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Abstract 

The objective of this work was to experimentally determine the flexural behaviour of 

composite sandwich panels under elevated temperatures from 21°C to 180°C. The new 

generation sandwich beams were fabricated using top and bottom skins made of two 

plies of bi-axial glass fibre/resin and an innovative phenol-formaldehyde core. The 

composite sandwich beams and the skins were subjected to flexure test under 3-point 

static bending test to determine the strength and the stiffness. The elevated temperature 

effects were applied using an environment chamber. The peak load, strength and the 

Young’s modulus of each specimen under each temperature was recorded. Prior to this, 

the skin and the core materials were also subjected to Dynamic Mechanical Analysis 

(DMA) in order to determine the material properties at elevated temperatures.  

The glass transition temperatures of the skin and the core were obtained through the 

DMA as 125.06°C and 136.11°C respectively. A rapid loss in the storage modulus was 

observed in the core specimens as the temperature increased and the specimens began to 

decompose beyond the glass transition temperature. The testing of the skin specimens 

revealed that the storage modulus decreases steadily with the increase in temperature 

until the glass transition temperature and beyond the transition temperature the storage 

modulus begins to increase.  

The flexure test of the skin revealed that the Young’s modulus of the specimens 

decrease steadily with the increase in the temperature before increasing beyond 120°C. 

The strength of the skin decreases rapidly until 120°C and shows a slight increase in 

strength beyond this temperature. The flexure test of the sandwich panels revealed that 

the Young’s modulus of the sandwich panels decreases steadily as the temperature 

increases. The strength of the sandwich panels was found to increase with the increase 

in temperature until 50°C and starts to decrease beyond this temperature before showing 

a slight increase in the flexural strength at 180°C. 

A theoretical equation was developed which predicted the behaviour of the sandwich 

panels under elevated temperature. The theoretical equation revealed that the Young’s 

Modulus of the sandwich panel predicted through the theoretical equation correlated 

well with the experimental values until 100°C. From 120°C, the experimental values 

were lower than the values obtained from the prediction equation due to the partial loss 

in the composite action of the sandwich panel.  
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Chapter 1 - Introduction 

1.1. Introduction 

A recent trend in the arena of civil engineering is to employ the use of light weight, 

smart materials for the construction of residential, commercial and industrial structures. 

Fibre reinforced composites are found to be one of the best light weight construction 

materials to be employed in the building material systems. There are a number of 

naturally occurring composites in the nature such as the wood and bone.  

The fibre reinforced polymer composites are a class of engineering materials which 

consists of two or more constituent materials. The major constituent materials are the 

reinforcement fibres and the matrix. The reinforcement fibres are generally in a 

dispersed phase and the matrix is in a continuous phase. The matrix is often commonly 

referred to as the resin. The primary purpose of the fibres is to provide the necessary 

strength and the stiffness to the composite and to carry the primary loads to which the 

composite is subjected. The purpose of the resin/matrix system is to bind the fibres as a 

cohesive unit. The resin also performs other functions such as ensure the transfer of 

loads between the fibres and the plies, carry the shear loads, support fibres against 

buckling and to protect the fibres from mechanical and chemical damage. 

 

 

Figure 1.1: Composite fibre bridge in Tasmania, Australia 
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The use of sandwich structures is increasing at a rapid rate in the engineering and 

manufacturing world. This material has been widely used in the automotive, aerospace, 

marine and other industrial applications due to its many advantages (Manalo et al, 

2012)(Manalo, A., Aravinthan, T. & Karunasena, W. 2012). There is especially 

substantial growth in this area, in applications where weight saving is a major 

advantage. (Mujika et al. 2011).The light weight of the sandwich panels facilitates the 

ease of handling during the manufacturing, assembling, and installation and also 

reduces the manufacturing costs. In addition, composite sandwich structures are 

preferred over conventional materials because of its high corrosion resistance (Manalo 

et al, 2012). 

 

1.2. Project Background 

The sandwich panels which have already found their applications in the other fields due 

to their many advantages are now being researched for their structural applications in 

the field of civil engineering. The concept of sandwich panels provides an efficient 

structural system suitable for a variety of applications, including floor and roof panels, 

pedestrian bridge decks and cladding walls for buildings(Fam & Sharaf 2010).When the 

composite sandwich panels are used as structural components in the field of structural 

engineering, they will be exposed to a variety of operating environments and the effect 

of elevated temperature is considered to be one among them. However, there is very 

limited studies conducted investigating the effect of elevated temperature, which is the 

main motivation of this project. 

 

1.3. Research Aims 

The aim of this research is to understand and analyse the effect of elevated temperature 

on the flexural behaviour of the fibre reinforced sandwich panels through experimental 

investigation and analytical studies. 

The specific objectives of the project are as follows: 
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 To understand and analyse the behavioural characteristics of the core and 

the skin materials under elevated temperature. 

 To determine the flexural behaviour of the FRP panels under elevated 

temperature 

 To establish an empirical equation describing the behaviour of the 

sandwich panels. 

 

1.4. Justification 

The fibre composite sandwich panels are currently being researched for their 

applications in the field of civil engineering. Any structure will be subjected to a variety 

of operating environments and the effect of elevated temperature is one among them. 

This kind of scenario is more common in the mining industry. Although, there is 

extensive research conducted on the behaviour of the fibre composites under elevated 

temperatures, the past research on the composite sandwich panels is limited to those 

conducted under ambient temperatures to predict their behaviour. There is very limited 

literature available for behaviour of sandwich panels under elevated temperatures. 

Hence, this research fulfils the gap in the literature by investigating the behaviour of the 

composite sandwich panels under elevated temperatures. 

 

1.5. Scope 

This project has focussed on the flexural behaviour of the fibre reinforced sandwich 

panels under elevated temperature. The structural behaviour of the sandwich panels 

subjected to the effect of temperature and three point static bending was investigated in 

this study. The effect of temperature on the structural properties such as the strength and 

stiffness was studied in detail for each temperature range. Through the experimental 

investigation load-deflection, stress-strain, strength-temperature and young’s modulus-

temperature relation was established for each specimen under each temperature. A 

theoretical equation describing the behaviour of the sandwich panels was developed 

which predicts the behaviour of the sandwich panels under elevated temperature. The 

results from the theoretical equation were compared with the experimental results for 

correlation. 



4 

 

1.6. Summary 

This research has studied and analysed the flexural behaviour of the fibre composite 

sandwich panels under elevated temperature. Since there are very limited resources 

available on the behaviour of the sandwich panels under elevated temperature, the 

material properties and the behaviour of the panels under elevated temperature are 

experimentally investigated followed by developing an empirical relation describing the 

behaviour of the sandwich panels under elevated temperatures. The results from this 

prediction were compared with experimental results in order to understand the effect of 

the temperature on the sandwich panels. 
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Chapter 2 – Literature Review 

2.1. Introduction 

The history of composites, constituent materials and their structural application 

pertaining to civil engineering will be discussed in this chapter. A detailed discussion on 

the sandwich panels, their composition and their applications is presented in this 

section. Further the past studies conducted on the composites under elevated 

temperature, sandwich panels under ambient and elevated temperatures are discussed in 

detail. Finally the research gaps from the previous works are discussed briefly. 

 

2.2. History of Composites 

The fibre reinforced polymer composites appear to be a relatively new concept, but 

however the basics of these composites are age-old concepts dating back to the early 

18
th 

century. The first structural application was through the development of the Adobe 

bricks, which are straw- reinforced clay bricks. The first patent for the synthetic 

composites was obtained in the year 1899 which was developed using the phenol-

formaldehyde resin (Bakelite). The commonly used reinforcements during the early 

periods were linen cloth, asbestos and wood. However, they had a number of pitfalls 

such as the brittle behaviour of the reinforcement fibres, low tensile strength and the 

high cost of production and fabrication. The break-through to these problems were 

achieved in the 1940’s through the release of the first commercial glass fibre cloth by 

the Owens-Corning’s and the commercial release of the unsaturated polymer resins. 

From this point there was a number of consecutive researches conducted in-order to aid 

the development of the composite materials. 

 

2.2.1. Types of Fibres 

The reinforcement fibres are classified into two types namely: 

 Natural Fibres 

 Synthetic Fibres 

The natural fibres are those fibres which are obtained from naturally available materials. 

They are further classified into the plant which is derived from plants such as the hemp, 
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flax, jute, coir etc., and animal fibres such as the fur and wool which are obtained from 

animals. On the other hand artificially manufactured fibres through certain mechanical 

processes are called synthetic fibres such as the glass, carbon, aramid/Kevlar, ceramic, 

and so on. The glass, carbon and the Kevlar fibres are commonly used due to their 

advantages. 

 

2.2.2. Types of resins: 

The resin/matrix system is classified into two types namely: 

 Thermoplastic polymers 

 Thermoset Polymers 

Thermoplastics are polymeric materials with a series of long chain polymers without 

any covalent bonds connecting them. At room temperatures these polymers tend to 

behave like a solid due to the entanglement of the long chained molecules, but under 

heat and high pressure these molecules tend to slip under each other resulting in new 

shapes. It is found that upon cooling these polymers possess the ability to restore back 

to its original shape due to the restriction in the relative movement between the 

individual molecules. At this juncture of time, it is found that the thermoplastic 

molecules find a very limited application in the structural fibre composites from the 

civil/structural engineering perspective due to their disadvantages such as high 

processing and production costs. It was also found that thermoplastic polymers possess 

a poor compressive strength and a poorer resistance towards solvents in comparison to 

the thermosetting polymers. Some of the commonly used thermoplastic polymers from 

the perspective of composites are polyphenylene-sulphide (PPS), polyether ether ketone 

(PEEK), polyether imide (PEI) and polyamide-imide (PAI) 

The thermoset polymers are materials in which the low molecular weight, reactive 

compounds are cross-linked to each other via covalent bonds to form a single three 

dimensional polymeric network. Unlike the thermoplastic polymers, the shape of the 

thermosetting polymers cannot be altered by the application of heat as this would 

involve the sliding of initial chain and would result in the breaking of the bonds. It is 

observed that upon heating there is an increase in the strength of the bonds resulting in a 

more rigid material. The thermoset polymers are widely used as the composite matrices 

due to their advantages such as they can be formulated at ambient temperatures and can 
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be processed without the application of high pressures. They also offer increased 

resistance to chemicals such as acids, bases and solvents. Some of the examples of the 

thermosetting polymers are polyesters, vinyl esters, epoxies, phenols and polyurethenes.  

 

2.3. Limitations of the Composites 

Although the composite sandwich structures have a number of advantages, they possess 

some constraints such as limited performance history, lack of design codes and 

standards. Apart from this the major limitation was that the design of the composite 

laminates is governed by stiffness rather than the strength which results in greater 

deflection. This limitation of increased deflection led to the innovation of the novel 

composite sandwich structures. 

 

2.4. Background on Sandwich Panels 

Typically, a low density core, which could also have excellent insulation characteristics, 

is sandwiched between high strength and stiffness thin skins bonded to the core. The 

system provides very high strength- and stiffness-to-weight ratios(Fam & Sharaf 2010). 

The skin and the core are generally bonded together by either adhesives or by co-curing. 

The top and the bottom skins carry the in-plane and the bending stresses (compression 

at the top and tension at the bottom), while the cores carry the shear loads and the 

normal loads. 
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Figure 2.1: Illustration explaining sandwich panel concept 

 

2.4.1 Background on Skin 

The main purpose of the skin is to provide the flexural strength and rigidity to the 

sandwich panels by carrying the tensile and compressive forces. In the most weight-

critical applications, composite materials are used for the skins; cheaper alternatives 

such as aluminium alloy, steel or plywood are also commonly used(Petras & Sutcliffe 

1999).The skin generally comprises of two components namely the fibres and the resin 

matrix. The fibres are in a dispersed phase and the matrix is in a continuous phase. The 

fibres carry the load and the resin binds the fibres as a single cohesive unit. Laminates 

of glass, Kevlar/aramid or carbon fibres are generally used as the skins. The commonly 

used resin systems for the engineering applications are vinyl-esters, epoxies, phenols 

and poly-urethanes. The sandwich panel under study has the skins made of laminates of 

glass fibres and a phenol-formaldehyde resin system. 
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Figure 2.2: Fibre composite laminate 

 

2.4.2 Background on Core 

The core of a sandwich beam behaves in a manner similar to that of the web portion in 

an I-beam. The major purpose of the core is to carry the shear loads. Materials used for 

cores include polymers, aluminium, wood and composites. To minimise weight these 

are used in the form of foams, honeycombs or with a corrugated construction(Petras & 

Sutcliffe 1999). 

