

University of Southern Queensland

Faculty of Health, Engineering and Sciences

System Dependent IDMT Settings:

Direct Buried Underground Cable

A dissertation submitted by

Gregory Nagel

in fulfilment of the requirements of

Courses ENG 4111 and 4112 Research Project

Towards the degree of

Bachelor of Engineering - Electrical and Electronics

Submitted: October, 2014

 i

ABSTRACT

As modern day power protection devices become smarter, more configurable and more

accurate, they offer users the ability to configure the exact protection elements and settings

required for a specific network section. This combined with the increased number of power

systems going underground provides the basis for this research project. As we look to

optimise our power networks and the protection of our power networks, we must ask, how

can we ensure that our protection relays have the optimal settings for our underground

network?

Presently, when determining the time-dependant over-current protection settings for

underground cables, all worst-case scenarios are considered, resulting in excessive safety

margins and over-protective configurations. Whilst these excessive safety assumptions ensure

adequate protection for the electrical asset, they also potentially work to increase the

possibility of false fault detection. Such an error leads to unnecessary supply isolation and

consequently, costly downtime.

Given these limitations to current methods for determining protection settings, this research

project develops and implements a simulation model using finite element analysis that

analyses specific underground cable systems based on operating and environmental

conditions. By determining the steady-state thermal profile of the underground cable system

as a result of the load current, the simulation continues to analyse the effect of fault current on

the system to determine the most suitable protection settings for the underground cable

system.

The results presented herein outline the effect that environmental conditions have on the

required protection settings of underground cable systems, and when used in conjunction with

the simulation software, provide valuable information to assist design engineers making

decisions on a system's setting values for numerical protection relays.

 ii

UNIVERSITY OF SOUTHERN QUEENSLAND

FACULTY OF HEALTH, ENGINEERING AND SCIENCES

ENG4111/ENG4112 RESEARCH PROJECT

LIMITATIONS OF USE

The Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the

Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the

overall education within the student’s chosen degree program. This document, the associated

hardware, software, drawings, and other material set out in the associated appendices should

not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

 iii

UNIVERSITY OF SOUTHERN QUEENSLAND

FACULTY OF HEALTH, ENGINEERING AND SCIENCES

ENG4111/ENG4112 RESEARCH PROJECT

CERTIFICATION OF DISSERTATION

I certify that the ideas, designs and experimental work, results, analyses and conclusions set

out in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for assessment

in any other course or institution, except where specifically stated.

Gregory Dirk Nagel

0061025127

Signed

Date

 iv

ACKNOWLEDGEMENTS

Thank you to Associate Professor Tony Ahfock for allowing me to execute this project with

autonomy and at my own pace. Your timely feedback was instrumental to producing this

document.

Thank you to the teaching staff at USQ, especially Mr Chris Snook, for assisting with course

related issues and for your understanding when extensions were required due to work

commitments. The flexibility offered by USQ makes it an ideal institute for external study.

Thank you to my colleagues in the power industry for engaging in technical discussions and

furthering my understanding of real world underground cable applications and challenges. I

would also like to thank the two companies I have worked for throughout this undergraduate

program, offering flexibility and support to ensure I met my commitments at USQ.

To my family and friends, thank you for sticking by me throughout my endeavours at USQ.

Your support and sympathy helped me through the late nights and long weekends required to

complete the coursework at the level I aspired to.

To my lovely Anna, words cannot express the support I have received from you throughout

this journey. You have radiated success ever since I met you providing a constant source of

motivation which has helped me to not only reach but exceed my goals. Thank you for your

love, care and inspiration during the tough times. I owe you!

 v

TABLE OF CONTENTS

Abstract .. i

Limitations of Use .. ii

Certification of Dissertation .. iii

Acknowledgements ... iv

List of Figures ... x

List of Tables .. xii

List of Equations .. xiv

Nomenclature.. xv

1) Introduction ... 1

2) Literature review ... 3

2.1) Overview and the need for further research.. 3

2.1.1) Product datasheets .. 3

2.1.2) AS and IEC standards .. 3

2.1.3) Key articles influencing the simulation model .. 4

2.1.4) Distributed temperature sensing using fibre optics .. 5

2.1.5) Similar published works .. 6

2.1.6) Extension beyond these works ... 9

2.2) Fundamentals of underground cable systems ... 9

2.2.1) Underground cable construction .. 9

2.2.2) Impurities in cable construction ... 11

2.2.3) Cable Joints .. 11

2.2.4) Operational and environmental stress .. 14

2.2.5) Protection systems for underground cables ... 15

2.2.6) Inverse Time Protection Curves ... 18

2.3) Physical properties of materials .. 21

2.3.1) Conductor ... 21

 vi

2.3.2) Insulating media ... 22

2.3.3) Outer sheath and fill material ... 22

2.3.4) Cable joint .. 22

2.4) Thermal properties of materials .. 23

2.4.1) Thermal conductivity ... 24

2.4.2) Specific heat ... 25

2.4.3) Volumetric mass density .. 27

2.4.4) Thermal Diffusivity ... 27

2.5) Rating factors .. 28

2.6) Statistical representation of cable joint failures .. 29

3) Design and methodology ... 31

3.1) Thermal transfer model ... 31

3.1.1) Thermal diffusion using discrete finite elements ... 31

3.1.2) Heat generation due to current flow within the conductor 35

3.2) Model conditions .. 37

3.2.1) Boundary conditions .. 37

3.2.2) Conditions at time = 0 .. 37

3.2.3) Simulation time .. 37

3.3) Fault current temperature rise ... 37

3.4) Statistical cable joint health .. 38

4) Implementation into MATLAB ... 40

4.1) Overview ... 40

4.2) Finite elements of the system ... 40

4.2.1) Layout matrix ... 42

4.3) Thermal matrix computation .. 44

4.3.1) Material property variation .. 44

4.3.2) Qdot matrix .. 45

4.3.3) T matrix .. 45

4.4) Pick-up value .. 47

 vii

4.4.1) Method for pick-up current estimation .. 47

4.4.2) Pick-up current finalisation .. 49

4.5) Solving for protection settings .. 51

4.5.1) Break curve .. 51

4.5.2) Curve fitting ... 52

4.5.3) Best fit curve .. 52

4.6) Assumptions, approximations and limitations .. 53

4.6.1) Limitations of the 2-dimensional model .. 53

4.6.2) Interfacial thermal resistance ... 53

4.6.3) Boundary conditions .. 53

4.6.4) Surface heating ... 54

4.6.5) Joint resistance ... 54

4.6.6) Method for earthing the cable screen ... 54

4.6.7) Skin and proximity effect ... 55

4.6.8) Heating within the insulation ... 55

4.6.9) Free convection .. 55

4.7) Validation of model .. 56

4.7.1) GEMSCAB .. 56

4.7.2) Australian Standard 3008.1.1-2009 ... 57

4.7.3) Simulation results ... 58

5) Case studies and practical use ... 60

5.1) Chapter overview .. 60

5.2) Case study 1 - Parallel run trefoil ... 61

5.2.1) Thermal results ... 61

5.2.2) IDMT protection curves ... 63

5.2.3) Discussion .. 64

5.3) Case study 2 - Trefoil versus three single cables .. 65

5.3.1) Thermal results ... 65

5.3.2) IDMT protection curves ... 67

 viii

5.3.3) Discussion .. 68

5.4) Case study 3 - Using bedding sand ... 69

5.4.1) Thermal results ... 69

5.4.2) IDMT protection curves ... 71

5.4.3) Discussion .. 72

5.5) Case study 4 - Pre-fault load current .. 73

5.5.1) Thermal results ... 73

5.5.2) IDMT protection curves ... 75

5.5.3) Discussion .. 76

5.6) Case study 5 - Ground Temperature ... 77

5.6.1) Thermal results ... 77

5.6.2) IDMT protection curves ... 79

5.6.3) Discussion .. 80

5.7) Case study 6 - Conductor material .. 81

5.7.1) Thermal results ... 81

5.7.2) IDMT protection curves ... 83

5.7.3) Discussion .. 84

5.8) Case study 7 - Depth of lay ... 85

5.8.1) Thermal results ... 85

5.8.2) IDMT protection curves ... 87

5.8.3) Discussion .. 88

5.9) Case study 8 - Soil properties due to moisture content .. 89

5.9.1) Thermal results ... 89

5.9.2) IDMT protection curves ... 91

5.9.3) Discussion .. 92

5.10) Case study 9 - Joint health .. 93

5.10.1) Thermal results ... 93

5.10.2) IDMT protection curves ... 96

5.10.3) Discussion .. 97

 ix

5.11) Statistical analysis of joints .. 99

6) Conclusion ... 102

6.1) Further work ... 104

References .. 105

Appendix A - Project specification .. 109

Appendix B - Simulation operating instructions .. 111

Appendix C - MATLAB code structure ... 118

Appendix D - MATLAB code .. 120

 x

LIST OF FIGURES

Figure 2.1 – DTS analysis of an underground cable system (Williams, 1999) 5

Figure 2.2 – Discrete field domain using mesh layout (Nguyen, 2010, p. 3) 6

Figure 2.3 – Mesh outlines of finite elements in Zhang’s model (Zang, 2012, p. 4) 7

Figure 2.4 – Two-dimensional arc analysis (Naskar, 2013, p. 99) ... 8

Figure 2.5 – Single Core XLPE Cable (NKT cables, 2009)... 10

Figure 2.6 – Internal failures on an underground HV network (data: Mehairjan, 2010) 12

Figure 2.7 – Cut-away representation of a cable joint (Tyco Electronics, 2000, p. 11) 13

Figure 2.8 – Joint failures over time (Mehairjan, 2010, p. 66) ... 14

Figure 2.9 – IEC 60255 tripping curve characteristics (My Electrical, 2014) 18

Figure 2.10 – Typical conductive region of a cable joint (Tyco Electronics, 2000) 23

Figure 2.11 – Thermal conductivity of sand vs. moisture content (TeKa, 2014, p. 4) 25

Figure 2.12 – Specific heat capacity of XLPE insulation (Lee, 2006, p. 806) 26

Figure 2.13 – Probability density function of synthetic cable joint failures 30

Figure 3.1 – Matrix formation for 2-D steady state temperature ... 33

Figure 3.2 – Failure rate of a single cable joint (Mehairjan, 2010, p. 73) 39

Figure 4.1 – Comparison of the layout representation of low and mid resolution 42

Figure 4.2 – Method to determine the Lambda values interacting with each F.E. 45

Figure 4.3 – Creation of T' matrices for simulation optimisation .. 46

Figure 4.4 – Solving for the system's pick-up current .. 48

Figure 4.5 – Break curve of simulated cable system .. 51

Figure 4.6 – Simulation validation using protection curves ... 59

Figure 5.1 – Steady state thermal profile (all cables in-service) .. 62

Figure 5.2 – Steady state thermal profile (single trefoil in-service) ... 62

Figure 5.3 – Case study 1 IDMT protection curves ... 63

Figure 5.4 – Steady state thermal profile (trefoil) .. 66

Figure 5.5 – Steady state thermal profile (three single cables) .. 66

Figure 5.6 – Case study 2 IDMT protection curves ... 67

Figure 5.7 – Steady state thermal profile (with bedding sand) ... 70

Figure 5.8 – Steady state thermal profile (without bedding sand) ... 70

 xi

Figure 5.9 – Case study 3 IDMT protection curves ... 71

Figure 5.10 – Steady state thermal profile (50A load) ... 74

Figure 5.11 – Steady state thermal profile (1000 A load) .. 74

Figure 5.12 – Case study 4 IDMT protection curves ... 75

Figure 5.13 – Steady state thermal profile (ground at -15°C) .. 78

Figure 5.14 – Steady state thermal profile (ground at 15°C) ... 78

Figure 5.15 – Case study 5 IDMT protection curves ... 79

Figure 5.16 – Steady state thermal profile (aluminium) ... 82

Figure 5.17 – Steady state thermal profile (copper) ... 82

Figure 5.18 – Case study 6 IDMT protection curves ... 83

Figure 5.19 – Steady state thermal profile (depth 100mm) .. 86

Figure 5.20 – Steady state thermal profile (depth 600mm) .. 86

Figure 5.21 – Case study 7 IDMT protection curves ... 87

Figure 5.22 – Steady state thermal profile (wet soil) ... 90

Figure 5.23 – Steady state thermal profile (dry soil) .. 90

Figure 5.24 – Case study 8 IDMT protection curves ... 91

Figure 5.25 – Steady state thermal profile (healthy joint) .. 94

Figure 5.26 – Steady state thermal profile (un-healthy joint)... 94

Figure 5.27 – Steady state thermal profile (400mm2 cable) ... 95

Figure 5.28 – Steady state thermal profile (300mm2 cable) ... 95

Figure 5.29 – Case study 9 IDMT protection curves ... 96

Figure 5.30 – Case study 9 initial temperature rise .. 98

Figure 5.31 – Joint impedance with respect to system age and joint quantity 100

 xii

LIST OF TABLES

Table 2.1 – IEC IDMT curve coefficient values (Schneider Electric) 19

Table 2.2 – IEEE IDMT curve coefficient values (Schneider Electric) 20

Table 2.3 – Standard design conductor properties (NKT cables, 2009, p. 9)........................... 21

Table 2.4 – XLPE insulation thickness .. 22

Table 2.5 – Thermal conductivity of simulation materials ... 24

Table 2.6 – Specific heat of relevant materials .. 26

Table 2.7 – Thermal conductivity of relevant materials ... 27

Table 2.8 – Thermal diffusivity of relevant materials .. 28

Table 3.1 – Central difference approximation of derivatives (USQ ENG4104, 2013) 32

Table 4.1 – Finite element resolution configuration .. 41

Table 4.2 – Layout matrix integer representation... 43

Table 4.3 – Gemscab current rating, data: Gemscab (2014) .. 56

Table 4.4 – Australian Standard current rating, data: AS3008 (2009) 57

Table 4.5 – Values used for simulation verification ... 58

Table 5.1 – Case study overview .. 60

Table 5.2 – Case study 1 variables ... 61

Table 5.3 – Case study 1 results ... 64

Table 5.4 – Case study 2 variables ... 65

Table 5.5 – Case study 2 results ... 68

Table 5.6 – Case study 3 variables ... 69

Table 5.7 – Case study 3 results ... 72

Table 5.8 – Case study 4 variables ... 73

Table 5.9 – Case study 4 results ... 76

Table 5.10 – Case study 5 variables ... 77

Table 5.11 – Case study 5 results ... 80

Table 5.12 – Case study 6 variables ... 81

Table 5.13 – Case study 6 results ... 84

Table 5.14 – Case study 7 variables ... 85

Table 5.15 – Case study 7 results ... 88

 xiii

Table 5.16 – Case study 8 variables ... 89

Table 5.17 – Case study 8 results ... 92

Table 5.18 – Case study 9 variables ... 93

Table 5.19 – Case study 9 results ... 97

Table 5.20 – Statistical impedance of the joints within a cable system 99

 xiv

LIST OF EQUATIONS

Equation 2.1 – IEC IDMT curve equation (Schneider Electric) .. 19

Equation 2.2 – IEEE IDMT curve equation (Schneider Electric) .. 20

Equation 2.3 – Thermal diffusivity of a material ... 27

Equation 3.1 – 2-D representation of a function of T in space and time 31

Equation 3.2 – Fourier’s law of heat flow .. 31

Equation 3.3 – Heat transfer equation .. 31

Equation 3.4 – Transformation into central difference equation .. 32

Equation 3.5 – Thermal diffusivity of a material ... 33

Equation 3.6 – Simplified diffusivity constant ... 34

Equation 3.7 – Difference equation with one unknown ... 34

Equation 3.8 – Joule heating/Ohms law ... 35

Equation 3.9 – Joule heating within one finite element ... 35

Equation 3.10 – Rate of temperature change of F.E. from internal heating 36

Equation 3.11 – Equation for 2-parameter Weibull distribution .. 38

Equation 3.12 – Equation for reliability function ... 38

Equation 3.13 – Equation for failure rate distribution .. 38

Equation 4.1 – Diffusivity constant revisited ... 44

 xv

NOMENCLATURE

Short form Long form

CT Current Transformer

DTS Distributed Temperature Sensing

F.E. Finite Element

IDMT Inverse Definite Minimum Time

IEC International Electrotechnical Commission

IED Intelligent Electrical Devices

IEEE Institute of Electrical and Electronics Engineers

kV Kilovolts

PE Polyethylene

Ph-E Phase to Earth

Ph-Ph Phase to Phase

PVC Polyvinyl Chloride

RMS Root Mean Squared

TMS Time Multiplier Setting

USQ University of Southern Queensland

XLPE Cross-Linked Polyethylene

1) Introduction 1

1) INTRODUCTION

Today, underground cables are being used more frequently, particularly in the likes of new

suburban developments and industrial installations such as coal seam gas plants (Bascom,

2011). This shift brings aesthetic benefits and reduces the likely impact of disturbances

caused by bad weather (Navrud & Ready, 2008). Moreover, a report commissioned by the

Australian government in 1997 found that the principle benefits of burying cables were

reduced maintenance costs, the avoidance of tree trimming expenses, and the removal of the

cost associated with motor vehicle accidents with power poles (Janick, 2000). Despite these

benefits the report identified that only seven per cent of homes in Australia were currently

served by underground power and that it would cost $50 billion to bury all existing cables

underground. Despite the high cost associated with the replacement of overhead lines with

underground cables, Janick (2000, p. 20) argues that these figures should be interpreted with

care given this move would be ‘replacing aged infrastructure with new, modern, energy-

efficient systems’. Furthermore, he makes the point that the maintenance costs to these new

systems should be very minimal for a number of years. However, if something were to go

wrong, finding and restoring faults in an underground cable can be a significant challenge.

Cigre (2009) observes that locating a fault within an underground network can be time

consuming and requires specialised equipment. First a fault must be located, then the cable

must be excavated using vacuum trucks to avoid further damage to plant equipment, such as

communication, power or gas lines buried in the vicinity. Once the cable has been exposed,

the cable is then repaired using specialised cable jointing kits. Historical data suggests that

rectification of an underground XLPE cable takes an average of 20 days (Cigre, 2009). Thus

the procedure for repairing a cable can be long, onerous and costly for the owner, however,

these expenses are often insignificant in comparison to the cost associated with the of loss of

production or supply to consumers. For this reason, it is critical to determine the correct

protection settings for the over-current devices protecting underground cables.

In the presence of fault current, ohmic heating due to the current flow through the resistance

of the conductor material generates a temperature rise within the conductor and ultimately the

insulating material. The protection settings must be configured to trip the upstream circuit

breaker before the conductor temperature exceeds the maximum permissible temperature of

1) Introduction 2

the insulation. Often, to ensure this is achieved in all possible situations, significant safety

margins are used to ensure the protection relay will operate the circuit breaker and clear the

fault before the cable temperature becomes destructive. To achieve this, many general

assumptions are made on the system to cover all situations and designers have no option other

than to consider the worst case scenario based on the potential extremes of the environment

and operating conditions (Naskar, 2013).

Considering all the worst case factors and configuring the protection system accordingly

presents a new risk, the selectivity1 of the network. Making assumptions and increasing safety

margins also increases the risk of unnecessarily tripping and isolating sections of a network

during the event of peak loading, overloading or transient faults resulting in the loss of

production or supply to consumers. Furthermore, from my experience in the industry, a

maintenance team must now be deployed to investigate the cause of the protection trip and

verify the cables are fit for supply restoration. For example, the permissible fault levels may

vary significantly depending on the conditions of the network prior to a fault existing, the

seasonal variation of soil moisture content and temperature, or the condition of a network as it

ages.

 With this in mind, this research project will endeavour to create a computer model that will

determine the thermal profile of a cable system during normal operation, and from this point

determine the protection settings that would provide adequate protection to the cable system.

This model will then be used to simulate a variety of cable systems with variations of one

parameter to determine the effect this would have on the required protection settings and

hence, the capacity of the cable system. These methods could also be used to dynamically

configure the IDMT protection setting values based on real-time network loading and

environmental conditions.

1 The selectivity of a network is the ability to correctly determine that the component it is protecting is faulty and to isolate

only that component from the rest of the power system (USQ ELE3804, 2013).

2) Literature review 3

2) LITERATURE REVIEW

2.1) Overview and the need for further research

2.1.1) Product datasheets

Information on how and what products are used within the industry is critical to creating and

verifying a realistic simulation model that will accurately analyse the thermal profile of a

cable system. Product datasheets and application notes provide the basis for material

properties and cable dimensions, whilst industry standards provide overarching information

about cable systems and the areas in which they operate. Many standards are written to cover

a wide range of industry products and applications which will provide a good basis for

validating the simulation model, however, product datasheets often contain more specific

information which, if used, will improve the accuracy of the simulation model. For this reason

the following product datasheets have been selected and will form the basis of this research

project:

 Gemscab – The right connection – HT-XLPE Cables.

 NKT Cables – High Voltage Cable Systems – Cables and accessories up to 550 kV.

 Tyco Electrics – Installation Instruction – Raychem Joint for Polymeric Insulated

Cables.

2.1.2) AS and IEC standards

AS 3000:2007 – Wiring rules

The information from this standard was used to understand the legal constraints on

underground cable installations to ensure the model reflects common applications within the

industry.

AS 3008.1.1:2009 – Electrical Installations – Selection of cables

The information from this standard was used to validate the accuracy of the simulation model.

2) Literature review 4

IEC 60255 – Measuring relays and protection equipment Part 1: Common requirements

This standard was used in conjunction with manufacturer information to determine standard

protection curves and the equations associated with the curves.

2.1.3) Key articles influencing the simulation model

Statistical life data analysis for cable joints

Mehairjan's (2010) paper examines a 10kV underground power network with specific focus

on faults that occur within the cables and cable joints. The investigation covers a variety of

different cable joints including a detailed analysis of failure modes and failure rates. This

publishing provides the basis for the statistical analysis of cable joints used in this research

project.

Method for using finite elements to calculate temperature diffusion

Chapter 2 in Nikishkov’s book outlines the method for using finite elements to calculate

temperature diffusion within a 2-dimensional system with the inclusion of internal heating.

The mathematics published will form the basis of the heat transfer model that will be adapted

into a computer simulation program and used to determine the thermal properties of cable

systems.

Calculating temperature rise and load capability of cable systems

The publication by Neher & McGrath (1957) provided a method for estimating the steady-

state temperature of electrical power cables. The method is limited to generic cable

configurations and uses a complex string of calculations to estimate the thermal conditions of

a conductor. This method formed the basis for many ampacity de-rating tables and is a

reoccurring reference in many works published around the analysis of underground power

cables.

2) Literature review 5

2.1.4) Distributed temperature sensing using fibre optics

A technology that should not be overlooked when determining how to best protect

underground HV assets is the use of fibre optics to determine the temperature profile along a

cable run. To achieve distributed temperature sensing (DTS), a fibre optic cable is embedded

within the HV cable, or next to the cable in a trench. Light is then pulsed along the fibre and

the effect of light scattering causes a small portion of the light to reflect back as it travels

down the fibre. The amount of light scattered, and therefore reflected, is dependent on the

temperature of the medium through which it is travelling (Peck & Seebacher, 2000). This

technology offers real-time monitoring of a cable system and can help to detect the onset of

hotspots within the cable system. Williams (1999), states that often cable systems are loaded

with a 10% safety margin to account for the worst case conditions. It also outlines a cable

installation that was retrofitted with DTS allowing the operation to increase the load by 8%

using the real-time thermal monitoring. Figure 2.1 shows the magnitude of temperature

variation along a cable system and highlights the criticality of understanding the

environmental conditions throughout the entire cable run.

Figure 2.1 – DTS analysis of an underground cable system (Williams, 1999)

2) Literature review 6

2.1.5) Similar published works

Nguyen (2010)

Nguyen uses a mesh approach to determine the temperature rise and ampacity of underground

cables as shown in Figure 2.2. The author states that a mesh approach was adopted to

maintain accuracy whilst reducing the processing time of the model. The model used here

predetermines the power output from the cable and disperses this power evenly about the

outer circumference of the cable system. While this method will provide valuable information

on the thermal field surrounding the cable system, it does not analyse the temperature profile

within the cable to accurately determining the maximum temperature of the conductor and

therefore the potential for material damage within the cable.

Figure 2.2 – Discrete field domain using mesh layout (Nguyen, 2010, p. 3)

2) Literature review 7

Zang (2012)

Zang, uses triangular mesh nodes, similar to that used by Nguyen, to determine the current

rating of cables as shown in Figure 2.3. The model created by Zang is used to complement

temperature sensors placed near underground duct banks. By understanding the temperature

profile of the system, a more accurate assumption could be made about the temperature of the

cable using results from indirect temperature sensors.

Figure 2.3 – Mesh outlines of finite elements in Zhang’s model (Zang, 2012, p. 4)

2) Literature review 8

Naskar (2013)

Naskar uses an arc approximation to determine the current rating of cable layouts, shown in

Figure 2.4. Naskar acknowledges the fact that approximations and assumptions lead to

inaccuracies in the calculations and often force cable engineers to use unnecessarily large

safety factors leading to over-conservative designs. The model developed by Naskar uses

finite elements to model a 6.6 kV 3-core underground cable. The symmetry of this model

limits the applications as it could not be used to interact with the heat generated by other near-

by cable systems.

Figure 2.4 – Two-dimensional arc analysis (Naskar, 2013, p. 99)

2) Literature review 9

2.1.6) Extension beyond these works

The ultimate goal of this research project is to develop a simulation program that can be used

to determine the IDMT settings and the current capabilities of direct buried underground cable

systems. The works mentioned above model the temperature profile of cable systems which is

useful in determining the ampacity of the cables, however, they do not consider the

requirements for protecting the cables and ensuring they operate within the specified

operating limits at all times, especially during fault scenarios.

Cable protection will be the primary focus as this research project endeavours to extend the

above works. Another dissimilarity to the above works is the use of a square matrix of finite

elements which will increase the configurability for the user and allow the system to cover

more cable system variations. As part of the research, simulations will be conducted on the

cable variations to gain an understanding of how environmental and operation changes within

the cable system affect the operational capacity and minimum protection settings of cable

systems. This information may assist protection engineers as they undergo protection studies

to determine the required protection settings of underground cable systems.

2.2) Fundamentals of underground cable systems

2.2.1) Underground cable construction

The construction of underground power cables vary depending on the intended application,

however, the common components are best shown as a single core cable in Figure 2.5. Whilst

some elements shown here may not be present in all cable designs, the critical components to

provide basic function of a power cable are; a core conductor which will carry the load

current, a screen which provides an electrical return path for any insulation failures, and an

insulating medium to encompass the voltage potential of the core conductor. These

components are extruded within the outer sheath, typically polyvinyl chloride (PVC).

Important specifications of the cable are the voltage rating and current carrying capability

which are determined, respectively, by the properties of the insulator and the core conductor.

2) Literature review 10

Figure 2.5 – Single Core XLPE Cable (NKT cables, 2009)

The core conductor, usually soft copper or pure aluminium, carries the load current to the

downstream equipment. Due to the inherent properties of the conductor material, as current

flows through the core conductor, heat will be generated within the metal. The conductor

cross-section is a major factor determining the current rating of a cable as the resistance and

therefore the power loss within the conductor will increase at a reduced cross-section due to

the removal of available paths for electron drift.

The outer shield is bonded to potential earth at one or both ends of the cable run providing a

critical electrical path for fault current to flow should the insulating medium break down or

damage occur by an external source such as an excavator. The fault current is then detected by

a protecting device monitoring the system and isolated from its source to ensure safe voltage

potential around the cable system in the event of a failure.

A semiconductor layer exists at both the inside and outside of the insulating medium. This

layer ensures a uniform electric field exists across the insulation. If the electric field within

the insulation is not uniform, points of increased electric field can induce excessive stress on

the insulation leading to early fatigue and failure.

2) Literature review 11

The insulating material used and the thickness of the insulation determine the magnitude of

the electric field that can be sustained between the conductor and the shield and therefore the

voltage limitations of the conductor. The insulation also provides a means for heat to be

drawn away from the core conductor and into the surroundings. The maximum permissible

temperature of the insulation is much lower than that of the conductor material and therefore

quantifies the maximum temperature at which core conductor can operate, ultimately defining

the load and fault current levels of the cable. This research project will focus on cross-linked

polyethylene (XLPE) insulated cables which were first developed in the 1930s. XLPE is

commonly used in power cables as it has excellent dielectric properties making it useful for a

large range of voltage applications from 600 V to 500 kV (Orton, 2013).

2.2.2) Impurities in cable construction

As with all manufacturing processes, cable manufacturing has a risk of defective products.

One issue that can result from poor manufacturing is the presence of physical voids within the

insulation. This can result in a reduced service life for the cable due to the reduction of

insulating dielectric between the conductor and shield. The voids create sections where the

electric permeability is reduced and the voltage gradient across the void is low in comparison

to healthy insulation. This increases the voltage potential across the remaining insulation thus

increasing the electrical stress on the insulation. Testing of the insulation at the manufacturing

site is critical to ensure that the cable meets the required standards and is fit for purpose.

However, it is never possible to manufacture the perfect cable and the presence of voids and

insulation impurities are common sources for the initiation of breakdown in cables

(Mehairjan, 2010).

2.2.3) Cable Joints

On-site cable jointing is often required as there are limitations to the maximum drum size that

can be transported to installation sites. For example, a 10 km cable run using cables that have

a drum length of 400m, will require 25 cable joints. Over time, these joints may deteriorate

due to environmental and electrical conditions. This can lead to an increased resistance and

above average temperatures at the cable joint, accelerating the deterioration of the cable’s

2) Literature review 12

insulation. Once the insulation is damaged, the electric field can no longer be contained

between the conductor and the screen and the faulted section must be repaired. In my

experience, this requires cutting out and replacing a 10m section of the cable and the addition

of another joint and another potential point of failure.

According to Mehairjan (2010), cable joints are subject to more failures than the cable itself

for the following reasons:

 they are subject to higher electrical, mechanical and thermal stress

 they are mounted in the field under non-ideal circumstances, particularly during

outage situations

 they are not subjected to extensive reliability testing procedures like the cable itself

 the quality of installation of the accessories is reasonably sensitive to workmanship,

experience and care of the involved employee.

Figure 2.6 shows data extracted from Mehairjan’s (2010) statistical analysis of an

underground power network which reveals that the majority of internal failures2 occur at the

location of cable joints.

Figure 2.6 – Internal failures on an underground HV network (data: Mehairjan, 2010)

2 those failing under normal operation without external influences i.e. excavation error

Underground cable failure location

Termination Cable Joint Cable

2) Literature review 13

Figure 2.7 shows a typical cable joint. As depicted, the shield of the cable is moved to one

side of the joint to allow for the insulating heat-shrink to be placed over the conductive joint.

This reduces the integrity of the electric-field distribution and can result in increased electrical

stress on sections of the insulation. Another challenge that lies with cable joints of this nature

is ensuring the joints are water tight as water ingress is a common cause of failures at these

joints (Megger, 2003).

Figure 2.7 – Cut-away representation of a cable joint (Tyco Electronics, 2000, p. 11)

Quantifying the resistance of cable joints is difficult as there is no method for testing the joint

resistance without destroying the cable. Fournier & Amyon, (2001) measured the resistance

for a healthy electrical cable joint to be 15 μΩ while workmanship defects such as insufficient

torque values or incorrect crimp settings increased the resistance to 48 μΩ.

An interesting phenomenon that exists within defective electrical joints is the effect of self-

healing (Fournier, 1998). When a cable joint is degrading, hotspots form which lead to

microscopic melting at the point of high impedance. This can resulting in welding, or self-

2) Literature review 14

healing, of the substandard cable joint. Fournier also noticed fluctuations in the contact

resistance of the cable joint during this phase, resulting in resistance instabilities and

unpredictable thermal profiles. Due to this effect, Fournier outlines the unreliability of results

when periodically performing infra-red scanning of cable joints.

2.2.4) Operational and environmental stress

As the underground cable system ages, it is exposed to operational and environmental stress.

These increase the likelihood of internal defects and ultimately cable faults. Figure 2.8 shows

the increase in cable joint failures as the service life of the cable reaches 20-40 years.

Figure 2.8 – Joint failures over time (Mehairjan, 2010, p. 66)

Environmental conditions, such as; ground humidity, ground pollution, thermal resistance of

surrounding material, ambient temperature at the surface of the cable, can all contribute to the

degradation of the cable system (Megger, 2003, p. 2). Moisture can penetrate the cable

2) Literature review 15

insulation decreasing the insulating properties, this is a major issue at cable joints as water can

track under the additional joint insulation. In many cases, the location of the underground

cable is determined by the layout of electrical plant or existing infrastructure and this defines

the environmental conditions the cable will be exposed to. The effect of this can be reduced

by using bedding sand with known and consistent thermal properties when backfilling the

cable trench.

Throughout an average day, it is likely that the operating conditions of a cable will change.

This is often due to daily load cycles and peak loading conditions which result in the

fluctuation of the conductor’s temperature. These thermal fluctuations cause cable materials

to expand and contract imposing mechanical stress on the cable joints. Over time, the

mechanical forces may lead to a reduction in contact area and an increase in resistance. An

increased joint resistance will result in a ‘hotspot’ which is likely to accelerate the

deterioration of insulation properties. Sudden temperature increases due to over-current

conditions result in high temperatures within the cable, especially if this occurs with a high

initial temperature following a period of heavy loading. As the conductor undergoes sudden

temperature changes, movement can stress the XLPE material making the material more

brittle and increasing the risk of void formation within the insulation.

This research project endeavours to utilise the operating and environmental conditions of a

cable system to determine the required protection settings to avoid excessive operational

stress that may lead to rapid degradation of the cable insulation.

2.2.5) Protection systems for underground cables

Modern numerical protection relays offer multiple protection elements in one device.

Protection relays are connected to current and voltage transformers which provide linear

conversions from the system level (i.e. 800 A, 11 kV) to levels measurable by sensitive

analogue to digital converters within the device (i.e. 1 A, 110 V). The numerical protection

relay uses these measured values in conjunction with protection algorithms to monitor power

systems and determine when they are operating outside of permissible limits. Once abnormal

operation is detected, the protection device will issue a trip command to the relevant circuit

breaker isolating the supply to the faulted part of the network.

