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Abstract

Drought in recent years has highlighted the importance of maintaining a sustainable

water resource. Improvements in irrigation management can significantly increase wa-

ter use efficiency and crop productivity for Australian agriculture. Measurement of

Soil Moisture Content (SMC) is essential for improving irrigation management. Ex-

isting commercially-available SMC sensors require contact with the soil and measure

only a single fixed point in a field. However, there can be significant spatial variability

in soil properties and SMC within a field, and installation of multiple SMC sensors

within a field is often not practical or economical. Non-contact methods reported in

the literature for SMC estimation include satellite imagery of soil and plants. Satel-

lite imagery approaches capture spectral bands in the visual, infrared and microwave

wavelengths and then extract crop vigour to estimate SMC. However, this technology

has a limited spatial resolution (30m2) and temporal resolution (every 2-3 weeks). An

alternative approach uses a ground-based camera that can be moved around the field

on ground-based or aerial vehicles as required, providing high spatial and temporal res-

olution SMC estimation. A camera-based estimation system has been developed. Red

and near infrared images of plants are processed using MATLAB R© Image Processing

Tool box and ColorWorker R© software. A MATLAB R© program has been developed that

performs the following image analysis: (i) overlays images of different spectral bands;

(ii) selects key regions in the visual image; (iii) selects key regions in the infrared image;

and (iv) calculates reflectance in the visible and infrared bands. Multiple regression

analysis has been conducted to analyse the calculated reflectance and develop a model

that estimates SMC. The camera and image analysis system has been evaluated on

chamomile, lettuce and lucerne plants. These plants were grown under three irrigation

levels (20%, 30% and 40% VWC) and two soil types (loam and sand). Each sample was

replicated twice, giving a total of 36 samples. Daily digital images were taken of plants

with band pass filters in red and near infrared bands. An on-site weather station pro-
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vides micro climate data which is used calibrate the models. Three spectral responses

were derived from the images: (i) chlorophyll a/b ratio – Chl(a/b); (ii) Normalised

Difference Vegetation Index – NDVI; and (iii) near infrared at 850 ηm – IR850. A

soil moisture estimation model was derived for each plant and soil type which showed a

significant correlation between one of the spectral responses of the plant and SMC. The

Root Mean Squared Error RMSE value was used to test the accuracy of the estimation

models. There were nine models which had a RMSE less than 5%. Two lucerne/sand

models with NDVI response had RMSE value of 1.39% and 1.49% Volumetric Water

Content (VWC), both replicates in each model were within 0.40%. Lucerne/sand was

also sensitive in IR850 response, with a RMSE for replica 1 and 2 of 2.04% and 2.89%

VWC respectively. Chamomile/loam was sensitive to IR850 response across all three

irrigation levels, all RMSE values were below 2.89% VWC for the data obtained dur-

ing August. Lettuce/loam was sensitive to IR850 response for data obtained during

July. Replicates 1 and 2 had RMSE values of 1.9% and 2.56% VWC. There were no

correllations for the chl(a/b) index. This research has shown that in some conditions

SMC can be estimated from plant spectral response (NDVI and IR850) for chamomile,

lettuce and lucerne. Further research is needed to understand the effects of what plant

nutrition and disease have on the spectral response and SMC estimation.
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Chapter 1

Introduction

1.1 Background

Water is a valuable resource which society is dependent on for survival. According to

the Australian Bureau of Statistics (2012) 6,596 GL of water was used for irrigation

purposes across Australia during 2009 and 2010. Irrigation on its own made up 52%

of the total water used during that same year. Therefore efficient use of water in

agriculture is crucial to ensure its sustainability into the future.

An important part of efficient water use is to be able to effectively manage irrigation

to optimise crop production and minimise over watering and wastage. Knowledge of

soil moisture content (SMC) can be a tool to effectively manage irrigation.

Traditionally SMC has been measured via in situ techniques such as Time Domain

Reflectometer (TDR), Capacitive Sensors and Standing Wave Sensors. These sensor

types can produce accurate measurements by determining the dielectric constant of the

soil, then deriving the soil moisture content. While accuracy is good, the process of

measuring is labour intensive and only point measurements can be made. To get full

coverage of a target area, a network of sensors would need to be installed.

An automatic non-contact based measurement would provide a cheap and quick evalu-

ation of soil moisture. Therefore this would be more likely to be adopted as a common

place tool to evaluate soil moisture, rather than relying on the farmer’s experience and

judgement to irrigation.
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Past research has proved that soil moisture content can be inferred from remote imaging.

The methods used have mostly utilised data which is from satellite mounted sensors

operating in multiple bands of the electromagnetic spectrum. Some research has also

used data from multiple satellites and sensors to mitigate against a gap in data due to

heavy cloud cover. There are some aspects of satellite data which need to be considered,

including cost of subscription, temporal/spatial resolution of the available data and

coverage of the region being targeted.

SMC estimation using local data rather than satellite data would provide end users

with more control over the temporal and spatial resolution of the data and reduce the

effect of cloud cover. By providing greater detailed data it will give the end user the

ability to monitor a particular crop due for irrigation. This could be performed at a

time suited to the end user and not relying on when data has been made available to

the subscriber of a particular product.

Existing methods of soil moisture estimation using satellite imagery could be adapted

to a system which utilises data obtained at a local level. This includes methods such

as Normalised Difference Vegetation Index (NDVI), near infrared analysis and visual

techniques in the spectral range of 690 to 700 ηm.
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1.2 Objectives

This report investigated methods of SMC estimation, from both in situ and remote

sensed data. A suitable technique was selected from the findings of the literature

review, to develop a visual based non-contact SMC estimation. The motivation behind

this type of estimation is to provide the end user with increased spatial and temporal

resolution. This will mean irrigation management will be more efficient, as the irrigator

can check a particular area for a soil moisture status before irrigation is started. The

technique will focus on obtaining data from plant canopy, this will be suitable to monitor

crops, as monitoring the soil directly will be obscured. The soil moisture estimation

needs to be autonomous in processing and interpreting the data to allow for an easy

output of soil moisture content, without the need for specialist knowledge. The project

specification (Appendix A) objectives are:

• Conduct literature review of visual plant and soil responses to soil moisture con-

tent.

• Review camera/sensor technology and image analysis techniques for capturing

and automatically analysing visual plant responses to soil moisture.

• Design a method of obtaining accurate data of plant response to varying levels of

soil moisture content.

• Collect plant image data at varying levels of soil moisture content using candidate

camera system/s.

• Analyse data to extract plant features that indicate soil water status.

• Develop algorithm which can identify changes in plant reaction and estimate the

value of soil moisture content.

• Evaluate algorithm performance on soil moisture content estimation.

As time and resources permit:

• Adapt and refine algorithm to estimate soil moisture for other plant types.

• Develop and evaluate a proof-of-concept non-contact visual soil moisture estima-

tion system.
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Literature Review

2.1 Soil Moisture Content (SMC)

Soil moisture content is the amount of water held by the soil. SMC can be expressed as

a ratio of moisture present in the soil compared to the soils capacity to hold water. All

SMC values in this report will be stated in terms of volumetric water content (VWC)

and expressed as a percentage. For completeness the soil moisture content can be

measured in tension kPa. This is the pressure the plant needs to overcome to be able

to extract water from the soil.

Not all water present in the soil is available for vegetation. The International Atomic

Energy Agency (IAEA, 2008) describe the available water to plants as being the dif-

ference between the “wilting point” and “field capacity”. The wilting point is the

minimum SMC, at which point the moisture left in the soil cannot be extracted by the

plants. The field capacity is the maximum SMC that can be held by the soil before

water drains away.

2.2 Determining Soil Moisture Content

SMC measurement can be categorised as direct measurement and non-contact sensing.

This project will be developing a non-contact method of SMC estimation, in the process

a method of direct measurement will be utilised, which will provide a reference point
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for the project experiment. The reference will be analysed with plant visual data

to determine if a relationship exists and to calibrate SMC prediction models. The

measured SMC will also be used to verify the accuracy of the prediction models. The

following review will look at different methods in each category.

2.2.1 Direct Measurement

Soil Moisture Content can be measured and expressed as a gravimetric or volumetric

ratio or percentage. A common technique involves taking a soil sample, weighing it,

drying the sample in an oven and then weighing it again. The difference in weight is

directly related to the water content of the soil. According to International Atomic

Energy Agency (IAEA, 2008), to express the result in gravimetric units, the result is

normalised by dividing the result by the dried weight of the sample with the units Mg

Mg−1. For volumetric units m3m−3, the mass of water lost is converted to volume by

dividing the mass by the water density (Equation 2.1), then the volume of water lost

is divided by the volume of the sample. The process of measuring SMC directly is

labour intensive and is a single point measurement only, which is useful for calibration

of sensors.

V olumetric =
WaterMass

WaterDensity
(2.1)

Time Domain Reflectometry (TDR) measures soil dielectric constant by generating

a high speed electromagnetic pulse through a line of known length. The reflected pulse

is measured and the travel time of the pulse is used to find the dielectric constant. This

type of sensor has a high accuracy and a high cost (ICT International, 2014).

Neutron Probe is another direct method of measuring SMC. The probe is placed into

an aluminium access tube where it emits neutrons into the soil. The probe then detects

the speed of the neutrons as it collides with hydrogen atoms present in the soil. This

collision causes the neutrons to slow and this is related to the soil moisture content.

Giddings and Williams (2004) discuss the advantages of a Neutron probe method as

being suitable for a large range of soil types and being able to produce a root zone

profile. The disadvantages of this method is that it does utilise radiation to function,
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which is a potential health hazard and therefore the user must be registered. Another

disadvantage is that the results begin to lose accuracy within 100mm of the surface.

Capacitive type sensors consist of two probes which are inserted into the soil. The soil

properties determine the dielectric constant between the two probes. ICT International

(2014) state by measuring the capacitor charge time, a linear relationship can be formed

with the dielectric constant of the soil and therefore SMC. The cost of this type of sensor

is low.

Gypsum Block uses electrical resistance to measure soil water tension. Department

of Environment and Primary Industries (n.d.) describe the sensor as consisting of two

electrodes surrounded by a gypsum block. The block is buried in the soil, where it will

absorb moisture if soil is wet and releases moisture if the soil is dry. The electrical

resistance will increase when moisture is low and decrease when soil moisture is high.

The gypsum block is useful for monitoring dry soils in the range of 50 kPa and above.

Standing Wave also derives SMC for the dielectric constant of the soil. ICT Inter-

national (2014) state that their brand of sensor uses an oscillator to generate a signal

of which the amplitude of the reflected signal is measured and converted to SMC. The

cost of this type of sensor is rated as moderate.

2.2.2 Non-Contact Sensing

Knowledge of Plant Physiology and Spectral Response is required to understand

how remote SMC estimation works. Figure 2.1 depicts the cross section of a typical

green leaf. The cross section shows the interaction of infrared, green, red and blue light

with the palisade and mesophyll cells of the leaf. The red and blue light are absorbed in

the palisade cells and used for photosynthesis, while the infrared radiation penetrates

into the centre of the leaf or mesophyll layer. The level of reflected infrared radiation

is influenced by the water content in the leaf. This illustrates the type of parameters

which could be focussed on to develop a method of estimating SMC. Gibson and Power

(2000) compares the response between healthy, stressed and soil measurements across

the visible and IR range. Figure 2.2 shows that in the healthy vegetation there is a dip in

the reflectance band around 700ηm. In the stressed vegetation the dip has decreased.

The healthy vegetation also shows greater reflectance in the visible green and NIR
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parts of the spectrum compared to the stressed vegetation. This agrees with Carter,

Cibula and Miller (1996) who state the leaf chlorophyll begins to decrease and therefore

reflectance is increased in the 695 ± 5ηm. Gibson (Gibson and Power, 2000) describes

the NIR part of the spectrum as having the largest peak in reflectance compared to

green in the visible spectrum.

Figure 2.1: Plant Physiology

Source: (Gibson and Power, 2000)

Figure 2.2: Plant Spectral Response

Source: (Gibson and Power, 2000)

Hyperspectral Sensors measure the spectral reflectance at high spectral resolution

and can be either active or passive. This type of technology is available as a proximal

or a remote device. White and Raine (2008) states the passive devices require constant

calibration via a white object with known reflectance and at the same solar irradiance

to the target object been measured. The cost and technical knowledge required to use

this technique is prohibitive to the end user and therefore mainly used in research only.

