University of Southern Queensland Faculty of Health, Engineering and Sciences

Investigating the Accuracy of Terrestrial Laser Scanning within a Rail Environment

A dissertation submitted by

Stavroula Agoritsas

In fulfilment of the requirements of

Bachelor of Spatial Science (Honours) (Surveying)

October 2015

Abstract

Today technology is so advanced and has reached a point where current regulations need to be reviewed and new technologies need to be incorporated in legislation. For this to take place in the Terrestrial Laser Scanning (TLS) field we need to provide evidence of proven and verified instrument accuracy. The proven working accuracy other than a specification in a product brochure needs to be documented for TLS's to be adopted in Railway industry that requires accurate data.

The aims of this investigation is to document working accuracies for TLS and determine if the instrument conform with Sydney Trains specification by calibrating a scanner. The existing Track Control Marks (TCM's) represented by very small Survey Steel Pins (SSP's) installed on the face of steel masts in the rail corridor will also be tested to see if they can be scanned accurately. The scan time to capture a rail track scene will also be compared with survey points measured using current Survey Total Station (STS) methods.

Various custom targets using colour tones and material found in the rail corridor have been constructed and tested for scanning useability. An indoor self calibration room has been established which included the setup of a ground control traverse. A target network has been designed and seventy targets have been installed and signalised. The Leica TS15 and TS30 STS, have been used to signalise the seventy targets. The calibration targets are a mix of Faro and Leica black and white checker pattern scanner specific targets. The targets closest to the floor have had an SSP fitted in the centre of the checker pattern target for testing. The indirect method of TLS self calibration method was used by the Leica P20 ScanStation and the Faro Focus 3D X330 scanners, to scan all the targets form three scan positions. The distances between all the installed target have been measured with a tape for independent checks on the final 3D positional coordinates of the targets. The two scanners were setup in the rail corridor and scanned a section of rail track. This section of track was also measured by a STS using current Sydney Trains conventional methods. Existing SSP's fitted with scanner targets were scanned and used for the registration of these two point clouds.

It was found when the STS data compared to the Scanners data, the 3D positional coordinates were within +-2 millimetres. This result verifies that the two TLS's are as accurate as a STS therefore conform with Sydney Trains specifications and can be used in the rail corridor for survey measurements. The SSP testing was successful. They can be scanned and used in the registration process of a point cloud. The mix use of scanner targets with different manufacturer scanner was also successful. When the measured data from a section of rail tract was scanned and surveyed conventionally, the data was compared and the data once overlayed were identical. This test also documented the significant difference in time for completing a survey in the rail corridor using a scanner and STS. The documented ability to measure fast and with verified accuracy using a TLS from a safe place within the rail corridor without encroaching into the danger zone from a safety perspective this is a significant development.

University of Southern Queensland Faculty of Health, Engineering and Sciences ENG4111/ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Stavroula Agoritsas

0031210037

Signature

29/10/2015

Date

Acknowledgement

The author would like to take this opportunity to acknowledge the support and guidance received from Dr Xiaoye Liu. Managers and colleagues from Sydney Trains - Survey Division for their encouragement and support in particular (Graeme, Murray, Gary, Fred and Mick).

Thank you to C R Kennedy John Reddington and Position Partners (Michael McClelland and Adam Burke) for their time, equipment and software.

Acknowledgement is also made to family and friends for their the support throughout this long journey of external study for a long desired Bachelor of Spatial Science (Surveying) degree.

Contents

Abstract 2
Limitations of Use
Certification of Dissertation
Acknowledgement
List of Figures
List of Tables 11
Chapter One - Introduction
1.1 Project Background 12
1.2 Justification
1.3 Project Aim 14
1.4 Objectives
1.5 Summary 15
Chapter Two - Literature Review
2.1 Introduction
2.2 History of Scanners
2.3 Terrestrial Laser Scanning 19
2.3.1 Measuring Technology 19
2.3.2 TLS Measurement 20
2.4 Beam deflection 21
2.5 Instrumentation 22
2.5.1 Survey Total Station (STS) 23
2.5.2 Leica Nova MultiStation MS50 23
2.5.3 Leica ScanStation P20 24
2.5.4 Faro focus 3D X 330 25
2.6 Research on Terrestrial Laser Scanners 25
2.6.1 Verification Tests
2.6.2 Accuracy
2.6.3 Calibration
2.6.4 Scanning Targets 28
2.6.5 Standards 29
2.7 TLS Applications in a railway environment 29
2.8 Data processing and analysis

2.9 Conclusion	. 32
Chapter Three - Methodology	. 33
3.1 Introduction	. 33
3.2 Project Design Stage 1	. 34
3.2.1 Start Up	. 34
3.2.2 Scanner Target Research	. 34
3.3 Field Work 1 Stage 2	. 38
3.3.1 Site A establishment	. 38
3.4 Project Design Stage 3	. 39
3.4.1 Target Construction	. 39
3.4.2 Site A Target Approval	. 45
3.5 Field Work Stage 4	. 45
3.5.1 Ground control	. 45
3.6 Project Design Stage 5	. 46
3.6.1 Target Installation	. 46
3.7 Data Collection & Analysis Stage 6	. 47
3.7.1 Rail corridor scan MS50	. 47
3.7.2 MS50 calibration site A	. 49
3.8 Project Design Stage 7	. 50
3.8.1 Target construction	. 50
3.8.2 Target configuration	. 51
3.8.3 Target installation	. 52
3.9 Data Collection & Analysis Stage 8	. 53
3.9.1 Faro Focus 3D X330 calibration	. 53
3.10 Field Work Stage 9	. 54
3.10.1 Site B establishment	. 54
3.11 Project Design Stage 10	. 55
3.11.1 Target construction	. 55
3.11.2 Target configuration	. 58
3.11.3 Target installation	. 60
3.12 Field Work Stage 11	. 61
3.12.1 Ground control	. 61
3.13 Data Collection & Analysis Stage 12	. 62
3.13.1 P20 calibration	. 62
3.13.2 Rail corridor scan P20	. 63

3.13.3	Faro Focus 3D X 330 calibration	66
3.13.4	Rail corridor scan Faro Focus 3D X330	67
3.14 Concl	usion	68
Chapter Four	- Results and Discussion	69
4.1 Introdu	uction	69
4.2 STS Red	ductions	69
4.2.1 Su	rvey Control	70
4.2.2 Ta	rgets	70
4.2.3 Sta	age 1 Leica TS15	70
4.2.4 Sta	age 2 Leica TS30	74
4.3 Scanne	er Reductions	78
4.3.1 Sta	age 1 Leica P20	78
4.3.2 Sta	age 2 Faro Focus 3D X330	83
4.4 Scan ar	nd Track Survey Comparison	91
4.5 Discuss	sion	92
Chapter Five -	- Conclusion and Recommendation	93
5.1 Conclus	sion	93
5.2 Recom	nendation	
Chapter Six - I	References	95
Chapter Sever	n - Bibliography	99
Appendix A. P	Project Specification	100
Appendix B. R	lisk Assessment and Safety	101
Appendix C. L	eica TS15 & TS30 Specifications	142
Appendix D Le	eica MS50 Specifications	144
Appendix E. L	eica P20 Specifications	145
Appendix F. F	aro Focus 3D X330 Specification	146
Appendix G. P	Project Costings	147
Appendix H. C	Calibration Reports Leica TS15 & TS30	149

List of Figures

Number	Title	Page
1.1	Qualified workers in safe places within the rail corridor.	12
1.2	Sydney metropolitan survey job sites.	13
1.3	The FARO Focus 3DX330 Scanner (a) The Leica P20 Scanner (b)	14
2.1	Time line of various Terrestrial Laser Scanners	17,18
2.2	Examples of a single point measuremnt	19
2.3	Examples of a TLS sweeping beam measurement.	20
2.4	A profiler scanner	22
2.5	Type of scanners	22
2.6	Leica Survey Total Stations	23
2.7	Leica MS50	24
2.8	Leica P20 and Field of view	24
2.9	The Faro Focus 3DX330 and laser deflection	25
2.10	TLS research paper timeline.	25
2.11	TLS research papers focus areas	26
2.12	PROFILER 6000-300 & 9012 (Fröhlich & Mettenleiter 2004)	30
2.13	3D Multi sensor for rail maintenance	30
2.14	Point cloud at 102.360km	31
2.15	Distorted geometry of scanned track	31
3.1	The project work flow	33
3.2	Custom reflectance cards	34
3.3	Leica Target Plate GZT4	35
3.4	Leica prism assembly	35
3.5	Deconstructed Leica GPH1 prism holder assembly to find the centre ze	
3.6	Proxxon Draemel	36
3.7	Leica GPH1 prism holder	37
3.8	Leica distance from the glass front of prism to the prism centre.	37
3.9	The transformation of a glass prism.	38
3.10	Sydney Trains warehouse in Auburn NSW (site A)	39
3.11	Cutting out prism shapes from custom cards	39
3.12	Installation of prism card	40
3.13	Close up of the card placement and final product.	40
3.14	A TCM and SSP	41
3.15	Cards fitted with SSP	42
3.16	Site A	42
3.17	Post construction	43
3.18	Complete target in posts.	43
3.19	Custom card with sights	44
3.20	Scanner Targets constructed	44
3.21	Approved Temporary photocopy Target	45
3.22	Establishing ground control	45
3.23	Target configuration	46
3.24	Section of Rail track (Main West) more targets	47
3.25	Section of Rail track (Main West)	47
3.26	Section of Rail track (Main West)	48
3.27	Western targets wall of warehouse	49
3.28	Top left corner target	49
3.29	Foam targets and cardboard target plates	50
3.30	Off cut targets	51
	0	

Number	Title	Page
3.31	Miniature targets	51
3.32	Target pins	52
3.33	Target install	52
3.34	Northern wall of Site A point cloud form faro Scene	53
3.35	Site B	54
3.36	Site B indoor paneling issues	54
3.37	Scanned custom targets point cloud from Scene door paneling issues	55
3.38	The Leica (round) and faro Scanning Targets.	56
3.39	Sticking the paper targets on MDF boards.	56
3.40	Installation of SSP on timber board	57
3.41	Target over SSP	57
3.42	The BOSCH Quigo in use	58
3.43	A sketch of the target network configuration	59
3.44	Target Installation	60
3.45	Incorrect orientation of scanner targets	61
3.46	Site B ground control stations	61
3.47	P20 at scan position 1	62
3.48	Point cloud from Cyclone 9.0 at STN100.	62
3.49	P20 rail corridor scan site	63
3.50	P20 in the rail corridor	63
3.51	The three SSP's - survey control with Leica Targets	64
3.52	Plaque positions near the SSP's.	64
3.53	Specification for TCM	65
3.54	Focus 3DX at scan position 1	66
3.55	Point cloud from Faro Scene5.5 at STN100.	66
3.56	The Faro track scan at Redfern	67
3.57	The three SSP's - survey control with Faro Targets	67
3.58	Plaque positions near the SSP's.	67
4.1	Laser dot photos from station 100	71
4.2	Laser dot photos from station 200	72
4.3	Laser dot photos from station 100	75
4.4	Laser dot photos from station 200	75
4.5	Laser dot from station 300	75
4.6	Targets not extracted	80
4.7	Targets not extracted from point cloud	85

List of Tables

Number	Title	Page
3.1	Leica Survey Total Specification	35
3.2	Reflective card testing results	40
3.3	Reflective material testing results	41
3.4	Scan time for a scan area of Rail Portal Spacing	48
3.5	Scan time for a scan area of approx 5m x 5m.	50
4.1	Leica STS specifications	69
4.2	Comparison of Target from TS15 data set.	71
4.3	Analysis of Target 14	72
4.4	Analysis of Target 15	72
4.5	Analysis of Target 30	72
4.6	Analysis of Target 59	72
4.7	Analysis of Target 60	72
4.8	Join measurements comparison TS15 data	73
4.9	Final Coordinates of Targets from TS15	74
4.10	Comparison of Target from TS30 data set.	74
4.11	Analysis of Target 11	76
4.12	Join measurements comparison TS30 data	76
4.13	Final Coordinates of signalized Targets from TS30	77
4.14	Final Combined Coordinates of signalized Targets from TS15 & 30	77
4.15	Leica P20 Transformed scanner target centroids	79
4.16	4.16 P20 Final Scanner target centroids coordinated to the indoor calibration 81 System	
4.17	Comparison of Final P20 scanner and signalized Target values	82
4.18	Final P20 Scanned Target Coordinates	83
4.19	The Faro transformed scanner target centroids	84
4.20	Final Scanner target centroids coordinated to the indoor calibration System.	87
4.21	Comparison of Final scanner and signalized Target values	88
4.22	Final Faro Focus 3D X330 Scanned Target Coordinates	89
4.23	Faro Focus 3D X330 & P20 Comparisons	90

Chapter One - Introduction

1.1 Project Background

Terrestrial Laser Scanning (TLS) is not a new technology but there is no official legislated procedure to verify its accuracy. Current regulations need to be reviewed and new technologies need to be incorporated in legislation. "A Surveyor must not use any equipment in making a survey unless the surveyor knows the accuracy obtained by its use" (NSW Surveying and Spatial Information Regulation 2012). "Verification is a test to confirm that the accuracy attained by a measuring instrument is within allowable accuracy limits as defined in a specification or as required by legislation"(NSW Surveyors General's Direction No 5 Verification of Distance Measuring Equipment 2009). For this to take place in the TLS field we need to provide evidence of proven and verified instrument accuracy. The proven working accuracy other than a specification in a product brochure needs to be documented for TLS's to be adopted in surveying applications that require accurate data such as the railway environment. This means the TLS's just like the Survey Total Station (STS) need to be calibrated and the data analysed to determine their accuracy.

Sydney Trains is a New South Wales government agency and operates all passenger rail services in the metropolitan Sydney area. The organisation recently went through a restructure. This initiated and encouraged innovation and use of advanced technologies to be assessed and introduced to current survey methodology when undertaking survey work on track. Discussion in my workplace of ideas to do survey work on track safely with limited human resources lead me to investigate TLS within the rail corridor.

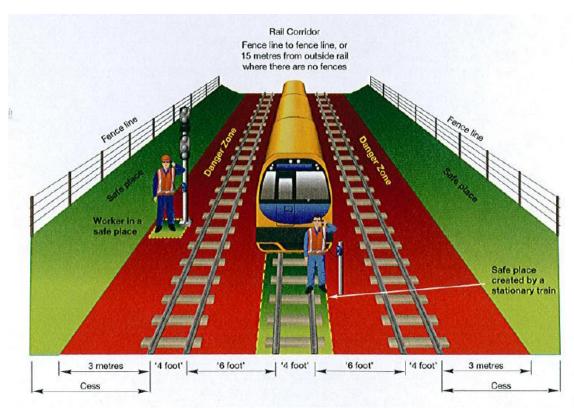


Figure 1.1 Qualified workers in safe places within the rail corridor. (Source: Sydney Trains Network Rules NGE200 2014)

Currently the most common level of protection within the rail corridor to undertake survey work in the danger zone is lookout working. The danger zone as shown in Figure 1.1 is all space within 3 meters horizontally from the nearest rail any distance above or below this 3 meters. A safe place is a place where a person and their equipment cannot be struck by rail traffic. For a survey to be done two qualified safety personnel- nominated as lookouts, and the survey crew (a minimum of two qualified people three preferred) are required. A qualified worker in the rail industry means a worker certified as competent to enter the rail corridor and a holder of a current Rail Industry Safety Induction (RISI) card. The lookouts must keep watch for all rail track approaching the worksite from any direction and warn workers immediately if rail traffic approaches the worksite. A member of the survey crew usually the Surveyor or one of the safety personnel will also be the protection officer. In Figure 1.2 (a) on the left, a survey crew located at Harris Park 22 kilometers west of Sydney, is placing a survey prism on the overhead wire to take a measurement in the danger zone. Photos (b) in the middle and (c) on the right, also in Figure 1.2 show workers off the track and in a safe place with their lookout waiting for the approaching train to pass and clear their worksite . This personnel configuration changes on a daily basis. Additional lookouts might be required or the next level of protection will need to set up depending on the type of survey, scope and track location. For detailed information about rail safety procedures followed during this research refer to Appendix B.



Figure 1.2 Sydney metropolitan survey job sites.

This dissertation is not in any way investigating replacing the STS with a scanner to do all track surveying. The focus of this research is to investigate scanning technology accuracy, so it can be used for fast, large volumes of data capture within assigned specifications and tolerance, from a safe place within the rail corridor.

1.2 Justification

A Terrestrial Laser Scanner is an instrument that can be used to collect three dimensional data just like a traditional Survey Total Station can. Within a railway corridor with trains running the TLS can measure the data without encroaching the danger zone parameters, as a Survey Total Station would.

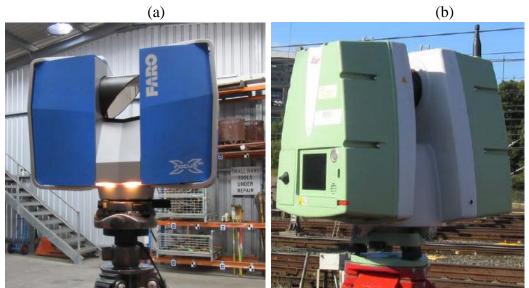


Figure 1.3 (a) The FARO Focus 3DX330 Scanner (b) The Leica P20 Scanner

A Terrestrial Laser Scanner can be setup in a rail corridor and left to measure in a safe place on its own, eliminating a lot of safety hazards. In Figure 1.3 both scanners a set up to scan a section of the rail corridor and there is no survey personnel standing in the danger zone. This equipment would certainly be accepted from a safety perspective it just needs to conform with Specification.

1.3 Project Aim

The dissertation aims to provide documented working accuracies for Terrestrial Laser Scanners. This will determine if the instrument conforms with Sydney Trains Engineering Specification SPC211-Survey. The research also aims to test if existing Track Control Marks (TCM's) in the rail corridor can be scanned accurately and used during the registration process of Scanning.

A TLS can capture data fast. Within a dangerous environment especially in a rail corridor the minimum time spent in the rail corridor is the best scenario. This research is to document the scan time to capture a scene and compare the time with the time taken to measure the scene with current Survey methods and use of a Survey Total Station.

1.4 Objectives

The main objectives are as follows:

- Research background information on Terrestrial laser Scanners accuracy, calibration and current applications within a Railway Environment.
- Design and establish an indoor target reference network for the Self calibration of a Terrestrial Laser Scanner.

- Construct various custom targets using different types of material with a range of colours that best replicate a real railway environment. Install them, together with manufacture supplied scanner targets in the indoor calibration room.
- Complete the indoor Self calibration of a Terrestrial Laser Scanner by measuring to all indoor targets from three different scanner positions.
- Measure the same indoor targets with a STS from three setups to determine independent X, Y, Z values for the centre of each target.
- Scan a previously surveyed section of railway track in the rail corridor and compare the point cloud with the data measured using conventional surveying methods. Focus the comparison on particular structures such as overhead wires and rails.
- Analyse the scan time taken to capture a scene and compare this time with the current survey methods.
- Document the findings.

Optional objectives as time permits is to use more than one brand scanner, model the point cloud of the rail corridor scene capture and extract the overhead wires and rail data into a spreadsheet to represent the current railway overhead wiring report.

1.5 Summary

This dissertation consists of five chapters. Chapter One provides a background and justification of the project. The aim of the project is to calibrate a TLS and verify its accuracy, test the scanning ability of existing survey marks and document the scan time to capture a scene within the rail corridor. The outcomes of this study as outlined in Chapter 1, is to verify conformance of a TLS with Sydney Trains Specification so TLS they can be used for survey work within the rail corridor.

Chapter 2 presents a review of the literature ,which will determine the calculations and analysis procedures to calibrate and determine the accuracy of a TLS. Chapter 3 will outline the methodology and a detailed explanation of how each phase of this work was done. In Chapter 4 the results will be documented an discussed. Chapter 5 will formulate a conclusion and recommendations. In the final chapter areas of further research will be highlighted, which will lead to further understanding of the working accuracies of a TLS.

Chapter Two - Literature Review

2.1 Introduction

The demand for three dimensional data is great in many industries today. The use of complex technologies to produce a deliverable which is not only of a high quality but easy to understand and visually impressive in the form of a 3D model is now a necessity. The manufacturers of high end surveying instruments are constantly developing and releasing outstanding world class measuring technology to aid with industry demand. Terrestrial Laser Scanners is the focus area of this research and the instrumentation that manufactures want surveyors to embrace today more so then they have in the past.

This chapter will begin with an overview of laser scanning history and highlight the areas that researchers have focused on in the past to develop an understanding and form a strategy as to how the calibration of such instrumentation in particular the TLS will be done and analysed. A brief explanation of the instrumentation that was used to complete this research will be covered. Information gained from the review of the literature of Terrestrial Laser Scanning, MultiStation and Survey Total Station measuring technology will also be described. Particular focus areas during the literature analysis, that previous researches have done most work on, will be identified. The methods and techniques that will be used to determine the systematic errors of a TLS, will be revealed.

2.2 History of Scanners

Arthur L Schawlow and Charles H Townes produced the first paper in 1958 that proposed the idea of a laser (*World Book encyclopaedia* 1975, p80). My literature review begins in 1998 with the first mention of a range imaging system known as a Range finder. This machine was capable of collecting three dimensional coordinate data from object surfaces. The Cyrax 2400 in Figure 2.1 was the world's first pulse laser scanner released in 1998. Cyrax Technologies was founded in 1993 and was the company that released the Cyrax2400 scanner, to be used by surveyors. Its range was 100m and data acquisition rate was 800 points per second (Inokuchi 1998). A high powered pulse allowed the user to do a survey without targets or reflectors - that allowed the measurement of inaccessible structures . It is important to mention that scanners available today have an average data acquisition rate of up to 1 million points per second. The Minolta VIVID 700 Rangefinder in Figure 2.1 was also released in 1998 to scan objects but at close range using triangulation measuring technology.

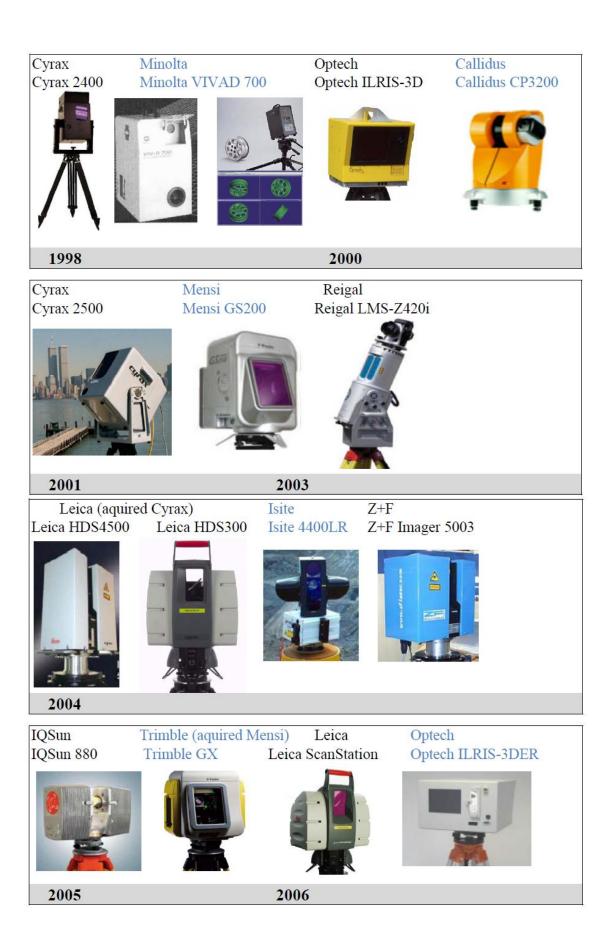


Figure 2.1 Time line of various Terrestrial Laser Scanners

Since the release of the world's first Terrestrial Laser Scanner, began an increasing interest from various industries which included processing plants and survey companies. Cyrax Technolgies released the next generation Cyrax 2500 series launched in New York in 2001. In 2004 the Leica HDS3000 followed, being the first laser scanner with dome scanning capabilities. At that time Leica and Zoller +Frohlich (Z+F) released the HDS4500 and the Imager 5003 phase scanners. For Leica this led to the unveiling of the ScanStation family of scanners which were faster, more efficient with survey functionality capabilities. The first ScanStation C10 with complete Total Station capabilities. As time moved on TLS instruments were beginning to get faster, manage

point cloud files more efficient and start to form an external shell that looked more like a Survey Total Station then just a black box.

In the first decade the manufactures concentrated on the Hardware and measuring technology. The next decade had to focus on how to manage extra large datasets and quality of measurements. In reference to Figure 2.1 over the years there has been various company acquisitions and re-branding of scanners. Faro Technologies and Leica Geosystems have managed to stand their ground and remain leaders in the laser scanning industry . In Australia the exclusive distributors of the Faro scanners is Position Partners and for Leica scanners it is C R Kennedy. This dissertation has used the Leica ScanStation P20 and the Faro Focus 3D X 330 Terrestrial Scanners for testing. The New Leica P40 ScanStation was released at the Hexagon conference in Las Vegas USA in July this year. The new scanners were sold out upon their release and due to the timing restrains for this project, availability of a P40 was not possible.

2.3 Terrestrial Laser Scanning

The literature review for this area of study has uncovered very complex pieces of equipment. Comparison of laser scanners is difficult because technical specifications and physical measuring principals are different (Frohlich 2004). The measuring technology and measurement principal needs to explained.

2.3.1 Measuring Technology

A Scanner emits a continuous laser beam but as it emits it rotates around its vertical axis. Oscillating mirrors move the beam up and down and this results in a sweeping beam over the area. As it emits, the beam hits an object and some of the objects energy bounces back to the scanner. If the return signal from the object is strong a distance can be calculated. The TLS measures to the objects surface not a prism. It is important to understand a scanners measurement is not the same as STS reflectorless measurement. A scanner cannot measure to one single point like the STS Figure 2.2

Figure 2.2 Examples of a single point measuremnt

A scanner actually performs a continuous sweeping beam measurement Figure 2.3.

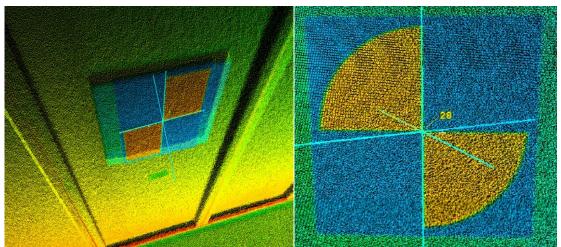


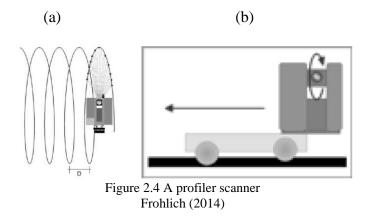
Figure 2.3 Examples of a TLS sweeping beam measurement.

2.3.2 TLS Measurement

Laser scanners today are available with five different types of measurement.

- (a) Triangulation: The technology that allows individual objects to be scanned at close range with micrometer accuracy. Typical range is 0.5-2 meters. Used for industrial applications. This technology was not used in this research.
- (b) Time Of Flight (TOF) : A laser pulse is sent out and a portion of this pulse is reflected from a surface and returns back to the instrument. The accuracy of this technology is based on its ability to accurately measure the time of the returning signal. The benefits of this type of measuring technology is the long range and lower scanning speed. This measurement is the most common in TLS's
- (c) Phase measurement: The Phase technology emits a laser light at different frequencies. The difference between the emitted and reflected signals determines the distance of the object. They have a medium range capability but a fast data acquiring rate. Phase based scanning utilizes a constant beam of laser energy that is emitted from the scanner. A continuous wave (CW) modulation avoids measurement of short pulses, by modulating the power or the wavelength of the laser beam Hoffmeister (2014). The scanner then measures the phase shift of the returning laser energy to calculate distances. Systems can have three types of modulations:
 - (i) Amplitude modulation (AM) very high data rates (several hundred kHz) with short operating ranges. The intensity of the laser beam is actually amplitude modulated with a constant frequency.
 - (ii) Frequency modulation (FM) Data rates of (several kHz) The laser beam is linearly modulated, varying the frequency.

- (iii) Pseudo-noise or polarization modulation(PN) uses algorithms to modulate the signal.
- (d) Waveform Digitising (WFD): Has the capability of digitising and recording the entire waveform of each emitted laser pulse through waveform digitisers Ussyshkin & Theriault (2010). This technology has mainly been used in mapping application for forestry and vegetation. WFD captures an enormous volume of rich data sets, with enormous amount of information and intensity for modelling vertical structure of surface objects and surface slope - roughness. In TLS WFD can provide better measurement performance Grimm et. al (2013)
- (e) Airborne Lidar Scanning (ALS): The first Airborne Lidar system to use WFD was in 2004, the LiteMapper 5600 system with the Reigl LMS-Q560 laser scanner Hug & Ullrich & Grimm (2004). ALS falls outside the scope of this research but it must be mentioned because of its pioneering development of WFD technology. Leica's scanning range measurement is now based on WFD which was actually developed as far back as 1970s in Lidar Systems manufactured by Reigl Ussyshkin & Theriault (2010), Hug & Ullrich & Grimm (2004).


In the early periods of laser scanning, pulse scanners now known as TOF scanners focused on long range and high precision 3D data capture. As the year 2004 approached laser scanning measuring technology capabilities concentrated on speed of data acquisition and shorter ranges. Today laser scanners measure very fast, capture up to one million pts per second and work within a reasonable range at varied accuracies. The end user needs to understand and choose the scanners measurement mechanics carefully, to match their application.

2.4 Beam deflection

The dimensions of the environment that a TLS can scan, depends on the beam deflection method used. They are two methods:

Method 1: A profiling system that rotates a deflection mirror about the optical axis of the laser measurement system. A 360° profile measurement is achieved using the phase technology Frohlich et al. (2004). This system is paired with a moving platform.

In figure 2.4 (a) it can be seen the deflection of the laser occurs only in a vertical direction. In image (b) on the right a 3D point cloud is a result from one angle and a distance measurement and the actual motion of the laser scanner

Method 2: An imaging system using a 2D deflection unit combined with a spot laser measurement system. The deflection unit allows imaging in horizontal and vertical directions. In this research the TLS instrumentation used is panoramic Figure 2.5, which is most common Gikas (2014). Panoramic scanners provide dome shape point clouds.

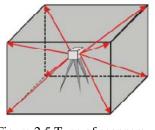


Figure 2.5 Type of scanners Reshetyk (2009)

A panoramic view uses single oscillating mirrors which simultaneously rotates the system about its centre axis (Frohlich et al. 2004). There are two types, fixed head or camera like. Fixed head scanners is what the scanners for this research have and will be explained. The entire scanner head rotates about the vertical axis, in the horizontal plane. The Panoramic scanners mechanical increments of the scanning head are used to derive the horizontal angle measurements Reshetyk (2009).

2.5 Instrumentation

The instruments used in this dissertation testing are two Survey Total Stations, one MultiStation and two Terrestrial Laser Scanners.

2.5.1 Survey Total Station (STS)

The two STS instruments used are shown in Figure 2.6. On the left (a) The Leica TS15 and on the right (b) TS30. The manufacture specification can be found in Appendix C.

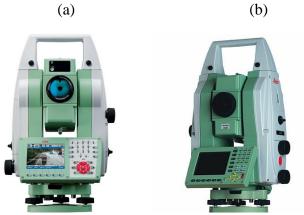


Figure 2.6 Leica Survey Total Stations

The main reason for using two is, for having and independent check on all the STS data as verification. A STS combines Electronic Distance Measurement (EDM) to determine the horizontal angle, vertical angle and distance measurement to a point and record it in a digital format. There are three distance measurement modes:

- Inferred Red (IR) The Total Station with its built in EDM measure to a single point by emitting a laser beam from the instrument to a glass prism. The prism reflects this beam back to the instrument, a portion of the wavelength that leaves the instrument and returns, is calculated and results in a distance measurement from the instrument to the prism
- Reflectorless Red Laser (RL) A distance measure without a reflector, directly to any surface to a single point.
- WFD technology has already been explained in this chapter. It is important to note the LeicaTS30 uses the WFD based technology when measuring. The literature review did not uncover to many papers on this measurement mode. This technology needs to be investigated further especially now that manufactures are introducing it in the Survey Total Stations.

2.5.2 Leica Nova MultiStation MS50

This instrument in Figure 2.7 uses new Electronic-Optical Distance Measurement system (EODM) based on Wave Form Digitizing (WFD) technology.

WFD combines the advantages of TOF and phase-shift measurement. It is important to note WFD measurement is not a single measurement, it is short pulses with a frequency of up to 2MHz. The MS50's 3D laser scanner functionality uses standard Total Station workflows for setting up the instrument over a mark and which in turn allows easily for point clouds to be registered in the local coordinate system in the field. Manufacture specification are in Appendix D.

2.5.3 Leica ScanStation P20

The P20 is a TOF instrument using WFD technology. The P20 has a rotating scan-head and a rotating mirror that covers a 360° x 270° field of view (FOV) this is shown in figure 2.8. Manufacture specification in Appendix E.

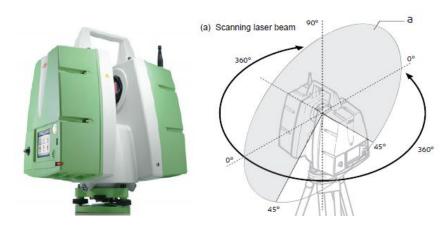


Figure 2.8 Leica P20 and Field of view (sourced Leica Geosystems P20 manual)

2.5.4 Faro focus 3D X 330

The Faro shown in figure 2.9 is the smallest laser scanner ever manufactured and available in the market. It is a Phase measurement scanner. It was very difficult to find literature on this Faro TLS. Manufacture specification in Appendix F.

Figure 2.9 The Faro Focus 3DX330 and laser deflection (source Faro)

2.6 Research on Terrestrial Laser Scanners

In just under two decades there has been three peak periods of a high volume of academic research papers in the field of Terrestrial Laser Scanners. The year 2007, 2013 and 2014 as highlighted in Figure 2.10. This finding is based on a sample size of 137 papers between the years 1998 to 2015, within the time frame restraints in undertaking and completing this dissertation.

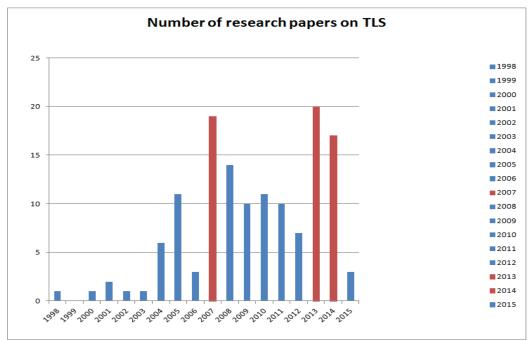


Figure 2.10 TLS research paper timeline.

The four main focus areas identified during this finding are shown in figure 2.11 and are:

- Accuracy with 38 papers and a 28% share of the research review
- Calibration with 26 papers and a 19% share
- Applications with 17 papers and a 12% share and General with 13 papers and only 9% share.

As it can be seen in Figure 2.11 there are four focus areas that stand out as explained above.

It is interesting to mention the most common applications for TLS has been shipbuilding Biskup & Arias & Lorenzo & Armesto (2007), open cut mining Wall (2009), road construction earthworks volume Slattery (2012), as-built surveys in tunnels using real time Tunnel Boring Machine (TBM) data Wu (2013), laser scanning integration with Building Information modelling (BIM), mapping and monitoring of historical artefacts and caves Coso (2014) and various monitoring deformation surveys Gordon (2007), Monserrat (2007), Nixon (2012) and Beshr (2013) and geology Alba & Longoni & Papini & Roncoroni & Scaioni (2005). The general category included papers that focused on TLS as an overall technology and explanation of scanning terminology and principals.

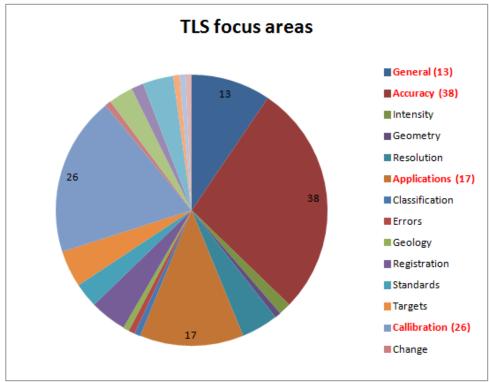


Figure 2.11 TLS research papers focus areas

Overall Terrestrial Laser Scanning needs more research and investigation from academics to help the end user understand the technology.

2.6.1 Verification Tests

Wooden spheres were used for verification testing in the early days of TLS Frohlich & Mettenleiter (2004). The centre of the spheres were coordinated and comparison of

known distance and the calculated distance between two centres were made. Another verification test used 32 vertically placed cylinders, arranged in a square at the University of Essen. The accuracy of a number of scanners was checked by determining the radius of each cylinder Frohlich & Mettenleiter (2004).

2.6.2 Accuracy

The quality of the scanner measurement cannot be defined by looking at individual single measurements as you would with a Survey Total Station. Lichti (2000) completed the work of assessing the accuracy and resolution of a the I-Site pulsed Laser Scanner using an EDM calibration baseline. Due to Lichti et.al (2000) the uncertainty of the location of the instruments electronic centre, this method was not followed in this project. Another factor of not using a pillar baseline was resources. Time restrains on the availability of the scanners was also a factor. To design and set up a baseline for this project would not have been feasible.

Boehler in 2003 conducted a series of accuracy tests to determine systematic errors on various laser scanners, his methods are documented in detail in his paper. What is interesting to note is ranging scanners produce a variety of wrong points near edges. Using spheres as targets, the range between the targets can be measured. This measurement assuming the targets are at the same distance from the scanner is derived after the centre points have been modelled from the point cloud, this will generally indicate the angular accuracy of the scanner. With Terrestrial Laser Scanners accuracy depends on the following Frohlich (2004):

- the intensity of the reflected laser light
- reflectivity of the object surface
- angle of incidence
- surface properties

The angle of incidence effects an individual's point Signal to Noise Ratio (SNR). Litchti (2005) investigated the conformance of two scanners accuracy to Western Australia's Main Roads standard 67/08/436 Digital Ground Survey (DGS). Assessment of positional accuracies were made. The scanners used were a Riegal LMS-Z210 and then Cyrax2500. The positional accuracy of scanned features relative to the total station survey were made. Accuracy specifications were not meet. The scanner had no axis compensator. The features in the point cloud used for comparison had to be extracted manually, automation of this process would certainly have been more accurate. TLS point clouds can highlight the angular positional uncertainty due to beam width Lichti (2006). This can also manifest in edges, curved objects such as cylindrical pipes. Lichti in this research discovered a fine angular sampling interval does produce a highresolution point cloud if the beamwidth is significant. Kersten & Thomas & Mechelke & Harald (2009) University based groups primarily carry out investigations on laser scanning systems. Abbas (2013) Defined the terms precision and accuracy. Precision is determined by referring to the manufactures specifications but accuracy has to be evaluated through deviation of nominal and real value Abbas et al. (2013). 3D accuracy is determined by a least square adjustment Wunderlich & Wasmeier & Ohlmann-Lauber & Schäfer & Reidl et al. (2013) and is an indicator of the quality of the measurement.

2.6.3 Calibration

They are two types of calibration that can be performed for the TLS, component and system calibration. Component calibration requires special laboratory equipment therefore can't be done by an individual. System calibration can be done as you only need a room with targets which is known as self calibration. The I-Site pulsed laser scanner was tested on an EDM baseline, located at Curtin university in Western Australia Litchti et al. (2000). Reflectors were used as targets on each pillar. Due to the reflector being glass, the scanning of the prism created a halo effect, multi laser responses of the scanned target. This made it hard to determine an accurate centre for that target. For the calibration of laser scanner for this project this methodology was not adopted. Litchti & Harvey (2002) also discovered using surveying reflectors was no good. Most laser returns saturated the scanners photo detector. Harvey for his investigation used a Cyrax scanner.

Gordon (2004) discussed the two methods for georeferencing scan data.

- The direct method scanner positioned over a known mark
- The indirect method relies on locating the scanner in space using coordinated targets identifiable in the scanners Field Of View FOV.

Reshetyk (2006) performed a scanner self calibration. Targets were surveyed by a STS a very labour intensive task and the standard deviation of adjusted target coordinates were calculated. This method will be adopted as an independent check of the target centres from the TS15 and TS30 instruments in this research.

Garcia (2013) completed a geometric calibration of a TLS. LASEGIFLE software used for additional parameters (AP) modelling. The Methodology Garcia used was a reference network of point targets and spheres. Redundant measurements of these targets were collected with the TLS setup at different positions. This was a very good paper, with a good explanation of the calculation process. Hanke & Grussenmeyer & Grimm-Pitzinger & Weinold (2008) calibrated the Trimble GX which superseded the Mensi, using direct georefrencing. The GX had an active dual-axis compensator that corrects the horizontal and vertical angles during the scanning. Some of the findings were two scanners can have different additive constants. All the data measured by the scanner was not available , only distances. Abbas (2013) completed a self calibration on the Faro Photon 120 scanner. Abbas used seven scan stations, statistical analysis (ttest) showed all error models, the constant , collimation axis, the trunnion axis and the vertical circle index error in his findings.

2.6.4 Scanning Targets

Dold (2005) used Gaussian images for representing spheres for registration of a scan during his research. Registration by features was not available and artificial targets - spheres had to be used. The registration of artificial target such as spheres are detected

automatically by a scanner algorithms Dold et al.(2005). Reshetyuk (2005) used retro reflective targets during a calibration of the Calidus laser scanner. When Reshetyuk tested targets made of retro reflective material, the high reflectivity of these targets during scanning caused a significant offset errors. They were actually pressed out of the wall in the point cloud.

Reshetyuk (2005) research undertook establishing a calibration field consisting of 20-25 coordinated targets placed on the walls, floor and ceiling and within the scanners FOV. Spherical targets were used as they are omnidirectional and are automatically recognised by scanning software. Reshetyuk in his paper determined the optimal diameter, that produced the most accurate sphere centre. The optimal diameter was determined to be 14cm. All the experiments were done at the Swiss Federal Institute of Technology in Zurich using the Imager 5003 and HDS3000. A calibration track line was also used. Reshetyuks approach could be applied when designing calibration procedures for scanners.

Kersten & Thomas & Mechelke & Harald (2009) used spheres as reference points during his research. The diameters were 76.2,145, and 199 millimetres. The material of the small ones was solid plastic and for the larger one hollow plastic with special surface coating. The centre position of spheres were determined from algorithms programmed in software such as 3Dipsos and then run through MATLAB software using an independent algorithm to check the centre coordinates of the same spheres. In Kersetns investigations accuracy evaluation was the measurement to an independent reference.

2.6.5 Standards

Lam (2006) was the first to state in his paper the ISO9001 all survey instruments including laser scanners must be calibrated before use and ISO1101. Gottwald (2008) refers to the ISO 17123 which is also referenced in the ST SPC211-Survey specifications. The VDI/VDE 2634 part III guidelines has used in Kersten(2009)

2.7 TLS Applications in a railway environment.

This research is focused on Terrestrial Laser Scanners, scanners that are static and scan from fixed scan position. Although this research is investigating TLS in the railway environment it is important to note, the first scanner for railway application was the PROFILER 6000-300 released in 1994 from Zoller + Frohlich (Z+F) in Germany. This scanner was specially designed for kinematic data capture for railway surveying vehicles (Frohlich 2004) .

In Figure 2.12 image (a) on the left was the first model, image (b) on the right is the current model of profiler scanners used for kinematic laser scanning (Z+F 2014).

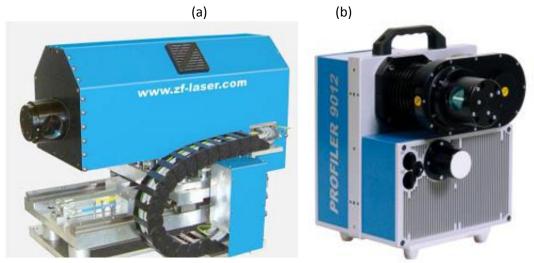


Figure 2.12 PROFILER 6000-300 & 9012 (Fröhlich & Mettenleiter 2004)

The profiler scanner changes its position as it acquires data, the measuring methodology is completely different to Terrestrial Laser Scanning. A kinematic (moving platform) profiler scanner, scans the surrounding environment from a moving position.

