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Abstract 

 

Subsidence due to the implementation of underground mining has caused significant 

damage to the environment. Subsidence is an important issue in the mining 

community and is caused largely by the longwall mining techniques employed to 

extract coal. Subsidence has always been associated with longwall mining, and has 

become the predominate issue  

Due to the high extraction rate surrounding the longwall method, it invariably causes 

rapid subsidence within the geological strata (Booth et al. 1998). The stress fractures 

that occur as a result of the collapsed goaf, propagates to the surface producing a 

depression or dip in the soil profile. A case study was completed on a Rio Tinto mine 

called Kestrel which is located near Emerald, QLD. Being provided some the 

required information allowed for a numerical model to be generated in FLAC 2D.  

This project aimed to develop a numerical model within FLAC to accurately 

measure and model subsidence. This is due to the fact that numerical models are 

extremely important when dealing with large complex problems. The department of 

mineral resources requires numerical models for subsidence to accurately assess the 

viability of mining in that associated area. Through the use of FLAC 2D it was 

possible to develop a methodology that was applicable to all single longwall 

scenarios. The geometry and material properties of the model are the only values 

required to be changed within the methodology to suit a new model. The graphical 

interface in FLAC was used as it is user friendly and more applicable for initial 

analysis of subsidence of soils. This methodology can be extended to the use of other 

geotechnical subsidence applications. 

It was found that the results obtained from the model do not line up with the 

published work on subsidence. The magnitude of the subsidence of the FLAC model 

does not predict subsidence nearly to the magnitude that has been observed by 

(Keilich 2009). This was due to the FLAC program not being able to model 

discontinuities of the bedding layers effectively. The methodology, however was 

proved to be accurate as the models produced followed the profiles that of published 
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work. This provides evidence to the fact that the material properties entered may 

need to be investigated further. For future work a ubiquitous model within the FLAC 

interface should be used as it has been found to model joints, discontinuities and 

bedding layers far more effectively. 

In summary,  

 The results obtained were not of the magnitude as provided by published 

works and real time monitoring data.  

 The methodology was proved to be accurate with very similar subsidence and 

displacement profiles. 

 FLAC cannot measure layers and bedding discontinuities effectively and 

therefore the ubiquitous constitutive model should be used for future analysis 

of this problem. 
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  Chapter 1

 

Introduction 

 

 

1.1  Background Problem and Objective 

The increasing demand on electricity has made way for more efficient ways of 

mining coal. Open cut mines can no longer be the only source of coal and as such 

underground techniques have been employed to extract coal from the coal seam with 

great efficiency. Longwall mining is currently the most efficient method of 

extracting the coal seam, but has also produced long term effects on the 

environment. Longwall mining produces a vertical displacement of the soil level 

called subsidence. In simple terms, subsidence is the referred to as the vertical 

displacement of a point from its original position (Introduction to Longwall Mining 

and Subsidence 2007). When considering the subsidence in the geological strata, we 

can consider the soil particle as the ‘point’ and the behaviour induced by the ‘vertical 

displacement’ as subsidence. The above stratum is under both compressive and 

tensile forces, depending on which zone. These forces cause impacts to structures 

and hydrological properties of underground water systems. It is important to be able 

to predict the subsidence of the longwall so as to determine mining viability and 

introduce contingency plans for the predicted subsidence. 

There is particular concern about the effect subsidence has on areas that are 

residential, infrastructural and environmentally sensitive. The effects of subsidence 

can cause serious damage to the surrounding landscape and change the dynamics of 

the environment permanently, with concerns of localised loss of underground water 
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flow and also river catchments. The effects can cause major damage to infrastructure 

where primary structural members have shifted and even been removed by 

compressive and tensile force produced by the displacement of the natural level of 

the soil. Longwall coal mining has been a major cause of mining induced subsidence 

due primarily to the extraction method it employs. The longwall technique does not 

stop the roof from collapsing after the mined coal seam like the bord-and-pillar 

method. It is the roof collapsing that causes the cracks and stresses to propagate to 

the surface and cause a displacement in the soil profile known as subsidence.  

The amount of damage caused by subsidence depends on the type rock strata 

(Uranowski & Mastrorocco), so it is necessary to develop an approach to modelling 

the subsidence based on the certain critical parameters. For this thesis a case study 

will provided on a mine site that uses the longwall mining technique. As part of the 

requirements for the thesis, Kestrel mine will be used as the case study to validate 

results. Kestrel mine is part of the Rio Tinto company and is currently using a 

longwall to extract the coal form the coal seam. It is important that the model 

developed for the use of application in subsidence, corresponds to actual data and 

real-time monitoring systems. It is the aim of this project to obtain this data from 

kestrel. 

 

1.1.1 Objectives  

Subsidence is a major issue concerning environmentally sensitive areas. There is a 

great need to accurately model subsidence so as to predict the amount the ground 

will subside. The objective of this investigation into subsidence will be to determine 

whether FLAC can accurately model subsidence using a process of strength 

relaxation that is inherent in the program and also validate the model with data from 

kestrel mine using real time monitoring systems. The incorporation and interaction 

of the geological strata has caused discontinuities and unrealistic results. The 

strength relaxation method has been used to successfully solve 2D non-linear 

geotechnical applications (Dang & Meguid 2010). FLAC has in the past been known 

to become inaccurate when considering soils with many layers or geological strata. 

The discontinuities arise due to the sudden change in property of the soil at certain 
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intervals defined as the new layer. It will be the aim of this project to determine 

whether the strength relaxation method can be used to accurately measure 

subsidence. The results obtained will be then verified by the subsidence results 

provided by Kestrel Mine if provided the information. 

Throughout the course of this dissertation there will be site visits to Kestrel mine to 

witness how the longwall operates, obtain relevant field data, look at consultancy 

reports and make key observations on real time subsidence monitoring systems.  

 

1.1.2 Available Resources 

The Itasca FLAC modelling program will used due availability at the University of 

Southern Queensland (USQ) and being primarily developed for geotechnical 

applications. FLAC has been primarily used for analysis in the fields of mining, rock 

mechanics, underground engineering and research.  The use of the explicit time step 

solution and the integration of motion equations into the program have made it ideal 

for the analysis of progressive failure and collapse (FLAC  2005). The FLAC 

programming language FISH will be used to develop a model to accurately represent 

subsidence incorporating the key input parameters.  

 

1.1.3 Limitations of Numerical Modelling 

There a some general limitations outlined in (Keilich 2009) for numerical modelling. 

The below is a summary of the current limitations in the predictive capabilities. 

 Elastic soil models are considered to be inaccurate to model due to the need 

to make unrealistic changes to the properties of the soil to align with 

observed subsidence profile.  

 Models that are based off the continuum code such as FLAC can predict 

surface subsidence with accuracy, the horizontal movements that inherent in 

subsidence cannot produce reasonable results 
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 FLAC has also been observed to produce jumps in subsidence at transition 

zones between subcritical and critical. 

 The use of Mohr-coulomb constitutive modelling is limited when considering 

the bedding joints associated with the different geological layers. 

 

 

1.2 Methodology 

There are 5 major parts that will be addressed in this project 

 The first part (Chapter 1) will provide a risk assessment and management on 

the project. It will highlight potential hazards and risks associated with this 

project. A literature review of articles relevant to the project will be 

summarised. 

 The second part (Chapter 2) will be to provide a background description of the 

longwall mining and the bord and pillar method. There will be a detailed 

discussion on subsidence theory and the impacts that are associated. The 

critical parameters will be identified and discussed. 

 The third part (Chapter 3) will focus on Kestrel mine and information provided 

such as the mine plan layout, geological data and existing subsidence models 

 The fourth part (Chapter 4) this will provide in detail the methodology used for 

the development of the numerical model in FLAC.  

 The fifth part (Chapter 5) will be a discussion of results and comparing results 

obtained with actual results. Conclusions and recommendations will be made 

in relation to future use of the model. 

Appendix A – Project Specification outlines the objectives of this project 

 



Chapter 1 - Introduction 

 

5 | P a g e  

 

1.3 Potential Applications 

 It is expected that this project will provide a running model for subsidence in 

FLAC for future use. 

 Determine whether the force relaxation process for underground stability is 

an accurate technique for modelling mining induced subsidence 

 Have a physical interface for the model for future applications. 

 

 

1.4 Risk Management 

Risk management is considered as the logical and systematic approach to the 

uncertainty of hazards in the workplace. It is designed to change societies view on 

workplace health and safety (Fulcher 2010). Under the Workplace Health and Safety 

Act 2011 (QLD) the main objective is to provide a nationally consistent framework to 

secure the health and safety of workers and workplaces. It is used with diligence to 

protect workers and other persons against harm to their health, safety and welfare 

through elimination of risks. 

For the purposes of this project there are requirements that need to be met to attend 

Kestrel mine in Emerald, Queensland for a site visit. It is important especially in a work 

environment to ensure compliance with all the safety regulations that are in place. To 

minimise the risk for harm, training was provided for all visitors and employees on site. 

Rio Tinto already has a comprehensive knowledge of all the risks associated with the 

mine site hazards and has taken detailed steps to prevent harm. No harm should occur 

on the mine site if all the procedures outlined in Rio Tinto’s risk management plan are 

followed. 

There is always a risk in losing vital material during and after the project has been 

submitted. It is important that contingency plans are set up for the event of any loss of 

data. The excessive computer use required for this project may cause damage to hands 
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and eyes and would need to be considered in the risk assessment. There needs to be 

consideration of the projects potential in the industry. Assurances need to be made so 

that all the models and literature is correct.  
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  Chapter 2

 

Literature Review 

 

 

2.1 Chapter Overview  

This chapter addresses background and theory into the mining induced subsidence. 

There are many scholarly articles that address the inherent complexities of modelling 

subsidence and provide simplistic approaches to solve numerically in a variety of 

programs. This chapter will discuss the impacts of subsidence on environmentally 

sensitive areas and provide a detailed analysis of the main parameters used in modelling 

subsidence. The FLAC program will be revised and a review of its capabilities for 

modelling the discontinuities inherent in subsidence will be addressed. 

 

 

2.2 Background of Underground Mining 

Underground coal mining has been a process of extracting coal for many centuries. Due 

to the majority coal seams are too far underground for the surface mining to access. 

Underground coal mining processes have been developed to extract the coal in 

increasing efficient standards. It is estimated that this underground method produces 

around 60% of the world coal (World Coal Association  2007). All literature that 

focuses on underground mining considers only two methods of extracting the 

underground coal seam. The two methods are called ‘bord-and-pillar’ and ‘longwall 

mining’.  
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2.2.1 Bord and Pillar 

The bord-and-pillar method is the oldest form of underground mining (NSW Mining 

Methods  2013). According to (University of Wollongong) the fundamental concept 

behind this technique is the division of the coal seam into blocks separated by what are 

known as cutthroughs.  These cutthroughs are used to provide access to machinery and 

coal conveying to the surface. The method progressively cuts through the coal seam, 

whilst leaving behind pillars of coal to hold up the above overburden (NSW Mining 

Methods  2013). The pillars left behind to hold up the roof are made of coal, causing a 

reduction in coal extraction. Figure 2.1 shows the method of extracting coal with the use 

of the pillars. This method of extraction has been on the decline due to the more 

efficient longwall mining method. 