The unit of measure is a ratio of the maximum reflectance and has a value ranging

from 0 to 1 for each measured spectral range.
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Thermal sensing of crop canopy can determine plant transpiration rate through the

temperature. Thermographs are visual images which indicate a thermal signature of the

target. The use of thermal data of a crop canopy can detect the response of the plant to

the current conditions. A plant has the ability to vary it’s transpiration and therefore

moisture loss, by changing the aperture size of the stomatal. As the stomatal size is

reduced the amount of transpiration is reduced, which removes the evaporative cooling

effect of the plant, and therefore the temperature of the plant increases. Carter, Cibula

and Miller (1996) compared narrowband reflectance ratios of thermal images for use as

an early detection of plant stress. They concluded that the canopy temperature from

800 to 1200 ηm band was not effective, as there was a negative effect from environmental

conditions, such as wind and rain.

Thermal inertia is another approach to soil moisture estimation using thermal sensing

to utilise thermal inertia of the surface. Kuenzer and Dech (2013) defines thermal inertia

(I) as the resistance of an object to increase temperature by 1K. Thermal Inertia

is dependent on three parameters, heat capacity (c) which is the energy required to

increase temperature by 1K, density of material (p) and thermal conductivity of the

material (K). These parameters and therefore thermal inertia can not be determined

remotely. An approximation of thermal inertia, known as Apparent Thermal Inertia

(ATI) can be calculated from thermal daytime and night time thermal and visual

images. The equation for ATI is shown in Equation 2.2.

ATI technique is used in China North plain and gives the greatest correlation to SMC

when the land surface is homogeneous and has a vegetation cover of constant agrotype

(min Li, lin Liu, yu Zhang, Wang, Sun and xin Wang, 2004). ATI is affected by

vegetation cover, min Li et al. (2004) used a correction formula and NDVI to adjust

for the effect of vegetation cover. ATI is suitable for areas with only light vegetation

cover (min Li et al., 2004; Kuenzer and Dech, 2013). For the application of crop

canopy monitoring, the ATI approach would not be suited due to the heavy vegetation

coverage.

ATI =
(1−A)

∆T
(2.2)

Where A is the surface Albedo and ∆T is the difference in temperature between day
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and night time thermal images.

Microwave sensing is a common technique for measuring soil moisture. Alshikaili

(2007) reports the advantages of not being effected by night time, cloud, smoke or

precipitation. Microwave sensors can be either active or passive. Passive sensors detect

natural radiation from the object, operating in the spectral band of 0.1mm to 3cm.

Active sensors (radar) produce their own radiation and measure the reflected radiation

from the target. Kuenzer and Dech (2013) state the limitation of microwave data is a

25 to 50 km spatial resolution.

Visible and NIR imaging has been used in numerous studies to remotely determine

plant parameters. The visible spectrum can be used to analyses the colour of plant

foliage. As shown in Figure 2.1, healthy vegetation will absorb red and blue light.

The red and blue light is used by the chlorophyll pigment to convert energy during

photosynthesis. Kriedemann (1999) reported in Plants in Action: Adaptation in Na-

ture, Performance in Cultivation that Chlorophyll can be separated into chlorophyll a

(CHla) and chlorophyll b (CHlb). Both CHla and CHlb are required for plant photo-

synthesis; however, each has a different function and the ratio (of a/b) varies with the

condition the plant is exposed to. CHla is associated with processing energy absorbed

where high light levels are present. Where low light levels are present, more resources

of the plant are required to optimise light harvesting; therefore there is less of CHla

and more of CHlb.

CHla and CHlb absorb energy from the blue and red parts of the visible spectrum. CHla

has maximum absorption at wavelength 430 ηm and secondary peak at 660ηm, CHlb

has maximum absorption at wavelength 450 ηm and secondary peak at 640ηm. By

monitoring these narrow bands of the visible spectrum, the rate of chlorophyll content

can be estimated and analysed with SMC. If a relationship between SMC and Chl(a/b)

exists, this could be developed to predict SMC from the visual response of the plant.

Sarker, Rahman and Paul (1999) studied the effect of soil moisture on Retaliative Leaf

Water Content RLWC and chlorophyll across four wheat varieties. It was found that

soil moisture had a significant effect on chlorophyll a/b ratio. Pirzad, Shakiba, Zehtab-

Salmasi, Abolghasem Mohammadi, Darvishzadeh and Samadi (2011) conducted an

experiment on Matricaria chamomilla L and reported on the effect of water stress on

RLWC, chlorophyll, proline and soluble carbohydrates. They concluded that water
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stress has a significant effect on chlorophyll. When irrigation levels were between field

capacity and 55% chlorophyll varied with SMC. It was also noted that other measure-

ments of proline and soluble carbohydrate were measured using a spectrophotometer

and bands of 515 ηm and 625 ηm respectively. These additional parameters may play

a role in discounting some unwanted variables in the future.

Xue and Yang (2009) studied the relationship between leaf chlorophyll content and

plant indices derived from hyperspectral reflectance of leafy green vegetables. The veg-

etable varieties used were Lactuca sativa (Lettuce), Brassica chinensis L (Pakchoi) and

Spinacia oleracea L (Spinach). The results proved a strong correlation with chlorophyll

content.

The spectral response of the vegetation changes as the condition of the plant changes.

When the plant begins to stress from deficiency in water or nutrient, or suffer from

disease for example, the cell structure is altered and the spectral response is affected.

There is generally a decrease in IR reflectance and an increase in visual reflectance

(Gibson and Power, 2000).

While plant response in chlorophyll and therefore spectral response in the blue and red

regions is not solely determined by soil moisture content, it is a starting point for use

in non-contact SMC estimation. Other factors which influence the measurement will

be isolated from this experiment and factored into the solution once the fundamental

principle has been proven.

2.2.3 Vegetation Indices

Vegetation indices are used to estimate vegetation parameters from spectral reflectance

at various wavelengths throughout the electromagnetic spectrum. Some of these indices

are discussed below.

Normalised Difference Vegetation Index (NDVI) This index is used to remotely

estimate the density of vegetation cover from sparse to dense being 0 to 1 respectively.

The index is a ratio of NIR and visible (red) spectrum as show in Equation 2.3. The

application of NDVI was extended by Schnur, Xie and Wang (2010) to estimate root

zone SMC. The NDVI was derived from Moderate Resolution Imaging Spectroradiome-
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ter (MODIS). A correlation was found, however when the soil moisture was low the

correlation did not exist.

NDV I =
(NIR− V IS)

(NIR+ V IS)
(2.3)

Visible and Shortwave infrared Drought Index (VSDI) is an alternative to NDVI

for real time drought monitoring. Zhang, Hong, Qin and Liu (2013) indicates that

NDVI is not suitable from drought monitoring due to the time lag between drought

and NDVI response. The equation for VSDI is shown in Equation 2.4.

V SDI = 1− [(ρSWIR − ρblue) + (ρred − ρblue)] (2.4)

Where ρ is the reflectance of the shortwave infrared (SWIR), red and blue parts of the

spectrum.

Zhang et al. (2013) states the VSDI can give a measurement of wetness across various

surfaces by using the SWIR, blue bands and water absorbing indicator bands as a

reference to gauge moisture variation. Zhang et al. (2013) indicate that NIR is not

used in the VSDI, as it has no direct response to water stress and is effected by other

factors such as leaf structure, plant density and plant structure. This view supports

with Gibson (Gibson and Power, 2000) in that water content has a greater effect when

the spectral range is above 1300 ηm.

Water Index (WI) is a ratio of two different spectral bands, namely 970ηm and

900ηm as used by Peñuelas, Pinol, Ogaya and Filella (1997) and is shown in Equation

2.5. The water absorption band of the spectrum is at 970ηm, while the reference band

not influenced by water is 900ηm. Peñuelas et al. (1997) used this version of the WI

to determine the variation in plant water content, the inverse of this equation can give

the plant water deficiency.

WI =
R900

R970
(2.5)
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2.3 Project Area of Research

Based on the findings of the literature review and the areas not previously studied, this

project will be focussed on finding a relationship between spectral response of plant

canopy, obtained from a standard digital images, and testing for a relationship directly

with SMC. Any significant correlations will be modelled and used to predict SMC from

appropriate spectral response.

The literature review has identified research which has shown a correlation between

SMC and chlorophyll (a/b) ratio of wheat (Sarker et al., 1999) and chamomile (Pirzad

et al., 2011). This research used direct methods to measure chlorophyll content of the

plant foliage. Research by Xue and Yang (2009) showed it was possible to estimate

chlorophyll content from spectral analysis of plant leaves (lettuce) using a spectrometer,

which still involved removing leaves from the plant. The first area of research for this

project will investigate plant response in narrow bands of the electromagnetic spectrum

which relate to chlorophyll (a/b) ratio. The method of analysis will use the candidate

image capture system, to gain spectral data at plant canopy level in order to estimate

the vegetation index of Chl(a/b) (Equation 2.6), and then analysis this with SMC data.

Chl(a/b) =
R640

R660
(2.6)

The NIR part the spectrum has been identified by Gibson and Power (2000) as showing

changes in absorption with changes in plant condition. This region is also used in the

WI and used by Peñuelas et al. (1997) to determine plant water content. The second

area of research for this project will be to analyse the plant response to the NIR part

of the spectrum and to test for a correlation directly with SMC data.

NDVI vegetation index has been used by (Schnur et al., 2010) with some correlation

being identified during certain conditions. A third area of research will include a NDVI

derived from the chosen image capture system. This data will be obtained at plant

canopy level as opposed to the satellite based MODIS NDVI.

The plants chosen for this project will be Chamomile and Lettuce as used by Pirzad

et al. (2011) and Xue and Yang (2009) respectively. In addition, lucerne has been
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selected as the third plant to extend the research. Lucerne is a commonly irrigated

crop in central Victoria where the experiment was conducted.

Table 2.1 displays a summary of plant types which have shown some correlation between

a response in the plant to plant water status or varying irrigation regimes.
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Chapter 3

Proposed Estimation System

The Proposed Estimation System hardware will consist of a camera, optical filters, x-

right colour checker, weather station and SMC meter. System software will consist of

MATLAB R©, ColourWorker R© and Microsoft R© Excel and will be used to perform image

processing and modelling. Figure 3.1 shows the proposed system block diagram. The

raw data is obtained from the standard digital camera detailed in Section 3.2. The three

filters described in Section 3.2.2 will be used to produce a digital image at the target

wavelength. SMC data will be measured daily with the Vegetronix capacitive probe

(Section 3.1), and calculated daily with data from the weather station and irrigation

quantity as discussed in Section 4.4.2.

The system will begin with obtaining digital images of the target wavelengths. Only the

VIS image is processed with ColourWorker R© for narrow band spectral response, where

all images are imported into the MATLAB spectral reflectance block for reflectance

estimation for each wavelength.

The narrow band spectral response utilises ColourWorker R© to analyse each plant sam-

ple. The output is the spectral response between 400 and 700 ηm. This data is imported

into Excel, where the specific wavelegnths of 640 and 660 ηm are identified and the Chl

(a/b) ratio calculated.

The spectral reflectance is calculated in MATLAB R© image processing as discussed in

Section 3.4.2. The output is the estimated spectral reflectance for IR850 filter and the

NDVI vegetation index.
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Multiple regression is performed in MATLAB and uses inputs of Chl(a/b) and NDVI

indices and IR850 spectral response. Weather data and SMC data are also inputs in

the multiple regression block. The output of the multiple regression are the variables

most significant to plant spectral response in IR850, Chl(a/b) and NDVI plant indices.

Model coefficients of determination are perform with the most significant variables.

The output of this block is a series of prediction models for plant samples and reponses

which have shown a significant relationship.