2) Literature review 16

Time dependant over-current – 51

The most common protection applied to a feeder is over-current protection. This protection

uses the measured current values to determine if the current flowing to the downstream

equipment is acceptable or if the levels exceed normal operation. In this scheme, time delays

are used to discriminate against faults that may exist within another protection device's

primary protection zone as it is desirable for the protection device closest to the fault to isolate

the fault and reduce the extent of the supply outage.

Instantaneous over-current – 50

Instantaneous over-current protection uses measured current values to determine when the

current in the system has exceeded a specified threshold. If this occurs the relay will initiate a

trip command instantly, i.e. without the use of a protection curve.

Earth fault – 51N

A significant unbalance in the 3-phase current vectors shows that current is leaking to earth

and exiting the 3-phase system. Historically this was monitored by using a current transformer

measuring the summated current flowing through all conductors, however, modern numerical

relays are able to virtually summate the three individual current vectors and determine if an

unacceptable amount of current is leaking to earth and initiate a protection trip accordingly.

Line differential protection – 87L

Line differential protection is a unit protection scheme with the ability to confidently detect

any fault within the zone it is protecting whilst ignoring any faults outside the zone. A current

transformer is placed at either end of the underground cable defining the protection zone.

Current values measured by the upstream and downstream protection relays are

communicated between the protection relays, usually by sending digital current values over a

fibre-optic communication link. When the protection relay detects a significant discrepancy in

current values, the protection will operate.

2) Literature review 17

Distance protection – 21

Distance protection uses the measured current and voltage waveforms to calculate the

impedance of the downstream system. The magnitude of the current and voltage are used to

determine the value of the impedance whilst the phase shift between the current and voltage

waveform is used to determine the ratio of resistance to reactance. These values are used to

determine if a downstream fault is within the primary zone of the protection relay, initiating a

trip command instantly, or if the fault exists within another device’s protection zone, allowing

sufficient time for the downstream protection to clear the fault prior to initiating a trip

command.

Underground cable protection summary

In underground cable systems, differential protection is the most reliable scheme for clearing

faults that occur within the underground cable as the protection system can be certain fault

current is escaping between the two current transformers. If a fault was to occur outside the

differential protection zone, the differential scheme would still register Iin ≈ Iout and would not

offer any protection to the underground cable. In this case, over-current protection would be

required to determine if the upstream circuit breaker should trip. This is usually determined by

an IDMT curve to allow for longer tripping times at lower fault levels as the fault may be

transient or cleared by a downstream protection device. This would see the current values

return to normal operating levels before damage occurs to the cable system, thus maintaining

supply to the downstream system.

As discussed earlier, the point at which damage may occur to equipment depends on the

condition of the equipment prior to the fault occurring. To be safe, protection engineers will

often take the worst-case conditions to determine the protection settings of the numerical

relay. This will ensure safe protection under all conditions, however in many situations, the

system will be over-sensitive and may unnecessarily isolate supply to the downstream

equipment. To overcome this, engineers require smarter, more sophisticated tools to better

understand and analyse the protection levels required to accurately protect aspects of a power

system.

2) Literature review 18

2.2.6) Inverse Time Protection Curves

Figure 2.9 shows how fault current relates to the tripping time in an IDMT scheme. To

interpret data from this graph, the reader should track up from the fault current level to the

curve and across to find the protection operating time. This is the time the protection system

will allow a fault of this magnitude to be present on the system before the protection will

operate. It is important to note that the circuit will not isolate instantly as there is a mechanical

delay for the circuit breaker mechanism to open the contacts enough to extinguish any arcing.

Figure 2.9 – IEC 60255 tripping curve characteristics (My Electrical, 2014)

2) Literature review 19

Both the IEC and IEEE have standards outlining generic inverse definite minimum time

(IDMT) tripping curves. These curves are typically drawn on a logarithmic scale plot with

current along the horizontal axis and time on the vertical axis. Table 2.1 outlines the

coefficients that vary the shape of the IEC protection curves shown in Figure 2.9. Once the

curve shape has been determined, two variables, pick-up current and time multiplier setting

(TMS), define where the curve will sit within the axis. The TMS shifts the curve upward to

provide an additional time delay across all values whilst the pick-up current forms a vertical

asymptote representing the maximum continuous current level shifting the curve left or right.

The following equations and coefficient values shall form the basis of the IDMT curves that

will be used within the simulation model.

Equation 2.1 – IEC IDMT curve equation (Schneider Electric)

Table 2.1 – IEC IDMT curve coefficient values (Schneider Electric)

2) Literature review 20

Equation 2.2 – IEEE IDMT curve equation (Schneider Electric)

Table 2.2 – IEEE IDMT curve coefficient values (Schneider Electric)

2) Literature review 21

2.3) Physical properties of materials

2.3.1) Conductor

The most common materials used for underground conductors are copper and aluminium.

Aluminium is often used as it offers a cheaper solution with a lower material and

transportation cost compared to copper. The conductor cross-section and resistance values

shown in Table 2.3 will form the basis for the resistance values used within the simulation

model. A DC resistance value is used as the power loss within the conductor will come from

the active current component.

Conductor

cross-section (mm2)

Conductor

material

DC resistance

Ω/km
Current

Ratings (A)
20 °C 90 °C

185
Cu 0.0991 0.1270 368

Al 0.1640 0.2110 289

240
Cu 0.0754 0.0973 420

Al 0.1250 0.1610 332

300
Cu 0.0601 0.0781 469

Al 0.1000 0.1290 371

400
Cu 0.0470 0.0618 525

Al 0.0778 0.1010 420

500
Cu 0.0366 0.0492 586

Al 0.0605 0.0791 474

630
Cu 0.0283 0.0393 649

Al 0.0469 0.0622 533

800
Cu 0.0221 0.0326 706

Al 0.0367 0.0500 591

1000
Cu 0.0176 0.0232 999

Al 0.0291 0.0375 791

1200
Cu 0.0151 0.0201 1074

Al 0.0247 0.0319 859

1400
Cu 0.0129 0.0175 1155

Al 0.0212 0.0275 929

1600
Cu 0.0113 0.0156 1226

Al 0.0186 0.0240 997

1800
Cu 0.0101 0.0142 1285

Al 0.0165 0.0213 1058

2000
Cu 0.0090 0.0129 1346

Al 0.0149 0.0193 1114

Table 2.3 – Standard design conductor properties (NKT cables, 2009, p. 9)

2) Literature review 22

2.3.2) Insulating media

The insulating material surrounding the conductor of the cable dissipates the heat from the

conductor core. The rated maximum conductor temperature of XLPE-insulated cables is 90°C

(AS 3008, 2009). Cables insulated with XLPE also have a permissible conductor temperature,

during a five second short-circuit fault, of 250°C (Orton, 2013). The thermal transfer through

the insulating material is affected by the thickness of the insulation which is dependent on the

voltage rating of the cable.

Voltage rating Ph-E/Ph-Ph (kV) XLPE Thickness (mm) Reference

1.9/3.3 2.2-3.0

(Gemscab, 2014)

&

(Nexans, 2010)

3.8/6.6 2.5-3.6

6.35/11 3.4-5.5

12.7/20 5.5-6.0

19/33 8.0-8.8

76/132 14-22

(NKT cables, 2009)
127/220 19-25

230/400 26-33

290/500 31-35

Table 2.4 – XLPE insulation thickness

2.3.3) Outer sheath and fill material

The outer sheath of the cable is generally constructed with polyethylene (PE) or polyvinyl

chloride (PVC). The thickness of the outer sheath is normally within the range of 1.8 to

4.0mm depending on the intended application (Gemscab, 2014). Due to the shape of 3-core

cables, gaps exist between the inner cores, these are typically filled with PVC (Gemscab,

2014, p. 4).

2.3.4) Cable joint

The physical dimensions of the modelled cable joint are based on the Raychem joint for

polymeric insulated cables with wire shields (Tyco Electronics, 2009). The joint part, MXSU-

3341, is specifically designed for cables with a cross-section ranging from 185 - 400 mm2.

2) Literature review 23

This is an aluminium part with a connector diameter of 37mm and a length of 140mm. An

example of this part is shown in Figure 2.10. The bolts used to secure the conductor ends are

shear bolts and break away from the structure when the correct torque is reached.

Figure 2.10 – Typical conductive region of a cable joint (Tyco Electronics, 2000)

2.4) Thermal properties of materials

To calculate the steady state temperature of an underground conductor, a balance must be

achieved between heat generated within the conductor and heat transferred through the

insulation into the surrounding environment. The rate of thermal energy transfer is dependent

on the thermal properties of the media through which it is diffusing. It is therefore important

to ensure that the model accounts for the respective thermal properties of the different media

and any material variation that may arise as temperature changes.

2) Literature review 24

2.4.1) Thermal conductivity

The thermal conductivity, k, of a material is the rate at which heat will transfer throughout the

material. Copper, followed closely by aluminium, has a high thermal conductivity allowing

heat to quickly pass through it. This will cause heat to transfer and stabilise more quickly

within the conductor material. Porous material, such as dry sand, has a very poor thermal

conductivity as all of the pores are full with air. As the soil saturates, these voids are filled

with water significantly changing the thermal conductivity of the material (TeKa, 2014, p. 1).

Thermal Conductivity, k (W/(m.K))

Material
Temperature (°C)

Reference
25 125 225

Aluminium 205 215 250 (The Engineering

Toolbox, 2014a) Copper 401 400 398

Temperature (°C)

Reference
20 55 90

XLPE 0.223 0.267 0.280 (Lee, Yang, Choi, &

Park, 2006, p. 806) Semiconductor 0.552 - 0.587 0.631 - 0.673 0.631 - 0.673

PVC 0.19
(The Engineering

Toolbox, 2014a)

 Dry Wet Reference

Bedding 6.5 12.5
(TeKa, 2014)

Soil 0.03 0.6

Temperature (°C)

Reference
20 40

Air 0.0243 0.0271
(The Engineering

Toolbox, 2014e)

Table 2.5 – Thermal conductivity of simulation materials

2) Literature review 25

Figure 2.11 – Thermal conductivity of sand vs. moisture content (TeKa, 2014, p. 4)

2.4.2) Specific heat

The specific heat, cp, is the amount of heat energy, per unit mass, required to raise the

temperature of an object by a one degree Celsius. In the case of this model the specific heat is

important, especially in the conductor material, to determine the temperature rise with respect

to the power loss within the conductor. The specific heat of the insulating material varies with

respect to temperature, as shown in Figure 2.12. The initial increase is due to the volume

expansion of the material, however, as the material heats closer to melting point, more

thermal energy is required to change the physical state of the material (Lee, Yang, Choi, &

Park, 2006, p. 808). To ensure the model uses accurate values with respect to temperature, the

material’s thermal properties are dynamically updated as the system changes temperature.

2) Literature review 26

Figure 2.12 – Specific heat capacity of XLPE insulation (Lee, 2006, p. 806)

Specific heat, cp (J/(g.K))

Material
Temperature (°C) Reference

20 50 90

Aluminium 0.897 (The Engineering

Toolbox, 2014b) Copper 0.385

XLPE 2.034 2.976 4.049 (Lee, Yang, Choi, &

Park, 2006, p. 806) Semiconductor 1.6 2.39 -

PVC 0.840 – 1.170

(The Engineering

Toolbox, 2014b)

Bedding 1.480

Soil 0.800 - 1.480 (moisture dependant)

Air 1.005

Table 2.6 – Specific heat of relevant materials

2) Literature review 27

2.4.3) Volumetric mass density

The volumetric density, ρ, of the materials present in the simulation are required to calculate

the thermal diffusivity of the material.

Material Density, ρ (g/cm3) Reference

Aluminium 2.712 (The Engineering

Toolbox, 2014d) Copper 8.940

XLPE 0.92 - 0.948 (Hampton, Hartlein,

Lennartsson, Orton,

& Ramachandran,

2012)
Semiconductor 1.4 - 1.5

PVC 0.769 - 0.833
(The Engineering

Toolbox, 2014c)

Bedding 1.522
(AgriInfo, 2011)

Soil 1.1 - 1.6

Air (1.293 - 1.127)x10-3 (0°C to 40°C)
(The Engineering

Toolbox, 2014e)

Table 2.7 – Thermal conductivity of relevant materials

2.4.4) Thermal Diffusivity

Thermal diffusivity, α, quantifies a material’s ability to conduct thermal energy relative to its

ability to store thermal energy and is governed by Equation 2.3 which combines the values

listed above.

𝛼 =
𝑘

𝑐𝑝𝜌
 (m2/s)

Equation 2.3 – Thermal diffusivity of a material

2) Literature review 28

Using the worst-case values from the above tables, the values in Table 2.8 were calculated.

Thermal Diffusivity, ρ (10-6 m2/s)

Material Minimum Maximum

Aluminium 84.08 102.54

Copper 116.5 115.6

XLPE 0.058 0.150

Semiconductor 0.1540 0.3004

PVC 0.1949 0.2941

Bedding 2.886 5.549

Soil 0.0127 0.682

Air 0.0174 0.0239

Table 2.8 – Thermal diffusivity of relevant materials

2.5) Rating factors

Rating factors are used by engineers to extend beyond a standardised set of values and

provide a higher level of accuracy when analysing a specific system. These factors help to

minimise the assumptions and generalisations which lead to errors when calculating the

capacity of underground cables (AS 3008, 2009). The rating factors include but are not

limited to; the effects of air and ground temperature, the depth of cable lay, heating from

neighbouring cables and variations between three-phase and single-phase cable construction

(Gemscab, 2014, p. 8). The simulation model developed in this research project will provide

the user with enough configurability to omit the need for applying rating factors as the

simulation model will generate results based on the specific properties of the system.

2) Literature review 29

2.6) Statistical representation of cable joint failures

Cable joints are subject to many external factors which can cause degradation and reduce

service life. Due to the complex nature of these factors and variation between cable systems, a

statistical rather than system dependant approach has been adopted in an attempt to predict the

health of the cable joints within a cable system. Mehairjan's (2010) research into the failure

rate of cable joints in a 10kV underground cable system will be utilised to provide

information for a statistical model. The probability distribution shown in Figure 2.13 will

provide the basis to determine the minimum life expectancy of a system containing synthetic

cable joints.

This statistical analysis has many limitations as it is based on one set of data and many

generalisations must be made to relate this data to all cable installations. Statistical

information in the field of underground polymeric cable joint failures is very limited as it is a

relatively new technology. More data will become available as cable installations age,

however, it will be difficult to accurately apply this historical data to new cable installations

as technology within the field of underground power cables is continually advancing through

improved materials, manufacturing and installation techniques. Taking this into consideration,

a statistical analysis of cable joints will be included in the simulation to provide users with a

guideline for determining the health of a system by estimate the statistical worst-case joint

condition. This information may be useful to evaluate protection setting adjustments or to

determine preventative maintenance schedules.

2) Literature review 30

Figure 2.13 – Probability density function of synthetic cable joint failures

3) Design and methodology 31

3) DESIGN AND METHODOLOGY

3.1) Thermal transfer model

3.1.1) Thermal diffusion using discrete finite elements

Heat transfer throughout a system, over time, can be modelled using a combination of

Fourier’s law of heat flow and a basic two dimensional equation of heat transfer (Nikishkov,

2010, p. 13).

− [
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
] + 𝑄 = 𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡

Equation 3.1 – 2-D representation of a function of T in space and time

Where qx and qy are components of heat flow through the unit areas and Q is the rate of

internal heat generation per unit volume. According to Fourier’s law, the components of heat

flow can be expressed as follows (Nikishkov, 2010, p. 13):

𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
, 𝑞𝑦 = −𝑘

𝜕𝑇

𝜕𝑦

Equation 3.2 – Fourier’s law of heat flow

Combining Equation 3.1 and Equation 3.2 yields:

𝑘

𝜌𝑐𝑝
[
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
] + 𝑄 =

𝜕𝑇

𝜕𝑡

Equation 3.3 – Heat transfer equation

3) Design and methodology 32

In order to simplify the system described by Equation 3.3, partial differential equations can be

transformed into finite difference equations. For this transformation, the explicit approach will

be used to solve for one unknown at a time. The central difference approximation outlined in

Table 3.1 will be used to transform each of the partial differential equations in Equation 3.3.

Table 3.1 – Central difference approximation of derivatives (USQ ENG4104, 2013)

𝜕2𝑇

𝜕𝑥2
 →

𝑇𝑚+1,𝑛,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚−1,𝑛,𝑜

(∆𝑥)2

𝜕2𝑇

𝜕𝑦2
 →

𝑇𝑚,𝑛+1,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚,𝑛−1,𝑜

(∆𝑦)2

𝜕𝑇

𝜕𝑡
 →

𝑇𝑚,𝑛,𝑜+1 − 𝑇𝑚,𝑛,𝑜

∆𝑡

𝛼 [
𝑇𝑚+1,𝑛,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚−1,𝑛,𝑜

(∆𝑥)2
+

𝑇𝑚,𝑛+1,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚,𝑛−1,𝑜

(∆𝑦)2
] + 𝑞 ̇ =

𝑇𝑚,𝑛,𝑜+1 − 𝑇𝑚,𝑛,𝑜

∆𝑡

Equation 3.4 – Transformation into central difference equation

Where;

�̇�, is the thermal rate of change due to heating within a finite element

𝛼, is the thermal diffusivity of the material as outlined in Section 2.4.4)

3) Design and methodology 33

𝛼 =
𝑘

𝑐𝑝𝜌
 (m2/s)

Equation 3.5 – Thermal diffusivity of a material

Figure 3.1 shows how the future point of T(m,n,o), T(m,n,o+1), can be calculated from the know

value of T(m,n,o) and the value of T at the surrounding discrete elements. This is repeated for all

values of m and n to determine the future temperature distribution of the complete system.

Figure 3.1 – Matrix formation for 2-D steady state temperature

Re-arranging Equation 3.4 and by ensuring that ∆x = ∆y, the following equation is produced:

𝛼

(∆𝑥)2
[𝑇𝑚+1,𝑛,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚−1,𝑛,𝑜 + 𝑇𝑚,𝑛+1,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚,𝑛−1,𝑜] + �̇�

=
𝑇𝑚,𝑛,𝑜+1 − 𝑇𝑚,𝑛,𝑜

∆𝑡

T(m+1,n,o)

T(m,n,o) T(m-1,n,o)

T(m,n+1,o)

∆x

∆y

T(m,n,o+1)

where:

m = the x location

n = the y location

o = the location in time

T(m,n-1,o)

3) Design and methodology 34

Which is equal to:

𝛼∆𝑡

(∆𝑥)2
[𝑇𝑚+1,𝑛,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚−1,𝑛,𝑜 + 𝑇𝑚,𝑛+1,𝑜 − 2𝑇𝑚,𝑛,𝑜 + 𝑇𝑚,𝑛−1,𝑜] + �̇�∆𝑡

= 𝑇𝑚,𝑛,𝑜+1 − 𝑇𝑚,𝑛,𝑜

Letting:

𝜆 =
𝛼∆𝑡

(∆𝑥)2

Equation 3.6 – Simplified diffusivity constant

Which can be simplified to:

𝜆[𝑇𝑚+1,𝑛,𝑜 + 𝑇𝑚−1,𝑛,𝑜 + 𝑇𝑚,𝑛+1,𝑜 + 𝑇𝑚,𝑛−1,𝑜 − 4𝑇𝑚,𝑛,𝑜] + �̇�∆𝑡 = 𝑇𝑚,𝑛,𝑜+1 − 𝑇𝑚,𝑛,𝑜

Rearranging to solve for the only unknown, T (m,n,o+1), yields the following equation:

𝑇𝑚,𝑛,𝑜+1 = 𝜆[𝑇𝑚+1,𝑛,𝑜 + 𝑇𝑚−1,𝑛,𝑜 + 𝑇𝑚,𝑛+1,𝑜 + 𝑇𝑚,𝑛−1,𝑜 − 4𝑇𝑚,𝑛,𝑜] + 𝑇𝑚,𝑛,𝑜 + �̇�∆𝑡

Which can be simplified to:

𝑇𝑚,𝑛,𝑜+1 = 𝜆𝑇𝑚+1,𝑛,𝑜 + 𝜆𝑇𝑚−1,𝑛,𝑜 + 𝜆𝑇𝑚,𝑛+1,𝑜 + 𝜆𝑇𝑚,𝑛−1,𝑜 + (1 − 4𝜆)𝑇𝑚,𝑛,𝑜 + �̇�∆𝑡

Equation 3.7 – Difference equation with one unknown

3) Design and methodology 35

The central difference equation reduces to Equation 3.7 which can be used to solve the

unknown future temperature of one finite element. This is effectively a summation of the

previous temperature of the node, the heat received or lost to the four surrounding nodes and

any internal heat generation at the node.

3.1.2) Heat generation due to current flow within the conductor

As current flows through the conductive material there is an inevitable power loss due to the

voltage drop across the resistance of the material. The amount of heat generated by this power

is dependent on the resistance of the conductor, the magnitude of the current and the specific

heat capacity of the conducting material. The power received by the system is represented by

the formula for Joule heating (Wiki, 2014a) using the magnitude of the current and the

resistance of the conductor. The resistance per metre is available from manufacturer

datasheets and in Table 2.3.

𝑃 = 𝐼2𝑅 (W or J/s)

Equation 3.8 – Joule heating/Ohms law

The power acting on each finite element, p, can be solved by multiplying the total power loss,

P, by the ratio of finite element area to the conductor cross-section. It should be noted that by

using a length of 1 metre, the volume can be simplified to area.

𝑝 = 𝑃
𝑉𝐹𝐸

𝑉𝐶
 = 𝑃

∆𝑥. ∆𝑦

𝐴
 (J/s)

Equation 3.9 – Joule heating within one finite element

The rate of temperature change within the F.E. due to the power loss, �̇�, can be found using

the specific heat of the material, cp, which is the amount of energy required to heat a per unit

3) Design and methodology 36

mass by one degree. This rate of temperature change is required in Section 3.1.1) to cater for

the additional thermal energy from internal heating (QueensU, 2014, p. 11).

Where, m is the mass of the finite element, relative to the density and volume of the F.E.

𝑚 = 𝜌. ∆𝑥. ∆𝑦. 𝑙

�̇� =
𝑝

𝑐𝑝. 𝑚
 =

𝑝

𝑐𝑝. 𝜌. ∆𝑥. ∆𝑦. 𝑙
 (K/s)

Equation 3.10 – Rate of temperature change of F.E. from internal heating

3) Design and methodology 37

3.2) Model conditions

3.2.1) Boundary conditions

Boundary conditions are required when using an explicit finite element approximation. The

boundary conditions that will be used for this model are the temperature values of the outer

finite elements. To ensure the boundary conditions have minimal impact to the system, the

system will need to be big enough to ensure the cable system can heat without the boundary

elements acting as a heat sink.

3.2.2) Conditions at time = 0

At the initial point of the simulation, the complete system will be set to the ambient

temperature of the ground and air (if depth is less than half the system height). This will allow

the simulation to analyse the temperature rise of the system from a no-load condition to

steady-state.

3.2.3) Simulation time

The simulation shall continue to run until the maximum temperature within the system

stabilises. This is dependant of the size of the system and it was found that the temperature

change within the system was negligible after a simulation period of five days.

3.3) Fault current temperature rise

Once the load current has been used to determine the steady-state operating temperature of the

cable, various over-current values shall be imposed on the system to determine the time it

takes for the conductor to reach the operational temperature limit. By repeating this across a

range of current values, a break curve can be generated and an industry standard IDMT curve

can be fitted to the data points.

3) Design and methodology 38

3.4) Statistical cable joint health

The values found by Mehairjan (2010, p. 73) for the Weibull distribution will be used to

determine the failure rate function which will outline the probability that a joint failure will

occur with respect to the age of the system.

The shape of the system, β = 4.48, and the scale parameter, η = 52.40, outline the probability

distribution function, f(t), of the two parameter Weibull distribution equation:

𝑓(𝑡) =
𝛽𝑟𝛽−1

η𝛽
 𝑒

−(
𝑡
η

)
𝛽

Equation 3.11 – Equation for 2-parameter Weibull distribution

The reliability function is defined as follows (New Mexico Tech):

𝑅(𝑡) = 𝑒
−(

𝑡
η

)
𝛽

Equation 3.12 – Equation for reliability function

The failure rate distribution, F(t), is determined by dividing the probability distribution

function by the reliability function (New Mexico Tech):

𝐹(𝑡) =
𝑓(𝑡)

𝑅(𝑡)

Equation 3.13 – Equation for failure rate distribution

Solving F(t) for t = age of system (years) gives the probability of one cable joint failing.

3) Design and methodology 39

Figure 3.2 – Failure rate of a single cable joint (Mehairjan, 2010, p. 73)

The probability of one joint failing, Figure 3.2, is then multiplied by the total number of joints

within the system to determine the probability any one joint will fail at the specified age of the

system. This probability will then be linearly interpolated with the probability of 0 returning

the impedance value of a healthy joint, 15 μΩ, and the probability of 1 returning the

impedance of a poor joint, 48 μΩ (Fournier & Amyon, 2001). This impedance value can then

be simulated to analyse how some of the joints within the system may behave.

Note: this is based on an assumption that if a joint has failed, it has been replaced and the

replacement is the same age as the system.

4) Implementation into MATLAB 40

4) IMPLEMENTATION INTO MATLAB

4.1) Overview

MATLAB software provides a platform to modify and manipulate data contained in matrices.

This makes it perfect for manipulating and solving a matrix of finite elements. This chapter

outlines how the mathematics discussed in Chapter 3 will be implemented into MATLAB and

used to solve the thermal analysis of an underground cable system. Appendix C - MATLAB

code structure, outlines the interaction between the MATLAB files with the complete code

outlined in Appendix D - MATLAB code.

4.2) Finite elements of the system

The size of the finite element matrix depends on the user specification of the system

resolution. The cross-section of the simulated cable system is configured as a square with an

equal number of finite elements across the horizontal and vertical planes. Increasing the

resolution of the system significantly increases the time the simulation will take to solve. This

is due to the extra finite elements and a further requirement to decrease the simulation time

step to ensure the system remains stable. Running higher resolution simulations may be

feasible when solving a system requiring a higher level of accuracy. The following table

outlines the three different resolution settings available to the user.

4) Implementation into MATLAB 41

Resolution
System

size

Matrix

size

No. of

F.E.

Stage 1

iterations
Runtime Comments

Low

(10 mm)

1m x

1m

101 x

101
10,201 2,160,000 20 mins*

This resolution will provide

the user with a good

approximation of the system

within a reasonable

timeframe. It is suggested to

use the ‘Mid’ resolution to

when system is confirmed.

This resolution will not

work for cable systems with

conductor cross-section area

of less than 500mm2.

Mid

(4 mm)

0.8m x

0.8m

201 x

201
40,401 14,400,000 6 hours*

This resolution will provide

accurate results with a

trade-off of simulation

runtime. This should be

used to simulate mid-large

cross-sections and will

return well defined images

throughout the simulation.

High

(2 mm)

0.6m x

0.6m

301 x

301
90,601 43,200,000 18 hours*

This resolution should be

used only to simulate

smaller cable systems as the

cross-sectional area is

smaller than the systems

above. The 2mm step size

improves the ability for the

square based F.E. system to

represent the curved shape

of the cable cross-section.

Table 4.1 – Finite element resolution configuration

* Simulation time will depend on computer's performance

4) Implementation into MATLAB 42

4.2.1) Layout matrix

A matrix representing the total number of finite elements shown in Table 4.1 is generated

with each matrix entry represented by an integer that maps to the material most present at the

finite element location. This can be shown by comparing the low and mid resolution of a

single cable in Figure 4.1. These images are displayed to the user with a relevant colour

mapped to the number of each element of the layout matrix during the configuration of the

cable system. It can be seen that the materials of the low resolution setting are in the correct

location and take the form of the dominant material within the finite element.

Figure 4.1 – Comparison of the layout representation of low and mid resolution

The layout matrix is created using Pythagoras’ theorem to calculate the distance from each

finite element to the centre of each conductor using the number of rows and columns. This

distance is used to determine which material would fall within the finite element based on the

user defined material thickness.

When simulating a system without cable joints, the layout matrix will be defined using the

material thicknesses configured by the user. If a system contains cable joints (only applicable

to conductors of cross-section of 400mm2 or less) the thickness of the materials will be

defined by the part specification of the Tyco jointing kit, MXSU (Tyco Electronics, 2009).

4) Implementation into MATLAB 43

The joint dimensions are based on the MXSU-3341 as this joint is appropriate for cables with

a cross-section of 185mm2 to 400mm2.

The layout matrix contains integers from 1-7 and map accordingly to Table 4.2.

Integer

representation

Material

representation

Colour

representation

1 Conductor
Grey (aluminium)

Copper (gold)

2 XLPE White

3 Shield Gold

4 PVC Black

5 Bedding sand Tan

6 Soil Brown

7 Air Blue

Table 4.2 – Layout matrix integer representation

Note: air is only shown if the depth of lay is less than half the height of the system, as defined

above in Table 4.1. Australian Standard AS3000 (2007) specifies cables to be buried at a

depth greater than 0.6 m thus this simulation would not typically be required, however, this

feature has been included to simulate cables rising to be terminated above ground.

Establishing the above layout matrix simplifies the association of material properties with

specific finite elements, as a MATLAB ‘if’ statement can be used to manipulate one material

type. For example, heat generated within the finite elements will only occur within conductor

materials represented by the integer ‘1’ in the layout matrix.

4) Implementation into MATLAB 44

4.3) Thermal matrix computation

As the simulation progresses through time, the temperatures throughout the system will vary.

As the temperatures within the system change, the material properties will also change. It is

therefore required that the material properties be updated as the thermal profile of the system

changes to enhance the accuracy of the simulation.

4.3.1) Material property variation

The properties of the materials, as discussed in Section 2.3) vary with respect to temperature.

The individual diffusivity coefficient, 𝜆, as outlined in Equation 3.6 is dependent on; the

material’s thermal diffusivity, 𝛼, the simulation time step, ∆𝑡, and the area of the finite

element, (∆𝑥)2. As the timestep and area remain constant across the complete simulation

space, the value of alpha becomes the variable of lambda for each finite element.

𝜆 =
𝛼∆𝑡

(∆𝑥)2
 where, 𝛼 =

𝑘

𝑐𝑝𝜌

Equation 4.1 – Diffusivity constant revisited

The 𝜆 value of each finite element is calculated and maintained in the lambda matrix, L. This

is dynamically updated as the temperature changes within the system to account for variation

in the material properties. Due to these physical variations and the use of different materials

throughout the system, neighbouring elements will have different lambda values. To

overcome this, the L matrix is used to determine the average lambda value at each edge of all

finite elements. These values are represented as four matrices, (Lu, Ld, Lr, Ll Figure 2.3),

containing the lambda values at each boundary of every finite element. Further use of the L

matrices is outlined in section 4.3.3).

4) Implementation into MATLAB 45

Figure 4.2 – Method to determine the Lambda values interacting with each F.E.

4.3.2) Qdot matrix

Another consideration that must not be overlooked is the variation of the conductor resistance

with respect to temperature. As outlined in Equation 3.8, the power generated within the

conductor is proportional to the resistance of the conductor, it is therefore important that the

rate of heat generation within each conductor finite element be dynamically recalculated as

the conductor temperature changes.

This matrix Qdot contains the value of �̇� at every conductor finite element which is calculated

using the steps outlined in section 3.1.2). By maintaining the data in matrix form, the

influence of �̇� can be applied across the complete system using matrix addition of Qdot

during the creation of the future thermal matrix as outlined in section 4.3.3).

4.3.3) T matrix

The thermal matrix, T, contains the temperature of each finite element within the system. This

makes it considerably large with up to 90,000 entries, depending on the resolution. Executing

the steps outlined in Section 3.1.1) to calculate the future temperature for each of the entries

would take a very long time if executed as a ‘for’ loop which would not be acceptable. To

optimise the run time, future temperature values will be found using matrix mathematics. This

λ1

λ2

λ3 λ0 λ 4

Lambda matrix values of

the finite element located

at (i,j):

Lu(i,j) = (λ0 + λ1) / 2

Ld(i,j) = (λ0 + λ2) / 2

Ll(i,j) = (λ0 + λ3) / 2

Lr(i,j) = (λ0 + λ4) / 2

(i,j)

4) Implementation into MATLAB 46

is where MATLAB’s ability to manipulate matrices becomes a critical tool for this research

project.

As discussed previously, they system has boundary conditions fixing all outside elements to a

known temperature. Therefore, the internal matrix values need to be solved based on the

previous temperature of the finite elements within the system. To achieve this, five new

matrices are created from the existing thermal matrix and then used to solve the new thermal

matrix with matrix operations. Each of these matrices are 2 x 2 smaller than the T matrix and

are created by first copying T and then shedding unnecessary rows and columns from the T

matrix as shown in Figure 4.3.

This matrix manipulation allows for the following single line of code to apply Equation 3.7 to

all the internal values and generate the future internal matrix for the thermal profile of the

cable system:

T_Int = Lu.*T1 + Ld.*T2 + Ll.*T3 + Lr.*T4 + (1-(Lu+Ld+Ll+Lr)).*T0 + Qmat

Figure 4.3 – Creation of T' matrices for simulation optimisation

T1

T2

T4 T3

T0

4) Implementation into MATLAB 47

4.4) Pick-up value

The pick-up value serves two purposes in this simulation; to show the users the maximum

pick-up value that could be used on the cable system, and as a reference point for the first

break curve value. To solve for the pick-up value, the simulation must find the current that

will cause the system to heat to 90 °C at the timer limit of the protection relay. This could be

solved by brute force, however, the following method has been used to reduce the time to

solve the simulation.

The value cannot be solved directly from the load current temperature change due to the non-

linearity of the system with respect to temperature. However, this information can be used to

estimate the pick-up current. The maximum time for this simulation is restricted by the

maximum counter time of the protection relay, tmax (10,000 seconds). The simulation is run

with the estimated pick-up current and the resultant temperature rise is used to further

estimate the pick-up current. Once the maximum temperature stabilises within 0.5°C of the

maximum allowable temperature, 90°C, the pick-up current value is accepted and the

simulation advances to the next step; determining the system break points.