 

 

Figure 2.1 - Bord and pillar method extracting the coal seam (Paschedag 2014) 
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2.2.2 Longwall mining  

The longwall mining method is a relatively new and started to develop mechanically in 

the early 1970s. The longwall is now used predominately in the resource industry due to 

its efficiency at extracting the coal form the coal seam. Around 75-80% of coal is 

extracted from the coal seam using the longwall method (World Coal Association  

2007). The longwall consists of a series of hydraulic roofs that are used to hold up the 

immediate rock strata to prevent collapsing. The longwall uses mechanical shearers to 

cut through and along the coal face (underground mining method). As the longwall 

progresses through the coal seam, the overburden immediately collapses behind the 

longwall. There is no attempt to stop this collapse from occurring. The longwall face is 

around 150-350m in length and the extracted seam length is usually kilometres long 

(World Coal Association  2007).  

Figure 2.2 is representative of the longwall process of extracting coal. The hydraulic roof 

can be seen advancing after the shearer has cut through the coal face. The overburden 

collapses immediately after the hydraulic supports have moved forward.  The access 

ways to the longwall are held up the columns that prevent the collapse along the vital 

support line. Longwall mining has revolutionised the coal mining industry with its 

capacity of safe and cost effective, efficient, coal extraction (NSW Mining Methods  

2013). 
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Figure 2.2 - The longwall mining technique extracting the coal seam (Hawkes 2010) 

 

 

2.3 Subsidence  

2.3.1 Background 

In simple terms, subsidence is the referred to as the vertical displacement of a point 

from its original position (Introduction to Longwall Mining and Subsidence 2007). 

When considering the subsidence in the geological strata, we can consider the soil 

particle as the ‘point’ and the behaviour induced by the ‘vertical displacement’ as 

subsidence.  According to (Kay 2012) subsidence is defined gradual sinking of 

landform as a result of external forces.  Longwall mining can be considered the external 

force that will induce subsidence. 

The extraction of the coal seam from the longwall mining technique causes the void 

space to collapse or sag under the weight of the over burden. Once the ‘stress field’ in 

the surronding area is disturbed the changes in stress caused by the collapse progates 

upward to the surface, where the surface undergoes subsidence (Singh 1986). The 

definition of mining subsidence is also substantiated by the following which also states 
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that when the void collapses from the overburden, ‘The mechanism progresses towards 

the surface and the affected width increases so that at the surface, an area somewhat 

larger than the extracted panel of coal undergoes settlement’ (Introduction to Longwall 

Mining and Subsidence 2007). There has been a consensus with the authors of 

subsidence papers that the extent of surface subsidence cannot be greater than the 

extracted coal seam. 

 

2.3.2 Impacts 

Due to the high extraction rate surrounding the longwall method, it invariably causes 

rapid subsidence within the geological strata (Booth et al. 1998). The stress fractures 

that occur as a result of the collapsed goaf, propagates to the surface producing a 

depression or dip in the soil profile. According to (Booth et al. 1998) the strata that is 

subjected to subsidence undergoes fracturing, expanding joints and separating of the 

bedding planes, causing an increase in porosity and permeability. As a result the rock 

stratum above the longwall has a reduction in hydraulic properties causing a change in 

hydraulic head and gradient. The resulting impacts can be serious, where there is 

complete loss of surface flow, reduction to reservoirs and water quality (McNally & 

Evans). The complex nature of subsidence occurring from longwall mining is explained 

as having a differential in displacements causing compression and tension sections in 

the same zone or layer causing large strains. It is the according to (Bell, Stacey & 

Genske 2000) that the induced strains cause the most damage to the infrastructure.  

Further investigations have been used using data gathering tools and positioning 

systems, primarily known as the Geographic Information Systems (GIS). The longwall 

subsidence causes both short and long term impacts to the environment. The amount of 

damaged caused by the longwall depends on the topography of the region (Uranowski 

& Mastrorocco). Many of the scholarly articles in relation to the impact of longwall 

subsidence focus on the hydrological effects. 

Another concern for the implementation of the longwall is the impacts that it has on the 

structures. There are three types of classifications for damages to structures include 

cosmetic, functional and structural. Cosmetic is the result of the physical appearance 

being altered in some form. Functional damage refers to the functionality of the 
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building being affected, such as the inability to open and shut doors. Structural damage 

refers to the situation where entire foundations are affected and key structural members 

are damaged. All three of these classifications have been applied to buildings subjected 

to longwall subsidence ('Potential Impacts from Underground Mining'  2006). Due to 

the forces surrounding the profile of the subsidence the damage to a structure depends 

on the position relative to the subsidence. For example the buildings above the 

maximum subsidence are subjected to compressive forces and the foundations have 

been known to buckle and shift. The structures that are situated in the inflection or 

tensile zone of the profile are subjected to cracks in the foundation of walls and 

separation of key structural elements. 

The longwall extraction technique involves multiple panels progressing underground 

with a short distance of the old excavation. Many empirical results have shown that 

multiple longwalls amplify the subsidence profile. Figure 2.3 is a graphical depiction of 

the multiple extraction panel process.  

 

Figure 2.3 - Mine layout of multiple extracted longwall panels (The Longwall Mining Process  

2014). 
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2.3.3  Theory 

According to (Singh 1986) longwall subsidence is very complicated phenomenon to 

predict. The phenomenon can be understood by studying the behaviour of the 

overburden movement, the final subsidence profile, and the surface movements that 

occur ('Potential Impacts from Underground Mining'  2006). 

The subsidence profile shown in figure 2-3 provides a visual representation of the 

important zones that provide detailed look at the behaviour of the rock strata. The 

ground movements caused by the collapsed longwall have both vertical and horizontal 

movements. According to ('Potential Impacts from Underground Mining'  2006) the 

greatest vertical displacement occurs at the centre of the trough.  The profile of 

subsidence continues to decrease until the natural layer of the top soil is undisturbed. 

The horizontal movement occurs also within the trough of the subsidence. As the soil 

particles become closer to the centre of the through the distance between the particles 

reduce and cause compressive nature at the surface as shown in Figure 2.4. 

 

Figure 2.4 – Zones of the subsidence profile ('Potential Impacts from Underground Mining' 2006) 

The reverse is true when the soil particles are moving away from the trough and the 

distance increases causing zero compression and starts to develop into tension. This is 

known in many journal articles as the inflection point. This point is considered as the 

compression and tension zones respectively. The tension zone extends beyond the goaf 
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and is the defining force that affects subsidence ('Potential Impacts from Underground 

Mining'  2006). 

In the field of mining subsidence the accurate modelling and prediction of subsidence 

requires critical parameters. According to (Peng, Luo & Zhang 1997) the most 

commonly used parameters include: subsidence factor, angle of draw, critical width, 

offset distance of inflection, angle of full subsidence, angle of major influence and angle 

of critical deformation. This is confirmed in (Singh 1986), where the same parameters 

are considered necessary for the accurate modelling of subsidence. 

Alternatively according to (Keilich 2009) there are three main input parameters that 

need to be considered for the accurate measurement of maximum subsidence. These 

parameters include the extracted seam thickness, depth of overburden and the width of 

the excavation. It was also stated in (Hawkes 2010) that the main influencing 

parameters are the coal seam thickness and the height of the strata between the coal 

seam and the surface, angle of draw and the subsidence factor. 

A clear focus of parameters has been defined by the scholarly articles. The parameters 

that will be used are listed: 

 Angle of Draw  

 Extraction area ratio  

 Geological strata  

 Subsidence factor  

 Inflection point  

 Angle of critical deformation 

 

2.3.4 Angle of Draw 

The angle of draw is considered the most important parameter in the prediction of 

subsidence. The angle of draw is defined as: 

“The angle between the vertical line at the panel edge and the line connecting the edge 

of subsidence basin and the panel edge” (Peng, Luo & Zhang 1997). 
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This means that the very edge of the coal seam has a line drawn towards the surface 

where the subsidence has ceased and the top soil is at its natural level before the mining 

began. Figure 2.3 shows the angle of draw clearly as the angle representative of the 

edge of the extracted coal seam to the point of no subsidence. The ‘point’ of no 

subsidence is almost impossible to locate. The angle of draw has many different 

documented values and varies by a large amount depending on which research article 

cited. 25-35
0
 is usually the value of the angle of draw; however, it has also been 

recorded from ranges of 4 – 45
0
 (Peng, Luo & Zhang 1997). 

 

2.3.5 Extraction Area 

The empirical relationship between the maximum subsidence and the extracted coal 

face or the width-to-depth ratio has been the bases of many of the calculations to obtain 

the profile of subsidence. According to (Karmis & Agioutantis 1999) there are two 

major parameters that rely on the width-to-depth ratio. The first is the maximum 

subsidence factor and the second is the inflection point. Both of these parameters are in 

themselves essential for the accurate modelling of subsidence. 

In general there are three areas of extraction area classification that directly affect the 

subsidence profile. These three classification extraction areas are called: 

 Sub-critical extraction 

 Critical extraction 

 Super-critical extraction 

The subcritical extraction area can be defined as the width-depth-ratio being less than 

1.4. The subcritical extraction area is where there is no maximum subsidence occurring 

due to an arching and bending of the rock strata over the longwall. The critical 

extraction area is defined as being just large enough to produce maximum subsidence. It 

is approximated as being 1.4-2.0 of the width-depth-ratio. It should also be noted that 

the geological strata affects the critical width dimensions (Keilich 2009). The super-

critical depth occurs when the extraction area ratio is large than 2.0. The super-critical 

extraction allows for the subsidence to fully develop. The main difference between the 

two is that the subsidence profile has a large maximum subsidence profile area with the 
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super-critical condition rather than just on maximum point. Figure 2.5 shows the critical 

extraction area with only one point at maximum subsidence. Figure 2.6 shows the 

maximum subsidence occurring along points across the plane. These two figures in 

essence represent the main difference in classifications. 

 

Figure 2.5 - Critical extraction area (Hawkes 2010) 

 

 

 

2.3.6 Geological Strata 

The geological strata are the layers of geological formation that occurs underneath the 

surface. For the case of longwall mining the geological strata considers the layer above 

the longwall. The bedding or stratification above and below the longwall is due to the 

Figure 2.6 - Super-critical extraction area Hawkes 2010 
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formation of sedimentary rocks.  The parameter that is hardest to incorporate into the 

model is the rock strata. Due to the discontinuities inherent in the rock strata it is very 

hard to model in a continuum fashion. The disjointed non-homogenous layers provide 

varied results with current predicative models (Keilich 2009).  

 

Figure 2.7 - A representation of a geological strata (Singh & Yadav 1994) 

 

2.3.7 Subsidence Factor 

The subsidence factor is a ratio of the maximum point of subsidence to the height of the 

mined coal seam. It is common practise according to (Peng, Luo & Zhang 1997) that 

there subsidence factor be used regardless of sub-critical, critical and super-critical 

conditions. The subsidence factor is empirical in nature and will be determined from the 

mine site data. If the subsidence factor is less than one then it will be less conservative 

and decrease the maximum subsidence. If the subsidence factor is one or greater the 

maximum subsidence would be equal to or greater than the extracted coal seam, making 

it conservative. 
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2.3.8 Inflection Point 

The inflection point is defined as the point where the concave shape of the subsidence 

profile turns to a convex shape. It is determined that the concave part of the profile 

represents the compressive forces that are associated with the stresses and strains. The 

further into the centre of the profile the greater the compressive force that is applied. At 

convex part of the profile shape the geological strata and the surface are under tensile 

forces. It has been assumed according to (Peng, Luo & Zhang 1997) that the inflection 

point is one half the possible maximum subsidence. They continue to state that the 

method of the one half the possible maximum subsidence is incorrect if it is in 

subcritical conditions. The inflection points are shown in Figure 2.8. 