The final block in the system is the verification stage. The R2 and root mean squared

error RMSE (Chapter 6) are calculated for each model and for both calibration and

verfication data as identified in Section 5.1.3.
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Figure 3.1: Estimation system block diagram
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3.1 Review of Technology Required

The Soil Moisture Meter chosen for measuring SMC directly is a capacitive type

probe. The manufacture is Vegetronix, model VG-METER-200. This model was chosen

for its ease of use and it is relatively non destructive to the potting media. The VG-

METER-200 also provide an option to measure the SMC in Volume Water Content

(VWC) as a percentage. The unit has the capability to connect via serial USB to

a PC to log values over time. Temperature, light level and time are also measured

simultaneously. The VG-METER-200 meter is shown in Figure 3.2

Figure 3.2: Vegetronix VG-METER-200 Soil Moiture Meter

Source: (Vegetronix, n.d.)

The Digital Camera used for visual images is the Olympus mju 750. It has a 7.1MP

CCD sensor and the output file is in JPEG format. The camera can sense into the NIR

range, as tested against an infrared remote control LED.

Security cameras with a night time capability were considered as an option to capture

an image in the NIR range. These cameras are common and are made by numerous

manufactures. The cameras usually come fitted with IR LEDs to illuminate the area

with infrared light. This camera will only be used in this project if the standard digital

camera is not successful.

Thermal Imaging Cameras were considered for this project. They are commercially

available and produced by many manufacturers with various resolutions and options.

Generally speaking the standard spectral range is in the order of 7,500 ηm to 13,000

ηm. This range is outside the NIR and therefore not considered as suitable for this
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project.

3.2 Image Capture System

The Digital Camera used for capturing images is the Olympus mju 750. It has a 7.1MP

CCD sensor and outputs a file in JPEG format. The camera can sense into the NIR

range, as tested against an infrared remote control LED with a wavelength of 890nm.

3.2.1 Wavelengths to be analysed

The regions of the electromagnetic spectrum which are of interest in this project, range

across the visible and NIR. As shown in the spectral response for healthy and senescent

vegetation (Figure 2.2), there is a change in spectral response which is most prominent

around the red edge and NIR, or wavelengths of 650 to 750nm and greater than 750nm

respectively.

The exact wavelengths to be analysed in this project were determined by the available

filters summarised in Table 3.1. The target wavelengths are listed below, in practice

the various filters overlapped these wavelengths.

• 640ηm

• 660ηm

• 720ηm

• 850ηm

Remote visual SMC estimation will rely on the visual response of the plant foliage.

The visual change will be too small to be obvious to the naked eye. It is proposed

that the use of a commercially available digital camera and image processing will be

able to detect changes related to SMC. Previous research performed by Pirzad et al.

(2011) highlighted that irrigation had a significant effect on the chlorophyll a/b ratio

for chamomile leaves. In a separate study, Xue and Yang (2009) successfully derived

leaf chlorophyll content of green leafy vegetables, including lettuce, from hyper-spectral
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reflectance. Part of this experiment will look at the spectral response of chamomile and

lettuce plants in a wavelength ratio 640/660 nm. This will equate to the chlorophyll

(a/b) ratio.

Gibson and Power (2000) states in Introductory Remote Sensing: Digital Image Pro-

cessing and Applications, that in general there is a decrease in IR reflectance as a

plant stresses due to water or nutrient deficiency. The wavelength of 850nm was chosen

to represent the NIR part of the electromagnetic spectrum. This wavelength is still

within the range of the chosen camera and will provide NIR reference for use in NDVI

measurements and WI (Peñuelas et al., 1997).

3.2.2 Optical Filters

A total of five images were taken each day. Interchanging external filters to the cam-

era allowed each image to capture the response of the plant from a different part of

the electromagnetic spectrum. The filters used are listed in Table 3.1 with spectral

specifications.

Table 3.1: Optical filters used in experiment

Image No Name Details Specification

1 VIS No Filter 450 - 750 nm

2 RED Roscolux #325 620 - 700 nm

3 IR720 Rocolax 40% at 720 nm

4 IR850 Citiwide Digital Experts > 850 nm

5 NEG exposed/processed negative 70% at 800 nm

(North Country Radio, 2011)

The IR720, IR850 and NEG filter required a change in camera settings from the stan-

dard visual images. The settings were determined from an initial trial. The optimum

setting for this camera were an ISO setting of 1600 and white balance set on auto.
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3.2.3 Image Analysis Techniques

Gilchrist (n.d.) explains in A Simple Method to Determine Surface Albedo Using Digital

Photography that it is possible to obtain a relative albedo (AREL) of a surface compared

to a known surface, shown in Equation 3.1. Where the brightness of the reference

and unknown surface (BREF and BUN respectively) are taken from the histogram of

the digital image. The absolute albedo (AABS) of the unknown surface can then be

determined by Equation 3.2.

AREL =
BUN

BREF
(3.1)

AABS = BREF ×AREL (3.2)

Gilchrist (n.d.) used a lux meter to determine the initial Albedo of the reference

surface. This was done by calculating the ratio of reflected to incident light of the

reference surface. The results of this method agree with published Albedo values.

Gilchrist reported that the results of the above method were within 3% of the values

measured by the lux meter method. He noted that working with RAW image files

would improve accuracy as brightness would not be compressed to 256 levels.

The ColourWorker R© application was developed by Lane (n.d.) at the University of Sus-

sex. It is based on the MATLAB R© platform, and is used for reflectence measurements

of coloured photos taken with standard digital cameras. This provides an economical

method of obtaining accurate spectral measurements without the need for expensive

lab equipment. The spectural range can be extended into the NIR with a compatible

camera. ColourWorker R© was created by Lane (n.d.) and the University of Sussex. The

application is free for academic use.

The ColourWorker R© application uses a colour standard in the form of the x-rite Col-

orChecker, as shown in Figure 3.3. The results can be exported as a .csv file for use in

third party applications.
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Figure 3.3: x-rite ColorChecker with reference patch circled

Source: (Watson, Paul. 2014)

3.2.4 Calibration of Colour Reference Chart

The x-right colour checker passport was placed in each image as a reference point for

the ColourWorker software, and for the image analysis using MATLAB. The colour

checker was used as a common reference object, to estimate the pixel intensity across

varying degrees of ambient light.

Figure 3.3 show the patch selected to be the reference circled in black, this is the closest

to the larger white balance card included on the reverse side. To calibrate the patch,

the albedo of the white reference card was estimated. The colour checker was placed

at the location of the experiment with the white balance patch facing up. Using a Dick

Smiths Electronics Lux meter the incident lux Li was measured 5 cm above the surface

of the chart. The reflected lux Lr measurement was then taken 5 cm above the surface

of the chart. This was performed by facing the lux sensor towards the chart (at a slight

angle to avoid producing a shadow). The albedo Ar of the patch is calculated from

Equation 3.3.



3.3 Data Collection and Management 23

Ar =
Lr

Li

=
215

1217

= 0.1766 (3.3)

The albedo of the reference patch will be 18%. This value will be used as a reference

to determine the albedo of the plants in the image. The sensitivity of this lux meter is

optimum at 550 nm and has a normal distribution ranging across the visible part of the

spectrum. The assumption has been made that NIR wavelengths will have a similar

reflectance to visible wavelengths on the reference patch.

3.3 Data Collection and Management

The potted plants and x-right colour checker were grouped so that only one image per

filter type was needed per day. A tripod was used to stabilise the camera and create a

consistent distance from the experiment across all images taken.

Images were taken at the same time as SMC measurements. This data was collected

daily at 8am. Due to external factors, the time of day moved from 8 am to 4 pm.

During this time of year at the experiment location, the difference in temperature and

ambient light between these times of day were not significant. The daily SMC data

was manually recorded in a log book at the time of measurement and then entered into

a Microsoft R© Excel spreadsheet. To obtain images with consistent field of view and

focus, all images were taken with a camera mount tripod and using the timing function

on the camera. Digital images were transferred from the camera’s XD card to a laptop

computer and saved with a file name format yyyymmdd XXX.JPG, where XXX is the

filter type shown in Table 3.1.

As discussed in Section 4.3, the weather station recorded data at 30 minute intervals

for the duration of the experiment. The weather station data was transferred from a

csv file to an excel spreadsheet. At weekly intervals the file was replaced with updated

data while keeping the same file name of download.xlxs. The weather station data

was imported into MATLAB to perform daily ET, daily average temperature, relative

humidity and wind speed calculations. The output of these calculations were used

as independent variables in the regression analysis and for calculation of SMC from
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gravimetric method.

Spectral data from the ColourWorker software was transferred from a csv file to an excel

spreadsheet named colourWorker.xlxs. The data for each visual image was assigned a

sheet in the workbook titled with the relevant date. The first column contained the

spectral value from 400 to 700 ηm and each of the 36 sample plants were assigned a

column from 2 to 37. A separate excel sheet named summary compiled the relevant

spectral data (including 640/660 ratio) for each plant sample.

Image processing was performed using MATLAB R© as described in Section 3.4. The

reflectance data produced was transferred to an Excel workbook titled filterData.xlsx.

Each filter type was allocated a sheet titled with filter type. The date and 36 samples

were allocated a column from 1 to 37.

The regression analysis was performed using an excel workbook named filterData.xlxs.

Each sample type and filter type was allocated a sheet titled XX(FFF), where XX is

the sample reference (Section 4.6) and FFF is the filter type (Section 3.2.2). Each sheet

referred to external documents to import data as required.

3.4 Data Processing

Image processing will be performed on the raw images to extract reflectance informa-

tion. An example of the raw images used in this project is shown in Figure 3.4. Two

methods used for image processing will be discussed, ColourWorker R© and MATLAB R©

image processing.

3.4.1 ColourWorker R© Image Processing

Obtaining spectral data from plant foliage would usually require expensive spectrom-

eters and other lab equipment. ColourWorker provides the ability to obtain spectral

reflectance data from a standard digital image. The image does not need controlled

lighting and has a resolution of 5ηm ranging from 400 to 700ηm. Figure 3.5 shows

the selection and analysis of 36 samples in the one image. The chart in the top right

corner is the spectral response for the first sample of chamomile grown in loam. The
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Figure 3.4: Sample images for 23rd August 2014 a) Visual Image b) IR850 Image

Source: (Watson, Paul. 2014)

flow chart in Appendix C.1 shows the process of image analysis using ColourWorker.

Figure 3.5: ColourWorker image analysis

(Source: Watson, Paul. 2014)

3.4.2 MATLAB R© Image Processing

A program was designed using the MATLAB R© platform and image processing toolbox,

to individually analyse an image of 36 sample plants.The program listing is shown

in Appendix B.1. The output is an average reflectance for each sample. There are

three parts to the program; Part 1 loads the images and registers the images with each

other. An example of image registration can be seen in Figure 3.6. Image registration is
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performed between the visual image and the filtered image. This enables the processing

of the high resolution VIS image, identifying which pixels represent the plant foliage.

The index of the relevant pixels are used to extract data from the filtered image. It

can be seen in the raw images of Figure 3.4, that the IR850 image has less contrast

and detail when compared to the VIS image. The flow chart for Part 1 can be seen in

Appendix C.2.

Figure 3.6: Diagram of image registration used to align two images of the same subject

Part 2 processes the registered image to allow for automatic extraction of pixels rep-

resenting plant foliage. The flow chart for Part 2 is shown in Figure 3.7. Each step in

the flow chart shows the effect on the image as the program progresses. The program

follows the outline below:

1. imcrop crops the original image to display only the target sample identified in

the cpselect stage.

2. rgb2grey converts the image to a grey scale or intesity image.

3. imadjust increases the contrast of the image by saturating the high and low

intensity levels and remapping everything in between.

4. greythresh normalises the intensity values to a range of 0 to 1.
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Figure 3.7: Image processing flow chart
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5. im2bw converts the grey scale image to a binary image. Each pixel is assigned

a 1 or 0 depending on if it is greater than or less than the threshold level. The

output is a black and white image.

6. bwareaopen removes components of the binary image that have fewer than 50

connected pixels.

7. find(bw==1) records the index values of the pixels belonging to the plant foliage

or where the pixels are black (equal to 1).

8. mapping of the recorded index values to the registered image is then performed.

The index values are then confirmed to the user by displaying the original image

with the relevent pixels blacked out. This also helps to keep track of which sample

the analysis is up to.