Milev (2007) discussed the extension of an existing kinematic measurement system to include a combine technology of GPS and TLS Figure 2.13(a), on the German rail corridor, for track alignment recording, maintenance and clearances.

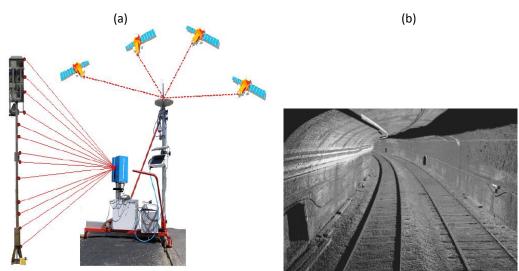


Figure 2.13 3D Multi sensor for rail maintenance (source Milev (2007)

The system was made up of an Z+F Imager 5003 and GPS. The data required was track gauge and superelevation but the GPS/laser scanner captured the whole scene. This paper did not indicate any accuracy requirement. An image of the point cloud in figure 2.13 (b). Grafe (2008) investigated the combination of mobile laser scanning setup on a vehicle with a faro focus TLS together. The mapping of rail and road corridors was done but further researcher and the requirement for the calibration of the TLS was discussed.

Izvoltova (2013) highlighted the point that there has not been great experience with scanning rail track construction. The site location for this project was Slovak Republic on a ballastless section of track. A Leica C10 ScanStaion was used to scan rail track near a tunnel. A point cloud of the track is shown in Figure 2.14 (a) and the CAD extraction of rails in (b)

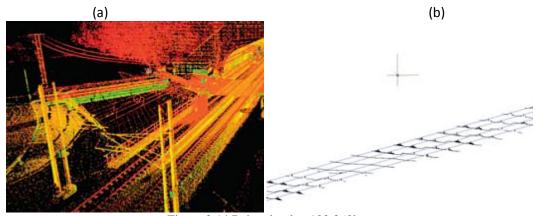
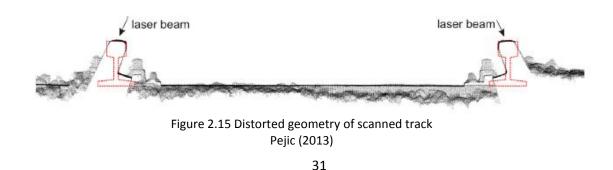



Figure 2.14 Point cloud at 102.360km

3D data was collected processed but not connected to survey control. The data's conformance to track specifications was unknown. This is the first paper in the literature review that has highlighted the aim of my research work which is conformance.

Soni (2014) researched the extraction of rail track for monitoring deformation during track works at London Bridge Station. A point cloud was captured and fitted over a rail track profile for comparison. Monitoring surveys were existing but there was a requirement for a backup system for quick checks. The web and foot of the track will need to be captured and extracted accurately. Mobile scanning has been used in the rail corridor Yang (2014) and the use to asbuilt sections of track in a tunnels. This was done by Pejic (2013) which demonstrated high noise error of the rail tracks in figure 2.15

2.8 Data processing and analysis

A rigid body transformation of points from object space to scanner space is adopted in this research . Laser scanner resection geometry is explained Litchi(2000). The transformation of scans into one coordinate system Lindenbergh (2005) used the Interactive Closest Point (ICP) method. Gordon et al. (2004) used 3D resection to locate a scanner in object space. The raw points were transformed (georefrenced) into object space using a six parameter, rigid-body transformation. Rashetyk (2006) self calibration of each scanner was done in MATLAB. He estimated the Helmet transformation parameters between scanner and external coordinates systems for all scans. The calibration parameters assumed were the same as STS which was zero error additive constant, collimation, horizontal axis error and vertical index error, in a parametric least square adjustments. Calibration parameters estimated in the self calibration, used the error model of a total station. Additional parameters were modelled empirically.

Bae & Litchi (2007) on site calibration using planar targets. A point based selfcalibration method . He used the FARO880 . The Newton-Raphson solution method can be successfully utilised for point -based calibration. (Gottwald 2008) states the target error can be determined out of Helmert transformation (reference data versus Kersten (2009) calculated a standard deviation of the station scanning data). coordinates. A standards deviation of the reference points was also calculated. The final measurement precision is really governed by algorithms for the fitting of the targets and extracting the centres. Scanners also show significant deviations if the angle of incidence is more than 45°. The spot size in relation to the angle of incident is also has an effect of measurement accuracy. Soudarissanane (2009) has coordinate conversions listed in his study. Abbas (2013) has all the equations. Dos Santos (2013) calculated the rotations first and then translations and scale factor. instead of using targets he used the vertical line of internal walls. Garcia(2013) investigated calibration modelling.

2.9 Conclusion

The engineering skills necessary to design laser scanners is very demanding and impressive. This chapter explained the technology in terms of measurement for all the instrumentation used in this research. A literature review was also conducted starting from 1998 and focusing in areas that have an impact in the calibration of TLS. Within the railway environment a small number of research work had been done which further justifies the need and funding of this research project.

Chapter Three - Methodology

3.1 Introduction

The project design, field work, data collection and analysis procedures for calibrating a Terrestrial Laser Scanner, will now be discussed. These procedures have been developed from the literature review in Chapter 2. The complexity of the project work, and limited availability of critical resources meant that the project transitioned through twenty two phases, these phases are mapped on a work flowchart Figure 3.1. This chapter will now explain each one.

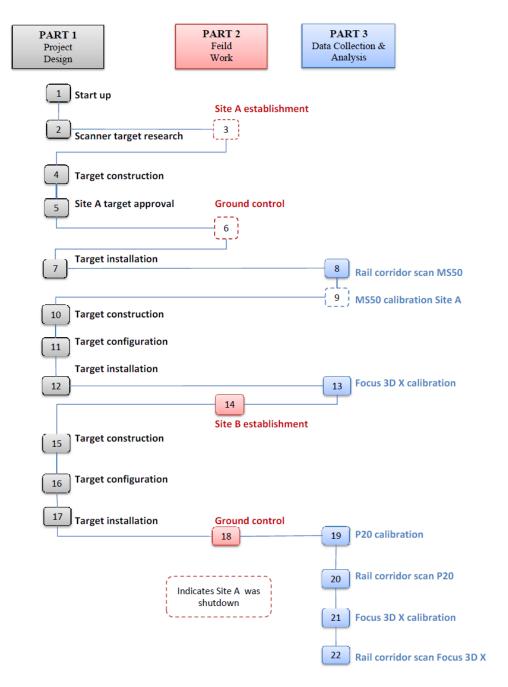


Figure 3.1 The project work flow

3.2 Project Design Stage 1

3.2.1 Start Up

Involved the initiation of consultation and meetings with Supervisor, USQ Library, Scanner Companies and Sydney Trains management to introduce my research project ideas. This was the most critical phase of this research project.

3.2.2 Scanner Target Research

This phase developed the concept of replicating the rail corridor environment, tones and material onto custom targets to test if indeed the rail environment can be scanned. During the Association of Public Authority Surveyors NSW (APAS) 2014 Conference, a paper on a method for Testing Reflectorless EDM (Evans 2014) was presented. This method used a Grey Kodak Card. After reading this paper the idea of constructing my own targets using Kodak cards of different tones was initiated to test the reflective energy of certain material Berenyi (2010) & Harvey (2002) in the rail corridor. These targets would then be used to calibrate the instrument. Sourcing Kodak cards was not easy as they are no longer manufactured in Australia. The optimal dimension of a scanning target had been determined by Reshetyk (2005) and was 14cm (Reshetyk et. al 2005). Photographic stores could supply grey, white and black photographic cards but they were not Kodak and were very expensive. The cards used for this research were sourced in America and were custom made from Camera Trax. This company produced the tones required and printed the reflectance percentage in the back of each card Figure 3.2. This would be important when it came time for measurements. The final dimension of the custom cards was 100mm x 150mm, which was governed by the price.

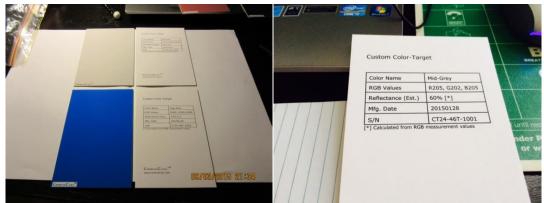


Figure 3.2 Custom reflectance cards

During this phase it is important to remember some of these cards will need to be setup on a Survey tripod and centred over existing ground control marks during scanning to connect to Sydney Trains coordinate system. For this research I wanted to use equipment that I had access too, hence the Leica prisms and holders. They were also chosen because they are fitted with target plates Figure 3.3, that can be used for locating the centre of a planar target when signalising and scanning them. Signalising targets means measuring to them directly using a STS. Using target plates is essential so when the instrument is setup in different positions and sighting to fixed planar targets you are confident you are measuring at exactly the same spot.

Figure 3.3 Leica Target Plate GZT4 (Sourced from Leica geosystems)

Accuracy specification for the two STS to be used is shown in Table 3.1.

Table 3.1 Leica Survey Total Specification (Source Leica Geosystems)

Survey Total Station	Distance Measurement (any Surface) Accuracy
Leica TS15 & TS30	2mm + 2ppm

Surveyors in general have access to prism holders from there traversing equipment. By constructing scanning targets able to be easily fitted in existing prism holders is very efficient. The problem was the manufactures design distance from face of glass to the centre mark was unknown. Leica have only ever supplied the end user with the distance from centre to the back of the prism as shown in the image on the left (a) in figure 3.4. The image on the right (b) shows the characteristics of the prism constant being zero.

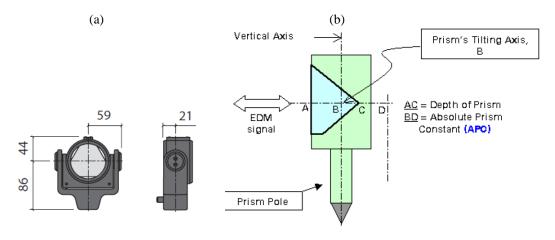


Figure 3.4 Leica prism assembly (Sourced from Leica geosystesm)

An electric drill was used to drill holes along the existing curved zero centre line of the Leica GPH1 prim holder. The housing was extremely strong, drilling was not easy. For this research the decision was made to simple mark up the zero centre Figure 3.5 on the plastic housing and cut through to allow the cards to be installed on the face of the cutting edge.

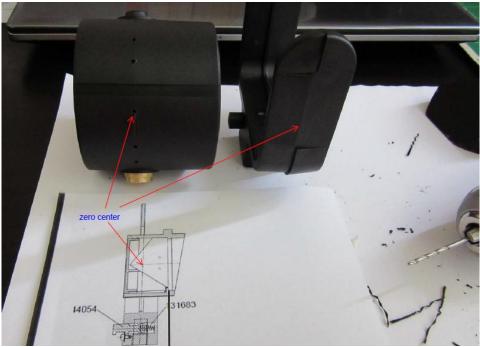


Figure 3.5 Deconstructed Leica GPH1 prism holder assembly to find the centre zero

Once the centre was marked a Proxxon draemel Figure 3.6 was used to cut through the prism holder housing.

Figure 3.6 Proxxon Draemel

The plastic was so hard, one cutting disk had to used per holder. At this point in time the total number of targets to be used was not clear Abbas (2014). For one prototype the excersie was justified. For many this was a very expensive exercise not feasible. The cost for only one modified assembly would be \$275. Figure 3.7 shows the holder in its original form (a) and after cutting (b).

Figure 3.7 Leica GPH1 prism holder

C R Kennedy the Leica distributor in Australia was approached and contacted Leica Geosystems to obtain the design distance required for this research. It was given and shown in Figure 3.8.

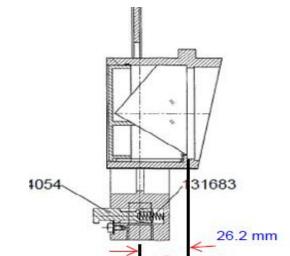


Figure 3.8 Leica distance from the glass front of prism to the prism centre. (Sourced from Leica geosystesm)

You will need to point to the centre of the prism to avoid any tilt error from the prism holder when measuring to the position of the face of the glass prism and this is why target plates were a good idea. The option to purchase precise prisms, that can be locked into to certain tilt angles was not feasible for this research. Due to the fact the accuracy of the laser scanner measurement is depended on the energy return of the surface being measured, three different material prisms were made for testing, that represented rail corridor material. A 3D printer was used to produce three glass prism shapes made of sandstone, metal and plastic. Figure 3.9 shows the transition of the Leica glass form prism (a), to the 3D model generated by the 3D printer (b). The images (c) & (d) represent the final products, a sandstone and a metal prism.

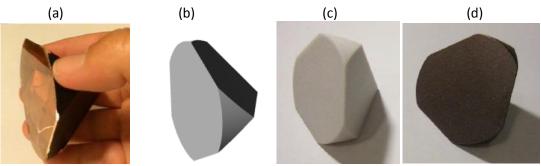


Figure 3.9 The transformation of a glass prism.

3.3 Field Work 1 Stage 2

3.3.1 Site A establishment

Visits to prospect sites for assessment of suitability for Scanner calibration were done. The prerequisites for this site were:

- a large size that will allow set up of many targets to allow a large number of redundancies during analysis to get good results and various horizontal and vertical angles and range (distance).
- An indoor site that has solid internal walls or framework with good indoor lighting
- Stable floor to assist with the measuring
- Access to all internal walls, floor and possible ceiling (if safe and easy to access).

Sydney Trains warehouse Figure 3.10 available to use with access times restriction but at no cost was chosen.

Figure 3.10 Sydney Trains warehouse in Auburn NSW (site A)

3.4 Project Design Stage 3

3.4.1 Target Construction

All the items sourced during the research will now be used to construct more targets. The first task was to install the tone cards in the prism holders. This process involved cutting the shape of the glass prism out of the cards as shown in Figure 3.11

Figure 3.11 Cutting out prism shapes from custom cards

The next task was to install the cut outs in the holder Figure 3.12. Foam was the key element that would hold the card in place once the prism holder was assembled.

Figure 3.12 Installation of prism card

In Figure 3.13 you can see all the individual elements and the final product

Figure 3.13 Close up of the card placement and final product.

Once all the cards were installed, the reflectivity and prism constant must be tested to check the accuracy of the assembly. This was done on a small baseline due to time constraints. The Leica TS15 STS was setup, constant set to zero (circular Prim) and a distance was measure to a glass prism being 6.055m. Then the prism mode changed to (reflectorless) prism constant 34.4mm and all the cards and material prisms were measured. The results are shown in Table 3.2.

Colour	Black	Rust	Blue	Brick	Mid-Grey	Grey	White
Reflectivity	2%	11%	14%	17%	60%	90%	92%
True Distance A to B (m)		6.055m					
Constant (mm)		0.0262					
Measured Distance A to B	6.025	6.027	6.028	6.027	6.028	6.027	6.029
(True - Measured) Distance (mm)	0.030	0.028	0.027	0.028	0.027	0.028	0.026
Calculated Constant (mm)	-0.0038	-0.0018	-0.0008	-0.0018	-0.0008	-0.0018	0.0002
 Note: 1. True Distance from established baseline A - B measured by a Survey Tota Stion (Leica TS15) to a Leica Circular prism. 2. Measured distnce is from A to B by again the Leica TS15 to each Colour card prism at B 							

The metal, galvanised painted plastic and sandstone prisms were all measured. the results are shown in Table 3.3

Colour	Sandstone	Galvanised painted Plastic	Metal
Reflectivity	Unknown	Unknown	Unknown
True Distance A to B (m)		6.055m	
True Constant (mm)	0.0262		
Measured Distance A to B	6.031	6.028	6.027
(True - Measured) Distance (mm)	0.024	0.027	0.028
Calculated Constant (mm)	0.0022	-0.0008	-0.0002
	Tota Stion (Leica TS15	established baseline A - B me i) to a Leica Circular prism. is from A to B by again the Leic	

Table 3.3 Reflective material testing results

One of the aims of this research is to test if existing survey marks - Track Control Marks (TCM's) located in the rail corridor Figure 3.14 (a), can be scanned. So the next step was to design another series of custom cards fitted with a Steel Survey Pin (SSP). The steel pin is very small, only 5mm in diameter as shown in Figure 3.14 (b).

Figure 3.14 A TCM and SSP

The centre was measured and marked on a template. A hole was drilled through the template and an SSP was fitted Figure 3.15.

Figure 3.15 Cards fitted with SSP

The next task was to construct posts for the prism holders to be fitted into. The posts would be installed in the scanner calibration space Site A, and the target plates fitted on them. This would make a very sturdy target to sight too for calibration measurements.

At this stage of the research an indoor calibration space had been found. It was a large size $(11m \times 10m \times 5m)$ with solid floor and walls and a good variance of angle and distance to establish a network of targets figure 3.16.

Figure 3.16 Site A

The design of the posts had to take into consideration the form of the steel frame in Site A. Timber was used for the base and aluminium rods cut to required length for the prism holder to slide into figure 3.17.

Figure 3.17 Post construction

Once the prism holder was fitted it had to clear the frame as shown in Figure 3.18.

Figure 3.18 Complete target in posts.

19 prism holder targets were installed in Site A. The posts and wooden block apparatus had to be thought of on the spot as it was not acceptable to install any items that would abstract a forklift getting pallets in and out of the frames. Araldite was used to fix the posts on the steel frames inside Site A.

More targets were continually being constructed to fill Site A and still keep within project objectives of trying to replicate materials, tones and colours found in the rail corridor see Figure 3.19.

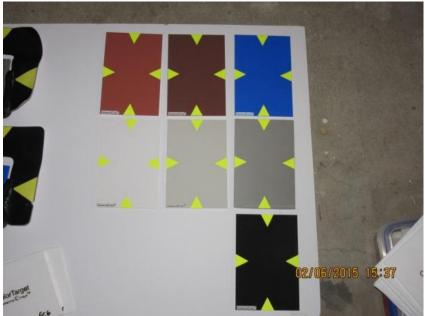


Figure 3.19 Custom card with sights

Scanner manufacturer targets were also replicated Figure 3.20 (a), custom cards were also installed on the actually zero centre of the prism yoke (b) & (c).

Figure 3.20 Scanner Targets constructed

3.4.2 Site A Target Approval

Completed a site A induction refer to Appendix B. Temporary paper targets had to be installed at desired location in the warehouse for safety inspection and approval from warehouse manager. The purpose of the approval was to demonstrate the targets will not obstruct forklift traffic in the warehouse refer to figure 3.21.

Figure 3.21 Approved Temporary photocopy Target

3.5 Field Work Stage 4

3.5.1 Ground control

Ground control was placed inside the warehouse, on the concrete floor as demonstrated in Figure 3.22.

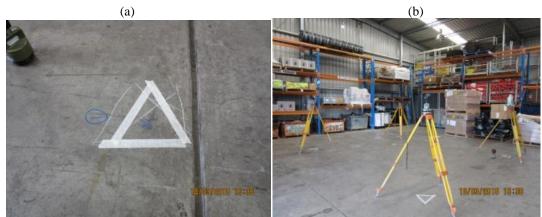


Figure 3.22 Establishing ground control

Once the four traverse stations were marked on the ground, they were measured. The final coordinates of the ground control were determined by the following process:

- Six round of angles were measured to each station
- The raw GSI file was reduced using CompRail / CompNet Least square software which produced final coordinates
- All stations were levelled using the Leica DNA3000 digital level

3.6 Project Design Stage 5

3.6.1 Target Installation

Prior to installation a target layout configuration had to be designed. This research is to calibrate a TLS. To do this the targets had to cover a wide range of vertical and horizontal angles, to really test the instrument capabilities. A network of targets was designed Reshetyuk (2005) by drawing the layout of the warehouse shelving bays and placing miniature paper targets in various location until a reasonable even spread of all the various targets achieved optimal configuration. Refer to Figure 3.23.

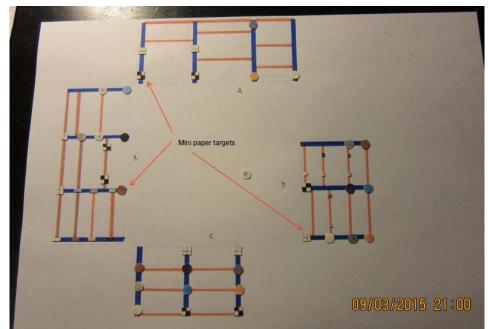


Figure 3.23 Target configuration

19 complete Leica prism holders Figure 3.24 (a) with target plates were installed in the warehouse. This amount of targets required a coordinated effort from three survey regional office within Sydney Trains. The image on the right (b) is a complete prism assembly fitted with a tone card and SSP and inserted on the post.

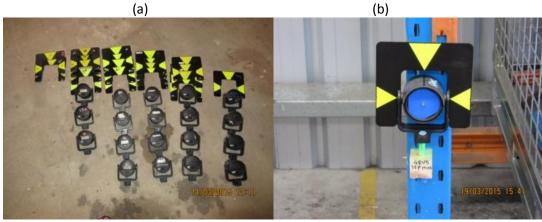
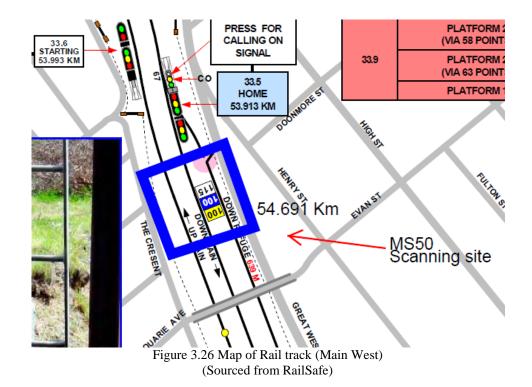


Figure 3.24 more targets


- 3.7 Data Collection & Analysis Stage 6
- 3.7.1 Rail corridor scan MS50

The Leica MS50 was sourced from Sydney Trains Hornsby regional office. The location for the rail corridor scan was the Sydney end of Penrith station at kilometrage 54+691 Figure 3.25. After a worksite protection plan was in place, three backsights were setup on existing ground control. The MS 50 was setup in a safe place and its position was coordinated via resection from the three known backsights. The MS50 was now ready to scan.

Figure 3.25 Section of Rail track (Main West)

The area of track selected was within a 70m range from the scanner position, having dimension (100m x 120m x 8m) refer to Figure 3.26

The instrument specified scanning range is 300m with range noise 1.0mm at 50m Leica Geosystems (2013). This research aims to test the scanning response to SSP's, having a diameter of 5mm. This diameter set the required spacing resolution for the MS50. This instrument was unable to scan the pre determined section of Railway track in the field to the point spacing required . One good feature of this instrument was that once the area limits of the proposed scan were calculated, the instrument displayed the scan time required to measure the scene in the chosen resolution.

Unfortunately the time required to scan this scene was not productive and the decision was made in the field not to proceed. The scan times in relation to the point cloud spacing options are shown in Table 3.4

Point Cloud Spacing	Time required for scan
1mm to 1mm	520 hrs 36 min 14 sec
5mm to 5mm	22 hrs 20 min 44 sec
10mm to 10mm	6 hrs 7 min 25 sec
20mm to 20mm	1 hr 51 min 5 sec

Table 3.4: Scan time for a scan area of Rail Portal Spacing

3.7.2 MS50 calibration site A

The Leica MS50 was also taken to the calibration warehouse facility to scan the targets as seen in Figure 3.27.

Figure 3.27 Western targets wall of warehouse

Figure 3.28 Shows a close up of one of the targets from a ground station position (a) and (b) is the same target imaged on the leica MS50.

Figure 3.28 Top left corner target

Once again the time to scan just one wall with dimension (5m x 3.5m) was too long and the file produced would not be manageable. The scan times in relation to the point cloud spacing options are shown in Table 3.5. Sixteen photos were taken by the instrument in approx 1 min to cover this scene. Even though the testing was unsuccessful it was good that this was discovered in the early stages of the project. This instrument will no longer be used in the project

Point Cloud Spacing	Time required for scan
1mm to 1mm	7 hrs 11 min 46 sec
5mm to 5mm	24 min 10 sec
10mm to 10mm	9 min 9 sec
20mm to 20mm	4 min 39 sec

Table 3.5 Scan time for a scan area of approx 5m x 5m.

3.8 Project Design Stage 7

3.8.1 Target construction

This phase involved solving a resource issue. The complete prism sets being used are no longer available. The problem was solved by constructing similar type targets for replacement. Figure 3.29 shows the new targets. The custom cards in the prism holders were take out and stuck on a 10mm thick foam board. The target plates were printed on cardboard and also stuck on the foam board aligned with the prism shape card (a). These targets were then simply velkroed onto the existing timber blocks. Image (b) shows the cardboard target plates attached to the zero offset card fitted on the center of the yoke assembly and supported by a paddle pop stick for flatness support.

Figure 3.29 Foam targets and cardboard target plates

To minimise waste of costly resources, all the custom card cut-offs were resized and made into various shape targets with SSP's. This was a good idea as it would test how the SSP's would be scanned with various tones and size reflective surface background Figure 3.30.

Figure 3.30 Off cut targets

3.8.2 Target configuration

The miniature target strategy adopted previously in this work was used again Figure 3.31. There was a total of 206 targets to be installed for Site A. The mapping of all miniature targets on a pin board prior to installation resulted to a balanced testing of all the targets. The type of targets and there tones determine their position as this layout is still representing a Rail corridor environment. For example the targets fitted with SSP's are positioned the same height above ground as they would be found in the Rail corridor, 300mm above the low rail Sydney Trains TMC 202 (2012) .

Figure 3.31 Miniature targets

The mini targets were glued on pins and placed at a specific location on A3 size photos of Site A's four walls, on a cork board as in Figure 3.32. Retro targets also installed.

Figure 3.32 Target pins

3.8.3 Target installation

All targets were installed. To easily identify each target during data analysis of the scan, each target will be given a unique number in the form of a label next to the target.

In Figure 3.33 (a) you can see the targets installed on the Northern wall of Site A, and (b) is the top right corner of this wall, showing target and numbering install.

Figure 3.33 Target install

3.9 Data Collection & Analysis Stage 8

3.9.1 Faro Focus 3D X330 calibration

Scanning of all targets from a minimum of five scan positions with the Faro was completed in 15minutes , set at its highest resolution with mid range quality delivering a point distance of 3.068mm at 10m. The height of the scanner above ground was changed from each position as recommended in Soudarissanane & Lindenbergh & Menenti & Teunissen (2009) , and five scan positions provided a good number of redundancies Garcia (2013). The point cloud captured by this scanner is shown in Figure 3.34.

Figure 3.34 Northern wall of Site A point cloud form faro Scene

On the same day measurements of all targets with the TS15 was done from two ground control marks to allow for comparison of STS and TLS target X, Y, Z positions. This was an extremely time consuming exercise which took approximately four hours.

At this point in time of the Project work the indoor warehouse site for calibration had to be vacated without notice, and all targets and posts removed permanently due to management unforeseen activities that required the indoor facility to be vacated unexpectedly.

All of the phases of the project work in terms of the field work and data collected so far satisfy 80% of the research. A great deal has been learnt and constructed up to now and a great deal of interest from the Scanner manufactures has been generated. To end the project field work at this time, reporting the findings of only one scanner would not be acceptable. Due to the enormous amount of time invested to come so close to the phase of using a second scanner and be asked to relocate is disappointing.

A new calibration site is sourced and targets will be re-installed. The analysis will have better results and value in the Surveying profession if two different brand of Scanners

were compared. For this comparison to be done both scanners need to be tested exactly the same way. It is important to note the second facility is a much smaller space but still an acceptable size (9m x 4m x 3m) to complete this work, as recommended by Litchi (2013) & Banson (2014).

3.10 Field Work Stage 9

3.10.1 Site B establishment

Site B Figure 3.35 has been located at a cost, this will provide exclusive access for one month. Refer to Appendix H for the Project Costings.

Figure 3.35 Site B

There were two restriction on the walls of Site B. In figure 3.36 (a) the wall panels had grooves of approximately 120mm in width, in (b) some of the panelling stepped in by 10mm which could cause a shadowing effect on some of the targets. This will require a backboard of certain size to be installed on the panels with the pattern targets glued on the boards.

Figure 3.36 Site B indoor panelling issues

3.11 Project Design Stage 10

3.11.1 Target construction

The scans taken with the Faro at Site A, were processed to view the point cloud to test if there were any issues with the targets Figure 3.37. Unfortunately at this point in time it was discovered that scanners do not recognise end user self made targets. This was a significant discovery to this research.

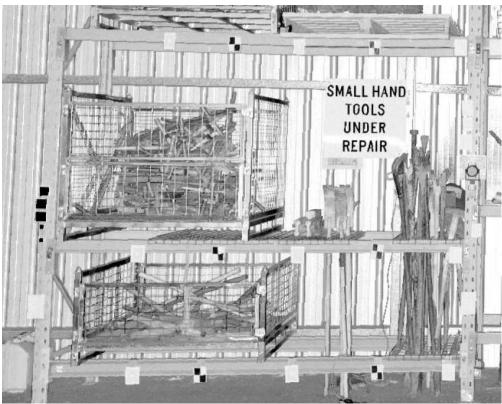


Figure 3.37 Scanned custom targets point cloud from FARO Scene

This means the Faro scanning software Scene 5.50, is not able to automatically extract the centre of all the targets that were scanned. If the centre of targets is needed for this research it will have to be extracted manually by zooming right into the image . This is unacceptable, as the aim of this research is defining accuracy. The Leica P20 scanning software Cyclone 9.0 is also unable to extract the centres of all my targets, for the same reason.

The reason for this issue provided by both manufactures was algorithms. Scanning software can only automatically extract for the end user, the centres of manufacture supplied Black & White checker pattern targets shown in figure 3.38 only. The scanner scans the targets pattern and the algorithm is recognised by the software to extract its centre.

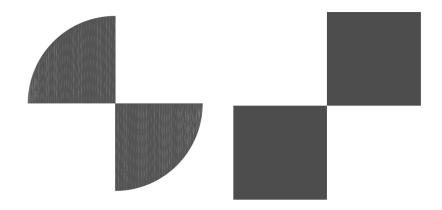


Figure 3.38 The Leica (round) and faro Scanning Targets. (Sourced from Leica Geosystems and Faro Technology)

To overcome this issue the solution was to print the manufactures targets on a laser printer, construct a solid backboard to glue the targets onto and install them in Site B see Figure 3.39.

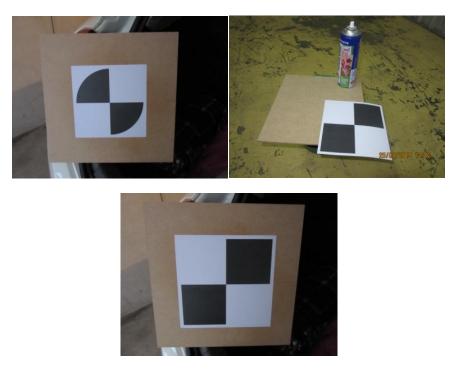


Figure 3.39 Sticking the paper targets on MDF boards.

This will not allow me to test the reflectivity responses of rail corridor material during calibration. The only issue left was the testing of the SSP's. The solution was to install the SSP through the centre of the manufacture's pattern target. The methodology will be the SSP is too small to effect the patterns algorithmic recognition. The manufactures could not guarantee this would work and had to be tested as part of this research project. The SSP installation process was as follows:

- Cut to size a piece of timber of 25mm thickness (the length of the SSP is 19mm).
- The boards had to take into account the panel non flat irregularity and the size of the targets.
- Drill a hole of 5mm diameter in the centre of the board and tap the SSP through the hole as shown in figure 3.40, with a bit of analdite on it to fit in place and flash on the board.
- A hole was punched through the centre of the paper pattern targets and carefully centred on the nail and glued as seen in Figure 3.41.

Figure 3.40 Installation of SSP on timber board

Figure 3.41 Target over SSP

At this stage of the project the literature review had not discovered any research indicating a flash surface will scan best without any objects protruding from its surface. The scanning of edges were not desirable but looking at the size of the SSP having it flash will eliminate noise around the pin edge - this means more accurate measurement without shadowing effects from the pin protruding from the board. All that was required now was the amount of targets that were needed to establish an optimal network for the self calibration of a TLS.

3.11.2 Target configuration

In Site B the targets can be placed anywhere, this means placement configuration needs to be decided prior to target installation. Two scanners were going to be calibrated in Site B, this means there were two scanning target types that had to be used, a Leica and a Faro. Of course there were no guarantees that one brand scanner would recognise the algorithmic pattern of the other as the size of the targets were slightly different in there dimensions and shape- this had to be tested. With this in mind and tight time frames, I decided to mix the patterns in my target network equally. By this I mean the installation would have a pair of the same targets at various locations and aligned in the horizontal and vertical direction using a line laser, the BOSCH Quigo figure 3.42.

Figure 3.42 - The BOSCH Quigo in use

The following target network configuration was designed and shown in Figure 3.43. All the targets on the bottom of each wall have been fitted with an SSP. They are simulating approximately the 300 millimetres above ground scenario, which would occur in the rail corridor. Instead of ground it would be of the low rail of the track in the rail corriodr.

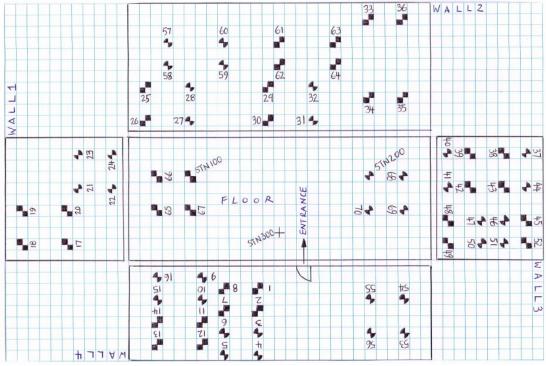


Figure 3.43 A sketch of the target network configuration

The idea of having the pattern targets paired was to allow for a direct measurement with a tape, between them. I wanted to do a comparison of direct measured joins and the calculated joins from the coordinates of the targets after point cloud registration.

3.11.3 Target installation

Target installation was based on the target network layout . In Figure 3.44 the target installation process is seen. At first (a) white dot stickers were used for the marking of the approximate positions of each target. The next step used the Quigo laser to align the dots. Verkro strips were used to attach the boards on the wall panels (c) shows the strips being placed around the dots. To maintain costs low and provide a very sturdy solution only three velkro strips were needed for each target. In (d) the paper targets were glued on the boards and numbered in the back of the boards. It is important to make it as is as possible to place the targets in the correct position the first time - this was a concept used at Site A and worked well. (e) shows the targets now installed on the wall in the correction positions all that is left now is to re-align the targets horizontally and vertically with the Quigo laser for the last time.

(e) (f)

Figure 3.44 Target Installation

It is important to mention at this point the orientation of the patterns was critical, the algorithms in the TLS software could introduce errors in the automatic target centring extraction process, if orientation was incorrect. The manufactures could not confirm if that would be the case but this chance could not be taken in this work so extra care was taken to make sure all 70 targets were orientated correctly as previously indicated. Figure 3.45 shows the incorrect orientation.

Figure 3.45 Incorrect orientation of scanner targets

3.12 Field Work Stage 11

3.12.1 Ground control

Three ground control marks were placed as shown in Figure 3.46. Site B is a smaller size so for this research it was decided a second total station the Leica TS30 is to be used to measure the ground control as an independent check.

Figure 3.46 Site B ground control stations

3.13 Data Collection & Analysis Stage 12

3.13.1 P20 calibration

In this phase the scanning of the targets was done from three scan positions. Figure 3.47 shows the P20 at scan position 1 (near STN100).

Figure 3.47 P20 at scan position 1

The scanner height was varied from the ground at each scanner location. The spatial resolution was at 1mm at 30m. The point cloud from Station (STN) 100 with target centres already numbered and centres extracted and is shown in Figure 3.48. This point cloud has been zoomed in to highlight the enormous fine detail captured.

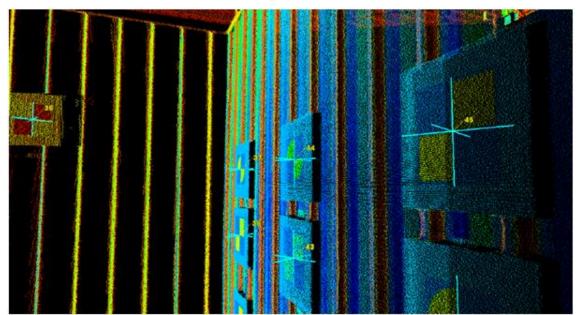
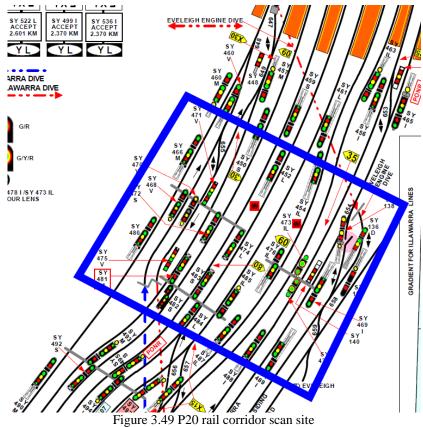



Figure 3.48 Point cloud from Cyclone 9.0 at STN100.

3.13.2 Rail corridor scan P20

The location of the rail corridor scan was at the country end of Redfern Station on the upside shown in Figure 3.49.

gure 3.49 P20 rail corridor scan site (sourced from Rail Safe)

The P20 was setup on a survey tripod levelled up, a new project was created, settings were set and the scanning began Figure 3.50.

Figure 3.50 P20 in the rail corridor

Within this area three SSP's figure 3.51 were chosen to scan and use for registration. The image on the bottom was fitted with the incorrect orientation due to safety concerns and trains running approaching peak time this target could not be re-orientated. It will be interesting if this will cause an issue with the data during analysis.

Figure 3.51 The three SSP's - survey control with Leica Targets

The P20 has the ability to scan the control targets at a distance on site, in a super fine spatial resolution (1mm) and then scan the scene of the rail corridor at a different point resolution (10mm) accuracy. For this particular job foam backboards were used to glue the Leica scanner paper targets through the SSP, in a flash position. In this particular case, the back boards had to be modified to get around the metal TCM plaques that are fixed onto the face of the mast above the SSP. This situation highlighted the issue of the plaques Figure 3.52.

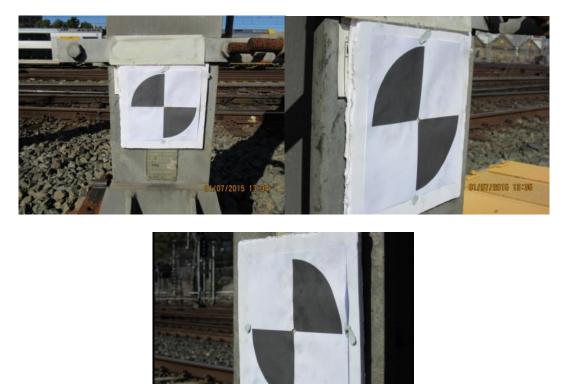


Figure 3.52 Plaque positions near the SSP's.

01/07/2

The TCM plaques are metal and permanently attached above all SSP's. The plaques show critical design data related the track Figure 3.53. They cannot be removed.

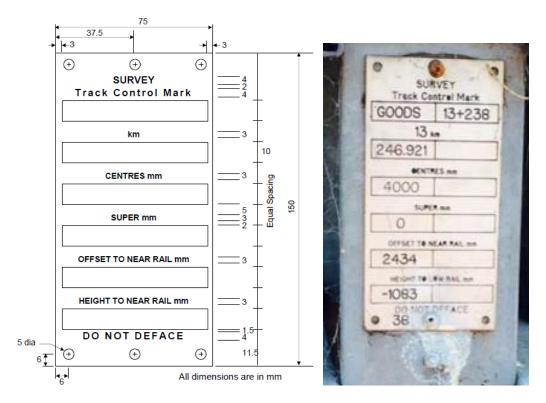


Figure 3.53 Specification for TCM (source Sydney Trains TMC 212 Survey 2009)

A possible solution to working around the plaque obstruction, is to paint the pattern targets at a higher position along the face of the mast structure and along the rail corridor. You would not need to paint a target at every mast. Additional field work would be required to survey all the targets using STS and coordinate them to the Sydney Trains coordinate system. This idea would setup the rail corridor permanently for scanning. It would be time consuming but an efficient long term strategy to assist the implementation of new technology in the future. This work is outside the aims of this research paper but is worth further investigation in the future.

3.13.3 Faro Focus 3D X 330 calibration

The scanning of all the targets were also done from the same three scanner positions, with the Faro Focus 3D X 330 figure 3.54.

Figure 3.54 Focus 3DX at scan position 1

The scanner height was varied from the ground at each scanner location just like the Leica P20. The spatial resolution was at 1mm at 30m. The point cloud from Station (STN) 100 is shown in Figure 3.55

Figure 3.55 Point cloud from Faro Scene5.5 at STN100.

3.13.4 Rail corridor scan Faro Focus 3D X330

The Faro was also taken to Redfern and was step in the same position as the P20 figure 3.56

Figure 3.56 The Faro track scan at Redfern

The exact SSP's figure 3.57 were used with the Faro scanner as well, for registration and coordination of the scan point could.

Figure 3.57 The three SSP's - survey control with Faro Targets

The Faro targets a slightly larger then the Leica in size but still experienced the same issue of obstruction of the plaques with the ssp's figure 3.58. Faro targets were used with the faro scanner and the same happened with the Leica this was only fair to the manufactures for accuracy.

Figure 3.58 Plaque positions near the SSP's.

3.14 Conclusion

All of project phases outlined in this chapter have been completed. A detailed analysis of the data will be discussed in the next chapter together with the results. The scanning within the rail corridor was limited to only one scan position for each scanner due to time constrains and safety restrictions in that area at that particular time that could not have been foreseen.

Chapter Four - Results and Discussion

4.1 Introduction

In this chapter all the calculations have been completed, to determine the final X,Y,Z values of each target in the calibration room. The software used for the least square calculations is Comprail / Compnet 2.8 railway custom software. Least square methodology is used to calculate error components and precisions. Civilcad 7 survey software was used to calculate the least square Transformations and the joins between targets for an independent check. The final results will conform if the scanners meet Sydney Train requirements.

4.2 STS Reductions

Seventy targets were installed in the calibration room. Each target was signalised by radiating it in two faces from threes stations. The stations were established by measuring six full arcs, from each station. To maintain independent checks Two different STS's were used to establish the survey control. Both STS instruments were tested over a certified baseline prior to being used in this project, refer to Appendix I for the results of the calibrations. A summary of the manufactures specifications for the STS's are shown below in Table 4.1

Leica TS15	Mode	Accuracy
Angle Measurement	Hz, V	1" (0.3 mgon)
Distance Measurement (GPR 1 prism)	Standard	1mm + 1.5 ppm
Distance Measurement (Any surface)		2 mm + 2 ppm
Leica TS30		
Angle Measurement	Hz , V	0.5" (0.15 mgon)
Distance Measurement (GPR 1 prism)	Standard	1mm + 1ppm
Distance Measurement (Any surface)		2mm + 2 ppm

Table 4.1 Leica STS specifications

It is very important to note the specifications assume that the Target is perfectly aligned to the instrument. The Sydney Trains Specification SPC211 - Survey states the requirements for Survey control and survey of TCM's measurements is for the standard deviation of distance to be < +-2mm + 3ppm. The standard deviation of horizontal angles is < 1.5 ".

4.2.1 Survey Control

The precision of the survey ground control established and measured in the calibration room was within 3seconds in the horizontal and 4seconds in the vertical. Refer to Appendix J for the GSI data files.

4.2.2 Targets

All of the targets installed in the calibration room were measured in two faces, from three stations, using two different Survey Total Stations. This process provided confidence in the data sets measured in terms of their accuracy, reliability and independence.

The following steps had to be completed in order to calculate the final X,Y,Z values for each target. The first stage was the reductions from the Leica TS15 and the second stage was the Leica TS30. A final comparison will be made and a table of final coordinates and heights for each Target will be shown.

