +V1D2M12 - D2S23 - D2Ihat24 <= 100000;

!Constraint 3 - Dam 1;

100000*y2D1M1 -D1S0 -D1Ihat1 + V2D1M1 >= 0.1;

100000*y2D1M2 -D1S1 -D1Ihat2 + V2D1M2 >= 0.1;

...

100000*y2D1M24 -D1S23 -D1Ihat24 + V2D1M12 >= 0.1;

!Constraint 3 - Dam 2;

100000*y2D2M1 -D2S0 -D2Ihat1 + V2D2M1 >= 0.1;

100000*y2D2M2 -D2S1 -D2Ihat2 + V2D2M2 >= 0.1;

...

100000*y2D2M24 -D2S23 -D2Ihat24 + V2D2M12 >= 0.1;

!Constraint 4 - Dam 1;

100000*y2D1M1 +V2D1M1 - D1S0 - D1Ihat1 <= 100000;

100000*y2D1M2 +V2D1M2 - D1S1 - D1Ihat2 <= 100000;

...

100000*y2D1M24 +V2D1M12 - D1S23 - D1Ihat24 <= 100000;

!Constraint 4 - Dam 2;

100000*y2D2M1 +V2D2M1 - D2S0 - D2Ihat1 <= 100000;

100000*y2D2M2 +V2D2M2 - D2S1 - D2Ihat2 <= 100000;

...

100000*y2D2M24 +V2D2M12 - D2S23 - D2Ihat24 <= 100000;

!Constraint 5 - Dam 1;

D1R1 - 133*y1D1M1 -67*y2D1M1 = 133;

D1R2 - 133*y1D1M2 -67*y2D1M2 = 133;

...

D1R24 - 133*y1D1M24 -67*y2D1M24 = 133;
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!Constraint 5 - Dam 2;

D2R1 - 267*y1D2M1 -133*y2D2M1 = 267;

D2R2 - 267*y1D2M2 -133*y2D2M2 = 267;

...

D2R24 - 267*y1D2M24 -133*y2D2M24 = 267;

!Constraint 6 - Dam 1;

D1S1 - D1S0 - D1I1 + D1R1 + D1W1 = 0;

D1S2 - D1S1 - D1I2 + D1R2 + D1W2 = 0;

...

D1S24 - D1S23 - D1I24 + D1R24 + D1W24 = 0;

!Constraint 6 - Dam 2;

D2S1 - D2S0 - D2I1 + D2R1 + D2W1 - D1W1 = 0;

D2S2 - D2S1 - D2I2 + D2R2 + D2W2 - D1W2 = 0;

...

D2S24 - D2S23 - D2I24 + D2R24 + D2W24 - D1W24 = 0;

!Constraint 7 - Dam 1;

D1S1 <= 30000;

D1S2 <= 30000;

...

D1S24 <= 30000;

!Constraint 7 - Dam 2;

D2S1 <= 82000;

D2S2 <= 82000;

...

D2S24 <= 82000;

!Constraint 8 - Dam 1;

D1S0 - D1S24 <= 0;

!Constraint 8 - Dam 2;

D2S0 - D2S24 <= 0;
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!Constraint 9 - Dam 1;

30000*D1U1 - D1S1 <= 0;

30000*D1U2 - D1S2 <= 0;

...

30000*D1U24 - D1S24 <= 0;

!Constraint 9 - Dam 2;

82000*D2U1 - D2S1 <= 0;

82000*D2U2 - D2S2 <= 0;

...

82000*D2U24 - D2S24 <= 0;

!Constraint 10 - Dam 1;

D1W1 - 100000*D1U1 <= 0;

D1W2 - 100000*D1U2 <= 0;

...

D1W24 - 100000*D1U24 <= 0;

!Constraint 10 - Dam 2;

D2W1 - 100000*D2U1 <= 0;

D2W2 - 100000*D2U2 <= 0;

...

D2W24 - 100000*D2U24 <= 0;

!Constraint 11 - Dam 1;

V1D1M1 - 1.05*V2D1M1 >= 0;

V1D1M2 - 1.05*V2D1M2 >= 0;

...

V1D1M12 - 1.05*V2D1M12 >= 0;

!Constraint 11 - Dam 2;

V1D2M1 - 1.05*V2D2M1 >= 0;

V1D2M2 - 1.05*V2D2M2 >= 0;

...

V1D2M12 - 1.05*V2D2M12 >= 0;
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!Constraint 12 - Dam 1;

V2D1M1 - 1.05*V3D1M1 >= 0;

V2D1M2 - 1.05*V3D1M2 >= 0;

...

V2D1M12 - 1.05*V3D1M12 >= 0;

!Constraint 12 - Dam 2;

V2D2M1 - 1.05*V3D2M1 >= 0;

V2D2M2 - 1.05*V3D2M2 >= 0;

...

V2D2M12 - 1.05*V3D2M12 >= 0;

!Constraint 13 - Dam 1;

V3D1M1 >= 133;

V3D1M2 >= 133;

...

V3D1M12 >= 133;

!Constraint 13 - Dam 2;

V3D2M1 >= 267;

V3D2M2 >= 267;

...