 

2.3.9 The Angle of Critical Deformation 

The angle of critical deformation is the angle between the edge of the extracted coal 

seam panel and the point of critical deformation on the surface. The point of critical 

deformation is where the all of damage is done to structures.  At the point where the 

structures can sustain the deformation in surface profile is considered outside the angle 

of deformation  (Peng, Luo & Zhang 1997). The types of structures determine the point 

of critical deformation. Structures can be considered in three categories, which are slope 

sensitive, strain sensitive and curvature sensitive. It has been determined that the 

majority of structures are affected by strain sensitive type. (Peng, Luo & Zhang 1997).  

It has been considered that this parameter is much more meaningful in terms of 

predicative capabilities than the angle of draw.  
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Figure 2.8 - Relationship of Subsidence Parameters (Peng, Luo & Zhang 1997)  

 

 

 

 

2.4 Summary of literature  

 

2.4.1 Keilich (2009) 

In this paper there is detailed focus on subsidence as a result of longwall mining in the 

Southern Coalfield of New South Wales. The paper uses the program called UDEC to 

solve numerically the result of subsidence on the Southern Coalfield for isolated 

longwall panels. The objective of this paper was to determine whether there was any 

lasting effect to the hydrological features of the river valleys that the longwall mined 

under. The numerical models were validated using empirical results, making this paper 

a reliable source for the methodology of modelling 
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2.4.2 Singh & Yadav (1994)  

This is a journal article from the Indian Institute of Technology and it discusses the 

problems that occur due to longwall subsidence. The article states that the reason for the 

collapse of the coal mines in India have been due to the thickness of the coal seam at a 

shallow depth. This has promoted the development of subsidence modelling for cases of 

rigid and flexible overburdens. The journal article concluded the maximum subsidence 

could be very useful in locating the most critical zone affected by longwall mining. It 

was explained that the profile of subsidence did not match the model due to site factors 

not incorporated into the model. 

 

2.4.3 Peng, Luo & Zhang (1997) 

This is a journal article that explains the critical parameters that must be considered for 

the accurate modelling of mining subsidence. This paper has accumulated information 

for 110 cases of subsidence in the US coal fields. The empirical equations were 

attempted and the critical parameters were determined. Theses parameters include the 

critical width, subsidence factor, angle of Draw, infection point, angle of full 

subsidence, angle of major influence, and angle of critical deformation. The conclusion 

statement declared that the subsidence parameters have a strong relationship with the 

height of the overburden. 

 

2.4.4 Karmis & Aqioutantis (1999)  

This is a short journal article that reinforces the concept that to obtain accurate 

modelling of subsidence field work and empirical results must be obtained for that 

specific site to ensure the accuracy of the numerical model.  This article provides 

evidence for empirical methods as the successful way to model subsidence. The article 

also lists critical parameters that need to be incorporated into the model. These 
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parameters are similar to those stated in Peng, Luo & Zhang (1997). In this case FLAC 

was used as the program to model and validate the subsidence results.  

 

2.4.5 Lloyd, Mohammad & Reddish (1997) 

This journal article conducted research on previous subsidence results to successfully 

simulate surface and sub-surface subsidence in UK Coal Measure rocks due to longwall 

mining. The results used in the model have been validated against the Subsidence 

Engineer’s Handbook (SEH) surface subsidence prediction method. The Rock Mass 

Classification Rating (RMR) has been used to determine the characteristics of the rock 

structure. Fast Lagrangian Analysis of Continua (FLAC) was used as the modelling 

program and the subsidence was modelled in longwall models that were 400 m in depth 

and a length of 200 m with a coal seam of 2 m. Analyses were conducted incorporating 

elastic and non-linear conditions. The results determined that FLAC was accurate model 

to use as it was confirmed against the (SEH) for depths between 100m to 800m. 

 

2.4.6 (Bell, Stacey & Genske 2000) 

The journal article provides cases of mining subsidence causing catastrophic failure to 

property and even causing to the loss of life.  It is more common that the damage 

rangers from slight to very severe in structural members. The article provides the 

relationship between subsidence and the material of the geological strata being mined. 

The change in rock strata causes a change in the subsidence profile and hence the 

amount of damage. The article continues to list damages caused by subsidence in 

several different places, most of which where longwalls were involved. This article 

provided very good historic background on subsidence and the damage caused by 

mining induced subsidence. 
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2.4.7 (Booth et al. 1998) 

This Journal article explains that subsidence due to longwall mining impacts on the 

environment by changing the hydraulic properties of the groundwater. A seven year 

study of a sandstone aquifer overlying an active longwall has provided evidence to the 

hydrological damage. It is believed that subsidence causes increase in permeability over 

the longwall panel causing a major decline in water levels. It was concluded that the 

longwall mine subsidence has significant impacts on area that contain shallow bedrock 

aquifers. The most prominent impact is the drop in water level from the fractures and 

cracking caused by the subsidence. 

 

2.4.8 Applications for Subsidence Management Approvals (2003)  

This is a government document that outlines the subsidence management approval 

process. Due to the potential damage that subsidence can cause to current infrastructure 

a Subsidence Management Plan (SMP) has been implemented. The guideline is used in 

areas that are environmentally sensitive. The SMP should be capable of managing the 

potential subsidence impacts and provide acceptable results that comply with existing 

government policies. There is detailed section to incorporate numerical modelling in the 

SMP to ascertain a general idea of the amount the ground will subside. The model will 

determine whether the proposed site can continue. The SMP model is represented in the 

below diagram Figure 2.9. 
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Figure 2.9 – Structure between elements of an SMP application 

 

 

2.4.9 Code of Practice: Ground Control for Underground Mines (2011)  

This is a code of practice on ground control for underground mines. It is important to 

understand the health and safety behind the mine site to gain an understanding of how 

the mine operates. As such this document has been useful in determining the viability of 

certain acts and regulations surrounding mining subsidence. This document is a draft 

and as such cannot be taken to be reliable at this stage. It is recommended that constant 

reference be made to the safe work Australia act when considering site visits to mine 

sites. This project requires constant visits to mine sites and thus makes this document a 

primary source of safety information. 
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2.4.10   Hawkes (2010)  

This thesis seeks to apply a simplistic approach to the modelling of subsidence by 

determining the critical parameters and validating the results using Arc GIS. The thesis 

used a step by step algorithm incorporating the critical parameters. The case study 

presented was the Deer Creek Mine in central Utah. GIS was able to determine the 

displacement of the soil profile and validate the numerical model. It was concluded that 

the model was accurate for a single longwall but, decreased in accuracy as the more 

longwall panels where used. 

 

2.4.11  Vakili, Albrecht & Gibson 

This conference proceeding discussed the use of modelling subsidence using FLAC 3D, 

which is a three dimensional modelling program. The conference paper presents the 

comparison between modelling subsidence using FLAC 3D and an elastic BE code. 

Multiple longwalls were modelled against the subsidence profile to see the extent of 

increasing the longwalls to the maximum subsidence profile. It was concluded that the 

FLAC program was far more suited for modelling subsidence where there was less 

information about the behaviour of soil. 

 

2.5 Summary of Review 

Subsidence has become a major issue that surrounds longwall mining. There needs to be 

numerical techniques that can effectively solve or predict potential subsidence that will 

occur. There are now standards that regulate mining on the basis of numerical models 

which therefore means the accuracy of the model and confidence of the methodology is 

paramount to the safe implementation of mining techniques. 

FLAC has been discovered to limiting in the calculations that deal with bedding 

discontinuities (layers). This is an important aspect of the model when considering the 

depth at which the longwall operate. The only program that is suitable for this analysis 
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at the projects disposal is FLAC. FLAC has been used to calculate subsidence and will 

used again in this project. It is quite accurate in results, but not as specialised as UDEC 

when dealing with layer discontinuities.  

It was also discovered that the Mohr-Coulomb constitutive model is the most 

appropriate preliminary method to use to ensure that the methodology is correct.   
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  Chapter 3

 

Kestrel Mine Case Study 

 

 

3.1 Chapter Overview 

This chapter will provide geological background and site geology for the case study in 

the Bowen Basin. There will be a discussion of the site visit and the information that 

was obtained for the use in the numerical model.   

  

3.2 Kestrel Mine Geological Environment 

 

3.2.1 Geological Background 

Kestrel Mine is located in a relatively undeformed part of the Bowen Basin. The mine 

lies on the western limb of the gently dipping Talagai Syncline which plunges gently 

southwest resulting in a regional dip that is generally south or southeast. The site is in 

seismic class B with a Hazard Factor of 0.045.  

 

3.2.2 Site Geology 

In the area of the drifts the Permian coal measure rocks are overlain by Tertiary aged 

volcanic rocks, mainly basalt. The basalt is generally 20-22 m thick but ranges from 13-

23 m in thickness. The basalt is weathered and in part is extensively altered. The upper 

5 m is extremely to moderately weathered. Below this the basalt comprises a pale tan or 
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cream coloured tuff-like material that is siliceous in parts, overlying extremely weak, 

green, very clayey, rock. Generally the altered rock can be readily remoulded to a very 

high plasticity puggy clay. 

The Fairhill Formation is not present in the drift portal area 

The MacMillan formation is a marine sequence consisting of siltstone and sandstone 

that does not contain any coal seams. It is defined as the strata between the base of the 

Fairhill formation and the top of the Pleiades Upper Seam. 

The German Creek Formation starts at the top of the Pleiades Upper Seam. It consists 

mainly of quartz lithic sandstones, silty in parts and within the project area includes 

seven coal seams. The seams are: 

 Pleiades Upper; 

 Pleiades Lower; 

 Aquila; 

 Tieri 1; 

 Tieri 2; 

 Corvus; and 

 German Creek. 

The German C reek Seam splits into the upper and lower seams. The immediate floor of 

the German Creek Lower Seam generally consists of interbedded to interlaminated 

carbonaceous mudstone, siltstone and sandstone below which sandstone predominates. 

In the vicinity of the drifts and shaft, the distance from German Creek Seam floor to the 

nearest underlying sandstone is approximately one metre. 

 

3.3 Site Visit  

As part of the projects development in understanding the social and technical 

implications associated with subsidence, it was necessary to travel to Kestrel Mine 

located near Emerald, QLD. The site visit provided details on how the longwall 

operated and the mechanisms behind subsidence. The mine was 250 m deep and at that 

a future longwall of 415 m was to be installed into the mine in the future. The longwall 

would then be the longest in Australia as stated by a geotechnical engineer at Kestrel. 
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The site had very stringent workplace health and safety which is outlined in Chapter 1. 

The data that was required to validate the model was not provided however, due to the 

confidentiality issues that arise when providing information. The only information 

provided can be found in appendix D. This information provided material properties and 

the inclusion of layer thicknesses allowing a model development to begin. The two 

pictures below are taken from kestrel mine courtesy of Rio Tinto. The pictures are 

situated near the longwall  

  

  

Figure 3.1 - Longwall Kestrel Mine (courtesy of Rio Tinto) 
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  Chapter 4

 

Numerical Modelling of Longwall 

Panel 

 

 

4.1 Chapter Overview 

The numerical modelling of subsidence has been continually fraught with difficulties 

and uncertainties that are associated with correct use of inputs and assumptions made. 

There is always a need to produce assumptions and values with proper justification 

otherwise the model will yield poor results. This chapter provides a detailed analysis of 

the literature that supports certain assumptions and values. 

 

4.2 Important Modelling Principles 

There has been extensive modelling conducted around subsidence to accurately measure 

and simulate the surface and sub-surface due to the extraction of the coal seam (Lloyd, 

Mohammad & Reddish 1997). It also states that the problem needs to be conceptualised 

and the material properties and the parameters are necessary for the investigation. Due 

to the nature of the investigation the only way to provide a certain accurate analysis is to 

hold real time monitoring data and cross reference the results to ensure confidence 

within the model.  