Part 3 calculates the reflectance of the plant foliage. The flow chart is shown in Ap-

pendix C.3.



Chapter 4

Data Collection for Validation

4.1 Experiment objectives

The data required for this project was obtained through a fieldwork programme de-

signed to control the growing conditions of the sample plants. This included controlled

potting media discussed in Section 4.8, irrigation (Section 4.9) and exposure to the ele-

ments (excluding rain). The aim of the experiment was to obtain weather, soil moisture

and plant visual response data for all samples on a daily basis. The objective of the

experiment was to: (i) test and identify any parameters (visual response and weather

data) which are sensitive to changes in SMC, (ii) develop a SMC estimation model and

(iii) identify conditions that visual response could be used to estimate SMC.

4.2 Experiment Location

The experiment was carried out in Bendigo, Victoria. The geographical location is

36.75◦ South 144.26◦ East with altitude of 208 meters above sea level. The experiment

was conducted in a private residential yard. The area had adequate space for exposure

to wind and solar radiation. A weather station was placed at the site of the experiment

to record local weather data. The specifications of the weather station are listed in 4.3.
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4.3 Weather Station

The Davis Vantage Pro2 weather station was used to monitor and record air temper-

ature, wind speed, relative humidity and global solar radiation (via additional sensor).

The weather station has an on-board data logger and is powered by battery and solar

panel. A wireless link to an indoor console provides connection to a laptop computer,

via a USB cable. Data was accessed through WeatherLink software version 6.0.3. Data

was recorded at 30 minute intervals for the duration of the experiment and was manu-

ally downloaded from the weather station as required.

4.4 Soil Moisture Measurement

4.4.1 Vegetronix Soil Moisture Meter

The Vegetronix (VG-Meter-200) soil moisture meter was chosen as an instrument to

take point readings from each of the samples in the experiment. This is a capacitive

type sensor with a 100mm sensor probe. The probe was set to measure at a depth of

65mm, at root zone of the seedlings. This sensor has the capability to stream data

through a serial connection to a computer; however, this option was not used as there

were 36 samples to be monitored. Instead each sample was tested individually on a

daily basis.

A capacitive sensor measures the dielectric permittivity of the surrounding soil and

can be correlated to VWC. There are some influencing factors which can affect the

readings, these were listed by Prichard (n.d) as:

• Water content

• Soil temperature

• Soil porosity and bulk density

• Measurement Frequency

• Air Gaps in the sample soil
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The volume of soil per pot is 805 cm3. The relatively small sample size means there will

be some disturbance to the soil as multiple reading are taken. Each time a measurement

is made the probe will be inserted into the soil sample, which may affect the soil

properties listed above. To ensure the soil moisture content readings are accurate, a

gravimetric calculation will be conducted alongside the capacitive sensor. .

4.4.2 Gravimetric Measurement

A direct measurement of the soil moisture content of each sample was conducted to

verify the measurements obtained from the capacitive sensor. The equipment required

to perform direct measurement was an oven, thermometer, oven proof tins, scales with

accuracy of 0.01g and a volumetric sampler. Equation 4.1 determines gravimetric water

content as stated by White (n.d) in BCG Soil Test Interpretation: Workshop Notes.

GWC% =

(
wetweight(g)− dryweight(g)

dryweight(g)

)
× 100 (4.1)

An additional SMC measurement was estimated using the gravimetric method. Each

sample pot was irrigated with a measured quantity of water, refer to Section 4.9 for

details. Using Equation 4.1 and 4.2 the starting VWC is known. With a pot depth of

10 cm, the VWC(C) in percentage is equal to VWC(C) in mm of water. This value

can be reduced daily by the calculated ET (Section 4.5). The VWC(ET) is based on

the full depth of the pot, compared to the capacitive probe VWC(C) measurement at

a depth of 65mm.

4.4.3 Volumetric Measurement

To convert Gravimetric soil moisture measurements to volumetric Equation 4.2 used

by White (n.d).

VWC% = GWC%×BulkDensity(g/cm3) (4.2)

The baulk density of the two soil samples were calculated by taking a volumetric sample
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Table 4.1: Sand and Loam Bulk Densities

Soil Type Weight Calculation Baulk Density

(g/10cm3) (g/cm3)

Loam 8.53 8.53
10 0.853

Sand 12.75 12.75
10 1.275

(10 cm3) while maintaining the compactness of the soil. Weighing the sample and

adjusting to the units of g/cm3. The results of the two soil samples are listed in Table

4.1.

4.5 Evapotranspiration (ET)

Evapotranspiration describes the combined loss of water through evaporation and plant

transpiration. The Davis weather station discussed in Section 4.3 has a built in ET

calculation. There are different methods to calculate ET, the Davis weather station

utilises the Californian Irrigation Management Information System CIMIS method and

uses default un-calibrated atmospheric pressure in the calculation.

The Bureau of Meteorology (BOM) provides access to weather data including ET. The

Penman-Monteith equation is use for the BOM calculation and is recommended by the

United Nations Food and Agriculture Organisation. The Penman-Monteith equation

will be used for this project, with the daily ET being re-calculated from the weather

station data. A comparison of the weather station ET calculation and the Penman-

Monteith equation was made to determine if there were any significant differences.

The data for a 24 hour period on 15th July 2014 (midnight to midnight) was used

to calculate ET with the Penman-Monteith equation. The geographical location and

elevation discussed in Section 4.2. Minimum and Maximum values of temperature,

wind speed, relative humidity, atmospheric pressure and global solar radiation where

obtained for that period. The ET values were then calculated using a MATLAB R©

function shown in Appendix D.1 and the Microsoft R© Excel spread sheet created by

Allen (2003). The Penman-Monteith Equation is shown in Equation 4.3.
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ETo =
0.408∆(Rn −G) + γ 900

T+273U2(es − ea)

∆ + γ(1 + 0.34U2)
(4.3)

where:

ETo reference evapotranspiration [mm day−1]

Rn net radiation at crop surface [MJ m−2 day−1]

G soil heat flux density [MJ m−2 day−1]

T mean daily air temperature [◦C]

U2 wind speed at 2 meter height [m s−1]

es saturation vapour pressure [kPa]

ea actual vapour pressure [kPa]

(es − ea) saturation vapour pressure deficit [kPa]

D slope vapour pressure curve [kPa ◦C−1]

g psychrometric constant [kPa ◦C−1]

The ETo for 15th July 2014 calculated with the Penman-monteith equation and the

weather station calculation was 0.5 mm day−1 and 0.2 mm day−1 respectively. This

verifies there is no significant difference between the two calculation methods. This con-

clusion was also reached by Bacci, Battista, Cardarelli, Carmassi, Rouphael, Incrocci,

Malorgio, Pardossi, Rapi and Colla (2011).

The crop factor Kc is a ratio to adjust the ET from the reference crop of 20cm high

well maintained grass cover, to the actual crop. British Columbia (2001) uses Equation

4.4 as an estimate for crops with an unknown Kc value.

Kc =
Wp

Wb
(4.4)

Where:

Wp Plant Width [cm]

Wb Bed Spacing [cm]

The layout of the experiment has provided an air gap around the pots, which has

increased circulation and provided more weight to the wind speed and temperature in

the ET calculation. The plant width and bed width ration is close to 1. The crop

factor has not been applied to the ET calculation to account for the increased effect of
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the pot drying out quicker.

4.6 Experiment Layout

The experiment had a layout as shown in Figure 4.1. Each sample in the experiment

will be referenced by its location in the layout. A letter and number describes the row

and column respectively. Using C5 as an example, this refers to replica number 1 of

lettuce grown in loam with an irrigation level of 20%. Each sample is contained in a

pot with a diameter of 10cm and samples are spaced 10cm apart.

Figure 4.1: Experiment Layout
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4.7 Plant Samples

The plants studied in this project were:

• Chamomile - Botanical Name Chamaemelum nobile,

• Lettuce - Botanical Name Lactuca sativa L, and

• Lucerne - Variety Sardi Seven (Winter Active).

The lettuce and lucerne were grown from seed and the chamomile was purchase as a

100mm plot. The data used for the experiment was collected throughout July and

August. At the experiment location, July was typical Victorian winter weather with

a temperature average of 8◦C. During this time all plant samples were slow growing

and the SMC of the pots took up to 20 days to dry out enough to require irrigation.

As August approached there was an increase in the average temperature and sunlight

hours. In this time plant growth across all samples increased.

4.8 Sample Preparation

The plants discussed in Section 4.7 were potted in a controlled way to ensure uniform

samples. Each soil type was mixed in one batch before it was divided into samples

pots. The makeup of the soil types consisted of a base mix with the addition of 30%

sand for the loam mix, and 70% sand for the sand mix. Table 4.2 lists the quantities

of the soil mixture.

Soil Mixture

Base Mix 75% 25%

general purpose potting mix 50% compost 50% cow manure

Loam 70% 30%

Base Mix washed sand

Sand 70% 30%

washed sand base mix

Table 4.2: Soil Mixture
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Figure 4.2: Soil Samples a) Loam b) Sand

Source: (Watson, Paul. 2014)

A side profile of both soil samples are shown in Figure 4.2. The samples were added to

a glass jar of water and shaken, then allowed to settle for 24 hours. It can be seen that

the sand mix (Figure 4.2b) had predominantly sand and a higher bulk density than the

loam. The loam shows some air gaps even after settling time. The pots used in the

experiment were recycled and made of black plastic with dimensions of 10cm in height

by 10cm in diameter. The pots were sterilised before being filled with 850ml of soil.
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4.9 Irrigation

The irrigation frequency for this experiment varied from 12 to 14 days in July down to

7 days during August, this was due to the rate at which water has been used. During

July, the initial phase of the experiment used water at a slower rate than in August.

This is due to plant growth and the transition from a Victorian winter towards spring.

The irrigation frequency and amount of water is shown in Figure 4.3.

Figure 4.3: VWC of the three irrigation levels (20%, 30% and 40%) used in the experiment

Three irrigation levels were included in the experiment. Samples were irrigated at

High, Medium and Low levels with 350mls (40%), 250mls (30%) and 150mls (20%)

respectively of water added. The 40% irrigated samples were watered over a container

to catch any run off or water which had drained through the first time. This water

was returned to the pot until the soil had absorbed all the water. The medium and

low irrigated samples both absorbed the water first time. Each irrigation included a

general purpose plant food at a rate specified by the manufacture. This helped to keep

the plant healthy and avoid nutrient deficiency.
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Soil Moisture Estimation Model

5.1 Model Development

Data analysis was performed by multiple linear regression using the regression tool from

Microsoft R© Excel’s Data Analysis tool box. Multiple linear regression is a method which

can model the relationship between a number of explanatory variables (independent

variables) and the response variable (dependent variable). The output of the process is

an Analysis of Variance (ANOVA) table. The table includes the prediction value (P) or

the probability of the null hypothesis being true, and the coefficient of determination,

or adjusted r2 value which is a guide to the fitness of the model to the data. The r2

ranges from 0 to 1, where 1 indicates a models good fit to the data. The ANOVA table

also provides the regression coefficient for the intercept and each independent variable.

The general form of the multiple linear regression model is shown in Equation 5.2.

yi = β0 + β1x1 + βnxn (5.1)
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where:

yi Dependent variable

β0 Regression coefficent of intercpt

βn Regresion Coefficient of independent variable

n nth independent variable

xn value of nth independent variable

The objective of the data analysis is to create a model which can predict the SMC from

the visual response of a plant canopy. There are two parts to the data analysis:

1. Identify parameters which have a significant relationship to plant visual response,

and

2. Identify model coefficients and intercepts.

5.1.1 Identify Parameters with a Significant Relationship to Plant

Visual Response

A parameter will be classed as having a significant relationship when the adjusted

r2 value for the ANOVA output is greater than 0.6. The hypothesis is that there is

no significant correlation between the plant spectral response and any of the chosen

independent variables listed in Table 5.1. The null hypothesis H0 is that there is

no significance between the dependent and independent variables. The alternative

hypothesis Ha is that there is a significance between the two variables.

