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         ABSTRACT 

Determining the water balance is a vital element in water resource management. This is 

particularly important for arid and semi-arid regions in Australia where surface water resources 

such as rivers and rainfall are less available. Consumption of water is the highest for agricultural 

purposes in Australia. Due to the importance of conserving water resources in the background of 

agriculture and climate it is necessary to quantify the water incoming to the system and water 

outgoing from the system. For this reason, it is required to estimate the amount of groundwater 

recharge. The project deals with recharge within irrigated areas. The study area chosen is a group 

of irrigation districts, geographically located within the Murrumbidgee Irrigation Areas (MIA). The 

MIA is situated in southern-central New South Wales. The study area and the MIA come under 

semi-arid environment. Agriculture is prevalent in the MIA. The irrigation districts under the study 

area receive irrigation water diversions from the Main Canal which inturn is diverted from the 

Murrumbidgee River.  

This report describes the application of a newly developed recharge optimisation method for 

arriving at prediction parameters specific to the study area for estimating groundwater recharge 

from an irrigated area. The method is developed leading from AWRA-R irrigation model which is 

developed by Commonwealth Scientific and Industrial Research Organisation (CSIRO). The 

irrigation model has two components in it: Diversions modelling module and Recharge estimation 

module. The diversions module is built inorder to estimate irrigation diversions to agricultural farms 

at a river basin scale. It is simple, can be calibrated and run for long-term simulations quickly. It is 

designed to generate estimations of diversions even under circumstances of parsimonious data 

availability. Recharge module, the other component, is a modified form of Overbank flood recharge 

(OFR) method to estimate groundwater recharge for a given district.  

The AWRA-R irrigation model is applied to the study area and the simulated results for 

groundwater recharge are obtained. These results are further optimised based on factors that 

influence recharge dominantly in the study area. Simulations are run by varying the input 

parameters to the irrigation model thus obtaining 840 trial recharge estimations. These recharge 

values are fitted against a set of collated recharge estimates from previous studies and researches 

done within the MIA and the lower Murrumbidgee by means of root-mean-square error analysis. 

The simulation recharge outputs that give the closest fit to the collated data are accepted to be the 

recharge estimates specific to the study area. The input parameters, Kc and soilCap, applied for 

that simulation are determined to be prediction parameters, the values of which are 7.78E-07m/sec 

and 0.105m respectively. The prediction parameters, thus deduced, have been used to estimate 

recharge for years 1970-2012. From the results of simulated recharge, it is observed that there are 

several years with no recharge while the maximum recharge is 79.49mm in the year of 1991.  
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1.  INTRODUCTION 

1.1 Background 

Australia is a vast and diverse continent with varying temperature zones and climate patterns 

across the country. Surface water resources such as rivers and lakes are more available in coastal 

areas due to abundance of rainfall they receive. Large parts of inner Australia are either desert or 

semi-arid regions; rainfall received is moderate and evaporation losses are much higher than that. 

Groundwater is treated as a dominant water resource in inner Australia and is used to support 

significant urban and rural communities. A wide variety of agricultural enterprises and many non-

agricultural industries also use vast amounts of groundwater. Habermehl (2007) indicates that 

groundwater accounts for 20 percent of all water used in Australia. For many regional areas, 

particularly in arid and semi-arid Australia, it is often the only reliable source of water supporting 

communities and economic activity. 

The replenishment of groundwater occurs through diffuse recharge from rainfall and irrigation 

water, and localised recharge from surface water seepage in streams. Recharge occurs when 

surface water, either from direct precipitation or from rivers and lakes, percolates downwards 

through the microscopic spaces in the soil and rock profile. Eventually, the infiltrated water may 

make its way into an underground water-bearing rock formation, known as an aquifer. Recharge 

mainly occurs in areas where parts of the aquifer are exposed at or close to the surface. 

Groundwater recharge under irrigated agriculture occurs due to application of water to meet the 

water requirement of crops/horticulture. Quantification of recharge under irrigated agriculture is one 

of the most important but least understood components in groundwater studies (Ali 2013). It is 

least understood because of its large variability in space and time and its difficulty to measure 

directly. Better management of groundwater resources is only possible if the fluxes into and out of 

a groundwater system can be accurately estimated. Reducing the uncertainty remains one of the 

major challenges facing irrigated agriculture and is a major impediment to reliable quantification of  

groundwater resources (Ali 2013). This in turn affects assessments of sustainable yield of 

groundwater and its allocation to the irrigation industry. Reducing uncertainty in the rate of 

groundwater recharge under irrigated agriculture is a pre-requisite for effective, efficient and 

sustainable groundwater resource management especially in dry areas where groundwater 

resources are often the key to economic development (Sophocleous 2005). An accurate 

quantification of groundwater recharge in irrigated systems is crucial because of its potential 

impacts on the soil profile and groundwater quality (Ali 2013). This project aims to reduce 

uncertainty in groundwater recharge under irrigated agriculture.  
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1.2 Developing a Recharge optimisation method 

The project focuses on estimating groundwater recharge over broadscale irrigated areas. 

Recharge for a particular region is usually calculated as part of a bigger groundwater model. There 

exist groundwater or surfacewater models that estimate recharge using techniques such as water 

balancing or watertable hydrographs. They are, however, data intensive and take longer simulation 

time and not suitable for calibration. Considering these limitations CSIRO has developed an 

irrigation diversion model (Hughes et al. 2013 & 2014) which also estimates groundwater recharge 

in a particular irrigation district. It uses a recently developed recharge calculation technique based 

on Richard’s equation (Doble et al 2012) termed as modified overbank flood recharge method. 

Recharge can be determined for past years depending on availability of historic diversion data. The 

integrated diversion and recharge model, termed as AWRA-R irrigation model, can be calibrated 

which makes it adaptable for any given district. 

The study area for current project is located within the irrigation districts of the MIA. The MIA is 

located in southern-central New South Wales in south-east Australia and includes the towns of 

Narrandera, Yanco, Leeton, Griffith and Carrathool. It is about 600km west of Sydney. The study 

area includes irrigation districts of Yanco, Mirrool, Tabbita and Wah Wah.  

Recharge optimisation method is developed for the study area based on the AWRA-R irrigation 

model. The project describes the process of obtaining prediction parameters specific to the study 

area. These parameters would be useful in accurate estimating of groundwater recharge in the 

study area for any required period in the past or future years. 

1.3 Objectives of Research 

1. To collect groundwater table data, irrigation diversions and allocation data for the MIA and 

process them in the format ready for incorporation in AWRA-R irrigation Model. 

 2. To collect groundwater recharge estimates (observed data) made within the MIA from previous 

studies. 

3. To deploy the AWRA-R irrigation model developed by CSIRO for the purpose of estimating 

groundwater recharge. 

4. To extract simulation outputs from the AWRA-R irrigation model for various combinations of 

calibration parameters and develop recharge simulations of best fit against observed data. 

5. To arrive at prediction parameters for the purpose of estimating groundwater recharge for future 

years. 



 

                                                                                                                                                                                                                      
3 

1.4 Scope of Research 

Salinity is a widespread phenomenon that is associated with the problems faced by irrigation in 

Australia. It is, however, not covered by current project owing to the level of complexity associated 

with including salinity element. 

Tile drainage is in use under irrigated land to control the levels of groundwater in the MIA. Current 

project does not cover the aspect. 

Groundwater accessions and on-farm storage with regards to water resources are accommodated 

for in the irrigation model. However, they are not included in the current project. It is because those 

water resources are not tapped into in the MIA. 

The hydraulic conductivity and specific aquifer yield values utilised in the project are obtained from 

other literary sources rather than by direct measurements.   

1.5  Report Structure 

Chapter 2 makes a review of literature available on groundwater, groundwater recharge, factors 

governing recharge and suitable recharge estimation techniques in the context of agriculture areas 

in Australia. Literature review identifies results, observations and deductions made by authors 

internationally regarding the subject. 

Chapter 3 provides an overview of the study area interms of geography, location, climate, land use 

and hydrogeology. It provides brief description of major soil types and aquifers underlying the 

region to signify the purpose of the project which is estimating groundwater recharge in irrigated 

areas. The chapter also presents a study area specific literature review. It provides synopsis of 

various groundwater models developed for the MIA and the lower Murrumbidgee and their 

respective recharge estimation models. Recharge estimates from such models and other reports 

are collated and presented in table format. 

Chapter 4 presents brief description about background information leading to the development of 

Irrigation model. It details the mechanism of recharge module and its integration with diversion 

module. It also enumerates the various inputs required to run the AWRA-R irrigation model. Finally, 

it describes the process of arriving at prediction parameters by developing a recharge optimisation 

method. Chapter 5 discusses the results from calibration of input parameters in the form of 

analysis. Chapter 6 presents conclusions from the project and makes recommendations for future 

work. 
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2.   LITERATURE REVIEW 

2.1 Groundwater   

The term groundwater is usually reserved for the subsurface water that occurs beneath the water 

table in soils and geologic formations that are fully saturated. 

The endless circulation of water between ocean, atmosphere, and land is called the hydrologic 

cycle. Inflow to the hydrologic system arrives as precipitation, in the form of rainfall or snowmelt. 

Outflow takes place as streamflow (or runoff) and as evapotranspiration, a combination of 

evaporation from open bodies of water, evaporation from soil surfaces, and transpiration from the 

soil by plants (Freeze & Cherry 1979).  

As precipitation occurs, it is partially intercepted by vegetation and the rest infiltrates into the 

ground. This, besides infiltration of surface water from runoffs and streams, is the source of 

groundwater. Figure 2.1 depicts the inflow and outflow of water in a hydrologic cycle and the 

process of groundwater recharge and storage. 

 

Figure 2.1 Systems representation of the hydrologic cycle (Freeze & Cherry 1979) 
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As water seeps into the ground, gravity pulls it downward through two zones of soil and rock called 

vadose zone and phreatic zone. In vadose, the upper zone, the pore spaces in the rocks are only 

partly filled with water and the water forms thin films, clinging to grains by surface tension. This 

leads to slow downward percolation of the water forming partially saturated flow systems. The 

vadose zone or the zone of aeration is of primary concern to agricultural engineers (Kashef 1986). 

The phreatic zone lies below the vadose zone. It is also called the zone of saturation because all of 

the openings in the rock are completely filled with water. The continuous process of infiltration from 

the vadose zone leads to an accretion to phreatic zone. The water table, which is the upper 

surface of the phreatic zone, is an important element in the groundwater system. It may be only a 

meter or so deep in humid regions, but it might be hundreds or even thousands of meters below 

the surface in deserts (Kashef 1986). 

Groundwater occurs in soils in different modes. Hygroscopic moisture is the moisture absorbed by 

the dry soil from the atmosphere near the ground surface. When water infiltrates through the soil, it 

forms isolated moist patches as a result of the molecular attraction of soil grains for water. Such 

water cannot be separated by gravitational movement. It occupies the upper part of the vadose 

zone. Immediately above the watertable, a capillary fringe develops as a result of the upward 

movement of water under the action of capillarity. Generally, such water movement in the vadose 

zone is due to both capillary action and evaporation. Downward movement is due to infiltration of 

rain and surface water. Vadose water is mainly the unsaturated zone when the watertable is close 

to the ground surface, and it may be very deep in arid zones (Kashef 1986). 

Below the watertable, completely saturated soil is encountered. It may be realized that immediately 

above the watertable, within the lower part of the capillary zone, the soil is also completely 

saturated even though the pore-water pressure is negative. Hence, the watertable may be thought 

of as the surface along which the pore-water pressures are atmospheric rather than as the upper 

level of saturation (Kashef 1986). 

2.2 Groundwater Recharge   

Healy (2010) defined groundwater recharge as the downward flow of water reaching the water 

table, adding to the ground water storage. This definition does not include water flow to an aquifer 

from an adjoining groundwater system.  

Recharge is usually expressed as a volumetric flow, in terms of volume per unit time [L3/T], such 

as m3/d, or as a flux per unit surface area per unit time (L/T], such as mm/yr. 

Groundwater recharge occurs from a variety of both natural and artificial sources. Natural 

phenomenon such as precipitation, rivers, canals and lakes and man-induced circumstances via 
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such activities as irrigation and urbanisation lead to recharge. Jones et al. (1981), Lloyd (1986) and 

Lerner, Issar and Simmers (1990) categorise recharge principally as two types, direct and indirect.  

Direct recharge pertains to the water added to aquifers by direct vertical percolation of surface 

water through the vadose zone. Surface water reaches the ground either through rainfall or 

irrigation activities. The water infiltrates through the top layer of ground controlled by its porosity 

and permeability. In urban settings, where the surface is likely to be non-permeable, the surface 

water escapes as runoff with little infiltration. In undeveloped areas and agricultural fields, 

infiltration occurs depending on the characteristics of soil and slope of land. The infiltrated water, in 

excess of soil-moisture deficits and evapotranspiration, eventually becomes recharge. 

Indirect recharge deals with water added to groundwater table by percolation from surface water 

bodies such as rivers, streams, unlined irrigation channels, lakes and ponds, or beds of surface 

watercourses or in joints (Lerner, Issar & Simmers 1990). In addition to the above, runoff collected 

in low-lying areas or depressions also contribute to the recharge. This leads to categorise indirect 

recharge in two types; one that is associated directly with surface watercourses, and a second, 

localised recharge resulting from accumulation in surface water bodies that are not located in the 

course of well-defined channels or drainage lines (Lerner, Issar & Simmers 1990).  

Groundwater recharge has its importance in the management of both surface water and 

groundwater. The amount of recharge occurring in an area directly impacts the physical 

characteristics and behaviour of groundwater. Lerner, Issar and Simmers (1990) indicate that 

identifying the probable flow mechanisms and important factors influencing the recharge process 

within a given area is the key to successful groundwater recharge estimation.  

