University of Southern Queensland

Faculty of Health, Engineering & Sciences

Regulating Rescue Package Descent through Controlled
Autorotation
A dissertation submitted by
Tan Michael Saxby
in fulfilment of the requirements of
ENG4112 Research Project

towards the degree of

Bachelor of Computer Systems Engineering

Submitted: Jan, 2015

Abstract

This dissertation documents the design, implemention and test of a rescue package that
is intended to be carried and released by a Remotely Piloted Aircraft System (RPAS)
from a height of at least 65m. Current commercial designs for controlled air-drop deliv-
eries include automated parafoil devices. The rescue package physical size is sufficient
to contain a commercial 500ml water bottle. When released from the RPAS, the rescue
package utilises the helicopter autorotation technique to control a safe descent and land-
ing to a nominated ground point minimising package damage so that a human can use all
the water. The design process considers System Safety from both hardware and software

perspectives.

The project required the design of both hardware and software of the host and package

controllers and a ground based test facility.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering
& Sciences, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of
the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled “Research Project” is to con-
tribute to the overall education within the student’s chosen degree program. This doc-
ument, the associated hardware, software, drawings, and other material set out in the
associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

IAN MICHAEL SAXBY

0050083462

Acknowledgments

Mark Phythian, my supervisor, for his continued patience and understanding as I pro-
gressed through this project. Don Luke, Bryan Walker, Harry Melnik and Keith Smith
whom have been instrumental in translating my hardware ideas and sketches into proto-
type fabrication. To my wonderful parents who have inspired in me the commitment and
desire to achieve the best . To my beautiful Susanne and my cherished children Michael,

Elizabeth and Andrew for their constant support and encouragement.

IAN MICHAEL SAXBY

Contents

Abstract i
Acknowledgments iv
List of Figures xii
List of Tables XV
Nomenclature xvi
Chapter 1 Introduction 1
1.1 Motivation e 1
1.2 Aim . ..o 2
1.3 Objectives 2
1.4 Context e 2
1.5 Ethics and Implications o oL 4
1.5.1 Engineering Ethics 0oL 4

1.5.2 Prototype Readiness Implications 4

1.6 Overview of the Dissertation 4

CONTENTS vii

Chapter 2 Previous Work 5
2.1 Chapter Overview e 5
2.2 Previous Work 5

2.2.1 Navigation L e 5
2.2.2 Transfer Alignment Lo 8
2.2.3 Australian Aerospace Regulatory Regime 9

Chapter 3 Establishing System Requirements 11
3.1 Chapter Overview 11
3.2 Concept of Operations e 11
3.3 System Safety Analysis. 12
3.4 System Safety Requirements 14
3.5 System Requirementso 17
3.6 Chapter Summary e e 18

Chapter 4 Rotary Deceleration System - Design and Construction 19
4.1 Chapter Overview e 19
4.2 Physical Designo 19
4.3 Electronics Design oo 23

4.3.1 System Architecture L 23
4.3.2 Processor Selection L Lo 26

4.3.3 Power Controller o 27

CONTENTS

viii

4.3.4 Pro mini Connector and Quadrature Encoder Sensor boards

4.4 Software

4.4.1 Interface Design

4.4.2 Software Design oo

4.4.3 Software Operation L.

4.5 Critical Design Analysis L 0 o

4.6 Chapter Summary e

Chapter 5 Verification

5.1 Chapter Overview e

5.2 Verification Test Facilities

5.3 Verification Activities

5.4 Critical Analysis of Verification Facilities.

5.5 Chapter Summary e

Chapter 6 Conclusions and Future Work

6.1 Conclusion s,

6.2 Achievement of Project Objectives

6.3 Further Work e

References

Appendix A Project Specification

28

30

30

32

34

37

40

41

41

41

46

48

50

51

51

o1

52

53

55

CONTENTS

ix

Appendix B System Safety

B.1 Appendix Introduction

B.2 Safety Requirements Verification Matrix

Appendix C System Requirements and Architecture

C.1 Appendix Introduction

C.2 System Requirements

C.2.1 Navigation e

C.2.2 Power Supply e

C.2.3 Physical

C.2.4 Interface s

C.2.5 Built In Test

C.2.6 Ground Test Facility

Appendix D RDS Mechanical Drawings

Appendix E Electrical Schematics

Appendix F RDS Software Design

Appendix G Risk Analysis

Appendix H Source Listings

H.1 Nameing Conventions

H.2 Sensor Manager Listings

58

99

61

65

66

66

66

66

67

67

68

68

69

81

85

91

96

CONTENTS X

H.3 The SensorManager.ino Code 100
H.4 The Commander.h Code 109
H.5 The Commander.cpp Code 110
H.6 The BIT.h Code i 122
H.7 The BIT.cpp Code« . . o e 123
H.8 The I2CBuffer.h Code 127
H.9 The I2CBuffer.cpp Code 130
H.10 The Interface.h Code 132
H.11 The Interface.cpp Code 134
H.12 The PinoutConfigSM.h Code 137
H.13 The Power.h Code e 138
H.14 The Power.cpp Code o 140
H.15 The QuadEncoder.h Code 146
H.16 The BIT.cpp Code o 148
H.17 The ServoTimer2.h Code 152
H.18 The ServoTimer2.cpp Code 155
H.19 The StateMachine.h Code 160
H.20 The StateMachine.cpp Code 162
H.21 Release Controller Listings 164
H.22 The HostReleaseController.ino Code 165

H.23 The Equates.h Code 172

CONTENTS xi

H.24 The Commander.h Code 174
H.25 The Commander.cpp Code 175
H.26 The BIT.h Code ittt 190
H.27 The BIT.cpp Code o e 191
H.28 The I2CBuffer.h Code 194
H.29 The I2CBuffer.cpp Code 197
H.30 The Interface.h Code 199
H.31 The Interface.cpp Code 201
H.32 The PinoutConfigRC.h Code 206
H.33 The Power.h Code 208
H.34 The Power.cpp Code 210
H.35 The BIT.cpp Code o o e 216
H.36 The StateMachine.h Code 219
H.37 The StateMachine.cpp Code 220
H.38 The MsgBuff.h Code 223
H.39 The MsgBuff.cpp Code 224

Appendix I RDS Interface Control Document 226

List of Figures

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

5.4

Body Frame of RDS 6
ECI and ECEF Frames 7
Deployed Position 21
Conformal Position 21
(a)Nose Cone. (b) Nose Joiner. 22
(a)Rotor Tray Top View. (b) Rotor Tray Bottom View. 22
3D Rotor Lock 23
RDS Lift Guidance Mechanism Assembled 24
PowerControllerlmage L oo 28
ProMiniwithConnectorBoard 29
QuadratureSensor e 29
Ground Test Lift Analysis Rig 42
Ground Test Lift Analysis Rig 43
Completed Ground Test Lift Analysis Rig, lan Saxby 2014. 43
Upper Beam showing pre-load drive unit, Ian Saxby 2014 44

LIST OF FIGURES xiii

5.5 Drive Unit Engagement fingers and Guide wire, Ian Saxby 2014 45
5.6 (a)Lower Beam Back View. (b)Lower Beam Side View. 46
B.1 Impact to Property or Human 59
B.2 Lossof Control 60
B.3 Power Failure 62
B.4 Mechanical Failure 0 63
B.5 Deployment Failure 64
D.1 Nose-3D Printed 71
D.2 Rotor Lock Tray - 3D Printed 72
D.3 Rotor Lock - 3D Printed 73
D.4 Nose Joiner - 3D Printed 74
D.5 RDS Spindle 75
D.6 Bottom Thrust Stop 76
D.7 Lower Rest e 77
D.8 Quadrature Encoder Mask 78
D.9 Rotor Head Top Rest 79
D.10 Sensor Assembly Platform L0 80
E.1 Schematic Battery Controller 82

E.2 Schematic of Quadrature Encoder and Pro Mini Connector Boards 83

E.3 Sensor Assembly Harness 84

LIST OF FIGURES xiv

F.1

F.2

F.3

F.4

F.5

High Level Interconnect System Diagram 86
Host FMU State Diagram 87
Host Release Controller State Diagram 88
RDS FMU State Diagram 89
RDS Sensor Manager State Diagram 90

List of Tables

3.1

B.1

G.1

G.2

G.3

G4

H.1

H.2

H.3

Excerpt from ref ARP4761, Figure D2 - Fault Tree Symbols 14
System Safety Traceability Matrix 61
Risk Management Chart for Ground Test Apparatus 92
Risk Management Chart for Working at Heights 93
Risk Management Chart for Work Place Safety 94
Risk Management Chart for Impact of package onto structure or personnel

during descent 95
Type prefix o 97
Type modifier L 97

Scope modifier 98

Nomenclature

AN Number of observed pulses inside the observation window
Q Rotor rotation rate
>Ty_1 Time interval to the first observed pulse after the start of the observation window

3Ty Time interval between the last observed pulse before the end of the observation

window
YTsc,acc Time of the basic or extended observation window

N, Number of Quadrature Decoder pulses per revolution

Chapter 1

Introduction

1.1 Motivation

Established as a part of the rules of the UAVOutBackChallenge competition, is the re-
quirement to deliver a rescue package from an Remotely Piloted Aircraft System (RPAS)
from a minimum height of 65m. This rescue package is to contain a minimum of 500ml
of water. The safe delivery to a target point on the ground must account for both mini-
mal package damage and safe human interaction during the package’s terminal trajectory
phase. Existing methods which have been used are deployed parachutes or fixed autorota-
tion vanes which reduce the impact velocity of the released rescue packages. These meth-
ods are prone to variations in landing accuracy due to pre release trajectory calculation
errors, inconsistent trajectory paths due to poor package aerodynamics and importantly,

the variations in trajectory due to wind.

This project proposed to control and decelerate a package using an active autorotation
technique from the rotary helicopter environment. The technique has been researched by
many for military and civil purposes and is based upon the theory and research related
to safe landing of helicopter aircraft following engine power failure via the use of cyclic

and collective pitch control during the autorotation phase of flight.

1.2 Aim 2
1.2 Aim

To design and prototype a device that can control and decelerate a package using an

active autorotation technique from the rotary helicopter environment.

1.3 Objectives

The resultant prototype system shall be capable of:

1. carrying a quantity of 500ml of water within a commercial container,
2. accept and actively descent along a defined path to given target co-ordinates,
3. constrain the terminal landing velocity below 3 m/sec, and

4. provide an environment for safe carriage and purposeful release of the rescue pack-

age.

The subordinate objectives include undertaking the project development considering a
safe development environment and ultimately production of a safe product at the conclu-

sion.

1.4 Context

CASA Civil Aviation Order 40.3.0 defines autorotative flight means a condition of flight
without power when lift and rotor speed are derived from the action of the airflow upwards

through the rotor system.

The aerodynamic forces developed through autorotation are the basis for the autogyro
which was first developed by Juan de la Cierva who designed and built the Autogiro
(de la Cierva & Ray 1931). Cierva’s craft used an axially aligned propeller to provide
thrust and a rotor for lift instead of a fixed wing. Autorotation is a condition whereby
torque is no longer imparted to the rotor by internal means and is instead developed by
upward airflow through the rotor. Autorotation is achieveable during un-powered descent

and is a possible emergency landing technique for helicopters with engine or driven train

1.4 Context 3

failures. Given the emergency situation, the upward movement of airflow imparts kinetic
energy into the rotor as the craft descends which is then translated into thrust close to

the ground through a complex pilot initiated flare manoeuvre.

The autorotation technique has been pursued as a possible alternate deceleration tech-
nique for landing spacecraft (Wernicke 1959), personnel (Lambermont & Pirie 1959) and
provisions (AIA 2003). Interest in helicopter safety and Unmanned Aircraft Systems
(UAVs) landing control have seen researchers pursue controlled autorotation as a means
for safe landing of helicopters or UAVs in emergencies or as the basis for accurate de-
livery to a given location. Research outcomes have proposed and validated algorithms
to plan and execute the controlled glidepath and safe landing using optimisation tech-
niques. Johnson, (Johnson 1977) derived a non-linear model that accounted for vertical
and longitudinal movement. Johnson’s optimal control used a cost function that min-
imised horizontal and vertical speeds on landing. This optimisation used forwards and
backwards numerical integration between defined boundaries using the steepest descent

method.

The objective of this project can be broken down into multiple facets:

1. Power Control

2. Communication

3. Target Transfer

4. Release Preparation
5. Release

6. Blade Deployment
7. Rotor Spin-Up

8. Autorotation Glide
9. Autorotation Flare

10. Path Planning and Control

1.5 Ethics and Implications 4

1.5 Ethics and Implications

1.5.1 Engineering Ethics

The Engineers Australia Code of Ethics defines the values and principles that shape the
decisions engineers make in engineering practice. Within the Code of Ethics are guidelines
on Professional Conduct that provide a framework for members of Engineers Australia to

use when exercising judgment in the practice of engineering.

The pursuit of an engineering solution to improve the process of rescuing people or sus-

taining stranded people is seen by the Author as a humanitarian goal.

1.5.2 Prototype Readiness Implications

Though this engineering effort is focused on providing an alternate solution to methods
of accurately deliverying supplies to stranded personnel, there are many issues to con-
sider within the current aerospace regulatory environment. These issues such as software
assurance must be addressed to satisfy airworthiness and safety regulations. This project
provides a small insight into the broader effort a commercial product would require to be

considered safe and fit for purpose.

1.6 Overview of the Dissertation

This dissertation is organised as follows:

Chapter 2 Previous Work,

Chapter 3 Establishing System Requirements,

Chapter 4 Rotary Deceleration System - Design and Construction,
Chapter 5 Prototype Verification, and

Chapter 6 Conclusions and Future Work.

Chapter 2

Previous Work

2.1 Chapter Overview

This chapter discusses the basics of Navigation, Transfer Alignment and the Regulatory

Environment that must be considered when developing the RDS prototype.

2.2 Previous Work

2.2.1 Navigation

Navigation control requires the understanding of basic navigation reference frames and
the earths geometry. Positional control of the RDS both pre and post release requires
the translation of the navigation information between these reference frames. The basic
frame is the body of the RDS. This body frame is defined by three axes in which on
board sensors are aligned that measure accelerations and angular rates. To control the
RDS from a point in flight to a point on the earth, these body co-ordinates must be

translated to the earth frame. Each of the navigation frames have specific purposes.

The Body Frame. The axes of the Body Frame at Figure 2.1 are:

1. The origin coincides with the Center of Gravity of the RDS.

2. The x-axis points laterally across the RDS. This axis is called the pitch axis.

2.2 Previous Work 6

Figure 2.1: Body Frame of RDS

3. The y-axis points forward longitudinally. This axis is called the roll axis.

4. The z axis points towards the vertical direction. Yaw angle is measured around this

axis.

This frame is referred to as the b-frame. The Roll, Pitch and Yaw angles (RPY) around
these Body Frame axes are known as the Euler angles. The RPY rotation angles corre-

spond to rotations around each respective axis using the right hand rule.

Earth-Centered Inertial (ECI) Frame. The inertial frame as defined by (Grewal, Weill, &

Andrews 2007) is stationary in space with its origin at the center of gravity of the earth.

The axes of the ECI Frame are:

1. The Xgc7 is in the equatorial plane and points in the direction of the vernal equinox

Y

2. The Zgcy is parallel to the rotation of the earth coincident with the North polar

axis, and

3. The Yg¢y is orthogonal to the Xgcor and Zgor axes and completes the right handed

system.

2.2 Previous Work 7

Zecer = Zea

Greenwich

N T LA Yecer
I ‘l
" et :\'
p ol N
\\ '~

XEkci
Vernal X Yec
Equinox Aer

Figure 2.2: ECI and ECEF Frames

This is the frame of choice for near Earth environments. This frame is referred to as the

i-frame.

Earth-centered Earth Fixed (ECEF) Frame. Referred to as the e-frame, the ECEF Frame

shares the same origin and z-axis as the ECI Frame though rotates with the earth. The
axes of the ECEF Frame and their relationship with the axes from the ECI frame are

shown in Figure 2.2 taken from (Grewal et al. 2007). Specifically, these axes are:

1. The XgcgFr, which passes through the equatorial plane and the Greenwich meridian.
2. The Zgcgr passing through through the North polar axis, and

3. The Ygcgr, and in the equatorial plane orthogonal to the Xgporpr and Zgopr axes

and completes the right handed system.

Local Tangent Plane (LTP) coordinate systems represent local reference directions for
RDS attitude and velocities. Two such right handed LTPs are the East-North-Up (ENU)
and North-East-Down (NED) coordinate systems. The NED coordinate axes coincide
with RDS Euler Angles (Roll Pitch Yaw) coordinates when level and the RDS is facing
the North direction.

Transforming one co-ordinate frame to another is achieved by techniques using direction

cosines, Euler rotations or quarternions.

2.2 Previous Work 8

2.2.2 Transfer Alignment

To control and guide a RDS from an aircraft requires the knowledge of position, attitude,
velocity, angular rate and accelerations. The aircraft and RDS will utilise IMU and Global
Positioning Systems (GPS) to provide these inputs. The IMU measures then integrates
specific forces and angular rates to gain knowledge of current position, velocity and at-
titude. These actions must be inititalised with an accurately known starting point. As
bias errors caused through measurement, manufacturing or introduced noise affects these
integration algorithms IMU systems do not have long term accuracy. To compensate,
long term stable information from GPS systems can be blended into the measurement

process.

Both the RPAS and RDS will contain their own IMU and GPS units, and will be calcu-
lating separate navigation solutions. The RDS however will be carried at 90° to forward
flight such that the GPS unit may not correctly receive signals to provide this long term
stability to the RDS’s Navigation solution. Accordingly, drift may occur with the RDS
Navigation Solution. To correct this drift, Transfer Alignment can be used to calibrate
and maintain the RDS (Slave) Inertial Navigation System (INS) from the host aircraft’s
Master INS.

The quality of Transfer Alignment is a significant factor in the Military aerospace environ-
ment as weapons are attached to the underside of metal aircraft. This position masks the
weapon slave INS from receiving GPS signals (if fitted). A further factor in the military
environment is that flight weapons that require control usually have quite small INS due
to space constraints. These systems invariably are not activated until just prior to release
and require initialisation of their navigation solution from the Master (more accurate)

INS onboard the parent aircraft.

(Groves 2003) identifies the optimised Transfer alignment estimates:

1. Attitude and velocity;
2. Accelerometer and gyro static and dynamic biases;
3. Accelerometer and gyro scale factor and cross coupling erros; and

4. Static relative lever arm and force-dependent relative orientation coupling.

2.2 Previous Work 9

The transfer alignment algorithms utilise Kalman filters to provide estimates of the errors
from the Slave INS to that of the Master. Further, as sighted within (Groves 2003)
manoeuvres undertaken by the host aircraft during the alignment affects the performance
of the estimation process. These manoeuvres isolate the states that are estimated by
the Kalman filter. For example by changing altitude, error sources within attitude and

velocity measurements can be observed.

2.2.3 Australian Aerospace Regulatory Regime

The Civil Aviation Safety Authority (CASA) has published regulations that pertain to
Model and Unmanned aircraft within (CASA 2002). These current regulations were
established in Jan 2002. The extension objectives of this project were proposed to be
achieved through carriage of a RDS from a small UAV aircraft operating below 400 feet
AGL outside controlled airspace in accordance with the (CASA 2002) regulations.

In May 2014 CASA released Notice for Proposed Rule Making (NPRM) 13090S - Re-
motely Piloted Aircraft Systems (CASA 2014) that proposes changes to these regulations.
The NPRM introduces specific regulations for Remotely Pilot Aircraft Systems (RPAS)
with aircraft weight between 2kg and 150kg that require CASA approvals and Operator

Certification if operated outside the following standard operating conditions:

1. the RPA’s remote pilot can directly see the RPA, with or without corrective lenses,

but without the use of binoculars, a telescope or other similar device; and
2. the RPAS is being operated below 400 ft AGL in VMC by day; and

3. the RPAS is not being operated within 30 m of a person who is not directly associ-

ated with the operation of the RPA; and
4. the RPAS is not being operated:

(a) in controlled airspace; or
(b) in or over a prohibited or restricted area; or
(c) over a populous area; or

(d) within 3 nautical miles of an aerodrome.

2.2 Previous Work 10

The impact of these proposed rules were to be on the extension objectives of this task

which were not completed.

Chapter 3

Establishing System Requirements

3.1 Chapter Overview

This chapter describes the development of system requirements for the delivery plat-
form and the expected interaction with the host RPAS. This development accounts for
considerations of system safety and the chapter details the corresponding safety related
requirements that are imposed. The requirements encompass the hardware, software and

interface between sub components.

3.2 Concept of Operations

To satisfy the objectives of the UAVOutbackChallenge a 500ml water container must be
accurately dropped from a minimum height of 65m and the container must remain intact
following the resultant ground impact. The rescue package size and shape must therefore
be streamlined if externally carried to the drop point and needs to include some form
of deceleration system to minimise the ground impact speed to an acceptable level. A
further expectation of this project is to include navigation, guidance and control systems
to ensure accurate delivery of the rescue payload under varying wind conditions. The
likely carriage time during the transit to the release point is up to 50 minutes with a final

descent flight time of about 30 seconds.

A further natural expectation is that the payload can be easily loaded or accessed by both

3.3 System Safety Analysis 12

dispatch and receiving ground personnel respectively.

Given this projects objective is to utilise Autorotation as the deceleration methodology
and using helicopter rotor blades as lift surfaces, the drag from these rotor blades must be
minimised during the carriage phase to the release point. Due to the expected length of
rotor blades, the system is expected to be suspended external to a host RPAS. Accordingly,
the system design must retain the blades conformal to the system body during transit to

the release point, for deployment in the descent phase.

The ground objective position is expected to be passed to the system as part of the pre-
release communication. Post release requires controlled deployment of the autorotation
decelerator, build-up and management of kinetic energy in the form of rotor angular

velocity and translation of this kinetic energy into lift to minimise ground impact speeds.

The project is to include a system safety based requirements analysis phase to consider
possible hazards related to safe carriage, authorised release and flight modes of the de-

ployed system.

3.3 System Safety Analysis

Development of products that have safety implications require conformance to a System
/ Software Safety Standard. This project utilised elements of an earlier version (E)
standard (DOD 2012) due to the disclosure of hazard analysis tasks that are missing
from the current version. (DOD 2012) defines a series of management, development and
reporting tasks to provide a consistent means of reporting risks. The limited subset of

tasks incorporated into this development effort were:

1. Task 106 Hazard Tracking System
2. Task 201 Preliminary Hazard List
3. Task 202 Preliminary Hazard Analysis

4. Task 301 Safety Assessment Report

This subset was chosen from the standard due to the short duration of the task and the

single individual involved limiting the ability to incorporate any independance of review.

3.3 System Safety Analysis 13

The risk acceptance criteria was modified to incorporate involvement of the Project Su-
pervisor in consideration of the exposed and treated risks, though no such involvement

was necessary.

To satisfy the operational concept a System Safety analysis was undertaken. The results
of this analysis determined that there were hazards related to the program of development

and the eventual product.

Undertaking the safety analysis exposed safety related issues from the Workplace Health
and Safety (WHS), and system safety disciplines. The WHS issues pertained to the phases
of both development and test. The development phases included manufacturing requiring
the manipulation of hand tools and machinery, whilst people involved in ground testing
were exposed to moving parts. A further WHS hazard exposed was the requirement to
briefly work at heights during the install the ground test stand apparatus at a height of

4m.

From a System Safety perspective, the solution can mitigate hazards exposed during

development and test through a system safety design order of precedence:

1. Elimination through design selection,
2. Incorporation of safety devices,
3. Provision of warning devices, and/or

4. Development of procedures and training.

Workplace Health and Safety hazards are disclosed within Appendix G of this report.

The initial ground test phase exposed the physical hazards of moving parts, machinery
and working at heights. System Requirements were raised to account for the mitigation

to these hazards and are included in design of the ground test rig.

1. Moving parts;
2. Working at heights;and

3. Work place safety.

3.4 System Safety Requirements 14

System Safety Analysis was undertaken using Functional Hazard Analysis (FHA)and the
associated Fault Tree Analysis (FTA) techniques from (Aircraft, Dev & Committee 1996).
As defined within (Aircraft et al. 1996) a FHA looks at system functions and combinations
of system functions to identify and classify the associated failure condition(s). The FTA
method is an analysis which focuses on one particular undesired event and deduces causes

of this event. The FTA considers both loss of functions and malfunctions.

The FTA output is a graphical hierarchical representation of the relationships between
failure effects and failure modes underpinning the single project system safety hazard.
FTA are defined by two types of symbols, logic and event. Logic symbols, Boolean logic
AND-gate or OR-gate, are used to link the various events of the Fault Tree together. The
FTA event symbols are defined within Table 3.1.

Table 3.1: Excerpt from ref ARP4761, Figure D2 - Fault Tree Symbols

description of an output of a logic symbol or of
Event
an event

Event which is internal to the system under
Basic Event
analysis, requires no further development

Event which is not developed further because it
has little impact on the top level event or be-
Undeveloped Event
cause the details necessary for further event de-

velopment are not readily available.

Transfer Indicates transfer of information.

3.4 System Safety Requirements

The process of undertaking an FHA identified a single hazard; Impact to Property or

Human.

A System Safety FTA was conducted on this identified hazard. The resultant FTA is
shown in Appendix B Figures B.1, B.2, B.3, B.4 and B.5.

The system safety requirements raised as mitigations and the associated rationale to

3.4 System Safety Requirements 15

mitigate the Hazard of impact to Property or Human are summarised below.

Figure B.1 identifies two possible causes of impact to property or humans; that of passing
an incorrect Ground objective to the RDS and secondly, when given a valid ground
target objective the RDS undertakes incorrect flight control actions during descent. The
localisation and determination of the actual ground objective is not part of this project
and is assumed to be valid, however, this project must account for correct transfer of
target information from the host to the RDS. Accordingly, a System Safety requirement

was established to ensure correct target transfer before the host RPAS releases the RDS.

SSR1: The System shall validate the specified target co-ordinates have been correctly

passed to the RDS prior to release.

The hazards second causal factor of incorrect flight control actions has multiple sources
which are exposed in a series of subordinate FTA branches, Figure B.2, Figure B.3 and
Figure B.4. Hierarchically the highest branch is Figure B.2. Incorrect RDS flight control
can be caused by either loss of control or release of the RDS outside of controllability

limits.

Breaching controllability limits could be due to the lack of readiness of the RDS flight
state or the release point is too low, airspeed too fast or the RDS simply can not reach

the target due to the distance between release point and target.

To mitigate the breach of controllability limits the RDS or host could validate that the
launch region and release flight criteria are within defined limits prior to release. Accord-

ingly safety requirements are defined as:

SSR2: The System shall ensure the RDS release conditions are within defined limits
prior to release. SSR3: The System shall ensure that the RDS is in a functional state

appropriate for release.

A further two factors underpin the possible loss of control; a critical component failure

or the failure of the system to adequately control the descent phase of the RDS.

In considering Critical component failure the possible causes were identified as Actuator
failure and flight mechanism failure. Actuator failure may be caused by electronic, power

supply or mechanical sources, whereas flight mechanism failure relates to rotor blades,

3.4 System Safety Requirements 16

swashplate or linkages and the rotor deployment mechanism. Within Actuator failure,
electronic failures could be within the servo itself or the origin command system within
the Flight Management Unit. Servos directly manipulate the swashplate, controlling roll,
pitch and collective. Failure of the servos to accurately translate command signals to
physical swashplate movements through delay or malfunction would cause loss of control.
No mitigation exists should any actuator fail during descent. No failure detail could be
located about the specific servos used in the design or FMU failure rates so this event was
identified as undeveloped. A solution may be the undertaking of specific failure analysis

on these items before product commercialisation is undertaken.

The exposure timeframe to a power supply failure is limited to the descent of about 30
seconds. Power Supply failure analysis identified battery failure and circuit failure as
possible causes. No evidence was found of manufacturers Mean Time Between Failure
(MTBF) data of battery systems used in model equipment so this event was identified as
undeveloped. Analysis focused on defining a requirement to establish confidence in RDS

supply availability and remaining capacity during the carriage phase:

SSR4: The System shall verify RDS power supply availability and remaining capacity are

within correct boundaries prior to authorising release.

The remaining causes of Critical Component Failure were predominately mechanical in
nature and are constrained by commercial availability. To mitigate component failures
within actuators and flight mechanism (rotor blades, swashplate or linkages), commercial
hobby resellers were approached to gather information on the nominal hobby swashplate,
rotor heads, rotor blades, servo torque and speed capacities that are used in commercial
model helicopters of a similar physical size and weight. This informed the purchasing
process of items used in this project. As the rotor deployment mechanism is to be designed
within this project so its development must consider mitigations to the causes of rotor

blade deployment, hinge mechanism and rotor lock engagement failures.

SSR5: The Rotor Deployment mechanism shall force the rotor blades into the airstream

following release.

The safety requirements related to hinge and locking mechanism failures could not be
articulated with any relevant discipline experience, however, the design and manufacturing

process allowed the proof testing of hinge and lock artefacts as described in the later

3.5 System Requirements 17

Verification chapter, Chapter 5.

Two causes were identified for the Failure to adequately control event; Sensor failure and
anomalous Software function. The window of exposure to Sensor failure is both during
the pre-release and descent phases as sensor data is expected to be used when confirming
RDS release readiness as well as for guidance and navigation during descent. Anomalous
software function, through incorrect specification, or failure to satisfy the specification
could contribute to a failure event. Software Testing is presented within this project to

provide an increased level of assurance in mitigating this possible event.

A component of self check is considered appropriate for inclusion to mitigate these two

possible events. Accordingly, the last safety requirements are:

SSR6: The System shall carry out periodic Built in Test (BIT) functions on guidance,

control and navigation sensors prior to authorising release.

SSR7: The system shall utilise self checking software logic to confirm correct operation

prior to authorising release.

3.5 System Requirements

System Requirements, disclosed within Appendix C, have been segmented into the fol-

lowing objective areas:

1. Navigation,

2. Power Supply,

3. Physical,

4. Interface,

5. Built In Test, and

6. Ground Test Facility.

3.6 Chapter Summary 18

3.6 Chapter Summary

This chapter described the process and outcomes of the System Safety analysis and Re-
quirements development phases. Seven System Safety Requirements have been identified

to mitigate the single hazard Impact to Property or Human.

Chapter 4

Rotary Deceleration System -

Design and Construction

4.1 Chapter Overview

This chapter discloses the design process and outcomes within the physical, electrical
and software discipline related activities undertaken within this project to design and
construct the Rotary Deceleration System (RDS). The detail is referenced in diagrams,
drawings and software listings contained within the attached Appendices. Finally, a
section on critical analysis is discussed that identifies recognised flaws in the design and

implementation process and resultant outcomes.

4.2 Physical Design

The RDS design is segmented into six sub-assemblies:

1. Nose Assembly, containing the power supply, controller and regulator;
2. Rotor Lock Assembly, retention of Rotor blades conformal to the RDS body;
3. Body Assembly containing the payload, host interconnect and wiring loom;

4. Electronics Assembly containing the Flight Management Unit and Sensor Manager

(Sensor Manager).

4.2 Physical Design 20

5. Rotor Assembly containing the actuators, spindle and rotor lift and control compo-

nents (swashplate, alignment, rotor head and blades); and

6. Sensor Assembly situated above the rotor head. The Wiring loom routes to the

sensor assembly from the Electronics assembly through the rotor spindle.

These assemblies were designed using the 3D CAD modeling package AutoDesk Innovator
(Student Version). The Innovator CAD application allows the export of completed designs
to .stl format which were dispatched for 3D printing. In all, the following components

were manufactured using 3D printing services:

1. Nose,

2. Battery holder,

3. Lock tray,

4. Rotor lock,

5. Rotor lock interconnect,
6. Nose joiner, and

7. Rotor blade holder, pivot and lock.

3D printing allowed for complex shapes to be developed and manufactured simply and
quickly. An example is that of the Nose cone which has a cylindrical slot that the battery
holder slides into, Figure D.1. This allows for bench testing of the battery system without
the bulk of the Nose cone. The available space within the Nose cone is used to stow the
Regulator, batteries and Power Controller. Close inspection of shows the set of four keyed
attachment lugs that allow simple detachment of the Nose from the Rotor Lock assembly

to access power supply and Rotor Lock components.
The printed Rotor Holder, Pivot and Lock is shown in Figures 4.1 and 4.2 .

Figure 4.3 provides a cross section view of the Nose and Nose joiner component internal

structure.

The Designed Rotor Tray component can be seen at Figure 4.4.

4.2 Physical Design 21

Figure 4.1: Deployed Position

Figure 4.2: Conformal Position

The Rotor Tray bolts to the Nose Joiner and positions the Rotor Lock shown at Figure 4.5.
When in the locked or closed position the ends of the Rotor Lock fit into slots within the

Rotor Tray to provide strength and stability against release due to vibration.

An original project expectation was to machine as many components from Aluminum as
possible to establish a prototype that would survive as many test activities as required.
Due to cost restrictions this was not achievable. The risk of using the 3D printed rotor
holder, pivot and lock components was considered too high and all verification activities
were undertaken without those components. Regardless, as the project did not achieve
as many original objectives, the fact of not using these components did not detract from

the results of testing undertaken.

The Rotor Assembly required the design and manufacturing of the following components

from Al Alloy 7075-T6 or Al light alloy:

4.2 Physical Design 22

Figure 4.3: (a)Nose Cone. (b) Nose Joiner.

Figure 4.4: (a)Rotor Tray Top View. (b) Rotor Tray Bottom View.

1. Spindle,

2. Actuator bracing,

3. Bottom thrust stop,

4. Rotor lower rest,

5. Rotor holder,

6. Quadrature encoder mask, and

7. Rotor top rest.

The mechanical drawings for each of these items are contained within Appendix D. The

complete assembly can be seen in Figure 4.6.