V3D2M12 >= 267;

!Constraint 14 - Dam 1;

D1S0 + D1Ihat1 - V3D1M1 >= 0.1;

D1S1 + D1Ihat2 - V3D1M2 >= 0.1;

...

D1S24 + D1Ihat25 - V3D1M1 >= 0.1;

!Constraint 14 - Dam 2

D2S0 + D2Ihat1 - V3D2M1 >= 0.1;

D2S1 + D2Ihat2 - V3D2M2 >= 0.1;

...

D2S24 + D2Ihat25 - V3D2M1 >= 0.1;
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!Constraint 15 - Dam 1;

y1D1M1 + y1D1M3 - y1D1M2 <= 1;

y1D1M2 + y1D1M4 - y1D1M3 <= 1;

...

y1D1M22 + y1D1M24 - y1D1M23 <= 1;

!Constraint 15 - Dam 2;

y1D2M1 + y1D2M3 - y1D2M2 <= 1;

y1D2M2 + y1D2M4 - y1D2M3 <= 1;

...

y1D2M22 + y1D2M24 - y1D2M23 <= 1;

!Constraint 16 - Dam 1;

y1D1M1 - y2D1M2 <= 0;

y1D1M2 - y2D1M3 <= 0;

...

y1D1M23 - y2D1M24 <= 0;

!Constraint 16 - Dam 2;

y1D2M1 - y2D2M2 <= 0;

y1D2M2 - y2D2M3 <= 0;

...

y1D2M23 - y2D2M24 <= 0;

!Constraint 17 - Dam 1;

y2D1M1 + y2D1M2 + y2D1M3 + y2D1M4 + y2D1M5 + y2D1M6 + y2D1M7 + y2D1M8

+ y2D1M9 + y2D1M10 + y2D1M11 + y2D1M12 + y2D1M13 + y2D1M14 + y2D1M15

+ y2D1M16 + y2D1M17 + y2D1M18 + y2D1M19 + y2D1M20 + y2D1M21 + y2D1M22

+ y2D1M23 + y2D1M24 = 24;

!Constraint 17 - Dam 2;

y2D2M1 + y2D2M2 + y2D2M3 + y2D2M4 + y2D2M5 + y2D2M6 + y2D2M7 + y2D2M8

+ y2D2M9 + y2D2M10 + y2D2M11 + y2D2M12 + y2D2M13 + y2D2M14 + y2D2M15

+ y2D2M16 + y2D2M17 + y2D2M18 + y2D2M19 + y2D2M20 + y2D2M21 + y2D2M22

+ y2D2M23 + y2D2M24 = 24;
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!Constraint 18 - Dam 1;

D1I1= 342.12;

D1I2= 144.72;

...

D1I24= 1313.28;

!Constraint 18 - Dam 2;

D2I1= 570.2;

D2I2= 191.2;

...

D2I24= 2188.8;

!Constraint 19 - Dam 1;

D1Ihat1 - D1I1 = 0;

D1Ihat2 - D1I2 = 0;

...

D1Ihat24 - D1I24 = 0;

!Constraint 19 - Dam 2;

D2Ihat1 - D2I1 = 0;

D2Ihat2 - D2I2 = 0;

...

D2Ihat24 - D2I24 = 0;

!Constraint 20 - Dam 1;

D1S0 + D1A0 >= 133;

D1S1 + D1A1 >= 133;

...

D1S24 + D1A24 >= 133;

!Constraint 20 - Dam 2;

D2S0 + D2A0 >= 267;

D2S1 + D2A1 >= 267;

...

D2S24 + D2A24 >= 267;
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!Constraint 21 - Dam 1;

@BIN(y1D1M1);

@BIN(y1D1M2);

...

@BIN(y1D1M24);

!Constraint 21 - Dam 2;

@BIN(y1D2M1);

@BIN(y1D2M2);

...

@BIN(y1D2M24);

!Constraint 22 - Dam 1;

@BIN(y2D1M1);

@BIN(y2D1M2);

...

@BIN(y2D1M24);

!Constraint 22 - Dam 2;

@BIN(y2D2M1);

@BIN(y2D2M2);

...

@BIN(y2D2M24);

!Constraint 23 - Dam 1;

@BIN(D1U1);

@BIN(D1U2);

...

@BIN(D1U24);

!Constraint 23 - Dam 2;

@BIN(D2U1);

@BIN(D2U2);

...

@BIN(D2U24);
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B.2 Example of LINGO Output for the Drought Model under

Scenario 1

Global optimal solution found.