According to (Keilich 2009) the elastic modelling of the model has been found to be 

inaccurate as there is unrealistic calibration of material properties, which cause 



Chapter 4 – Numerical modelling of Longwall panel 

 

30 | P a g e  

 

discrepancies with the subsidence profile that is observed. This process has been 

dismissed due to the shallow results found. As part of my early analysis of the problem, 

the model did show a shallow subsidence profile which did not match observations that 

had been made.  

 

Figure 4.1 Vertical Displacement of Critical Element 

Figure 4.1 depicts only a subsidence of 0.227 mm over a depth of 50m and a width of 

200m. This shows that the subsidence occurring under the elastic state is not accurate 

enough to have the predictive capabilities required to analyse potential impacts.   

4.2.1 Boundary Conditions 

The boundary conditions of the model are extremely important to apply correctly. 

According to (Keilich 2009) the model was constrained in the x-direction on the sides 

and the y-direction on the bottom of the model. The top of the model was left free 

representing the ground surface.  

4.2.2 History Plots 

History plots are used within FLAC to determine the result at a defined element point. 

In other words it can be placed at a desired element and set a task to record values and 

plot the resulting outcome. A history plot is shown in Figure 4.3 which depicts the 

vertical displacement at a point where subsidence is at its greatest. The history plot 
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associated with (Keilich 2009) model produced history plots in both the x-direction and 

the y-direction. This enabled calculations for the vertical subsidence and tilt of the 

model.   

 

4.2.3 Model Development 

The constitutive model that was introduced in the model was the standard Mohr – 

Coulomb model. (Lloyd, Mohammad & Reddish 1997)  

 

4.2.4 Material Properties and Geometry  

To model a non-homogenous model within FLAC there needs to be material defined 

properties for the input into the graphical interface. FLAC requires the following 

material properties to solve for the Mohr-Coulomb block model. 

 Density (kg/m
3
) 

 Modulus of Elasticity (GPa) 

 Bulk Modulus (GPa) 

 Friction Angle (°) 

 Cohesion (MPa) 

 Tensile Strength (MPa) 

 

 

 

4.2.5 Young’s Modulus 

Young’s modulus is the materials ability to deform under an applied load and then 

returning to its original form after the applied load is removed. Once the particle is 

deformed and cannot return to its initial shape, a process called plastic deformation 

occurs. The output relationships for the defined properties mentioned in the above 

section 4.2.4 is found in appendix  
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Zones
Modulus of 

Elasticity (GPa)

Zone 1 300

Zone 2 500

Zone 3 1000

Zone 4 4600

Zone 4a 4000

From the provided kestrel information it was determined that the modulus of elasticity 

was quite high meaning that plastic deformation will be hard to achieve. The 

information for modulus is provided below. 

 

 

 

 

 

 

 

 

The zones represent the different layers associated with each modulus of elasticity. 

 Zone 1: Weathered altered Basalt 

 Zone 2: Highly weathered MacMillan Formation 

 Zone 3: Fresh MacMillan Formation 

 Zone 4: Fresh German Creek Formation 

 Zone 4a: Coal Measures 

 

4.2.6 Bulk Modulus 

Bulk modulus, or commonly known as the modulus of compression is a term used to 

describe a materials ability to resist a change in volume from an applied pressure. Bulk 

modulus as mentioned previously is an essential property in Mohr-coulomb failure 

calculation and analysis.  

 

Table 4.1 - Young's modulus properties 
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Zones
Bulk Modulus 

(GPa)

Zone 1 250

Zone 2 420

Zone 3 830

Zone 4 3800

Zone 4a 3300

 

 

 

 

 

 

4.2.7 Shear Modulus 

The shear modulus is a materials ability to resist a response to shear parallel to its 

surface. This material experience exactly opposite forces on the surface directly 

opposite to each other, thus inducing the shear. The information provided by Kestrel 

meant that there was no shear modulus. This is not a major issue however, as there is a 

table of output relationships outlined in Appendix D – Output relationships that can 

determine the value of shear given the passion ratio and the modulus of elasticity. 

The relationship of shear modulus to Poisson’s ratio and modulus of elasticity is 

provided in the equation below. 

              
 

 (   )
 

Where: E = Modulus of Elasticity 

v = Poisson’s Ratio 

 

  

Table 4.2 - Bulk Modulus 

Equation 4.1 - Shear modulus 
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    Table 4.3 – Shear modulus results 

 

4.2.8 Cohesion  

The Cohesion of the material is basically the ability for the material to bond or stay 

together. Cohesion is an extremely important input into FLAC as the displacements 

change dramatically due the cohesive nature of the material. The more cohesive the 

material is the greater its ability to resist displacement. 

4.2.9 Ultimate compressive strength 

The ultimate compressive strength is defined in (Callister & Rethwisch 2007) as the 

point when the material is subject to the compressive loading that causes failure in the 

material. The UCS is not required in the Mohr-Coulomb model and it is therefore a 

limitation of the model.  

4.2.10 Tensile Strength (MPa) 

Tensile strength is the materials ability to resist the failure of tensile forces. This is 

generally an important property when dealing with a continuous homogenous material. 

It does however, become negligible when dealing with bedding layer discontinuities 

according to (Brady & Brown 2006). 

Zones Depth 
(m) 

Modulus 
of 
Elasticity 
(GPa) 

Poisson’s 
ratio 

Shear 
Modulus 
(GPa) 

Zone 1 0-23 300 0.3 115.38 

Zone 2 23-45 500 0.3 192.31 

Zone 3 45-90 1000 0.3 384.62 

Zone 4 90-250 4600 0.3 1769.23 

Zone 4a - 4000 0.3 1538.46 
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4.2.11 Layer Thickness (m) 

The thickness of each layer is required to be imported into the model as this defines the 

depth of the model. The longwall will be as a single panel and be modelled in the 

longitudinal and transverse direction. Figure 4.2 depicts the model in the longitudinal 

directions with the appropriate layer properties and thicknesses. This is a generic model 

to which all other models will be based. The FLAC code is provided in Appendix C – 

Generic Model. 

The size of the model in the horizontal direction was observed to be very important in 

the implementation of the numerical model. This is due to the excavated region shown 

in Figure 4.2 producing subsidence on the very outmost element. To acquire a result 

that depicts the surface profile starting at zero and extending down to maximum 

displacement a greater width from the edge of goaf is required.  

Figure 4.2 – Single Panel Longwall Model Longitudinal Direction 
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4.2.12 Bedding/Layer Discontinuities 

The modelling of discontinuities of layers within the strata is very difficult to do. It is 

very important to distinguish between the layers as a textural element and not just 

partings within the layer. There is usually limited information to distinguish the two, so 

the layers are considered to be laid immediately on top of each other. The discontinuous 

nature of the model allows for the features of the rock mass to have negligible tensile 

strength according to (Brady & Brown 2006).  

 

 

4.3 Mechanics of Materials 

Generally the geotechnical problem analysis is broken up into two distinct groups, 

which are the stability problems and the elasticity problems. These two problems are 

treated in two unrelated ways.  

4.3.1 Constitutive models 

There are no current available numerical programs that can reproduce all of the aspects 

of soil behaviour now or in the near future according to (Potts, Zdravkovic & 

Zdravković 2001).  It is then important to decide on which soil features govern the 

particular geotechnical problem. This will allow for a constitutive model to be chosen to 

best analyse the problem.  

4.3.2 Elasticity analysis  

Elasticity analysis deals with the stress or deformation of the soil when it is considered 

no failure.  The problems of settlement and tunnel excavations are usually solved using 

this approach. The theory behind linear elasticity is Hooke’s law which provides a 
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relationship that connects stress and strain (Chen 2013). The linear elastic analysis 

provides results for problems that collapse or fail, or in other words, reach a plastic state 

where the element cannot return to its original state. The elastic approach to solving the 

model requires that there three inputs. The inputs for the materials are as follows: 

 Density; 

 Shear Modulus; 

 Bulk Modulus  

 

4.3.3 Plasticity analysis  

When dealing with problems of stability, the analysis acknowledges the condition of 

ultimate failure. In other words where the material has collapsed and cannot return to its 

previous state. Modelling Mohr in FLAC assigns Mohr-Coulomb plasticity to the 

behaviour of the structure. This plasticity analysis requires more inputs for the assigned 

material properties. The inputs for the material are as follows (FLAC 2005): 

 Density  

 Modulus of Elasticity  

 Bulk Modulus   

 Friction Angle  

 Cohesion 

 Tensile Strength  

 Shear Modulus; 

 Dilation Angle 

 

4.4 FLAC Theory and its Application to Subsidence 

 

4.4.1 Finite Difference 

FLAC uses a finite difference approach to solve for a problem with many elements. It is 

necessary to provide initial/boundary conditions to begin the solving process (FLAC 

2005). The finite approach is governed by equations relating to the field of variables it 
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is related to (e.g. stress, or displacement). It uses the conventional large stiffness matrix 

to solve for the displacements of discrete elements. The FLAC user guide has stated that 

‘FLAC is not a black box that will give the solution” (FLAC 2005). The behaviour of 

the numerical must be interpreted correctly to acquire the required results. 

 

   Figure 4.5 - Basic explicit calculation cycle (FLAC 2005) 

 

Figure 4.5 provides a graphical example of the elastic solution being solved explicitly.  

 

4.5 Developing the longwall in FLAC 

 

FLAC has a graphical interface in which it is possible to develop a model that provides 

results for many geotechnical applications. FLAC as mentioned previously can model 

elastic and plastic responses to a given problem. In the initial stages of developing the 

model, significant work was invested in the elastic constitutive model that focused on 

settlement, which is ideal for subsidence. It was noted earlier that results obtained by 

previous work for the elastic model of subsidence produced very small subsidence 

results. It was, however a starting point to provide a reasonably detailed analysis of the 

behaviour of the soil which could then be related to the Mohr-coulomb plastic analysis. 
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4.5.1 Symmetry within the model 

Due to the relative size of the model being solved it is not possible with the computing 

power assessable to undertake computations that requires 450 m in length and 250 m in 

height. It is therefore necessary to develop a way to reduce the computing time, whilst 

keeping the desired results. It was discovered early on in smaller scaled models that the 

results are symmetrical in nature. Using symmetrical analysis it was possible within 

FLAC to solve the model with exactly half the elements. According to (Keilich 2009) 

the main aspects of modelling and field measurement of subsidence due longwalls is the 

asymmetry that occurs. It goes on by detailing the need to reduce computation time by 

utilising the use of symmetry. The assumption was that as the model provided 

symmetrical properties the results obtained on the first half could then be safely 

extrapolated to the second half with accurate results. As such the model was reduced 

from 450 m in the x-direction to 225 in the x-direction. The y-direction must stay the 

same due to the fact that depth of the different layers are important to the model and 

cutting down half the size of the layers would not correspond desirably.  

A function was required within FLAC called the axisymmetry and was used when 

considering symmetrical modelling. This function fixes all movements in the x-

direction on the side, resulting nil shear and flexural forces at the axis of symmetry.    
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Figure 4.6 Vertical Displacement Contours in Symmetry 

The vertical displacement contours shown in Figure 4.6 depicts quite clearly the 

symmetry that is largely defining the model. It is then necessary to develop the model 

around the axis of symmetry by cutting the model down the centre of the null region of 

the longwall.  

 

Figure 4.7 – Symmetry of the y stresses 

Figure 4.7 depicts the vertical stresses due to the implementation of the longwall. It is 

important to note as well that this model also almost exact symmetry and has now 
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provided enough evidence and also accordance to many scholarly articles to use 

symmetry as the basis to successfully reduce the calculation times. 

4.5.2 Assumptions 

 Follows Mohr-coulomb properties and failure 

 Symmetry 

 Average of the properties of layers 

 Fixed conditions 

The following is a detailed process on steps taken to produce an elastic model of a 

longwall in the heading transverse direction and the longitudinal direction (The 

direction of the longwall mining). 