 

 

 

 

Figure 2.3: Honeycomb and Foam cores 

 

The application of the sandwich panel in field of civil engineering is limited due to the 

core materials used in the construction of sandwich panels. The main reason for this 

could be that most of the currently used core is not appropriate for this type of 
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application. Foam core and balsa wood are soft and will crush under high compressive 

loads. Honeycomb and trussed-core structures have high compressive strength but the 

presence of cavities in these core materials reduces their capacity to hold mechanical 

connections. The evolution of a sandwich structure with lightweight, high strength core 

and with good holding capacity for mechanical connections provides an opportunity to 

develop this material for structural beams (Manalo et al, 2012). 

 

2.4.3 Structural Applications of the Sandwich Panels 

Their usage is mainly in the aerospace, aircraft and marine industries because of their 

fuel efficiency in transportation vehicles, but at present, there is a strong interest in the 

development and applications of sandwich structures for civil and building material 

systems(Manalo 2013). These materials are now commonly used as structural panel for 

roofs, floors, walls, and bridge decks(Manalo et al, 2012).The fibre reinforced sandwich 

panels are being investigated for their applications in the field of civil/structural 

engineering. 
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Figure 2.4: Structural Applications of Sandwich Panels 

Source: www.usq.edu.au/CEEFC 

 

2.5. Behaviour of Sandwich Panels under Ambient Temperatures 

Manalo (2013) studied the behaviour of structural fibre composite sandwich beams 

made up of glass fibre composite skins and phenolic core material under three-point 

short beam and asymmetrical beam shear tests. The study focussed on the effect of the 

shear span-to-depth ratio (a/D) on the strength and failure behaviour of the composite 

sandwich beams. The test results showed that with an increase in the a/D ratio, there 

was a decrease in the failure load of the sandwich beam. Further it was found that, the 

coupling effect of flexural stresses increased with an increasing a/D ratio. It was to be 

noted that, the fibre composite sandwich beams tested under asymmetrical beam shear 

test exhibited higher failure load in comparison with the beams tested under short beam 

shear test. Numerical analysis showed that the shear stress in the core is more dominant 

than flexural stress when the a/D ratio is 1for the sandwich beams under short beam test 

and 1–3 for the sandwich beams tested under asymmetrical beams shear test.A suitable 

prediction equation was developed based on the results obtained, which accounts for 

thecombined effect of shear and flexural stresses due to the changing a/D ratio, 

http://www.usq.edu.au/CEEFC
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presented a good agreement with the experimental results, showing that it can 

reasonably estimate the failure load of structural fibre composite sandwich beams. 

Awad et al., (2011), studied the geometry effect on the behaviour of single and glue-

laminated glass fibre reinforced polymer composite sandwich beams loaded in four-

point bending. The purpose of this research was to investigate the behaviour of single 

and glue laminated glass fibre reinforced polymer (GFRP) composite sandwich beams 

considering different spans and beam cross sections. The composite sandwich beams 

with different thicknesses 1, 2, 3, 4, and 5 sandwich layers were tested using the four-

point static flexural test with different shear span to depth ratio (a/D). From the 

experimental results, it was found that the a/D ratios had a direct effect on the flexural 

and shear behaviour of the sandwich beams. It was also found that the capacity of the 

beam decreased with an increasing a/D ratio. Several failure modes such as the core 

crushing, core shear, and top skin compression failure were observed during the testing 

of the beams. The failure mode map which was developed based on the experimental 

findings and the analytical prediction indicated that the failure mode is affected by the 

a/D with the number of glue laminated panels. 

Manalo et al., (2012) conducted a research on the Prediction of the Flexural Behaviour 

of Fibre Composite Sandwich Beams. A simplified Fibre Model Analysis (FMA) to 

describe the approximate behaviour and the governing failure mechanisms of composite 

sandwich structures under flexural load was developed in this research. The 

fundamental design methodology was based on several key parameters such as the 

sectional equilibrium, strain compatibility, and the constitutive material behaviour 

which employed the use of a layer-by-layer approach to evaluate the sectional forces 

and for the calculation of the nominal flexural capacity of a composite sandwich 

section. A major merit of the proposed model was found to be its accountability for the 

nonlinear behaviour of the core in compression, the effect of core cracking in tension 

and the linear elastic behaviour of the fibre composite skins. Through this method, the 

analysis of the composite sandwich structures with non-symmetric sections could be 

carried out. The efficiency and practical application of the developed prediction 

equation was demonstrated by analysis of the behaviour of the individual and glue-

laminated composite sandwich beam structures made from the glass fibre composite 

skins and phenolic core material and through the comparison of the results from the 

numerical simulation with the results of experimental investigation. This method was 
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found to reasonably describe the behaviour of the fibre composite sandwich structures 

in flexure. 

Manalo et al., (2012), studied the geometry and restraint effects on the bending 

behaviour of the glass fibre reinforced polymer sandwich slabs under point load. The 

study investigated the flexural behaviour of a new generation composite sandwich 

beams made up of glass fibre reinforced polymer skins and modified phenolic core 

material. 4-point static bending test was used to determine their strength and failure 

mechanisms in the composite sandwich beams in the flatwise and the edgewise 

positions. The results of the experimental investigation revealed that the composite 

sandwich beams tested in the edgewise position failed at a higher load with less 

deflection compared to specimens tested in the flatwise position. Under flexural 

loading, the composite sandwich beams in the edgewise position failed due to 

progressive failure of the skin while failure in the flatwise position is in a brittle manner 

due to either shear failure of the core or compressive failure of the skin followed by de-

bonding between the skin and the core. Analytical predictions and numerical 

simulations were developed and compared with the experimental results. It was found 

that the results of the analytical predictions and numerical simulations agreed with the 

experimental results 

Fam and Sharaf.,(2010), studied the Flexural performance of sandwich panels 

comprising polyurethane core and GFRP skins and ribs of various configurations. The 

feasibility of fabrication and flexural performance of panels composed of 

lowdensitypolyurethane foam core sandwiched between two GFRP skins were studied. 

From the study it was found that, through the integration of the ribs, strength and 

stiffness of the panels increased, by 44–140%, depending on the configuration of the 

ribs. The maximum gain in strength was equivalent to the effect of doubling the core 

density in a panel without ribs. Shear deformation of the core contributed over 50% of 

mid-span deflection in the panel without ribs. Through the addition of ribs, the flexure 

became more dominant and shear deformations of the ribs contributed only 15–20% of 

the total deflection.  

 



14 

 

2.6. Effect of Elevated Temperature on Composites 

Yu Bai and Thomas Kellar., (2011) investigated the delamination and kink band 

failure of pultruded GFRP laminates under elevated temperature and compression. 

Pultruded glass fibre composite laminates of width 48 mm, thickness 12 mm and 500 

mm length were mechanical properties. The glass transition temperature was 

determined by the dynamic mechanical analysis and the decomposition temperature was 

determined by themogravimetric analysis. The specimens were tested for their axial 

compression under elevated temperature range of 20°C and 220°C at an interval of 

40°C. The DMA test revealed that the storage modulus decreased with increasing 

temperatures and the leathery state was reached at 220°C. At lower temperature range 

the load displacement curves revealed a clear bifurcation of the maximum and the post- 

buckling load but as the temperature increased this bifurcation was less obvious and 

disappeared beyond 180°C. At temperature below 180°C the delamination caused by 

the second-order bending of the slender specimen was observed which was absent in 

case of the specimens tested at temperatures above 180°C.’ 

Alsayed et al., (2012) investigated the performance of glass reinforced polymer bars at 

elevated temperatures. E-glass/vinyl ester specimens of 12 mm diameter were used for 

the study. The specimens were divided into two sets with one set of the specimen 

covered in 40 mm concrete. All the specimens were exposed to the temperatures 100°C, 

200°C and 300°C for a period of 1, 2 and 3 hours and tested for their mechanical 

properties. Physical examination of the bars after the temperature exposure revealed 

distinct dis-colouration which was observed for the temperatures 200 and 300°C. The 

stress strain relationship was similar for all the specimens and the failure mode was 

brittle in nature. The test revealed that the losses in tensile strength at elevated 

temperatures were 3.1-35.1 % for concrete covered GRFP bars and 4.7-41.9 % for the 

bare GRPF bars.’ 

Wong et al., (2004) ‘Studied the behaviour of pultruded GFRP short columns under 

elevated temperature. The specimen under study was 100 x 30x 4 mm E-glass/ polyester 

columns tested for their compressive strengths at 20, 60, 90, 120, 150, 200 and 250°C. 

Two sets of specimens of lengths 30 mm and 400 mm were tested. The experimental 

tests of the 30mm specimen revealed that at lower temperature of 20, 60 and 90°C the 

specimens failed along the mid-length in a brittle manner and at elevated temperature 

greater than 90°C the specimen failure was due to the resin softening phenomenon. 
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Distinct discolouration was observed at a temperature of 250°C. The results of the 

column test conducted on the 400 mm specimen revealed that the column strengths of 

the 60 and 90 °C specimens were reduced by about 65% of the ambient temperature 

results and the specimens tested at 120°C and above revealed a quarter of the strength of 

that under ambient temperatures. The failure mode at lower and elevated temperatures 

was characterized by local buckling deformation.’ 

Gibson et al., (2010) ‘Studied the high temperature and fire behaviour of the glass 

fibre/polypropylene laminates. Samples of width 20 mm and span 150 mm were tested 

for their mechanical properties under three point bending and the flexural moduli was 

measured in terms of creep applying dead loads to the centre of the samples at 1, 10, 

100, 1000’s. From the experimental study it was found that the flexural modulus from 

room temperature just before of melting point varies linearly. The compressive strength 

of the specimens was substantially lower than their tensile strengths. The tensile stress-

strain curves were found to be non-linear which is attributed to the resin-

fibredebondingcombined with resin creep and fibre misalignment. It was found that the 

properties of glass/pp composites decline gradually with temperature unlike the 

thermoset polymers and the glass transition temperature influenced its behaviour from 

20°C to 250°C.’ 

Lauobi et al., (2014) ‘Studied the thermal behaviour of E glass fibre reinforced 

unsaturated polyester composites. The test materials under study are polyester resin and 

glass/polyester composites. The specimens were heated at a temperature of 100°C, 

200°C and 280°c for 1 hour and were cooled under ambient temperatures before the 

commencement of the testing. The results of the themogravimetric analysis of the resin 

revealed that the decomposition of the resin takes place at two temperatures namely 

130°C and 400°C. In case of the composite the decomposition was just below 180°C. 

The glass transition temperature for the resin was found to be 64.20°C and 81.66°C for 

the composites. The mechanical properties of the resin and the composite were tested 

using the tensile and the three point bending tests. The physical examination of the 

specimens after the thermal exposure reveal no apparent change in their appearance 

until 100°C however, on exposure to 200°C they undergo degradation at the fibre-

matrix interface and apparent de-lamination at 280°C. The stress-strain curve obtained 

for the tensile tests reveal that the curve is linear at the beginning and non-linear at the 

end but for 280°C which tends to follow a brittle behaviour. It was found that above 

200°C the resin was more vulnerable than the composite. The three point bending test 
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revealed that the tensile strength slightly increases before 100°C and decreases 

thereafter. The modulus of elasticity increases strongly at 100 °C and 200°C and 

decreases thereafter. The displacement of the specimen gradually decreases with the 

increase in the temperature.’ 

2.7. Effect of Elevated Temperature on Sandwich Panels 

Liu et al,.(2011) ‘Investigated the temperature effects on the strength and crushing 

behaviour of carbon fibre composite truss sandwich cores. In this project the sandwich 

panels under study were made from carbon/epoxy prepreg face sheets and unidirectional 

carbon rods were used for the truss cores. The specimens of composite rods were tested 

for their mechanical strengths at cryogenic and elevated temperatures in the following 

temperature range: -60°C, -30°C, -10°C, 20°C, 50°C, 80°C, 110°C, 140°C, 160°C, 

200°C, and 260°C. The specimens of sandwich panels were tested at -60°C, 20°C, 

70°C, 100°C, 140°C, and 160°C. The results from the experimental test revealed that at 

elevated temperatures the strength and the stiffness of the sandwich panels decreased 

which is attributed to the softening of the polymer matrix. Delamination failure was 

observed throughout the operating temperature range, while the failure above the glass 

transition temperature was characterised by the plastic kinking of the truss members.’ 