Objective value: -342.9380

Objective bound: -342.9380

Infeasibilities: 0.000000

Extended solver steps: 11236

Total solver iterations: 275459

Elapsed runtime seconds: 43.08

Model Class: MILP

Total variables: 414

Nonlinear variables: 0

Integer variables: 144

Total constraints: 701

Nonlinear constraints: 0

Total nonzeros: 1946

Nonlinear nonzeros: 0

Variable Value Reduced Cost

Y1D1M1 1.000000 -1.000000

Y1D1M2 1.000000 -1.000000

Y1D1M3 1.000000 -1.000000

Y1D1M4 1.000000 -1.000000

Y1D1M5 1.000000 -1.000000

Y1D1M6 1.000000 -1.000000

Y1D1M7 0.000000 -1.000000

Y1D1M8 0.000000 -1.000000

Y1D1M9 0.000000 -1.000000

Y1D1M10 0.000000 -1.000000

Y1D1M11 0.000000 -999.6700

Y1D1M12 0.000000 -998.3400

Y1D1M13 0.000000 -997.0100

Y1D1M14 0.000000 -995.6800

Y1D1M15 0.000000 -994.3500
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Appendix C

Example of LINGO Input and Output

Model 6: The Flood Model

An example of both the input syntax and output generated when the experiment of

the flood model (Model 6) under the conditions of Trial 1 was performed using the

optimisation modelling software LINGO (LINDO Systems Inc, 2013) can be found

in this appendix. In order to minimise the size of this thesis, only a subset of the

input and output has been provided in the following sections. A full example of

the input syntax and output generated for each of the flood model trials considered

in Chapter 4 and the model comparison experiment performed in Chapter 6, can

be found in the Example of LINGO Input and Output directory accompanying this

thesis, in the folder Model 6 - The Flood Model. An example of the input for

Model 5 is also included in the accompanying directory, following the path Initial

Model Examples\Example of Model 5 Input. Note that for ease of opening and

reading the accompanying input and output files, text copies (extension .txt) of the

original LINGO files have been included.

In order to assist with the interpretation of the LINGO input and output, each of

the variables that compose Model 6 have been translated into the form in which

they appear in the input syntax and listed below. In this case, binary variables are

denoted in the input syntax by being enclosed within @BIN().

t = 1, 2,..., 24

J = J

V ∗
1t = V1D1M1, V1D1M2,..., V1D1M24

V1t = V1D2M1, V1D2M2,..., V1D2M24

V ∗
2t = V2D1M1, V2D1M2,..., V2D1M24

V2t = V2D2M1, V2D2M2,..., V2D2M24

V ∗
3t = V3D1M1, V3D1M2,..., V3D1M24

V3t = V3D2M1, V3D2M2,..., V3D2M24

y∗1t = y1D1M1, y1D1M2,..., y1D1M24

y1t = y1D2M1, y1D2M2,..., y1D2M24
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y∗2t = y2D1M1, y2D1M2,..., y2D1M24

y2t = y2D2M1, y2D2M2,..., y2D2M24

ω = 0.01

S∗
t = D1S1, D1S2,..., D1S24

St = D2S1, D2S2,..., D2S24

S∗
0 = D1S0

S0 = D2S0

I∗t = D1I1, D1I2,..., D1I24

It = D2I1, D2I2,..., D2I24

Î∗t = D1Ihat1, D1Ihat2,..., D1Ihat24

Ît = D2Ihat1, D2Ihat2,..., D2Ihat24

ε = 0.1

M = 100000

R∗
t = D1R1, D1R2,..., D1R24

Rt = D2R1, D2R2,..., D2R24

α1 = 0.6

α2 = 0.4

D = 400

L∗ = 0.3333

L = 0.6666

W ∗
t = D1W1, D1W2,..., D1W24

Wt = D2W1, D2W2,..., D2W24

C∗ = 30000

C = 82000

U∗
t = D1U1, D1U2,..., D1U24

Ut = D2U1, D2U2,..., D2U24

β1 = 0.05

β2 = 0.05

K = 1000

γ = 100

Pt = D2P1, D2P2,..., D2P24

B∗
t = D1B1, D1B2,..., D1B24

Bt = D2B1, D2B2,..., D2B24

Q∗
t = D1Q1, D1Q2,..., D1Q24

zt = D2Z1, D2Z2,..., D2Z24
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C.1 Example of LINGO Input for the Flood Model under Trial 1

MIN = J

- 0.01*(V1D1M1+V1D1M2+V1D1M3+V1D1M4+V1D1M5+V1D1M6+V1D1M7+V1D1M8+V1D1M9

+V1D1M10+V1D1M11+V1D1M12+V1D1M13+V1D1M14+V1D1M15+V1D1M16+V1D1M17

+V1D1M18+V1D1M19+V1D1M20+V1D1M21+V1D1M22+V1D1M23+V1D1M24+V2D1M1

+V2D1M2+V2D1M3+V2D1M4+V2D1M5+V2D1M6+V2D1M7+V2D1M8+V2D1M9+V2D1M10

+V2D1M11+V2D1M12+V2D1M13+V2D1M14+V2D1M15+V2D1M16+V2D1M17+V2D1M18

+V2D1M19+V2D1M20+V2D1M21+V2D1M22+V2D1M23+V2D1M24+V3D1M1+V3D1M2

+V3D1M3+V3D1M4+V3D1M5+V3D1M6+V3D1M7+V3D1M8+V3D1M9+V3D1M10+V3D1M11

+V3D1M12+V3D1M13+V3D1M14+V3D1M15+V3D1M16+V3D1M17+V3D1M18+V3D1M19

+V3D1M20+V3D1M21+V3D1M22+V3D1M23+V3D1M24)