2.3 Factors affecting recharge process 

A number of factors influence groundwater recharge process. Groundwater recharge in any area is 

impacted by interactions between climate, geology, morphology, soil condition and land cover. 

Generally it is much more susceptible to near-surface conditions in semi-arid and arid regions than 

in humid regions (de Vries and Simmers 2002). The evapotranspiration is higher than rainfall in 

arid and semi-arid regions due to which recharge mainly depends on rainfall events and irrigation 

application of water. The project aims at calculating direct recharge within agricultural regions. 

Hence, only the factors affecting groundwater recharge within the sphere of agriculture have been 

discussed. Several of many factors affecting recharge have been identified (Allen et al. 1998, 

Rushton 1988 and Ali 2013) and are illustrated through figure 2.2. Factors which control the 

recharge process both directly and indirectly are discussed as follows: 
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Figure 2.2 Factors affecting groundwater recharge 

 

Climate: Climatic factors have direct influence over evapotranspiration (ET) which inturn affect the 

rate of recharge. Changes in weather parameters like radiation, air temperature, humidity, wind 

speed and rainfall over longer periods of time are considered for measuring their affect on ET 

(Allen et al. 1998). Owing to its size, Australia has 6 climatic zones and several sub-zones in each 

zone (BoM 2006). Similarly, there are 8 major air mass types influencing Australian weather 

(Carberry, George & Buckley 2007). The variations in climate determine the type of irrigation 

management principles adopted and the types of crops cultivated across Australia (Brouwer et al. 

1986). Table 2.1 summarises the effect of climatic factors on crop water needs. The climate data is 

obtained from weather stations spread across Australia.  

Table 2.1 Effect of climate on crop water needs (Brouwer, Heibloem 1986) 

CLIMATIC FACTOR CROP WATER NEEDS 

HIGH LOW 

Sunshine Sunny(no clouds) Cloudy (no sun) 

Temperature Hot Cool 

Humidity Low (dry) High (humid) 

Wind speed Windy Little windy 

 

 Crop Coefficient: Crop coefficient (Ko) is a property of crop that is used to estimate specific crop 

evapotranspiration rates. It is influenced by crop type and crop growth stages and environmental 

factors like climate and soil evaporation (Allen et al. 1998). Crop types differ by their albedo, crop 
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height, aerodynamic properties, and leaf and stomata properties. Each crop type is also subjected 

to changes due to its growth stages.  As crop develops, the ground cover, the leaf area and the 

crop height change. The growth period can be divided into four stages: initial, crop-development, 

mid-season and late season. The crop reaches its maximum Ko during mid-season. Figure 2.3 

shows the factors affecting Ko in the 4 growth stages. 

                                                                             
 

Figure 2.3 Factors affecting Ko (Allen et al. 1998) 

 

Climate conditions affect Ko depending on the height of crop. The ranges of Ko are smaller for 

short crops compared to tall crops.  Figure 2.4 illustrates the impact of climate on Ko for full grown 

crops. The effect of soil evaporation is noticeable after a rain event or irrigation when the crop is 

small with lesser canopy.  Ko values may exceed 1 under such conditions. As canopy size 

increases transpiration takes over evaporation and Ko may fall as low as 0.1(Allen et al. 1998). 

 

Figure 2.4 Impact of climate on Ko for full grown crops (Allen et al. 1998) 
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Crop Rooting Characteristics: Plant rooting depth determines the amount of plant water uptake 

by roots. A deep rooted crop has more access to soil-moisture compared to a shallow rooted crop. 

Hence, it can sustain longer intervals between irrigation. Rooting depth also influences the depth of 

irrigation of soil profile. For example, varieties of major pasture have typical rooting depths of only 

upto 0.6m (Blaike, 1986; Mehanni & Repsys1986) such as ryegrass and white clover. Any applied 

irrigation water which passes below this rooting depth will not be used by the plant roots and may 

recharge groundwater. The type of land cover determines the amount of recharge both under 

irrigated agriculture and dryland. Recharge is high under irrigated crops that have relatively longer 

growing sessions (Ali, 2013). Recharge is minimal under deep rooted native vegetation in semi-

arid regions of Australia (Timms, Young & Huth 2012; Tolmie, Silburn & Biggs 2011). 

Soil Properties: Soil physical and textural properties have a significant affect on infiltration, water 

holding capacity, irrigation requirements and recharge. Light textured soils rich in sand and silt 

have a high hydraulic conductivity (Kc). These have a low water holding capacity. Hence, such 

homogenous soils encourage groundwater recharge. Conversely, heterogeneous soils and soils 

rich in clay content restrict recharge. Kc values of variety of soils found in Australia have been 

extracted from Atlas of Australian soils (McKenzie et al. 2000) and are shown in table 2.3 below. 

Table 2.2 Hydraulic conductivities of soils in Australia (McKenzie et al. 2000) 

CLASS MEDIAN Kc 
(mm/hr) 

Log10 DESCRIPTIVE NAME 

1 0.03 -1.5  

2 0.1 -1.0 Very Slow 

3 0.3 -0.5  

4 1.0 0 Slow 

5 3.0 0.5  

6 10 1.0 Moderate 

7 30 1.5  

8 100 2.0 High 

9 300 2.5  

10 1000 3.0 Extreme 

11 3000 3.5  

 

It has been found that clay content of the top 2m of soil profile and annual average rainfall are 

statistically significant predictors of recharge under dryland agriculture (Wohling, Leaney & Crosbie 

2012). Clayey soils have high micropores hence, high water holding capacity and less infiltration 
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rates unlike sandy or silty soils which have high macropores and low water holding capacity. Smith, 

Raine & Minkevich (2005) found that differences in water holding capacity between sandy soils and 

clayey soils can often result in higher deep percolation of water under sandy soils than under the 

clayey soils. From the soil texture triangle in figure 2.5, an approximation of water holding 

capacities of different soils can be made. It can be stated that groundwater recharge is directly 

proportional to rainfall and irrigation and inversely proportional to available water capacity (Tolmie, 

Silburn & Biggs 2011).  

 

Figure 2.5 Soil texture triangle (Brady 1990) 

 

Topography: The affect of topography on soil moisture content is directly related to the slope of 

terrain. During rainfall, a steeper terrain generates a higher runoff than a flatter landscape. A higher 

proportion of runoff leads to lesser proportion of rainfall that translates to soil-moisture and 

groundwater recharge. (Allen et al. 1998). Topography also affects the physical and chemical 

properties of soil by erosion and deposition processes (Delin et al. 2000; Norton & Smith 1930; 

Ebeid et al. 1995; and Agbenin & Tiessen 1995). Famiglietti, Rudnicki & Rodell (1998) found that 

topography and clay content influence the soil-moisture retention capacity of the soil during dry 

conditions that follow after rain events. During a wet season variability in surface moisture content 

is most strongly influenced by porosity and hydraulic conductivity.  

Soil Cover: This is important for irrigation management in agricultural farms. During the early 

stage of plant growth the canopy is small exposing the moisture in top soil to evaporation. Having a 

soil cover reduces the amount of evaporation losses from the top soil by acting as an insulating 

layer (Allen et al. 1998). Soil cover also reduces the impact of raindrops on the soil thus protecting 

the porosity of top soil. In the absence of soil cover, the surface soil particles disintegrate under the 

impact of rain drops and clog the soil layer. This leads to increased runoff. Thus soil cover detains 
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runoff and improves soil-moisture held and subsequently infiltration rates (Allen et al. 1998). Soil 

cover can be provided by vegetative or non-vegetative mulches, cover crops or crop residue 

depending on the type of management (Allen et al. 1998).  

Soil-Moisture Content: It signifies the amount of water present in the soil. During a rainfall event 

or irrigation application the infiltration rate through the top soil is high and it gradually reduces to 

zero as the soil becomes saturated. Soil is saturated when all the pores are filled with water. Any 

more water beyond this point is either runoff or converted into recharge. Soil continues to drain 

excess water downwards even after rainfall or irrigation application ceases until the soil only 

retains water that can be held against gravity. At this stage the soil is at field capacity (Dingman 

1994). Drainage takes longer to occur in clayey soils than sandy soils (Shaxson & Barber  2003). 

This water at field capacity is available for evaporation or plant uptake as part of transpiration 

process. The evapotranspiration process generates surface tension as soil seeks to prevent the 

removal of water. This creates negative soil pressures compared to atmospheric pressure. As 

suction increases, the surface tension in the larger pores of soil is overcome thus withdrawing 

further water and air enters the emptied pores. With time this water reduces upon no additional 

supply and gradually the plant wilts. This is called permanent wilting point. The difference between 

the field capacity and permanent wilting point is called available water content (Dingman 1994). 

The available water is influenced by factors like soil cover and textural properties. Figure 2.6 shows 

relationship between soil-moisture content and water pressure in the pores for contrasting soils. It 

is understood that clayey soils have higher initial water content than sandy soils owing to a higher 

porosity, but with small or moderate surface tensions, the sandy soils release more water from 

larger pores than clayey soils (Shaw 1994). 

 

Figure 2.6 Soil-Moisture retention curves for different soils (Hillel 1980) 
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Evapotranspiration (ET): It is a combined process of evaporation from soil and plant surfaces and 

transpiration from plant surfaces (Burman & Pochop 1994) occurring simultaneously. When the 

crop is small its canopy occupies less area of surface and water from soil is lost through 

evaporation predominantly. This in turn is mainly determined by fraction of solar radiation reaching 

soil surface. As the crop develops the fraction of radiation decreases and transpiration becomes 

the main process (Allen et al. 1998).  ET is affected by factors like climate, soil characteristics and 

soil-moisture content. Accounting for ET in perspective of agriculture is important for two reasons: 

1. to calculate the crop water requirement, which is identical to ET, to compensate for the loss of 

moisture from the cropped field and 2. To calculate the amount of water that eventually becomes 

recharge.  

Inorder to calculate crop water requirements, terms ETo, ETc and ETc adj have been defined in 

Monteith (1965 & 1981). ETo, which represents evapotranspiration for a reference crop (Monteith 

1965 &1981), is adopted as a standard to estimate ETc or ETc adj. Ko is multiplied with the crop 

ETc to arrive at the crop requirement or actual Evapotranspiration.  

The groundwater recharge is calculated using a water balance equation of hydrological cycle. 

Recharge = Precipitation - Runoff - Actual Evapotranspiration Storage change (Lerner, Issar & 

Simmers 1990) 

Depth to Water table: Depth to watertable has a major impact on recharge. It controls the 

thickness of the unsaturated zone and the time for the subsurface flux to reach the watertable 

(Nachabe, Martysevich & Su 2012). Under irrigated fields the watertables may rise during rainfall 

events or irrigation application due to increased recharge. But, as the watertables rise closer to the 

soil surface the recharge often reduces due to the reach of the capillary fringe into the root zone 

(Ali 2013). The soil-moisture potential below the root zone is affected by the depth of watertable 

below the soil surface. This in turn provides a feedback on recharge (Hillel 1980).  

Aquifer Specific Yield (Sy): (Prathapar & Sides 1993; and Freeze & Cherry 1979) defined aquifer 

specific yield as the depth of water that an unconfined aquifer releases from storage per unit 

decline in the watertable level. The converse holds true for recharge. Sy can be considered as the 

volume of water taken into storage in the column with each unit rise in the watertable (Price 1996). 

Its units are m/m. The amount of water that enters the aquifer is controlled by Sy both for confined 

aquifers and unconfined aquifers. Table 2.3 shows the mean, minimum and maximum values of Sy 

for Australia (McKenzie et al. 2000). 

 Table 2.3 Specific Aquifer Yield values for Australia (McKenzie et al. 2000) 

MIN MAX MEAN 

0.030 0.314 0.191 
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Temporal patterns in deep drainage: Temporal variations in groundwater recharge within the 

same irrigated field can be considerable due to changes in the physical and chemical 

characteristics of the soil, duration and timing of water application via rainfall or irrigation. Over 

extended periods of time, near saturated soil root zone can yield considerable amount of recharge 

despite low subsoil hydraulic conductivity (Bethume 2004). It has been observed by Dunabin, Hune 

& Ireson (1997) that prolonged ponding of a perennial ryegrass white clover pasture at Deniliquin, 

NSW increased infiltration. Changes in landuse and climate can also trigger a temporal variation in 

recharge (Bouraoui et al. 1999).There can be noticeable inter-annual variation in recharge due to 

seasons in a year (Degu, Wagner & Birk 2013). A review by Humphreys, Edraki and Bethune 

(2003) revealed the lack of comprehensive data for components of the water balance for a range of 

crops, soil types, climate conditions, site and seasonal conditions and management.  

2.4 Groundwater Recharge Estimation Techniques  

One of the objectives of the project is to quantify groundwater recharge within irrigated agricultural 

areas. Recharge estimation techniques vary according to the scale of area, climate and available 

tools for investigation. Current project focuses on estimating recharge on a broadscale in semi-arid 

regions of Australia. Hence, recharge models that suit the purpose of the project have been 

described in the following subsections. The models are built by taking into account the factors 

affecting recharge process discussed in the previous section to finally result in recharge.  

2.4.1 Meteorological Water Balance 

Water balance models operate on the law of conservation of mass. The hydrological cycle for a 

particular area can be accounted for by using a water balance model.  The model balances the 

inputs to the system with outputs from the system. Water content of soil volume increases when 

additional water is added by infiltration or capillary rise, and decreases when water is withdrawn by 

evapotranspiration or recharge (Humphreys, Edraki & Bethune 2003).  