Small 5mm Inside Diameter (ID) x 8mm Outside Diameter (OD) bearings are dispersed
along the spindle separated by 2mm wide spacers of bmm ID x 6mm OD to allow for

spindle flexure without binding the outer bearing races against the next bearing. On

4.3 Electronics Design 23

Figure 4.5: 3D Rotor Lock

these bearings the various components of the rotor assembly are positioned and are free
to rotate, refer Figure 4.6. Two sets of 8mm ID x 16mm OD thrust bearings are used to
contain the rotor head components vertically on the spindle and are held in place by the
Rotor Lower and Upper Rest components. A number of radially positioned grub screws
within the Rotor Upper Rest hold the whole rotor assembly together. This containment
design is the weakest facet of the design as slippage of the grub screws would allow vertical

separation of the rotor head assembly and resultant loss of RDS.

The RDS platform is to use a three point swashplate to control the roll, pitch, and col-
lective through Servo Cyclic and Collective Pitch Mixing (CCPM), referred to as servo
mixing. Servo mixing in software provides a mechanically simpler design without sacri-
ficing accuracy. Three servo actuators are situated below the swashplate as per model
helicopter designs. The CCPM swashplate design was chosen for simplest assembly and
associated functional support within common Flight Management Unit open source soft-

ware.

The sensor assembly is attached to the Rotor Upper Rest with the wiring loom routed

through a center hole to match the spindle tube.

4.3 Electronics Design

4.3.1 System Architecture

Guidance, Navigation and Control of a model helicopter is currently under active develop-

ment and support through the open source application APM:Copter. The APM:Copter

4.3 Electronics Design 24

Rotor Blade Holder
RDS Bod Pitch Actuator washplate Bearing
Lower Thrust Plate

Quadrature

Rotor Spindle Shaft - [

Lower Rest

Rotor Head Attach

Commercial Hobby ltems

Swashplate

Figure 4.6: RDS Lift Guidance Mechanism Assembled

application has a ground based controller software package also open source, Mission
Planner. The APM:Copter application is intended to be hosted on another open source
hardware product; the PX4 FMU and daughter board PX410O. For the sake of simplicity
for the remainder of this report the combination of PX4FMU and PX4I0O daughter board
will be called FMU.

The DO-178B standard (States 1993) provides ”guidance for determining, in a consis-
tent manner and with an acceptable level of confidence, that the software aspects of
airborne systems and equipment comply with airworthiness requirements”. Of interest
to this project, DO-178B identifies two techniques called Partitioning and Safety Moni-
toring. Inclusion of partitioning in the design accounts for the isolation of functionally
independent software components so as to contain and/or isolate fault conditions. Safety
Monitoring protects against specific failure conditions by directly monitoring a function
for failures which would contribute to the failure condition.These two techniques were
used within this project. Specifically, parallel independent initiation and detection of the
readiness of the RDS for release, and monitoring of aspects of sensor or power supply

data to ensure critical components are operating correctly prior to release.

Application of these two techniques led to the development of the System Architecture

4.3 Electronics Design 25

and functional allocation as identified within Figure F.1. Readiness for Release and Built
in Testing satisfies two System Safety Requirements. Readiness for Release is achievable
through two functionally independent communication links. The first via serial commu-
nication between FMUs, whilst the second is via discrete signals between Sensor Manager
and Release Controller. Without the Release Controller receiving confirmation through

these two methods release is not initiated.

The constant review of Built in Test results from all processor boards provided assurance

of correct operation prior to release.

Considering Figure F.1, the allocation of functions is as follows:

The Host FMU is responsible for flight control management of the host RPAS. The FMU
interfaces to host systems and sensors for RPAS navigation, guidance and control of
all host functions. The RDS system is to compare and align to the master host FMU
navigation solution. The Host FMU has communication links to the ground station

controller and provides status and command link for management of RDS release.

The RDS FMU is the master controller of the RDS. The RDS FMU interfaces to the
Host RDS via Universal Asynchronous Receiver/Transmiter (UART) serial communica-
tion protocol. Similarly to the host FMU, once the RDS is released the RDS FMU uses
information from RDS sensors (GPS / Compass / Accelerometers and rate gyros) for

flight guidance, navigation and control.

Each FMU can communicate using UART and I2C serial communication protocols. The

FMU is the master I12C node whilst it can be a Master or slave on the UART serial link.

The Sensor Manager is a slave on the RDS I2C serial network. The RDS Sensor Manager
controls and receives status information from the Power Controller. The Sensor Manager
also collates status information from the host interconnect and independently controls
the Commit to Release discrete to the host. The RDS Sensor Manager presents status

information to the RDS FMU for the following functions:

1. Host connection interlock and debug signals
2. RDS power

3. Commit to Release state.

4.3 Electronics Design 26

4. Rotor head speed and direction.

The Host Release Controller is a slave on the Host 12C serial network. Similar to the
RDS Sensor Manager, the Host Release Controller (RC) controls and receives status
information from the host power controller, RDS interconnect and controls the Release,
Lock/ Unlock and Extension servos. The Release Controller independently determines

and notifies the Host FMU of RDS assertion of Commit to Release.

Both of the Sensor Manager and Relesae Controller utilise the same core Operating System
and classes to achieve the assigned functions. Slight modification are introduced into each

to support some unique functions.

4.3.2 Processor Selection

The FMU provides adequate memory and speed capacity to undertake this project. The
FMU has on board 3 axis accelerometers, rate gyros and compass. The FMU also connects

to external GPS, Compass and communication subsystems.

The space considered available to undertake the independent release readiness checks
and communication required identification of a small processor footprint that had rela-
tively high throughout, sufficient Input/Output (I/O) discrete, Pulse Width Modulation
(PWM) capabilities and 5V power supply tolerance. The Arduino Pro Mini utilises the
16MHz ATmega328P processor at 5V and has 32K Flash, 1K EEPROM and 2K inter-
nal Flash memory. The circuit board footprint is 18x33mm due to elimination of IDE
programming interface logic. The Pro Mini has 8 Analog and 14 Digital I/O pins, with
each of the Digital I/O pins capable of setup as an interrupt. An additional advantage is
that the board does not come pre-populated with connector pins, which is an important
aspect allowing attachment to the RDS Sensor Assembly and FMU wiring loom through

specific low profile DF13 connectors.

The Pro Mini Arduino is capable of running a small Real Time Operating System, Nil-
RTOS. NilRTOS is available as an Arduino library and provides a minimum set of pre-
emptive scheduling and synchronisation functions. NilRTOS is statically mapped at com-
pilationtime and does not allocate memory at runtime. NilRTOS does not utilise timer2

allowing real time operation whilst servo PWM is achieved through use of timer2. Nil-

4.3 Electronics Design 27

RTOS is open source and is unproven in terms of correct verifiable operations, however,
would provide the project with the ability to leverage off multiple independent functional
threads to carry out the Safety Monitoring whilst supporting Quadrature Encoder inter-
rupts and serving the I12C communications port. No specific testing was undertaken to

verify NiIRTOS operation beyond RDS functional testing.

4.3.3 Power Controller

Design requirements identified that the power controller needs to be powered from the
internal battery at all times to enable control of the power output regardless of connection
to the Host RPAS, as would be the case during descent. Control of external and internal
supply by the power controller board would be commanded through digital 5V logic levels

enable signals.

The following is a description of the Power board, Figure 4.7 operation and associated
component involvement . Refer to Appendix E Figure E.1. Internal RDS battery sup-
ply is two LiIFEPO4 batteries in series configuration providing 6.4V DC with capacity
of 1300mAh. LiFEP04 was selected for its high density, low cost, low toxicity and high
thermal stability, (Dupr, Martin, Degryse, Fernandez, Soudan & Guyomard 2010). Pass-
ing through a commercial 5V regulator the internal power supply is connected to the
Power Controller board via connector J3. External power is passed through the RDS
wiring loom and connected to the Power Controller Board via connector J1. RDS Power
is available at connector J2 and passes back through the wiring loom to the Electronics

assembly.

The power controller circuit includes selection and status monitoring of external and in-
ternal power. Internal power monitoring includes monitoring of battery remaining charge
capacity and voltage level. Selection of power supply source is achieved by two discrete
input signals which enter the Power Controller board on a single six pin connector J4.
J4 also includes status and monitoring signals presented to the wiring loom. A Hirose
DF13 connector is used to provide security of cabling in the vibration environment whilst

Hirose DF3 are used for the higher current power routing.

Power source for Ul, U2 and U4 is the 5V regulated internal RDS battery power supply.
U3 is powered from the applied voltage at either VIN1 or VIN2 which ever is available.

4.3 Electronics Design 28

U3 controls two discrete N-channel MOSFETSs emulating an ideal diode. U3 has Enable
inputs EN1 and EN2 (Active Low) that control the availability of the corresponding power
supply to the output connector J2. Ul provides for Opto-isolated translation of external
power application into a sensed voltage level as an inverted logic signal to U2 input B.
The External Power Supply enable signal, is applied to the other U2 input, input A from
connector J4. When the External Power Supply enable signal is LOW, U2 passes the
state of the external supply through to U3 EN1. Accordingly, when external supply is
available and U2 Input A is LOW the Ul signal state is presented to turn on U3 supply
1 (External supply). In contrast, if the External Power Supply enable (U2 input A) is
asserted HIGH, U3 turns off the associated MOSFET and high current external supply
is disabled.

Figure 4.7: PowerControllerImage

U1, U2 and pull-down resistor R3 provides for automatic external power application

during start-up of the Sensor Manager.

EN2 is connected to the Internal Power Supply enable signal and is defaulted to the
enabled state (Active LOW) via the pull-down resistor R4. This condition is required
should any interruption of internal power be realised during descent. When power is

recovered this default LOW will immediately pass internal power supply to RDS circuits.

U4 provides for measuring of current and voltage of the internal battery. These status

signals are presented to external use on connector J4.

4.3.4 Pro mini Connector and Quadrature Encoder Sensor boards

The Pro Mini Connector board provides for quick, yet secure, connection and disconnec-
tion of the Pro-Mini circuit board from the wiring loom. The associated circuit of, Figure
4.8, is disclosed in Appendix E Figure FE.2. Connection between the board and pro

mini is via soldered short multi-strand wires. The connectors are the standardised six pin

4.3 Electronics Design 29

Hirose DF13 that have sufficient current capacity to carry the interface signals and single

rotor lock servo signal line.

Figure 4.8: ProMiniwithConnectorBoard

The Quadrature Encoder Sensor board, Figure 4.9, is a small circuit with three compo-
nents. Appendix E Figure E.2 contains the schematic. The two sensor boards receive
their power and ground connections from the common Battery Controller supply out-
put, nominally 5V DC. Resistors R6 and R7 establish the necessary forward bias current
through the opto sensor. The sensor has a 3mm air gap between Infrared (IR) source and
sensor diode within which the Quadrature Encoder mask spins. Two 3mm mounting holes
attach each sensor to the underside of the Sensor Assembly and lock the relationship of
sensor to mask consistently. The wiring loom connects to the sensor boards using Hirose

DF13 connectors.

Figure 4.9: QuadratureSensor

The layout of the Sensor Assembly wiring loom routed through the Rotor spindle is shown
at Appendix E Figure E.3.

4.4 Software 30
4.4 Software

4.4.1 Interface Design

An Interface Control Document disclosed within Appendix I was written to define all
possible communication between each of the sub systems shown in the System Archi-
tecture Diagram, Figure F.1. The Interface Control Document assigns the interconnect
discretes and pin layout between the Host and RDS and the communication messages be-
tween Host and RDS FMUs, RDS FMU and Sensor Manager and Host FMU and Release
Controller. The inter FMU communication uses the UART serial protocol, whilst FMU
to Sensor Manager and FMU to Release Controller is via I12C, with the FMU in each later
case as the 12C Master Node.

Identification of communication direction, regardless of UART or 12C protocol is in rela-
tion to the Slave Nodes. That is, Recieve (Rx) messages are those expected to be received
by the Slave from the Master, whilst Transmit (Tx) messages are requested from the Slave
by the Master Node. In summary, six Rx messages are used to transmit commands from

the RDS FMU to Sensor Manager. They are:

1. Msg 1: Used to notify the slave I2C node of the Message Identifier in the subsequent
Tx Msg request. This allows the Slave Node to prepare the Tx buffers with the

required data;
2. Msg 2: FMU Controlled State change request;
3. Msg 3: Weight off Wheels status;

4. Msg 4: Initialisation of Power Supply capacity. Intended to originate from the

ground station and routed through the FMUs on power application;

5. Msg 5: FMU State Change Acknowledgment. Intended for use by the FMU to

acknowledge Sensor Manager critical state changes; and

6. Msg 6: Debug command Override. Presently this is not implemented and debug
code segments were instead spliced into the code during verification activities. Fur-

ther details are provided within Chapter 5.

4.4 Software 31

Six Tx messages are identified for transmiting Sensor Manager status information back

to the RDS FMU. These are:

1. Msg 0: Sensor Manager State;

2. Msg 1: Quadrature Encoder Speed and Direction;

3. Msg 2: Internal Battery Current Usage;

4. Msg 3: Power Mode State. Identification of Selected Power Supply Source;
5. Msg 4: Built In Test Result; and

6. Msg 5: Interlock status. These include RDS Interlock Status, Debug and Commit

to Release Interlock Status.

The Host Release Controller uses many of the same software functions as the Sensor
Manager and in-turn many of the Rx and Tx messages have the same intent. Whilst the
Sensor Manager manages the Power, Quadrature Encoder, Rotor lock actuator and the
RDS side of the interlock connector, the Release Controller manages the same type of
power controller, three servos for release, lock/unlock and connector extension and the

Host side of the interlock connector.

The Host Release Controller has 5 each of Rx and Tx messages. In summary Rx messages

are:

1. Msg 1: Used to notify the slave 12C node of the Msg Identifier in the subsequent
Tx Msg request. This allows the Slave Node to prepare the Tx buffers with the

required data;
2. Msg 2: FMU Controlled State change request;
3. Msg 3: Weight off Wheels status;
4. Msg 4: RDS Functional State; and

5. Msg 5: Debug command Override. Presently this is not implemented and debug
code segments were instead spliced into the code during verification activities. Fur-

ther details provided within Chapter 5.

4.4 Software 32

Release Controller Tx messages are:

1. Msg 0: Sensor Manager State;
2. Msg 1: Host Battery Supply Amount;
3. Msg 2: Power Mode State. Identification of Selected Power Supply Source;

4. Msg 3: Built In Test Result; and

5. Msg 4: Interlock status. These include Host Interlock Status, Debug and Received

Commit to Release Interlock Status.

Three sets of discrete signals are critical to operation, safe carriage and release, refer
Appendix I Table 7. These are the Host Interlock and RDS Interlock discrete and the
Commit to Release. All three are active LOW so that, should the InterConnector separate
causing loss of connection, (which may cause signals to float), the state of each interlock
would not be seen as valid active signals. The Host Interlock discrete pins are earthed
within the RDS and vice versa the RDS Interlock discrete pins are earthed within the
Host RPAS. Connection of the Host to RDS through the Interconnector, mates the two

interlocks for their respective Sensor Manager and Release Controller function.

The Commit to Release discrete signal originates from the RDS Sensor Manager when
Sensor Manager determines that the RDS FMU and itself are in the correct state for
release. Should a request to Assert the Commit to Release discrete come from the RDS
FMU before the correct timeframe, the Sensor Manager causes a BIT Fail event to oc-
cur and the Release Process is halted until recovery action is undertaken. The Release
Controller senses the assertion of the Commit to Release and notifies the Host FMU of
overall readiness for release. Similarly, should the Release Controller sense the assertion
of the Commit to Release in the wrong sequence of Release, the Release process is halted

and the system must re-initialise the Release States within all four processors.

4.4.2 Software Design

To achieve the system architecture of Figure F.1 the Software Design and Implementation

conforms to the State Diagrams shown within Appendix F. Each of the four processes

4.4 Software 33

have independent functional allocations, though are tightly coupled to achieve RDS safe

carriage and release.

The following describes the functional elements that have been completed within this
project so far. These elements relate to the Sensor Manager and Host Release Controller.
Appendix H contains the source listings for both units. Those software classes that are

the same in both units are not repeated within the Host Release Controller Listing.

The software is based upon the Arduino sketch and associated libraries. The main pro-
grams are SensorManager.ino and HostReleaseController.ino. These sketches include in
the remaining C++ classes that complete the functionality. These sketches define the
structure of NilRTOS threads, semaphores and Task Control Blocks and the rates and
sequence of rate based functionality at 10Hz, 5Hz and 1Hz intervals. The sketches con-
figure the usage of interface pins and establish the I12C message buffer system. Interrupts

that manage the I2C communication are also first enabled with these sketches.

The Commander class inherits the functions of StateMachine, Power and Interface classes
to effect overall functional control of the unit. The Commander class contains the func-
tionality that is executed at the 10Hz, 5Hz and 1Hz rates and includes all sequence logic

necessary to achieve the State Machine defined by Figure F.5.

The Commander class implements the Quadrature Encoder speed measurement algo-
rithm, 4.1 presented within (Petrella & Tursini 2008). This iterative algorithm uses a

mix of time and frequency measurements for accurate speed measurements.

AN 60

0 = L
Z:T’sc,acc + Z:jjhfl - ETh Np

[r/min] (4.1)

This algorithm allows the observation window to be extended to give accurate measure-
ments at low speed, critical to the start-up sequence of the rotor head. Importantly the

one algorithm can be used for low and high speed measurements.

The time based measurements required within this algorithm are achieved through the
use of the RTOS. An observation window of 100msec was selected which matches the
highest task rate. As the ATmega328P does not have a division instruction, fixed point
calculations were undertaken within the implementation. When first implemented, the

fixed point algorithm measurements showed a consistent 4.5

4.4 Software 34

The StateMachine class contains all necessary functionality to change the current func-
tional state, including validation that the requested target state is a valid transition from
the current state. StateMachine functionality is called when State changes are attempted.
The State change validation process uses a network graph adjacency list, which represents
all of the valid and invalid StateMachine transitions. Should an invalid state change be

attempted, StateMachine functionality causes a Built in Test fault to occur.

The Interface class contains attributes and methods that manage the discrete signals to

and from the Host Interconnect.

The Power class manages the Power Controller. Power methods include power supply

selection, internal battery capacity measurement and current fault detection.

The BIT class undertakes and records current BIT results, either at the time of an asyn-
chronous event like the above Invalid State change or at 1Hz. BIT results are maintained

and presented to the 12C interface when changed.

The I2CBuffer class receives and prepares communication for the I2C interface. All classes
that have status information to be sent to the FMU call on methods within the I2CBuffer

class to format and buffer the information for transmission.

The Rotor blade conformal lock / unlock is achieved through use of methods within
the ServoTimer2 library. This is an open source library which was modified slightly to

integrate with the RTOS, NilRTOS.

The Release Controller uses the same set of classes to achieve its requirements, though
most are modified due to alternate state sequence or interface needs. The Commander
includes a software debounce algorithm to assist the action of a ground operator to attach

the RDS to the Host RPAS. Three servos are now managed by the Release Controller.

4.4.3 Software Operation

On power application all platforms initialise to the Initialise State. All variables and
interfaces are established to known initial conditions. For example, the Release Controller
ensures the RDS suspension hook is closed and locked and the Sensor Manager Commit to

Release signal is not asserted. The Release Controller, fig:RDSStateDiagramHostRC will

4.4 Software 35

then immediately transition to the PackageCheck State. The Release Controller waits
within the PackageCheck State until it detects Ground operator intervention through
depression of the Load switch and confirmation that the Host RPAS is on the ground
via receipt of Weight on Wheels by a Host FMU message. To load an RDS onto the
Host RPAS, the Release Controller must first unlock then open the suspension hook.
The Release Controller then confirms RDS connection through detection of the Active
LOW Host Interlock discrete and initiates closure of the suspension hook and re-locking
the safety actuator. The Host FMU meanwhile, Figure F.2, will stay in the Initialise
State until the Release Controller reports its transition to the PackageCheck State. The
Host FMU will then transition and wait in the HRCReady State until confirmation that
the RDS is connected and suspension hooks closed and locked. The Release Controller
enables Host DC supply through the Interconnect and reports an RDS is connected to
the Host FMU. The Host FMU then transitions to the PackageConnected State and will

wait therein until the RDS is to be tasked with a Ground Target location.

Before connection to the Host RPAS the RDS local power supply is turned on via external
switch. The RDS FMU and Sensor Manager initialise to the Initialise State, refer Figures
F.4 and F.5 respectively. Similar to the Host FMU, the RDS FMU will remain in the
Initialise State until the Sensor Manager reports transition to the Prepared State. The
Sensor Manager transitions to the Prepared State on detection of the RDS Interlock Active
LOW due to connection to the Host RPAS. Any subsequent loss of this RDS Interlock
signal outside of the ReadyConfirm or ReadyRelease States will cause the Sensor Manager

to report a BIT Failure and transition to the BITFail State.

On notification that the Sensor Manager has transitioned to the Prepared State the
RDS FMU will transition to the TransferReady State and awaits Ground Target tasking

transfer to start from the Host FMU.

At the culmination of transferring and validating the tasking information, the RDS and
Sensor Manager will be at the Tasked and ReadyConfirm States whilst Host FMU and

Release Controller will be at Tasked and PackageConnected (PowerOn) States respectively.

Within the ReadyConfirm State the Sensor Manager commands and validates the swap-
ping the source of power supply from External to Internal and ensures the Commit to
Release is not asserted. Should either action fail, the Sensor Manager will cause a BIT

Fail event and its State is transitioned to BITFail. All platforms would follow suit until

4.4 Software 36

the BIT Fail reason is cleared.

On receipt of the external RDS Release Command from the Operator Ground Station
the Host FMU dispatches to the RDS FMU a ReadyRequest command. The Host FMU
transitions to the ReadyConfirm State and waits therein until the Release Controller

reports that it has transitioned to the ReleaseConsent State.

Receiving the ReadyRequest command from the Host FMU causes the RDS FMU to
command the Sensor Manager to the ReadyRelease State. Given no BIT Faults exist
the Sensor Manager would transition to the ReadyRelease State wherein the Commit
to Release discrete is asserted to the Host Release Controller. Whilst in the ReadyRe-
lease State the Sensor Manager continues BIT Checks at 1Hz. Detection of BIT Failure
would immediately cause the Sensor Manager to transition to the BITFail State and the

invalidation of the Commit to Release signal.

Successful transition of the Sensor Manager to the ReadyRelease State allows the RDS
FMU to transition to its ReadyRelease State which is reported to the Host FMU and
in-turn to the Release Controller. It is the independent function of the Release Controller
that now confirms concurrent assertion of the Commit to Release discrete and that the
RDS FMU current State is ReadyRelease. When concurrent assertion occurs, the Release
Controller State transitions to ReleaseConsent. Whilst in the ReleaseConsent State the
lock/unlock safety is physically removed from the suspension hook actuator. The Host
FMU now transitions finally to the ReadyRelease State and awaits there until the RPAS
moves to the release point. It is during this final ReleaseConstent period that the hazard of

inadvertant release is now exposed due to the suspension hook safety unlocked condition.

When finally at the release point, the Host FMU transitions to the ActionRelease State
and commands the Release Controller to open the RDS suspension hooks. One second
later the Release Controller determines if the RDS has actually parted from the Host
and determines Gone or Hung status. A Hung status will be where the RDS has not
fallen away for some reason. Following Hung/Gone determination the suspension hooks

are again closed and locked.

At the ReadyRelease State the Sensor Manager is polling the RDS interlock discrete at
10Hz. Detection of transition to open circuit condition, transitions the signal to HIGH due

to pull-up resistance to 5V DC. This transition signifies separation from the Host RPAS

4.5 Critical Design Analysis 37

and the Sensor Manager transitions to the Separation State. Within the Separation state
the Sensor Manager suspends further BIT, enables the Quadrature Encoder interrupts and
initiates a one second timer to allow for a period of separation before deploying the rotor
blades. The RDS FMU is notified of release via the transition of the Sensor Managerto
the Separation State. On timeout of the one second timer, the Sensor Manager transitions
to the Deploy State and initiates deployment of the RDS rotor blades by actuating the
rotor unlock servo. The Sensor Manager measures and reports the Rotor speed until the

RDS FMU commands the transition to the PowerDown state.

On detection of Sensor Manager Deploy State transition, the RDS FMU transitions im-
mediately to its Deploy state. Its role is to manipulate the collective pitch of the rotor
to spin-up the rotor in the right direction until a nominal rotor head speed is confirmed.
The RDS FMU tranistions to MidCourse State and navigates to the required ground task
point using a balance of the kinetic energy whilst retaining sufficient energy to undertake
a final flare manoeuvre. When an altitude limit is breached the RDS FMU transitions to
the Flare State and initiates minimisation of vertical velocity through the flare manoeu-
vre before ground impact. On detection of ground impact the RDS FMU commands the

Sensor Manager and itself to PowerDown.

Abort conditions are supported by the design during pre-release phases. Abort transitions
the Host and RDS FMU units back to TransferReady whilst the Release Controller and

Sensor Manager return to PackageConnected(Power On) and Prepared States respectively.

4.5 Critical Design Analysis

3D CAD modeling provided significant opportunities to manipulate alternate design so-
lutions, though the learning curve to achieve simple tasks was much more extensive than
originally planned. So too was the translation of a 3D model to reality. The selection
of wall thicknesses, even though utilising tool functionality to calculate proposed ressul-
tant weights, caused significant weight increases when reality did not match modeling
techniques. Test runs could have been attempted in order to validate the modeling and

manufacturing process before final designs completed.

A major lesson to remember is that co-ordination of external manufacturing agencies

takes time. Availability of material and skilled personnel and the general sequencing

4.5 Critical Design Analysis 38

of prototype development caused significant impact to moving to the next stage in this
project. An issue not lost on the author as alternate plans needed to be more thought

through to enable work to continue on other facets whilst the delayed facet was resolved.

The decision to position the Sensor Package above the rotor blade may have simplified
the measurement of Rotor head angular velocity but it introduced significant constraints
and iterations of design. The nature of testing which is described in a later Chapter
on verification identified a significant flaw in the Sensor Platform and Rotor top rest
design. Further, the design idea of routing wires through the spindle may seem reasonable,
however, the manufacturing capabilities required to bore a 3mm hole through a 5mm rod
150mm long is significant and not considered by the Author when making the original
design decision. The alternate use of mixing 5mm OD x 3mm ID carbon fibre tubing
with the base of the spindle succeeded in solving that problem however introduced the

weakness in the Sensor Platform / Rotor Head design.

In regards to the electrical design another flaw detected during verification was the critiical
decision to use the TLC4353 Ideal diode as the power controller. Though expecting to
simplifying the method of control and parts count, a basic flaw in design was to not take
into account pass through current due to the N-Channel MOSFET body diodes when
the output was disabled. Though the Power Controller software interface expected power
to be removed, the body diodes allowed power to remain present causing verification
failures and the basic inability to turn off supply when commanded. A more appropriate
alternate would be the use of P-Channel and N-Channel MOSFET load switches with
minimal additional circuitry to provide the BIT status functionally the original design

requires.

Developing and co-ordinating the manufacturing of the printed circuit board (pcb) de-
signs provided the ability to tailor the circuit specifically to the need both in size and
functionality. The process of pcb manufacturing can lead to implementation errors that
are difficult to detect until the completed pcb is returned. The Author recognises that a
detailed review of pcb design tool reports could have assisted detecting the common power
rail anomalies that required circuit repair after the completion of stuffing the electronic

components onto the board.

Achieving successful software design and development, within a finite agreed schedule, is

a constant learning lesson for the Author. At the onset of this project, the considered

4.5 Critical Design Analysis 39

timing to achieve software development for all units was thought to be achievable. Life
has many ways to intervene and the most appropriate action is to re-plan and progress
with realistic goals. The two units, Sensor Manager and Release Controller, completed
in this project’s timeframe have in the most part been verified to achieve the established
System Requirements. There is realistically a significant amount of work to complete the

overall project though.

Within the detail of the I2CBuffer logic, although the implementation uses synchronisa-
tion flags to manage validity of data between the FMU and Sensor Manager or Release
Controller, a late anomaly recognised during verification was the need for double buffering
of this message data to eliminate race conditionsm. A new software class, MsgBuff, in-
cluded within Appendix H was written using the double buffer algorithm identified within
(Huang, Pillai & Shin 2002), however insufficient time was available to incorporate the

class through inheritance within the I2CBuffer class.

4.6 Chapter Summary 40

4.6 Chapter Summary

A prototype Rotary Deceleration System has been designed and manufactured using
plastic 3D printing and machined metal. The resultant design does not yet satisfy all the
established System Requirements, though this chapter disclosed the software design of the
four units (Host FMU, RDS FMU, Sensor Manager and Release Controller) that could
satisfy safe carriage and release of the RDS at the required release point. Finally, a critical
analysis was undertaken discussing the identified flaws in the design and implementation

processes and for some, possible corrections.

Chapter 5

Verification

5.1 Chapter Overview

This chapter describes the development of a ground test facility useful to undertake dy-
namic lift and flare verification activities. It further describes the minimal set of system
tests that verify a number of System Requirements. Finally a short critical analysis of

the test facility design is undertaken.

5.2 Verification Test Facilities

A test facility has been designed, based upon (Slaymaker & Gray 1953) and built to
provide for prototype verification activities. The design allows capability that can impart
an adjustable angular velocity to the rotor head and to allow autorotation tests within

the vertical dimension, being constrained laterally.

As defined within the preliminary design section the rig is to be attached to a building

wall to provide overall rigidity.

As access to a wind tunnel of sufficient size was not feasible during this project, the overall
intention was to utilise this test rig to determine lift versus pitch and flare characteristics

in an informal manner. The design layout is seen within Figure 5.1 for the lift testing.

The higher flare tests were to extend the facility as in Figure 5.2. Figure 5.3 shows the

5.2 Verification Test Facilities 42

Figure 5.1: Ground Test Lift Analysis Rig

completed test facility during a test run.

The Test rig design includes:

1. A vertical spine, adjustable using three 2.1m segments,
2. A top fixed horizontal drive and guide wire attachment beam,

3. A lower horizontal support beam, adjustable in the vertical plane from the base up

to the upper beam,
4. A base, and

5. Vertical guide wire between the upper support beam and base that passes through

the RDS and lower support beam.

The vertical spine, upper and lower beams are made from tubular aluminium 50x50mm.
The vertical spine is built up in three segments each 2.1m, whilst the two horizontal beams
are of sufficient length to maintain the RDS at a distance allowing for complete rotation
clearance of the RDS rotor blades. At the top of the upper segment, braces are included

to attach the top horizontal support / drive beam and to provide for lateral stabilisation

5.2 Verification Test Facilities

43

Figure 5.2: Ground Test Lift Analysis Rig

Upper Beam and Drive Unit #=Ina

Figure 5.3: Completed Ground Test Lift Analysis Rig, Ian Saxby 2014

5.2 Verification Test Facilities 44

Figure 5.4: Upper Beam showing pre-load drive unit, Ian Saxby 2014

of the spine against a building wall. The adjustable height of the rig is setup depending
on the use of the facility. The spine is designed to be supported at the base and upper
end to allow the lower horizontal supprt beam to travel the full extent of the spine during
the autorotation test cases. The extreme top of the rig spine is attached to guy ropes

similar to radio mast fixtures to fix the rig vertically.

The top horizontal drive beam, includes the drive battery, Electronic Speed Controller
(ESC), A Redback 91 size Brushless DC (BLDC) motor, pre-load rotary drive mechanism
and Guide wire attachment point. When required the BLDC spins the pre-load rotary
drive through a belted drive train at a ratio of 5:1. The pre-load rotary drive, as shown
in Figure 5.4, uses a series of four metal wire fingers to impart the rotary motion onto
the rotor head from the drive motor. The expectation is that the drive fingers allows
for small vertical movements of the RDS during lift tests, and unimpeded downward

movement during autorotation tests once the lower support beam is dropped away.

The Guide wire is passed up through the centre of the rotary drive mechanism and held

centred to the rotary bearing, Figure 5.5.

The lower horizontal support beam holds the weight of the RDS during test activities,

5.2 Verification Test Facilities 45

Figure 5.5: Drive Unit Engagement fingers and Guide wire, Ian Saxby 2014

Figure 5.6. This support beam is restrained to the vertical spine by a system of wheels
and bearings and is vertically adjustable via the use of rope and pulley system tied off at
the base. A final expectation of the design was to include a load cell on the lower support
beam to measure impacts of rotor head speed and collective pitch settings, however, this

portion of the design was not completed.

Finally, the rig has a base that positions the vertical spine and includes a pulley and rope
tie off cleat that holds the lower horizontal support beam at any desired height, Figure
5.3.

At the shortest length of 2.1m the test rig is used for lift and collective pitch adjustment
testing. When using additional segments (giving heights 4.2 to 6.3m) the rig can be used

to undertake Autorotation flare tests.

5.3 Verification Activities 46

Figure 5.6: (a)Lower Beam Back View. (b)Lower Beam Side View.

5.3 Verification Activities

The verification of Release Controller and Sensor Manager software functionality was
achieved through stub tests of functions. Integrated testing of the overall State Machine
was achieved by splicing debug code into the 1Hz rate. This debug code initiated state
transition sequence changes allowing verification of the interlock discrete signal transi-
tions. This debug functionality allowed initiation of both normal and off-normal state
sequence transitions at defined time steps. The time steps and target State is modified
on multiplies of the 1Hz tick and provides verification evidence of a combination of timed
automated or manual discrete input test inputs. Using this test sequence methodology

allowed rotor angular velocity and rotor lock / unlock Servo control verification.

An example of the code sequence is shown in Listing 5.1. The sequence transitions
through the Sensor Manager normal state machine sequence at the 4, 8 and 60 second
marks. The gap between 8 and 60 seconds allows for test operator intervention to remove

the RDS Interconnect discrete to confirm transition to the Deploy and subsequent states.