It is important to begin with an understanding of the process of how to solve a model 

within FLAC. There are certain solutions steps that must be undertaken in order to be 

confident that the results obtain from the solved model are in accordance with the 

correct procedure. The step process usually undertaken for Mohr-coulomb failure 

analysis is as follows. 

 Generate grid size and add desired shape 

 Define material properties and constitutive behaviour and material properties 

 Initialise boundary conditions and initial conditions 

 Solve for initial equilibrium as initial elastic model 

 Exam the response (make sure it makes sense ) 

 Excavate the null material 

 Cycle step solution and ensure the results make sense. 
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Figure 4.8 - General solution procedure 
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4.6 Modelling process 

The following methodology is a detailed analysis of the step by step process undertaken 

to produce a working longwall model. As stated previously, this model will follow the 

general solution procedure and follow all assumption made previously in this chapter 

under the ‘assumptions’ heading. 

4.6.1 Grid Generation 

To begin we generate a grid, or an area in which the analysis will be solved. The 

dimensions obtained curtesy of kestrel mine provides a grid area in the realms of 450 m 

in the x-direction and 250m in the y-direction. It is important to note that symmetry is 

prevalent in this model so we can reduce the grid size to i=225 j=250. This will yield 

results for all relevant data checks and critical elements.  

 

4.6.2 Material Properties and layer dimensions 

The next step in the process is to define the material properties and layer dimensions 

onto the generated grid. It is important as to obtain accurate property materials for the 

model. Fortunately, kestrel mine was able to provide me current information of the 

current geological formation associated with the longwall in question. Table 5.5 

provides details of the properties inputted into the FLAC model curtesy of kestrel mine. 

Table 4.5 provides details on the depth of each geological formation and the 

corresponding rock depths.  
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Table 4.5 assigns parameters to each zone. It should be noted that where no testing 

parameters exist for the zones, estimations of the values will be made. Tensile strength 

was assumed be 10% of the UCS. 

Figure 4.9 shows the geological stratigraphy of the Kestrel Mine site. It should be noted 

that for the purpose of modelling in FLAC the average value for the bulk, shear, 

cohesive and tensile strength was taken for each geographical formation rather than 

having each individual layers. 

  

Figure 4.9 - Summary of geological stratum 
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4.6.3 Boundary Conditions 

The model was constrained in the x-direction on the right hand side. The left hand side 

was constrained the same as the right, but was constrained in symmetry. The bottom of 

the model was constrained in the vertical y-direction. Outside these boundary conditions 

there was no consideration to the subsidence. Trial and error occurred to make sure that 

the boundary conditions were such that they allowed the full profile of subsidence to 

occur, from minimum displacement of zero to maximum displacement. 

 

4.6.4 Initial Conditions 

The gravity of 9.81 m/s
2
 was introduced to the model and small stain scale was selected 

to increase the accuracy of results.  

 

4.6.5 In-situ Stresses 

The maximum horizontal in-situ stress has been assumed to be in the range of 2-3 times 

the Lithostatic overburden load of 2.5 MPa per 100m depth. (SCT, 2006). For design 

purposes the stress ratio has been taken as σH= 2σv. 

 

4.6.6 Solving for equilibrium 

The model was then solved for an initial equilibrium so as to provide an ‘at rest model’ 

to compute.  

4.6.7 Parameter Study 

Once the results have been obtained there needs to be a parameter study to determine 

whether the results stand up to peer reviewed real world data. The maximum subsidence 

will be compared against the general subsidence rule which is around 65% of the coal 

seam thickness (Guideline for Applications for Subsidence Management Approvals  
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2003) and the monitoring data provided by Kestrel Mine. This parameter study is very 

important in verifying the reliability of the model. 

 

4.7 The Final Model 

The model can now be developed from the above methodology. The model will be 

configured with: 

 Grid generation 

 Axis Symmetry 

 Boundary condition 

 Initial Conditions  

 Material Properties 

 In-situ stresses 

Figure 4.10 shows the model in the final stages just before it is solved for elastic 

equilibrium. The elements for the grid are 1m by 1m for this analysis. Although this is 

considered a course grid, for this analysis it is fine enough to produce accurate results. 

The coarser grid also means that the computing time is reduced significantly.  The 

model is 300 by 270m which when including the symmetry it is essentially 600 by 

270m when considering the model is in symmetry. The lines represent the different 

layers and material properties that are associated with each layer. It can be clearly seen 

that the boundary conditions are in place and the excavated region is ready to be 

excavated after the model has been solved for elastic equilibrium.  
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Figure 4.10 - Axis symmetry Model 

 

Figure 4.11 depicts by the use of red lines the subsidence profile that will be recorded. It 

can be seen that the red line considers the surface profile, which is the major 

consideration surrounding subsidence profile. This model also depicts the null or 

excavated region of the model that is considered the extracted longwall.  
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Figure 4.11 - Excavated model 
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  Chapter 5

 

Results and Discussion 

 

 

5.1 Chapter overview  

This chapter will provide a detailed analysis of the results obtained by implementing the 

procedure outlined in Chapter 4 – A Numerical Modelling Analysis. The results will 

compare current peer reviewed literature with results obtained from FLAC and will also 

provide results from the data obtained from Kestrel Mine. Due to the time constraints of 

the project and the confidentiality issue that is associated with mining data, this project 

does not have any conclusive data to validate the model and will therefore endeavour to 

produce future work into which this model can be validated. 

 

 

5.2 Comparison of results 

As mentioned previously, there is no real time monitoring data of subsidence that can 

validate the model. There are however, some relevant scholarly articles that produce 

subsidence profiles and displacements that this dissertation can compare results with. It 

is the purpose of this project to produce similar profiles to ensure accuracy of the 

methodology. 
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5.2.1 Vertical Displacement 

It is important to consider the most critical element when trying to model subsidence. 

According to  (Keilich 2009) the most critical element to consider is the surface element 

in the centre of the extracted zone. This produces the maximum displacement and will 

the critical element under consideration. Figure … below shows where the most critical 

element for this model, which is highlighted by the circle. It can be seen that it is 

situated in the centre of the upper most layer of the model (considering symmetry).  

 

 

 

 

 

 

  

Figure 5.1 - Model displaying critical surface element 
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5.3 Model Verification 

 

Model verification is very important in numerical models to determine whether the 

model is indeed accurate and can be used for future analysis. The numerical models are 

very good in making engineering prediction with confidence. Confidence and 

methodology of the model is a large part of the predictive quality associated with 

numerical modelling (Thacker et al. 2004). 

This model has no validation data to ensure its accuracy. It is possible, however as 

(Thacker et al. 2004) said to be confident with the model, which can be an indication of 

correct methodology. The purpose of the result section is to become confident with the 

results obtained from the numerical model by comparing the data with peer reviewed 

journal articles. Confidence will also arise from the knowledge of the program, by 

understanding limitations and strengths of the model.  

 

5.4 Inputs and reasoning  

 

Once confident with the methodology, the next step is to ensure that the inputs are 

clearly defined and are considered reliable, so there is no ‘garbage in garbage out’.  The 

important inputs for the models are listed below and reasoned accordingly. 

5.4.1 Layer dimensions 

For each model the layer thicknesses were kept the same to remove the geometry 

variables from the model. This was important in the analysis of the material used as the 

layer thicknesses could be ruled out as a factor in results. The layer dimensions were 
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based off the known Kestrel layer thicknesses as it provided real word data to put the 

material properties to. 

 

5.4.2 Tensile Strength 

The tensile strength of the material was considered negligible when considered in this 

model as (Brady & Brown 2006) stated that when considering discontinuities in the 

material bedding layers the tensile strength is negligible. If the material was 

homogenous then the strength would be required. It was discovered that putting the 

defined tensile strength for each property did little if anything to the final displacement 

result. 

 

5.4.3 Boundary conditions 

The boundary conditions were fixed in the x-direction along the vertical face of the 

model and the y-direction along the horizontal bottom face of the model. These 

boundary conditions exactly the same as those implemented in (Keilich 2009). 

 

5.4.4 Initial Conditions 

The maximum horizontal in-situ stress has been assumed to be in the range of 2-3 times 

the Lithostatic overburden load of 2.5 MPa per 100m depth. (SCT, 2006). 

 

5.4.5 Excavated null region 

The excavated null region kept the same dimensions throughout all three models. The 

excavated region had a thickness of 4m and a width of 415 m (including symmetry). 
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5.4.6 Coal Seam 

Due to the fact that FLAC has difficulty in modelling many different layers, it was 

determined that the coal seam layer be ignored as 85% of the layer would be extracted 

into the null region. The decision was made also due to the fact that no dimension for 

the coal seam thickness was provided from Kestrel mine. 

 

 

5.5 Expected outcomes 

 

The expected outcomes from the numerical model are to output similar vertical 

displacement and subsidence profiles to the peer reviewed journal articles. There are 

three cases that will be modelled to increase the confidence of the model. The three 

cases are: 

 A model with dimensions provided by Kestrel mine and use FLAC library 

material properties. 

 A model with dimensions provided by Kestrel mine and use material properties 

from (Keilich 2009).  

 A model with dimensions and material properties provided by Kestrel mine to 

be further validated in future work. 

 

The reason for using three different models is to ensure confidence in the methodology 

of the results, which is an important step in the verification of the numerical model. 

Each model uses the dimensions obtained from Kestrel mine to reduce the variables 

allowing the analysis of results to be much easier. The excavated region (longwall), size 

of model, boundary and initial conditions are all kept constant throughout each model. 

This means that the major variables to consider are the material properties of each 

model. 
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For an initial analysis, the model was considered as arbitrary in the sense of the material 

used. Figure 2.7 was used as the basis for this model as it provided geological 

descriptions to input in FLAC (using the FLAC material library) allowing some 

confidence in this initial input stage.   

As a result the profiles seen in Figure 4.3 and Figure 4.4 are the result of the 

methodology outlined in the previous chapter. The subsidence profile is similar to that 

of Figure 5.6 and the vertical displacement profile resembles that of Figure 5.5 which is 

from a peer reviewed journal article on ‘Numerical modelling of mining induced 

subsidence’ (Keilich 2009).  

The major difference between the profiles is the initial starting position. This is due to 

the fact that when FLAC solves for initial equilibrium state there is some initial 

subsidence to begin with. This can be addressed by setting the initial displacements 

back to zero before solving the Mohr-coulomb model. 
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5.6 Discussion of Results 

To begin, it was necessary to ensure that the model was producing the correct profiles 

for the vertical displacement of the critical element and the surface subsidence. Figure 

5.6 provides reference to the subsidence profile that is the consideration for many 

scholarly articles.  The subsidence trough can be seen to have the maximum 

displacement at the centre of the collapsed longwall workings (goaf).  

 

Figure 5.6 - General subsidence surface profile sourced from (Kratzsch 1983) 

 

According to (Kratzsch 1983) the material properties are essential for the correct 

subsidence prediction and profile results. It was therefore necessary to determine with 

literature common material properties and depths to obtain the desired results.  

