

University of Southern Queensland
Faculty of Engineering and Surveying

Machine vision and sensing
with an Android

A dissertation submitted by

Mr Shaun Field

In fulfilment of the requirements of

Bachelor of Engineering (Electrical and
Electronics)

September 2015

MACHINE VISION AND SENSING WITH AN ANDROID

i

Abstract

This project investigated the ability for an Android mobile device to run an application

that could automate a tractor. The development of such an application would lead to

a cost effective, portable, and user friendly device that could easily be transported and

installed on a tractor to allow vehicle automation. At the start of this project the

method for automation had not been determined however the specific intent for the

design of a machine vision application on an Android device was later defined.

The development of this application began with investigations into machine vision

techniques and the Android SDK which identified the machine vision algorithm as

well as the software libraries the application was be built upon. Access to the main

video data was then achieved which enabled the manipulation of image data through

accessing the pixel array information. Annotations were then added to the screen to

allow for the output of data, and the line fitting algorithm selected for identifying crop

rows was programmed. These achievements allowed the output of row identification

and steering correction data to be added to the device screen.

These accomplishments concluded in an Android based machine vision application

that is able to identify crop rows while processing the 30 fps 320x240 resolution image

in an average of 34 ms per frame during typical running circumstances. This was done

while keeping system RAM usage to an average of about 17 MB on a system that is

also very tolerant to light fluctuations and noisy data.

MACHINE VISION AND SENSING WITH AN ANDROID

ii

Limitations of use

While every attempt has been made to ensure the accuracy of the information within

this document, The University of Southern Queensland excludes any and all liability

for any errors in or omissions from the information within this document. Any person

using the information within this document must do so at their own risk as the

document’s author is not a professionally qualified engineer, therefore the document

has no certification of accuracy or correctness that can be relied on.

Additionally the Android automated vehicle guidance system designed within this

report is a proof of concept design only and should not be used for an automated

vehicle guidance system without further design and testing.

MACHINE VISION AND SENSING WITH AN ANDROID

iii

Candidate certification

I certify that the ideas, designs and experimental work, results, analysis and

conclusions set out in this dissertation are entirely my own efforts, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Shaun David Field

Student Number: 0061023577

MACHINE VISION AND SENSING WITH AN ANDROID

iv

Acknowledgements

This research was carried out under the supervision of Prof. John Billingsley.

This project leveraged BoofCV, the open source java computer vision library written

and maintained by Peter Abeles.

Invaluable information and skills used for the project presentation were given by Mr

Andreas Helwig, Dr Leslie Bowtell, Assoc Prof Tony Ahfock, and all other

participants of the USQ ENG Project Conference 2015.