The water balance method has four characteristic features (de Ridder & Boonstra 1994). They are:  

1. A water balance can be assessed for any subsystem of the hydrologic cycle, for any size of 

area, and for any period of time;  

2. A water balance can serve to check whether all flow and storage components involved have 

been considered quantitatively;  

3. A water balance can serve to calculate the one unknown of the balance equation, provided that 

the other components are known with sufficient accuracy;  
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4. A water balance can be regarded as a model of the complete hydrologic process under study, 

which means it can be used to predict what effect the changes imposed on certain components will 

have on the other components of the system or subsystem.  

The surface water balance equation may be expressed as: 

∆S =P - ET - Q - R (Humphreys, Edraki & Bethune 2003)      ................................................        2.1 

Where ∆S is the spatially averaged catchment storage, P is the spatially averaged precipitation, ET 

is the spatially averaged evapotranspiration, Q is the spatially averaged catchment surface runoff, 

and R is the spatially averaged catchment recharge.  

The simplicity of the model lies in utilising available information such as climate data to calculate 

recharge. Although water balance model is very indirect, it has the advantage in that it can provide 

information on the temporal distribution of recharge. 

Limitations of the model are: 

1.  Not suitable to measure groundwater recharge in semi-arid and arid regions because of longer 

periods of less than potential evaporation, when errors in ET are greatest and P and ET are nearly 

equal (Gee & Hillel 1988). 

2. As the modelled area increases, the model becomes more complex and needs more data. The 

time required to process the model increases proportionately. 

3. Input data is not always available. This problem becomes evident when the model is being built 

on a catchment or continental scale. More often, historical data is difficult to source and sometimes 

the only input data that is available might be the result of other approximate models. 

4. Errors in the input data would translate into errors in the output. 

Water balance methods have been widely used to estimate recharge in temperate climates 

(Howard & Lloyd, 1979; and Rushton & Ward 1979). They have not been routinely used in semi-

arid areas, although Ferreira and Rodriques (1988) used a daily water balance to estimate 

recharge in semi-arid areas of Portugal, with good agreement with known hydrogeological 

conditions. As Gee and Hillel (1988) point out, in areas where recharge rates are low, very small 

errors in estimated actual evapotranspiration can lead to very large (as much as order of 

magnitude) errors in estimated recharge.  

2.4.2 Watertable Fluctuation (WTF) Model  

The watertable fluctuation method estimates groundwater recharge of the chosen catchment. This 

method is based on the principle that the rise in water table is due to the addition of recharge water 

to the unconfined aquifer. These variations in groundwater hydrographs can provide valuable 
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information on the timing and amount of recharge (Healy and Cook 2002) for a comprehensive 

review).  

 R = Sy  
  

  
        .......................................................................................................................       2.2 

where R is recharge (m/day), Sy is the specific yield of the aquifer, ∆H (m) is the change in level of 

watertable over a period of time ∆t (day). Figure 2.5 shows ∆H graphically. ∆Hn (m) is the 

difference in head between the beginning and end of time interval. 

The method assumes that a time lag occurs between arrival of recharge water and distribution of it 

to other components of hydrological cycle. The above equation, if applied during the time lags, can 

account for all the recharge (Healy 2010). Shorter time intervals such as hours or days are valid 

time lag. The application of ∆H in equation gives total or gross recharge while substituting ∆Hn for 

∆H gives net recharge in saturated zone storage over any time interval. The difference between 

gross recharge and net recharge is equal to the sum of ET from groundwater, base flow, and net 

subsurface flow from the catchment area. This method actually estimates change in recharge over 

time of the hydrograph record. As the method represents an integration of recharge by porous 

media and by-pass flow it can integrate over large spatial scales (Herczeg & Love 2007). 

 

Figure 2.6 Hypothetical groundwater hydrograph (Healy 2010) 

 

Advantages of using WTF method: 

1. This method may be used as a preliminary mode of recharge estimation before applying a more 

sophisticated technology due to its simple approach and widespread availability of groundwater 

level data (Healy 2010).  

2. This method is well suitable to shallow water tables that display sharp water level rises and 

declines (Herczeg & Love 2007). 
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Limitations of using WTF method: 

1. Sy used in the method is difficult to measure and hence based on literature values (e.g Wood 

2008) or a range of likely values (Cartwright, Hannam & Weaver 2007).   

2. The method does not account for lateral flows (Herczeg & Love 2007). 

3. The method is not suitable for measuring recharge or ET in areas of low water fluxes and deep 

watertables (Herczeg & Love 2007). 

4. Frequency with which the watertable levels are measured may affect recharge estimates (Healy 

2010). Delin et al. (2007) found that the frequency of measuring groundwater levels directly 

affected estimated recharge. For example, using this method for time intervals of years may 

underestimate recharge values because small recharge event peaks are ignored. 

5. Recharge estimates may vary within a watershed due to variations in elevation, geology, 

landsurface slope, vegetation, and other factors (Lee, Yi & Hwang 2005). 

6. If the rate of recharge to an aquifer is equal to the rate of drainage away from aquifer, the 

groundwater levels remain unchanged and WTF method would provide a zero recharge estimate. 

The WTF method for estimating recharge has been used in many areas of Australia. Berhane 

(2001) used the watertable fluctuation method to estimate recharge in the lower Namoi. It was 

used to measure recharge in coastal climate by Crosbie et.al (2010). The watertable fluctuation 

method has been used at a variety of time scales from hourly (Crosbie et al. 2010) to annual (e.g. 

Cartwright, Hannam & Weaver 2007).  

2.4.3 Overbank Flood Recharge (OFR) Method 

Flooding of river plains occur when a river exceeds level over the bank height and fills up the low 

lying areas. Recharge of aquifers occurs during such episodic events. This component of 

groundwater balance is ignored in water accounting generally because of the variable nature of 

infiltration between catchments and the difficulty in quantifying it by physical experiments (Doble, 

Crosbie & Smerdon 2011). Doble et al. (2012) developed OFR method to calculate recharge from 

overbank flooding after an analysis of river-floodplain system using HydroGeoSphere. 

HydroGeoSphere is a finite element model (Therrien et al. 2006) which fully integrates one 

subdomain three dimensional (3-D) variably saturated groundwater flow with another subdomain 

two dimensional (2-D) overland flow. HydroGeoSphere simulates the dynamic interaction between 

the subdomains at each timestep.  

Continuity equation can be used to represent recharge from overbank flooding, where the change 

in storage (∆S) is equal to inflow (I) minus outflow (Q). It may be stated that inflow is controlled by 

the total storage available and the maximum rate of outflow (Doble et al. 2012). 
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∆S = I-Q       ...........................................................................................................................        2.3 

The maximum possible change in storage (i.e., filling the unsaturated zone) may be expressed as 

∆S =dgw Sy xw       ..................................................................................................................        2.4 

The maximum potential infiltration volume is approximated from a vertical application of Darcy’s 

law: 

I =Kcxw  
  

  
   tw       ...........................................................................................................        2.5 

and the maximum volume of water discharging laterally from the aquifer or transmissivity may be 

approximated as a horizontal application of Darcy’s law: 

Q = Kaq daq tw 
   

    
        ..........................................................................................................        2.6 

where the depth to groundwater (dgw) is taken at the centre of the flood wave extent, Sy is the 

aquifer specific yield, xw is the lateral extent of the flooding (m), Kc is the saturated conductivity of 

the clogging layer, hw is the height of the wave above the bankfull elevation (m), dc is the thickness 

of the clogging layer (m), tw is the duration of the flood wave (day), Kaq is the hydraulic conductivity 

of the aquifer, daq is the saturated thickness of the aquifer (m). 

The actual infiltration or recharge to the system is represented by the minimum of the potential 

infiltration to the aquifer and the capacity of the aquifer to store and transmit the water, ∆S+Q: 

Iactual = min(I, ∆S+Q )       .......................................................................................................        2.7 

The above equation reflects that there are three phases involved in the flood recharge process: the 

ability for the flood water to infiltrate the floodplain sediment, the amount of storage in the 

unsaturated zone and the ability for the aquifer to transmit water either toward or away from the 

river. Recharge is rejected where one of these factors limits the vertical recharge (Doble et al. 

2012). 

Doble et al. (2012) found that the infiltration volume was directly proportionate to the conductance 

of the clogging layer, flood wave height, peak duration, and aquifer transmissivity and inversely 

proportionate to watertable gradient.  

Advantages of using OFR method: 

1. The results for groundwater recharge from this method are comparable to results from far more 

complex groundwater models accurately for similar input conditions. The amount of time consumed 

for computations is also less compared to other complex models (Doble et al. 2012). It is a simple 

and accurate model that calculates recharge without the requirement of intensive modelling.  

Hence it runs fast which makes it useful for iterative process of modelling. 
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2. An analytical equation is developed to estimate the infiltration volume for catchments where full 

numerical modelling is not warranted or applicable. 

3. The method is robust to generate results with some parts of input data missing. This is useful 

when calculating recharge on a continental scale because it is difficult to source accurate historical 

data over a large area. It is also used where only parsimonious input data is available. 

OFR method equations have been developed only in recent years, in 2011. The method has been 

tested for 66 unique scenarios The scenarios capture the effects of varying aquifer saturated 

hydraulic conductivity (Kaq), representing aquifer transmissivity, flooding depth, horizontal extent, 

and duration, as suggested by previous studies, and also include the presence of a clogging layer 

overlying the floodplain and river bed and different river-aquifer connections (Doble et al. 2012). 

So far, the method has been applied on AWRA system (van Dijk et al. 2011) after modifying a 

relationship in the set of equations. It is also used in Irrigation Diversion Modelling (Hughes et al. 

2013 & 2014). The equations are modified to calculate recharge from irrigated fields in place of 

flood plains.  

2.5 Summary 

Literature review discusses the background information regarding groundwater recharge and the 

factors responsible for it in the perspective of agricultural regions. The earlier sections of this 

chapter describe various factors in detail that directly and indirectly contribute to recharge. This 

generic discussion of the factors also contains results from other research studies done nationally 

and also internationally where information was available.  

Section 2.4 of the chapter presents few groundwater recharge estimation techniques which are 

suitable for evaluating recharge on a broadscale in an agricultural background.  The factors 

discussed in section 2.3 find their application in arriving at recharge using the above techniques.  
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3. STUDY AREA  

3.1 Introduction 

The study area is located within the MIA, situated in southern-central New South Wales in south-

east Australia. The MIA includes the towns of Narrandera, Yanco, Leeton, Griffith and Carrathool. 

It is about 600km west of Sydney and 900km east of Adelaide. The Murrumbidgee River, the third 

largest river in Australia with a length of 1690 km, flows to the south of the MIA (Khan et al. 2004). 

Catchments along the Murrumbidgee River are classified into upper, mid and lower catchments. 

The MIA is included in the Lower Murrumbidgee catchment. Location of the MIA in the Murray-

Darling basin and in the Murrumbidgee catchment is shown in figure 3.1. 

 

Figure 3.1 Murrumbidgee Irrigation Area (Mitchell, Curtis & Davidson 2012) 

3.2 Geographical Location 

Agricultural areas within the MIA are divided into a number of irrigation districts. The irrigation 

districts are fed by two canals, the Main Canal and the Sturt Canal, which in turn receive water 

diverted from the Murrumbidgee River. The Main Canal carries approximately 80 per cent of all 

water which is diverted for irrigation purposes in the MIA (Shields & Good 2002). It irrigates Mirrool 

irrigation district, part of Yanco irrigation district, Tabbita irrigation district and Wah Wah irrigation 

district. The study area comprises of irrigation districts that are irrigated by the Main Canal. The 

total area covered by these districts is approximately 519,000 ha (MIL 2014). Figure 3.2 shows the 
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districts irrigated by the Main Canal and Sturt Canal. The blue network of channels and Wah Wah 

irrigation district represent the area covered by the Main Canal. The towns, Leeton, Yanco and 

Griffith and Carrathool in which the irrigation districts are located, are situated towards north of the 

Murrumbidgee River.  

The Main Canal receives water from diversion at Berembed Weir to serve the Yanco, Leeton, 

Griffith and Carrathool areas. The Main Canal continues on past Leeton, Murrami, Yenda, 

Beelbangera and Griffith, finishing at Tharbogang. It can accommodate flows of up to 6,500 

ML/day (MIL 2013). The Sturt Canal receives water diverted at Gogeldrie Weir to supply the 

Whitton and Benerembah areas, and can accommodate flows of up to 1,700 ML/day (MIL 2013).  

Figure 3.2 Irrigation districts under MIA Main Canal and Sturt Canal (MIL 2014) 

3.3 Climate 

The study area is part of the MIA and description about the MIA climate applies to the study area. 

Climate of the MIA is semi-arid and it ranges from hot and dry in summer to cold and moist in 

winter. In summer the MIA has an average maximum of 25°C for January, with extended periods 

above 35°C, and seasonal peak temperatures above 40°C. In winter the MIA has an average 

minimum of 7.5°C for July, with significant chill and frost factors. 
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Figure 3.3 Average monthly temperatures from 1970 to 2012 taken at Griffith weather station (CSIRO 
2013) 

The annual average rainfall in the MIA ranges from 256mm to 609mm. Rainfall between June and 

October is more reliable than in summer. This period fits well with the moisture demands of winter 

crops. Summer rainfall occurs occasionally as heavy storms between October and March. It is 

usually of short duration and high intensity, hindering some of the farming operations. Annual 

average evaporation in the MIA is 1869 mm. The mean monthly evaporation peaks at 294 mm (9.5 

mm/day) in January and drops to 43 mm (1.5 mm/day) in June (NSW Agriculture 1998 and Singh, 

Mullen & Jayasuriya 2005). 