- 0.01*(V1D2M1+V1D2M2+V1D2M3+V1D2M4+V1D2M5+V1D2M6+V1D2M7+V1D2M8+V1D2M9

+V1D2M10+V1D2M11+V1D2M12+V1D2M13+V1D2M14+V1D2M15+V1D2M16+V1D2M17

+V1D2M18+V1D2M19+V1D2M20+V1D2M21+V1D2M22+V1D2M23+V1D2M24+V2D2M1

+V2D2M2+V2D2M3+V2D2M4+V2D2M5+V2D2M6+V2D2M7+V2D2M8+V2D2M9+V2D2M10

+V2D2M11+V2D2M12+V2D2M13+V2D2M14+V2D2M15+V2D2M16+V2D2M17+V2D2M18

+V2D2M19+V2D2M20+V2D2M21+V2D2M22+V2D2M23+V2D2M24+V3D2M1+V3D2M2

+V3D2M3+V3D2M4+V3D2M5+V3D2M6+V3D2M7+V3D2M8+V3D2M9+V3D2M10+V3D2M11

+V3D2M12+V3D2M13+V3D2M14+V3D2M15+V3D2M16+V3D2M17+V3D2M18+V3D2M19

+V3D2M20+V3D2M21+V3D2M22+V3D2M23+V3D2M24)

- 100*(D2P1+D2P2+D2P3+D2P4+D2P5+D2P6+D2P7+D2P8+D2P9+D2P10+D2P11+D2P12

+D2P13+D2P14+D2P15+D2P16+D2P17+D2P18+D2P19+D2P20+D2P21+D2P22+D2P23

+D2P24);

D1S0 <= 30000;

D2S0 <= 82000;

!Constraint to help reduce severity of releases;

D2W1 + D2W2 <= J;

D2W2 + D2W3 <= J;

...

D2W23 + D2W24 <= J;

!Constraint 1 - Dam 1;

100000*y1D1M1 -D1S0 -D1Ihat1 + V1D1M1 >= 0.1;

100000*y1D1M2 -D1S1 -D1Ihat2 + V1D1M2 >= 0.1;

...

100000*y1D1M24 -D1S23 -D1Ihat24 + V1D1M24 >= 0.1;
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!Constraint 1 - Dam 2;

100000*y1D2M1 -D2S0 -D2Ihat1 + V1D2M1 >= 0.1;

100000*y1D2M2 -D2S1 -D2Ihat2 + V1D2M2 >= 0.1;

...

100000*y1D2M24 -D2S23 -D2Ihat24 + V1D2M24 >= 0.1;

!Constraint 2 - Dam 1;

100000*y1D1M1 +V1D1M1 - D1S0 - D1Ihat1 <= 100000;

100000*y1D1M2 +V1D1M2 - D1S1 - D1Ihat2 <= 100000;

...

100000*y1D1M24 +V1D1M24 - D1S23 - D1Ihat24 <= 100000;

!Constraint 2 - Dam 2;

100000*y1D2M1 +V1D2M1 - D2S0 - D2Ihat1 <= 100000;

100000*y1D2M2 +V1D2M2 - D2S1 - D2Ihat2 <= 100000;

...

100000*y1D2M24 +V1D2M24 - D2S23 - D2Ihat24 <= 100000;

!Constraint 3 - Dam 1;

100000*y2D1M1 -D1S0 -D1Ihat1 + V2D1M1 >= 0.1;

100000*y2D1M2 -D1S1 -D1Ihat2 + V2D1M2 >= 0.1;

...

100000*y2D1M24 -D1S23 -D1Ihat24 + V2D1M24 >= 0.1;

!Constraint 3 - Dam 2;

100000*y2D2M1 -D2S0 -D2Ihat1 + V2D2M1 >= 0.1;

100000*y2D2M2 -D2S1 -D2Ihat2 + V2D2M2 >= 0.1;

...

100000*y2D2M24 -D2S23 -D2Ihat24 + V2D2M24 >= 0.1;

!Constraint 4 - Dam 1;

100000*y2D1M1 +V2D1M1 - D1S0 - D1Ihat1 <= 100000;

100000*y2D1M2 +V2D1M2 - D1S1 - D1Ihat2 <= 100000;

...

100000*y2D1M24 +V2D1M24 - D1S23 - D1Ihat24 <= 100000;
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!Constraint 4 - Dam 2;

100000*y2D2M1 +V2D2M1 - D2S0 - D2Ihat1 <= 100000;

100000*y2D2M2 +V2D2M2 - D2S1 - D2Ihat2 <= 100000;

...

100000*y2D2M24 +V2D2M24 - D2S23 - D2Ihat24 <= 100000;

!Constraint 5 - Dam 1;

D1R1 = 133;

D1R2 = 133;

...

D1R24 = 133;

!Constraint 5 - Dam 2;

D2R1 = 267;

D2R2 = 267;

...

D2R24 = 267;

!Constraint 6 - Dam 1;

D1S1 - D1S0 - D1I1 + D1R1 + D1W1 - D2P1 = 0;

D1S2 - D1S1 - D1I2 + D1R2 + D1W2 - D2P2 = 0;

...

D1S24 - D1S23 - D1I24 + D1R24 + D1W24 - D2P24 = 0;

!Constraint 6 - Dam 2;

D2S1 - D2S0 - D2I1 + D2R1 + D2W1 + D2P1 - D1W1 = 0;

D2S2 - D2S1 - D2I2 + D2R2 + D2W2 + D2P2 - D1W2 = 0;

...