4.4.1) Method for pick-up current estimation

As, ΔT is proportional to q, q is proportional to P, and P is equal to I2 the following equation

can be used as an approximation. However, as the system is non-linear due to the variation of

material properties with respect to temperature, this is used as a guide only.

𝛥𝑇 ∝ I2R

Although the target curve is the red curve outlined in Figure 4.4, starting from the steady-state

thermal profile, it can be seen that solving for the no load pick-up current value, green, will

yield only a small error to the desired ‘red’ curve. This error will later be removed as the

simulation converges on 90 °C.

4) Implementation into MATLAB 48

Figure 4.4 – Solving for the system's pick-up current

Using the following proportionality equations:

𝛥𝑇𝑆𝑆 ∝ IL
2R

𝛥𝑇1 ∝ I1
2R

Where resistance, R, is assumed constant (this is not true due to material property changes):

𝛥𝑇𝑆𝑆

IL
2 ∝ R

𝛥𝑇1

I1
2 ∝ R

Time

System

max. temp.

90°C

SSM

T

Gtem

p
tmax

ΔT1

ΔTSS

ΔTPU

Error

Steady-state thermal profile

Required thermal profile

Pick-up thermal profile

4) Implementation into MATLAB 49

The following equation can be derived:

𝛥𝑇𝑆𝑆

IL
2 =

𝛥𝑇1

I1
2

Rearranging to isolate the unknown:

I1
2 = IL

2 𝛥𝑇1

𝛥𝑇𝑆𝑆

Solving for I1:

I1 = IL√
𝛥𝑇1

𝛥𝑇𝑆𝑆

4.4.2) Pick-up current finalisation

The above method is used to determine an estimate of the pick-up current. Due to the non-

linearity of the system, this value is always above the target of 90°C. This is predominantly

due to the increase in resistance of the conductor and therefore a higher power output as

temperature increases.

By repeating the above method, the system can converge on the actual pick-up current of the

system. Again, due to the non-linearity of the system, the second attempt would overshoot so

the average between the calculated value and the previous estimate is used. This is repeated

until the resultant thermal curve reaches 89.5 < T < 90.5 °C at t = tmax. The maximum

attempts is locked at five to ensure the system does not get into an endless loop should the

4) Implementation into MATLAB 50

result not diverge, however, the pick-up current value is generally found in less than three

attempts, as shown from the output data below.

Example progress report from the MATLAB command window:

At iteration 1, current used 1399A, max temp. 135.27

At iteration 2, current used 1228A, max temp. 93.17

At iteration 3, current used 1212A, max temp. 90.08

4) Implementation into MATLAB 51

4.5) Solving for protection settings

4.5.1) Break curve

Once the pick-up current is known, the simulation then continues to solve for the break points

of the cable system. To achieve this, fault current values at logarithmic intervals above that of

the pick-up current are simulated onto the steady state thermal profile. The simulation time

taken for the system to reach the maximum permissible temperature is recorded at each of the

fault current values thus creating a break curve. A safety curve is then determined by

considering the breaker operating time and the user defined safety margin which would

normally account for any safety factors and equipment tolerances.

Figure 4.5 – Break curve of simulated cable system

4) Implementation into MATLAB 52

4.5.2) Curve fitting

A brute force approach is used to fit the industry standard protection curves outlined in

Section 2.2.6). Two variables are required to configure the curves; the pick-up current and the

time multiplier setting (TMS). At this stage, the pick-up current is already know from the

method described in section 4.4).

The system individually solves each curve for the TMS value by starting with TMS = 0, the

curve is checked against the safety curve and if all points fall below this, the TMS is

incremented by 0.1, which shifts the curve up slightly and, re-checked. Once the TMS value

causes the curve to exceed any of the points on the safety curve, the previous TMS value is

saved and the same procedure is undertaken to solve for the other curves.

4.5.3) Best fit curve

After all the curves have been fit to the safety curve, the next step is to find the curve that fits

best. To achieve this, the vertical gap (time) between each point of the best fit and safety

curve, is used to determine the regression. As this is a logarithmic system, linear regression

cannot be used as the points at the lower end of the tripping time should carry the same

weight as the tripping time at tmax. For this reason, a logarithmic regression is used at each

point of the curve, as depicted by crosses in Figure 4.5. The regression values for each curve

are summated with the lowest total regression representing the most appropriate protection

settings. This curve is then displayed with the setting values to the user along with the break

and safety curves for the cable system.

4) Implementation into MATLAB 53

4.6) Assumptions, approximations and limitations

Whilst every effort was made to develop an accurate model of an underground cable system

and account for all the significant factors influencing the thermal properties of the system, the

following limitations should be noted as they may enhance the accuracy of the model. These

may provide basis for further analytical work in this field.

4.6.1) Limitations of the 2-dimensional model

For the 2-dimensional model to operate, it is assumed that all parts along the cross section of

the cable heat homogeneously. In reality, there would be a variation in temperature along the

cable system as the cable passes through materials with varying thermal properties (Williams,

1999). This temperature differential along the cable would allow areas of increased

temperature to not only conduct heat outwards through the insulating material and into the

surrounding soil but also along the cable in a transverse direction. This would not have a

significant impact on the analysis of the cable unless the material properties changed

suddenly. However, this could be influential for a cable joint which has the potential for a

significant thermal gradient (dT/dz, where z is the distance along the cable). This would

promote thermal transfer in the z direction and ultimately a change in steady state temperature

which has not been factored into the simulation model.

4.6.2) Interfacial thermal resistance

The thermal diffusivity between finite elements were determined by taking the average of the

thermal diffusivity by the two neighbouring elements. This neglects the interfacial thermal

resistance between the two material surfaces which acts to increase the thermal resistance due

to molecular variations in the materials.

4.6.3) Boundary conditions

For the finite element analysis to work, boundary conditions are required. These conditions

are required to keep the simulation referenced to the ambient conditions. The effect of the

4) Implementation into MATLAB 54

boundary conditions can be reduced by increasing the simulation space, however, this is a

trade of with the simulation time.

4.6.4) Surface heating

The effects of surface heating, such as where an underground cable passes under a road, can

affect the thermal conditions of the cable system. In the case of this simulation, no provision

was added to accommodate the additional heating effects of surface heating

4.6.5) Joint resistance

Whilst many of the material properties within the system are dynamically updated as the

system changes with temperature, this information was not available for cable joints, therefore

the resistance remains fixed with respect to temperature. Information on cable joint resistance

is not readily available as in practice, any resistance measurements on cable joints would

require destructive intervention making the joint unserviceable.

4.6.6) Method for earthing the cable screen

The voltage induced on the shield of the cable by the main conductor has the potential to

generate currents within the shield. These currents cause additional heating within the cable

system and can result in a reduction of capacity. For this reason, many cable installations only

terminate the shield of the cable at the supply end of the cable system. If this is done, the

screen is still bonded to earth and any insulation breakdowns will be detected by the

protection device, however, there is a risk of voltage potential developing between the cable

shield and earth reference at the downstream plant. This simulation assumes no current

flowing within the shield of the conductor and therefore, best models single earth bonding of

a cable system.

4) Implementation into MATLAB 55

4.6.7) Skin and proximity effect

The skin effect has been omitted from this simulation due to the relatively small, and round

conductors. The effect of this phenomenon generally results in an uneven current distribution

within the conductor and an increase in the joule heating due to the displaced current flow. It

starts to become significant for conductors of 1600 to 2000A and is very important above

4000A where it can generate up to 10% additional heating within the conductor (Schneider

Electric, 2002).

4.6.8) Heating within the insulation

As the voltage within a power cable is charging and discharging the electric field within the

insulation material 50-60 times per second, this can lead to heating within the insulating

material. For the purpose of this research project, this effect has been neglected.

4.6.9) Free convection

Free convection, as described by Farouke, (1981, p. 7) is caused by changes in density with

respect to temperature. However, Farouke states that in soils, the convection through air or

water is negligible due to the very small nature of the pores. For the purpose of this

simulation, only the thermal conductive properties have been considered for thermal transfer

within the system.

4) Implementation into MATLAB 56

4.7) Validation of model

The simulation model must be assessed to determine if the results from the simulation will be

useful. Whilst sophisticated and expensive cable analysis software was not accessible

throughout the duration of this project, design guidelines from manufacturer’s data and

Australian standards provided the basis for the assessment. This information was compared to

the break points generated by the simulation to determine the accuracy of the model. It would

have been an added benefit to compare the steady state temperature values with real-world

test results, however, no results could be found to make a valid comparison.

4.7.1) GEMSCAB

Data from the Gemscab datasheet was used to determine the current rating of the cable system

as outlined in Table 4.3. These values were also implemented into the simulation model so the

results could be compared for a direct buried 11kV cable with 630mm2 cross-section. The

rating factors are used to determine a more accurate cable ampacity given the environmental

conditions of the cable system.

Variable Value used Rating factor

Cable configuration Single trefoil 1

Conductor cross-section 630 mm2 1

Nominal rating 553 A 1

Depth of lay 600 mm 1

Soil thermal resistance 0.5 W.m-1.K-1 0.89

Soil temperature 25 °C 1.04

Current rating 512 A 0.926

Table 4.3 – Gemscab current rating, data: Gemscab (2014)

By using a similar load current in the simulation model, the results from the break curve can

be analysed against the short circuit rating of the cable system. These values are shown in

Figure 4.6 and are derived from the following equation for short circuit rating as defined by

Gemscab (2014, p. 18).

4) Implementation into MATLAB 57

𝐼𝑠ℎ =
𝐾𝐴

√𝑡

Where, K, the thermal constant for the Gemscab 630mm2 aluminium conductor, is equal to

59.0. From this, the short circuit current value, Ish, can be equated from the conductor cross-

sectional area, A, and trip time, t. This is an adiabatic approximation and not effects of

thermal transfer within the system are considered.

4.7.2) Australian Standard 3008.1.1-2009

The Australian Standard, AS3008, sets out a method for cable selection and determining

sustained current-carrying capacities for cable installations in Australia (AS 3008, 2009). This

method is specifically for cable systems operating at voltages below 1kV, however, for the

purpose of cable ampacity only, this will provide a valid benchmark to compare the

simulation model.

Variable Value used Rating factor

Cable configuration Single trefoil 1

Conductor cross-section 630 mm2 1

Nominal rating 688 A 1

Depth of lay 600 mm 0.97

Soil thermal resistance 0.5 W.m-1.K-1 0.81

Soil temperature 25 °C 1

Current rating 540 A 0.785

Table 4.4 – Australian Standard current rating, data: AS3008 (2009)

AS3008 outlines a method for determining trip times with the addition of the safety period

where the cable system can operate up to 250 ⁰C for less than 5 seconds. For a fault duration

of more than 5 seconds, the maximum operating temperature of XLPE insulation is 90 ⁰C.

4) Implementation into MATLAB 58

The values for K for faults lasting more or less than five seconds can be obtained from

AS3008 - table 52.

𝐾 =
111
62.4

 }
𝑡 < 5
𝑡 ≤ 5

Using these values, the following equation can be used to determine the recommended trip

times of the cable system. These values are shown in Figure 4.6.

𝐼2𝑡 = 𝐾2𝑆2

4.7.3) Simulation results

By simulating a cable system identical to that discussed above, the results from the simulation

can be validated against the methods from the Gemscab datasheet and AS3008. The variables

used in the simulation are as follows. It should be noted that 520 A was used as the load

current which is between the two values determined above.

Variable Value used

Cable configuration Single trefoil

Conductor cross-section 630 mm2

Load current 520 A

Depth of lay 600 mm

Soil thermal resistance 0.5 W.m-1.K-1

Soil temperature 25 °C

Table 4.5 – Values used for simulation verification

The two methods outlined above use an adiabatic model ignoring any thermal transfer within

the system. This approximation is acceptable for determining thermal behaviour over short

fault periods, however, as fault time increases, heat transfer from the conductor will become

4) Implementation into MATLAB 59

more apparent. Figure 4.6 shows that initially the simulation results and the trip times

determined from the Gemscab and AS3008 methods are very similar. It is important to note

that the AS3008 method, and similarly the simulation model, consider a 5 second period

where the cable system can tolerate a maximum temperature of 250 ⁰C. The similarity

between the Gemscab and AS3008 methods for t > 5 seconds outlines that these methods

offer an accurate point of comparison for the simulation results. The simulated break curve

tracks very closely to that of the AS3008, especially at the higher fault levels where t < 5

seconds. The effect of thermal transfer on the protection time can be seen as time increases

and the simulated curves diverge from the adiabatic curves. This provides a more realistic

representation of how the system would behave at low fault levels and proves the system is

comparable to industry standard approaches for determining trip times at high fault levels.

Figure 4.6 – Simulation validation using protection curves

5) Case studies and practical use 60

5) CASE STUDIES AND PRACTICAL USE

5.1) Chapter overview

The following chapter covers a variety of simulated cable installations. In each case study,

one key variable (Table 5.1) of the system was changed to understand the effects this variable

would have on the required protection settings of a cable system.

Case study System property variation

1
Comparison of single trefoil and parallel run trefoil with the

same load current.

2 The use of a trefoil cable compared to three single cables.

3 Cable system with and without bedding sand.

4 Pre-fault load current on the cable system.

5 Variation in the ambient temperature of the soil.

6 Core conductor material - copper and aluminium.

7 How deep the cable has been buried.

8 Soil saturation level.

9 Cable joint health.

Table 5.1 – Case study overview

5) Case studies and practical use 61

5.2) Case study 1 - Parallel run trefoil

One the motivating factors for conducting this research project was to analyse the

maintenance options of parallel run trefoil installations. The assessment was based on taking

one of the cables out of service and restoring the downstream supply via the single healthy

cable. It is important to note that this will affect the voltage drop and rated current of the

system, however, if these effects on the system were tolerable, modified protection settings

would need to be considered in order to provide adequate protection to the reduced system.

This case study will analyse if such a measure could be used to restore supply to critical

downstream equipment during fault rectification and maintenance of the complementary

cable. The following system parameters were used for case study 1 where the variation

between the simulation models has been outlined in red.

Variable Simulation A Simulation B

Cable configuration Parallel trefoil Parallel trefoil

Cables in service 2 1

Depth of lay 600 mm 600 mm

Bedding sand around cables 50 mm 50 mm

Bedding sand thermal resistance 0.25 W/(m.K) 0.25 W/(m.K)

Soil thermal resistance 0.8 W/(m.K) 0.8 W/(m.K)

Separation between cables 20 mm 20 mm

Conductor material Aluminium Aluminium

Conductor cross-section 400 mm2 400 mm2

XLPE thickness 12 mm 12 mm

Shield thickness 3 mm 3 mm

PVC thickness 4 mm 4 mm

Soil temperature 15 °C 15 °C

Load current 630 A 630 A

Table 5.2 – Case study 1 variables

5.2.1) Thermal results

The following plots were generated with a fixed maximum axis of 50 °C.

5) Case studies and practical use 62

Figure 5.1 – Steady state thermal profile (all cables in-service)

Figure 5.2 – Steady state thermal profile (single trefoil in-service)

5) Case studies and practical use 63

5.2.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.3 – Case study 1 IDMT protection curves

5) Case studies and practical use 64

5.2.3) Discussion

Results
Simulation A

Parallel trefoil

Simulation B

Single trefoil

Steady state, max T 26.6 °C 48.1 °C

Steady state, ΔT 11.6 °C 33.1 °C

Maximum pick-up current 1489 A 862 A

IDMT curve IEC Ultra IEC Extremely

Pick-up setting 1191 A 689 A

Time multiplier setting 16.7 8.5

Table 5.3 – Case study 1 results

Table 5.3 outlines the key differences between the operating limits of parallel versus single

trefoil configuration. The temperature rise of the single cable is 2.85 times that of the parallel

run cable. This would increase the fatigue of the cable and reduce the expected life, however,

it is still within operating limits so restoring the system as a single cable run is feasible under

the results of this simulation. Obviously, the current capacity of the single cable is about half

that of the single cable and looking at Figure 5.3, there is a significant shift in the required

protection curve. If a single cable is to be put into service in this configuration, care must be

taken to ensure the protection settings will provide adequate protection to the cable in-service.

5) Case studies and practical use 65

5.3) Case study 2 - Trefoil versus three single cables

This case study investigates the variation in capacity and required protection settings when

using three single phase cables, compared to a trefoil cable. The following system parameters

were used for case study 2 where the variation between the simulation models has been

outlined in red.

Variable Simulation A Simulation B

Cable configuration Single trefoil 3 single cables

Depth of lay 600 mm 600 mm

Bedding sand around cables 0 mm 0 mm

Bedding sand thermal resistance 0.25 W/(m.K) 0.25 W/(m.K)

Soil thermal resistance 0.8 W/(m.K) 0.8 W/(m.K)

Separation between cables NA 0 mm

Conductor material Copper Copper

Conductor cross-section 1000 mm2 1000 mm2

XLPE thickness 30 mm 30 mm

Shield thickness 5 mm 5 mm

PVC thickness 10 mm 10 mm

Soil temperature 15 °C 15 °C

Load current 1000 A 1000 A

Table 5.4 – Case study 2 variables

5.3.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature.

5) Case studies and practical use 66

Figure 5.4 – Steady state thermal profile (trefoil)

Figure 5.5 – Steady state thermal profile (three single cables)

5) Case studies and practical use 67

5.3.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.6 – Case study 2 IDMT protection curves

5) Case studies and practical use 68

5.3.3) Discussion

Results
Simulation A

Single trefoil

Simulation B

3 single cables

Steady state, max T 37.0 °C 37.9 °C

Steady state, ΔT 22.0 °C 22.9 °C

Maximum pick-up current 1803 A 1755 A

IDMT curve IEC Ultra IEC Ultra

Pick-up setting 1442 A 1404 A

Time multiplier setting 36.3 35.9

Table 5.5 – Case study 2 results

The thermal profile of the three single cables shows that the middle conductor sits in the

centre of a symmetrical thermal system, Figure 5.5. For this reason, the centre cable endures a

higher temperature than the outside cables and also a higher temperature than the trefoil

system as in the trefoil system, each of the phases have an equal opportunity for heat

dissipation to the surrounding environment.

5) Case studies and practical use 69

5.4) Case study 3 - Using bedding sand

This case study investigates the effects using bedding sand can have on the capacity of a cable

system. The following system parameters were used for case study 3 where the variation

between the simulation models has been outlined in red

Variable Simulation A Simulation B

Cable configuration Single phase Single phase

Depth of lay 600 mm 600 mm

Bedding sand around cables 150 mm 0 mm

Bedding sand thermal resistance 0.25 W/(m.K) 0.25 W/(m.K)

Soil thermal resistance 0.8 W/(m.K) 0.8 W/(m.K)

Conductor material Copper Copper

Conductor cross-section 2000 mm2 2000 mm2

XLPE thickness 40 mm 40 mm

Shield thickness 2 mm 2 mm

PVC thickness 15 mm 15 mm

Soil temperature 15 °C 15 °C

Load current 2000 A 2000 A

Table 5.6 – Case study 3 variables

5.4.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature.

5) Case studies and practical use 70

Figure 5.7 – Steady state thermal profile (with bedding sand)

Figure 5.8 – Steady state thermal profile (without bedding sand)

5) Case studies and practical use 71

5.4.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.9 – Case study 3 IDMT protection curves

5) Case studies and practical use 72

5.4.3) Discussion

Results
Simulation A

With bedding

Simulation B

Without bedding

Steady state, max T 34.8 °C 44.4 °C

Steady state, ΔT 19.8 °C 29.4 °C

Maximum pick-up current 3360 A 2799 A

IDMT curve IEC Ultra IEC Ultra

Pick-up setting 2688 A 2239 A

Time multiplier setting 35.5 43.7

Table 5.7 – Case study 3 results

Table 5.7 outlines the variation in operating limits of a cable system when bedding sand is

used. The thermal properties of the bedding sand promote heat flow away from the cable

reducing the operating temperature and thus increasing the capacity of the cable system.

Figure 5.7 shows a clear increase in temperature where the bedding sand exists to that of

Figure 5.8 where there is no bedding sand. This suggests that the sand is absorbing and

distributing more of the heat generated within the conductor.

5) Case studies and practical use 73

5.5) Case study 4 - Pre-fault load current

This case study endeavours to determine if there is any difference between the required

protection settings of an underground cable depending on the current that was flowing

through the conductor prior to a fault occurring. The following system parameters were used

for case study 4 where the variation between the simulation models has been outlined in red.

Variable Simulation A Simulation B Simulation C

Cable configuration Single trefoil Single trefoil Single trefoil

Depth of lay 600 mm 600 mm 600 mm

Bedding sand around cables 150 mm 150 mm 150 mm

Bedding sand thermal resistance 0.25 W/(m.K) 0.25 W/(m.K) 0.25 W/(m.K)

Soil thermal resistance 0.8 W/(m.K) 0.8 W/(m.K) 0.8 W/(m.K)

Conductor material Aluminium Aluminium Aluminium

Conductor cross-section 800 mm2 800 mm2 800 mm2

XLPE thickness 15 mm 15 mm 15 mm

Shield thickness 3 mm 3 mm 3 mm

PVC thickness 5 mm 5 mm 5 mm

Soil temperature 15 °C 15 °C 15 °C

Load current 50 A 500 A 1000 A

Table 5.8 – Case study 4 variables

5.5.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature.

5) Case studies and practical use 74

Figure 5.10 – Steady state thermal profile (50A load)

Figure 5.11 – Steady state thermal profile (1000 A load)

5) Case studies and practical use 75

5.5.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.12 – Case study 4 IDMT protection curves

5) Case studies and practical use 76

5.5.3) Discussion

Results
Simulation A

Pre-fault 50A

Simulation B

Pre-fault 500A

Simulation C

Pre-fault 1000A

Steady state, max T 15.1 °C 24.4 °C 61.0 °C

Steady state, ΔT 0.1 °C 9.4 °C 46.0 °C

Maximum pick-up current 1387 A 1335 A 1227 A

IDMT curve IEC Extremely IEC Extremely IEC Extremely

Pick-up setting 1109 A 1084 A 981 A

Time multiplier setting 25.2 22.5 11.7

Table 5.9 – Case study 4 results

It is clear from Figure 5.12 that the pre-fault load can significantly change the required

protection settings. As the cable's maximum operating temperature is fixed, the pre-fault load

current affects the steady state temperature and hence the thermal buffer should a fault occur

on the system. The Gemscab (2014) datasheet outlines this cable configuration as having a

rated load of 662A. By overloading this cable with 1000A, the cable has heated to 60°C

which takes the cable significantly closer to the maximum specified temperature and therefore

requires more sensitive protection compared to the other simulated load currents which are

within manufacturer specified limits.

5) Case studies and practical use 77

5.6) Case study 5 - Ground Temperature

The purpose of this case study is to determine how the temperature of the soil effects the

rating and therefore the protection settings required for a cable system. For this simulation,

only the ground temperature has been changed, however, in reality the soil properties would

also change with respect to temperature, especially if the ground was frozen (Farouke, 1981,

p. 102). The following system parameters were used for case study 5 where the variation

between the simulation models has been outlined in red.

Variable Simulation A Simulation B

Cable configuration Single trefoil Single trefoil

Depth of lay 600 mm 600 mm

Bedding sand around cables 150 mm 150 mm

Bedding sand thermal resistance 0.25 W/(m.K) 0.25 W/(m.K)

Soil thermal resistance 0.8 W/(m.K) 0.8 W/(m.K)

Conductor material Aluminium Aluminium

Conductor cross-section 800 mm2 800 mm2

XLPE thickness 15 mm 15 mm

Shield thickness 3 mm 3 mm

PVC thickness 5 mm 5 mm

Soil temperature -15 °C 15 °C

Load current 500 A 500 A

Table 5.10 – Case study 5 variables

5.6.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature.

5) Case studies and practical use 78

Figure 5.13 – Steady state thermal profile (ground at -15°C)

Figure 5.14 – Steady state thermal profile (ground at 15°C)

5) Case studies and practical use 79

5.6.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.15 – Case study 5 IDMT protection curves

5) Case studies and practical use 80

5.6.3) Discussion

Results
Simulation A

Soil at -15 °C

Simulation B

Soil at 15 °C

Steady state, max T -7.1 °C 24.4 °C

Steady state, ΔT 7.9 °C 9.4 °C

Maximum pick-up current 1628 A 1355 A

IDMT curve IEC Extremely IEC Extremely

Pick-up setting 1302 A 1084 A

Time multiplier setting 25.0 22.5

Table 5.11 – Case study 5 results

It comes as no surprise to see the cable system operating at the lower ambient temperature

requires less sensitive protection settings as there is an increased thermal buffer between the

operating temperature and the maximum operating temperature of the system. Something to

note here is the difference in the temperature rise between the systems. The system operating

at -15 °C ambient has a lower ΔT. This is likely to be due to the change in material properties

with respect to temperature such as an increase in conductor resistivity at higher temperatures.

5) Case studies and practical use 81

5.7) Case study 6 - Conductor material

One of the decisions power system engineer's must make when defining the specifications for

an underground cable system is the conductor material. While copper conductors offer an

increased current rating, the additional material cost for copper metal and transport cost due to

the additional weight often makes aluminium conductors more appropriate for cable

installations. The purpose of this case study is to determine how the protection settings of a

cable system would change depending on whether aluminium or copper was used as the main

conductor. The following system parameters were used for case study 6 where the variation

between the simulation models has been outlined in red.

Variable Simulation A Simulation B

Cable configuration Single trefoil Single trefoil

Depth of lay 600 mm 600 mm

Bedding sand around cables 150 mm 150 mm

Bedding sand thermal resistance 0.25 W/(m.K) 0.25 W/(m.K)

Soil thermal resistance 0.8 W/(m.K) 0.8 W/(m.K)

Conductor material Copper Aluminium

Conductor cross-section 800 mm2 800 mm2

XLPE thickness 15 mm 15 mm

Shield thickness 3 mm 3 mm

PVC thickness 5 mm 5 mm

Soil temperature 15 °C 15 °C

Load current 500 A 500 A

Table 5.12 – Case study 6 variables

5.7.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature.

5) Case studies and practical use 82

Figure 5.16 – Steady state thermal profile (aluminium)

Figure 5.17 – Steady state thermal profile (copper)

5) Case studies and practical use 83

5.7.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.18 – Case study 6 IDMT protection curves

5) Case studies and practical use 84

5.7.3) Discussion

Results
Simulation A

Copper

Simulation B

Aluminium

Steady state, max T 21.5 °C 24.4 °C

Steady state, ΔT 6.5 °C 9.4 °C

Maximum pick-up current 1623 A 1355 A

IDMT curve IEC Extremely IEC Extremely

Pick-up setting 1298 A 1084 A

Time multiplier setting 23.8 22.5

Table 5.13 – Case study 6 results

As anticipated, the higher resistance of the aluminium conductor causes a greater temperature

increase in the conductor and the protection must be more sensitive. However, at times it may

be feasible to use a larger aluminium cross-section over a smaller copper cross-section to

achieve the same load capacity.

5) Case studies and practical use 85

5.8) Case study 7 - Depth of lay

Australian standards (AS3000, 2007, p. 159) states direct-buried cables should be a minimum

depth of 500mm, legislation on electrical safety regulations states that direct-buried power

cables operating at voltages up to 22 kV shall have a minimum depth of 900mm (Victorian

Government, 2009). Whilst the majority of the cable system will be buried at least 500mm

below the surface, the purpose of this section is to determine if the cable will be more

venerable to overheating as it rises up to terminate at equipment above the ground. The

following system parameters were used for case study 7 where the variation between the

simulation models has been outlined in red.

Variable Simulation A Simulation B Simulation C

Cable configuration 3 single cables 3 single cables 3 single cables

Depth of lay 900 mm 100 mm 0 mm

Bedding sand around cables 0 mm 0 mm 0 mm

Bedding sand thermal resistance 0.25 W/(m.K) 0.25 W/(m.K) 0.25 W/(m.K)

Soil thermal resistance 0.8 W/(m.K) 0.8 W/(m.K) 0.8 W/(m.K)

Separation between cables 0 mm 0 mm 0 mm

Conductor material Copper Copper Copper

Conductor cross-section 1000 mm2 1000 mm2 1000 mm2

XLPE thickness 30 mm 30 mm 30 mm

Shield thickness 5 mm 5 mm 5 mm

PVC thickness 10 mm 10 mm 10 mm

Soil temperature 15 °C 15 °C 15 °C

Air temperature 20 °C 20 °C 20 °C

Load current 1000 A 1000 A 1000 A

Table 5.14 – Case study 7 variables

5.8.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature.

5) Case studies and practical use 86

Figure 5.19 – Steady state thermal profile (depth 100mm)

Figure 5.20 – Steady state thermal profile (depth 600mm)

5) Case studies and practical use 87

5.8.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.21 – Case study 7 IDMT protection curves

5) Case studies and practical use 88

5.8.3) Discussion

Results
Simulation A

600mm

Simulation B

100mm

Simulation C

0mm

Steady state, max T 36.5 °C 32.3 °C 27.6 °C

Steady state, ΔT 21.5 °C 17.3 °C 12.6 °C

Maximum pick-up current 1780 A 1969 A 2483 A

IDMT curve IEC Extremely IEC Extremely IEC Extremely

Pick-up setting 1424 A 1575 A 1986 A

Time multiplier setting 38.7 34.0 23.5

Table 5.15 – Case study 7 results

The results of the above simulation suggest the capacity of the cable increases as it gets closer

to the surface. This is consistent with the de-rating values listed in AS3008 and the Gemscab

datasheet. Figure 5.21 shows that, for shorter fault times, the conductors have similar trip

times, suggesting that the initial temperature rise is governed by the cable materials. As the

fault duration increases, heat is shed more quickly to the air than the soil resulting in an

increased pick-up current value for cables closer to the surface.

The model does not take into consideration the additional effects of cooling provided by the

natural convection of the air. For this reason, care should be taken when using the simulation

to model thermal properties of shallow buried cables.

5) Case studies and practical use 89

5.9) Case study 8 - Soil properties due to moisture content

The properties of soil are very complex and can vary significantly depending on

environmental conditions (Farouke, 1981). This case study was conducted to determine the

effect soil moisture content has on the protection required for a cable system. The values used

represent very dry and saturated soil to simulate and compare extreme soil conditions. The

following system parameters were used for case study 8 where the variation between the

simulation models has been outlined in red.

Variable Simulation A Simulation B

Cable configuration Single trefoil Single trefoil

Depth of lay 600 mm 600 mm

Bedding sand around cables 0 mm 0 mm

Soil condition Wet Dry

Soil thermal resistance 2.4 W/(m.K) 0.8 W/(m.K)

Soil specific heat capacity 1.48 J/(g.K) 0.8 J/(g.K)

Conductor material Aluminium Aluminium

Conductor cross-section 630 mm2 630 mm2

XLPE thickness 10 mm 10 mm

Shield thickness 3 mm 3 mm

PVC thickness 4 mm 4 mm

Soil temperature 15 °C 15 °C

Load current 630 A 630 A

Table 5.16 – Case study 8 variables

5.9.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature.

5) Case studies and practical use 90

Figure 5.22 – Steady state thermal profile (wet soil)

Figure 5.23 – Steady state thermal profile (dry soil)

5) Case studies and practical use 91

5.9.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.24 – Case study 8 IDMT protection curves

5) Case studies and practical use 92

5.9.3) Discussion

Results
Simulation A

Wet

Simulation B

Dry

Steady state, max T 26.1 °C 30.2 °C

Steady state, ΔT 11.1 °C 15.2 °C

Maximum pick-up current 1373 A 1211 A

IDMT curve IEC Extremely IEC Extremely

Pick-up setting 1098 A 968 A

Time multiplier setting 13.8 16.7

Table 5.17 – Case study 8 results

The results from Table 5.18 show that the capacity of the cable system varies by

approximately 10% depending on the soil moisture content. While this is not a huge

difference, the most sensitive protection settings would need to be used if designing for all

scenarios or modified during a significant drought period. It should be noted that soil

properties also vary greatly depending on the soil material at the specific location and there

could be significant variation throughout the course of a single cable run.

5) Case studies and practical use 93

5.10) Case study 9 - Joint health

The purpose of this case study was to determine how an unhealthy joint may affect the

required system protection settings. Generally, the system would be designed with the

assumption that all joints were healthy, however, hot-spots may develop within a cable

system due to poor workmanship and degradation over time. This case study is not suggesting

that protection settings be configured in order to provide longevity to unhealthy joints, rather

to determine how such joints will perform under normal operating conditions. The cable joint

modelled here is suitable for use on both 400mm2 and 300mm2 cable systems therefore both

cables were also simulated. The following system parameters were used for case study 9

where the variation between the simulation models has been outlined in red.

Variable Simulation A Simulation B Simulation C Simulation D

Cable configuration Trefoil cable Trefoil cable Trefoil cable Trefoil cable

Depth of lay 600 mm 600 mm 600 mm 600 mm

Bedding around cables 95 mm 95 mm 100 mm 105 mm

Conductor material Aluminium Aluminium Aluminium Aluminium

Conductor cross-section NA NA 400 mm2 300 mm2

XLPE thickness 10 mm 10 mm 10 mm 10 mm

Shield thickness 4 mm 4 mm 4 mm 4 mm

PVC thickness 5 mm 5 mm 5 mm 5 mm

Soil temperature 15 °C 15 °C 15 °C 15 °C

Load current 410 A 410 A 410 A 410 A

Joint condition Good Poor None None

Joint resistance 15μΩ 48μΩ NA NA

Table 5.18 – Case study 9 variables

5.10.1) Thermal results

The following plots were generated without a fixed temperature axis but may be used as a

guide to determine the steady state thermal profile. The maximum value on the right hand

colour bar reflects the system’s maximum steady state temperature. Note, the use of material

boundary lines were removed for these results to demonstrate a feature of the simulation

program.

5) Case studies and practical use 94

Figure 5.25 – Steady state thermal profile (healthy joint)

Figure 5.26 – Steady state thermal profile (un-healthy joint)

5) Case studies and practical use 95

Figure 5.27 – Steady state thermal profile (400mm2 cable)

Figure 5.28 – Steady state thermal profile (300mm2 cable)

5) Case studies and practical use 96

5.10.2) IDMT protection curves

The following plot contains a combination of the protection curves found by the simulation.