MACHINE VISION AND SENSING WITH AN ANDROID

v

TABLE OF CONTENTS

Abstract ... i

Limitations of use ... ii

Candidate certification ... iii

Acknowledgements ... iv

List of figures ... viii

List of tables .. ix

Nomenclature and acronyms .. x

Chapter 1: Introduction .. 1

1.1 Outline of the study .. 1

1.2 Global food production .. 1

1.3 Farm vehicle automation.. 1

1.4 Machine vision ... 2

1.5 Android mobile operating system .. 2

1.6 Research objectives .. 2

1.7 Conclusions .. 3

Chapter 2: Farm vehicle automation .. 4

2.1 History.. 4

2.2 Machine vision ... 5

2.3 GPS .. 6

2.4 Other sensing techniques ... 7

Chapter 3: Android Software Development Kit .. 9

3.1 Background .. 9

3.2 Camera ... 10

3.3 GPS .. 10

3.4 Other sensors .. 10

3.4.1 Accelerometer .. 10

3.4.2 Geomagnetic .. 11

3.5 Data handling ... 11

3.6 Bluetooth and Wi-Fi .. 12

Chapter 4: NCEA vision guidance system .. 13

4.1 History.. 13

MACHINE VISION AND SENSING WITH AN ANDROID

vi

4.2 Image acquisition ... 13

4.3 Image processing (Identification of rows) ... 14

4.4 Actuator control ... 16

4.5 System testing and evaluation .. 16

Chapter 5: Methodology .. 18

5.1 Development tools and techniques .. 18

5.1.1 Agile programming technique.. 18

5.1.2 Integrated Development Environment (IDE) 19

5.2 Elementary code... 20

5.2.1 Android developers .. 20

5.2.2 Computer Vision libraries .. 20

5.3 Android machine vision program development ... 21

5.3.1 Program description ... 21

5.3.2 Application limitations ... 23

5.3.3 Initial development setup ... 23

5.4 Video stream access ... 25

5.4.1 Permissions and features .. 25

5.4.2 CameraPreview.java... 25

5.4.3 Resolution, Framerate, and Camera class .. 25

5.4.4 Image format .. 26

5.4.5 Viewport ... 27

5.4.6 Plant Identification ... 27

5.4.7 Threads ... 28

5.5 Image annotation .. 29

5.6 Row identification algorithm ... 29

5.6.1 Threshold ... 29

5.6.2 Regression assessment ... 30

5.6.3 Regression fit ... 30

5.6.4 Limits ... 31

5.7 Actuator control commands ... 31

Chapter 6: Evaluation and optimisation ... 32

6.1 Test Equipment .. 32

6.2 Procedure ... 32

6.3 Video stream access ... 33

MACHINE VISION AND SENSING WITH AN ANDROID

vii

6.4 Image annotation .. 34

6.5 Row identification algorithm ... 34

6.5.1 Accuracy .. 34

6.5.2 Processing .. 36

6.6 Actuator control commands ... 38

6.7 Code optimisation .. 40

Chapter 7: Results .. 42

7.1 Objectives and outcomes ... 42

7.1.1 SDK investigation .. 42

7.1.2 Video stream access ... 42

7.1.3 Image annotation .. 43

7.1.4 Row identification algorithm ... 43

7.1.5 Actuator control commands ... 43

Chapter 8: Conclusion ... 44

8.1 Key project findings ... 44

8.2 Further Work .. 44

List of References .. 45

Appendix A Project Specification ... 50

A.1. Original project specification ... 50

A.2. Preliminary report recommended project stages.. 51

Appendix B Elementary Android code ... 52

B.1. Android terms .. 52

B.2. Camera control ... 53

B.3. GPS access example code .. 56

B.4. BoofCV LineDetection and colorSegment example code 58

Appendix C Row identification machine vision Android code 62

C.1. Android manifest - AndroidManifest.xml ... 62

C.2. Main activity - Row_Follow_Main.java .. 62

C.3. CameraPreview.java class.. 67

Appendix D Testing code.. 69

D.1. Testing code segments. .. 69

MACHINE VISION AND SENSING WITH AN ANDROID

viii

List of figures

Figure 4-1: NCEA linear regression image analysis algorithm (Billingsley &

Schoenfisch 1997) .. 16

Figure 4-2: Actual vs captured data testing the performance of the machine vision

algorithm (Billingsley & Schoenfisch 1997) ... 17

Figure 4-3: Results from the NCEA full system test at 1 m/s. 17

Figure 5-1: Application flow diagram ... 22

Figure 5-2: Android Manifest camera permissions .. 25

Figure 5-3:Sample Android image format code .. 26

Figure 5-4: Creation and access of the viewport .. 27

Figure 5-5: Viewport surrounding one crop row. .. 27

Figure 5-6: Viewport with plants identified in red .. 28

Figure 5-7:Threshold adjustment for an expected 40% plant density........................ 30

Figure 5-8: A poor quality fit showing no regression line ... 31

Figure 6-1: RAM usage .. 37

Figure 6-2: RAM usage after code optimisation .. 40

MACHINE VISION AND SENSING WITH AN ANDROID

ix

List of tables

Table 5-1: Initial Android development parameters .. 23

Table 6-1: Accuracy tests for the row identification algorithm 34

Table 6-2: Processor speed tests .. 37

Table 6-3:Actuator control simulations ... 38

MACHINE VISION AND SENSING WITH AN ANDROID

x

Nomenclature and acronyms

The following abbreviations have been used throughout the text and bibliography:-

GPS Global Positioning System

NCEA National Centre for Engineering in Agriculture

USQ University of Southern Queensland

SDK Software Development Kit

RTK Real Time Kinematic

RMS Root Mean Square

XML Extensible Mark-up Language

APK Android Package

API Application Programming Interface

RAM Random Access Memory

OS Operating System

App Application

IDE Integrated Development Environment

MACHINE VISION AND SENSING WITH AN ANDROID

1

Chapter 1: Introduction

With the continually decreasing numbers of skilled farmers and the ever increasing

necessity for agricultural production there is always a great need to increase

productivity and efficiency on farms. Vehicle automation has been one of the key

ways to do this in the recent past. This project investigates the concept of developing

an automated vehicle guidance system using the Android mobile platform.