Liu et al, (2013) ‘Investigated the mechanical behaviour and failure mechanisms of 

carbon fibre composite sandwich panel after thermal exposure. The sandwich panel 

specimens were made from carbon/epoxy prepreg by molding hot-press method. The 

composite sandwich panels were tested for their mechanical properties on exposure to 

temperatures of 20, 100, 150, 200, 250, 300°C for 6 hours. The thermogravimetric 

analysis revealed that the epoxy resin matrix decomposed in two stages namely the first 

stage of rapid degradation from 250°C until a pseudo-plateau and the second stage 

leading to the complete degradation.  A distinct decolouration of the sandwich panels 

were observed on exposure to temperatures beyond 150°C. It was observed that the 

carbon sandwich panels failed due to core shear buckling and node rupture for the 

specimens exposed from 100 - 200°C and face sheet crushing was observed for the 

specimens exposed to 250 and 300°C which may be attributed to the severe heat 

damage caused to the face sheet during the thermal exposure of the specimens. 
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2.8. Research Gaps from Previous Works 

On reviewing the current literature it is found that the research on the sandwich panels 

at elevated temperature is limited to the carbon fibre composite with a truss core (Liu et 

al,. 2011). It is also found that the sandwich panels are tested only for the compression 

at higher temperature range and no significant information is found to explain the 

flexural behaviour of the glass fibre composites. Therefore, it is identified that there 

exists a research gap in current knowledge which explains the flexural behaviour of 

glass fibre reinforced sandwich panels under elevated temperature. 

Thus the flexural behaviour of the sandwich panels at elevated temperature under three 

point static bending is investigated in this research in order to fill the gap in the 

literature. Further an empirical equation describing the behaviour of the sandwich 

panels under elevated temperature is also proposed in this study. The methodology, 

results and the observations from the testing of the panels are discussed in the following 

sections. It is believed that this research will increase the application of the sandwich 

panels as structural elements in the field of civil engineering. 

 

2.9. Summary 

The history of composites, their constituent materials and the types of the constituent 

materials of a composite were briefly studied in this chapter. The limitations of the 

composite materials were also briefly highlighted. Further, a brief background on the 

sandwich panels and its constituent materials and their structural applications were 

provided following which the past literature on the sandwich panels under ambient 

temperature, composites under elevated temperature and sandwich panels under 

elevated temperature was reviewed. Finally, the gaps from the previous works were 

discussed thereby justifying the need for this research. 
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Chapter 3 – Project Methodology 

3.1. Introduction 

This chapter outlines the experimental methodology adopted in this project. The 

materials used for the testing are discussed briefly in this chapter. The testing specimens 

and the equipment used for the purpose of testing the specimens are also discussed and 

outlined in this chapter. Finally the experimental set-up and the testing procedure 

adopted are discussed in detail in this chapter.  

 

3.2. Materials 

The composite sandwich panel used in this study is made up of glass fibre composite 

skins co-cured onto the modified phenolic core material using a toughened phenol 

formaldehyde resin. The top and the bottom skins of the sandwich panels is made up of 

2 plies of stitched bi-axial (0/90) E-CR glass fabrics with a chopped strand mat and a 

toughened phenol formaldehyde resin is used as the laminate matrix. The skin has a 

fibre fraction of 45% by weight and an average density of 1365 kg/m
3
. The phenolic 

core material is a proprietary formulation by LOC Composites Pty Ltd, Australia. This 

material comes from natural plant products derived from vegetable oils and plant 

extracts and chemically bonded within the polymer resin. It has an average density of 

855 kg/m
3
. Further information on the core is unavailable due to the commercial nature 

of the product. 
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Figure 3.1: Carbon LOC
®
 Panels 

 

3.3. Test Specimen 

The skin and the sandwich panels were tested for their flexure under three point static 

bending test. The sandwich panels are 50 mm wide and 220 mm in length. The 

thickness of the core is measured to be 10 mm. The Table 3.1 gives a detailed 

description about the test specimens. 

 

Specimen 

type 

Illustration No. of 

specimens 

Thickness, 

t (mm) 

Width, 

b (mm) 

Total 

length, 

LT 

(mm) 

Support 

span, L 

(mm) 

Sandwich 

beam 

 

 

 

60 Actual 50 220 180 

Skin only 

 

 

 

 

 

60 actual 50 220 120 

Table 3.1: Test Specimen Dimensions 

t 

b 

t 

b 
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The skin and the core materials were subjected to dynamic mechanical analysis in order 

to determine their material properties. The details of the specimens used are given in the 

Table 2. 

 

Specimen Type Thickness, t (mm) Width, b (mm) 

Skin 5 10 

Core 5 10 

Table 3.2: Dimensions of DMA samples 

 

3.4. Specimen Preparation 

The test specimens were made to order from the CarbonLOC Pvt Ltd, Australia. The 

specimens were manufactured at the manufacturing facility in USQ, Toowoomba. 

 

3.5. Experimental Procedure 

3.5.1. Dynamic Mechanical Analysis (DMA) 

The DMA test is a thermo-mechanical test which is performed to identify and measure 

the visco-elastic properties of the constituent materials. The test was carried out 

according to ASTM D 4065-2001 testing standards. The responses of the material as it 

is subjected to the periodical forces are called as the Dynamic Mechanical Properties of 

the material. The DMA applies an oscillating force in the form of stress and records the 

oscillating responses of the sample. The modulus of the specimen tested is calculated 

from the elastic responses and the damping is calculated from the viscous responses. 

The mechanical properties are displayed in the form of sinusoidal oscillations as a 

function of time and temperature. The green curve of the resulting graph represents the 

storage modulus (E’) and the blue curve represents the tan delta. According to the 

ASTM D 4065-2001 specifications the maximum of the curve representing the Tan 

delta (Tan delta) represents the glass transition temperature. The glass transition 

temperature (Tg) of the material is defined which helps in predicting the behaviour of 

the materials when subjected to both mechanical and thermal stresses. 
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A specimen of 35 x 10 x 5 mm^3 is placed in the equipment and a small deformation is 

applied to the specimen in a cyclic manner. Through this test the response of the 

specimen to various parameters such as the temperature, stresses and the modulus are 

studied.  

 

 

 

Figure 3.2: DMA Testing Equipment 

 

 

Figure 3.3: DMA Test Set-Up 

 

3.5.2. Flexure Test 

 In order to analyse the mechanical behaviour of the sandwich panels under elevated 

temperature the skin and the sandwich panels were subjected to flexure test by three 

point static bending tests (Figure 6) at elevated temperature under nine different 

temperature ranges from 21°C to 180°C namely 21°C, 35°C, 50°C, 65°C, 80°C, 100°C, 

120°C, 150°C, 180°C. A test specimen of 220 x 50 x 20 mm^3 is simply supported on 
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two ends and the load is applied at the mid-point through a 100KN servo-hydraulic 

loading machine. The effects of temperature are applied through an environmental 

chamber. The maximum temperature capacity of the chamber is 350°C. The specimens 

were separated by a span of 180 mm for the sandwich panels and 120 mm for the skin 

panels. The rate of loading was 5 mm/min. A set of 5 specimens were tested for each 

temperature range. 

 

 

 

 

 

Figure 3.4: Schematic Diagram of Three Point Bending Test 

 

 

Figure 3.5: Flexure Test Equipment 

 

0.5L 0.5L 

L 
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Figure 3.6: Flexure Test Set-Up 

 

3.6. Summary 

The constituent materials, equipment used for the testing and the various procedures 

adopted for the testing of the sandwich panels have been described in this section. A 

detailed description about the CarbonLOC® panels has been discussed in this section. 

The dimensions of the specimens involved in the project were discussed in detail. The 

relevant standards pertaining to each test is given. Finally, the testing procedure 

involved in each test is discussed in detail. 
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Chapter 4 - Results and Observation 

4.1. Introduction 

The experimental results of the DMA test and the 3 point bending test will be discussed 

in this section. The failure modes, stress-strain relation, load-deflection and the 

strength-temperature relationship will be discussed in this section. 

 

4.2 Dynamic Mechanical Analysis 

The results obtained from the Dynamic Mechanical Analysis of the composite skin and 

the resin core specimens reveal that the mechanical properties of the skin and the core 

vary with the temperature. This variation in temperature is explained by behaviour 

exhibited in the three different phases observed in the composite skin and the resin core. 

The different phases exhibited by the specimens may be explained by the effect of 

temperature on the polymeric bonds.  From the results of the Dynamic Mechanical 

Analysis of the glass transition temperature (Tg) of the composite skin and the resin 

core were found to be 125°C and 136°C respectively. 

There are two types of polymeric bonds namely the primary and the secondary bonds. 

The primary bonds are the strong covalent bonds in the polymeric chains and the cross-

links of the thermosets while the secondary bonds are the much weaker bonds. At lower 

temperatures the primary and the secondary bonds remain relatively intact without 

being affected by the temperature changes which explains the steady trend in the graphs. 

This state is referred as the Glassy State. 

As the temperature increases towards the glass transition temperature (Tg), the weaker 

secondary bonds are affected by temperature and are consequently broken while the 

primary bonds remain intact. This state is referred to as the Leathery State. The 

transition of the specimen from the glassy to the leathery state is known as the glass 

transition temperature. 

When the temperature increases beyond the glass transition temperature the molecules 

of the polymeric chain becomes entangled due to the flexibility and the length of the 

chains. This state is referred as the Rubbery State. When the temperature increases 

further the primary bonds are affected by temperature and are consequently broken 
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resulting in the decomposition of the material. This state is referred as the 

Decomposition State. 

 

4.2.1 Skin 

 

 

 

Figure 4.1 DMA result of the skin 

 

The figure 4.1 shows the results of the DMA test on the skin. The figure shows two 

curves representing the storage and the Tan delta. The green curve represents the 

storage modulus (E’) and the blue curve represents the tan delta. As stated in the section 

3.5.1 of the chapter 3, the dynamic mechanical analysis is conducted according to the 

ASTM D 4065-2001 specifications and the maximum of the Tan delta curve represents 

the glass transition temperature of the specimen. Hence, the glass transition temperature 

of the skin specimen is found to be around 125.06°C. 
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From the figure 4.1, it can be observed that the mechanical properties of the composite 

skin vary with the temperature. The variation of the mechanical properties of the skin 

specimen can be explained by three phases namely: 

Phase 1: This is the phase exists below 80°C (T < 80°C). In this phase, a slow decrease 

in the storage modulus (E’) and a slow increase in the Tan delta are observed. 

Phase 2: This phase exists between 80°C ant the glass transition temperature, Tg (80°C 

< T < 125.06°C). There is a rapid decrease in the storage modulus (E’) and the curve 

reaches its minimum at the glass transition temperature. Similarly the Tan delta 

increases rapidly with the curve reaching its maximum value at the glass transition 

temperature. 

Phase 3: The last phase exists beyond the glass transition temperature (T > 125.06°C). 

During this phase the storage modulus (E’) begins to increase rapidly and the Tan delta 

begins to drop rapidly. The trend of the curve during this increase and the decrease is 

found to be similar to that during the steep decrease and increase of the storage modulus 

and Tan delta as explained in the previous phase. 
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4.2.2 Core 

 

 

 

Figure 4.2 DMA results of the core 

 

The figure 4.2 shows the results of the dynamic mechanical analysis of the core 

specimens. As stated in the previous section the maximum of the tan delta curve 

represents the glass transition temperature of the specimen, hence the glass transition 

temperature is found to be 136.11°C from the above graph. The changes in the 

mechanical properties of the resin core with the temperature are also seen from the 

graph. The changes in the mechanical properties of the resin core can be explained in 

detail by three phases namely: 

Phase 1: This phase explains the behaviour of the resin core below 80°C (T < 80°C). It 

is found that the resin core behaves in a manner similar to the composite in this phase. 

The storage modulus (E’) of the resin core exhibits a slow decrease in its values with 

temperature while Tan delta exhibits a slow increase in its values. 

Phase 2: This phase explains the behaviour of the resin core beyond 80°C and below 

the glass transition temperature of the resin core which is 136.11°C (80°C < T 
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<136.11°C). During this phase too the resin core behaves in a manner similar to the 

composite skin where the Storage modulus of the core (E’) decreases rapidly with 

temperature and the Tan delta shows a rapid increase in its values. At the glass 

transition temperature, the storage modulus reaches its minimum while the Tan delta 

reaches its maximum value. 

Phase 3: This phase explains the variation of the mechanical properties of the resin core 

beyond the glass transition temperature (T > 136.11°C). Unlike the composite skin the 

behaviour of the resin core beyond the glass transition temperature follows a different 

pattern. From the tan delta curve of the graph, it can be observed that the resin core 

exhibits an irregular pattern which may be attributed to the decomposition of the resin 

core beyond the glass transition temperature. 

 

4.3. Behaviour of the Skin 

4.3.1 Load Deflection Relation 

 

 

Figure 4.3 Load – Deflection diagram for the skin at 21°C 

 

 

Results from the load-deflection relation for the specimens tested at 21° reveal that the 

skin exhibits a linear fashion with the peak load ranging between3000-3500 N, 
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thereafter a rapid reduction in the load carrying capacity of the specimen before failing 

completely at a load between 2500-2500 N. The decrease in the load carrying capacity 

may be attributed to the appearance of cracks on the tension side (top side) of the 

specimen. Ultimately the skin tested at 21°C failed due to compressive failure and de-

bonding between the individual plies was observed which may be due to the 

interlaminar shear. 