4.2.3 Stage 1 Leica TS15

Step 1 - The coordinates of each target from each set up had to be compared. By using a different point ID for each target from each setup the Software was able to produce a comparison file showing the difference in X,Y,Z values for each target measured from a different station. During the field work in the calibration I decided to use Point ID's 1-70 for the measurements from Station 100. From Station 200 the point ID's were 201-270 and from Station 300 the point ID's were 301-370. This logical approach assisted during comparison. This process also ensured the software would not combine and average values with the same ID point numbers.

Step 2 - A tolerance of greater then +-2mm was set for the comparison, to maintain conformance with specification, for each target in the X,Y and Z values.

Step 3 - Targets outside the tolerance are shown in table 4.2.

	F	rom Statio	n	Error in (mm)		
Target ID	100	200	300	Х	Y	Z
14	*		*		+ 3	
15	*		*		+ 3	
16	*	*	*		+ 3	
26	*	*			+ 3	
30	*	*			+ 3	
59	*		*		+ 3	
60	*		*		+ 3	
61	*	*	*		+ 3	
63	*	*	*		+ 3	
64	*	*			+ 3	
65	*	*				-3

Table 4.2 Comparison of Target from TS15 data set.

The mark (\star) indicates which station the target was measured from. Target 16, 61, and 63 have been automatically discarded as they have produced error from all stations.

Step 4 - If a photograph of the laser dot was available for that target, it was used as evidence to decide if a target shown in Table 4.3 would be discarded. Due to time constrains in the project not every reflectorless laser dot measurement at each target from each setup was photographed. The targets to investigate are 14, 15, 26, 30, 59, 60, 64 and 65.

From Station 100 Target 26 (a), 64 (b), and 65 have been photographed. As it can be seen from the photos in Figure 4.1 Target 64 has an error due to the blow out of the reflectorless measurement and will be discarded.

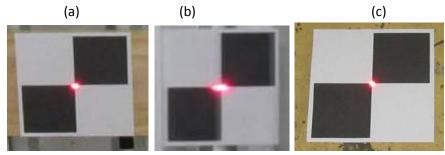


Figure 4.1 Laser dot photos from station 100

From Station 200 Target 26 and 65 have been photographed. From Figure 4.2 it can be clearly seen that the laser dot for both targets has been blown causing an error so these two targets will also be discarded.

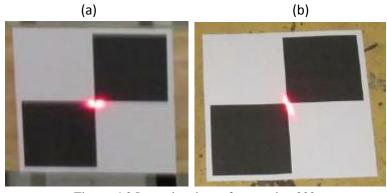


Figure 4.2 Laser dot photos from station 200

From station 300 Target 14, 15, 59 and 60 were not photographed.

Step 5 - In this step the remaining Targets that still carry an error are 14, 15, 30, 59 and 60. Looking at the coordinates of each target from each setup it can be seen that the coordinates that are outside the +-2mm acceptable tolerance, will not be used. In Table 4.3 - 4.7 this is shown.

Table 4.3 Analysis of Target 14				
TARGET 14				
From Station	X Y Z			
100	102.229	98.333	11.422	
200	102.229	98.331	11.423	
300	102.229	98.330	11.422	

Table 4.4 Analysis of Target 15

TARGET 15					
From Station	х	Y	Z		
100	102.230	98.332	10.989		
200	102.230	98.330	10.990		
300	102.230	98.329	10.989		

Table 4.5 Analysis of Target 30

TARGET 30				
From Station	X Y Z			
100	98.425	101.258	10.337	
200	98.425	101.254	10.338	
300	98.425	101.256	10.338	

Table 4.6 Analysis of Target 59

TARGET 59				
From Station	X Y Z			
100	98.398	100.389	11.525	
200	98.400	100.387	11.526	
300	98.400	100.386	11.525	

Table 4.7 Analysis of Target 60

TARGET 60				
From Station	х	Y	Z	
100	98.400	100.390	11.754	
200	98.402	100.388	11.755	
300	98.401	100.387	11.755	

Step 6 - The remaining targets will now be averaged to determine the final coordinates. From 70 targets 10 had to be discarded, this is a good results considering 4 targets were disturbed and had fallen to the ground prior to scanning so could not be used.

Step 7 - The horizontal and vertical distances between centre of targets, were also measured in the field. These joins were calculated and compared. Civicad 7 was used to

calculate the joins. All the joins have been compared and fallen within the +-2mm tolerance except for target 11 and 14. The measurement between these targets is out of tolerance so the targets will be discarded. This results to 58 signalled final targets. This is a very good independent check on the results shown in Table 4.8. The grey areas in the table indicate one of the targets measured has been already discarded and can't be used any more. The yellow area indicates target 11 & 14 is suspect because it has fallen outside the +-2mm tolerance and will be discarded for this work.

Target	s Center	Measured	Calculated	Diff	Target	s Center	Measured	Calculated	Diff
(fro	m - to)	Join	Join		(fron	n - to)	Join	Join	
		(m)	(m)	(mm)			(m)	(m)	(mm)
4	5	0.933	0.934	-1	39	42	0.759	0.759	0
3	6	0.933	0.933	0	58	59	1.331	1.332	-1
2	7	0.932	0.932	0	57	58	0.230	0.230	0
1	8	0.931	0.930	1	60	59	0.228	0.230	-2
4	3	0.447	0.448	-1	61	63	1.326		
3	2	0.476	0.476	0	62	64	1.326		
2	1	0.600	0.601	-1	61	62	0.256		
5	6	0.453	0.453	0	63	64	0.253		
6	7	0.474	0.473	1	25	28	1.316	1.317	-1
7	8	0.603	0.605	-2	26 27		1.318		
12	13	0.700	0.701	-1	28 29		1.539	1.540	-1
11	14	0.701	0.704	-3	27 30		1.536	1.536	0
10	15	0.703	0.704	-1	29 32		1.150	1.149	1
9	16	0.707			30	31	1.143	1.145	-2
12	11	0.368	0.368	0	25	26	0.886		
11	10	0.432	0.433	-1	28	27	0.887	0.888	-1
10	9	0.677	0.677	0	29	30	0.887	0.888	-1
13	14	0.367	0.369	-2	32	31	0.881	0.883	-2
14	15	0.432	0.433	-1	37	44	0.764	0.763	1
15	16	0.677			38	43	0.763	0.763	0
18	19	0.593	0.592	1	40	41	0.758	0.758	0
17	20	0.592	0.590	2	37	38	0.361	0.362	-1
18	17	0.848	0.850	-2	38	39	0.459	0.458	1
19	20	0.842	0.842	0	39	40	0.415	0.416	-1
21	23	1.139	1.139	0	44	43	0.357	0.356	1
22	24	1.129	1.130	-1	43	42	0.463	0.463	0
21	22	0.626	0.626	0	42	41	0.409	0.410	-1
23	24	0.635	0.634	1	45	52	0.759		
33	36	0.973	0.971	2	46	51	0.755		
34	35	0.960	0.960	0	47	50	0.752		
33	34	1.729	1.728	1	48	49	0.746		
36	35	1.733	1.734	-1	45	46	0.358	0.359	-1
53	56	0.969	0.969	0	46	47	0.367	0.367	0
54	55	0.976	0.976	0	47	48	0.507	0.508	-1
53	54	0.643	0.643	0	52	51	0.364		
56	55	0.645	0.645	0	51	50	0.367		
57	60	1.332	1.332	0	50	49	0.506		

Table 4.8 Join measurements comparison TS15 data

Step 8 - The final coordinated targets measured from the TS15, have now been tabulated. Table 4.9

	Leica TS15											
Target	X	Y	Z	Target	Х	Y	Z	Target	Х	Y	Z	
1	102.3060	100.4997	10.6350	24	99.3993	97.8953	10.3980	45	100.8860	106.5370	11.7293	
2	102.3190	100.5000	11.2357	25	98.3547	98.4017	11.2257	46	100.8873	106.5350	11.3703	
3	102.3200	100.4990	11.7120	27	98.3827	99.7203	10.3383	47	100.8893	106.5337	11.0033	
4	102.3197	100.4987	12.1597	28	98.3817	99.7187	11.2263	48	100.8953	106.5180	10.4953	
5	102.2987	99.5653	12.1633	29	98.4247	101.2580	11.2257	53	102.4610	105.9817	11.5513	
6	102.3020	99.5663	11.7100	30	98.4240	101.2550	10.3380	54	102.4503	105.9840	10.9077	
7	102.3010	99.5683	11.2370	31	98.4480	102.3997	10.3443	55	102.4290	105.0083	10.9083	
8	102.2853	99.5697	10.6320	32	98.4533	102.4067	11.2267	56	102.4420	105.0127	11.5533	
9	102.2683	99.0357	10.3120	33	98.7760	104.5050	12.0140	57	98.3793	99.0560	11.7547	
10	102.2797	99.0323	10.9893	34	98.8077	104.5093	10.2860	58	98.3763	99.0553	11.5250	
12	102.2760	99.0310	11.7897	35	98.8563	105.4680	10.2850	59	98.4000	100.3870	11.5250	
13	102.2303	98.3317	11.7917	36	98.8250	105.4750	12.0190	60	98.4020	100.3880	11.7550	
15	102.2300	98.3295	10.9900	37	99.3653	106.5580	11.7320	62	98.4363	101.7197	11.4857	
17	101.8997	98.0067	11.2193	38	99.3650	106.5543	11.3703	66	99.9647	98.8980	10.0080	
18	101.8993	98.0017	12.0687	39	99.3700	106.5543	10.9123	67	101.3270	99.9170	10.0060	
19	101.3070	98.0003	12.0703	40	99.3717	106.5457	10.4960	68	100.0680	105.6150	10.0043	
20	101.3097	98.0090	11.2283	41	100.1297	106.5333	10.5017	69	101.0193	105.6093	10.0070	
21	100.5380	97.8850	11.0317	42	100.1290	106.5430	10.9117	70	100.9520	104.4613	10.0033	
22	100.5290	97.9010	10.4057	43	100.1280	106.5450	11.3747					
23	99.3987	97.8807	11.0323	44	100.1283	106.5483	11.7313					

Table 4.9 Final Coordinates of Targets from TS15

4.2.4 Stage 2 Leica TS30

Steps 1 to 8 will now be repeated using the data from the Leica TS30. Step 1 and 2 is exactly the same for both instruments so we can go straight into step 3.

Step 3 - Targets outside the tolerance are shown in Table 4.10

	F	rom Statio	n	Error in (mm)					
Target ID	100	200	300	х	Y	Z			
4	*		*	-13	+15	-6			
11	*		*	-3					
14	*		*		+3				
15	*		*		+4				
16	*		*	-4	+6				
25	*	*			+3				
26	*	*			+5				
32	*	*			-3				

Table 4.10 Comparison of Target from TS30 data set.

The mark (\star) indicates which station the target was measured from. As the table shows no target will be automatically discarded as they have not produced errors from

all three stations. That said the fact that targets 14, 15, 16 and 26 have been flagged again being outside the +-2mm tolerance so they will be automatically discarded.

Step 4 - The Targets that have been photographed are 4, 11, 25, 32. The photos will be examined to decide if any of these targets can be discarded.

From station 100 Targets 4 (a), 25 (b) and 32 (c) have been photographed and shown in figure 4.3. Examining the photos from this station the laser dot is not abnormal.

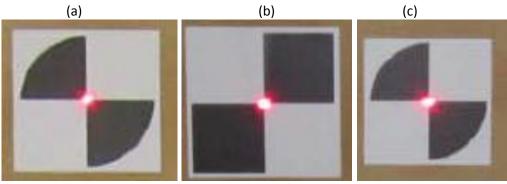


Figure 4.3 Laser dot photos from station 100

From station 200 targets 25 (a) and 32 (b) have been photographed Figure 4.4 and it can be clearly seen that the laser dot has blown out and these two targets will be discarded.

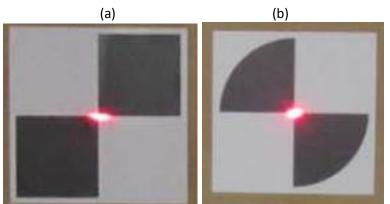


Figure 4.4 Laser dot photos from station 200

From station 300 target 4 (a) was photographed as shown in figure 4.5.As it can be seen from the photo the laser dot has blown out and this target will be discarded.

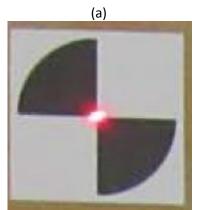


Figure 4.5 Laser dot from station 300

It is interesting to note the least square adjustment from the rail software confirmed target 4 has a 3D residual of -0.015mm.

Step 5 - In this step the remaining Target 11 is still carrying an error. Looking at the coordinates of the target from each setup it can be seen that the coordinates that are outside the +-2mm acceptable tolerance, will not be used Table 4.11.

TARGET 11											
From Station X Y Z											
100	102.273	99.034	11.421								
200	102.275	99.035	11.423								
300	102.276	99.034	11.421								

Table 4.11 Analysis of Target 11

Step 6 - The remaining targets will now be averaged to determine the final coordinates for each target. From 70 targets 7 had to be discarded again a great results.

Step 7 - The joins will now be calculated and compared and shoen in Table 4.12. The grey areas in the table indicate one of the targets measured has been already discarded and can't be used any more. The yellow area indicates target 61 & 62 is suspect because it has fallen outside the 2mm tolerance and will be discarded for this work

Targets	Center	Measured	Calculated	Diff	Targets	Center	Measured	Calculated	Diff
(from	1 - to)	Join	Join		(fron	n - to)	Join	Join	
		(m)	(m)	(mm)			(m)	(m)	(mm)
4	5	0.933			58	59	1.331	1.331	0
3	6	0.933	0.931	2	57	58	0.230	0.230	0
2	7	0.932	0.932	0	60	59	0.228	0.229	-1
1	8	0.931	0.930	1	61	63	1.326	1.325	1
4	3	0.447			62	64	1.326	1.326	0
3	2	0.476	0.476	0	61	62	0.256	0.253	3
2	1	0.600	0.600	0	63	64	0.253	0.254	-1
5	6	0.453	0.454	-1	25	28	1.316		
6	7	0.474	0.472	2	26	27	1.318		
7	8	0.603	0.605	-2	28	29	1.539	1.539	0
12	13	0.700	0.700	0	27	30	1.536	1.536	0
11	14	0.701			29	32	1.150		
10	15	0.703			30	31	1.143	1.143	0
9	16	0.707			25	26	0.886		
12	11	0.368	0.367	1	28	27	0.887	0.887	0
11	10	0.432	0.433	-1	29	30	0.887	0.887	0
10	9	0.677	0.676	1	32	31	0.881		
13	14	0.367			37	44	0.764	0.763	1
14	15	0.432			38	43	0.763	0.762	1
15	16	0.677			39	42	0.759	0.758	1
18	19	0.593	0.592	1	40	41	0.758	0.758	0
17	20	0.592	0.590	2	37	38	0.361	0.361	0
18	17	0.848	0.849	-1	38	39	0.459	0.458	1
19	20	0.842	0.842	0	39	40	0.415	0.416	-1
21	23	1.139	1.138	1	44	43	0.357	0.357	0
22	24	1.129	1.129	0	43	42	0.463	0.463	0
21	22	0.626	0.626	0	42	41	0.409	0.409	0
23	24	0.635	0.634	1	45	52	0.759		
33	36	0.973	0.971	2	46	51	0.755		
34	35	0.960	0.959	1	47	50	0.752		
33	34	1.729	1.727	2	48	49	0.746		
36	35	1.733	1.732	1	45	46	0.358	0.359	-1
53	56	0.969	0.968	1	46	47	0.367	0.367	0
54	55	0.976	0.975	1	47 48		0.507	0.508	-1
53	54	0.643	0.643	0	52 51		0.364		
56	55	0.645	0.645	0	51	50	0.367		
57	60	1.332	1.331	1	50	49	0.506		

Table 4.12 Join measurements	s comparison TS30 data
------------------------------	------------------------

Step 8 - The final signalised coordinated targets measured from the TS30, have now been tabulated refer to table 4.13.

	Leica TS30														
Target	Х	Y	Z	Target	Х	Y	Z	Target	Х	Y	Z	Target	Х	Y	Z
1	102.3040	100.5007	10.6353	21	100.5380	97.8873	11.0320	40	99.3723	106.5430	10.4960	60	98.4030	100.3890	11.7540
2	102.3170	100.5007	11.2353	22	100.5290	97.9033	10.4060	41	100.1297	106.5303	10.5020	63	98.4733	103.0470	11.7377
3	102.3183	100.4997	11.7113	23	99.3997	97.8833	11.0323	42	100.1290	106.5413	10.9113	64	98.4720	103.0457	11.4843
5	102.2977	99.5667	12.1627	24	99.4003	97.8980	10.3980	43	100.1280	106.5430	11.3743	65	101.2800	98.9493	10.0087
6	102.3007	99.5687	11.7093	27	98.3843	99.7217	10.3387	44	100.1287	106.5457	11.7310	66	99.9650	98.9000	10.0080
7	102.3000	99.5693	11.2370	28	98.3833	99.7200	11.2263	45	100.8853	106.5343	11.7287	67	101.3270	99.9183	10.0073
8	102.2830	99.5710	10.6320	29	98.4263	101.2577	11.2253	46	100.8870	106.5320	11.3700	68	100.0680	105.6137	10.0047
9	102.2670	99.0373	10.3127	30	98.4263	101.2567	10.3383	47	100.8890	106.5307	11.0033	69	101.0183	105.6067	10.0077
10	102.2783	99.0340	10.9893	31	98.4497	102.3997	10.3450	48	100.8950	106.5150	10.4950	70	100.9520	104.4600	10.0030
11	102.2747	99.0343	11.4217	33	98.7760	104.5030	12.0130	53	102.4593	105.9790	11.5510				
12	102.2743	99.0323	11.7890	34	98.8087	104.5083	10.2863	54	102.4493	105.9820	10.9077				
13	102.2290	98.3333	11.7913	35	98.8570	105.4663	10.2857	55	102.4277	105.0070	10.9083				
17	101.8990	98.0087	11.2193	36	98.8267	105.4733	12.0180	56	102.4403	105.0110	11.5527				
18	101.8980	98.0040	12.0683	37	99.3660	106.5550	11.7313	57	98.3810	99.0583	11.7540				
19	101.3060	98.0023	12.0697	38	99.3657	106.5513	11.3703	58	98.3780	99.0573	11.5243				
20	101.3090	98.0110	11.2280	39	99.3707	106.5523	10.9120	59	98.4013	100.3880	11.5247				

Table 4.13 Final Coordinates of signalized Targets from TS30

Now that the final error free coordinates have been finalized from the two STS's a comparison was done and a final data set of coordinated signalized targets has been produced in Table 4.14. Targets showing two values within tolerance were averaged. During the comparison Targets 23, 24, 37, 38, 40, 41, 44-48, 53 and 69 were outside the +-2mm tolerance.

Target	X	Y	Z	Target	X	Y	Z	Target	X	Y	Z
1	102.3050	100.5002	10.6352	26		not used		51		not used	
2	102.3180	100.5003	11.2355	27	98.3835	99.7210	10.3385	52		not used	
3	102.3192	100.4993	11.7117	28	98.3825	99.7193	11.2263	53	102.4602	105.9803	11.5512
4	102.3197	100.4987	12.1597	29	98.4255	101.2578	11.2255	54	102.4498	105.9830	10.9077
5	102.2982	99.5660	12.1630	30	98.4252	101.2558	10.3382	55	102.4283	105.0077	10.9083
6	102.3013	99.5675	11.7097	31	98.4488	102.3997	10.3447	56	102.4412	105.0118	11.5530
7	102.3005	99.5688	11.2370	32	98.4533	102.4067	11.2267	57	98.3802	99.0572	11.7543
8	102.2842	99.5703	10.6320	33	98.7760	104.5040	12.0135	58	98.3772	99.0563	11.5247
9	102.2677	99.0365	10.3123	34	98.8082	104.5088	10.2862	59	98.4007	100.3875	11.5248
10	102.2790	99.0332	10.9893	35	98.8567	105.4672	10.2853	60	98.4025	100.3885	11.7545
11	102.2747	99.0343	11.4217	36	98.8258	105.4742	12.0185	61		not used	
12	102.2752	99.0317	11.7893	37	99.3657	106.5565	11.7317	62	98.4363	101.7197	11.4857
13	102.2297	98.3325	11.7915	38	99.3653	106.5528	11.3703	63	98.4733	103.0470	11.7377
14		not used		39	99.3703	106.5533	10.9122	64	98.4720	103.0457	11.4843
15	102.2300	98.3295	10.9900	40	99.3720	106.5443	10.4960	65	101.2800	98.9493	10.0087
16		not used		41	100.1297	106.5318	10.5018	66	99.9648	98.8990	10.0080
17	101.8993	98.0077	11.2193	42	100.1290	106.5422	10.9115	67	101.3270	99.9177	10.0067
18	101.8987	98.0028	12.0685	43	100.1280	106.5440	11.3745	68	100.0680	105.6143	10.0045
19	101.3065	98.0013	12.0700	44	100.1285	106.5470	11.7312	69	101.0188	105.6080	10.0073
20	101.3093	98.0100	11.2282	45	100.8857	106.5357	11.7290	70	100.9520	104.4607	10.0032
21	100.5380	97.8862	11.0318	46	100.8872	106.5335	11.3702				
22	100.5290	97.9022	10.4058	47	100.8892	106.5322	11.0033				
23	99.3992	97.8820	11.0323	48	100.8952	106.5165	10.4952				
24	99.3998	97.8967	10.3980	49		not used					
25	98.3547	98.4017	11.2257	50		not used					

Table 4.14 Final Combined Coordinates of signalized Targets from TS15 & 30

4.3 Scanner Reductions

The reduction of the scanner data were completed in two stages. The two scanners used in this research project was the Faro Focus 3D X330 and the Leica P20.

This scanner project work is point based. This means using targets whose centroids can be extracted using the scanner software. The scanner was setup in three different positions in the calibration room and at different heights. The scanners were not setup over a known mark meaning indirect georefrencing was done. The literature review showed to self calibrate a scanner, various methods had been determined in the past. None provide a process that was similar to a Survey Total Station for a Surveyor to pick up on and determine systematic errors of a TLS. In the literature review MATLAB software were used for the calibration by designing an appropriate model. Due to time constraints and loss of time due to the relocation of the indoor calibration room, MATLAB was not used in this work. The 3D positional coordinate accuracy will be determined for each scanner and then compared to the 3D coordinates of the signalised targets.

It was very important that the calibration targets are signalized independently by a STS. This allows for the comparison of STS data and TLS data to determine accuracy. If the accuracy from both instruments is within the acceptable range of +-2mm then we can use the TLS in the rail corridor.

The scanner data sets had to converted from scanners space to ground based coordinates. the Six parameter Helmert transformation could be used. Within the scanner software Cyclone and Scene a transformation is called a registration, this function could also be used. In this research Civilcad7 will be used for the transformation of the scanner data sets to the indoor calibration room local ground coordinate system. It is important to note the scanner software from both manufactures is not that easy to learn within a very small time frame, this is why Civilcad was chosen for the transformations. When all the three scanner data sets have been transformed a coordinate comparison will be done.

4.3.1 Stage 1 Leica P20

Step 1 - Transformation of the three scanner data sets using three points. Target 20, 29, and 43 were used for the transformation. The incident angles, height above ground and general placement position within the calibration space of these three targets aided in their selection as transformation base points.

The raw target centroids were exported from the Leica Cyclone 9.0 software as a SVY file which is a simple tab delimited text file. This data was put in order of Point Number, easting, Northing and Elevation and imported into CivilCad 7.0 individually and not as a bundle, for transformation. This was done for all three scanner data sets. During the transformation the residuals were zero. Once transformed the scanner data was exported as a txt file and imported into an excel spreadsheet for comparison.

Step 2 - Table 4.15 shows the XYZ values for each target .

								r target centroids PScanner Data Setup 300				
	canner Da		.00			ta Setup	200				300	
Target	X	Y	0 709	Target	X	Y 100.500	1.045	Target	X	Y	d	
1 2	102.306 102.318	100.500	-0.798 -0.197	201 202	102.305		-1.045 -0.444	301	no 102.318	t extracte 100.500	-0.265	
3	102.318	100.500 100.499	0.279	202	102.318 102.319	100.500	0.032	302 303	102.318	100.300	0.203	
4	102.319	100.499	0.727	203	102.315	100.500	0.480	304	102.319	100.499	0.659	
5	102.298	99.566	0.730	205	102.298	99.566	0.484	305	102.298	99.567	0.663	
6	102.301	99.568	0.277	206	102.301	99.568	0.030	306	102.301	99.568	0.209	
7	102.300	99.569	-0.196	207	102.304	99.641	-0.479	307	102.300	99.569	-0.264	
8	102.285	99.570	-0.801	208	102.285	99.569	-1.048	308	102.285	99.569	-0.869	
9	102.268	99.037	-1.121	209	102.267	99.037	-1.368	309	102.267	99.038	-1.189	
10	102.279	99.033	-0.444	210	102.279	99.033	-0.690	310	102.279	99.034	-0.511	
11	102.275	99.034	-0.011	211	102.275	99.034	-0.257	311	102.276	99.034	-0.079	
12	102.275	99.032	0.356	212	102.275	99.032	0.110	312	102.275	99.033	0.289	
13	102.229	98.333	0.359	213	102.229	98.333	0.112	313		t extracte		
14	102.228	98.333	-0.011	214	102.228	98.332	-0.258	314		t extracte		
15	102.229	98.333	-0.444	215	102.229	98.332	-0.691	315	102.229	98.322	-0.512	
16	102.220	98.331	-1.120	216	102.220	98.331	-1.367	316		t extracte		
17	101.899	98.008	-0.214	217	101.899	98.008	-0.460	317	101.899	98.008	-0.281	
18 19	101.899 101.306	98.003 98.002	0.636	218 219	101.899 101.306	98.003 98.002	0.389	318 319	101.899 101.307	98.004 98.002	0.568	
20	101.306	98.002	-0.205	219	101.306	98.002	-0.451	319	101.307	98.002	0.570	
20	101.509	97.888	-0.203	220	101.509	97.887	-0.648	320	101.509	97.887	-0.272	
22	100.529	97.902	-1.027	222	100.538	97.901	-1.274	322	100.538	97.902	-1.095	
23	99.399	97.882	-0.401	223	99.400	97.883	-0.647	323	99.400	97.883	-0.468	
24	99.400	97.896	-1.036	224	99.400	97.896	-1.282	324	99.400	97.897	-1.103	
25	98.360	98.331	-0.242	225	98.356	98.403	-0.454	325	98.356	98.402	-0.275	
26	98.357	98.405	-1.095	226	98.357	98.404	-1.341	326	98.358	98.402	-1.162	
27	98.384	99.722	-1.094	227	98.384	99.722	-1.341	327	98.384	99.722	-1.162	
28	98.385	99.721	-0.206	228	98.383	99.719	-0.453	328	98.383	99.719	-0.274	
29	98.426	101.257	-0.207	229	98.426	101.258	-0.454	329	98.426	101.258	-0.275	
30	98.425	101.257	-1.095	230	98.425	101.257	-1.342	330	98.425	101.256	-1.163	
31	98.449	102.400	-1.089	231	98.450	102.399	-1.335	331	98.449	102.400	-1.157	
32		t extracte		232	98.456	102.406	-0.453	332	98.454	102.406	-0.274	
33	98.777	104.504	0.581	233	98.777	104.503	0.335	333	98.778	104.503	0.513	
34		t extracte		234	98.808	104.509	-1.394	334	98.808	104.508	-1.215	
35 36	98.826	t extracte	a 0.585	235 236	98.856 98.826	105.467	-1.396 0.338	335 336	98.856 98.826	105.467	-1.216 0.517	
37	99.366	105.474 106.556	0.385	230	99.366	105.473 106.556	0.051	337	99.366	105.473 106.556	0.231	
38	99.365	106.553	-0.063	238	99.365	106.553	-0.310	338	99.366	106.553	-0.131	
39	99.371	106.553	-0.522	239	99.371	106.553	-0.768	339	99.371	106.553	-0.589	
40	99.372	106.545	-0.938	240	99.372	106.545	-1.184	340	99.372	106.545	-1.005	
41	100.130	106.532	-0.932	241	100.130	106.532	-1.179	341	100.130	106.532	-1.000	
42	100.129	106.542	-0.522	242	100.129	106.542	-0.769	342	100.130	106.542	-0.589	
43	100.128	106.544	-0.059	243	100.128	106.544	-0.305	343	100.128	106.544	-0.126	
44	100.129	106.547	0.298	244	100.129	106.547	0.051	344	100.129	106.547	0.230	
45	100.886	106.537	0.296	245	100.886	106.536	0.049	345	100.886	106.536	0.229	
46	100.888	106.535	-0.062	246	100.887	106.534	-0.309	346	100.887	106.534	-0.130	
47	100.890	106.533	-0.429	247	100.889	106.533	-0.676	347	100.889	106.533	-0.497	
48	100.896	106.519	-0.937	248	100.895	106.518	-1.185	348	100.896	106.518	-1.005	
49	101.642	106.494	-0.937	249	101.641	106.494	-1.184	349	101.641		-1.005	
50 51	101.640 101.642	106.502 106.507	-0.431 -0.064	250 251	101.639 101.641	106.502 106.507	-0.678 -0.311	350 351	101.640	106.502 106.507	-0.499 -0.132	
51	101.642	106.507	0.300	251	101.641		0.053	351	101.642		0.232	
53	102.461	105.980	0.119	252	101.044	105.980	-0.129	353	101.044	105.980	0.051	
54		t extracte		254	102.450	105.982	-0.772	354	102.451		-0.593	
55	102.430	105.008	-0.525	255	102.429	105.008	-0.772	355	102.429		-0.593	
56	102.443	105.012	0.120	256	102.443	105.012	-0.127	356	102.442	105.011	0.052	
57	98.381	99.058	0.321	257	98.380	99.057	0.075	357	no	t extracte	d	
<mark>58</mark>	98.378	99.058	0.092	258	98.378	99.056	-0.154	358	no	t extracte	d	
59	98.402	100.388	0.092	259	98.400	100.388	-0.154	359	98.400	100.387	0.026	
60	98.405	100.389	0.321	260	98.403	100.389	0.075	360	98.403	100.388	0.255	
61	98.441	101.722	0.305	261	98.441	101.722	0.059	361	98.441	101.720	0.238	
62	98.438	101.720	0.052	262	98.438	101.720	-0.194	362	98.437	101.719	-0.016	
63	98.473	103.049	0.305	263	98.474	103.047	0.058	363	98.473	103.047	0.237	
64	98.471	103.047	0.052	264	98.472	103.045	-0.195	364	98.471	103.045	-0.016	
65	101.279	98.949	-1.424	265	101.280	98.949	-1.671	365	101.280	98.950	-1.492	
66 67		t extracte		266 267	99.965 101.327	98.899 99.918	-1.672 -1.672	366 367	99.965 101.327	98.900 99.917	-1.493 -1.493	
67 68	100.068	t extracte 105.614	a -1.430	267	101.327	105.614	-1.672	367		t extracte		
69	101.019	105.607	-1.430	269	101.018	105.607	-1.673	369		t extracte		
70		t extracte		270	100.952	104.460	-1.677	370		t extracte		
1000	100.005	100.063	0.000	2000	100.447	102.476	0.000	3000	100.667			

Table 4.15 Leica P20 Transformed scanner target centroids

Targets that were scanned but not extracted in the point cloud, are noted in the table. Figure 4.6 shows an example of why a target could not be extracted, in this case the shadow line of person standing near the target 70 at setup 100 (a) and target 13 extreme incident angle from setup 300 (b).

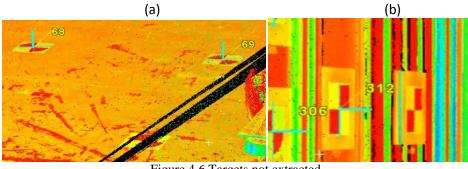


Figure 4.6 Targets not extracted

Step 3 - The Z values have not been transformed to ground values. This will be done by calculating the difference between the true target elevation and the scanner target elevation. This should be the same value for all the targets from that setup. If there is a variation in the difference of +- 2mm then the average will be calculated and adopted.

For setup 100, the value of 11.433 need to be added to all the Z values to have ground elevations.

Signalised Target RL - Scanner Target RL = Difference in RL (Constant)

10.635 - (-0.798) = 11.433

For setup 200, the value of 11.680 need to be added to all the Z values to have ground elevations.

Signalised Target RL - Scanner Target RL = Difference in RL (Constant)

$$10.635 - (-1.045) = 11.680$$

For setup 300 it is 11.501.

Signalised Target RL - Scanner Target RL = Difference in RL (Constant) 11.236 - (-0.265) = 11.501 Table 4.16 shows the final scanner target centroids with the adjusted heights as well. Also note at the bottom of this table the true coordinates of the scanner.