Listing 5.1: The Sensor Manager debug sequence.

5.3 Verification Activities

47

if (RetrieveState () == PREPARED)

{
if (bDebugFirstPass)

bDebugFirstPass = false;
CountlHz = 0;

}
if (RetrieveState () >= PREPARED)
Count1lHz++;
if (CountlHz = 4)
{
if (RetrieveState () == PREPARED)
SetState (READYCONFIRM) ;
bDebugFirstPass = true;
}
else

CountlHz = 3;
}
if (CountlHz = 8)
SetState (READYRELEASE) ;
bDebugFirstPass = true;

if (CountlHz = 60)

if (RetrieveState () = DEPLOY)

SetState (POWERDOWN) ;
bDebugFirstPass = true;
}
else
{
CountlHz = 10;
}

}

if (CountlHz > 61)

bDebugFirstPass = true;
CountlHz = 61;

}

else
CountlHz = 0;

5.4 Critical Analysis of Verification Facilities 48

The wiring loom interconnectivity was verified by pin to pin resistance checks using a
multimeter. Once all pins connections were verified power checks were undertaken with-
out the power controller or FMU / Arduino boards connected. Next the power supply,
power controller and Arduino boards were connected and the debug 1Hz sequence of
State transitions executed to confirm internal and external power supply commands and

resultant expected status information.

The Quadrature Encoder algorithm and associated quadrature sensors were tested using
an combination of test input square wave and Salae Logic Analyser to confirm timing of

input signal compared to output rotor angular velocity. A constant 4.5

5.4 Critical Analysis of Verification Facilities

In implementing the test rig a number of improvements are considered necessary. The
first being to incorporate a method of measuring the drive mechanism angular velocity.
This would eliminate the need for a hand held speed measuring device which necessitated
the physical aiming of the speed detection device at a close proximity to the spinning
rotor blades. Further, inclusion of automation would enable recording of velocities to

allow comparative validation of the angular velocities detected by the RDS.

The second improvement relates to removing the bowing induced into the rig spine due to
guide wire tension. For example, in using a minimum height 2.1m spine, when applying
sufficient tension onto the guide wire the spine and top fixed horizontal drive beam bend
enough so as the guide wire no longer passed central to the rotor drive bearing as shown in
Figure 5.5. The effect of this is that the guide wire can be abraded or a lateral oscillation
can be induced into the guide wire and therefore the RDS during tests. This lateral effect

is quite significant and is further exacerbated by the third area for improvement below.

The third improvement focuses on the rotor pre-load drive mechanism. The design out-
come included a 5mm separation between the inside of the drive fingers and the extremity

of the RDS Sensor Assembly, refer Figure 5.4.

This gap was expected to be sufficient to allow minor vibration / lateral oscillations of
the RDS during pre-load drive use. In undertaking testing it was noted that due to

unbalanced rotor blades or the lateral movements caused by the bow discussed above,

5.4 Critical Analysis of Verification Facilities 49

the lateral space to the drive fingers is insufficient and the fingers impact the Sensor
Assembly. This impact causes a dragging induced rotation force to the Sensor Assembly
around the rotor axis. As experienced in the testing phase, this induced rotation force
imparts excessive forces through the grub screws to the carbon fibre rotor spindle. This
force was of such magnitude that the carbon fibre was damaged and the assembly was
able to rotate. The immediate and serious impact due to this failure mode is that the
Quadrature Encoder loom is twisted around the guide wire sheath to tehe point of failure
in a matter of seconds. Additionally, the rotor head was then also free to travel upwards off
the axle. There was insufficient time to re-loom to continue testing with the Quadrature

Encoder so the platform was removed for further tests.

5.5 Chapter Summary 50

5.5 Chapter Summary

This chapter summaries the development and resultant manufacturing of a ground based
test rig. The chapter identified the verification testing that has been undertaken within

the project and also critical corrections necessary for further use.

Chapter 6

Conclusions and Future Work

6.1 Conclusion

This project attempted to design and prototype a device that can control and decelerate
a package using an active autorotation technique from the rotary helicopter environment.

The project outcomes satisifed many of the challenging design issues though many remain.

The project provided the Author an insight into the 3D CAD modeling tools available and
the experience of translating the resultant hardware physical design into reality through
3D printing and metal lathe work. The software for the two independent controller
units is mature though additional work is still required to complete implementation and

verification.

The project closes with a strong design of the physical components required to allow the
deployment of conformally constrained rotor blades and the Software State Machine that

satisfies many of causes that underpins the identified system safety hazard.

6.2 Achievement of Project Objectives
The following objectives have been fully or partially addressed:

1. Research rotorcraft theory of flight.

6.3 Further Work 52

2. Research Navigational theory, including intersystem navigational alignment.

3. Identify the applicable Australian Aviation Regulatory regime implications and ac-

count for such within subsequent design.

4. Design and construct the mechanical, electronic and software components required

to deliver the rescue package.

5. Design and construct a ground test capability to validate the proposed rescue pack-

age design.

Subordinate objectives achieved included undertaking the project development consider-

ing a safe development environment and production of a safe product.

The following objectives were either not addressed or not fully addressed:

1. Research rotorcraft mathematical modelling of flight mechanics.

2. Construct a mathematical model for autorotation considering the constrained rescue

package flight path.

3. Execute ground based testing and evaluate the resultant test outcomes.

6.3 Further Work

There remains a significant amount of work in this project from completing the Flight
Management aspects of the design State Machines through to correcting the design flaws
in the physical, electrical and software areas. The flare modeling and translation to a core
function within the RDS FMU code is also required. The complete source code developed
so far is included within this dissertation should any further development be undertaken

in the future.

References

ATA (2003), An Ezxperimental analysis of chamber effects of a 6-bladed flapped autorota-
tional aerodynamic decelerator, number 2003 in ‘2143’, American Institute of Aero-

nautics and Astronautics.

Aircraft, S.-., Dev, S. & Committee, S. A. (1996), Guidelines and Methods for Conduct-
ing the Safety Assessment process on Civil Airborne Systems and Equipment, SAE

International.
Alex (2007), ‘2.9 — hungarian notation’.

CASA (2002), CASR 101 - Unmanned aircraft and rocket operations, Civil viation Safety
Authority.

CASA (2014), NPRM 13090S - Remotely Piloted Aircraft Systems, Civil viation Safety
Authority.

de la Cierva, J. & Ray, J. G. (1931), Wings of tomorrow: The Story of the Autogiro,

Brewer Warren and Putnam.

Dupr, N., Martin, J.-F., Degryse, J., Fernandez, V., Soudan, P. & Guyomard, D. (2010),
‘Aging of the lifepod positive electrode interface in electrolyte’, Journal of Power

Sources 195(21), 7415 — 7425.

Grewal, M., Weill, L., & Andrews, A. (2007), Global Positioning Systems, Inertial Navi-

gation, and Integration, second edition edn, Wiley.

Groves, P. D. (2003), ‘Optimising the transfer alignment of weapon ins’, The journal of
Navigation 56(02), 323-335.

Huang, H., Pillai, P. & Shin, K. G. (2002), ‘Improving wait-free algorithms for interprocess
communication in embedded real-time systems’, Ann Arbor 1001, 48109-2122.

REFERENCES 54

Johnson, W. (1977), Helicopter optimal descent and landing after power loss, TM 73244,

Ames Research Center, National Aeronautics and Space Administration.

Lambermont, P. M. & Pirie, A. (1959), Helicopters and Autogyros of the World, Philo-

sophical Library.

Petrella, R. & Tursini, M. (2008), ‘An embedded system for position and speed measure-
ment adopting incremental encoders’, Industry Applications IEEE Transactions on

44(5), 1436-1444.

Slaymaker, S. E. & Gray, R. B. (1953), Power-off flare-up tests of a model helicopter
rotor in vertical autorotation, Technical Note 2870, National Advisory Committee

for Aeronautics.

States, U. (1993), RTCA, Inc., Document RTCA/DO-178B [electronic resource], U.S.

Dept. of Transportation, Federal Aviation Administration [Washington, D.C.].

Wernicke, R. (1959), Preliminary tests of model spacecraft rotor landing system, Technical

report, Bell Helicopter Coroporation.

Appendix A

Project Specification

56

For:

Topic:

Supervisors:

Sponsorship:

Project Aim:

Program:

ENG 4111/2 Research Project

Project Specification

IAN SAXBY

REGULATING RESCUE PACKAGE DESCENT THROUGH CONTROLLED
AUTOROTATION

Mark Phythian

Faculty of Health, Engineering & Sciences

To design, construct and demonstrate the safe carriage,
flight and delivery through rotorcraft autorotation of a res-

cue package from an air vehicle.

1. Research rotorcraft theory of flight.

2. Research rotorcraft mathematical modelling of flight mechanics.

3. Research Navigational theory, including intersystem navigational alignment.

4. Identify the applicable Australian Aviation Regulatory regime implications and ac-

count for such within subsequent design.

5. Construct a mathematical model for autorotation considering the constrained rescue

package flight path.

6. Design and construct the mechanical, electronic and software components required

to deliver the rescue package.

7. Design and construct a ground test capability to validate the proposed rescue pack-

age design.

8. Execute ground based testing and evaluate the resultant test outcomes.

As time and resources permit:

57

1. Demonstrate, through integration testing, the maturity of design through captive

carriage testing.

2. Demonstrate safe delivery of the rescue package given a dynamic flight environment

Agreed:

Student Name:
Date:

Supervisor Name:

Date:

Tan Saxby
19 Mar 14

Mark Pythian
19 Mar 14

Appendix B

System Safety

B.1 Appendix Introduction

59

B.1 Appendix Introduction

This Appendix provides a breakdown of Safety Releated Hazard Lists with associated

Fault Treee Analyes and Safety Verification Matrix.

Impact to Property
or Human

Incorrect Target
Position

Incorrect RDS
Flight control

Figure B.1: Impact to Property or Human

Incorrect RDS Flight
control

Release outside of
Control Limits

Loss of Control

Critical Component Failure to
Failure adequately control

Released:
Too low, fast,
far away

RDS
not Ready

Flight Mechanism
Failure

Actuator Error Software Anomaly

Actuator Failure

Failure of Rotor
blade deployment

Rotor
Mechanical
Failure

Power Supply
Failure

A

Mechanical Failure

Incorrect
Requirements

Developer Error

Figure B.2: Loss of Control

uorjonpoajuy xipuaddy 1°g

09

B.2 Safety Requirements Verification Matrix

61

Table B.1: System Safety Traceability Matrix

B.2 Safety Requirements Verification Matrix

System
Design In-
Safety Re- | Allocation Implemented| Verified
corporated
quirement
Host &
SSR1 Yes No No
RDS FMU
Host &
SSR2 Yes No No
RDS FMU
Host RC &
SSR3 Yes Yes Yes
RDS SM
SSR4 RDS SM Yes Yes No
RDS Rotor
SSR5 Yes Yes Partial
Assembly
FMU open-
RDS FMU FMU No
SSR6 Yes source SM
& SM SM Yes
Yes
Invalid
State Yes | Invalid
SSR7 RDS SM Yes
Comim State -Yes

Error No

B.2 Safety Requirements Verification Matrix 62
/2\

Power Supphy
Failure

Battery Failure

Battery
Production
Fauk

Lo=s of Charge

Figure B.3: Power Failure

B.2 Safety Requirements Verification Matrix 63

Mechanical Failure

Servo
Geartrain
Failure

Figure B.4: Mechanical Failure

B.2 Safety Requirements Verification Matrix

Failure of Rotor
blade deployment

Ceployment

Servo Failure Mechanizm Failure

Airstream
retainzblades
in stowed

position

Rotor hinge Rotor locks
mechanism don't
fail= EnE3se

Figure B.5: Deployment Failure

Appendix C

System Requirements and

Architecture

C.1 Appendix Introduction 66

C.1 Appendix Introduction

This Appendix provides the overall System Requirements established for the prototype
development. Each System Requirement is identified with a Unique Identifier starting
with an R. concatenated with an increasing sequence number, (e.g. R.1). Where the
System Requirement is safety related the Safety Requirement Number is also appended

against the System Requirement Unique Identifier, e.g. R.3(SSR1).

C.2 System Requirements

C.2.1 Navigation

R.1 The System shall be capable of detection or calculation of Roll, Pitch and Yaw angular

position, velocity and acceleration.

R.2 The System shall be capable of commanded flight / navigation to a given ground

position.

R.3(SSR1) The System shall validate the specified target co-ordinates have been correctly
passed to the RDS prior to release.

R.4(SSR2) The System shall ensure the RDS release conditions are within defined limits

prior to release.

R.5(SSR3) The System shall ensure that the RDS is in a functional state appropriate for

release.

C.2.2 Power Supply

R.6 The System shall include a controllable internal power supply.

R.7 The system shall be capable of receiving power from either external or internal sources

when connected to the host Unmanned Aerial System (UAS).

R.8 The System powercontroller shall be capable of selecting between internal and external

C.2 System Requirements 67

power sources.

R.9(SSR4) The System shall verify RDS power supply availability and remaining capacity

are within correct boundaries prior to authorising release.

C.2.3 Physical

R.10 The System shall incorporate commercially available model helicopter components,

swashplate, head design and rotor blades.

R.11 The System shall include the capability to detect the direction of rotor head rotation.

R.12 The System shall include the capability to detect rotor head angular velocity within
the range of 0 to 2500 rev/min.

R.13 The System shall incorporate a folding mechanism to allow conformal stowage of

rotor blades pre deployment.

R.14 The System shall incorporate a rotor blade lock mechanism to retain the rotor blades

conformal to the sub-system body until deployed during the descent phase.

R.15 The System shall be capable of flight with a 500ml water container as payload.

R.16 The System shall incorporate a release mechanism on the host UAS to secure the

deployable sub-system.

R.17 The host UAS release mechanism shall incorporate a secondary lock mechanism that

must be disengaged to allow release to occur.

R.18(SSR5) The Rotor Deployment mechanism shall force the rotor blades into the

airstream following release.

C.2.4 Interface

R.19 The System shall be capable of detecting connection or loss of connection between

the host UAS and deployable sub-system.

C.2 System Requirements 68

R.20 The System shall communicate using UART TX/RX between the Host UAS and

deployable sub-system Flight Management Systems during carriage.

R.21 The System shall incorporate an independent discrete response indicating deployable

sub-system readiness for release.

C.2.5 Built In Test

R.22(SSR6) The System shall carry out periodic Built in Test (BIT) functions on guid-

ance, control and navigation sensors prior to authorising release.

1. State Sensors; GPS, Rate Gyros, Accelerometers,
2. Incorrect Power Supply states,
3. Power Supply current limit violations, and

4. Inadvertent release.

R.23(SSR7) The system shall include failure-detection logic and self-check software to

confirm correct operation prior to authorising release.

1. Invalid Software State changes, and

2. Communication errors.

C.2.6 Ground Test Facility

R.24 The System shall include a Ground Test Subsystem.

R.25 The Ground Test Subsystem shall be capable imparting an adjustable angular ve-
locity to the rotor head and to allow autorotation tests within the vertical dimension,

whilst constrained laterally.

Appendix D

RDS Mechanical Drawings

70

RDS mechanical drawings are included within this Appendix. Where the items were 3D
printed the diamensioning of the associated mechanical drawings are reduced in complex-

ity or removed for brevity.

92.3

o0'TE

Designed by
S1

Checked by

Approved by

Date

Date
1/01/2015

NoseView

Edition

Sheet

1/1

Figure D.1: Nose - 3D Printed

1

T

4.0

4.0

Designed by
S1

Checked by

Approved by

Date
1/01/2015

RotorTrayView

Edition

Sheet

1/1

Figure D.2: Rotor Lock Tray - 3D Printed

&

<L

Designed by Checked by
S1

Approved by

Date

Date
1/01/2015

RotorLockView

Edition

Sheet

1/1

&

Figure D.3: Rotor Lock - 3D Printed

€L

Figure D.4: Nose Joiner - 3D Printed

3 | | 1
70.0
A AA(1:1)
i
i H HH HR A R H Z4n)
RN Tl
Il [//m)
i I T / 2
\kH I }A/I}/m - Fe
<) ! x Y. J
A\ e e wasra sy iD/4L S =
\ /N j(/\ / R
L WTQTWY i | 0 P8 Z /3
~N =
IR | 3l
I [T T =1 '
A 80.3
_-I 81.3
33.5 Designed by Checked by Approved by Date Date |
s 1/01/2015
NoseJoinerCompleteView | =" | 15h/EEi
3 | |

Vi

] 4 3] 2] 1
167.50
164.50
121.16
119.96
115.00
o
o @ o
2 g 3 g
[oe]
/ [ea) o
< o
ol ©
— n
S,
$
52.50

Designed by Checked by Approved by Date Date
Ian Saxby 22/07/2014
RDS Drawing Set
. Editi Sheet
Splndle ition A /sel
| 4 3 | |

Figure D.5: RDS Spindle

alL

12.0
6.5

5.0

8.5
8.0
5.0
3.0
[
J— ____‘ 1 -
- m O
IRYCIRE
1 1 _| 1 —
0.5
Designed by Checked by Approved by o —
> 4/08/2014
BottomThrustStop Edition 1S7eei

&

Figure D.6: Bottom Thrust Stop

9L

10.0

9.0

3.0

12.0

8.0
6.5

8.0

16.0

2.5

Designed by Checked by
S1

Approved by

Date

Date

4/08/2014

LowerRest

Edition

Sheet

1/1

&

Figure D.7: Lower Rest

LL

20.4

16.0

15.0

37.0
23.0

21.0

0
— Q%
|

8.0

Designed by
S1

Checked by

Approved by

Date

Date
4/08/2014

quadratureRotor

Edition

Sheet

1/1

&

Figure D.8: Quadrature Encoder Mask

8L

13.5

r———
1 (Ep——
<7

2| 0 ly Yr——=
S| o © | | S s
I G S
S —
-
Designed by Checked by Approved by Date Date
S1 4/08/2014

RotorHeadTopRest

Edition

Sheet

1/1

&

Figure D.9: Rotor Head Top Rest

6L

2,00
¢69
Q -
Designed by Checked by Approved by Date Date
S1 4/08/2014
Edition Sheet
GPS holder N RYE

&

Figure D.10: Sensor Assembly Platform

08

Appendix E

Electrical Schematics

1 a
=
1
o 2 ==
DF3 cl
RI vee
IKI T — 3onkn s o
U3
ul S - —_ _ -
1 _Ne VDD 3 z 3 g
N VE 3 > < 3
— K Vo o
4 Ne GND
‘ACP-06T JE—
ORSTT —2 =),
1 PR
RS e | 8
En ONST2 2
o o
Qa o
g z < 5
3 S S 3
0.1uF]
o o " o
390F
s _%
0.1uF] !
@
vee (8 : VCC -
VIoUT (—~ o
3 FAULT (—2
2 GND
ACSTIT

Title

Size Number Revision
A4

Date: Jan-2015 [Sheet_of

File: N:\PVR\uni\2014ProjectProject.ddb | Drawn By:

4

Figure E.1: Schematic Battery Controller

4]

ca

<~

J5

1
2 L4 |vo
3
S_onp AT
DF13-3PH GPIASTHRIO0F

IR6
47R

Quadrature Encoder Sensor

1<
Ie}
(]
fon
2

10

=
I~}
=

s W19~
5 iND W20 ~
3 SCL W21~
3 DA W2~
2
1

1

o

BEXT

8 FAULT
SENSE
5

P1
-
¢ XD
4 XD 3
3 CCEXT 4
2 GNDEXT2 5
s] GNDEXT1
SIL6

i wWo &
3 ENDINT Wio &~
2 ST2 WII~
= ST1 WI2 S
= I Exe wiie
5 XP3 WliaQ
4 XP2 WIsE
3 XPL__ Wi6E
5 TLKIN W17
o] NTLKOT WIB <

»

Pro Mini Connector Board

Title

Size Number Revision
A4
Date: Jan-2015 [Sheet_of
File: N:\PVR\uni\2014ProjectProject.ddb | Drawn By:

1 3 4

Figure E.2: Schematic of Quadrature Encoder and Pro Mini Connector Boards

€8

84

NH
HH X
qaq
Z2899H
gqygxgHAQ
HSZ'L-d9-€L4a Sloalzlelgl
olojo|ofo o
_]9%d aNo [N _ l _ T
] 5% o &
VS _ S =
£5d VXd_INOdd_XI o = o
Z5d¥Xd WOgd Xd e %Lmio ©
1Sd NG OO TOA 9%d ° R
gd/ar 20N 554 3 ERREEN
VOS 73d — eLdigLr
T0S €3d - —
_OND 23d o X 13d TISNO
NG OOA 18d = 2 Z5d ¢ISNO
Lhdire > £5d __ INIGNI
= ¥8d IXJdNd
° = EEEEESNES
3 @ —1554 v
o3 HSZ'L-d9-€L4a
g vidivLr
=) o
L-dp- S 15d_ TOMTINI
HSZ'L-dv-€L4a g ¢} 28d _ NDITINI
¥$d aND ° o €3d Tdx3
€5d __ vads & © 78d ZdxX3
28d __10S = Z S5d €dXd
1Sd G DOA £ =8 t=T5g Paxd
LdiLr HSZ'L-d9-€14a
HGZ L-dg-€L4a
aND 554
° _ I =1 D
2 ¥Xd_NOYd_Xd £5d
5 ¥Xd WOSd X1 23d
S NG OO 13d
° oLdioLr
=3
g w
] S
g P 2 HSZ L-dv-€L4d g
2 g gz g9 UND 75d m
o] a9 ass vas £3d O
£ ol vl = ool oyl = _10S 23d <
8 222 g 7S OOR 184 &
= 0 © 6d/6r
w o [\ (]
o _|_ %) _|_ S =l
o =] [=

Figure E.3: Sensor Assembly Harness

Appendix F

RDS Software Design

This appendix contains Software Design Disclosure for the all processors involved in sat-
isfying the System Requirements allocated to the Host FMU, Host Release Controller,
RDS FMU and RDS Sensor Manager. This disclosure is focused on the Safe Carriage and
Release of the RDS from the Host RPAS and does not cover the Navigation or Guidance.

GPS /

Release Lock Unlock Extension Host Power
Compass
Actuator Actuator Actuator Supply
Sensors
T k |
UARTv& 12C * 4 Power / Gnd
Power
Host UASFMU e«——nc———> Release Controller Control # |
’_i & Status —j Contro
T Host . |
Commit to Load
UART Interlock 1 Release Pushbutton Power/Gnd
Debug l
|
Host / RDS
Inter-Connect
RDS . Power / Gnd
UART l Interlock C°MMItT0 pebug
= elease
v vy Ref v
— Control
Power
RDS FMU 12— Sensor Manager < Status
Control
———UART & I2C .
A
P Gnd
+ v + —‘ v owerl/ n
Rotor
Pitch Roll Collective Cc?r:f)a/ss Angular IT_Ztcir RDS Power
Actuator Actuator Actuator Sensors V(;Ig;tgrw Actuator Supply

Figure F.1: High Level Interconnect System Diagram

98

No Valid
HRC = Tasking

PackageConnected Package=
TransferReady

HRC = PackageCheck
BIT Failure
Package = TransferReady

TransferStarted

BIT Failure

Cmd HRC = Abort
Cmd Pkg = Abort

BIT Failure
Package !=

Package =
Tasked

Tasked

Check BIT Status X
BIT Failure

Upon External Drop Cmd:
Cmd Pkg = ReadyRequest

Abort
/ Abort J
I

BIT Fail

Confirm task from Pkg;
Cmd HRC = ReadyRelease

BIT Fail

Package = HRC = ReleaseConsent

ReadyConfirm

Send host loc and nav soln

HRC = Gone [
On Commanded Release

Cmd HRC = Release J

Figure F.2: Host FMU State Diagram

L8

PackageConnected

Discrete Input
Load false
Discrete InputLoad true

&& WonW TRUE

BIT Success

HRC BIT Failure
OR
Interlock Gone

HRC BIT Failure

FMUCmd =
HRC BIT Failure/_ PowerOn
OR
Interlock Gone FMU Cmd =
PowerOff
Host FMU Cmd =
Abort K /
HRC BgRFallum HRC BIT Failure
Interlock Gone OR Host FMU Cmd =
\ Interlock Gone Host FMU Cmd = ReadyRelease

Abort

Commit to Release

Package = ReadyRelease

Commit to Release
Gone
OR
FMU Cmd = Package = ReadyConfirm

Release

Interlock Gone

>1sec &&

Figure F.3: Host Release Controller State Diagram

88

Initial
BIT Success
&&
SM = Prepared

BIT Failure

BIT Success

BIT Failure

Check SM BIT Status

BIT Failure’

TransferStarted

When Rev Host ReadyRequest
Cmd SM = ReadyConfirm

SM = ReadyConfirm

Transfer in Progress

TransferComplete

Cmd SM = Abort

P

BIT Failure

If TaskReachable then

Cmd SM = ReadyRelease

BIT Fail

SM = ReadyConfirm

If TaskNotReachable then
Cmd SM = ReadyConfirm

SM = ReadyRelease

Abort

SM = Deploy

Abort/

/

> RotorSpinValid

LandingDetected
OR
DeployTimer > 10sec

> Altitude

< AltitudeLimit
LandingDetecte

LandingDetected
Power Off

Cmd SM =
PowerDown
Not Lande

o J

Figure F.4: RDS FMU State Diagram

68

|¢—— Othe

Power to External Set PowerOff
Quad ISR disabled

Clear Commit to Release

Check Host Interlock

Check Debug Interlock \
Host Interlock Power Off- Pkg FMU Cmd =
& OR PowerDown

Debug Interlock
Valid

SMBIT Success

BIT Check (1 Hz)
Clear Commit to Release

BIT Check (1 Hz)
Power Condition
Current Usage

Fault State

Check Host Interlock

Confirm FMU Communication

SMBIT Failure

WoffW TRUE &&
Interlock lost

Start Timer (1 sec)
Stop BIT Checks
Enable Quad Decoder ISR

FMUCmd =
ReadyConfirm

SMBIT Failure

Swap power to External

BIT Check (1 Hz)

Clear Commit to Release
Swap power to Intemal

SMBIT Failure

Clear Commit to Release

Host Interlock
Pkg FMU Cmd = broken
ReadyConfirm Pkg FMU Cmd = >

ReadyRelease Pkg FMU Cmd = Host Interlock

Abort broken \

Previous
State

Separation or Deploy

Pkg FMU Cmd =
PowerDown

Cmd RotorlLock Servo Open
Check Spin
Report RotorSpeed

\ 1cmd=

PowerDown

BIT Check (1 Hz)
Set Commit to Release

Check Host Interlock (10Hz)

o J

Figure F.5: RDS Sensor Manager State Diagram

06

Appendix G

Risk Analysis

Description of Hazard People Number | Parts of Risk Level
At risk At risk | Body
Moving rotor blades or parts impact with operator Operator 1 eyes, face, | Marginal Consequences
hands - Remote Likelihood

(this is applicable to both the ground lift and flare test rigs)

Categories Short Term Controls Long Term Controls Completion Details
Design Provide visible distance marker to identify rotor diameter footprint Nil Completed
Safety Devices Include wire cage encapsulating rotating blades at eye height Nil Not effective

Warning Devices
Procedures and Training

P.P.E.

Table G.1: Risk Management Chart for Ground Test Apparatus

¢6

Description of Hazard People Number | Parts of Risk Level
At risk At risk | Body
Personnel fall from heights during installation procedure Operator 1 Body Critical Consequences -
Remote Likelihood

Categories Short Term Controls Long Term Controls Completion Details

Design Design apparatus to be constructed at ground level and then raised Nil Design Complete

Safety Devices Roof Workers Safety Harness to be used Nil Safety Harness available
Use a ladder to access majority of work vice rooftop.

Warning Devices

Procedures and Training | Training in use of Safety harness Nil Training completed

P.P.E.

Table G.2: Risk Management Chart for Working at Heights

€6

Description of Hazard People Number | Parts of Risk Level
At risk At risk | Body
Injury sustained to hands, feet or eyes during machine work Operator 1 Body Marginal Consequences
- Remote Likelihood

Categories

Short Term Controls

Long Term Controls

Completion Details

Design
Safety Devices

Warning Devices
Procedures and Training

P.P.E.

Ensure availability of eye protection
Ensure availability of footwear (steelcapped boots)

Ensure use of appropriate tools)

Available
Available
Available and Training

Received

Table G.3: Risk Management Chart for Work Place Safety

v6

Description of Hazard People Number | Parts of Risk Level

At risk At risk | Body
Injury sustained following impact of package onto structure Operator 1 Body Critical Consequences
or personnel during descent - Remote Likelihood

Categories

Short Term Controls

Long Term Controls

Completion Details

Design

Safety Devices

Warning Devices

Procedures and Training

P.P.E.

Include safety signal authorisation prior to release
Incorporate readiness checks prior to release
Incorporate redundant power supplies

Complete testing of control algorithm

with Hardware in the Loop

Include high visibility Package colour scheme
Establish procedures for Flight Test Execution

Establish cleared boundary around target

Not Required
Not Required

Implemented

Implemented

Not Required

Not Required
Not Required

Table G.4: Risk Management Chart for Impact of package onto structure or personnel during descent

o6

Appendix H

Source Listings

H.1 Nameing Conventions 97

H.1 Nameing Conventions

The following tables from, (Alex 2007) , were used withn this project to describe the

common variable and naming conventions used within the software listings.

Table H.1: Type prefix

Type prefix Meaning Example

b boolean bool bHasEffect;

¢ (or none*) class Creature cMonster;
ch char (used as a char) char chLetterGrade;
d double, long double double dPj;

e enum Color eColor;

f float float fPercent;

short, int, long
n int nValue;
char used as an integer

S struct Rectangle sRect;
str C++ string std::string strName;
sz Null-terminated string char szName[20];

The following type modifiers are placed before the prefix if they apply:

Table H.2: Type modifier

Type modifier Meaning Example

a array on stack int anValue[10];

p pointer int* pnValue;

pa dynamic array int* panValue = new int[10];
r reference int rnValue;

u unsigned unsigned int unValue;

The following scope modifiers are placed before the type modifier if they apply:

H.1 Nameing Conventions

98

Table H.3: Scope modifier

Scope modifier Meaning Example
g global variable int g_nGlobalValue;
m_ member of class int m_nMemberValue;

static member of class int s_nValue;

H.2 Sensor Manager Listings

99

H.2 Sensor Manager Listings

H.3 The SensorManager.ino Code 100

H.3 The SensorManager.ino Code

Listing H.1: The main Sensor Manager Sketch.

x SensorManager. ino

x Created on: 27 Aug 2014
* Author: Ian Sazby

*/
#include <Arduino.h>

//#include <Wire.h> //I2C library

#include <NilRTOS.h>

#include <DigitallO .h>

// Use tiny unbuffered NilRTOS NilSerial library.
#include <NilSerial .h>

// Macro to redefine Serial as NilSerial to save RAM.
// Remove definition to use standard Arduino Serial.
#define Serial NilSerial

#include <Wire.h>
#include <NilFIFO.h>
#include <NilAnalog.h>
#include <NilTimerl .h>
#include ”ServoTimer2.h”

#include ”PinoutConfigSM .h”
#include ”QuadEncoder.h”
#include " Power.h”
#include ”BIT.h”

#include 7 I12CBuffer.h”
#include ” StateMachine.h”
#include ”Commander.h”

// FIFO of received Command Messages
NilFIFO<I2CMsgRx, FIFO_DEPTH>x pcFIFO;

//i2c settings
#define SLAVE_ADDRESS 0x33

// Task Tick Counter, initialised to 0. Range 0 to 9
uint8_t nTaskTick = 0;

// Declare global pointers to the wvarious controller objects
// These are instantiated during setup

Commander*x pcCmdr;

BIT* pcBIT;

H.3 The SensorManager.ino Code 101

// I2C Buffer Arrangements
// Establish a I2C Slave Transmission Message Buffer Class pointer
12CBuffer xg_cI2C_MsgTx;

// Setup a buffer for storing I2C Tz data for transferring to
// I2C Slave Transmission Message Buffer
[2CMsgTx g_ul2CUpdate_MsgTx;

// Setup a global buffer for initial 12C receipt before storing in
// ICP FIFO
[2CMsgRx g ul2CTemp_MsgRx ;

// Setup a global buffer for 12C dispatch for I12C to Transmit from
12CMsgTx g ul2CTemp_MsgTx ;

// declare servoTimer2 object ptr to control the Rotor lock servo
ServoTimer2* pcRotorServo;

// Global weight off wheels wvariable
uint8_t g_eWheelOff Wheels;

// Circular buffer for Omega average

uintl16_t g-nOmegaCirBuf[CIRCBUFSIZE];

// Direction of rotation, initialised to reverse.

bool g bDirCW = false;

// Direction of rotation, initialised to forward. forces two cycles
// before initiating first detection

bool g bLastDirCW = true;

// Declare and initialize a semaphore for limiting access to a region.
SEMAPHORE DECL(cSem1Hz, 0)
SEMAPHORE DECL(cSem5Hz, 0);

SEMAPHORE DECL(cSem10Hz, 0);
SEMAPHORE DECL(cSemDebug, 0);

’

N N N N

NIL WORKING_AREA (waThreadl, 96);

// Declare thread function for thread 1.
NIL_THREAD(Threadl, arg)

{

for (uint8_t i = 0; i < NUMDECBUF; i++)
{

}

// Wait for Ready State to be entered before initialising Quad
// Decoder Interrupts
nilTimerlStart (TSC_PERIOD);

g-DecBuf[i].u-nDeltaN.n32DeltaN = 0;

while (true)

H.3 The SensorManager.ino Code 102

{

// Ezecute 10Hz Commander related functionality
pcCmdr—>Task10Hz () ;

// Increment the Task Tick counter
nTaskTick++;

// Now determine if slower Tasks require to be run in this

// slot
switch (nTaskTick)

{

case 4: // every 10th tick (at time slot 4) = 1 Hz
{
// Signal 1Hz Task to run
// Release the Semaphore but not Reschedule RTOS
// until end

nilSemSignall(&cSem1Hz);
break;
}
case 2:// every 5th tick (at time slots 2 and 7) = 5 Hz
case T:
{
// Signal 5Hz Task to run
// Release the Semaphore but not Reschedule RTOS
// until end
nilSemSignall(&cSem5Hz);
break;
}

case 10: // on the 10th tick reset TaskTick count to 0

{
nTaskTick = 0;

break;

}

//DEBUG Code

}

//

if (pcCmdr—>RetrieveState () = DEPLOY)
{
// Enable the Debug Code
nilSemSignall(&cSemDebug);

}

// Sleep so lower priority threads can ezxecute.
nilTimer1Wait ();

// Declare a stack with 64 bytes beyond context switch and
// interrupt needs
NIL WORKING_AREA (waThread3, 96);

H.3 The SensorManager.ino Code 103

// Declare thread function for thread 2.
NIL. THREAD(Thread3, arg)

{

// 5 Hz Task

while (TRUE)
{

// Wait for notification to run task
nilSemWaitTimeout(&cSem5Hz, TIME_INFINITE);

// Ezecute 5Hz Commander related functionality
pcCmdr—>Taskb5Hz () ;

}

//

// Declare a stack with 64 bytes beyond context switch and

// interrupt needs
NIL_WORKING AREA (waThread4, 96);

// Declare thread function for thread 4.
NIL_THREAD(Thread4, arg)

{

[/ KR R KKK SR R KKK SR R KKK R R K KK SR R KKK SR R K KK SR R KK KK oK R K KK SR R K
// 1 Hz Task

/3 sk sk sk sk sk sk skttt ok kKKK KRR K R Sk sk sk sk sk sk sk sk sk stk ok kKK K KRR KR R R Sk ok sk ok sk ok Sk KKK K K ok K K K
while (TRUE)

// Wait for notification to run task
nilSemWaitTimeout(&cSem1Hz, TIME_INFINITE);

// Ezecute 1Hz Commander related functionality
pcCmdr—>Task1Hz () ;

//pcBIT—>BITCheck () ;

}
//

// Declare a stack with 64 bytes beyond context switch and
// interrupt needs
NIL_WORKING_AREA (waThread5, 64);

// Declare thread function for thread 4.
NIL.THREAD(Thread5, arg)

{

// Wait for notification to run task
nilSemWaitTimeout(&cSemDebug, TIME_INFINITE);

systime_t waketime = nilTimeNow ();

H.3 The SensorManager.ino Code

104

N
*

EOE

*

*/

NIL.THREADS_TABLE BEGIN ()
NIL_ THREADS TABLE ENTRY
NIL.THREADS_TABLE_ENTRY
NIL_ THREADS TABLE ENTRY
NIL.THREADS_TABLE ENTRY

uint16_t nAvgOmega = 0;

while (TRUE)
waketime += MS2ST(1000);
nilThdSleepUntil (waketime);

if (IsDebugMode ())

nAvgOmega = g_nOmegaCirBuf[0];
for (uint8_t i = 1; i < CIRCBUFSIZE;
{

}
nAvgOmega /= CIRCBUFSIZE;

nAvgOmega += g nOmegaCirBuf[i];

Serial.print (F(” _AvgW:.7));
Serial.print (nAvgOmega) ;
Serial .print (F(”.Dir:.7));
if (g-bDirCW)
{

Serial . print (F(” .CW."));
}
else
{

Serial . print (F(” .CCW."));
}

Serial . print (waketime);
Serial . println ();

Threads static table, one entry per thread.
determined by its position in the table with highest priority first.