D2S24 - D2S23 - D2I24 + D2R24 + D2W24 + D2P24 - D1W24 = 0;

!Constraint 7 - Dam 1;

D1S1 <= 30000;

D1S2 <= 30000;

...

D1S24 <= 30000;
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!Constraint 7 - Dam 2;

D2S1 <= 82000;

D2S2 <= 82000;

...

D2S24 <= 82000;

!Constraint 8 - Dam 1;

!D1S0 - D1S24 <= 0;

!Constraint 8 - Dam 2;

!D2S0 - D2S24 <= 0;

!Constraint 9 - Dam 1;

30000*D1U1 - D1S1 <= 0;

30000*D1U2 - D1S2 <= 0;

...

30000*D1U24 - D1S24 <= 0;

!Constraint 9 - Dam 2;

82000*D2U1 - D2S1 <= 0;

82000*D2U2 - D2S2 <= 0;

...

82000*D2U24 - D2S24 <= 0;

!Constraint 10 - Dam 1;

D1W1 - 100000*D1U1 <= 0;

D1W2 - 100000*D1U2 <= 0;

...

D1W24 - 100000*D1U24 <= 0;

!Constraint 10 - Dam 2;

D2W1 - 100000*D2U1 <= 0;

D2W2 - 100000*D2U2 <= 0;

...

D2W24 - 100000*D2U24 <= 0;
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!Constraint 11 - Dam 1;

V1D1M1 - 0.95*V2D1M1 <= 0;

V1D1M2 - 0.95*V2D1M2 <= 0;

...

V1D1M24 - 0.95*V2D1M24 <= 0;

!Constraint 11 - Dam 2;

V1D2M1 - 0.95*V2D2M1 <= 0;

V1D2M2 - 0.95*V2D2M2 <= 0;

...

V1D2M24 - 0.95*V2D2M24 <= 0;

!Constraint 12 - Dam 1;

V2D1M1 - 0.95*V3D1M1 <= 0;

V2D1M2 - 0.95*V3D1M2 <= 0;

...

V2D1M24 - 0.95*V3D1M24 <= 0;

!Constraint 12 - Dam 2;

V2D2M1 - 0.95*V3D2M1 <= 0;

V2D2M2 - 0.95*V3D2M2 <= 0;

...

V2D2M24 - 0.95*V3D2M24 <= 0;

!Constraint 13 - Dam 1;

V3D1M1 <= 30000;

V3D1M2 <= 30000;

...

V3D1M24 <= 30000;

!Constraint 13 - Dam 2;

V3D2M1 <= 82000;

V3D2M2 <= 82000;

...

V3D2M24 <= 82000;
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!Constraint 14 - Dam 1;

D1B1 - 400*y2D1M1 -200*y1D1M1 = 400;

D1B2 - 400*y2D1M2 -200*y1D1M2 = 400;

...

D1B24 - 400*y1D1M24 -200*y2D1M24 = 400;

!Constraint 14 - Dam 2;

D2B1 - 400*y2D2M1 -200*y1D2M1 = 400;

D2B2 - 400*y2D2M2 -200*y1D2M2 = 400;

...

D2B24 - 400*y1D2M24 -200*y2D2M24 = 400;

!Constraint 15 - Dam 1;

y1D1M1 + y1D1M3 - y1D1M2 <= 1;

y1D1M2 + y1D1M4 - y1D1M3 <= 1;

...

y1D1M22 + y1D1M24 - y1D1M23 <= 1;

!Constraint 15 - Dam 2;

y1D2M1 + y1D2M3 - y1D2M2 <= 1;

y1D2M2 + y1D2M4 - y1D2M3 <= 1;

...

y1D2M22 + y1D2M24 - y1D2M23 <= 1;

!Constraint 16 - Dam 1;

y1D1M1 - y2D1M2 >= 0;

y1D1M2 - y2D1M3 >= 0;

...

y1D1M23 - y2D1M24 >= 0;

!Constraint 16 - Dam 2;

y1D2M1 - y2D2M2 >= 0;

y1D2M2 - y2D2M3 >= 0;

...

y1D2M23 - y2D2M24 >= 0;
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!Constraint 17 - Dam 1;

D1U1 + D1U2 + D1U3 + D1U4 + D1U5 + D1U6 + D1U7 + D1U8 + D1U9 + D1U10

+ D1U11 + D1U12 + D1U13 + D1U14 + D1U15 + D1U16 + D1U17 + D1U18

+ D1U19 + D1U20 + D1U21 + D1U22 + D1U23 + D1U24 >= 0;

!Constraint 17 - Dam 2;

D2U1 + D2U2 + D2U3 + D2U4 + D2U5 + D2U6 + D2U7 + D2U8 + D2U9 + D2U10

+ D2U11 + D2U12 + D2U13 + D2U14 + D2U15 + D2U16 + D2U17 + D2U18

+ D2U19 + D2U20 + D2U21 + D2U22 + D2U23 + D2U24 >= 0;

!Constraint 18 - Dam 1;

D1I1= 347.76;

D1I2= 106.5;

...