To quantify this statement the selection criteria will use a significance level of α = 0.05,

the hypothesis are listed in Equation 5.3:

H0 : βn = 0 (5.2)

Ha : βn 6= 0

The coefficient of the independent variable is βn. The criteria for rejecting the null

hypothesis is when the P-value < α.
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Dependent Variable

Spectral Response Estimated from digital images

includes NDVI, IR850 and Chl a/b

Independent Variable

Volumetric Water Content (VWCC) Measured with capacitive probe [%]

Volumetric Water Content (VWCET ) Estimated from irrigation water and ET [%]

Days Since Irrigated (D) Irrigated days = 0

Temperature (T) Daily Average temperature [◦C]

Relative Humidity (RH) Daily Average Relative Humidity [%]

Wind (W) Daily Average wind speed [km/hr]

Table 5.1: Variables used in analysis

The outcome of this test decides which independent variables will be suitable for the

model and therefore used in the next part of the analysis. This analysis will also

identify which SMC value has the most significant relationship to plant response. Both

VWC(C) and VWC(ET) have been compared during this analysis.

5.1.2 Identify model coefficients and intercepts.

The second test will identify the model coefficients and intercepts using the parameters

identified in Section 5.1.1. In this analysis the most significant SMC value will be

the dependent variable. The other parameters identified in Section 5.1.1 will be the

independent variables.

The hypothesis for this analysis is that there is no significant regression coefficient for

the model parameters. The same significance level and criteria for rejecting the null

hypothesis will be the same as in Section 5.1.1.

5.1.3 Defining Data for Model Calibration and Verification

The data for the experiment was collected from 24th July 2014 to the 7th September

2014. During July all plant samples were slow growing and there was 12 days between

irrigation. August saw an increase in the average daily temperature by 1.2◦C. Bright
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sunshine hours (above 100 Wm−1) for July and August were 180 and 230 hours respec-

tively. The increase in temperature and bright sunshine hours saw the plant samples

increase their growth rate and water use. There were 7 days between irrigation during

August. With the change in conditions and plant stages occuring mid way through the

project, the data was divided into three groups and analysed separately. This allowed

for seasonal changes to be modelled. The data is categorised as follows:

1. July Data - 14th July to 3rd August

2. August Data - 4th August to 24th August

3. Verification Data - 25th August to 7th September

5.2 Chamomile Model

Identifying Parameters Significant to Plant IR850 Response.

Table 5.2 shows the coefficient of determination (r2) for chamomile response to the

IR850 filter and the variables listed in Table 5.1. An X indicates there was no correla-

tion. Where the r2 value is greater than 0.6, the relevant variables will be used in the

next test, to determine regression coefficients and model intercepts.

The results for chamomile show a general relationship between spectral response in

IR850 to independent variables across both soil types and all irrigation levels. There

are two exceptions in the sand samples of the August data which did not show a

correlation.
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Table 5.2: Coefficient of determination (r2) for chamomile response to the IR850 filter and

the independent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam 0.65 0.66 0.64 0.6 0.69 0.79

Sand 0.79 0.62 0.64 0.67 0.73 0.91

August Data
Loam 0.71 0.75 0.78 0.88 0.83 0.77

Sand 0.75 X X 0.75 0.75 0.82

Table 5.3 shows the coefficient of determination (r2) for chamomile response to the

Chl(a/b) ratio and the variables listed in Table 5.1. There is only the one signifi-

cant relationship in sand irrigated at 40%, all other values are below 0.6 or have no

correllation at all.

Table 5.3: Coefficient of determination (r2) for chamomile response to the Chl(a/b) ratio

and the independent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam X X X X X X

Sand 0.27 X X 0.39 X 0.37

August Data
Loam X X X X X X

Sand 0.67 0.3 0.4 0.34 0.34 X

Table 5.4 shows the coefficient of determination (r2) for chamomile response to NDVI

and the variables listed in Table 5.1. The results show inconsistant r2 values as there

are no replicas showing similar values.
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Table 5.4: Coefficient of determination (r2) for chamomile response to NDVI and the

independent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam 0.84 0.39 X X X X

Sand X X 0.9 X X X

August Data
Loam 0.36 0.83 X X X X

Sand 0.68 X X X X 0.71

Identifying model coefficients and intercepts.

Table 5.5 shows the regression coefficients for the chamomile IR850 July data. The

intercepts across all samples were consistent and each pair of replicas had values within

4% of each other. The value of the intercept coefficient decreased for each decrease

in irrigation level. The IR850 coefficients were negative across all samples of soil type

and irrigation levels. The IR850 coefficients ranged from -13.8 to -20.28. The negative

relationship means when there is an increased reflection in the IR850 data, the SMC

will fall. The independent variable Days since irrigated (D) was included in all sample

models. The D coefficients were also negative, meaning as the number of days increased

without irrigation, the SMC dropped. Relative humidity (RH) was included in four

of the 12 samples. The RH coefficient was -0.02 for each model. Temperature (T)

was included in sand at 22% irrigation level, with a coefficient of 0.038. The IR850

coefficients were the most significant variable in each of the sample models, followed by

D coefficients.
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Table 5.5: Chamomile IR850 July model coefficients and intercepts

14th July to 3rd August

Soil Irrigation Replica Intercept IR850 D T RH W r2(C)

Loam

40%
1 49.36 -18.25 -0.87 -0.02 0.99

2 47.35 -16.45 -0.848 0.99

30%
1 34.01 -13.8 0.05 0.99

2 34.76 -16.42 -0.87 0.99

20%
1 22.28 -16.4 -0.85 0.99

2 21.95 -14.76 -0.84 0.99

Sand

40%
1 44.12 -15.48 -0.84 -0.02 0.99

2 42.29 -17.98 -0.86 0.99

30%
1 31.84 -19.78 -0.89 0.99

2 33.84 -20.28 -0.91 -0.02 0.96

20%
1 20.09 -15.14 -0.86 0.99

2 21.34 -14.41 -0.87 0.038 -0.02 0.99

Table 5.6 shows the performance of the chamomile IR850 August model. The intercept

regression coefficient were similar between replicas for the samples grown in loam.

The samples in loam at 30% irrigation had an intercept coefficients of -2.04 and 3.41,

which is not consistent with coefficients at 40% and 20% which were 30.48 and 44.51

respectively. The IR850 coefficients were similar between replicas, all were within 7% of

their counterpart. The IR850 coefficients for samples in Loam with 30% irrigation were

at 212.34 and 197.91 respectively. As the irrigation reduced to 20% the relationship

changed from positive to negative. The positive relationship is expected for healthy

vegetation as this indicates IR wavelengths are being reflected from the foliage. The

20% irrigated samples have reflection coefficients of -182.99 and -192.10, which indicates

the relationship between 850nm wavelengths and SMC changes with water deficient

chamomile. The r2(C) values for the Loam samples were all greater than 0.91.

There were two samples with sand that did not have any correlation to SMC, these

were replica 2 from the 40% and replica 1 from the 30% irrigation level. The intercept

coefficients for the sand samples range between 0.44 and 71.52 and there is a large

variation between replicas. The IR850 coefficients for the sand are also inconsistent with

their replica counterpart. The D coefficients are consistent with each other ranging from
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-1.0 to -1.46. The r2(C) values ranged from 0.8 to 0.99 which supports the variation in

the model coefficients between replicas.

Table 5.6: Chamomile IR850 August model coefficients and intercepts.

4th August to 24th August

Soil Irrigation Replica Intercept IR850 D T RH W r2(C)

Loam

40%
1 30.48 90.45 -1.13 0.97

2 31.21 83.70 -1.13 0.97

30%
1 -2.04 212.34 -1.07 0.91

2 3.41 197.91 -1.03 0.96

20%
1 44.51 -182.99 -1.12 0.71 0.97

2 48.47 -192.10 -1.42 0.94

Sand

40%
1 0.44 225.05 -1.05 0.80

2

30%
1

2 33.84 -20.28 -0.91 -0.02 0.99

20%
1 71.52 -337.67 -1.46 0.94

2 6.80 74.70 -1.0 0.98

5.3 Lettuce Model

Identifying Parameters Significant to Plant IR850 Response

Table 5.7 shows the coefficient of determination (r2) for lettuce response to the IR850

filter and the variables listed in Table 5.1. The Loam July samples show strong r2 values

greater than 0.91. The sand July sample had two exceptions which had no correlation

and a weak r2 of 0.34. These values were for 30% and 40% respectively. The August

data for loam shows a weaker r2 with half of the sample below 0.6 or no correlation.

The sand August r2 values were also weak, ranging from 0.71 to 0.94, with the two 40%

irrigated samples not showing a correlation.

Table 5.8 shows the coefficient of determination (r2) for lettuce response to the Chl(a/b)

ratio and the variables listed in Table 5.1. Only one sample in the July and August
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Table 5.7: Coefficient of determination (r2) for lettuce response to the IR850 filter and the

independent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam 0.91 0.92 0.91 0.92 0.94 0.94

Sand 0.34 0.92 X 0.96 0.95 0.95

August Data
Loam 0.81 X 0.56 0.88 0.75 X

Sand X X 0.94 0.71 0.82 0.71

data show significance. This was sand August sample at 40% irrigation.

Table 5.8: Coefficient of determination (r2) for lettuce response to the Chl(a/b) ratio and

the independent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam 0.23 X 0.4 0.4 X X

Sand X X X X 0.38 X

August Data
Loam 0.56 0.39 X X X 0.51

Sand 0.7 0.44 0.27 0.56 X 0.29

Table 5.12 shows the coefficient of determination (r2) for lettuce response to NDVI and

the variables listed in Table 5.1. The July data had only two significant samples for

40% irrigated in loam. These values were 0.92 and 0.94. In the sand samples there

were four significant samples with an r2 value ranging from 0.62 to .95. The August

data only showed one significant sample for loam and sand. The r2 values were 0.68

and 0.62, these values are only marginally significant.

Identifying model coefficients and intercepts.

Table 5.10 show results of lettuce model performance for IR850 July data. The re-

gression coefficients for the intercepts across all samples were consistent, each pair of

replicas had values within 10% of each other. The value of the intercept coefficient

decreased for each decrease in irrigation level. The IR850 coefficients were negative

across all samples of soil type and irrigation levels. The IR850 coefficients ranged from

-12.2 to -16.01. The D coefficients were consistent across all samples ranging from -0.82
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Table 5.9: Coefficient of determination (r2) for lettuce response to NDVI and the indepen-

dent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam 0.92 0.94 X X X X

Sand 0.95 0.81 0.64 0.36 0.62 0.43

August Data
Loam X 0.68 X X 0.39 0.5

Sand 0.51 X X 0.62 0.58 X

to -0.89. T coefficients were included in the loam sample irrigated to 40% and in sand

samples irrigated at 30% and 20%. RH coefficients were included in 4 out of the 12

Lettuce models. T and RH coefficient values are only small contributors to the model

equations.

Table 5.10: Lettuce IR850 July model coefficients and intercepts

14th July to 3rd August

Soil Irrigation Replica Intercept IR850 D T RH W r2(C)

Loam

40%
1 48.27 -13.28 -0.85 0.044 -0.02 0.99

2 48.53 -13.99 -0.88 0.047 -0.02 0.99

30%
1 34.99 -15.85 -0.88 0.99

2 35.09 -16.01 -0.87 0.99

20%
1 24.44 -14.87 0.89 -0.02 0.99

2 22.70 -14.7 -0.84 0.99

Sand

40%
1 42.05 -14.92 -0.84 0.99

2 42.40 -15.40 -0.88 0.99

30%
1

2 32.20 -12.20 -0.86 0.05 -0.19 0.99

20%
1 22.22 -15.97 -0.87 -0.02 0.99

2 19.84 -13.57 -0.82 0.99

Table 5.11 shows results of the Lettuce models for IR850 August data. There were

three samples which did not show a correlation between SMC and IR850 data, these

are replica 2 of the 40% irrigated in loam and both samples in sand at 40% irrigation.
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The intercept coefficients were inconsistent between replicas across the 12 samples.

There is also inconsistency with variation in irrigation levels. The IR850 coefficients

for the loam are 430.39 for 40% irrigation, 366.02 and 229.98 for 30% irrigation and

-148.2 for the 20% irrigation. In sand the IR850 coefficients are -450.9 and -333.4 for

30% irrigation and 86.3 and -316.8 for 20% irrigation levels. The D coefficients are

consistent across all models ranging from -0.99 to -1.49.