These threads start with a null argument. A
null to save RAM since the name is currently

NIL.THREADS TABLE_END ()

//

(

(NULL, Threadl, NULL, waThreadl, sizeof
(NULL, Thread3, NULL, waThread3, sizeof
(NULL, Thread4, NULL, waThread4, sizeof
(NULL, Thread5, NULL, waThread5, sizeof

i++)

A thread’s priority is

thread ’s name s also
not used.

waThreadl))
waThread3))
waThread4))
waThreadb))

e N N

H.3 The SensorManager.ino Code 105

void PinOutlnitialisation (void);

void setup ()

{

// Instantiate the I2C Slave Transmission Message Buffers
g_cI2C_MsgTx = new I2CBuffer ();

// Instantiate the Servo Controller Object
pcRotorServo = new ServoTimer2;

// Initialise uC MiniPro Input Output Pin configuration
PinOutlInitialisation ();

// Instantiate the FIFO buffer
pcFIFO = new NilFIFO<I2CMsgRx, FIFO DEPTH>:

// Setup Serial Communication
Serial.begin (9600);

Serial . println(””);
Serial.println (” _RESTART.”);

// initialize i2c as slave
Wire . begin (SLAVE_ADDRESS) ;

// define callbacks for i2c¢c communication
Wire.onReceive (receiveData);
Wire.onRequest (sendData) ;

// Instantiate the Commander
pcCmdr = new Commander;

// start kernel
nilSysBegin ();

//

// Loop is the idle thread. The idle thread must not invoke any
// kernel primitive able to change its state to mot runnable.
void loop ()

{
}

//12C callbacks

// callback for received command
void receiveData(int byteCount)

{

int indx = 0;

H.3 The SensorManager.ino Code 106

uint8_t nOverflow;
[2CMsgRx* psFIFOSlot ;

while (Wire. available ())
{

// Ensure no Msg Received is longer than largest ezpected
if (indx > MAXMSGRXLENGTH)

{
// Create failure condition here
// Set the Receive Buffer Owverflow Attempted BIT flag
pcBIT—BITFlagUpdate (RXBUFF OVRFLW, true);
// Break out of Receive process
break;

}

else

{
// initial fast receipt of I2C Command Data
g-ul2CTemp_MsgRx . g_nRxAllData[indx] = Wire.read ();
indx++;

}

}

if ((indx > 0) && (indx <= MAXMSGRXLENGTH))
if (g.ul2CTemp_-MsgRx.g nTypelRxMsgNo = SETUP_I12C_SEND_CMD)

// Retrieve the requested message in readiness for subsequent
// SendData () activity
g_cI2C_MsgTx—>get TxMessage (\

(uint8_t)g-ul2CTemp_-MsgRx.g nTypelRxEnumValue ,

&g ul2CTemp _MsgTx) ;

else

// Store Received 12C Command into FIFO

// Get a free FIFO slot.
psFIFOSlot = pcFIFO—>waitFree (TIMEIMMEDIATE) ;

// Only store if free space. else set Bit Fail condition
if (psFIFOSlot != 0)

{
// Store message into FIFO.
(xpsFIFOSlot) = g ul2CTemp_MsgRx;
// Signal thread data is available.
pcFIFO—>signalData ();

}

else

H.3 The SensorManager.ino Code 107

// Set the Receive Buffer Owverflow Attempted BIT flag
pcBIT—>BITFlagUpdate (FIFO.OVRFLW, true);

}
}
}

// callback for sending data wvia I12C
void sendData ()
{
Wire. write (g-ul2CTemp_-MsgTx. g nTxAllData, \
g ul2CTemp_MsgTx .nWdCount) ;

}

void PinOutInitialisation ()
{
// Initialisation for Quadrature Decoding
// GP1A51HRJOOF has internal pull—up resistor
pinMode (PIN.CHANNEL_A, INPUT);
pinMode (PIN.CHANNEL B, INPUT_PULLUP);

// External Power Enable Output Pin /4
pinMode (PINPOWERENB EXT, OUTPUT);
// Internal Power Enable Output Pin 5
pinMode (PINPOWERENB_INT, OUTPUT);

// Attach the PWM servo class to the Rotor Lock Ouput pin 6
// attach the given pin to the next free channel, sets
// pinMode, returns channel number or 0 if failure

pcRotorServo—>attach (PINROTORLOCKPWM) ;

// Close the Rotor Lock to Lockin the Rotor blades
pcRotorServo—>write (ROTORCLOSE) ;

// alternate to establish servo movement range
//pcRotorServo—>attach (ROTORLOCKPWM, int min, int maz);

// Initialisation for Interlock and Discrete Input / Outputs
pinMode (PIN PKGINTERLOCK_OUT, OUTPUT);

// Host connected interlock Pin Input, requires pull—up resistor
// setting Host disconnected is Active High and no cycle
pinMode (PIN PKG_INTERLOCK_IN, INPUT_PULLUP);

pinMode (PIN.COMMIT RELEASE, OUTPUT);

// Debug Pin Input, requires pull—up resistor setting
// Debug mode is Active Low

pinMode (PINPKG DEBUG, INPUT PULLUP);

// Current Sensor Fault Input Pin, circuit has pull—up
// resistor

H.3 The SensorManager.ino Code 108

pinMode (PIN.CURRENTSENSORFAULT, INPUT);

// Ezxternal Power Status flag, LTC4353 has internal pull—up
// resistor

pinMode (PIN PWRSTATUS EXT_ONST1, INPUT);

// Internall Power Status Flag, LTC4353 has internal pull—up
// resistor

pinMode (PIN.PWRSTATUS INT_ONST2, INPUT);

// Debug
// Set ChA Low

// digitalWrite (CHANNELA, LOW);
// Set ChB Low
//digital Write (PINCHANNEL B, LOW);

H.4 The Commander.h Code

109

H.4 The Commander.h Code

Listing H.2: The Commander header file.

x Commander. h

* Created on: 8 Sep 2014
* Author: 0050083462

*/

#ifndef COMMANDERH-
#define COMMANDER.H.

#include <Arduino.h>
#include <stdint .h>
#include 7I12CBuffer.h”
#include ”StateMachine.h”
#include ”Power.h”
#include " Interface.h”

class Commander: public StateMachine, public Power,
{
public:

Commander () ;

void Taskl0Hz(void);

void TaskbHz(void);

void TasklHz(void);

void ExecuteCmd (I12CMsgRx* sTempRxMsgBuffer);
// void PowerCheck(void);

virtual ~Commander(){}

private:

// State based control wvariables
uint8_t nSeparationCounter;

12CMsgRx sTempRxMsgBuffer ;
}s

#endif /x COMMANDERH. x/

public Interface

H.5 The Commander.cpp Code

110

H.5 The Commander.cpp Code

Listing H.3: The Commander source file.

x Commander. cpp

* Created on: 8 Sep 2014
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include <NilRTOS.h>
#include <NilFIFO .h>
#include <NilSerial .h>
#include <util /atomic.h>

#include ”ServoTimer2.h”
#include ”Commander.h”
#include ”PinoutConfigSM .h”
#include ” StateMachine.h”
#include ”"BIT.h”

#include ”QuadEncoder.h”
#include 7 Interface.h”
#include 7"12CBuffer.h”

extern ServoTimer2*x pcRotorServo;

extern BITx pcBIT;

extern NilFIFO<I2CMsgRx, FIFODEPTH>x pcFIFO;
extern [2CBuffer xg_cI2C_MsgTx;

extern [2CMsgTx g ul2CUpdate_MsgTx;

extern uintl6_t g nOmegaCirBuf | CIRCBUFSIZE|;

// Direction of rotation, initialised to reverse.
extern bool g bDirCW;

// Direction of rotation, initialised to forward.
// two cycles before initiating first detection
extern bool g_bLastDirCW;

ISR (ChannelA _vect)
{

uint32_t tISR;

// Determine time of interrupt
tISR = micros ();

// Determiine direction of rotation
// As this is INTO isr on RISING INTO will be
digitalRead (PIN.CHANNEL B) ? g bDirCW = false

forces

high
g_-bDirCW

true;

H.5 The Commander.cpp Code 111

if (g-bDirCW = g_bLastDirCW)

{
// Store away the timestamp of this Quadrature interrupt
g_-DecBuf|[g_nBufferIndx |. DecoderISRTime = tISR;
// Increment the count of Decoder interrupts
g_DecBuf|[g_nBufferIndx |.u_nDeltaN.nl16DeltaN++;

}

else
{
g_bLastDirCW = g_bDirCW;
// Clear the count of Decoder interrupts
g-DecBuf|[g_nBufferIndx |. u_nDeltaN.nl6DeltaN = 0;
}
}
/% 2nd interrupt routine If required for higher

x accuracy
ISR (ChannelB_vect)

{
uint32_t tISR;

// Determine time of interrupt

tISR = micros();

// Determiine direction of rotation
// As this is INT1 isr on RISING INT1 will be high
digitalRead (PIN.CHANNEL A) ? g bDirCW = true : g bDirCW = false;

if (9-bDirCW == g_bLastDirCW)

{
// Store away the timestamp of this Quadrature interrupt
g-DecBuf[g-nBufferIndz |. DecoderISRTime = tISR;
// Increment the count of Decoder interrupts
g-DecBuf[g-nBufferIndz |. u_nDeltaN.n16DeltaN++;

}

else

{
g_-bLastDirCW = g_bDirCW;

// Clear the count of Decoder interrupts
g-DecBuf[g_-nBufferindz].u_nDeltaN.nl6DeltaN = 0;

}

*/

// Commander Constructor
Commander : : Commander ()

{

// Instantiate the BIT Object
pcBIT = new BIT;

// Confirm that the device is not already in an Autorotate State
// If so set power to internal supply else external

if (RetrieveState () > READYRELEASE)

H.5 The Commander.cpp Code 112

{

// Already in autorotate state so cmd internal power source
if (!SwitchPowerSupply (PWRSOURCEINT))
{
// Failure to transition to INT power so set BIT fail
SetState (BITFAIL);
}
// and attach the ISR wvector to the INTO for Encoder ChA
attachInterrupt (0, ChannelA _vect, RISING);
// attachInterrupt (1, ChannelB_vect, RISING);

// and stop the BIT Checks
pcBIT—>ModifyBIT CheckFlag(false);

else

// Not in an Awutorotate state therefore default initialise to
// use External power source
if (!SwitchPowerSupply (PWRSOURCEEXT))
{
// Failure to transition to EXT power so set BIT fail
SetState (BITFAIL);
}
// Setup the Host Interlock wrap around output
OutputHostInterlockSignal ();

// Initialise the Separation Timer
nSeparationCounter = SEPARATIONCOUNT

}

void Commander :: Task10Hz (void)
{
// Quadrature Encoder wvariables
uint32_t templ;
uint32_t temp?2;
uint32_t temp3;
uint32_t tnow;
// Delta Th
uint32_t nDeltaTh;
//Copy of current global ISR DoubleBuffer Index
uintl6_t nThisIndex;
// Tsc,acc Extended Observation Window (32bit word,
// using fizxed point division)
c¢_UTscacc u_.nSumTscacc;

// Ensure spare words are initialised to 0
u_-nSumTscacc.spare = 0;

// Angular rotation wvariable [Should be direct to I2C repository

// though]

uint16_t nOmega ;

H.5 The Commander.cpp Code 113

// Internal counter for Abort phase
static uint8_t nExtPowerDelay = 0;

volatile bool bPulseDetected;
static bool bPowerDownFirstPass = true;

switch(RetrieveState()) // In priority order

{

case DEPLOY:

{

// Quadrature Decoding Section
// Increment the Tsc counter to calculate extended Tsc

// period
g nTscTick++;

// Create atomic sequence of instructions
nilSysLock ();

// Determine current time in usec
tnow = micros ();

// Calculate Omega only if Encoder pulses have been
// detected
// Check wusing current Buffer index
if (g_-DecBuf|[g_nBufferIndx].u_nDeltaN.nl6DeltaN > 0)
{

bPulseDetected = true;

// record this buffer pointer

nThisIndex = g_nBufferIndx;

// Switch over the buffer index

g_nBufferIndx "= 1;

}

else

{
}

// Release the atomic instruction set
nilSysUnlock ();

bPulseDetected = false;

if (bPulseDetected)

// Calculate Delta Th
nDeltaTh =
tnow — g_DecBuf[nThisIndex].DecoderISRTime;

// Calculate SUM Tsc,acc = g-nTscTick x TSC_.PERIOD;
// scaled n16SumTscacc 15
u_nSumTscacc.nl6SumTscacc = g_nTscTick * 3;

// Now Tsc,acc scaled into 32 bit word (scale 0)
templ = u_nSumTscacc.n32SumTscacc >> 1;

H.5 The Commander.cpp Code 114

// Calculate Omega = DeltaN 60
// .
// (SumTsc, acc + DeltaT (h—1) — DeltaT(h)) Np
// temp2 scale (16)
temp2 =

(uint32_t)(g-DecBuf[nThisIndex |. u_nDeltaN .n32DeltaN x60);
// temp3 scale (20—1)

tempd =
(uint32_t)(templ + g-DecBuf[nThisIndex |.nDeltaThml —
nDeltaTh)
>> 4;

nOmega = (uint32_t)(temp2/temp3) >> NP;
// Negate an approx constant “4.5% from result due to
// over reading above calculation
nOmega —= ((nOmega >> 6) x 3);
// Limit the Omega output
if (nOmega > MAXLIMIT OMEGA)
nOmega = MAXLIMIT_ OMEGA ;

g-nOmegaCirBuf[g_-nOCirIlndx] = nOmega;

// Now update circular buffer index for next pass
g-nOCirlndx = (g-nOCirlndx + 1) % CIRCBUFSIZE;

/)RR R R R R R K KKK K K K R K K K KKK oK oK oKk ok
// Save away Omega and Direction into I2C message buffer

// area

/)R R SR KKK R KKK SRR KKK R R KK SRR KKK
// DIRECTION — ¢.bDirCW

// Angular Speed nOmega

// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSG1) ;

if (g-bDirCW)
// Rotor travelling CW

g ul2CUpdate_MsgTx.g_nType2lntValue =
(int16_t)nOmega;

}
else
{
// Rotor travelling CCW
g ul2CUpdate_MsgTx.g nType2lntValue =
(int16_-t)(nOmega + 1);
}

// Now save into I2C Tx Message Common Area
g_cI2C_MsgTx—>putMessage (MSG1, &g ul2CUpdate MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I2CValidateTxMsg (MSG1) ;

H.5 The Commander.cpp Code 115

}

// Save Delta T(h) as Delta T(h—1)
g_-DecBuf [nThisIndex |.nDeltaThml = nDeltaTh;

// Clear Extended Observation Window counter
g_-nTscTick = 0;

// Clear the count of Decoder interrupts for mnext time

// use of this buffer
g-DecBuf [nThisIndex |.u_nDeltaN.nl16DeltaN = 0;

else

}

// If extended observation window is greater than
// 7Constant” ticks then set angular speed = 0
if(g-nTscTick > MAXEXTOBSWIN)
{

g-nTscTick = 0;

g-nOmegaCirBuf|[g-nOCirlndx| = 0;

g-nOCirIndx = (g-nOCirlndx + 1) % CIRCBUFSIZE;

}

break ;

case SEPARATION:

{

//
//
//
//
//
//
//
//
//
//
//
//

//
//

The majority of SEPARATION initialisation has been
completed within the ReadyRelease to Separation
changeover portion of the ReadyRelease Case.

K 3K 3Kk sk sk sk sk sk ok Rk sk osk sk sk sk sk ok 3k sk skoskosko sk sk sk R 3k sk skoskosk Sk sk sk kR kskosk sk sk sk sk ok Rk ke sk sk sk ok
The following assumes no power loss following release
need to change this as other fumnctions do account for
such

KK 3K 3Kk Sk Sk sk sk ok Rk sk sk sk sk sk sk kR 3k kosk sk Sk sk sk kR 3k kosk sk Sk sk sk >k >k k sk sk Sk sk sk sk ok >k sk ok sk sk sk k
If Low means Interlock disconnected, the package is
falling!

Therefore :

a. Decrement the Separation timer

Decrement the Separation timer, each decrement
"= 100msec

nSeparationCounter ——;

//
//
//
if
{

If Separation Timer is completed then switch State
to DEPLOY for the remainder of this pass and ezxecute
the entry actions of the DEPLOY state
(nSeparationCounter < 1)

SetState (DEPLOY) ;
// Open the Rotor Lock to Release the Rotor blades
pcRotorServo—>write (ROTOROPEN) ;

H.5 The Commander.cpp Code 116

//
//

}

break ;

case READYRELEASE:

{

}

if (!IsHostInterlockPresent ())

/) ks skttt ok ok KR R K sk sk sk sk sk sk ok sk sk sk sk sk ok ok ok ok K KK KK K R ok ok ok
// The following assumes no power loss following

// release need to change this as other functions
// do account for such

[/ sk sk ok R R kKoK R K K KK R R K SRR K KK K KKK R K K KK KR K KoK ok K
// If Low means Interlock disconnected, the package
// is falling!

// Therefore:

// a. change state to SEPARATION,

// b. count down the Separation timer,
// c¢. Enable the Quadrature Decoder ISRs,
// d. stop the BIT Checks.

SetState (SEPARATION) ;

// Decrement the Separation timer,
// each decrement "= 100msec
nSeparationCounter ——;

// Attach the ISR wvector to the INTO for Encoder ChA
attachInterrupt (0, ChannelA _vect, RISING);
attachInterrupt (0, ChannelA _vect, CHANGE);
attachInterrupt (1, ChannelB_vect, RISING);
//attachInterrupt (1, ChannelB_vect, CHANGE);

// Stop the BIT Checks
pcBIT—>ModifyBITCheckFlag(false);
break;
// Do not need to undertake any further
// READYRELEASFEfunctionality
}
// Check if Commit to Release is not currently asserted
// If not assert
if (IsReleaseProhibited ())
{
// Assert the Commit To Release Interlock
CommitToRelease ();

¥
break ;

case ABORT:

{

// Un—Assert the Commit To Release Interlock
ProhibitRelease ();

// Reselect FExzternal Power Supply and determine if it is
// available to supply power to the package as it may be

H.5 The Commander.cpp Code 117

// turned off by the host
if (!SwitchPowerSupply (PWRSOURCEEXT))

{
// Wait within the ABORT State for a mazimum of
// period before External power should become
// available from Host
if (nExtPowerDelay > MAXEXTSUPPLYWAIT)
{
// Timeout!
nExtPowerDelay = 0;
// Failure to transition to EXT power so set BIT
// fail
SetState (BITFAIL);
}
else
{
nExtPowerDelay++;
}
¥
else
{
// Reset the Supply delay switch over counter
nExtPowerDelay = 0;
// A successful switch to FExzternal supply was
// achieved so transition to PREPARED State
SetState (PREPARED) ;
¥
break ;
}
case POWERDOWN:
{
if (bPowerDownFirstPass)
detachInterrupt (0);
// Report zero angular velocity
for (uint8_t i = 0; i < CIRCBUFSIZE; i++)
{
g nOmegaCirBuf[i] = 0;
¥
bPowerDownFirstPass = false;
¥
// constantly switch to external to turn off Package.
SwitchPowerSupply (PWRSOURCEEXT) ;
break ;
¥
default:
break ;

}

void Commander :: Task5Hz (void)

H.5 The Commander.cpp Code 118

{

12CMsgRx* psTempRxMsgBuffer ;

// Check for msg within FIFO
// Use TIMEIMMEDIATE to prevent sleeping in this thread.
psTempRxMsgBuffer = pcFIFO—>waitData (TIMEIMMEDIATE) ;

// Act on any received Message
if (psTempRxMsgBuffer)

{
// Yes, one is awvailable so fetch Message from the FIFO.
sTempRxMsgBuffer = xpsTempRxMsgBuffer;
// Signal FIFO slot is free.
pcFIFO—>signalFree ();
// Act on the message
ExecuteCmd(&sTempRxMsgBuffer) ;
}
switch(RetrieveState()) // In priority order
{
case READYCONFIRM:
{
// Un—Assert the Commit To Release Interlock
ProhibitRelease ();
//Check if already switched to internal power supply
if (ReadRecordedSupply () != PWRSOURCEINT)
{
// Request swap to Internal Power Supply, confirm
// it is supplying power to the package
if (!SwitchPowerSupply (PWRSOURCEINT))
{
// Failure to transition to INT power
// so set BIT fail
SetState (BITFAIL);
}
}
break ;
¥
case INITIALISE:
{

// Un—Assert the Commit To Release Interlock
ProhibitRelease ();

// Allow the BIT Checks
pcBIT—>ModifyBITCheckFlag(true);

// Should this be a full power on transition the
// Commander Constructor has already undertaken the

H.5 The Commander.cpp Code 119

}

// following actions as part of initialisation
// a. Power to FEzternal, and
// b. Quadrature Decoder ISR(s) detached.
if (IsDebugMode() || IsHostInterlockPresent())
{

// transition to PREPARED state

SetState (PREPARED);

¥
break ;

case BITFAIL:

{

// Check if Commit to Release is currently asserted
// If it is wunassert it, Prohibit any release
if (! IsReleaseProhibited ())
{
// Un—Assert the Commit To Release Interlock
ProhibitRelease ();

}

break ;
}
default:
break ;

}

void Commander:: Task1Hz(void)

{

static uint8_t CountlHz;
static bool bDebugFirstPass = true;

if (RetrieveState () = PREPARED)

if (bDebugFirstPass)

}

bDebugFirstPass = false;
CountlHz = 0;

if (RetrieveState () >= PREPARED)

CountlHz-++;
if (CountlHz — 4)

{

if (RetrieveState () =— PREPARED)

SetState (READYCONFIRM) ;
bDebugFirstPass = true;

}

else
CountlHz = 3;

H.5 The Commander.cpp Code 120

}

if (CountlHz = 8)

{

SetState (READYRELEASE) ;
bDebugFirstPass = true;

if (CountlHz = 60)

if (RetrieveState () = DEPLOY)

SetState (POWERDOWN) ;
bDebugFirstPass = true;
¥
else
{
CountlHz = 10;
}

if (CountlHz > 61)

bDebugFirstPass = true;
CountlHz = 61;

}

else
CountlHz = 0;

if (pcBIT—>RetrieveBITCheckFlag())

{ pcBIT—BITCheck () ;

%pdateDebugInterLockState ();
}
void Commander : : ExecuteCmd (12CMsgRx* psRcvMsgBuffer)
{

// Decode and react to Message No 2 through 6
switch (psRcvMsgBuffer—g nTypelRxMsgNo)

{

case MSG2:
{
// Commanded State Change
// Single data byte
SetState ((eSTATE) psRevMsgBuffer—>g nTypelRxEnumValue) ;

break;
}
case MSG3:
{

// Save notified Weight Off Wheels Status
UpdateWeightOffWheelsState (psRevMsgBuffer—>g nType2RxEnumValue) ;
break ;

H.5 The Commander.cpp Code 121

}
case MSG4:
{
// Initialise the Internal Battery Capacity
SetupCapacityAhValue (psRcvMsgBuffer—>g_nType4dRxIntValue);
break ;
}
case MSGH5:
{
// Todo
break;
}
case MSG6:
{
// Debug Interface Messages
// Todo
break ;
}

H.6 The BIT.h Code 122
H.6 The BIT.h Code

Listing H.4: The BIT header file.

/*
x BIT.h
*
* Created on: 7 Nov 201/
* Author: Ian Sazby
* 0050085462
v/
#ifndef BIT H_
#define BIT_H._
enum eBITFLAG {
SUPPLYINT, // BIT Pos 0
SUPPLY_EXT, // BIT Pos 1
SUPPLY OFF, // BIT Pos 2
CURRENT FAULT, // BIT Pos 3
PACKAGE.INTERLOCK.GONE, // BIT Pos
BATCAP BELOW WARN, // BIT Pos 5
FMUNOT-COMM, // BIT Pos 6
INVALID_STATE_CHG, // BIT Pos 7
SUPPLYNOTCMD, // BIT Pos 8
RXBUFF_.OVRFLW, // BIT Pos 9
FIFO_.OVRFLW, // BIT Pos 10
HOOK _LOCKED, // BIT Pos 11
SPAREL, // BIT Pos 12
SPARE2, // BIT Pos 13
SPARE3, // BIT Pos 1/
BIT FLAG.OVRFLW // BIT Pos 15
}s
class BIT
{
public:
BIT ();
void BITFlagUpdate (eBITFLAG nBITFlagPosition, bool bCondition);
uint16_-t ReadBITFlags() const;
bool RetrieveBITCheckFlag(void) const;
void ModifyBITCheckFlag(bool bFlag);
bool BITCheck(void);
private:
uint16_t nBITCondition;
// Authority to undertake BIT checks
bool bBITCheckAuthFlag;
¥

#endif /x BIT_-H. x/

H.7 The BIT.cpp Code 123
H.7 The BIT.cpp Code

Listing H.5: The BIT source file.

x BIT.cpp

* Created on: 7 Nov 201/
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include 7BIT.h”

#include ”Commander.h”
#include 7 PinoutConfigSM .h”

extern Commanderx pcCmdr;
extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g ul2CUpdate_MsgTx;

// BIT Constructor
BIT:: BIT ()
{

nBITCondition = 0;

// Initialise Allow BIT Checking
bBITCheckAuthFlag = true;

}

void BIT:: BITFlagUpdate (eBITFLAG nBITFlagPosition, bool bCondition)
{

// the flag to be shifted into BIT Flag position

uintl6_t nFlag = 1;

// DEBUG print statements

// Uncomment if required
//Serial.print (?BIT Pos 7);
//Serial.print (nBITFlagPosition);
//Serial.print(” bCondition ”);
//Serial.printin (bCondition);

// Assert that nBITFlagPosition < 16 positions
if (nBITFlagPosition > 15)

{
BITFlagUpdate (BIT FLAG.OVRFLW, true);
//pcCmdr—>SetState (BITFAIL) ;
return;

¥

// Shift and Set or clear the BIT Flag position

H.7 The BIT.cpp Code

124

if (bCondition)

{
// The update is to record a BIT FAIL
// Need to shift and OR Mask into place
nBITCondition |= (nFlag << nBITFlagPosition);
// Set State to BITFAIL
pcCmdr—>SetState (BITFAIL);

else

// The update is to record a BIT PASS
// need to shift, Invert and AND Mask into place
nBITCondition &= (" (nFlag << nBITFlagPosition));

// Check if all BIT Flag positions are false
if (!(nBITCondition & OXFFFF))
{

// DEBUG print statements

// Uncomment if required

//Serial.print (”All BIT clear 7);

// Now check if the system is already in BITFAIL State
// If so then this allows the system to transition out

// of BITFAIL
if (pcCmdr—>RetrieveState () == BITFAIL)

{
}

pcCmdr—>SetState (INITIALISE);

}

// Update the I2C Tx Msg Buffer
// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSG4) ;

g_ul2CUpdate_MsgTx.g nType3UlIntValue = nBITCondition;

// DEBUG print statements

// Uncomment if required

//Serial.print (?nBITCondition ”);

//Serial.printin (g-ul2CUpdate_-MsgTx.g-nType3UIntValue);

// Store it into the I2C Message Area
g cI2C_MsgTx—>putMessage (MSG4, &g ul2CUpdate MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I2CValidateTxMsg (MSG4) ;

}

uint16_t BIT:: ReadBITFlags() const

{

return nBITCondition;

H.7 The BIT.cpp Code 125

}
bool BIT:: RetrieveBITCheckFlag(void) const
{
return bBITCheckAuthFlag;
}
void BIT:: ModifyBITCheckFlag(bool bFlag)
{
bBITCheckAuthFlag = bFlag;
}
bool BIT::BITCheck(void)
{
// Ezecute BIT
if (pcCmdr—>RetrieveState () = BITFAIL)
// Un—Assert the Commit To Release Interlock
pcCmdr—>ProhibitRelease ();
// Switch to FExzternal power source
if (pcCmdr—>SwitchPowerSupply (PWRSOURCEEXT))
{
// Clear the FEzternal Power Transition BITFail Flag
BITFlagUpdate (SUPPLY EXT, false);
}
// IF the power supply switch fails BIT will handle setting
// the bit flag and already within BITFAIL state so no need
// to change State. If the switch is successful and that
// cleared the only bit Flag then BIT will transition
// state to INITIALISE
// Detach the Interrupts, mnecessary if transiting to BITFAIL
// post ReadyRelease 10Hz Task
detachInterrupt (0);
// detachInterrupt (1);

}

// Do other BIT checks

// Check that the Current Sensor has not set the Over Current
// FAULT flag. Current Sensor FAULT condition is Active LOW
if (pcCmdr—>ReadSensorFAULT ())

{

Serial.println ("CFAULT”);

// Fault exists so set the Current Fault BIT flag
BITFlagUpdate (CURRENT FAULT, true);

H.7 The BIT.cpp Code 126

}

else

{
// No problem here so clear the Power BIT flag
BITFlagUpdate (CURRENT FAULT, false);

}

// Now check that the power supply outputs are as expected
// Check if Internal power supply is turned on
if (pcCmdr—>ReadSupplyOutputState (PWRSOURCEINT))
{
// Yes it is so Confirm the FExternal is turned off
if (!pcCmdr—>ReadSupplyOutputState (PWRSOURCEEXT))

{
// It is not on so Clear the FExternal power BIT flag
BITFlagUpdate (SUPPLY EXT, false);

}

else

{
Serial . println ("PWREXTFAULT”);
// It is on so (somehow a dual power supply condition)
// set the External power BIT flag
BITFlagUpdate (SUPPLY EXT, true);

}

}

//else that means External must be turned on otherwise there
// should be no supply and this can’t be happening

// Confirm the recorded power supply = commanded power supply
if (pcCmdr—>ReadRecordedSupply () != pcCmdr—>ReadCommandedSupply ())
{

Serial.println ("PWR.RECORD_DIFF”) ;

// They don’t equal so set the Power BIT flag

BITFlagUpdate (SUPPLYNOTCMD, true);

¥

else

{
// Clear the Supply Not as Commanded BIT flag
BITFlagUpdate (SUPPLYNOTCMD, false);

