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Abstract

This project explores the uses, values and limitations of closed form solutions in

specific areas of geotechnical engineering. Three closed form (analytical) solutions,

Kelvin’s, Boussinesq’s and Mindlin’s solutions have been chosen and researched to

determine their applications in geotechnical engineering. These applications have

been examined with the aim to modify, further define and/or extend upon them

so that they may be applicable to new problems.

A review of research on Kelvin’s, Mindlin’s and Boussinesq’s solutions gave an

indication of the ways each of the solutions could be applied to solve for certain

problems. After noting the likeness of the solutions and the accomplishments that

had been achieved with the relatively popular Boussinesq’s soultion, the aim was

to subject the lesser known and utilised Mindlin’s solution to similar concepts.

The integration of Mindlin’s solution for a sub-surface circular loading was per-

formed and is shown here in full, something which does not appear to have been

published. From this Newmark inspired Mindlin based influence charts were gener-

ated which were found to be of little practical use. Following this the relationship

between both Boussinesq’s and Mindlin’s solutions was investigated and analysed

resulting in the production of a design chart that may be applicable to a bi-loaded

anchor system.

On a whole the work undertaken in this dissertation showed the main values of the

closed form solution in the area of stresses in soil masses were that of insight and

flexibility, and their main limitation was that of the simplifying assumptions that

were required to be made.
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Chapter 1

Introduction

1.1 Types of Solutions

Before we start, it is worth defining what exactly a closed form solution is. An

exact definition is a debated topic by mathematicians but for this thesis a solution

is of closed-form if an exact and nicely closed solution can be obtained from a

small number of equations, something which could practically be undertaken by

hand. Solutions of closed form are also referred to as analytical solutions, given

that the problem is solved through analysis (Neumann 2004).

Other types of common solutions are numerical solutions and experimental solu-

tions. Numerical solutions are often aided greatly by the calculation abilities of

computers and can involve thousands of calculations resulting in a long list of num-

bers which then can be formulated into an approximation (Neumann 2004). Ex-

perimental solutions are as the name implies, solutions which are acquired through

experimental data and or observation (empirical solution).
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Chapter 1 1.2. Benefits and Limitations of the Closed Form Solution

1.2 Benefits and Limitations of the Closed Form

Solution

Depending on subject, numerical solutions can give more accurate results than their

closed form counterparts, particularly because the mathematics involved would

become too tedious and/or complex to perform analytically. That is not to say

that with today’s modern computers and programs that analytical solutions in

these situations are obsolete, as they still very much provide a wide range of uses

and values of which numerical solutions do not possess.

A way in which one may understand these benefits is to look deeper into the

structure of the closed form solution. The closed-form solution involves an under-

standing of the definitions of the system parameters and the product/s of their

interactions, and the combination of this information to reach a desired conclu-

sion. This is an integral process in solving physical processes analytically and an

effective way in understanding their true nature as it can unveil the limitations and

assumptions made. It is through this fundamental structure that it may be said

closed form solutions offer an advantage over numerical solutions, as the analysis

of a system and the interactions of its components is one which can yield great

insight. One can examine an equation, alter it, incorporate it; as methods to see

the interconnections and intricacies of the processes within it.

Closed form solutions also possess other advantages. Given that many closed form

solutions are purely mathematical in form, it is then permissible to subject it to the

many operations and manipulations which encompass mathematics. This flexibility

allows the possibilities for closed-form solutions to morph into solutions for related

problems. Furthermore, due to its synthesis from the raw components of a system

it can also be used for validation, though one should be mindful of the simplifying

assumptions involved in these solutions. Such assumptions are a major limitation of

the closed form solution, however they are a necessary accommodation as without

12



Chapter 1 1.2. Benefits and Limitations of the Closed Form Solution

them, solving more complicated models analytically may become impracticable or

even impossible. In situations where higher accuracy is required or the model has

become too complex to allow for the application of analytical solutions, numerical

solutions are of preference.

The exploration of such qualities and the overall values of the closed-form solution

in geotechnical problems is a major objective of this dissertation. In addition

to this, the secondary objective is to explore the relationships between selected

geotechnical solutions and their capabilities, which will be introduced over the

coming chapters.

13



Chapter 2

Introduction to 2D Models

This thesis will center around the 2D analysis of geotechnical problems, relevant

to one area in particular the plane theory of elasticity. The elastic property of a

material relates to its deformational response under loading. If the material returns

to its original state once the forces are removed it is known as perfectly elastic

(Timoshenko & Goodier 1951). Whether or not a solid does this is ultimately due

to its atomic properties but this aspect will not be considered in this thesis.

Soil is not an elastic material however treating it as such allows the use of solutions

and methods of analysis for calculating stresses and strains in response to applied

forces (Powrie 2004, pp.329). By selecting the right elastic parameters, elastic

analysis on soil masses can still provide reasonable results (Powrie 2001, pp.321).

Two dimensional elasticity consists of two general types of planar analysis, plane

strain and plane stress.

14



Chapter 2 2.1. Plane Strain

Elastic parameters related to this type of analysis are.

Young’s Modulus

E = σ/ε

Shear Modulus

G = τxy/γxy

Poisson’s Ratio

ν = εtransverse/εaxial

In modern times finite element packages are a very effective means for solving

linear elastic boundary value problems (Bower 2008). However exact solutions are

of practical importance in areas such as; contact problems, stress concentrations,

thermal stress problems, solutions for cracks and dislocations in solids (Bower

2008).

2.1 Plane Strain

For this thesis the general symbolical and terminological constructs will be adopted

for both stress and strain. An elongation is denoted by the Greek letter ε (epsilon)

and a shearing strain is represented by γ (gamma) with subscripts denoting the

direction, see Figure 2.1.

Plane strain is a common simplification in geomechanics because often the there

is one dimension that is very large when compared to the other dimensions (Tim-

oshenko & Goodier 1951). This could be a wall, embankment or excavation which

15



Chapter 2 2.1. Plane Strain

is extremely long in comparison to its height and width, the assumption is that

the strain in the longitudinal direction is zero (Powrie 2004, pp.70). The principle

of plane strain may only be applied when there are no significant changes in cross

sectional dimensions or loadings.

For example taking the cross section of an extremely long embankment and the z

axis as the longitudinal direction; the z dimension is so large when compared to

the other dimensions any strain (a ratio of its deformed length over its original

length) will be so small that it can be deemed negligible and therefore εz, γxz and

γyz would be approximately equal to 0. The application of plane strain greatly

simplifies any subsequent stress analysis on the body (Powrie 2004, pp.70). See

Figure 2.1 for a diagrammatic representation of plane strain.

Figure 2.1: Plane Strain (Source: http://academic.uprm.edu/pcaceres/Courses/

MechMet/MET-2B.pdf

16



Chapter 2 2.2. Plane Stress

2.2 Plane Stress

A stress that is normal to the plane is denoted by the Greek letter σ (sigma).

A stress which acts parallel to the plane is denoted by the Greek letter τ(tau).

Axial subscripts are used to denote the planar direction in which these stresses

act, for example a subscript of σx means a normal stress, acting parallel to the

x-axis (Timoshenko & Goodier 1951). For τxy the first letter indicates that the

stress is normal to the x axis and the second letter indicates that it is in the same

direction as the y axis.

Plane stress similarly to plane strain suggests the negligence or nullification of

normal and shear stress in one axial direction. Typically a state of plane stress

occurs when one dimension is very small relative to the others. A related example

could be the stresses on a thin plate submerged in soil media.

Figure 2.2: Plane Stress (Source: http://academic.uprm.edu/pcaceres/Courses/

MechMet/MET-2B.pdf)

In soil mechanics compressive stresses and strains are usually taken as positive and

shear stresses and associated strains which create a clockwise moment about an

17



Chapter 2 2.3. Axisymmetric Models

exterior point to the plane being considered will be taken as positive (Perloff &

Baron 1976, pp.55). These conventions will be adopted in this thesis.

2.3 Axisymmetric Models

Powrie (2004, pp.71) states that when stress and strain conditions on a plane

have rotational symmetry about the vertical axis it can be termed axisymmetric.

Like plain strain, when a body satisfies axisymmetry stress analysis is greatly

simplified. On occasions where a problem is restricted from featuring either of

these simplifications numerical solutions are usually required such as finite element

or finite difference analysis (Powrie 2004, pp.71).

Figure 2.3: Stress strain axisymmetry of a pile (Powrie 2004, pp.71).