The Android platform has specifications for an array of sensors that can be used in

vehicle guidance applications. This project researches the capability of these sensors

being used in vehicle guidance applications with a particular focus made on machine

vision techniques that use the camera as the main sensor for vehicle automation.

1.1 Outline of the study

This project aims to lower the cost and complexity of installing an automation system

on a farming vehicle by creating a machine vision application on an easily installable

and inexpensive mobile device. This is achieved by extending the work conducted by

Billingsley (Billingsley & Schoenfisch 1997) and the National Centre for Engineering

in Agriculture (NCEA) regarding tractor automation. A demonstrator program using

the NCEA algorithm to deduce rows from an image was written and tested on an

Android device and produced excellent results in the controlled laboratory

environment. This research opens up the future possibility for field trials of an

automated vehicle using an Android device. Further to this, other sensor data, such as

GPS, accelerator, and geomagnetic, could be added to the program to try to improve

the vehicle accuracy and response time.

1.2 Global food production

The United Nations Food and Agriculture Organisation expects worldwide food

production will need to increase 70% by 2050 to sustain the predicted 9.1 billion

people on the planet(FAO 2009). These figures indicate that there is a great need for

increased agricultural production in the future. Despite the need for this increase in

food production Australia recorded a drop of 5% of Australian farming businesses

from 2011-12 with only 115,000 farming businesses recorded in 2012 (Australian

Bureau of Statistics 2013). With decreasing farming businesses and the need for

increased food production automation of farming vehicles is a logical solution.

1.3 Farm vehicle automation

Following rows of crops for long hours leads to operator fatigue and loss of

concentration resulting in a decrease of precision (Rovira-Más et al. 2003). The

automation of this task is shown to increase productivity and application accuracy

MACHINE VISION AND SENSING WITH AN ANDROID

2

resulting in greater crop yields while also enhancing operational safety (Ming et al.

2009). Global Positioning Systems (GPS) and machine vision are currently the two

standard approaches for the automated control of agricultural vehicles used to follow

rows of crops however other sensor based guidance methods are around (Emmi et al.

2014). .

1.4 Machine vision

Machine vision has been used for the automation of farming vehicles for a number of

years now, however setting up vehicles for this type of automation requires specific

technical skills and multiple pieces of expensive bulky equipment. This project

extends the machine vision row following technique described by Billingsley

(Billingsley & Schoenfisch 1997) by developing an Android application that shows

the capability of replicating this machine vision technique on a small portable mobile

device.

1.5 Android mobile operating system

Recent development in mobile technology has meant that inexpensive mobile devices

have come on the market with inbuilt sensors similar to those used for automated

vehicle guidance. This makes them a reasonable solution for implementing a tractor

guidance system. Use of a mobile device would eliminate the installation of external

cameras or internal processing units in tractor thereby reducing the cost and

complexity of putting in automated guidance systems. Despite extensive research and

development into tractor guidance systems, no research and development into

implementing a tractor guidance system on a mobile device was found in the literary

search for this dissertation.

1.6 Research objectives

This project aims to lower the cost and complexity of installing an automated guidance

system on a farming vehicle by testing the capabilities of an Android device

performing such a task using machine vision. The official project specifications can

be found in 1.1.1.1.Appendix A along with changes that were made to the original

specification. The updated project specification found in Appendix 1.1.1.1.A.2

identifies the research objectives as:

 Review automated agricultural vehicle guidance systems

A review of agricultural vehicle guidance systems was conducted to identify

the differing techniques and algorithms used in automated row following

guidance.

 Review the Android Software Development Kits (SDK) and Android

sensors and devices

MACHINE VISION AND SENSING WITH AN ANDROID

3

A review of android sensors, devices, and software was conducted to identify

available hardware and related software for items such as a camera that can be

used for vehicle automation.

 Write and test an Android demonstrator application

This objective involved accessing the video stream in Android memory,

manipulating the pixel data, annotating the image, apply the NCEA line fitting

algorithm, and outputting information to show steering correction data.

1.7 Conclusions

This project resulted in the development of a demonstrator application written on an

Android device that is capable of identifying crop rows through the use of machine

vision. This application has kept RAM usage to an average of about 17 MB while

processing the 30 fps 320x240 resolution image in an average of 34 ms per frame

during typical circumstances.

The application obtained image data through the device camera and processed the

image using the NCEA machine vision algorithm. The processed data was able to

accurately identify rows of crops and issue subsequent row following commands.

This demonstrator application displayed a regression line to the screen to visually

identify the crop row as well as outputting numerical values representing steering

corrections to be sent to the actuator. The application also included an adjustable

threshold level to deal with fluctuations in changing lighting conditions.