}

// How to recover from FIFO QOverflow and others

// If any BIT flag set change state to BITFAIL
if (nBITFaultFlags)
{
// Change SensorManager state to BITFAIL
pcManagerState—>SetState (BITFAIL);

H.8 The I12CBuffer.h Code 127
H.8 The I2CBuffer.h Code

Listing H.6: The 12CBuffer header file.

x I2CBuffer.h

x Created on: 81 Aug 2014
* Author: Ian Sazby

*/

#ifndef I2CBUFFER_H_
#define 12CBUFFER_H_

#include <Arduino.h>
#include <stdint .h>
#include 7 StateMachine.h”
#include " Interface.h”

#define MAX MSGTXLENGTH 5 // including wordcount as last element
#define MAX MSGRXLENGTH 2

#define MAX TX BUFFERS 6

#define FIFODEPTH 2

#define SETUP_I2C_SEND_CMD 1

enum eMSG {MSGO, MSG1, MSG2, MSG3, MSG4, MSG5, MSG6};

typedef struct 12CMsgTx
{
struct {
bool bInValid;
uint8_t g.nMsgNo;
}s
union
{
struct {
uint8_t g nTypelEnumValue;
uint8_t g nTypelRem [MAX MSGTXLENGTH — 1];

}s
struct {

intl6_t g.nType2IntValue;

uint8_t g nType2Rem [MAX MSGTX LENGTH — 2];
}s
struct {

uintl6_-t g-nType3UlntValue;

uint8_t g nType3Rem [MAX MSGTX LENGTH — 2];
}s
struct {

eSTATE g nTypedEnumValue;
uint8_t g.nTypedRem [MAXMSGTXILENGTH — 1];

H.8 The I2CBuffer.h Code 128

}s
struct {
bool g_nTypebBoolValuel;
bool g nTypebBoolValue2;
bool g nTypebBoolValued;
uint8_t g nTypeSEnumValue MAX MSGTX LENGTH — 3];
}s
uint8_t g-nTxAllData [MAXMSG.TXLENGTH];
}s
uint8_t nWdCount;
} I2CMsgTx;
typedef struct 12CMsgRx
{
union {
struct {
uint8_t g nTypelRxMsgNo;
uint8_t gnTypelRxEnumValue;
uint8_t g.nTypelRxRem;
}s
struct {
uint8_t g.nType2RxMsgNo;
eWOFFW g _nType2RxEnumValue;
uint8_t g nType2RxRem ;
}s
struct {
uint8_t g nType3RxMsgNo;
uint8_t g nType3RxEnumValue;
uint8_t g nType3dRxRem;
}s
struct {
uint8_-t g.nTypedRxMsgNo;
uintl6_-t g_.nTypedRxIntValue;
}s
uint8_t g-nRxAllData [MAXMSGRXLENGTH];
1
} I2CMsgRx;

class I2CBuffer

{

public:
// Constructor
I[2CBuffer ();

void I2CInvalidateTxMsg (eMSG eMsg) ;

void I2CValidateTxMsg (eMSG eMsg);

// Store Message into identified Message Buffer
void putMessage (eMSG eMsg, [12CMsgTx xpMsgData) ;

// Retrieve Message from identified Message Buffer
void getTxMessage (uint8_t MsgNoTx, I2CMsgTx *pMsgOut);

H.8 The I2CBuffer.h Code 129

private:

I12CMsgTx sMsgTxArray [MAX TX BUFFERS] ;

}
#Hendif /* I2CBUFFER_H_ >x</

H.9 The I2CBuffer.cpp Code 130
H.9 The I2CBuffer.cpp Code

Listing H.7: The 12CBuffer source file.

x I2CBuffer.cpp

x Created on: 81 Aug 2014
* Author: Ian Sazby

*/

#include <stdio.h>
#include 7I12CBuffer.h”

I2CBuffer :: I2CBuffer ()
{

// Initialise the Output (TX) Message buffer area

for (int MsgNo = 0; MsgNo < MAX TX BUFFERS; MsgNo++)

{
for (int indy = 0; indy < MAXMSGTXILENGTH; indy++)
{

}

// Invalidate each message
sMsgTxArray [MsgNo]. bInValid = true;

sMsgTxArray [MsgNo|. g-nTxAllData[indy]| = 0;

// Initialise the Word count for each message

switch (MsgNo)

{

case MSGO: // Sensor Manager State

{
sMsgTxArray [MSGO] . nWdCount = 2;
break ;

}

case MSGl: // Quadrature Data

{
sMsgTxArray [MSG1|.nWdCount = 3;
break;

}

case MSG2: // Internal Battery Remaining Capacity

{
sMsgTxArray [MSG2].nWdCount = 3;
break;

}

case MSG3: // Supply Source

{
sMsgTxArray [MSG3].nWdCount = 2;
break;

}

case MSG4: // Built In Test Results

H.9 The I2CBuffer.cpp Code 131

{
sMsgTxArray [MSG4].nWdCount = 3;
break;
}
case MSGH:
{
sMsgTxArray [MSG5] . nWdCount = 4;
break;
}
}
}
}
void I2CBuffer::12CInvalidateTxMsg (eMSG eMsg)
{
sMsgTxArray [eMsg]. bInValid = true;
¥
void I2CBuffer ::12CValidateTxMsg (eMSG eMsg)
{
sMsgTxArray [eMsg|. bInValid = false;
}

// Store Message into identified Message Buffer
void I2CBuffer :: putMessage (eMSG eMsg, [2CMsgTx xpMsgln)

{
for (uint8_t indx = 1; indx < MAXMSGTXLENGTH; indx++)

{
sMsgTxArray [eMsg]. g.nTxAllData [indx]| =

(*pMsgln). g-nTxAllData [indx |;

}

// Retrieve Message from identified Message Buffer into local

// buffer for I2C
void I2CBuffer :: getTxMessage (uint8_t MsgNoTx, I2CMsgTx xpMsgOut)

{
}

(*pMsgOut) = sMsgTxArray [MsgNoTx];

H.10 The Interface.h Code 132
H.10 The Interface.h Code

Listing H.8: The Interface header file.

/*

x Interface.h

*

* Created on: 7 Nov 201/
* Author: Ian Sazby
* 0050083462

*
AN

#ifndef INTERFACE H-
#define INTERFACE H_

// Separation counter for 1 second at 10 % Task10Hz
#define SEPARATIONCOUNT 10

// Rotor Servo Open angle in degrees

#define ROTOROPEN 2200

// Rotor Servo Close angle in degrees

#define ROTORCLOSE 1200

// Define Abort delay in 10Hz iterations

#define MAXEXTSUPPLYWAIT 20 // = 2 seconds

enum eWOFFW {WONW, WOFFW} ;

class Interface

{
public:
Interface ();
bool IsDebugMode(void) const;
// Detect the Debug Interlock state (Active LOW) and update
// Mode flag
bool UpdateDebuglnterLockState (void);
// Output the Host Interlock wrap signal at state (Active LOW)
// and update flag
void OutputHostInterlockSignal(void);
// Check if Host Interlock is present (still LOW)
bool IsHostInterlockPresent (void);
void CommitToRelease(void);
bool IsReleaseProhibited () const;
void ProhibitRelease (void);
void UpdateWeightOffWheelsState (eWOFFW bWoffW) ;
bool IsWeightOffWheels(void) const;
virtual “Interface() {};
private:

void UpdateIl2CMsg(void);

H.10 The Interface.h Code 133

eWOFFW eWOffWStatus ;

bool bDebugMode;

bool bReleaseProhibited ;

bool bHostInterLockPresent ;
¥

#endif /+ INTERFACE H. x/

H.11 The Interface.cpp Code

134

H.11

/*

Inte

*
*
x Cre
*
*

*/

The Interface.cpp Code

Listing H.9: The Interface source file.

rface.cpp

ated on: 7 Nov 201/
Author: Ian Sazby
0050083462

#include <Arduino.h>
#include 7 Interface.h”
#include ”PinoutConfigSM .h”
#include 7 I12CBuffer.h”

extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g_ul2CUpdate_MsgTx;

Interface :: Interface ()

{

eWOffWStatus = WONW;

UpdateDebuglnterLockState ();

bRe

leaseProhibited = true;

IsHostInterlockPresent ();

}

bool Interface ::IsDebugMode(void) const

{

return bDebugMode;

}

bool Interface :: UpdateDebuglnterLockState (void)

{

// Return the Debug Input Interlock state
// This pin is active LOW using pull—up resistors
if (digitalRead (PIN.PKG_DEBUG))

{

}

else

{

// Input is HIGH so Debug mode IS NOT enabled
bDebugMode = false ;

// Input is LOW so Debug mode IS enabled
bDebugMode = true;

H.11 The Interface.cpp Code 135

Updatel2CMsg () ;
return bDebugMode;

}

void Interface:: OutputHostInterlockSignal (void)

{

// This pin is active LOW as is wusing pull—up resistors
digitalWrite (PINPKGINTERLOCK.OUT, LOW);

}

bool Interface::IsHostInterlockPresent (void)

{

// This pin is active LOW as is wusing pull—up resistors
if (digitalRead (PIN.PKG.INTERLOCKIN))

{
}

else

{

bHostInterLockPresent = false;

// Input is LOW so Host Interlock IS present
bHostInterLockPresent = true;

}

Updatel2CMsg () ;

return bHostInterLockPresent ;

}

void Interface :: CommitToRelease(void)

{

// Set Active Low Commit To Release Interlock Output
digitalWrite (PIN.COMMIT RELEASE, LOW);

// Clear Release Prohibited flag to indicate interlock
// IS asserted
bReleaseProhibited = false;

UpdateI2CMsg () ;
}

bool Interface::IsReleaseProhibited (void) const

{
}

void Interface:: ProhibitRelease (void)

{

return bReleaseProhibited;

// Clear Active Low Commit To Release Interlock Output
digitalWrite (PIN.COMMIT RELEASE, HIGH);

// Set Release Prohibited flag to indicate interlock NOT
// asserted
bReleaseProhibited = true;

H.11 The Interface.cpp Code 136

Updatel2CMsg () ;
¥

void Interface:: UpdateWeightOffWheelsState (WOFFW bWoffW)

{
eWOffWStatus = bWoffW ;

}
bool Interface::IsWeightOffWheels(void) const
{
if (eWOffWStatus == WOFFW)
return true;
else
return false;
}
void Interface :: Updatel2CMsg(void)
{

// Update the I2C Tx Msg Buffer
// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSG5) ;

g_ul2CUpdate_MsgTx.g_nType5BoolValuel = bHostInterLockPresent;
// Transmit the Debug state
g_ul2CUpdate _MsgTx.g_ nTypebBoolValue2 = bDebugMode;

// Transmit the Commit To Release Status (inverted Release
// Prohibited status)
g ul2CUpdate_MsgTx.g nType5BoolValue3 = !bReleaseProhibited;

// Store it into the I2C Message Area
g_cI2C_MsgTx—>putMessage (MSG5, &g_-ul2CUpdate_-MsgTx);

// Finally Validate Msg area
g cI2C_MsgTx—>12CValidateTxMsg (MSG5) ;

H.12 The PinoutConfigSM.h Code 137
H.12 The PinoutConfigSM.h Code

Listing H.10: The PinoutConfigSM header file.

Ve
PinoutConfigSM . h

Author: Ian Sazby

*
*
* Created on: 7 Nov 201/
*
* 0050083462

*/

#ifndef PINOUTCONFIGSM_H_
#define PINOUTCONFIGSM_H_

// Definition of Sensor Manager Pro Mini Pinout Assignments
// Rotor Lock Release
#define PINROTORLOCKPWM 6

// Channel A is INTO
#define PIN.CHANNEL_A 2
//Channel B is INT1
#define PIN.CHANNELB 3

// External Power Enable
#define PINPOWERENB EXT 4
// Internal Power Enable
#define PINPOWERENBINT 5

// Host Interconnect wrap Output
#define PIN PKGINTERLOCK OUT 7
// Commit to Release

#define PIN.COMMIT RELEASE 8

// Host Interconnect wrap Input
#define PIN PKGINTERLOCKIN 11
// Debug Input

#define PIN PKGDEBUG 14

// Current Sensor Fault Input

#define PIN.CURRENTSENSORFAULT 15

// External Power State Status ONSTI Input
#define PINPWRSTATUS EXT_ONST1 16

// Internal Power State Status ONST2 Input
#define PIN PWRSTATUSINT ONST2 17

// Current Sensor Value input analog
#define PIN_.VIOUTSENSE A7

// Voltage Supply Sense input analog
#define PIN_.VOLTAGESENSE A6

#endif /«+ PINOUTCONFIGSM_H- x/

H.13 The Power.h Code

138

H.13 The Power.h Code

*/

Listing H.11: The Power header file.

Power. h
Created on: 7 Nov 2014
Author: Ian Sazby
0050083462

#ifndef POWER L
#define POWER IL

#include <Arduino.h>
#include <stdint .h>
#include ” QuadEncoder.h”

// Power Controller is Active Low
#define POWERON LOW
#define POWEROFF HIGH

// Constants defining Power Cmds for FExzternal and Internal supply
// selection

enum ePWRSUPPLY {PWRSOURCEEXT, PWRSOURCEINT, PWRSOURCEOFF};

class Power

{
public:
Power () ;
void SetupCapacityAhValue(uintl6_t nValue);
void UpdatelnstantCurrent (void);
void UpdatelnstantVoltage (void);
bool SwitchPowerSupply (ePWRSUPPLY eRequestedSupply);
uint16_-t ReadCapacityRemain(void) const;
uint16_-t ReadInstantVoltage(void) const;
bool ReadSupplyOutputState (ePWRSUPPLY eSupply) const;
ePWRSUPPLY ReadCommandedSupply (void) const;
ePWRSUPPLY ReadRecordedSupply (void) const;
bool ReadSensorFAULT (void) const;
virtual “Power(){}
private:

// Initial Current Rating
uint16_t nSetupCapacityAhRating;

// Power Statistics
uint16_t nRemainingAhCapacity ;
uintl6_t nlnstantCurrent;

H.13 The Power.h Code 139

uintl6_t nlnstantVoltage;
uint32_t tPrevTimeSense;

// Next two wvariables relate to Power Source
// enumerated variable contents

ePWRSUPPLY ePowerCommand ;
// ePowerSource reflects actual Power Source

ePWRSUPPLY ePowerSource

// ACS711 Current Sensor QOuver Current Fault input
// bool bSensorFAULT;

b
sendif /x+ POWERH +/

H.14 The Power.cpp Code 140
H.14 The Power.cpp Code

Listing H.12: The Power source file.

/*

x Power. cpp

*

* Created on: 7 Nov 201/
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include <NilAnalog.h>
#include ”Power.h”
#include 7 PinoutConfigSM .h”
#include ”BIT.h”

#include 7 I12CBuffer.h”

extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g ul2CUpdate_MsgTx;

// Power Constructor
Power :: Power ()

{

nSetupCapacityAhRating = 0;

// Power Statistics
nRemainingAhCapacity = 0;
nlnstantVoltage = 0;

// Do not care about response just request internal power supply on
SwitchPowerSupply (PWRSOURCEINT) ;

}

void Power:: SetupCapacityAhValue(uintl6_t nValue)

{
}

nSetupCapacityAhRating = nValue;

void Power:: UpdatelnstantCurrent (void)

{

// This is coded to match the calling timing of 1Hz

// This functionality needs considerable verification before
// utilisation

uint32_t tCurrentSenseNow ;
uint16_t nVIOUT;

// Determine time of Sense
tCurrentSenseNow = micros ();

H.14 The Power.cpp Code 141

}

// Will assume that the sensed current is the same for the
// preceding delta time period. Don’t need to average it.
nVIOUT = (uintl6_t)nilAnalogRead ((char)PIN_.VIOUTSENSE);

// Determine Amp usage

// using ACS 711 equation the mV / Amp calculation is

// VIOUT = (0.11 = i — (Vee/2)) = Vece * 3.3V

// with Vece at 5V

nlnstantCurrent = (nVIOUT % 0.0726) — 0.275;

// this is missing the x dt x portion of calculation

// Now calculate Capacity Remaining

nRemainingAhCapacity = nRemainingAhCapacity — (nInstantCurrent x

(tCurrentSenseNow — tPrevTimeSense)) >> 12;

tPrevTimeSense = tCurrentSenseNow ;

void Power:: UpdatelnstantVoltage (void)

{
}

nlnstantVoltage = (uintl6_t)nilAnalogRead ((char)PIN.VOLTAGESENSE);

bool Power:: SwitchPowerSupply (ePWRSUPPLY eRequestedSupply)

{

bool bSwitchSuccess;

// Record the Power Command for BIT purposes
ePowerCommand = eRequestedSupply ;

switch (ePowerCommand)

{
case PWRSOURCEEXT: // IF EXTERNAL Power Commanded

{
// Set the FExternal Power Enable output
digitalWrite (PINPOWERENB_EXT, POWERON);

//Confirm requested power source is now on
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEEXT) ;

// If Requested source is supplying response should be true
// then turn off alternate
if (bSwitchSuccess)
{
// Turn off Internal Power Supply
digitalWrite (PINPOWERENB_INT, POWEROFF);

// Confirm Internal Supply is turned off
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEINT);

H.14 The Power.cpp Code 142

// Alternate supply should be off so response should be

// false
if (!bSwitchSuccess)

{

// Record the Power Command for BIT purposes
ePowerCommand = eRequestedSupply ;
ePowerSource = ePowerCommand ;

bSwitchSuccess = true;

//return true;

else

bSwitchSuccess = false;
// Debug line
//bSwitchSuccess = true;
}
}
else

{

// Debug line
//bSwitchSuccess = true;

}
break;

bSwitchSuccess = false;

}
case PWRSOURCEINT: // INTERNAL Power Commanded

{
// Output the Internal Power Enable (Active Low)
digitalWrite (PINPOWERENBINT, POWERON);

//Confirm requested power source is now on
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEINT);

// If Requested source is supplying response should be true
// then turn off alternate
if (bSwitchSuccess)
{
// Turn off FExzternal Power Supply
digital Write (PINPOWERENB EXT, POWEROFF);

// Confirm FExternal Supply is turned off
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEEXT) ;

// Alternate supply should be off so response should be

// false
if (!bSwitchSuccess)

{
// Record the Power Command for BIT purposes
ePowerCommand = eRequestedSupply ;
ePowerSource = ePowerCommand;
bSwitchSuccess = true;
//return true;

H.14 The Power.cpp Code 143

}

else

{

bSwitchSuccess = false;
// Debug line

//bSwitchSuccess = true;

}
¥
else
{
bSwitchSuccess = false;

// Debug line
//bSwitchSuccess = true;

¥
break ;

}
case PWRSOURCE.OFF:

{
// Turn off Measured Supply

// Output the Internal Power FEnable (Active Low)
digital Write (PIN.POWERENB.INT, POWEROFF);

// Output the Ezternal Power FEnable (Active Low)
digitalWrite (PINPOWERENB_EXT, POWEROEFF);

//Confirm power sources are both now off
// Active LOW, so should be HIGH input
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCE.OFF) ;

if (bSwitchSuccess)

// Record the Power Command for BIT purposes
ePowerCommand = PWRSOURCE.OFF;
ePowerSource = ePowerCommand ;

}

break ;

// Update the I2C Tx Message Buffer with current Power State
// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSG3) ;

g-ul2CUpdate_-MsgTx.g nTypelEnumValue = (uint8_t)ePowerSource;

// Now save into I12C Tr Message Common Area
g _cI2C_MsgTx—>putMessage (MSG3, &g ul2CUpdate MsgTx);

// Finally Validate Msg area

H.14 The Power.cpp Code 144

g_cI2C_MsgTx—>I2CValidateTxMsg (MSG3) ;

return bSwitchSuccess;

}

uint16_t Power:: ReadCapacityRemain (void) const
{ return nRemainingAhCapacity;

}

uint16_t Power:: ReadInstantVoltage (void) const
{ return nlnstantVoltage;

}

bool Power:: ReadSupplyOutputState (ePWRSUPPLY eSupply) const

{

bool bDigitalState = false;

switch (eSupply)

{
case PWRSOURCEEXT":
{
// Power is ON when Active LOW output on ONSTI1
if (digitalRead (PINPWRSTATUS EXT.ONST1) = 0)
bDigitalState = true;
break ;
}
case PWRSOURCEINT:
{
// Power is ON when Active LOW output on ONST2
if (digitalRead (PINPWRSTATUS INT_ONST2) =— 0)
bDigitalState = true;
break;
¥
case PWRSOURCE.OFF':
{
// Power is ON when Active LOW output either ONSTI or ONST2
if (digitalRead (PINPWRSTATUS EXT_ONST1) — 0)
bDigitalState = false;
else if(digitalRead (PINPWRSTATUSINT ONST2) — 0)
bDigitalState = false;
else
// Both are turned off so response success
bDigitalState = true;
break ;
}
}

return bDigitalState;

H.14 The Power.cpp Code 145

bool Power :: ReadSensorFAULT (void) const

{
// Current Sensor FAULT condition is Active LOW

if (1 digitalRead (PIN.CURRENTSENSORFAULT))
{

// Result is LOW so fault exists, set response = true
return true;

}

else

{
// Result is HIGH so NO fault exists, set response = false

return false;

}

ePWRSUPPLY Power : : ReadCommandedSupply (void) const
{

}

ePWRSUPPLY Power :: ReadRecordedSupply (void) const
{

}

return ePowerCommand ;

return ePowerSource;

H.15 The QuadEncoder.h Code 146
H.15 The QuadEncoder.h Code

Listing H.13: The QuadEncoder header file.

x QuadEncoder.h

x Created on: 28 Aug 2014
* Author: Ian Sazby

*/

#ifndef QUADENCODER.IL
#define QUADENCODER.H

// Encoder Tsc period constant (usec)

#define TSCPERIOD 98304 // closest to 100msec using scaling 3 << 15
// Define Np divsor 32 =>> 5 (by number of shift right 2°5)
//#define NP 5

// Define Np divsor 16 =>> 4 (by number of shift right 2°4)
#define NP 4

// Number of Quadrature Decoder Buffers, used for concurrent w calcs
// and isr execution

#define NUMDECBUF 2

// Circular Buffer Size for averaging filter of Quadrature Encoder
// Angular rate output

#define CIRCBUFSIZE 2

// Define the mazimum duration of the extended observation window
// before angular rate is marked as zero rpm

#define MAXEXTOBSWIN 15 // which is about 1.5 seconds

// Mazximum Quadrature Rotor output velocity
#define MAXLIMIT OMEGA 10000

// Quadrature Decoder Timer record structure definition
typedef union
{
struct {
uintl6_t spare;
uintl6_t nl6DeltaN;
¥
uint32_t n32DeltalN;
} c_UDelta;

typedef struct

{
c¢_UDelta u_nDeltaN;
uint32_t DecoderISRTime;
uint32_t nDeltaThml = 0;

} DecoderBuffer:;

typedef union

H.15 The QuadEncoder.h Code 147

{

struct {
uintl6_t spare;
uintl6_t nl6SumTscacc;
i
uint32_t n32SumTscacc;
} c¢_UTscacc;

// Quadrature Decoder Tsc,acc global count variable
static uintl6_t g_-nTscTick = 0;

// 2 element Quadrature Decoder Timer Buffer declaration
static DecoderBuffer g_DecBuf[NUMDECBUF];

// Index into above buffer initialised to 0

static uint8_t g_nBufferIndx = 0;

// Circular buffer for Omega average

//static wintl6_t g-nOmegaCirBuf[CIRCBUFSIZE];

// Circular Buffer index

static uint8_t g_-nOCirlndx = 0;

#endif /+ QUADENCODERH. x/

H.16 The BIT.cpp Code 148
H.16 The BIT.cpp Code

Listing H.14: The BIT source file.

x BIT.cpp

* Created on: 7 Nov 201/
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include 7BIT.h”

#include ”Commander.h”
#include 7 PinoutConfigSM .h”

extern Commanderx pcCmdr;
extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g ul2CUpdate_MsgTx;

// BIT Constructor
BIT:: BIT ()
{

nBITCondition = 0;

// Initialise Allow BIT Checking
bBITCheckAuthFlag = true;

}

void BIT:: BITFlagUpdate (eBITFLAG nBITFlagPosition, bool bCondition)
{

// the flag to be shifted into BIT Flag position

uintl6_t nFlag = 1;

// DEBUG print statements

// Uncomment if required
//Serial.print (?BIT Pos 7);
//Serial.print (nBITFlagPosition);
//Serial.print(” bCondition ”);
//Serial.printin (bCondition);

// Assert that nBITFlagPosition < 16 positions
if (nBITFlagPosition > 15)

{
BITFlagUpdate (BIT FLAG.OVRFLW, true);
//pcCmdr—>SetState (BITFAIL) ;
return;

¥

// Shift and Set or clear the BIT Flag position

H.16 The BIT.cpp Code

149

if (bCondition)

{
// The update is to record a BIT FAIL
// Need to shift and OR Mask into place
nBITCondition |= (nFlag << nBITFlagPosition);
// Set State to BITFAIL
pcCmdr—>SetState (BITFAIL);

else

// The update is to record a BIT PASS
// need to shift, Invert and AND Mask into place
nBITCondition &= (" (nFlag << nBITFlagPosition));

// Check if all BIT Flag positions are false
if (!(nBITCondition & OXFFFF))
{

// DEBUG print statements

// Uncomment if required

//Serial.print (”All BIT clear 7);

// Now check if the system is already in BITFAIL State
// If so then this allows the system to transition out

// of BITFAIL
if (pcCmdr—>RetrieveState () == BITFAIL)

{
}

pcCmdr—>SetState (INITIALISE);

}

// Update the I2C Tx Msg Buffer
// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSG4) ;

g_ul2CUpdate_MsgTx.g nType3UlIntValue = nBITCondition;

// DEBUG print statements

// Uncomment if required

//Serial.print (?nBITCondition ”);

//Serial.printin (g-ul2CUpdate_-MsgTx.g-nType3UIntValue);

// Store it into the I2C Message Area
g cI2C_MsgTx—>putMessage (MSG4, &g ul2CUpdate MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I2CValidateTxMsg (MSG4) ;

}

uint16_t BIT:: ReadBITFlags() const

{

return nBITCondition;

H.16 The BIT.cpp Code 150

}
bool BIT:: RetrieveBITCheckFlag(void) const
{
return bBITCheckAuthFlag;
}
void BIT:: ModifyBITCheckFlag(bool bFlag)
{
bBITCheckAuthFlag = bFlag;
}
bool BIT::BITCheck(void)
{
// Ezecute BIT
if (pcCmdr—>RetrieveState () = BITFAIL)
// Un—Assert the Commit To Release Interlock
pcCmdr—>ProhibitRelease ();
// Switch to FExzternal power source
if (pcCmdr—>SwitchPowerSupply (PWRSOURCEEXT))
{
// Clear the FEzternal Power Transition BITFail Flag
BITFlagUpdate (SUPPLY EXT, false);
}
// IF the power supply switch fails BIT will handle setting
// the bit flag and already within BITFAIL state so no need
// to change State. If the switch is successful and that
// cleared the only bit Flag then BIT will transition
// state to INITIALISE
// Detach the Interrupts, mnecessary if transiting to BITFAIL
// post ReadyRelease 10Hz Task
detachInterrupt (0);
// detachInterrupt (1);

}

// Do other BIT checks

// Check that the Current Sensor has not set the Over Current
// FAULT flag. Current Sensor FAULT condition is Active LOW
if (pcCmdr—>ReadSensorFAULT ())

{

Serial.println ("CFAULT”);

// Fault exists so set the Current Fault BIT flag
BITFlagUpdate (CURRENT FAULT, true);

H.16 The BIT.cpp Code 151

}

else

{
// No problem here so clear the Power BIT flag
BITFlagUpdate (CURRENT FAULT, false);

}

// Now check that the power supply outputs are as expected
// Check if Internal power supply is turned on
if (pcCmdr—>ReadSupplyOutputState (PWRSOURCEINT))
{
// Yes it is so Confirm the FExternal is turned off
if (!pcCmdr—>ReadSupplyOutputState (PWRSOURCEEXT))

{
// It is not on so Clear the FExternal power BIT flag
BITFlagUpdate (SUPPLY EXT, false);

}

else

{
Serial . println ("PWREXTFAULT”);
// It is on so (somehow a dual power supply condition)
// set the External power BIT flag
BITFlagUpdate (SUPPLY EXT, true);

}

}

//else that means External must be turned on otherwise there
// should be no supply and this can’t be happening

// Confirm the recorded power supply = commanded power supply
if (pcCmdr—>ReadRecordedSupply () != pcCmdr—>ReadCommandedSupply ())
{

Serial.println ("PWR.RECORD_DIFF”) ;

// They don’t equal so set the Power BIT flag

BITFlagUpdate (SUPPLYNOTCMD, true);

¥

else

{
// Clear the Supply Not as Commanded BIT flag
BITFlagUpdate (SUPPLYNOTCMD, false);

}

// How to recover from FIFO QOverflow and others

// If any BIT flag set change state to BITFAIL
if (nBITFaultFlags)
{
// Change SensorManager state to BITFAIL
pcManagerState—>SetState (BITFAIL);

H

.17 The ServoTimer2.h Code 152

H.17 The ServoTimer2.h Code

The function ServoTimer2.h is included to show how to include C source code. Again,

yo

u might need an explanation of what it does and how it does it here.

Listing H.15: The ServoTimer2 header file.

ServoTimer2.h — Interrupt driven Servo library for Arduino using
Timer2— Version 0.1

Copyright (c) 2008 Michael Margolis. All right reserved.
Modified by Ian Sazby to work with NilIRTOS

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later wversion.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110—1301

UsA
*/

/%

This library uses Timer2 to drive up to (8) now 4 servos wusing
interrupts so no refresh activity is required from within the sketch.
The wusage and method maming is similar to the Arduino software servo
library

http ://wuww. arduino . cc/playground/ComponentLib/Servo

except that pulse widths can be imn microseconds or degrees.

write () treats parameters of 180 or less as degrees, otherwise values
are milliseconds .

A servo is activated by creating an instance of the Servo class passing
the desired pin to the attach () method.The servo is pulsed in the
background to the wvalue most recently written wusing the write () method

Note that analogWrite of PWM on pins & and 11 is disabled when the first
servo 1s attached

The methods are:

H.17 The ServoTimer2.h Code 153

ServoTimer2 — Class for manipulating servo motors connected to Arduino
pins.

attach (pin) — Attaches a servo motor to an i/o pin.

attach (pin, min, max) — Attaches to a pin setting min and mazr values in
microseconds

default min is 544, maxr is 2400

write () — Sets the servo pulse width in microseconds.

read () — Gets the last written servo pulse width in microseconds.
attached () — Returns true if there is a servo attached.

detach () — Stops an attached servos from pulsing its i/o pin.

The library takes about 824 bytes of program memory and 32+ (2xservos)
bytes of SRAM.
The pulse width timing is accurate to within 1%

*/

// ensure this library description is only included once
#ifndef ServoTimer2_h
#define ServoTimer2_h

#include <Arduino.h>
#include <inttypes.h>

// the shortest pulse sent to a servo

#define MIN PULSE WIDTH 750
// the longest pulse sent to a servo
#define MAX PULSE WIDTH 2250

// default pulse width when servo is attached

#define DEFAULT PULSEWIDTH 1500

// the mazimum number of channels, don’t change this

#define NBR.CHANNELS 4

// frame sync delay is the first entry in the channel array

#define FRAMESYNCINDEX 0

// total frame duration in microseconds

#define FRAME.SYNCPERIOD 20000

// number of iterations of the ISR to get the desired frame rate

#define FRAME SYNCDELAY ((FRAMESYNCPERIOD — (\
NBR.CHANNELS % DEFAULT PULSE WIDTH))/ 128)

// number of microseconds of calculation overhead to be

//subtracted from pulse timings

#define DELAY _ADJUST 8

// Tradeoff of higher speed wvice higher use of memory
typedef struct {

H.17 The ServoTimer2.h Code 154

// a pin number from 0 to 351
uint8_t nbr ;
// false if this channel not enabled, pin only pulsed if true
bool isActive;
} ServoPin_t;

typedef struct {
ServoPin_t Pin;
uint8_t counter;
uint8_t remainder;
int nPulseWidthMin;
int nPulseWidthMax ;
} servo_t;

class ServoTimer2
{
public:
// constructor:
ServoTimer2 ();
// attach the given pin to the next free channel, sets pinMode,
// returns channel number or 0 if failure
uint8_t attach(int);

// the attached servo is pulsed with the current pulse width value,

//(see the write method)

// as above but also sets min and max values for writes.
uint8_t attach(int, int, int);

void detach ();

// store the pulse width in microseconds (between MIN_PULSE_WIDTH

// and MAX PULSE WIDTH) for this channel

void write (int);

// returns current pulse width in microseconds for this servo
int read();

// return true if this servo is attached

bool attached ();

private:

// index into the channel data for this servo
uint8_t chanlndex;

i

#Hendif

H.18 The ServoTimer2.cpp Code 155
H.18 The ServoTimer2.cpp Code

Listing H.16: The ServoTimer2 source file.