 

 

Figure 4.4 Load – Deflection diagram for the skin at 35°C 

 

The figure 4.4 shows the load deflection diagram for the skin specimens tested at 35°C. 

The load and displacement of the skins at 35°C vary linearly with each other until 2500-

3000 N similar to the specimens at 21°C before starting to fail in a brittle manner. The 

specimens start exhibiting a slight ductile behaviour which may be attributed to the 

cracks developed on the compression sides. The ultimate failure is initiated by inter-

laminar shear in this case too. 
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Figure 4.5 Load – Deflection diagram for the skin at 50°C 

The figure 4.5 shows the load deflection relation for the skin specimens tested at 50°C. 

The load and deflection curve for the specimens tested at 50°C varies linealy with each 

other and the peak load varies between 2000-2500 N. It may be observed that the failure 

tends to follow a plastic mode just before the brittle failure. This phenomenon may be 

attributed to the softening of the resin matrix. The resin softening is characterized by the 

indentations found at the point of loading. The decrease in the peak load capacities may 

be attributed to the cracks developed on the tension and compression side of the 

specimen. However, interlaminar shear dominates the ultimate failure. 
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Figure 4.6 Load – Deflection diagram for the skin at 65°C 

 

The figure 4.6 shows the load deflection diagram for the skin specimens tested at 65°C. 

The load and deflection varies linearly with peak load from 2000-2500°C. The 

behaviour of the skin panel is similar to the behaviour exhibited at 50°C. The plastic 

phase is more clearly observed at this temperature. The ultimate failure is due to the 

interlaminar shear. 
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Figure 4.7 Load – Deflection diagram for the skin at 80°C 

 

The figure 4.7 shows the load displacement diagram for the skin specimens tested at 

80°C. The load displacement relation varies linearly until the peak load capacities 

ranging between 1500-2000°C.There is clear indication of the resin softening 

characterized by indentations. The peak deflections are between 5-10 mm.Interlaminar 

shear dominates the failure. 
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Figure 4.8 Load – Deflection diagram for the skin at 100°C 

 

The figure 4.8 shows the load-deflection relation for the skin specimens tested at 100°C. 

The load deflection relation varies linearly and the failure tends to follow a more plastic 

trend after the peak load range of 1400-1600 N. The specimens tested at 100°C reveal a 

phenomenon of resin embrittlement.. However, interlaminar shear dominates the 

ultimate failure. 
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Figure 4.9 Load – Deflection diagram for the skin at 120°C 

 

The figure 4.9 shows the load deflection relation for the skin specimens tested at 120°C. 

The load deflection path is linear until the failure of the specimen and the failure is no 

longer brittle as the failure takes place completely by a plastic mode. The peak load 

carrying capacity also decreases to between 800-1400°C. Due to the effect of the 

temperature the resin tends to soften initially characterized by strong indentations at the 

loading point and leads to the decrease in the load carrying capacity of the specimen. 

However as the test progresses the resin tends to turn brittle. The ultimate failure takes 

place by cracks on the compression side due to interlaminar shear. 
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Figure 4.10 Load – Deflection diagram for the skin at 150°C 

 

The figure 4.10 shows the load-displacement diagram for the skin specimens tested at 

150°C. The load and displacement varies linearly before the plastic failure of the 

specimen. There is a slight increase in the peak load carrying capacities of the 

specimens 1000 N to just above 1200 N, which is due to the phenomenon of resin 

turning brittle characterized by the surface cracking at the loading point. Although the 

failure is initiated due to the cracks on the compression side of the specimen the brittle 

resin takes little higher load before failing completely due to interlaminar shear. It can 

be observed that the phenomenon of resin softening attributes to the plastic failure in 

this case also. 
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Figure 4.11 Load – Deflection diagram for the skin at 180°C 

 

The figure 4.11 shows the load displacement diagram for the skin specimens tested at 

180°C. The load displacement diagram reveals that the specimens exhibit a completely 

plastic behaviour. It can be observed that there is an increase in the load bearing 

capacities on comparison with the previous graphs with the peak load ranging between 

1400-1600°C. The resin embrittlement is clearly characterized by the cracks on the 

compression side of the specimen. 
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4.4. Failure Modes of the Skin 

The composite skins tested under three point static bending were studied for their 

characteristic failure modes under each temperature range. On observing the specimens 

after the tests it was found that the specimens failed by exhibiting different failure 

modes under each temperature. 

 

4.4.1. Failure Mode at 21°C 

 

 

Figure 4.12 Failure of the specimen at 21°C 
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Figure 4.13 Cracks on the compression side of the specimen at 21°C 

 

 

The figure 4.12 and 4.13 shows the failure mode at room temperature (21°C). From the 

figure it can be found that the specimen at room temperature fails in a brittle manner as 

discussed in the chapter 4. The failure of the specimen is dominated by interlaminar 

shear. The skin specimen brittle failure of the skin specimen is initiated by the cracks on 

the compression side (Top side) of the specimen as indicated in the above figure. 
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4.4.2 Failure Mode at 35°C 

 

 

Figure 4.14 Failure of the specimen at 35°C 

 

 

Figure 4.15 Cracks on the tension side of the skin at 35°C 
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The skin specimens tested at 35°C failed in a brittle manner by developing cracks on 

both the compression and the tension sides of the specimen. The figures 4.14 and 4.15 

shows the failure modes of the specimen tested at 35°C. The ultimate failure of the 

specimen was governed by the interlaminar shear. 

 

4.4.3 Failure Modes at 50°C, 65°C and 80°C. 

 

 

Figure 4.16 Failure of the Specimen at 50°C 

 

 

Figure 4.17 Compression and tension cracks on the specimen at 50°C 
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Figure 4.18 Failure of the specimen at 65°C 

 

 

Figure 4.19 Compression and Tension cracks on the specimen at 65°C 
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Figure 4.20 Failure of the specimen at 80°C 

 

 

Figure 4.21 Compression and Tension cracks on the specimen at 80°C 

 

The specimens tested under 50°C, 65°C and 80°C fails in similar manner with 

variations in their peak strength and Young’s modulus values. The specimens tested 

under this temperature range fail in a brittle manner with the ultimate failure dominated 

by interlaminar shear. However, all the specimens tested at this temperature range fail 

by exhibiting a plastic phase just before the brittle failure which was observed in the 

load-displacement diagrams of the specimens. The plastic phase observed during the 

failure of the specimens is attributed to the phenomenon of the softening of resin as a 

result of exposure to temperature which was observed during the DMA test conducted 
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on the composite skin and the resin core. The phenomenon of the softening of the resin 

is observed in the form of indentations observed on the top surface of the skin 

specimens at the point of loading as shown in the above figures. 

 

4.4.4 Failure modes at 100°C and 120°C 

 

 

Figure 4.22 Failure of the specimen at 100°C 

 

 

Figure 4.23 Compression and tension cracks on the specimen at 100°C 
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Figure 4.24 Failure of the specimen at 120°C 

 

 

Figure 4.25 Compression and Tension cracks on the specimen at 120°C 

 

The failure mode of the specimens tested at 100°C and 120°C ceases to be brittle and 

follows a plastic mode of failure which is observed from the load-displacement 

diagrams of the specimens. The change in the failure mode is due to the effect of the 

elevated temperature on the resin of the composite. Cracking was observed on both the 

tension and the compression sides of the specimens. At temperatures beyond 100°C the 

resin starts to turn brittle as observed in the DMA tests. This phenomenon is attributed 

to the expulsion of the moisture content from the specimen, which was discussed in the 

previous sections. The ultimate failure of the specimen is due to the interlaminar shear 

between the plies. 
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4.4.5 Failure modes at 150°C and 180°C 

 

 

Figure 4.26 Compression cracks on the specimen at 150°C 

 

 

Figure 4.27 Failure of the specimen at 180°C 

 



46 

 

 

Figure 4.28 Failure on the compression side of the specimen at 180°C 

 

The specimens tested at 150°C and 180°C failed in plastic manner as observed from the 

load-deflection diagrams of the specimens. The plastic failure is due to the phenomenon 

of softening of the resin as observed in the previous cases. As discussed earlier, the 

resin turns brittle beyond the glass transition due to the removal of the moisture content 

from the resin. The phenomenon of resin softening was observed in the form of 

indentations at the point of loading and the phenomenon of the resin turning brittle was 

observed in the form of wrinkling of the top layer of the skin as shown in the figure 

4.28. It was also observed that the cracking occurs only on the compression side of the 

specimen unlike the previous cases and the ultimate failure occurs due to interlaminar 

shear as observed in the previous failures. 
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4.5 Behaviour of the Sandwich Panel 

4.5.1 Load-Deflection Relation 

 

 

Figure 4.29 Load-Deflection diagram for the Sandwich Panels at 21°C 

 

The figure 4.29 shows the load-deflection relationship of the sandwich panels tested for 

their flexure at 21°C. The graph showing the load-displacement behaviour of the 

sandwich panel can be divided into two phases namely a linear and a non-linear phase. 

The linear phase is that phase which describes the stiff behaviour of the panel as a 

cohesive unit offering the resistance to the applied load. At the end of this phase a non-

linear behaviour is observed which is due to the formation of the cracks on the 

compression side (top skin). The non-linear phase is that phase where the failure of the 

panel is initiated in the form the compression cracks before the ultimate failure due to 

core shear. From the graph it may be observed that the failure takes place in a brittle 

manner at a peak load range between 8000-11100 N with a mid-span deflection range of 

5-7 mm. 
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Figure 4.30 Load-Deflection diagram for the Sandwich Panels at 35°C 

 

The figure 4.30 shows the load-deflection relationship for the sandwich panel 

specimens tested at 35°C. The load-deflection relation for the sandwich panels tested at 

35°C is presents a very close similarity to the sandwich panels tested at 21°C. The curve 

exhibits a linear and a non-linear phase. The failure of the sandwich panels are initiated 

due to the cracks on the compression side followed by the brittle failure at a peak load 

range of 9000-10100 N and the peak deflection range of 5-7 mm. 

 

 

Figure 4.31 Load-Deflection diagram for the Sandwich Panels at 50°C 
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The figure 4.31 shows the load-deflection relationship for the sandwich panel 

specimens tested at 50°C. The graph representing the load- deflection relationship of the 

sandwich panels may be divided into three phases namely a linear phase, plastic phase 

and failure phase. The linear phase represents the stiffness of the sandwich panel against 

the applied load. In contrast to the previous case where the linear phase is followed by a 

non-linear phase leading to failure of the specimen, the linear phase in this case is 

followed by a small plastic phase due to the effect of the temperature. This plastic phase 

is characterized by very minor indentations formed in the core region of the specimen. 

The plastic phase is followed immediately by the brittle failure of the specimen at a 

peak load range of 9400-11300 N and peak mid-span deflection range of 6-9mm. The 

ultimate failure is caused due to the interlaminar shear forces developed in the core. 

 

 

Figure 4.32 Load-Deflection diagram for the Sandwich Panels at 65°C 

 

The figure 4.32 shows the load-deflection relationship for the sandwich panel 

specimens tested at 65°C. The load - deflection relationship curve is similar to the 

previous curve with three major phases. It may be observed that the curve possess the 

initial linear phase followed by the plastic phase which is more clearly identified in the 

graph followed by another linear phase before the final brittle failure of the specimen. 

The peak load range is 8500-10000 N with mid-span deflection range of 7-8.5 mm. The 

plastic phase exhibited is characterized by the indentations on the core before the brittle 
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failure. The ultimate failure of the specimen is brought about by the interlaminar shear 

forces developed in the core. 

 

 

Figure 4.33 Load-Displacement diagram for the Sandwich Panels at 80°C 

 

The figure 4.33 shows the load – displacement relationship for the sandwich panel 

specimens tested at 80°C. The load – displacement curve can be divided into three 

phases namely the linear, plastic and failure phase. The curve begins with initial linear 

phase followed by the plastic phase. Unlike the previous case, the plastic phase is 

followed immediately by the brittle failure of the specimen with a peak load range of 

7750 – 9200 N and mid-span deflection range of 8.7 – 11.50 mm. The effect of 

temperature is characterised by the indentations formed in the core before the failure 

and in the skin at the point of loading. However the ultimate failure is characterised by 

the interlaminar shear developed in the core of the specimen. 
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Figure 4.34 Load-Deflection diagram for the Sandwich Panels at 100°C 

 

The figure 4.34 shows the load – displacement relationship for the sandwich panel 

specimens tested at 100°C. The curve representing the load – displacement may be 

divided into two phases namely the linear phase followed by the plastic phase. It may be 

observed that the failure of the specimen ceases to be brittle in nature and tends to 

follow a plastic mode of failure. This change in the failure mode followed may be 

attributed to the phenomenon of core softening which is characterized by the appearance 

of major indentations on the core and the indentations formed on the skin directly below 

the point of loading. The failure takes place at a peak load range of 5300 – 6500 N and 

the mid-span deflection range of 10 – 14 mm. The ultimate failure of the specimen takes 

place due to the interlaminar shear forces developed in the core. 
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Figure 4.35 Load – Displacement diagram of the Sandwich Panels at 120°C 

 

The figure 4.35 shows the load – displacement relationship for the sandwich panel 

specimens tested at 120°C. The curve showing the load – displacement relationship for 

the specimens tested at 120°C is divided into two phases similar to the previous curve. 