MACHINE VISION AND SENSING WITH AN ANDROID

4

Chapter 2: Farm vehicle automation

This chapter covers the history of automation for farming vehicles. An analyses of

current navigation, computational, and control methods used in agricultural automated

guidance systems is also conducted.

2.1 History

For over 60 years there has been research into the automated guidance of agricultural

vehicles with automation to relieve the operator of continual steering adjustments the

most frequently cited reason (Wilson 2000). Over these 60 years the operator of the

vehicle has kept the same job of vehicle guidance and equipment operation however

the vehicles have increase dramatically in size and power and this increase in vehicle

power has led to an increase in vehicle speed and equipment size. This increase in

speed and size has made the operators job of staying on course all the more valuable

and difficult as any deviation will result in a greater area missed or double worked.

Having a vehicle that stays on course is not only economically viable but the decrease

use of chemicals, fuel consumption, and improper soil tillage make it environmentally

viable too. With these things in mind the need to automate vehicle guidance is ever

more desirable. Autonomous guidance of a vehicle not only enhances operator safety,

but it also increases accuracy and productivity resulting in better economic return and

better environmental impacts (Han et al. 2004).

Automated vehicle guidance has been implemented in many fashions over the last 60

years. Morgan (Morgan 1958) and later Brooke (Brooke 1972) wrote about a tractor

automated by buried leader cables. Palmer and Matherson (Palmer & Matheson 1988)

and also Searcy (Searcy et al. 1990) wrote about the use of radio beacons positioned

in a field as a method of automatically navigating a vehicle. These two early

autonomous methods were not implemented in many agriculture situations due to the

initial expense of the equipment and the limited capability of the radio beacons. It

wasn’t until the 1980’s with the exploration of machine vision that farm vehicle

automation began to become reasonably priced with respectable accuracy as described

by both Reid (Reid, Searcy & Babowicz 1985)and Gerrish (Gerrish et al. 1985).

Reports by Larsen (Larsen, Nielsen & Tyler 1994) and Bell (Bell 2000) then note the

use of GPS based guidance systems emerging in the 1990’s.

Other techniques such as optical guidance, mechanical guidance, and ultrasonic

guidance have also been printed by Reid (Reid et al. 2000) and Tillet (Tillett 1991),

however the two leading technologies in autonomous navigation are GPS followed by

machine vision. Today fused GPS and machine vision systems are becoming more

popular as each of these systems have their advantages and disadvantages and they

complement each other quite well (Ming et al. 2009). Whatever the technique is that

is used, Emmi (2014) separates all modern automation of farming vehicles into to three

main modules:

MACHINE VISION AND SENSING WITH AN ANDROID

5

1. Sensing – This is the collection of information from the surrounding

environment.

2. Decision making – The sensors lead to a piece of hardware that uses a

software algorithm to determine the best course of action for the vehicle to

take.

3. Acting – After decision making the hardware/software device sends a

message to the vehicle to carry out the task it deemed most appropriate.

2.2 Machine vision

Machine vision is one of the main techniques used for the automated guidance of

agriculture vehicles. Machine vision is a relative control mechanism as it relies on a

camera image to tell the vehicle its current position relative to the image captured by

the camera. While there are varying techniques used in vehicle guidance machine

vision applications, all machine vision for agricultural vehicle automation can be

broken down into three main areas.

1. Image acquisition - An image is taken of the vehicle surroundings, it is

then digitised and placed in memory. This is generally done through a

camera mounted on the farming vehicle.

2. Image processing – The image is then placed through an algorithm that

identifies the vehicle’s location and then outputs control signals to the

vehicle’s actuator.

3. Output control – The signal controls are received by an actuator that is

used to steer the vehicle in the desired direction.

An advantage of using machine vision is that no pre-programmed set of co-ordinates

to guide a vehicle are needed making it useful for terrain that has not been mapped out

in the past. Another advantage of machine vision the that it is relatively insensitive to

surrounding landscape conditions which allows machine vision to work in covered

areas where other machine guidance techniques such as GPS will not work well.

Machine vision does however have the disadvantage of needing more sophisticated

computational techniques and it is also possible for these techniques to loose accuracy

if there is some form of image distortion such as shadows, weeds, or missing crops.