There was a case study into the subsidence southern coal (Keilich 2009) which provided 

good geological data on the depths and associating material. It was believed that before 

the model incorporated the material constancies from the case study, the model should 

incorporate the materials corresponding from the FLAC library.   
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5.7 FLAC properties – Model 1 

 

 

5.7.1 FLAC Material Properties and Depths 

 

Material 

Description 

Shear 

Modulus 

(GPa) 

Bulk 

Modulus 

(GPa) 

Cohesion 

(MPa) 

Tension 

(MPa) 

Friction 

Angle 

(Degrees) 

Depth 

(m) 

Basalt 6.99 26.8 27.2 0.0 27.8 23 

Shale 4.3 8.81 38.4 0.0 14.4 22 

Sandstone 13.2 32.3 66.2 0.0 31 45 

Siltstone 10.8 15.7 34.7 0.0 32.1 160 

Table 5.1 - FLAC material properties 

 

As part of the FLAC results analysis it was important to provide similar rock properties 

and layer depths to that of Kestrel Mine. The material properties were obtained from the 

data provided by kestrel mine which is located in Appendix E – Kestrel Information. It 

was possible to determine from the detailed analysis of the each of the layer formation 

the material that is most dominantly present. Table 5.1 is the summary of the material 

properties that were thought to be predominate in each of the formations. Using this 

information the associated material properties in the FLAC library were inputted into 

the model to obtain the results for the critical vertical displacement and surface 

subsidence profile. Each formation was generalised as one layer for simplicity sake and 

the average material properties were taken for each as stated in an email to a 

geotechnical engineer at Kestrel Mine. Due to the discontinuities associated with the 
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model the tensile strength of each layer can be considered to be zero (Brady & Brown 

2006). 

5.7.2 Vertical Displacement Profile – Model 1 

 The vertical displacement profile considers the surface element on the direct centre of 

the extracted coal seam where is where the maximum displacement or subsidence 

occurs. Figure 5.1 shows where the history plot of the element will be taken and Figure 

4.10 provides details of where the surface displacement of each surface element will be 

taken to produce the subsidence profile. 

The resulting displacement profile is depicted in Figure 5.7, which follows the general 

profile shape of the literature displacement profile shown in Figure 5.5. This provides a 

certain amount of confidence that the methodology for the determination of subsidence 

in FLAC is correct. The model was run until the displacement reached a state until it no 

longer displaced. Figure 5.7 shows clearly that the displacement levels off and reaches a 

convergence of unbalanced forces.  Table 5.2 shows the displacements that occurred at 

each different interval of time steps and ultimately the final displacement.   

 

  

Table 5.2 - Displacements at cycle intervals 

Cycle Step Displacement (mm) 

20000 -65.66 

50000 -68.58 

70000 -69.09 

80000 -69.23 

87000 -69.23 
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The decrease in displacement that can be seen to be between 5000 and 15000 cycle 

steps can be accounted due to the fact that FLAC applies a force onto the model in the 

process of strength relaxation which causes the unbalanced relaxation force. This 

unbalanced force means that vertical variations will occur in both directions which are 

also amplified by the layers and discontinuities of the model which FLAC has difficulty 

in modelling (Keilich 2009). This vertical uplift is not shown in the literature model as 

it was calculated using a UDEC program which is specifically designed for the 

modelling of layers and discontinuities of geotechnical problems. 

 

5.7.3 Subsidence Profile 

The subsidence profile or trough is developed by taking the maximum subsidence for 

each element along the surface layer of the model. This will generate a profile shown in 

Figure 5.8. This subsidence profile has a similar profile shape to the literature on mining 

induced subsidence. It can be seen that the maximum displacement in Figure 5.7 

corresponds to the maximum dip in the subsidence trough in Figure 5.8 of 69.23 mm. 

The subsidence profile is only half the shape as it is considered under symmetry. If the 

profile was extrapolated out it would show the typical profile associated with 

subsidence. 

 

5.7.4 Plasticity index and range 

An important aspect of subsidence is the plasticity range of the Mohr-Coulomb 

constitutive model. This plasticity index and range are able to determine in which 

sections of the model that yield and plasticity have occurred for permanent deformation 

which is associated with subsidence. The plastic index and plasticity range are shown in 

figures Figure 5.8 and Figure 5.9 respectively show a good analysis of what the material 

is undergoing due to the tension and strains of subsidence. The plasticity indicator 

shows clearly the permanent deformation of the model shown in purple. This seems to 

make sense as it is considered just above the collapsed excavated region. The green 

region represents yield in tension on the elements. This means that the surface profile 

which is predominately covered by yielding in tension is undergoing plastic 
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deformation and will not return to its original position but rather settle into its new 

displaced profile.  Permanent deformation has occurred around the excavated region 

simulation the immediate collapsed goaf. 

The interesting discovery made in this model is the permanent deformation at the pouter 

edge of the model. It seems that that there is critical displacement to the edge of the 

model causing this deformation. A conversation had between me and a geotechnical 

engineer at kestrel mine stated that there have been occurrences of upsidence. This may 

be the cause of upsidence in the model.  

The script for the model can be found in Appendix G –Model 1 FLAC Script. 
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5.8 Literature/Published results – Model 2 

 

5.8.1 Material properties of Literature 

Material 

Description 

Shear 

Modulus 

(GPa) 

Bulk 

Modulus 

(GPa) 

Cohesion 

(MPa) 

Tension 

(MPa) 

Friction 

Angle 

(Degrees) 

Depth 

(m) 

Sandstone 7.91 12.6 17.2 0 35.4 23 

Claystone 7.63 13.2 14.5 0 27.8 22 

Sandstone 1.08 16.2 13.2 0 40.4 45 

Shale 1.45 24.8 14.5 0 27.8 160 

Table 5.3 - Properties of assigned materials from literature 

 

5.8.2 Vertical Displacement Profile 

 

The resulting displacement profile is depicted in Figure 5.11, which follows the general 

profile shape of the literature displacement profile shown in Figure 5.12. This provides 

a good degree of confidence that the methodology for the determination of subsidence 

in FLAC is correct. The model was run until the displacement reached a state until it no 

longer displaced. Figure 5.11 shows clearly that the displacement levels off and reaches 

a convergence of unbalanced forces.  Table 5.4 shows the displacements that occurred 

at each different interval of time steps and ultimately the final displacement.   

Model 2 is similar to that of the profile in model 1 and also the sourced displacement 

profile shown in Figure 5.5. Model 2 had material properties sourced from the same 

dissertation as Figure 5.5 which provides confidence of results. The displacements that 

occurred in that dissertation were in the realms of 160-200mm of subsidence using a 

program called UDEC. This means that FLAC displacements were about half the size of 
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the UDEC displacements. This could be due to the fact of the limitation of memory for 

the computer available limited the model size in FLAC and generate the model size 

determined in the sourced thesis (Numerical modelling of mining induced subsidence). 

 

 

5.8.3 Subsidence Profile 

The subsidence profile or trough is developed by again taking the maximum subsidence 

for each element along the surface layer of the model. This will generate a profile 

shown in Figure 5.12. The profile of subsidence in Model 2 has similar shape to that in 

model 1 and many scholarly articles.  It can be seen that the maximum displacement in 

Figure 5.11  corresponds to the maximum dip in the subsidence trough in Figure 5.12 of 

88.5 mm. The subsidence can be seen to start at a value below zero. This is due to the 

fact that the model is extended out far enough from the critical angle of the excavated 

longwall region causing subsidence on the outer most regions.  The model cannot be 

increased due to the limitations associated with the computer memory. It still however, 

is able to model the critical displacement element effectively. 

 

Cycle Step Displacement (mm) 

20000 -86.05 

50000 -86.95 

70000 -88.28 

90000 -88.49 

100000 -88.50 

Table 5.4 - Displacements at defined cycle steps 
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5.8.4 Plasticity index and range 

The plastic index and plasticity range are shown in figures Figure 5.11 and Figure 5.12 

respectively show a good analysis of what the material is undergoing due to the tension 

and strains of subsidence. The plasticity indicator shows clearly the permanent 

deformation of the model shown in purple. This also occurs just above the collapsed 

excavated region where the goaf resides. The green region represents yield in tension on 

the elements. This means that the surface profile which is predominately covered by 

yielding in tension is undergoing plastic deformation and will not return to its original 

position but rather settle into its new displaced profile.  Permanent deformation has 

occurred around the excavated region simulation the immediate collapsed goaf. 

It seems that that there is critical displacement to the edge of the model causing this 

deformation in the literature model as well. This could suggest that there is a 

relationship between the models increasing the confidence in the methodology of 

solving subsidence. 

The script for the model can be found in Appendix H – Model 2 published work Script 
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5.9 Kestrel Results - Model 3 

 

 

 

5.9.1 Vertical Displacement Profile – Model 3 

 

The kestrel mine material properties can be found in Appendix E – Kestrel Information 

or the summary version is found in the above Table 5.5.  

From Model 1 and Model 2 there is a general shape that is occurring for the vertical 

displacement profile that also matches what is in the literature. Model 3 is has the same 

profile shape occurring. It has however, significantly less displacement being only 4.65 

mm. This is due to the extremely high bulk, shear and elastic modulus associated with 

the materials. There is a strong possibility that the results are far too small and will need 

to be analysed in the future. A detailed look into literature shows that some of the 

results provided from kestrel are far too large. An amendment of the material properties 

in future work would be prudent. Unfortunately communication has ceased, due to 

unforeseen circumstances, and will therefore continue with the material properties 

provided. The vertical displacement profile can be found in  

Zones Density 

(t/m
3
) 

Modulus of 

Elasticity 

(GPa) 

Bulk 

Modulus 

(GPa) 

Friction 

Angle (°) 

Cohesion 

(MPa) 

Tensile 

Strength 

(MPa) 

Zone 1 2.01 300 250 30 7.0 0 

Zone 2 2.15 500 420 30 5.0 0 

Zone 3 2.3 1000 830 30 3.0 0 

Zone 4 2.5 4600 3800 30 1.0 0 

Zone 4a 1.5 4000 3300 30 80.0 0 

Table 5.5 - Kestrel data 
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5.9.2 Subsidence Profile 

As from the previous two models the subsidence profile for this model is very similar as 

shown in Figure 5.15. It again shows that the model is wide enough so as the subsidence 

begins at zero displacement and moves down to the maximum displacement that again 

corresponds to the maximum vertical displacement of the critical element.  

 

 

5.9.3 Plasticity index and range 

The plastic index and plasticity range are shown in figures Figure 5.11 and Figure 5.12 

respectively show a good analysis of what the material is undergoing due to the tension 

and strains of subsidence. The plasticity indicator shows clearly the permanent 

deformation of the model shown in purple. This also occurs just above the collapsed 

excavated region where the goaf resides. The green region represents yield in tension on 

the elements. This means that the surface profile which is predominately covered by 

yielding in tension is undergoing plastic deformation and will not return to its original 

position but rather settle into its new displaced profile.  Permanent deformation has 

Cycle Step Displacement (mm) 

20000 -3.75 

50000 -4.25 

70000 -4.42 

120000 -4.63 

130000 -4.65 

Table 5.6 - Displacements at certain cycle steps 
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occurred around the excavated region simulation the immediate collapsed goaf as 

shown in model 1 and model 2. 

There are higher values for the modulus of elasticity for the material properties in the 

literature. This causes a higher percentage of elastic deformation of the model 

occurring. The Figure 5.18 below shows the range between the permanent, yield and 

elastic deformation. It can be also seen in this figure that there is yield in shear or 

change in volume has propagated further through the model compared to Model 2, due 

to the material properties. This can be associated with the cohesion of the material being 

a factor of ten less in some cases causing the volume change and increased shear stress. 

It seems that that there is critical displacement to the edge of the model causing this 

deformation in the model 2 as well. This could suggest that there is something 

fundamentally wrong with the model, or that there is a relationship between the models 

increasing the confidence in the methodology of solving subsidence. A further future 

analysis of this will be required to determine what is happening. 