Figure 5.29 – Case study 9 IDMT protection curves

5) Case studies and practical use 97

5.10.3) Discussion

Results
Simulation A

Healthy joint

Simulation B

Poor joint

Simulation C

400mm2 cable

Simulation D

300mm2 cable

Steady state, max T 34.9 °C 82.9 °C 28.3 °C 33.0 °C

Steady state, ΔT 19.9 °C 67.9 °C 13.3 °C 18.0 °C

Max. pick-up current 848 A 428 A 963 A 819 A

IDMT curve IEC Extreme IEC Extreme IEC Extreme IEC Extreme

Pick-up setting 678 A 342 A 770 A 655 A

Time multiplier setting 26.0 4.1 11.0 8.3

Table 5.19 – Case study 9 results

The results from the above simulations suggest that the pick-up current is similar for a healthy

cable joint in comparison the appropriate cable sizes. The pick-up current for the unhealthy

cable joint is approximately half that of the normal system values. The extra resistance at the

unhealthy joint also generates a much greater temperature rise in the cable system, which will

result in higher levels of fatigue in the insulation surrounding the cable joint.

One thing that can be noticed in Figure 5.29 is the upwards shift in the protection curve of the

healthy cable joint. This is due to the increased TMS value and suggests there is a thermal lag

associated with the heating of the cable joint. This was further analysed with Figure 5.30

showing the maximum temperature of each simulation throughout the first hour of loading.

From this, it can be seen that the initial temperature rise of the healthy joint is slower than that

of the cable albeit the joint reaching a higher steady-state temperature. This confirms there is

an increased thermal time constant at the joint. The thermal lag is due to the additional

conductor material at the joint location which requires more energy and hence more time to

heat up the material.

5) Case studies and practical use 98

Figure 5.30 – Case study 9 initial temperature rise

The following points should be noted for joint simulation:

1) The size of the surrounding bedding sand was varied slightly to ensure the surface area

of soil to bedding sand was constant in each simulation as the outer diameter of the

cable varied with the different configurations.

2) The cable joint is modelled as though the resistance is spread across the length of the

joint. In reality, a deteriorating joint would create a concentrated hotspot, however,

due to the thermal diffusivity properties of the conductor materials, it is assumed the

heat from these hotspots would be distributed throughout the cable joint.

5) Case studies and practical use 99

5.11) Statistical analysis of joints

A statistical analysis of joints was conducted to create a model that can predetermine the

condition of joints and allow for preventative measures to be put in place to prolong the life of

underground cable systems. This would offer a reduction in unplanned maintenance cost and

improve the delivery of supply through the prevention of faults. The theory outlined in section

3.4) has been used to determine a resistance value representing the statistical worst case joint

in the system.

By selecting the "Statistical analysis" feature of the simulation, a joint resistance is calculated

depending on the failure rate as a function of system age and the number of joints within the

cable run.

Joint

resistance

(μΩ)

Age of cable system (years)

1 2 5 10 15 20 30 40

N
u

m
b

er
 o

f
jo

in
ts

 i
n

 c
a
b

le
 s

y
st

em

1 15.0 15.0 15.0 15.0 15.0 15.1 15.4 16.1

3 15.0 15.0 15.0 15.0 15.1 15.3 16.2 18.3

6 15.0 15.0 15.0 15.1 15.2 15.6 17.4 21.6

12 15.0 15.0 15.0 15.1 15.4 16.2 19.9 28.2

30 15.0 15.0 15.0 15.3 16.1 18.0 27.2 48.1

60 15.0 15.0 15.0 15.5 17.2 20.9 39.3 81.2

90 15.0 15.0 15.1 15.8 18.3 23.9 51.5 114.3

300 15.0 15.0 15.2 17.7 25.9 44.7 136.6 346.0

600 15.0 15.0 15.5 20.3 36.8 74.4 258.3 676.9

1200 15.0 15.0 16 25.6 58.6 133.7 501.6 1338.8

Table 5.20 – Statistical impedance of the joints within a cable system

5) Case studies and practical use 100

Table 5.20 outlines the joint resistance value calculated from the statistical analysis using the

number of joints in the system and the age of the system. This data is better represented

graphically and Figure 5.31 shows the variation in the statistical joint impedance with respect

to joint quantity and system age. The colour represent scenarios where the joint would behave

similarly to a healthy (blue) through to an unhealthy (orange) joint. All the scenarios

represented as red suggest that at this time, it is likely that at least one joint will have

deteriorated beyond satisfactory operating levels and will require replacement. These values

appear reasonable when considering the magnitude of cable joint failures on an 11kV

underground cable installation, as reported by Mehairjan (2010).

Figure 5.31 – Joint impedance with respect to system age and joint quantity

The statistical model suggests the rate of failure increases exponentially with system age and

linearly with the quantity of cable joints.

+

5) Case studies and practical use 101

There are many limitations on the above statistical analysis of cable joints, however, it may

provide information to assist in the development of maintenance action plans or modification

of protection settings as an aging cable installation transitions into a higher-risk category to

improve longevity of the cable system.

6) Conclusion 102

6) CONCLUSION

The aim of this research project was to develop a simulation model using finite element

analysis that can be used to determine the thermal profile of underground power cables. This

model was successfully developed and validated as indicated by the results discussed in

Chapter five. The model analyses how an underground cable system reacts under load and

fault conditions, and subsequently determines the protection settings that are required for the

system The range of case studies presented here are indicative of how the simulation model

can be used to characterise the influence that operational and environmental conditions have

on the required protection of underground cable systems. The findings from these simulations

suggest that the protection requirements of a cable system vary significantly depending on the

layout, ambient conditions, and operation levels prior to a fault occurring. For example, it was

observed that the pre-fault load on the system changed the steady-state thermal profile of the

system, which greatly affected the required protection settings (Section 5.5).

A further goal of this research project was to reduce the need for cable de-rating tables

(currently used by practicing engineers when determining protection settings), by allowing the

user to define and analyse a specific cable system. By reducing the use of generic assumptions

and rating tables such as those found in the Australian Standard AS3008, the simulation offers

an improved way to determine protection settings for the user’s specific application, thus

offering greater security and selectivity. To determine the accuracy, and thus the potential

applicability of the simulation model, results were validated against trip times derived from

manufacturing datasheets and Australian Standards in Section 4.7). Furthermore, in

appreciating the need for configurability and ease of use for such a model to be widely

applicable to all engineers, it was developed with a user-friendly graphical interface. This

interface, as outlined in Appendix B, provides the user with a comprehensive range of

configurable variables, which allows the user to determine a specific system’s capacity more

accurately and thus, better determine the required protection setting values.

This research project builds on the theory outlined in Section 2.1), to not only determine the

thermal heating and ampacity of a cable, but to generate protection settings depending on the

6) Conclusion 103

system itself. The use of this simulation by power system engineers will enhance the accuracy

of underground cable protection settings; for the design phase, all the way through to the

operation and maintenance of the system. Indeed, the simulation results would work to

provide guidance toward electrical network capabilities during times of peak loading, as well

as assurance when changing the network configuration during planned maintenance or fault

response scenarios. It could also assist in determining the temperature profile of media

surrounding a cable system, which would provide engineers with an additional tool to

eliminate hotspots within a power system and to understand how an underground power

system may interact with other local structures and plant. All of these factors help to ensure

power systems operate with the highest level of reliability, minimising unplanned outages and

maintaining supply to consumers and production facilities.

6) Conclusion 104

6.1) Further work

This research project has successfully developed a configurable simulation tool that has the

potential to solve real world engineering problems. However, before this model can be widely

utilised, the limitations outlined in Section 4.6) will need to be addressed. This would involve

investigating some of these issues and adapting the simulation model to account for any

foreseeable variation. For example, the simulation program in its current form takes some

time to run the simulation. This could be improved by utilising a mesh approach similar to

that outlined by Nguyen (2010) and Zang (2012), which effectively works to reduce the total

number of finite elements within the system, therefore, resulting in faster processing time

without compromising the accuracy of the model. This would require significant changes to

the current mathematical model, however, this simulation could provide an important point of

reference in benchmarking the performance of any improved models. Another benefit of using

the mesh approach would be to model a larger cross-sectional area without significantly

increasing the matrix size; reducing the effects of the boundary conditions of the system and

allowing temperature to stabilise over the larger area.

Whilst technologies such as distributed temperature sensing (DTS) using fibre optics provide

a real-time analysis of the temperature within a cable system allowing full utilisation of the

underground power cable, protection settings remain unchanged with variation to the thermal

conditions. This means that the optimal protection is not always available to the system. As

technology continues to advance in the field of power protection, new methods such as

dynamic configuration of protection settings within the intelligent electrical device (IED)

become feasible. For the IED to achieve this, it could be as simple as using the historical load

current to determine the settings, or as advanced as using remote measurement stations such

as; DTS or devices measuring soil thermal properties, throughout the cable run to better

determine the properties of the system. Whilst in theory such a system could be implemented,

in allowing the IED to take control of such a critical application, the algorithm and associated

equipment would need to undergo rigorous testing to ensure the system is safe and build

confidence amongst the potential users.

 105

REFERENCES

AgriInfo. (2011). Density of Soil: Bulk Density and Particle Density. Retrieved May 16, 2014,

from http://www.agriinfo.in/?page=topic&superid=4&topicid=271

AS 3008. (2009). Electrical installations - Selection of cables. Sydney: Standards Australa

Limited.

AS3000. (2007). AS/NZ Wiring Rules. Sydney: Standards Australia.

Bascom, E. C. (2011). Underground Power Cable Considerations: Alternatives to Overhead.

47th Minnesota Power Systems Conference. New York: MIPSYCON.

Cigre. (2009). UPDATE OF SERVICE EXPERIENCE OF HV UNDERGROUND AND

SUBMARINE CABLE SYSTEMS. Paris: Cigre.

Farouke, O. T. (1981). Thermal Properties of Soils (1st ed.). Hanover: CRREL.

Fournier, D. (1998). Aging of defective electrical joints in underground power distribution

systems. Quebec: IEEE.

Fournier, D., & Amyon, N. (2001). Diagnostic of overheating underground distribution cable

joints. Canada: IEEE.

Gemscab. (2014). HT-XLPE Cables. Retrieved May 07, 2014, from

http://www.gemscab.com/Gemscab_HT-XLPE.pdf

Hampton, N., Hartlein, R., Lennartsson, H., Orton, H., & Ramachandran, R. (2012). Long-

Life XLPE Insulated Power Cable. Transactions on Dielectrics and Electrical

Insulation, 19(1), 273-282.

Han, S. J. (2006, May 21-24). Overview of Semiconductive Shield Technology in Power

Distribution Cables . Transmission and Distribution Conference and Exhibition, pp.

641 - 646.

Herpertz, P. (2013, October/November). Cable Fault Location. Transmission & Distribution,

pp. 30, 33.

 106

Janick, M. (2000). Going underground. Electrical World, 214(6), 20.

Lee, K., Yang, J., Choi, Y., & Park, D. (2006, May). Specific Heat and Thermal Conductivity

Measurement of XLPE Insulator and Semiconductor Materials. IEEE, pp. 805-809.

Megger. (2003). Fault Finding Solutions. Dallas: Megger.

Mehairjan, R. P. (2010, November). Application of Statistical Life Data Analysis for Cable

Joints in MV Distribution Networks. Delft University of Technology.

My Electrical. (2014). Electromechanical Relays. Retrieved 8 15, 2014, from

http://myelectrical.com/notes/entryid/159/electromechanical-relays

Naskar, A. K. (2013). Thermal Analysis of Underground Power Cables using Two

Dimensional Finite Element Method. CATCON2013 (pp. 94 - 99). IEEE.

Navrud, S., & Ready, R. C. (2008). Valuing the social benifits of avoiding landscape

degredation from overhead power transmission lines. Landscape Research, 33(3), 281

- 296.

Neher, J. H., & McGrath, M. H. (1957). The Calculation or the Temperature Rise and Load

Capability of Cable Systems. AIE Transactions, 76(III), 752 - 772.

New Mexico Tech. (n.d.). Chapter 3 - Basic reliability mathematics. Retrieved September 28,

2014, from http://infohost.nmt.edu/~olegm/484/Chap3.pdf

Nexans. (2010, Mar). Nexans. Retrieved from 6-36kV Medium Voltage Underground Power

Cables: http://www.nexans.co.uk/UK/files/Underground Power Cables Catalogue 03-

2010.pdf

Nguyen, N., Vu, P., & Tlusty, J. (2010). New Approach of Thermal Field and Ampacity of

Underground Cables Using Adaptive hp-FEM. IEEE.

Nikishkov, G. P. (2010). Finite Element Equations for Heat Transfer. In XVI (Ed.),

Programming Finite Elements in Java (p. 402). Springer.

NKT cables. (2009). High Voltage Cable Systems - Cables and Accessories up to 550 kV.

Cologne, Germany: nkt.

 107

Orton, H. (2013). History of Underground Power Cables. IEEE Electrical Insulation

Magazine, 29(4), 52-57.

Peck, D., & Seebacher, P. (2000). Distributed Temperature Sensing using Fibre-Optics (DTS

Systems). Auckland: Tyree Optech Pty Limited.

QueensU. (2014). Two-Dimensional Conduction: Finite-Difference Equations. Retrieved May

09, 2014, from Queen's University - Faculty of Engineering and Applied Science:

me.queensu.ca/Courses/346/L_9_4b.pdf

Schneider Electric. (2002). Extra losses caused in hich current conductors by skin and

proximity effects. Grenoble: Schneider Electric.

Schneider Electric. (n.d.). Functions: Sepam series 80 - Protection: Tripping curves.

Retrieved July 05, 2014, from http://www2.schneider-

electric.com/documents/electrical-distribution/en/shared/interactive-

catalogue/seped303005en/seped303005en/pdfs/page_103.pdf

TeKa. (2014). Laboratory tests of soil samples and sand materials. Berlin.

The Engineering Toolbox. (2014a). The Engineering Toolbox. Retrieved May 07, 2014, from

http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

The Engineering Toolbox. (2014b). Specific Heat of some common Substances. Retrieved

May 16, 2014, from http://www.engineeringtoolbox.com/specific-heat-capacity-

d_391.html

The Engineering Toolbox. (2014c). Densities of some Common Materials. Retrieved May 16,

2014, from http://www.engineeringtoolbox.com/density-materials-d_1652.html

The Engineering Toolbox. (2014d). Metals and Alloys - Densities. Retrieved May 16, 2014,

from http://www.engineeringtoolbox.com/metal-alloys-densities-d_50.html

The Engineering Toolbox. (2014e). Air Properties. Retrieved May 17, 2014, from

http://www.engineeringtoolbox.com/air-properties-d_156.html

Tyco Electronics. (2000, Aug). Engineering supplies. Retrieved Oct 06, 2014, from

http://www.engineeringsupplies.com.au/download/section5a.pdf

 108

Tyco Electronics. (2009). Installation Instruction - Raychem Joint for 3-Core Polymeric

insulated Cable with Wire Shield 12 kV to 24 kV. Ottobrun/Germany: Energy

Division.

USQ ELE3804. (2013). USQ Protection Training Stage 2 - Chapter 1: Introduction.

Toowoomba.

USQ ENG4104. (2013). Engineering problem solving simulations. Toowoomba: University

of Southern Queensland.

Victorian Government. (2009). Electrical Safety (Installations) Regulations. Retrieved 10

2014, 4, from http://www.esv.vic.gov.au/Portals/0/Electricity

Professionals/Files/Legisilation and

regulations/ES_Installations_Regulations_2009.pdf

Wiki. (2014a, May 2). Wikipedia - Joule heating. Retrieved May 14, 2014, from

http://en.wikipedia.org/wiki/Joule_heating

Williams, J. A. (1999, July). Increasing cable rating by distributed fiber optic temperature

monitoring and ampacity analysis. IEEE, pp. 128-134.

Zang, W. (2012). A Technique for Assessment of Thermal condition and Current Rating of

Underground Power Cables Installed in Duct Banks. IEEE.

 109

APPENDIX A - PROJECT SPECIFICATION

ENG4111/4112 Research Project

FOR: Greg Nagel

TOPIC: Using thermal properties to determine Inverse Definite Minimum Time (IDMT) settings of

underground cable protection

SUPERVISOR: Dr. Tony Ahfock

ENROLMENT: ENG4111 – S1, 2014 – External
 ENG4112 – S2, 2014 – External

PROJECT AIM: This project seeks to investigate a means for calculating the IDMT values of underground

power system conductors using the thermal properties of the conductive/insulator

materials versus the temperature profile of the conductor during the transition from load

to fault current.

PROGRAMME: Revision: 2 – 2/04/14

1) Research the methods currently used to determine the IDMT values for overcurrent protection of

underground cables.

2) Research/determine common underground cable conductive materials (metal compounds) and

insulation materials to understand the maximum permissible temperature of the conductor.

3) Research/devise a method for calculating the steady state temperature of the cables based on user

defined nominal downstream loads.

4) Research/devise a method for calculating the temperature rise in the conductors during

fault/overload currents. Will this be uniform across the conductor or will skin affect come into play

here especially at higher voltage levels?

5) Use the temperature rise with respect to the conductor/insulator properties to determine a break

curve with respect to fault/overload current. This will be determined by the using values from 4)

and user defined information in 2).

6) Use the information calculated in 5), the worst case CB tripping time and a user defined safety

margin to best fit the IEEE standard protection curves.

7) Points 3-6 will be implemented in MATLab.

8) Present all of the above in final thesis document.

As time permits:

1) Create user interface in MATLab to allow ease of use and clear presentation of results.

2) Include cable joints in thermal models. These will become hotspots and the resistance will depend

on the quality of the joint.

3) Determine how the values will be affected as the cable and joint age.

4) Determine if protection relays could dynamically adjust protection setting values depending on the

operating conditions.

5) Include means for overlaying upstream protection curves to ensure there is discrimination and the

backup protection will provide sufficient tripping times to avoid damaging the underground cables.

6) Include means to overlay downstream protection curves from IDMT settings and standard fuse

curves to ensure the IDMT settings will allow discrimination if the fault to be cleared is not in the

primary protection zone.

 111

APPENDIX B - SIMULATION OPERATING

INSTRUCTIONS

This appendix gives an overview of how the simulation is configured and run by the user. It

may also help in troubleshooting the simulation if It will not start due to an error in the user

configuration.

Appendix B – Simulation operating instructions Page 1 of 6

Simulation operating instructions

To operate the simulation, the Master.m file shall be run from Matlab.

It is mandatory that the following files reside in the same directory as Master.m or the simulation will
generate an error message.

- breakcurve.m
- gui.fig
- gui.m
- layoutMatrix.m
- materialProperties.m
- Parameters.xls
- tempCalc.m
- tempPlot.m

INITIALISATION – SYSTEM CONFIGURATION

When the Master.m file is run, the following window will open.

The left side of this window is where the user will specify the cable system parameters.

If soil thermal resistivity needs to be changed, these can be changed within the Parameters.xls file.

Appendix B – Simulation operating instructions Page 2 of 6

Simulation Resolution - This field determines the size of each of the finite elements. Increasing the
resolution will result in more accurate results, however, the simulation runtime will increase significantly.

The ‘separation’ configuration box will only be
visible when a multi-cable system is selected

The ‘Air Temperature’ configuration box will only be
visible when the depth is less than half the system
height.

The ‘Joint condition’ configuration box will only be
visible when the cross-section is less than 500mm2

The start button will only be available when all of the
user information is valid. Any invalid data fields will
appear red. The stop button will only be available
once the simulation is running.

The blue text field updates the user with the status
and progress of the simulation.

Hovering the mouse over data fields will bring up
tool tip information outlining the variable's range.

'System age' and 'Number of joints' fields will only be
visible when 'Statistical Analysis' is selected above.

Including material boundaries will show white circles
outlining different materials in the cable.

Fields will go grey when configuration is not
available due to another setting in the configuration.

Appendix B – Simulation operating instructions Page 3 of 6

STAGE 1 – STEADYSTATE SIMULATION

This stage simulates the load current on the system to determine the temperature profile at which the
system will stabilise.

Steadystate results

Appendix B – Simulation operating instructions Page 4 of 6

STAGE 2 – DETERMINING PICK-UP CURRENT

This stage simulates different current values to determine what current value will cause the system’s
temperature to reach the maximum operating temperature of the cable system.

System's pick-up value

Appendix B – Simulation operating instructions Page 5 of 6

STAGE 3 – SOLVING SYSTEM BREAK POINTS

This stage simulates fault current above the level of the pickup current determined in stage 2. Each fault
current simulation returns a time value at which the cable will exceed operating requirements, plotted in
red. The user defined safety margin and breaker trip time are considered in the green safety curve.

The blue curve is the protection curve the simulation has found to best suit the required protection of the
cable system.

Best-fit IDMT curve
results

Appendix B – Simulation operating instructions Page 6 of 6

RESULTS – COMPARING DIFFERENT PROTECTION CURVES

At this stage, the user may modify the ‘Preferred IDMT curve’ to determine the protection settings required
should another industry standard curve be applied to the cable system.

RESULTS SAVED THROUGHOUT SIMULATION

The following files will be saved to the directory of Master.m as the simulation progresses:

Lx Rx Ixxx Cx Xxxx Jx - 1) Simulation Start

Captures the system layout and user defined settings

Lx Rx Ixxx Cx Xxxx Jx - 2) Steadystate Thermal Profile
Captures the steady state thermal profile and graphically displays this information to the user

Lx Rx Ixxx Cx Xxxx Jx - 3) Pickup Current Thermal Profile

Captures the thermal profile of the pickup current and displays this information to the user

Lx Rx Ixxx Cx Xxxx Jx - 4) IDMT Results

Captures the best fit IDMT curve and protection settings and displays overcurrent plots to the user

Lx Layout of system (1 = Single cable, 2 = Single trefoil, 3 = 3 x Single, 4 = 2 x Trefoil)
Rx Resolution of system (1 = Low, 2 = Mid, 3 = High)
Ixxx Load current in the simulation (xxx designates the current value in A)
Cx Conductor material (1 = Copper, 2 = Aluminium)
Xxxx Conductor cross-section (xxx designates the conductor cross-section in mm2)
Jx Joint configuration (1 = No joint, 2 = Healthy joint, 3 = Unhealthy joint, 4 = Statistical joint analysis)

Note: Results saved in file 4 will only be saved once at the completion of the simulation. If user would like to
save the user defined curve, the curve must be defined prior to starting the simulation.

Preferred IDMT curve results
Select preferred curve here

 118

APPENDIX C - MATLAB CODE STRUCTURE

This appendix gives an overview of how the MATLAB files interact as the simulation

progresses through the three major stages.

Stage 1

Simulates the current in the system until the temperature profile of the system stabilises and

the maximum operating temperature can be found.

Stage 2

Pick-up current values are estimated and simulated for 10,000 seconds onto the steady state

profile. This simulation is repeated until the system stabilises within 0.5°C of 90°C (the

damage point of XLPE insulation).

Stage 3

The pick-up current found in stage 2 is used as the first point for the break curve. The current

value is increased at logarithmic intervals and simulated until the system reaches 90°C. Each

fault current and break time is recorded and used to plot the break curve on a log-log axis.

Another curve, the safety curve, is then plotted with respect to the safety margin and breaker

operating time, as defined by the user. Various industry standard protection curves are then

fitted and the regression to the safety curve determined. The best fit curve and setting values

are then displayed to the user.

Master.m gui.m layoutMatrix.m tempCalc.m

materialProp.m tempPlot.m

breakcurve.m

comments

 Master file run
by user

Graphical User
Interface opens

Layout matrix
and plot created

User specifies the
system properties

User presses
START button

St
ag

e
1

 -
 S

o
lv

e
st

ea
d

y-
st

at
e

te
m

p
. p

ro
fi

le

In
it

ia
lis

at
io

n

The user must run the master
file with supporting functions
located in the same folder.
This is also the directory the
images will be saved to.

This loop is executed each
time the user changes a
parameter of the system to
show a cross section of the
latest system configuration.

Layout image saved

Load Current and
T received

Properties of each
F.E. determined

Future T matrix
generated

Properties include the
material properties such as;
- the density, specific heat
and conductivity with respect
to temperature.
- the thermal heating due to
the load current flowing
through the system.

This loop is executed each
time tempCalc.m simulates
12 minutes (approx. 10,000
iterations).

Steady-state image saved

Temperature plot
created for gui

Thermal matrix, T
created

Thermal plots
updated

Steady-state
temp. found

Steady-state
results shown

St
ag

e
2

 -
 S

o
lv

e
th

e
sy

st
em

's
 p

ic
k-

u
p

 c
u

rr
en

t Estimate pick-up
current (∆T ∝ I2)

Current and
Tsteady received

Properties of each
F.E. determined

Future T matrix
generated

Temperature plot
created for gui

Thermal plots
updated

Steady-state
temp. found

Estimate pick-up
current (∆T ∝ I2)

Max. Temp <
0.5°C from 90°C

Pick-up current
results shown

St
ag

e
3

 -
 S

o
lv

e
th

e
sy

st
em

's
 b

re
ak

 c
u

rv
e

an
d

 s
et

ti
n

gs

Tsteady is the steady-state
temperature profile.

The proportionality between
∆T and I2

 is assumed to
estimate the pickup current,
this is not accurate as the
system is not linear with
respect to temperature.

This loop is executed each
time tempCalc.m simulates
12 minutes (approx. 10,000
iterations).

This loop is executed a
maximum of 5 times or until
the current simulated causes
the system to stabilise within
0.5°C of 90°C

Max. T profile image saved

 Tsteady is the steady-state
temperature profile.

This loop is executed each
time tempCalc.m simulates
12 minutes (approx. 10,000
iterations).

This loop is executed across a
range of fault currents
increasing in logarithmic
steps from the pick-up value
to 50kA.

IDMT results image saved

Increase current
to low fault level

Current and
Tsteady received

Properties of each
F.E. determined

Future T matrix
generated

Temperature plot
created for gui

Thermal plots
updated

Steady-state
temp. found

Increase fault
current value

Stop when fault
level above 50kA

Determine IDMT
settings

Display IDMT
curve + settings

User can modify
preferred curve R

es
u

lt
s

Determine IDMT
settings

After simulation has finished
the user can select different
IDMT curves for protection
settings that suit curves other
than the best fit curve.

Close window to end.

 120

APPENDIX D - MATLAB CODE

Files: Description:

Master.m

(5 pages)

The master file is the core of the system and maintains control of the various

stages of the simulation. This file is executed to start the simulation.

breakcurve.m

(4 pages)

This function plots the IDMT results and fits the best and user specified curves.

gui.m

(22 pages)

The gui function is the interface between the user and the simulation code. This

creates the interface window, extracts inputs and outputs results.

layoutMatrix.m

(7 pages)

This function creates a matrix that represents each of the finite elements with

an integer to map to specific materials within the system.

materialProperties.m

(3 pages)

This function file updates the material properties as the temperature varies

within the system.

tempCalc.m

(6 pages)

This function maintains a temperature matrix representing each finite element

and simulates the temperature of each finite element through time.

tempPlot.m

(6 pages)

This function creates a colour plot of the system as it is simulated through time.

This plot is shown in gui window to show the thermal progression.

28/10/14 10:39 PM C:\Greg Nagel\Simulation\Master.m 1 of 5

 1 %% Master.m --

 2 %

 3 % Author Greg Nagel - 0061025127

 4 % Project System dependant IDMT overcurrent settings for underground cables

 5 %

 6 % This file has been created by Greg Nagel for a final year research project to be

 7 % submitted to the University of Southern Queensland for courses, ENG4111/4112. It is

 8 % theoretical only and should not be used as the basis for decisions made on actual

 9 % power system applications.

 10 %

 11 % Release Date Comments

 12 % 1.0 05/09/14 Initial release to supervisor for partial review

 13 % 2.0 05/10/14 Code finalised and prepared for submission

 14 %

 15 % This Master file should be run to begin the simulation software developed by Greg

 16 % Nagel to be used as a guideline for determining the IDMT protection settings for

 17 % underground power cables.

 18 %

 19 % Supporting files required the same directory as Master

 20 % breakcurve.m function to fit and plot protection curves

 21 % gui.fig graphical file for user interface

 22 % gui.m function to execute graphical user interface

 23 % layoutMatrix.m function to create colour by numbers matrix

 24 % materialProperties.m function to dynamically update material properties

 25 % tempCalc.m function to solve the simulation through time

 26 % tempPlot.m function to output plot of thermal profile

 27 %

 28 % Output files created by simulation

 29 % Portable Network Graphic (.png) images will be created as the software executes.

 30 % This is to allow the user to maintain the information solved by this simulation

 31 % software after the simulation has been closed.

 32 % --

 33

 34 %% --------------------------------- Initialisation ----------------------------------

 35

 36 clear all; % clear all variables

 37 clc; % clear command window

 38 close all; % close all figure windows

 39 if ~isempty(findall(0,'Type','Figure')) % check if gui is already open

 40 close(gui); % close previous gui's if open already

 41 end

 42

 43 % Initialise global variables that will be used by other functions

 44 global stepsize ... % used to determine the time between plot updates in the gui

 45 rows ... % number of rows in system matrices

 46 cols ... % number of columns in system matrices

 47 TmaxS ... % short term temperature rating of the cable (< 5 sec.)

 48 TmaxL ... % long term temperature rating of the cable

 49 Layout ... % layout matrix containing different integer for each material

 50 TFmaxSave ... % contains fault temperatures and times for stage 2 temp plot

 51 loops ... % incremented to count the number of iterations

 52 Gtemp ... % ground temp as specified by the user

 53 I ... % value of load current as specified by the user

 54 Atemp ... % air temp as specified by the user

 55 wait ... % flag used to determine when the user inputs are complete

 56 dt ... % simulation time step at each iteration

 57 run ... % flag used to determine if user has stopped the simulation

 58 SSMT ... % steady state maximum temperature caused by load current

 59 PickUp ... % pick-up current that will cause system to heat to TmaxS (90)

 60 SimStep ... % integer that reflects which stage the simulation is up to

 61 StatusString... % string that is output on gui to give status messages to user

28/10/14 10:39 PM C:\Greg Nagel\Simulation\Master.m 2 of 5

 62 breakPoints ... % array of break point values solved for the cable system

 63 Snapshot ... % flag that defines when the gui should be saved to file

 64 TempMat ... % temperature matrix containing temperature of each F.E.

 65 St2Percent ... % used to output the percentage of stage 2 completed

 66 PickupTmax ... % maximum time relay will count for. i.e. to trip at pick-up

 67 DeltaT; % difference between ground temp and maximum steady state temp

 68

 69

 70 %% ----------------------------- Execution --------------------------------

 71

 72 % Set flags used to determine simulation stages

 73 wait = 1; % used as a flag to wait for gui information to be complete

 74 run = 1; % used as a flag to continue solving FE temperatures

 75

 76 % call the GUI for user to enter system information

 77 gui(); % call graphical user interface (gui)

 78 fprintf('Please operate via gui window\n'); % inform via command window

 79 while wait == 1 % wait until gui inputs are complete

 80 pause(.1); % pause 100ms to free up computer processor

 81 end

 82

 83 if run == 1 % if simulation is running (not stopped by user)

 84 fprintf('Simulation running ...\n'); % inform via command window

 85 end

 86

 87 tic; % start timer, used to provide feedback on the run time

 88

 89 % set known global variables

 90 stepsize = 12*60/ dt; % print out plot every 12 minutes in the simulation

 91 TmaxS = 250; % short term thermal rating of cable (5 seconds)

 92 TmaxL = 90; % long term thermal rating of cable

 93 loops = 0; % counter to aid in the calculation and display of T values

 94 PickupTmax = 10e4; % maximum time (s) used to determine the pickup values

 95

 96

 97

 98 %% create initial matrix for T

 99

100 % initialise T matrix to have all entries equal to the ground temperature

101 T = ones(rows,cols)*Gtemp; % all temp values are ambient values

102 T(Layout==7) = Atemp; % set elements that are above ground to equal air temp

103

104 % find the material properties for each point

105 TempMat = T; % set global temperature matrix to equal T

106 materialProperties(); % call function materialProperties

107

108

109 %% Stage 1, calculate the steady-state temperature matrix for the defined cable system

110 Tsave = T; % save the T matrix

111

112 SimStep = 1; % simulation step 1/3 is underway

113

114 % call the tempCalc function which will solve for a steady state temperature profile

115 % at the user specified load current

116 [Tsteady,tsteady] = tempCalc(T,dt,I); % call tempCalc function

117

118 % check if user terminated the program during simulation

119 if run == 0 % if fun flag has been cleared, user has exited

120 break % exit from the master routine and stop running all together

121 end % if (line 113)

122

28/10/14 10:39 PM C:\Greg Nagel\Simulation\Master.m 3 of 5

123 % find the maximum temperature reached during the steady state simulation

124 Tmax = max(max(Tsteady(Layout <= 4))); % max temp of conductor/insulator/shield/PVC

125 SSMT = roundn(Tmax,-1); % round to nearest 1 d.p.

126

127 % used in section 2 for pick-up current estimation

128 DTrequired = TmaxL - Gtemp; % temperature rise above ground temp without cable damage

129 DeltaT = SSMT - Gtemp; % temperature rise during steady state

130

131 gui(); % call gui window to update information to the user

132

133 Snapshot = 1; % set flag to save a snapshot of the gui window

134 gui(); % call gui function to take snapshot

135

136 % output the run time required to solve step 1 of the simulation

137 toc1 = toc/60; % save the amount of minutes for stage 1

138 fprintf('Stage 1 complete, run time = %.0f mins\n\n',toc1) % output to command window

139 tic; % reset timer, used to provide feedback on the run time

140

141

142 %% Stage 2, determine the pickup current of the cable system

143 SimStep = 2; % simulation step 2/3 is underway

144

145 % using the fact that T is proportional to I^2 estimate the pickup current that will

146 % achieve 90 degrees at the maximum relay set time. This is not exact because the

147 % material properties are not linear within the system

148 Ip = sqrt(DTrequired / DeltaT) * I; % solve for estimated Ip

149

150 i = 1; % initial value for iteration counter

151 maxT = Tmax; % Maximum temp within the cable

152

153 % solve for pickup current until it is within 1/2 a degree of 90, for no more than 5

154 % iterations. This is used to improve the initial estimate as system is not linear and

155 % the heat generated in the cable gets worse as the temperature increases, the above

156 % estimate will overshoot 90 degrees. A new current value is estimated and this is

157 % averaged with the previously calculated value and then re simulated.