2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 2 26 2 27 2 29 2 30 9	X 102.306 102.318 102.319 102.329 102.300 102.285 102.285 102.275 101.305 101.306 101.309 100.527 99.400 98.360 98.360 98.362 98.384 98.385 98.425	Υ 100.500 100.499 100.499 99.566 99.570 99.377 99.331 99.333 98.333 98.333 98.333 98.032 98.033 98.032 98.033 98.032 98.033 98.033 98.032 98.033 98.032 98.033 98.031 98.032 97.888 97.928 97.892 97.892 97.892 97.893 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.331 98.	-0.798 -0.797 0.279 0.727 -0.196 -0.801 -1.121 -0.444 -0.011 -0.356 0.359 -0.011 -0.444 -1.120 -0.244 -1.202 -0.241 -0.245 -0.205 -0.401 -1.027 -0.401 -1.027 -0.401 -1.026	z 10.635 11.236 11.712 12.163 11.710 11.237 10.632 10.312 10.389 11.422 11.782 11.792 11.422 10.989 10.313 11.219 12.069 12.069 12.070 11.228 11.032 10.406 11.032 10.397	Target 201 202 203 204 205 206 207 208 209 201 210 211 212 213 214 215 216 217 218 219 220 221 222 221 222 223	x 102.305 102.318 102.318 102.318 102.301 102.304 102.285 102.267 102.279 102.275 102.275 102.275 102.228 102.228 102.229 102.228 102.229 102.305 101.899 101.899 101.306 101.309 100.538	Υ 100.500 100.500 100.500 99.566 99.564 99.563 99.641 99.037 99.037 99.032 98.333 98.332 98.332 98.333 98.332 98.333 98.003 98.003 98.003 98.003 98.001 98.001	-1.045 -0.444 0.032 0.480 0.480 -0.480 -0.479 -1.048 -1.048 -0.690 0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.451	Z 10.635 11.236 11.712 12.160 11.216 11.710 11.201 10.632 10.920 11.423 11.790 11.422 10.989 10.313 11.200 12.001 12.001 12.201	Target 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	x 102.318 102.319 102.39 102.301 102.285 102.267 102.275 102.275 102.275 102.229 102.229 102.29 102.29 102.29	100.500 100.499 99.567 99.568 99.569 99.038 99.034 99.034 99.034 99.034 99.033 not ex 98.322 not ex 98.008 98.004 98.002	-0.512 tracted -0.281 0.568 0.570	Z 11.236 11.712 12.160 12.164 11.710 11.237 10.632 10.312 10.990 11.422 11.790 10.989 11.220 12.069 12.069 12.071
2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 16 1 17 1 18 1 19 1 20 1 22 1 23 2 24 2 27 2 30 2 31 1	102.318 102.319 102.39 102.301 102.205 102.25 102.275 102.275 102.275 102.228 102.229 102.228 102.229 102.229 101.899 101.306 101.306 101.305 1005 1005 1005 1005 1005 1005 1005 1	100.500 100.499 99.566 99.569 99.509 99.037 99.033 99.034 99.032 98.333 98.333 98.333 98.333 98.333 98.003 98.002 98.002 98.002 98.002 97.888 97.892 97.882 97.882 97.882 97.882 97.882	-0.197 0.279 0.727 0.730 0.277 -0.196 -0.801 -1.121 -0.444 -0.011 0.356 0.359 -0.011 -0.444 -0.356 0.359 -0.011 -0.444 0.636 0.637 -0.205 -0.205 -0.205 -0.401 -1.027 -0.401 -1.026	11.236 11.712 12.160 12.163 11.710 11.237 10.632 10.312 10.989 11.422 11.422 11.422 11.422 11.422 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032	202 203 204 205 206 207 208 210 211 212 213 214 215 216 217 218 219 220 221 222	102.318 102.319 102.319 102.301 102.301 102.265 102.275 102.275 102.275 102.275 102.229 102.228 102.229 102.220 101.899 101.306 101.309	100.500 100.499 100.500 99.566 99.568 99.641 99.033 99.033 99.034 99.032 98.332 98.332 98.332 98.331 98.033 98.003 98.002 98.010	-0.444 0.032 0.480 0.484 0.030 -0.479 -1.048 -1.368 -0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	11.236 11.712 12.160 12.164 11.710 11.201 10.312 10.312 11.423 11.790 11.423 11.790 11.422 10.989 10.313 11.220 12.069 12.071	302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	102.319 102.319 102.298 102.301 102.300 102.285 102.279 102.276 102.275 102.275 102.229 102.229 101.899 101.899	100.500 100.499 99.567 99.568 99.569 99.038 99.034 99.034 99.034 99.034 99.033 not ex 98.322 not ex 98.008 98.004 98.002	-0.265 0.211 0.659 0.663 0.209 -0.264 -0.869 -1.189 -0.511 -0.079 0.289 tracted tracted -0.512 tracted -0.281 0.568 0.570	11.712 12.160 12.164 11.710 11.237 10.632 10.990 11.422 11.790 10.989 11.220 12.069 12.071
3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 22 1 23 2 24 2 27 2 28 2 30 2 31 9	102.319 102.303 102.298 102.301 102.205 102.279 102.275 102.275 102.229 102.229 102.229 102.229 102.220 101.309 101.309 101.309 101.309 101.309 101.529 99.300 99.400 98.357 98.384 98.385 98.385	100.499 100.499 99.568 99.569 99.037 99.033 99.034 99.032 98.333 98.333 98.333 98.333 98.331 98.002 98.002 98.002 98.002 97.888 97.888 97.882 97.882 97.882 97.882 97.882	0.279 0.727 0.730 0.277 -0.196 -0.801 -0.444 -0.011 0.356 0.359 -0.011 -0.444 0.356 0.359 -0.011 -0.444 0.636 0.637 -0.205 -0.205 -0.205 -0.401 -1.026 -0.401 -1.026 -0.401 -1.036 -0.242	11.712 12.160 12.163 11.710 11.237 10.632 10.989 11.422 11.789 11.422 11.789 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032	203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222	102.319 102.318 102.298 102.301 102.285 102.279 102.275 102.275 102.229 102.229 102.228 102.229 102.220 101.899 101.306 101.309	100.499 100.500 99.566 99.568 99.641 99.033 99.033 99.034 99.032 98.333 98.332 98.332 98.331 98.003 98.003 98.002 98.010	0.032 0.480 0.484 0.030 -0.479 -1.048 -1.368 -0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	11.712 12.160 12.164 11.710 10.632 10.312 10.990 11.423 11.790 11.792 11.422 10.989 10.313 11.220 12.069 12.071	303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	102.319 102.319 102.298 102.301 102.300 102.285 102.279 102.276 102.275 102.275 102.229 102.229 101.899 101.899	100.499 100.499 99.567 99.568 99.569 99.034 99.034 99.034 99.033 not ext 98.032 98.004 98.002	0.211 0.659 0.663 0.209 -0.264 -0.869 -1.189 -0.511 -0.079 0.289 tracted tracted -0.512 tracted -0.281 0.568 0.570	11.712 12.160 12.164 11.710 11.237 10.632 10.990 11.422 11.790 10.989 11.220 12.069 12.071
4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 20 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 30 2 31 1	102.319 102.298 102.301 102.300 102.255 102.275 102.275 102.275 102.229 102.229 102.229 102.229 102.229 102.229 103.209 101.309 101.309 101.309 101.309 101.309 101.309 103.527 99.399 99.400 98.357 98.384 98.385 98.385	100.499 99.566 99.569 99.570 99.033 99.034 99.032 98.333 98.333 98.333 98.333 98.333 98.003 98.002 98.000 97.888 97.888 97.882 97.882 97.882 97.882 97.882 97.883	0.727 0.730 0.277 -0.196 -0.801 -1.121 0.356 0.359 -0.011 -0.444 -0.011 0.356 0.359 -0.011 -0.404 0.636 0.637 -0.205 -0.205 -0.401 -1.027 -0.401 -1.036 -0.402 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.401 -0.402 -0.401 -0.402	12.160 12.163 11.710 11.237 10.632 10.312 10.982 11.422 11.789 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032	204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222	102.318 102.298 102.301 102.304 102.285 102.275 102.275 102.275 102.229 102.229 102.229 102.220 101.899 101.306 101.309	100.500 99.566 99.568 99.641 99.037 99.037 99.032 98.033 98.332 98.332 98.332 98.331 98.003 98.003 98.003	0.480 0.484 0.030 -0.479 -1.048 -1.368 -0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	12.160 12.164 11.710 11.201 10.322 10.312 11.423 11.790 11.792 11.422 10.989 10.313 11.220 12.069 12.071	304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	102.319 102.298 102.301 102.300 102.285 102.267 102.279 102.275 102.275 102.229 102.229 101.899 101.899	100.499 99.567 99.568 99.569 99.038 99.034 99.034 99.034 99.034 99.034 99.034 99.034 99.032 not ext not ext 98.008 98.004 98.002	0.659 0.663 0.209 -0.264 -0.869 -1.189 -0.511 -0.079 0.289 tracted racted -0.512 tracted -0.281 0.568 0.570	12.160 12.164 11.710 11.237 10.632 10.990 11.422 11.790 10.989 11.220 12.069 12.071
5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 29 30 2 31 2	102.298 102.300 102.285 102.255 102.275 102.275 102.275 102.229 102.229 102.229 102.229 102.220 101.309 101.309 101.309 101.309 101.309 99.397 99.399 99.400 98.360 98.357 98.384 98.385	99.566 99.569 99.570 99.037 99.034 99.032 98.333 98.333 98.333 98.333 98.003 98.003 98.000 98.000 97.888 97.920 97.882 97.892 97.895 98.331 98.405 99.722	0.730 0.277 -0.196 -0.801 -1.121 -0.444 -0.011 0.356 -0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	12.163 11.710 11.237 10.632 10.312 10.989 11.422 11.789 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032	205 206 207 208 210 211 212 213 214 214 215 216 217 218 219 220 221 222	102.298 102.301 102.304 102.285 102.267 102.275 102.275 102.229 102.229 102.220 101.899 101.306 101.309	99.566 99.568 99.641 99.037 99.033 99.034 99.032 98.333 98.332 98.332 98.332 98.331 98.008 98.003 98.002 98.010	0.484 0.030 -0.479 -1.048 -1.368 -0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	12.164 11.710 11.201 10.632 10.312 10.990 11.423 11.790 11.790 11.722 10.989 10.313 11.220 12.069 12.071	305 306 307 308 309 310 311 312 313 314 315 316 317 318	102.298 102.301 102.300 102.285 102.267 102.279 102.275 102.275 102.229 101.899 101.899	99.567 99.568 99.569 99.038 99.034 99.034 99.033 not ext 98.322 not ext 98.008 98.004 98.002	0.663 0.209 -0.264 -0.869 -1.189 -0.511 -0.079 0.289 tracted -0.512 tracted -0.281 0.568 0.570	12.164 11.710 11.237 10.632 10.312 10.990 11.422 11.790 10.989 11.220 12.069 12.071
6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 30 2 31 2	102.301 102.285 102.268 102.279 102.275 102.275 102.225 102.229 102.220 101.899 101.899 101.306 101.306 101.309 100.537 100.529 99.399 99.400 98.360 98.367 98.384 98.385	99.568 99.570 99.037 99.033 99.034 98.033 98.333 98.333 98.333 98.331 98.003 98.002 98.000 97.888 97.902 97.882 97.892 97.892 98.331 98.405 99.722	0.277 -0.196 -0.801 -1.121 -0.444 -0.011 0.356 0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.710 11.237 10.632 10.312 10.989 11.422 11.789 11.792 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032	206 207 208 210 211 212 213 214 215 216 217 218 219 220 221 222	102.301 102.304 102.285 102.279 102.275 102.275 102.229 102.229 102.229 102.220 101.899 101.306 101.309 100.538	99.568 99.641 99.569 99.037 99.033 99.034 99.032 98.333 98.332 98.332 98.331 98.008 98.003 98.002 98.010	0.030 -0.479 -1.048 -0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	11.710 11.201 10.632 10.312 10.990 11.423 11.790 11.792 11.422 10.389 10.313 11.220 12.069 12.071	306 307 308 309 310 311 312 313 314 315 316 317 318	102.301 102.285 102.267 102.279 102.275 102.275 102.229 101.899 101.899	99.568 99.569 99.038 99.034 99.034 99.033 not ext 98.322 not ext 98.008 98.004 98.002	0.209 -0.264 -0.869 -1.189 -0.511 -0.079 0.289 tracted tracted -0.512 tracted -0.281 0.568 0.570	11.710 11.237 10.632 10.312 10.990 11.422 11.790 10.989 11.220 12.069 12.071
7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 2 24 2 26 2 27 2 28 2 30 2 31 2	102.300 102.285 102.279 102.275 102.229 102.229 102.220 101.899 101.306 101.306 101.305 100.537 100.529 99.399 99.309 98.360 98.384 98.385 98.385	99.569 99.037 99.033 99.034 99.032 98.333 98.333 98.333 98.331 98.008 98.003 98.002 98.001 97.888 97.892 97.882 97.882 97.882 97.882 97.885 98.331	-0.196 -0.801 -1.121 -0.444 -0.011 0.356 0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.237 10.632 10.312 10.989 11.422 11.789 11.729 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032	207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222	102.304 102.285 102.267 102.275 102.275 102.275 102.229 102.229 102.229 102.229 102.220 101.899 101.306 101.309 100.538	99.641 99.569 99.037 99.033 99.034 99.032 98.333 98.332 98.332 98.331 98.008 98.003 98.002 98.010	-0.479 -1.048 -1.368 -0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	11.201 10.632 10.312 11.423 11.790 11.792 11.422 10.989 10.313 11.220 12.069 12.071	307 308 309 310 311 312 313 314 315 316 317 318	102.300 102.285 102.267 102.279 102.276 102.275 102.229 101.899 101.899	99.569 99.038 99.034 99.034 99.033 not exi 98.322 not exi 98.008 98.004 98.002	-0.264 -0.869 -1.189 -0.511 -0.079 0.289 tracted tracted -0.512 tracted -0.281 0.568 0.570	11.237 10.632 10.312 10.990 11.422 11.790 10.989 11.220 12.069 12.071
8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 20 1 20 1 22 1 23 2 24 2 26 2 27 2 30 2 31 2	102.285 102.279 102.275 102.275 102.229 102.220 101.899 101.306 101.306 101.306 101.305 100.527 99.399 99.400 98.360 98.384 98.385 98.384	99.570 99.037 99.033 99.034 98.032 98.333 98.333 98.333 98.331 98.008 98.003 98.002 98.002 98.010 97.888 97.902 97.882 97.896 97.885 97.895 97.895	-0.801 -1.121 -0.444 -0.011 0.356 0.359 -0.011 -0.444 -1.120 -0.244 0.636 0.637 -0.205 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	10.632 10.312 10.989 11.422 11.789 11.792 11.722 10.989 10.313 11.219 12.069 12.070 11.228 11.032	208 209 210 211 212 213 214 215 216 217 218 219 220 221 222	102.285 102.267 102.279 102.275 102.275 102.229 102.229 102.220 101.899 101.306 101.309 100.538	99.569 99.037 99.033 99.034 99.032 98.333 98.332 98.332 98.331 98.008 98.003 98.002 98.010	-1.048 -1.368 -0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	10.632 10.312 10.990 11.423 11.790 11.792 11.422 10.989 10.313 11.220 12.069 12.071	308 309 310 311 312 313 314 315 316 317 318	102.285 102.267 102.279 102.276 102.275 102.229 102.229 101.899	99.569 99.038 99.034 99.034 99.033 not exi 98.322 not exi 98.008 98.004 98.002	-0.869 -1.189 -0.511 -0.079 0.289 tracted tracted -0.512 tracted -0.281 0.568 0.570	10.632 10.312 10.990 11.422 11.790 10.989 11.220 12.069 12.071
9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 2 24 2 26 2 27 2 30 2 31 2	102.268 102.279 102.275 102.229 102.229 102.229 102.220 101.899 101.306 101.309 101.309 100.537 100.529 99.300 98.360 98.357 98.384 98.385 98.385	99.037 99.033 99.034 98.032 98.333 98.333 98.333 98.008 98.003 98.002 98.002 98.010 97.888 97.902 97.886 97.896 97.885 97.896 98.031	-1.121 -0.444 -0.011 0.356 0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	10.312 10.989 11.422 11.789 11.792 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032	209 210 211 212 213 214 215 216 217 218 219 220 221 222	102.267 102.279 102.275 102.275 102.229 102.229 102.220 101.899 101.306 101.309 100.538	99.037 99.033 99.034 99.032 98.333 98.332 98.332 98.331 98.008 98.003 98.002 98.010	-1.368 -0.690 -0.257 0.110 -0.258 -0.691 -1.367 -0.460 0.389 0.391	10.312 10.990 11.423 11.790 11.792 10.989 10.313 11.220 12.069 12.071	309 310 311 312 313 314 315 316 317 318	102.267 102.279 102.276 102.275 102.229 102.229 101.899	99.038 99.034 99.034 99.033 not ext 98.322 not ext 98.008 98.004 98.002	-1.189 -0.511 -0.079 0.289 tracted tracted -0.512 tracted -0.281 0.568 0.570	10.312 10.990 11.422 11.790 10.989 11.220 12.069 12.071
10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 20 1 20 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 30 3	102.279 102.275 102.229 102.229 102.229 102.220 101.899 101.309 101.306 101.309 100.537 100.529 99.400 98.360 98.357 98.384 98.385 98.385	99.033 99.034 99.032 98.333 98.333 98.333 98.008 98.003 98.002 98.000 97.888 97.892 97.882 97.892 97.885 97.895 98.331	-0.444 -0.011 0.356 0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	10.989 11.422 11.789 11.792 10.313 11.219 12.069 12.070 11.228 11.032	210 211 212 213 214 215 216 217 218 219 220 221 222	102.279 102.275 102.275 102.229 102.229 102.220 101.899 101.899 101.306 101.309 100.538	99.033 99.034 99.032 98.333 98.332 98.332 98.331 98.008 98.003 98.002 98.010	-0.690 -0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	10.990 11.423 11.790 11.792 11.422 10.989 10.313 11.220 12.069 12.071	310 311 312 313 314 315 316 317 318	102.279 102.276 102.275 102.229 102.229 101.899	99.034 99.034 99.033 not ex 98.322 not ex 98.008 98.004 98.002	-0.511 -0.079 0.289 tracted tracted -0.512 tracted -0.281 0.568 0.570	10.990 11.422 11.790 10.989 11.220 12.069 12.071
11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 30 2 31 2	102.275 102.229 102.228 102.229 102.220 101.899 101.306 101.309 100.537 100.529 99.400 98.360 98.367 98.384 98.385 98.385	99.034 99.032 98.333 98.333 98.331 98.003 98.002 98.002 98.000 97.888 97.888 97.882 97.882 97.882 97.883 98.331 98.331	-0.011 0.356 0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.422 11.789 11.792 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032 10.406 11.032	211 212 213 214 215 216 217 218 219 220 221 222	102.275 102.275 102.229 102.228 102.229 102.220 101.899 101.306 101.309 100.538	99.034 99.032 98.333 98.332 98.331 98.008 98.003 98.002 98.010	-0.257 0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	11.423 11.790 11.792 11.422 10.989 10.313 11.220 12.069 12.071	311 312 313 314 315 316 317 318	102.276 102.275 102.229 102.229 101.899	99.034 99.033 not ext 98.322 not ext 98.008 98.004 98.002	-0.079 0.289 tracted -0.512 tracted -0.281 0.568 0.570	11.422 11.790 10.989 11.220 12.069 12.071
12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 30 2 31 2	102.275 102.228 102.229 102.220 101.899 101.306 101.309 100.537 100.529 99.390 99.390 98.360 98.357 98.384 98.385 98.385	99.032 98.333 98.333 98.331 98.008 98.002 98.002 98.000 97.882 97.902 97.892 97.892 97.892 97.892 98.331	0.356 0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.789 11.792 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032 10.406 11.032	212 213 214 215 216 217 218 219 220 221 222	102.275 102.229 102.228 102.229 102.220 101.899 101.899 101.306 101.309 100.538	99.032 98.333 98.332 98.331 98.008 98.003 98.002 98.002	0.110 0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	11.790 11.792 11.422 10.989 10.313 11.220 12.069 12.071	312 313 314 315 316 317 318	102.275 102.229 101.899 101.899	99.033 not exi 98.322 not exi 98.008 98.004 98.002	0.289 tracted -0.512 tracted -0.281 0.568 0.570	11.790 10.989 11.220 12.069 12.071
13 1 14 1 15 1 16 1 17 1 18 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 30 2 31 2	102.229 102.229 102.220 101.899 101.306 101.306 101.309 100.537 100.529 99.399 99.400 98.360 98.357 98.384 98.385 98.385	98.333 98.333 98.333 98.008 98.003 98.002 98.000 97.882 97.902 97.892 97.892 97.895 98.331 98.405 99.722	0.359 -0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.792 11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032 10.406 11.032	213 214 215 216 217 218 219 220 221 222	102.229 102.228 102.229 102.220 101.899 101.899 101.306 101.309 100.538	98.333 98.332 98.331 98.008 98.003 98.002 98.002	0.112 -0.258 -0.691 -1.367 -0.460 0.389 0.391	11.792 11.422 10.989 10.313 11.220 12.069 12.071	313 314 315 316 317 318	102.229 101.899 101.899	not ext not ext 98.322 not ext 98.008 98.004 98.002	tracted tracted -0.512 tracted -0.281 0.568 0.570	10.989 11.220 12.069 12.071
14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 2	102.228 102.229 101.899 101.899 101.306 101.309 100.529 99.390 99.400 98.360 98.357 98.384 98.385 98.426	98.333 98.333 98.008 98.003 98.002 98.010 97.888 97.902 97.882 97.896 98.331 98.405 99.722	-0.011 -0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.422 10.989 10.313 11.219 12.069 12.070 11.228 11.032 10.406 11.032	214 215 216 217 218 219 220 221 222	102.228 102.229 102.220 101.899 101.899 101.306 101.309 100.538	98.332 98.332 98.008 98.003 98.002 98.002	-0.258 -0.691 -1.367 -0.460 0.389 0.391	11.422 10.989 10.313 11.220 12.069 12.071	314 315 316 317 318	101.899 101.899	not ex 98.322 not ex 98.008 98.004 98.002	-0.512 tracted -0.281 0.568 0.570	11.220 12.069 12.071
15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 2 24 2 26 2 27 2 28 2 30 2 31 2	102.229 102.220 101.899 101.306 101.309 100.537 100.529 99.399 99.400 98.360 98.357 98.384 98.385 98.426	98.333 98.008 98.003 98.002 98.010 97.888 97.902 97.882 97.896 98.331 98.405 99.722	-0.444 -1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	10.989 10.313 11.219 12.069 12.070 11.228 11.032 10.406 11.032	215 216 217 218 219 220 221 222	102.229 102.220 101.899 101.306 101.309 100.538	98.332 98.331 98.008 98.003 98.002 98.010	-0.691 -1.367 -0.460 0.389 0.391	10.989 10.313 11.220 12.069 12.071	315 316 317 318	101.899 101.899	98.322 not ex 98.008 98.004 98.002	-0.512 tracted -0.281 0.568 0.570	11.220 12.069 12.071
16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 28 2 28 2 30 2 31 2	102.220 101.899 101.306 101.309 100.537 100.529 99.399 99.400 98.360 98.357 98.384 98.385 98.426	98.331 98.008 98.003 98.002 98.010 97.888 97.902 97.882 97.896 98.331 98.405 99.722	-1.120 -0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	10.313 11.219 12.069 12.070 11.228 11.032 10.406 11.032	216 217 218 219 220 221 222	102.220 101.899 101.306 101.309 100.538	98.331 98.008 98.003 98.002 98.010	-1.367 -0.460 0.389 0.391	10.313 11.220 12.069 12.071	316 317 318	101.899 101.899	not ext 98.008 98.004 98.002	-0.281 0.568 0.570	11.220 12.069 12.071
17 1 18 1 19 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 28 2 30 3 31 3	101.899 101.306 101.309 100.537 100.529 99.399 99.400 98.360 98.357 98.384 98.385 98.385	98.008 98.003 98.002 98.010 97.888 97.902 97.882 97.896 98.331 98.405 99.722	-0.214 0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.219 12.069 12.070 11.228 11.032 10.406 11.032	217 218 219 220 221 222	101.899 101.899 101.306 101.309 100.538	98.008 98.003 98.002 98.010	-0.460 0.389 0.391	11.220 12.069 12.071	317 318	101.899	98.008 98.004 98.002	-0.281 0.568 0.570	12.069 12.071
18 1 19 1 20 1 21 1 22 1 23 2 24 2 26 2 27 2 28 2 29 2 30 2 31 2	101.899 101.306 101.309 100.537 100.529 99.399 99.400 98.360 98.357 98.384 98.385 98.385	98.003 98.002 98.010 97.888 97.902 97.882 97.896 98.331 98.405 99.722	0.636 0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	12.069 12.070 11.228 11.032 10.406 11.032	218 219 220 221 222	101.899 101.306 101.309 100.538	98.003 98.002 98.010	0.389 0.391	12.069 12.071	318	101.899	98.004 98.002	0.568 0.570	12.069 12.071
19 1 20 1 21 1 22 1 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 2	101.309 101.309 100.537 100.529 99.399 99.400 98.360 98.387 98.384 98.385 98.385	98.002 98.010 97.888 97.902 97.882 97.896 98.331 98.405 99.722	0.637 -0.205 -0.401 -1.027 -0.401 -1.036 -0.242	12.070 11.228 11.032 10.406 11.032	219 220 221 222	101.306 101.309 100.538	98.002 98.010	0.391	12.071			98.002	0.570	12.071
20 1 21 1 22 1 23 9 24 9 25 9 26 9 27 9 28 9 30 9 31 9	101.309 100.537 99.399 99.400 98.360 98.357 98.384 98.385 98.385 98.426	98.010 97.888 97.902 97.882 97.896 98.331 98.405 99.722	-0.205 -0.401 -1.027 -0.401 -1.036 -0.242	11.228 11.032 10.406 11.032	220 221 222	101.309 100.538	98.010							
21 1 22 1 23 9 24 9 25 9 26 9 28 9 29 9 30 9 31 9	100.537 100.529 99.399 99.400 98.360 98.357 98.384 98.385 98.426	97.888 97.902 97.882 97.896 98.331 98.405 99.722	-0.401 -1.027 -0.401 -1.036 -0.242	11.032 10.406 11.032	221 222	100.538		-	AA1663	320	101.309	98.010	-0.272	11.229
22 1 23 9 24 9 25 9 26 9 28 9 29 9 30 9 31 9	100.529 99.399 99.400 98.360 98.357 98.384 98.385 98.426	97.902 97.882 97.896 98.331 98.405 99.722	-1.027 -0.401 -1.036 -0.242	10.406 11.032	222		97.887	-0.648	11.032	321	100.538	97.887	-0.469	11.032
23 9 24 9 25 9 26 9 27 9 28 9 29 9 30 9 31 9	99.399 99.400 98.360 98.357 98.384 98.385 98.426	97.896 98.331 98.405 99.722	-0.401 -1.036 -0.242			100.029	97.901	-1.274	10.406	322	100.529	97.902	-1.095	10.406
24 9 25 9 26 9 27 9 28 9 29 9 30 9 31 9	99.400 98.360 98.357 98.384 98.385 98.426	97.896 98.331 98.405 99.722	-1.036 -0.242		223	99.400	97.883	-0.647	11.033	323	99.400	97.883	-0.468	11.033
26 9 27 9 28 9 29 9 30 9 31 9	98.357 98.384 98.385 98.426	98.405 99.722	-0.242	F	224	99.400	97.896	-1.282	10.398	324	99.400	97.897	-1.103	10.398
27 9 28 9 29 9 30 9 31 9	98.384 98.385 98.426	99.722	-1.095	11.191	225	98.356	98.403	-0.454	11.226	325	98.356	98.402	-0.275	11.226
28 9 29 9 30 9 31 9	98.385 98.426			10.338	226	98.357	98.404	-1.341	10.339	326	98.358	98.402	-1.162	10.339
29 9 30 9 31 9	98.426	99,721	-1.094	10.339	227	98.384	99.722	-1.341	10.339	327	98.384	99.722	-1.162	10.339
30 9 31 9			-0.206	11.227	228	98.383	99.719	-0.453	11.227	328	98.383	99.719	-0.274	11.227
31 9	00.405	101.257	-0.207	11.226	229	98.426	101.258	-0.454	11.226	329	98.426	101.258	-0.275	11.226
	98.425	101.257	-1.095	10.338	230	98.425	101.257	-1.342	10.338	330	98.425	101.256	-1.163	10.338
32	98.449	102.400	-1.089	10.344	231	98.450	102.399	-1.335	10.345	331	98.449	102.400	-1.157	10.344
32		not ext	racted		232	98.456	102.406	-0.453	11.227	332	98.454	102.406	-0.274	11.227
33 9	98.777	104.504	0.581	12.014	233	98.777	104.503	0.335	12.015	333	98.778	104.503	0.513	12.014
34		not ext	racted		234	98.808	104.509	-1.394	10.286	334	98.808	104.508	-1.215	10.286
35		not ext	racted		235	98.856	105.467	-1.396	10.284	335	98.856	105.467	-1.216	10.285
36 9	98.826	105.474	0.585	12.018	236	98.826	105.473	0.338	12.018	336	98.826	105.473	0.517	12.018
37 9	99.366	106.556	0.298	11.731	237	99.366	106.556	0.051	11.731	337	99.366	106.556	0.231	11.732
	99.365	106.553	-0.063	11.370	238	99.365	106.553	-0.310	11.370	338	99.366	106.553	-0.131	11.370
	99.371	106.553	-0.522	10.911	239	99.371	106.553	-0.768	10.912	339	99.371	106.553	-0.589	10.912
	99.372	106.545	-0.938	10.495	240	99.372	106.545	-1.184	10.496	340	99.372	106.545	-1.005	10.496
	100.130	106.532	-0.932	10.501	241	100.130	106.532	-1.179	10.501	341	100.130	106.532	-1.000	10.501
	100.129	106.542	-0.522	10.911	242	100.129	106.542	-0.769	10.911	342	100.130	106.542	-0.589	10.912
	100.128	106.544	-0.059	11.374	243	100.128	106.544	-0.305	11.375	343	100.128	106.544	-0.126	11.375
	100.129	106.547	0.298	11.731	244	100.129	106.547	0.051	11.731	344	100.129	106.547	0.230	11.731
	100.886	106.537	0.296	11.729	245	100.886	106.536	0.049	11.729	345	100.886	106.536	0.229	11.730
	100.888	106.535	-0.062	11.371	246	100.887	106.534	-0.309	11.371	346	100.887	106.534	-0.130	11.371
	100.890	106.533	-0.429	11.004	247	100.889	106.533	-0.676	11.004	347	100.889	106.533	-0.497	11.004
	100.896	106.519	-0.937	10.496	248	100.895	106.518	-1.185	10.495	348	100.896	106.518	-1.005	10.496
	101.642	106.494	-0.937	10.496	249	101.641			10.496	349		106.494	-1.005	10.496
	101.640	106.502	-0.431	11.002	250	101.639	106.502	-0.678	11.002	350	101.640	106.502	-0.499	11.002
	101.642	106.507 106.509	-0.064	11.369	251	101.641	106.507 106.508	-0.311	11.369	351	101.642	106.507	-0.132	11.369
	101.645 102.461	105.980	0.300	11.733	252 253	101.644 102.461	105.980	0.053	11.733 11.551	352 353	101.644 102.461	106.508 105.980	0.232	11.733 11.552
53 1	102.401	not ext		11.552	253	102.401		-0.129	10.908	353	102.401	105.980	-0.593	10.908
	102.430	105.008	-0.525	10.908	255	102.430	105.008	-0.772	10.908	355	102.431	105.007	-0.593	10.908
	102.430	105.008	0.120	11.553	255	102.423	105.008	-0.127	11.553	356	102.442	105.007	0.052	11.553
	98.381	99.058	0.321	11.754	257	98.380	99.057	0.075	11.755	357			tracted	11.000
	98.378	99.058	0.092	11.525	258	98.378	99.056	-0.154	11.526	358			tracted	
	98.402	100.388	0.092	11.525	259	98.400	100.388	-0.154	11.526	359	98.400	100.387		11.527
	98.405	100.389	0.321	11.754	260	98.403	100.389	0.075	11.755	360	98.403	100.388	0.255	11.756
	98.441	101.722	0.305	11.738	261	98.441	101.722	0.059	11.739	361	98.441	101.720	0.238	11.739
	98.438	101.720	0.052	11.485	262	98.438	101.720	-0.194	11.486	362	98.437	101.719		11.485
	98.473	103.049	0.305	11.738	263	98.474	103.047	0.058	11.738	363	98.473	103.047	0.237	11.738
	98.471	103.047	0.052	11.485	264	98.472	103.045	-0.195	11.485	364	98.471	103.045	-0.016	11.485
	101.279	98.949	-1.424	10.009	265	101.280	98.949	-1.671	10.009	365	101.280	98.950	-1.492	10.009
66		not ext			266	99.965	98.899	-1.672	10.008	366	99.965	98.900	-1.493	10.008
67		not ext			267	101.327	99.918	-1.672	10.008	367	101.327	99.917	-1.493	10.008
	100.068	105.614		10.003	268	100.068	105.614	-1.676	10.004	368			tracted	
	101.019	105.607	-1.426	10.007	269	101.018	105.607	-1.673	10.007	369			tracted	
70		not ext		•	270	100.952	104.460	-1.677	10.003	370			tracted	
	100.005	100.063		11.433	2000	100.447			11.680	3000	100.667	104.348		11.501

Table 4.16 P20 Final Scanner target centroids coordinated to the indoor calibration System

Step 4 - In this step the final table will be produced. Using Table 4.16, the average of all the Targets from each setup will be done. These coordinates will be compared to the signalized values and then any targets that have not fallen within the +-2mm tolerance will not be used further in the calibration. Refer to table 4.17

Target 1 2	X	Y	Z	Target	x	v	7	D'(()/		
	100.0055			Target	^	Y	Z	Diff X	Diff Y	Diff Z
2	102.3055	100.5000	10.6350	1	102.3050	100.5002	10.6352	0	0	0
	102.3180	100.5000	11.2360	2	102.3180	100.5003	11.2355	0	0	0
3	102.3190	100.4990	11.7120	3	102.3192	100.4993	11.7117	0	0	0
4	102.3187	100.4993	12.1600	4	102.3197	100.4987	12.1597	-1	1	0
5	102.2980	99.5663	12.1637	5	102.2982	99.5660	12.1630	0	0	1
6	102.3010	99.5680	11.7100	6	102.3013	99.5675	11.7097	0	1	0
7	102.3013	99.5930	11.2250	7	102.3005	99.5688	11.2370	1	24	-12
8	102.2850	99.5693	10.6320	8	102.2842	99.5703	10.6320	1	-1	0
9	102.2673	99.0373	10.3120	9	102.2677	99.0365	10.3123	0	1	0
10	102.2790	99.0333	10.9897	10	102.2790	99.0332	10.9893	0	0	0
11	102.2753	99.0340	11.4223	11	102.2747	99.0343	11.4217	1	0	1
12	102.2750	99.0323	11.7897	12	102.2752	99.0317	11.7893	0	1	0
13	102.2290	98.3330	11.7920	13	102.2297	98.3325	11.7915	-1	1	1
14	102.2280	98.3325	11.4220	14		not signalised				
15	102.2290	98.3290	10.9890	15	102.2300	98.3295	10.9900	-1	-1	-1
16	102.2200	98.3310	10.3130	16		not signalised		-	-	-
17	101.8990	98.0080	11.2197	17	101.8993	98.0077	11.2193	0	0	0
18	101.8990	98.0033	12.0690	18	101.8987	98.0028	12.0685	0	0	0
19	101.3063	98.0020	12.0707	19	101.3065	98.0013	12.0700	0	1	1
20	101.3090	98.0100	11.2287	20	101.3093	98.0100	11.2282	0	0	1
21	100.5377	97.8873	11.0320	21	100.5380	97.8862	11.0318	0	1	0
22	100.5290	97.9017	10.4060	22	100.5290	97.9022	10.4058	0	-1	0
23	99.3997	97.8827	11.0327	23	99.3992	97.8820	11.0323	1	1	0
24	99.4000	97.8963	10.3977	24	99.3998	97.8967	10.3980	0	0	0
25	98.3573	98.3787	11.2143	25	98.3547	98.4017	11.2257	3	-23	-11
26	98.3573	98.4037	10.3387	26		not signalised		-	-	1
27	98.3840	99.7220	10.3390	27	98.3835	99.7210 99.7193	10.3385	1	1	1
28	98.3837	99.7197	11.2270	28	98.3825		11.2263	1	0	1
29	98.4260	101.2577	11.2260	29	98.4255	101.2578	11.2255	1	0	0
30	98.4250	101.2567	10.3380	30	98.4252	101.2558	10.3382	0	1	0
31	98.4493	102.3997	10.3443	31	98.4488	102.3997	10.3447	1	0	0
32	98.4550	102.4060	11.2270	32	98.4533	102.4067	11.2267	2	-1	0
33	98.7773	104.5033	12.0143	33	98.7760	104.5040	12.0135	1	-1	1
34	98.8080	104.5085	10.2860	34	98.8082	104.5088	10.2862	0	0	0
35	98.8560	105.4670	10.2845	35	98.8567	105.4672	10.2853	-1	0	-1
36	98.8260	105.4733	12.0180	36	98.8258	105.4742	12.0185	0	-1	0
37 38	99.3660	106.5560	11.7313	37	99.3657	106.5565	11.7317	0	-1	0
39	99.3653	106.5530	11.3700	38	99.3653	106.5528	11.3703	1	0	-1
40	99.3710 99.3720	106.5530 106.5450	10.9117	39 40	99.3703 99.3720	106.5533 106.5443	10.9122	0		0
40	100.1300	106.5320	10.4957 10.5010	40	100.1297	106.5318	10.4960 10.5018	0	1	-1
41	100.1293	106.5420	10.9113	41	100.1297	106.5422	10.9115	0	0	0
42	100.1233	106.5440	11.3747	42	100.1230	106.5440	11.3745	0	0	0
44	100.1280	106.5470	11.7310	43	100.1280	106.5470	11.7312	1	0	0
45	100.8860	106.5363	11.7293	45	100.8857	106.5357	11.7290	0	1	0
45	100.8800	106.5343	11.3710	45	100.8857	106.5335	11.3702	0	1	1
40	100.8893	106.5330	11.0040	40	100.8892	106.5322	11.0033	0	1	1
48	100.8855	106.5183	10.4957	48	100.8852	106.5165	10.4952	1	2	1
49	101.6413	106.4940	10.4960	48		not signalised		-	-	-
50	101.6397	106.5020	11.0020	50		not signalised				
50		106.5070	11.3690	51		not signalised				
52	101.6443		11.7330	52		not signalised				
53	102.4610	105.9800	11.5517	53	102.4602			1	0	1
55	102.4505	105.9825	10.9080	54	102.4498		10.9077	1	-1	0
55	102.4293	105.0077	10.9080	55	102.4283	105.0077	10.9083	1	0	0
56	102.4427	105.0117	11.5530	56	102.4412	105.0118	11.5530	1	0	0
57	98.3805	99.0575	11.7545	57	98.3802	99.0572	11.7543	0	0	0
58	98.3780	99.0570	11.5255	58	98.3772	99.0563	11.5247	1	1	1
59	98.4007	100.3877	11.5260	59	98.4007	100.3875	11.5248	0	0	1
60	98.4037	100.3887	11.7550	60	98.4025	100.3885	11.7545	1	0	1
61	98.4410	101.7213	11.7387	61		not signalised		-	-	-
62	98.4377	101.7197	11.4853	62	98.4363	101.7197		1	0	0
63	98.4733	103.0477	11.7380	63	98.4733	103.0470	11.7377	0	1	0
64	98.4713	103.0457	11.4850	64	98.4720	103.0457	11.4843	-1	0	1
65	101.2797	98.9493	10.0090	65	101.2800	98.9493	10.0087	0	0	0
66	99.9650	98.8995	10.0080	66	99.9648	98.8990	10.0080	0	1	0
67	101.3270	99.9175	10.0080	67	101.3270	99.9177	10.0067	0	0	1
	100.0680	105.6140	10.0035	68	100.0680		10.0045	0	0	-1
80			10.0000		100.0000					
68 69	101.0185	105.6070	10.0070	69	101.0188	105.6080	10.0073	0	-1	0

Table 4.17 Comparison of Final P20 scanner and signalized Target values

From Table 4.17 target 7 and 25 have fallen extremely out of tolerance (24mm), this cannot be explained but will be analysed further when the reductions of the faro Scanner are done. These two targets will not be used further in the calibration calculations. 97% of all targets scanned from three different setups have fallen within the +- 2mm tolerance this is an excellent result. Scanned Targets 14, 16, 26, 49-52 and 61 will also not be used as these targets were not signalised by the STS's. This leaves a Total of 60 targets to use in the calibration. Further to this there is one more independent check remaining to compare the measured joins with the new coordinates shown Table 4.17. This final calculation discovered the join between target 10 and 15 was out of tolerance (3mm) so these two targets were discarded. This gives a new Total of 58 Targets for calibration.

Now Table 4.18 is the final table showing the Scanned targets to used in the calibration.

	Leica P20 Scanner											
Target	Х	Y	Z	Target	Х	Y	Z	Target	Х	Y	Z	
1	102.3055	100.5000	10.6350	28	98.3837	99.7197	11.2270	48	100.8957	106.5183	10.4957	
2	102.3180	100.5000	11.2360	29	98.4260	101.2577	11.2260	53	102.4610	105.9800	11.5517	
3	102.3190	100.4990	11.7120	30	98.4250	101.2567	10.3380	54	102.4505	105.9825	10.9080	
4	102.3187	100.4993	12.1600	31	98.4493	102.3997	10.3443	55	102.4293	105.0077	10.9080	
5	102.2980	99.5663	12.1637	32	98.4550	102.4060	11.2270	56	102.4427	105.0117	11.5530	
6	102.3010	99.5680	11.7100	33	98.7773	104.5033	12.0143	57	98.3805	99.0575	11.7545	
8	102.2850	99.5693	10.6320	34	98.8080	104.5085	10.2860	58	98.3780	99.0570	11.5255	
9	102.2673	99.0373	10.3120	35	98.8560	105.4670	10.2845	<mark>59</mark>	98.4007	100.3877	11.5260	
11	102.2753	99.0340	11.4223	36	98.8260	105.4733	12.0180	60	98.4037	100.3887	11.7550	
12	102.2750	99.0323	11.7897	37	99.3660	106.5560	11.7313	62	98.4377	101.7197	11.4853	
13	102.2290	98.3330	11.7920	38	99.3653	106.5530	11.3700	63	98.4733	103.0477	11.7380	
17	101.8990	98.0080	11.2197	39	99.3710	106.5530	10.9117	64	98.4713	103.0457	11.4850	
18	101.8990	98.0033	12.0690	40	99.3720	106.5450	10.4957	65	101.2797	98.9493	10.0090	
19	101.3063	98.0020	12.0707	41	100.1300	106.5320	10.5010	66	99.9650	98.8995	10.0080	
20	101.3090	98.0100	11.2287	42	100.1293	106.5420	10.9113	67	101.3270	99.9175	10.0080	
21	100.5377	97.8873	11.0320	43	100.1280	106.5440	11.3747	68	100.0680	105.6140	10.0035	
22	100.5290	97.9017	10.4060	44	100.1290	106.5470	11.7310	<u>69</u>	101.0185	105.6070	10.0070	
23	99.3997	97.8827	11.0327	45	100.8860	106.5363	11.7293	70	100.9520	104.4600	10.0030	
24	99.4000	97.8963	10.3977	46	100.8873	106.5343	11.3710					
27	98.3840	99.7220	10.3390	47	100.8893	106.5330	11.0040					

Table 4.18 Final P20 Scanned Target Coordinates

4.3.2 Stage 2 Faro Focus 3D X330

Step 1 - Transformation of the three scanner data sets using three points. The transformation of the Leica P20 scanner data used targets 20, 29 and 43. Unfortunately target 43 could not be extracted from the point cloud hence 42 was used. The incident angles, height above ground and general placement position within the calibration space of these three targets aided in their selection. It is important to note the P20 scanner data were re-transformed using base point target 20, 29, and 42 and exactly the same results were produced. The original transformation using base points 20, 29, and 43 will be used in the project as changing from Target 42 to 43 in the transformation had no impact to the results.

The raw target centroids were exported from the Faro SCENE 5.5 software as a text file. This data was put in order of Point Number, Easting, Northing and Elevation and imported into CivilCad 7.0 individually and not as a bundle, for transformation. This was done for all three scanner data sets. During the transformation the residuals were zero. Once transformed the scanner data was exported as a txt file and imported into an excel spreadsheet for comparison.

Step 2 - Table 4.19 shows the XYZ values for each target

,,								-			
Target		er Data Se		Target		er Data Se		Target		er Data Se	•
1	X 102.305	Y 100.501	Z -29.209	201	X 102.305	Y 100.500	Z -26.556	301	X 102.305	Y 100.499	Z -28.332
1 2	102.303	100.501	-29.209	201	102.303	100.500	-25.955	302	102.303	100.499	-28.332
3	102.317	100.300	-28.131	202	102.317	100.499	-25.480	302	102.317	100.500	-27.256
4	102.316	100.499	-27.683	203	102.315	100.499	-25.032	303	102.317	100.300	-26.808
5	102.296	99.566	-27.680	204	102.298	99.566	-25.029	305	102.297	99.566	-26.804
6	102.300	99.568	-28.134	205	102.301	99.566	-25.482	305	102.301	99.567	-27.258
7	102.299	99.569	-28.606	200	102.300	99.569	-25.954	307	102.300	99.569	-27.730
8	102.235	99.570	-29.211	208	102.285	99.570	-26.559	308	102.285	99.570	-28.335
9	102.267	99.038	-29.531	200	102.267	99.038	-26.881	309	102.267	99.035	-28.655
10	102.278	99.033	-28.854	210	102.279	99.034	-26.202	310	102.278	99.032	-27.978
10	102.270	99.033	-28.421	211	102.275	99.034	-25.770	311	102.275	99.034	-27.545
12	102.274	99.032	-28.054	212	102.275	99.032	-25.403	312	102.275	99.032	-27.177
13	102.227	98.334	-28.052	213	102.230	98.332	-25.401	313	102.230	98.331	-27.175
14	102.227	98.333	-28.421	214	102.229	98.332	-25.770	314	102.229	98.331	-27.545
15	102.228	98.332	-28.854	215	102.230	98.331	-26.203	315	102.229	98.329	-27.978
16	102.220	98.331	-29.531	216	102.221	98.328	-26.880	316	102.221	98.326	-28.655
17	101.899	98.008	-28.625	217	101.899	98.007	-25.972	317	101.899	98.007	-27.748
18	101.896	98.004	-27.775	218	101.899	98.002	-25.124	318	101.898	98.003	-26.898
10	101.304	98.002	-27.774	219	101.306	98.001	-25.122	319	101.305	98.001	-26.901
20	101.304	98.002	-27.774	219	101.309	98.001	-25.964	319	101.309	98.001	-27.743
20	101.503	97.887	-28.813	220	101.509	97.887	-25.304	320	101.505	97.887	-27.939
21	100.537	97.902	-28.813	221	100.538	97.902	-26.786	321	100.537	97.903	-27.939
22	99.399	97.883	-29.439	223	99.399	97.883	-26.159	322	99.400	97.883	-28.366
23	99.399	97.883	-28.813	223	99.399	97.883	-26.159	323	99.400 99.400	97.883	-27.939
24	98.355	98.404	-29.448	224	98.354	98.399	-25.966	324	98.355	98.403	-28.373
25	98.358	98.404	-29.511	225	98.355	98.397	-26.853	325	98.358	98.405	-28.633
20	98.384	99.722	-29.509	220	98.383	99.720	-26.852	320	98.384	99.721	-28.632
28	98.383	99.721	-28.622	228	98.382	99.721	-25.964	328	98.382	99.720	-27.745
20	98.425	101.258	-28.622	228	98.425	101.258	-25.964	320	98.425	101.258	-27.745
30	98.425	101.258	-29.509	230	98.425	101.257	-26.852	330	98.425	101.256	-28.633
31	98.449	101.238	-29.504	230	98.449	101.237	-26.844	331	98.449	101.230	-28.626
32	98.454	102.401	-23.504	231	98.449	102.399	-25.963	332		102.400	-28.020
33	98.776	102.400	-28.022	232	98.778	102.407	-25.173	333	98.454 98.777	102.407	-26.956
34	98.808	104.509	-27.855	233	98.809	104.508	-26.901	334		104.509	-28.684
35									98.809		
	98.857	105.469	-29.563	235	98.857	105.467	-26.901	335	98.857	105.468	-28.684
36 37	98.825 99.366	105.474 106.556	-27.829 -28.116	236 237	98.827 99.367	105.473 106.555	-25.169 -25.455	336 337	98.826 99.366	105.474 106.556	-26.951 -27.238
38			-28.477	237				338			
39	99.364 99.370	106.553 106.553	-28.935	238	99.365 99.371	106.552 106.553	-25.816 -26.274	339	99.366 99.370	106.553 106.553	-27.599 -28.056
40	99.371	106.545	-29.351	239	99.372	106.545	-26.690	340	99.373	106.544	-28.473
40	100.130	106.531	-29.345	240	100.130	106.532	-26.685	340	100.129	106.531	-28.466
41	100.130	106.542	-28.935	241	100.130	106.542	-26.275	341	100.129	106.542	-28.058
42		ot extracte		242		t extracte		343	100.125	106.544	-27.594
44	100.126	106.547	-28.115	243	100.129	106.546	-25.456	343	100.128	106.547	-27.237
44	100.120	106.536	-28.113	244	100.125	106.536	-25.458	344	100.125	106.535	-27.237
45	100.884	106.535	-28.117	245	100.885	106.536	-25.816	345	100.888	106.535	-27.230
40	100.888	106.533	-28.842	240	100.887	106.534	-25.810	340	100.888	106.534	-27.961
47	100.885	106.518	-29.349	247	100.885	106.518	-26.690	348	100.885	106.518	-28.468
40	101.640	106.493	-29.349	248	101.641	106.493	-26.690	349	101.641	106.493	-28.468
50	101.638	106.502	-28.843	249	101.640	106.502	-26.185	349	101.639	106.502	-27.963
51	101.641	106.502	-28.476	250	101.641	106.502	-25.818	351	101.641	106.502	-27.596
52	101.643	106.509	-28.113	251	101.641	106.508	-25.454	352	101.644	106.508	-27.231
52	102.458	105.981	-28.288	252	102.460	105.980	-25.635	353	102.460	105.979	-27.413
54	102.438	105.981	-28.931	253		105.983		353		105.982	
55	102.445	105.008	-28.932	255		105.008		355	102.430	105.008	-28.050
56	102.428	105.012	-28.287	255		105.012		355	102.425	105.011	-27.413
57	98.379	99.058	-28.095	257		t extracte		357	98.380	99.057	-27.218
58	98.377	99.057	-28.324	258		t extracte		358	98.377	99.057	-27.218
59	98.400	100.388	-28.324	259	98.400	100.387		359	98.399	100.387	-27.447
- 59 60	98.400	100.388	-28.094	259		t extracte		360	98.402	100.387	-27.217
61	98.4402	100.389	-28.110	261	98.440	101.722	-25.452	361	98.441	101.722	-27.232
62	98.440	101.722	-28.363	261	98.440	101.722	-25.705	361	98.437	101.722	-27.485
63	98.473	101.719	-28.110	262	98.437	101.720		363	98.473	101.719	-27.232
	98.473		-28.110	263	98.473			303			
64 65		103.046 ot extracte		264		103.047		365	98.472 101.280	103.046 98.949	-27.486 -28.961
66				265	99.965	extracte	-27.183	366	99.965	98.899	-28.963
67		ot extracte ot extracte		200		t extracte		300	101.328	98.899	-28.963
68	100.068	105.602	-29.839	267				367	101.328	105.615	-28.962
						ot extracte					
69 70	101.017	105.601	-29.836 -29.842	269		ot extracte		369		t extracte	
70	100.951	104.460	-29.842	270	nc nc	ot extracte	20	370	nc	ot extracte	20

Table 4 19	The Faro	transformed	scanner	target	centroids
1 auto 4.19	The Fall	uansiormeu	scanner	larger	centrolus

Targets that were scanned but not extracted in the point cloud, are noted in the table. Figure 4.7 shows an example of why a target could not be extracted, in this case the brightness of the light diminished the black and white checker pattern Target 43 at setup 200 (a) and from setup 200 the horizontal angel from the scanner to targets 57, 58 and 60 were no good(b).

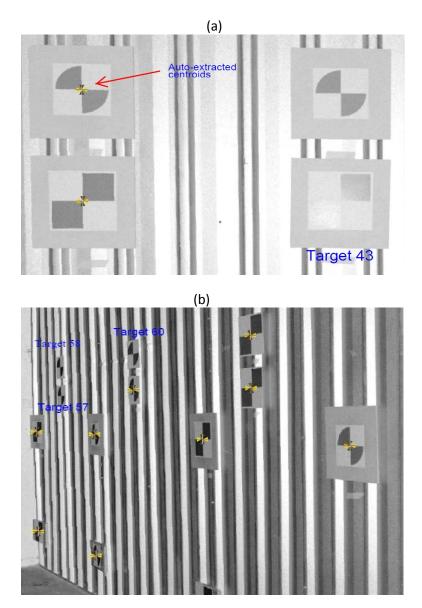


Figure 4.7 Targets not extracted from point cloud

Step 2 - Table 4.19 showed the XYZ values for each target . The Z values have not been transformed to ground values. This will be done by calculating the difference between the true target elevation and the scanner target elevation. This should be the same value for all the targets from that setup. If there is a variation in the difference of +- 2mm then the average will be calculated and adopted.

For setup 100,the value of 39.844 need to be added to all the Z values to have ground elevations.

Signalised Target RL - Scanner Target RL = Difference in RL (Constant)

$$10.635 - (-29.209) = 39.844$$

For setup 200, the value of 37.191 need to be added to all the Z values to have ground elevations.

Signalised Target RL - Scanner Target RL = Difference in RL (Constant)

$$10.635 - (-26.556) = 37.191$$

For setup 300 it is 38.967.