D1I24= 198.9;

!Constraint 18 - Dam 2;

D2I1= 579.6;

D2I2= 177.5;

...

D2I24= 331.5;

!Constraint 19 - Dam 1;

D1Ihat1 - D1I1 = 0;

D1Ihat2 - D1I2 = 0;

...

D1Ihat24 - D1I24 = 0;

!Constraint 19 - Dam 2;

D2Ihat1 - D2I1 = 0;

D2Ihat2 - D2I2 = 0;

...

D2Ihat24 - D2I24 = 0;

!Constraint 20 - Dam 1;

D1Q1 + D1S1 = 30000;

D1Q2 + D1S2 = 30000;

...

D1Q24 + D1S24 = 30000;
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!Constraint 21;

D1Q1 - 400*D2Z1 >= 0;

D1Q2 - 400*D2Z2 >= 0;

...

D1Q24 - 400*D2Z24 >= 0;

!Constraint 22;

D2P1 - D2B1 <= 0;

D2P2 - D2B2 <= 0;

...

D2P24 - D2B24 <= 0;

!Constraint 23;

D2P1 - 1000*D2Z1 <= 0;

D2P2 - 1000*D2Z2 <= 0;

...

D2P24 - 1000*D2Z24 <= 0;

!Constraint 24 - Dam 1;

@BIN(y1D1M1);

@BIN(y1D1M2);

...

@BIN(y1D1M24);

!Constraint 24 - Dam 2;

@BIN(y1D2M1);

@BIN(y1D2M2);

...

@BIN(y1D2M24);

!Constraint 25 - Dam 1;

@BIN(y2D1M1);

@BIN(y2D1M2);

...

@BIN(y2D1M24);
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!Constraint 25 - Dam 2;

@BIN(y2D2M1);

@BIN(y2D2M2);

...

@BIN(y2D2M24);

!Constraint 26 - Dam 1;

@BIN(D1U1);

@BIN(D1U2);

...

@BIN(D1U24);

!Constraint 26 - Dam 2;

@BIN(D2U1);

@BIN(D2U2);

...

@BIN(D2U24);

!Constraint 27;

@BIN(D2Z1);

@BIN(D2Z2);

...

@BIN(D2Z24);
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C.2 Example of LINGO Output for the Flood Model under Trial 1

Global optimal solution found.

Objective value: -312880.0

Objective bound: -312880.0

Infeasibilities: 0.000000

Extended solver steps: 2

Total solver iterations: 1065

Elapsed runtime seconds: 0.34

Model Class: MILP

Total variables: 507

Nonlinear variables: 0

Integer variables: 168

Total constraints: 790

Nonlinear constraints: 0

Total nonzeros: 2120

Nonlinear nonzeros: 0

Variable Value Reduced Cost

J 63604.80 0.000000

V1D1M1 27075.00 0.000000

V1D1M2 27075.00 0.000000

V1D1M3 8035.520 0.000000

V1D1M4 27075.00 0.000000

V1D1M5 27075.00 0.000000

V1D1M6 27075.00 0.000000

V1D1M7 27075.00 0.000000

V1D1M8 27075.00 0.000000

V1D1M9 27075.00 0.000000

V1D1M10 27075.00 0.000000

V1D1M11 27075.00 0.000000

V1D1M12 27075.00 0.000000

V1D1M13 27075.00 0.000000

V1D1M14 27075.00 0.000000
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Appendix D

Tables of Inflow Records

The inflow records utilised when conducting experiments throughout this thesis,

including both the inflows sourced from the Queensland Department of Natural

Resources and Mines (2012) and those simulated using a time series model, have

been tabulated and presented in the following sections, beginning on the next page.
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D.1 Inflows under Worst Case Drought Scenario

Upon screening the historic inflow records sourced from the Queensland Department

of Natural Resources and Mines (2012), the two years that resulted in the lowest

inflows to the reservoir system were combined to form a worst case drought scenario.

This set of inflows, presented in Table D.1 below, were then employed in Chapter

3 when performing an experiment of Model 4.

Table D.1: Monthly Inflow to Cressbrook and Perseverance Dams under Worst Case

Drought Scenario from Historic Records.

Sourced: Queensland Department of Natural Resources and Mines (2012).

Inflow (ML)

Month Number Cressbrook Dam Perseverance Dam

1 570.2 342.12

2 191.2 144.72

3 142.7 85.62

4 926.3 555.78

5 174.2 104.52

6 442 265.2

7 100.6 60.36

8 261.2 156.72

9 365.1 219.06

10 244.9 146.94

11 296.2 177.72

12 326.8 196.08

13 480.8 288.48

14 514.2 308.52

15 420.5 252.3

16 1420.6 852.36

17 637.3 382.38

18 0 0

19 613.7 368.22

20 0 0

21 0 0

22 0 0

23 44.5 26.7

24 2188.8 1313.28
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D.2 Inflows under Worst Case Flood Scenario

Upon screening the historic inflows records sourced from the Queensland Depart-

ment of Natural Resources and Mines (2012), the two years (assumed to be 12 hour

periods in this case) that resulted in the greatest flows to the reservoir system were

combined to form a worst case flood scenario. This set of inflows, presented in

Table D.2 below, were then employed in Chapter 4 when performing an experiment

of Model 6.