158 while abs(maxT - 90) > 0.5 && i <= 5 % while more than 1 deg and < 5 attempts to solve

159

160 TFmaxSave = []; % clear TFmaxSave so the new attempt can be plotted

161

162 St2Percent = (i-1) / 5 * 100; % progress percentage base value, 20% more each time

163

164 % run simulation with the estimated value

165 [Tp,tf] = tempCalc(Tsteady,dt,Ip); % solve Temp matrix for Tp at Ip

166

167 DTrequired = 90 - SSMT; % calculation of the required temp difference

168 maxT = max(max(Tp(Layout <= 4))); % Maximum temp within cable materials (1-4)

169 DTachieved = maxT - SSMT; % temperature achieved above the SS maximum

170

171 % display in the command window, the value of the temperature reached so user can

172 % be assured the system has diverged to within half a degree of 90 upon review

173 fprintf('At iteration %.0f, current used %.0fA, max temp. %.2f \n',i,Ip,maxT)

174

175 % estimate the next current value that will be used to attempt to reach 90 degrees

176 % using the theory that delta T is proportional to I^2

177 Ipadj = sqrt(DTrequired / DTachieved) * Ip; % adjusted pickup current

178 Ip = (Ipadj + Ip) / 2; % average the new and last pick-up current values

179

180 % TFmaxSave = []; % clear TFmaxSave so the new attempt can be plotted

181 i = i + 1; % increment iteration counter

182

183 end

28/10/14 10:39 PM C:\Greg Nagel\Simulation\Master.m 4 of 5

184

185 StatusString = ... % update the status displayed at the bottom of the gui window

186 'Simulation running ... Step 2/3: Optimising system''s pick-up value ... Done';

187

188 PickUp = floor(Ip); % round the pick-up current down to the nearest amp

189

190 gui(); % update Pickup results to the user

191 Snapshot = 1; % set flag to save a snapshot of the gui window

192 gui(); % call gui function to take snapshot

193

194 % output the run time required to solve step 2 of the simulation

195 toc2 = toc/60; % save the amount of minutes for stage 2

196 fprintf('Stage 2 complete, run time = %.0f mins\n\n',toc2) % output to command window

197 tic; % reset timer, used to provide feedback on the run time

198

199 %% Stage 3, determine break points of cable system across a range of fault currents

200

201 SimStep = 3; % simulation step 3/3, in the final stage

202

203 If = Ip; % reference current from which to begin fault calculations

204 n = 1; % initial value for n

205

206 % first point of break curve is the pick-up current at the maximum configuration time

207 tf = PickupTmax; % maximum pick-up time

208 fault(n,:) = [If tf]; % store the results for the pickup value

209

210 % determine the number of loops that will be executed below to allow percent complete

211 % to be calculated and displayed to the user

212 SolveScale = 1.25; % determines the number of breakpoint calculations

213 repeats = ceil(log(50e3/Ip) / log(SolveScale)) + 1; % number of breakpoints to solve

214

215 % calculate more fault trip times across log based step size to complete the break

216 % curve, these calues are calculated between pickup current and one point above 50kA

217 while (If < 50e3) % calculate up to 50kA

218

219 TFmaxSave = []; % clear TFmaxSave to allow new thermal plot

220

221 Progress = n / repeats * 100; % progress percentage to be displayed to the user

222 StatusString = sprintf(... % update the status at the bottom of gui window

223 'Simulation running ... Step 3/3: Solving for system break points to determine

break curve ... %0.1f %%',Progress);

224

225 n = n + 1; % increase the value of n for the next iteration

226 If = SolveScale^(n-1)*Ip; % break point current value to be next simulated

227

228 [Tf,tf] = tempCalc(Tsteady,dt,If); % solve for above values

229

230 fault(n,:) = [If tf]; % store the results for this fault calculation

231

232 % reduce the simulation time steps to the nearest millisecond as the trip time

233 % becomes less to improve the accuracy of the simulation as the temperature

234 % changes become more extreme due to the excessive heating of the fault current

235 if tf < 10 % if previous trip time was less than 10 seconds

236 dt = 0.001; % reduce simulation time step to 1 ms intervals

237 elseif tf < 100 % if previous trip time was less than 100 seconds

238 dt = 0.008; % reduce simulation time step to 8 ms intervals

239 end

240

241 end % end while loop

242 breakPoints = fault; % save all the fault calculation information to the global tag

243

28/10/14 10:39 PM C:\Greg Nagel\Simulation\Master.m 5 of 5

244 gui(); % call the gui function to display the breakpoint plot

245

246 Snapshot = 1; % set flag to save a snapshot of the gui window

247 gui(); % call gui function to take snapshot

248

249 % output the run time required to solve step 3 of the simulation

250 toc3 = toc/60; % save the amount of minutes for stage 3

251 fprintf('Stage 3 complete, run time = %.0f mins\n\n',toc3) % output to command window

252

253 % output total run time to the command window

254 minTot = (toc1+toc2+toc3); % determine the total number of minutes for the simulation

255 hours = floor(minTot/60); % the number of hours to solve the simulation

256 mins = mod(minTot,60); % remainder of the hours into minutes

257 fprintf('Total simulation run time = %.0fh %.0fm\n',hours,mins) % to command window

258

259 % ---------------------------------- End - Master.m -------------------------------- %

28/10/14 10:37 PM C:\Greg Nagel\Simulation\breakcurve.m 1 of 4

 1 %% breakcurve.m --

 2 %

 3 % Author Greg Nagel - 0061025127

 4 % Project System dependant IDMT overcurrent settings for underground cables

 5 %

 6 % This file has been created by Greg Nagel for a final year research project to be

 7 % submitted to the University of Southern Queensland for courses, ENG4111/4112. It is

 8 % theoretical only and should not be used as the basis for decisions made on actual

 9 % power system applications.

 10 %

 11 % Release Date Comments

 12 % 1.0 05/09/14 Initial release to supervisor for partial review

 13 % 2.0 05/10/14 Code finalised and prepared for submission

 14 %

 15 % This file is a function require to support the file Master.m as part of the

 16 % simulation software developed by Greg Nagel to be used as a guideline for

 17 % determining the IDMT protection settings for underground power cables.

 18 %

 19 % Supporting files required the same directory as Master.m

 20 % breakcurve.m function to fit and plot protection curves

 21 % gui.fig graphical file for user interface

 22 % gui.m function to execute graphical user interface

 23 % layoutMatrix.m function to create colour by numbers matrix

 24 % materialProperties.m function to dynamically update material properties

 25 % tempCalc.m function to solve the simulation through time

 26 % tempPlot.m function to output plot of thermal profile

 27 %

 28 % This function uses the break points found by simulating different fault currents

 29 % on an underground cable system. Industry standard IEC and IEEE curves are fitted to

 30 % this data to determine the best IDMT protection settings to prevent the underground

 31 % cable from reaching damaging temperatures during a fault on the system. This

 32 % function also allows the user to try different curve and get the best suited setting

 33 % values for the defined curve

 34 % --

 35

 36 function breakcurve()

 37

 38 % Initialise global variables shared between MATLAB files

 39 global curveU ... % user defined curve

 40 breakerOp ... % time for circuit breaker to clear a fault after trip signal

 41 curveBest ... % text string of the best-fit curve as found by this function

 42 TMSet ... % time multiplier setting for best-fit curve

 43 Plot ... % flag used to inform gui when a new thermal plot is ready

 44 PickUp ... % pickup current found solved during step 2 of master.m

 45 breakPoints ... % break point currents and times

 46 PickUpSet ... % pickup setting value considering safety margin and breakerOp

 47 SafetyM ... % safety margin as defined by the user

 48 TMSetUser ... % time multiplier setting for user defined curve

 49 PickupTmax ... % maximum time relay will count for. i.e. to trip at pick-up

 50 curveUser; % text string for user defined curve

 51

 52 % set local variables from global data to retain global data

 53 % Fault = breakPoints; %

 54 Ip = PickUp; % pick-up current

 55 Ifault = breakPoints(:,1); % break point currents from FE analysis

 56 Tfault = breakPoints(:,2); % break point times from FE analysis

 57 SM = (100-SafetyM)/100; % convert safety margin to a decimal value

 58

 59

 60 %% find the best fit IEC / IEEE protection curve

 61 Is = Ip * SM; % pickup current setting of the system with safety margin

28/10/14 10:37 PM C:\Greg Nagel\Simulation\breakcurve.m 2 of 4

 62 PickUpSet = floor(Is); % round down to the nearest amp

 63

 64 % create vectors of 100 points to solve a continuous curve for continuous output plot

 65 a = log10(Is+.1); % first current point, (just above pickup current)

 66 b = log10(max(Ifault)); % last point to calculate, maximum current value solved

 67 Iplot = logspace(a,b,100); % create log spaced vector from a to b, 100 intervals

 68

 69 % adjust the original break curve to consider the breaker trip time and safety margin

 70 Fadjusted = Tfault * SM - breakerOp;

 71

 72 % create an array of strings containing the name of the various curves to be solved

 73 curveNames = ['IEC Standard Inv. ';

 74 'IEC Very Inv. ';

 75 'IEC Long Time Inv. ';

 76 'IEC Extremely Inv. ';

 77 'IEC Ultra Inv. ';

 78 'IEEE Moderately Inv.';

 79 'IEEE Very Inv. ';

 80 'IEEE Extremely Inv. ';];

 81 % convert to array of strings as above is just a matrix of characters

 82 cellNames = cellstr(curveNames);

 83

 84 % solve the best fit for each of the curve options

 85 for curveB = 1:8 % repeat for each of the 8 curves

 86 TMS = 0.1; % initial value for TMS

 87

 88 % set information about the curve calculations IEC and IEEE

 89 switch curveB % get the relevant values to solve 'curveB'

 90 case 1 %IEC Standard inverse

 91 k = 0.14; alpha = 0.02; beta = 2.97;

 92 case 2 % IEC Very inverse

 93 k = 13.5; alpha = 1; beta = 1.5;

 94 case 3 % IEC Long time inverse

 95 k = 120; alpha = 1; beta = 13.33;

 96 case 4 % IEC Extremely inverse

 97 k = 80; alpha = 2; beta = 0.808;

 98 case 5 % IEC Ultra inverse

 99 k = 315.2; alpha = 2.5; beta = 1;

100 case 6 % IEEE Moderately inverse

101 A = 0.01; B = 0.023; p = 0.02; beta = 0.241;

102 case 7 % IEEE Very inverse

103 A = 3.922; B = 0.098; p = 2; beta = 0.138;

104 case 8 % IEEE Extremely inverse

105 A = 5.64; B = 0.0243; p = 2; beta = 0.081;

106 end

107

108 tripS(curveB,:) = zeros(1,length(Ifault)); % initiate tripS row to all zeros

109 TripPlot(curveB,:) = zeros(1,length(Iplot)); % initiate tripPlot row to all zeros

110

111 while 1 % execute always until a 'break' command is reached

112

113 % solve for the curve using relevant IEC or IEEE equation

114 if curveB <= 5 % use IEC equation

115

116 tripT = (k ./ ((Ifault/Is).^alpha - 1)) * TMS / beta;

117

118 else % use IEEE equation

119

120 tripT = (A ./ ((Ifault/Is).^p - 1) + B) * TMS / beta;

121

122 end

28/10/14 10:37 PM C:\Greg Nagel\Simulation\breakcurve.m 3 of 4

123

124 % check if any value exceeds the break curve of the cable, if so, best case

125 % has been solved

126 if any(tripT >= Fadjusted) % if any values exceeds break curve

127 TMSsave(curveB,:) = TMS - 0.1; % use previous value for TMS

128

129 % calculate values for smooth plot

130 if curveB <= 5 % use IEC equation

131

132 TripPlot(curveB,:) = ...

133 (k ./ ((Iplot/Is).^alpha - 1)) * TMSsave(curveB,:) / beta;

134

135 else % use IEEE equation

136

137 TripPlot(curveB,:) = ...

138 (A ./ ((Iplot/Is).^p - 1) + B) * TMSsave(curveB,:) / beta;

139

140 end

141

142 break % exit from this while loop

143

144 else % curve is acceptable, increase TMS and try again

145

146 TMS = TMS + 0.1; % increase the value of TMS and try again

147 tripS(curveB,:) = tripT; % save the trip times

148

149 end

150

151 end

152

153 % calculate the curve regression of the log plot vs the adjusted break points

154 reg = abs(log10(tripT) - log10(Fadjusted)); % array of regression values

155 totReg(curveB) = sum(reg); % sum of regression values

156

157 end

158

159 % find the index location of the minimum regression value, this is the best fit curve

160 [C,index] = min(totReg); % find index of best fit curve

161

162 % create text to put in legend and gui depending on the curve that was the best fit

163 bestFit = ['Best: ', cellNames{index}]; % create string for plot legend

164 curveBest = cellNames{index}; % string to be output in gui

165 TMSet = TMSsave(index,:); % set the TMS value for the best fit curve

166

167 % check if user has defined a curve to plot alongside the best fit

168 if curveU ~= 1 % if user curve was selected

169 % dynamically create text to put in legend and gui

170 userDef = ['User: ', cellNames{curveU-1}]; % create string for plot legend

171 TMSetUser = TMSsave(curveU-1,:); % TMS value for user defined curve

172 curveUser = cellNames{curveU-1}; % string to be output in gui

173 end

174

175 Plot = 0; % turn off plot flag to hide and prevent gui updating thermal plot

176

177

178 %% plot break curves

179 % plot the break curve points of the system found during stage 3 of Master.m

180 loglog(Ifault,Tfault,'-+r') % plot with points and line

181 hold on % retain data so other lines can be added

182

183 % plot the break curve points of the adjusted curve considering breaker operating time

28/10/14 10:37 PM C:\Greg Nagel\Simulation\breakcurve.m 4 of 4

184 % and safety margin

185 loglog(Ifault,Fadjusted,'-+g') % plot with points and line

186

187 title('Break curve') % set title of plot

188 xlabel('Fault current (A)') % set x axis label

189 ylabel('Tripping time (s)') % set y axis label

190 grid on; % activate grid lines

191

192 % add best fit IDMT curve to the loglog plot

193 loglog(Iplot,TripPlot(index,:),'b')

194

195 if curveU ~= 1 % if user curve was selected

196 % add user defined curve to the loglog

197 loglog(Iplot,TripPlot(curveU-1,:),'m')

198

199 % add legend to plot including the name of the user defined curve

200 legend('Break curve','Safety curve', bestFit, userDef, 'Location','NorthEast');

201

202 % show points used to solve curve

203 loglog(Ifault,tripS(curveU-1,:),'+m')

204

205 else

206 % add legend to plot including only the name of the best fit curve

207 legend('Break curve','Safety curve', bestFit, 'Location','NorthEast');

208 end

209

210 % show points used to solve best curve

211 loglog(Ifault,tripS(index,:),'+b')

212

213 Imin = min(roundn(0.8*Ifault(1),2) , 500); % find the minimum current value to plot

214 xlim([Imin 100000]); % set x axis values for plot

215 ylim([0 2*PickupTmax]); % keep graph on a consistent axis

216

217 hold off % turn off hold of plot data

218

219 % -------------------------------- End - breakcurve.m ------------------------------ %

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 1 of 22

 1 %% gui.m ---

 2 %

 3 % Author Greg Nagel - 0061025127

 4 % Project System dependent IDMT overcurrent settings for underground cables

 5 %

 6 % This file has been created by Greg Nagel for a final year research project to be

 7 % submitted to the University of Southern Queensland for courses, ENG4111/4112. It is

 8 % theoretical only and should not be used as the basis for decisions made on actual

 9 % power system applications.

 10 %

 11 % Release Date Comments

 12 % 1.0 13/09/14 Initial release to supervisor for partial review

 13 % 1.1 30/09/14 Include statistical analysis of cable joint and radio button

 14 % 2.0 05/10/14 Code finalised and prepared for submission

 15 %

 16 % This file is a function require to support the file Master.m as part of the

 17 % simulation software developed by Greg Nagel to be used as a guideline for

 18 % determining the IDMT protection settings for underground power cables.

 19 %

 20 % Supporting files required the same directory as Master.m

 21 % breakcurve.m function to fit and plot protection curves

 22 % gui.fig graphical file for user interface

 23 % gui.m function to execute graphical user interface

 24 % layoutMatrix.m function to create colour by numbers matrix

 25 % materialProperties.m function to dynamically update material properties

 26 % tempCalc.m function to solve the simulation through time

 27 % tempPlot.m function to output plot of thermal profile

 28 %

 29 % This function defines how the Graphical User Interface (GUI) interfaces between the

 30 % user and the associated files required for the simulation. Many of the functions

 31 % within this file are automatically generated by the MATLAB gui creator. This file is

 32 % complemented by gui.fig which is the file that contains all the graphical

 33 % information required for the gui to operate.

 34 % --

 35

 36 % MATLAB automated function

 37 function varargout = gui(varargin)

 38 % Begin initialization code - DO NOT EDIT

 39 gui_Singleton = 1;

 40 gui_State = struct('gui_Name', mfilename, ...

 41 'gui_Singleton', gui_Singleton, ...

 42 'gui_OpeningFcn', @gui_OpeningFcn, ...

 43 'gui_OutputFcn', @gui_OutputFcn, ...

 44 'gui_LayoutFcn', [] , ...

 45 'gui_Callback', []);

 46

 47 if nargin && ischar(varargin{1})

 48 gui_State.gui_Callback = str2func(varargin{1});

 49 end

 50

 51 if nargout

 52 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

 53 else

 54 gui_mainfcn(gui_State, varargin{:});

 55 end

 56 % end - gui()

 57 % End initialization code - DO NOT EDIT

 58

 59

 60 % This function executes just before gui is made visible.

 61 function gui_OpeningFcn(hObject, eventdata, handles, varargin)

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 2 of 22

 62

 63 % Initialise global variables that are shared between this and other functions

 64 global depth ... % burial depth of cable (used to determine if air is shown)

 65 separation ... % distance between conductors (when multiple conductors)

 66 insul ... % insulation thickness of the cable

 67 shield ... % thickness of cable shield

 68 pvc ... % thickness of pvc

 69 Gtemp ... % ground temp as specified by the user

 70 Atemp ... % air temp as specified by the user

 71 bedding ... % thickness of bedding sand surrounding the cable

 72 I ... % value of load current as specified by the user

 73 breakerOp ... % time for circuit breaker to clear a fault after trip signal

 74 wait ... % flag used to determine when the user inputs are complete

 75 run ... % flag used to determine if user has stopped the simulation

 76 breakPoints ... % break point currents and times

 77 StatusString... % string that is output on gui to give status messages to user

 78 Snapshot ... % flag that defines when the gui should be saved to file

 79 SafetyM ... % safety margin as defined by the user

 80 filename ... % used throughout gui for filename of image saves

 81 system ... % cable system configuration

 82 Joint; % integer set by user to determine joint status (1 = no joint)

 83

 84 % Automatic code generated by MATLAB

 85 handles.output = hObject; % Choose default command line output for gui

 86 guidata(hObject, handles); % Update handles structure

 87

 88 % place gui in the centre of the screen, until the simulation has started, then it

 89 % will remain where it is or where the user has moved it to.

 90 if wait == 1 % if simulation is waiting to start

 91 movegui(gcf,'center') % place gui in the centre of the screen

 92 end

 93

 94 % hide cable separation field until the three phase or dual trefoil has been selected

 95 if system >= 3 % if system is 3 or 4

 96 set(handles.Separation, 'Visible', 'On'); % show cable separation fields

 97 set(handles.text6, 'Visible', 'On'); % show cable separation fields

 98 set(handles.text9, 'Visible', 'On'); % show cable separation fields

 99 else % if system is 1 or 2

 100 set(handles.Separation, 'Visible', 'Off'); % hide cable separation fields

 101 set(handles.text6, 'Visible', 'Off'); % hide cable separation fields

 102 set(handles.text9, 'Visible', 'Off'); % hide cable separation fields

 103 end

 104

 105 if Joint == 4 % check if statistical analysis has be requested

 106 else % no statistical analysis, hide analysis data fields

 107 hideJointFields(handles) % hide joint data fields

 108 end

 109

 110

 111 % Disable push buttons until conditions are acceptable for them to be pressed.

 112 set(handles.StartButton,'Enable','off'); % turn on the function of the start button

 113 if (run == 1 & wait == 0) % if system is running through simulation

 114 set(handles.StopButton,'Enable','on'); % turn on the function of the stop button

 115 else % if simulation is not running

 116 set(handles.StopButton,'Enable','off'); % turn off the function of the stop button

 117 end

 118

 119 % Disable joint select as initial cable cross-section is too large

 120 if (wait == 1) % if system is running through simulation

 121 set(handles.JointSelect,'Visible','off'); % hide joint selection field

 122 set(handles.JointText,'Visible','off'); % hide joint text field

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 3 of 22

 123 end

 124

 125 % During initialisation of the gui window, save the default values for the user

 126 % inputs to be used within other functions.

 127 depth = str2num(get(handles.DepthOfLay,'string'))/1000; % depth of cable lay

 128 separation = str2num(get(handles.Separation,'string'))/1000; % cable separation

 129 Atemp = str2num(get(handles.Atemp,'string')); % ambient air temperature

 130 Gtemp = str2num(get(handles.Gtemp,'string')); % ambient ground temperature

 131 bedding = str2num(get(handles.Bedding,'string'))/1000; % thickness of bedding sand

 132 I = str2num(get(handles.Load,'string')); % load current

 133 breakerOp = str2num(get(handles.BreakOp,'string'))/1000;% breaker trip time

 134 SafetyM = str2num(get(handles.safetyM,'string')); % safety margin

 135 insul = str2num(get(handles.XLPE,'string'))/1000; % thickness of XLPE

 136 shield = str2num(get(handles.Shield,'string'))/1000; % thickness of Shield

 137 pvc = str2num(get(handles.PVC,'string'))/1000; % thickness of PVC

 138

 139 % check if there are results for the break curve of the system. If there is, configure

 140 % the gui window for displaying the break curve outputs.

 141 if breakPoints % if there are results for the curve

 142

 143 set(handles.StopButton,'Enable','Off'); % disable stop button

 144

 145 % clear and hide axis 1

 146 axes(handles.axes1); % select plot1 as active set of axis

 147 delete(colorbar); % remove the colourbar

 148 cla(handles.axes1); % clear the axis 1

 149 set(handles.axes1, 'Visible', 'Off'); % make axis 1 invisible

 150

 151 % clear and hide axis 2

 152 axes(handles.axes2); % select plot2 as active set of axis

 153 delete(legend); % delete the plot legend

 154 cla(handles.axes2); % clear the axis 2

 155 set(handles.axes2, 'Visible', 'Off'); % make axis 2 invisible

 156

 157 % output IDMT curves onto axis 3

 158 set(handles.axes3, 'Visible', 'On'); % make axis 3 visible

 159 axes(handles.axes3); % select plot3 to be updated

 160 breakcurve(); % call the break curve function which will update plot

 161

 162 % take a snapshot of the system when the IDMT values have been solved

 163 if Snapshot % if snapshot flag has been set

 164 % save an image of GUI for user

 165 hgexport(gcf, sprintf([filename '- 4) IDMT results']), ... % filename info

 166 hgexport('factorystyle'), 'Format', 'png'); % image type

 167 Snapshot = 0; % clear snapshot flag

 168 end

 169

 170 % Update the status to inform the user of the status of the simulation

 171 StatusString = 'Simulation complete. Screen captures are saved in Master file''s

directory. User can now modify the ''Preferred IDMT curve'''; % status update to

the user

 172 set(handles.Status, 'String', StatusString) % update status

 173

 174 else % if no results are available for the IDMT curve

 175

 176 if wait == 1 % if still waiting for user configuration of the system

 177 set(handles.boundaryButton,'Value',1); % default radio button to on

 178

 179 % hide other axes as not required yet

 180 set(handles.axes1, 'Visible', 'Off'); % make axis 1 invisible

 181 set(handles.axes2, 'Visible', 'Off'); % make axis 2 invisible

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 4 of 22

 182

 183 % initialise the graphical representation of the default system configuration

 184 axes(handles.axes3); % update plot onto axis 3

 185 layoutMatrix(); % update the graphical representation of the system

 186

 187 else % if simulation has begun

 188 % clear any data from axes 3 (layout colour by numbers)

 189 cla(handles.axes3) % clear active axis

 190 set(handles.axes3, 'Visible', 'Off'); % make axis 3 invisible

 191

 192 end

 193

 194 % call function to check if user inputs are acceptable and if so, make start button

 195 % available for user to begin simulation

 196 checkValid(handles) % call in-line function

 197

 198 end

 199 % end - gui_OpeningFcn()

 200

 201

 202 % this function executes when the gui function is called after it has been established

 203 function varargout = gui_OutputFcn(hObject, eventdata, handles)

 204

 205 % Automatic code generated by MATLAB

 206 varargout{1} = handles.output;% Get default command line output from handles structure

 207

 208 % Initialise global variables that are shared between this and other functions

 209 global Gtemp ... % ground temp as specified by the user

 210 run ... % flag used to determine if user has stopped the simulation

 211 StatusString... % string that is output on gui to give status messages to user

 212 Snapshot ... % flag that defines when the gui should be saved to file

 213 filename ... % used throughout gui for filename of image saves

 214 Plot ... % flag used to inform gui when a new thermal plot is ready

 215 TmaxSave ... % contains fault temperatures and times for stage 1 temp plot

 216 TFmaxSave ... % contains fault temperatures and times for stage 2 temp plot

 217 SSMT ... % steady state maximum temperature caused by load current

 218 PickUp ... % pick-up current that will cause system to heat to TmaxS (90)

 219 SimStep ... % integer that reflects which stage the simulation is up to

 220 PickUpSet ... % pickup setting value considering safety margin and breakerOp

 221 TMSet ... % time multiplier setting for best-fit curve

 222 curveBest ... % text string of the best-fit curve as found by this function

 223 TMSetUser ... % time multiplier setting for user defined curve

 224 curveU ... % user defined curve

 225 PickupTmax ... % maximum time relay will count for. i.e. to trip at pick-up

 226 curveUser ... % text string for user defined curve

 227 Days ... % No. of days simulation should run for to reach steady state

 228 Layout ... % layout matrix containing different integer for each material

 229 DeltaT ... % difference between ground temp and maximum steady state temp

 230 Button; % radio button status for showing the boundary circles on plot

 231

 232 set(handles.Status, 'String', StatusString) % update status at the bottom of the gui

 233

 234 Button = get(handles.boundaryButton,'Value'); % get status of the radio button

 235

 236

 237 if Plot == 1 % if the plot flag has been set

 238 if run == 1 % and simulation is still running

 239

 240 % take a snapshot of the system following the system reaching steady state

 241 if Snapshot % if snapshot flag has been set

 242 if SimStep == 1

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 5 of 22

 243 % save an image of GUI for user to review the data from steady state

 244 hgexport(gcf, sprintf([filename '- 2) Steadystate Thermal Profile']),

hgexport('factorystyle'), 'Format', 'png');

 245 elseif SimStep == 2

 246 % save an image of GUI for user to review data from pick-up simulation

 247 hgexport(gcf, sprintf([filename '- 3) Pickup Current Thermal

Profile']),hgexport('factorystyle'), 'Format', 'png');

 248 end

 249 Snapshot = 0; % clear snapshot flag

 250 end

 251

 252 % update thermal distribution colour plot

 253 axes(handles.axes1); % select axis 1 to be updated

 254 tempPlot(); % call function temp plot to update the plot

 255 set(handles.axes1, 'Visible', 'On'); % turn on axis 1

 256

 257 % update temp vs time plot

 258 axes(handles.axes2); % select axis 2 to be updated

 259

 260 if SimStep == 3 % if simulation is in stage 3

 261

 262 plot(TFmaxSave(:,2)*60,TFmaxSave(:,1)) % plot the temp. vs time (sec)

 263 xlabel('Simulation time (seconds)'); % x axis label

 264 Ym = max(90, (max(TFmaxSave(:,1)))); % y axis max is at least 90 deg

 265 ylim([Gtemp Ym]); % set y axis limits

 266

 267 else % simulation is in stage 1 or 2

 268

 269 plot(TmaxSave(:,2)/60,TmaxSave(:,1)) % plot the temp. vs time (hours)

 270

 271 if SimStep == 1 % simulation is in stage 1

 272

 273 xmax = max(TmaxSave(:,2)/60); % find maximum time value of plot

 274 hours = (Days*24); % find the max simulation time

 275

 276 if xmax >= hours % if max time exceeds the max sim time (cosmetic)

 277 xlim([0 hours]); % limit graph axis to max time

 278 set(gca,'XTick',[0:24:hours]) % set X marker locations every 24h

 279 end

 280

 281 elseif SimStep == 2 % simulation is in stage 2

 282

 283 hold on % hold the plot data from stage 1 for comparison

 284 plot(TFmaxSave(:,2)/60,TFmaxSave(:,1),'r') % plot the temp. vs time

 285 Ym = max(90, (max(TFmaxSave(:,1)))); % y axis max is at least 90 deg

 286 ylim([Gtemp Ym]); % set y axis limits

 287 xlim([0 ceil(PickupTmax/60/60)]); % set x axis limits

 288 hold off % release the plot data hold

 289

 290 end

 291

 292 xlabel('Simulation time (hours)'); % x axis label

 293

 294 end

 295

 296 title('Maximum temperature in the system'); % title of the plot

 297 ylabel('Max. Temp. (degC)'); % y axis label

 298

 299 end

 300 end

 301

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 6 of 22

 302 % remove the fields for air temperature if the depth of lay means no air is in system

 303 if Layout ~= 7 % if no entries are equal to 7 (air)

 304 set(handles.text29, 'Visible', 'Off'); % hide Atemp info

 305 set(handles.text32, 'Visible', 'Off'); % hide Atemp info

 306 set(handles.Atemp, 'Visible', 'Off'); % hide Atemp info

 307 end

 308

 309

 310 if SSMT % if SSMT has been set (end stage 1) display the results

 311 set(handles.SystemRes, 'Visible', 'On'); % show heading

 312 set(handles.MaxTtext, 'Visible', 'On'); % show heading for maxT

 313 set(handles.MaxT, 'Visible', 'On'); % make field visible

 314 set(handles.deltaTtext, 'Visible', 'On'); % show heading for deltaT

 315 set(handles.deltaT, 'Visible', 'On'); % make field visible

 316 set(handles.MaxT, 'String', SSMT) % update SSMT result

 317 set(handles.deltaT, 'String', DeltaT) % update deltaT

 318 else % steady state has not been reached, hide the data fields

 319 set(handles.SystemRes, 'Visible', 'Off'); % show heading

 320 set(handles.MaxTtext, 'Visible', 'Off'); % hide result text for time

 321 set(handles.deltaTtext, 'Visible', 'Off'); % show heading

 322 end

 323

 324 if PickUp % if PickUp has been set (end stage 2) display the results

 325 set(handles.PickUtext, 'Visible', 'On'); % show heading

 326 set(handles.PickUpR, 'Visible', 'On'); % make field visible

 327 set(handles.PickUpR, 'String', PickUp) % update PickUp result

 328 else % pick up value not yet found, hide the data fields

 329 set(handles.PickUtext, 'Visible', 'Off'); % hide result text for distance

 330 end

 331

 332 if TMSet >= 0 % if TMSet has been set (end stage 3) display the results

 333

 334 set(handles.boundaryButton, 'Visible', 'Off'); % disable radio button

 335

 336 % update best fit results

 337 set(handles.IDMTheading, 'Visible', 'On'); % show heading

 338 set(handles.PickUpText, 'Visible', 'On'); % show heading

 339 set(handles.PickUpS, 'Visible', 'On'); % make field visible

 340 set(handles.PickUpS, 'String', PickUpSet) % update PickUpSet result

 341 set(handles.TMStext, 'Visible', 'On'); % show heading

 342 set(handles.TMS, 'Visible', 'On'); % make field visible

 343 set(handles.TMS, 'String', TMSet) % update TMS result

 344 set(handles.CurveBtext, 'Visible', 'On'); % show heading

 345 set(handles.CurveB, 'Visible', 'On'); % make field visible

 346 set(handles.CurveB, 'String', curveBest); % update curveBest result

 347 set(handles.Ucurve,'Enable','on'); % make user curve selection available

 348

 349 if curveU ~= 1 % if preferred curve has been selected by user

 350

 351 % update user results

 352 set(handles.UserHeading, 'Visible', 'On'); % show heading

 353 set(handles.PickUpTextU, 'Visible', 'On'); % show heading

 354 set(handles.PickUpU, 'Visible', 'On'); % make field visible

 355 set(handles.PickUpU, 'String', PickUpSet) % update PickUpSet result

 356 set(handles.TMStextU, 'Visible', 'On'); % show heading

 357 set(handles.TMSU, 'Visible', 'On'); % make field visible

 358 set(handles.TMSU, 'String', TMSetUser) % update TMSetUser result

 359 set(handles.CurveUtext, 'Visible', 'On'); % show heading

 360 set(handles.CurveU, 'Visible', 'On'); % make field visible

 361 set(handles.CurveU, 'String', curveUser); % update curveUser result

 362

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 7 of 22

 363 else % user has not selected a preferred curve

 364

 365 % hide user curve result text

 366 set(handles.UserHeading, 'Visible', 'Off'); % show heading

 367 set(handles.TMStextU, 'Visible', 'Off'); % hide result text

 368 set(handles.CurveUtext, 'Visible', 'Off'); % hide result text

 369 set(handles.PickUpTextU, 'Visible', 'Off'); % hide result text

 370 set(handles.TMSU, 'Visible', 'Off'); % make field invisible

 371 set(handles.CurveU, 'Visible', 'Off'); % make field invisible

 372 set(handles.PickUpU, 'Visible', 'Off'); % make field invisible

 373

 374 end

 375

 376 else % if TMS has not yet been set

 377

 378 % hide best curve result text

 379 set(handles.IDMTheading, 'Visible', 'Off'); % hide heading

 380 set(handles.TMStext, 'Visible', 'Off'); % hide result text

 381 set(handles.CurveBtext, 'Visible', 'Off'); % hide result text

 382 set(handles.PickUpText, 'Visible', 'Off'); % hide result text

 383

 384 % hide user curve result text

 385 set(handles.UserHeading, 'Visible', 'Off'); % hide heading

 386 set(handles.TMStextU, 'Visible', 'Off'); % hide result text

 387 set(handles.CurveUtext, 'Visible', 'Off'); % hide result text

 388 set(handles.PickUpTextU, 'Visible', 'Off'); % hide result text

 389

 390 end

 391 % end - gui_OutputFcn()

 392

 393

 394

 395 %% the following functions execute during creation of the gui interactive fields.