/%
ServoTimer2.cpp — Modified by Ian Saxby for use with NilRTOS

Interrupt driven Servo library for Arduino wusing Timer2— Version 0.1
Copyright (c¢) 2008 Michael Margolis. All right reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later wversion.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110—1301
USA

*/

#include <Arduino.h>

#include ”ServoTimer2.h”

static void initISR ();

//static void writeChan (uwint8_t chan, int pulsewidth);
// static array holding servo data for all channels
static servo_t servos [NBR.CHANNELS+1];

// counter holding the channel being pulsed

static volatile uint8_t Channel;

// iteration counter used in the interrupt routines;
static volatile uint8_t ISRCount;

// counter holding the number of attached channels
uint8_t ChannelCount = 0;

// flag to indicate if the ISR has been initialised
static bool isStarted = false;

ISR (TIMER2_OVF _vect)
{

// increment the overlflow counter

++ISRCount ;
// are we on the final iteration for this channel
if (ISRCount = servos|[Channel]. counter)

{

// yes, set count for overflow after remainder ticks
TCNT2 = servos[Channel|.remainder;

H.18 The ServoTimer2.cpp Code 156

}

}

else if (ISRCount > servos|[Channel].counter)

{

// we have finished timing the channel so pulse it low and
//move on
if (servos|[Channel].Pin.isActive)
{
// check if activated
// pulse this channel low if active
digitalWrite (servos|[Channel]|.Pin.nbr IOW);

}

Channel+4+; // increment to the mnext channel
ISRCount = 0; // reset the isr iteration counter
TCNT2 = 0; // reset the clock counter register

if ((Channel != FRAMESYNCINDEX) && (Channel <= NBR.CHANNELS))
{
// check if we need to pulse this channel
if (servos|[Channel].Pin.isActive)
{
// check if activated
// its an active channel so pulse it high
digitalWrite (servos|[Channel].Pin.nbr HIGH);

}

else

{
if (Channel > NBR.CHANNELS)

{

// all done so start owver
Channel = 0;

ServoTimer2 :: ServoTimer2 ()

{

if (ChannelCount < NBR.CHANNELS)

}

else

{

// assign a channel number to this instance
this—>chanlndex = ++ChannelCount ;

// too many channels, assigning 0 inhibits this instance from
// functioning
// todo

this—>chanIndex = 0;

H.18 The ServoTimer2.cpp Code 157

uint8_t ServoTimer2::attach(int pinNo)

{
return this—>attach (pinNo, MIN_PULSE.WIDTH, MAX PULSE-WIDTH);

}

uint8_t ServoTimer2::attach(int pinNo, int nSetPulseWidthMin ,
int nSetPulseWidthMax)
{

if (lisStarted)

initISR ();
}

if (this—>chanlndex > 0)

//debug (”attaching chan = 7, chanlIndex);
// set servo pin to output

pinMode (pinNo, OUTPUT) ;

servos [this—>chanIndex|.Pin.nbr = pinNo;

servos [this—>chanlndex |.Pin.isActive = true;

servos [this—>chanIndex | . nPulseWidthMin = nSetPulseWidthMin;
servos [this—>chanIndex].nPulseWidthMax = nSetPulseWidthMax ;

}

return this—>chanlndex;

}

void ServoTimer2:: detach ()

{
¥

servos [this—>chanIndex].Pin.isActive = false;

void ServoTimer2:: write (int pulsewidth)

{

if (pulsewidth < (servos|[this—>chanIndex|.nPulseWidthMin))

pulsewidth = servos[this—>chanIndex |.nPulseWidthMin;

}

else

{

if(pulsewidth > (servos[this—>chanIndex].nPulseWidthMax))

pulsewidth = servos[this—>chanIndex|.nPulseWidthMax;

}
}

// subtract the time it takes to process the start and end pulses
// (mostly from digitalWrite)
pulsewidth —=DELAY_ADJUST;

H.18 The ServoTimer2.cpp Code 158

servos [this—>chanIndex]. counter = pulsewidth >> 7;
// the number of 0.5us ticks for timer overflow
servos [this—>chanIndex |. remainder = 255 — ((pulsewidth —

(servos [this—>chanIndex |. counter << 7)) << 1);

}

int ServoTimer2::read()

{

unsigned int pulsewidth;
if(this—>chanlndex > 0)

{

pulsewidth = (servos|[this—>chanIndex].counter << 7) +
((255 — servos[this—>chanIndex|.remainder) >> 1) +
DELAY ADJUST ;
}
else
{
pulsewidth = 0;

}

return pulsewidth;

}

bool ServoTimer2:: attached ()

{
}

static void initISR ()

{

return servos [this—>chanIndex].Pin.isActive ;

int pulsewidth;
for (uint8_t i=1; i <= NBR.CCHANNELS; i++)
{
// channels start from 1
// subtract the time it takes to process the start and end
// pulses(mostly from digital Write)
pulsewidth = DEFAULT PULSE_WIDTH — DELAY_ADJUST;

servos [i].counter = pulsewidth >> 7;
// the number of 0.5us ticks for timer overflow
servos [i].remainder = 255 — ((pulsewidth —

(servos|[i].counter << 7)) << 1);
}
// store the frame sync period
servos [FRAMESYNCINDEX]. counter = FRAMESYNCDELAY;

Channel = 0; // clear the channel index
ISRCount = 0; // clear the wvalue of the ISR counter;

/x setup for timer 2 x/
// disable interrupts
TIMSK2 = 0;

// mormal counting mode
TCCR2A = 0;

H.18 The ServoTimer2.cpp Code 159

// set prescaler of 8

TCCR2B = BV (CS21);

// clear the timer2 count

TCNT2 = 0;

// clear pending interrupts;

TIFR2 = BV (TOV2);

// enable the overflow interrupt

TIMSK2 = _BV(TOIE2) ;

// flag to indicate this initialisation code has been executed
isStarted = true;

H.19 The StateMachine.h Code 160
H.19 The StateMachine.h Code

The function StateMachine.h is included to show how to include C source code. Again,

you might need an explanation of what it does and how it does it here.

Listing H.17: The StateMachine header file.

x StateMachine.h

*
x Created on: 2 Nov 2014
* Author: Ian

*/

#ifndef STATEMACHINE H_
#define STATEMACHINE H_

//#include "I2CBuffer.h”
#define NUMSTATES 9

enum eSTATE {INITIALISE,
PREPARED,
BITFAIL,
POWERDOWN,
ABORT,
READYCONFIRM,
READYRELEASE,
SEPARATION,
DEPLOY } ;

class StateMachine

{

public:
// Constructor
StateMachine ();
eSTATE RetrieveState (void) const;
void SetState (eSTATE eNewState);
virtual ~StateMachine(){}

private:
eSTATE eCurrentState;
// Adjacency List for Sensor Manager
uint16_t abStateAdj [NUMSTATES];
// Setup a buffer for storing 12C Tz data for
// storing I2C Slave Transmission Message Buffer
// I2CMsgTx ul2CUpdate_MsgTz;

}s

H.19 The StateMachine.h Code 161

#endif /+ STATEMACHINE H x/

H.20 The StateMachine.cpp Code 162
H.20 The StateMachine.cpp Code

Listing H.18: The StateMachine source file.

x StateMachine. cpp

* Created on: 2 Nov 2014
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include 7 StateMachine.h”
#include ”BIT.h”
#include 7 I12CBuffer.h”

extern BITx pcBIT;
extern [2CBuffer xg_cI2C_MsgTx;
extern [12CMsgTx g ul2CUpdate_MsgTx;

StateMachine :: StateMachine ()

{
// Initialise the Adjacency List for the Sensor Manager State
// Machine NUMSTATES long
// bit 0 = V0, bit 8§ = V8
// (VO)INITIALISE (V1)PREPARED (V2)BITFAIL
// (V3)POWERDOWN (V4)ABORT (V5)READYRELEASE
// (V6)READYCONFIRM(V'7)SEPARATION(V8)DEPLOY
abStateAdj[0] = 2; // B000000010 — A(0) = {V1}
abStateAdj[1] = 36; // B000100100 — A(1) = {V2,V5}
abStateAdj[2] = 5; // B000000101 — A(2) = {V0,V2}
abStateAdj[3] = 0; // B000000000 — A(8) = {}
abStateAdj[4] = 6; // B000000110 — A(4) = {V1,V2}
abStateAdj[5] = 84; // B001010100 — A(5) = {V2,V}, V6}
abStateAdj[6] = 180; // B010110100 — A(6) = {V2,V4,V5}
abStateAdj[7] = 264; // B100001000 — A(7) = {V3,V8}
abStateAdj[8] = 8; // B000001000 — A(8) = {V3}
// Set Initial State to
eCurrentState = INITIALISE;

¥

eSTATE StateMachine:: RetrieveState (void) const

{
return eCurrentState;

}

void StateMachine:: SetState (eSTATE eNewState)

H.20 The StateMachine.cpp Code 163

{

uint8_t nAdjacencyListPos;

// Validate the requested State Change before so doing

// Shift the current state adjacency value to the right

// Checking if new state is a wvalid transition
nAdjacencyListPos = abStateAdj[eCurrentState] >> eNewState;

// Mask off the LSB to obtain boolean answer
// Only change if new state is included in list
if ((nAdjacencyListPos & 1))

{
// Using the result of adjacency review (State change
// authority)undertake the State Change if so authorised
eCurrentState = eNewState;
// Clear the Incorrect State Transition attempted BIT flag
pcBIT—>BITFlagUpdate (INVALID STATE_ CHG, false);
// Update the Output message with current state

}

else

{
// Else incorrect requested State Transition
// Therefore set BITFail error
// Set the Incorrect State Transition attempted BIT flag
pcBIT—>BITFlagUpdate (INVALID STATE CHG, true);

}

// Update the I12C Tx Msg Buffer
// First Invalidate current message area
g cI2C_MsgTx—>I2CInvalidate TxMsg (MSGO) ;

g ul2CUpdate_MsgTx.g nTypedEnumValue = eCurrentState;

// Store it into the I2C Message Area
g_cI2C_MsgTx—>putMessage (MSGO, &g_-ul2CUpdate_-MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I12CValidateTxMsg (MSGO) ;

H.21 Release Controller Listings 164
H.21 Release Controller Listings

H.22 The HostReleaseController.ino Code 165
H.22 The HostReleaseController.ino Code

Listing H.19: The main Host Release Controller Sketch.

x HostReleaseController.ino

* Created on: 1 Oct 2014
* Author: Ian Sazby

*/
#include <Arduino.h>

//#include <Wire.h> //I2C library

#include <NilRTOS.h>

#include <DigitallO .h>

// Use tiny unbuffered NilRTOS NilSerial library.
#include <NilSerial .h>

// Macro to redefine Serial as NilSerial to save RAM.
// Remove definition to use standard Arduino Serial.
#define Serial NilSerial

#include <Wire.h>
#include <NilFIFO.h>
#include <NilAnalog.h>
#include <NilTimerl .h>
#include ”ServoTimer2.h”

#include ”"PinoutConfigRC.h”
#include ”Equates.h”
#include " Power.h”
#include ”BIT.h”

#include 7 I12CBuffer.h”
#include ” StateMachine.h”
#include ”Commander.h”

// FIFO of received Command Messages
NilFIFO<I2CMsgRx, FIFODEPTH>* pcFIFO;

//i2c settings
#define SLAVE_ADDRESS 0x33

// Task Tick Counter, initialised to 0. Range 0 to 9
uint8_t nTaskTick = 0;

// Declare global pointers to the wvarious controller
// objects These are instantiated during setup
Commander*x pcCmdr;

BIT* pcBIT;

H.22 The HostReleaseController.ino Code 166

// I2C Buffer Arrangements

// Establish a I2C Slave Transmission Message Buffer
// Class pointer

I12CBuffer xg_cI2C_MsgTx;

// Setup a buffer for storing I2C Tx data for transferring to
// 12C Slave Transmission Message Buffer
12CMsgTx g-ul2CUpdate_MsgTx ;

// Setup a global buffer for initial I2C receipt before storing
// in ICP FIFO
12CMsgRx g_ul2CTemp_-MsgRx ;

// Setup a global buffer for 12C dispatch for I2C to Transmit

// from
[2CMsgTx g ul2CTemp_MsgTx ;

// declare servoTimer2 object ptrs to control the lock, Release
// and Retract servos

ServoTimer2x pcLockServo;

ServoTimer2* pcReleaseServo;

ServoTimer2* pcUmStowServo;

// Global weight off wheels wvariable
uint8_t g_eWheelOffWheels;

// Declare and initialize a semaphore for limiting access to a
// region.

’

)

SEMAPHORE DECL(cSem1Hz, 0)
SEMAPHORE DECL(cSem5Hz, 0)
SEMAPHORE DECL(cSem10Hz, 0

//
// Declare a stack with 64 bytes beyond context switch and

// interrupt needs.
NIL WORKING_AREA (waThreadl, 96);

// Declare thread function for thread 1.
NIL.THREAD(Threadl, arg)

{

nilTimer1Start (TSC_PERIOD);

while (true)

{

// Ezecute 10Hz Commander related functionality
pcCmdr—>Task10Hz () ;

// Increment the Task Tick counter
nTaskTick++;

H.22 The HostReleaseController.ino Code 167

// Now determine if slower Tasks require to be run in
// this slot
switch (nTaskTick)

{

case 4: // every 10th tick (at time slot 4) = 1 Hz
{
// Signal 1Hz Task to run
// Release the Semaphore but not Reschedule RTOS
// until end

nilSemSignall(&cSem1Hz);
break;
}
case 2:// every 5th tick (at time slots 2 and 7) = 5 Hz
case T:
{
// Signal 5Hz Task to run
// Release the Semaphore but not Reschedule RTOS
// until end
nilSemSignall(&cSem5Hz);
break;
}

case 10: // on the 10th tick reset TaskTick count to 0

{

nTaskTick = 0;
break;

}

// Sleep so lower priority threads can execute.
nilTimer1Wait ();

¥
//

// Declare a stack with 64 bytes beyond context switch and interrupt

// needs.
NIL WORKING_AREA (waThread3, 96);

// Declare thread function for thread 2.
NIL.THREAD(Thread3, arg)

{

// 5 Hz Task

while (TRUE)
{

// Wait for notification to run task
nilSemWaitTimeout(&cSem5Hz, TIME_INFINITE) ;

// Ezecute 5Hz Commander related functionality
pcCmdr—>Task5Hz () ;

H.22 The HostReleaseController.ino Code 168

}

}
//

// Declare a stack with 64 bytes beyond context switch and
// interrupt needs.
NIL WORKING_AREA (waThread4, 96);

// Declare thread function for thread 4.
NIL.THREAD(Thread4, arg)

{

// 3K 3k 3k 3k sk sk sk sk sk skosk sk skosk sk skosk sk skosk sk skosk sk skosk sk skosk sk skosk sk skosk sk skosk sk sk sk sk skosk sk sk sk sk skosk sk sk sk sk sk sk ok kok
// 1 Hz Task

//****>I<>I<>l<**>I<>I<>l<**>I<>I<>l<**>I<>I<>l<>I<*>I<>I<>l<**>I<>I<>l<**>I<>I<>l<************************

while (TRUE)

{
// Wait for notification to run task
nilSemWaitTimeout(&cSem1Hz, TIME_INFINITE);

// Ezecute 1Hz Commander related functionality
pcCmdr—>Task1Hz () ;

}

Y/
Ve
Threads static table, one entry per thread. A thread’s priority
1s determined by its position in the table with highest priority
first.

*
*
*
*
x These threads start with a null argument. A thread’s name is also
x null to save RAM since the name is currently not used.

*

/
NIL_THREADS TABLE BEGIN ()
NIL.THREADS TABLE_ENTRY (NULL, Threadl, NULL, waThreadl, sizeof(waThreadl))
(NULL, Thread3, NULL, waThread3, sizeof(waThread3))
(NULL

Thread4, NULL, waThread4, sizeof(waThread4))

NIL_-THREADS TABLE ENTRY
NIL.THREADS_TABLE_ENTRY

NIL.THREADS TABLE_END ()
//

void PinOutlnitialisation (void);

void setup ()

{

// Instantiate the I2C Slave Transmission Message Buffers
g_cI2C_MsgTx = new I2CBuffer ();

pcLockServo = new ServoTimer2;
pcReleaseServo = new ServoTimer2;
pcUmStowServo = new ServoTimer2;

H.22 The HostReleaseController.ino Code 169

// Initialise uC MiniPro Input Output Pin configuration
PinOutlInitialisation ();

pcFIFO = new NilFIFO<I2CMsgRx, FIFO_DEPTH>;

// Setup Serial Communication
Serial.begin (9600);

Serial . println(””);
Serial.println (” _RESTART.”);

// initialize i2c as slave

Wire . begin (SLAVE_ADDRESS) ;

// define callbacks for i2c¢c communication
Wire.onReceive (receiveData);
Wire.onRequest (sendData) ;

// Instantiate the Commander
pcCmdr = new Commander;

// start kernel
nilSysBegin ();

}
//

// Loop is the idle thread. The idle thread must not invoke any
// kernel primitive able to change its state to not runnable.
void loop ()

{
}

//12C callbacks

// callback for received command
void receiveData(int byteCount)
{

int indx = 0;

uint8_t nOverflow;

[2CMsgRx* psFIFOSIlot ;

while (Wire. available ())
{
// Ensure no Msg Received is longer than largest expected
if (indx > MAXMSGRXLENGTH)
{
// Create failure condition here
// Set the Receive Buffer Owverflow Attempted BIT flag
pcBIT—>BITFlagUpdate (RXBUFF.OVRFLW, true);
// Break out of Receive process
break ;

H.22 The HostReleaseController.ino Code 170

else
{
// initial fast receipt of I2C Command Data
g ul2CTemp_MsgRx . g nRxAllData [indx]| = Wire.read ();
indx++;
}
}

if ((indx > 0) && (indx <= MAXMSGRXILENGTH))
if (gul2CTemp_MsgRx.g nTypelRxMsgNo = SETUP_I12C_SEND_CMD)

// Retrieve the requested message in readiness for subsequent
// SendData () activity
g_cI2C_MsgTx—>get TxMessage (\
(uint8_t)g-ul2CTemp_MsgRx.g nTypelRxEnumValue,
&g ul2CTemp _MsgTx) ;

else
// Store Received 12C Command into FIFO

// Get a free FIFO slot.
psFIFOSlot = pcFIFO—>waitFree (TIMEIMMEDIATE) ;

// Only store if free space. else set Bit Fail condition
if (psFIFOSlot != 0)

{

// Store message into FIFO.
(xpsFIFOSlot) = gul2CTemp_-MsgRx ;

// Signal thread data is available.
pcFIFO—>signalData ();

}

else

{
// Set the Receive Buffer Owverflow Attempted BIT flag
pcBIT—>BITFlagUpdate (FIFO.OVRFLW, true);

}
}
¥

// callback for sending data wvia I2C
void sendData ()
{
Wire. write (g.ul2CTemp _MsgTx.g nTxAllData, /\
—ul2CTemp_-MsgTx .nWdCount) ;

H.22 The HostReleaseController.ino Code 171

void PinOutInitialisation ()

{

// Ezxternal Power Enable Output Pin 4, not controlled
// other than set high

pinMode (PINPOWERENB EXT, OUTPUT);

// Internal Power Enable Output Pin 5

pinMode (PINPOWERENB_INT, OUTPUT);

// Attach the PWM servo class to the Lock / Unlock Actuator
pcLockServo—>attach (PINLCK_ UNLK PWM) ;

// Attach the PWM servo class to the Release Actuator
pcReleaseServo—>attach (PINREL ACTUATOR.PWM) ;

// Attach the PWM servo class to the Umbilical Retraction
// Actuator

pcUmStowServo—>attach (PIN.CON RETRACT PWM) ;

// Umbilical stowage will be sorted by internal functionality

// could be this alternate if range is an issue
//pcRotorServo—>attach (ROTORLOCKPWM, int min, int max);

// Initialisation for Interlock and Discrete Input / Outputs
pinMode (PIN_ PKG INTERLOCK_OUT, OUTPUT);

// Host connected interlock Pin Input, requires pull—up resistor
// setting

// Host disconnected is Active High and no cycle

pinMode (PIN_ PKGINTERLOCK_IN, INPUT_PULLUP);

// Active LOW
pinMode (PIN.COMMIT RELEASE, INPUT PULLUP);

// Debug Pin Input, requires pull—up resistor setting
// Debug mode is Active Low
pinMode (PIN.PKG_DEBUG, INPUT_PULLUP);

// Load Push Button Input, needs debounce logic
// Load is active LOW
pinMode (PIN.LOAD_PKG, INPUT_PULLUP);

// Current Sensor Fault Input Pin, circuit has pull—up resistor
pinMode (PIN.CURRENTSENSORFAULT, INPUT_PULLUP);

// Ezternal Power Status flag, LTC4353 has internal pull—up resistor
pinMode (PINPWRSTATUS EXT_ONST1, INPUT PULLUP);

// Internall Power Status Flag, LTC4353 has internal pull—up resistor
pinMode (PIN PWRSTATUS INT_ ONST2, INPUT PULLUP);

H.23 The Equates.h Code 172
H.23 The Equates.h Code

Listing H.20: The Equates header file.

FEquates.h

Author: Ian Sazby

*
*

x Created on: 14 Nov 2014
*

* 0050083462

*/

#ifndef EQUATES .
#define EQUATES I

// Actuator PWM in usec
#define POSLOCK 700
#define POS_UNLOCK 1800
#define POS_.CLOSE 700
#define POS_OPEN 1800
#define POSSTOW 700
#define POSEXTEND 1800
#define SERVODELAY 1600

enum ePKGSTATE

{
P_INITIALISE, P.TRANSREADY, PINTRANSFER, P_.TASKED, P_BITFAIL,
P_ABORT, PREADYCONFIRM, PREADYRELEASE, PDEPLOY, P.MIDCOURSE,
PFLARE,
PPOWERDOWN

b

enum ePSMSTATE

{

PSM_INITIALISE, PSM PREPARED, PSM_BITFAIL, PSMPOWERDOWN,
PSM_ABORT, PSM_ READYCONFIRM, PSM READYRELEASE, PSM_SEPARATION,
PSM DEPLOY

i

//enum eHSTATE

//4

/ / H_INITIALISE, HHRCREADY, HPKGCONNECTED, H.TRANSREADY,

// HINTRANSFER, H.TASKED, H_BITFAIL, HERROR, HABORT, HREADYCONFIRM,
// HREADYRELEASE, H ACTIONRELEASE, H GONE, HHUNG, HNOREQUESTEDSTATE

[/}

//enum eHRCSTATE

//4

// HRC_INITIALISE, HRCPKGCHECK, HRCLOAD, HRC_BITFAIL,

// HRC.PKGPOWEROFF, HRC PKGPOWERON, HRC ABORT, HRC READYRELFASE,
/ / HRC_RELEASECONSENT, HRC_RELEASE, HRC.GONE, HRC_HUNG,

// HRC.NOREQUESTEDSTATE

H.23 The Equates.h Code 173

ar
#define NUMSTATES 12 // count does not include NOREQUESTEDSTATE

enum eSTATE {INITIALISE, PKGCHECK, LOAD, BITFAIL, PKGPOWEROFF,
PKGPOWERON, ABORT, READYRELEASE,
RELEASECONSENT, RELEASE, GONE, HUNG, NOREQUESTEDSTATE}

#endif /+ EQUATES.H. x/

H.24 The Commander.h Code

174

H.24 The Commander.h Code

Listing H.21: The Commander header file.

x Commander. h

* Created on: 8 Sep 2014
* Author: 0050083462

*/

#ifndef COMMANDERH-
#define COMMANDER.H.

#include <Arduino.h>
#include <stdint .h>
#include 7I12CBuffer.h”
#include ”StateMachine.h”
#include ”Power.h”
#include " Interface.h”

class Commander: public StateMachine, public Power,

{

public:
Commander () ;
void Taskl0Hz(void);
void TaskbHz(void);
void TasklHz(void);
void ExecuteCmd (I12CMsgRx* sTempRxMsgBuffer);
virtual ~Commander(){}

private:
eSTATE ePreviousState;

12CMsgRx sTempRxMsgBuffer ;
}s

#endif /x COMMANDERH. */

public Interface

H.25 The Commander.cpp Code 175
H.25 The Commander.cpp Code

Listing H.22: The Commander source file.

x Commander. cpp

* Created on: 8 Sep 2014
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include <NilRTOS.h>
#include <NilFIFO.h>
#include <NilSerial .h>
#include <util/atomic.h>

#include ”ServoTimer2.h”
#include ”Commander.h”
#include ”"PinoutConfigRC.h”
#include ” StateMachine.h”
#include ”"BIT.h”

#include " Interface.h”
#include 712CBuffer.h”

extern BITx pcBIT;
extern NilFIFO<I2CMsgRx, FIFODEPTH>x* pcFIFO;

// for DEBUG purposes
extern [2CMsgRx g ul2CTemp_MsgRx;

// Commander Constructor
Commander : : Commander ()

{
// Instantiate the BIT Object
pcBIT = new BIT;
// Turn off Package output power supply
if (! SwitchPowerSupply (PWRSOURCE.OFF))
pcBIT—>BITFlagUpdate (SUPPLY OFF, true);
// Setup the Package Connected Interlock wrap around,
// LOW output
OutputPkgInterlockSignal ();
}

void Commander :: Task10Hz (void)

{

H.25 The Commander.cpp Code 176

// Internal counter for Abort phase
static uint8_t nExtPowerDelay = 0;

static uint8_t nHungCountDown;

switch(RetrieveState()) // In priority order

{
case RELEASECONSENT:

{

// Check if Commit to Release has been removed by Package
if (IsReleaseProhibited () ||

IsPackagelnState (PREADYCONFIRM))
{

// Return to READYRELFASE
SetState (READYRELEASE) ;

}

if (ePreviousState != RELEASECONSENT)
ePreviousState = RELEASECONSENT

// Unlock the Release Actuator
ActuatorLock_UnlockCmd (false);
}

nHungCountDown = 20;

// Confirm the store remains attached
if (!IsPkglnterlockPresent ())
{
// Package has gone so set GONE condition
SetState (GONE) ;
// Notify error through BIT
pcBIT—>BITFlagUpdate (PACKAGE INTERLOCK GONE, true);

}

// Check for FMU command state change
// May receive FMU Cmd to Release
CheckFMUCmdStateChange () ;

break ;

}
case RELEASE:

{
if (ePreviousState != RELEASE)
ePreviousState = RELEASE;

// Open the hook
ActuatorHookOpen_CloseCmd (true);

H.25 The Commander.cpp Code 177

}
// Stop BIT Checking

pcBIT—>ModifyBITCheckFlag(false);

// Count down to check for HUNG condition

nHungCountDown——;

// Confirm the store remains attached
if (IsPkgInterlockPresent ())

{
if (nHungCountDown =— 0)
// Package remains attached so set HUNG condition
SetState (HUNG);
}
}
else
{
// Package has gone so set GONE condition
SetState (GONE) ;
}
break;
}
case ABORT:
{

// Lock the Release Actuator
ActuatorLock_UnlockCmd (true);

// Re—supply Ezternal Power Supply to the Package
// enable the "INT” Supply having current sensing
// and turn off "EXT” supply
if (!SwitchPowerSupply (PWRSOURCEINT))
{
// Wait within the ABORT State for a mazimum of
// period
// before commanded supply power should become available
if (nExtPowerDelay > MAXEXTSUPPLYWAIT)
{
// Timeout!
nExtPowerDelay = 0;
// Failure to transition to INT power so set BIT
7/ fail
SetState (BITFAIL);
}

else

{

nExtPowerDelay++;

H.25 The Commander.cpp Code 178

}

// Reset the Supply delay switch over counter
nExtPowerDelay = 0;

// A successful switch to supply Host power to Package
// was achieved
// so transition to PREPARED State

SetState (PKGPOWERON) ;
¥
break ;
¥
default :
break ;

void Commander :: Task5Hz (void)

{

12CMsgRx* psTempRxMsgBuffer ;

static bool bThispassLoadBtnState;

static bool bLastpassLoadBtnState = false;
static uint8_t nDebounceCounter;

static bool bButtonDebounceUnderway = false ;
static bool bButtonValid = false;

// Check for FMU I2C msg within FIFO
// Use TIMEIMMEDIATE to prevent sleeping in this thread.
psTempRxMsgBuffer = pcFIFO—>waitData (TIMEIMMEDIATE) ;

// Act on any received Message

if (psTempRxMsgBuffer)

{
// Yes, one is awvailable so fetch Message from the FIFO.
sTempRxMsgBuffer = s*psTempRxMsgBuffer;

// Signal FIFO slot is free.
pcFIFO—signalFree ();

// Act on the message
ExecuteCmd(&sTempRxMsgBuffer) ;

}

// 5Hz State functions
switch(RetrieveState()) // In priority order

{
case GONE:

{
if (ePreviousState != GONE)
ePreviousState = GONE;

// Stow the Umbilical Connector

H.25 The Commander.cpp Code 179

ActuatorStow_ExtendCmd (true);

}
break ;
}
case HUNG:
{
// Confirm the store remains attached
if (!IsPkglnterlockPresent ())
{
// Package has gone so set GONE condition
SetState (GONE) ;
}
if(ePreviousState != HUNG)
ePreviousState = HUNG;
// Close the hook
ActuatorHookOpen_CloseCmd (false);
// Lock the Release Actuator
ActuatorLock_UnlockCmd (true);
}
break;
}

case READYRELEASE:

{

// Shutdown Host Power supply output to Package
// disable the "INT” Supply having current sensing
SwitchPowerSupply (PWRSOURCE.OFF) ;

// Confirm the store remains attached
if (!IsPkglnterlockPresent ())
{
// Package has gone so set GONE condition
SetState (GONE) ;
// Notify error through BIT
pcBIT—>BITFlagUpdate (PACKAGEINTERLOCK GONE, true);

break; // No reason to continue with this state
// functionality

}

// Check for FMU command state change
// May receive ABORT CMD from FMU
CheckFMUCmdStateChange () ;

// Check if Commit to Release is set and Package is in
// READYRELEASE
if (IsCommitToReleasePresent () &&

H.25 The Commander.cpp Code 180
IsPackagelnState (PREADYRELEASE))

// Release consent has been established
// and the package is in the correct state
SetState (RELEASECONSENT) ;

}

break ;
¥

case INITIALISE:

{

// Allow the BIT Checks
pcBIT—>ModifyBITCheckFlag(true);

// Check the DEBUG interlock state
UpdateDebugInterLockState ();

if (ePreviousState != INITIALISE)
ePreviousState = INITIALISE;

// Unlock Hook Actuator
ActuatorLock_UnlockCmd (false);

// Close the hook
ActuatorHookOpen_CloseCmd (false);
// Lock the Hook Actuator
ActuatorLock_UnlockCmd (true);

}

// transition to PKGCHECK state
SetState (PKGCHECK) ;

break ;

}
case PKGCHECK:

{
// Close the Release Hook
if (ePreviousState != PKGCHECK)

{
ePreviousState = PKGCHECK;

// Unlock Hook Actuator
ActuatorLock_UnlockCmd (false);

// Close the hook
ActuatorHookOpen_CloseCmd (false);

// Lock the Hook Actuator
ActuatorLock_UnlockCmd (true);

H.25 The Commander.cpp Code 181

// Check Load Push Button only if Weight On Wheels is wvalid
if (1 IsWeightOffWheels ())

{
bThispassLoadBtnState = IsPkgLoadButtonPressed ();
if (bThispassLoadBtnState != bLastpassLoadBtnState)
// reset the debounce timer

nDebounceCounter = 0;
bButtonDebounceUnderway = true;

}

if (bButtonDebounceUnderway)
nDebounceCounter—++;
if (nDebounceCounter > 2)

// Debounce conditions satisfied , ignore
// counter wuntil next change

bButtonDebounceUnderway = false ;

// Load button state is walid and Pressed
if (bThispassLoadBtnState)

{
}

SetState (LOAD);

}

bLastpassLoadBtnState = bThispassLoadBtnState;

}

// Detection of Package Interlock presence
if (IsPkgInterlockPresent ())
{

// Detected Interlock wrap successful therefore

// progress
SetState (PKGPOWEROFF) ;

}

break;

}
case LOAD:

{
if (ePreviousState != LOAD)

ePreviousState = LOAD;
// Shutdown Host Power supply output to Package
// disable the "INT” Supply having current sensing

H.25 The Commander.cpp Code 182

SwitchPowerSupply (PWRSOURCE.OFF) ;

// Unlock Hook Actuator
ActuatorLock_UnlockCmd (false);
// Open the hook
ActuatorHookOpen_CloseCmd (true);

// Exztend the Umbilical Connector
ActuatorStow_ExtendCmd (false);

}

bThispassLoadBtnState = IsPkgLoadButtonPressed ();
if (bThispassLoadBtnState != bLastpassLoadBtnState)

// reset the debounce timer
nDebounceCounter = 0;
bButtonDebounceUnderway = true;

if (bButtonDebounceUnderway)
nDebounceCounter++;
if (nDebounceCounter > 2)

// Debounce conditions satisfied , ignore counter
// until next change

bButtonDebounceUnderway = false ;

// Load button state is wvalid
// If Load button is mno longer pressed
if (! bThispassLoadBtnState)
{
// Package Load button has been released
// return to PKGCHECK state where a check of
// Package Interlock will occur
SetState (PKGCHECK) ;
}
}
bLastpassLoadBtnState = bThispassLoadBtnState;

¥
break ;

}
case PKGPOWEROQOFF':

{
// Confirm the store remains attached
if (!IsPkglnterlockPresent ())

{

// Package has gone so set GONE condition

H.25 The Commander.cpp Code 183

SetState (GONE);
// Notify error through BIT
pcBIT—>BITFlagUpdate (PACKAGEINTERLOCK GONE, true);

break; // No reason to continue with this state
// functionality

}

if (ePreviousState != PKGPOWEROFF)

ePreviousState = PKGPOWEROFF;

// Shutdown Host Power supply output to Package
// disable the "INT” Supply having current sensing
SwitchPowerSupply (PWRSOURCE.OFF) ;

// Lock the Release Actuator
ActuatorLock_UnlockCmd (true);
}
// Check for FMU command state change
CheckFMUCmdStateChange () ;

break ;
}
case PKGPOWERON:
{

// Confirm the store remains attached
if (!IsPkglnterlockPresent ())
{
// Package has gone so set GONE condition
SetState (GONE) ;
// Notify error through BIT
pcBIT—BITFlagUpdate (PACKAGE INTERLOCK GONE, true);

break; // No reason to continue with this state
// functionality

}

if (ePreviousState != PKGPOWERON)
ePreviousState = PKGPOWERON;