Signalised Target RL - Scanner Target RL = Difference in RL (Constant) 10.635 - (-28.332) = 38.967

The constants from each setup have been checked by reversing the calculation to be : (the scanner target RL - calculated Z value of that target = constant)

Table 4.20 shows the final scanner target centroids with the adjusted heights as well.

				canne			olds co							tem.
	anner Da		100				ata Setup	200			anner Da		300	
Target		Y		Z	Target	X	Y		Z	Target	X	Y		Z
1	102.305	100.501	-29.209	10.635	201	102.305		-26.556		301	102.305		-28.332	10.635
2	102.317	100.500	-28.608	11.236	202	102.317		-25.955		302	102.317		-	11.235
3	102.318		-28.131	11.713	203	102.319		-25.480		303		100.500		11.711
4	102.316	100.499	-27.683	12.161	204	102.318	100.499	-25.032	12.159	304	102.317	100.499	-26.808	12.159
5	102.296	99.566	-27.680	12.164	205	102.298	99.566	-25.029	12.162	305	102.297	99.566	-26.804	12.163
6	102.300	99.568	-28.134	11.710	206	102.301	99.566	-25.482	11.709	306	102.301	99.567	-27.258	11.709
7	102.299	99.569	-28.606	11.238	207	102.300	99.569	-25.954	11.237	307	102.300	99.569	-27.730	11.237
8	102.284	99.570	-29.211	10.633	208	102.285	99.570	-26.559	10.632	308	102.285	99.570	-28.335	10.632
9	102.267	99.038	-29.531	10.313	209	102.267	99.038	-26.881	10.310	309	102.267	99.035	-28.655	10.312
10	102.278	99.033	-28.854	10.990	210	102.279	99.034	-26.202		310	102.278	99.032	-27.978	10.989
11	102.274	99.033	-28.421	11.423	211	102.276	99.034	-25.770		311	102.275	99.034	-27.545	11.422
12	102.274	99.032	-28.054	11.790	212	102.275	99.032	-25.403		312	102.275	99.032	-27.177	11.720
13	102.274	98.334	-28.054	11.792	212	102.275	98.332	-25.401		313	102.275	98.331	-27.175	11.792
												-		
14	102.227	98.333	-28.421	11.423	214	102.229	98.332	-25.770		314	102.229	98.331	-27.545	11.422
15	102.228	98.332	-28.854	10.990	215	102.230	98.331	-26.203		315	102.229	98.329		10.989
16	102.220	98.331	-29.531	10.313	216	102.221	98.328	-26.880		316	102.221	98.326		10.312
17	101.899	98.008	-28.625	11.219	217	101.899	98.007	-25.972	11.219	317	101.899	98.007	-27.748	11.219
18	101.896	98.004	-27.775	12.069	218	101.899	98.002	-25.124	12.067	318	101.898	98.003	-26.898	12.069
19	101.304	98.002	-27.774	12.070	219	101.306	98.001	-25.122	12.069	319	101.305	98.001	-26.901	12.066
20	101.309	98.010	-28.617	11.227	220	101.309	98.010	-25.964		320	101.309	98.010	-27.743	11.224
21	100.537	97.887	-28.813	11.031	221	100.538	97.887	-26.160		321	100.537	97.887	-27.939	11.028
22	100.529	97.902	-29.439	10.405	222	100.539	97.902	-26.786		322	100.537	97.903	-28.566	10.401
22	99.399				222	99.399				323			-27.939	11.028
		97.883	-28.813	11.031			97.883	-26.159			99.400	97.883		
24	99.399	97.897	-29.448	10.396	224	99.400	97.897	-26.794		324	99.400	97.897	-28.573	10.394
25	98.355	98.404	-28.623	11.221	225	98.354	98.399	-25.966		325	98.355	98.403	-27.746	11.221
26	98.358	98.404	-29.511	10.333	226	98.355	98.397	-26.853	10.338	326	98.358	98.405	-28.633	10.334
27	98.384	99.722	-29.509	10.335	227	98.383	99.720	-26.852	10.339	327	98.384	99.721	-28.632	10.335
28	98.383	99.721	-28.622	11.222	228	98.382	99.721	-25.964	11.227	328	98.382	99.720	-27.745	11.222
29	98.425	101.258	-28.622	11.222	229	98.425	101.258	-25.964	11.227	329	98.425	101.258	-27.745	11.222
30	98.426	101.258	-29.509	10.335	230	98.425	101.257	-26.852	10.339	330	98.426	101.256	-28.633	10.334
31	98.449	102.401	-29.504	10.340	231	98.449		-26.844		331	98.449	102.400	-28.626	10.341
32	98.454		-28.622	11.222	232	98.454		-25.963		332	98.454	102.407	-27.744	11.223
					232					333	98.777			
33	98.776		-27.833	12.011		98.778		-25.173					-26.956	12.011
34	98.808	104.509	-29.562	10.282	234	98.809		-26.901		334	98.809	104.509	-28.684	10.283
35	98.857	105.469	-29.563	10.281	235	98.857	105.467	-26.901	10.290	335	98.857	105.468	-28.684	10.283
36	98.825	105.474	-27.829	12.015	236	98.827	105.473	-25.169	12.022	336	98.826	105.474	-26.951	12.016
37	99.366	106.556	-28.116	11.728	237	99.367	106.555	-25.455	11.736	337	99.366	106.556	-27.238	11.729
38	99.364	106.553	-28.477	11.367	238	99.365	106.552	-25.816	11.375	338	99.366	106.553	-27.599	11.368
39	99.370	106.553	-28.935	10.909	239	99.371	106.553	-26.274	10.917	339	99.370	106.553	-28.056	10.911
40	99.371	106.545	-29.351	10.493	240	99.372	106.545	-26.690	10.501	340	99.373	106.544	-28.473	10.494
41	100.130	106.531	-29.345	10.499	241	100.130	106.532	-26.685	10.506	341	100.129	106.531	-28.466	10.501
42	100.129	106.542	-28.935	10.909	242	100.129		-26.275	10.916	342	100.129	106.542	-28.058	10.909
43	100.125	not ext		10.505	243	100.125	not ext		10.510	343	100.128	106.544	-27.594	11.373
	100.126	106.547		11.729		100.129			11.735					
44			-28.115		244					344	100.129	106.547	-27.237	11.730
45	100.884	106.536	-28.117	11.727	245	100.885	106.536	-25.458		345	100.886		-27.236	11.731
46		106.535	-28.475		246	100.887				346	100.888			
47		106.533			247		106.533			347		106.533		
48		106.518			248	100.895	106.518	-26.690	10.501	348	100.897	106.518	-28.468	10.499
49	101.640	106.493	-29.349	10.495	249	101.641	106.493	-26.690	10.501	349	101.641	106.493	-28.468	10.499
50	101.638	106.502	-28.843	11.001	250	101.640	106.502	-26.185	11.006	350	101.639	106.502	-27.963	11.004
51	101.641	106.507	-28.476	11.368	251	101.641	106.507	-25.818	11.373	351	101.641	106.506	-27.596	11.371
52	101.643	106.509	-28.113	11.731	252	101.643	106.508	-25.454	11.737	352	101.644	106.508	-27.231	11.736
53		105.981			253	102.460	105.980	-25.635		353		105.979		11.554
54		105.984			254		105.983			354		105.982		
55		105.008			255		105.008			355		105.008		
55	102.428	105.008		11.557	255		105.008			355	102.423			11.554
					-	102.442	I I		11.330					
57	98.379		-28.095		257		not ext			357	98.380			
58	98.377	99.057	-28.324		258		not ext			358	98.377	99.057	-27.447	
59		100.388			259	98.400		-25.666	11.525	359	98.399			
60	98.402	100.389			260		not ext			360	98.402	100.389	-27.217	11.750
61		101.722			261	98.440		-25.452		361	98.441			
62	98.437	101.719	-28.363	11.481	262	98.437	101.720	-25.705	11.486	362	98.437	101.719	-27.485	11.482
63	98.473	103.048	-28.110	11.734	263	98.473	103.048	-25.452	11.739	363	98.473	103.047	-27.232	11.735
64	98.471	103.046	-28.363	11.481	264	98.472	103.047	-25.705	11.486	364	98.472	103.046	-27.486	11.481
65		not ext	racted		265		not ext	racted		365	101.280	98.949	-28.961	10.006
66		not ext			266	99.965		-27.183	10.008	366	99.965			
67		not ext			267		not ext			367	101.328		-28.962	
		AU					- AU	. access					20.002	
69	100.069	105 602		10.005	268		not ext	racted	1	362	100 069	105 615	-28 964	10 002
68 60		105.602	-29.839		268		not ext			368	100.068		-28.964	10.003
68 69 70	100.068 101.017 100.951	105.602 105.601 104.460	-29.839 -29.836		268 269 270		not ext not ext	racted		368 369 370	100.068	105.615 not ext not ext	racted	10.003

Table 4.20 Final Scanner target centroids coordinated to the indoor calibration System.

Step 3 - In this step the final table will be produced. Using Table 4.20, the average of all the Targets from each setup will be done. These coordinates will be compared to the signalized values and then any targets that have not fallen within the +-2mm tolerance, will not be used further in the calibration. Refer to table 4.21

			•			ner and	ISIGIIAII	zeu Tai	gervan	JES
	aro Focus 3	1	1			ALISED		- 100 - 10		- 1// -
Target		Y	Z	Target	X	Y	Z	Diff X	Diff Y	Diff Z
1 2	102.3050 102.3170	100.5000 100.5000	10.6350 11.2357	1 2	102.3050 102.3180	100.5002 100.5003	10.6352 11.2355	0	0	0
3	102.3170	100.3000	11.2357	3	102.3180		11.7117	-1	0	0
4	102.3183	100.4990	12.1597	4	102.3192	100.4993	12.1597	-1	0	0
5	102.3170	99.5660	12.1537	-4	102.3197	99.5660	12.1537	-3	0	0
6	102.2070	99.5670	11.7093	6	102.3013	99.5675	11.7097	-1	0	0
7	102.3007	99.5690	11.2373	7	102.3015	99.5688	11.2370	-1	0	0
8	102.2337	99.5700	10.6323	8	102.3003	99.5703	10.6320	1	0	0
9	102.2670	99.0370	10.3117	9	102.2677	99.0365	10.3123	-1	1	-1
10	102.2783	99.0330	10.9893	10	102.2790	99.0332	10.9893	-1	0	0
11	102.2750	99.0337	11.4220	11	102.2747	99.0343	11.4217	0	-1	0
12	102.2747	99.0320	11.7893	12	102.2752	99.0317	11.7893	0	0	0
13	102.2290	98.3323	11.7913	13	102.2297	98.3325	11.7915	-1	0	0
14	102.2283	98.3320	11.4220	14		not signalised			-	
15	102.2290	98.3307	10.9890	15	102.2300	98.3295	10.9900	-1	1	-1
16	102.2207	98.3283	10.3120	16		not signalised				
17	101.8990	98.0073	11.2190	17	101.8993	98.0077	11.2193	0	0	0
18	101.8977	98.0030	12.0683	18	101.8987	98.0028	12.0685	-1	0	0
19	101.3050	98.0013	12.0683	19	101.3065	98.0013	12.0700	-1	0	-2
20	101.3090	98.0100	11.2260	20	101.3093	98.0100	11.2282	0	0	-2
21	100.5373	97.8870	11.0300	21	100.5380	97.8862	11.0318	-1	1	-2
22	100.5287	97.9023	10.4037	22	100.5290	97.9022	10.4058	0	0	-2
23	99.3993	97.8830	11.0303	23	99.3992	97.8820	11.0323	0	1	-2
24	99.3997	97.8970	10.3957	24	99.3998	97.8967	10.3980	0	0	-2
25	98.3547	98.4020	11.2223	25	98.3547	98.4017	11.2257	0	0	-3
26	98.3570	98.4020	10.3350	26		not signalised				
27	98.3837	99.7210	10.3363	27	98.3835	99.7210	10.3385	0	0	-2
28	98.3823	99.7207	11.2237	28	98.3825	99.7193	11.2263	0	1	-3
29	98.4250	101.2580	11.2237	29	98.4255	101.2578	11.2255	-1	0	-2
30	98.4257	101.2570	10.3360	30	98.4252	101.2558	10.3382	0	1	-2
31	98.4490	102.4000	10.3427	31	98.4488	102.3997	10.3447	0	0	-2
32	98.4540	102.4067	11.2243	32	98.4533	102.4067	11.2267	1	0	-2
33	98.7770	104.5030	12.0133	33	98.7760	104.5040	12.0135	1	-1	0
34	98.8087	104.5087	10.2850	34	98.8082	104.5088	10.2862	1	0	-1
35	98.8570	105.4680	10.2847	35	98.8567	105.4672	10.2853	0	1	-1
36	98.8260	105.4737	12.0177	36	98.8258	105.4742	12.0185	0	-1	-1
37	99.3663	106.5557	11.7310	37	99.3657	106.5565	11.7317	1	-1	-1
38	99.3650	106.5527	11.3700	38	99.3653	106.5528	11.3703	0	0	0
39	99.3703	106.5530	10.9123	39	99.3703	106.5533	10.9122	0	0	0
40	99.3720	106.5447	10.4960	40	99.3720	106.5443	10.4960	0	0	0
41	100.1297	106.5313	10.5020	41	100.1297	106.5318	10.5018	0	-1	0
42	100.1290	106.5420	10.9113	42	100.1290	106.5422	10.9115	0	0	0
43	100.1280	106.5440	11.3730	43	100.1280	106.5440	11.3745	0	0	-2
44	100.1280	106.5467	11.7313	44	100.1285	106.5470	11.7312	-1	0	0
45	100.8850	106.5357	11.7303	45	100.8857	106.5357	11.7290	-1	0	1
46	100.8870	106.5343	11.3723	46	100.8872	106.5335	11.3702	0	1	2
47	100.8887	106.5330	11.0053	47	100.8892	106.5322	11.0033	-1	1	2
48	100.8957	106.5180	10.4983	48	100.8952	106.5165	10.4952	1	1	3
49	101.6407	106.4930	10.4983	49		not signalised				<u> </u>
50		106.5020		50		not signalised				<u> </u>
51	101.6410	106.5067	11.3707	51		not signalised				<u> </u>
52	101.6433	106.5083		52 53	102 4602	not signalised		-1	0	4
53 54	102.4593 102.4497	105.9800 105.9830	11.5553 10.9127	53 54	102.4602 102.4498	105.9803 105.9830	11.5512 10.9077	-1	0	4 5
54	102.4497	105.0080	10.9127	54	102.4498		10.9077	0	0	3
55	102.4287	105.0080	11.5557	55	102.4283	105.0077	11.5530	0	0	3
50	98.3795	99.0575	11.3337	50	98.3802	99.0572	11.7543	-1	0	-5
58	98.7170	99.0570	11.5200	58	98.3772	99.0563	11.7343	-	1	-5
59	98.3997	100.3873	11.5220	59	98.4007	100.3875	11.5248	-1	0	-3
60	98.4020	100.3873	11.7500	60	98.4007	100.3875	11.7545	-1	0	-5
61	98.4403	101.7220	11.7360	61		not signalised		-	Ť	
62	98.4370	101.7220	11.4830	62	98.4363	101.7197	11.4857	1	0	-3
63	98.4730	103.0477	11.7360	63	98.4733	103.0470	11.7377	0	1	-2
64	98.4717	103.0477	11.4827	64	98.4733	103.0470	11.4843	0	1	-2
65	101.2800	98.9490	10.0060	65	101.2800	98.9493	10.0087	0	0	-3
66	99.9650	98.9000	10.0060	66	99.9648	98.8990	10.0080	0	1	-2
67	101.3280	99.9200	10.0050	67	101.3270	99.9177	10.0067	1	2	-2
68	100.0680	105.6085	10.0040	68	100.0680	105.6143	10.0045	0	-6	0
69	101.0170	105.6010		69	101.0188		10.0073	-2	-7	1
70		104.4600				104.4607			-1	-1
								-	-	-

Table 4.21 Comparison of Final scanner and signalized Target values Faro Focus 3D X330 Scanner SIGNALISED

Step 4 - From Table 4.21 target's 4, 25, 28, 48, 53-60, 62, 65, 68 and 69 have fallen out of tolerance, this cannot be explained but will be analysed further. These targets will not be used further in the calibration calculations. 77% of all targets scanned from three different setups have fallen within the +- 2mm tolerance this is an excellent result. Scanned Targets 14, 16, 26, 49-52 and 61 will also not be used as these targets were not signalised by the STS's. This leaves a Total of 46 targets to use in the calibration. Further to this there is one more independent check remaining to compare the measured joins with the new coordinates from Table 4.121. This final calculation discovered the join between targets 58-59, 9-16, 61-62, 25-28 and 51-50 are out of tolerance so these targets will be discarded. This gives a new Total of 45 Targets for calibration. Now Table 4.22 the final reductions Table will be produced showing Scanned targets to used in the calibration.

					Faro Focu	is 3D X330					
Target	Х	Y	Z	Target	X	Y	Z	Target	Х	Y	Z
1	102.3050	100.5000	10.6350	20	101.3090	98.0100	11.2260	38	99.3650	106.5527	11.3700
2	102.3170	100.5000	11.2357	21	100.5373	97.8870	11.0300	39	99.3703	106.5530	10.9123
3	102.3183	100.4993	11.7117	22	100.5287	97.9023	10.4037	40	99.3720	106.5447	10.4960
5	102.2970	99.5660	12.1630	23	99.3993	97.8830	11.0303	41	100.1297	106.5313	10.5020
6	102.3007	99.5670	11.7093	24	99.3997	97.8970	10.3957	42	100.1290	106.5420	10.9113
7	102.2997	99.5690	11.2373	27	98.3837	99.7210	10.3363	43	100.1280	106.5440	11.3730
8	102.2847	99.5700	10.6323	29	98.4250	101.2580	11.2237	44	100.1280	106.5467	11.7313
10	102.2783	99.0330	10.9893	30	98.4257	101.2570	10.3360	45	100.8850	106.5357	11.7303
11	102.2750	99.0337	11.4220	31	98.4490	102.4000	10.3427	46	100.8870	106.5343	11.3723
12	102.2747	99.0320	11.7893	32	98.4540	102.4067	11.2243	47	100.8887	106.5330	11.0053
13	102.2290	98.3323	11.7913	33	98.7770	104.5030	12.0133	63	98.4730	103.0477	11.7360
15	102.2290	98.3307	10.9890	34	98.8087	104.5087	10.2850	64	98.4717	103.0463	11.4827
17	101.8990	98.0073	11.2190	35	98.8570	105.4680	10.2847	66	99.9650	98.9000	10.0060
18	101.8977	98.0030	12.0683	36	98.8260	105.4737	12.0177	67	101.3280	99.9200	10.0050
19	101.3050	98.0013	12.0683	37	99.3663	106.5557	11.7310	70	100.9510	104.4600	10.0020

Table 4.22 Final Faro Focus 3D X330 Scanned Target Coordinates

Now that all the reductions have been completed we can compare the data from the two scanners. 42 Target's have been compared on the X,Y and Z values from both Scanners. 4 targets out of the 42 are outside the +-2mm tolerance. 38 targets are within -1 to 2mm, this is a very good result. Overall 54% of the total targets installed were used for the final scanner to scanner comparison Table 4.23. In the reductions section of this chapter targets that were not used have been explained.

	Leica P	20 Scanner			Faro Fo	cus 3D X330)	Diff X	Diff Y	Diff Z
Target	х	Y	Z	Target	х	Y	Z	(mm)	(mm)	(mm)
1	102.3055	100.5000	10.6350	1	102.3050	100.5000	10.6350	0	0	0
2	102.3180	100.5000	11.2360	2	102.3170	100.5000	11.2357	1	0	0
3	102.3190	100.4990	11.7120	3	102.3183	100.4993	11.7117	1	0	0
4	102.3187	100.4993	12.1600	4						
5	102.2980	99.5663	12.1637	5	102.2970	99.5660	12.1630	1	0	1
6	102.3010	99.5680	11.7100	6	102.3007	99.5670	11.7093	0	1	1
	102.3010	33.3080	11.7100						-	-
7				7	102.2997	99.5690	11.2373	-		-
8	102.2850	99.5693	10.6320	8	102.2847	99.5700	10.6323	0	-1	0
9	102.2673	99.0373	10.3120	9						
10				10	102.2783	99.0330	10.9893			
11	102.2753	99.0340	11.4223	11	102.2750	99.0337	11.4220	0	0	0
12	102.2750	99.0323	11.7897	12	102.2747	99.0320	11.7893	0	0	0
13	102.2290	98.3330	11.7920	13	102.2290	98.3323	11.7913	0	1	1
14				14						
15				15	102.2290	98.3307	10.9890			
16				16	102.2250		10.0000			
	101 0000	08.0080	11 2107		101 0000	08 0072	11 2100	0	1	1
17	101.8990	98.0080	11.2197	17	101.8990	98.0073	11.2190	0	1	1
18	101.8990	98.0033	12.0690	18	101.8977	98.0030	12.0683	1	0	1
19	101.3063	98.0020	12.0707	19	101.3050	98.0013	12.0683	1	1	2
20	101.3090	98.0100	11.2287	20	101.3090	98.0100	11.2260	0	0	3
21	100.5377	97.8873	11.0320	21	100.5373	97.8870	11.0300	0	0	2
22	100.5290	97.9017	10.4060	22	100.5287	97.9023	10.4037	0	-1	2
23	99.3997	97.8827	11.0327	23	99.3993	97.8830	11.0303	0	0	2
24	99.4000	97.8963	10.3977	24	99.3997	97.8970	10.3957	0	-1	2
25				25				<u> </u>	-	<u> </u>
26				25						<u> </u>
	00 2040	00 7000	10.2200		00 2027	00 7010	10 2262	0	1	2
27	98.3840	99.7220	10.3390	27	98.3837	99.7210	10.3363	0	1	3
28	98.3837	99.7197	11.2270	28						
29	98.4260	101.2577	11.2260	29	98.4250	101.2580	11.2237	1	0	2
30	98.4250	101.2567	10.3380	30	98.4257	101.2570	10.3360	-1	0	2
31	98.4493	102.3997	10.3443	31	98.4490	102.4000	10.3427	0	0	2
32	98.4550	102.4060	11.2270	32	98.4540	102.4067	11.2243	1	-1	3
33	98.7773	104.5033	12.0143	33	98.7770	104.5030	12.0133	0	0	1
34	98.8080	104.5085	10.2860	34	98.8087	104.5087	10.2850	-1	0	1
35	98.8560	105.4670	10.2845	35	98.8570	105.4680	10.2847	-1	-1	0
36		105.4733	12.0180	36				0		0
	98.8260				98.8260	105.4737	12.0177		0	
37	99.3660	106.5560	11.7313	37	99.3663	106.5557	11.7310	0	0	0
38	99.3653	106.5530	11.3700	38	99.3650	106.5527	11.3700	0	0	0
39	99.3710	106.5530	10.9117	39	99.3703	106.5530	10.9123	1	0	-1
40	99.3720	106.5450	10.4957	40	99.3720	106.5447	10.4960	0	0	0
41	100.1300	106.5320	10.5010	41	100.1297	106.5313	10.5020	0	1	-1
42	100.1293	106.5420	10.9113	42	100.1290	106.5420	10.9113	0	0	0
43	100.1280	106.5440	11.3747	43	100.1280	106.5440	11.3730	0	0	2
44	100.1290	106.5470	11.7310	44	100.1280	106.5467	11.7313	1	0	0
45	100.8860	106.5363	11.7293	45	100.8850	106.5357	11.7303	1	1	-1
46	100.8873		11.3710	46	100.8870	106.5343	11.3723	0	0	-1
47	100.8893		11.0040	47	100.8887	106.5330	11.0053	1	0	-1
					100.0007	100.5550	11.0055	-		-1
48	100.8957	106.5183	10.4957	48						<u> </u>
49				49						<u> </u>
50				50						
51				51						L
52				52						
53	102.4610	105.9800	11.5517	53						
54	102.4505	105.9825	10.9080	54						
55	102.4293	105.0077	10.9080	55						
56	102.4427	105.0117	11.5530	56						
57	98.3805	99.0575	11.7545	57						
58	98.3780	99.0570	11.5255	58						
59	98.4007	100.3877	11.5260	59				1		<u> </u>
								-		<u> </u>
60	98.4037	100.3887	11.7550	60						
61				61						
62	98.4377	101.7197	11.4853	62						L
63	98.4733	103.0477	11.7380	63	98.4730	103.0477	11.7360	0	0	2
64	98.4713	103.0457	11.4850	64	98.4717	103.0463	11.4827	0	-1	2
65	101.2797	98.9493	10.0090	65						
66	99.9650	98.8995	10.0080	66	99.9650	98.9000	10.0060	0	-1	2
67	101.3270	99.9175	10.0080	67	101.3280	99.9200	10.0050	-1	-2	3
					101.0200	5515200	20.0000	<u> </u>	-	
68	100.0680	105.6140	10.0035	66						<u> </u>
69	101.0185	105.6070	10.0070	67				<u> </u>		
70	100.9520	104.4600	10.0030	70	100.9510	104.4600	10.0020	1	0	1

Table 4.23 Faro Focus 3D X330 & P20 Comparisons

4.4 Scan and Track Survey Comparison

One of the objectives for this research was if the TLS conformed with Sydney Trains Specifications, a section of rail track in the rail corridor will be scanned from two positions. Due to safety constraints only one position was used. Figure 4.8 (a) shows the registered point cloud overlayed with independently measured survey points using a Leica TS15. The same Survey control was used for this comparison as described in detail in Chapter 3. Point 810 was one of the survey radiation on the catenary overhead wire attached to a mast. The figure clearly shows this point has fallen on the invert of the wire as it was radiated. Point 925 and 926 were survey points of the centre of two bolts exactly as they have been scanned. These were very good results .

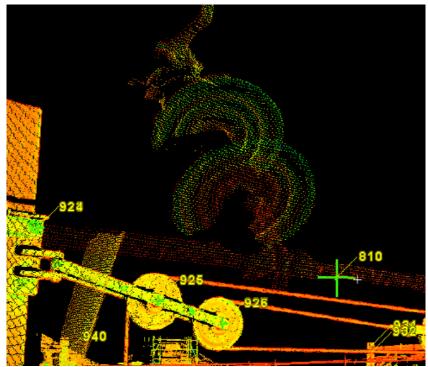


Figure 4.8 Survey Points overlayed onto point cloud capture in Cyclone 9.0.

The scan time for this scene capture was 6 minutes and survey time was 45 minutes. A significant difference. Accuracy is certainly not an issue but the coordination of safety personnel and survey crew combined with gaining access to the danger zone had a tremendous impact on the time taken to complete the task. Scanning allows measurements in the form of a scene capture remotely from a safe place by a single individual. This is assuming scan targets have been permanently installed within rail corridor for resection purposes. Current survey methods require most times the direct measurement to a circular prism to define a feature in 3D.

The Faro focus 3D X330 scanner was also used for this scene capture. The scanner was setup on a carbon fibre camera tripod and during the scan there was a change in weather conditions in the wind. These two unfortunate factors had an impact to the final point cloud. The point cloud was warped and the comparison to the survey points done with the Leica P20 was not able to be completed with the Faro.

4.5 Discussion

All the ground work done to construct solid, strong targets, assisted in the accuracy of the results. In previous research the improvement of a scanner from before and after calibration was expressed as a percentage of improvement. This research using current model scanners has shown results that are so good, the before and after accuracy improvement method might no longer be required based on the results from this work on certain scanners.

Disappointing outcomes with reflectorless mode on the Survey Total Stations. This functionality is not pin point accuracy, as the size of the laser dot varies in distortion due to incident angles it effects the accuracy of the measurement. It is noted that manufactures recommend measurements are not made when the incident angles are tight but in real word Survey situations you need to make measurements everywhere. You cannot be restricted by instruments that do not maintain accuracy in difficult scenarios.

During the signalisation process of Targets in Site A, from certain ground station positions, pointing to the centre of targets and the SSP's was difficult - the vertical sighting angle was very steep to sight through the telescope. In consultation with CR Kennedy during the second calibration facility target installation, the laser of the TS15 STS was tested to confirm the pin point cross hairs when sighting to a target coincide with the laser dot being located in the centre of the target as well. If it was off centre the instrument will be adjusted in the CR Kennedy service department. From the disturbed shape of the laser dot on some of the photographs of the targets, the laser will need to be tested over 50m. The laser pointer and the reflectorless laser is one and the same and it was correct no adjustment was required.

The comparison of the Faro Focus 3D X330 and the P20 was excellent. 90% of the targets used to compare scanner to scanner were well within the tolerance range of +- 2mm. It is interesting comparing the Leica P20 to the Signalised targets the two targets that did not agree were Faro scanner targets. With the Faro there was a great amount of targets that did not agree with the Signalised targets and the majority were Leica targets.

The results show that the STS data compared to the Scanner data are within +-2mm in 3D positional coordinates. This result shows that the Terrestrial Laser Scanners Leica P20 and Faro Focus 3D X330 are as accurate as the Survey Total Stations therefore conforms with Sydney Trains Specifications and can be used in the rail corridor. Of course scans taken in the rail corridor and a point cloud in the deliverable it will need to submit an accuracy verification conformance. A comparisons of signalised versus scanned targets installed in an indoor room, to show the scanner being used for the measurements conforms with Specifications this research has shown could be acceptable.

Chapter Five - Conclusion and Recommendation

5.1 Conclusion

In conclusion the aims of the project were achieved. Documented working accuracies have been provided for the Leica P20 and faro Focus 3D X330 and shows conformance with Sydney Trains Specifications. The Track Control marks (TCM's) have been scanned accurately indicating no interference by the installed SSP's in the centre of the scanner targets (both Leica and Faro) during the centroid extraction process. The scan time and mainstream survey methods to capture measurements of a section of rail track has also been documented.

The objectives of the research work have also been achieved:

- A literature review on TLS and current application within a Railway environment were completed and documented
- A calibration indoor target network was designed and established at site A and then Site B
- Various custom and manufactured targets were constructed, modified and installed for scanning
- An indoor self calibration of two scanners was completed using all the installed targets. The Leica P20 and the Faro Focus 3D X330
- All calibration room indoor targets were signalised by two Survey Total Stations. The Leica TS15 and TS30 prior to scanning.
- A section of track was scanned by both scanners and a comparison of the point clouds and surveyed features have been illustrated.
- One of the findings in the research was that the manufactured scan Targets can have survey marks, in this case SSP's installed in the centre. The centroid of the target can still be automatically extracted even if a steel pin is installed in the centre of the algorithmic pattern. This was a great discovery which impacts the method of installation of Sydney Trains Survey Control Marks and Track control Marks in the future so they can be used for scanning.
- This research also verified that different brand scanners can recognise the checker scan targets of other manufactures and extract there centres.
- All other findings have been documented.

The ppm accuracy has not been checked due to the short lengths of the baselines, in the indoor calibration room. The lines being less than 10 meters. Sydney Trains specifications state the acceptable angular accuracy is < 1.5". The TLS measures the 3D spatial position and exported the raw data as coordinates only so the angular accuracy for this work was not determined. This was the case for both scanners used in this work. The results do indicate there is no zero error in the scanner instruments.

5.2 Recommendation

On completed this research the following recommendations can be made:

- TLS must be aligned with a formal calibration test so it can be used on Survey Projects to produce and maintain accurate deliverables. In NSW, it is recommended that the Land Property Information (LPI) further investigate the design, construction and maintenance of a self calibration facility for Terrestrial Laser Scanners.
- Development of documented calibration standard procedures working together with the LPI is also research work that can further investigated.
- It would be interesting to have used another brand Survey Total Station for the reflectorless signalisation of the Targets. Topcon the manufacture of Survey Total Stations, claim that the laser beam in there instrument is a fixed diameter, pin point dot. The size of the laser dot does not change depending on the distance being measured. It is recommended that this should be tested.
- An investigation of the design of rail specific scan targets and permanent installation within the rail corridor is recommended. It will require measuring these new targets with a STS to establish control values first.
- The construct of new targets integrating checker board targets with a glass prism to make it easier to signalise targets in a calibration room would certainly speed the process of signalisation.
- During the construction phase of this project colour tone cards were fitted to Leica GPH1 prism holder. This concept could be tested on an EDM baseline as a check on STS Reflectorless measurements.
- Waveform Digitising (WFD) measuring technology could be investigated. The testing and analysis of WFD was outside the scope of this research but needs to researched especially now that manufactures are introducing it in the new Survey Total Station and scanners.

Chapter Six - References

Abbas, MA, Setan, H, Majid, Z, Lichti, DD & Chong, AK 2013, 'A self-calibration of the Leica ScanStation C10 scanner', in BEIAC 2013 - 2013 IEEE Business Engineering and Industrial Applications Colloquium pp. 262-6,

Alba,M, Longoni,M, Papini,M, Roncoroni,F, Scaioni, M,ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands, September 12-14, 2005

Bae, KH, Litchi,D, 2007, 'ON-SITE SELF-CALIBRATION USING PLANAR FEATURES FOR TERRESTRIAL'. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland

Berenyi, A, Lovas, T & Barsi, A 2010, 'Terrestrial laser scanning in engineering survey: Analysis and application examples', in American Society for Photogrammetry and Remote Sensing Annual Conference 2010: Opportunities for Emerging Geospatial Technologies: pp. 43-50,

Beshr, AAE-W 2013, 'Monitoring Bridge Deformation Using Auto-Correlation Adjustment Technique for Total Station Observations', Positioning, vol. 04, no. 01, pp. 1-7.

Biskup, Arias, Lorenzo, H, Armesto, J, 2007, 'Application of terrestrial laser scanning for shipbuilding'. ISPRS Workshop on Laser Scanning and SilviLaser, Espoo, September 12-14, Finland

C, H, A, U & A, G 2004, 'Litemapper', ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

Cosso, T, Ferrando, I & Orlando, A 2014, 'Surveying and mapping a cave using 3d laser scanner: the open challenge with free and open source software', ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-5, pp. 181-6.

Dold 2005, 'Extended gaussian images for the registration of terrestrial scan data'. ISPRS WG III/3, III/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands

Dos Santos, DR, Dal Poz, AP & Khoshelham, K 2013, 'Indirect georeferencing of terrestrial laser scanning data using control lines', Photogrammetric Record, vol. 28, no. 143, pp. 276-92,

Evans,L2014,APASAssociationofPublicAuthoritySurveyorsConfrence,NSW,http://w ww.apas.org.au/proceedings APAS 2014/ A Proposed Method for Testing Reflectorless EDM Fröhlich , C, Mettenleiter, M. 2004, 'TLS new perspective in 3d surveying'. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVI - 8/W2

García-San-Miguel, D & Lerma, JL 2013, 'Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 79, pp. 122-36,

Gikas, V 2012, 'Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation', Sensors (Basel), vol. 12, no. 8, pp. 11249-70, item: 23112655.

Gordon, SJ & Lichti, DD 2004, 'Terrestrial laser scanners with a narrow field of view: The effect on 3D resection solutions', Survey Review, vol. 37, no. 292, pp. 448-68,

Gordon, SJ & Lichti, DD 2007, 'Modeling terrestrial laser scanner data for precise structural deformation measurement', Journal of Surveying Engineering, vol. 133, no. 2, pp. 72-80, GOTTWALD 2008, 'Feild Procedure for Testing TLS'.

GRÄFE 2008, 'Kinematic 3d laser scanning of roads and rail'. International Conference on Machine Control & Guidance.

Grimm 2013, '<Leica Nova MS50>' Leica Geosystems

Hanke K, Grussenmeyer, P, Grimm-Pitzinger, A, Weinold, T, 2008, 'First experiences with the trimble gx-2008'. ISPRS Comm. V Symposium, Germany. XXXVI, pp.1-6.

Litchi,D, Harvey,B, 2002, 'The effects of reflecting surface material properties on TOF LS', ISPRS

Hoffmeister, D 2014, 'Fissebility of TLS in Coastal Geomorphology, Agronomy,. PhD-Thesis, Institute of Geography, University of Cologne

Wunderlich ,I, Wasmeier,Ohlmann-Lauber,J, Schäfer,T, Reidl,F, 2013,. Objective Specifications of Terrestrial Laserscanners – A Contribution of the Geodetic Laboratory at the Technische Universität München

Inokuchi, S 1998, 'Recent Trend of Development and Application in Range Imaging', in Workshop on Machine Vision Applications: proceedings of theWorkshop on Machine Vision Applications Makuhari, Chiba, Japan, pp. 359-66.

Izvoltova, J, Pisca, P, Kotka, V & Mancovic, M 2013, '3D laser scanning of railway line', Komunikacie, vol. 15, no. 4, pp. 80-4

Kersten, S, Thomas, P, Mechelke, K, Harald S 2009, 'Methods for Geometric Accuracy'.

Land Property Information NSW 'Surveyor's general 2009, Direction5 'Verification of distance measuring equipment',

http://www.lpi.nsw.gov.au/__data/assets/pdf_file/0020/25940/sgddir5_Ver2009.pdf

Lam, SYW 2006, 'Application of terrestrial laser scanning methodology in geometric tolerances analysis of tunnel structures', Tunnelling and Underground Space Technology, vol. 21, no. 3-4,

Lichti, DD & Jamtsho, S 2006, 'Angular resolution of terrestrial laser scanners', Photogrammetric Record, vol. 21, no. 114, pp. 141-60, Scopus.

Lichti, DD & Stewart, PM 2000, 'Callibration Testing of TLS'. International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B5. Amsterdam 2000

Lichti, DD, Franke, J, Cannell, W & Wheeler, KD 2005, 'The potential of terrestrial laser scanners for digital ground surveys', Journal of Spatial Science, vol. 50, no. 1, pp. 75-89, Scopus.

Lindenbergh, R 2005, 'Accuracy analysis of the Leica hds 3000 and feasibility of'.

Milev, I & Gruendig L 2007, 'New Tools for Terrestrial Laser Scanning Applied for Monitoring Rails and Buildings' FIG 2007 Hong Kong SAR, China

Monserrat, O & Crosetto, M 2008, 'Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching', ISPRS Journal of Photogrammetry and Remote Sensing, vol. 63, no. 1, pp. 142-54.

NSW Transport Sydney Trains, Engineering Specification Track SPC211 SURVEY

2012, Version2.3. https://www.asa.transport.nsw.gov.au/sites/default /files/asa/railcorp-legacy/disciplines/civil/spc-211.pdf

NSW Transport Sydney Trains, Engineering Standard SPC210 TRACK GEOMETRY AND STABILITY 2013, Version4. http://www.asa.transport.nsw.gov.au/sites/default/files/asa/railcorpl egacy/disciplines/civil/esc-210.pdf

Pejić, M 2013, 'Design and optimisation of laser scanning for tunnels geometry inspection', Tunnelling and Underground Space Technology, vol. 37, pp. 199-206.

Reshetyuk, Y, 2006, 'Callibration of TLS for Geodetic Engineering'. 3rd IAG / 12th FIG Symposium, Baden

Reshetyuk,, Y, 2009, 'Callibration-Self calibration and direct georeferencing in TLS'.

Reshetyuk, Y, Horemuž, M & Sjöberg, LE 2005, 'Determination of the optimal diameter for spherical targets used in 3D laser scanning', Survey Review, vol. 38, no. 297, pp. 243-53,

Soni, A, Robson, S & Gleeson, B 2014, 'Extracting Rail Track Geometry from Static Terrestrial Laser Scans for Monitoring Purposes', ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-5, pp. 553-7.

Soudarissanane, S, Lindenbergh, R, Menenti, M, Teunissen, P, 2009, 'Incident angle influence on the quality of TLS points'. Delft Institute of Earth Observation and Space Systems(DEOS) Delft University of Technology

Transport Sydney Trains, *NRF 014 Pre-work Briefing*,2014, Version https://railsafe.org.au/forms/record-2938889.pdf

Transport Sydney Trains, *NRF 015 Worksite Protection Plan*,2014, Version 3 https://railsafe.org.au/forms/record-2938890.pdf

Transport Sydney Trains, *NWT 310 Lookout Working* ,2014, Version 3 https://railsafe.org.au/work-on-track/record-2938937.pdf

Transport Sydney Trains, *NWT 300 Planning work in the Rail Corridor*, 2014, Version 7 https://railsafe.org.au/work-on-track/record-2938932.pdf

Transport Sydney Trains, *NWT 300 Planning work in the Rail Corridor*, 2014, Version 7 https://railsafe.org.au/rules/record-2938747.pdf

Transport Sydney Trains, *Rail Industry Safety Induction (RISI) Handbook*, 2014, Version 4 https://railsafe.org.au/ handbooks-guides-diagrams-signal-box-list-and-registers/record-2939096.pdf

Transport Sydney Trains, *Protection Officers Handbook*, 2014, Version 4 https://railsafe.org.au/ handbooks-guides-diagrams-signal-box-list-and-registers /record-2939096.pdf

Ussyshkin, V & Theriault, L 2010, 'ALTM Orion: Bridging conventional lidar and full waveform digitizer technology', ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII, no. Part 7b.

Wall 2011, 'The development of a high precision terrestrial laser scanner calibration range at USQ'.

Wu, X, Lu, M, Mao, S & Shen, X 2013, 'As-built modeling and visual simulation of tunnels using real-time TBM positioning data', in Proceedings of the 2013 pp. 3066-73,

Yang, B & Fang, L 2014, 'Automated Extraction of 3-D Railway Tracks from Mobile Laser Scanning Point Clouds', IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

Chapter Seven - Bibliography

Alba, M, Roncoroni,F, Scaioni,M, 2008, 'Investigations about the accuracy of target measurement for deformation monitoring'. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing

Bannister, A & Raymond, S 1992. *Surveying*. 6nd edn, Longman Scientific & Technical Publishing Company, Essex, England.

Boehler, W, Marbs ,A, 2003, 'Investigating Laser Scanning Acurracy'. Institute for Spatial Information and Surveying Technology, FH Mainz, University of Applied Sciences, Mainz, Germany

Finlay,L2014,APASAssociationofPublicAuthoritySurveyorsConfrence,NSW,http://w ww.apas.org.au/proceedings APAS 2014/ Surveying the Barham Bridge Using 3D Laser Scanning.pdf

GOTTWALD 2008, 'Feild Procedure for Testing TLS'. Integrating Generations FIG Working Week 2008 Stockholm

Ledger 2011, 'The development of a high precision terrestrial laser scanner calibration range at USQ'.

Lemmens, M 2008, 'Leica Geosystems HDS' GIM International, vol.22, no.2, pp. 37-3

Litchi , D 2004, 'A resolution measure for TLS'. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX

Liu, Y, LU, T, Zhou, S, Zhang, L, Guan, Y & Tang, X 2009' Sphere target fitting of point cloud data based on TLS' vol 74922 W-W-7.

Appendix A. Project Specification

University Of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG	4111/ 4112 Research Project : 'Liu-219' PROJECT SPECIFICATION
FOR:	STAVROULA AGORITSAS
TOPIC:	INVESTIGATING THE ACCURACY OF TERRESTRIAL LASER SCANNING WITHIN A RAIL ENVIRONMENT
SUPERVISOR:	Dr Xiaoye Liu
ENROLMENT:	ENG 4111 S1, D, 2015 ENG 4112 S2, D, 2015
PROJECT AIM:	This project will investigate the accuracy of Terrestrial Laser Scanning to determine if this Instrument conforms with NSW Sydney Trains Engineering Specification SPC211 - Survey.

PROGRAMME: Issue A, 8 March 2015

1. Research background information on Terrestrial Laser Scanners accuracy, calibration and applications within a Railway Environment.

2. Design and establish an indoor target reference network for self calibration of a Terrestrial Laser Scanner.

3. Install various standard and custom target types in the indoor self calibration

room- that would best replicate a railway environment in colour tones and material.

4. Measure targets with total station to determine accurate X,Y,Z for each target.

5. Scan targets with scanner from various scan positions and scanner height.

6. Analyse the data sets from the scanner and report on results.

7. If the scanner is within Tolerance scan a section of railway track from a minimum of two scan positions covering approx. 100 m .

8. Compare the data from the Scanner with the Survey data from a Total Station of the same scene and report on the findings.

As time permits:

9. Use more than one brand Terrestrial Laser Scanner.

10. Transform the Survey Data to 3D models

11. Export the scan data in a format to represent the Railway Overhead Wiring Report

AGREED:

 Stavroula Agoritsas
 ______(Student) _ Dr Xiaoye Liu ______ (Supervisor)

 _14__ / _03 _ / 2015_
 _____ / _____ / _____

Appendix B. Risk Assessment and Safety

RISK ASSESMENT

The risk assessment process to be followed for this project is based on Sydney Trains Safety Management System (SMS) 07-GD-3084 Version 1.1 'Hazard Identification and Safety Risk Assessment'. The following process take place:

- The hazard identification process involves recording of all hazards identified for a
 particular activity or tasks in a log book.
- The hazard analysis process identifies the causes, preventative controls, consequences, mitigative controls and options for further control/risk reduction for specific hazards. When reviewing controls the hierarchy of controls must be taken into account. The review of existing controls against the hierarchy of controls helps establish the overall level of potential risk exposure.

The are many different version of hierarchy of controls Sydney Trains applies the hierarch youtlined in Table B1.

Table B1 Sydne y Trains hierarchy of control

Hierarchy of control	Change from previous
Elimination	Eliminate the hazard through alternative design.
	Note: The alternative solution should not lead to a less acceptable product or less effective process.
Substitution	Replace the existing arrangements (process or physical) with a less hazardous one.
Engineering Controls	Introduce an engineered solution to physically separate the hazard from the exposed party.
Administrative Controls	Introduce additional procedures/processes to minimise exposure to the hazard
	Note: Administrative controls must not be used in place of reasonably practicable engineering controls.
Personal Protective Clothing and Equipment (PPE)	Provide PPE to exposed groups. Note: This should only be applied as a last resort where other types of controls are not reasonably practicable.