It can be observed from the graph that the curve follows a more plastic failure mode 

than that exhibited in the previous modes. The effect of temperature is attributed by the 

indentations found on the core as a result of the core softening phenomenon. The 

indentations are visible clearly even after the failure of the specimen due to interlaminar 

core shear. The failure occurs at a peak load range of 3000 – 6050 N and the mid-span 

deflection range of 6.5 – 13.5 mm. 

 

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20

Lo
a

d
 N

 

Displacement mm 



53 

 

 

Figure 4.36 Load-Deflection diagram for the Sandwich Panels at 150°C 

 

The figure 4.36 shows the load – displacement relationship of the sandwich panels 

tested at 150°C. From the graph it may be observed that the curve follows a completely 

plastic mode of failure. This may be attributed to phenomenon of the resin core being 

affected more by the temperature than the composite skins. As the core is exposed to the 

temperature beyond the glass transition temperature (Tg), the resin core starts to 

decompose leading to the plastic failure. The phenomenon of the resin embrittlement 

observed in the skin when exposed to higher temperatures in the earlier tests is also 

clearly observed in case of the specimens tested at 150°C.  A distinct odour of burning 

of the epoxy was observed during the heating of the specimen. The peak load range 

reduces to 2400 – 2800 N and the mid-span deflection range is between 5 - 18 mm. 
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Figure 4.37 Load-Deflection diagram for the Sandwich Panels at 180°C 

 

The figure 4.37 shows the load – deflection relation of the sandwich panels tested at 

180°C.  The phenomenon of the resin decomposition beyond the glass transition 

temperature is clearly visible beyond the linear phase of the curve exhibited in the graph 

before the plastic failure of the specimen. A strong odour marking the burning of the 

epoxy was observed as the specimen was exposed to the elevated temperature of 180°C. 

There is a slight increase in the peak load carrying capacity which lies in the range of 

1900 – 3400 N and the mid span deflection lies in the range of 8 – 13.5 mm. 
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4.6 Failure Modes of the Sandwich Panels 

4.6.1 Failure modes at 21°C and 35°C                 

 

 

Figure 4.38 Failure modes at 21°C and 35°C 

 

 

Figure 4.39 Delamination failures at 21°C and 35°C 

 

The figure 4.38 shows the failure modes of the specimens tested at the temperature 

range of 21°C and35°C. From the figure it is observed that the specimens follow the 

same mode of failure from room temperature and 35°C. The failure is initiated due to 

the cracks developed on the compression side of the specimen followed by the ultimate 

failure due to interlaminar shear developed in the core which results in the breaking of 

the structure. From the figure 4.39, it can also be observed that the failure is 

characterised by the de-bonding between the skin and the core due to the delamination 

of the individual plies of the skin laminate from the core. 
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4.6.2 Failure modes at 50°C, 65°C and 80°C 

 

 

Figure 4.40 Failure modes at 50°C and 65°C 

 

 

Figure 4.41 Delamination failures at 50°C and 65°C 
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Figure 4.42 Failure mode of the specimen at 80°C 

 

 

 

Figure 4.43 Delamination of the plies at 80°C 
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The figure 5.25 to 5.28 shows the failure modes followed by the sandwich panel from 

the temperature range of 50°C 80°C. From the load-displacement diagram of the 

sandwich panels tested from 50°C to 80°C, it was observed that the panels exhibit a 

plastic phase before failing in a brittle manner due to the inter-laminar shear in the core 

of the panel. This plastic phase may be due to the effect of temperature on the resin 

which is observed in the form of indentations in the top skin of the panel at the point of 

loading which is indicated in the figure 4.42. It is also observed that the de-bonding 

between the skin and the core occurs due to the delamination of the individual plies of 

the skin which is similar to the failure modes observe in the previous temperature range. 

 

4.6.3. Failure Modes at 100°C and 120°C 

 

 

Figure 4.44 Failure mode of the specimen at 100°C 
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Figure 4.45 Failure mode of the specimen at 120°C 

 

 

 

Figure 4.46 Delamination of the core at 100°C and 120°C 

 

The figures 4.44, 4.45and 4.46 show the failure modes of the sandwich panel specimens 

at 100°C and 120°C. From the load-displacement diagrams of the specimens tested at 

10°C and 120°C, it was found that the failure beyond 100°C ceases to be brittle and 

follows a plastic mode of failure. This plastic mode of failure may be attributed to the 
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phenomenon of core softening which is observed in the top skin as well as the resin core 

of the sandwich panels in the form of indentations as shown in the figures 4.44 and 

4.45. From the figure 4.46 it can be observed that the de-bonding of the skin and the 

core takes place due to delamination of the core with the skin remaining intact which is 

also due to the phenomenon of core softening at higher temperature. The ultimate 

failure takes place by the interlaminar shear failure of the core. 

 

4.6.4 Failure modes of the sandwich panel at 150°C and 180°C 

 

 

Figure 4.47 Failure of the specimen at 150°C 
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Figure 4.48 Failure of the specimen at 180°C 

 

 

 

 

 
 

Figure 4.49 Delamination of the core at 150°C and 180°C 

 

The figures 4.47 and 4.48 show the failure modes of the sandwich panel specimens at 

150°C and 180°C. From the load displacement diagram of the sandwich panels it was 

observed that the specimens exhibit plastic mode of failure which attributed to the 

phenomenon of core softening as an effect of temperature. The phenomenon of the core 

softening is characterized by indentations as shown in the figures 4.47 and 4.48. At 

temperatures beyond the glass transition temperature the resin turns brittle which is 

characterized by the wrinkling of the top skin at the point of loading. The de-bonding of 
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the skin and the core takes place due to the delamination of the core from the skin as a 

result of core softening which is observed beyond 100°C. Similar to the other failure 

modes, the ultimate failure of the specimen takes place due to the interlaminar shear at 

the resin core of the sandwich panel. 

 

4.7. Summary 

In this section the various results and the observations made during the testing of the 

skin and the sandwich panel specimens was discussed in detail. The results observed 

from the Dynamic Mechanical Analysis of the skin and core reveal the behaviour of the 

composite skin and the resin core under elevated temperatures and the glass transition 

temperature of the skin and the core were identified as 125.06°C and 136.11°C 

respectively. The load-deflection diagrams obtained from the testing of the skin and the 

sandwich panels were explained in detail in order to identify the behaviour of the 

sandwich panels under elevated temperature. Finally the various failure modes observed 

under each temperature range was discussed in detail in order to understand the ultimate 

failure behaviour exhibited by the skin and the sandwich panel specimens. 
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Chapter 5 – Discussion 

5.1. Mechanical Properties of the skin and core under Dynamic 

Mechanical Analysis (DMA) 

The composite skin and the resin core exhibit the glassy, leathery and the transition 

from glassy to leathery state which explains the similar behaviour observed in the 

phases 1 and 2 from the results of the DMA test on the skin and the coreA similar 

observation in the behaviour of the composite and the resin was observed by Lauobi et 

al (2014) from the DMA results of E-glass fibre reinforced with unsaturated polyester. 

The results from the study made on E-glass fibre indicates that for the composites at 

temperatures lower than 60°C, a slow decrease in storage modulus (E’) is observed in 

the phase 1 followed by the steep decrease in the storage modulus from temperature 

range of 60°C to Tg of around 81°C for the composite and temperatures less than Tg of 

64°C for the resin which is observed in phase 2. The phase 1 which is specific to the 

composite as observed by Lauobi et al is absent for the composite skin tested in this 

study. Bai and Keller (2009) also observed a similar trend in the DMA curve of GRPF 

laminates with polyester resin, where the storage modulus continuously decreased until 

the glass transition temperature of 155°C for the composite. However, beyond the glass 

transition temperature (Tg), the composite skin under studied in this research exhibits 

the transition from the leathery to rubbery state where the polymeric chains tends to 

towards an entangled molecular structure with broken secondary bonds and intact 

primary bonds. This behaviour is characterized by the decrease in the Tan delta or the 

loss factor curve observed in the graph. On the other hand, the resin core exhibits a 

decomposition phase which is characterized by broken primary and secondary bods. 

This behaviour is observed as the irregularity in the graph beyond the glass transition 

temperature (Tg) in the tan delta curve. This behaviour of the composite skin and the 

resin core beyond the glass transition temperature is in contrast to the results observed 

from the DMA results of the previous studies conducted on composites and resins. It 

was also observed that the composites used in the previous studies are made of 

polyester resin unlike the phenol-formaldehyde resin which was used in this research. 

From the DMA analysis of the skin it was observed that the resin oozes out from the 

skin composite as shown in the figure 5.1. This phenomenon of the resin oozing out 

from the composite is caused as a result of the melting of the resin at higher 

temperature. It was also observed that the resin turns brittle the specimen is subjected to 
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the effect of elevated temperatures beyond 100°C.According to Lauobi et al (2014), the 

moisture content of the specimen is removed in the form of evaporation at 200°C. This 

phenomenon of resin turning brittle beyond 100°C may be attributed to this effect where 

the moisture content is removed from the specimen as the temperature raises. 

 

 

Figure 5.1 Skin Specimens before and after DMA 

 

 

 

Figure 5.2 DMA result of the skin 
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5.2. Load – Displacement Diagram of the Skin under Three Point 

Bending Test 

 

 

Figure 5.3 Load – Displacement diagram of the skin specimen at different Temperatures 

 

The figure shows the load - displacement diagram of the composite skin specimens 

tested for their flexure under the influence of elevated temperature. From the figure 5.3 

it can be observed that the behaviour of the composite skin is influenced by the effect of 

temperature under the three point bending test. The figure reveals three different phases 

that can be observed in the above graph namely the linear phase, non-linear phase and 

the failure phase which is either brittle or plastic. A similar observation was made by 

Laoubi et al (2014), when E-glass fibres with unsaturated polyesters were studied for 

the thermal behaviour where the specimens exhibited a linear and non-linear phase at 

different temperatures.The linear phase indicates the stiffness of the laminate which 

fails ultimately by brittle failure dominated by the interlaminar shear between the 

individual plies of the laminate. The linear phase is observed in the initial stages in all 

the specimens at all temperature ranges for the specimens studied in this research. The 

specimens tested under room temperature and 35°C exhibit a linear phase followed by 

the brittle failure of the specimen. The non-linear phase or the plastic phase indicates 

the phenomenon of the resin becoming soft as a result of the effect of elevated 

temperature. This non-linear phase is observed just after the linear phase in the 
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specimens tested from 50°C to 80°C. Until the temperature of 80°C the specimen fails 

in a brittle manner. Beyond 80°C the specimen failure of the specimen ceases to be 

brittle and follows a plastic mode which is a clear indication of the phenomenon of the 

resin softening. Similar observation of the failure modes of composites at elevated 

temperature was made by Wong and Wang (2004), where the composite specimens 

failed by crushing with a loud bang at temperatures below 90°C and beyond 90°C the 

specimens failed as a result of softening of the resin and by Li et al (2012), for the three 

point bending test of E-glass/epoxy braided composites tested for the effect of 

temperature on the bending properties and failure mechanisms where the composites 

failed in a brittle manner until 75°C and from 100°C the specimens failed in a plastic 

manner due to resin softening. A characteristic dis-coloration of the specimen is 

observed from 80°C. The specimens exhibit a pale pink colour at 80°C and 100°C and 

at 120°C to 150°C the specimens exhibit a yellow shade at the edges. At 180°C the 

specimens exhibit a brown shade indicating the effect of temperature on the physical 

properties of the specimen.According to Alsayed et al (2012), the change in the colour 

of the specimens is attributed to the decomposition of the polymer matrix and is 

proportional to the exposure temperature and exposure periods. According to Wong and 

Wang (2009), the brown colour is believed to be carbon, which indicates the beginning 

of the decomposition of the resin. 
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5.3. Load – Displacement Diagram of the Sandwich Panel under Three 

Point Bending Test 

 

 