In geomechanics this principle can typically be applied to circular subsurface ob-

jects. Axisymmetry is a convenience as it can provide a simplification of the rela-

tionships between variables. For example taking an axisymmetric loading around

the circumference of a circular tunnel simplifies the relationship between tunnel

18



Chapter 2 2.3. Axisymmetric Models

loading and spatial dimensions. Using the same example axisymmetric soil condi-

tions surrounding the tunnel would eliminate the significance of the location of the

cross section taken.
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Chapter 3

Solutions for Stress in Soil Masses

and their Applications

3.1 Introduction

This chapter sets the foundation for the area of Geotechnical Engineering in which

this paper focuses, stress in soil masses. Three solutions for linear elasticity prob-

lems have been selected. The three solutions that have been selected are all closely

related yet are individualised in terms of their load placements. The first of the

solutions was developed by Lord Kelvin (1824-1907) a physicist and engineer, for a

point load acting within an infinite elastic mass. The second by Joseph Boussinesq

(1842-1929) a French physicist, for a point load acting on the surface of a linear

elastic semi-infinite mass. The third by Raymond D. Mindlin (1906-1987) for a

point load acting beneath the surface of a semi-infinite mass.

All three solutions assume a homogeneous, isotropic, elastic medium. A material

is said to be homogeneous when its physical properties are identical at all points

within its boundaries and it is said to be isotropic when the elastic properties
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Chapter 3 3.2. Kelvin’s Solution

of the material are the same in all directions (Timoshenko & Goodier 1951). In

reality absolute homogeneity and isotropy are both unlikely but the assumptions

can still provide accurate results as long as the geometric dimensions of the body

under study are large enough so that internal inconsistencies may be averaged out

(Timoshenko & Goodier 1951). In Geomechanics any vast discrepancies in soil

properties would need to be taken into account.

3.2 Kelvin’s Solution

In 1848 Lord Kelvin devised a solution for the stresses produced from a load acting

within the interior of an infinite mass.

Figure 3.1: Kelvin’s Solution for a point load P in an infinite elastic space (Poulos

& Davis 1974, pp.16).

His solution for normal stresses consisted of the following (Poulos & Davis 1974,

21



Chapter 3 3.2. Kelvin’s Solution

pp.16).

σz =
P

8π(1− ν)

[
3z3

R5
+

(1− 2ν)z

R3

]
(3.1)

σr =
P

8π(1− ν)

z

R3

[
−3r2

R2
− (1− ν)

]
(3.2)

σθ = −P (1− 2ν)

8π(1− ν)

z

R3
(3.3)

and for displacement,

ρz =
P (1 + ν)

8π(1− ν)ER

[
3− 4ν

z2

R2

]
(3.4)

ρr = − P (1 + ν)

8π(1− ν)E
· rz
R3

(3.5)

where subscripts r,z and θ indicate direction. θ is the circumferential direction,

perpendicular to both r and z

As Kelvin’s problem excludes a surface, the practical applications of this particular

solution are limited. Kelvin’s solution can be integrated to determine distributed

loads.
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Chapter 3 3.3. Boussinesq’s Solution

3.3 Boussinesq’s Solution

In 1885 Boussinesq solved the problem involving a point load acting at the surface

of an elastic half space (a body of infinite depth and width, also known as a

semi-infinite domain) to find the stress and strains at any point within it (Powrie

2004, pp.336).

Figure 3.2: Boussinesq’s solution for a point load P acting at the surface of a

semi-infinite elastic space (Perloff & Baron 1976, pp.179).

Referring to the figure above, the Boussinesq solution consists of the following

equations for normal stress (Poulos & Davis 1974, pp.16).

σz =
3Pz3

2πR5
(3.6)
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Chapter 3 3.4. Mindlin’s Solution

σr = − P

2πR2

[
−3r2z

R3
− (1− 2ν)R

R + z

]
(3.7)

σθ = −(1− 2ν)R

2πR2

[
z

R
− R

R + z

]
(3.8)

and for displacement,

ρz =
P (1 + ν)

2πER

[
2(1− ν) +

z2

R2

]
(3.9)

ρr =
P (1 + ν)

2πER

[
rz

R2
− r(1− 2ν)

R + z

]
(3.10)

where subscripts r,z and θ indicate direction. θ is the circumferential direction,

perpendicular to both r and z. Due to the fact that many geotechnical engineering

tasks take place on the surface these equations are extremely useful. Like Kelvin’s

solution, Boussinesq’s equations can also be integrated to facilitate for line loads

and area loads.

3.4 Mindlin’s Solution

In 1936 Raymond D. Mindlin developed a solution of the three dimensional elastic-

ity equations for a homogeneous, isotropic, semi-infinite solid with a force acting

in its interior (Mindlin 1936).

Kelvin and Boussinesq had both reached fundamental results in this area prior to

Mindlin’s development. Both of their solutions had a range of practical uses, but

Mindlin still saw room for advancement. Mindlin described his paper as a solution
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Chapter 3 3.4. Mindlin’s Solution

that would fill in the gap between these two solutions, giving the stresses for a case

where the force is applied near, not above nor irrespective of a surface (Mindlin

1936).

Figure 3.3: Mindlin’s solution for a force normal to the boundary in the interior of

a semi-infinite mass (Mindlin 1936).

This highlights an important differentiation between Mindlin’s solution and Kelvin’s

solution, that Mindlin introduces a plane boundary which opens it up to a range

of practical applications whilst still retaining the possibility of reaching the same

results as Kelvin’s solution (Mindlin 1936).

In his original paper Mindlin divided his solution into two parts, one solution for a

vertical point load perpendicular to the surface and another for a horizontal point

load parallel with the surface.

Mindlin’s solution for the normal stresses created by a point load perpendicular to
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Chapter 3 3.4. Mindlin’s Solution

the surface involves the following equations (Poulos & Davis 1974, pp.16).

σx =− P

8π(1− ν)

[
(1− 2ν)(z − c)

R3
1

− 3x2(z − c)
R5

1

+
(1− 2ν)[3(z − c)− 4ν(z + c)]

R3
2

− 3(3− 4ν)x2(z − c)− 6c(z + c)[(1− 2ν)z − 2νc]

R5
2

− 30cx2z(z + c)

R7
2

−
(

4(1− ν)(1− 2ν)

R2(R2 + z + c)

)(
1− x2

R2(R2 + z + c)
− x2

R2
2

) ]
(3.11)

σy =− P

8π(1− ν)

[
(1− 2ν)(z − c)

R3
1

− 3y2(z − c)
R5

1

+
(1− 2ν)[3(z − c)− 4ν(z + c)]

R3
2

− 3(3− 4ν)y2(z − c)− 6c(z + c)[(1− 2ν)z − 2νc]

R5
2

− 30cy2z(z + c)

R7
2

−
(

4(1− ν)(1− 2ν)

R2(R2 + z + c)

)(
1− y2

R2(R2 + z + c)
− y2

R2
2

) ]
(3.12)

σz =− P

8π(1− ν)

[
−(1− 2ν)(z − c)

R3
1

+
(1− 2ν)(z − c)

R3
2

− 3(z − c)3

R5
1

− 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c)
R5

2

− 30cz(z + c)3

R7
2

] (3.13)

Furthermore noting axisymmetry for the case of vertical load, instead of two for-

mulae σx and σy, it can be exemplified by one formula σr.

σr =− P

8π(1− ν)

[
(1− 2ν)(z − c)

R3
1

− (1− 2ν)(z + 7c)

R3
2

+
4(1− ν)(1− 2ν)

R2(R2 + z + c)

− 3r2(z − c)
R5

1

+
6c(1− 2ν)(z + c)2 − 6c2(z + c)− 3(3− 4ν)r2(z − c)

R5
2

− 30cr2z(z + c)

R7
2

]
(3.14)
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Chapter 3 3.5. Applications in Geotechnical Problems

and for displacement,

ρz =
P

16πG(1− ν)

[
3− 4ν

R1

+
8(1− ν)2 − (3− 4ν)

R2

+
(z − c)2

R3
1

+
(3− 4ν)(z + c)2 − 2cz

R3
2

+
6cz(z + c)2

R5
2

] (3.15)

ρr =
Pr

16πG(1− ν)

[
z − c
R3

1

+
(3− 4ν)(z − c)

R3
2

− 4(1− ν)(1− 2ν)

R2(R2 + z + c)

+
6cz(z + c)

R5
2

(3.16)

Where,

r =
√
x2 + y2

R1 =
√
r2 + (z − c)2

R2 =
√
r2 + (z + c)2

3.5 Applications in Geotechnical Problems

This section provides a review of literature on the applications of closed form

Mindlin’s, Boussinesq’s and Kelvin’s solutions. There has been many numerical

methods developed referencing these solutions but as this thesis centres on ana-

lytical solutions these papers will not be reviewed. Additionally papers which in-

volve anisotropic or non-homogeneous media will not be considered as the solutions

discussed in this thesis are specifically formulated for an isotropic, homogeneous

medium.
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Chapter 3 3.5. Applications in Geotechnical Problems

3.5.1 Applications in Piling

As piles are generally inserted into the ground for the support and stability of

structures they are responsible for the transmission of heavy loadings into the

soil beneath. Pile analysis is a major civil engineering problem and one in which

elasticity theory has been used as a method to analyse piles and pile groups.