The script for the model can be found in Appendix I – Model 3 Kestrel Script 
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5.10 Summary of Results 

 

This chapter discussed the results obtained from FLAC with regards to the vertical 

displacement and the subsidence profile. It was determined that the profile of both the 

vertical displacement and the subsidence profile were very similar to that of sourced 

literature results. This was an important step in building confidence of the methodology 

and possibly the results. The Kestrel results in model 3 has very little subsidence or 

displacements due to the material properties provided. An amendment to the properties 

will need to be integrated into future work as there seems to be some issue with the data 

provided.  

Figure 5.19  and Figure 5.20 provide comparisons of the three model displacement 

profiles. It can be clearly seen that each model follows a similar profile and  the kestrel 

result is by far the smallest displacement. 

 

 

Figure 5.19 - Comparison of Model displacements 

  

Kestrel 

Published Work 

FLAC 
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  Chapter 6

 

 Conclusion, Recommendation and 

Future work 

 

 

6.1 Chapter Overview 

This chapter will conclude the results and provide recommendations based on those 

results. This project has a large amount of future work ahead of it. This chapter will 

provide detailed look into the future work that can be done on this model. 

 

6.1.1 Review of Problem 

Subsidence has been a major problem when considering the underground longwall 

mining technique that is employed. It was necessary to generate a model that would take 

into account the size of the longwall, geological strata, material properties and the 

excavated region of the longwall. This thesis aimed to investigate the reasons for 

subsidence and to develop a model that would be used to predict subsidence in the future 

by the use of a numerical modelling program called FLAC. Modelling subsidence is an 

important step in the  

This project intended to use data provided by kestrel to produce a surface subsidence 

profile that correlated to published work and the validation data. As a result of 

confidentiality issues with regards to the real time monitoring data, it was not possible to 
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validate the model in the traditional sense. It was then necessary for the project to head in 

a direction that focused on the methodology rather than the actual results obtained. As 

such, the numerical model was generated on the information provided to me by Kestrel so 

as compare results with published work.  

 

6.1.2 Numerical Modelling 

The numerical modelling was developed in accordance to the procedure set out in 

(Keilich 2009). The FLAC manual was a used as a detailed look into the procedure of 

Mohr-coulomb analysis and the steps taken from (Keilich 2009) were verified from the 

manual to insure the steps in the procedure were correct and made sense. It was 

determined early on in the literature review that FLAC is not the best numerical tool for 

the job, as it has trouble with discontinuities due to the bedding layers. It has been used in 

the past with success and it was the only available resource for this thesis.  

The model considered a single longwall panel to ensure there was confidence in the 

results and methodology. It was acknowledged during the literature review that multiple 

longwall panels exacerbate the subsidence issue. However, due to time constraints it was 

prudent to focus on a single longwall panel for simplicity sake. During the generation of 

the model it was quickly determined that the available memory on the computer was not 

enough to calculate the full model. It was soon determined that this longwall problem is 

essentially symmetrical, which meant with the axis symmetry functions in FLAC the 

model could be essentially reduced to half the size whilst keeping the important 

displacement results. Three models were generated to provide results for the maximum 

displacement and the surface subsidence profile and to ensure accuracy with the 

methodology and results. The three models consisted of the same geometry and 

boundary/initial conditions, but varied on the material properties. The three models were 

as follows: 

 A model with dimensions provided by Kestrel mine and use FLAC library 

material properties. 

 A model with dimensions provided by Kestrel mine and use material properties 

from (Keilich 2009).  
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 A model with dimensions and material properties provided by Kestrel mine to be 

further validated in future work. 

 

After modelling all three models it was evident to see that there were definite 

relationships in regards to the profile of the model displacements. The validation data 

from Kestrel was not obtained due to unforeseen circumstances. It was therefore 

necessary to redefine the approach to the methodology and results. It was decided that the 

material property results provided by Kestrel will be tested against the published results 

of a paper called ‘The numerical modelling of mining induced subsidence’ (Keilich 

2009).  

Figure 5.19 provides a good comparison relationship between the maximum vertical 

displacement calculated and the published work displacement shown in Figure 5.5. This 

provided a good impression that the methodology of developing the single longwall 

model in FLAC was correct. It was clear to see that the material properties supplied by 

kestrel may need to be amended, due to some of the values provided. It seems that the 

cohesion was not at the right magnitude causing large amounts of shear in the model (see 

Figure 5.17). The subsidence was very small for kestrel data (see Figure 5.20). This has 

been accounted for the extremely high shear, bulk and elastic modulus. An amendment of 

material properties will be required in future work. The results over all three models 

seemed to make sense where the model was in plastic deformation. The only result that 

was not accounted for was the plastic region that occurs at the top edge boundary of each 

model. It seems that there is an increased stress force there, possibly due to upsidence. 

This will need to be investigated further in future work. 
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6.2 Conclusions 

There were many conclusions that were taken away from this project. The following 

conclusions are listed below: 

 FLAC is a suitable program when analysing subsidence, even though there are 

difficulties with modelling discontinuities.  

 The use of symmetry for the model was a sound process and provided good 

results, whilst reducing the size of the model. 

 FLAC was able to effectively model the surface profile that matches literature and 

published works. 

 The excavated null region or the goaf generated the subsidence that was stated to 

be the cause of subsidence in the literature review. 

 The higher than average material properties from kestrel provided very small 

results for subsidence 

 The empirical subsidence results from published works usually have subsidence 

displacements in the region of 65% of the extracted area. The small results 

obtained in FLAC suggest that there is still work needing to be done to ensure the 

accuracy of material properties and results. 

 The subsidence and displacement profiles provided good confidence in the 

methodology employed to generate and solve the model. 

 An unknown occurrence at the top edge of the model was identified. The high 

permanent plasticity concentration should be the subject of future work. 

 

 

6.3 Recommendations and Future Work 

The project has achieved the desired outcomes and objectives even with the limitations of 

the data received. There are a few recommendations for future work that must be 

addressed. These are: 
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 The use of another constitutive model other than the Mohr-coulomb analysis 

would be prudent. The Mohr-coulomb analysis does not take into account the joint 

properties. It would be therefore necessary to produce results in the ubiquitous 

constitutive model as it can measure accurately joint, layers and bedding 

discontinuities which is very important in this type of numerical model. 

 An amendment on the material properties provided by Kestrel mine would be 

recommended due to some of the inputs being extremely high. It was mentioned 

in an email the material properties provided were an educated from geological 

exploration. Some hard data of material properties and real time monitoring data 

would be preferable. 

 The use of more powerful computing would be preferable to achieve a more 

detailed and accurate results. The methodology that was developed should in the 

future be used against validating data to finalise the model and provide evidence 

for it validity. 

 Use the FLAC model to calculate results for the implementation of several 

longwall and model the response.  

 Develop the model further so as to be a Greenfield analysis tool, that quick and 

accurate results can be determined for a safe predictive result.  

 Compare the model against the implementation of the 415 m wide longwall, 

which is the future longwall going into Kestrel Mine. 
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6.4 Summary 

 

 The results obtained were not of the magnitude as provided by published works 

and real time monitoring data.  

 The methodology was proved to be accurate with very similar subsidence and 

displacement profiles. 

 The limitations of the available computing power reduced the potential of 

modelling any larger the 300 by 300m grid size. A larger model will have 

produced the outer elements starting at zero for the vertical displacement. 

 FLAC cannot measure layers and bedding discontinuities effectively and therefore 

the ubiquitous constitutive model should be used for future analysis of this 

problem. 
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Appendix A – Project Specification 

University of Southern Queensland 

FACULTY OF ENGINEERING AND THE BUILT ENVIRONMENT 

ENG4111/4112 Research Project 

PROJECT SPECIFICATION 

FOR:                                  KIERAN SECCOMBE 

TOPIC:                               NUMERICAL MODELING OF KESTREL MINE MINING  

SUBSIDENCE SUPERVISOR:                    Dr. Jim Shiau 

Andrew J. Seccombe 

ENROLMENT:                   ENG4111 – S1, 2014 

ENG4112 – S2, 2014 

PROJECT AIM: Subsidence from longwall mining is an important factor when 

assessing the economic,  social  and  environmental  impact  of  longwall  mining  on  

the natural and built environment.   This project seeks to develop a 2D model, using 

finite element software FLAC, which will be able to accurately predict longwall 

subsidence at Rio Tinto’s managed operation Kestrel Mine. 

 

PROGRAMME:                (Issue B, 3rd April 2014) 

1.   Understand and research the Finite Element Software FLAC with relation to the 

project. 

2.   Research the relationship between subsidence and the use of underground longwall 

mining. 
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3.   Incorporate Geotechnical Engineering (CIV3403) and Geology and Geomechanics 

(CIV2403) 

into the project 

4.   Develop a subsidence model using FLAC software with the programming language 

FISH. 

5.   Undertaken a site visit to Kestrel Mine to observe an operating longwall and 

undertake a visual inspection the impacts of subsidence on the surface. 

6.   Incorporate the layers of the geological strata/layers above the longwall mine in the 

model. 

7.   Model the subsidence for a longwall panel currently being extracted at Kestrel 

South Mine. 

8.   Compare the actual subsidence measurements recorded from the current longwall to 

the modelled results to assess the validity of the model. 

9.   Use the validated subsidence model to predict subsidence in future longwall panels. 

10. Evaluate  the  suitability  of  the  subsidence  model  against  other  subsidence  

predictions completed  by  external  consultants.  Discuss the reason for differences or 

similarities between results. 

 

As time permits: 

 

11. Investigate the height of caving and cracking behind the longwall face. AGREED: 

                                  (Student)                ______ ,  _____________ 
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Appendix B – Symmetry Code 

config axisymmetry 

grid 230,250 

model elastic 

gen line 0,6.0 00,10.0 

gen line 0,6.0 207,6 

gen line 0,10 207.0,10 

gen line 207.0,6.0 207.0,10.0 

fix  x i 231 

fix  x i 1 

fix  y j 1 

set gravity=9.81 

history 999 unbalanced 

solve elastic 

model null region 123 9  

group 'null' region 123 9  

group delete 'null' 

history 1 ydisp i=1, j=251 

history 2 ydisp i=101, j=251 

plot ydisp i=0,251 j=251 

cycle 100000 
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Appendix C – Generic Model 

config 

grid 200,50 

model elastic 

gen line 40.0,10.0 40.0,6.0 

gen line 40.0,6.0 160.0,6.0 

gen line 40.0,10.0 160.0,10.0 

gen line 160.0,10.0 160.0,6.0 

group 'Rock:sandstone' region 1 50 

group 'Rock:sandstone' j 44 50 

group 'Rock:siltstone' j 46 50 

group 'Rock:shale' j 29 39 

group 'Rock:sandstone' j 40 50 

group 'Rock:siltstone' j 24 29 

group 'Rock:granite' j 16 23 

group 'Rock:basalt' j 11 15 

group 'Rock:quartzite' j 1 8 

group 'Rock:basalt' j 9 10 

model mohr notnull group 'Rock:sandstone' 

prop density=2700.0 bulk=2.68E10 shear=6.99E6 cohesion=2.72E5 friction=27.8 

dilation=0.0 tension=1170000.0 notnull group 'Rock:sandstone' 

model mohr notnull group 'Rock:siltstone' 

prop density=2700.0 bulk=1.57E7 shear=1.08E7 cohesion=3.47E5 friction=32.1 

dilation=0.0 tension=3000000.0 notnull group 'Rock:siltstone' 

model mohr notnull group 'Rock:shale' 

prop density=2700.0 bulk=8.81E6 shear=4.3E6 cohesion=3.84E5 friction=14.4 

dilation=0.0 tension=1.44E7 notnull group 'Rock:shale' 

model mohr notnull group 'Rock:granite' 

prop density=2700.0 bulk=4.39E7 shear=3.02E7 cohesion=5.51E5 friction=51.0 

dilation=0.0 tension=1.17E7 notnull group 'Rock:granite' 

model mohr notnull group 'Rock:basalt' 

prop density=2700.0 bulk=3.23E7 shear=1.32E7 cohesion=6.62E5 friction=31.0 

dilation=0.0 tension=1.31E7 notnull group 'Rock:basalt' 

model mohr notnull group 'Rock:quartzite' 

prop density=2700.0 bulk=3.77E7 shear=3.98E7 cohesion=7.06E5 friction=48.0 

dilation=0.0 tension=1.1E7 notnull group 'Rock:quartzite' 

fix  x y j 1 

fix  x i 200 201 j 2 51 

fix  x i 1 j 2 51 
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Appendix D – Output relationships  

  

(Ragab & Bayoumi 1998) 
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Appendix E – Kestrel Information 

Kestrel Mine is located in a relatively undeformed part of the Bowen Basin. The mine 

lies on the western limb of the gently dipping Talagai Syncline which plunges gently 

southwest resulting in a regional dip that is generally south or southeast. The site is in 

seismic class Be with a Hazard Factor of 0.045. Figure 1 shows the geological 

stratigraphy of the Kestrel Mine site. 