Table 5.11: Lettuce IR850 August model coefficients and intercepts

4th August to 24th August

Soil Irrigation Replica Intercept IR850 D T RH W r2(C)

Loam

40%
1 33.28 430.39 -1.49 0.77

2

30%
1 -29.48 366.02 -1.11 0.99

2 -8.74 229.98 -1.0 0.92

20%
1 51.8 -148.20 -1.37 0.93

2

Sand

40%
1

2

30%
1 112.50 -450.90 -1.24 0.84

2 31.08 -333.40 -1.40 0.87

20%
1 1.48 86.30 -0.99 0.15 0.99

2 72.88 -316.80 -1.60 0.84
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5.4 Lucerne Model

Table 5.12 shows the coefficient of determination (r2) for lucerne response to NDVI and

the variables listed in Table 5.1. The July data for loam and sand have r2 values all

greater than 0.91. The August data has only one significant sample at 0.43, which is

considered as a weak fit.

Table 5.12: Coefficient of determination (r2) for lucerne response to the IR850 filter and

the independent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam 0.93 0.94 0.96 0.93 0.95 0.95

Sand 0.92 0.94 0.92 0.93 0.91 0.94

August Data
Loam X X X X X X

Sand X X 0.43 X X X

Table 5.13 shows the coefficient of determination (r2) for lucerne response to the

Chl(a/b) ratio and the variables listed in Table 5.1. The results show a weak fit for

both July and August data. There is only one marginally significant sample in the

August data.

Table 5.13: Coefficient of determination (r2) for lucerne response to the Chl(a/b) ratio and

the independent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam X X X X X X

Sand X X X X X 0.44

August Data
Loam 0.19 0.67 X X 0.29 0.4

Sand 0.4 0.49 X X X X

Table 5.14 shows the coefficient of determination (r2) for lucerne response to NDVI

and the variables listed in Table 5.1. The July data has r2 values ranging from 0.62

to 0.95. Replica 1 at 40% irrigation for both loam and sand have no correlation in the

July data. The August data is inconsistent with only three significant samples over the
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loam and sand samples.

Table 5.14: Coefficient of determination (r2) for lucerne response to NDVI and the inde-

pendent variables from Table 5.1

Irrigation (VWC) 40% 30% 20%

Replica 1 2 1 2 1 2

July Data
Loam 0.91 X 0.95 0.62 0.82 0.75

Sand X 0.81 0.93 0.94 0.93 0.9

August Data
Loam 0.71 X X X 0.47 0.75

Sand X X 0.69 0.44 0.21 X

The Lucerne IR850 July data results are shown in Table 5.15. Replica 1 of 40% ir-

rigation level in loam had no correlation between the 850nm wavelengths and SMC.

The intercept coefficients are consistent between samples and decrease with reduced

irrigation level. The IR850 coefficient are similar between replicas and are negative for

all models. T coefficients were included in 7 out of the 11 models and range from 0.05

to 0.08. RH coefficients were included in 4 of the models with a value of -0.02 in each

model. T and RH variable have the lowest weight in the prediction models. The r2(C)

values were 0.99 for all models and r2(V) values are greater than 0.98.

Lucerne models for the IR850 August data were not successful, only one correlation

between 850ηm wavelengths and SMC was determined. The r2 value for this model

was 0.59.

Lucerne was the only plant sample which showed a correlation between SMC and the

NDVI. There were two exceptions in the July data where there was no correlation,

these were replica 1 for 40% irrigation level for loam and sand. Table 5.16 shows the

results of the models for the July data. The intercept coefficients are consistent between

replicates and reduce with the reduction in irrigation level. The IR850 coefficients are

negative for all models and consistent between replicates. D coefficients are consistent

between replicas with a range of -0.56 to -0.87. T coefficients were included for all 5

loam models and 4 of the 5 models for the sand. RH coefficients were included in 5 of

the 10 models.
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Table 5.15: Lucerne IR850 July model coefficients and intercepts.

14th July to 3rd August

Soil Irrigation Replica Intercept IR850 D T RH W r2(C)

Loam

40%
1

2 45.90 -8.65 -0.78 0.99

30%
1 37.11 -16.76 -0.92 -0.02 0.99

2 34.89 -14.94 -0.87 0.99

20%
1 23.20 -14.50 -0.84 0.08 -0.02 0.99

2 23.25 -14.55 -0.85 0.06 -0.02 0.99

Sand

40%
1 41.80 -18.32 -0.79 0.06 0.99

2 42.51 -20.35 -0.84 0.05 0.99

30%
1 32.00 -21.36 0.871 0.99

2 32.38 -15.59 -0.87 0.06 0.99

20%
1 21.36 -18.11 -0.84 0.078 -0.02 0.99

2 19.02 -15.65 -0.80 0.07 0.99

Table 5.16: Lucerne NDVI July model coefficients and intercepts.

14th July to 3rd August

Soil Irrigation Replica Intercept IR850 D T RH W r2(C)

Loam

40%
1 46.42 -4.44 -0.87 0.04 -0.02 0.99

2

30%
1 33.85 -3.66 -0.87 0.05 -0.02 0.99

2 31.90 -3.20 -0.83 0.06 0.99

20%
1 19.16 -2.93 -0.80 0.08 0.99

2 19.34 -3.74 -0.83 0.07 0.99

Sand

40%
1

2 39.99 -5.26 -0.84 0.99

30%
1 30.10 -4.22 -0.86 -0.02 0.99

2 30.10 -3.33 -0.56 0.56 -0.02 0.99

20%
1 18.92 -3.40 -0.86 0.05 -0.02 0.99

2 18.54 -3.56 -0.85 0.06 -0.02 0.99
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Table 5.17: Lucerne NDVI August model coefficients and intercepts.

24th August to 24th August

Soil Irrigation Replica Intercept IR850 D T RH W r2(C)

Loam

40%
1 47.05 89.95 -1.80 -2.6 0.57

2

30%
1

2

20%
1

2 41.05 63.32 -2.16 -0.42 0.92

Sand

40%
1

2

30%
1 27.40 7.37 -1.16 0.13 0.98

2 28.86 5.95 -1.17 0.98

20%
1

2



Chapter 6

Performance of Estimation Model

The models derived in Chapter 5 were tested for accuracy with modelling and predict-

ing SMC. The accuracy of the modelling phase was tested by calculating the Root Mean

Square Error (RMSE) of the calibration data RMSE(C). The accuracy of the SMC pre-

diction was tested by calculating the RMSE of the verification data RMSE(V). Equation

6.1 shows the method of calculating RMSE. The sample size of the July, August and

verification data were 11, 21 and 14 observations. The number of observations were

affected by the climatic conditions and the time frame to run the experiment. The

RMSE uses the average error by dividing by the number of observations, which makes

it suitable for comparing blocks of data with a different number of observations.

RMSE =

√∑n
i=1 (yi − y1i)

2

n
(6.1)

where

y Actual value

y1 Predicted value

n Number of samples

i ith sample

Each model was tested for performance by comparing the coefficient of determination

(r2) and the RMSE value between the calibration data and the verification data. The

r2 value provides a general representation of how well the model fits the actual data.

The RMSE value is the actual error expected between the predicted and the actual
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data. The RMSE has the same units as SMC (%). With the range of SMC values of

0 to 50% VWC, an error of 10% would equate to a RMSE value of 5%. A model will

be considered successful when the RMSE(V) is less than 5% for both replicates in the

sample. The samples are described in the format of plant-spectra-irrigation-soil. For

example, chamomile-IR850-40%-loam is describing chamomile response to the IR850

filter with plant sample irrigated to 40% and grown in loam.

6.1 Chamomile Model Performance

July Model

The model performance results for chamomile-IR850 for July are shown in Table 6.1.

The coefficient of determination r2 was greater than 0.96 across all models, indicating

the model fits the calibrated and verification data well. The RMSE values for loam sam-

ples were between 0.11% and 0.16% for RMSE(C) and 3.58% and 6.65% for RMSE(V).

The calibration RMSE values are low which indicates a good match to the data, this

can also be attributed to the number of observations being 11 for the July calibration.

In terms of meeting the acceptance criteria, the successful models were 40% and 20%

irrigation levels. Figure 6.1 shows the actual SMC vs predicted SMC for the chamomile-

IR850-40%-loam, and the actual vs predicted SMC for chamomile-IR850–20%-loam is

show in Figure E.1.

The RMSE values for the sand sample were generally greater than the Loam samples.

The RMSE of between 0.06% and 1.62% was calculated for the calibration data. While

RMSE(V) was calculated between 2.49% and 8.57%. The RMSE(V) values had more

variance between replicates, each pair of replica had one high and one low value. This

indicates the set of models derived for the sand samples were not as successful as the

models used in the loam samples.

August Model

Table 6.2 shows the results for the r2 and RMSE tests on the calibration and verification

data. The r2(C) values for the loam and sand models range from 0.8 to 0.99. The r2(V )

range from 0.28 to 0.99. The RMSE(C) range from 0.12% to 1.77%, indicating the

model fits the calibration data well. The RMSE(V) values range from 1.97 to 4.12%,

which are an acceptable error for estimating SMC.
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Table 6.1: Chamomile-IR850 July model comparison of performance between calibration

(C) and verification (V) data sets.

14th July to 3rd August

Soil Irrigation Replica r2(C) r2(V) RMSE (C) RMSE (V)

Loam

40%
1 0.99 0.99 0.15 3.84

2 0.99 0.99 0.16 3.58

30%
1 0.99 0.99 0.11 6.65

2 0.99 0.99 0.15 6.02

20%
1 0.99 0.99 0.14 3.62

2 0.99 0.98 0.13 4.84

Sand

40%
1 0.99 0.99 0.13 8.57

2 0.99 0.99 0.17 2.77

30%
1 0.99 0.99 0.17 6.37

2 0.96 0.99 1.62 2.73

20%
1 0.99 0.99 0.14 8.18

2 0.99 0.98 0.06 2.49

Figure 6.1: Actual vs predicted SMC for chamomile-IR850-40%-loam July model
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Table 6.2: Chamomile-IR850 August model comparison of performance between calibration

(C) and verification (V) data sets.

4th August to 24th August

Soil Irrigation Replica r2(C) r2(V) RMSE (C) RMSE (V)

Loam

40%
1 0.97 0.79 0.61 1.73

2 0.97 0.87 0.56 1.54

30%
1 0.91 0.32 1.12 2.86

2 0.96 0.47 0.78 2.60

20%
1 0.97 0.84 0.82 2.01

2 0.94 0.79 1.25 2.89

Sand

40%
1 0.80 0.28 0.81 2.39

2

30%
1

2 0.99 0.99 0.12 4.12

20%
1 0.94 0.78 1.77 3.02

2 0.98 0.72 0.41 1.97

Figure 6.2: Actual vs predicted SMC for chamomile-IR850-40%-loam August model
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6.2 Lettuce Model Performance

July Data

Table 6.3 shows the results for the r2 and RMSE tests on the calibration and verifica-

tion data. The r2(C)and r2(V) values are greater than 0.98, indicating a good fit to

the calibration and verification data. The RMSE(C) range between 0.06% and 0.17%

and the RMSE(V) for loam and sand range from 1.9% to 20.6% and 2.47% to 14.6%

respectively. The loam sample at 20% irrigation had a RMSE(V) of 1.9% and 2.56%,

which passes the acceptance criteria. The actual vs predicted SMC for this model is

shown in Figure 6.3. The sand at 20% irrigation had RMSE(V) of 2.47% and 5.52%

which is marginal in terms of acceptance criteria. All other models had a RMSE larger

than 5%, which is not considered acceptable.

Table 6.3: Lettuce-IR850 July model comparison of performance between calibration (C)

and verification (V) data sets.