In their 1971 paper Butterfield and Banerjee performed an elastic analysis of rigid

and compressible piles and pile groups based on the use of Mindlin’s solution in

a homogeneous isotropic medium. Through integration of Mindlin’s point load

solutions they were able to obtain insight into the relationships between certain

variables within the system.

The study observed the effect of variations in the ratio of pile length to pile diame-

ter, the ratio of modulus of elasticity of the pile to shear modulus of the medium of

which it is situated and the effect that enlarging the base has on the load displace-

ment characteristics of singular piles. When Butterfield and Banerjee compared

their results with published approximate solutions and laboratory tests they found

them to be close enough to warrant the use of their solution for the calculation of

pile group settlement ratios and the prediction of pile group behaviour based on

single pile load displacement data.

Comparisons between Mindlin’s solution and Boussinesq’s solution for the stresses

resulting from distributed subsurface loadings (triangular and rectangular) were

studied by Geddes in 1966. While Mindlin’s solution was applied successfully it

was found that if Boussinesq’s solution was adopted significant overestimates were

produced (Geddes 1969). This is because Boussinesq’s solution is not designed for

subsurface loading.

Geddes (1969) modified the Boussinesq solution to include subsurface loading cater-

ing for vertical skin friction forces in piles. A limitation being that it does not
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take into account the presence of overburden loading as the solution is based on

the Boussinesq solution which acts at the surface. Therefore in general Geddes’

solution will produce overestimates for stress. As the solution was intended for

approximation purposes this inaccuracy is only a minor limitation.

Tian-quan (1981) detailed pile analysis on both rigid and compressible piles by

using two simple integral equation methods. The first consisting of a horizontal

Mindlin force distributed along an axis combined with a Boussinesq point force

and the second consisting of a a distributed vertical Mindlin force (Tian-quan

1981). The paper was able to transform a three dimensional problem into a one

dimensional Fredholm integral equation of the first kind.

3.5.2 Applications in Anchoring

Similarly to piling, Earth or ground anchors are a foundation providing support

and stability for certain structures. Anchors are tensile members as there are usu-

ally tensile forces involved, anchoring in place whilst undergoing uplift forces or

horizontal pull out forces (Altun, Karakan and Caglar Tuna 2013). Sub-surface

loadings such as these open up anchoring problems to analysis via Mindlin’s so-

lution. Furthermore some anchors provide an opposite force acting at the surface

compressing the soil, such as a plate, in this case Boussinesq’s solution may be

used. Having both tensile and compressive forces working together can improve

the support offered by the anchor so for some designs it may be preferable to have

both, thus it may be possible to analyse an anchor system involving a combination

of both Mindlin’s and Boussinesq’s solutions.

Many of the following applications are more related to contact mechanics which

strays somewhat further away from the more traditional civil and geotechnical

engineering applications discussed in other sections. Nonetheless they represent

an important and well researched area on the application of the selected elasticity
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solutions whilst often containing problems in relation to ground anchors.

Selvadurai (1979) formulated a closed form solution based on Mindlin’s equations

for the displacement experienced by a rigid circular plate connected to a ground

anchor. The problem involved an isotropic, elastic half-space subject to axisym-

metric internal and external loads (see Figure 3.4) (Selvadurai 1979). The analysis

contained a variety of distributed loading cases, constant, linear and parabolic; ne-

glecting any effects of friction (Selvadurai 1979). The paper also suggests that this

particular problem has useful connections with rock anchoring and in situ testing.

Figure 3.4: Selvadurai’s anchored rigid circular plate (Selvadurai 1979).

In their 2013 research paper, Altun, Karakan and Caglar Tuna followed on from

Salvarudai’s 1979 work, analysing the load-displacement relationship for a rigid

ground anchored circular plate using Mindlin’s solution. The effects of anchor

length, anchor depth and the type of load distribution has on the load-displacement

relationship was also observed (Altun et al. 2013).

For verification purposes Altun, Karkan and Caglar Tuna also undertook FEM
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(Finite Element Method) analysis and compared it with their analytical results.

It was found that the two methods did not agree well for Mindlin’s problem and

that the reasoning for this was due to discrepancies in the solution procedures

and the material properties assigned in each method (Altun et al. 2013). In spite

of these disagreements it is suggested that the analytical solutions to determine

anchor displacements may still be applicable as long as it is in the case of an ideal

soil and the elastic parameters are determined correctly (Altun et al. 2013).

3.5.3 Applications in Tunnelling

Tunnels are often a part of engineering projects in areas such as transport, public

health and mining engineering. Tunnels have been subjected to research in which

elastic analysis including Mindlin’s solution has been performed in order to pre-

dict nearby soil displacements and to examine the effect of stresses on places of

interest in the proximity. Such analysis could theoretically be performed on other

underground excavations such as caverns or shafts.

Zhang et al. (2013) utilised a semi-analytical approach for geotechnical tunnel anal-

ysis where the tunnel was assumed as an elastic beam. An integrated Boussinesq’s

solution was used to determine the distributed soil stresses and tunnel displacement

induced by an adjacent excavation. Additionally, through integration of Mindlin’s

solution, Zhang et al. (2013) was able to estimate the resistance of a tunnel. Their

work is founded on the contemporary challenges of incorporating metro systems

into urban areas, as the interaction between underground structures and existing

tunnels represents a significant safety concern.

Among the results were the effects of different factors on heave displacement (heav-

ing of a tunnel happens due to the rebound of soil when adjacent soil is exca-

vated), these included excavation area, relative distance and construction proce-

dure (Zhang et al. 2013). A good conformity was found when the displacement
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results were verified against the field measurements for deep excavations above

metro tunnels (Zhang et al. 2013).

Among the limitations of the semi-analytical method, Zhang et al. (2013) noted

that it was best used for quick assessment of tunnel displacement and for higher

accuracy numerical analysis should be utilised. Additionally clarification is needed

as to whether or not this method may be applied when soil properties change with

time, take for example soft clays (Zhang et al. 2013).

Chow (1994, p.16) used Mindlin’s solution for finding the surface displacement in a

shallow tunneling problem (see figure 3.5). Chow postulated that the total vertical

displacement at point O could be found through integrating equation 3.15 along

the y axis from −∞ to +∞.

Figure 3.5: Tunnel problem (Chow 1994, pp.16).

In the paper a solution was reached which could not be evaluated analytically (and

hence exact surface displacements could not be found). After reformulating the

approach, relative surface displacements were found by comparing displacements

at two points (Chow 1994).
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3.5.4 Applications in Contact Mechanics

Mindlin’s solution has been used in a wide range of research in contact problems.

Selvadurai (2001) analysed via Mindlin’s problem for a half space bonded with a

thin plate of infinite extent at the surface subject to an axisymmetric load. The aim

of such an analysis is to identify and develop integral expressions for the influence

a Mindlin force has on deflections and moments inside the plate (Selvadurai 2001).

Rahman and Newaz (2000) modelled a Boussinesq type solution for a load acting

at the surface of an isotropic half-space in which the surface had been coated with

a thin soft film. The applications for this research are more tuned to mechanical

areas with such examples given as magnetic layer protection for hard disk files

and thermal protection in aerospace design (Rahman & Newaz 2000). In general,

the results may be useful in determining solutions for frictionless contact problems

where the surface is reinforced by thin coatings (Rahman & Newaz 2000).

3.5.5 General Research and Applications

Sun et al. (2013) developed an extended, integrated form of Mindlin’s displacement

equations to find displacements at an arbitrary point induced by horizontally or

vertically distributed loading acting normally or tangentially. The results were

compared and found to correlate well with existing literature in the area (Sun et

al. 2013).

Sun et al. (2013) indicate that the formulae can be used to understand displace-

ment fields around embedded structures in practical situations and furthermore

may be useful in the development of future computer programs in the area.