Table D.2: Monthly Inflow to Perseverance and Cressbrook Dams under Worst Case

Flood Scenario from Historic Records.

Sourced: Queensland Department of Natural Resources and Mines (2012).

Inflow (ML)

Hour Number Cressbrook Dam Perseverance Dam

1 579.6 347.76

2 177.5 106.5

3 247.4 148.44

4 46914.1 28148.46

5 9879.2 5927.52

6 5998 3598.88

7 766.2 459.72

8 2110.3 1266.18

9 1279.4 767.64

10 781.1 468.66

11 591.7 355.02

12 353.5 212.1

13 2656 1593.6

14 1518.8 911.28

15 3008.8 1805.28

16 11050.5 6630.3

17 19551.6 11730.96

18 20701.4 12420.84

19 2466.6 1479.96

20 2633 1579.8

21 1237.2 742.32

22 914.7 548.82

23 250.3 150.18

24 331.5 198.9
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D.3 Simulated Inflows from AR(1) Time Series Model

Using the AR(1) time series model selected in Chapter 5 to provide a suitable ap-

proximation of the historic inflow record sourced from the Queensland Department

of Natural Resources and Mines (2012), an alternate set of inflows were simulated.

This alternate set of monthly inflows is presented in Table D.3 below:

Table D.3: Simulated Monthly Inflow from AR(1) Time Series Model.

Month Number Inflow (ML)

1 561.20

2 875.08

3 521.61

4 134.63

5 147.66

6 519.17

7 524.22

8 104.43

9 1245.45

10 9984.92

11 13932.77

12 1837.02

13 1423.43

14 1950.40

15 616.40

16 444.32

17 80.25

18 880.77

19 1785.00

20 465.28

21 426.11

22 149.86

23 547.53

24 797.62
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D.4 Simulated Inflows to Reservoir 1 and Reservoir 2

In Chapter 6 a comparison is performed between the management strategies em-

ployed by the Drought Model (Model 4 from Chapter 3) and the Flood Model

(Model 6 from Chapter 4), when both models are considered on a common set of

inflow records. This common set of inflow records was simulated using time series

analysis and is presented below in Table D.4, where the inflows to Reservoir 1 are

assumed to be 60% of the size of the inflows to Reservoir 2:

Table D.4: Simulated Inflows to Reservoir 1 and Reservoir 2 from Time Series

Model, where Reservoir 1 Inflows are equal to 60% of Reservoir 2 Inflows.

Inflow (ML)

Time Unit Reservoir 1 Reservoir 2

1 336.72 561.20

2 525.05 875.08

3 312.96 521.61

4 80.78 134.63

5 88.60 147.66

6 311.50 519.17

7 314.53 524.22

8 62.66 104.43

9 747.27 1245.45

10 5990.95 9984.92

11 8359.66 13932.77

12 1102.21 1837.02

13 854.06 1423.43

14 1170.24 1950.40

15 369.84 616.40

16 266.59 444.32

17 48.15 80.25

18 528.46 880.77

19 1071.00 1785.00

20 279.17 465.28

21 255.67 426.11

22 89.92 149.86

23 328.52 547.53

24 478.57 797.62
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Appendix E

Time Series Analysis Source Code

The time series analysis performed throughout Chapter 5 was conducted through

the use of the statistical computing software environment R (R Core Team, 2012).

The source code required to perform the different formatting and analysis techniques

mentioned can be seen in each of the sections below:

E.1 Formatting the Historic Data

Inputting the data to R from an Microsoft Excel Spreadsheet (.csv file):

inflows <- read.table("Inflow_Data.csv", header=TRUE, sep=",")

Calculating the logarithm of the inflows:

inflow.log <- log(inflows$Inflows)

inflows$log <- inflow.log

Separating the inflow data into the training series and testing series:

inflows.train <- inflows[1:132,]

inflows.test <- inflows[133:156,]

Defining the training series and testing series as R time series objects:

inflow.ts.train <- ts(inflows.train$log, start=c(1966,1), end=c(1976,12),

frequency=12)

inflow.ts.test <- ts(inflows.test$log, start=c(1977,1), end=c(1978,12),

frequency=12)
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E.2 Fitting the Time Series Model

Calculating and plotting the sample autocorrelation function (ACF) and

partial autocorrelation function (PACF):

temp.acf<-acf(inflow.ts.train, axes=FALSE,lag.max=10, lwd=2,

main="Sample Autocorrelation Function \n Historic Inflow Data")

axis(side=1, at=temp.acf$lag, labels=(temp.acf$lag*12))

axis(side=2)

temp.pacf<-pacf(inflow.ts.train, ylim=c(-0.2,0.45), axes=FALSE, lag.max=10,

lwd=2,

main="Sample Partial Autocorrelation Function \n Historic Inflow Data")

axis(side=1, at=temp.pacf$lag, labels=(temp.pacf$lag*12))

axis(side=2)

Fitting the AR(1) model to the historic inflow data:

model.1 <- arima(inflow.ts.train, order=c(1,0,0))

model.1

Call:

arima(x = inflow.ts.train, order = c(1, 0, 0))