Towns of Merriwagga and Narrandera are situated in the north-west and south-east of the MIA 

respectively. Xevi et al. (2011) evaluated weather data from meteorological stations at Merriwagga, 

Griffith and Narrandera between years 1962-2007. They observed an annual trend of increasing 

rainfall from the drier north-west at Merriwagga (370 mm) to Griffith (390 mm) to the southeast at 

Narrandera (430mm) and a trend of reducing potential ET from Merriwagga (1430 mm) to Griffith 

(1360 mm) to Narrandera (1340 mm). Xevi et al. (2011) concluded that the marginal variation of 

climate did not warrant classifying the MIA into separate climate zones and Griffith climate could be 

adopted as representative of the MIA. Seasonal (April to March) climatic trends in years 2001-2007 

indicated a prolonged period of drought with the exception of years 2000-01 and 2005-06, having a 

below long-term average rainfall (Xevi et al. 2011). Table 3.1 shows the figures of rainfall and 

potential ET for years 2000-01 and 2006-07. 

Table 3.1 Distribution of Rainfall and ET for the MIA (Xevi et al. 2011) 

YEAR RAINFALL (mm/yr) EVAPOTRANSPIRATION (mm/yr) 

2000-01 432 1352 

2006-07 160 1483 
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Figure 3.4 Average monthly rainfall from 1970 to 2012 taken at Griffith weather station (CSIRO 2013) 

 

Figure 3.5 Average monthly ET from 1970 to 2012 taken at Griffith weather station (CSIRO 2013) 

3.4 Geology and Hydrogeology 

The study area is within the MIA on the northern side of a fluvial plain formed by the Murrumbidgee 

River. It is a combination of flat riverine plains and low forming hills. Majority of the study area has 

its elevations less than 200m above sea level with low hilly outcrops that raise upto 240m above 

sea level on the north-eastern flank of the study area. The land surface slopes generally towards 

the west with an average gradient of 380mm/km (Khan et al. 2004) and natural drainage is 

generally poor. The hydrogeology of the MIA is described by three major aquifer systems i.e. 

Shepparton, Calivil and Renmark Formations (Brown & Stephenson 1991) with the Shepparton 

Formation underlain by the Calivil Formation. Figure 3.6 shows the schematic of the MIA 

hydrogeology. 
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Figure 3.6 Schematic of the MIA hydrogeological systems (Khan et al. 2004) 

3.4.1 Shepparton Formation 

This partial aquifer system is a composite of aquifer and aquitard complex. This is the uppermost 

unit among aquifers and generally 40-70m thick with a maximum thickness of 100m. It belongs to 

late Pliocene to Pliestocene period. It comprises sediments of polymictic sands and variegated 

clays making it an unconfined aquifer system. The shallow nature of aquifers in this system leads 

to waterlogging and salinisation problems in irrigated areas. The aquifer yield is moderate between 

5 to 20 L/s and generally used for stock use (Punthakey et al. 1994). 
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3.4.2 Calivil Formation 

This unit lies below Shepparton Formation and is of late Miocene to Pliocene period. The system is 

generally 30-50m thick and ranging upto 80m in Darlington Point area. It mainly consists of poorly 

consolidated, pale grey, poorly sorted, coarse to granular quartz and conglomerate, with white 

kaolinitic matrix. Aquifers in the system yield extractions upto 150-400 L/s although groundwater is 

not extracted in the study area. Salinity in the system is lowest near Narrandera, where recharge 

occurs, and increases towards west (Punthakey et al. 1994). 

3.4.3 Renmark Group 

This basalt tertiary unit lies between the Calivil Formation and pre-tertiary bedrock. It belongs to 

the late Eocene to early Miocene period and overlies the basaltic bed rock from the Palaeocene to 

Miocene period. The Renmark formation is distinguished from the Calivil formation by the presence 

of grey, carbonaceous clay and dark brown lignite with thick sequences of grey, medium-grained 

quartzose sand. The thickness of the system varies considerably due to the underlying bedrock 

and reaches a maximum of 360m.  The water quality is generally poor with salinities ranging 

between 640-2560 mg/L. It is not used for groundwater extraction in the study area (Punthakey et 

al. 1994). 

3.5 Soils 

The study area represents a major portion of the MIA. Hence, the classification of soil types and 

distribution of soils for the MIA applies to the study area. Hornbuckle and Christen (1999), 

Stannard (1970), Taylor and Hopper (1938) and van Dijk (1958 &1961) have mapped soils in the 

MIA between 0-5m depth. They found that there are more than 90 soil types in the MIA. Basing on 

their hydraulic characteristics they grouped soils into five distinct groups: 

Clays:  These self mulching and hard setting (non self mulching clays) soils either consist of 

crumbly calcareous shallow horizons (self mulching) or hard setting non-calcareous surface soils 

(non self mulching clays). The hydraulic conductivity of top horizons of self mulching clays (up to 

0.5 m depth) is normally high (around 30 mm/day) whereas the hydraulic conductivity for deeper 

horizons (1.5 to 3 m) is relatively low (0.5 to 1mm /day). The reported hydraulic conductivity values 

for shallow non-self mulching clays are around 4 mm/day. 

Red-Brown Earths: This group of soils consists of loamy or sandy surface horizons of more than 

0.1 m depth which abruptly change to clay subsoils. The reported hydraulic conductivity values for 

this soil group vary greatly between 58 mm/day to 1039 mm/day. 

Transitional Red Brown Earths: These soils have hydraulic characteristics of clays and red 

brown earths. The top clay layer is very shallow (0.08-0.1m). The deeper profiles contain lime and 
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gypsum. The reported hydraulic conductivity of these soils in the 0.2-0.6 m depth ranges between 

0.026 to 10 mm/day, with most values falling at the lower end of this range. 

Sands over clays: These soils mainly consist of sandy top soils (0.1 to 0.6 m) with a dense sub 

clay soils. The hydraulic conductivity of some of the soils of this group is greater than 100 mm/day. 

Deep sandy soils: These soils are of aeolian origin and contain coarse sands to a depth of 4 

meters. The hydraulic conductivities for this soil group may be greater than 1000 mm/day. 

3.6 Land use 

The total land area of the study area is approximately 519,000 ha and the MIA is 660,000 ha. 

Table 3.2 shows the amount of land area under irrigation starting from 2000-01 to 2011-12. At the 

level of the MIA, it is suitable for three types of irrigated farming systems: horticulture, vegetable, 

and broadacre farms.  

Table 3.2 Irrigated land in the study area from 2000-01 to 2011-12 (MIL 2014) 

3.6.1 Horticultural Farms 

The study area is suitable for horticultural farms due to its well-drained soils. Grapes and citrus are 

the major crops grown in these irrigation districts accounting to 97 percent of area. The rest of the 

area is under prunes, apricots, peaches, plums, nectarines, nuts etc. Typical water usage is high at 

12 ML/ha (Singh, Mullen & Jayasuriya 2005). In 1971 there were 935 horticultural farms in the MIA. 

The total area of permanent planting on these farms was 10,405 ha (Kennedy 1973). In 2003 there 

were more than 1,000 horticultural farms with a total area of 24,800 ha.  

  IRRIGATION DISTRICT LAND USE (ha) 

YEAR YANCO MIRROOL TABBITA WAH WAH TOTAL IRRIGATED AREA 

2000-01 46916.5 51057.8 3353.1 23009.8 124337.2 

2001-02 47394.0 54715.1 3917.5 20453.8 126480.4 

2002-03 48837.2 52477.7 4460.8 13727.9 119503.6 

2003-04 42070.4 51124.4 3915.9 14929.5 112040.2 

2004-05 37884.3 46646.9 3701.5 11083.9 99316.6 

2005-06 41912.5 49170.3 3402.0 13184.1 107668.9 

2006-07 32023.6 39891.2 3401.2 8011.0 83327 

2007-08 17353.6 29105.9 2918 6420.4 55797.9 

2008-09 16932.2 31232.7 1911 6232.1 56308 

2009-10 20636.5 32552.0 3125 6799.3 63112.8 

2010-11 32869.0 40045.7 4502.8 11351.8 88769.3 

2011-12 41015.2 47377.4 3681.5 11938.6 104012.7 
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3.6.2 Vegetable Farms 

Major vegetables grown in the MIA are onions, carrots, pumpkins, gherkins, melons, and tomatoes. 

Vegetable industry in the MIA owes it to its well developed irrigation supply system, warm climate 

and highly productive soils. Irrigation water allocations are made treating them as large area farms 

despite of being smaller size. In 1990 the total area under vegetables was 2,681 ha. In year 2002-

2003 2,940 ha were under vegetable crops with a total value of production of $24.3 million. 

3.6.3 Broadacre Farms 

Rice in summer and wheat in winter are the most important crops grown on broadacre farms. 

Singh, Mullen and Jayasuriya (2005) observed that area under these crops has significantly 

increased from 1991 to 2001 although the acreage depended on market requirements and 

problems from rising watertables and soil salinity. Canola and soybean are other winter crops 

grown on these farms (Singh, Mullen & Jayasuriya 2005). Although sheep enterprises were major 

activities on these farms until 1998 they are at a minimum after 1998 (ABS 1998, CRC Rice 2000) 

Table 3.3 shows the distribution of irrigated area in the MIA from 2001-02 to 2011-12 according to 

the type of crops grown and the proportion of crops. 

Table 3.3 Cropwise irrigated land distribution in the study area from 2000-01 to 2011-12 (MIL 2014) 

CROP AREA (ha) CROP PROPORTION 

CITRUS  90677.1 0.09 

COTTON  6804.0 0.01 

INDUSTRIAL  351.0 0.00 

OTHER CROPS  10997.3 0.01 

OTHER FRUITS  22895.2 0.02 

PLANTATION  1953.8 0.00 

RICE  124406.1 0.12 

STOCK & DOMESTIC  7653.6 0.01 

SUMMER CEREALS  32864.3 0.03 

SUMMER OILSEEDS  12774.4 0.01 

SUMMER PASTURE  40697.6 0.04 

TOWN SUPPLY  4247.0 0.00 

VEGETABLES  18189.5 0.02 

VINES  182107.8 0.18 

WINTER CEREALS  337468.9 0.33 

WINTER OILSEEDS  41086.5 0.04 

WINTER PASTURE  81730.5 0.08 
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Table 3.4 shows the amount of water diversions from the Main Canal into each of the irrigation 

districts in the study area from 2001-02 to 2011-12. 

Table 3.4 Diversions to irrigated areas in the study area from 2000-01 to 2011-12 (MIL 2014) 

 IRRIGATION DISTRICT DIVERSIONS (ML) 

YEAR YANCO MIRROOL TABBITA WAH WAH TOTAL DIVERSIONS 

2000-01 236832.3 264392 17150.3 128244.7 646619.3 

2001-02 264519.8 308742.2 18820.3 111335.2 703417.5 

2002-03 227754 277386.2 14707 68661.3 588508.5 

2003-04 177511 249976.3 12614.3 63035.5 503137.1 

2004-05 182136.4 243524.4 14364.9 68033.6 508059.3 

2005-06 236351.1 276703.4 16806.6 82048.6 611909.7 

2006-07 118848.6 183466.5 8684.6 31669.3 342669 

2007-08 48210.4 118198.5 5365.9 14657.8 186432.6 

2008-09 67063.2 141552.2 6069.9 20897.4 235582.7 

2009-10 87415.9 168611.6 7562.4 26648.1 290238 

2010-11 133731.8 163335.6 8770.8 40989.6 346827.8 

2011-12 212913 249024.7 13112.5 79142 554192.2 

3.7 Groundwater Levels 

Within the MIA groundwater piezometers are being managed by the MIL and the NoW separately. 

The records show that groundwater levels within Calivil and Renmark aquifer systems have 

dropped since extractions began in 1994. Levels declined by 2-10 m between 2000 and 2005, but 

in some areas of Renmark group levels fell by more than 10m (MDBC 2008a). Groundwater for 

irrigation is extracted from the lower Murrumbidgee Alluvium groundwater management unit, which 

is downstream from Narrandera. Figure 3.7 shows the change of groundwater depths in the MIA 

starting from March 1997 to March 2013.  
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Figure 3.7 Groundwater table depths from May 1997 to July 2013 (MIL 2014) 

3.8 Recharge studies within the MIA and lower Murrumbidgee 

Literature review has identified several studies or reviews of groundwater models made within the 

MIA and the lower Murrumbidgee, shown in figure 3.8. These models and reports have also 

estimated groundwater recharge. It is observed that the groundwater models have estimated 

recharge by water balancing within a given period of years. There are also farm scale studies that 

have utilised direct methods to estimate recharge. Recharge estimations from all the sources have 

been included in the literature review in the following subsections.  

 
 

Figure 3.8 Lower Murrumbidgee catchment (CSIRO 2008) 
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3.8.1 Recharge estimates from the MIA 

3.8.1.1 License Compliance Reports, MIL 

MIL published groundwater recharge estimates under rice fields within the MIA for the year 2004-

2005 and 2005-2006 in its license compliance reports. Khan et al. (2004 & 2005) have estimated 

the recharge by making a water balance of the soil profile, crop water uptake and groundwater 

conditions. Recharge was estimated for minimum, median and maximum groundwater depths. 

Table 3.5 and 3.6 show the recharge estimates for year 2004-05 and 2005-06. Recharge for Wah 

Wah was not calculated (n/c) due to insufficient groundwater data. 