Basile (2002) presented the integration for a singular Mindlin displacement so-

lution over a cylindrical surface. The derivation of the equation is presented in
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full. Such analytical solutions are helpful in reducing computational resources

required in certain analyses (Basile 2002). Likewise Douglas and Davis (1964) in-

tegrated Mindlin’s horizontal displacement equations in order to attain values for

the displacement and rotation of a vertically buried footing subject to moment

and horizontal loadings. Ultimately this solution was used in a numerical method,

however this paper is still somewhat relevant to this thesis as the integration of

Mindlin’s solution is displayed.

Figure 3.6: Dominguez (1966) detailed how the stress due to a uniform distributed

load over the area of the shaded section above could be found through integration.

Dominguez (1966) showed the steps involved in integrating Boussineq’s equation

for normal stress along the x,y,z axes for both horizontal and vertical loadings over

a radial area (see Figure 3.6). Dominguez’s expressions are also fairly flexible as

can be seen from Figure 3.6 in that it allows the disregard of certain segments of

the circle based on input radius (ρ) and the angular span (φ).
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The expressions developed by Dominguez could be further built upon or used in

subsequent analysis. Dominguez’s integrated Boussinesq’s solution is used as a

calculation check in Chapter 4.

Acknowledging the previously published results by Poulos Davis (1974), Vaziri et

al. (1982) produced the integrated forms of Mindlin’s displacement equations in

both the x and z directions for both horizontal and vertical loadings. Through

integrating these equations Vaziri et al. produced the expressions for the dis-

placements due to a uniform shear stress as well as displacements produced by a

uniformly distributed pressure. The motivation behind this research was to assist

in the development of a computer program for retaining walls (Vaziri et al. 1982).

Vaziri et al. (1982) validated the integrated solutions using a variety of techniques

which found them to be correct.

3.5.6 Summary of Applications

Overall there is by no means a large amount of literature on this topic area. The lit-

erature reviewed in this section makes heavy use of both Boussinesq’s and Mindlin’s

solutions over a variety of applications mainly piling, anchoring and tunnelling. As

these were the main areas of application, they will serve as first preference when

exploring possible new analytical calculations within them.

It is also worth noting the absence of Kelvin’s solution in the literature. The

reason for this is most likely due to the limited practical value of Kelvin’s solu-

tion. Nonetheless it is still an important solution as it set the foundation for both

Boussinesq and Mindlin to build upon in the formulation of their own solutions.
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Chapter 4

Circular Sub-Surface Loading

4.1 Introduction

Now that the abilities and possible areas of application of the chosen solutions have

been identified this chapter serves as an exploration into some of the possible appli-

cations which have not yet been covered in literature. The calculations presented

here can further undergo subsequent analysis against their numerical counterparts

in order to determine their true value, both in general and due to its analytical

form.

4.2 Integration of Mindlin’s Solution for a Uni-

formly Distributed Sub-Surface Circular Load

While much of the covered literature (Geddes 1966, Vaziri et al. 1982, Basile 2002,

Zhang et al. 2013, Douglas Davis 1964) included developed integrated Mindlin’s

solutions for sub-surface loadings; these publications do not all explicitly show
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the integration process nor state the fully integrated solution. Additionally there

appears to be an emphasis on integrating Mindlin’s displacement equations whilst

the integration of Mindlin’s original stress equations appear to have not yet been

published. Geddes (1966) did include and show the integration of Mindlin’s stress

equations however it was a modified version to cater for numerical applications.

This section contains the integration of the original normal stress equation devel-

oped by Mindlin as well as a possible ways in which it can be applied.

Figure 4.1 illustrates a potential area of exploration for the integrated form of

Mindlin’s equation for normal stress generated by a vertical force.

Figure 4.1: A uniformly distributed vertical circular loading beneath the surface

(x-y plane).
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Taking Mindlin’s equation for normal stress in the z direction,

σz =− P

8π(1− ν)

[
−(1− 2ν)(z − c)

R3
1

+
(1− 2ν)(z − c)

R3
2

− 3(z − c)3

R5
1

− 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c)
R5

2

− 30cz(z + c)3

R7
2

] (4.1)

and integrating with respect to r and integrating again with respect to θ (angle in

radians), we can find σz induced by a uniformly loaded circular area, with a load

per unit area of q and a radius of R,

σz =

∫ 2π

0

∫ R

0

−q · r · dr · dθ
8π(1− ν)

[
−(1− 2ν)(z − c)

R3
1

+
(1− 2ν)(z − c)

R3
2

− 3(z − c)3

R5
1

− 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c)
R5

2

− 30cz(z + c)3

R7
2

]
(4.2)

σz =− q

8π(1− ν)

∫ 2π

0

dθ

∫ R

0

r · dr
[
−(1− 2ν)(z − c)

R3
1

+
(1− 2ν)(z − c)

R3
2

− 3(z − c)3

R5
1

− 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c)
R5

2

− 30cz(z + c)3

R7
2

]
(4.3)

Remembering,

R1 =
√
r2 + (z − c)2

R2 =
√
r2 + (z + c)2
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These integrations can be based upon the already solved integrals by Dwight

(1957). In Dwight (1957) the solutions to the following integrals are outlined,

all of which are relevant to Eq. 4.3.

∫
a · da
√
a2 + b2

3 =
−1√
a2 + b2

(4.4)

∫
a · da
√
a2 + b2

5 =
−1

3
√
a2 + b2

3 (4.5)

∫
a · da
√
a2 + b2

7 =
−1

5
√
a2 + b2

5 (4.6)

For this calculation we are considering a full circular load, therefore θ = 2π, so

instead of detailing the second integration, the final solution will simply be multi-

plied by 2π to achieve the same effect. We then divide Eq. 4.2 up into separate

terms to ease integration and substituting equations for R1 and R2.

For the first term, as this is effectively the integral in Eq. 4.4 it can be solved

following that process which gives,

[−(1− 2ν)(z − c)]
∫ R

0

r · dr√
r2 + (z − c)23

= [−(1− 2ν)(z − c)]

[
−1√

r2 + (z − c)2

]R
0

(4.7)

Following the same process the 2nd term becomes,

[(1− 2ν)(z− c)]
∫ R

0

r · dr√
r2 + (z + c)2

3 = [(1− 2ν)(z− c)]

[
−1√

r2 + (z + c)2

]R
0

(4.8)
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Integrating the 3rd term with assistance from equation 4.5, results in

[−3(z − c)3]
∫ R

0

r · dr√
r2 + (z − c)25

= −3(z − c)3
[

−1

3
√
r2 + (z − c)23

]R
0

(4.9)

Integrating the 4th term with assistance from equation 4.5, results in

−m
∫ R

0

r · dr√
r2 + (z + c)2

5 = −m

[
−1

3
√
r2 + (z + c)2

3

]R
0

(4.10)

where

m = 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c)

Integrating the 5th term with assistance from equation 4.6, results in

−30cz(z + c)3
∫ R

0

r · dr√
r2 + (z + c)2

7 = −30cz(z + c)3

[
−1

5
√
r2 + (z + c)2

5

]R
0

(4.11)

Combining all of these results and simplifying the following is achieved,

σz =− q

4− 4ν

[(1− 2ν)(z − c)√
r2 + (z − c)2

]R
0

−

[
(1− 2ν)(z − c)√
r2 + (z + c)2

]R
0

+

[
(z − c)3√

r2 + (z − c)23

]R
0

+

[
m

3
√
r2 + (z + c)2

3

]R
0

+

[
6cz(z + c)3√
r2 + (z + c)2

5

]R
0


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Finally we obtain

σz =− q

4− 4ν

[[
(1− 2ν)(z − c)√
R2 + (z − c)2

]
−

[
(1− 2ν)(z − c)√

(z − c)2

]
−

[
(1− 2ν)(z − c)√
R2 + (z + c)2

]

+

[
(1− 2ν)(z − c)√

(z + c)2

]
+

[
(z − c)3√

R2 + (z − c)23

]
−

[
(z − c)3√
(z − c)23

]

+

[
m

3
√
R2 + (z + c)2

3

]
−

[
m

3
√

(z + c)2
3

]
+

[
6cz(z + c)3√
R2 + (z + c)2

5

]
−

[
6cz(z + c)3√

(z + c)2
5

] 
(4.12)

where

m = 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c)
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4.2.1 Comparing Integrated Mindlin’s and Boussinesq’s So-

lutions

As a preliminary exercise a comparison will be made between the integrated Mindlin’s

solution developed previously and integrated forms of Boussinesq’s equation for the

same parameter encountered in the literature.