Coefficients:

ar1 intercept

0.4228 6.5073

s.e. 0.0807 0.1986

sigma^2 estimated as 1.75: log likelihood = -224.33, aic = 454.66

Fitting the MA(1) model to the historic inflow data:

model.2 <- arima(inflow.ts.train, order=c(0,0,1))

model.2

Call:

arima(x = inflow.ts.train, order = c(0, 0, 1))

Coefficients:

ma1 intercept

0.3664 6.5187

s.e. 0.0702 0.1592

sigma^2 estimated as 1.798: log likelihood = -226.11, aic = 458.21
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Fitting the ARMA(1, 1) model to the historic inflow data:

model.3 <- arima(inflow.ts.train, order=c(1,0,1))

model.3

Call:

arima(x = inflow.ts.train, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.3712 0.0638 6.5083

s.e. 0.1747 0.1846 0.1939

sigma^2 estimated as 1.748: log likelihood = -224.27, aic = 456.55
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E.3 Diagnostic Tests of Time Series Model

Calculating and plotting the residual autocorrelation function (ACF) and

residual partial autocorrelation function (PACF):

par(mfrow=c(1,2))

temp.racf <- acf(resid(model.1), ylim=c(-0.2,1), lag.max=10, axes=FALSE,

lwd=2, main="Residual ACF \n AR(1) Model")

axis(side=1, at=temp.racf$lag, labels=(temp.racf$lag*12))

axis(side=2)

temp.rpacf <- pacf(resid(model.1), ylim=c(-0.2,0.2), lag.max=10, axes=FALSE,

lwd=2, main="Residual PACF \n AR(1) Model")

axis(side=1, at=temp.rpacf$lag, labels=(temp.rpacf$lag*12))

axis(side=2)

Fitting the AR(8) model to the historic inflow data:

model.4 <- arima(inflow.ts.train, order=c(8,0,0))

model.4

Call:

arima(x = inflow.ts.train, order = c(8, 0, 0))

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8

0.4330 -0.0207 -0.0783 0.0853 -0.1459 0.1663 -0.1117 -0.1433

s.e. 0.0882 0.0965 0.0958 0.0960 0.0960 0.0970 0.1018 0.0917

intercept

6.5373

s.e. 0.1380

sigma^2 estimated as 1.624: log likelihood = -219.64, aic = 459.29

Performing the Box-Pierce test on the residuals of the AR(1) model:

Box.test(resid(model.1), lag=25)

Box-Pierce test

data: resid(model.1)

X-squared = 23.7008, df = 25, p-value = 0.5367

Function to calculate and plot the cumulative periodogram of the resid-

uals from the AR(1) model:

cpgram(resid(model.1), main="Cumulative Periodogram of Residuals \n AR(1) Model")
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Process to test the significance of the terms in the AR(1) model:

Calculating the estimates of the parameter coefficients:

model.1$coef

ar1 intercept

0.4227618 6.5072901

Generating the variance-covariance matrix of the parameter estimates:

model.1$var.coef

ar1 intercept

ar1 0.0065139414 -0.0007134488

intercept -0.0007134488 0.0394288712

Calculating the t-score of the parameters:

coef(model.1)/sqrt(diag(model.1$var.coef))

ar1 intercept

5.23810 32.77125

Function to generate the Q-Q plot of the residuals from the AR(1) model:

qqnorm(resid(model.1), main="Normal Q-Q Plot of Residuals \n AR(1) Model")

qqline(resid(model.1))

Function to plot a histogram of the residuals from the AR(1) model:

hist(resid(model.1), main="Histogram of Residuals \n AR(1) Model",

xlab="Residuals of AR(1) Model")
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E.4 Validation of Time Series Model

Iterative procedure used to perform the one-step ahead forecasts from

the AR(1) model, for the testing series:

predict.mat <- matrix(ncol=1, nrow=length(inflows.test$log))

model.coef <- coef(model.1)

model.pred <- predict(model.1, n.ahead=1)

predict.mat[1] <- model.pred$pred

for(i in 2:length(inflows.test$log)){

predict.mat[i] <- model.coef[2] +

model.coef[1]*(inflows.test$log[i-1] - model.coef[2])

}

Calculating the mean and variance of the differences between the fore-

casts from the AR(1) model and the historic data:

mean.pred <- mean(inflows.test$log-predict.mat)

mean.pred

-0.7331572

var.pred <- var(inflows.test$log-predict.mat)

var.pred

5.077488

E.5 Simulation of Inflows

Simulating an alternate series of inflows from the AR(1) model fitted to

the historic records, then converting into physical units (megalitres):

sim.data <- arima.sim(model=list(ar=model.coef[1]), n=24)

sim.data <- sim.data+model.coef[2]

sim.data <- exp(sim.data)

Time Series:

Start = 1

End = 24

Frequency = 1

[1] 561.20064 875.07938 521.60832 134.62786 147.66130 519.16900

[7] 524.22474 104.43264 1245.44917 9984.91848 13932.76839 1837.02321

[13] 1423.42558 1950.39564 616.39802 444.31853 80.25243 880.77173

[19] 1785.00120 465.27555 426.11480 149.86000 547.53137 797.62418
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