Table 3.5 Rice recharge for 2004-05 (MIL 2005) 

IRRIGATION AREA MINIMUM 
RECHARGE 

(ML/ha) 

MEDIAN 
RECHARGE 

(ML/ha) 

MAXIMUM 
RECHARGE 

(ML/ha) 

NET 
RECHARGE 

(ML/ha) 

Yanco 0 0 0.53 0.02 

Mirrool 0 0 0.1 0.07 

Tabbita 0 0 0.27 0.86 

Wah Wah n/c n/c n/c n/c 

 

Table 3.6 Rice recharge for 2005-06 (MIL 2006) 

IRRIGATION 
AREA 

TOTAL 
RICE 
AREA 

(ha) 

TOTAL 
WATER 

APPLIED TO 
RICE (ML/ha) 

MINIMUM 
RECHARGE 

(ML/ha) 

MEDIAN 
RECHARGE 

(ML/ha) 

MAXIMUM 
RECHARGE 

(ML/ha) 

NET 
RECHARGE 

(ML/ha) 

Yanco 9100 12.8 0 0.45 0.91 0.24 

Mirrool 7949 12.8 0 0.26 0.78 0.09 

Tabbita 320 13.6 0 0.04 0.35 0.02 

Wah Wah 1874 14 0.57 1.31 1.71 n/c 

   

3.8.1.2 SWAGMAN Destiny 

SWAGMAN Destiny is a point scale soil water balance and crop growth simulation model with crop 

growth affected by water, salt and aeration stress. Xevi et al. (2011) used SWAGMAN Destiny to 

simulate the impacts of land use, soil type, climate, and watertable depth on evapotranspiration 

and recharge within the MIA. SWAGMAN Destiny was used to simulate recharge/discharge from 
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1963 to 2007 for 315 combinations of land use, soil type, watertable depth and climate. A database 

was created from the results of simulations and was subsequently used to generate maps of 

seasonal ET and recharge/discharge. Analysis of these maps showed the largest net contributor of 

drainage was rice, but this contribution declined over the study period, which was characterised by 

a prolonged drought and a large reduction in the area of rice. The largest contributor to discharge 

was irrigated winter wheat located in areas with groundwater depths less than 2 m. The 

contribution varied from season to season depending on seasonal weather and on the changes in 

the areas with different groundwater depths.   

Table 3.7 shows annual water balance components calculated as area-weighted means over 

whole of the MIA for the seasons 2000-01 to 2006-07. Negative drainage values indicate upward 

flow or discharge (Xevi et al. 2011).  

Table 3.7 Recharge estimates from SWAGSIM Destiny for period 2000-01 to 2006-07 

SEASON 
(starting 
April 1) 

AREA-WEIGHTED ANNUAL 

RAINFALL IRRIGATION RUNOFF ET DRAINAGE 
SOIL 

STORAGE 

mm/yr 

2000/01 433 220 45.5 577 61.9 -32 

2001/02 295 296 34.1 535 34.1 -12 

2002/03 177 200 33.7 399 -13 -44 

2003/04 318 147 22.6 451 0.4 -9 

2004/05 254 169 9.5 439 -15.1 -10 

2005/06 395 227 56.4 493 42.9 31 

2006/07 164 142 7.4 353 -21.9 -33 

 

3.8.1.3 Murrumbidgee groundwater model 

A surface-groundwater interaction model for the MIA was developed by Khan et al. (2004). It was 

built using MODFLOW coupled with MT3D solute transport simulator. The model covers an area of 

674000 ha. The spatial domain represented in the model consists of four layers of 106 rows and 

113 columns with a cell size of 750mx750m. For calibration purposes, irrigation periods are 

specified over a 6-month period, from October through to March. External stresses such as wells, 

areal recharge, evaporation, drains and streams are simulated to calculate the water budget of 

each irrigation district of the MIA and the average values in ML/season are presented for the whole 



 

                                                                                                                                                                                                                      
31 

calibration period. Water balancing was used as a means to express the model results. Water 

budget for the calibration period of September 1995 - August 2000 has been presented in the 

results. The recharge is estimated to be 118.5GL during irrigation period and 16.58 GL during non-

irrigation periods (Khan et al. 2004). 

3.8.1.4  SWAGSIM Model 

SWAGSIM was developed by Prathapar et al. (1994) to predict watertable fluctuations in an 

extensively irrigated subregion. A locally calibrated Penman model is used to estimate actual 

evaporative demand from climatic variables. Recharge to the watertable is estimated using an 

analytical solution for Richard’s equation, with actual evaporation as the surface boundary 

conditions and the watertable as the lower boundary condition. The model was applied to the 

Camarooka project area near Griffith. The model estimates a net recharge of 327ML over an area 

of 3750ha for the year 1989/90. 

3.8.1.5 Simulations of groundwater flow and solute transport at Whitton farm 

A two layered model to simulate groundwater flow and solute transport was developed by Khan et 

al. (2000) using MODFLOW. The grid size varied between 10mx10m to 200mx 200m. The model 

was applied on rice paddock of approximately 3km2 area in Whitton. Recharge into the model 

domain was considered to be mainly from rainfall, and was set to be 10% of the rainfall as 

recorded at Yanco site.  

3.8.1.6 Collate of various studies in the MIA 

Groundwater recharge rates under irrigated agricultural areas within the MIA from various research 

studies have been collated in table 3.8. These data contain information about the location, soil 

type, crop type, recharge amount, and source of the data. The commonly used recharge 

estimation/determination methods by the collated research studies are: lysimeters, chloride mass 

balance method, water balance equation, one dimensional (1D) unsaturated zone models, and 

Darcy’s law. Irrigated cotton, maize, wheat, soybeans, and rice are the most studied crops. A large 

number of studies focus on heavy textured soils. Fewer studies focus on light textured and duplex 

soils. Estimation of recharge under ponded rice has also been the focus of few studies. 
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Table 3.8 Recharge estimates from various studies in the MIA 

LOCATION SOIL TYPE CROP 
RECHARGE 

(mm/yr) SOURCE 

Griffith 

Cracking grey clay 

Cotton 

32-42% crop 
water use from 

upflow 
Mason et al. (1983) 

Red brown earth 
5-11% 

cropwater use 
from upflow 

Whitton 
Transitional Red brown 

earth Rice 510 Muirhead et al. (1989) 

Whitton 
Transitional Red brown 

earth Rice 270 
Humphreys et al. 

(1989; 1991) 

Coleambally 
Transitional Red brown 

earth Rice 510 Humphreys (1994) 

Coleambally 
Transitional Red brown 

earth Rice 270 Humphreys (1994) 

Griffith Transitional Red clay loam Maize 10-20 Downey (1971) 

Griffith Red brown earth Maize -212 Smith et al. (1993) 

Griffith 
Transitional Red brown 

earth Maize -57 
Prathapar & Meyer 

(1992) 

Leeton Red brown earth Wheat 0-90 Cooper (1979, 1980) 

Griffith Red brown earth Wheat 

71 

Meyer et al. (1984) 49 

81 

Griffith Red brown earth Wheat -140 Meyer et al. (1985) 

Griffith Red brown earth Wheat 66 Meyer (1988) 

Griffith 
Transitional Red brown 

earth 
Wheat 

-76 

Meyer et al. (1988) -157 

-42 

Griffith Red brown earth Wheat 

41 

Steiner et al. (1985) 
-6 

19 

11 

Griffith Red brown earth Soybeans -216 
Meyer et al. (1990) and 

Dugas et al. (1990) 

Griffith 
Transitional Red brown 

earth Soybeans 46 
Meyer & Mateos (1990) 

and Meyer (1988) 

-ve sign represents upflow 

3.8.2 Recharge estimates from lower Murrumbidgee groundwater models 

Two catchment scale groundwater models have been developed by the NoW representing lower 

Murrumbidgee.  Both of them have been constructed using MODFLOW. The difference lies in the 

cell sizes that have been adopted for each model.  
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3.8.2.1 Lower Murrumbidgee Model (Punthakey et al. 1994) 

This is a transient groundwater flow model for the lower Murrumbidgee groundwater flow systems. 

MODFLOW was utilised for modelling. The model consists of several packages representing 

various aspects of the hydrologic system. The cell sizes within the model are 7500m x 7500m and 

comprise three layers with each layer representing a major regional aquifer system. The model 

covers an area of approximately 39000km2. The model was used to simulate aquifer response to 

seven land and water management scenarios during the period September 1980 to August 2020. 

Results from the scenario “Increased Irrigation” are discussed below. 

Increased Irrigation considers a 50% increase in Irrigation areas and districts, and on properties 

with irrigation>40 hectares. The results for the scenario are presented in water balance format in 

table 3.9 as below: 

Table 3.9 Recharge estimates from MODFLOW for period 09/1980 to 08/2020 (Punthakey et al. 1994) 

COMPONENT IN(m3/d) OUT(m3/d) Net(m3/d) 

Storage 541710 1310340 768630 

Wells 0 97540 -97540 

Net Recharge 1087680 599370 488310 

River Leakage 458260 77000 381260 

Boundary Flows 50600 54000 -3400 

TOTAL 2138250 2138250 0 

Kumar (2002) calibrated the model during the period 1975 -1990. It does not include the actual 

recharge from applied (irrigation) water and current pumping distribution. Model output results are 

summarised in table 3.10. 

Table 3.10 Recharge estimates from MODFLOW for period 1975 to 1990 (Kumar 2002) 

 SHALLOW SOURCE 
(Shepparton) in GL/yr 

DEEP SOURCE 
(Calivil+Renmark) in GL/yr 

Rainfall Recharge 233 n/a 

River Recharge 164 n/a 

Vertical Leakage n/a 335 

Throughflow 1 22 

Total 398 357 
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3.8.2.2 Lower Murrumbidgee model (O’Neill 2005) 

This three-dimensional finite difference numerical model was developed using MODFLOW with a 

uniform grid size of 2500m x 2500m. The model covers an area of 33,000sq.km approximately.  It 

consists of three layers corresponding to the principal hydrogeological units present in the lower 

Murrumbidgee area. Percentage of recharging rainfall is assumed constant at 0.8% over the entire 

model (spatial and temporal) area and is applied to Layer 1. This value is equivalent to 2.8 mm/y. 

For historic data, recharge from rainfall was calculated as 6.4 mm/year (median) and 3.9 mm/year 

(dry). Groundwater ET is represented in the model through the ET package of MODFLOW which 

simulates the effects of plant transpiration and direct evaporation in removing water from the 

saturated groundwater regime.  

The model was calibrated for the period September 1975 to June 2002 and later extended to 2010. 

The model assumes that the proportion of irrigation application to become recharge is equal for 

surface water and groundwater sources for irrigation. Irrigation recharge was used as a calibration 

parameter for PEST. The recharge is determined to be 9.6% of irrigation application through 

manual trial and error calibration. This model determined recharge from individual irrigation plots 

using the concept of irrigation intensity which is the percentage of area proposed to be irrigated 

annually. For rice areas and other irrigation areas, recharge rates of 43.2 mm/yr and 5.8mm/yr 

were derived from calibration of model. Hence, net recharge sums to 51.8mm/yr for 2010. 

The model was calibrated by CSIRO (2008) during the period of 1996 to 2001. The mass balance 

for the model is presented graphically in figure 3.9. Total mass in was 424 GL/year and total mass 

out was 308 GL/year. Lateral groundwater flow out of the model is an important groundwater 

discharge. This flow is predominantly across the western model boundary. Inflow to the aquifers is 

made up of fluxes from the Murrumbidgee River to groundwater, recharge (rainfall recharge and 

irrigation recharge) and lateral groundwater flow in. 

 

Figure 3.9 Mass balance for period 07/1996 to 06/2001 (CSIRO 2008) 
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Table 3.11 shows the results from the water balance output for the period July 1997 to June 2002. 

The results were published by Kumar (2010) and they indicate an average annual recharge of 395 

GL for the Shepparton aquifer and a net vertical leakage of 275 GL for the Calivil and Renmark 

aquifers due to pumping observed for that period. 

Table 3.11 Recharge estimates from MODFLOW for period 07/1997 to 06/2002 (O’Neill 2005) 

 SHALLOW 
SOURCE 

(Shepparton) 

in GL 

DEEP SOURCE 
(Calivil+Renmark) 

in GL 

Rainfall and Irrigation Recharge 286.3 n/a 

Recharge from rainfall 108.4 n/a 

Average annual recharge from rainfall, recharge 
and river 

394.7 n/a 

Gain from net leakage or net vertical leakage -274.8 274.8 

Gain from throughflow -0.4 -56.6 

Groundwater extractions -22.1 -231.5 

Change in groundwater storage 97.4 -13 

 

3.9 Summary 

The study area chosen for the project is within the MIA, an agricultural area within a semi-arid 

region of NSW. A multitude of research studies and experiments that estimated groundwater have 

been done in the irrigation districts of the MIA. Availability of recharge estimates from other studies 

is vital to the project which formed the basis for choice of the study area. Section 3.8 consists of 

recharge estimates from various sources with units in original format which have been reduced to 

mm/year in chapter 4.  

A good understanding of the climatic factors, soil properties, land use and the hydrogeological 

processes surrounding the study area is necessary to appreciate the hydrological cycle associated 

with the region. This, inturn, would assist in determining an appropriate recharge estimation 

technique which is pertinent to the study area. The chapter provides a comprehensive overview of 

the climate and its changes, surface water resources and underground aquifers along with the 

types of crops grown in the study area for the entire period of study. This study helps in making an 

initial assessment of the water balance for the study area.  
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4. MODELS AND METHODOLOGY 

4.1 Introduction 

The chapter describes the development of a groundwater recharge optimisation method for the 

study area. The optimisation method is a simple error based statistical tool that can be used to 

arrive at estimates of groundwater recharge for a given catchment based on a set of prediction 

parameters. Inorder to develop an optimisation method it is necessary to have an existing 

groundwater or surfacewater model that would also calculate groundwater recharge. An 

optimisation method is important to reduce the uncertainty associated with any surfacewater or 

groundwater models in calculating groundwater recharge. This uncertainty is a major impediment 

to reliably quantify groundwater resources, which in turn affects groundwater sustainable yield 

assessments and allocation to the irrigation industry.                                 

The current project utilises AWRA-R irrigation model, developed by CSIRO, as its building block for 

developing an optimisation method. Further information about AWRA modelling system is provided 

in Appendix B.  The irrigation model is made up of a diversions module and a recharge module. 