14th July to 3rd August

Soil Irrigation Replica r2(C) r2(V) RMSE (C) RMSE (V)

Loam

40%
1 0.99 0.99 0.06 20.60

2 0.99 0.99 0.06 13.52

30%
1 0.99 0.99 0.15 7.73

2 0.99 0.99 0.14 7.99

20%
1 0.99 0.99 0.09 2.56

2 0.99 0.99 0.15 1.9

Sand

40%
1 0.99 0.99 0.14 14.60

2 0.99 0.99 0.14 4.40

30%
1

2 0.99 0.98 0.04 6.68

20%
1 0.99 0.98 0.13 2.47

2 0.99 0.99 0.17 5.52
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Figure 6.3: Actual Vs predicted SMC for lettuce-IR850-20%-loam July model

August Data

Table 6.4 shows the r2 and RMSE for calibration and verification data for lettuce

models in August. The r2(C) values range from 0.77 to 0.99 and r2(V) values 0.21 to

0.99. The RMSE(C) are higher than previous models ranging from 0.02 to 4.12. The

RMSE(V) values range from 1.94 to 14.58. The August data shows mixed results in

terms of error, the smallest and largest error were produced in the loam samples of

20% and 40% irrigation levels respectively. At least one replica in each irrigation level

has no model associated to it or the RMSE(V) is greater than 5%. None of the August

models pass the acceptance criteria.
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Table 6.4: Lettuce-IR850 August model comparison of performance between calibration

(C) and verification (V) data sets.

4th August to 24th August

Soil Irrigation Replica r2(C) r2(V) RMSE (C) RMSE (V)

Loam

40%
1 0.77 0.09 4.12 14.58

2

30%
1 0.99 0.99 0.02 7.73

2 0.92 0.21 1.13 2.86

20%
1 0.93 0.85 1.32 1.94

2

Sand

40%
1

2

30%
1 0.84 0.73 2.86 5.58

2 0.87 0.66 2.37 3.82

20%
1 0.99 0.72 0.26 2.39

2 0.84 0.37 2.27 5.28

6.3 Lucerne Model Performance

6.3.1 Lucerne IR850

July Data

Table 6.5 shows the r2 and RMSE for calibration and verification data for lucerne

models in July. The RMSE(C) values ranged from 0.04 to 0.14, indicating the models

are a good fit to the calibration data. The RMSE(V) values ranged from 5.04% to

18.89% for the loam models and 2.04% to 15.40% for the sand models. The replicates

associated with the sand samples at 30% irrigation passed the acceptance criteria with

RMSE values of 2.7% and 2.04%. Figure 6.4 shows the actual vs predicted SMC for

both replicates at 30% irrigation level. The predicted values are overestimated for SMC

values under 28% VWC.
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Table 6.5: Lucerne-IR850 July model comparison of performance between calibration (C)

and verification (V) data sets.

14th July to 3rd August

Soil Irrigation Replica r2(C) r2(V) RMSE (C) RMSE (V)

Loam

40%
1

2 0.99 0.99 0.05 18.89

30%
1 0.99 0.99 0.11 9.59

2 0.99 0.99 0.14 4.18

20%
1 0.99 0.99 0.06 5.04

2 0.99 0.99 0.05 8.17

Sand

40%
1 0.99 0.98 0.11 6.80

2 0.99 0.98 0.12 9.80

30%
1 0.99 0.98 0.13 2.70

2 0.99 0.99 0.04 2.04

20%
1 0.99 0.98 0.07 7.85

2 0.99 0.99 0.11 15.40

August Data

Lucerne models for the IR850 August data were not successful, as only one model was

derived for replica 1 of the sand sample at 30% irrigation. The RMSE(V) value for this

model was 12.70%. Which is above the acceptance criteria.

6.3.2 Lucerne NDVI

July Data

Table 6.6 shows the r2 and RMSE for calibration and verification data for lucerne-NDVI

models in July. The r2(C) values are 0.99 for all models and the r2(V) values range from

1.49% to 12.02%. The sample models for sand at 30% irrigation have RMSE(V) values

of 1.49% and 1.59%, which pass the acceptance criteria and is suitable for estimating

the SMC. The actual vs predicted SMC for this model are shown in Figure 6.5, this

model shows a close representation of the actual SMC.
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Figure 6.4: Actual Vs predicted SMC for lucerne-IR850-30%-sand July model

Figure 6.5: Actual Vs predicted SMC for lucerne-NDVI-30%-sand July model
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Table 6.6: Lucerne NDVI July model comparison of performance between calibration (C)

and verification (V) data sets.

14th July to 3rd August

Soil Irrigation Replica r2(C) r2(V) RMSE (C) RMSE (V)

Loam

40%
1 0.99 0.89 0.05 12.02

2

30%
1 0.99 0.91 0.04 8.74

2 0.99 0.92 0.10 3.58

20%
1 0.99 0.91 0.12 5.99

2 0.99 0.91 0.10 9.30

Sand

40%
1

2 0.99 0.92 0.17 8.3

30%
1 0.99 0.91 0.05 1.49

2 0.99 0.91 0.04 1.59

20%
1 0.99 0.98 0.05 8.68

2 0.99 0.91 0.06 15.87

August data

Table 6.7 shows the r2 and RMSE for calibration and verification data for lucerne NDVI

models in August. Only 4 out of the 12 samples had models. The loam has models

for 40% and 20% irrigation levels. These models have a high RMSE(V) of 26.10% and

16.7% respectively. The sand models for both replicates at 30% irrigation produced a

similar RMSE(V) of 1.80% and 1.39%. This error value passes the acceptance criteria.

The actual vs predicted values for the 30% model is shown in Figure 6.6.
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Table 6.7: Lucerne NDVI August model comparison of performance between calibration

(C) and verification (V) data sets.

24th August to 24th August

Soil Irrigation Replica r2(C) r2(V) RMSE (C) RMSE (V)

Loam

40%
1 0.57 0.05 3.55 26.10

2

30%
1

2

20%
1

2 0.92 0.01 1.91 16.70

Sand

40%
1

2

30%
1 0.98 0.89 0.43 1.80

2 0.98 0.89 0.50 1.39

20%
1

2

Figure 6.6: Actual Vs predicted SMC for lucerne-NDVI-30%-sand August model



6.4 Estimation Model Summary 64

6.4 Estimation Model Summary

The changes in spectral response (IR850) with SMC for chamomile plants was success-

fully modelled for 4 conditions of the exeriment. The models which were considered

successful (refer Chapter 6) are listed in Table 6.8, in order from the smallest to largest

Root Mean Squared Error (RMSE). The models were able to consistently predict SMC

for loam at all irrigation levels for the month of August. Only one July model was

produced for loam at an irrigation level of 20%. There were no estimation models

produced for chamomile grown in sand, NDVI or Chl(a/b) ratio.

Table 6.8: Chamomile estimation models

Spectrum Irrigation Soil Month RMSE (Replica 1/2)

IR850 40% Loam August 1.73/1.54

IR850 20% Loam August 2.01/2.89

IR850 30% Loam August 2.86/2.6

IR850 20% Loam July 3.62/4.48

The changes in spectral response with SMC for lettuce was successfully modelled for

samples grown in loam at irrigation level of 20% in July. This was the only successful

model for lettuce. There were 6 models which had an RMSE value less than 5%;

however, the replica counterpart did not pass the acceptance criteria.

The changes in spectral response with SMC for lucerne was successfully modelled for

IR850 and NDVI plant response. Table 6.9 lists the successful models in order from

smallest to largest RMSE. All successful models were irrigated at 30% and grown in

sand. The NDVI response produced models for both July and August data and ranked

higher than IR850 in terms of RMSE.

Table 6.9: Lucerne estimation models

Spectrum Irrigation Soil Month RMSE (Replica 1/2)

NDVI 30% Sand August 1.8/1.39

NDVI 30% Sand July 1.59/1.49

IR850 30% Sand July 2.7/2.04



Chapter 7

Conclusions and Further Work

7.1 Achievement of Project Objectives

The following objectives have been addressed:

• Review visual plant and soil responses to soil moisture content.

A review of previous research on visual and soil response has been presented in

Chapter 2. This also includes a summary of plant physiology which helps explain

the plant response to its environment.

• Review camera/sensor technology and image analysis techniques for

capturing and automatically analysing visual plant responses to soil

moisture.

A summary was presented in Section 2.2, of traditional and new methods of SMC

estimation and measurement. Chapter 3 - Proposed Estimation System, describes

the equipment including camera and SMC sensors which were used as a result of

a thorough review.

• Design a method of obtaining accurate data of plant response to vary-

ing levels of soil moisture content.

A fieldwork experiment was designed and implemented to successfully obtain ac-

curate data used to calibrate estimation models. Chapter 4 describes the data

collected which included weather, soil moisture and images. A high accuracy was

achieved by selecting the most appropriate equipment for the intended purpose.
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• Collect plant image data at varying levels of soil moisture content using

candidate camera system/s.

Chapter 4. Plant images were taken routinely each day. The SMC content was

varied in a controlled way though daily monitoring and controlled irrigation. This

provided a periodic cycle of irrigation events and dry days, which would be similar

to field conditions.

• Analyse data to extract plant features that indicate soil water status.

Chapter 5 describes the processing and analysis of raw data using MATLAB R©

and Microsft R© Excel. Spectral reflectance information was extracted from the

raw plant images, which allowed estimation models to be created.

• Evaluate algorithm performance on soil moisture content estimation.

The estimation models were evaluated as described in Chapter 6, by testing

against data reserved for validation. The Root Mean Square Error RMSE of

the results were calculated and compared to the selected acceptance criteria of

5% error. There were nine samples out of the 36 which had a RMSE value of less

than 5% for both sample replicates.

• Adapt and refine algorithm to estimate soil moisture for other plant

types.

The plant samples of chamomile and lettuce were chosen based on findings from

the literature review in Chapter 2. The experiment was extended to include

lucerne, as it is a commonly irrigated crop at the experiment location in cen-

tral Victoria. Three lucerne models were created for IR850 and NDVI spectral

response, all of the RMSE values were below 2.7%.
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7.2 Further Work

This project has identified some conditions were the plant spectral response can be

used to estimate the SMC. The fieldwork was designed to control the plant growing

conditions in order to focus the research on SMC. The successful models will need

further development before they can be applied in a real application. The effect of

plant nutrition and disease on the spectral response should be researched, as this may

introduce errors into the SMC estimation.

The plant samples used in this project where grown in 100mm pots and the SMC was

measured with a capacitive probe each day, by manually inserting the probe and taking

readings. Further research should be conducted in the field with in situ moisture sensors

logging SMC data continuously. This will provide data based on true field conditions.

Plant chlorophyll (a/b) spectral response did not produce any successful estimation

models in this project. Futher research could be done by varying the wavelengths of

this ratio for each plant type, which may produce estimation models.

The data obtained during this experiment was categorised into July and August, the

July data corresponded to cooler weather and plants at the seedling stage of their life

cycle. As a result of dividing the data by two, the number of observations in each

category were reduced. It is recommended to include more observations at the seedling

stage of the plant life cycle, which would further improve the estimation model and

allow for verification data to be reserved within the same category.
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Appendix B

Image Registration Listing

Listing B.1: Image Registration Code.

% Fi l e Name: ImageReg
% Author : Paul Watson − Student Number 0050070606
% Date : October 2014
% Course : ENG4111 Research Pro jec t 2014
% Unive r s i t y o f Southern Queensland
%
% Program Descr ip t i on :
% ImageReg take s two separa t e images ( s tandard v i s u a l
% and f i l t e r e d image ) o f the 36 p l an t sample and a l i g n s
% them to g e t h e r . Once the v i s u a l has been a l i gn ed
% ( r e g i s t e r e d to the f i l t e r e d image ) . Each p l an t sample
% can be s e l e c t e d i n d i v i d u a l l y and processed to f i nd the
% average r e f l e c t a n c e . The r e s u l t s are s t o r ed in a
% f i l e Albedo IR850 .
%
% Program Steps
% 1) Image r e g i s t r a t i o n .
% 2) Disp lay ove r l ay o f both images to check r e g i s t r a t i o n .
% 3) S e l e c t r e f e r ence o f ColourChecker and d i s p l a y
% re f e r ence on the image to check placement .
% 4) S e l e c t the sample to be processed , then r e f l e c t a n c e va lue i s
% ca l c u l a t e d and saved . The l a s t s t ep i s repea ted 36 t imes .
%
% Input Parameters :
% Parameter 1 : VIS , JPG v i s u a l image o f samples , used f o r image
% r e g i s t r a t i o n .
% Parameter 2 : IR , JPG f i l t e r e d image o f sample , used to
% c a l c u l a t e r e f l e c t a n c e va l u e s o f samples .
%
% Return Value :
% Returned Variab le : Albedo IR850 .mat , t a b l e o f r e s u l t s
% ( type doub le )
%

%% Clear & c l o s e a l l
c l c
c l e a r a l l
c l o s e a l l

%Add path to image l o c a t i o n i f r e qu i r ed .
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% addpath . . .
% ( ’C:\ Users\Paul\Documents\USQ\ENG4111 Research\Data\Raw\ Images ’ ) ;

%% Read in image pa i r .
% Import v i s u a l and f i l t e r e d image .
% Se l e c t 4 r e f e r ence po in t s in each image .
% Close window when complete .