Figure 5.4 Load – Deflection diagram of Sandwich Panel specimen at different temperatures 

 

The figure 5.4 shows the load – deflection diagram of the sandwich panel specimens 

tested for their flexure at elevated temperature. The specimens tested for their behaviour 

under three point bending test exhibited three different phases namely the linear phase, 

non-linear phase and the failure phase similar to the skin specimens discussed in the 

previous section. The sandwich panel specimens tested under room temperature and 

35°C exhibit a linear phase followed by a very small non-linear phase which indicates 

the failure of the specimen being initiated by the formation of cracks on the 

compression side of the specimen.The non-linear phase is followed by the brittle failure 

of the specimen. The specimens tested under the temperature range of 50°C to 80°C 

exhibit a linear phase which is followed by a non-linear phase or the plastic phase which 

indicates the phenomenon of the resin core softening as a result of the effect of 

temperature on the sandwich panel. At temperatures beyond 80°C the linear phase is 

followed by a plastic phase and the failure of the sandwich panel ceases to brittle in 

nature by failing in a plastic manner attributed to the softening of the resin core. At the 

temperature of 150°C and 180°C the linear phase is immediately followed by the plastic 

failure indicating the failure of the core beyond the glass transition temperature of the 

resin which was found as 136.11°C from the DMA. The behaviour of the sandwich 
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panel is governed by the composite skin at lower temperature range of 21°C to 80°C 

and from 100°C to 180°C the behaviour of the sandwich panel is governed by the resin 

core than the skin. The ultimate failure of all specimens is dominated by the 

interlaminar shear of the core. The specimens exhibit a characteristic discoloration and a 

distinct odour at 150°C and 180°C. According to Liu et al (2013), the discolouration is 

attributed to the thermal-oxidation occurring at the surface of the epoxy resin and the 

exposure to high temperature had an important effect on the failure modes of the 

sandwich panel as observed in this study also. A similar odour of the burning of the 

resin was observed beyond 150°C by Liu et al (2013), which is attributed to some 

decomposition of the polymer matrix when exposed to elevated temperature. 

 

5.4. Effect of Elevated Temperature on the Strength of the Skin 

 

 

Figure 5.5 Strength Vs Temperature of the skin 

 

The figure 5.5 shows the variation of the strength properties of the skin with 

temperature. From 21°C to 120°C the strength of the skin specimen shows a steady 

decrease with the increase in the temperature. According to Wong and Wang (2009), 

this steady decrease in the strength is attributed to the effect of temperature on the resin 

of the composite. As the temperature increases the resin softens leading to the decrease 

in the strength of the specimen. As the temperature progresses beyond the glass 
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transition temperature the effect temperature leads to the expulsion of the moisture from 

the resin, thereby rendering it brittle. As the resin turns brittle it results in the significant 

increase in the strength of the panel before the failure of the specimen. 

 

5.5. Effect of Elevated Temperature on the Modulus of the Skin 
 

 

 

Figure 5.6 Modulus Vs Temperature of the skin 

 

The figure 5.6 shows the variation of the Young’s modulus of the composite skin with 

the temperature. From the figure it is observed that the modulus of the skin is not 

greatly influenced by the effect of temperature until 80°C as the modulus varies steadily 

with the temperature. A drop in the modulus of the skin is observed at 100°C and 120°C 

followed by the consequent increase in the values of the modulus beyond 180°C. As the 

temperature progresses towards the glass transition temperature the viscosity of the 

specimen increases leading to the sudden change in the modulus known as the leathery 

state. However, beyond the glass transition temperature, the specimen enters the 

transition from the leathery to the rubbery state during which the viscosity of the 

specimen decreases leading to the increase in the modulus of the specimen as discussed 

in the section 5.1. A similar change of states of the composite was observed by Bai and 

Kellar (2009), from the DMA results of FRP composites. However, the trend of the 
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Young’s modulus composites obtained from the results of this study contrast the 

observations made by Gudlur et al (2012), where the Young’s Modulus of the Al/Al2O3 

composite decreases steadily with increase in temperature. 

 

5.6. Effect of Elevated Temperature on the Strength of the Sandwich 

Panel 

 

 

Figure 5.7 Strength Vs Temperature of the Sandwich Panel 

 

The figure 5.7 shows the variation of the strength of the sandwich panels with 

temperature. From the graph it may be observed that strength of the sandwich panel 

shows a slight increase in the strength until 50°C before showing a steady decrease in 

the peak strength until 150°C and finally shows a slight increase in strength at 180°C. 

Although the strength of the composite skin tested under three point bending test shows 

a steady decrease in strength on exposure to the increasing temperature which was 

discussed in the previous sections, the strength of the sandwich panel shows a slight 

increase in its strength until 50°C which may be attributed to the increased stiffness of 

the sandwich panel. When the temperature is increased a fall in the strength of the 

sandwich panel is observed which is attributed to the effect of the temperature on the 

resin core. The effect of temperature on the core is observed in form of minor 

indentations on the top skin and the core of the sandwich panel before the brittle failure 
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of the specimen. When the temperature of the sandwich panels reaches 100°C and 

progresses towards the glass transition temperature, a rapid fall in strength is observed 

before the plastic failure of the specimen. The phenomenon of core softening due to the 

effect of temperature was observed which was characterised by strong indentations in 

the top skin at the point of loading and in the core. As the temperature increases beyond 

the glass transition temperature and reaches 150°C, a further decrease in the strength of 

the sandwich panel is observed which is attributed to the effect of core softening 

followed by the phenomenon of resin turning brittle which results in the wrinkling of 

the surface of the top skin of the sandwich panel. As the temperature reaches 180°C, the 

core softens initially which is characterised by indentations, followed by the 

phenomenon of the resin turning brittle as observed during the DMA tests which leads 

to the slight increase in the strength of the sandwich panel. The trend of the variation of 

the strength properties with temperature observed in this study is in contrast to the 

observations made by Liu et al (2013), as the strength of the carbon sandwich panels 

steadily decreases with the increase in the temperature. 

 

5.7. Effect of Elevated Temperature on the Modulus of the Sandwich 

Panel 

 

 

Figure 5.8 Modulus Vs Temperature of the Sandwich Panels 
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The figure 5.8 shows the variation of the Young’s modulus of the specimen with 

temperature. It is found that the Young’s modulus of the specimen decreases steadily 

with the increase in temperature until 120°C followed by a rapid decrease in the 

modulus of the specimen beyond the glass transition temperatures of the skin and the 

core. The steady decrease in the modulus of the sandwich panel may be attributed to the 

effect of temperature on the resin core as the trend followed by the Young’s modulus 

curve is similar to that of the Storage modulus curve observed during the DMA test of 

the core. The rapid drop in the modulus beyond the glass transition temperature may be 

attributed to the decomposition of the core which was characterised by the irregularity 

observed in the results of the DMA analysis of the core. Hence, based on the results and 

the observations made it is found that the Young’s Modulus of the sandwich panel is 

influenced by the behaviour of the resin core under elevated temperature. According to 

Liu et al the viscosity of the polymer matrix increases with exposure to temperature 

resulting in the decrease in the young’s modulus of the specimens which indicates that 

the resin is susceptible to the elevated temperature. 

 

5.8. Summary 

The flexural behaviour of the skin and the sandwich panel has been examined through 

the experimental analysis. The primary cause of the failure of the skin material at room 

temperature is found to be due to the compressive cracks developed at the point of 

loading. When the skin is subjected to a raise in temperature range of 35°C to 80°C, it is 

observed that the failure is initiated by the cracks developed on both the compression 

and the tension side of the specimen before failing due to inter-laminar shear between 

the individual plies of the skin. At the temperature of 100°C and 120°C the resin starts 

to soften before failing due to the formation of cracks and inter laminar shear between 

the plies. Finally at 150°C and 180°C the resin starts to decompose as it is exposed to 

temperatures beyond the glass transition temperature (Tg). This leads to the 

phenomenon of the resin turning brittle due to the removal of the moisture content from 

the specimen.  

 

The results from the sandwich panel reveal that the panels fail under room temperature 

due to the compressive failure of the skin which is closely followed by the inter-laminar 
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shear in the core and finally the de-bonding of the skin and the core materials. This 

mode of failure is observed at almost all temperatures. At 80°C a plastic phase is 

observed before the specimen fails in a brittle manner. The skin bends and cracks before 

the break failure of the specimen. It is observed that the failure takes place by the de-

bonding of the skin which is characterized by the de-lamination between the individual 

plies of the skin.  At 100°C the failure ceases to be brittle and the specimen tends to 

follow a plastic mode of failure. The change in the failure mode may be due to the 

phenomenon of core softening where the core yields characterized by indentations. The 

specimen bends and the failure is initiated at the tension side (bottom skin). A steep 

decrease in the strength is observed while the flexural modulus remains relatively the 

same. It is observed that the de-bonding of the skin and core takes place due to core 

delamination. At 120°C the failure is more plastic which is attributed to the softening of 

the core. The effect of core softening is characterised by major indentations on the core 

during the process of loading. The softening of the resin is also observed at the point of 

loading in the form of indentations along with cracks on the compression side. At 150°C 

the specimen fails primarily due to the decomposition of the core as the specimen is 

exposed to temperatures beyond the glass transition (Tg). As a result of this the 

moisture content in core is removed which leads to the phenomenon of the resin turning 

brittle which is observed in both the skin and the core. The failure is characterised by 

major indentations at the loading point. There is a drop in the value of the flexural 

modulus and the peak strength. At 180°C the phenomenon of the resin decomposition is 

clearly characterized by the formation of cracking of the top surface of the skin just 

below the loading point which is similar to the result observed during the testing of the 

skin material under ambient temperature conditions 
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Chapter 6 – Theoretical prediction of composite 

sandwich behaviour at elevated temperature 

6.1. Introduction 

This chapter will explain the assumptions made during the numerical analysis of the 

sandwich panels. The process adopted to develop the empirical equation describing the 

flexural behaviour of the sandwich panels under elevated temperature are also explained 

in this section. Finally a comparison of the experimental and the theoretical results is 

presented in this section. 

 

6.2. Assumptions made for the Theoretical Prediction Equation 

The numerical analysis of the sandwich panel is done based on the Simple Bending 

Theory or the Theory of flexure. The following assumptions are made for the purpose of 

numerical analysis of the sandwich panels under elevated temperature: 

 Beam is initially straight, and has a constant cross-section. 

 Beam is made of homogeneous material and the beam has a longitudinal 

plane of symmetry. 

 Resultant of the applied loads lies in the plane of symmetry. 

 The geometry of the overall member is such that bending not buckling is the 

primary cause of failure. 

 Elastic limit is nowhere exceeded and ‘E' is same in tension and compression. 

 Plane cross - sections remains plane before and after bending. 

 

6.3. Prediction of the Strength and the Modulus of the Skin and the 

Core of the Sandwich Panel 

The prediction equations were calculated from the normalised curves using Microsoft 

Excel using the Trend line option which calculates the equation using the process of 

arithmetic regression. Normalisation of data was carried out by dividing the values of 

the strength and modulus at each temperature by the values obtained at ambient 

temperature. A comparison was made between the different equations types such as the 

exponential, linear, logarithmic and polynomial equations of various degrees. The best 
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fit curve was selected based on the R
2
 value of the equation. The R

2
 value denotes the 

how closely the developed equation fits the experimental data. In other words it denotes 

the accuracy of the predicted equation. 

 

6.3.1. Prediction Equation for the Flexural Modulus of the skin 

 

 

Figure 6.1 Prediction Equation for the Modulus of the skin 

 

The equations predicting the flexural modulus of the skin was obtained from the 

normalised values of the average flexural modulus obtained from the three point 

bending test under each temperature range.The prediction equation for the modulus of 

the skin of the sandwich panel is developed as a 3 degree polynomial equation as it was 

found as the best fit to the experimental values. Further the other forms of equations 

were found to have an R
2
 value of less than 0.5.The equation predicting the flexural 

modulus of the skin of the sandwich panel is obtained from the above graph as 

Es = 4E-07T
3
 - 0.0001T

2
 + 0.0074T + 0.887 

Where, 

Es = 4E-07T3 - 0.0001T2 + 0.0074T + 0.887 

R² = 0.9231 
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Es = Young’s Modulus of the Skin 

T = Temperature in °C 

 

6.3.2. Prediction Equation for the Flexural Strength of the Skin 

 

 

Figure 6.2 Prediction Equation for the Strength of the Skin 

 

The strength of the skin was obtained from the normalised values of the average flexural 

strength obtained from the results of the three point bending test under elevated 

temperature. The prediction equation for the strength of the skin of the sandwich panel 

is computes as logarithmic equation with an R
2
 value of 0.88. On comparing with the 

other equation types it was found that the logarithmic equation and a polynomial 

equation of 2 degree provided the best fit. Hence for the purpose of simplicity a 

logarithmic equation predicting the flexural strength of the skin of the sandwich panel is 

obtained from the above graph as 

σs = 4E-07T
3
 - 7E-05T

2
 - 0.0029T + 1.1116 

Where, 

σs = Flexural Strength of the Skin 

y = -0.313ln(x) + 2.0121 

R² = 0.8822 
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T = Temperature in °C 

 

6.3.3. Prediction Equation for the Flexural Strength and Flexural Modulus of the 

Core 

 

 

Figure 6.3 Prediction Equation for the Modulus of the Core 

 

 

Figure 6.4 Prediction Equation for the Strength of the Core 
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The equations predicting the flexural strength and the modulus of the core were 

obtained from the normalised values of the Storage modulus obtained from the DMA of 

the core. This procedure was adopted to ensure that the strength and the modulus of the 

core followed the same trend under elevated temperature.On comparing with the other 

types of equations the polynomial equation was selected as the best fit for the curve 

with an R
2
 value of 0.99. A fourth degree polynomial with very high precision was 

selected in order to account for the values under 0.1.  