Mindlin’s solution is developed exclusively for sub-surface loading, this section

looks at the effectiveness of Mindlin’s solution if the value of c were reduced to 0

as to imply the loading is at the surface. Furthermore this exercise will validate

whether or not Mindlin’s solution has been correctly integrated in Eq. 4.12.

Take c = 0 m (so that the load acts at the surface) therefore,

m = 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c) = 3(3− 4ν)z(z)2 − 0 = 3z3(3− 4ν)

substituting these into Eq. 4.12 gives,

σz =− q

4− 4ν

[ z(1− 2ν)√
R2 + z2

]
−
[
z(1− 2ν)√
R2 + z2

]
+

[
z(1− 2ν)√

z2

]
−
[
z(1− 2ν)√

z2

]

+

[
z3

√
R2 + z2

3

]
−

[
z3
√
z2

3

]
+

[
3z3(3− 4ν)

3
√
R2 + z2

3

]
−

[
3z3(3− 4ν)

3
√
z2

3

]
+ 0



σz =− q

4− 4ν

[[
z3

√
R2 + z2

3

]
− 1 +

[
z3(3− 4ν)
√
R2 + z2

3

]
− (3− 4ν)

]

σz = − q

4− 4ν

[[
z3

√
R2 + z2

3

]
+

[
z3(3− 4ν)
√
R2 + z2

3

]
− (4− 4ν)

]
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σz = − q

4− 4ν

[
z3(4− 4ν)

(R2 + z2)3/2
− (4− 4ν)

]

σz =
q(4− 4ν)

(4− 4ν)
− qz3(4− 4ν)

(4− 4ν)(R2 + z2)3/2

σz = q

(
1− z3

(R2 + z2)3/2

)
(4.13)

From Dominguez (1966) the integrated version of Boussinesq’s equation for σz is.

σz = q

[
1− z3

(R2 + z2)3/2

]

The two solutions are identical which confirms that Mindlin’s solution has been

correctly integrated (Eq. 4.12).
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Chapter 5

Exploring the Applications of the

Integrated Mindlin’s Solution

This section explores some possible applications for the integrated Mindlin’s solu-

tion developed earlier (Eq. 4.12).

5.1 Mindlin Based Influence Chart

A Mindlin-based influence chart would offer advantages such as quick approxima-

tion, the ability to obtain values for irregular shaped loadings and easier calcula-

tion of stresses that are offset (do not lie directly beneath the center of the circular

loading). Such charts do not appear to exist for Mindlin’s solution though have

been developed for Boussinessq’s solution, namely Newmark’s chart developed by

Nathan Newmark in 1942 (Das & Sobhan 2010).

Noting the likeness between the integrated Mindlin’s solution (Eq. 4.12) and the

integrated Boussinesq’s solution for normal stress induced by a vertical load an at-
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tempt was made to develop an influence chart for Mindlin’s solution similar to that

of Newmark’s influence chart for Boussinesq’s solution. Newmark’s influence chart

is of great practical value due to its versatility, efficiency and useful approximation

capabilities.

In order to develop a chart similar to that of Newmark’s several variables had to

be taken as constants, namely, poisson’s ratio ν and the ratio c/z, where c is the

depth from the surface to the loaded area and z is the depth of the point of interest.

If these constants were taken as variables the values used to generate the chart

would not correlate and the chart would be useless. A trial and error approach was

undertaken by inputting different values of R into Eq. 4.12 to obtain predetermined

incremental values of σz
q

. The same inputs used to generate Newmark’s chart were

targeted. Figure 5.1 shows the table of these results for c/z = 0.3 and ν = 0.3.

Newmark’s chart represents a special case of these charts with c/z = 0.

Figure 5.1: Table of values for creation of Newmark style Mindlin based influence

chart. c/z = 0.3 and ν=0.3.

Like in Newmark’s chart values of R/z were then used as the radii for the circles in

Figure 5.2. Again like Newmark’s chart the circles are dissected by evenly spaced

angular lines, the influence value is obtained by 1/N , where N is the number

of elements on the chart and the length of line AB represents the unit length
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R/z = 1(Das & Sobhan 2010).

Figure 5.2: The developed Mindlin based influence chart for c/z = 0.3 and ν = 0.3.

Two tests were performed to validate the accuracy of Figure 5.2 using the same

equation as Newmark’s chart (Das & Sobhan 2010, pp.344).

σz = (IV )qM (5.1)

where, IV is the influence value, q is the area load and M is the number of elements

covered by the area when placed on the chart. The diagrammatic components of

the following tests are located in Appendix B.
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TEST 1

z = 10m

c = 3m

R = 5m

q = 150kN

which gives 66 elements on chart therefore,

σz = 0.005 · 66 · 150 = 49.5 kN/m2

The above values when substitued into Mindlin’s solution gives σz = 50.08 kN/m2

error = 1.158%

Therefore, a good agreement was found and the chart can be deemed accurate.

TEST 2

z = 8m

c = 3m

R = 2m

q = 150kN

which gives 23 elements on chart therefore,

σz = 0.005 · 23 · 150 = 17.25 kN/m2

The above values when substituted into Mindlin’s solution gives σz = 18.04 kN/m2

error = 4.38% This error is much higher than test 1, which shows the chart not

useful for c
z
6= 0.3
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5.1.1 Limitations

Although this chart can provide a quick and accurate approximation, the concept

of a Mindlin’s solution-based influence chart is of little practical value overall due

to the many variables which must maintain a constant value for the chart to be

produced. Therefore a different chart must be produced depending on different

values of c/z and ν. Further simplification was investigated with the aim to achieve

a pair of charts or graphs with one similar to Figure 5.2 and another that would

give a different scale to be utilised in conjunction with the other based off of ν

and c
z
. However due to the complexity of the integrated Mindlin’s solution (Eq.

4.12), this task was deemed too difficult to achieve with questions over its general

possibility.

Therefore even though a Mindlin-based influence chart was successfully created, it

serves little practical value due to the need to generate a great number of charts

for a great number of situations which would be very time consuming.

5.2 Stress Estimation In Bi-Loaded Anchors

Having reached severe limitations with the Mindlin based influence chart in the

previous section the need to find an useful application for Eq. 4.12 remained.

Investigations into applications for which the circular subsurface loading equation

could be applied were undertaken with a preference that it have practical relativity.

It was decided that the solution could obtain useful results if applied to a simpli-

fied anchor system. Recognition that both Boussinesq’s and Mindlin’s solutions

are mathematically compatible and therefore combinationally possible, provided

a particular avenue of intrigue. A bi-loaded anchor system, one of which that

contained two loads, a surface load representable by Boussinesq’s solution, and a

subsurface load expressible by that of Mindlin’s solution was explored.
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It was deemed that Eq. 4.12 may be an effective way to determine the amount of

loading required to eliminate tension in bi-loaded ground anchors. Figure 5.3 shows

the loading conditions for a bi-loaded ground anchor analysed in this thesis. Such

an anchor is commonly used in practice as the compressive force applied at the

surface further strengthens the anchorage. Given a uniformly distributed circular

surface and sub-surface load it is possible to then combine both Eqs. 4.12 and

4.13 (Mindlin’s and Boussinesq’s respectively) to formulate what surface loading

is required to nullify tensile stresses directly beneath the sub-surface load. It is an

important area of examination with practical significance as tensile stresses in soil

beneath the ground anchor would ultimately mean failure due to the poor tensile

capacity of soil.

Both Boussinesq’s and Mindlin’s solutions are particularly compatible in this cir-

cumstance as the value of z would be the same for both. As a negative stress

indicates a tensile stress, combining Eqs. 4.12 and 4.13, equating to zero and then

solving for the circular surface load would give the load needed at the surface to

nullify tensile stresses beneath the anchor.
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Figure 5.3: An isometric representation of a bi-loaded anchor system with a Boussi-

nesq load acting on the surface plane and a Mindlin load acting on a parallel

sub-surface plane a distance of c below.

50



Chapter 5 5.2. Stress Estimation In Bi-Loaded Anchors

5.2.1 Example

This example displays the steps involved in finding the required qB to nullify tensile

stresses, although as seen in the next section this is not the penultimate solution

in doing so.

Taking z = c as this is where the maximum tensile stresses would reside.

ν = 0.25

z = c = 5m

RB = 1.2m

RM = 1.2m

qM = 200 kN/m2

qB =?