 396

 397 % --- Executes on key press with focus on configuration and none of its controls.

 398 function configuration_KeyPressFcn(hObject, eventdata, handles)

 399 % no action - automatically generated code

 400 % end - configuration_KeyPressFcn()

 401

 402 % --- Executes during object creation, after setting all properties.

 403 function DepthOfLay_CreateFcn(hObject, eventdata, handles)

 404 % create object, automatically generated code

 405 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 406 set(hObject,'BackgroundColor','white');

 407 end

 408 % end - DepthOfLay_CreateFcn()

 409

 410

 411 % --- Executes during object creation, after setting all properties.

 412 function Separation_CreateFcn(hObject, eventdata, handles)

 413 % create object, automatically generated code

 414 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 415 set(hObject,'BackgroundColor','white');

 416 end

 417 % end - Separation_CreateFcn()

 418

 419

 420 % --- Executes during object creation, after setting all properties.

 421 function xsection_CreateFcn(hObject, eventdata, handles)

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 8 of 22

 422 % set the default value for the cross-section dropdown box

 423 set(hObject,'Value',8);

 424 % create object, automatically generated code

 425 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 426 set(hObject,'BackgroundColor','white');

 427 end

 428 selection = get(hObject,'Value'); % extract default value for the system

 429 % call function to convert selection to actual cross-section value

 430 getXsection(selection); % call the function to define cross section data

 431 % end - xsection_CreateFcn()

 432

 433

 434 % --- Executes during object creation, after setting all properties.

 435 function configuration_CreateFcn(hObject, eventdata, handles)

 436 % set the default value for the system configuration dropdown box

 437 set(hObject,'Value',2);

 438 % create object, automatically generated code

 439 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 440 set(hObject,'BackgroundColor','white');

 441 end

 442 % Initialise global variables that will be used by other functions

 443 global system; % cable system configuration

 444 system = get(hObject,'Value'); % extract and global save default value for system

 445 % end - configuration_CreateFcn()

 446

 447

 448 % --- Executes during object creation, after setting all properties.

 449 function condMat_CreateFcn(hObject, eventdata, handles)

 450 set(hObject,'Value',2); % set the default value for the conductor material

 451 % create object, automatically generated code

 452 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 453 set(hObject,'BackgroundColor','white');

 454 end

 455 % Initialise global variables that will be used by other functions

 456 global conductor; % integer set by user to determine if conductor is Cu or Al

 457 conductor = get(hObject,'Value');% extract and global save default value for conductor

 458 % end - condMat_CreateFcn()

 459

 460

 461 % --- Executes during object creation, after setting all properties.

 462 function XLPE_CreateFcn(hObject, eventdata, handles)

 463 % create object, automatically generated code

 464 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 465 set(hObject,'BackgroundColor','white');

 466 end

 467 % end - XLPE_CreateFcn()

 468

 469

 470 % --- Executes during object creation, after setting all properties.

 471 function Shield_CreateFcn(hObject, eventdata, handles)

 472 % create object, automatically generated code

 473 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 474 set(hObject,'BackgroundColor','white');

 475 end

 476 % end - Shield_CreateFcn()

 477

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 9 of 22

 478

 479 % --- Executes during object creation, after setting all properties.

 480 function PVC_CreateFcn(hObject, eventdata, handles)

 481 % create object, automatically generated code

 482 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 483 set(hObject,'BackgroundColor','white');

 484 end

 485 % end - PVC_CreateFcn()

 486

 487

 488 % --- Executes during object creation, after setting all properties.

 489 function Atemp_CreateFcn(hObject, eventdata, handles)

 490 % create object, automatically generated code

 491 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 492 set(hObject,'BackgroundColor','white');

 493 end

 494 % end - Atemp_CreateFcn()

 495

 496

 497 % --- Executes during object creation, after setting all properties.

 498 function Gtemp_CreateFcn(hObject, eventdata, handles)

 499 % create object, automatically generated code

 500 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 501 set(hObject,'BackgroundColor','white');

 502 end

 503 % end - Gtemp_CreateFcn()

 504

 505

 506 % --- Executes during object creation, after setting all properties.

 507 function Bedding_CreateFcn(hObject, eventdata, handles)

 508 % create object, automatically generated code

 509 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 510 set(hObject,'BackgroundColor','white');

 511 end

 512 % end - Bedding_CreateFcn()

 513

 514

 515 % --- Executes during object creation, after setting all properties.

 516 function Load_CreateFcn(hObject, eventdata, handles)

 517 % create object, automatically generated code

 518 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 519 set(hObject,'BackgroundColor','white');

 520 end

 521 % end - Load_CreateFcn()

 522

 523

 524 % --- Executes during object creation, after setting all properties.

 525 function Ucurve_CreateFcn(hObject, eventdata, handles)

 526 % create object, automatically generated code

 527 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 528 set(hObject,'BackgroundColor','white');

 529 end

 530 global curveU; % user defined curve

 531 curveU = get(hObject,'Value'); % extract default value of the user defined curve

 532 % end - Ucurve_CreateFcn()

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 10 of 22

 533

 534

 535 % --- Executes during object creation, after setting all properties.

 536 function JointSelect_CreateFcn(hObject, eventdata, handles)

 537 % set the default value for the joint selection dropdown box

 538 set(hObject,'Value',1);

 539 % create object, automatically generated code

 540 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 541 set(hObject,'BackgroundColor','white');

 542 end

 543 % Initialise global variables that will be used by other functions

 544 global Joint; % integer set by user to determine the Joint situation

 545 Joint = get(hObject,'Value'); % extract value of the selected cable system

 546 % end - JointSelect_CreateFcn()

 547

 548

 549 % --- Executes during object creation, after setting all properties.

 550 function BreakOp_CreateFcn(hObject, eventdata, handles)

 551 % create object, automatically generated code

 552 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 553 set(hObject,'BackgroundColor','white');

 554 end

 555 % end - BreakOp_CreateFcn()

 556

 557

 558 % --- Executes during object creation, after setting all properties.

 559 function safetyM_CreateFcn(hObject, eventdata, handles)

 560 % create object, automatically generated code

 561 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 562 set(hObject,'BackgroundColor','white');

 563 end

 564 % end - safetyM_CreateFcn()

 565

 566

 567 % --- Executes during object creation, after setting all properties.

 568 function Res_CreateFcn(hObject, eventdata, handles)

 569 % set the default value for the cross-section dropdown box

 570 set(hObject,'Value',1);

 571 % create object, automatically generated code

 572 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 573 set(hObject,'BackgroundColor','white');

 574 end

 575 % Initialise global variables that will be used by other functions

 576 global resolution; % integer that determines the size of each finite element

 577 resolution = get(hObject,'Value'); % extract default value for the system

 578 % end - Res_CreateFcn()

 579

 580

 581 % --- Executes during object creation, after setting all properties.

 582 function ageData_CreateFcn(hObject, eventdata, handles)

 583 % create object, automatically generated code

 584 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 585 set(hObject,'BackgroundColor','white');

 586 end

 587 % end - ageData_CreateFcn()

 588

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 11 of 22

 589

 590 % --- Executes during object creation, after setting all properties.

 591 function jointsData_CreateFcn(hObject, eventdata, handles)

 592 % create object, automatically generated code

 593 if ispc && isequal(get(hObject,'BackgroundColor'), get

(0,'defaultUicontrolBackgroundColor'))

 594 set(hObject,'BackgroundColor','white');

 595 end

 596 % end - jointsData_CreateFcn()

 597

 598

 599

 600 %% the following functions execute when the user interacts with the gui data fields.

 601

 602 % this function executes when the StartButton is pressed (Run Simulation).

 603 function StartButton_Callback(hObject, eventdata, handles)

 604

 605 % Initialise global variables that will be used by other functions

 606 global wait ... % flag used to determine when the user inputs are complete

 607 Gtemp ... % ground temp as specified by the user

 608 I ... % value of load current as specified by the user

 609 Atemp ... % air temp as specified by the user

 610 breakerOp ... % time for circuit breaker to clear a fault after trip signal

 611 SafetyM ... % safety margin as defined by the user

 612 resolution ... % integer that determines the size of each finite element

 613 system ... % cable system configuration

 614 conductor ... % integer set by user to determine if conductor is Cu or Al

 615 xsection ... % cross-section of conductor as specified by user

 616 Joint ... % integer set by user to determine the Joint situation

 617 filename; % used throughout gui for filename of image saves

 618

 619 % save global values to be used throughout the simulation

 620 SafetyM = str2num(get(handles.safetyM,'string')); % safety margin

 621 breakerOp = str2num(get(handles.BreakOp,'string'))/1000;% breaker trip time

 622 I = str2num(get(handles.Load,'string')); % load current of system

 623 Gtemp = str2num(get(handles.Gtemp,'string')); % ambient ground temperature

 624 Atemp = str2num(get(handles.Atemp,'string')); % ambient air temperature

 625

 626 % create a filename that will be used by the snapshots and includes system information

 627 filename = sprintf('L%0.0f R%0.0f I%0.0f C%0.0f X%0.0f J%0.0f ', ... % text

 628 system,resolution,I,conductor,xsection*1e6,Joint); % variables

 629

 630 % save a copy of the gui figure window to preserve the settings that were used

 631 hgexport(gcf, sprintf([filename '- 1) Simulation Start.png']), ... % filename

 632 hgexport('factorystyle'), 'Format', 'png'); % style of export

 633

 634 % define the new status string to be displayed at the bottom of the gui

 635 StatusString = 'Simulaition running ... '; % status to update to the user

 636 set(handles.Status, 'String', StatusString) % update status

 637

 638 wait = 0; % clear wait flag to allow Master script to progress

 639

 640 % disable the input variables, dropdown boxes and start button

 641 set(handles.configuration,'Enable','off')

 642 set(handles.DepthOfLay,'Enable','off')

 643 set(handles.Bedding,'Enable','off')

 644 set(handles.Separation,'Enable','off')

 645 set(handles.condMat,'Enable','off')

 646 set(handles.xsection,'Enable','off')

 647 set(handles.XLPE,'Enable','off')

 648 set(handles.Shield,'Enable','off')

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 12 of 22

 649 set(handles.PVC,'Enable','off')

 650 set(handles.Atemp,'Enable','off')

 651 set(handles.Gtemp,'Enable','off')

 652 set(handles.Load,'Enable','off')

 653 set(handles.Ucurve,'Enable','off')

 654 set(handles.BreakOp,'Enable','off')

 655 set(handles.safetyM,'Enable','off')

 656 set(handles.Res,'Enable','off')

 657 set(handles.JointSelect,'Enable','off')

 658 set(handles.StartButton,'Enable','off')

 659 set(handles.jointsData,'Enable','off')

 660 set(handles.ageData,'Enable','off')

 661 % enable the stop button

 662 set(handles.StopButton,'Enable','on');

 663 % end - StartButton_Callback()

 664

 665

 666 % this function executes when the Depth of Lay is modified by user.

 667 function DepthOfLay_Callback(hObject, eventdata, handles)

 668

 669 % Initialise global variables that are shared between this and other functions

 670 global depth ... % burial depth of cable (used to determine if air is shown)

 671 Layout; % layout matrix containing different integer for each material

 672

 673 % read in value and if it is out of the range, colour the text red so user is aware

 674 in1 = str2num(get(handles.DepthOfLay,'string'))/1000; % read in value

 675 if in1 >= 0 && in1 <= 2 % check if value is valid

 676 set(handles.DepthOfLay, 'ForegroundColor', [0,0,0]); % text black

 677 depth = str2num(get(handles.DepthOfLay,'string'))/1000; % depth of cable lay

 678 else % data not valid

 679 set(handles.DepthOfLay, 'ForegroundColor', [1,0,0]); % make red invalid

 680 end

 681 checkValid(handles) % call function to check if run button can be shown

 682

 683 % remove the fields for air temperature if the depth of lay means no air is in system

 684 if Layout ~= 7 % if no entries are equal to 7 (no air)

 685 set(handles.text29, 'Visible', 'Off'); % hide Atemp info

 686 set(handles.text32, 'Visible', 'Off'); % hide Atemp info

 687 set(handles.Atemp, 'Visible', 'Off'); % hide Atemp info

 688 else % if no entries are equal to 7 (air)

 689 set(handles.text29, 'Visible', 'On'); % make Atemp info visible

 690 set(handles.text32, 'Visible', 'On'); % make Atemp info visible

 691 set(handles.Atemp, 'Visible', 'On'); % make Atemp info visible

 692 end

 693 % end - DepthOfLay_Callback()

 694

 695

 696 % this function executes when the cable separation distance is modified by user.

 697 function Separation_Callback(hObject, eventdata, handles)

 698

 699 % Initialise global variables that will be used by other functions

 700 global separation; % distance between conductors (when multiple conductors)

 701

 702 % read in value and if it is out of the range, colour the text red so user is aware

 703 in2 = str2num(get(handles.Separation,'string'))/1000; % read in value

 704 if in2 >= 0 && in2 <= 0.2 % check if value is valid

 705 set(handles.Separation, 'ForegroundColor', [0,0,0]); % text black

 706 separation = str2num(get(handles.Separation,'string'))/1000; % cable separation

 707 else % data not valid

 708 set(handles.Separation, 'ForegroundColor', [1,0,0]); % text red

 709 end

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 13 of 22

 710 checkValid(handles) % call function to check if run button can be shown

 711 % end - Separation_Callback()

 712

 713

 714 % this function executes when the cable cross-section dropdown box is modified.

 715 function xsection_Callback(hObject, eventdata, handles)

 716

 717 % Initialise global variables that will be used by other functions

 718 global Joint ... % integer set by user to determine the Joint situation

 719 shield ... % thickness of cable shield

 720 pvc ... % thickness of pvc

 721 insul; % insulation thickness of the cable

 722

 723 selection = get(hObject,'Value'); % extract default value for the system

 724

 725 % joint analysis is only available for cable cross-section of less than 400mm2

 726 if selection <= 4 % less than 400mm2

 727 % enable joint configuration

 728 set(handles.JointText, 'Visible', 'On'); % show joint selection field

 729 set(handles.JointSelect, 'Visible', 'On'); % show joint text

 730

 731 else

 732 % disable joint configuration

 733 set(handles.JointSelect,'Value',1); % force joint to 1 (no joint)

 734 set(handles.JointText, 'Visible', 'Off'); % hide joint selection field

 735 set(handles.JointSelect, 'Visible', 'Off'); % hide joint text

 736 hideJointFields(handles)

 737

 738 % enable input functionality

 739 set(handles.condMat,'Enable','on'); % user can now change the conductor material

 740 set(handles.XLPE,'Enable','on'); % user can now change the XLPE thickness

 741 set(handles.Shield,'Enable','on'); % user can now change the Shield thickness

 742 set(handles.PVC,'Enable','on'); % user can now change the PVC

 743

 744 % restore the values of the cable

 745 insul = str2num(get(handles.XLPE,'string'))/1000; % thickness of XLPE

 746 shield = str2num(get(handles.Shield,'string'))/1000; % thickness of Shield

 747 pvc = str2num(get(handles.PVC,'string'))/1000; % thickness of PVC

 748 end

 749 Joint = get(handles.JointSelect,'Value'); % update Joint to what is configured

 750

 751 % call function to convert selection to actual cross-section value

 752 getXsection(selection); % call the function to define cross section data

 753 axes(handles.axes3); % set active plot to axis 3

 754 layoutMatrix(); % update the graphical representation of system

 755 checkValid(handles) % call function to check run button can be shown

 756 % end - xsection_Callback()

 757

 758

 759 % this function executes when the system configuration dropdown box is modified.

 760 function configuration_Callback(hObject, eventdata, handles)

 761

 762 % Initialise global variables that will be used by other functions

 763 global system; % cable system configuration

 764

 765 system = get(hObject,'Value'); % extract and save global value of selected system

 766

 767 % hide the data fields for separation unless required

 768 if system == 1 || system == 2

 769 set(handles.Separation, 'Visible', 'Off'); % hide cable separation field

 770 set(handles.text6, 'Visible', 'Off'); % hide cable separation field

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 14 of 22

 771 set(handles.text9, 'Visible', 'Off'); % hide cable separation field

 772 else

 773 set(handles.Separation, 'Visible', 'On'); % show cable separation field

 774 set(handles.text6, 'Visible', 'On'); % show cable separation field

 775 set(handles.text9, 'Visible', 'On'); % show cable separation field

 776 end

 777

 778 axes(handles.axes3); % set active plot to axis 3

 779 layoutMatrix(); % update the graphical representation of the system

 780 checkValid(handles); % call function to check if run button can be shown

 781 % end - configuration_Callback()

 782

 783

 784 % this function executes when the Stop button is pressed.

 785 function StopButton_Callback(hObject, eventdata, handles)

 786

 787 % Initialise global variables that will be used by other functions

 788 global run ... % flag used to determine if user has stopped the simulation

 789 StatusString; % string that is output on gui to give status messages to user

 790

 791 run = 0; % clear the run flag

 792 set(handles.StopButton,'Enable','off'); % grey out stop button

 793 set(handles.boundaryButton, 'Visible', 'Off'); % disable radio button

 794

 795 % update status for the user

 796 StatusString = 'User stopped simulation. Close GUI and re-run Master file.';

 797 set(handles.Status, 'String', StatusString) % update status on gui

 798

 799 % print out to command window

 800 fprintf('Simulation stopped by user\n') % output to command window

 801 % end - StopButton_Callback()

 802

 803

 804 % this function executes when the User closes the gui window.

 805 function figure1_CloseRequestFcn(hObject, eventdata, handles)

 806

 807 % Initialise global variables that will be used by other functions

 808 global run ... % flag used to determine if user has stopped the simulation

 809 wait; % flag used to determine when the user inputs are complete

 810

 811 run = 0; % clear the run flag

 812 wait = 0; % abort wait for user inputs

 813 delete(hObject); % close gui figure

 814 close all; % close all windows

 815 fprintf('User closed GUI window\n') % output to command window

 816 % end - figure1_CloseRequestFcn()

 817

 818

 819 % this function executes when the conductor material dropdown box is modified.

 820 function condMat_Callback(hObject, eventdata, handles)

 821

 822 % Initialise global variables that will be used by other functions

 823 global conductor; % integer set by user to determine if conductor is Cu or Al

 824

 825 conductor = get(hObject,'Value'); % extract value of the selected cable system

 826 axes(handles.axes3); % make active plot axis 3

 827 layoutMatrix(); % update the graphical representation of the system

 828 checkValid(handles) % call function to check if run button can be shown

 829 selection = get(handles.xsection,'Value'); % extract setting for cross-section

 830 getXsection(selection); % call function to re-determine cross-section resistance

 831 % end - condMat_Callback()

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 15 of 22

 832

 833

 834 % this function executes when the XLPE thickness is modified by user.

 835 function XLPE_Callback(hObject, eventdata, handles)

 836

 837 % Initialise global variables that will be used by other functions

 838 global insul; % insulation thickness of the cable

 839

 840 in4 = str2num(get(handles.XLPE,'string'))/1000; % read in value

 841 if in4 >= 0.001 && in4 <= 0.04 % check if value is valid

 842 set(handles.XLPE, 'ForegroundColor', [0,0,0]); % text black

 843 insul = str2num(get(handles.XLPE,'string'))/1000; % thickness of XLPE

 844 else % data is invalid

 845 set(handles.XLPE, 'ForegroundColor', [1,0,0]); % text red

 846 end

 847 checkValid(handles) % call function to check if run button can be shown

 848 % end - XLPE_Callback()

 849

 850

 851 % this function executes when the Shield thickness is modified by user.

 852 function Shield_Callback(hObject, eventdata, handles)

 853

 854 % Initialise global variables that will be used by other functions

 855 global shield; % thickness of cable shield

 856

 857 in5 = str2num(get(handles.Shield,'string'))/1000; % read in value

 858 if in5 >= 0 && in5 <= 0.02 % check if value is valid

 859 set(handles.Shield, 'ForegroundColor', [0,0,0]); % text black

 860 shield = str2num(get(handles.Shield,'string'))/1000; % thickness of Shield

 861 else % data is invalid

 862 set(handles.Shield, 'ForegroundColor', [1,0,0]); % text red

 863 end

 864 checkValid(handles) % call function to check if run button can be shown

 865 % end - Shield_Callback()

 866

 867

 868 % this function executes when the PVC thickness is modified by user.

 869 function PVC_Callback(hObject, eventdata, handles)

 870

 871 % Initialise global variables that will be used by other functions

 872 global pvc; % thickness of pvc

 873

 874 in6 = str2num(get(handles.PVC,'string'))/1000; % read in value

 875 if in6 >= 0.001 && in6 <= 0.05 % check if value is valid

 876 set(handles.PVC, 'ForegroundColor', [0,0,0]); % text black

 877 pvc = str2num(get(handles.PVC,'string'))/1000; % thickness of PVC

 878 else % data is invalid

 879 set(handles.PVC, 'ForegroundColor', [1,0,0]); % text red

 880 end

 881 checkValid(handles) % call function to check if run button can be shown

 882 % end - PVC_Callback()

 883

 884

 885 % this function executes when the Air Temperature field is modified by user.

 886 function Atemp_Callback(hObject, eventdata, handles)

 887 in7 = str2num(get(handles.Atemp,'string')); % read in value

 888 if in7 >= -40 && in7 <= 60 % check if value is valid

 889 set(handles.Atemp, 'ForegroundColor', [0,0,0]); % text black

 890 else % data is invalid

 891 set(handles.Atemp, 'ForegroundColor', [1,0,0]); % text red

 892 end

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 16 of 22

 893 checkValid(handles) % call function to check if run button can be shown

 894 % end - Atemp_Callback()

 895

 896

 897 % this function executes when the Ground Temperature field is modified by user.

 898 function Gtemp_Callback(hObject, eventdata, handles)

 899 in8 = str2num(get(handles.Gtemp,'string')); % read in value

 900 if in8 >= -40 && in8 <= 60 % check if value is valid

 901 set(handles.Gtemp, 'ForegroundColor', [0,0,0]); % text black

 902 else % data is invalid

 903 set(handles.Gtemp, 'ForegroundColor', [1,0,0]); % text red

 904 end

 905 checkValid(handles) % call function to check if run button can be shown

 906 % end - Gtemp_Callback()

 907

 908

 909 % this function executes when the Bedding thickness field is modified by user.

 910 function Bedding_Callback(hObject, eventdata, handles)

 911

 912 % Initialise global variables that will be used by other functions

 913 global bedding; % thickness of bedding sand surrounding the cable

 914 in9 = str2num(get(handles.Bedding,'string'))/1000; % read in value

 915 if in9 >= 0 && in9 <= 0.2 % check if value is valid

 916 set(handles.Bedding, 'ForegroundColor', [0,0,0]); % text black

 917 bedding = str2num(get(handles.Bedding,'string'))/1000; % thickness of bedding

 918 else % data is invalid

 919 set(handles.Bedding, 'ForegroundColor', [1,0,0]); % text red

 920 end

 921 checkValid(handles) % call function to check if run button can be shown

 922 % end - Bedding_Callback()

 923

 924

 925 % this function executes when the Bedding thickness field is modified by user.

 926 function Load_Callback(hObject, eventdata, handles)

 927 in10 = str2num(get(handles.Load,'string')); % read in value

 928 if in10 >= 1 && in10 <= 50e3 % check if value is valid

 929 set(handles.Load, 'ForegroundColor', [0,0,0]); % text black

 930 else % data is invalid

 931 set(handles.Load, 'ForegroundColor', [1,0,0]); % text red

 932 end

 933 checkValid(handles) % call function to check if run button can be shown

 934 % end - Load_Callback()

 935

 936

 937 % this function executes when the user defined IDMT curve dropdown box is modified.

 938 function Ucurve_Callback(hObject, eventdata, handles)

 939

 940 % Initialise global variables that will be used by other functions

 941 global curveU ... % user defined curve

 942 TMSet ... % time multiplier setting for best-fit curve

 943 TMSetUser ... % time multiplier setting for user defined curve

 944 curveUser ... % text string for user defined curve

 945 PickUpSet; % pickup setting value considering safety margin and breakerOp

 946

 947 curveU = get(hObject,'Value'); % extract value of the selected cable system

 948

 949 if TMSet % if results exist for IDMT curve

 950

 951 breakcurve(); % recalculate break curve

 952 set(handles.TMSU, 'String', TMSetUser) % update TMSetUser result

 953 set(handles.CurveU, 'String', curveUser); % update curveUser result

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 17 of 22

 954

 955 if curveU == 1 % if no curve selected by user

 956 % hide user curve result text

 957 set(handles.UserHeading, 'Visible', 'Off'); % show heading for user curve

 958 set(handles.TMStextU, 'Visible', 'Off'); % hide result text

 959 set(handles.CurveUtext, 'Visible', 'Off'); % hide result text

 960 set(handles.PickUpTextU, 'Visible', 'Off'); % hide result text

 961 set(handles.TMSU, 'Visible', 'Off'); % make field invisible

 962 set(handles.CurveU, 'Visible', 'Off'); % make field invisible

 963 set(handles.PickUpU, 'Visible', 'Off'); % make field invisible

 964

 965 else % if curve selected by user

 966 % update user results

 967 set(handles.UserHeading, 'Visible', 'On'); % show heading

 968 set(handles.PickUpTextU, 'Visible', 'On'); % show heading

 969 set(handles.PickUpU, 'Visible', 'On'); % make field visible

 970 set(handles.TMStextU, 'Visible', 'On'); % show heading

 971 set(handles.TMSU, 'Visible', 'On'); % make field visible

 972

 973 if TMSetUser == 0 % if no valid result has been found for user curve

 974 set(handles.PickUpU, 'String', 'Invalid Curve') % update result

 975 set(handles.TMSU, 'String', 'Invalid Curve') % update result

 976 else % if valid result has been found for user curve

 977 set(handles.PickUpU, 'String', PickUpSet) % update result

 978 set(handles.TMSU, 'String', TMSetUser) % update result

 979 end

 980

 981 set(handles.CurveUtext, 'Visible', 'On'); % show heading

 982 set(handles.CurveU, 'Visible', 'On'); % make field visible

 983 set(handles.CurveU, 'String', curveUser); % update result

 984

 985 end

 986 end

 987 % end - Ucurve_Callback()

 988

 989

 990 % this function executes when the joint condition dropdown box is modified.

 991 function JointSelect_Callback(hObject, eventdata, handles)

 992

 993 % Initialise global variables that will be used by other functions

 994 global Joint ... % integer set by user to determine the Joint situation

 995 pvc ... % thickness of pvc

 996 insul ... % insulation thickness of the cable

 997 conductor ... % integer set by user to determine if conductor is Cu or Al

 998 shield ... % thickness of cable shield

 999 Rjoint; % contact resistance value for cable joint

1000

1001 Joint = get(hObject,'Value'); % extract value of the selected cable system

1002

1003 if Joint == 1 % joint is not present, revert to normal configuration

1004 % enable input functionality

1005 set(handles.XLPE,'Enable','on'); % user can now change the XLPE thickness

1006 set(handles.Shield,'Enable','on'); % user can now change the Shield thickness

1007 set(handles.PVC,'Enable','on'); % user can now change the PVC

1008 set(handles.condMat,'Enable','on'); % user can now change the conductor material

1009 % restore the values of the cable

1010 insul = str2num(get(handles.XLPE,'string'))/1000; % thickness of XLPE

1011 shield = str2num(get(handles.Shield,'string'))/1000; % thickness of Shield

1012 pvc = str2num(get(handles.PVC,'string'))/1000; % thickness of PVC

1013 Rjoint = []; % clear R joint (only required for Joint == 4)

1014 hideJointFields(handles) % hide statistical fields (for Joint == 4)

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 18 of 22

1015

1016 elseif Joint <= 3 % if joint exists, Joint is 2 (good) or 3 (poor)

1017

1018 % force dimensions to that of the cable joint

1019 insul = 10/1000; % new thickness of XLPE

1020 shield = 1/1000; % new thickness of Shield

1021 pvc = 10/1000; % new thickness of PVC

1022 conductor = 2; % set the conductor material to be aluminium

1023 set(handles.condMat,'Value',2); % set the conductor material to be aluminium

1024 % disable input functionality of variables overridden by the joint in the system

1025 set(handles.XLPE,'Enable','off'); % user can no longer change XLPE thickness

1026 set(handles.Shield,'Enable','off'); % user can no longer change Shield thickness

1027 set(handles.PVC,'Enable','off'); % user can no longer change PVC thickness

1028 set(handles.condMat,'Enable','off');% user can no longer the conductor material

1029 Rjoint = []; % clear R joint (only required for Joint == 4)

1030 hideJointFields(handles) % hide statistical fields (for Joint == 4)

1031

1032 else % if statistical analysis has been selected

1033

1034 % force dimensions to that of the cable joint

1035 insul = 10/1000; % new thickness of XLPE

1036 shield = 1/1000; % new thickness of Shield

1037 pvc = 10/1000; % new thickness of PVC

1038 conductor = 2; % set the conductor material to be aluminium

1039 set(handles.condMat,'Value',2); % set the conductor material to be aluminium

1040 % disable input functionality of variables overridden by the joint in the system

1041 set(handles.XLPE,'Enable','off'); % user can no longer change XLPE thickness

1042 set(handles.Shield,'Enable','off'); % user can no longer change Shield thickness

1043 set(handles.PVC,'Enable','off'); % user can no longer change PVC thickness

1044 set(handles.condMat,'Enable','off');% user can no longer the conductor material

1045

1046 solveProbability(handles); % call function to solve statistical joint information

1047

1048 % made data fields visible

1049 set(handles.ageText, 'Visible', 'On'); % show age text

1050 set(handles.jointsText, 'Visible', 'On'); % show joint text

1051 set(handles.yearsText, 'Visible', 'On'); % show years text

1052 set(handles.probText, 'Visible', 'On'); % show probability text

1053 set(handles.resText, 'Visible', 'On'); % show resistance text

1054 set(handles.jointProb, 'Visible', 'On'); % show probability field

1055 set(handles.jointRes, 'Visible', 'On'); % show resistance field

1056 set(handles.statHeader, 'Visible', 'On'); % show joint heading

1057 set(handles.ageData, 'Visible', 'On'); % show age data field

1058 set(handles.jointsData, 'Visible', 'On'); % show joints data field

1059

1060 end

1061

1062 selection = get(handles.xsection,'Value'); % extract setting for cross-section

1063

1064 getXsection(selection); % call function to convert to actual cross-section value

1065 axes(handles.axes3); % set active plot to axis 1

1066 layoutMatrix(); % update the graphical representation of the system

1067 checkValid(handles); % call function to check if run button can be shown

1068 % end - JointSelect_Callback()

1069

1070

1071 % this function executes when the breaker operating time is modified by user.

1072 function BreakOp_Callback(hObject, eventdata, handles)

1073 in11 = str2num(get(handles.BreakOp,'string'))/1000; % read in value

1074 if in11 >= 0 && in11 <= 0.5 % check if value is valid

1075 set(handles.BreakOp, 'ForegroundColor', [0,0,0]); % text black

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 19 of 22

1076 else % data is invalid

1077 set(handles.BreakOp, 'ForegroundColor', [1,0,0]); % text red

1078 end

1079 checkValid(handles); % call function to check if run button can be shown

1080 % end - BreakOp_Callback()

1081

1082

1083 % this function executes when the safety margin is modified by user.

1084 function safetyM_Callback(hObject, eventdata, handles)

1085 in12 = str2num(get(handles.safetyM,'string')); % read in value

1086 if in12 >= 0 && in12 <= 99 % check if value is valid

1087 set(handles.safetyM, 'ForegroundColor', [0,0,0]); % text black

1088 else % data is invalid

1089 set(handles.safetyM, 'ForegroundColor', [1,0,0]); % text red

1090 end

1091 checkValid(handles); % call function to check if run button can be shown

1092 % end - safetyM_Callback()

1093

1094

1095 % this function executes when the resolution dropdown box is modified.

1096 function Res_Callback(hObject, eventdata, handles)

1097

1098 % Initialise global variables that will be used by other functions

1099 global resolution; % integer that determines the size of each finite element

1100

1101 resolution = get(hObject,'Value'); % save the dropdown box value of resolution

1102 axes(handles.axes3); % set active plot to axis 3

1103 layoutMatrix(); % update the graphical representation of the system

1104 checkValid(handles); % call function to check if run button can be shown

1105 % end - Res_Callback()

1106

1107

1108 % this function executes when the age of the system is modified by user.

1109 function ageData_Callback(hObject, eventdata, handles)

1110 in13 = str2num(get(handles.ageData,'string')); % read in value

1111 if in13 >= 1 && in13 <= 70 % check if value is valid

1112 set(handles.ageData, 'ForegroundColor', [0,0,0]); % text black

1113 else % data is invalid

1114 set(handles.ageData, 'ForegroundColor', [1,0,0]); % text red

1115 end

1116 solveProbability(handles); % call function to solve statistical joint information

1117 % end - ageData_Callback()

1118

1119

1120 % this function executes when the number of joints is modified by user.

1121 function jointsData_Callback(hObject, eventdata, handles)

1122 in12 = str2num(get(handles.jointsData,'string')); % read in value

1123 if in12 >= 1 && in12 <= 1000 % check if value is valid

1124 set(handles.jointsData, 'ForegroundColor', [0,0,0]); % text black

1125 else % data is invalid

1126 set(handles.jointsData, 'ForegroundColor', [1,0,0]); % text red

1127 end

1128 solveProbability(handles); % call function to solve statistical joint information

1129 % end - jointsData_Callback()

1130

1131

1132 % this function executes when the radio button is toggled by user.