 The Risk estimation process is the ranking of the consequences of a hazard and establishing the specific risk exposure so those with greater exposure are prioritised for risk reduction. There are two approaches - quantitative and qualitative.

Qualitative is risk estimation that ranks risk based on the Sydney Trains Safety Risk Criteria and Safety Risk Matrices (ERM Framework)

Table B2 Sydney Trains Safety Risk criteria

Clas	sification	Safety Risk Criteria
		Sydney Trains will not accept continued operation with a direct risk of this ranking (either in the workplace or on the network).
A	Unacceptable	Proposed changes or new activities that present a direct risk of this ranking will not be permitted by Sydney Trains.
		Indirect risks with this ranking should be considered in the same way as B ranked risks.
		Risks with this ranking can only be tolerated if it is not reasonably practicable to reduce the risk further.
В	Undesirable	Risks ranked B are considered to be on the verge of being unacceptable and must be given immediate priority.
с	Tolerable	Risks with this ranking can be tolerated if it is not reasonably practicable to reduce the risk further.
		Risks with this ranking are considered to be tolerable in their current form.
D	Broadly acceptable	However, if there are options for further risk reduction and the cost is proportionate to the benefits to be gained, then implementation of these measures should be considered.

Table B3 Sydney Trains Safety Risk Ranking Table.

	Sydney Trains					Co	nsequer	nce Ran		
	Saf	ety Risk king table			First aid treatment or illness/injury not requiring treatment	1 or more Minor Injuries	1 Major Injury	1 Fatality (2-10 Major Injuries)	2-10 Fatalities	>10 Fatalities
	Likelih	ood Ranking			Negligible	Minor	Major	Critical	Catastrophic	Disastrous
Qualitative	Operational Historical	Fre	Frequency		C1	C2	C3	C4	C5	C6
Occurs often	Has occurred frequently at specific locations	More than 10 times per year (could occur on daily/weekly basis)	Frequent	LG	С	В	В	A	A	A
Likely to occur	Has occurred frequently in NSW	More than once per year up to and including 10 times per year (could occur on a monthly/quarterly basis)	Probable	L5	C	С	В	В	A	A
Could occur but more than likely it wont	Has occurred once or twice in NSW	Once every 1 to 10 years	Occasional	L4	D	С	С	В	В	A
May occur only in unusual circumstances	Has occurred many times in the rail industry but not in NSW	Once every 10 to 100 years	Remote	L3	D	D	С	С	В	В
Would only occur under exceptional circumstances	Has occurred once or twice in the rail industry	Once every 100 to 1,000 years	Improbable	L2	D	D	D	С	С	В
Not expected to occur	Unheard of in the rail industry	Less than once every 1000 years	Incredible	L1	D	D	D	D	С	С

• Reporting is the final process of the risk management assessment. All risk assessments must be formally documented.

For the work undertaken for this project the completion of a risk assessment is not required because there is a current Safe Work method Statement (SWMS) SMS-06-SW-1110 to undertake this Work which will be used to sign on to satisfy the requirements of having a risk management plan in place prior to commencing project Work.

For th survey work undertaken indoors a site inductions was completed and briefed by the warehouse manager and together with our SWMS we satisfied the Sydney Trains workplace risk management plan.

For the project Work conducted in the Rail corridor the following safety documents were also completed :

- SMS-06-FM-0163 pre work briefing
- NRF 015A worksite protection plan
- NRF 015B Worksite protection plan for lookout working

FOR CLYDE WAREHOUSE _ 722 PARAM	ATTA RD
Instructions: Refer to Operating Procedure <u>SMS-11-OP-3016 Provide Local Safety Ind</u>	unting.
 Establish that all visitors and workers to the workplace have not received a site 	
based on site validity (i.e. some sites set a 3, 6 or 12 month induction period for attendees).	non-regular
2. Tick each section as it is explained to inductee (if by video/DVD or computer, co	mplete after video).
3. All visitors and workers receive Part A Induction – General Safety Information.	
4. All workers (including contractors, sub-contractors and employees) receive Part	В.
5. Workers performing Rail Safety work or Construction work receive Part C.	
6. ALL persons receive a Part D Assessment to verify their understanding of the S	vdnev Trains SMS
7. Record the Safety Induction in the Local Safety Induction Register (SMS-11-TP-	
,	
SECTION 1 Induction Information	
General information	State State State
Norker's name: STAVROVIA AGORITSAS Induction Number: G	EORGE SABB
Norker's position: SURVEYOR	
Company or Division: SY DNEY TRAINS -ESI	
Name of person giving the induction (Inductor): GEORGE SABBAGE	
nductor's signature:	0415
PART A: Induction Content (ALL including visitors, workers and rail safety workers	Informed with tick
General safety information	
lighlight the Drug and Alcohol Policy, and discuss the random drug and alcohol testing program	Ø
Dutline facilities and amenities found in most workplaces including first aid	R
Discuss Sydney Trains site security alert procedures, incident reporting obligations and current Security Alert Level	ď
Discuss the obligation to report all hazards, security incidents, unsafe work practices, incidents, and njuries in the workplace to their Line Manager	Ø
Site incident response procedures incorporating the emergency evacuation plan, current security lert level and procedures and emergency assembly point; identify the emergency wardens and emergency contact details for emergency personnel	6
PART B (ALL workers and rail safety workers including contractors, subbies, PCBUs)	
	Sector Sector Sector
egislation and the SMS	Ø
egislation and the SMS itate that the Sydney Trains Safety Policy is displayed in the workplace	
	.E
rate that the Sydney Trains Safety Policy is displayed in the workplace rovide a brief overview of Sydney Trains Safety Management System (SMS)	
tate that the Sydney Trains Safety Policy is displayed in the workplace	
tate that the Sydney Trains Safety Policy is displayed in the workplace rovide a brief overview of Sydney Trains Safety Management System (SMS) iscuss the legal responsibilities with respect to the Rail Safety National Law and WHS legislation xplain Sydney Trains Universal Safety Responsibilities	
tate that the Sydney Trains Safety Policy is displayed in the workplace rovide a brief overview of Sydney Trains Safety Management System (SMS) liscuss the legal responsibilities with respect to the Rail Safety National Law and WHS legislation xplain Sydney Trains Universal Safety Responsibilities it for duty liscuss Sydney Trains Health Management Program, Smoke Free Workplace Policy and the equirements for Rail Safety Workers to undergo a program of health assessments according to the	
tate that the Sydney Trains Safety Policy is displayed in the workplace rovide a brief overview of Sydney Trains Safety Management System (SMS) liscuss the legal responsibilities with respect to the Rail Safety National Law and WHS legislation xplain Sydney Trains Universal Safety Responsibilities it for duty liscuss Sydney Trains Health Management Program, Smoke Free Workplace Policy and the equirements for Rail Safety Workers to undergo a program of health assessments according to the ategory of the position liscuss the responsibility for workers to present fit for duty, including having rested and recovered in	
tate that the Sydney Trains Safety Policy is displayed in the workplace Provide a brief overview of Sydney Trains Safety Management System (SMS) Discuss the legal responsibilities with respect to the Rail Safety National Law and WHS legislation	
tate that the Sydney Trains Safety Policy is displayed in the workplace Provide a brief overview of Sydney Trains Safety Management System (SMS) Discuss the legal responsibilities with respect to the Rail Safety National Law and WHS legislation Explain Sydney Trains Universal Safety Responsibilities it for duty Discuss Sydney Trains Health Management Program, Smoke Free Workplace Policy and the equirements for Rail Safety Workers to undergo a program of health assessments according to the ategory of the position Discuss the responsibility for workers to present fit for duty, including having rested and recovered in the breaks provided to reduce fatigue, and being free from drugs and alcohol while at work	
tate that the Sydney Trains Safety Policy is displayed in the workplace Provide a brief overview of Sydney Trains Safety Management System (SMS) Discuss the legal responsibilities with respect to the Rail Safety National Law and WHS legislation Explain Sydney Trains Universal Safety Responsibilities it for duty Discuss Sydney Trains Health Management Program, Smoke Free Workplace Policy and the equirements for Rail Safety Workers to undergo a program of health assessments according to the ategory of the position Discuss the responsibility for workers to present fit for duty, including having rested and recovered in the breaks provided to reduce fatigue, and being free from drugs and alcohol while at work afety consultation arrangements	

The second s	nent and risk exchange	
Outline the haza	ard reporting process, and describe how to complete the Hazard Report Form	
	ace Risk Registers that list the workplace hazards, risks and controls (Persons Conducting a Business or Undertaking) discuss what work they will be	9
performing and	if they have SWMS/SWIs as part of their risk mitigation	Ø
	ney Trains safe work practices, Safe Work Method Statements (SWMS) and Safe ns (SWIs) WOLKINGUMER SMS -06-5W -1110 + SW 111Y	Ø
Injuries and inc		
1800 / /2 / /9 a	ponsibility for all employees to report injuries to the Safety Incident and Injury Hotline nd their Line Manager	P
compensation	nanagement in terms of the required process to follow for rehabilitation and worker's	E
Personal Prote	ctive Equipment (PPE)	
Explain that eac	h worker is supplied with the appropriate PPE for their job - advise of site PPE	
PART C: Rail sa	afety and Construction (Not all sites)	
tasks are not per	oles require a Rail Industry Safety Induction (RISI) card. Persons performing these rmitted to commence work unless evidence of a current RISI card is presented.	T
For construction Undertaking) dis risk mitigation.	and maintenance work like other PCBU (Persons Conducting a Business or ccuss what work they will be performing and if they have SWMS/SWIs as part of their	P
Discuss Site Saf induction.	ety Management Plan (SSMP) for Construction sites and verify Construction	T
Explain that Safe activities are info	ety Briefings or Tool box talks are a way that construction and maintenance workers rmed of any safety issues.	ť
	PART D: ALL to complete Assessment of Understanding	
	If I see a hazard in the workplace I can: (a) complete a Hazard Report Form (b) advise management (c) a and b Answer:	
172 3.10	The staff assembly point for the site is:	
	Answer:	
	GATE A' CARPARU.	
	What is the Sydney Trains tolerance to alcohol in the workplace?	
	Answer: tem	
	I confirm that I have received a safety induction to Sydney Trains.	
	Inductee's signature: Date: 20015	
	1	

Transport Sydney Trains	<u>.</u>	Pre-work Briefing – Worksite protection∕work method	rotection/work met
Work location: CIYDE WAREPOUSE		Briefing date: 26-44-115 SA 17/3/17	
Scope of work: PARGET IN STALATIONS		Site Supervisor.	Phone: 0478345327
Work on track method (LPA, TOA, TWA, ASB, Lookout Working) Refer to Worksite Proverting and for details: NO NOLIN CN TRAC IC	TRAC IC	Protection Officer. SAGORITAS.	Phone: 0458345327.
Emergency assembly point. CATE A AT OAR PARK (AS IN	MANCHIN BURING	CARPARIE (AS INTRUITED BURING) Science, ARDENTAS.	Briefendssignature:
First aid kit location: Sydney TILAINS VENICLE. (NITH	VETHOLE - (WITH NORE DES) SIAGNETTAS	04/15/45	swms/swi Red #:
Hazards (eg. Site specific hazards identified, including physical environment, human errors, plant and equipment)		Controls (to be implemented to eliminate or reduce the risk to the lowest practicable level)	Person responsible for Control
SLIPS TAIPS FALLS	PPE. N	19784116 YOR FOOTNET.	Au
WARKING AT AN GHTS	BRIEFEL THREE PU	BRIEFEDON SMS OF DO BOSE ATAUTIMES	
Manny PORICLIFTS	AREA 1	AREA ISOLATED SIGNS PLALES.	
HONT EX HANSMON.	TAKER	TAKEREGULAR BRAVES, DRINK WARDL.	R. Au.
ADDER SUP	Neshy	arett al arthout neshing	Au
	AND	AND PROGE LADOUL AF AUDIT	

	Safe Work Instruction			Issue date: 19/10/11
NSW Rai	nsport Corp	Portable Ladd Step Platforms	Review date: 18/10/14	
Document no. SMS-06-SW-0264	vvorking w A ladder is	use and care of portable ladd im ladders near electrical equ used for gaining access to a	reas above or below the ground, or	other levels not provided
Review date 18/04/14 responsible supe Insert name in BLOO	Scope This SWI of Reference • OHS f • AS/NZ • AS 41 • WorkC • SMS-(•	loes not apply to fixed ladders s Reg 2001 Clause 39, 56-61 25 1892.5:2000 Portable ladd 42 2: 1993 Fibre Ropes Cover Portable Ladders Safet Cover Portion Paper, Working 16-SR-0057 Workplace Health 13-PR-0294 Managing Safety 06-GD-0268 Working Around 06-SW-0260 Physical Restrain 06-SW-0260 Physical Restrain 06-SW-0267 Working in Accommendation PPE and precautions High vis vest where required	g Off Stepladders, 2003 h and Safety Inspection, Testing an in Procurement - Goods tts Electrical Equipment nt Systems (Pole Straps) rdance with an Electrical Permit Competencies or qualifications	
an appropriate pole straps, if r IF CONTROL MEASU	o a height of harness and needed. JRES ARE NO	greater than 1.8 metres, prov safety lines	NGES ARE NEEDED, CONDUCT A RIS	SK ASSESSMENT AND
	nousands mo	years (to 2006), at least 83 p re have been seriously injured l egress only.	people in Australia have died after l d. Avoid performing work from a lac	'alling from a ladder and Ider. Ladders are intended
portable laddors Li • • • •	adders are to he Line Mana able to ext capable of no longer aximum leng tal ladders ar 6.1m for ar	be industrial rated to 120 Kg, ger is to select ladders that a end at least 1m higher than t supporting the greatest load than the lengths specified bel	he highest level that needs to be ad to be imposed	ccessed

Custodian: OHS Adviser Approved by: GM Safety Systems Number: SMS-06-SW-0264

UNCONTROLLED COPY WHEN PRINTED

© RailCorp Version: 1.2 Page 1 of 8

PAGE 46

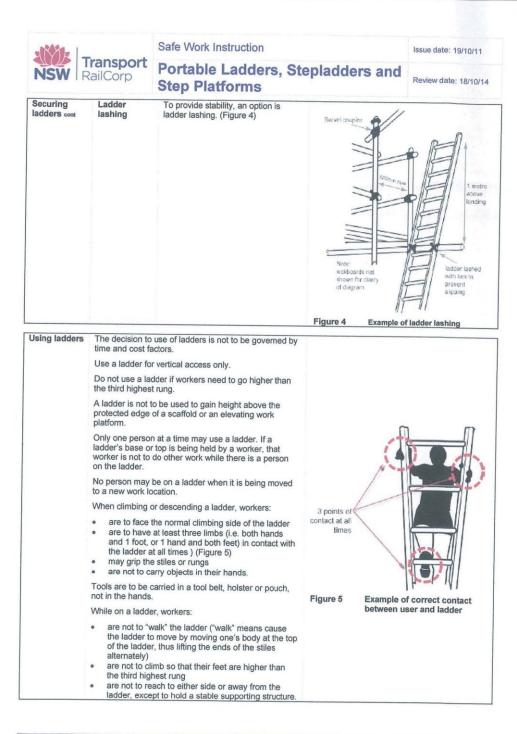

Transport RailCorp	Portable Ladd						
	Step Platform	Review date: 18/10/14					
Stepladders and	e to be used in the fully ope	n position.					
A person using a stepladder can carry out work that requires the simultaneous release of both hands from the stepladder only under the following circumstances:							
 the working height is limited to accessing the ceiling or soffit of the floor above which the stepladder is positioned, or to 1.8 metres elsewhere 							
	 the person and the stepladder are to remain stable throughout the period of work 						
ladder							
above the third step from the top of the stepladder							
 all tools support the tools operatin 	are supported by the perso ed from the stepladder, unle , and the manner in which g them to be shifted from th	n undertakin ess designed they are used	g the task (e.g. in a tool belt of for the purpose d, do not cause the centre of	gravity of the person			
• the nature	of the work and the position	of the stepla	adder, does not require the pe	erson to overstretch			
 the work do 	es not cause fatigue – it is	of short-term	duration and conducted in a	n ergonomic manner.			
Where the abov platform.	e cannot be complied with	do not use a	stepladder – use a more suit	able temporary work			
a safer alternation extended periodo with restricted violation other hot work). A step platform i provides a much than a stepladde If possible, procheight adjustable height adjustable height of the pla with the location Figure 1)	ve to a stepladder – the task involves s working at height or sion (such as welding or s extremely stable and larger work surface r. ure a collapsible and a step platform. The form is to be compatible of items of work. (See	Figure 1		rm in use			
Do not use meta	I ladders or wire-reinforced	ladders to w	vork:				
 within 6 m c if there are l to wind), or work near R <u>Around Elec</u> work near n Integral Energy 	f live 1500 V overhead pow vive electrical conductors ne the ladder moving (e.g. lear ailCorp electrical equipment trical Equipment guide on-RailCorp electrical cond rgy)	ver supply or earby, considen or sway) so nt can need a uctors is to b	er the possibility of the condu that safe distances are main an electrical work permit as de be authorised by their owner (tained escribed in <u>Working</u> e.g. Energy Australia,			
	the person the person ladder except for a above the t the nature of where the v - the tools - tool use - all tools supporte - the tools operatin - the tools - the tools operatin - the tools - towork. - the tools - towork near mage - towork near mage - the tools - towork near mage - the tools - the tools - the tools - the tools - the tools - towork near mage - the tools - the tools - the tools - the tools	 the person and the stepladder are to n the person is to have the use of both h	 the person and the stepladder are to remain stable the person is to have the use of both hands to grip ladder except for stepladders incorporating an appropriate above the third step from the top of the stepladder the nature of the work allows the person to lean for where the work involves hand tools: the tools are used as intended in their normal op tool use does not negate guarding or other safe all tools are supported by the person undertakin supported from the stepladder, unless designed the tools, and the manner in which they are use operating them to be shifted from the stable pose the tools are relatively lightweight the nature of the work and the position of the steplad the work does not cause fatigue – it is of short-term Where the above cannot be complied with do not use a platform. A commercially available step platform is a safer alternative to a stepladder – especially where the task involves extended periods working at height or with restricted vision (such as welding or other hot work). A step platform is extremely stable and provides a much larger work surface than a stepladder. If possible, procure a collapsible and height adjustable step platform. The height of the platform is to be compatible with the location of items of work. (See Figure 1) Do not use metal ladders or wire-reinforced ladders to w on or near low voltage electrical conductors within 6 m of live 1500 V overhead power supply or if there are live electrical equipment can need a Around Electrical Equipment (guide work near RailCorp electrical conductors is to b integral Energy) 	 the person and the stepladder are to remain stable throughout the period of wor the person is to have the use of both hands to grip the stepladder when ascendi ladder except for stepladders incorporating an appropriately guarded work platform, the above the third step from the top of the stepladder the nature of the work allows the person to lean forward towards the stepladder where the work involves hand tools: the tools are used as intended in their normal operating position tool use does not negate guarding or other safety features on the tools all tools are supported by the person undertaking the task (e.g. in a tool belt of supported from the stepladder, unless designed for the purpose the tools, and the manner in which they are used, do not cause the centre of operating them to be shifted from the stable position of leaning towards the steplation of the tools are relatively lightweight the nature of the work and the position of the stepladder, does not require the period work does not cause fatigue – it is of short-term duration and conducted in an Where the above cannot be complied with do not use a stepladder – use a more suit platform. A commercially available step platform is a safer alternative to a stepladder – especially where the task involves extended periods working at height or with restricted vision (such as welding or other hot work). A step platform is extremely stable and height adjustable step platform. The height of the platform is to be compatible with the location of items of work. (See Figure 1) Do not use metal ladders or wire-reinforced ladders to work: on or near low voltage electrical conductors within 6 m of live 1500 V overhead power supply or high voltage equipment if there are live electrical conductors nearby, consider the possibility of the condu to wind), or the ladder moving (e.g. lear or sway) so that safe dist			

Custodian: OHS Adviser Approved by: GM Safety Systems Number: SMS-06-SW-0264

UNCONTROLLED COPY WHEN PRINTED

© RailCorp Version: 1.2 Page 2 of 8

PAGE 47


UNCONTROLLED COPY WHEN PRINTED

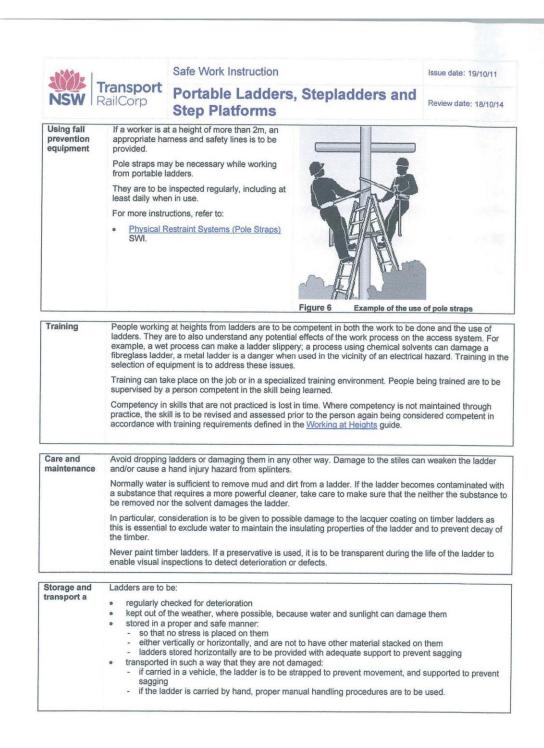
© RailCorp Version: 1.2 Page 3 of 8

		Safe Work Instruction		Issue date: 19/10/11
NSW	Transport RailCorp	Portable Ladders, Ste Step Platforms	pladders and	Review date: 18/10/14
Setting up ladders	by at least 2 we Set up ladders • their slope horizontall • they exten needs to b • their base tying, or by • ties at the the stiles c • if necessal are in plac • rungs are of There is to be a support for the uneven, wide p The base of a l traffic area, or r adequate contr The tops of sing supported by a the loads.	(weighing over 20 kg) are to be handled orkers. so that: is between 70° and 80°. (1 m y for every 4m vertically is ideal) d at least 1m past the highest point that e accessed and top are firmly secured by fixing or / another worker holding the base or top base or top of a ladder are attached to f the ladder, not the rungs ry, road and pedestrian traffic controls e, doors are locked etc. clean before the ladder is used. adequate, stable, non-slippery and level base. of a ladder. If the ground is soft or lanks can be used as a base. adder is not to be in a pedestrian or road text to a door or gate, unless there are	At least 900 mm or Jaccess pu Secure Hoist tools etc, in bucket when at top Both hands on rails Abways face Iadder Before climbing, test by jumping on bottom rung	rposes)
,	 not to react to be carefinition other comp Before climbing 	an extension ladder after the height has the user is to look to make sure that the	Figure 3 Example of	safe ladder use
Securing ladders	At the base At the upper support	When erected against a pole or structur any person ascends them. The base ro- tail of the base rope tied off to the other to be attached to the rope between the lf a ladder cannot be secured with the b ladder to prevent it from slipping. It is not necessary to secure the base o A ladder is to be secured to the upper s rope tied off to the other stile. This is to or before people move from the ladder t being secured a person is to steady the When a ladder base. If a ladder cannot be secured to the upper s steady the ladder base. If a ladder cannot be secured to the upp base of the ladder to prevent it from slip also secured with a rope if practicable. A person steadying a ladder is to firmly	pe is to be secured to the pr stile. A suitable warning de ladder and the pole or struct ase rope, a person is to ste f a ladder less than 3m long upport with the head rope a be done before work from th to the pole or the structure. I base of the ladder to preve support it is no longer neces her support, a person is to co ping. In these cicumstances	ole or structure and the vice, such as a flag, is ture. ady the base of the ady the base of the ladder commences While the ladder is nt it from slipping. sary for a person to ontinue to steady the s, the base is to be
		A person steadying a ladder is to firmly movement or overturn of the ladder. If a ladder is less than 3m long, it is not		

UNCONTROLLED COPY WHEN PRINTED

© RailCorp Version: 1.2 Page 4 of 8

UNCONTROLLED COPY WHEN PRINTED


© RailCorp Version: 1.2 Page 5 of 8

ANE -		Safe Worl	Instruction	Issue date: 19/10/11
NSW R	Transport RailCorp		le Ladders, Stepladders and atforms	Review date: 18/10/14
Working near electrical equipment	Ladder type	ladders or n ladder to be	ctive ladders are to be used for working near electrical netal reinforced ladders are not to be used for any work placed within 6 m of exposed high voltage electrical e verhead wiring.	that requires the
	Construction	AS 1892.2.	ers may be reinforced with pultruded fibre-reinforced p Timber ladders may use technology not consistent with der has the written approval of the Principal Electrical E	AS 1892 2 provided
		(P)	Note Wire reinforced stiles are not acceptable. Reinforced comply with to AS/NZS 1892.3.	plastic ladders are to
	Conductivity	Stiles are to	be non-conductive.	
		securing or	have metal brackets or rungs and other metal fittings reinforcement and that do NOT effectively reduce the love ve properties of the ladder.	that are required for ongitudinal
	Markings	The ladder s	tiles are to be marked according to the requirements o	f AS 1892.
			ings are to include all of the following:	
			e of manufacturer cification number	
		 the leng 	th or maximum extended length of the ladder in metres	5
		 in the ca 	capacity of the ladder ase of timber ladders manufactured to AS 1892.2:	
			rs "MSG" or ds "Mechanically Stress Graded" followed by the letters	"P" "C" os "D" os
		 marked 	with the corresponding colours "Black", "Green" or "Pu	rple".
			Note The marking requirement does not apply to ladders pu	rchased before 1997.
	Pole chain	A ladder that with a chain for the ladde	t is to be placed against a wood pole or similar rounded between the upper ends of the ladder stiles. This chair r.	d support is to be fitted is the point of support
	Head and base ropes	against the 1	is to be used against a pole, tree, lighting column, sign 500 V overhead wiring, a length of three strand hawse eter, (as per AS 4142.2) is to be secured:	al post or similar, or r-laid rope at least
			tile at a point not above the uppermost rung for the hea tile approximately 1 m from the ground, to secure the b	
		(P)	Note Refer to the <u>Working Around Electrical Equipment</u> guid 1500 volt overhead wiring	le when working near

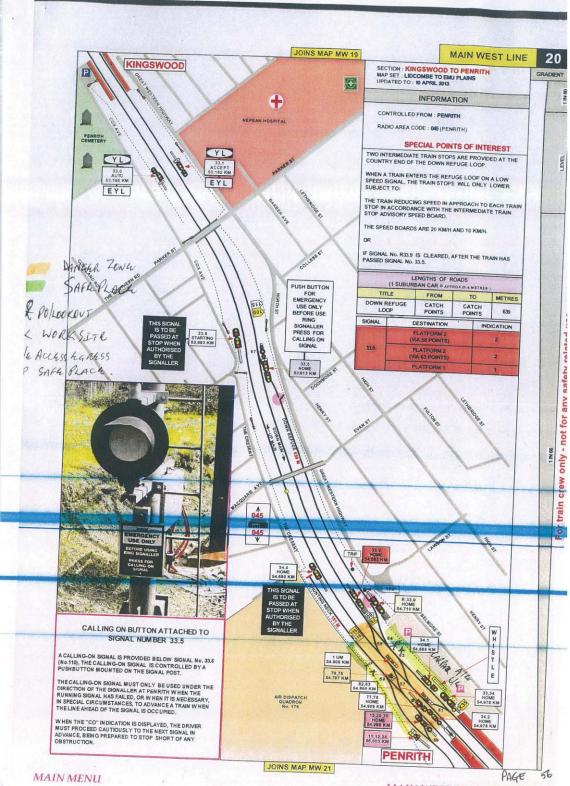
UNCONTROLLED COPY WHEN PRINTED

© RailCorp Version: 1.2 Page 6 of 8

PAGE 51

UNCONTROLLED COPY WHEN PRINTED

© RailCorr Version: 1.2 Page 7 of I


	Transport	Safe Work Instruction Portable Ladders, Stepladders and	Issue date: 19/10/11
NSW F	RailCorp	Step Platforms	Review date: 18/10/14
Inspection and testing	Acceptance inspection	Inspect and test ladders on initial receipt to make sure they are to the Managing Safety in Procurement - Goods procedure.	e fit for purpose. Refer
		A sticker showing the date of receipt and the inspection carried the ladder. Line Managers are to make sure that the inspection out correctly.	out is to be affixed to and marking is carried
	Before each u	se The person using the ladder is to inspect before each use to m functions correctly and has not deteriorated during storage or t inspection is to include checks for:	ake sure that it ransportation. The
		 cracks or other damage to the rungs or treads contamination of the rungs or treads with grease, oil or che damage to the styles unauthorised repair or modification to any part of the ladder corrosion of any part of the ladder due to chemicals cuts or other damage resulting in metal splinters loose rivets, joints, nuts and bolts damage to hinges damaged or missing feet the condition of ropes. 	
	Six monthly	Every 6 months and irrespective of use, any other inspection o examined.	r test, ladders are to be
		Records of the inspections are to be kept according to the <u>Wor</u> <u>Safety Inspection, Testing and Calibration</u> requirement.	kplace Health and
	After mishap	If a ladder is involved in any form of accident, has been droppe impact, it is to be inspected, and where necessary tested, to m for purpose.	
		Any damage is to be repaired before the ladder is used.	
		If repair is not possible, the ladder is to be removed from servic accordingly (using a CAUTION tag).	e and marked
		Line Managers are to make sure that only serviceable ladders	are available for use.
Additional cor	itrols		

UNCONTROLLED COPY WHEN PRINTED

© RailCorp Version: 1.2 Page 8 of 8

PENRIFIH SURVEY nethod (EPA, TON, TWA, MSD; troohour, Wardhing), N.W.T 300 e Protection Plan for details: mbly point: NMARKST AATK NMARKST AATK NMARKST AATK ion: ULK NMARKST AATK ion: ULK NMARKST AATK SPENKRS & SHARRS NMARKA KARR LUCH NMARKA SPENKRS & SHARRS NMARKA KARR CLUK NMARKA SPENKRS & SHARRS NMARKA KARR CLUK NMARKA SPENKRS & SHARRS NMARKA NMARKA SPENKRS & SHARRS NMARKA NMARKA SPENKRS & SHARRS NMARKA SPENKRS & SHARRS NMARKA SPENKRS & SHARRS NMARKA SPENKRS & SHARRS NMARKA SPENKRS & SHARRS NMARKA SPENKRS NMARKA SPENKRS & SHARRS NMARKA SPENKRS & SHARRS NMARKA SPENKRS SPENKRS SPENKRS NMARKA SPENKRS SPENKR	NSW RailCorp	Pre-work Briefing – Worksite protection/work	013498
NAVLY Site Supervisor: Photoconstructure Ord (Here, TOR, TOR, TOR, TOR, TOR, TOR, TOR, TOR		Briefing date: dd/mm/yy 19/n3 / K	
Old (Heth Tech Truth ABD: Techen Liberings) NMT 300 Protection Office: Protection Office: W point: 0b2_2 555k,PH 800 Protection Office: W point: Briefer: 555k,PH 800 ARLST AATL Briefer: Briefer: Briefer: ARLST AATL Briefer: Briefer: Briefer: ARLST AATL First Aider: Briefer: Briefer: ARLST AATL First Aider: Briefer: Briefer: ARLST AATL Briefer: Briefer: Briefer: ARLST AATL Briefer: Briefer: Briefer: ARL MALL AATL AALL AALL Aread bildentified, including physical environment Controls to be implemented to eliminate or reduce the risk to the lowest Res Aread Mark Mark Marku Vou Marku Marku Marku Marku Aread Marku Marku Marku Marku Marku Stread Marku Marku Marku Marku Stread Marku Marku Marku Marku Marku Marku Marku Marku Marku Stread Marku Marku Marku Marku Stread Marku Marku	SURVEY	Site Supervisor:	Phone:
NY point: ARKET GATE STATE STATE States: RAKET GATE First Alder: R. STAV ROULLA Cife hazards identified, including physical environment and equipment of minate or reduce the risk to the lowest of equipment of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate or reduce the risk to the lowest of the minate of	Cockout Marking)	Protection	0458345327 Phone:
ARKST GATE Relevant Controls to be implemented to eliminate or reduce the risk to the lowest dequipments dequipments Related including physical environment, Controls (to be implemented to eliminate or reduce the risk to the lowest dequipments Related including physical environment, Controls (to be implemented to eliminate or reduce the risk to the lowest Related S and Related and Related Antile Antile Related S and Alares Related Antile Antile SPESSARES & SHARRES ALARRES ALARRES YOU SPESSARES & SHARRES RELATION LEASER ALENDINIESSARS YOU SPESSARES & SHARRES RELATION ALENDINIESSARS YOU SPESSARES & SHARRES ALARRES YOU NULAR AN ALENDINIESSARS YOU SPESSARES & SHARRES & RUEDINIESSARS AN ALENDINIESSARS YOU SPESSARES & SHARRES & RUEDINIESSARS AN ALENDINIESSARS YOU SPESSARES & SHARRES & RUEDINIESSARS AN ALENDINIESSARS YOU SPESSARES & SHARRES & SHARRES YOU SPESSARES & SHARRES & RUEDINIESSARS AN ALENDINIESSARS YOU SPESSARES & SHARRES & RUEDINIESSARS AN ALENDINIESSARS YOU SPESSARES & SHARRES & SHARRES & TO PO.	nergency assembly point:		0421459429
L First Aider: 57AU ROULLA 57AU ROULLA Cific hazards identified, including physical environment, envinter, environment, envinter, environment, environment, environme	UTSEDK NARAST GATE	Miller:	Briefer's signature:
cific hazards identified, including physical environment, controls to be implemented to eliminate or reduce the risk to the lowest dequipment) Rest Raff_LC Collect Methols IF Rights Trans And Rights, and safe Rights, and safe Rights, and safe Rights, and and a safe Rights, and	IN Nuttock	First Aider: 5-74 V ROULL A	SWINS/SWI Ref #:
SUCFARENCE CORRECT MEMOR DE PROFECTION IN PLACE. SUCFARES MATCH WHALL YOU HALL AND AND HALK. MATCH WHAL YOU HALL AND AND HAL AND AND HALK AND	ards (eg. Site specific hazards identified, including physical environn an errors, plant and equipment) T.R. 1966 R.V. R.D.T. T. A.C. L.C.		
PHONES MATCH WHILL YOU HALL PHONES MARCH MALL YOU HALL EVTEON KERP CLEAR SPEDRAS & SHARDS HERNOWLEDGES YOU KENDER MARCH ALKNOWLEDGES YOU WHAR AT AL TE MES WITTLE STAY HYDRATED STAY HYDRATED STAY HYDRATED STAY HYDRATED DAMALES TO PO.	VARVEN SURFACE	CORRER MATHOD DE RETALTEON IN PLACE.	Ro
CUTION CUTION KARP LUAR CUTION KARP LUAR SPESSAS & SHARPS REVOLUTED AND ALAR YOU SPESSAS & SHARPS REVOLADERS YOU WEAR A AU TO AND SAN ALAS STAY HYDRATED KUETVAL RAPARS TO PD.	MOBILE PHONES	WATCH NHURE YOU NALIC	Au
SPESSAGS & SHARDS MALARTOR HULLANGES YOU SPESSAGS & SHARDS ALOURT & AVOLD MLAR AT AU TO AND S STAY HYDRATUN WUTURU BAMALUS TO PO.	Kheersteirteal	When Use IN A SAFE RIME	*
SPEDALS & SHARDS KLOOKT & AVOILA HUKNOWLLAGLES YOU SPEDALS & SHARDS REPORT & AVOILD HUKNOWLLAGLES YOU WEARE ALT AND RATLES STAY HYDRATLES TO PO.	BLANT	Kure Cluar	11
KURVER KURKT & AVOID WLAR AT AU TE MAS STAT HYDRATUS KURVER BAMALKS TO PO.	SNAHLES SPINIOS & CUDOC	KNSULL NARATOR ACKNOW LADGES YOU	,`
RUTURE BANALAS TO PO.	Phil	KIROKT & AUDIA	11
WITNEL DAMALLE TO PO.	WARTHAR	WARR HT AU TEMAS	1
	TwERFIRMENRE	REPORT DAMALES TO PO.	1
	tion New South Wates 2012		

Adjacent Li	ne/s: 19 103/15 or Team Manager:		:300 hours Finish A AGOR IJAS	between	54+300 km ar km ar purs Weather: /Reference No.:	
and the second s	sessment: Ma outs being used:	aximum track spe	Position of	Lookout/s: 57	A ttach diagram 1 F 300 km and	
Warning method	being used:	Handsignals s out if not applicable)	Position of Whistle/Horn (cross out if not applic	n Voice	km and e/Touch f not applicable) (c	other cross pat if not applicable
* Note - Add add Where is the saf Lookout(s): Workers: Ensure the worke	e place identified f <u>ACKWAS</u> <u>AZKWA</u> ers have been brief	me (S+M See Time if an add for the Lookout(s) <u>(CESS</u> <u>(CEJS</u> ied about these w		g used	km/h Track Speed	Distance as calcula met Minimum Sightin Distance as calcula
Network Cont SIMO	rol Officer Det		DEWRIDTH		47181001	3N56621 4
Protection Of	ficer Details:	5	SB		O cofrida pilota	59429

MAIN WEST STATION MENIL

All incidents and injuries must be reported to the Site Supervisor (Line Manager) and the Safety Incident and Injury Hotline on 1800 77279 All modelines and injury Hotlines must be reported to the Site Supervisor (Line Manager) and the Brefer if they don't understand any part of this briefing. In whether minimum metamentary m	SW RailCorp			Pre-wo	rk Briefing – W	013498 Pre-work Briefing – Worksite protection/work method _{cont}	01 n/work m	013498 c method con
we been inducted to the site 	All incident All persons listed below ack	is and injuries must be r nowledge that they:	eported to the Site	e Supervisor (Li Persons are to qu	ne Manager) and the Sa estion the Briefer if they don't	fety Incident and Injury Hotli understand any nart of this brieford	ine on 1800 77	2 779
Signature Time of briefing: Imme of briefing: Imme of briefing: Imme of briefing: Profit D: Yoo D: Yoo Different Different Different Profit D: Yoo Different Different Different Different Profit D: Yoo Different Different Different Different Profit D: Yoo Different Different Different Profit Different	have been inducted to in hold the applicable and record ag. Construction wear the appropriate Pe have been briefed on th Rail Corridor A have been informed of t	ar are nor applicable) the site current certificates of comp Industry Induction insonal Protective Equipmen e contents of the Worksite P he requirements of the elect	etency, trade licence a t (PPE) rotection Plan for wor rical permit (if require	الملكم : الملحياتين د منابع د within the	 have been hirited on 1 have been instructed i have been instructed i are free from the effect have been briefed on 1 have been briefed on 1 have been briefed on 1 	the SWMS/SWIs/documented safe In the SWMS/SWIs/documented safe In the controls recorded in this dee is of alcohol/drugs/fatigue e of any hazardous materials / sub Material Safety Data Sheets (MSDS) the site specific safety managemen the thazards of adjoining worksites)	work practice for eumont and SWMS estimeter on sin () () ()	A - dojeti A - energia
10: Yo. 10: Yo 10: Y	ame	Signature	Time of briefing: hh:mm	Amendment briefing: hh:mm & Initial	Name	Signature	Time of briefing: hh:mm	Amendment briefing: hh:mm & hnitial
A A M	Actor A INA	i to	· 02: 50					
Mark Contraction of the second	PACLEB	A	10:40					
	9. MENUM		le fo.					