 Hence, the equation predicting the flexural modulus and the flexural strength of the 

core of the sandwich panel under elevated temperature is obtained from the above graph 

as 

Ec = 0.000000002978T
4
 - 0.000000448512T

3
 - 0.000078426603T

2
 + 0.006694923752T 

+ 0.861599599652 

σc= 0.000000002978T
4
 - 0.000000448512T

3
 - 0.000078426603T

2
 + 0.006694923752T 

+ 0.861599599652 

Where, 

Ec= Young’s Modulus of the Core 

σc= Flexural Strength of the Core 

T = Temperature in °C 

 

6.4. Empirical Equations 

The empirical equation predicting the behaviour of the sandwich panels is obtained 

from the following procedure: 

 

6.4.1. Prediction of the Theoretical Young’s Modulus (Esw) 

The results obtained from the Dynamic Mechanical Analysis and the flexure test of the 

skin is normalised to capture the trends of the curves depicting its behaviour at elevated 

temperatures. The normalisation was carried out by dividing each value of the flexural 

modules of the skin specimens obtained by the three point bending test at each 
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temperature by the flexural modulus of the skin specimen obtained by three point 

bending test at room temperature. Similarly the DMA results of the skin were 

normalised by dividing the values of the storage modulus (E’) at each temperature by 

the storage modulus obtained by DMA at the first temperature. On comparing the 

normalised curves with each other it was found that the curves followed the same trend 

as shown in the figure 6.5 

 

 

Figure 6.5 Normalised data of the skin 

 

 

In order to obtain the trend of the DMA results of the core the values are normalised. 

The normalisation was carried out using the same procedure adopted for the skin 

specimens. The values of the storage modulus (E’) obtained by DMA at each 

temperature was divided by the first value of the storage modulus in order to capture the 

trend of the normalised curve. The values of the flexural modulus of the sandwich panel 

obtained through the three point bending test are also normalised to capture the 

behaviour of the sandwich panel.  

The stiffness of the sandwich panel is given by the relation: 

Eswx Isw = 2 x Es x Is + Ec x Ic 

Where, 
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Esw– Young’s Modulus of the sandwich panel at each temperature 

Es – Young’s modulus of the composite skin at each temperature 

Ec – Young’s modulus of the resin core at each temperature 

Isw – Moment of Inertia of the sandwich panel 

Is – Moment of Inertia of the composite skin 

Ic – Moment of Inertia of the resin core 

Hence the Theoretical Flexural Modulus is calculated as: 

Esw= (2EsIs + Ec x Ic) / Isw 

 

 

Figure 6.6 Dimensions of the Sandwich Panel 

 

The flexural modulus of the skin obtained for each temperature from the three point 

bending test and the flexural modulus of the core calculated from the normalised curve 

using the modulus of the core at ambient temperature is incorporated in the above 

equation to obtain the flexural modulus of the sandwich panel at each temperature 

range. 

 

6.4.2. Prediction of the Strength of the Skin and the Core 

The flexural strength of the sandwich panel is given by the relation: 
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σ = M y/ I 

Hence the theoretical strength of the skin and the core is calculated using the relation: 

σs=(MyEs)/ (EI)sw 

σc = (MyEc)/ (EI)sw 

(EI)sw = 2 * [Es * (b*(ts^3))/12 + (b*ts*(d^2))/4] + Ec*b*(d^3)/12 

Where, 

σs – Strength of the skin of the sandwich panel 

σc– Strength of the resin core of the sandwich panel 

M – Maximum bending moment of the sandwich panel 

y – Distance from the neutral axis 

Es – Young’s modulus of the composite skin at each temperature 

Ec – Young’s modulus of the resin core at each temperature 

(EI)sw – Effective equivalent stiffness of the sandwich panel 

b – Width of the sandwich panel 

ts – Thickness of the skin 

d – ts+ tc 

 

6.5. Comparison of the Results 

The results obtained from the theoretical prediction equation are compared with the 

experimental results in order to validate the prediction equation. 
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6.5.1. Comparison of the Theoretical Modulus with the Experimental Modulus 

 

 

Figure 6.7 Comparison of the theoretical and experimental modulus of the skin 

 

The figure 6.7 shows the comparison of the flexural modulus of the sandwich panel 

obtained by the empirical prediction equation and the experimental results obtained 

from the three point bending test. From the figure it is observed that the theoretical 

results obtained from the empirical equation correlate with the experimental results until 

the 120°C and beyond the glass transition temperature it is observed that the results do 

not correlate with the experimental results. This difference in the results may be 

attributed to the hypothesis of the partial loss in the composite action of the sandwich 

panel where the top and the bottom skins and the core behave as if they are not bonded 

with each other. Based on this hypothesis the partial interaction factors at 150°C and 

180°C is calculated as 1.30 and 2.31 respectively. 
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6.5.2. Comparison of the Theoretical Strength of the Skin and the Core of the 

Sandwich Panel with the Experimental Strength 

 

 

Figure 6.8 Comparison of the theoretical strength and experimental strengths of the skin 

 

The figure 6.8 shows the comparison of the flexural strength of the skin of the sandwich 

panel that was obtained from the prediction equation and the three point static bending 

test. From the figure it can be observed that the flexural strength of the skin obtained by 

the experimental tests and the flexural strength obtained from the theoretical prediction 

equation follow the same trend with variations in their values. From this it was found 

that the theoretical prediction equation is able to predict the behaviour of the skin of the 

sandwich panel under elevated temperature. 
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Figure 6.9 Comparison of the theoretical and Experimental Strengths of the Core 

 

 

The figure 6.9 shows the comparison of the flexural strength of the core of the sandwich 

panel obtained from the prediction equation and the flexural strength obtained from the 

normalisation of the values. From the figures it can be observed that the flexural 

strength obtained from the prediction equation and the values obtained from the 

normalisation of the graph follow the same trend as observed in the of the skin of the 

sandwich panel in the previous case. 

The variation in the theoretical and the experimental strength at temperatures may be 

attributed to the value of the Young’s Modulus value that is applied to calculation of the 

strength from the prediction equation. The theoretical strength of the skin and the core 

of the sandwich panel are calculated from the relations, 

σs=(M x y x Es)/ (EI)sw 

σc = (M x y x Ec)/ (EI)sw 

respectivelyas discussed in the section 6.3.2 of the chapter 6. The Young’s modulus of 

the skin is obtained from the linear portion of the load – displacement graph rather and 

not from the peak, while the moment (M) of the sandwich panel is obtained from the 

peak load. Further, the values of the Young’s modulus used in the above prediction 

equation to incorporate the effects of temperature are the average values of the flexural 

modulus obtained for the each temperature of the skin and the core with might 

significantly contribute to the variation of the result obtained. 
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6.6. Summary 

The development of the empirical equation predicting the behaviour of the sandwich 

panels under elevated temperature was discussed in this chapter. The various 

assumptions made for the purpose of developing the prediction equations was also 

briefly discussed in this chapter. The methods adopted to develop the prediction 

equations for the skin and the core were under elevated temperature was also outlined 

clearly. Finally a comparison of the results obtained from the experimental study and 

the empirical equations were compared. 
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Chapter 7 – Conclusion and Recommendation 

7.1. Conclusion 

This project has studied the effect of elevated temperature on the flexural strength and 

the modulus of the sandwich panel under elevated temperature. The CarbonLOC
®
 

sandwich panels incorporate the use of novel phenolic core which is manufactured 

primarily for structural applications. The test specimens were manufactured by 

CarbonLOC Pvt Ltd in the manufacturing facility located at the University of Southern 

Queensland. The flexural behaviour of the sandwich panels under elevated temperature 

was determined by three point static bending tests. The mechanical properties of the 

constituent materials under elevated temperature were determined by Dynamic 

Mechanical Analysis (DMA) of the skin and the core. The results from the experimental 

results were used to develop an empirical equation predicting the behaviour of the 

sandwich panels under elevated temperature. The results of the empirical equation were 

compared with the obtained experimental results to validate the equations developed. 

Based on the results of this investigation, the following conclusions were drawn: 

 The DMA revealed that the glass transition temperature of the skin and the core 

was 125°C and 136°C, respectively. Further the variation of the storage modulus 

with the temperature was also obtained for the skin and the core which indicates 

the behaviour of the constituent materials of the sandwich panel under elevated 

temperature. Beyond the glass transition temperature the resin oozed out from 

the skin specimen as a result of resin softening and the resin turned brittle which 

is due to the expulsion of the moisture from the specimen. 

 From the results of the bending test it was observed that the strength of the skin 

laminate decreased steadily with the increase in temperature until 120°C. The 

steady decrease in the strength of the skin was attributed to the effect of 

temperature on the resin of the composite. Beyond 120°C, the strength of the 

skin showed a significant increase which is attributed to the phenomenon of the 

resin turning brittle due to the expulsion of the moisture from the specimen as 

observed in the DMA. 

 The strength of the sandwich panel showed a slight increase in the strength of 

the sandwich panel until 50°C which is attributed to the stiffness of the sandwich 
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panel, followed by a steady decrease in the strength until 100°C. The steady 

decrease in the strength of the sandwich panel is attributed to the phenomenon of 

resin softening which is a result of the effect of elevated temperature on the resin 

core of the sandwich panel. From 120°C there is a steep decrease in the strength 

of the sandwich panel which is attributed to the failure of the resin beyond the 

glass transition temperature. At 180°C, a slight increase in the strength of the 

sandwich panel is observed which is attributed to the phenomenon of the resin in 

the composite skin becoming brittle. 

 The effect of temperature on the Young’s Modulus of the sandwich panel was 

observed from the three point bending test conducted on the composite skin 

specimens. It was found that the modulus of the skin was not greatly influenced 

by the temperature until 80°C. From 100°C a steep decrease in the modulus of 

the skin is observed which is attributed to the increase in the viscosity of the 

specimen as the temperature progresses towards the glass transition temperature 

and the specimen enters the leathery state from the glassy state. From 120°C, the 

modulus tends to increase which is attributed to the decrease in the viscosity as 

it enters the rubbery state from the leathery state. 

 The Young’s modulus of the sandwich panel was observed from the three point 

bending test conducted under elevated temperature. The test revealed that the 

modulus of the sandwich panels steadily decreased until 120°C attributed to the 

effect of the temperature on the resin core. A sudden decrease in the modulus is 

observed at 150°C and180°C, which is attributed to the phenomenon of the 

decomposition of the resin core which is indicated in the form of irregularities in 

the DMA curve of the core. 

 The composite skin specimens exhibited failure modes which vary with 

temperature. The skin specimens tested under room temperature failed in a 

brittle manner by developing cracks on the compression side (top surface) of the 

specimen. The specimen tested at 35°C too failed in a brittle manner but the 

specimens developed cracks on both the compression and the tension side. The 

specimens tested at 50°C, 65°C and 80°C failed in a brittle manner but the 

specimens exhibited a plastic phase just before failing in a brittle manner which 

is attributed to the effect of temperature on the resin. This is characterised by 

minor indentation bat the point of loading. At 100°C and 120°C, the failure of 

the skin specimens ceases to be brittle and fails in a more plastic manner. This 

behaviour is attributed to the phenomenon of resin softening under elevated 
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temperature. At 150°Cand 180°C, the skin specimens fail in a completely plastic 

manner which is attributed to the phenomenon of the resin softening which was 

observed in the previous cases. At 150°C and 180°C the cracks were observed 

only on the compression side of the specimen. The ultimate failure occurred due 

to the interlaminar shear between the plies of the skin laminate. 

 The sandwich panel specimens tested at room temperature and 35°C failed in a 

brittle manner with the failure dominated by the interlaminar shear of the core. 