IR = imread ( ’ 20140913 IR850 .JPG ’ ) ;
VIS = imread ( ’ 20140913 VIS .JPG ’ ) ;
VIS = rgb2gray ( VIS ) ;
[ i nput po in t s , b a s e p o i n t s ] = c p s e l e c t (VIS , IR , ’ Wait ’ , t rue ) ;

%% Perform image t rans format ion
% Show f i l t e r e d image wi th r e g i s t e r e d image ove r l ay .

mytform = cp2tform ( input po in t s , base po int s , ’ p r o j e c t i v e ’ ) ;
r e g i s t e r e d = imtransform (VIS , mytform ) ;

%cor r e c t missa l ighnment
tform = cp2tform ( input po in t s , base po int s , ’ p r o j e c t i v e ’ ) ;

r e g i s t e r e d 1 = imtransform (VIS , tform , . . .
’ F i l l V a l u e s ’ , 2 5 5 , . . .
’XData ’ , [ 1 s i z e ( IR , 2 ) ] , . . .
’YData ’ , [ 1 s i z e ( IR , 1 ) ] ) ;

f i g u r e ;
imshow ( r e g i s t e r e d 1 )
hold on
h = imshow ( IR , gray ( 2 5 6 ) ) ;
s e t (h , ’ AlphaData ’ , −0.5) ;
c l e a r v a r s RegVis ;
RegVis = r e g i s t e r e d 1 ;
save RegVis ;

%% Se l e c t r e f e r ence area and check a l ignment
% Steps
% 1) S e l e c t r e f e r ence patch from the co lourChecker by
% c l i c k and dragg ing the curser .
% 2) Right c l i c k and s e l e c t copy po s i t i o n .
% 3) Close Window
% 4) An image i s shown with the s e l e c t e d area h i g h l i g h t e d .

% S ta r t s e l e c t i o n t o o l to nominate r e f e r ence patch .
[ cropRef ] = dim ( RegVis ) ;
Known Ref = imcrop ( IR , cropRef ) ;
Known Ref = rgb2gray ( Known Ref ) ;

% f ind i n t e n s i t y va l u e s at r e l e v e n t p i x e l s f o r known re f e r ence
r e f r e f l = mean2( Known Ref ) ;

% check a l ignment o f s e l e c t e d area
tempIR = IR ;
tempIR ( cropRef (2 ) : cropRef (2 ) + cropRef (4 ) , cropRef (1 ) : . . .

cropRef (1 ) + cropRef ( 3 ) ) = 0 ;

imshow ( tempIR ) ;

%% s e l e c t each sample area 1 to 36
% process each sample i n d i v i d u a l l y and save the
% r e f l e c t a n c e va lue to f i l e
%
% Steps
% 1) S e l e c t sample by c l i c k and dragg ing the cursor .
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% 2) Right C l i c k and s e l e c t copy po s i t i o n .
% 3) Close window .
% 4) Repeat f o r 36 samples .
% 5) Af ter 36 samples c l o s e the f i n a l window .
%
% Returned Variab le : Albedo IR850 .mat , t a b l e o f r e s u l t s
% ( type−doub le )

load Albedo IR850 . mat ;
load RegVis . mat ;

f o r sample = 1 : 3 6 ;

[ cropSample ] = dim ( RegVis ) ;

A1 = imcrop ( RegVis , cropSample ) ;

A1 = imadjust (A1 ) ;

l e v e l = graythresh (A1 ) ;
bw = im2bw(A1 , l e v e l ) ;

bw = bwareaopen (bw, 5 0 ) ;

% f ind b l a c k p i x e l and work out p o s i t i o n in IR image
[ x , y ] = f i n d (bw==1);
x = x + cropSample ( 1 , 2 ) ;
y = y + cropSample ( 1 , 1 ) ;

IR gray = rgb2gray ( IR ) ;

%check i f p i x e l s a l i g n wi th RegVis
p ixe lVa lue = [ ] ;
f o r f = 1 : s i z e (x , 1 ) ;

x1 = x ( f ) ;
y1 = y ( f ) ;
p ixe lVa lue ( f ) = IR gray ( x ( f ) , y ( f ) ) ;
RegVis ( x1 , y1 ) = 0 ;

end
% Update s e l e c t e d samples
f i g u r e ; imshow ( RegVis ) ;

% Ca lcu l a t e r e f e r ence and sample r e f l e c t a n c e
IR max = max( p ixe lVa lue ) ;
IR min = min ( p ixe lVa lue ) ;
IR mean = mean2( p ixe lVa lue ) ;
IR sum = sum( p ixe lVa lue ) ;

% Find mean re f e r ence i n t e n s i t y
Albedo re f = ( IR mean/ r e f r e f l ) ;

% Find the a b s o l u t e i n t e n s i t y
Albedo abs = (0 .18∗ Albedo re f ) ;

% save r e s u l t s
Albedo IR850 (53 , sample ) = Albedo abs ;

end

save Albedo IR850 ;
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Image Analysis Flow Chart
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Figure C.1: ColourWorker image processing flow chart



79

Start

Stored
Images

Image
Registration

Select Image 
Registration 

Points

Image 
Registration 
Successful?

Import VIS 
and IR850 

Images

Calculate Reference Point 
Albedo

Select Reference 
Point

Reference Point
Selection 

Successful? 

Reference Point
Selection 

Select Reference Point 
for 1 to 36 Samples.

Is This
Sample 

36?

Export Results to 
FilterData.xlxs

Image Processing

Reflectance Calculation

Yes

Yes

Yes

Yes

No

No

No
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Appendix D

Evapotranspiration Listing

Listing D.1: ETo Calculation Code.

f unc t i on [ EToData ] = ETo( ind )
%
% Fi l e Name: ETo.m
%
% Author : Paul Watson − Student Number 0050070606
% Date : October 2014
% Course : ENG4111 Research Pro jec t 2014
% Unive r s i t y o f Southern Queensland
%
% Program Descr ip t i on :
%
% This func t i on e s t ima t e s the e vapo t ran sp i r a t i on .
% Takes the ind ( index range o f weather data
% fo r each day to be c a l c u l a t e d ) and determines the
% ET va lue s us ing data from v a r i a b l e s weatherData .mat
% The output i s ETo vec to r which can be i n s e r t e d in t o
% the samples . mat v a r i a b l e .
%
% Input Parameters :
%
% Parameter 1 : ind , a vec to r con ta in ing pre−determined index
% va lue s to i d e n t i f y weather data f o r each day .
% Parameter 2 : weatherData , database o f l o c a l weather parameters .
% Parameter 3 : samples , database con ta in ing p l an t sample data
%
%
% Return Value :
%
% Returned Variab le : EToData , a vec t o r con ta in ing the t o t a l ETo
% fo r each day .
%

% load data
load ’ weatherData . mat ’ ;
load ’ samples . mat ’ ;
m = s i z e ( ind , 1 ) ;

% setup EToData
EToData = ze ro s (m, 1 ) ;
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% step through each day to c a l c u l a t e ETo
f o r days = 1 :m ;

% setup v a r i a b l e s
Tmax = 0 ; %Dai ly Temp max
Tmin = 0 ; %Dai ly Temp min
RHmax = 0 ; %Dai ly Rel Humidity max
RHmin = 0 ; %Dai ly Rel Humidity min
U = 0 ; %Dai ly Wind speed (km/h)

range = ind ( days , 1 ) : ind ( days , 2 ) ;
doy = weatherData ( range (1))+1 − f l o o r ( datenum ( ’1−Jan−2014 ’ ) ) ;

% Dai ly Temperature
Tmax = max( weatherData ( range , 2 ) ) ;
Tmin = min ( weatherData ( range , 2 ) ) ;
Tave = (Tmax + Tmin ) / 2 ;

% Dai ly Rel Humidity
RHmax = max( weatherData ( range , 3 ) ) ;
RHmin = min ( weatherData ( range , 3 ) ) ;

% Wind Speed
% Convert km/h to m/s
% km/h x 1000/3600
U = mean( weatherData ( range , 4 ) )∗1000/3600 ;

% Solar Radiat ion
%Convert Watts/mˆ2 to MJ/Mˆ2
% W/mˆ2 x 0.0864
Rs = sum( weatherData ( range ,5 ) )∗1800/1E6 ;

% Experiment Locat ion La t i tude
l a t = −36.7;
Lat = ( l a t ∗ pi )/180 ;
e l e v = 208 ;

% de l t a
d e l t a = 4098∗0.6108∗ exp ( (17 . 27∗Tave ) / . . .

( Tave +237.3))/( Tave +237.3)ˆ2 ;

% pres sure
P = 101.3∗((293−0.0065∗ e l e v ) / 2 9 3 ) ˆ 5 . 2 6 ;

% Gamma
gamma = (0 .00163∗P) / 2 . 4 5 ;

% va r i a b l e s names r e f e r to ETo (Penman−Monteith )
% spread shee t c rea t ed by Al l en (2003) .
E26 = 1+0.34∗U;
E27 = d e l t a /( d e l t a+gamma∗E26 ) ;
E28 = gamma/( d e l t a+gamma∗E26 ) ;
E29 = 900/( Tave+273)∗U;
E30 = 0.6108∗ exp (17 .27∗Tmax/(Tmax+237 .3 ) ) ;
E31 = 0.6108∗ exp (17 .27∗Tmin/(Tmin+237 .3 ) ) ;
E32 = (E30+E31 ) / 2 ;
E15 = (E31∗RHmax/100+E30∗RHmin/100)/2 ;
E33 = E32−E15 ;
E34 = 1+0.033∗ cos (2∗ pi /365∗doy ) ;
E35 = 0.409∗ s i n (2∗ pi /365∗doy−1 .39) ;
E36 = Lat ;

E42 = acos(−tan (E36)∗ tan (E35 ) ) ;
E43 = 24∗60/ p i ∗0.082∗E34∗(E42∗ s i n (E36)∗ s i n (E35 ) . . .
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+cos (E36)∗ cos (E35)∗ s i n (E42 ) ) ;
E44 = 24/ pi ∗E42 ;
E46 = Rs ;
E47 = (0.75+0.00002∗ e l e v )∗E43 ;
E48 = E46/E47 ;
E49 = 0.77∗E46 ;
E50 = 0.000000004903∗(Tmax+273.16)ˆ4;
E51 = 0.000000004903∗(Tmin+273.16)ˆ4 ;
E52 = (E50+E51 ) / 2 ;
E53 = 0.34−0.14∗ s q r t (E15 ) ;
E54 = 1.35∗E48−0.35;
E55 = E52∗E53∗E54 ;
E56 = E49−E55 ;
E57 = 0 ;
E58 = E56−E57 ;
E59 = 0.408∗E58 ;
E60 = 0.408∗E58∗E27 ;
E61 = E29∗E28∗E33 ;
ETo = E60+E61 ;

EToData( days , 1 ) = ETo ;

ETo = 0 ;

end

end
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Chamomile July & August

Models
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Figure E.1: Actual vs predicted SMC for chamomile-IR850-20%-loam July model

E.2 August Models

Figure E.2: Actual vs predicted SMC for chamomile-IR850-30%-loam August model
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Figure E.3: Actual vs predicted SMC for chamomile-IR850-20%-loam August model
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Figure E.4: Actual vs predicted SMC for chamomile-IR850-20%-sand August model
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