 

 

Figure 1 – Geological Stratigraphy of Kestrel Mine 

In the area of the drifts the Permian coal measure rocks are overlain by Tertiary aged 

volcanic rocks, mainly basalt. The basalt is generally 20-22 m thick but ranges from 13-

23 m in thickness. The basalt is weathered and in part is extensively altered. The upper 
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5 m is extremely to moderately weathered. Below this the basalt comprises a pale tan or 

cream coloured tuff-like material that is siliceous in parts, overlying extremely weak, 

green, very clayey, rock. Generally the altered rock can be readily remoulded to a very 

high plasticity puggy clay. 

The Fairhill Formation is not present in the drift portal area 

The MacMillan formation is a marine sequence consisting of siltstone and sandstone 

that does not contain any coal seams. It is defined as the strata between the base of the 

Fairhill formation and the top of the Pleiades Upper Seam. 

The German Creek Formation starts at the top of the Pleiades Upper Seam. It consists 

mainly of quartz lithic sandstones, silty in parts and within the project area includes 

seven coal seams. The seams are: 

 Pleiades Upper; 

 Pleiades Lower; 

 Aquila; 

 Tieri 1; 

 Tieri 2; 

 Corvus; and 

 German Creek. 

The German C reek Seam splits into the upper and lower seams. The immediate floor of 

the German Creek Lower Seam generally consists of interbedded to interlaminated 

carbonaceous mudstone, siltstone and sandstone below which sandstone predominates. 

In the vicinity of the drifts and shaft, the distance from German Creek Seam floor to the 

nearest underlying sandstone is approximately one metre 

The maximum horizontal in-situ stress has been assumed to be in the range of 2-3 times 

the Lithostatic overburden load of 2.5 MPa per 100m depth. (SCT, 2006). 

For design purposes the stress ratio has been taken as σH= 2σv. 

The site profile can be divided into a number of broad zones. These zones are listed 

below in Table 1. 
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The following parameters are required for the FLAC model. The inputs required for the 

FLAC model include: 

 Density (kg/m^3) 

 Modulus of Elasticity (GPa) 

 Bulk Modulus (GPa) 

 Friction Angle 

 Cohesion (MPa) 

 Tensile Strength (MPa) 

Table 2 assigns parameters to each zone. Note that where no testing parameters exist for 

the zones, estimations of the values will be made. Tensile strength was assumed be 10% 

of the UCS. 
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Appendix F – Final Geometry Script 

config axisymmetry 

grid 230,250 

model elastic 

gen line 0,6.0 00,10.0 

gen line 0,6.0 207,6 

gen line 0,10 207.0,10 

gen line 207.0,6.0 207.0,10.0 

fix  x i 231 

fix  y j 1 

set gravity=9.81 

initial syy 1250000.0 var 0.0,-1250000.0 

initial sxx 2500000.0 var 0.0,-2500000.0 

group 'Basalt:Zone 1' j 228 250 

group 'Highly weathered Macmilan Formation:Highly weathered Macmilan Formation' 

j 206 227 

group 'Fresh MacMilan Formation:Fresh MacMilan Formation' j 161 205 

group 'Highly weathered Macmilan Formation:Highly weathered Macmilan Formation' 

j 1 160 

model mohr notnull group 'Basalt:Zone 1' 

prop density=2010.0 bulk=2.5E11 shear=1.15385E11 cohesion=7.0E7 friction=30.0 

dilation=0.0 tension=0.0 notnull group 'Basalt:Zone 1' 

model mohr notnull group 'Fresh MacMilan Formation:Fresh MacMilan Formation' 

prop density=2300.0 bulk=1.11111E12 shear=3.7037E11 cohesion=3.0E7 friction=30.0 

dilation=0.0 tension=500000.0 notnull group 'Fresh MacMilan Formation:Fresh 

MacMilan Formation' 

model mohr notnull group 'Highly weathered Macmilan Formation:Highly weathered 

Macmilan Formation' 

prop density=2150.0 bulk=4.16667E11 shear=1.92308E11 cohesion=5.0E7 

friction=30.0 dilation=0.0 tension=300000.0 notnull group 'Highly weathered Macmilan 

Formation:Highly weathered Macmilan Formation' 

history 999 unbalanced 

history 1 ydisp i=1, j=251 

solve elastic 

model null region 129 11  

group 'null' region 129 11  

group delete 'null' 

cycle 100000 
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Appendix G –Model 1 FLAC Script 

config axisymmetry 

grid 300,250 

model elastic 

gen line 0,6.0 00,10.0 

gen line 0,6.0 207,6 

gen line 0,10 207.0,10 

gen line 207.0,6.0 207.0,10.0 

fix  x i 301 

fix  y j 1 

set gravity=9.81 

initial syy 1250000.0 var 0.0,-1250000.0 

initial sxx 2500000.0 var 0.0,-2500000.0 

group 'Rock:basalt' j 192 250 

group 'Rock:sandstone' j 128 190 

group 'Rock:shale' j 1 78 

group 'Rock:shale' j 79 

group 'Rock:sandstone' j 192 

group 'Rock:sandstone' j 191 

model mohr notnull group 'Rock:sandstone' 

prop density=2700.0 bulk=2.68E10 shear=6.99E9 cohesion=2.72E7 friction=27.8 

dilation=0.0 tension=1170000.0 notnull group 'Rock:sandstone' 

model mohr notnull group 'Rock:shale' 

prop density=2700.0 bulk=8.81E9 shear=4.3E9 cohesion=3.84E7 friction=14.4 

dilation=0.0 tension=1.44E7 notnull group 'Rock:shale' 

model mohr notnull group 'Rock:basalt' 

prop density=2700.0 bulk=3.23E10 shear=1.32E10 cohesion=6.62E7 friction=31.0 

dilation=0.0 tension=1.31E7 notnull group 'Rock:basalt' 

group 'Rock:siltstone' j 80 127 

model mohr notnull group 'Rock:siltstone' 

prop density=2700.0 bulk=1.57E10 shear=1.08E10 cohesion=3.47E7 friction=32.1 

dilation=0.0 tension=3000000.0 notnull group 'Rock:siltstone' 

history 999 unbalanced 

solve elastic 

history 1 ydisp i=1, j=251 

model null region 165 11  

group 'null' region 165 11  

group delete 'null' 

cycle 100000 
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Appendix H – Model 2 published work 

Script 

config axisymmetry 

grid 300,250 

model elastic 

gen line 0,6.0 00,10.0 

gen line 0,6.0 207,6 

gen line 0,10 207.0,10 

gen line 207.0,6.0 207.0,10.0 

fix  x i 301 

fix  y j 1 

set gravity=9.81 

history 999 unbalanced 

initial syy 1250000.0 var 0.0,-1250000.0 

initial sxx 2500000.0 var 0.0,-2500000.0 

group 'Sandstone:Bulgo' j 231 250 

group 'Shale:Wombarra' j 1 160 

group 'Sandstone:Scarborough' j 161 201 

group 'Sandstone:Bulgo' j 228 230 

group 'Claystone:Stanwell Park' j 209 227 

group 'Sandstone:Scarborough' j 202 208 

model mohr notnull group 'Sandstone:Bulgo' 

prop density=2527.0 bulk=1.26E10 shear=7.91E9 cohesion=1.72E7 friction=35.4 

dilation=0.0 tension=0.0 notnull group 'Sandstone:Bulgo' 

model mohr notnull group 'Claystone:Stanwell Park' 

prop density=2693.0 bulk=1.322E10 shear=7.63E9 cohesion=1.457E7 friction=27.8 

dilation=0.0 tension=0.0 notnull group 'Claystone:Stanwell Park' 

model mohr notnull group 'Sandstone:Scarborough' 

prop density=2514.0 bulk=1.616E10 shear=1.08E10 cohesion=1.325E7 friction=40.35 

dilation=0.0 tension=0.0 notnull group 'Sandstone:Scarborough' 

model mohr notnull group 'Shale:Wombarra' 

prop density=2643.0 bulk=2.48102E12 shear=7.24E9 cohesion=1.451E7 friction=27.8 

dilation=0.0 tension=0.0 notnull group 'Shale:Wombarra' 

solve elastic 

model null region 172 10  

group 'null' region 172 10  

group delete 'null' 

ini xdisp=0 ydisp=0 

history 1 ydisp i=1, j=251 

history 2 ydisp i=301, j=251 

cycle 100000 
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Appendix I – Model 3 Kestrel Script 

config axisymmetry 

grid 300,250 

model elastic 

gen line 0,6.0 00,10.0 

gen line 0,6.0 207,6 

gen line 0,10 207.0,10 

gen line 207.0,6.0 207.0,10.0 

fix  x i 301 

fix  y j 1 

set gravity=9.81 

initial syy 1250000.0 var 0.0,-1250000.0 

initial sxx 2500000.0 var 0.0,-2500000.0 

group 'Zone1:Basalt' j 228 250 

group 'Zone2: Highly weathered Macmilan Formation' j 206 227 

group 'Zone3: Fresh MacMilan Formation' j 161 205 

group 'Zone4: Highly weathered Macmilan Formation' j 1 160 

model mohr notnull group 'Zone1:Basalt ' 

prop density=2010.0 bulk=2.5E9 shear=1.15385E9 cohesion=7.0E6 friction=30.0 

dilation=0.0 tension=0.0 notnull group 'Zone1:Basalt’ 

model mohr notnull group 'Zone2: Highly weathered Macmilan Formation' 

prop density=2150.0 bulk=4.16667E9 shear=1.92308E9 cohesion=5.0E6 friction=30.0 

dilation=0.0 tension=300000.0 notnull group 'Zone2: Highly weathered Macmilan 

Formation' 

model mohr notnull group 'Zone3: Fresh MacMilan Formation' 

prop density=2300.0 bulk=8.33333E9 shear=3.84615E9 cohesion=3.0E6 friction=30.0 

dilation=0.0 tension=500000.0 notnull group 'Zone3: Fresh MacMilan Formation' 

model mohr notnull group 'Zone4: Highly weathered Macmilan Formation' 

prop density=2500.0 bulk=3.83333E10 shear=1.76923E10 cohesion=1.0E6 

friction=30.0 dilation=0.0 tension=2300000.0 notnull group 'Zone4: Highly weathered 

Macmilan Formation' 

history 999 unbalanced 

solve elastic 

ini xdisp=0 ydisp=0 

history 1 ydisp i=1, j=251 

history 2 ydisp i=301, j=251 

model null region 101 7  

group 'null' region 101 7  

group delete 'null' 

cycle 100000 