1133 function boundaryButton_Callback(hObject, eventdata, handles)

1134 % end - boundaryButton_Callback()

1135

1136

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 20 of 22

1137

1138 %% the following functions are in-line functions that are used throughout gui.m

1139

1140 % function to check if all the user inputs are within the required values and the

1141 % Start button can therefore be displayed, if not, make it inactive

1142 function checkValid(handles)

1143

1144 % Initialise global variables that will be used by other functions

1145 global Layout ... % layout matrix containing different integer for each mate

1146 wait ... % flag used to determine when the user inputs are complete

1147 StatusString; % string that is output on gui to give status messages to user

1148

1149 % read in values from the user input fields

1150 in1 = str2double(get(handles.DepthOfLay,'string'))/1000; % depth of cable lay (m)

1151 in2 = str2double(get(handles.Separation,'string'))/1000; % cable separation (m)

1152 in3 = str2double(get(handles.safetyM,'string')); % safety margin

1153 in4 = str2double(get(handles.XLPE,'string'))/1000; % thickness of XLPE (m)

1154 in5 = str2double(get(handles.Shield,'string'))/1000; % thickness of Shield (m)

1155 in6 = str2double(get(handles.PVC,'string'))/1000; % thickness of PVC (m)

1156 in7 = str2double(get(handles.Atemp,'string')); % Ambient Air Temp.

1157 in8 = str2double(get(handles.Gtemp,'string')); % Ambient Ground Temp.

1158 in9 = str2double(get(handles.Bedding,'string'))/1000; % bedding thickness (m)

1159 in10 = str2double(get(handles.Load,'string')); % Load current (A)

1160 in11 = str2double(get(handles.BreakOp,'string'))/1000; % Breaker open time (s)

1161

1162 % check if all user specified values are within the correct range

1163 if in1 >= 0 && in1 <= 1 && in2 >= 0 && in2 <= 0.2 && in3 >= 0 && in3 <= 99 && ...

1164 in4 >= 0.001 && in4 <= 0.04 && in5 >= 0 && in5 <= 0.02 && in6 >= 0.001 && ...

1165 in6 <= 0.05 && in8 >= -40 && in7 <= 60 && in7 >= -40 && in8 <= 60 && ...

1166 in9 >= 0 && in9 <= 0.2 && in10 >= 1 && in10 <= 50e3 && in11 >= 0 && in11 <= 0.5

1167

1168 if wait == 1 % if system is waiting to start, update the layout plot

1169 layoutMatrix() % update the graphical representation of the system

1170 end

1171

1172 if Layout ~= 1 % if no entries in layout map to the conductor, alert user

1173 set(handles.StartButton,'Enable','off'); % make start button unavailable

1174 % update status at the bottom of the gui to alert user

1175 StatusString = 'Warning: Resolution too low for selected cable cross-section';

1176 set(handles.Status, 'String', StatusString) % update gui status

1177

1178 elseif wait == 1 % else, check if user is still configuring the layout

1179 set(handles.StartButton,'Enable','on'); % make start button available

1180 axes(handles.axes3); % set active plot to axis 3

1181 StatusString = 'Simulation ready to run.'; % update status for the user

1182 set(handles.Status, 'String', StatusString) % update gui status

1183

1184 end

1185

1186 else % if any of the user inputs are not within range

1187

1188 set(handles.StartButton,'Enable','off'); % disable start pushbutton

1189 % update status at the bottom of the gui to alert user

1190 StatusString = 'Warning: Please adjust red text to within the valid range';

1191 set(handles.Status, 'String', StatusString) % update gui status

1192

1193 end

1194 % end - checkValid()

1195

1196

1197

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 21 of 22

1198 % this function is called to assign information on the cross section of the conductor

1199 % and the joints of the cable system

1200 function getXsection(selection)

1201

1202 % Initialise global variables that will be used by other functions

1203 global conductor ... % integer set by user to determine if conductor is Cu or Al

1204 xsection ... % cross-section of conductor as specified by user

1205 R20R90 ... % conductor resistance at 20 and 90 deg used to interpolate

1206 Joint ... % integer set by user to determine joint status (1 = no joint)

1207 JointL; % length of joint, if applicable

1208

1209 if Joint == 1 % if analysing cable only

1210

1211 % determine conductor properties

1212 data = xlsread('Parameters','conductor'); % load the data set from .xls

1213 xsection = data(selection,5)/1e6; % conductor cross-section (m2)

1214 % determine resistance values depending on cross-section and material

1215 if conductor == 1 % if conductor is copper

1216 R20R90 = data(selection,1:2); % Resistance/km points for interpolation

1217 else % conductor is aluminium

1218 R20R90 = data(selection,3:4); % Resistance/km points for interpolation

1219 end

1220

1221 else % cable joint needs to be considered, override cable properties

1222

1223 data = xlsread('Parameters','joint'); % load the data set

1224 JointD = data(1) / 1000; % diameter of cable joint (m)

1225 xsection = pi * (JointD/2) ^ 2; % cross section area of joint diameter

1226 JointL = data(2) / 1000; % length of cable joint (m)

1227

1228 end

1229 % end - getXsection()

1230

1231

1232 % this function is called to hide the statistical information about the joint analysis

1233 function hideJointFields(handles)

1234 set(handles.ageText, 'Visible', 'Off'); % hide age text

1235 set(handles.jointsText, 'Visible', 'Off'); % hide joint text

1236 set(handles.yearsText, 'Visible', 'Off'); % hide years text

1237 set(handles.probText, 'Visible', 'Off'); % hide probability text

1238 set(handles.resText, 'Visible', 'Off'); % hide resistance text

1239 set(handles.jointProb, 'Visible', 'Off'); % hide probability field

1240 set(handles.jointRes, 'Visible', 'Off'); % hide resistance field

1241 set(handles.statHeader, 'Visible', 'Off'); % hide joint heading

1242 set(handles.ageData, 'Visible', 'Off'); % hide age data field

1243 set(handles.jointsData, 'Visible', 'Off'); % hide joints data field

1244 % end - hideJointFields()

1245

1246 % this function is called to solve the statistical information about the joint analysis

1247 % using the 2-parameter Weibull distribution

1248 function solveProbability(handles)

1249

1250 % Initialise global variables that will be used by other functions

1251 global Rjoint; % contact resistance value for cable joint

1252

1253 % read user defined values

1254 year = str2num(get(handles.ageData,'string')); % age of system

1255 joints = str2num(get(handles.jointsData,'string')); % no. of joints in system

1256

1257 % Weibull values taken from Mehairjan (2010, p. 73)

1258 X = 1:200; % data range of distribution

28/10/14 10:38 PM C:\Greg Nagel\Simulation\gui.m 22 of 22

1259 A = 52.3925; % scale parameter of Weibull distribution

1260 B = 4.4791; % shape parameter of Weibull distribution

1261

1262 f = wblpdf(X,A,B); % probability density function - Weibull 2P

1263 R = exp(-(X/A).^B); % reliability curve

1264 F = f./R; % failure rate function of failure

1265

1266 ProbOne = F(year); % probability of one failure

1267 ProbAll = ProbOne*joints; % probability of one failure within system

1268

1269 data = xlsread('Parameters','joint'); % load the data set for joint resistance

1270 jointData = data(3:4) / 1e6; % gather data points for good & bad joints

1271

1272 % linearly interpolate/extrapolate the expected resistance of the joint between

1273 % good and bad joint contact resistance values. Probability values are 0 to 1

1274 % which map to a good joint and a bad joint

1275 Rjoint = interp1([0 1],jointData,ProbAll,'linear','extrap');

1276

1277 set(handles.jointProb, 'String', roundn(ProbAll,-5)) % update failure probability

1278 set(handles.jointRes, 'String', roundn(Rjoint*1e6,-1))% update joint resistance

1279 % end - solveProbability()

1280

1281 % ------------------------------------ End - gui.m --------------------------------- %

28/10/14 10:38 PM C:\Greg Nagel\Simulation\layoutMatrix.m 1 of 7

 1 %% layoutMatrix.m --

 2 %

 3 % Author Greg Nagel - 0061025127

 4 % Project System dependent IDMT overcurrent settings for underground cables

 5 %

 6 % This file has been created by Greg Nagel for a final year research project to be

 7 % submitted to the University of Southern Queensland for courses, ENG4111/4112. It is

 8 % theoretical only and should not be used as the basis for decisions made on actual

 9 % power system applications.

 10 %

 11 % Release Date Comments

 12 % 1.0 12/09/14 Initial release to supervisor for partial review

 13 % 2.0 05/10/14 Code finalised and prepared for submission

 14 %

 15 % This file is a function require to support the file Master.m as part of the

 16 % simulation software developed by Greg Nagel to be used as a guideline for

 17 % determining the IDMT protection settings for underground power cables.

 18 %

 19 % Supporting files required the same directory as Master.m

 20 % breakcurve.m function to fit and plot protection curves

 21 % gui.fig graphical file for user interface

 22 % gui.m function to execute graphical user interface

 23 % layoutMatrix.m function to create colour by numbers matrix

 24 % materialProperties.m function to dynamically update material properties

 25 % tempCalc.m function to solve the simulation through time

 26 % tempPlot.m function to output plot of thermal profile

 27 %

 28 % This function creates a matrix, the same size as the resolution of the F.E. system.

 29 % Each entry to the matrix is represented by an integer which maps to different

 30 % materials. This allows data on material properties to be maintained and updated

 31 % against the integer in the F.E. location, rather than re-defining the F.E. material

 32 % every iteration. This function is also responsible for the 'colour by numbers' plot

 33 % that allows the user to see the system layout prior to starting the simulation.

 34 % --

 35

 36 function layoutMatrix()

 37

 38 % Initialise global variables that will be used by other functions

 39 global rows ... % number of rows in system matrices

 40 cols ... % number of columns in system matrices

 41 x ... % array containing all x axis values for cable cross-section

 42 y ... % array containing all y axis values for cable cross-section

 43 Layout ... % layout matrix containing different integer for each material

 44 cabrad ... % radius of the conductor of the cable

 45 insul ... % insulation thickness of the cable

 46 k ... % vertical and horizontal step size (delta x or y)

 47 width ... % width of simulation cross-section

 48 height ... % height of simulation cross-section

 49 depth ... % burial depth of cable (used to determine if air is shown)

 50 shield ... % thickness of cable shield

 51 pvc ... % thickness of pvc

 52 system ... % cable system configuration

 53 separation ... % distance between conductors (when multiple conductors)

 54 dt ... % simulation time step at each iteration

 55 Days ... % No. of days simulation should run for to reach steady state

 56 conductor ... % integer set by user to determine if conductor is Cu or Al

 57 bedding ... % thickness of bedding sand surrounding the cable

 58 xsection ... % cross-section of conductor as specified by user

 59 resolution; % integer that determines the size of each finite element

 60

 61 %% Define the simulation time steps, F.E. size and tolerance based on user defined

28/10/14 10:38 PM C:\Greg Nagel\Simulation\layoutMatrix.m 2 of 7

 62 % resolution. The timestep must be reduced for higher resolution to ensure lambda

 63 % values do not exceed a value that makes the system unstable. The total size of the

 64 % cross section is also dependent on the resolution to improve the time required to

 65 % solve the simulation. Also, because the system is smaller, the days simulated can be

 66 % reduced as the system will reach steady state sooner.

 67 switch resolution % use switch for the value of resolution

 68

 69 case 1 % user has selected low resolution

 70 dt = 0.2; % simulation timestep (s)

 71 k = 0.01; % horizontal step size (m)

 72 height = 1; % height of system (m)

 73 Days = 5; % number of days simulated to achieve steady state temp.

 74

 75 case 2 % user has selected mid resolution

 76 dt = 0.03; % simulation timestep (s)

 77 k = 0.004; % horizontal step size (m)

 78 height = 0.8; % height of system (m)

 79 Days = 5; % number of days simulated to achieve steady state temp.

 80

 81 case 3 % user has selected high resolution

 82 dt = 0.008; % simulation timestep (s)

 83 k = 0.002; % horizontal step size (m)

 84 height = 0.6; % height of system (m)

 85 Days = 4; % number of days simulated to achieve steady state temp.

 86

 87 end

 88

 89

 90 %% define the simulation space for the cross-section simulation

 91 % also define all global and local variables used to reference locations in the system

 92 h = k; % set vertical step size to be the same as the horizontal

 93 width = height; % width of system (m)

 94 x = 0:k:width; % create an array of all the x axis values

 95 y = 0:h:height; % create an array of all the y axis values

 96 rows = height/h + 1; % number of vertical blocks

 97 cols = width/k + 1; % number of horizontal blocks

 98 mid = ((rows)/2); % mid point of the matrix

 99 cabrad = sqrt(xsection/pi); % conductor radius

100

101

102 %% generate a matrix that represents the different materials in the system

103 % this places an integer against each F.E. to represent the material located at that

104 % F.E. The material at each location will depend on the system selected by the user

105 % and the size of the components within the system.

106 % The materials that map to each number are:

107 % 1 -> Conductor 2 -> XLPE 3 -> Shield 4 -> PVC

108 % 5 -> Bedding sand 6 -> Soil 7 -> Air

109

110 if system == 1 % if user has specified a single phase system

111

112 Layout = ones(rows,cols)*6; % default all points to soil

113

114 % loop through each F.E. point and assign it to the relevant material depending on

115 % the location within the system. A 'for' loop is not too slow as this is only

116 % executed when the user is specifying the system.

117 for i = 1:rows % for each row of simulation space

118 for j = 1:cols % for each column of simulation space

119

120 % calculate radius from centre to the current point using Pythagoras

121 rad = sqrt((abs(mid-i)*k)^2 + (abs(mid-j)*k)^2);

122

28/10/14 10:38 PM C:\Greg Nagel\Simulation\layoutMatrix.m 3 of 7

123 % calculate the outer radius of the cable

124 cabR = cabrad+insul+shield+pvc-k/2; % outer radius of cable

125

126 % determine if point is in conductor zone

127 if (rad <= (cabrad-k/2))

128 Layout(i,j) = 1; % conductor

129

130 % or, is point in insulator zone

131 elseif (rad <= (cabrad+insul-k/2))

132 Layout(i,j) = 2; % insulator

133

134 % or is point in shield zone

135 elseif (rad <= (cabrad+insul+shield-k/2))

136 Layout(i,j) = 3; % shield

137

138 % or is point in pvc zone

139 elseif (rad <= (cabrad+insul+shield+pvc-k/2))

140 Layout(i,j) = 4; % pvc

141

142 % or is point above ground in air zone

143 elseif ((height/2 - i*k) > (depth-k))

144 Layout(i,j) = 7; % air

145

146 % or is point in bedding sand zone

147 elseif ((abs(width/2 - j*k) < cabR + bedding) && ... % within horizontal

148 (abs(height/2 - i*k) < cabR + bedding)) % & within vertical

149

150 % if user has specified the system has bedding sand

151 if bedding > 0 % if user has specified the system has bedding

152 Layout(i,j) = 5; % bedding sand

153 end

154

155 end

156 end

157 end

158

159

160 elseif system == 2 || system == 4 % if user has specified a trefoil system

161

162 Layout = ones(rows,cols)*6; % default all points to soil

163

164 % determine central points for each cable core, the layout for one centralised

165 % trefoil cable is executed first. If the system is for a dual trefoil system, the

166 % layout of the cable is then shifted and moved to represent each of the trefoils.

167 L = (cabrad+insul+shield)*2; % distance between circle centres

168 h = sqrt(L^2 - (L/2)^2); % height of triangle made by circles

169 h1 = L/sqrt(3); % centre line to top circle origin

170 h2 = h - h1; % centre line to bottom circle origin

171 cabR = (h1+L/2)+shield+pvc-k/2; % outer radius of the cable

172 P1v = h1/(k); % central vertical point of phase 1

173 P1h = 0; % central horizontal point of phase 1

174 P2v = -h2/(k); % central vertical point of phase 2

175 P2h = (cabrad+insul+shield)/(k); % central horizontal point of phase 2

176 P3v = -h2/(k); % central vertical point of phase 3

177 P3h = -(cabrad+insul+shield)/(k); % central horizontal point of phase 3

178

179 % loop through each F.E. point and assign it to the relevant material depending on

180 % the location within the system. A 'for' loop is not too slow as this is only

181 % executed when the user is specifying the system.

182 for i = 1:rows % for each row

183 for j = 1:cols % for each column

28/10/14 10:38 PM C:\Greg Nagel\Simulation\layoutMatrix.m 4 of 7

184

185 % calculate radius from centre to the current point using Pythagoras

186 rad = sqrt((abs(mid-i)*k)^2 + (abs(mid-j)*k)^2);

187

188 % if point is in internal PVC zone (PVC used as filler between cores)

189 if (rad <= ((h1+L/2)-k/2))

190 Layout(i,j) = 4; % PVC

191

192 % if point is in shield zone (external cable shield)

193 elseif (rad <= ((h1+L/2)+shield-k/2))

194 Layout(i,j) = 3; % shield.

195

196 % if point is in external PVC zone

197 elseif (rad <= cabR)

198 Layout(i,j) = 4; % PVC

199

200 % if point is above ground in air zone

201 elseif ((height/2 - i*k) > (depth-k))

202 Layout(i,j) = 7; % air

203

204 % if point is in bedding sand zone

205 elseif ((abs(width/2 - j*k) < cabR + bedding) && (abs(height/2 - i*k) <

cabR + bedding))

206

207 % if user has specified the system has bedding sand

208 if bedding > 0 % bedding sand specified

209 Layout(i,j) = 5; % bedding sand

210 end

211

212 end

213

214 % Determine insulation, conductor and shield associated with top core.

215 % Calculate the radius of point with reference to the centre of the top

216 % core using Pythagoras.

217 rad = sqrt((abs(mid-P1v-i)*k)^2 + (abs(mid-P1h-j)*k)^2);

218

219 % determine if point is in conductor zone

220 if (rad <= (cabrad-k/2))

221 Layout(i,j) = 1; % conductor

222

223 % or, is point in insulator zone

224 elseif (rad <= (cabrad+insul-k/2))

225 Layout(i,j) = 2; % insulator

226

227 % or, is point in xlpe shield zone

228 elseif (rad <= (cabrad+insul+shield-k/2))

229 Layout(i,j) = 3; % internal shield

230 end

231

232 % Determine insulation, conductor and shield associated with left core.

233 % Calculate the radius of point with reference to the centre of the left

234 % core using Pythagoras.

235 rad = sqrt((abs(mid-P2v-i)*k)^2 + (abs(mid-P2h-j)*k)^2);

236

237 % determine if point is in conductor zone

238 if (rad <= (cabrad-k/2))

239 Layout(i,j) = 1; % conductor

240

241 % or, is point in insulator zone

242 elseif (rad <= (cabrad+insul-k/2))

243 Layout(i,j) = 2; % insulator

28/10/14 10:38 PM C:\Greg Nagel\Simulation\layoutMatrix.m 5 of 7

244

245 % or, is point in xlpe shield zone

246 elseif (rad <= (cabrad+insul+shield-k/2))

247 Layout(i,j) = 3; % internal shield

248 end

249

250 % Determine insulation, conductor and shield associated with right core.

251 % Calculate the radius of point with reference to the centre of the right

252 % core using Pythagoras.

253 rad = sqrt((abs(mid-P3v-i)*k)^2 + (abs(mid-P3h-j)*k)^2);

254

255 % determine if point is in conductor zone

256 if (rad <= (cabrad-k/2))

257 Layout(i,j) = 1; % conductor

258

259 % or, is point in insulator zone

260 elseif (rad <= (cabrad+insul-k/2))

261 Layout(i,j) = 2; % insulator

262

263 % or, is point in xlpe shield zone

264 elseif (rad <= (cabrad+insul+shield-k/2))

265 Layout(i,j) = 3; % internal shield

266 end

267 end

268 end

269

270 % if system is a dual trefoil system, use the above layout as a stencil for each

271 % of the trefoil cables

272 if system == 4 % dual trefoil system

273

274 Lsave = Layout; % save the Layout from above

275

276 % determine the outer diameter of trefoil cable

277 outerRad = h1 + L/2 + shield + pvc;

278

279 % determine the number of columns required to shift based on the radius of

280 % each cable and the separation between the cables as defined by the user

281 shift = ceil((outerRad + separation) / k); % columns to shift

282 centre = ceil(mid); % centre position of layout matrix

283

284 % create left half of layout matrix by shifting original layout matrix left

285 a = (shift); % start of shift column values

286 b = (shift+centre-1); % end of shift column values

287 left = a:b; % array of shift column values

288 % new left half of the Layout matrix

289 Layout(1:end,1:centre) = Lsave(1:end,left);

290

291 % create left half of layout matrix by shifting original layout matrix right

292 a = (centre-shift+2); % start of shift column values

293 b = (cols-shift+1); % end of shift column values

294 right = a:b; % array of shift column values

295 % new right half of the Layout matrix

296 Layout(1:end,centre+1:end) = Lsave(1:end,right);

297

298 end

299

300

301 elseif system == 3 % if user has specified a single phase system

302

303 Layout = ones(rows,cols)*6; % default all points to soil

304

28/10/14 10:38 PM C:\Greg Nagel\Simulation\layoutMatrix.m 6 of 7

305 Bed = zeros(rows,cols); % default all points to zero for bedding matrix

306

307 % determine central points of cables

308 L = (cabrad+insul+shield+pvc)*2+separation; % distance between cable centres

309 cabR = cabrad+insul+shield+pvc-k/2; % cable outer radius

310 P1h = L/k; % central horizontal point of phase 1

311 P2h = 0; % central horizontal point of phase 2

312 P3h = -L/k; % central horizontal point of phase 3

313

314 % loop through each F.E. point and assign it to the relevant material depending on

315 % the location within the system. A 'for' loop is not too slow as this is only

316 % executed when the user is specifying the system. Also, loop through each of the

317 % cable centre locations to allow creation of each of the cables.

318 for Ph = [P1h P2h P3h] % repeat layout for each cable centre

319 for i = 1:rows % for each row

320 for j = 1:cols % for each column

321

322 % calculate radius of point from cable centre using Pythagoras

323 rad = sqrt((abs(mid-i)*k)^2 + (abs(mid-Ph-j)*k)^2);

324

325 % determine if point is in conductor zone

326 if (rad <= (cabrad-k/2))

327 Layout(i,j) = 1; % conductor

328

329 % or, is point in insulator zone

330 elseif (rad <= (cabrad+insul-k/2))

331 Layout(i,j) = 2; % insulator

332

333 % or is point in shield zone

334 elseif (rad <= (cabrad+insul+shield-k/2))

335 Layout(i,j) = 3; % shield

336

337 % or is point in pvc zone

338 elseif (rad <= (cabrad+insul+shield+pvc-k/2))

339 Layout(i,j) = 4; % pvc

340

341 % or is point above ground and not part of cable, then it is air zone

342 elseif ((height/2 - i*k) > (depth-k)) && Layout(i,j) > 4

343 Layout(i,j) = 7; % air

344

345 % create a matrix of ones for all points within bedding sand zone

346 elseif ((abs(width/2 - j*k) < cabR + L + bedding) ... % in horizontal

347 && (abs(height/2 - i*k) < cabR + bedding)) % & in vertical

348 Bed(i,j) = 1; % bedding sand

349 end % end if

350 end % end for (cols)

351 end % end for (rows)

352 end % end for (centres)

353

354 % where bedding has been solved to 1 in Bed matrix, replace all Layout values

355 % currently set to be solid with number representing bedding

356 Layout((Layout == 6) & (Bed == 1) & (bedding > 0)) = 5;

357

358 end % end if (system type)

359

360 %% plot the colour by numbers to show the user how they have configured the system

361 % specify the RBG values to be mapped to the numbers within Layout

362 cmap = [

363 192/255 192/255 192/255 % aluminium

364 255/255 255/255 255/255 % xlpe

365 204/255 102/255 0/255 % copper shield

28/10/14 10:38 PM C:\Greg Nagel\Simulation\layoutMatrix.m 7 of 7

366 32/255 32/255 32/255 % pvc

367 255/255 255/255 153/255 % bedding

368 218/255 192/255 133/255 % soil

369 153/255 204/255 255/255 % air

370];

371

372 if conductor == 1 % overwrite aluminium RBG if conductor is copper

373 cmap(1,:) = [204/255 102/255 0/255]; % copper

374 end

375

376 % remove the colour for air if the depth of lay means no air is shown in the layout

377 if Layout ~= 7 % if no entries are equal to 7 (air)

378 cmap = cmap(1:6,:); % trim off bottom row for air

379 end

380

381 % plot the layout of the cable system

382 colormap(cmap); % force the colours to be those defined by cmap above

383 imagesc(x,y,Layout); % plot the colours as an image

384 axis square % ensure axis is square

385 title('System configuration') % title

386 xlabel('Height (m)') % x axis label

387 ylabel('Width (m)') % y axis label

388

389 % ------------------------------- End - layoutMatrix.m ----------------------------- %

28/10/14 10:41 PM C:\Greg Nagel\Simulation\materialProperties.m 1 of 3

 1 %% materialProperties.m --

 2 %

 3 % Author Greg Nagel - 0061025127

 4 % Project System dependant IDMT overcurrent settings for underground cables

 5 %

 6 % This file has been created by Greg Nagel for a final year research project to be

 7 % submitted to the University of Southern Queensland for courses, ENG4111/4112. It is

 8 % theoretical only and should not be used as the basis for decisions made on actual

 9 % power system applications.

 10 %

 11 % Release Date Comments

 12 % 1.0 06/09/14 Initial release to supervisor for partial review

 13 % 1.1 30/09/14 Updated to include statistical analysis of cable joint

 14 % 2.0 05/10/14 Code finalised and prepared for submission

 15 %

 16 % This file is a function require to support the file Master.m as part of the

 17 % simulation software developed by Greg Nagel to be used as a guideline for

 18 % determining the IDMT protection settings for underground power cables.

 19 %

 20 % Supporting files required the same directory as Master.m

 21 % breakcurve.m function to fit and plot protection curves

 22 % gui.fig graphical file for user interface

 23 % gui.m function to execute graphical user interface

 24 % layoutMatrix.m function to create colour by numbers matrix

 25 % materialProperties.m function to dynamically update material properties

 26 % tempCalc.m function to solve the simulation through time

 27 % tempPlot.m function to output plot of thermal profile

 28 %

 29 % This function uses the layout matrix to define the thermal diffusivity properties of

 30 % each Finite Element. These values change depending, not only on the material

 31 % represented by the F.E. but also by depending on the temperature of the F.E.

 32 % The alpha matrix, Amat, can then be used by tempCalc.m to determine the rate at

 33 % which heat is transferred between neighbouring F.E.

 34 % --

 35

 36 function materialProperties()

 37

 38 % Initialise global variables shared between MATLAB files

 39 global c1 ... % specific heat capacity of conductor material (J/(g.K))

 40 r1 ... % mass density of conductor material (g/m3)

 41 Rpm ... % resistance per meter of cable

 42 Layout ... % layout matrix containing different integer for each material

 43 conductor ... % integer set by user to determine if conductor is Cu or Al

 44 Amat ... % matrix containing Alpha (diffusivity) values of each F.E.

 45 TempMat ... % temperature matrix containing temperature of each F.E.

 46 R20R90 ... % conductor resistance at 20 and 90 deg used to interpolate

 47 Joint ... % integer set by user to determine joint status (1 = no joint)

 48 JointL ... % length of joint, if applicable

 49 kBed ... % lookup value from Properties for bedding thermal conductivity

 50 cBed ... % lookup value from Properties for bedding specific heat

 51 rBed ... % lookup value from Properties for bedding mass density

 52 kSoil ... % lookup value from Properties for soil thermal conductivity

 53 cSoil ... % lookup value from Properties for soil bedding specific heat

 54 rSoil ... % lookup value from Properties for soil mass density

 55 Rjoint; % contact resistance value for cable joint

 56

 57 % determine the resistance of the conductor material at the current temperature

 58 if Joint == 1 % if user has configured system to have no joints

 59 maxT = max(max(TempMat)); % maximum temp in the system

 60 T = [20 90]; % temp values for cable resistance variance at different temps

 61 % interpolate to get the resistance value of the conductor at maxT

28/10/14 10:41 PM C:\Greg Nagel\Simulation\materialProperties.m 2 of 3

 62 Rpm = interp1(T,R20R90,maxT,'linear','extrap') / 1000;

 63

 64 % for joints, use the specified resistance values found by (Fournier & Amyon, 2001)

 65 elseif Joint == 2 % healthy joint

 66

 67 if Rjoint % skip if Rjoint has been defined already

 68 else % if not, read in data from .xls file

 69 data = xlsread('Parameters','joint'); % load the data set

 70 Rjoint = data(3) / 1e6; % resistance value for healthy joint (microOhms)

 71 Rpm = Rjoint / JointL; % equivalent Rpm if considered to be 1m long

 72 end

 73

 74 elseif Joint == 3 % unhealthy joint

 75

 76 if Rjoint % skip if Rjoint has been defined already

 77 else % if not, read in data from .xls file

 78 data = xlsread('Parameters','joint'); % load the data set

 79 Rjoint = data(4) / 1e6; % resistance value for healthy joint (microOhms)

 80 Rpm = Rjoint / JointL; % equivalent Rpm if considered to be 1m long

 81 end

 82

 83 elseif Joint == 4 % statistical analysis of joint joint

 84

 85 Rpm = Rjoint / JointL; % equivalent Rpm if considered to be 1m long

 86

 87 end

 88

 89 %% determine the alpha value of each point in the FE Matrix

 90

 91 % conductor materials (Layout = 1)

 92 Tk = [25 125 225]; % reference temperature for interpolation of k

 93 if conductor == 1 % copper

 94 k = [401 400 398]; % thermal conductivity values that map to Tk (W/(m.K)

 95 c1 = 0.385; % specific heat capacity J/(g.K)

 96 r1 = 8940e3; % mass density g/m3

 97 else % aluminium

 98 k = [205 215 250]; % thermal conductivity values at Tk (W/(m.K)

 99 c1 = 0.897; % specific heat capacity J/(g.K)

100 r1 = 2712e3; % mass density g/m3

101 end

102 % interpolation to get temperature specific values

103 K1 = interp1(Tk,k,TempMat,'linear','extrap');

104 % thermal diffusivity m2/s (Layout used to only keep relevant values)

105 A1 = (Layout == 1) .* K1/ (c1*r1); % solve Alpha value of each conductor F.E.

106

107

108 % insulation materials XLPE (Layout = 2)

109 Tk = [19 20 55 90 91]; % reference temperature for interpolation of k

110 k = [0.223 0.223 0.267 0.280 0.280]; % thermal conductivity values at Tk (W/(m.K)

111 Tc = [19 20 40 60 70 90 91]; % reference temperature for interpolation of c

112 c = [2.0 2.0 2.2 3.0 3.0 4.0 4.0] ; % specific heat capacity maps to Tc J/(g.K)

113 r = 929e3; % mass density g/m3

114 % interpolation to get temperature specific values

115 K2 = interp1(Tk,k,TempMat,'linear','extrap');

116 C2 = interp1(Tc,c,TempMat,'linear','extrap');

117 % thermal diffusivity m2/s (Layout used to only keep relevant values)

118 A2 = (Layout == 2) .* K2./ (C2*r); % Alpha value of all XLPE Finite Elements

119

120

121

122 % shield materials (Layout = 3)

28/10/14 10:41 PM C:\Greg Nagel\Simulation\materialProperties.m 3 of 3

123 Tk = [25 125 225]; % reference temperature for interpolation of k

124 k = [205 215 250]; % thermal conductivity values at Tk (W/(m.K)

125 c = 0.385; % specific heat capacity J/(g.K)

126 r = 8940e3; % mass density g/m3

127 % interpolation to get temperature specific values

128 K3 = interp1(Tk,k,TempMat,'linear','extrap');

129 % thermal diffusivity m2/s (Layout used to only keep relevant values)

130 A3 = (Layout == 3) .* K3/ (c*r); % Alpha value of all Shield Finite Elements

131

132

133 % PVC materials (Layout = 4)

134 k = 0.19; % thermal conductivities (W/(m.K))

135 c = 1.005; % specific heat capacity J/(g.K)

136 r = 801e3; % mass density g/m3

137 % thermal diffusivity m2/s (Layout used to only keep relevant values)

138 A4 = (Layout == 4) * k/ (c*r); % Alpha value of all PVC Finite Elements

139

140

141 % Bedding materials (Layout = 5)

142 if kBed % skip if kBed has been defined already

143 else % if not, read in data from .xls file

144 data = xlsread('Parameters','soil'); % load the data set

145 kBed = data(1); % thermal conductivities (W/(m.K))

146 cBed = data(2); % specific heat capacity J/(g.K)

147 rBed = data(3); % mass density g/m3

148 end

149 % thermal diffusivity m2/s (Layout used to only keep relevant values)

150 A5 = (Layout == 5) * kBed/ (cBed*rBed); % Alpha value of all Bedding Finite Elements

151

152

153 % Soil materials (Layout = 6)

154 if kSoil % skip if kSoil has been defined already

155 else % if not, read in data from .xls file

156 data = xlsread('Parameters','soil'); % load the data set

157 kSoil = data(4); % thermal conductivities (W/(m.K))

158 cSoil = data(5); % specific heat capacity J/(g.K)

159 rSoil = data(6); % mass density g/m3

160 end

161 % thermal diffusivity m2/s (Layout used to only keep relevant values)

162 A6 = (Layout == 6) * kSoil/ (cSoil*rSoil); % Alpha value of all Soil Finite Elements

163

164

165 % Air (Layout = 7) may not be used, depends on the buried depth of cable

166 k = 0.024; % thermal conductivities (W/(m.K))

167 c = 1.005; % specific heat capacity J/(g.K)

168 r = 1.2e3; % mass density g/m3

169 % thermal diffusivity m2/s (Layout used to only keep relevant values)

170 A7 = (Layout == 7) * k/ (c*r); % Alpha value of all Air Finite Elements

171

172

173 % combine all Alphas to get the system's Alpha matrix

174 Amat = A1 + A2 + A3 + A4 + A5 + A6 + A7;

175

176 % ---------------------------- End - materialProperties.m -------------------------- %

28/10/14 10:41 PM C:\Greg Nagel\Simulation\tempCalc.m 1 of 6

 1 %% tempPlot.m --

 2 %

 3 % Author Greg Nagel - 0061025127

 4 % Project System dependent IDMT overcurrent settings for underground cables

 5 %

 6 % This file has been created by Greg Nagel for a final year research project to be

 7 % submitted to the University of Southern Queensland for courses, ENG4111/4112. It is

 8 % theoretical only and should not be used as the basis for decisions made on actual

 9 % power system applications.