The optimisation method may be considered as an extension to the irrigation model that refines the 

recharge estimates from the irrigation module in such a way as to minimise the uncertainty that 

manifests as a part of the process in the irrigation model. The primary purpose of the project is to 

arrive at prediction parameters for the study area and utilise them to predict recharge. The inputs 

to the irrigation model specific to the study area are applied to obtain simulation outputs of 

recharge which are subsequently used to arrive at prediction parameters. The methodology 

described in the later sections of the chapter provides information on applying the optimisation 

method to obtain prediction parameters.  

4.2 AWRA-R Irrigation Model 

AWRA-R irrigation model is a broadscale surfacewater model that simulates the behaviour of any 

irrigation district in terms of irrigation diversions, volumes, and soil-moisture balance. It also 

captures the district’s response to changing water availability (Hughes et al. 2013). It consists of 

two components: 1. Diversions modelling module and 2. Recharge estimation module. Daily 

diversions are estimated using diversions modelling module while recharge is calculated using 

recharge estimation module (Hughes et al. 2014). Outputs from diversions module: diversions, 

irrigated area and soil-moisture content are used as some of inputs for recharge module. The 

recharge module estimates groundwater recharge using OFR equations discussed in section 2.4.3.  

Diversions modelling Module: Diversions to irrigated agriculture have an impact on available 

water resources. Hence, irrigation diversion is an important element of water balance in regulated 
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river systems. Availability of diversion data from the past is necessary inorder to analyse it and 

make accurate predictions for unknown diversions in the past or in future. But, historical data for 

diversions is often difficult to source. Diversions module incorporates methods to simulate 

diversions from past based on available data (Hughes et al. 2013). In addition to diversions the 

module simulates total irrigated area and behaviour of soil-moisture balance for the irrigation 

district in a lumped calculation. It also captures the response of irrigated area to changing 

availability of water (Hughes et al. 2013). The module produces daily estimates of diversions as 

output which are useful as input parameters for AWRA-R (Hughes et al. 2013). 

As part of establishing components for water balance AWRA-R irrigation model calculates 

groundwater recharge from rainfall events or irrigation applications within crop fields for any district. 

The model utilises OFR equations for estimating recharge. It is due to the inherent advantages 

listed in section 2.4.3, the method has befitted the irrigation model. The input data available for 

diversions module may be parsimonious. Also, calibration of diversions module demands multiple 

iterations requiring less consumption of time. Above such constraints related to diversions module 

are well complemented by advantages of OFR method making it ideal to use in the irrigation 

model. The model, however, employs a modified form of OFR method for estimating recharge 

(Doble et al. 2013) which may be considered as a particular case of the original OFR equations.  

Recharge estimation Module: The rationale to modify OFR method to suit its application to 

irrigation model is provided below: Different types of crops are grown in Murray Darling Basin. 

Recharge may or may not occur in irrigated areas and is influenced by factors like climate, soil 

properties and water requirements of crop types. In areas such as rice farms which require high 

loading of water the soilwater is converted into recharge as the soil beneath is saturated. It is a 

similar scenario to that of overbank flooding in lowlying floodplains. Similar effect is also observed 

during flooding within farm bunds due to rainfall. The original OFR method calculates ∆S and I 

considering extent of flooding in one dimension (xw). The equations are modified by considering 

flood extents in two dimensions, area (acur) to enable estimating of recharge in crop fields.  

Irrigation model assumes perfect scheduling of irrigation application. This means irrigation to fields 

is stopped immediately after the top soil is saturated to ensure there is no excess irrigation water 

above soil surface (hw). This applied to OFR equations; the term (hw/dc) in equation for infiltration 

becomes 0. Also, modified OFR method does not take transmissivity into account. Hence, the term 

Q is omitted from the calculation for recharge. The remaining terms Kc, dgw, Sy, and soilCap are 

the other input parameters that are required for estimating recharge (Hughes et al. 2014).  

Figure 4.1 shows the connection between the diversions and recharge modules interms of input 

and output parameters. For each simulation run of AWRA-R irrigation model, with a set of input 

parameters, daily groundwater recharge is also output along with other results.  
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                                         AWRA-R IRRIGATION MODEL 

 
 

Figure 4.1 AWRA-R Irrigation model 

 

AWRA-R irrigation model is built using C language. Though C is used to build the model the 

simulations are performed using R. R is a statistical programming tool. Specific to the irrigation 

model there are several benefits in using R: 

1. Input datasets for irrigation model i.e diversion data and climate data are provided in .csv format.  

2. Compared to other programming tools it is relatively less arduous to code in R. 

3. It is necessary to generate multiple trial and error simulations inorder to reduce the error 

between observed data and simulated outputs. Given that irrigation model is a broadscale model, it 

is necessary to perform each simulation trial quickly. R is effective in reducing time running through 

the program. 

4. The outputs from final simulations can be extracted in .csv format. 

Current project is set in a semi-arid region where the depth of groundwater levels is greater than 

9m at places across the study area which makes meteorological water balancing and water 

fluctuation method (described in sections 2.4.1 and 2.4.2) unsuitable for the project purpose. 

Modified OFR equations consider infiltration, soil-moisture storage for determining the amount of 

recharge. Owing to this advantage besides other benefits described earlier in the section, modified 

OFR method is chosen as prescribed recharge model for the current project. 

4.3 Calculation of Groundwater recharge 

Current project utilises AWRA-R irrigation model for the purpose of estimating groundwater 

recharge in the study area. As discussed in the previous section, the input parameters required for 

the calibration of recharge module are obtained partly as simulation output parameters from 

diversions module and partly as direct inputs. The parameters vary depending on the irrigation 

district under consideration for modelling except for the daily timestep (tw). The values of acur and 
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SSi depend on the daily diversion and allocation data, and the climate data. In a given irrigation 

district, the soil and aquifer characteristics vary due to the geographic size. Hence, the values of 

direct inputs, Kc, Sy and soilCap, need to be determined from a range of possible values. Also, the 

simplicity of recharge module demands that only single values of Sy, Kc and soilCap are used for 

representing a particular irrigation district. These values are determined by adopting the sensitivity 

analysis approach. Firstly, the inputs specific to the study area for calculation of groundwater 

recharge have been obtained and discussed as below: 

4.3.1 Time Series Data 

4.3.1.1 Depth to Groundwater (dgw) 

As indicated in section 3.7, bi-monthly borehole data from all the piezometers across the MIA from 

years 1997-2013 has been obtained from the MIL. The data was processed by culling out the data 

from piezometers inside towns and near drainage/irrigation channels. Further, it was averaged to 

obtain a mean groundwater level for the MIA. This bi-monthly data was subsequently interpolated 

to a daily timestep.  

Borehole data is not available for years 1970-1997. Inorder to bring the borehole data on par with 

diversion data in terms of historic data availability, an assumption regarding groundwater level was 

made. A constant depth of 5m has been assumed basing on the average depth from 1997-2000. 

Thus, the dataset of borehole data for the MIA was prepared for years 1970-2013 and utilised to 

run in the recharge model. 

4.3.1.2 Observed Diversions (License Volume) and Climate Data 

The data is required as inputs for irrigation model inorder to generate transition outputs; current 

area and soil-moisture content. These transition parameters inturn are useful as inputs for running 

recharge model. Daily diversion data and allocation data for the Main Canal were provided by the 

NoW for years 1980-81 to 2012-13 in spreadsheet format. Climate data was obtained from CSIRO 

databases. The database contained daily information on rainfall, temperature and 

Evapotranspiration for years 1970-2012 recorder at Griffith weather station.  

4.3.1.3 Current Area (acur) 

Acur is a transition output from irrigation model that is supplied to recharge model as an input. The 

irrigation model performs computation of several variables in the process of calculating current 

area. The intial step is to calculate the maximum area (areaMax) available for cultivation during 

summer and winter separately. The next step is to deduce the current area under crop utilising 

areaMax. The model employs equation 4.1 to calculate maximum area (km2) available for 

cultivation in a year during summer and winter seasons.  
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areaMax = volMax/(      
   o,i * Kw,i * efficiency)          ........................................................           4.1 

Where volMax is the maximum available water in any single year (ML); it is also the license volume 

of irrigation diversion in a given year. ETo,i  is the average ETo  by julian day i (mm), Kw,i is the 

weighted crop factor on Julian day i (dimensionless), and efficiency is the irrigation efficiency factor 

(dimensionless and set at 1.5). 

ET is Evapotranspiration that are supplied to model as input parameters. Kwi is crop factor that 

represents aerial distribution of crops grown in a district and the irrigation water consumed and is 

calculated within the model. Kwi encapsulates in its calculation the allocation of water for summer 

and winter crops. This is to ensure possible saving of water for the next season.  

The next step is to calculate the areaCi (km2) of crop planted on a day i. The following equation 4.2 

is incorporated into irrigation model to calculate areaCi.  

areaCi = 
volMax

volAi
areaMax














volMax

volAi
       ...................................................................      4.2 

where α and β are parameters (dimensionless) that are calibrated for each reach against observed 

diversion data. volAi(ML) is the total volume of water resources available on day i. It represents the 

product of allocation for the district and license volume of diversions.  

Finally, acur is calculated as product of areaCi and the proportion of area sown to crop (areaActi), a 

dimensionless quantity, which is received as an input parameter.  areaActi contains daily data that 

apportions irrigated area sown to the kind of crop based on winter or summer seasons. Irrigation 

model calculates areaCi on a daily basis and hence acur. Inorder to arrive at area under crop 

during each season, the maximum value of acur in each season is chosen for winter and summer 

season separately. The areas are summed up to result in crop area for a particular irrigation year.  

4.3.1.4 Soil Moisture Content (SSi) 

SSi is a transition output calculated from the simulation run of irrigation model. Its units are 

mm/day. It is utilised as input for recharge model to calculate infiltration. SSi is the depth of soil 

water available on day i. Soil water available can become negative, in which case a maximum 

irrigation requirement is utilised. The soil water-irrigation function is illustrated in figure 4.2. Soil 

water from the previous time step is updated with the depth of irrigation, rainfall and crop demand. 

Any excess water i.e., SSi greater than soilCap, is considered to be runoff. 

SSi = SSi-1 - 

















  
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irri

areaAct

EKw

ii

1i
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ii
 + Pi    .................................................      4.3 
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Where Ei is the evaporation losses and Pi is the precipitation which is supplied to irrigation model 

as inputs.  

 

Figure 4.2 Soil-Water irrigation function (Hughes et al. 2012) 

4.3.2 Input Parameters 

4.3.2.1 Aquifer Specific yield (Sy) 

Khan et al. (2004) determined Sy values pertaining to the MIA as a part of developing groundwater 

model. They arrived at the Sy values based on experimental data. Sy values are provided for 2 

layers of aquifers in ranges of 0-5m and 5-10m depths. The units are m/m/day. A value of 0.093 

has been adopted for the purpose of calibrating the irrigation model. 

Table 4.1 Aquifer Specific Yield values for the MIA (Khan et al. 2004) 

 

Sy≤5m Sy>5m and ≤ 10m 

Mean 8.55E-02 9.30E-02 

Standard Deviation 3.44E-02 4.00E-02 

Skewness 1.99E+00 1.14E+00 

Range 1.55E-01 1.55E-01 

Minimum 5.50E-02 5.50E-02 

Maximum 2.10E-01 2.10E-01 

Count 1.99E+03 1.44E+03 
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4.3.2.2 Hydraulic Conductivity (Kc)  

The study area is distributed with majorly 5 varieties of soils with different Kc values (Khan et al. 

2004). Table 4.2 shows the different values of Kc occurring within the study area. A range of 

values between 1E-09 to 1E-06 m/sec have been utilised in the irrigation model.  

Table 4.2 Hydraulic conductivity values for the MIA (Khan et al. 2004) 

  Kc (mm/day) Kc (m/sec) 

Clay 0.5 - 1 6E-09 – 1.2E-08 

Red-Brown Earths 58 -1039 7E-07 – 1.3E-05 

Transitional Red-Brown 

Earths 0.026 - 10 

 

3E-10 – 1.2E-07 

Sands over clay >100 >1.2E-06 

Deep Sandy soils >1000 >1.2E-05 

4.3.2.3 Maximum Soil Storage Capacity (soilCap) 

The thickness of top soil in agricultural fields varies depending on the type of crops grown. It also 

depends on the type of soil and agricultural management methods. A range of values 50mm -

150mm is taken as thickness of top soil for calibration of recharge model. 

4.3.3 Calculation of Infiltration potential (I) and Unsaturated Storage (∆S) 

Crop irrigation requirement varies from crop demand depending on soil moisture storage and 

rainfall (Hughes et al. 2013). Within an irrigation district, there are variety of soil types with different 

soil-moisture storage capacities, irrigation structures, and management methods. Hence, to 

account for the effects from such factors soil-moisture storage based function is used to trigger 

irrigation. As soil-moisture (SSi) becomes more depleted, increasingly more irrigation 

diversion/consumption is triggered, until a maximum depletion where irrigation requirement is also 

maximised. The function used is based upon the normal distribution and soilCap (Hughes et al.  

2013). 

Irrii =   
 

    
  

 
        

     + areaCi + areaActi + eff          if soilCap SSi >0     ..........................       4.4 

Irrii = 
 

    
 + areaCi + areaActi + eff                                if SSi  0    .........................................       4.5 

Irrii = 0                                                                            if SSi > soilCap    ..............................       4.6 

Where irrii is the irrigation requirement on day i, areaActi is the proportion of areaCi actively 

growing crops on day i, eff is the irrigation efficiency, σ, μ, and γ are constants of normal 

distribution function (Hughes et al. 2013). 