Taking the integrated Mindlin solution

σz =− qM
4− 4ν

[[
(1− 2ν)(z − c)√
R2
M + (z − c)2

]
−

[
(1− 2ν)(z − c)√

(z − c)2

]
−

[
(1− 2ν)(z − c)√
R2
M + (z + c)2

]

+

[
(1− 2ν)(z − c)√

(z + c)2

]
+

[
(z − c)3√

R2
M + (z − c)23

]
−

[
(z − c)3√
(z − c)23

]

+

[
m

3
√
R2
M + (z + c)2

3

]
−

[
m

3
√

(z + c)2
3

]
+

[
6cz(z + c)3√
R2
M + (z + c)2

5

]
−

[
6cz(z + c)3√

(z + c)2
5

] 
where

m = 3(3− 4ν)z(z + c)2 − 3c(z + c)(5z − c)

and the integrated Boussinesq solution

σz = qB

[
1− z3

(R2
B + z2)3/2

]

substituting in the values we get
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m = 3(3− 4× 0.25)5(5 + 5)2 − 3× 5(5 + 5)(5× 5− 5) = 3000− 3000 = 0

qB

[
1− 53

(0.82 + 52)3/2

]
=

200

4− 4× 0.25

[[
−(1− 2× 0.25)− 1 +

[
6× 5× 5(5 + 5)3√

1.22 + (5 + 5)2
5

]

−

[
6× 5× 5(5 + 5)3√

(5 + 5)2
5

] 

0.08057qB = 66.6667 [−0.5− 1 + 1.4473− 1.5]

0.08057qB = 66.6667×−1.5527

qB =
−103.5133

0.08057

qB = −1284.8kN/m2

5.2.2 Graphical Approach for a Bi-Loaded Anchor System

Having reached difficulties in developing an effective Newmark style influence chart

for Mindlin’s solution, an attempt was made to create a graph which was also based

on influence factors (σz/q) that could allow an easy comparison between integrated

Mindlin’s and Boussinesq’s solutions. The plots in this section were developed using

the computer program MATLAB, the code for which can be found in Appendix

C. Figure 5.4 shows the influence factor curves for multiple values of ν and for

Boussinesq’s equation for an increasing ratio R/z.

Discussion of Figures 5.4, 5.5 and 5.6

An interesting thing to note is that when z = c and R = 0, the integrated Mindlin’s

solution is equal to 1
2
. This emulates what happens when c approaches ∞ where

Mindlin’s solution becomes reminiscent Kelvin’s solution. Figure 5.4 can be used

for estimating the R/z required for the Boussinesq load to nullify the maximum
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tensile stresses caused by the subsurface Mindlin load (which is at the point of

loading z = c). The figure also conveys a strange result, the curves for ν = 0.5

and ν = 0.4 gives an I > 1 at a certain range of R/z with a maximum of 1.009

occurring at R/z = 4 on the ν = 0.5 curve. Such a result should be impossible as

the maximum difference between compressive and tensile influence factors should

be exactly equal to 1 at z = c. The point located infinitesimally above c+, should

emanate a compressive stress and the point infinitesimally below c−, a tensile stress

given the load is acting directly upwards, normal to the surface. An influence factor

of > 1 negates such a necessity. The cause of this anomaly is unknown but it could

represent a problem or limitation of Mindlin’s solution.

Following the curve for ν = 0.5, when R/z = 1 the influence factor is 0.75 and from

the Boussinesq curve, the surface loading would require an R/z = 1.233 to achieve

the same influence factor and counter this. Therefore from this information we

know that the RB would need to be altered in Eq. 4.13, see below.

σz = q

(
1− z3

((1.233RB)2 + z2)3/2

)

Doing so, arrives at Figure 5.6 which indicates that tensile stresses are still present.

An explanation for this presence can be obtained by observing Figure 5.5 which

exhibits the decline in stress caused by both loads as the depth increases. This

element is a limitation of Figure 5.4 as it does not take into account the weakening

intensity of the Boussinesq surface load as the depth z, increases. So the above

equation results in Figure 5.6 where tensile stresses are nullified at the point of

loading (σz = 0 at c−) but as the depth z, increases below this point there is a

zone where the subsurface Mindlin loading has much more of an influence on the

stress conditions than Boussinesq’s surface load does and hence tensile stresses

remain. It is possible to develop a graphical relationship between the surface and

subsurface loadings that nullify not only the maximum, but all tensile stresses,

this is presented in the next section.
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Figure 5.4: Influence factor curves for eq. 4.12

with ν = 0, 0.1,...0.5 and eq. 4.13.
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Figure 5.5: Behaviour of influence factor curves for eq. 4.12

(where ν = 0, 0.1,...0.5) and eq. 4.13 against increasing depth z. c = 4m.
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Figure 5.6: Behaviour of a combined Mindlin - Boussinesq influence factor curve against increasing depth z. c = 4m.
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5.2.3 Cancelling All Tensile Stresses

Following on from Figures 5.5 and 5.6 where we have c = 4m, RB = RM = R = 4m

and ν = 0.5 this section shows the development of an equation which gives the

maximum required ratio of qB/qM so that no tensile stress regions will appear in

the ground. Taking the integrated forms of Mindlin’s and Boussinesq’s equations

(Eqs. 4.12 and 4.13 respectively) and equating them to one another ensures that

the stress should be exactly neutralized for any specific depth z(m) (provided their

loads are acting in opposite directions).

qB

[
1− z3

(R2 + z2)3/2

]
=− qM

4− 4ν

[[
(1− 2ν)(z − c)√
R2 + (z − c)2

]
−

[
(1− 2ν)(z − c)√

(z − c)2

]

−

[
(1− 2ν)(z − c)√
R2 + (z + c)2

]
+

[
(1− 2ν)(z − c)√

(z + c)2

]

+

[
(z − c)3√

R2 + (z − c)23

]
−

[
(z − c)3√
(z − c)23

]
+

[
m

3
√
R2 + (z + c)2

3

]

−

[
m

3
√

(z + c)2
3

]
+

[
6cz(z + c)3√
R2 + (z + c)2

5

]
−

[
6cz(z + c)3√

(z + c)2
5

] 

qB
qM

=− 1

4− 4ν

[[
(1− 2ν)(z − c)√
R2 + (z − c)2

]
−

[
(1− 2ν)(z − c)√

(z − c)2

]
−

[
(1− 2ν)(z − c)√
R2 + (z + c)2

]

+

[
(1− 2ν)(z − c)√

(z + c)2

]
+

[
(z − c)3√

R2 + (z − c)23

]
−

[
(z − c)3√
(z − c)23

]

+

[
m

3
√
R2 + (z + c)2

3

]
−

[
m

3
√

(z + c)2
3

]
+

[
6cz(z + c)3√
R2 + (z + c)2

5

]

−

[
6cz(z + c)3√

(z + c)2
5

]  · [1− z3

(R2 + z2)3/2

]−1

(5.2)
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Using this equation for an array of z values gives Figure 5.7. Note that the peak

negative influence factor on Figure 5.6 occurs at a depth of 6.28m which does

not equal where the peak ratio is situated in Figure 5.7 which occurs at 7.9m.

This makes sense because again, Boussinesq’s equation is continually getting less

intense. Figure 5.8 is proof that implementing the ratio qB/qM = 1.593 obtained

from Figure 5.7 into the equation below eliminates all tensile stresses in the system.

I = IM + (
qB
qM

)IB

where,

IM is the Mindlin influence factor (σM/qM)

IB is the Boussinesq influence factor (σB/qB)

58



C
h
ap

ter
5

5.2.
S
tress

E
stim

ation
In

B
i-L

oad
ed

A
n
ch

ors

Figure 5.7: Ratio of loads required to nullify tensile stresses at depth z. c = 4m, R = 4m.
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Figure 5.8: Modified to include qB/qM ratio from Figure 5.7, the combined Mindlin - Boussinesq influence factor curve against

increasing depth z. c = 4m, R = 4m.
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Figure 5.9: Stress with depth, no surface load c = 7m, R = 2m, q = 200kPa

and γ = 18kN/m3.
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Figure 5.10: Stress with depth, no surface load c = 7m, R = 2m, q = 300kPa

and γ = 18kN/m3.
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Discussion of Figures 5.9 and 5.10

Figures 5.9 and 5.10 show the stress against depth when instead of a surface load,

the uplift force of the anchor is mitigated purely by the weight of the soil, γ

(kN/m3). The difference that can be observed between Figure 5.9 and Figure 5.10

is a demonstration of the ability and ease of which a parametric study can be

performed with these solutions. Figure 5.9 would indicate that the weight of the

soil is enough to ensure the anchor system is entirely in compression and therefore

would not fail, whereas figure 5.10 illustrates that increasing the Mindlin load from

200kPa to 300kPa and not changing any of the other variables would induce tensile

stresses and therefore possible soil failure for this particular case.