	The subscription of the spin of the sub-	ilCorp	Protection Officer's Diary
	Date	Time	Notes
		08.30	
	Plo3/5	08-45	RAME CON STATING OBTAINED 190058
5. N.			WORKANG RUTSIDE DANGER ZONE
		10.25	CITY SIDE OF BENRITH.
		10-35	RANG BOX SIT SIMON. WODZ. SIGNEDON
		12.00	Luden
		12-45	LANG Box AULLARDO
-		14-26	KANG Box AUCLAISON
4.1		-	
- 1			
		1.1	
l l			
t			
ŀ			
-			· · · · · · · · · · · · · · · · · · ·
-			
-			
-			

Issue date: 24/07/12 Review date: 13/07/15 SVMS Team: Michael Athorn		Content reviewed by Technical expert (SME) and RailCorp safety professional (position including Div(Group)	Graeme Gaggin, Principal Surveyor, Track Design, Professional Services Division	PPE required: • Safety boots High visibility vests • Safety helmod	••••	
	be encountered when perform work location is in a tunnel; on ir outside the rail corridor, this ant to that location. Refer to W-1113, SMS-06-SW-1114 quence of Job Steps 5 & 6 is	Permits/licences required: NA			Training/Qualifications required: • Rail Induction Certificate • OHS General Induction • Electrical awareness • Surveying Certificate of Competency (Engineering Authority) • Protection Officer Level 1 (min)	
	sumptions: This SWMS examines the hazards and controls likely to be encountered when performing survey work at any location within the rail corridor. If the work location is in a tunnel; on an underbridge or overbridge, within a construction site; or outside the rail corridor, this statement MUST be supplement by the statement relevant to that location. Refer to SWMS SMS-06-SW-1111, SMS-06-SW-1112, SMS-06-SW-1114 Depending on the type of survey being performed, the sequence of Job Steps 5 & 6 is interchangeable	Records/Reporting: • SMS-06-FM-0163 Pre- work briefing	 NKP U15A Worksite Protection Plan NRF 015B Worksite Protection Plan for Lookout working 		NA NA	
SWMS Name: Perform Survey Work	Assumptions: 1. This SWMS examines the survey work at any locatic an underbridge or overbrid statement MUST be suppl SWMS SMS-06-SW-1111 2. Depending on the type of interchangeable	Plant/Equipment/Tools: • Survey equipment, tools materials • Horn	 Railway track signals, flags, lamps Witches' hats (cones) Barrier tape 	Inspection requirements	 SMS-16-SR-0057 Workplace Health and Safety Inspection Testing and Calibration 	
SWMS number: SMS-06-SW-1110 Per	Custodian (Position): Senior Surveyor	Approver (Position): Principal Surveyor	Applicable Standards, Codes of Practice and guidance: • SPC 211 Survey Specification • TMC212 Survey Manual • SURVEVID Act 2002	Surveying (Practice) Amendment Regulation 2006	with regulation 2011 SMS:06-TP-0312 Site- Specific Safety Management Plan Network Rules Network Procedures	SWMS Custodian. Senior Surveyor SWMS Approver Princenal Surveyor

Reference for the first to the lowest practicable level) เม่ายังการเป็น Responsibility เลื้องการเป็นเห็น เป็น for the lowest practicable level)	ensure all personnel are trained in manual handling techniques and use of survey tools deploy job rotation to avoid constant exposure use other personnel to "share the load" use the correct tools where	n Regional expropriate n Regional • As per Hazardous Locations Team leader in SMS-06-PR-0223 ns Register conjunction with Hazardous Rail various team corridor Locations	Worksite Protection Plan Worksite Protection Plan Protection Officer Network Rules Rules / Procedure Interface with other workgroups C	ot big the second set of the s
Hazard or human error (Salety/Enviconmental hazards identified, including physical environment, human errors, plant and equipment)	collect Muscular stress or strain e and	Hazards identified in Regional Hazardous Locations Register	orksite Strike by train signaller	ling to Not focusing on or not izards understanding pre-work briefing information
Number Neep	Uganise resources, collect data from Hazardous locations Register, load vehicle and travel to worksite		Establish method of worksite protection and notify signaller or PPO	Perform pre-work briefing to assess site specific hazards and establish controls

Image: Control of the index practication instants Mark Mark manual instants Image: control of the index practication instants Mark Mark manual instants Image: control of the index practication instants Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the index practication instant Mark Mark manual instants Image: control of the main Mark Mark manual instants Image: control of the main Mark Mark manual instants Image: control of the main Mark Mark manual instants Image: control of the main Mark Mark manual instant Image: control of the main Mark Mark Mark Mark Mark Mark Mark Mark			Hazard or human error			-	2 12	Issue date: 24/07/12 Review date: 13/07/15
Muscular stress or strain C As per Job Step 1 above D Work team Trips and falls on the same • Wear appropriate footwear - safety D Work team Trips and falls on the same • Wear appropriate footwear - safety Dools, safety gum bools D Work team Frevel • Wear appropriate footwear - safety • Wear appropriate footwear - safety D Work team Frevel • Footion tools, equipment and • Position tools, equipment and Work team Mork team • Position tools, equipment and • Position tools, equipment and • Position tools, equipment and Work team • Position tools, safe place clear of • Position tools, equipment and • Position tools, equipment and • Position tools, equipment • C • Be aware of the position of the rails • C • Be aware of the position of the rails • C • Ensure lighting is adequate - use und faates on accross • O not jump off batters or accross • Avoid Steep ballast shoulders • Avoid Steep ballast shoulders • Avoid Steep ballast shoulders • Point off batters or accross • Avoid Steep ballast shoulders • Avoid Steep ballast shoulders • Avoid Steep	Step		(Safety/Erwironmental hazards identified, including physical environment, human errors, plant and equipment)	Risk before controls	Control (to be Implemented to eliminate or reduce the risk to the lowest practicable level)	Risk ranking after controls		Job step to be completed in accordance with
Trips and falls on the same • Wear appropriate lootwear - safety unboots evel • Wear appropriate lootwear - safety unboots • Ensure the worksite is clear of debris • Position tools, equipment and materials in a safe place clear of worksite is clear of waterials in a safe place clear of waterials in a coress routes • Destination tools, equipment • Destination of the rails • Starter lighting is adequate - use or other on the most in the worksit • Avoid carrying loads on steep enter or steep enter or other on the safe or other or oth	Unloa	Unload equipment and transfer to worksite	Muscular stress or strain	υ			Work team	(name associated documentation)
	unio transi	Unload equipment and transfer to worksite	Trips and falls on the same level				Work team	SMS-06-GD- 0323 Personal Protective Equipment
	Ing SA	Prepared using SMS-06-TP-0026 v1 3: Cranodian Services Division		DNTROLLED C	UNCONTROLLED COPY WHEN PRINTED			© Daito

 Previous and an errors, plant and involument, human errors, plant and involument, involument, errors, plant and involument, involument, errors, plant and involument, involument, errors, plant and involument, errors, e		Hazard or human error					Review date: 13/07/15
 Xposure to noise or vibration: On-site eg plant & noise is loud enough to interrupt machinery, trains Off-site eg traffic: other onstant speech for continuous Off-site eg traffic: other pastadjacent Off-site eg traffic: other pastadjacent Off-site eg traffic: other postible egatorer egites end efficient efficience eff		(starteryter)montherial hazards identified, including physical environment, human errors, plant and equipment)	ranking		ranking after		Job step to completed I accordance
 Off-site eg traffic, other morninersy parting Off-site eg traffic, other sources such as adjacent sources such as adjacent Our meed to shout to be heard factories or construction Fegulate exposure to noise where worksites to determine in noisy work can be suppended while surveying OR stage or plan work away from noise source ensure the position of lookouts are noise source ensure the position of lookouts are folger. Lea to comporting of stage or plan work away from noise source As per Job Step 4 above C As per Job Step 4 above C As per Job Step 1 above C Nork team Nork team C Nork team Dirk where possible Dirk where possible<!--</td--><td>1g up tor survey</td><td>Exposure to noise or vibration:</td><td></td><td></td><td></td><td>Work team</td><td>documentatio</td>	1g up tor survey	Exposure to noise or vibration:				Work team	documentatio
OTI-site egi traffic: other sources such as adjacent factories or construction Vou need to shout to be heard factories or construction Periods (eg > 5 minutes) or when vork can be supplied with other work can be supplied while surveying OR stage or plan work work can be source Periods (eg > 5 minutes) or vork can be supplied while surveying OR stage or plan work work can be source Periods (eg > 5 minutes) or vork can be supplied while surveying OR stage or plan work work can be source Periods (eg = 5 minutes) or vork can be supplied while surveying OR stage or plan work work can be source Periods (eg = 6 minutes) or vork can be source Periods (eg = 6 minutes) or vork can be source Periods (eg = 6 minutes) or vork can be source Periods (eg = 6 minutes) or vork can be source Periods (eg = 6 minutes) or vork team Job Sup 1 above C As per Jub Step 1 above C Work team Job Sup 1 above D As per Jub Step 1 above C Work team Job Sup 1 above D As per Jub Step 1 above C Work team Job Sup 1 above D As per Jub Step 1 above C Work team Job Sup 1 above D As per Jub Step 1 above C Work team Job Sup 1 above C Fingura at symptoms of mere possible D Work team Job Sup 1 above C Fingura at symptoms of mere possible D Work team Job Sup 1 above C Fingura at regular intervals <td< td=""><td></td><td></td><td></td><td>noise is loud enough to interrupt normal speech for continuous</td><td></td><td></td><td>Specificati</td></td<>				noise is loud enough to interrupt normal speech for continuous			Specificati
Tactories or construction c regulate exposure to noise where possible eq fiases with other work can be suspended witie; possible eq fiases with other work can be suspended witie; surveying OR stage or plan work away from noise source en curve in the source of construction of lookouts are not curve hort not whistle surveying OR stage or plan work away from noise source D ips and falls on the same c - As per Job Step 4 above c Work team uscular stress or strain c - As per Job Step 1 above c Work team uscular stress or strain c - As per Job Step 1 above c Work team uscular stress or strain c - As per Job Step 1 above c Work team at stress (on hot days) - Ensure personnel are trained in the signs and asymptoms of heat stress uebydration, cramps, nausea, rapid breathing D Work team c - Ensure personnel are trained in the signs and symptoms of heat stress uebydration, cramps, nausea, rapid breathing C - Ensure personnel are trained of heat stress c - Units stand of the day breathing - Ensure personnel are trained of heat stress C c - Units stand of the day breathing - Ensure possible C c - Unitest part of the day breathing C - Unitest part of the day breathing c - Ensure porseible - Take regular breaks C				periods (eg > 5 minutes) or when you need to shout to be heard			TMC212 S Manual
Promotion Construction of lookouts Construction of lookouts ips and falls on the same c - As per Job Step 4 above c ips and falls on the same c - As per Job Step 4 above construction icl - As per Job Step 1 above construction - C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress or strain c - As per Job Step 1 above C isscular stress - As per Job Step 1 above c Work team isscular stress - As per Job Step 1 above p Work team isstress (on hot days) - Ensure personnel are trained in the signs ad symptoms of heat stress Work team istreast (on hot days) -		factories or construction sites	U		4		
may from noise source the position of lookouts are position of lookouts are not compromised - move lookout work team rel ensure the position of lookouts are not compromised - move lookout C As per Job Step 4 above C rel closer, use horn or whistle C As per Job Step 1 above C Work team uscular stress or strain C As per Job Step 1 above C Work team at stress (or hot days) - Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, derividation, cramps, nausea, rapid breathing D Work team C - Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, derividation, cramps, nausea, rapid breathing D Work team C - Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, derividation, cramps, nausea, rapid breathing Nork team C - Ensure personnel are trained in the signs and symptoms of heat stress such as dark velow urine, fatigue, derividation, cramps, nausea, rapid breathing Nork team C - Ensure personnel are trained in the signs and symptoms of heat stress such activities C C - Ensure personnel are trained in the signs and symptoms of heat stress such activities C C - Ensure personse to C - Nork team				worksites to determine if noisy work can be suspended while surveving OR stane or plan work	2		
interference ensure the position of lookouts are end compromised - move lookout ensure the position of lookouts are constrained - move lookout interference c - As per Job Step 4 above c Work team uscular stress or strain c - As per Job Step 4 above c Work team uscular stress or strain c - As per Job Step 1 above c Work team uscular stress or strain c - Engage Regional staff and obtain mechanical aids where possible p Work team at stress (on hot days) - Ensure personnel are trained in the signs and symptoms of taigue, dehydration, cramps, nausea, rapid breathing p Work team c - Ensure personnel are trained in the signs and symptoms of taigue, breathing D Work team c - Ensure personnel are trained in the signs and symptoms of taigue, breathing D Work team c - Ensure personnel are trained in the signs and symptoms of the stress such as dark yellow write, taigue, breathing D Work team c - Ensure personnel are trained in the signs and symptoms of the stress such as dark yellow write, taigue, breathing D Work team c - Ensure personnel are trained in the signs and symptoms of the day D Work team c - Ensure personsile for the day - Ensure personsile for the day C c <				away from noise source			
ps and falls on the same C As per Job Step 4 above C Work team cel As per Job Step 1 above C Work team Jscular stress or strain C As per Job Step 1 above C Work team Jscular stress or strain C As per Job Step 1 above C Work team Jscular stress or strain C Engage Regional staff and obtain D Work team at stress (on hot days) E Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, deradydration, cramps, nausea, rapid Work team O Ensure personnel are trained in the stress such are adark with and a stress are adark velow urine, fatigue, deradydration, cramps, nausea, rapid Work team O Drink water C Schedule heavy work outside the browk							-u
Juscular stress or strain As per Job Step 1 above Mork team C Engage Regional staff and obtain D Work team at stress (on hot days) Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, derhydration, cramps, nausea, rapid D Work team C Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, derhydration, cramps, nausea, rapid Drink were possible C C Ensure personnel are trained in the signe, derhydration, cramps, nausea, rapid Work team C Ensure personnel are trained in the signe, derhydration, cramps, nausea, rapid Work team C Ensure personnel are trained in the signe, derhydration, cramps, nausea, rapid Work team C Ensure personse intervals C Schodule heavy work outside the coult here and work C Schodule heavy work outside the coult here and bottest part of the day C Schodule heavy work outside the coult here and bottest part of the day C Nontion physical response to Mork team C		Trips and falls on the same level	U			Work team	
C • As per Job Step 1 above Work team at stress (on hot days) • Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, dehydration, cramps, nausea, rapid • Work team C • Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, dehydration, cramps, nausea, rapid • Work team C • Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, dehydration, cramps, nausea, rapid • Work team C • Ensure personnel are trained in the signs and symptoms of heat stress such as dark yellow urine, fatigue, dehydration, cramps, nausea, rapid • Work team Drink water ar regular intervals • Drink water art egular intervals • C • Drink water art egular intervals • Oritike shade where possible • C • Utilise shade where possible • Take regular breaks • Montor physical response to • Montor physical response to • Montor physical response to • Montor physical response to		Muscular stress or strain					
at stress (on hot days)					1	Work team	SMS-06-PF Managing
C Mork team supersonnel are trained in the such as and symptoms of heat stress such as dark yellow urine, fatigue, dehydration, cramps, nausea, rapid breathing breathing Drink water at regular intervals C Schedule heavy work outside the holtest part of the day Utilise shade where possible Take regular breaks Pace yourself through work activities Monitor physical response to		Heat stress (on hot days)					Manual Tas
 Drink water at regular intervals Schedule heavy work outside the hottest part of the day Utilise shade where possible Take regular breaks Pace yourself through work activities Monitor physical response to conditional 					-	Nork team	
					υ		
•••			•••	Utilise shade where possible Take regular breaks			
			•				

PAGEE 63

Step Safety/Environmental hazards Step (datehtifed, including physical environment), human errors, plant and equipment) 5 ctd Contact with hazardous substances used as part of the job: • Spray paint • araldite • araldite • araldite • araldite • araldite • bit • araldite	Bed Service of the implemented to eliminate or the location (to be implemented to eliminate or reading the risk to the lowest practicable level) Refer to MSDS Ensure all staff are trained in the use of MSDS	Risk controls controls	Responsibility Work team	Job step to be completed In accordance with (name associated documentation)
Contact with hazardous substances used as part of the job: • Spray paint • araldite Contact with overhead wiring when obtaining wire heights			Work team	documentation)
Job: • Spray paint • araldite Contact with overhead wiring when obtaining wire heights				2MI2-Ub-GU-
 araldite araldite Contact with overhead wiring when obtaining wire heights 				0199 Dangerous
Contact with overhead wiring when obtaining wire heights	 Wear gloves when handling araldite 	-		Hazardous
Contact with overhead wiring when obtaining wire heights	 Point spray paint away from body and down wind when using Restore lids and securely store in 	3		
when obtaining wire heights	vehicle or cupboard after use			
	 Use only fibreglass staves 	>	Work team	CMC DE CD
	Check before use that the staff has been tested and famous for non-			0268 Working
				Equipment
	 Electrical awareness training 	D		
	 Annual conductivity tests for survey staves 			
	 Do not use staves when wet or in rain 			
Needle sticks				
	 Criteck worksite before commencing work 	5	Work team	
	 Do not place hands where they 			
	cannot be clearly seen eg cable troughing under raite			
5	•	D		
	 Never touch or pick up needles 			
	 If needles prevent safe work 			
	arrange for trained operators to			

lssue date: 24/07/12 Review date: 13/07/15		Date														© RailCorp
Issue date: 24/07/12 Review date: 13/07/1	ed in the SWMS	Instructor/	Briefer name					-4								
-)	lefed about or instruct	Team Member	signature													
	edge they have been bri	Team member name (Please print)														I PRINTED
	to acknowl	Date		11 11			1 1	30/2/19	-l'd'-c	50/3/15	5115/05					UNCONTROLLED COPY WHEN PRINTED
	Bill OIL ON THE SWMS	Instructor/ Briefer name	M. HAMMER 34/12	11 11	11 11		3	11 II		3 :						UNCONTROL
ey Work	Team member name Transaction on the SWMS to acknowledge they have been briefed about or instructed in the SWMS	I eam Member signature	they the	the state	KIN. In	et.	A. E. C	de l	M. Ollen	1 A	5					SWNS Approver: Principal Survayor, Principal Survayor, Principal Survas Division Prepared using SNS-06-TP-0026 v1.3, Custodian: Simor OHS Adrete: Approver: GM Saleiv Svetamme fearer Activity Co
NOTE: Each work group or team me	Team member name	(Please print)	- LESIW	DHect	A LIDEURY	P Basina	F. ENRIS	G. CUTFRED	M. AUDAMA	S. APPRITAS					MS Custodiani Senor Survevor	SWMS Approver: Principal Surveyor, Professional Services Division Prepared using SMS-06-TP-0026 v1 3; Custodian: Senior OHS Advis

Step Hazard or (Sately/Env (Sately/Env (Sately/Env (Sately/Env equipment) Marking up for survey As identif					- A COLORED AND	review date: 13/07/15
	Hazard or human error Hazard or human error diemtified including physical environment, human errors, plant and equipment)	Risk ranking before controls	Control (to be Implemented to eliminate or reduce the risk to the lowest practicable level)	Risk anking after ontrols	Responsibility	Job step to be completed in
SW-1110	As identified in SWMS SMS-06- SW-1110 Perform Survey Work		As identified in SWMS SMS-06-SW- 1110 Perform Survey Work	C	Team Leader	accordance with (name associated documentation) SPC 211 Survey Specification TMC212 Survey
Road traffic	ن ب	Ω	 Wear high visibility safety vest Perform and document (in pre- work brieb) a risk assessment to conditions and access requirements to the carriageway Use extreme caution when crossing or working on the road unpredictable When performing work on the carriageway as car paths are unpredictable When performing work on the roadside (between boundary and nearest road shoulder) use witches hats around instrument if impact Utilise lookouts when crossing road carriageway or performing road carriageway 	. U	Work team	Manual RTA Traffic Control at SMS-06-GD- 1574 Managing Hazards Hazards

PAGE 69

.

Issue date: 24/07/12 Review date: 13/07/15	00	Date														© RailCorp Version: 1.2
Issue date Review da	ed in the SWMS	Instructor/	Diferent name									7			*	
ا هو	lefed about or instruct	Team Member signature														
k Outside The Rail Corridor	reage uney nave been bri	Team member name (Please print)														N PRINTED
ridor to acknow		Date	30/2/14	11 11		:	, f	30/2/10	2. lolas	In Ilk.	The second					UNCONTROLLED COPY WHEN PRINTED
The Rail Corr	Inctructor!	Briefer name	My Mantety . M	لد (د	11 12	*		11	2	l						UNCONTROLI Systems: Issue date: 21/07/10: Revie
Perform Survey Work Outside The Rail Corridor NOTE: Each work group or team member must sign off on the SWMS to action	Team Member	signature	They have	att-	theild !	12	& Emer		M allen	Z						avriss Approver. Principal Surveyor, Professional Servees Dwision Propared using SMS-06-TP-0005 v1 3: Custodiant: Senior OHS Advisar: Approver: GM Safety Systems: Issue date: 210/1715 Reasonary avris avrists
Perform Survey Wor	Team member name	(Please print)	H. LEJIW	Differ	1. LIDEUCH	P Bast	F. ENNIS	G. CUTTER	N. ALDAMA	> MANARIDAY	-				SWMS Custodian: Senior Surveyor suvure a	Approver, Principal Surveyor, Professi, ared using SMS-06.TP-0026 v1.3; Custod

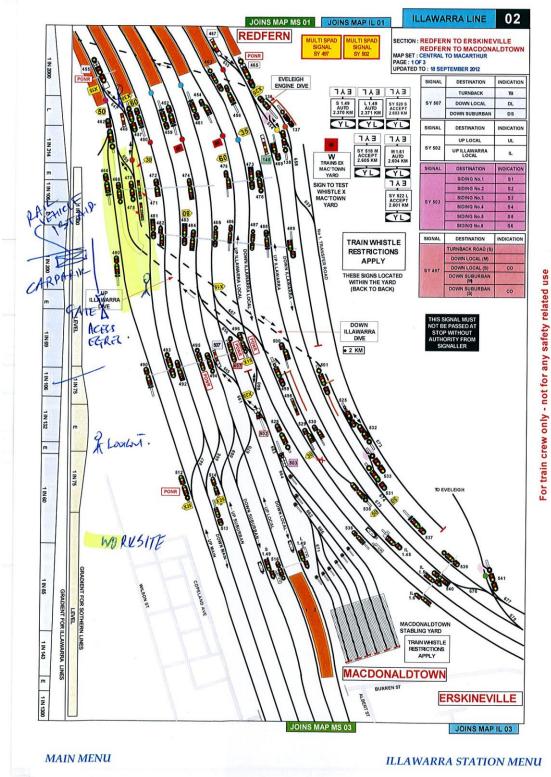
© Sydney Trains 2014

Work location: REDFERN	Briefing date: dd/mm/yy	
Scope of work: SURVEY MEASUREMENTS	Site Supervisor: S. AGORTISA S	Phone: 0458345827
Work on track method (L RA_TOA, TMA, ASB, Lookout Working) Refer to Worksite Protection Plan for details:	Protection Officer: S. AG-2R175AS	Phone: OLISE 345327
Emergency assembly point: RAIL NEHICLE	Briefer: SIAGORITSAS	Briefer's signature:
First aid kit location: RAIL VERVEN	First Aider: MICLE ADJOANLA.	SWMS/SWI Ref #:
Hazards (eg. Site specific hazards identified, including physical environment, human errors, plant and equipment)	Controls (to be implemented to eliminate or reduce the risk to the lowest practicable level)	Person responsible for Control
STRUCK BY TRAIN	WORKSITE PRETERTION AUTHORITIN PLACE	AT P.O
SLUPS TRIPS TALLS	WATCH YOUR FOOTNES. WAR PPE	ALL
HEAT	PPE, KEEP AMORATED 4120	Au
SNALES , SPIDERS , BITES , MASPS	COVERUP, APE, GLOVES	ALL
BACK STRAIN	USE APAROPRIATE LIFTING TECHNIQUES	ALC :

NRF 014 V 3.0 1 of 2

Г

Worksite Protection Plan for Lookout Working


Worksite Location:	REDFERN.	between Put	YFD km	and Sign	1490 km
Adjacent Line/s:	CP SUB.	between	km	and	km
Date of work:	15 Start time: 7: Shours	Finish time: 135 Hours	Weather:	HOT	-
Site Supervisor or Team Mar	ager: SAGDRITSAS	Work Order/Re	eference No.:		
Work description (Scope):	SURVEY MEASUR	EMENTS			

Number of Lookouts being used:	2	Position of Looko	ut/s. [1	ITH km	and* SIC
set and a set and a set a			no	Rica Con	at
Number of additional Lookouts being us	sed:	Position of Looko	ut/s:	km	and*
	signals net applicable)	Whistle/Horn (cross out if not applicable)		ce/Touch t if not applicable)	Cross out it no
Minimum Warning Time Calcul	ation:				
		ming Time (MWT)	Osec	90 km	/h 55
See Time (S) Move Time (M) Safe Time	(S+M+ 10	0 sec = MWT)		Track Speed	Minime
sec + sec + 10 sec =	= Minimum Wa	ming Time (MWT)	sec	km/	
See Time (S) Move Time (M) Safe Time		0sec = MWT)		Track Speed	Minimu Distance
Where is the safe place identified for the Lookout(s):		/	/		
Lookout(s): CESS	about these w	rork details Yes	- HA	SBEEN	ASTESE
Lookout(s): CESS	about these w	rork details Yes		5 BEEN 9371 C	AST-ESE 710-56
Lookout(s): CESS Workers: CESS Ensure the workers have been briefed a Notes: MARADS Loca Network Control Officer Detail SANGY Nambox Protection Officer Details:	about these w	NOTE details Pres		93171	71009
Lookout(s): CESS Workers: CESS Ensure the workers have been briefed a Notes: MARADS Loop Network Control Officer Detail	about these w	NOTE details Pres		5 BEEN 937710 04583	71009

Worksite I	ocation: KEDFERI	1	hatura (C)	VTYEND	SIGNA
	ine/s: OPBUB.		between	TF1 km and	90 k
	1	0.	between	km and	k
		time: 4:30 hours Finish	time: / 🖉 🌮 hou	urs Weather:	FINE
Site Superviso	r or Team Manager:	·AGORITSAS	_	Reference No.:	
Work descripti	on (Scope): UNRV	EY MEASURE	E MENTS .		
Worksite A	ssessment: Maximum	n track speed: 90	km∕h (A t	ttach diagram (or map)
Number of Loc	wouts being used:) Position of	Lookout/s:	km and*	hoping ki
Number of add	litional Lookouts being use	ed: Position of	Lookout/s:	km and*	kr
	d haing used Hainesi				
Warning meth	od being used: (cross out if not		(cross out if	Touch not applicable) (cro	ss out if not applicable
Where is the s Lookout(s): Workers: Ensure the wor	afe place identified for the CESS CESS kers have been briefed at	ime if an additional Lookout is Lee Lookout(s) and the worker	s? Yes		
	HAZARD 3	LCO ATO N	REGI	MER (HECKE
SYDA		CENTRA		9379	10009
	Officer Details:			,	
		Ni Atter	-	045831	-21-1

Work location:	Briefing date: dd/mm/yy 217[2017	
Scope of work: SURVEY MORSURE MENTI.	Site Supervisor:	Phone: 0448 345 327
Work on track method (LPA, TOA, TWA, ASB (Lookout Working) Refer to Worksite Protection Plan for details:	Protection Officer:	Phone: OUT & THE 32-1
Emergency assembly point:	Briefer: S. AGANTRAJ	Briefer's signature
First aid kit location: RAN VER WE.	First Aider, MUCH ALDAMA	SWMS/SWI Ref #:
Hazards (eg. Site specific hazards identified, including physical environment, human errors, plant and equipment)	Controls (to be implemented to eliminate or reduce the risk to the lowest practicable level)	Person responsible for Control
STRUCK BY TRAIN	LOOKOUT WARKING SITE PLOTECTION	Cid
GLIPS TAILS FALL	PE , TRAD CAREFULY	Acc
TEAT	PPE KER HYDRATES HID	ALC
INSCERT BITES	CONER IPE GLOVES	Arr
	1	

1 of 2

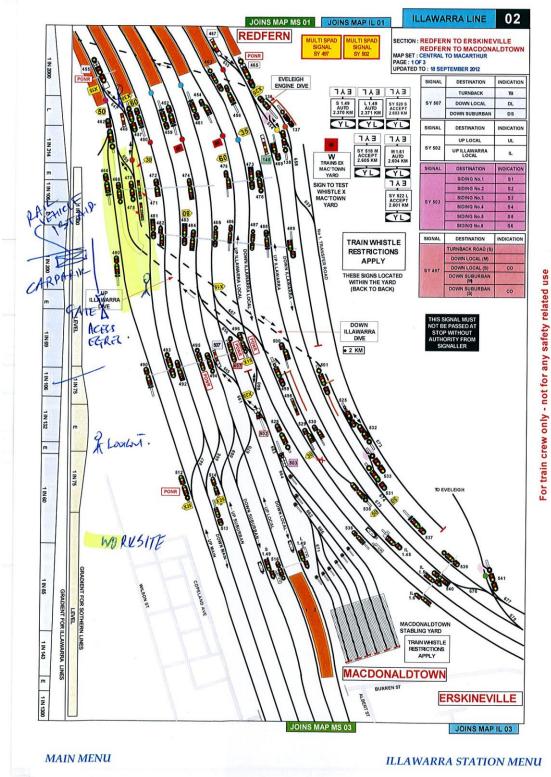
Sydney Trains 2014

Briefing date: dd/mm/yy	
Site Supervisor:	Phone: 0458345927
Protection Officer: S. AGTORITSAS	Phone: OUSE345327
Briefer: SIAGORITSAS	Briefer's signature:
First Aider. MICLE ASSANCA.	SWMS/SWI Ref #:
Controls (to be implemented to eliminate or reduce the risk to the lowest practicable level)	Person responsible for Control
MORESITE PRETERTION AUTHORITIN PLACE	AT P.O
NATCH YOUR FOOTNAS. WAR PPE	ALL
PE, KEEP HYDRATED 420	Au
NORUP, NE, GLOVES	ALL
USE APPROPRIATE LIFTING TECHNIQUES	ALC :
	Briefing date: dd/mm/yy /// /bos Site Supervisor: /// /bos Site Supervisor: 8.44-041754 \$ Protection Officer: S.44-041754 \$ Protection Officer: S.44-041754 \$ Briefer: S.44-041754 \$ Mucu Autor Matter: Mucu Mucu Autor Matter: Phone: Mucu Autor Mucu Autor Matter: Phone: Mucu Autor Matter: Phone: Mucu Autor Phone: Summary: Summary: Summary: Briefer: Summary: Mucu Autor Matter: Autor Matter: Autor Matter: Autor Matter: Autor </td

NRF 01 4 V 3.0 1 of 2

Г

Worksite Protection Plan for Lookout Working


Worksite Location:	REDFERN.	between Pur	ET km	and Signi	490 km
Adjacent Line/s:	CP SUB.	between	km	and	km
Date of work:	15 Start time: 7: 8 hours	Finish time: 135 Hours	Weather:	4101	
Site Supervisor or Team Mar	ager: SAGDRITSAS	Work Order/Re	ference No.:		
Work description (Scope):	SURVEY MEASUR	EMENTS			

Number of Le	ookouts being u	sed:	2	Position of Look	out/s: 🚺	TH km and	* SIG
				=	no	Rich Copat	•
Number of a	dditional Looko	uts being used:		Position of Look	out/s:	km and	*
Warning met	hod being used	Handsig (cross out if not a		Whistle/Horn (cross out if not applicable)		e/Touch if not applicable)	Cross out in not
Minimum	Warning Tir	ne Calculat	ion:				
2 sec +	Sec +	10 sec = M	inimum Wa	ming Time (MWT)	9 Osec	90 km/h	50
See Time (S)	Move Time (M)	Safe Time	(S+M+10	(sec = MWT)		Track Speed	Minimur
							Distance a
sec +		Contraction of the Contraction		ming Time (MWT)	sec	km/h	
See Time (S)	Move Time (M)	Safe Time	(S+M+10	lsec = MWT)		Track Speed	Minimur Distance a
Lindure the W	orkers have be					i and t	artes
Notes:	HARARDS	s Lun	ION	REGISTER	- 4A	SBEEN A	8.470
Network C	URANDS Control Office	er Details:		REGISTER		000 5	1000
Network C	Control Offic	er Details:				000 5	100%

Worksite Location: KEDFERN between CNTVEND BTELL km and SIGEN K
Adjacent Line/s: OP BLB. betweenkm andkm
Date of work: 277/2015 Start time: 9:30 hours Finish time: 1600 hours Weather: FINE
Site Supervisor or Team Manager: S. A. G. ALTSAS Work Order/Reference No.:
Work description (Scope): UNRVEY MEASUREMENTS.
Worksite Assessment: Maximum track speed: 90 km/h (Attach diagram or map)
Number of additional Lackaute being used
Warning method being used: Handsignals (cross out if not applicable)
Minimum Warning Time Calculation:
2 sec + 6 sec + 10 sec = Minimum Warning Time (MWT) $20 sec - 90 km/h$ $50 metre$
See Time (S) Move Time (M) Safe Time (S+M+10sec = MWT) Track Speed Minimum Sighting Distance as calculate
 sec + sec + 10 sec = Minimum Warning Time (MWT) sec km/h metre
See Time (S) Move Time (M) Safe Time (S+M+10sec = MWT) Track Speed Minimum Sighting Distance as calculate
* Note – Add additional 5 seconds of See Time if an additional Lookout is being used
Where is the safe place identified for the Lookout(s) and the workers?
Lookout(s): CESS
Workers: CESS
Ensure the workers have been briefed about these work details
Notes: HAZARD 3 LOOATON REGISTER CHECKE
Network Control Officer Details:
SYDNET BOY CENTRA 937 90009
Protection Officer Details:
S.A.G.RITJAS 54 0458345367
801-701591-03 PO Level: 3-or Other

Work location:	Briefing date: dd/mm/yy 217[2017	
Scope of work:	Site Supervisor:	Phone: 0448 345 327
Work on track method (LPA, TOA, TWA, ASB (Lookout Working) Refer to Worksite Protection Plan for details:	Protection Officer:	Phone: DHJ-& THE 327
Emergency assembly point:	Briefer: S. AG-AITRAS	Briefer's signature
First aid kit location: P.AL VEALUE.	First Aider MULL ALDAMA	SWMS/SWI Ref #:
Hazards (eg. Site specific hazards identified, including physical environment, human errors, plant and equipment)	Controls (to be implemented to eliminate or reduce the risk to the lowest practicable level)	Person responsible for Control
STRUCK BY TRAIN	LOOKOVT WORKING SITE PATTON	Pio
SLIPS TAIS TALL	PE, TRAD CAREFULY	Ac
HEAT	PPE KER HYDRATED HID	AL
INSCERT BITES	CONFRUP PPE GLOVES	Arr
	1	

1 of 2

Appendix C. Leica TS15 & TS30 Specifications

Technical Specifications TS15

eica Viva TS15 🚍	TS1 5 M	TS15 A	TS1 5 G	TS15 P	TS151
ngle measurement	•	•	•	•	•
stance measurement to prism	•	•		•	9
istance measurement to any surface) reflectorless (•		•	•
otorized	•			:	:
utomatic Target Aiming	-				
warSearch FS warview Camera	-		-		
5232, USB and SD card interface					
lastooth	-				
ternal Flach Memory (1G8)	-				
otshoe interface for radiohandle					
uide Light BGL	•			•	•
ser Guide	-	-	•	-	-
martStation/SmartPole CS15 CNSS receiver	0	0	0	0	0
nartStation/SmartPole CS14 CNSS receiver	0	0	0	0	0
nartStation/SmartPole CS12 CNSS receiver	0	0	0	0	0
adio lie ki controller CS 10/CS1 5	0	0	0	0	0
	🛡 = Standar	d O = Optiona	al — = Not avaib	ab ka	
ngular Measurement	Accuracy Hz, V ^a		1" (0.3 mgon), 2" (0).6mgon), 3" (1mgon), 5"	(1.5 mgon)
-	Display resolution		0.1" (0.1mgon)	5000 (SEE	0.00
	Method		absolute, continuous	, diametrical	
••••	Compensation		Quadruple axis comp		
	Compensator setting ad	curacy	0.5" (0.2 mgon), 0.5	" (0.2 mgm), 1.0" (0.3 mg	on), 1.5" (0.5 mgon)
istan ce Measurement	Distance Measuremen				
	Range [*]	1.4.13.4.13.13.13.13.13.13.13.13.13.13.13.13.13.			
≛	Round prism (GPR1)		3500m (12000 ft)		
—	3 Round prisms (GPR1)		5400m (17700 ft)		
	360° prism (GRZ4, GRZ)	(22)	2000m (7000ft)		
	360° mini prism (GR210		1000m (3300ft)		
	Mini prism (GMP101)	(*)	2000m (7000ft)		
	Reflective tape (60 mm	x 40 mm)	250 m (800 ft)		
	Accuracy**/ Measurer		20018 (000 %)		
	Standard	Hent Time	1 mm + 1 E mm / A	n 37.4	
			1 mm + 1.5 ppm / ty		
	Fast		2 mm + 1.5 ppm / ty		
	Continuous		3 mm + 1.5 ppm / ty	p. <u 15="" s<="" td=""><td></td></u>	
	Distance Measuremen	it (Any surface)			
	Range* PinPointR30/R400/R	1000	100 m (02 40 / 700 m	(1310ft)/ 1000m (32801	10
	Accuracy#/ Measure		301ii (voπ)/ 4001ii	(1310#)) 1000111 (32801	t)
	PinPoint R30 / R400 / R		2mm + 2ppm / typ.	35	
	Distance Measuremen	it (cong-ialige)			
	Long-range*		>10000 m ()328001	t)	
	Accuracy## / Measure	ment Time			
	Long-range		5mm + 2ppm / typ.	2.5 5	
	General				
	Display resolution	an.	0.1mm		
	Shortest measurable dis	tance	1.5m		
	Method			t on phase shift measuremer	
	Laser dot size (Non-Pris		At 30m: 7mm x 10r	nm, at 50 m : 8 mm x 20 mm	î.
eneral	Operating system & P	rocessor	printing strange		
0	Operating System		Windows (£ 6.0		
	Processor		Reescale i.M031 533	8 MHz ARM Core	
	Telescope				
	Magnification		30 X		
	Free objective aperture		40 mm		
	Field of view		1°30' (1.66 gm) / 2	.7m at 100m	
	Focusing range		1.7m to infinity		
	Keyboard and Display				
	Display) color TFT with LED baddig	
	Keyboard			keys, 12 alphanumeric key	s), ilumination
	Position		face i standard / face	ll optional	
	Memory, Ports & Com				
	Internal memory / Mem	ory devices		ND Flash) / SD card, USB sl	
	Intentaces		RS232, Bluetooth * W	indess-Technology, USB mi	ni AB OTG
	Operation		18 M	(11)	
	Sendtivity of Circular le	NH	6 / 2 mm		
	Centering accuracy of Li		1.5mm at 1.5m		
	Number of drives		1 horizontal / 1 verti	a	
	Power Management	in print the second			
	Internal Battery		Lithium Ian		
	Operating Time		5 – 8 h (CEB221)		
	Voltage / Capacity		7.4V/4.4 Ah		
	Weight and Dimensio	ns			
	Weight of Total Station /	Battery GEE221 / Tribrach Co	0F121 4.9 - 5.5 kg / 0.2 kg	/0.8 kg	
	Height / Width / Length		345 mm / 226 mm /		
	Environmental specifi		The Provide and the Contract of Contract o		
	Working / Storage temp		-20° C to +50° C / -4	0°C to +70°C	
	Dust/water (IEC 60520		IP55 / 05%, non-con		
uide Light (EGL)	Working Range		5 - 150 m		
	Contra 12 cont Ba				
9 ⁰	Positioningaccuracy		5 cm at 100m		

Leica TS30 Unmatched specifications

Dépéy resolution Vethod Round prism (GPR1) 50° prism (GPR1) 50° prism (GPR1) Round prism (GPR1) Realective tape (60 mm × 60 mm) Prodise Istandard Standard System analyzer based on phase shift me washnum scalaration Rotation speed Rotation speed Footisoning Time for 200 gpn (180°) Direct drives based on Rezo technology Round prism (GPR1) 50° prism (GPR1) 50° prism (GPR1) 50° prism (GPR1) 50° prism (GPR1) 50° prism (GPR1)	1000 m 2 mm + 2ppm / typ.3s 7 mm x 10 mm / 8mm x 20 mm
Round prism (CRR1) 350° prism (CRR1) Reflective tape (60 nm x 60 nm) Predise ² Standard System analyzer based on phase shift me at 30m / at 50 m System analyzer based on phase shift me Wainum as coloration Rotation speed lime for change face Positioning Time for 200 gon (180°) Dir est dives based on Rezo technology Round prism (CRR1) 350° prism (CRR1) 350° prism (CRR1)	3 500 m 3 500 m 2 50 m 0 6 mm + 1 ppm / typ. 7 s 1 mm + 1 ppm / typ. 2.4 s 1 mm + 1 ppm / typ. 2.4 s 1 mm + 1 ppm / typ. 7 s seuroment coasisl, visible red leser 1000 m 2 mm + 2 ppm / typ. 3 s 7 mm x 10 mm / Smm x 20 mm asurement coasisl, visible red leser 400 gpn 300° / (s ²) 200 gpn 300° / (s ²) 2.3 s 2.3 s 1000 m / 800 m \$00 m / 600 m
560° prism (CR24) kellective tape (60 mm x 60 mm) headset standerd system analyzer based on phase shift me et 30m / at 50 m system analyzer based on phase shift me weimum scoleration Rotation speed fine for drange face Positioning Time for 200 gm (180°) Oriect drives based on Rezo technology Round prism (CRR1) 50° prism (CRR1) 50° prism (CRR1)	1500 m 250 m 250 m 0 6mm + 1 ppm / typ. 7 s 1 mm + 1 ppm / typ. 7 s seurement coasial, visible red leser 1000 m 2 mm + 2 ppm / typ. 3 s 7 mm x 10 mm / 5mm x 20 mm asurement coasial, visible red leser 400 gpm 500 ⁶ / 5 ² 200 gpm 180 ⁶ / 5 ² 2.9 s 2.3 s 1000 m / 800 m 800 m / 600 m
560° prism (CR24) kellective tape (60 mm x 60 mm) headset standerd system analyzer based on phase shift me et 30m / at 50 m system analyzer based on phase shift me weimum scoleration Rotation speed fine for drange face Positioning Time for 200 gm (180°) Oriect drives based on Rezo technology Round prism (CRR1) 50° prism (CRR1) 50° prism (CRR1)	1500 m 250 m 250 m 0 6mm + 1 ppm / typ. 7 s 1 mm + 1 ppm / typ. 7 s seurement coasial, visible red leser 1000 m 2 mm + 2 ppm / typ. 3 s 7 mm x 10 mm / 5mm x 20 mm asurement coasial, visible red leser 400 gpm 500 ⁶ / 5 ² 200 gpm 180 ⁶ / 5 ² 2.9 s 2.3 s 1000 m / 800 m 800 m / 600 m
Reflective tape 60 mm x 60 mm Predise Standard System analyzer based on phase shift me at 30m / at 50 m System analyzer based on phase shift me Maximum asceleration Rotation speed fine for change face Positioning Time for 200 gon 180° Dir est drives based on Rezo technology Round piran (CFR1) Stor ⁶ piran (CFR1) Stor ⁶ piran (CFR1)	250 m 0 6 mm + 1 ppm / typ. 7 s 1 mm + 1 ppm / typ. 7 s 1 mm + 1 ppm / typ. 2 i s seuroment coasisl, visible red leser 1000 m 2 mm + 2 ppm / typ. 3 s 7 mm x 10 mm / Smm x 20 mm asuroment coasisl, visible red leser 400 gpn 360° / s 2 0 gpn 180° / s 2 .3 s 1000 m / 800 m \$00 m / 600 m
hodset Standard System analyzer based on phase shift me at 30m / at 50 m System analyzer based on phase shift me Maximum acceleration Rotation speed fine for dange face Positioning Time for 200 gon (180°) Direct drives based on Rieze technology Round prism (CR21, CR22) 221 NR angle accuracy Hz, V	0.6mm + 1.ppm / typ. 7 s 1.mm + 1.ppm / typ. 24 s 1.mm + 1.ppm / typ. 7 s sourceent coaxisl, visible red laser 1000 m 2.mm + 2.ppm / typ. 3 s 7.mm x 10 mm / Smm x 20 mm assumment coaxisl, visible red laser 400 gpn 360° / s ² 2.9 s 2.9 s 2.3 s 1000 m / 800 m \$00 m / 600 m
Standard System analyzer based on phase shift me at 30m / at 50 m System analyzer based on phase shift me Restain speed fine for drange face Positioning Time for 200 gon 180° Direct drives based on Rezo technology Round prism (CRR1) Stor prism (CRR1) Stor angle scoursey Hz, V	1 mm + 1ppm / typ. 2.4 s 1 mm + 1ppm / typ. 7 s seurement coexisl, visible red leser 1000 m 2 mm + 2 ppm / typ. 3 s 7 mm x 10 mm / Smm x 30 mm seurement coexisl, visible red leser 400 gpn 30° / s 2 9 s 2.3 s 1000 m / 800 m 800 m / 600 m
System analyzer based on phase shift me at 30m / at 90 m System analyzer based on phase shift me Maximum acceleration Rotation speed fine for change face Positioning filme for 200 gon 180° Direct drives based on Rezo technology Round prism (CFR1) 300° prism (CFR1) 300° prism (CFR1)	1 mm + 1ppm / typ. 7 s asurement coasial, visible red laser 1000 m 2 mm + 2ppm / typ. 3 s 7 mm x 10 mm 9 mm x 20 mm asurement coasial, visible red laser 400 gpn 300° / s ² 200 gpn 180° / s 2 9 s 2 .3 s 1000 m / 800 m 800 m / 600 m
st 30m / at 50 m Bystem analyzer based on phase shift me Kestmum acceleration Rotation speed fine for dange face Positioning Time for 200 gon 180° Direct drives based on Rezo technology Round prism (CRR1) 50° prism (CRR1) 50° prism (CRR1) 50° prism (CRR1)	esurement cossist, visible red lever 1000 m 2 mm + 2ppm / typ. 3 s 7 mm x 10 mm / Smm x 20 mm asurement cossist, visible red lever 400 gpn 360° / s 200 gpn 180° / s 2.3s 2.3s 1000 m / 800 m \$00 m / 600 m
st 30m / at 50 m Bystem analyzer based on phase shift me Kestmum acceleration Rotation speed fine for dange face Positioning Time for 200 gon 180° Direct drives based on Rezo technology Round prism (CRR1) 50° prism (CRR1) 50° prism (CRR1) 50° prism (CRR1)	1000 m 2 mm + 2ppm / typ. 3 s 7 mm x 10 mm / 9 mm x 20 mm asurement coaxial, vidble red laser 400 gpn 300° / s 200 gpn 180° / s 2.9 s 2.3 s 1000 m / 800 m 800 m / 600 m
st 30m / at 50 m Bystem analyzer based on phase shift me Kestmum acceleration Rotation speed fine for dange face Positioning Time for 200 gon 180° Direct drives based on Rezo technology Round prism (CRR1) 50° prism (CRR1) 50° prism (CRR1) 50° prism (CRR1)	1000 m 2 mm + 2ppm / typ. 3 s 7 mm x 10 mm / 9 mm x 20 mm asurement coaxial, vidble red laser 400 gpn 300° / s 200 gpn 180° / s 2.9 s 2.3 s 1000 m / 800 m 800 m / 600 m
System analyzer based on phase shift me Rotation speed fine for change face Positioning fime for 200 gon 180° Direct dives based on Rezo technology Round prism (CFR1 360° prism (CFR1 360° prism (CFR1 18 angle scarsoy Hz, V	2 nm + 2ppm / typ. 3 s 7 nm x 10 nm / 9 nm x 20 nm ssument coasis , visible red laser 400 gpn 30° / s 200 gpn 180° / s 2.9s 2.3s 1000 m / 800 m \$00 m / 600 m
System analyzer based on phase shift me Rotation speed fine for change face Positioning fime for 200 gon 180° Direct dives based on Rezo technology Round prism (CFR1 360° prism (CFR1 360° prism (CFR1 18 angle scarsoy Hz, V	2 nm + 2ppm / typ. 3 s 7 nm x 10 nm / 9 nm x 20 nm ssument coasis , visible red laser 400 gpn 30° / s 200 gpn 180° / s 2.9s 2.3s 1000 m / 800 m \$00 m / 600 m
System analyzer based on phase shift me Rotation speed fine for change face Positioning fime for 200 gon 180° Direct dives based on Rezo technology Round prism (CFR1 360° prism (CFR1 360° prism (CFR1 18 angle scarsoy Hz, V	7 mm x 10 mm / Smm x 30 mm sourement cossisi, visible red laser 400 gpn 360° / s ² 200 gpn 180° / s 2.9s 2.3s 2.3s 2.3s 300 m / 800 m 800 m / 600 m
System analyzer based on phase shift me Rotation speed fine for change face Positioning fime for 200 gon 180° Direct dives based on Rezo technology Round prism (CFR1 360° prism (CFR1 360° prism (CFR1 18 angle scarsoy Hz, V	asuren en tjoasial, visible ned laser j 400 gon j 360° j/s> 200 gon j 360° j/s 20 gon j 380° j/s 2.3s 1000 m / 800 m 800 m / 600 m
Westmum scooleration Rotation speed Positioning Time for 200 gpn 130° Direct drives based on Riezo technology Round prism GPR 1, 250° prism GPR 2, GR 21 22 NR angle accuracy Hz, V	400 gon 350° / s> 200 gon 180° / s 2.9s 2.9s 2.3s 1000 m / 800 m \$00 m / 600 m
Rotation speed line for change face Positioning Time for 200 gpn 180° Direct drives based on Rezo technology Round prism (CPR1 30° prism (CPR1) 30° prism (CPR2) ATR angle accuracy Hz, V	200 gon 180° / s 2.9s 2.3s 1000 m / 800 m \$00 m / 600 m
Rotation speed line for change face Positioning Time for 200 gpn 180° Direct drives based on Rezo technology Round prism (CPR1 30° prism (CPR1) 30° prism (CPR2) ATR angle accuracy Hz, V	200 gon 180° / s 2.9s 2.3s 1000 m / 800 m \$00 m / 600 m
lime for change face Postborning Time for 200 gon 130° Direct dives based on Rezo technology Round prism (CPR1 560° prism (CPR1 Xia angle scausery Hz, V	2.95 2.35 1000 m / 800 m \$00 m / 600 m
Positioning Time for 200 gpn 180° Direct drives based on Rezo technology Round prism GPR 1 360° prism GR2 4, GR2 1 22 MR angle accuracy H2, V	2.35 1000 m / 800 m 800 m / 600 m
Direct drives based on Fiezo technology Round prism GPR1 250° prism GP24, GR21 22 NTR single accuracy H2, V	1000 m / 800 m 800 m / 600 m
Round prism (GPR1) 360° prism (GPR1, GR21, 22) ATR angle accuracy Hz, V	800 m / 600 m
350° prism (CR24, CR2122) MR sngle scourscy Hz, V	800 m / 600 m
350° prism (CR24, CR2122) MR sngle scourscy Hz, V	800 m / 600 m
MR angle accuracy Hz, V	
sate positioning accuracy	
	±1mm ±2mm
Pointing precision at 1000 m	
Vessurement time (CPR1) Divited invess concerning	3-45
agrannage processing	
360° misro IC824, C821,221	300 m
	53
and a proceeding to call give to	M2-0
Venification	30 x
	1.7m to infinity
	3/2 VGA, colour, touch, both faces
	34 keys, illuminated
	256 MB
	CompartFlash card 256 MB or 1 CB
nterfaces	RS232 Bluetooth* Wireless
Three endless drives	For one or two hand manual operation
	Fast precision trigger key for
	manual high precision measurements
Bectronic Guide Light	For guided stakeout
	Litium-Ion
	9h
	typ. 5.9 W
	7.6kg
	-20°Cto +50°C -4°F to +122°F
	1P56
	95%, non-condensing
	igital image processing 60° prism (CR24, CR2122) pixal igital signal processing (rotating larer fa igital signal processing (rotating larer fa segnification cousing range isplay eploard themay card themay card thefaces