 10 %

 11 % Release Date Comments

 12 % 1.0 12/09/14 Initial release to supervisor for partial review

 13 % 2.0 05/10/14 Code finalised and prepared for submission

 14 %

 15 % This file is a function require to support the file Master.m as part of the

 16 % simulation software developed by Greg Nagel to be used as a guideline for

 17 % determining the IDMT protection settings for underground power cables.

 18 %

 19 % Supporting files required the same directory as Master.m

 20 % breakcurve.m function to fit and plot protection curves

 21 % gui.fig graphical file for user interface

 22 % gui.m function to execute graphical user interface

 23 % layoutMatrix.m function to create colour by numbers matrix

 24 % materialProperties.m function to dynamically update material properties

 25 % tempCalc.m function to solve the simulation through time

 26 % tempPlot.m function to output plot of thermal profile

 27 %

 28 % This function solves the thermal matrix for each future time step as the simulation

 29 % advances through time.

 30 % This file also contains in-line function getQandL() which dynamically determines the

 31 % heating and Lambda properties of the system as it changes with temperature.

 32 % --

 33

 34 function [T,time] = tempCalc(T,dt,I)

 35

 36 % Initialise global variables that will be used by other functions

 37 global stepsize ... % used to determine the time between plot updates in the gui

 38 run ... % flag used to determine if user has stopped the simulation

 39 SimStep ... % integer that reflects which stage the simulation is up to

 40 StatusString... % string that is output on gui to give status messages to user

 41 TempMat ... % temperature matrix containing temperature of each F.E.

 42 St2Percent ... % used to output the percentage of stage 2 completed

 43 PickupTmax ... % maximum time relay will count for. i.e. to trip at pick-up

 44 simTime ... % value for the simulated time

 45 Iplot ... % value of the current being simulated

 46 Qmat ... % F.E heat contribution due to current flow (Ohm heating)

 47 Plot ... % flag used to inform gui when a new thermal plot is ready

 48 Days ... % No. of days simulation should run for to reach steady state

 49 Tupdate; % Temp that when exceeded, will update the material properties

 50

 51 % set local variables from global data to retain global data

 52 Iplot = I; % save globally for the plot title

 53

 54 % call the getQandL function which generate the matrices of Q (heating) and L, lambda

 55 % values for each individual finite element. These vary with temperature so it is

 56 % important to update regularly to ensure the system is as accurate as possible.

 57 % Lambda values are produced in 4 different matrices for matrix calculation of each

 58 % future T matrix.

 59 [Lu Ld Ll Lr] = getQandL(dt,I); % solve Qmat and the heat transfer matrix, Lambda

 60

 61

28/10/14 10:41 PM C:\Greg Nagel\Simulation\tempCalc.m 2 of 6

 62 %% solve difference equation using Gauss-Seidel iterative approach

 63

 64 % initialise local timers and counters

 65 iteration = 0; % counter for the number of iterations

 66 time = 0; % reset local timer to zero

 67 Step3Plot = 0; % flag for outputting thermal values during fault simulations

 68

 69 while run == 1 % always loop until break or user stops

 70

 71 % create shifted matrices for faster calculation of the future T values. This

 72 % will allow all future F.E. T values to be calculated with one matrix command,

 73 % rather than using for loops to solve for the next time step. The matrix must be

 74 % shifted up, down, left and right as well as maintained to allow for the

 75 % calculation to work. Because the outside edges are boundary conditions, these do

 76 % not need to be calculated and the matrix edges can be cut so the size of what

 77 % will be used is 2 less than the size of the original matrix T.

 78 T0 = T(2:end-1,2:end-1); % no shift (previous T value)

 79 T1 = T(1:end-2,2:end-1); % shift down (previous upper T value)

 80 T2 = T(3:end,2:end-1); % shift up (previous lower T value)

 81 T3 = T(2:end-1,1:end-2); % shift right (previous left T value)

 82 T4 = T(2:end-1,3:end); % shift left (previous right T value)

 83

 84 % use shifted matrices to perform faster calculation of diff equations

 85 T(2:end-1,2:end-1) = ... % internal values of the new T matrix =

 86 Lu.*T1 + ... % lambda with upper F.E. * upper temperature

 87 Ld.*T2 + ... % lambda with lower F.E. * lower temperature

 88 Ll.*T3 + ... % lambda with left F.E. * left temperature

 89 Lr.*T4 + ... % lambda with right F.E. * right temperature

 90 (1-(Lu+Ld+Ll+Lr)).*T0 ... % 1 - lambda to all F.E. * previous temperature

 91 + Qmat; % addition of ohmic heating from current flow

 92

 93

 94 %% check if a steady state temperature has been found

 95 % check if system has been simulated for more than the defined no. of days and

 96 % user has not aborted (run == 1)

 97 if (time > Days*(60*60*24)) && run == 1

 98

 99 Plot = 1; % plot flag used to trigger gui plot update

100 TempMat = T; % global matrix to plot temp. profile in gui window

101 simTime = time/60; % global value of simulation time to update in gui window

102

103 if SimStep == 1 % if operating in the first stage of the simulation

104 % status update to the user to show that step 1 is complete

105 StatusString = 'Simulation running ... Step 1/3: Solving for system''s

steady state temperature profile ... Done';

106 end

107

108 gui(); % call graphical user interface (gui) to update status

109 Tupdate = []; % clear Tupdate to have no value

110 break % exit from the while loop

111

112 end

113

114

115 %% check the recommended operating temp temperature has been exceeded

116

117 maxT = max(max(T)); % maximum temp in the system

118

119 % check if system can not handle the system load current during the first stage,

120 % determining of the steady state temperature profile.

121 if (maxT > 90 && run == 1 && SimStep == 1)

28/10/14 10:41 PM C:\Greg Nagel\Simulation\tempCalc.m 3 of 6

122

123 run = 0; % clear the run flag to abort the simulation

124

125 StatusString = ... % update status to the user to say system has failed

126 'Simulation stopped. System can not handle the load current.';

127

128 % also print out to the command window

129 fprintf('Simulation stopped. System can not handle the load current.\n');

130

131 gui(); % call graphical user interface (gui) to update status

132 break % exit from the while loop

133

134 end

135

136

137 % check if long term or short term cable ratings have been exceeded during

138 % simulation stage 3. This is used to determine the trip time at the simulated

139 % current value.

140 if ((maxT >= 90 && time > 5) || maxT >= 250) && run == 1 && SimStep == 3

141

142 Plot = 1; % plot flag used to trigger gui plot update

143 TempMat = T; % global matrix to plot temp. profile in gui window

144 simTime = time/60; % global value of simulation time to update in gui window

145

146 gui(); % call graphical user interface (gui) to update status

147 Tupdate = []; % clear Tupdate to have no value

148 break % exit from the while loop

149 end

150

151 % When determining the pick up current and hence the first point of the trip

152 % curve, break after the time defined as the maximum pickup time, which is a

153 % theoretical maximum measurement of a protection relay. If, the max time has been

154 % exceeded and simulation is currently performing step 2 or the simulation,

155 if SimStep == 2 && time >= PickupTmax

156

157 Plot = 1; % plot flag used to trigger gui plot update

158 TempMat = T; % global matrix to plot temp. profile in gui window

159 simTime = time/60; % global value of simulation time to update in gui window

160

161 gui(); % call graphical user interface (gui) to update status

162 Tupdate = []; % clear Tupdate to have no value

163 break % exit from the while loop

164 end

165

166

167 %% periodically update the output plots and material properties

168

169 % Every time the iteration counter is a multiple of the stepsize as defined in the

170 % master file or during initialisation, is half of the step size to smooth the

171 % initial temperature jump, do the following:

172 % - update the temperature plots

173 % - update the progress to the user at the bottom of the gui window

174 % - re-solve all the thermal properties of the system as the temperature changes

175 if (rem(iteration,stepsize) == 0 || iteration == stepsize/2) && run == 1

176

177 if SimStep == 1 % if operating in the first stage of the simulation

178

179 % progress is the simulation time / the maximum simulation time, days

180 Progress = time / (Days*(60*60*24)) * 100; % progress percentage

181 % update the status to be displayed at the bottom of the gui window

182 StatusString = sprintf('Simulation running ... Step 1/3: Solving for

28/10/14 10:41 PM C:\Greg Nagel\Simulation\tempCalc.m 4 of 6

system''s steady state temperature profile ... %0.1f %%',Progress);

183

184 elseif SimStep == 2 % if operating in the second stage of the simulation

185

186 % progress percentage iteration/max iterations = n/5 = n*20 percent

187 Progress = St2Percent + time / PickupTmax * 20;

188 % update the status to be displayed at the bottom of the gui window

189 StatusString = sprintf('Simulation running ... Step 2/3: Optimising

system''s pick-up value ... %0.1f %% (may be less)',Progress);

190

191 end

192

193 Plot = 1; % plot flag used to trigger gui plot update

194 TempMat = T; % global matrix to plot temp. profile in gui window

195 simTime = time/60; % global value of simulation time to update in gui window

196 gui(); % call graphical user interface (gui) to update status

197

198 % update the material Properties of each F.E. with respect to the F.E. temp

199 materialProperties(); % call materialProperties function (below)

200

201 % update the lambda values of each of the F.E. and also the internal heating

202 % matrix as resistance and therefore the power will change with temperature

203 [Lu Ld Ll Lr] = getQandL(dt,I); % solve for Qmat and Lambda

204

205 end

206

207 % as the maximum system temperature increases by 1 deg, update the material

208 % properties to ensure the simulation operates with relevant material properties.

209 % 0.1 degree for stage 3 of the plot because system changes very quickly

210 if Tupdate % if Tupdate has been set

211

212 % update the thermal plots more frequently during stage 3 so user can see the

213 % progress, especially at high fault currents when the simulation solves in a

214 % few seconds

215 if maxT > Tupdate % check if the update temp threshold has been exceeded

216

217 if SimStep == 3 % if operating in step 3 of the simulation

218

219 Tupdate = Tupdate + 0.1; % set next temp. threshold for update

220 Step3Plot = Step3Plot + 1; % increment counter

221

222 % update plot everytime the max temp increases by 5 degrees

223 if Step3Plot >= 50 % if 50 increments, or 5 degrees

224

225 Plot = 1; % plot flag used to trigger gui plot update

226 TempMat = T; % global matrix to plot temp. profile in gui

227 simTime = time/60; % global value of simulation time for gui

228 gui(); % call gui to update status

229 Step3Plot = 0; % clear counter for plot update (stage 3 only)

230

231 end

232

233 else % operating in step 2 or 3 of the simulation

234

235 Tupdate = Tupdate + 1; % set next temp. threshold for update

236

237 end

238

239 % update the material Properties of each F.E. with respect to the temp.

240 materialProperties(); % call materialProperties function (below)

241

28/10/14 10:41 PM C:\Greg Nagel\Simulation\tempCalc.m 5 of 6

242 % update the lambda values of each F.E. and also the internal heating

243 % matrix as resistance and therefore the power will change with temp

244 [Lu Ld Ll Lr] = getQandL(dt,I); % solve for Qmat and Lambda

245

246 end

247

248 else % if Tupdate has not been set, initialise it as the maximum system temp.

249 Tupdate = maxT; % initialise Tupdate

250 end

251

252

253 %% maintain the simulation time (seconds since start)

254 time = (time + dt); % global time is incremented by dt, every 'while' loop

255 iteration = iteration + 1; % keep count of the iterations

256

257 end % end of the while loop

258

259

260 %% Calculate the heat generated in one phase of the cable system

261 % This in-line function getQandL() which dynamically determines the heating and Lambda

262 % properties of the system as it changes with temperature.

263 function [Lu Ld Ll Lr] = getQandL(dt,I)

264

265 % Initialise global variables that will be used by other functions

266 global Amat ... % matrix containing Alpha (diffusivity) values of each F.E.

267 c1 ... % specific heat capacity of conductor material (J/(g.K))

268 r1 ... % mass density of conductor material (g/m3)

269 Rpm ... % resistance per meter of cable

270 Layout ... % layout matrix containing different integer for each material

271 k ... % vertical and horizontal step size (delta x or y)

272 Qmat ... % F.E heat contribution due to current flow (Ohm heating)

273 system; % cable system configuration

274

275 %% create matrix Qmat representing temp rise of each F.E.

276 % Heat is only generated inside the conductor finite elements. The amount of power is

277 % determined using the resistance and current. The temperature increase is dependent

278 % on the material properties of the conductor material.

279

280 % all measurement assume that the length of the cable or F.E. is 1 metre

281 len = 1; % length = 1m

282

283 % determine the total power generated in the system, this varies depending on the

284 % cable configuration

285 if system == 1 % for single phase system

286 P = I^2*Rpm*len; % power per metre of cable

287

288 elseif system == 2 || system == 3 % for three phase system

289 P1 = I^2*Rpm*len; % power per metre of cable of one phase

290 P = P1*3; % 3 cores carrying equal load, 3x power

291

292 elseif system == 4 % for parallel three phase system

293 I = I/2; % current is shared because parallel conductors

294 P1 = I^2*Rpm*len; % power per metre of only one phase

295 P = P1*6; % 6 cores carrying equal load, 6x power

296 end

297

298 % the total power is shared amongst the finite elements that are mapped to conductor

299 pieces = sum(sum(Layout == 1)); % number of conductor finite elements

300 p = P / pieces; % power generated in each F.E. (W)

301

302 % the work done on each finite element is determined by the time the power is exerted

28/10/14 10:41 PM C:\Greg Nagel\Simulation\tempCalc.m 6 of 6

303 q = p*dt; % work done in each F.E since last time sample (J)

304

305 % the temperature increase due to the work done on the F.E. is dependent on the

306 % specific heat of the material and the mass of the material within the F.E. which is

307 % dependent on the density of the material.

308 v = k^2*len; % volume of each F.E. (m3)

309 m = v*r1; % mass of each conductor F.E. (g)

310 qdot = q/(c1*m); % temperature increase of each F.E., delta T

311

312 % create a matrix representing the delta T, or qdot, of each F.E., this is done by

313 % substituting the heat contribution qdot into each conductor F.E.

314 Qmat = (Layout(2:end-1,2:end-1) == 1) * qdot; % substitute qdot into conductor F.E.

315

316

317 %% build Lambda matrices for matrix multiplication

318 % calculate lambda, should be << 0.5 to ensure F.E. remains stable

319 Lambda = Amat*(dt/k^2); % calculate Lambda value for each F.E.

320 Lmax = max(max(Lambda)); % find the maximum value within the Lambda matrix

321 if (Lmax > 0.25) % check if lambda is outside a stable range

322 fprintf('Lambda %.3f is too big \n',Lmax) % printout warning, system is not stable

323 end

324

325 % shift matrix and cut irrelevant edges of matrix. The lambda values are averaged

326 % with the F.E. that shares the boundary to ensure reasonable values are used when

327 % different materials share a F.E. boundary.

328 L0 = Lambda(2:end-1,2:end-1); % F.E.'s value of Lambda

329 L1 = Lambda(1:end-2,2:end-1); % upper F.E.'s value of Lambda

330 L2 = Lambda(3:end,2:end-1); % lower F.E.'s value of Lambda

331 L3 = Lambda(2:end-1,1:end-2); % left F.E.'s value of Lambda

332 L4 = Lambda(2:end-1,3:end); % right F.E.'s value of Lambda

333 Lu = (L0+L1)./2; % average between local and upper Lambda

334 Ld = (L0+L2)./2; % average between local and lower Lambda

335 Ll = (L0+L3)./2; % average between local and left Lambda

336 Lr = (L0+L4)./2; % average between local and right Lambda

337

338 % end in-line function - getQandL()

339

340 % --------------------------------- End - tempCalc.m ------------------------------- %

28/10/14 10:42 PM C:\Greg Nagel\Simulation\tempPlot.m 1 of 6

 1 %% tempPlot.m --

 2 %

 3 % Author Greg Nagel - 0061025127

 4 % Project System dependant IDMT overcurrent settings for underground cables

 5 %

 6 % This file has been created by Greg Nagel for a final year research project to be

 7 % submitted to the University of Southern Queensland for courses, ENG4111/4112. It is

 8 % theoretical only and should not be used as the basis for decisions made on actual

 9 % power system applications.

 10 %

 11 % Release Date Comments

 12 % 1.0 09/9/14 Initial release to supervisor for partial review

 13 % 1.1 30/9/14 Include radio button for removing material boundaries from plot

 14 % 2.0 05/10/14 Code finalised and prepared for submission

 15 %

 16 % This file is a function require to support the file Master.m as part of the

 17 % simulation software developed by Greg Nagel to be used as a guideline for

 18 % determining the IDMT protection settings for underground power cables.

 19 %

 20 % Supporting files required the same directory as Master.m

 21 % breakcurve.m function to fit and plot protection curves

 22 % gui.fig graphical file for user interface

 23 % gui.m function to execute graphical user interface

 24 % layoutMatrix.m function to create colour by numbers matrix

 25 % materialProperties.m function to dynamically update material properties

 26 % tempCalc.m function to solve the simulation through time

 27 % tempPlot.m function to output plot of thermal profile

 28 %

 29 % This function creates the coloured thermal plot shown in the graphical user

 30 % interface. The plots also include circles to show the barriers between each of the

 31 % material properties.

 32 % --

 33

 34 function tempPlot()

 35

 36 % Initialise global variables shared between MATLAB files

 37 global x ... % array containing all x axis values for cable cross-section

 38 y ... % array containing all y axis values for cable cross-section

 39 Layout ... % layout matrix containing different integer for each material

 40 cabrad ... % radius of the conductor of the cable

 41 insul ... % insulation thickness of the cable

 42 k ... % vertical and horizontal step size (delta x or y)

 43 width ... % width of simulation cross-section

 44 height ... % height of simulation cross-section

 45 shield ... % thickness of cable shield

 46 pvc ... % thickness of pvc

 47 system ... % cable system configuration

 48 TmaxSave ... % contains fault temperatures and times for stage 1 temp plot

 49 TFmaxSave ... % contains fault temperatures and times for stage 2 temp plot

 50 SimStep ... % integer that reflects which stage the simulation is up to

 51 loops ... % incremented to count the number of iterations

 52 separation ... % distance between conductors (when multiple conductors)

 53 simTime ... % value for the simulated time

 54 Iplot ... % value of the current being simulated

 55 TempMat ... % temperature matrix containing temperature of each F.E.

 56 Button; % radio button status for showing the boundary circles on plot

 57

 58

 59 % set local variables from global data to retain global data

 60 T = TempMat; % matrix of F.E. temp. values for use within this function

 61 mins = rem(simTime,60); % remainder of simulation time hours in minutes

28/10/14 10:42 PM C:\Greg Nagel\Simulation\tempPlot.m 2 of 6

 62 hours = floor(simTime/60); % simulation time rounded down to the nearest hour

 63

 64 colormap('default'); % clear the colours in colormap from layout plot

 65

 66 % find the maximum temperature within the cable (conductor, insulator, shield and PVC)

 67 Tmax = max(max(T(Layout <= 4)));

 68

 69 % invert T and trim by one row for correct visual representation this is required as

 70 % the matrix is calculated upside down compared to the layout of the system.

 71 Tflip = [flipud(T(1:end-1,:)) ; T(end,:)]; % flip upside-down function

 72

 73 %% plot the colour profile of the temperature value of each finite element

 74 pcolor(x,y,Tflip); % plot temperature distribution

 75 shading flat % shade each square as a single colour

 76 axis square % force the axis to be square

 77 colorbar % show temperature colour scale to the side of plot

 78 ylabel('height of system (m)') % label the y axis of the colour plot

 79 xlabel('width of system (m)') % label the x axis of the colour plot

 80 title(sprintf(... % title of the plot with current and simulation time

 81 'Temperature profile after Time = %.0fh %.0fm at current = %.0f A',hours,mins,Iplot))

 82 hold on % hold plot data so circle boundaries can be added

 83

 84 %% add circles for the boundaries of the conductor materials

 85

 86 % find centre point of the plot to reference the origins of the circles when plotting

 87 xc = width/2; % horizontal centre location

 88 yc = height/2; % vertical centre location

 89

 90 % create an array of radian values to be used to solve the x,y points of the circles

 91 ang = 0:0.01:2*pi; % array of radian values from 0 - 2 pi

 92

 93

 94 if system == 1 && Button == 1 % if user has specified a single phase system

 95

 96 % add circle for outside boundary of conductor

 97 rad1 = cabrad; % radius of circle

 98 xp=rad1*cos(ang); % x values of circle points

 99 yp=rad1*sin(ang); % y values of circle points

100 plot(xc+xp,yc+yp,'w'); % plot the x,y points with circle origin at xc,yc

101

102 % add circle for outside boundary of insulator

103 rad2 = cabrad+insul; % radius of circle

104 xp=rad2*cos(ang); % x values of circle points

105 yp=rad2*sin(ang); % y values of circle points

106 plot(xc+xp,yc+yp,'w'); % plot the x,y points with circle origin at xc,yc

107

108 % add circle for outside boundary of shield

109 rad3 = cabrad+insul+shield; % radius of circle

110 xp=rad3*cos(ang); % x values of circle points

111 yp=rad3*sin(ang); % y values of circle points

112 plot(xc+xp,yc+yp,'w'); % plot the x,y points with circle origin at xc,yc

113

114 % add circle for outside boundary of pvc

115 rad4 = cabrad+insul+shield+pvc; % radius of circle

116 xp=rad4*cos(ang); % x values of circle points

117 yp=rad4*sin(ang); % y values of circle points

118 plot(xc+xp,yc+yp,'w'); % plot the x,y points with circle origin at xc,yc

119

120

121 elseif system == 2 && Button == 1 % if user has specified a single trefoil system

122

28/10/14 10:42 PM C:\Greg Nagel\Simulation\tempPlot.m 3 of 6

123 % determine central points for cables using Pythagoras' theorem

124 L = (cabrad+insul+shield)*2; % distance between trefoil circle centres

125 h = sqrt(L^2 - (L/2)^2); % height of triangle made by trefoil circles

126 h1 = L/sqrt(3); % distance from centre to top circle origin

127 h2 = h - h1; % distance from centre to bottom circle origin

128

129 % add circle for the inside of shield

130 rad1 = h1+L/2; % radius of circle

131 xp=rad1*cos(ang); % x values of circle points

132 yp=rad1*sin(ang); % y values of circle points

133 plot(xc+xp,yc+yp,'w'); % plot the x,y points with circle origin at xc,yc

134

135 % add circle for outside of shield

136 rad2 = h1+L/2+shield; % radius of circle

137 xp=rad2*cos(ang); % x values of circle points

138 yp=rad2*sin(ang); % y values of circle points

139 plot(xc+xp,yc+yp,'w'); % plot the x,y points with circle origin at xc,yc

140

141 % add circle for outside of pvc

142 rad3 = h1+L/2+shield+pvc; % radius of circle

143 xp=rad3*cos(ang); % x values of circle points

144 yp=rad3*sin(ang); % y values of circle points

145 plot(xc+xp,yc+yp,'w'); % plot the x,y points with circle origin at xc,yc

146

147 % add circle for the conductor of each cable core

148 rad4 = cabrad; % radius of circle

149 xp=rad4*cos(ang); % x values of circle points

150 yp=rad4*sin(ang); % y values of circle points

151 % add circle for the conductor of top core

152 plot(xc+xp,yc+yp+h1,'w'); % plot the x,y points with origin of top core

153 % add circle for the conductor of right core

154 plot(xc+xp+L/2,yc+yp-h2,'w'); % plot the x,y points with origin of right core

155 % add circle for the conductor of left core

156 plot(xc+xp-L/2,yc+yp-h2,'w'); % plot the x,y points with origin of left core

157

158 % add circle for the insulation of each cable core

159 rad5 = cabrad+insul; % radius of circle

160 xp=rad5*cos(ang); % x values of circle points

161 yp=rad5*sin(ang); % y values of circle points

162 % add circle for the insulation of top core

163 plot(xc+xp,yc+yp+h1,'w'); % plot the x,y points with origin of top core

164 % add circle for the insulation of right core

165 plot(xc+xp+L/2,yc+yp-h2,'w'); % plot the x,y points with origin of right core

166 % add circle for the insulation of left core

167 plot(xc+xp-L/2,yc+yp-h2,'w'); % plot the x,y points with origin of left core

168

169 % add circle for the individual shields of each cable core

170 rad6 = cabrad+insul+shield; % radius of circle

171 xp=rad6*cos(ang); % x values of circle points

172 yp=rad6*sin(ang); % y values of circle points

173 % add circle for the shield of top core

174 plot(xc+xp,yc+yp+h1,'w'); % plot the x,y points with origin of top core

175 % add circle for the shield of right core

176 plot(xc+xp+L/2,yc+yp-h2,'w'); % plot the x,y points with origin of right core

177 % add circle for the shield of left core

178 plot(xc+xp-L/2,yc+yp-h2,'w'); % plot the x,y points with origin of left core

179

180

181 elseif system == 3 && Button == 1 % if user has specified 3 single-phase cable system

182 % determine distance between cable centres

183 L = (cabrad+insul+shield+pvc)*2+separation; % distance between cable centres

28/10/14 10:42 PM C:\Greg Nagel\Simulation\tempPlot.m 4 of 6

184

185 % add circle for outside of conductor of the three cables

186 rad1 = cabrad; % radius of circle

187 xp=rad1*cos(ang); % x values of circle points

188 yp=rad1*sin(ang); % y values of circle points

189 % add circle for the outside of the conductor of the middle cable

190 plot(xc+xp,yc+yp,'w'); % plot the x,y points with origin of centre cable

191 % add circle for the outside of the conductor of the right cable

192 plot(xc+xp+L,yc+yp,'w'); % plot the x,y points with origin of right cable

193 % add circle for the outside of the conductor of the left cable

194 plot(xc+xp-L,yc+yp,'w'); % plot the x,y points with origin of left cable

195

196 % add circle for outside of the insulation of the three cables

197 rad2 = cabrad+insul; % radius of circle

198 xp=rad2*cos(ang); % x values of circle points

199 yp=rad2*sin(ang); % y values of circle points

200 % add circle for the outside of the insulation of the middle cable

201 plot(xc+xp,yc+yp,'w'); % plot the x,y points with origin of centre cable

202 % add circle for the outside of the insulation of the right cable

203 plot(xc+xp+L,yc+yp,'w'); % plot the x,y points with origin of right cable

204 % add circle for the outside of the insulation of the left cable

205 plot(xc+xp-L,yc+yp,'w'); % plot the x,y points with origin of left cable

206

207 % add circle for outside of the shield of the three cables

208 rad3 = cabrad+insul+shield; % radius of circle

209 xp=rad3*cos(ang); % x values of circle points

210 yp=rad3*sin(ang); % y values of circle points

211 % add circle for the outside of the shield of the middle cable

212 plot(xc+xp,yc+yp,'w'); % plot the x,y points with origin of centre cable

213 % add circle for the outside of the shield of the right cable

214 plot(xc+xp+L,yc+yp,'w'); % plot the x,y points with origin of right cable

215 % add circle for the outside of the shield of the left cable

216 plot(xc+xp-L,yc+yp,'w'); % plot the x,y points with origin of left cable

217

218 % add circle for outside of the PVC of the three cables

219 rad4 = cabrad+insul+shield+pvc; % radius of circle

220 xp=rad4*cos(ang); % x values of circle points

221 yp=rad4*sin(ang); % y values of circle points

222 % add circle for the outside of the PVC of the middle cable

223 plot(xc+xp,yc+yp,'w'); % plot the x,y points with origin of centre cable

224 % add circle for the outside of the PVC of the right cable

225 plot(xc+xp+L,yc+yp,'w'); % plot the x,y points with origin of right cable

226 % add circle for the outside of the PVC of the left cable

227 plot(xc+xp-L,yc+yp,'w'); % plot the x,y points with origin of left cable

228

229 elseif system == 4 && Button == 1 % if user has specified parallel trefoil system

230

231 % determine central points for cables using Pythagoras' theorem

232 L = (cabrad+insul+shield)*2; % distance between trefoil circle centres

233 h = sqrt(L^2 - (L/2)^2); % height of triangle made by trefoil circles

234 h1 = L/sqrt(3); % distance from centre to top circle origin

235 h2 = h - h1; % distance from centre to bottom circle origin

236

237 % determine the distance each cable will need to be shifted left or right from the

238 % centre. This is dependant on the outer diameter of the cable and the separation

239 % between the cables as defined by the user.

240 shift = h1 + L/2 + shield + pvc + separation - k/2;

241

242 % add circle for the inside of shield of each trefoil

243 rad1 = h1+L/2; % radius of circle

244 xp=rad1*cos(ang); % x values of circle points

28/10/14 10:42 PM C:\Greg Nagel\Simulation\tempPlot.m 5 of 6

245 yp=rad1*sin(ang); % y values of circle points

246 plot(xc+xp+shift,yc+yp,'w'); % plot the x,y points with origin of right trefoil

247 plot(xc+xp-shift,yc+yp,'w'); % plot the x,y points with origin of left trefoil

248

249 % add circle for outside of shield of each trefoil

250 rad2 = h1+L/2+shield; % radius of circle

251 xp=rad2*cos(ang); % x values of circle points

252 yp=rad2*sin(ang); % y values of circle points

253 plot(xc+xp+shift,yc+yp,'w'); % plot the x,y points with origin of right trefoil

254 plot(xc+xp-shift,yc+yp,'w'); % plot the x,y points with origin of left trefoil

255

256 % add circle for outside of pvc of each trefoil

257 rad3 = h1+L/2+shield+pvc; % radius of circle

258 xp=rad3*cos(ang); % x values of circle points

259 yp=rad3*sin(ang); % y values of circle points

260 plot(xc+xp+shift,yc+yp,'w'); % plot the x,y points with origin of right trefoil

261 plot(xc+xp-shift,yc+yp,'w'); % plot the x,y points with origin of left trefoil

262

263 % add circles for each of the conductors within the two trefoils

264 rad4 = cabrad; % radius of circle

265 xp=rad4*cos(ang); % x values of circle points

266 yp=rad4*sin(ang); % y values of circle points

267 % add circles for each of the top trefoil conductors

268 plot(xc+xp+shift,yc+yp+h1,'w'); % plot x,y, origin top core, right trefoil

269 plot(xc+xp-shift,yc+yp+h1,'w'); % plot x,y, origin top core, left trefoil

270 % add circles for each of the right trefoil conductors

271 plot(xc+xp+L/2+shift,yc+yp-h2,'w'); % plot x,y, origin right core, right trefoil

272 plot(xc+xp+L/2-shift,yc+yp-h2,'w'); % plot x,y, origin right core, left trefoil

273 % add circles for each of the left trefoil conductors

274 plot(xc+xp-L/2+shift,yc+yp-h2,'w'); % plot x,y, origin left core, right trefoil

275 plot(xc+xp-L/2-shift,yc+yp-h2,'w'); % plot x,y, origin left core, left trefoil

276

277 % add circles for the XLPE insulation of each core within the two trefoils

278 rad5 = cabrad+insul; % radius of circle

279 xp=rad5*cos(ang); % x values of circle points

280 yp=rad5*sin(ang); % y values of circle points

281 % add circles for each of the top trefoil cores

282 plot(xc+xp+shift,yc+yp+h1,'w'); % plot x,y, origin top core, right trefoil

283 plot(xc+xp-shift,yc+yp+h1,'w'); % plot x,y, origin top core, left trefoil

284 % add circles for each of the right trefoil cores

285 plot(xc+xp+L/2+shift,yc+yp-h2,'w'); % plot x,y, origin right core, right trefoil

286 plot(xc+xp+L/2-shift,yc+yp-h2,'w'); % plot x,y, origin right core, left trefoil

287 % add circles for each of the left trefoil cores

288 plot(xc+xp-L/2+shift,yc+yp-h2,'w'); % plot x,y, origin left core, right trefoil

289 plot(xc+xp-L/2-shift,yc+yp-h2,'w'); % plot x,y, origin left core, left trefoil

290

291 % add circles for the individual shields of each core within the two trefoils

292 rad6 = cabrad+insul+shield; % radius of circle

293 xp=rad6*cos(ang); % x values of circle points

294 yp=rad6*sin(ang); % y values of circle points

295 % add circles for each of the top trefoil cores

296 plot(xc+xp+shift,yc+yp+h1,'w'); % plot x,y, origin top core, right trefoil

297 plot(xc+xp-shift,yc+yp+h1,'w'); % plot x,y, origin top core, left trefoil

298 % add circles for each of the right trefoil cores

299 plot(xc+xp+L/2+shift,yc+yp-h2,'w'); % plot x,y, origin right core, right trefoil

300 plot(xc+xp+L/2-shift,yc+yp-h2,'w'); % plot x,y, origin right core, left trefoil

301 % add circles for each of the left trefoil cores

302 plot(xc+xp-L/2+shift,yc+yp-h2,'w'); % plot x,y, origin left core, right trefoil

303 plot(xc+xp-L/2-shift,yc+yp-h2,'w'); % plot x,y, origin left core, left trefoil

304

305 end

28/10/14 10:42 PM C:\Greg Nagel\Simulation\tempPlot.m 6 of 6

306

307 hold off % release plot data so plot can be overwritten

308

309 % record the number of times this function has been called as the number of loops

310 loops = loops + 1; % increment the value of loops

311

312 % save the values of maximum temp and simulation time for the bottom temp vs. time

313 % plot that will be updated as the simulation is running

314 if SimStep == 1 % if operating in stage 1 of the simulation (steady state heating)

315 % save the orignal values to be plotted during stage 1 and stage 2

316 TmaxSave(loops,1:2) = [Tmax simTime];

317

318 else % operating in stage 2/3 of the simulation (overload/fault)

319 % don't overwrite the original values, save as TFmax for plots in stage 2 and 3

320 TFmaxSave(loops-length(TmaxSave),1:2) = [Tmax simTime];

321

322 end

323

324 % --------------------------------- End - tempPlot.m ------------------------------- %