From the above equation it is understood that SSi can have three cases of irrigation requirements: 
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i) SSi ≤ 0: This is the case in which there is a maximum requirement for irrigation. 

ii)  SSi > soilCap: In this case, there is no irrigation requirement and excess water above 

soil surface (due to, for eg: rainfall) becomes runoff. 

iii) soilCap ≥ SSi > 0: Groundwater recharge occurs in this case. Modified OFR equations 

are utilised to calculate infiltration, soil storage and ultimately groundwater recharge. 

The modified equations are given as below: 

Infiltration, I = minimum of (Kc of top soil x timestep, soilCap-SSi)   area under irrigation 

I = min(Kc.tw, soilCap-SSi).acur      .........................................................................................      4.7 

Soil storage, ∆S =dgw.Sy.acur      ..............................................................................................       4.8                         

4.3.4 Calculation of Recharge 

The infiltrating volume will be accumulated in the topsoil until it exceeds the unsaturated storage. 

Infiltration begins after this stage. As the infiltrated water reaches the watertable, recharge will 

increment at the same rate as the vertical infiltration. The actual infiltration into the aquifer is taken 

as the minimum of change in storage and actual infiltration.  

Groundwater Recharge = minimum of (Infiltration, Soil storage) 

R = min(I, ∆S)    ..........................................................................................................................    4.9 

Observation of recharge calculations reveals that recharge does not depend on soil storage as 

infiltration is always lower than soil storage. It means that recharge varies as infiltration in the study 

area. 

4.4 Recharge Optimisation 

The method of recharge optimisation is developed as an extension to the recharge module within 

the framework of the irrigation model. It is a simple error based statistical method that aims at 

optimising the recharge estimates from any groundwater or surfacewater model so that they are 

pertinent to the irrigation district under investigation. The need for refining comes from the 

uncertainty associated with any groundwater or surfacewater models in quantifying recharge 

accurately. Recharge can be measured directly using instruments or indirectly through modelling 

employing several methods. Each of those methods may utilize different factors to estimate 

recharge. Given a catchment, few factors control the recharge more than others. The appropriate 

application of an estimation technique lies in recognizing the dominant factors representative of 

that catchment which otherwise might result in poor estimates of recharge. Uncertainty comes from 

the inability to identify the influencing factors of recharge for a given catchment. The recharge 

optimisation method is developed by identifying the most pertinent factors for a given catchment 

and evaluating their values at which they result in precise estimates of recharge.  
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The purpose of the project is to arrive at a set of factors or input parameters for the study area that 

could be used for prediction of recharge corresponding to past or future diversions in a required 

period of time. The methodology to identify the controlling parameters and their values is described 

in the following sections. 

4.4.1 Methodology for predicting recharge for the study area 

It has been stated in section 2.4.3 that OFR method equations have been developed recently and 

the relations between the input parameters to the recharge module and recharge output have not 

been tested on a national scale. Hence, a knowledge based estimation of prediction parameters is 

not possible and a mix of uncertainty approach and calibration method is followed to arrive at the 

prediction parameters. Uncertainty approach is utilised when there is no deterministic method to 

ascertain the relationship between variables wherein in such cases sensitivity analysis is adopted. 

The methodology to develop an optimisation method and obtain prediction parameters is 

discussed in below two steps and the following section: 

Step 1: Check the degree of dependency of recharge values on the input parameters: Kc, Sy, and 

soilCap. A process of elimination is followed for achieving this. A range of values of input 

parameters pertinent to the study area are applied to the irrigation model and generate trial 

simulations. The average of total sum of annual recharge over the period i.e 1970-2012 is obtained 

for each simulation. Subsequently, by performing a sensitivity check for average-annual-total-

recharge against each parameter, the dependence of recharge on each of the parameters is 

determined. 

Step 2: The groundwater recharge estimates from other research studies done previously are 

collated on an annual timescale and utilised in calibration process. Since the recharge estimates 

from other studies are obtained annually, the daily recharge output for each simulation is summed 

up to annual series. The simulation outputs are generated for a combination of Kc and soilCap 

values. Subsequently, the optimising parameters are calibrated by fitting the simulated recharge to 

collated recharge.  

4.4.2 Calibration of optimising parameters 

Recharge calibration is an iterative process through which results from recharge module are 

compared against the existing recharge values from previous studies by adjusting soil and aquifer 

parameters. The process is complicated by the number of input parameters that can be adjusted, 

the number of variables available for calibration targets, and the possibility of achieving non-unique 

model solutions. Hence, it is not uncommon to make tens or hundreds of trial-and-error simulations 

before achieving an acceptable match. Figure 4.3 shows the flow of steps in parameter 

optimisation. 
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The first step in calibration is the identification of calibration targets. The transition outputs from 

irrigation model were not suitable as calibration targets. It is because they have unique values for 

the inputs supplied to irrigation model. Similarly, historic data obtained for watertable depths is 

distinctive and is unsuitable as a calibration target. The values of Kc, soilCap, and Sy vary across 

the study area and hence were used for calibration purpose.  

The second step consists of determining the level of dependence of recharge on the calibration 

targets. 840 trial-and-error simulations were conducted with varying values of Kc, Sy and soilCap 

using the AWRA-R irrigation model. An R program was developed to convert the daily recharge 

output from the irrigation model for every combination of all three calibration targets into an annual 

series.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Flow chart for calibration of recharge estimates 

 

The program also exports the annual recharge simulation outputs in spreadsheet format. Inorder to 

evaluate the degree of dependence, annual recharges for the entire period of modelling were 

summed up to a single value. This resulted in 840 values of total recharge for the complete span of 

trial-and-error simulations which, further, were averaged over the modelled period. 

Utilising the 840 values a sensitivity analyses was conducted. The average-annual-total-recharge 

values were compared against each calibration target for all the simulations. The analyses 

revealed that the recharge is independent of any changes in Sy and varies with altering values of 

Kc and soilCap. This establishes Kc and soilCap as deterministic variables for calibration process. 
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The final step is to arrive at a set of prediction parameters. Annual recharge values from previous 

studies done within the MIA, discussed in section 3.81, are utilised for this purpose. It may be 

noted that most recharge estimates are at significantly smaller spatial scales than those modelled 

by the irrigation model. The units of the existing recharge estimates are converted into mm/year 

and collated on the same annual series as the simulated recharge. They are shown in table 4.3. 

Table 4.3 Collated recharge estimates from previous studies 
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1975-76 
       

10.8   

1976-77 
       

10.8   

1977-78 
       

10.8   

1978-79 
       

10.8 4.81 

1979-80 
       

10.8 4.81 

1980-81 
       

10.8 4.81 

1981-82 
       

10.8 4.81 

1982-83 
       

10.8 4.81 

1983-84 
       

10.8 4.81 

1984-85 
       

10.8 4.81 

1985-86 
       

10.8 4.81 

1986-87 
       

10.8 4.81 

1987-88 
       

10.8 4.81 

1988-89 
       

10.8 4.81 

1989-90 
   

8.72 
   

10.8 4.81 

1990-91 
        

4.81 

1991-92 
        

4.81 

1992-93 
        

4.81 

1993-94 
        

4.81 

1994-95 
        

4.81 

1995-96 
  

8.012 
     

4.81 

1996-97 
  

8.012 
   

8 
 

4.81 

1997-98 
  

8.012 
  

10.76 8 
 

4.81 
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1998-99 
  

8.012 
  

10.76 8 
 

4.81 

1999-00 
  

8.012 
 

94.4 10.76 8 
 

4.81 

2000-01 
 

61.9 
   

10.76 8 
 

4.81 

2001-02 
 

34.1 
   

10.76 
  

4.81 

2002-03 
 

-13 
      

4.81 

2003-04 
 

0.4 
      

4.81 

2004-05 92 -15.1 
      

4.81 

2005-06 169 42.9 
      

4.81 

2006-07 
 

-21.9 
      

4.81 

2007-08 
        

4.81 

2008-09 
        

4.81 

2009-10 
        

4.81 

2010-11 
     

51.8 
  

4.81 

2011-12                 4.81 

 

The annual recharge values output from each trial-and-error simulation are matched with collated 

recharge estimates made in the corresponding years. The error or residual is calculated utilizing 

the Root-Mean-Square formula as shown below: 

RMS =  



n

1i

2
ii pd

n

1
     ........................................................................................................    4.10 

where n is the number of years for which collated data was matched with simulated data. d i and pi 

are the annual recharge values for simulated and collated data respectively.  

Recharge estimates from the lower Murrumbidgee models were ignored in calculating the error 

due to their low outlier nature. The models estimated recharge for a period of years which resulted 

in an average value of recharge for the extent of the period. The estimates, if used for calibration of 

parameters, would tend to even out the simulated annual recharge values which would be 

misrepresentation of groundwater recharge in the study area. Similarly, estimates from license 

compliance reports from the MIL and simulations of groundwater flow at Whitton farm were also 

excluded. This is because of their high outlier nature due to increased recharge under rice farms.  

An error surface was created from Root-Mean-Square (RMS) values of error between simulated 

recharge and collated recharge for the range of soilCap and Kc values discussed in sections 4.4.3 

and 4.4.4. The region of lowest error was considered for evaluation. Subsequently, the values of 

Kc and soilCap corresponding to the lowest error were accepted as prediction parameters pertinent 

to the study area. 
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5. RESULTS AND DISCUSSION 

5.1 Calibration Results  

Figure 5.1 shows the RMS error surface. The patchy region shown in blue represents the area of 

least error. The combination of the parameters that gives the least RMS error is adopted as 

prediction parameter set. The least RMS error is found to be 19.162, the corresponding values of 

Kc and soilCap for which are 7.78E-07m/sec and 0.105m respectively. 

 

Figure 5.1 Root-Mean-Square error surface 

 

From calibration, the values of Kc and soilCap, 7.78E-07m/sec and 0.105m are chosen as the 

prediction parameters. Utilising these parameters, a simulation is performed on the AWRA-R 

irrigation model and annual recharge estimates are obtained. These values represent spatially 

averaged annual recharge estimates for the study area from years 1970-2012. They are shown in 

table 5.1. 
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Table 5.1 Simulated groundwater recharge estimates  

YEAR 

RECHARGE FROM 

AWRA-R IRRIGATION  

MODEL(mm/year) 

 

YEAR 

RECHARGE FROM 

AWRA-R IRRIGATION  

MODEL(mm/year) 

1970-71 21.84 

 

1991-92 25.93 

1971-72 0 

 

1992-93 16.14 

1972-73 1.012 

 

1993-94 29.74 

1973-74 52.31 

 

1994-95 23.13 

1974-75 34.45 

 

1995-96 28.67 

1975-76 0 

 

1996-97 32.34 

1976-77 0 

 

1997-98 16.65 

1977-78 49.31 

 

1998-99 19.63 

1978-79 13.69 

 

1999-00 0 

1979-80 0 

 

2000-01 34.36 

1980-81 13.05 

 

2001-02 0 

1981-82 41.55 

 

2002-03 0 

1982-83 13.1 

 

2003-04 22.19 

1983-84 45.47 

 

2004-05 5.744 

1984-85 26.53 

 

2005-06 17.65 

1985-86 0 

 

2006-07 0 

1986-87 31.73 

 

2007-08 0 

1987-88 60 

 

2008-09 0 

1988-89 44.85 

 

2009-10 6.726 

1989-90 3.63 

 

2010-11 45.74 

1990-91 79.49 

 

2011-12 26.9 

 

Figure 5.2 shows the distribution of groundwater depths and simulated recharge estimates within 

the study area for the years 1997-2012. A correlation has not been observed between the 

groundwater depths and recharge. Groundwater table has been on a decline since 1997 but the 

simulated recharge doesn’t display any downward trend. It is possibly due to the dependence of 

recharge on infiltration (I) rather than soil storage (∆S) in light of equation 4.9, Recharge = min(I, 

∆S). It means that rate of recharge may depend on rainfall and irrigation water. The reason for the 

poor correlation might also be that the piezometric data was not comprehensive enough to 

represent total irrigated region within the study area.  
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Figure 5.2 Correlation between groundwater recharge and groundwater depths in the study area 

 

Figure 5.3 shows the correlation of rainfall with annual recharge. It is observed that a weak but 

correlation of 0.166 exists between them. It may be inferred that the area was under drought during 

the years when no recharge was estimated. 

 

Figure 5.3 Correlation between groundwater recharge and rainfall 
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The chances of infiltration during rainfall are higher than during normal irrigation application 

because of the uniformity in application of water across the district. In a perfectly scheduled 

irrigation management only fields that grow crops like rice receive abundant water supply. Hence, 

occurrences of infiltration are possible more in rice fields than any other areas. This explains the 

existence of a poor correlation of 0.05 between diversions and annual recharge in figure 5.4.  

 

Figure 5.4 Correlation between groundwater recharge and irrigation diversions 

 

Figure 5.5 shows the comparison of annual recharge with incoming water sources; annual 

diversions (License Volume), rainfall, and combined total of these resources. It may be deduced 

that the general shape of recharge graph follows the shape of rainfall graph more than that of 

diversions. It may be inferred that the diversions are scheduled leading to less infiltrations and 

recharge while rainfall provides excess water sufficient to emerge as recharge.  
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    Figure 5.5 Comparison of groundwater recharge with diversions (License volume) and rainfall 
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Figure 5.6 shows the graph of correlation between groundwater recharge estimates from previous 

studies and simulated recharge estimates. Following the availability of recharge estimates from 

previous studies spread between the years 1987-2012 a moderate correlation coefficient of 0.5 has 

been established.  