Summary

Similarly to the Mindlin based influence chart developed earlier, the figures up

until this point require numerical inputs for some parameters which limits their

practical value. Specific values of c, R and additionally in the second case, q

and γ must be chosen before the graphs can be generated. Although unlike the

Newmark styled influence chart from earlier, the figures created represent a visual

and insightful demonstration of how stress weakens with depth as well as the

entanglement of Boussinesq’s and Mindlin’s solutions and the overall influences

that certain parameters have within them.

5.2.4 Forming a Single Design Chart

As the value of qB/qM required to nullify tensile stresses depends entirely on R/c

(if both subsurface and surface loads have the same radius R, ie. RB = RM = R)

a table of values could be formulated giving the maximum ratio of qB/qM for each

R/c and from that, a graph. Given the complexity of Eq. 5.2, it is not possible

to directly equate qB/qM to R/c so another method must be used. This would
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be a very time consuming task to do manually but the computational power of

MATLAB supplies a timely alternative. A major simplification in such a case

would be that RB = RM which, from a practical point of a view is not an overly

demanding requirement. Furthermore, optimization of radii against surface and

sub-surface loadings is possible with subsequent analysis.

Taking a look at Eq. 4.12 it can be seen that on the left hand side of the equation

we have units of pressure denoted by σz and on the right hand side of the equation

exterior to the main set of parentheses we also have a pressure given by q. Therefore

the final unit obtained through solving for the terms inside the parentheses must

be dimensionless. This allows that R, c and z to all be divided by c resulting in an

identical dimensionless answer. Doing so allows the performance of computations

with a unified variable R/c which is what is needed to determine maximum values

of qB/qM . This approach was undertaken in the MATLAB code, giving Figure

5.11.
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Figure 5.11: Design chart providing the required ratio of qB/qM for each value of R/c.
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Figure 5.11 represents a design chart which, assuming that the radius of Boussi-

nesq’s load is equal to that of the Mindlin’s load gives the required loading ratio on

the surface against the subsurface to nullify all tensile stresses within the system.

It was ensured that for each case, qB/qM achieved a maximum prior to reaching

the limiting value of z = 20m used in the MATLAB script. It is also important

to note that the chart does not take into account soil weight and thus it can be

deemed as conservative.

5.2.5 Conclusion and Limitations

A single design chart (Figure 5.11) was reached, however it makes the assumption

that RB = RM , which could be overcome by some further work on the solutions.

The set back that was encountered of not fully taking into account the variation of

stress intensity with depth was a great demonstration of the insight in which the

closed form solution can give. The closed form nature means that the plots are

exact and the graphical nature of the investigation allows for a quick visual inspec-

tion which is a useful educational tool. This section has also been an exhibition

into the flexibility of the closed form solution and the ease at which modifications

can be made.

Sabatini, Pass & Bachus (1999, pp. 68) state that when compression anchors (bi-

loaded anchors) are to be used for permanent application, pre-design test programs

may be required to assure satisfactory performance unless verification can be ob-

tained from prior experience or research results. It would seem that the results

(or similar) obtained from this thesis may be applicable to the aforementioned

pre-design stage to suggest plausibility as it should give a conservative estimate.

Although, it is likely that the results obtained here would need follow up work to

make them more applicable for practical use.
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It is important to stress however that although the figures in this section are

focused on a practical topic, the anchor system analysed here is heavily simplified

and thus the results gathered here are not entirely realistic. In addition to the

aforementioned isotropic, homogeneous, elastic conditions of the soil media the

model assumes that the anchor is flexible and that the loads on the anchor are

uniformly distributed. It also neglects anchor thickness and for the bi-loaded case

does not take into account soil weight. Anchors in practice are almost always

angled, usually between 15 and 30 degrees (Sabatini, Pass & Bachus 1999, pp.70).

The anchor in this problem and its associated mathematics are applicable only for

an orientation normal to a horizontal surface. However an angled analysis would be

possible by amalgamating multiple equations from Mindlin’s solution for stresses

in different directions.

Overall both benefits and limitations of the closed form solution can be readily

seen throughout this section and a valid design chart was produced. Of further

note the answer from the example performed in Section 5.2 was verified as correct

using the MATLAB code. MATLAB code used for the creation of Figures 5.4 -

5.11 can be found in Appendix C.

67



Chapter 6

Conclusions and Further Work

6.1 Conclusions

Three related geotechnical, closed form solutions were chosen and researched. This

research showed the applications for which they can be used; mainly, tunnelling,

piling and anchoring. This research also gave an indication on the sorts of processes

in which the solutions may be subjected to and just what could be achieved.

Mindlin’s solution was successfully integrated for the vertical stress produced under

the center of a circular sub-surface loading. This solution was used to obtain charts

and plots that were compared and analysed. The first of which was a Newmark

styled Mindlin based influence chart that was deemed not practically useful due

to the fact that one chart would have to be produced for each configuration of

variables. The next array of plots were based on an anchor system of which Figure

5.11 represents the final, and the most practical. It is capable of giving some

conservative estimates in compression anchor design.

Of the main objectives outlined in the project specification (listed in Appendix
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A), only the final and supplementary objective which was to compare the closed

form solutions with their numerical alternatives was not undertaken due to time

constraints.

On a whole the category of closed form solutions in geotechnical engineering was

reviewed throughout this project; their prominent benefits were that of insight and

flexibility and their main limitation, their simplifying assumptions.

6.2 Further Work

The mathematics for the anchor system that was investigated in Chapter 5 could

be modified as to be more realistic. Most especially re-orientating the anchor at

an angle and reducing a number of other unrealistic traits mentioned in Section

5.2.5.

In Section 5.2.3 an anchor system with no surface loading is examined and a small

parametric study is performed but no singular design chart was developed that

would show the depth required for an anchor to be placed so that purely the

weight of the soil would nullify tensile stresses. Interest in to the prospect of a

singular design chart for this case could be further investigated.

The reason for an I > 1 which is seen in Figure 5.4 is currently unknown. One

possible reason for the anomaly is that it is a created as a result of the circular

integration. If the same chart was generated for say, a rectangular integration the

reason could be explained.

Comparisons with numerical solutions were not performed due to time limitations

but would be a valuable source of information in certifying the overall value of

closed form solutions in this area, and evaluate the levels of error caused by sim-

plifying assumptions involved.
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Kelvin’s solution was chosen as one to be investigated in this project, but no results

or data was obtained that was centred around it. One possible area of exploration

would be the application of Kelvin’s solution in deep tunnelling, where the effects

of the surface could be deemed negligible.
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Figure B.1: Mindlin based influence chart for test 1 performed in section 5.1
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Figure B.2: Mindlin based influence chart for test 2 performed in section 5.1
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function Inffactor = IntegMindlin_F(v,z,c,R)

%Calculating Terms of Equation 4.12 Individually

m = 3*(3-4*v)*z*(z+c).^2 - 3*c*(z+c)*(5*z-c); %Numerator for terms 7,8

tn = (1-2*v)*(z-c); %Numerator for terms 1-4

t1 = tn./[(R.^2+(z-c)^2).^0.5]; %Term 1

t2 = tn./[((z-c)^2).^0.5]; %Term 2

t3 = tn./[(R.^2+(z+c)^2).^0.5]; %Term 3

t4 = tn./[((z+c)^2).^0.5]; %Term 4

t5 = ((z-c)^3)./[(R.^2+(z-c)^2).^1.5]; %Term 5

t6 = ((z-c)^3)./[((z-c)^2).^1.5]; %Term 6

t7 = m./[3*(R.^2+(z+c)^2).^1.5]; %Term 7

t8 = m./[3*((z+c)^2).^1.5]; %Term 8

t9 = (6*c*z*(z+c)^3)./(R.^2+(z+c)^2).^2.5; %Term 9

t10 = (6*c*z*(z+c)^3)./((z+c)^2).^2.5; %Term 10

Inffactor = -(1./(4-4*v)).*(t1 - t2 - t3 + t4 + t5 - t6 + t7 - t8 + t9

- t10);
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%ENG4111/4112 Research Project

%Name: Tim Eaton

%File: MindlinPlot_F.m

%For plotting Mindlin-Boussinesq Influence Factor Curves

%Last modified 14th September, 2014

clear all

close all

clc

z = 4; %Depth to point of interest (metres)

c = 3.99999; %Depth to Mindlin loading (metres)