Leica Nova MS50 MultiStation

Accuracy ¹ Hz and V	Absolute, continuous, quadruple	1" (0.3 mgon)	
DISTANCE MEASUREMENT			
Range ²	Prism (GPR1, GPH1P) ³ Non-Prism / Any surface ⁴	1.5 m to >10000 m 1.5 m to 2000 m	
Accuracy / Measurement time	Single (prism) ^{2,5} Single (Any surface) ^{2,4,5,6}	1 mm + 1.5 ppm / typ. 1.5 s 2 mm + 2 ppm / typ. 1.5 s	
Laser dot size	at 50 m	8 mm x 20 mm	
Measurement technology	Wave Form Digitising	coaxial, visible red laser	
SCANNING			
Max. Range ? / Range noise (1 sigma) 4	1000 Hz mode 250 Hz mode 62 Hz mode 1 Hz mode	300 m / 1.0 mm at 50 m 400 m / 0.8 mm at 50 m 500 m / 0.6 mm at 50 m 1000 m / 0.6 mm at 50 m	
Visualisation of point cloud	Onboard 3D point cloud viewer, including true	colour point clouds	
IMAGING			
Overview and telescope camera	Sensor Field of view (overview / telescope) Frame rate	5 Mpixel CMOS sensor 19.4° / 1.5° Up to 20 frames per second	
MOTORISATION			
Direct drives based on Piezo technology	Rotation speed / Time to Change Face	max. 200 gon (180°) per s / typ. 2.9 s	
AUTOMATIC AIMING (ATR)			
Range ATR mode ² / Lock mode ²	Circular prism (GPR1, GPH1P) 360° prism (GRZ4, GRZ122)	1000 m / 800 m 800 m / 600 m	
Accuracy ^{1,2} / Measurement time	ATR angle accuracy Hz, V	1" (0.3 mgon) / typ. 2.5 s	
POWERSEARCH			
Range / Search time ⁸	360° prism (GRZ4, GRZ122)	300 m / typ. 5 s	
GUIDE LIGHT (EGL)			
Working Range / Accuracy		5–150 m / typ. 5 cm @ 100 m	
GENERAL			
Autofocus telescope	Magnification / Focus Range	30 x / 1.7 m to infinity	
Display and Keyboard	VGA, colour, touch, both faces	36 keys, illumination	
Operation	3x endless drives, 1x Servofocus drive, 2x Auto	ofocus keys, User-definable SmartKey	
, Power management	Exchangeable Lithium-Ion battery with internal charging capability	Operating Time 7–9 h	
Data storage	Internal memory / Memory card	1 GB / SD card 1 GB or 8 GB	
Interfaces	RS232, USB, Bluetooth®, WLAN		
Weight	MultiStation incl. battery	7.6 kg	
Environmental specifications	Working temperature range Dust & Water (IEC 60529) / Blowing rain Humidity	-20°C to +50°C IP65 / MIL-STD-810G, Method 506.5-I 95%, non-condensing	

Standard deviation ISO 17123-3
 Overcast, no haze, visibility about 40 km, no heat shimmer
 1.5 no to 3000 m for 360° prisms (GR24, GR2122)
 Object in shade, sky overcast, Kodak Cray Card (90% reflective)
 Standard deviation ISO 17123-4
 Platance > 500 m: Accuracy 4 mm + 2 ppm, Measurement Time typ. 4 s
 Object in shade, sky overcast, uninterrupted visibility, static target object, Kodak Gray Card (90% reflective)
 Target perfectly aligned to the instrument

The Bluetooth® trademarks are owned by Bluetooth SIG, Inc. Illustrations, descriptions and technical data are not binding. All rights reserved. Printed in Switzerland - Copyright. Leica Geosystems AC, Heerbrugg, Switzerland, 2013. 808909en – VI.13 – Montfort Werburg – galledia.

Leica Geosystems AG Heerbrugg, Switzerland

www.leica-geosystems.com

- when it has to be right

Appendix E. Leica P20 Specifications

Leica ScanStation P20 Product Specifications

General	Concerned when high an and a deviation of second second	Electrical	2/1/ 05 100 2/01/45
Instrument type	Compact, ultra-high speed pulsed laser scanner with survey	Power supply	24 V DC, 100 - 240 V AC
	grade accuracy, range and field-of-view; integrated camera	Power consumption	40 W typical
	and laser plummet	Battery type	Internal: Li-Ion; External: Li-Ion
User interface	Onboard control, notebook or tablet PC, PDA	Power ports	Internal: 2, External: 1 (simultaneous use, hot swappable
Data storage	Integrated solid-state drive (SSD) or external USB flash drive	Duration	Internal > 7 h (2 batteries), External > 8.5 h (room temp.
Camera	Auto-adjusting, integrated high-resolution digital camera	Environmental	
	with zoom video	Operating temperature	-20° C to +50° C/-4° F to 122° F
		Storage temperature	-40° C to +70° C / - 40° F to 158° F
System Performance		Lighting	Fully operational between bright sunlight and
Accuracy of single			complete darkness
measurement	2	Humidity	Non-condensing
3D Position Accuracy Linearity error	3 mm at 50 m, 6 mm at 100 m ≤ 1 mm	Dust/Humidity	IP54 (IEC 60529)
Angular accuracy	8" horizontal; 8" vertical		
Target acquisition*	2 mm standard deviation up to 50 m	Physical	
		Scanner	
Dual-axis compensator	Selectable on/off, resolution 1°, dynamic range +/- 5', accuracy 1.5"	Dimensions (D x W x H)	238 mm x 358 mm x 395 mm / 9.4" x 14.1" x 15.6"
		Weight	11.9 kg / 26.2 lbs, nominal (w/o batteries)
Laser Scanning and Im-	aging System	Battery (internal)	(0 mm v 72 mm v 77 mm / 1 c7 v 2 07 v 2 07
Type	Ultra-high speed time-of-flight enhanced by Waveform	Dimensions (D x W x H)	40 mm x 72 mm x 77 mm / 1.6" x 2.8" x 3.0" 0.4 kg / 0.9 lbs
.,,,,,	Digitizing (WFD) technology	Weight Retternel)	10.4 kg / 0.9 lDs
Wavelength	808 nm (invisible) / 658 (visible)	Battery (external) Dimensions (D x W x H)	95 mm x 248 mm x 60 mm / 3.7" x 9.8" x 2.4"
Laser class	1 (in accordance with IEC60825:2014)	Weight	95 mm x 248 mm x 60 mm / 3.7" x 9.8" x 2.4" 1.9 kg / 4.2 lbs
Beam divergence	0.2mrad	AC Power Supply	ara vê ti dirê jînê
Beam diameter at front	≤ 2.8 mm	Dimensions (D x W x H)	170 mm x 85 mm x 42.5 mm / 6.6" x 3.3" x 1.6"
window	3 2.0 000	Weight	0.86 kg / 1.9 lbs
Range	Up to 120 m; 18% reflectivity (minimum range 0.4 m)	Mounting	Upright or upside down
Scan rate	Up to 1'000'000 points/s	and a state of the	
Scan time and resolution (hh:mm:ss)	25 m 1.0 mm rms 0.6 mm rms 0.5 mm rms 50 m 2.8 mm rms 1.1 mm rms 0.7 mm rms 100 m 9.0 mm rms 1.4 mm rms 1.5 mm rms 7 pre-set point spacings (rmm at 10 m) 5 pacing Quality (evel) mm 1 2 3 50 0.20 00:20 00:20 00:20	Scanner transport case Tribrach (Leica Geosystems 4 x Internal batteries Battery charger / AC power Data cable Height metre and distance 1 year CCP Basic support co	cable, car adapter, dalsy chain cable
Field-of-View Horizontal Vertical	50 00:20 00:20 00:32 25 00:33 00:33 00:33 00:33 01:43 12.5 00:58 01:44 02:24 06:46 6.3 01:49 02:25 06:44 13:20 3.1 03:20 06:47 13:30 26:59 1.6 13:33 27:04 54:07 0.8 54:07 1:48:13 360° 270°	Hardware & Software main	et accessories oducts (CCPs) that include Support, thrance and Extended warranty. Iring station, AC power supply and power cable ermal batteries er
Aiming/Sighting	Parallax-free, integrated zoom video	apartice sector mounting and	
Scanning optics	Vertically rotating mirror on horizontally rotating base Up to 50 Hz with internal battery	Control Options	
	Up to 100 Hz with external power supply	Full colour touchscreen for	
Data storage capacity	256 GB onboard solid-state drive (SSD) or external USB device	Remote control: Leica CS10 including iPad, iPhone and	VCS15 controller or any other remote desktop capable devic other SmartPhones.
Communications	Gigabit Ethernet or integrated Wireless LAN		
Imaging	5 megapixels per each 17° x 17° colour image; streaming	Ordering Information	
	video with zoom, auto-adjusts to ambient lighting		osystems representative or an authorized
Onboard display	Touchscreen control with stylus, full color VGA graphic display (640 x 480 pixels)	Leica Geosystems dealer.	
Level indicator	External bubble, electronic bubble in onboard software	All specifications are subject to ch	lange without no tice.
Data transfer	Ethernet, WLAN or USB 2.0 device	All accuracy specifications are one * Algorithmic fit to planar BEAV ta	e sigma unless otherwise noted.
Laser plummet	Laser class 1 (IEC60825:2014)	** Detailed explanation on reque	st
Laser plummer	Centering accuracy: 1.5 mm at 1.5 m	Scanner: Laser class 1 in accordar	
	Laser dot diameter: 2.5 mm at 1.5 m	Laser plummet. Laser class 1 in a	Conditioned with the condition of the
	Laser dot diameter: 2.5 mm at 1.5 m Selectable ON/OFF	iPhone and iPad are trademarks of	

Illustrations, descriptions and technical data are not binding. All rights reserved. Printed in Switzerland – Copyright Leca Geosystems AG, Heerbrugg, Switzerland, 2013. 795794enUS – 07.14 – galledia

Leica Geosystems AG Heerbrugg, Switzerland www.leica-geosystems.com/hds

- when it has to be **right**

Appendix F. Faro Focus 3D X330 Specification

Global Offices: Australia - Brazil - China - France - Germany India - Italy - Japan - Malaysia - Mexico - Netherlands Philippines - Poland - Portugal - Singapore - Spain - Switzerland Thailand - Turkey - United Kingdom - USA - Vietnam www.faro.com

Revised: 07 Oct. 2013 @ 2013 FARO

EU-EN-4REP201-519.pdf

Appendix G. Project Costings

A budget of \$3,000 has been assigned for this project. Current costs are \$3,237.37. This project is over budget by \$237.37. The biggest impact on cost is the Re-establishment of the calibration site.

Table H1 Breakdown of target Construction costing Target Construction

Date	Company	Items	Qty	Cost
31/12/14	UTS	3D Print	1	115.00
		3D.stl File	1	40.00
19/01/15	C R Kennedy	Single prism holder	3	255.00
		Prism mount	3	22.50
		Cover	3	27.00
27/01/15	Camera Trax	Color Kodak (like) cards	18	300.00
30/01/15	Shapeway	A metal prism	1	250.00
		A sandstone prism	1	110.00
31/01/15	Eckersley's Art & craft	Cutting blades	2	27.95
		Technical pencils	2	22.95
31/01/15	Bunning's	Various tools to construct targets		66.59
31/01/15	DickSmith	Cannon SX600 Camera and accessories	1	303.96
31/01/15	Paxton's	Digital grey, Black and white cards (set)	1	49.95
14/02/15	Clark Rubber	Assorted foam off cuts, Selleys glue		41.50
1/03/0215	Bunning's	Heavy duty scissors	1	9.98
	-	Cutting Knife	1	7.98
7/03/15	Oficeworks	Fluro cards (set)	1	10.34
		Super glue	1	10.98
		USB Micro 64G	1	54.96
11/03/15	Officeworks	Hole punch	1	6.73
		Compass	1	7.98
13/03/15	Bunning's	10 & 12 mm Drill bit	2	16.40
		Adhesive	3	15.45
		Pine timber 42mm x 42mm x 1.2m	4	27.64
		Foam board	5	62.30
		Sub Total		\$1,503.14

 Table H2 Breakdown of Miniature Target Layout costing

Date	Company	Items	Qty	Cost
7/04/15	Officeworks	Photo prints	190	40.60
		Labels	2	14.97
		Display book	1	10.30
		Cork board	1	23.50
		Pocket Knife	1	6.50
12/04/15	Officeworks	Photos (A3)	6	72.00
		Super glue	9	106.90
		Push pins	6	24.60
13/04/15	Officeworks	Short white pins	4	16.40
		Sub Total		\$315.77

Table H3 Breakdown of Target Installation costing

Target Installation						
Date	Company	Items	Qty	Cost		
7/04/15	Officeworks	Adhesive, gaffer tape, aluminum frame		29.47		
14/04/15	Bunning's	Velkro sets	30	168.59		
	-	Gaffe Tape	2	20.40		
12/05/15	Storage King	Calibration site re-establishment		1200.00		
		9m x 4m x 3m				
	1	A one month rental 18 June to 18 July				
		Sub Total		\$1,418.46		

Table H4 Total Costing of the Project work

	Total Costing
Target Construction	1503.14
Miniature Target Layout	315.77
Target Installation	1418.46
Total	\$3,237.37

Appendix H. Calibration Reports Leica TS15 & TS30

) ••					
•		FREE DISTAN	CE BASELINE CAI	JIBRATION	
	FROM	то	MEASURED	BASELINE	RESIDUAL
	58055	. 58056	202.0778	202.0780	0.0002
	58055	58056	202.0783	202.0780	-0.0003
	58055	58056	202.0783	202.0780	-0.0003
TSI5 (STAN)	58055	58056	202.0778	202.0780	0.0002
In Shirt	58055	58057	458.7341	458.7360	0.0012
1	58055	58057	458.7341	458.7360	0.0012
SN 1613367	58055	58057	458.7336	458.7360	0.0017
SN 1613367	58055	58057	458.7336	458.7360	0.0017
	58055	58058	605.0078	605.0100	0.0018
	58055	58058	605.0078	605.0100	0.0018
WITH	58055	58058	605.0072	605.0100	0.0024
	58055	58058	605.0071	605.0100	0.0025
REFLECTOR	58056	58058	402.9309	402.9320	0.0008
	58056	58058	402.9304	402.9320	0.0013
111	58056	58058	402.9309	402.9320	0.0008
51212	58056	58058	402.9309	402.9320	0.0008
100	58056	58057	256.6568	256.6580	0.0005
	58056	58057	256.6568	256.6580	0.0005
	58056	58057	256.6568	256.6580	0.0005
	58056	58057	256.6568	256.6580	0.0005
	58056	58055	202.0782	202.0780	-0.0002
	58056	58055	202.0777	202.0780	0.0003
	58056	58055	202.0777	202.0780	0.0003
	58056	58055	202.0777	202.0780	0.0003
	58057	58055	458.7369	458.7360	-0.0016
	58057	58055	458.7369	458.7360	-0.0016
	58057	58055	458.7365	458.7360	-0.0012
	58057	58055	458.7369	458.7360	-0.0016
	58057	58056	256.6577	256.6580	-0.0004
	58057	58056	256.6582	256.6580	-0.0009
	58057	58056	256.6578	256.6580	-0.0005
	58057	58056	256.6577	256.6580	-0.0004
	58057	58058	146.2746	146.2740	-0.0002
	58057	58058	146.2745	146.2740	-0.0001
	58057	58058	146.2745	146.2740	-0.0001
	58057	58058	146.2746	146.2740	-0.0002
	58058	58055	605.0116	605.0100	-0.0020
	58058	58055	605.0116	605.0100	-0.0020
	58058	58055	605.0118	605.0100	-0.0022
	58058	58055	605.0117	605.0100	-0.0021
	58058	58056	402.9326	402.9320	-0.0009
	58058	58056	402.9326	402.9320	-0.0009
	58058	58056	402.9331	402.9320	-0.0014
	58058	58056	402.9321	402.9320	-0.0004
	58058	58057	146.2743	146.2740	0.0001
	58058	58057	146.2743	146.2740	0.0001
	58058	58057	146.2743	146.2740	0.0001
	58058	58057	146.2743	146.2740	0.0001
		EDM CONSTANT: -	0.0001 STD DI	SV: 0.0004	

BASELINE DISTANCES

FROM	то	PUBLISHED	ADJUSTED	STD DEV	RESIDUAL
58055	58056	202.0780	202.0779	0.0003	-0.0001
58056	58057	256.6580	256.6573	0.0003	-0.0007
58057	58058	146.2740	146.2744	0.0003	0.0004

FREE ADJUSTMENT VARIANCE FACTOR: 0.07

FIXED DISTANCE BASELINE CALIBRATION

FROM	то	MEASURED	BASELINE	RESIDUAL
58055	58056	202.0778	202.0780	0.0002
58055	58056	202.0783	202.0780	-0.0003
58055	58056	202.0783	202.0780	-0.0003
58055	58056	202.0778	202.0780	0.0002
58055	58057	458.7341	458.7360	0.0014
58055	58057	458.7341	458.7360	0.0014
58055	58057	458.7336	458.7360	0.0019
58055	58057	458.7336	458.7360	0.0019
58055	58058	605.0078	605.0100	0.0015

58055	58058	605.0078	605.0100	0.0015
58055	58058	605.0072	605.0100	0.0021
58055	58058	605.0071	605.0100	0.0022
58056	58058	402.9309	402.9320	0.0007
58056	58058	402.9304	402.9320	0.0012
58056	58058	402.9309	402.9320	0.0007
58056	58058	402.9309	402.9320	0.0007
58056	58057	256.6568	256.6580	0.0011
58056	58057	256.6568	256.6580	0.0011
58056	58057	256.6568	256.6580	0.0011
58056	58057	256.6568	256.6580	0.0011
58056	58055	202.0782	202.0780	-0.0002
58056	58055	202.0777	202.0780	0.0003
58056	58055	202.0777	202.0780	0.0003
58056	58055	202.0777	202.0780	0.0003
58057	58055	458.7369	458.7360	-0.0014
58057	58055	458.7369	458.7360	-0.0014
58057	58055	458.7365	458.7360	-0.0010
58057	58055	458.7369	458.7360	-0.0014
58057	58056	256.6577	256.6580	0.0002
58057	58056	256.6582	256.6580	-0.0003
58057	58056	256.6578	256.6580	0.0001
58057	58056	256.6577	256.6580	0.0002
58057	58058	146.2746	146.2740	-0.0005
58057	58058	146.2745	146.2740	-0.0004
58057	58058	146.2745	146.2740	-0.0004
58057	58058	146.2746	146.2740	-0.0005
58058	58055	605.0116	605.0100	-0.0023
58058	58055	605.0116	605.0100	-0.0023
58058	58055	605.0118	605.0100	-0.0025
58058	58055	605.0117	605.0100	-0.0024
58058	58056	402.9326	402.9320	-0.0010
58058	58056	402.9326	402.9320	-0.0010
58058	58056	402.9331	402.9320	-0.0015
58058	58056	402.9321	402.9320	-0.0005
58058	58057	146.2743	146.2740	-0.0002
58058	58057	146.2743	146.2740	-0.0002
58058	58057	146.2743	146.2740	-0.0002
58058	58057	146.2743	146.2740	-0.0002

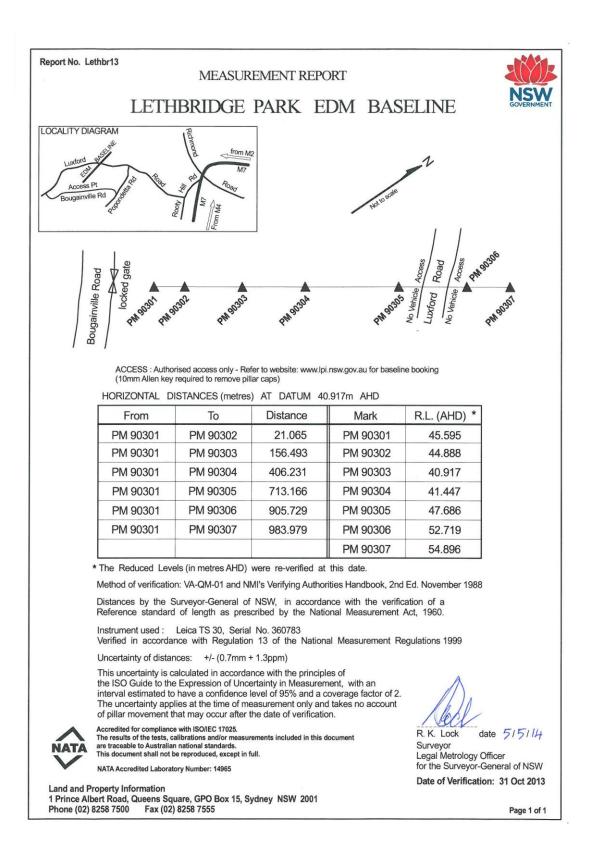
:

EDM CONSTANT: -0.0003 Std Dev: 0.0003 PPM CORRECTION: 1.7 Std Dev: 1.0

\$

FIXED ADJUSTMENT VARIANCE FACTOR: 0.07

.


· · · ·				
	FREE DIS	TANCE BASELINE CA	LIBRATION	
- FROM	TO	MEASURED	BASELINE	RESIDUAL
58055	58056	202.0467	202.0780	0.0018
58055	58056	202.0477	202.0780	0.0008
58055	58056	202.0472	202.0780	0.0013
58055	58056		202.0780	0.0008
1515 MAN 58055	58057		458.7360	0.0006
58055	58057		458.7360	0.0017
58055	58057		458.7360	0.0026
SN 1613367 58055 58055	58057		458.7360	0.0006
SN 1017701 58055	58058		605.0100	
58055	58058		605.0100	0.0034
	58058	604.9749		0.0023
REFLECTORLESS 58055 58056	58058		605.0100 402.9320	0.0024
GREYCARD 58056	58058			0.0004
9167CARD 58056	58058	402.8998	402.9320	0.0013
58056		402.8993	402.9320	0.0018
58056	58058	402.8996	402.9320	0.0015
58056	58057	256.6267	256.6580	0.0012
50050	58057	256.6263	256.6580	0.0016
OALC PULLARS. 58056 58056	58057	256.6278	256.6580	0.0001
	58057	256.6268	256.6580	0.0011
58056	58055	202.0488	202.0780	-0.0003
5 2 (1) 58056	58055	202.0482	202.0780	0.0003
58056	58055	202.0487	202.0780	-0.0002
58056	58055	202.0482	202.0780	0.0003
58057	58055	458.7080	458.7360	-0.0038
58057	58055	458.7070	458.7360	-0.0028
58057	58055	458.7076	458.7360	-0.0034
58057	58055	458.7085	458.7360	-0.0043
58057	58056	256.6284	256.6580	-0.0005
58057	58056	256.6288	256.6580	-0.0009
58057	58056	256.6283	256.6580	-0.0004
58057	58056	256.6288	256.6580	-0.0009
58057	58058	146.2458	146.2740	-0.0004
58057	58058	146.2436	146.2740	0.0018
58057	58058	146.2449	146.2740	0.0005
58057	58058	146.2449	146.2740	0.0005
58058	58055	604.9808	605.0100	-0.0035
58058	58055	604.9761	605.0100	
58058	58055	604.9771	605.0100	0.0012
58058	58055	604.9809	605.0100	0.0002
58058	58056	402.9006	402.9320	-0.0036
58058	58056	402.9008		0.0005
58058	58056	402.9017	402.9320	0.0003
58058	58056		402.9320	-0.0006
58058	58057	402.9017	402.9320	-0.0006
58058	58057	146.2469	146.2740	-0.0015
58058		146.2464	146.2740	-0.0010
58058	58057	146.2479	146.2740	-0.0025
20020	58057	146.2467	146.2740	-0.0013
	EDM CONCEANER	0 0270 000 000		
	EDM CONSTANT:	0.0278 STD DE	V: 0.0006	
		PLINE DIGRAMORA		
	DAS	ELINE DISTANCES		
FROM	то	PUBLISHED ADJUS		DBAT
1 NON	10	FOBLISHED ADJUS	STED STD DEV	RESIDUAL
58055	58056	202.0780 202.0	762 0 0005	0.001-
58056	58057			-0.0017
				-0.0023
58057	58058	146.2740 146.27	731 0.0005	-0.0009
	FOFF AD THETME	NT VARIANCE FACTO	ND 0 70	
	FREE ADJUSIME	NI VARIANCE FACTO	DR: 0.18	
	FIVED DIGTA	NCE BASELINE CALI	DDIMIN	
	FIRED DISIN	NCE BASELINE CALL	BRATION	
FROM	то	MEASURED	DA CET THE	DESTRUCT
гкон	10	MEASORED	BASELINE	RESIDUAL
58055	58056	202 0467	202 0700	
58055	58056	202.0467	202.0780	0.0019
		202.0477	202.0780	0.0009
58055	58056	202.0472	202.0780	0.0014
58055 58055	58056	202.0477	202.0780	0.0009
	58057	458.7036	458.7360	0.0008
58055	58057	458.7025	458.7360	0.0019
58055	58057	458.7016	458.7360	0.0028
58055	58057	458.7036	458.7360	0.0008
58055	58058	604.9739	605.0100	0.0032
58055	58058	604.9750	605.0100	0.0021
			000.0100	0.0021

58055	58058	604.9749	605.0100	0.0022
58056	58058	402.9007	402.9320	0.0002
58056	58058	402.8998	402.9320	0.0011
58056	58058	402.8993	402.9320	0.0016
58056	58058	402.8996	402.9320	0.0013
58056	58057	256.6267	256.6580	0.0015
58056	58057	256.6263	256.6580	0.0019
58056	58057	256.6278	256.6580	0.0004
58056	58057	256.6268	256.6580	0.0014
58056	58055	202.0488	202.0780	-0.0002
58056	58055	202.0482	202.0780	0.0004
58056	58055	202.0487	202.0780	-0.0001
58056	58055	202.0482	202.0780	0.0004
58057	58055	458.7080	458.7360	-0.0036
58057	58055	458.7070	458.7360	-0.0026
58057	58055	458.7076	458.7360	-0.0032
58057	58055	458.7085	458.7360	-0.0041
58057	58056	256.6284	256.6580	-0.0002
58057	58056	256.6288	256.6580	-0.0006
58057	58056	256.6283	256.6580	-0.0001
58057	58056	256.6288	256.6580	-0.0006
58057	58058	146.2458	146.2740	-0.0007
58057	58058	146.2436	146.2740	0.0015
58057	58058	146.2449	146.2740	0.0002
58057	58058	146.2449	146.2740	0.0002
58058	58055	604.9808	605.0100	-0.0037
58058	58055	604.9761	605.0100	0.0010
58058	58055	604.9771	605.0100	0.0000
58058	58055	604,9809	605.0100	-0.0038
58058	58056	402.9006	402.9320	0.0003
58058	58056	402.9008	402.9320	0.0001
58058	58056	402.9017	402,9320	-0.0008
58058	58056	402.9017	402.9320	-0.0008
58058	58057	146.2469	146.2740	-0.0018
58058	58057	146.2464	146.2740	-0.0013
58058	58057	146.2479	146.2740	-0.0028
58058	58057	146.2467	146.2740	-0.0016
				0.0010

.

EDM CONSTANT: 0.0276 Std Dev: 0.0005 PPM CORRECTION: 8.7 Std Dev: 1.6

FIXED ADJUSTMENT VARIANCE FACTOR: 0.17

8					
		FREE DISTANC	CE BASELINE CAI	JIBRATION	
S IL: FROM		то	MEASURED	BASELINE	RESIDUAL
6 , , , , , , , , , , , , , , , , , ,	3	1	156.4930	156.4930	-0.0001
	3	2	135.4278	135.4280	0.0000
TS 30	3 3	4	249.7384	249.7380	-0.0005
1		5	556.6726	556.6730	-0.0002
	3 3	6	749.2364	749.2360	-0.0001
SN 361403 WITH REFLECTOR	3	7	827.4870	827.4860	-0.0004
11 101 703	1 1 1	7	983.9796	983.9790	-0.0012
0	1	6	905.7293	905.7290	-0.0010
WITH REFIELDR	1	5	713.1653	713.1660	-0.0001
with out contract		4	406.2307	406.2310	0.0000
	1	3	156.4930	156.4930	-0.0001
	1	2	21.0651 .	21.0650	0.0001
	2	1	21.0651	21.0650	0.0001
	2	3	135.4278	135.4280	0.0000
	2	4	385.1655	385.1660	0.0001
	2	5	692.0998	692.1010	0.0003
	2	6	884.6637	884.6640	0.0003
	2	7	962.9136	962.9140	0.0005
	4	7	577.7488	577.7480	0.0000
	4	6	499.4983	499.4980	0.0002
	4	5	306.9344	306.9350	0.0002
	4	3	249.7374	249.7380	0.0005
1	4	2	385.1655	385.1660	0.0001
	4	1	406.2307	406.2310	0.0000
	5	1	713.1653	713.1660	-0.0001
	5	2	692.1003	692.1010	-0.0002
	5	3	556.6726	556.6730	-0.0002
	5	4	306.9349	306.9350	-0.0003
	5	6	192.5640	192.5630	0.0000
	5	7	270.8146	270.8130	-0.0003
	6	7	78.2501	78.2500	0.0003
	6	5	192.5640	192.5630	0.0000
	6	4	499.4983	499.4980	0.0002
	6	3	749.2364	749.2360	-0.0001
	6	2	884.6642	884.6640	-0.0002
	6	1	905.7288	905.7290	-0.0005
	7	1	983.9791	983.9790	-0.0007
	7	2	962.9146	962.9140	-0.0005
	7	3	827.4855	827.4860	0.0011
	7	4	577.7488	577.7480	0.0000
	7	5	270.8146	270.8130	-0.0003
	7	6	78.2506	78.2500	-0.0002

EDM CONSTANT: -0.0001 STD DEV: 0.0001

BASELINE DISTANCES

FROM
FROM

TO	PUBLISHED	ADJUSTED	STD DEV	RESIDUAL
2	21.0650	21.0651	0.0001	0.0001
3	135.4280	135.4277	0.0001	-0.0003
4	249.7380	249.7378	0.0001	-0.0002
5	306.9350	306.9345	0.0001	-0.0005
6	192.5630	192.5639	0.0001	0.0009
7	78.2500	78.2503	0.0001	0.0003

FREE ADJUSTMENT VARIANCE FACTOR: 0.00

FIXED DISTANCE BASELINE CALIBRATION

FROM	то	MEASURED	BASELINE	RESIDUAL
3	1	156.4930	156.4930	0.0002
3	2	135.4278	135.4280	0.0004
3	4	249.7384	249.7380	-0.0002
3	5	556.6726	556.6730	0.0005
3	6	749.2364	749.2360	-0.0004
3	7	827.4870	827.4860	-0.0010
1	7	983.9796	983.9790	-0.0007
1	6	905.7293	905.7290	-0.0004
1	5	713.1653	713.1660	0.0007
1	4	406.2307	406.2310	0.0004
1	3	156.4930	156.4930	0.0002
1	2	21.0651	21.0650	0.0001

1	21.0651	21.0650	0.0001	
3	135.4278	135.4280	0.0004	
4	385.1655	385.1660	0.0006	
5	692.0998	692.1010	0.0012	
6	884.6637	884.6640	0.0003	
7	962.9136	962.9140	0.0003	
7	577.7488	577.7480	-0.0007	
6	499.4983	499.4980	-0.0002	
5	306.9344	306.9350	0.0007	
3	249.7374	249.7380	0.0008	
2	385.1655	385.1660	0.0006	
1	406.2307	406.2310	0.0004	
1	713.1653	713.1660	0.0007	
2	692.1003	692.1010	0.0007	
3	556.6726	556.6730	0.0005	
4	306.9349	306.9350	0.0002	
6	192.5640	192.5630	-0.0008	
7	270.8146	270.8130	-0.0014	
7	78.2501	78.2500	0.0001	
5	192.5640	192.5630	-0.0008	
4	499.4983	499.4980	-0.0002	
3	749.2364	749.2360	-0.0004	
2	884.6642	884.6640	-0.0002	
1	905.7288	905.7290	0.0001	
1	983,9791	983.9790	-0.0002	
2	962.9146	962.9140	-0.0007	
3	827.4855	827.4860	0.0005	
4	577.7488	577.7480	-0.0007	
5	270.8146	270.8130	-0.0014	
6	78.2506	78.2500	-0.0004	

EDM CONSTANT: -0.0002 Std Dev: 0.0001 PPM CORRECTION: 0.3 Std Dev: 0.3

FIXED ADJUSTMENT VARIANCE FACTOR: 0.02

• •

			FREE	DISTA	NCE BAS	ELINE CAI	LIBRATION	
	FROM		Т	0	ME.	ASURED	BASELINE	RESIDUAL
		7		6		78.2181	78.2500	0.0003
Tin		7		5		70.7811	270.8130	0.0009
TS 30		7 7		4		77.7218	577.7480	-0.0096
A state		7		3		27.4470 62.8771	827.4860 962.9140	-0.0013
REFLORESS.		6		2		84.6307	884.6640	-0.0011 -0.0048
1 Cur		6		3		49.1999	749.2360	-0.0020
8/9)/4. To TARGET GREY CARD		6		4		99.4643	499.4980	0.0001
0/1/11		6		5		92.5304	192.5630	0.0012
	DATE	1		7		78.2181	78.2500	0.0003
TARGET	PLATE	1		3		21.0326 56.4610	21.0650 156.4930	0.0004
		1		4		06.1972	406.2310	-0.0003
C		1		4		06.1982	406.2310	-0.0013
JREY CARD		1		4		06.1982	406.2310	-0.0013
		1 1		3		56.4615	156.4930	-0.0005
		ì		3		56.4615 21.0321	156.4930 21.0650	-0.0005
		1		2		21.0326	21.0650	0.0009 0.0004
		1		5		3.1328	713.1660	-0.0031
		1		5	71	3.1258	713.1660	0.0039
		1		5		.3.1278	713.1660	0.0019
		2 2		5 5		2.0568	692.1010	0.0083
		2		5		02.0613	692.1010 692.1010	0.0038
		2		4		5.1300	385.1660	-0.0022 0.0022
		2		4		5.1320	385.1660	0.0002
		2		4		5.1325	385.1660	-0.0003
		2		3		5.3962	135.4280	-0.0002
		2 2		3		5.3962	135.4280	-0.0002
		2		3 1		5.3957	135.4280 21.0650	0.0003
		2		1		1.0331	21.0650	-0.0001 -0.0001
		2		1		1.0331	21.0650	-0.0001
		2		1	2	1.0326	21.0650	0.0004
		3		1		6.4605	156,4930	0.0005
		3 3		1 1		6.4600	156.4930	0.0010
		3		2		6.4600 5.3962	156.4930 135.4280	0.0010
		3		2		5.3962	135.4280	-0.0002
		3		2		5.3967	135.4280	-0.0007
		3		4		9.7044	249.7380	-0.0002
		3		4		9.7054	249.7380	-0.0012
		3 3		4 5		9.7059 6.6405	249.7380	-0.0017
		3		5		6.6375	556.6730 556.6730	-0.0034
		3		5		6.6350	556.6730	0.0021
		4		5	30	6.9014	306.9350	-0.0006
		4		5		6.8994	306.9350	0.0014
		4		5 3		6.9014	306.9350	-0.0006
		4		3		9.7044 9.7054	249.7380 249.7380	-0.0002
		4		3		9.7049	249.7380	-0.0012 -0.0007
		4		з		9.7049	249.7380	-0.0007
		4		2		5.1315	385.1660	0.0007
		4		2		5.1335	385.1660	-0.0013
		4		2 1		5.1330 6.1962	385.1660	-0.0008
		4		1		5.1987	406.2310 406.2310	0.0007
		4		1		5.1977	406.2310	-0.0008
		5		1		3.1383	713.1660	-0.0086
		5		1		3.1338	713.1660	-0.0041
		5		1		3.1288	713.1660	0.0009
		5 5		2 2		2.0673 2.0633	692.1010	-0.0022
		5		2		2.0633	692.1010 692.1010	0.0018
		5		3		5.6350	556.6730	-0.0017 0.0021
		5		3		5.6315	556.6730	0.0056
		5		3		5.6370	556.6730	0.0001
21		5		4		5.9019	306.9350	-0.0011
		5		4 4		5.9024 5.9009	306.9350	-0.0016
					500		306.9350	-0.0001
		ED	M CONST	ANT: (0.0320	STD DEV	: 0.0005	

FROM

۰ ۱

. .

	c	0	PUBLISHED	ADJUSTED	STD DEV	RESIDUAL
1		2	21.0650	21.0651	0.0005	0.0001
2		3	135.4280	135.4280	0.0005	0.0000
3		4	249.7380	249.7363	0.0005	-0.0017
4		5	306.9350	306.9328	0.0005	-0.0022
5		6	192.5630	192.5636	0.0009	0.0006
6		7	78.2500	78.2504	0.0009	0.0004

FREE ADJUSTMENT VARIANCE FACTOR: 0.22

FIXED DISTANCE BASELINE CALIBRATION

	FIXED DISTANCE	BASELINE CA	LIBRATION	
FROM	то	MEASURED	BASELINE	RESIDUAL
7	6	78.2181	78.2500	-0.0001
7	5	270.7811	270.8130	-0.0013
7	4	577.7218	577.7480	-0.0088
7	3	827.4470	827.4860	0.0026
7	2	962.8771	962.9140	-0.0003
6	2	884.6307	884.6640	-0.0035
6	3	749.1999	749.2360	0.0001
6	4	499.4643	499.4980	-0.0008
6	5	192.5304	192.5630	-0.0001
6	7	78.2181	78.2500	-0.0001
1	2	21.0326	21.0650 .	0.0007
1	3	156.4610	156.4930	-0.0005
1	4	406.1972	406.2310	-0.0002
1	4	406.1982	406.2310	-0.0012
1	4	406.1982	406.2310	-0.0012
1	3	156.4615	156.4930	-0.0010
1	3	156.4615	156.4930	-0.0010
1	2	21.0321	21.0650	0.0012
1	2	21.0326	21.0650	0.0007
1	5	713.1328	713.1660	-0.0026
1	5	713.1258	713.1660	0.0044
1	5	713.1278	713.1660	0.0024
2	5	692.0568	692.1010	0.0086
2	5	692.0613	692.1010	0.0041
2	5	692.0673	692.1010	-0.0019
2	4	385.1300	385.1660	0.0022
2 2	4	385.1320	385.1660	0.0002
2	4	385.1325	385.1660	-0.0003
2	3	135.3962	135.4280	-0.0006
2	3	135.3962 135.3957	135.4280 135.4280	-0.0006
2	1	21.0331	21.0650	-0.0001 0.0002
2	1	21.0331	21.0650	0.0002
2	1	21.0331	21.0650	0.0002
2	1	21.0326	21.0650	0.0002
3	1	156.4605	156.4930	0.0000
3	1	156.4600	156.4930	0.0005
3	1	156.4600	156.4930	0.0005
3	2	135.3962	135.4280	-0.0006
3	2	135.3962	135.4280	-0.0006
3	2	135.3967	135.4280	-0.0011
3	4	249.7044	249.7380	0.0005
3	4	249.7054	249.7380	-0.0005
3	4	249.7059	249.7380	-0.0010
3	5	556.6405	556.6730	-0.0024
3	5	556.6375	556.6730	0.0006
3	5	556.6350	556.6730	0.0031
4	5	306.9014	306.9350	0.0002
4	5	306.8994	306.9350	0.0022
4	5	306.9014	306.9350	0.0002
4	3	249.7044	249.7380	0.0005
4	3	249.7054	249.7380	-0.0005
4	3	249.7049	249.7380	0.0000
4	3	249.7049	249.7380	0.0000
4	2	385.1315	385.1660	0.0007
4	2	385.1335	385.1660	-0.0013
4	2	385.1330	385.1660	-0.0008
4	1	406.1962	406.2310	0.0008
4	1	406.1987	406.2310	-0.0017
4	1	406.1977	406.2310	-0.0007
5	1	713.1383	713.1660	-0.0081
5	1	713.1338	713.1660	-0.0036
5	1	713.1288 692.0673	713.1660	0.0014
5	2	012.0013	692.1010	-0.0019

158

5	2	692.0633	692.1010	0.0021
5	2	692.0668	692.1010	-0.0014
5	3	556.6350	556.6730	0.0031
5	3	556.6315	556.6730	0.0066
5	3	556.6370	556.6730	0.0011
5	4	306.9019	306.9350	-0.0003
5	4	306.9024	306.9350	-0.0008
5	4	306.9009	306.9350	0.0007

EDM CONSTANT: 0.0316 Std Dev: 0.0004 PPM CORRECTION: 5.9 Std Dev: 1.0

- ,

FIXED ADJUSTMENT VARIANCE FACTOR: 0.23