// Supply Host Power output to Package

// Re—supply Ezternal Power Supply to the Package
// enable the "INT” Supply having current sensing
if (!SwitchPowerSupply (PWRSOURCEINT))

{

// Failure to transition to INT power so set BIT

/7 fail
SetState (BITFAIL);

H.25 The Commander.cpp Code 184

// Lock the Release Actuator
ActuatorLock_UnlockCmd (true);
}
// Check for FMU command state change
CheckFMUCmdStateChange () ;

break ;
}
default:
break ;
}
}
void Commander:: TasklHz (void)
{

static uint8_t CountlHz;
static bool bDebugFirstPass = true;

// For DEBUG purposes only
12CMsgRx* psFIFOSlot ;

// 1Hz State functions
switch (RetrieveState ()) // In priority order

{

case BITFAIL:

{

if (ePreviousState != BITFAIL)
ePreviousState = BITFAIL;

// Start BIT Checking
pcBIT—>ModifyBIT CheckFlag (true);

// Shutdown Host Power supply output to Package
// disable the 7"INT” Supply having current sensing
SwitchPowerSupply (PWRSOURCE.OFF) ;

// Lock the Release Actuator
ActuatorLock_UnlockCmd (true);

¥
break ;

}
}
if (pcBIT—>RetrieveBITCheckFlag())

pcBIT—BITCheck () ;
}

UpdateDebugInterLockState ();

H.25 The Commander.cpp Code 185

// DEBUG statements from here to cycle through states in timely manner

if (RetrieveState () =— PKGCHECK)
if (bDebugFirstPass)

bDebugFirstPass = false;
CountlHz = 0;

// Setup for receipt of MSGS and identify WONW
g ul2CTemp_MsgRx . g nTypelRxMsgNo = MSG3;

g ul2CTemp_MsgRx . g nType2RxEnumValue = WONW;

// Store Received 12C Command into FIFO

// Get a free FIFO slot.
psFIFOSlot = pcFIFO—>waitFree (TIMEIMMEDIATE) ;

// Only store if free space. else set Bit Fail condition
if (psFIFOSlot != 0)

{
// Store message into FIFO.
(*psFIFOSlot) = g.ul2CTemp_MsgRx ;
// Signal thread data is available.
pcFIFO—>signalData ();
}
}
if (RetrieveState () >= PKGCHECK)
CountlHz-++;
if (CountlHz =— 8)
{

if (RetrieveState () =— PKGPOWEROFF)

// Setup for receipt of MSG2 and requested state
// change to PKGPOWERON
g ul2CTemp_MsgRx.g nTypelRxMsgNo = MSG2;
g ul2CTemp_MsgRx . g nTypelRxEnumValue =
(uint8_t)PKGPOWERON;
// Store Received 12C Command into FIFO

// Get a free FIFO slot.
psFIFOSlot = pcFIFO—>waitFree (TIMEIMMEDIATE) ;

// Only store if free space. else set Bit Fail
// condition
if (psFIFOSlot != 0)
{
// Store message into FIFO.
(*psFIFOSlot) = g ul2CTemp_MsgRx;

H.25 The Commander.cpp Code 186

// Signal thread data is available.
pcFIFO—>signalData ();
}

bDebugFirstPass = true;
}
else

CountlHz = 3;

}

if (CountlHz =— 14)
if (RetrieveState () == PKGPOWERON)

// Setup for receipt of MSG2 and requested state
// change to READYRELEASE
g ul2CTemp_MsgRx . g nTypelRxMsgNo = MSG2;
g ul2CTemp_MsgRx . g nTypelRxEnumValue =
(uint8_t)READYRELEASE;
// Store Received 12C Command into FIFO

// Get a free FIFO slot.
psFIFOSlot = pcFIFO—>waitFree (TIMEIMMEDIATE) ;

// Only store if free space. else set Bit Fail
// condition
if (psFIFOSlot != 0)

{ // Store message into FIFO.
(*psFIFOSlot) = gul2CTemp_MsgRx;
// Signal thread data is available.
pcFIFO—>signalData ();
}
bDebugFirstPass = true;
}
else
{
CountlHz = 10;
}

if ((CountlHz > 14) && (!IsCommitToReleasePresent ()))
Serial.println (” Waiting.for _.Commit_to_Rel”);

if (CountlHz = 18)
if (RetrieveState () =— READYRELEASE)

// Setup for receipt of MSG5 to indicate Package
// has transitioned to P.READYRELEASE

H.25 The Commander.cpp Code 187

}

else

}

g ul2CTemp_MsgRx . g nTypelRxMsgNo = MSG5;

g ul2CTemp_MsgRx.g nTypelRxEnumValue =
(uint8_t)P READYRELEASE;

// Store Received 12C Command into FIFO

// Get a free FIFO slot.

psFIFOSlot = pcFIFO—>waitFree (TIMEIMMEDIATE) ;

// Only store if free space. else set Bit Fail
// condition
if (psFIFOSlot != 0)

{
// Store message into FIFO.
(*psFIFOSlot) = g ul2CTemp_MsgRx ;
// Signal thread data is available.
pcFIFO—>signalData ();

}

bDebugFirstPass = true;

CountlHz = 15;

if (CountlHz = 22)

if (RetrieveState () = RELEASECONSENT)

else

// Setup for receipt of MSG2 and requested state
// change to RELEASE
g ul2CTemp_MsgRx . g nTypelRxMsgNo = MSG2;
g ul2CTemp_MsgRx . g nTypelRxEnumValue =
(uint8_t)RELEASE;
// Store Received 12C Command into FIFO
// Get a free FIFO slot.
psFIFOSlot = pcFIFO—>waitFree (TIMEIMMEDIATE) ;

// Only store if free space. else set Bit Fail
// condition
if (psFIFOSlot != 0)

{
// Store message into FIFO.
(xpsFIFOSlot) = g ul2CTemp_MsgRx ;
// Signal thread data is available.
pcFIFO—signalData ();

}

bDebugFirstPass = true;

H.25 The Commander.cpp Code 188

CountlHz = 19;
}
}
if (CountlHz > 30)

bDebugFirstPass = true;
CountlHz = 30;

}

else
CountlHz = 0;

}

void Commander :: ExecuteCmd (12CMsgRx* psRcvMsgBuffer)

{
// Decode and react to Message No 2 through 6

switch (psRecvMsgBuffer—g nTypelRxMsgNo)

{
case MSG2:
{
// Commanded State Change
// Single data byte
StoreRequestedStateChange ((eSTATE) psRevMsgBuffer —>\
g nTypelRxEnumValue) ;
break ;
¥
case MSG3:
{
// Save notified Weight Off Wheels Status
UpdateWeightOff WheelsState (psRevMsgBuffer —>\
g nType2RxEnumValue) ;
break ;
}
case MSG4:
{
// Initialise the Internal Battery Capacity
SetupCapacityAhValue (psRecvMsgBuffer —>\
g nTypedRxIntValue);
break ;
}
case MSGhH:
{
// Save the notified Package State
StorePackageState ((ePKGSTATE) psRcvMsgBuffer —>\
g-nTypelRxEnumValue) ;
break;
}
case MSG6:
{

// Debug Interface Messages

// todo
break ;

H.25 The Commander.cpp Code 189

}

H.26 The BIT.h Code 190
H.26 The BIT.h Code

Listing H.23: The BIT header file.

Ve
x BIT.h
*
* Created on: 7 Nov 201/
* Author: Ian Sazby
* 0050085462
v/
#ifndef BIT H_
#define BIT_H._
enum eBITFLAG {
SUPPLY_INT, // BIT Pos 0
SUPPLY_EXT, // BIT Pos 1
SUPPLY_OFF, // BIT Pos 2
CURRENT FAULT, // BIT Pos 3
PACKAGEINTERLOCK.GONE, // BIT Pos
BATCAP BELOW WARN, // BIT Pos 5
FMUNOT-COMM, // BIT Pos 6
INVALID_STATE_CHG, // BIT Pos 7
SUPPLYNOTCMD, // BIT Pos 8
RXBUFF_.OVRFLW, // BIT Pos 9
FIFO_.OVRFLW, // BIT Pos 10
HOOK LOCKED, // BIT Pos 11
SPAREL, // BIT Pos 12
SPARE2, // BIT Pos 13
SPARE3, // BIT Pos 1/
BIT FLAG.OVRFLW // BIT Pos 15
}s
class BIT
{
public:
BIT ();
void BITFlagUpdate (eBITFLAG nBITFlagPosition, bool bCondition);
uint16_-t ReadBITFlags() const;
bool RetrieveBITCheckFlag(void) const;
void ModifyBITCheckFlag(bool bFlag);
bool BITCheck(void);
private:
uint16_t nBITCondition;
// Authority to undertake BIT checks
bool bBITCheckAuthFlag;
¥

#endif /x BIT_-H. x/

H.27 The BIT.cpp Code 191
H.27 The BIT.cpp Code

Listing H.24: The BIT source file.

x BIT.cpp

* Created on: 7 Nov 201/
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include 7BIT.h”

#include ”Commander.h”
#include 7 PinoutConfigRC .h”

extern Commanderx pcCmdr;
extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g ul2CUpdate_MsgTx;

// BIT Constructor
BIT:: BIT ()
{

nBITCondition = 0;

// Initialise Allow BIT Checking
bBITCheckAuthFlag = true;

}

void BIT:: BITFlagUpdate (eBITFLAG nBITFlagPosition, bool bCondition)

{
// the flag to be shifted into BIT Flag position
uintl6_t nFlag = 1;

// Assert that nBITFlagPosition < 16 positions
if (nBITFlagPosition > 15)

{
BITFlagUpdate (BIT FLAG.OVRFLW, true);
//pcCmdr—>SetState (BITFAIL) ;
return;
}
// Shift and Set or clear the BIT Flag position
if (bCondition)
{

// The update is to record a BIT FAIL

// Need to shift and OR Mask into place
nBITCondition |= (nFlag << nBITFlagPosition);
// Set State to BITFAIL

pcCmdr—>SetState (BITFAIL);

H.27 The BIT.cpp Code 192

}

}
else
{
// The update is to record a BIT PASS
// need to shift, Invert and AND Mask into place
nBITCondition &= (" (nFlag << nBITFlagPosition));
// Check if all BIT Flag positions are false
if (!(nBITCondition & OXFFFF))
{
// Now check if the system is already in BITFAIL
// State If so then this allows the system to
// transition out of BITFAIL
if (pcCmdr—>RetrieveState () == BITFAIL)
{
pcCmdr—>SetState (INITIALISE);
}
}
}

// Update the I2C Tx Msg Buffer
// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSG4) ;

g_ul2CUpdate_MsgTx.g nType3UlIntValue = nBITCondition;

// Store it into the I2C Message Area
g _cI2C_MsgTx—>putMessage (MSG4, &g ul2CUpdate MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I2CValidateTxMsg (MSG4) ;

uint16_t BIT:: ReadBITFlags() const

{
}

return nBITCondition;

bool BIT:: RetrieveBITCheckFlag(void) const

{
}

return bBITCheckAuthFlag;

void BIT:: ModifyBITCheckFlag(bool bFlag)

{
}

bBITCheckAuthFlag = bFlag;

bool BIT::BITCheck(void)

{

// Ezecute BIT

H.27 The BIT.cpp Code 193

// Check that the Current Sensor has not set the Over Current
// FAULT flag

// Current Sensor FAULT condition is Active LOW

if (pcCmdr—>ReadSensorFAULT ())

{
// Fault exists so set the Current Fault BIT flag
BITFlagUpdate (CURRENT FAULT, true);

}

else

{
// No problem here so clear the Power BIT flag
BITFlagUpdate (CURRENT FAULT, false);

}

H.28 The I2CBuffer.h Code

194

H.28 The I2CBuffer.h Code

Listing H.25: The I2CBuffer header file.

x I2CBuffer.h

x Created on: 81 Aug 2014
* Author: Ian Sazby

*/

#ifndef I2CBUFFER_H_
#define 12CBUFFER_H_

#include <Arduino.h>
#include <stdint .h>
#include 7 StateMachine.h”
#include " Interface.h”

#define MAX MSGTXLENGTH 5 // not including msg no.
// at last element

#define MAXMSGRXLENGTH 2

#define MAX TX BUFFERS 6

#define FIFO_DEPTH 2

#define SETUP_I2C_SEND_CMD 1

enum eMSG {MSGO, MSG1, MSG2, MSG3, MSG4, MSG5, MSG6};

typedef struct 12CMsgTx
{
struct {
bool bInValid;
uint8_t g nMsgNo;
}s
union
{
struct {
uint8_t g.nTypelEnumValue;

or

uint8_t g.nTypelRem [MAXMSGTXILENGTH — 1];

b
struct {

intl6_.t g.nType2IntValue;

uint8_t gnType2Rem [MAX MSG.TXLENGTH — 2];
}i
struct {

uintl6_t g.nType3UlntValue;

uint8_t gnType3Rem [MAX MSG.TXLENGTH — 2];
¥
struct {

eSTATE g nTypedEnumValue;

wordcount

H.28 The I2CBuffer.h Code 195

uint8_t gnTypedRem [MAX MSGTXLENGTH — 1];

H
struct {
bool g nTypebBoolValuel ;
bool g nTypebBoolValue?2;
bool g nTypebBoolValue3;
uint8_t g nTypeSEnumValue MAX MSG.TX LENGTH — 3];
H
uint8_t g-nTxAllData [MAX MSG TX LENGTH | ;
H
uint8_t nWdCount;
} I12CMsgTx ;
typedef struct [12CMsgRx
{
union {
struct {
uint8_t g nTypelRxMsgNo;
uint8_t g nTypelRxEnumValue;
uint8_t g nTypelRxRem;
H
struct {
uint8_t g.nType2RxMsgNo;
eWOFFW g nType2RxEnumValue;
uint8_t g nType2RxRem;
H
struct {
uint8_t gnType3RxMsgNo;
uint8_t g.nType3RxEnumValue;
uint8_t g.nType3dRxRem;
H
struct {
uint8_t g nTypedRxMsgNo;
uintl6_t g.nTypedRxIntValue;
H
uint8_-t g-nRxAllData [MAXMSGRXLENGTH];
b
} I2CMsgRx ;

class I2CBuffer

{

public:
// Constructor
[2CBuffer ();

void I2CInvalidateTxMsg (eMSG eMsg);

void I2CValidateTxMsg (eMSG eMsg) ;

// Store Message into identified Message Buffer
void putMessage (eMSG eMsg, 12CMsgTx xpMsgData);

// Retrieve Message from identified Message Buffer

H.28 The I2CBuffer.h Code 196

void getTxMessage (uint8_t MsgNoTx, I2CMsgTx *pMsgOut);
private:

I12CMsgTx sMsgTxArray [MAX TX BUFFERS];

}s
#endif /«+ [2CBUFFER_H. x/

H.29 The I2CBuffer.cpp Code 197
H.29 The I2CBuffer.cpp Code

Listing H.26: The I2CBuffer source file.

x I2CBuffer.cpp

x Created on: 81 Aug 2014
* Author: Ian Sazby

*/

#include <stdio.h>
#include 7I12CBuffer.h”

I2CBuffer :: I2CBuffer ()
{
// Initialise the Output (TX) Message buffer area
for (int MsgNo = 0; MsgNo < MAX TX BUFFERS; MsgNo++)
{
for (int indy = 0; indy < MAXMSG.TXILENGTH; indy-++)

{
}

// Invalidate each message
sMsgTxArray [MsgNo|. bInValid = true;

sMsgTxArray [MsgNo]. g nTxAllData [indy] = 0;

// Initialise the Word count for each message
switch (MsgNo)

{
case MSGO: // Sensor Manager State
{
sMsgTxArray [MSGO] . nWdCount = 2;
break;
}
case MSGl: // Reserved in HRC (not used)
{
sMsgTxArray [MSG1].nWdCount = 0;
break;
}
case MSG2: // Host Battery Capacity Supplied
{
sMsgTxArray [MSG2].nWdCount = 3;
break;
}
case MSG3: // Supply Source
{
sMsgTxArray [MSG3].nWdCount = 2;
break;
}
case MSG4: // Built In Test Results
{

sMsgTxArray [MSG4] . nWdCount = 3;

H.29 The I2CBuffer.cpp Code 198

break;
}
case MSGH: // Interlocks and possibly actuator positions
{
sMsgTxArray [MSG5] . nWdCount = 4;
break;
}
}
}
}
void I2CBuffer::I12CInvalidateTxMsg (eMSG eMsg)
{
sMsgTxArray [eMsg]. bInValid = true;
}
void I2CBuffer ::12CValidateTxMsg (eMSG eMsg)
{
sMsgTxArray [eMsg|. bInValid = false;
}

// Store Message into identified Message Buffer
void I2CBuffer :: putMessage (eMSG eMsg, [2CMsgTx xpMsgln)

{
for (uint8_-t indx = 1; indx < MAXMSGTXLENGTH; indx++)

{
sMsgTxArray [eMsg]. g.-nTxAllData [indx | =
(*pMsgln). g nTxAllData [indx |;
}
}
// Retrieve Message from identified Message Buffer into local buffer
// for I12C

void I2CBuffer :: getTxMessage (uint8_t MsgNoTx, I2CMsgTx xpMsgOut)

{
}

(*pMsgOut) = sMsgTxArray [MsgNoTx|;

H.30 The Interface.h Code 199
H.30 The Interface.h Code

Listing H.27: The Interface header file.

Ve

x Interface.h

*

* Created on: 7 Nov 201/
* Author: Ian Sazby
* 0050083462

*
AN

#ifndef INTERFACE H._
#define INTERFACE H_

// Separation counter for 1 second at 10 % Task10Hz
#define SEPARATIONCOUNT 10

// Define Abort delay in 10Hz iterations

#define MAXEXTSUPPLYWAIT 20 // = 2 seconds

enum eWOFFW {WONW, WOFFW} ;

class Interface

{

public:
Interface ();

bool IsDebugMode(void) const;
// Detect the Debug Interlock state (Active LOW) and update

// Mode flag
bool UpdateDebuglnterLockState (void);

// Output the Host Interlock wrap signal at state (Active LOW)
// and update

// flag

void OutputPkglnterlockSignal (void);

// Check if Pkg Interlock is present (still LOW)

bool IsPkglnterlockPresent (void);

// Uses PkglInterlock Signal as source for active LOW signal
bool IsPkgLoadButtonPressed (void);
bool LoadButtonDebounce(bool bThisPass);

bool IsCommitToReleasePresent (void);
bool IsReleaseProhibited () const;

void UpdateWeightOffWheelsState (eWOFFW bWoffW) ;
bool IsWeightOffWheels(void) const;

void ActuatorLock_UnlockCmd (bool bCmd);

H.30 The Interface.h Code 200

void ActuatorHookOpen_CloseCmd (bool bCmd);
void ActuatorStow_ExtendCmd (bool bCmd);
virtual “Interface() {};
private:
void UpdateI2CMsg(void);
eWOFFW eWOffWStatus ;
bool bDebugMode;
bool bCommitToRelease;
bool bPkglnterLockPresent;
bool bPkgLoadBtnPressed;
bool bActuatorLockStatus;
bool bActuatorHookStatus;
bool bActuatorUmbilicalStatus;
bool bThispassLoadBtnState;
bool bLastpassLoadBtnState = false;
uint8_t nDebounceCounter;

bool bButtonDebounceUnderway = false;
bool bButtonValid = false;

i

#endif /+ INTERFACE H. x/

H.31 The Interface.cpp Code

201

H.31

/*

The Interface.cpp Code

Listing H.28: The Interface source file.

Interface.cpp

Author: Ian Sazby

*
*
* Created on: 7 Nov 201/
*
*

*/

0050085462

#include <Arduino.h>
#include <NilRTOS.h>
#include ”ServoTimer2.h”
#include " Interface.h”
#include ”Equates.h”
#include ”PinoutConfigRC .h”
#include 712CBuffer.h”
##include 7 Bit.h”

extern
extern
extern

extern
extern
extern

ServoTimer2x pcLockServo;
ServoTimer2* pcReleaseServo;
ServoTimer2x pcUmStowServo;

I12CBuffer *xg_cI2C_MsgTx;
[2CMsgTx g_ul2CUpdate_MsgTx;
BIT* pcBIT;

Interface :: Interface ()

{

eWOIffWStatus = WONW;

UpdateDebugInterLockState ();

bCommitToRelease = false;

bPkglLoadBtnPressed = false;

IsPkglnterlockPresent ();

}

bool Interface ::IsDebugMode(void) const

{

return bDebugMode;

}

bool Interface:: UpdateDebuglnterLockState (void)

{
//

// This pin is active LOW using pull—up resistors

Return the Debug Input Interlock state

if (digitalRead (PINPKG_DEBUG))

H.31 The Interface.cpp Code 202

}

{ // Input is HIGH so Debug mode IS NOT enabled
bDebugMode = false;

}

else

{
// Input is LOW so Debug mode IS enabled
bDebugMode = true;

}

Updatel2CMsg () ;

return bDebugMode;

void Interface:: OutputPkgInterlockSignal (void)

{

}

// This pin is active LOW as is wusing pull—up resistors
digitalWrite (PINPKGINTERLOCK OUT, LOW);

bool Interface::IsPkglnterlockPresent (void)

{

}

// This pin is active LOW as there are pull—up resistors
if (digitalRead (PIN.PKGINTERLOCKIN))

{ // Input is HIGH so Pkg Interlock IS NOT present
bPkglnterLockPresent = false;

}

else

{
// Input is LOW so Pkg Interlock IS present
bPkginterLockPresent = true;

}

Updatel2CMsg () ;

return bPkglnterLockPresent;

bool Interface ::IsPkgLoadButtonPressed(void)

{

// This pin provides Active LOW input signal for Load button

// as well
digitalWrite (PINPKGINTERLOCK OUT, LOW);

// This pin is active LOW as is wusing pull—up resistors
if (digitalRead (PIN.LOAD PKG))
{
// Load buttons are not depressed
bPkgLoadBtnPressed = false;

}

else

H.31 The Interface.cpp Code 203

{

// Input is LOW so Load buttons are depressed
bPkglLoadBtnPressed = true;

}

return bPkglLoadBtnPressed;

}

bool Interface::IsCommitToReleasePresent (void)

{

// This pin is active LOW as is wusing pull—up resistors
if (digitalRead (PIN.COMMIT RELEASE))

{

// Input is HIGH so Pkg is not authorising release
bCommitToRelease = false;

}

else

{

// Input is LOW so Pkg is notifying Commit to Release
bCommitToRelease = true;

}

// Update the Interface output I2C msg
Updatel2CMsg () ;

return bCommitToRelease;

}

bool Interface::IsReleaseProhibited (void) const

{
}

void Interface :: UpdateWeightOff WheelsState (WOFFW bWoffW)
{

}

bool Interface::IsWeightOffWheels(void) const
{

return !bCommitToRelease;

eWOffWStatus = bWoffW ;

if (eWOffWStatus =— WOFFW)
return true;

else
return false;

void Interface :: ActuatorLock_UnlockCmd (bool bCmd)
{

// bCmd == true commands Lock Condition

if (bCmd)

{

pcLockServo—>write (POSLOCK);

H.31 The Interface.cpp Code 204

}
else // bCmd == false; Command Unlock Condition

{
}

systime_t waketime = nilTimeNow ();
waketime += MS2ST(2000);
nilThdSleepUntil (waketime);

pcLockServo—>write (POS_UNLOCK) ;

// Trusting that the Actuator faithfully acts as commanded
bActuatorLockStatus = bCmd;

}

void Interface :: ActuatorHookOpen_CloseCmd (bool bCmd)
{

systime_t waketime;

// Only progress if logically UNLOCKED as well

if (bActuatorLockStatus = false)
{ // bCmd == true commands Open Condition
if (bCmd)
{ pcReleaseServo—>write (POS.OPEN);
ilse // bCmd == false; Command Close Condition
{ pcReleaseServo—>write (POS_.CLOSE);
iraketime = nilTimeNow ();

waketime += MS2ST(2000);
nilThdSleepUntil (waketime);

// Trusting that the Actuator faithfully acts as commanded
bActuatorHookStatus = bCmd;

}
else
{
// Flag BIT error
pcBIT—>BITFlagUpdate (HOOK LOCKED, true);
}
}
void Interface :: ActuatorStow_ExtendCmd (bool bCmd)
{

systime_t waketime;

// bCmd == true commands Stow Condition
if (bCmd)
{

}

else // bCmd == false; Command Eztend Condition

pcUmStowServo—>write (POSSTOW);

H.31 The Interface.cpp Code 205

}

{

pcUmStowServo—>write (POSEXTEND);
}
waketime = nilTimeNow ();

waketime += MS2ST (SERVODELAY) ;
nilThdSleepUntil (waketime);

// Trusting that the Actuator faithfully acts as commanded
bActuatorUmbilicalStatus = bCmd;

void Interface :: Updatel2CMsg(void)

{

// Update the I2C Tx Msg Buffer
// First Invalidate current message area
g cI2C_MsgTx—>I2CInvalidateTxMsg (MSG5) ;

g_ul2CUpdate_MsgTx.g_nTypebBoolValuel = bPkglnterLockPresent;
// Transmit the Debug state
g_ul2CUpdate_MsgTx.g_nTypebBoolValue2 = bDebugMode;

// Transmit the Commit To Release Status
g ul2CUpdate_MsgTx.g nType5BoolValued = bCommitToRelease;

// Store it into the I2C Message Area
g_cI2C_MsgTx—>putMessage (MSG5, &g_-ul2CUpdate_-MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I12CValidateTxMsg (MSG5) ;

H.32 The PinoutConfigRC.h Code 206
H.32 The PinoutConfigRC.h Code

Listing H.29: The PinoutConfigRC header file.

Ve
PinoutConfigRC . h

Author: Ian Sazby

*
*
* Created on: 7 Nov 201/
*
* 0050083462

*/

#ifndef PINOUTCONFIGRC_H-
#define PINOUTCONFIGRC_H-

// Definition of Release Controller Pro Mini Pinout Assignments

// Spare
//#define PIN.CHANNEL A 2

// Spare
//#define PIN.CHANNEL_B 3

// Package Release Lock / Unlock
#define PIN.LCK UNLK PWM 6

// Package Release Actuator
#define PINREL ACTUATORPWM 9
// Package Release Actuator
#define PINCONRETRACTPWM 10

// External Power Enable, always set high in HRC to disable EXT power
// supply

#define PINPOWERENB EXT 4

// Host Power Supply Enable

#define PINPOWERENBINT 5

// Host Interconnect wrap Output
#define PIN_PKGINTERLOCK OUT 7
// Commit to Release

#define PIN.COMMIT RELEASE 8

// Host Interconnect wrap Input
#define PIN PKGINTERLOCKIN 11
// Debug Input

#define PIN PKG DEBUG 14

// Load Package Input Switch
#define PIN.LOAD PKG 12

// Current Sensor Fault Input

#define PIN.CURRENTSENSORFAULT 15

// External Power State Status ONSTI! Input
#define PINPWRSTATUS EXT_ONST1 16

// Internal Power State Status ONST2 Input
#define PIN PWRSTATUSINT_ONST2 17

H.32 The PinoutConfigRC.h Code 207

// Current Sensor Value input analog
#define PIN_VIOUTSENSE A7

// Voltage Supply Sense input analog
#define PIN.VOLTAGESENSE A6

// 12C SDA

#define PIN_I2C_SDA A4

// 12C SCL

#define PIN_I2C_SCL A5

#endif /+ PINOUTCONFIGRC.H. +/

H.33 The Power.h Code 208
H.33 The Power.h Code

Listing H.30: The Power header file.

Power. h

*

*

* Created on: 7 Nov 201/
* Author: Ian Sazby
* 0050083462

*/

#ifndef POWER L
#define POWER IL

#include <Arduino.h>
#include <stdint .h>
#include ” QuadEncoder.h”

// Power Controller is Active Low
#define POWERON LOW
#define POWEROFF HIGH

// Constants defining Power Cmds for FExzternal and Internal
// supply selection
enum ePWRSUPPLY {PWRSOURCEEXT, PWRSOURCEINT, PWRSOURCE.OFF};

class Power

{
public:
Power () ;
void SetupCapacityAhValue(uintl6_t nValue);
void UpdatelnstantCurrent (void);
void UpdatelnstantVoltage (void);
uint16.t ReadCapacityRemain(void) const;
uint16_-t ReadInstantVoltage(void) const;
bool SwitchPowerSupply (ePWRSUPPLY eRequestedSupply);
bool ReadSupplyOutputState (ePWRSUPPLY eSupply) const;
ePWRSUPPLY ReadCommandedSupply (void) const;
ePWRSUPPLY ReadRecordedSupply (void) const;
bool ReadSensorFAULT (void) const;
virtual “Power(){}
private:

// Initial Current Rating
uint16_t nSetupCapacityAhRating;

H.33 The Power.h Code 209

// Power Statistics

uint16_t nRemainingAhCapacity;
uintl6_t nlnstantCurrent;
uintl6_t nlInstantVoltage;
uint32_t tPrevTimeSense;

// Next two wvariables relate to Power Source
// enumerated variable contents

ePWRSUPPLY ePowerCommand ;

// ePowerSource reflects actual Power Source
ePWRSUPPLY ePowerSource

// ACS711 Current Sensor QOuver Current Fault input
// bool bSensorFAULT;

}s

#endif /+ POWERH. x/

H.34 The Power.cpp Code 210
H.34 The Power.cpp Code

Listing H.31: The Power source file.

x Power. cpp

* Created on: 7 Nov 201/
* Author: 0050083462
*/

#include <Arduino.h>
#include <stdio.h>
#include <NilAnalog.h>
#include ”Power.h”
#include 7 PinoutConfigRC .h”
#include ”BIT.h”

#include 7 I12CBuffer.h”

extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g ul2CUpdate_MsgTx;

// Power Constructor
Power :: Power ()

{

nSetupCapacityAhRating = 0;

// Power Statistics
nRemainingAhCapacity = 0;
nlnstantVoltage = 0;

}

void Power:: SetupCapacityAhValue(uintl6_t nValue)

{

nSetupCapacityAhRating = nValue;

}

void Power:: UpdatelnstantCurrent (void)

{

// This is coded to match the calling timing of 1Hz

// This functionality needs considerable verification before
// utilisation

uint32_t tCurrentSenseNow ;
uint16_t nVIOUT;

// Determine time of Sense
tCurrentSenseNow = micros ();

H.34 The Power.cpp Code 211

// Will assume that the sensed current is the same for the
// preceding delta time period. Don’t need to average it.
nVIOUT = (uintl6_t)nilAnalogRead ((char)PIN_.VIOUTSENSE);

// Determine Amp usage

// using ACS 711 equation the mV / Amp calculation is
// VIOUT = (0.11 = i — (Vee/2)) = Vece * 3.3V

// with Vece at 5V

nlnstantCurrent = (nVIOUT % 0.0726) — 0.275;

this is missing the x dt % portion of calculation
g b

// Now calculate Capacity Remaining
nRemainingAhCapacity = nRemainingAhCapacity — (nInstantCurrent x
(tCurrentSenseNow — tPrevTimeSense)) >> 12;

tPrevTimeSense = tCurrentSenseNow ;

}

void Power:: UpdatelnstantVoltage (void)

{
nlnstantVoltage = (uintl6_t)nilAnalogRead ((char)PIN.VOLTAGESENSE);

}

bool Power:: SwitchPowerSupply (ePWRSUPPLY eRequestedSupply)

{

bool bSwitchSuccess;

// Record the Power Command for BIT purposes
ePowerCommand = eRequestedSupply ;

switch (ePowerCommand)

{
case PWRSOURCEEXT: // IF EXTERNAL Power Commanded

{
// Set the FExternal Power Enable output
digitalWrite (PINPOWERENB_ EXT, POWERON);

//Confirm requested power source is now on
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEEXT) ;

// If Requested source is supplying response should be true
// then turn off alternate
if (bSwitchSuccess)
{
// Turn off Internal Power Supply
digitalWrite (PINPOWERENB_INT, POWEROFF);

// Confirm Internal Supply is turned off

H.34 The Power.cpp Code 212

bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEINT);

// Alternate supply should be off so response should

// be false
if (!'bSwitchSuccess)

{
// Record the Power Command for BIT purposes
ePowerCommand = eRequestedSupply ;
ePowerSource = ePowerCommand ;
bSwitchSuccess = true;
//return true;

}

else

{

bSwitchSuccess = false;
// Debug line
//bSwitchSuccess = true;
}
}
else

{

// Debug line
//bSwitchSuccess = true;

}
break ;

bSwitchSuccess = false;

}
case PWRSOURCEINT: // INTERNAL Power Commanded

{
// Output the Internal Power FEnable (Active Low)
digital Write (PINPOWERENB.INT, POWERON);

//Confirm requested power source is now on
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEINT);

// If Requested source is supplying response should be true
// then turn off alternate
if (bSwitchSuccess)
{
// Turn off FExzternal Power Supply
digital Write (PINPOWERENB_EXT, POWEROFF);

// Confirm FExternal Supply is turned off
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCEEXT) ;

// Alternate supply should be off so response should be

// false
if (!bSwitchSuccess)

{
// Record the Power Command for BIT purposes
ePowerCommand = eRequestedSupply ;
ePowerSource = ePowerCommand;

H.34 The Power.cpp Code 213

bSwitchSuccess = true;
//return true;

}

else

{

bSwitchSuccess = false;
// Debug line
//bSwitchSuccess = true;
}
}
else

{

bSwitchSuccess = false;

// Debug line
//bSwitchSuccess = true;

¥
break ;

}
case PWRSOURCE.OFF':

{
// Turn off Measured Supply
// Output the Internal Power Enable (Active Low)
digitalWrite (PINPOWERENB.INT, POWEROFF));