R = 0:0.1:20; %Radius of circular distributed load (metres)

x = R/z;

for v = 0:0.1:0.5; %Poisson’s Ratio

y = IntegMindlin_F(v,z,c,R);

%Plotting

hold all

grid on

plot(x,y)

axis([0 5 0.5 1.05])

xlabel(’R/z’)

ylabel(’Influence Factor’)

title(’Mindlin - Boussinesq Influence Factor Curves z=c’);

end

%Calculating and plotting Boussinesq’s Equation

B = 1-(z.^3)./[(R.^2+z.^2).^(3/2)];

plot(x,B,’LineWidth’,2)

legend(’Nu = 0’,’Nu = 0.1’,’Nu = 0.2’,’Nu = 0.3’,’Nu = 0.4’,’Nu = 0.5’

,’Boussinesq’)
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%ENG4111/4112 Research Project

%Name: Tim Eaton

%File: MindlinBoussinesqStresswithDepth.m

%For observing Mindlin - Boussinesq stress behaviour against depth

%Last modified 14th September, 2014

clear all

close all

clc

z = 0:0.001:20; %Depth to point of interest (metres)

c = 4.00001; %Depth to Mindlin loading (metres)

R = 1; %Radius of circular distributed load (metres)

for v = 0:0.1:0.5; %Poisson’s Ratio

x = IntegMindlin_F(v,z,c,R);

hold all

grid on

plot(x,-z)

ylabel(’z (m)’)

xlabel(’Influence Factor’)

title(’Mindlin - Boussinesq Influence Factor with Depth’);

end

%Calculating and plotting Boussinesq’s Equation

B = 1-(z.^3)./(R.^2+z.^2).^(3/2);

plot(B,-z,’LineWidth’,2)

legend(’Nu = 0’,’Nu = 0.1’,’Nu = 0.2’,’Nu = 0.3’,’Nu = 0.4’

,’Nu = 0.5’,’Boussinesq’)
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%ENG4111/4112 Research Project

%Name: Tim Eaton

%File: CombinedPlot.m

%For observing Mindlin - Boussinesq COMBINED stress behaviour against depth

%Last modified 14th September, 2014

clear all

close all

clc

z = 0:0.001:20; %Depth to point of interest (metres)

c = 3.99999; %Depth to Mindlin loading (metres)

R = 4; %Radius of circular distributed load (metres)

%Calculating Boussinesq’s Equation

%1.233 obtained from script file MindlinPlot_F.m

B = 1-(z.^3)./((1.233*R)^2+z.^2).^(3/2);

for v = 0.5; %Poisson’s Ratio

x = IntegMindlin_F(v,z,c,R) + B;

hold all

grid on

plot(x,-z)

ylabel(’z (m)’)

xlabel(’Influence Factor’)

title(’Combined Mindlin - Boussinesq Influence Factor with Depth’);

legend(’Nu = 0.5’)

end
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%ENG4111/4112 Research Project

%Name: Tim Eaton

%File: qb.m

%For finding max ratio of qB/qM that is required to nullify all tensile

%stresses

%Last modified 14th September, 2014

clear all

close all

clc

z = 0:0.001:20; %Depth to point of interest (metres)

c = 3.99999; %Depth to Mindlin loading (metres)

R = 4; %Radius of circular distributed loads (metres)(RB=RM)

B = 1-(z.^3)./((R).^2+z.^2).^(3/2);

for v = 0.5; %Poisson’s Ratio

Q = (IntegMindlin_F(v,z,c,R))./-B; %Ratio of qB/qM

hold all

grid on

plot(Q,-z)

xlabel(’q_B/q_M’)

ylabel(’z(m)’)

title(’Load Ratio required for Zero Tensile Stresses against Depth

, R/c = 1’);

legend(’Nu = 0.5’)

end
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%ENG4111/4112 Research Project

%Name: Tim Eaton

%File: ModifiedIF.m

%For checking ratio obtained from script qb.m

%Last modified 14th September, 2014

clear all

close all

clc

z = 0:0.001:20; %Depth to point of interest (metres)

c = 3.99999; %Depth to Mindlin loading (metres)

R = 4; %Radius of circular distributed load (metres)

Q = 1.593; %qB/qM ratio obtained from script qb.m plot

%Calculating Boussinesq’s Equation

B = 1-(z.^3)./((R)^2+z.^2).^(3/2);

for v = 0.5; %Poisson’s Ratio

y = IntegMindlin_F(v,z,c,R) + Q*B;

hold all

grid on

plot(y,-z)

xlabel(’Modified Influence Factor’)

ylabel(’z(m)’)

title(’Modified Influence Factor with Depth’);

legend(’Nu = 0.5’)

end
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%ENG4111/4112 Research Project

%Name: Tim Eaton

%File: nosurcharge.m

%For seeing at what depth Mindlin stresses are canceled out by self weight

%of soil

%Last modified 18th September, 2014

clear all

close all

clc

z = 0:0.001:20; %Depth to point of interest (metres)

c = 7.00001; %Depth to Mindlin loading (metres)

R = 2; %Radius of circular distributed load (metres)

q = 300; %Mindlin load kPa

gamma = 18; %Unit weight of the soil kN/m^3

G = gamma.*z; %Stress due to soil weight kPa

for v = 0:0.1:0.5; %Poisson’s Ratio

x = IntegMindlin_F(v,z,c,R).*q + G;

hold all

grid on

plot(x,-z)

ylabel(’z (m)’)

xlabel(’Stress (kPa)’)

title(’Mindlin vs soil weight with Depth’);

legend(’Nu = 0’,’Nu = 0.1’,’Nu = 0.2’,’Nu = 0.3’,’Nu = 0.4’

,’Nu = 0.5’)

end
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%ENG4111/4112 Research Project

%Name: Tim Eaton

%File: qratio_max_plot.m

%For finding max values of qB/qM that is required to nullify all tensile

%stresses for each value of R/c

%Last modified 12th October, 2014

clear all

close all

clc

Z = 0:0.001:20; %Depth to point of interest (metres)

C = 1.99999; %Depth to Mindlin loading (metres)

z = Z./C; %dimensionless transformation

c = 1; %dimensionless transformation

%r = Radius of circular distribute loads (metres)(RB=RM)

%v = Poisson’s ratio

%Q = Ratio of qB/qM

%%%%%%CASE 1%%%%%%

i=0;

v = 0.5;

for r = 0.00001:0.1:10.00001;

R = r./C;

i = i+1;

A(i) = r./C;

B = 1-(Z.^3)./((r).^2+Z.^2).^(3/2);

Q = (IntegMindlin_F(v,z,c,R))./-B;

qmax(i) = max(Q);

hold all
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grid on

plot(A,qmax)

axis([0 5 1 6])

ylabel(’Ratio of q_B to q_M’)

xlabel(’R/c’)

title(’Required ratio q_B/q_M to nullify all Tensile Stresses’)

end

%%%%%%CASE 2%%%%%%

v=0.4;

for r = 0.00001:0.1:10.00001;

R = r./C;

i = i+1;

A4(i) = r./C;

B = 1-(Z.^3)./((r).^2+Z.^2).^(3/2);

Q = (IntegMindlin_F(v,z,c,R))./-B;

qmax4(i) = max(Q);

plot(A4,qmax4)

end

%%%%%%CASE 3%%%%%%

v=0.3;

for r = 0.00001:0.1:10.00001;

R = r./C;

i = i+1;

A3(i) = r./C;

B = 1-(Z.^3)./((r).^2+Z.^2).^(3/2);

Q = (IntegMindlin_F(v,z,c,R))./-B;

qmax3(i) = max(Q);
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plot(A3,qmax3)

end

%%%%%%CASE 4%%%%%%

v=0.2;

for r = 0.00001:0.1:10.00001;

R = r./C;

i = i+1;

A2(i) = r./C;

B = 1-(Z.^3)./((r).^2+Z.^2).^(3/2);

Q = (IntegMindlin_F(v,z,c,R))./-B;

qmax2(i) = max(Q);

plot(A2,qmax2)

end

%%%%%%CASE 5%%%%%%

v=0.1;

for r = 0.00001:0.1:10.00001;

R = r./C;

i = i+1;

A1(i) = r./C;

B = 1-(Z.^3)./((r).^2+Z.^2).^(3/2);

Q = (IntegMindlin_F(v,z,c,R))./-B;

qmax1(i) = max(Q);

plot(A1,qmax1)

legend(’v = 0.1’,’v = 0.2’,’v = 0.3’,’v = 0.4’,’v = 0.5’)

end
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