The specimens tested at 50°C, 65°C and 80°C exhibited a plastic phase before 

failing in a brittle manner. The plastic phase exhibited by the sandwich panels is 

attributed to the effect of temperature on the resin core of the panel which is 

characterised by minor indentations on the core and on the top skin below the 

point of loading. Until 80°C, the skin de-bonds from the core due to the 

delamination of the individual plies of the skin. The specimens tested at 100°C 

and 120°C fail in a completely plastic manner which is attributed to the 

phenomenon of resin softening which is characterised by strong indentations on 

the top skin and the core at the point of loading. At 150°C and 180°C, the 

specimens fail in a completely plastic manner similar to the previous case. The 

phenomenon of resin softening is characterised by strong indentation on the core 

and the phenomenon of the resin turning brittle is observed in the top skin of the 

specimen. From 100°C the de-bonding of the skin and the core takes place due 

to the delamination of the core from the skin while the skin laminate stays intact.  

 The theoretical equation predicting the flexural behaviour of the sandwich panel 

under elevated temperature was developed based on the principles of pure 

bending theory. The modulus of the sandwich panel was calculated from the 

empirical equation incorporating the effects of elevated temperature. The results 

from the prediction equation were compared with the experimental results. On 

comparison it was found that there is a partial loss in the composite behaviour of 

the sandwich panel at temperatures beyond the glass transition temperature 

136.11°C. The strength of the skin and the core of the sandwich panel were 

calculated from the empirical equation and the results were compared to the 

experimental results. On comparison it was found that strength of the skin and 

the core of the sandwich panels correlated well with experimental results.  
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7.2. Recommendations for Future Work 

The results of the experimental and numerical analysis of the sandwich panels under 

elevated temperature reveal that the strength and the stiffness of the sandwich panels 

vary with the increase in the temperature. On comparing the theoretical results with the 

experimental results of the flexural modulus it was found that there is a partial loss in 

the composite action of the sandwich panel. This hypothesis could be subjected to 

further investigation in order to analyse the behaviour of the sandwich panels. Finally 

the finite element analysis of the sandwich panels is to be done in order to analyse the 

behaviour of the sandwich panels under elevated temperature by comparing them 

against the experimental results observed. 

In some situation, only one side of the sandwich panel is subjected to the effect of 

elevated temperature. Although this scenario can be predicted through the empirical 

equation developed in this research, further investigation may be made in order to 

account for the exact temperature to which the resin core and the top and the bottom 

skins are subjected to.    
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Appendix B 

Appendix B1 Dynamic Mechanical Analysis of the Skin 
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Appendix B2 Dynamic Mechanical Analysis of the Core 
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Appendix B3 Dimensions of the Skin Specimens 

Specimen Results: 

Specime

n # 

Thickne

ss 1 

mm 

Thickne

ss 2  

mm 

Thickne

ss 3 

mm 

Width 1 

mm 

Width 2 

mm 

Width 3 

mm 

Average 

Width 

mm 

Average 

Thickne

ss 

mm 

1 5.22    5.22    5.22    51.54    51.54    51.54    51.54    5.22    

2 4.85    4.85    4.85    51.78    51.78    51.78    51.78    4.85    

3 5.06    5.06    5.06    51.19    51.19    51.19    51.19    5.06    

4 5.21    5.21    5.21    51.67    51.67    51.67    51.67    5.21    

5 5.09    5.09    5.09    51.38    51.38    51.38    51.38    5.09    

6 5.24    5.24    5.24    51.63    51.63    51.63    51.63    5.24    

7 4.72    4.72    4.72    51.41    51.41    51.41    51.41    4.72    

8 4.71    4.71    4.71    51.78    51.78    51.78    51.78    4.71    

9 4.72    4.72    4.72    51.47    51.47    51.47    51.47    4.72    

10 5.04    5.04    5.04    51.77    51.77    51.77    51.77    5.04    

11 4.67    4.67    4.67    50.10    50.10    50.10    50.10    4.67    

12 5.20    5.20    5.20    51.68    51.68    51.68    51.68    5.20    

13 5.09    5.09    5.09    51.55    51.55    51.55    51.55    5.09    

14 5.34    5.34    5.34    51.62    51.62    51.62    51.62    5.34    

15 4.95    4.95    4.95    51.75    51.75    51.75    51.75    4.95    

16 4.98    4.98    4.98    51.42    51.42    51.42    51.42    4.98    

17 4.90    4.90    4.90    51.20    51.20    51.20    51.20    4.90    

18 4.92    4.92    4.92    51.11    51.11    51.11    51.11    4.92    

19 5.09    5.09    5.09    51.58    51.58    51.58    51.58    5.09    

20 4.92    4.92    4.92    51.60    51.60    51.60    51.60    4.92    

21 4.84    4.84    4.84    50.90    50.90    50.90    50.90    4.84    

22 4.98    4.98    4.98    51.63    51.63    51.63    51.63    4.98    

23 5.21    5.21    5.21    51.65    51.65    51.65    51.65    5.21    

24 4.60    4.60    4.60    50.70    50.70    50.70    50.70    4.60    

25 4.92    4.92    4.92    51.56    51.56    51.56    51.56    4.92    
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26 4.67    4.67    4.67    50.94    50.94    50.94    50.94    4.67    

27 5.34    5.34    5.34    51.41    51.41    51.41    51.41    5.34    

28 4.78    4.78    4.78    51.13    51.13    51.13    51.13    4.78    

29 5.05    5.05    5.05    51.57    51.57    51.57    51.57    5.05    

30 4.96    4.96    4.96    51.75    51.75    51.75    51.75    4.96    

31 4.84    4.84    4.84    51.18    51.18    51.18    51.18    4.84    

32 4.88    4.88    4.88    51.16    51.16    51.16    51.16    4.88    

33 4.88    4.88    4.88    51.31    51.31    51.31    51.31    4.88    

34 5.43    5.43    5.43    51.40    51.40    51.40    51.40    5.43    

35 4.88    4.88    4.88    51.52    51.52    51.52    51.52    4.88    

36 4.70    4.70    4.70    51.19    51.19    51.19    51.19    4.70    

37 4.64    4.64    4.64    51.09    51.09    51.09    51.09    4.64    

38 4.86    4.86    4.86    51.53    51.53    51.53    51.53    4.86    

39 5.05    5.05    5.05    51.63    51.63    51.63    51.63    5.05    

40 5.08    5.08    5.08    51.73    51.73    51.73    51.73    5.08    

41 5.12    5.12    5.12    51.57    51.57    51.57    51.57    5.12    

42 4.68    4.68    4.68    51.24    51.24    51.24    51.24    4.68    

43 4.92    4.92    4.92    51.26    51.26    51.26    51.26    4.92    

44 4.55    4.55    4.55    51.24    51.24    51.24    51.24    4.55    

45 5.57    5.57    5.57    51.57    51.57    51.57    51.57    5.57    

Mean 4.96 4.96 4.96 51.40 51.40 51.40 51.40 4.96 

Std 

Dev 

0.23 0.23 0.23 0.33 0.33 0.33 0.33 0.23 
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Appendix B4 Dimensions of the Core 

Specimen Results: 

Specime

n # 

Thicknes

s 1 

mm 

Thicknes

s 2  

mm 

Thicknes

s 3 

mm 

Width 1 

mm 

Width 2 

mm 

Width 3 

mm 

Average 

Width 

mm 

Average 

Thicknes

s 

mm 

1 20.59    20.59    20.59    51.45    51.45    51.45    51.45    20.59    

2 19.92    19.92    19.92    51.33    51.33    51.33    51.33    19.92    

3 19.87    19.87    19.87    51.13    51.13    51.13    51.13    19.87    

4 20.11    20.11    20.11    50.99    50.99    50.99    50.99    20.11    

5 19.65    19.65    19.65    51.12    51.12    51.12    51.12    19.65    

6 20.48    20.48    20.48    50.97    50.97    50.97    50.97    20.48    

7 19.72    19.72    19.72    50.97    50.97    50.97    50.97    19.72    

8 19.63    19.63    19.63    51.28    51.28    51.28    51.28    19.63    

9 19.81    19.81    19.81    50.95    50.95    50.95    50.95    19.81    

10 19.84    19.84    19.84    50.92    50.92    50.92    50.92    19.84    

11 20.11    20.11    20.11    50.92    50.92    50.92    50.92    20.11    

12 19.71    19.71    19.71    51.29    51.29    51.29    51.29    19.71    

13 19.70    19.70    19.70    51.07    51.07    51.07    51.07    19.70    

14 19.65    19.65    19.65    51.01    51.01    51.01    51.01    19.65    

15 19.55    19.55    19.55    50.97    50.97    50.97    50.97    19.55    

16 19.47    19.47    19.47    51.39    51.39    51.39    51.39    19.47    

17 19.54    19.54    19.54    51.05    51.05    51.05    51.05    19.54    

18 20.35    20.35    20.35    51.12    51.12    51.12    51.12    20.35    

19 19.61    19.61    19.61    51.54    51.54    51.54    51.54    19.61    

20 19.80    19.80    19.80    51.35    51.35    51.35    51.35    19.80    

21 19.52    19.52    19.52    51.17    51.17    51.17    51.17    19.52    

22 20.14    20.14    20.14    50.75    50.75    50.75    50.75    20.14    

23 19.58    19.58    19.58    51.20    51.20    51.20    51.20    19.58    

24 19.52    19.52    19.52    51.17    51.17    51.17    51.17    19.52    

25 18.36    18.36    18.36    50.17    50.17    50.17    50.17    18.36    
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26 19.90    19.90    19.90    50.86    50.86    50.86    50.86    19.90    

27 19.85    19.85    19.85    51.30    51.30    51.30    51.30    19.85    

28 19.74    19.74    19.74    51.03    51.03    51.03    51.03    19.74    

29 19.78    19.78    19.78    51.09    51.09    51.09    51.09    19.78    

30 20.55    20.55    20.55    51.28    51.28    51.28    51.28    20.55    

31 19.73    19.73    19.73    51.06    51.06    51.06    51.06    19.73    

32 19.87    19.87    19.87    51.45    51.45    51.45    51.45    19.87    

33 19.88    19.88    19.88    50.69    50.69    50.69    50.69    19.88    

34 19.82    19.82    19.82    51.10    51.10    51.10    51.10    19.82    

35 19.58    19.58    19.58    51.02    51.02    51.02    51.02    19.58    

36 19.84    19.84    19.84    50.77    50.77    50.77    50.77    19.84    

37 19.76    19.76    19.76    50.85    50.85    50.85    50.85    19.76    

38 20.29    20.29    20.29    50.80    50.80    50.80    50.80    20.29    

39 19.63    19.63    19.63    51.21    51.21    51.21    51.21    19.63    

40 19.70    19.70    19.70    51.35    51.35    51.35    51.35    19.70    

41 20.62    20.62    20.62    50.97    50.97    50.97    50.97    20.62    

42 19.83    19.83    19.83    50.86    50.86    50.86    50.86    19.83    

43 19.71    19.71    19.71    51.01    51.01    51.01    51.01    19.71    

44 19.90    19.90    19.90    50.91    50.91    50.91    50.91    19.90    

45 19.80    19.80    19.80    51.12    51.12    51.12    51.12    19.80    

Mean 19.82 19.82 19.82 51.07 51.07 51.07 51.07 19.82 

Std 

Dev 

0.37 0.37 0.37 0.24 0.24 0.24 0.24 0.37 
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Appendix – C 

Appendix C1 Excel Results for Skin Strength and Modulus 

Normalisation 

 

 

Temperature °C Flexural Modulus MPa Normalised Data 

21 14285.4 1 

35 14648.8 1.025 

50 14282.2 0.999 

65 14474.6 1.0132 

80 14129.8 0.9891 

100 12919 0.9043 

120 11777.6 0.8245 

150 12447.8 0.8714 

180 13828.31 0.9680 

 

 

 

 

 

 

Temperature °C Flexural Strength MPa Normalised Data 

21 217.84 1 

35 220.39 1.0114 

50 171.35 0.787 

65 159.29 0.731 

80 145.17 0.666 

100 111.08 0.51 

120 88.47 0.406 

150 86.72 0.398 

180 112.34 0.515 
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Appendix C2 Excel results for the Core Strength and the Modulus 

 

Temperature °C Flexural Modulus 

MPa  

Normalised Data Flexural Strength 

21 1330 1 14.32 

35 1310.51 0.985 14.110 

50 1298.268 0.976 13.978 

65 1202.671 0.904 12.949 

80 1045.56 0.786 11.258 

100 778.167 0.585 8.378 

120 492.045 0.370 5.298 

150 141.019 0.106 1.518 

180 39.13 0.029 0.421 
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