// Output the Ezternal Power FEnable (Active Low)
digitalWrite (PINPOWERENB_EXT, POWEROEFF);

//Confirm power sources are both now off
// Active LOW, so should be HIGH input
bSwitchSuccess = ReadSupplyOutputState (PWRSOURCE.OFF) ;

if (bSwitchSuccess)

// Record the Power Command for BIT purposes
ePowerCommand = PWRSOURCE_OFF;

ePowerSource = ePowerCommand;

¥
break ;

// Update the I12C Tx Message Buffer with current Power State
// First Invalidate current message area
g cI2C_MsgTx—>I2CInvalidateTxMsg (MSG3) ;

g ul2CUpdate_ MsgTx.g nTypelEnumValue = (uint8_t)ePowerSource;

// Now save into I12C Tx Message Common Area
g_cl2C_MsgTx—>putMessage (MSG3, &g_ul2CUpdate_ MsgTx);

H.34 The Power.cpp Code 214

// Finally Validate Msg area
g cI2C_MsgTx—>I12CValidateTxMsg (MSG3) ;

return bSwitchSuccess;

}
uint16_t Power:: ReadCapacityRemain (void) const
{
return nRemainingAhCapacity;
}
uint16_t Power:: ReadInstantVoltage (void) const
{
return nlnstantVoltage;
}

bool Power:: ReadSupplyOutputState (ePWRSUPPLY eSupply) const
{

bool bDigitalState = false;

switch (eSupply)

{
case PWRSOURCEEXT:
{
// Power is ON when Active LOW output on ONSTI1
if (digitalRead (PINPWRSTATUS EXT_ONST1) = 0)
bDigitalState = true;
break ;
}
case PWRSOURCEINT:
{
// Power is ON when Active LOW output on ONST2
if (digitalRead (PINPWRSTATUSINT_.ONST2) = 0)
bDigitalState = true;
break ;
}
case PWRSOURCE.OFF:
{

// Power is ON when Active LOW output either ONST! or ONST2
if (digitalRead (PINPWRSTATUS.EXT ONST1) = 0)

{

bDigitalState = false;

}
else if(digitalRead (PINPWRSTATUSINT ONST2) — 0)

{
}

else

{

bDigitalState = false;

// Both are turned off so response success

H.34 The Power.cpp Code 215

bDigitalState = true;

}

break ;

}
}

return bDigitalState;

bool Power :: ReadSensorFAULT (void) const

{
// Current Sensor FAULT condition is Active LOW

if (1 digitalRead (PIN.CURRENTSENSORFAULT))
{

// Result is LOW so fault exists, set response = true
return true;

}

else

{

// Result is HIGH so NO fault exists, set response = false
return false;

}

ePWRSUPPLY Power : : ReadCommandedSupply (void) const

{
}

ePWRSUPPLY Power :: ReadRecordedSupply (void) const
{

}

return ePowerCommand;

return ePowerSource;

H.35 The BIT.cpp Code 216
H.35 The BIT.cpp Code

Listing H.32: The BIT source file.

x BIT.cpp

* Created on: 7 Nov 201/
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include 7BIT.h”

#include ”Commander.h”
#include 7 PinoutConfigRC .h”

extern Commanderx pcCmdr;
extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g ul2CUpdate_MsgTx;

// BIT Constructor
BIT:: BIT ()
{

nBITCondition = 0;

// Initialise Allow BIT Checking
bBITCheckAuthFlag = true;

}

void BIT:: BITFlagUpdate (eBITFLAG nBITFlagPosition, bool bCondition)

{
// the flag to be shifted into BIT Flag position
uintl6_t nFlag = 1;

// Assert that nBITFlagPosition < 16 positions
if (nBITFlagPosition > 15)

{
BITFlagUpdate (BIT FLAG.OVRFLW, true);
//pcCmdr—>SetState (BITFAIL) ;
return;
}
// Shift and Set or clear the BIT Flag position
if (bCondition)
{

// The update is to record a BIT FAIL

// Need to shift and OR Mask into place
nBITCondition |= (nFlag << nBITFlagPosition);
// Set State to BITFAIL

pcCmdr—>SetState (BITFAIL);

H.35 The BIT.cpp Code 217

}

}
else
{
// The update is to record a BIT PASS
// need to shift, Invert and AND Mask into place
nBITCondition &= (" (nFlag << nBITFlagPosition));
// Check if all BIT Flag positions are false
if (!(nBITCondition & OXFFFF))
{
// Now check if the system is already in BITFAIL
// State If so then this allows the system to
// transition out of BITFAIL
if (pcCmdr—>RetrieveState () == BITFAIL)
{
pcCmdr—>SetState (INITIALISE);
}
}
}

// Update the I2C Tx Msg Buffer
// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSG4) ;

g_ul2CUpdate_MsgTx.g nType3UlIntValue = nBITCondition;

// Store it into the I2C Message Area
g _cI2C_MsgTx—>putMessage (MSG4, &g ul2CUpdate MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I2CValidateTxMsg (MSG4) ;

uint16_t BIT:: ReadBITFlags() const

{
}

return nBITCondition;

bool BIT:: RetrieveBITCheckFlag(void) const

{
}

return bBITCheckAuthFlag;

void BIT:: ModifyBITCheckFlag(bool bFlag)

{
}

bBITCheckAuthFlag = bFlag;

bool BIT::BITCheck(void)

{

// Ezecute BIT

H.35 The BIT.cpp Code 218

// Check that the Current Sensor has not set the Over Current
// FAULT flag

// Current Sensor FAULT condition is Active LOW

if (pcCmdr—>ReadSensorFAULT ())

{
// Fault exists so set the Current Fault BIT flag
BITFlagUpdate (CURRENT FAULT, true);

}

else

{
// No problem here so clear the Power BIT flag
BITFlagUpdate (CURRENT FAULT, false);

}

H.36 The StateMachine.h Code 219
H.36 The StateMachine.h Code

Listing H.33: The StateMachine header file.

x StateMachine.h

* Created on: 2 Nov 2014
* Author: Ian

*/

#ifndef STATEMACHINE H_
#define STATEMACHINE H_

//#include "I2CBuffer.h”
#include ”Equates.h”

class StateMachine

{

public:
// Constructor
StateMachine ();
eSTATE RetrieveState (void) const;

void SetState (eSTATE eNewState);
void StoreRequestedStateChange (eSTATE eReqState);
void CheckFMUCmdStateChange (void);

void StorePackageState (ePKGSTATE eState);
bool IsPackagelnState (ePKGSTATE eState) const;

virtual ~StateMachine(){}

private:
eSTATE eCurrentState;
eSTATE eFMUCmdState;
// Adjacency List for Sensor Manager
uint16_t abStateAdj [NUMSTATES];
ePKGSTATE eRecordedPKGState;

}s

#endif /x STATEMACHINE.H. %/

H.37 The StateMachine.cpp Code 220
H.37 The StateMachine.cpp Code

Listing H.34: The StateMachine source file.

x StateMachine. cpp

x Created on: 14 Nov 2014
* Author: 0050083462

*/

#include <Arduino.h>
#include <stdio.h>
#include 7 StateMachine.h”
#include ”BIT.h”
#include 7 I12CBuffer.h”
#include ”Equates.h”

extern BITx pcBIT;
extern [2CBuffer xg_cI2C_MsgTx;
extern [2CMsgTx g ul2CUpdate_MsgTx;

StateMachine :: StateMachine ()
{
// Initialise the Adjacency List for the Host Release
// Controller State Machine
// NUMSTATES long
// bit 0 = V0, bit 11 = Vi1

// (VO)INITIALISE (V1)PKGCHECK (V2)LOAD (V3)BITFAIL

// (V4)POWERDOWN (V5)POWERON (V6)ABORT (V7)READYRELEASE
// (V8)READYCONSENT (V9)RELEASE (V10)GONE (V11)HUNG
abStateAdj[0] = 2; // B000000000010 — A(0) = {Vi}
abStateAdj[1] = 28; // B000000011100 — A(1) = {V2, V8, Vj}
abStateAdj [2] = 2; // B000000000010 — A(2) = {V1}
abStateAdj[3] = 9; // B000000000000 — A(3) = {V0,Vs}
abStateAdj[4] = 1064; // B010000101000 — A(4) = {V3,V5, Vi0}
abStateAdj[5] = 1176; // B010010011000 — A(5) = {V3,V4, V7, V10}
abStateAdj[6] = 40; // B000000101000 — A(6) = {V3,V5}
abStateAdj[7] = 1352; // B010101001000 — A(7) = {V3,V6,V8, V10}
abStateAdj [8] = 1736; // B011011001000 — A(8) = {V3,V6,V7,V9, V10}
abStateAdj[9] = 3072; // B110000000000 — A(9) = {V10,Vii}
abStateAdj[10] = 8; // B000000001000 — A(10) = {V8}
abStateAdj[11] = 1024; // B010000000000 — A(11) = {V10}

// Set Initial State to
eCurrentState = INITIALISE;

// Set FMU Cmd State to invalid state
eFMUCmdState = NOREQUESTEDSTATE;

H.37 The StateMachine.cpp Code 221

eSTATE StateMachine:: RetrieveState (void) const

{
}

return eCurrentState;

void StateMachine:: SetState (eSTATE eNewState)

{

uint8_t nAdjacencyListPos;

// Validate the requested State Change before so doing

// Shift the current state adjacency value to the right

// Checking if new state is a valid transition
nAdjacencyListPos = abStateAdj[eCurrentState] >> eNewState;

// Mask off the LSB to obtain boolean answer
// Only change if new state is included in list
if ((nAdjacencyListPos & 1))

{
// Using the result of adjacency review (State change authority)
// undertake the State Change if so authorised
eCurrentState = eNewState;
// Clear the Incorrect State Transition attempted BIT flag
pcBIT—>BITFlagUpdate (INVALID STATE CHG, false);
// Update the Output message with current state

¥

else

{
// Else incorrect requested State Transition
// Therefore set BITFail error
// Set the Incorrect State Transition attempted BIT flag
pcBIT—>BITFlagUpdate (INVALID_ STATE_ CHG, true);

¥

// Update the I2C Tx Msg Buffer
// First Invalidate current message area
g_cI2C_MsgTx—>I2CInvalidateTxMsg (MSGO) ;

g_ul2CUpdate_MsgTx.g.nTypedEnumValue = eCurrentState;

// Store it into the I2C Message Area
g _cI2C_MsgTx—>putMessage (MSGO, &g ul2CUpdate MsgTx);

// Finally Validate Msg area
g_cI2C_MsgTx—>I2CValidateTxMsg (MSGO) ;

H.37 The StateMachine.cpp Code

void StateMachine:: StoreRequestedStateChange (eSTATE eReqState)

{

// Store away the FMU requested state change
eFMUCmdState = eReqState;

}

void StateMachine :: CheckFMUCmdStateChange (void)

{
eSTATE eFMUCmdStateCopy ;

eFMUCmdStateCopy = eFMUCmdState;
if (eFMUCmdStateCopy != NOREQUESTEDSTATE)

// Invalidate the FMU Cmd
eFMUCmdState = NOREQUESTEDSTATE;

// Ezecute the FMU requested State Change
SetState (eFMUCmdStateCopy) ;
}
}
void StateMachine :: StorePackageState (ePKGSTATE eState)

{
// Store away the Package FMU state

eRecordedPKGState = eState;
¥

bool StateMachine:: IsPackagelnState (ePKGSTATE eState) const

{
if (eRecordedPKGState = eState)

// Yes the Package is in the questioned state
return true;

}

else

{
// The states do mot match; the Package is in some other state
return false;

}

H.38 The MsgBuff.h Code 223
H.38 The MsgBuff.h Code

Listing H.35: The MsgBuff header file.

Ve

x MsgBuff.h

*

x Created on: 30 Oct 2014

* Author: Ian sazxby 0050083462
*/

#ifndef MSGBUFF.IL
#define MSGBUFF H_

#include <Arduino.h>
#include <stdint .h>

#define NUMBERROWS 2 // P+1 where P = 1 No of readers

#define BUFFER CLR 0o // false
#define MSGINEW 1 // true

class MsgBuff
{
public:
MsgBuff () ;

void WriteBuff(Message xpMsgln);
void ReadBuff(Message *MsgOut);

private:
// Index to the row with the latest message
uint8_t Latest;
// NRows = NUMBERROWS = Number of rows in
// the message buffer
// Message Buffer
Message Buff [NUMBERROWS][2];
// Flag identifying requirement to clear
bool MsgValid [NUMBERROWS] ;
// Message count for each row
uint8_t ReaderCnt [NUMBERROWS] ;
// Column with more up—to—date message

uint8_t C1[NUMBERROWS];

13
#endif /« MSGBUFF_H. x/

H.39 The MsgBuff.cpp Code 224
H.39 The MsgBuff.cpp Code

Listing H.36: The MsgBuff source file.

x MsgBuff.cpp

x Created on: 30 OCt 2014
* Author: Ian Sazxby 0050083462

*/

#include <stdio.h>
#include ” MsgBuff.h”

MsgBuff:: MsgBuff ()
:Latest (0)
{
// Initialise status pointers to known state
for (uint8_-t i = 0; i < NUMBERROWS; i++)
{
ReaderCnt[i] = 0;
Cl[i] = 0;
}

// Initialise all buffer contents to known state
for (uint8_t col = 0; col < 2; col++)

{
for (uint8_-t i = 0; i < NUMBERROWS; i++)
{
for (uint8_t j=0; j< MAXMSGLENGTH; j++)
{
Buff[i][col].unData[j] = 0;
}
}
}

}

/+* Referenced from Improved Double Buffer Algorithm

x within Improving Wait—Free Algorithms for Interprocess
x Communication in Embedded Real—Time Systems.

x USENIX 2002 Annual Technical Conference Paper

x Pp 303 — 816 of the proceedings

*/
void MsgBuff:: WriteBuff (Message *xpMsgln)
{

uint8_t 1i;

uint8_t cl;

//fOT (Z = latest; ; i++);
//4
// if (ReaderCnt[i mod NRows|] == 0) break;

H.39 The MsgBuff.cpp Code 225

//}
//cl = not Cl[i];
//write Buff[i][cl];

//CLA] = cl;
//Latest = i;
for (i = Latest; ; i++)
{
if (ReaderCnt [i % NUMBERROWS| = 0)
break;
}
if (Cl[i] == 0)
cl = 1;
else
cl = 0;

//Save the Message to the available buffer

Buff[i][cl] = (*xpMsgln);

Cl[i] = cl;

Latest = i;
}
void MsgBuff:: ReadBuff(Message *pMsgOut)
{

// Reader to retrieve latest I2C message output
uint8_t ridx;
uint8_t cl;

// ridz = Latest
// inc ReaderCnt/[ridz]
// ¢l = Cl[ridz]
// read Buff[ridz][cl]
// dec ReaderCnt/[ridz]

ridx = Latest;
ReaderCnt [ridx]++;

cl = Cl[ridx];

(*pMsgOut) = Buff[ridx|[cl];
ReaderCnt [ridx|——;

Appendix 1

RDS Interface Control Document

This Appendix includes the RDS Interface Control Document developed as part of this
project. The ICD is broken into Seven parts, three each for the RDS FMU to Sensor
Manager and Host FMU to Release Controller covering pin allocation, Tx and Rx message

definitions respectively.

The last part is the Host RPAS to RDS Interconnector pin assignment.

Interface Control Document — 2014 Project 0050083462

USQ Final Year Project 2014

Title: Regulating Rescue Package Descent through Controlled Autorotation

RDS Interface Control Document

This document provides for Interface assignment and definition of message data between Host and
RDS subsystems. The Sensor Manager (SM) and Host Release Controller (RC) functions are hosted on
16MHz 5V Pro Mini Arduino boards. All communication between FMU and SM or RC is via I12C. The
FMU is the Master 12C Node.

Table 1. Sensor Manager Pin ASSISNMENTciiiiiiiiiiiiee et esree et e e e s e e e s e e e e sabeeeessbeeessabeeesesaseeessnnsens 2
Table 2. RDS FMU to RDS Sensor Manager 12C RX IMESSAZES.uuiicciuieeeeiiieeeeeiieeeeeiteeeeereeeesssseeesesssesssesnssesesansens 3
Table 3. Sensor Manager t0 RDS FIMU 12C TX IMIESSAZES ...uvveeeriureeeiiriieeeiireeeesisreesessasesessssseeeesssseessssssensssssseesssssens 5
Table 4. Host Release Manager Pin ASSINMENTuuiiiiiiiieeeiiee ettt et e e s re e e e sabee e s sabae e s sabeeeesnreeessnnsens 8
Table 5. Host FMU to Host Release Controller I2C RX MESSAEESccuvveeeeuieeeeeiiieeeeiieeeeeteeeesireeesenareeeeeenseeeesennens 9
Table 6. Host Release Controller to HOSt FIMU I2C TX IMISESuuviiieiiiiieeiiiiee e ceitee e ssttee s esvte e s e svee e e ssveee s s sneee e esanes 11
R o] I s To T i do 3 34 D R o o [[=Yo o T gl 12 o TV RS 14

Page 1 of 14

Interface Control Document — 2014 Project 0050083462

Sensor Manager Pin Assignment (Pro Mini Arduino)

Table 1. Sensor Manager Pin Assignment

Group Capability Function Pin Type | Input / Output
Name Direction

Actuator Control

Rotor Lock Release PD6 (6) PWM Output
Power Control

External Power Enable PD4 (4) | Level Output

Internal Power Enable PD5 (5) | Level Output
Interlock

Host Connected Input PD7 (7) | Level Input

Commit to Release PBO (8) | Level Output

Host Connected Input PB3 (11) | Level Input

Debug PCO (14) | Level Input (debnce)
Status

Current Sensor FAULT detection PC1 (15) | Level Input

External Power State Status ONST1 PC2 (16) | Level Input

Internal Power State Status ONST2 PC3 (17) | Level Input
Analogue Sense

Current Usage A7 (22) | Analog | Input

Voltage Supply A6 (19) | Analog | Input
Quadrature Input | Quadrature Sensor A INTO (2) Pulse Input — IRQ

Quadrature Sensor B INT1 (3) Level Input
Communication

12C SDA PC5 (A4) Pulse Bidirectional

12C SCL PC4 (A5) Pulse Bidirectional

Serial TX PDO(RX1) | Pulse Bidirectional

Serial Rx PD1(TX0) | Pulse Bidirectional
Supply

Vcc Vcc Supply | Power

Earth GND Supply | Power

Page 2 of 14

Interface Control Document — 2014 Project 0050083462

Table 2. RDS FMU to RDS Sensor Manager 12C Rx Messages

RDS FMU to RDS Sensor Manager 12C Rx Messages
(Message in priority order based upon Code value; 1 being highest)
(Up to 3 Byte Message):

Byte 1 = Command Number

Byte 2 = Command Data (if required)

Byte 3 = Command Data (if required)

Commands Command Data (if applicable)
Slave 12C Response Setup 1 Data Bytes: 2
Type: uint8_t

Byte 1: Response Address Request
Address Range: 0—-9
(see Receive Table)

Byte 2: Number of bytes to transfer
Range: 1-3
(see Receive Table)

Commanded State Change 2 Data Bytes: 1

Type: uint8_t

Value:

1 - PowerDown

2 — Not Used

3 - ReadyConfirm

4 - ReadyRelease

5 - Not Used
6 - Abort
Weight off Wheels Status 3 Data Bytes: 1
Type: uint8_t
Value:
0 — Weight on Wheels
1 — Weight off Wheels
Current Usage Initialise 4 Data Bytes: 2

Type: Unsigned Integer uintl6_t

Range: 0 — 1300 mAh

Byte 1: LSB

Byte 2: MSB

State Change Acknowledge 5 Data Bytes: 0

Debug Interface 6 Data Bytes: 1

Type: uint8_t

Value:

Page 3 of 14

Interface Control Document — 2014 Project 0050083462

1 - PowerDown

2 - RotorLock Open

3 - ReadyConfirm

4 - ReadyRelease

5 - RotorLock Close

6 - Abort

Page 4 of 14

Interface Control Document — 2014 Project 0050083462

Table 3. Sensor Manager to RDS FMU 12C Tx Messages

Sensor Manager to RDS FMU I12C Tx Messages
Receiver
Data function Ind.ex Description
(Decimal
Offset)
Sensor Manager 0 Total bytes: 2
Sensor Manager State (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: O Msg O
Units: Message Number
(1) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value:
0 Initialise
1 Prepared
2 BITFailure
3 PowerDown
4 Abort
5 ReadyConfirm
6 ReadyRelease
7 Separation
8 Deploy
Units: Not Applicable
Quadrature Data 1 Total bytes: 3
Quadrature Speed and (0) Internal Buffer Offset Address Value
Direction
Type: Enumerated uint8_t
Value: 1 Msg 1
Units: Message Number
(1) Internal Buffer Offset Address Value:LSB byte
(2) Internal Buffer Offset Address Value:MSB byte
Type: Integer intl6_t
Range: -3000 — 3000
-3000 — 3000 Angular Speed
Units: RPM
Sensor Data 2 Total bytes: 3
Internal Battery Current (0) Internal Buffer Offset Address Value
Usage

Page 5 of 14

Interface Control Document — 2014 Project 0050083462

Sensor Manager to RDS FMU I12C Tx Messages

Receiver
Data function Ind.ex Description
(Decimal
Offset)
Type: Enumerated uint8_t
Value: 2 Msg 2
Units: Message Number
(2) Internal Buffer Offset Address Value:LSB byte
(2) Internal Buffer Offset Address Value:MSB byte
Type: Unsigned Integer uintl6_t
Range: 0-1300
Units: mAh
Power Mode 3 Total bytes: 2
Power Mode State (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: 3 Msg 3
Units: Message Number
(1) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value:
0 Using External Power
1 Using Internal Power
2 Both Power Supplies disabled
Units: Not Applicable
Built In Test 4 Total bytes: 3
Built In Test Result (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: 4 Msg 4
Units: Message Number
(1) Internal Buffer Offset Address Value:LSB byte
(2) Internal Buffer Offset Address Value:MSB byte
Type: Enumerated uintl6_t
Value:
SUPPLY_INT, // BIT Pos O
SUPPLY_EXT, // BIT Pos 1
SUPPLY_OFF, // BIT Pos 2
CURRENT_FAULT, // BIT Pos 3
PACKAGE_INTERLOCK_GONE, // BIT Pos 4
BATCAP_BELOW_WARN, // BIT Pos 5
FMU_NOT_COMM, // BIT Pos 6
INVALID_STATE_CHG, // BIT Pos 7
SUPPLYNOTCMD, // BIT Pos 8

Page 6 of 14

Interface Control Document — 2014 Project 0050083462

Sensor Manager to RDS FMU I12C Tx Messages
Receiver
Data function Ind.ex Description
(Decimal
Offset)
RXBUFF_OVRFLW, // BIT Pos 9
FIFO_OVRFLW, // BIT Pos 10
HOOK_LOCKED, // BIT Pos 11
SPARE], // BIT Pos 12
SPARE2, // BIT Pos 13
SPARE3, // BIT Pos 14
BIT_FLAG_OVRFLW // BIT Pos 15
Units: Not Applicable
Interlocks 5 Total bytes: 4
RDS Interlock Status (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: 5 Msg 5
Units: Message Number
(1) Internal Buffer Offset Address Value
Type: Boolean
Value:
false Gone
true Connected
Units: Not Applicable
Debug Interlock Status (2) Internal Buffer Offset Address Value
Type: Boolean
Value:
false Not asserted
true Debug Mode Asserted
Units: Not Applicable
Commit to Release Interlock (3) Offset Address Value
Status
Type: Boolean
Value:
false Not Asserted
true Commit to Release Asserted
Units: Not Applicable

Page 7 of 14

Interface Control Document — 2014 Project 0050083462

Host Release Manager Pin Assighment (Pro Mini Arduino)

Table 4. Host Release Manager Pin Assignment

Group Capability Function Pin Type | Input / Output
Direction
Actuator Control
RDS Release Lock/Unlock PD6 (6) PWM | Output
RDS Release Actuator PB1 (9) PWM | Output
Cable Retraction / extension PB2 (10) PWM | Output
Power Control
RDS Power Enable PDA4 (4) Level Output
Spare PD5 (5) Spare | Spare
Interlock
RDS Connected Wrap Output PD7 (7) Level Output
Commit to Release PBO (8) Level Input
RDS Connected Wrap Input PB3 (11) Level Input
Debug PCO (14) Level Input (debnce)
Load RDS PB4 (12) Level Input (debnce)
Status
Current Sensor FAULT detection PC1 (15) Level Input
External Power State Status ONST1 PC2 (16) | Level | Input
Internal Power State Status ONST2 PC3 (17) Level Input
Analogue Sense
Current Usage ADC7 (A7) | Analog | Input
Voltage Supply ADC6 (A6) | Analog | Input
Communication
12C SDA PC4 (A4) Pulse Bidirectional
12C SCL PC5 (A5) Pulse Bidirectional
Serial TX RXD Pulse Bidirectional
Serial Rx TXD Pulse Bidirectional
Supply
Vcce Vcc Supply | Power
Earth GND Supply | Power

Page 8 of 14

Interface Control Document — 2014 Project 0050083462

Table 5. Host FMU to Host Release Controller I12C Rx Messages

Host FMU to Host Release Controller 12C Rx Messages
(Message in priority order based upon Code value; 1 being highest)
(Up to 3 Byte Message):

Byte 1 = Command Number

Byte 2 = Command Data (if required)

Byte 3 = Command Data (if required)

Commands Command | Data (if applicable)
Slave 12C Response Setup 1 Data Bytes: 2
Type: uint8_t
Byte 1: Response Address Request
Address Range: 0—-9
(see Receive Table)
Byte 2: Number of bytes to transfer
Range:1-4
(see Receive Table)
Commanded State Change 2 Data Bytes: 1
Type: Enumerated uint8_t
Value:
1 - Host Power On
2 — Host Power Off
3 - ReadyRelease
4 - Release
5 - Abort
Weight off Wheels Status 3 Data Bytes: 1
Type: Enumerated uint8_t
Value:
0 — Weight on Wheels
1 — Weight off Wheels
RDS State 4 Data Bytes: 1
Debug Commands
RDS Release Unlock / Lock 5 Data Bytes: 1
Type: Enumerated uint8_t
Value:
0 — Lock
1 - Unlock
Cable Retraction / Extension 6 Data Bytes: 1
Type: Enumerated uint8_t

Page 9 of 14

Interface Control Document — 2014 Project 0050083462

Value:

0 — Retract

1 - Extend

RDS Release Action

7 Data Bytes: 1

Type: Enumerated uint8_t

Value:

0 — Hooks Closed

1 — Hooks Open

Page 10 of 14

Interface Control Document — 2014 Project 0050083462

Table 6. Host Release Controller to Host FMU 12C Tx Msgs

Host Release Controller to Host FMU I12C Tx Messages
Receiver
Data function Add.ress Description
(Decimal
Offset)
Sensor Manager 0 Total bytes: 2
Host Release Controller State (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: O Msg O
Units: Message Number
(1) Offset Address Value
Type: Enumerated uint8_t
Value:
0 Initialise
1 BITFail
2 PackageCheck
3 Load
4 PackageConnectedOff
5 PackageConnectedOn
6 ReadyRelease
7 ReleaseConsent
8 Release
9 Gone
10 Hung
Units: Not Applicable
Sensor Data 1 Total bytes: 3
Host Battery Supply Amount (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: 1 Msg 1
Units: Message Number
(1) Offset Address Value: LSB byte
(2) Offset Address Value: MSB byte
Type: Unsigned Integer uintl6_t
Range: 0-2600
Units: mAh
The current RDS mAh usage when powered by Host
Power supply
Power Mode 2 Total bytes: 2
Power Mode State (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: 2 Msg 2

Page 11 of 14

Interface Control Document — 2014 Project 0050083462

Host Release Controller to Host FMU I12C Tx Messages

Receiver
Data function Add.ress Description
(Decimal
Offset)
Units: Message Number
(2) Offset Address Value
Type: Boolean
Value:
false Host Power Off
true Host Power On
Units: Not Applicable
Built In Test 3 Total bytes: 2
Built In Test Result (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: 3 Msg 3
Units: Message Number
(1) Offset Address Value
Type: Enumerated int8_t
Value:
SUPPLY_INT, // BIT Pos O
SUPPLY_EXT, // BIT Pos 1
SUPPLY_OFF, // BIT Pos 2
CURRENT_FAULT, // BIT Pos 3
PACKAGE_INTERLOCK_GONE, // BIT Pos 4
BATCAP_BELOW_WARN, // BIT Pos 5
FMU_NOT_COMM, // BIT Pos 6
INVALID_STATE_CHG, // BIT Pos 7
SUPPLYNOTCMD, // BIT Pos 8
RXBUFF_OVRFLW, // BIT Pos 9
FIFO_OVRFLW, // BIT Pos 10
HOOK_LOCKED, // BIT Pos 11
SPARE], // BIT Pos 12
SPARE2, // BIT Pos 13
SPARE3, // BIT Pos 14
BIT_FLAG_OVRFLW // BIT Pos 15
Units: Not Applicable
Interlocks 4 Total bytes: 3
Host Interlock Status (0) Internal Buffer Offset Address Value
Type: Enumerated uint8_t
Value: 4 Msg 4
Units: Message Number
(1) Offset Address Value

Page 12 of 14

Interface Control Document — 2014 Project 0050083462

Host Release Controller to Host FMU I12C Tx Messages

Receiver
Data function Add.ress Description
(Decimal
Offset)
Type: Enumerated int8_t
Value:
0 Gone
1 Connected
Units: Not Applicable
Commit to Release Interlock (2) Offset Address Value

Status

Type: Enumerated int8_t

Value:

0 Gone

1 Commit to Release Asserted

Units: Not Applicable

Page 13 of 14

Interface Control Document — 2014 Project 0050083462

Host to RDS Connector Pin out

Top (1 -5) = Shorter edge; Bottom (11 — 15) = Wider edge

Table 7. Host to RDS Connector Pin out

1 2 3 4 5
RDS Host Power X Host GND Commit To
Interlock Release
6 7 8 9 10
Commit To RX Debug T Host
Release Interlock
11 12 13 14 15
Host Host Power RX Host GND RDS
Interlock Interlock

Page 14 of 14

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Aim
	1.3 Objectives
	1.4 Context
	1.5 Ethics and Implications
	1.5.1 Engineering Ethics
	1.5.2 Prototype Readiness Implications

	1.6 Overview of the Dissertation

	Chapter 2 Previous Work
	2.1 Chapter Overview
	2.2 Previous Work
	2.2.1 Navigation
	2.2.2 Transfer Alignment
	2.2.3 Australian Aerospace Regulatory Regime

	Chapter 3 Establishing System Requirements
	3.1 Chapter Overview
	3.2 Concept of Operations
	3.3 System Safety Analysis
	3.4 System Safety Requirements
	3.5 System Requirements
	3.6 Chapter Summary

	Chapter 4 Rotary Deceleration System - Design and Construction
	4.1 Chapter Overview
	4.2 Physical Design
	4.3 Electronics Design
	4.3.1 System Architecture
	4.3.2 Processor Selection
	4.3.3 Power Controller
	4.3.4 Pro mini Connector and Quadrature Encoder Sensor boards

	4.4 Software
	4.4.1 Interface Design
	4.4.2 Software Design
	4.4.3 Software Operation

	4.5 Critical Design Analysis
	4.6 Chapter Summary

	Chapter 5 Verification
	5.1 Chapter Overview
	5.2 Verification Test Facilities
	5.3 Verification Activities
	5.4 Critical Analysis of Verification Facilities
	5.5 Chapter Summary

	Chapter 6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Achievement of Project Objectives
	6.3 Further Work

	References
	Appendix A Project Specification
	Appendix B System Safety
	B.1 Appendix Introduction
	B.2 Safety Requirements Verification Matrix

	Appendix C System Requirements and Architecture
	C.1 Appendix Introduction
	C.2 System Requirements
	C.2.1 Navigation
	C.2.2 Power Supply
	C.2.3 Physical
	C.2.4 Interface
	C.2.5 Built In Test
	C.2.6 Ground Test Facility

	Appendix D RDS Mechanical Drawings
	Appendix E Electrical Schematics
	Appendix F RDS Software Design
	Appendix G Risk Analysis
	Appendix H Source Listings
	H.1 Nameing Conventions
	H.2 Sensor Manager Listings
	H.3 The SensorManager.ino Code
	H.4 The Commander.h Code
	H.5 The Commander.cpp Code
	H.6 The BIT.h Code
	H.7 The BIT.cpp Code
	H.8 The I2CBuffer.h Code
	H.9 The I2CBuffer.cpp Code
	H.10 The Interface.h Code
	H.11 The Interface.cpp Code
	H.12 The PinoutConfigSM.h Code
	H.13 The Power.h Code
	H.14 The Power.cpp Code
	H.15 The QuadEncoder.h Code
	H.16 The BIT.cpp Code
	H.17 The ServoTimer2.h Code
	H.18 The ServoTimer2.cpp Code
	H.19 The StateMachine.h Code
	H.20 The StateMachine.cpp Code
	H.21 Release Controller Listings
	H.22 The HostReleaseController.ino Code
	H.23 The Equates.h Code
	H.24 The Commander.h Code
	H.25 The Commander.cpp Code
	H.26 The BIT.h Code
	H.27 The BIT.cpp Code
	H.28 The I2CBuffer.h Code
	H.29 The I2CBuffer.cpp Code
	H.30 The Interface.h Code
	H.31 The Interface.cpp Code
	H.32 The PinoutConfigRC.h Code
	H.33 The Power.h Code
	H.34 The Power.cpp Code
	H.35 The BIT.cpp Code
	H.36 The StateMachine.h Code
	H.37 The StateMachine.cpp Code
	H.38 The MsgBuff.h Code
	H.39 The MsgBuff.cpp Code

	Appendix I RDS Interface Control Document