 

Figure 5.6 Correlation between groundwater recharge estimates  

 

Figure 5.7 shows the final simulated recharge estimates along with the recharge estimates from 

previous studies used to fit the modelled data. The figure also shows the closest fit for simulated 

data that has been achieved with respect to the existing recharge estimates. It is observed that 

simulation output does not match with the collated estimates in several years. Some of collated 

data are estimates from direct measurements in the irrigated areas. The estimated recharge in 

influenced by the season, climate and types of crop growing at the time of measurement. The 

mismatch might also be because most recharge estimates are at significantly smaller spatial 

scales than those modelled by the AWRA-R irrigation model.  
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 Figure 5.7 Simulated groundwater recharge estimates fitted with existing data
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5.2 Sensitivity Analyses 

Recharge estimation is a subjective process. The values for the same area may vary with time and 

due to variables like type of crops grown, season, irrigation management and type of 

measuring/modelling process adopted. Calibration errors arise when using such estimates for 

fitting to current modelled data. The purpose of parameter optimisation is to arrive at prediction 

parameters but the accuracy of these parameters is only as good as the fit. It may be understood 

that the smaller the calibration errors the better the prediction parameters and vice-versa. In such 

cases sensitivity analysis is used to deduce relationship between the input parameters and output. 

The analysis provides information about propagation of error from inputs through to output (Zhang, 

Walker & Dawes 2002).  

Sensitivity Aanalyses was conducted for calibration targets, Kc and soilCap in relation to average-

annual-total recharge. Average-annual-total recharge in this context is the sum of annual 

recharges averaged over the modelled period of time; i.e., from 1970-2012. This approach 

facilitated in understanding the relationship between Kc and soilCap exclusive of time period. 

Figure 5.8 shows the plots of recharge against soilCap for different constant Kc values. The 

recharge possible is increasingly high at lower thickness of topsoil. The recharge tends to become 

zero as the thickness of topsoil increases. The curve shows a power relationship between the input 

and output with R2 ≈0.99. It is also noted that as Kc increases, recharge increases at a decreasing 

rate and beyond Kc =1E-6.0m/sec recharge increments infinitesimally. 

 

Figure 5.8 Sensitivity of groundwater recharge to soilCap 
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Figure 5.9 shows the distribution of Kc against average-annual-total-recharge on a logarithmic 

scale for different constant soilCap values. The graph of Kc vs recharge  depicts a split between 

linear and power relationships beginning with recharge increasing linearly at constant slope and 

later continuing with power based relationship. Beyond this, after a certain value of Kc, recharge 

becomes near constant and with a little slope. Similar to figure 5.8, increasing soilCap values 

suggests only a decreasing rate in increments of recharge. 

 

Figure 5.9 Sensitivity of groundwater recharge to hydraulic conductivity 

 

It may be deduced from the graphs that recharge increases linearly until Kc = 1E-7.5m/sec; 

beyond Kc = 1E-06m/sec recharge becomes independent of Kc and asymptotes to a constant. 

Beyond soilCap = 0.150m, infiltration ceases to occur and the recharge becomes zero. The graphs 
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Irrigation districts in the MIA suffer from salinity problems due to rising groundwater tables. 

Reducing the groundwater recharge is an effective irrigation management strategy to curb salinity 

issue. The sensitivity analyses shows that recharge reduces as the thickness of topsoil increases 

and Kc decreases. By achieving a balance between soilCap and Kc the recharge may be kept at 

minimum economically. This is useful for managing rice growing fields and other crop fields with 
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5.3 Irrigation Model Simulation Performance  

AWRA-R Irrigation model provides its outputs as simulated diversions and irrigated area other than 

recharge. The input data for this was made available by the NoW. The outputs were checked 

against an independent data for diversions and irrigated area for the irrigation districts under the 

Main Canal. The independent data was obtained from MIL. The efficacy of the irrigation model 

depends on the effectiveness of the diversions module and the recharge module, even more so, on 

the diversions module because some of the inputs for the recharge module are resulted as outputs 

from the diversions module. Hence, an assessment of performance of the outputs from the 

diversions module was made to ascertain the quality of the inputs to the recharge module. This, in 

turn, would provide confidence in using the outputs from the recharge module for the purpose of 

parameter optimisation. 

Figures 5.10 and 5.11 show the graphs of simulated and observed values of irrigated areas and 

diversions. It is observed from the graphs that the observed and simulated data match only in 

some of the years between 2000-01 and 2011-12. However, the general shapes of curves match. 

This means that irrigation model was partly successful in identifying the reduction in irrigated areas 

during years of drought.  

It may also be noted that irrigation model was developed as a broadscale model that caters to the 

extents of Murray Darling Basin. Hence, a degree of error is unavoidable when applied to much 

smaller catchments such as the study area. The level of error in the simulated and observed data 

was accepted as allowable by the developers of the irrigation model. 

 

     Figure 5.10 Comparison of simulated and observed annual irrigated areas 
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Figure 5.11 Comparison of simulated and observed annual diversions 

The assessment performed above validated the adoption of AWRA-R irrigation model for the 

purpose of developing the parameter optimisation method and subsequently predicting parameters 

for estimating groundwater recharge in the study area. 

5.4 Summary 

The chapter describes the development of a parameter optimisation for estimating groundwater 

recharge for the study area. It identifies a hydraulic conductivity of 7.78 m/sec and a topsoil 

thickness of 0.105m as prediction parameters. The model arrives at annual recharge for the study 

area with a mean value of 21.05mm. The lowest estimate is 0mm which is the case for a few years 

while the highest is 79.49mm in the year 1990-1991.  

The model has been applied for years 1970-2012 out of which the results for years 1987-2012 

show a moderate correlation with recharge estimates from previous studies. Due to lack of 

sufficient previous recharge estimates data the correlation has not been tested for the remaining 

years. However, an inference could be made that a moderate correlation would exist for the 

untested period.  
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6.  CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

6.1.1 Summary of the Parameter optimisation development 

The project deals with estimating groundwater recharge based on the diversion data. Irrigation 

Model developed by CSIRO is utilised for this purpose. Parameter optimisation method was built 

as an extension to the irrigation model in order to arrive at recharge estimates specific to the study 

area. 840 trial-and-error simulations were conducted with a range of input parameters to the 

recharge module of the irrigation model for the modelled years 1970-2012. Separately, recharge 

estimates from previous studies within the MIA were collated. These collated estimates were 

compared with each of the trial-and-error simulation from the irrigation model using a RMS error 

analysis. The set of simulated estimates that gave the least RMS error were adopted as recharge 

estimates pertinent to the study area. The model arrived at annual recharge for the study area with 

a mean value of 21.05mm. The lowest estimate is 0mm which is the case for a few years while the 

highest is 79.49mm in the year 1990-1991. The model has also worked well for its intended 

purpose of deducing prediction parameters unique to the study area. It identified a hydraulic 

conductivity of 7.78 m/sec and a topsoil thickness of 0.105m as prediction parameters.  

Detailed piezometric data have shown overall decline in the groundwater levels in the study area. 

This decline is attributed to improved land and water management practices as well as a relatively 

dry climate over the last decade. 

6.1.2 Potential Benefits  

1. Similar to the irrigation model the parameter optimisation can be calibrated. Hence, it can be 

applied to any irrigation district and derive prediction parameters precise to the area which can be 

used to estimate groundwater recharge. These estimates would become part of water balancing 

and assist with calculations for AWRA-R and NWA. 

2. The recharge output from the model can be available to the extents of historic irrigation diversion 

data available. The model is robust enough to interpolate any missing data and hence a 

continuous recharge output is possible. A continuous data is helpful in making an assessment of   

fluctuations in groundwater resources over a period of time in response to rainfall or irrigation 

activity. This is useful in effective irrigation management. Knowledge of groundwater recharge is 

critical in irrigation management. Irrigated areas inherently suffer from salinity problems. In areas 

with perched groundwater tables recharge abets salinity problems. Depending on the amount of 

recharge it may be necessary to contain it. 
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6.1.3 Problems encountered 

Several problems were encountered in the process of development of parameter optimisation. 

1. Daily diversion data and allocation data for the Main Canal was an important input data for the 

AWRA-R irrigation model. The data needed to be obtained from the NoW. Several requests were 

made and a considerable amount of time was spent in procuring the data from them. The historic 

input data acquired from the NoW was a result of other models to some extent. The data was 

accepted for the project due to lack of reliable data from any other substantial source of 

information.  

2. Diversion data and actual irrigated areas data for the MIA was also obtained from the MIA. 

Groundwater table data was also obtained from the MIA. The requested data was available with 

waiting involved.  

3. The groundwater level information is not continuous due to a number of piezometers being 

abandoned with the privatisation of irrigation companies. There is a need to critically reassess the 

active measuring points and select a critical monitoring network for assessing the climatic and 

management impacts on shallow watertables. 

6.1.4 Limitations of the model 

The accuracy of recharge outputs is subject to availability of input data at two stages: 

1. Quality of diversion data and allocation data as part of inputs to the AWRA-R irrigation model. 

2. Number of recharge estimates from previous research studies and experiments done in 

agricultural areas and the quality of the estimates available for calibration as part of the parameter 

optimisation. 

6.2 Recommendations 

1. The current project arrives at prediction parameters and recharge estimates based on modelling. 

There is a need to validate the results and thus the model performance by comprehensive field 

measurements. There is also a need to investigate methods on improving the parameter 

optimisation and its calibration process. 

2. Section 6.1.2 highlights the importance of results of the model in irrigation management. There 

is a need to research on other ways these results could prove helpful for water resource 

management and irrigation management. 

3. Managing Groundwater resources is a vital part of water resource management in arid and 

semi-arid regions. There is a need to investigate how the results from the model can be used in 

understanding of interaction of surface water with groundwater.  
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APPENDIX A       Project Specification 

1. Research the background information on ground water and groundwater recharge 

2. Perform research on various factors responsible for recharge in irrigated areas in semi-arid 

regions 

3. Research various models of ground water recharge estimation and select models pertinent to 

irrigated areas in semi-arid regions 

4. Conduct literature review for any research studies done in the MIA using broadscale irrigation 

models that estimated recharge 

5. Collate recharge estimates arrived at from the various studies done within the MIA and the 

lower Murrumbidgee 

6. Collect digital information about the Murrumbidgee irrigated areas interms of diversion data, 

borehole data and climate data 

7. Deploy AWRA-R irrigation model, developed by the CSIRO, to generate trial simulations of 

groundwater recharge for the study area 

8. Optimise the simulated recharges using the collated data to represent the study area 

9. Apply the model to predict ground water recharge for future years in irrigation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                                                                                                                                                                                      
68 

APPENDIX B       AWRA Modelling System  

1 Introduction 

CSIRO has formed a research alliance with the BoM in 2008 to compile and deliver comprehensive 

water information in the form of national water accounts and assessments, water forecasting 

products and water data services for the water sector. It is called WIRADA. Since 2008 CSIRO 

researchers have been developing the AWRA modelling system as part of WIRADA and 

supporting the BoM in the production of national water accounts and assessment reports. These 

reports provide an overview of water fluxes and storages at a national scale (Vaze et al. 2013). 

Alliance researchers have developed an integrated system for detailed water balance assessment 

from sub-catchment to continental scale, capturing water in the landscape, river systems and in 

groundwater. The state-of-the-art AWRA modelling system is able to tell us how much water has 

been produced, how much water is used by the environment or through irrigation, how much water 

we have left, how this compares with the past, and whether extractions, land use, farm dams or 

bushfires are having an impact on water security and the environment. It draws on a wide range of 

on-ground and remote sensing data, to provide unprecedented coverage and insights into 

Australia’s water resources system. The scale of this endeavour requires ongoing innovation in 

model development, calibration, data assimilation and remote sensing. 

 

2 AWRA 

AWRA is a water balance modelling system developed using state-of the-art hydrological science 

and computing technology that quantifies water flux and storage terms and their respective 

uncertainties (where applicable and possible) using a combination of data sets (on-ground 

metering, remotely sensed data and model outputs). Figure 4.1 shows the AWRA modelling 

system and its different components.  

The system is applicable across the continent and flexible enough to be able to use all available 

data sources (when modelling data rich and data limited regions) with the most appropriate 

modelling techniques and tools suitable for use with the available data to provide nationally 

consistent and robust estimates (Vaze et al. 2013). In the first 5 years of WIRADA, the AWRA 

modelling system was developed through three core components, together representing the 

Australian terrestrial water cycle. The model components represent processes between the 

atmosphere and the landscape (AWRA-L), in gauged rivers (AWRA-R) and in groundwater 

(AWRA-G), including all major water storages and fluxes in and between these components. 
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  Figure B.1   The AWRA modelling system (Vaze et al. 2013) 

 

3 AWRA-R 

AWRA-R is a conceptual hydrological model designed for both regulated and unregulated river 

systems (Lerat et al. 2013). A river system is schematised into a simplified river network using a 

node-link structure. The river network begins and ends with a node, and all nodes are 

interconnected by links. Runoff from gauged or ungauged tributaries or local contributing area 

between two nodes is fed into the connecting link as an inflow at the relevant location and all other 

physical processes (such as diversions, groundwater fluxes, overbank flow) occurring between the 

two nodes are incorporated in the model. A link is used for transfer of flow between two nodes with 

or without routing and transformation.  

The model is developed to provide retrospective estimates of the variables listed in the AWRA and 

NWA reports associated with the surface water store. It is built to make maximum use of observed 

data when available. It does not include management rules (dam operation, environmental flow 

releases, allocation). It is run at a daily time step. The model is developed at the reach scale and 

applied to headwater and residual reaches and includes six units: 1) rainfall-runoff response, 2) 

routing scheme, 3) irrigation modelling, 4) river-groundwater interaction component, 5) storages 

and 6) floodplain modelling.  
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APPENDIX C      MIA and the Mirrool Creek catchment      

 

Figure C.1 MIA and the Mirrool Creek catchment     (Source: MIL 2007) 
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APPENDIX D      Water Distribution in the Murrumbidgee 

 

 

Figure D.1   Schematic showing distribution of Water resources in the Murrumbidgee Catchment (Sinclair Knight Merz 2011) 
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