In his 1997 paper Billingsley (Billingsley & Schoenfisch 1997) explains a technique

used by the NCEA which acquires a colour image in YUV format from a camera

mounted on the tractor. The tractor operator then selects a viewport window that

straddles a crop rows. The pixels within this viewport are then analysed using a

threshold level to identify the greenness of each pixel. A linear regression algorithm

is then applied which returns a fit and a slope of the regression line. As the plant will

appear mainly in the centre of the window, the regression line will give a path for the

tractor to follow. This technique displayed an accuracy of 2cm at approximately 6.9

m/s.

MACHINE VISION AND SENSING WITH AN ANDROID

6

Shen (Shen & Liu 2007) used a similar technique where an RGB image from the

camera doubles the green to make a R2GB image. Each pixel is then checked against

a threshold. This image is then segmented into greyscale where it is again compared

against a threshold. If the threshold is met the pixel is then changed to white otherwise

it is changed to black. The image is then processed using dilation processing, an

acnode filtering technique, a midpoint encoder operation, and is finally improved with

a Hough transform. This machine vision technique allowed row following at 3.5 m/s.

Jiang (Jiang, Wang & Liu 2015) recently reported on a technique that uses a five stage

analysis technique consisting of methods similar to Shen. The camera image is

transferred into grey scale and it is then checked against a threshold and transferred

again into a black and white image. An estimation of the row centre points is

calculated and multiple regions of interest are found. A clustering method is then used

to confirm the centre points of the rows. This is finally followed by a linear regression

technique to determine the centre for the crop rows. This technique reports accuracy

and processing time greater than a standard Hough transform method.

A study carried out by Zhang (Zhang, Cheng & Zhang 2008) also used a R2GB image

converted to grey scale and finally to back and white using a threshold. A horizontal

scan of the image pixels then identifies the target regions and points. These target

points are then clustered according to the abscissa of two adjacent scanned lines. Three

clusters are passed through a known point Hough transform to identify a regression

line and the crop rows.

2.3 GPS

GPS.Gov ('GPS.Gov' 2015) describes GPS as a United States Department of Defence

owned collection of 24 geo-synchronous space satellites that broadcast location and

time information to any position on earth where there is line of sight between the

satellite and the receiver. GPS.Gov describes GPS as being essential for the

development and implementation of precision agriculture. While GPS was the first

satellite system to broadcast location and time information other countries around the

world now have their own satellite systems in place such as the Russian GLONASS

and the European GALILEO satellites.

The GPS Standard Positioning Service Performance Standard (Defense" 2008)

Specifies that the worst case for accuracy of the GPS service is a pseudorange accuracy

of 7.8 meters at a 95% confidence level, which equates to a worse case of about 3.5

meters horizontal accuracy. The horizontal accuracy is effected by environmental

conditions between the GPS receiver and the GPS satellites. Clearer environmental

conditions and access to a greater number of satellites will improve the horizontal

accuracy of the GPS receiver.

 In the 1990’s GPS started to emerge as a way to automate the control of an agricultural

vehicles (Ming et al. 2009). Unlike machine vision, GPS gives the absolute position

of the automated vehicle and therefore must map out the GPS co-ordinates for the

MACHINE VISION AND SENSING WITH AN ANDROID

7

vehicle to follow. These co-ordinates are generally saved when the crops are planted.

Alternatively, the co-ordinates can be programmed into the GPS so that the automated

vehicle will know which path to follow. Both Abidine (Abidine et al. 2002) and Gan-

Mor (Gan-Mor & Clark 2001) mention the versatility and accuracy of GPS when used

for agriculture tasks such as sowing, tilling, planting, cultivating, weed control, and

harvesting. Because of its accuracy, ease of use, and its ability to not be affected by

any inconsistency in visual camera data it has become the most popular technique in

automated guidance of agricultural vehicles.

While an accuracy of 3.5 meters isn’t precise enough for use in vehicle automation,

various signal correction techniques can be implemented to correct the inaccuracies of

GPS making it accurate enough for vehicle automation. Keskin (Keskın, Say &

Görücü Keskin 2009) evaluated low cost GPS receivers for precision in agriculture

and found an RMS error of 1.48m on straight crop row tests. Gan-Mor (Gan-Mor,

Clark & Upchurch 2007) notes that differential correction systems are often put in

place to reach accuracies below 1 meter. Gan-Mor reports that a differential correction

system called Real Time Kinematic (RTK) GPS is used to gain an accuracy down to

about 1cm which has made this technique very popular for automatic guidance

systems in row-crop operations. There are a great number of examples of the accuracy

obtained with RTK GPS two of which are Sun (Sun et al. 2010) who recorded a 2cm

RMS error on row crops and Perez-Ruiz (Pérez-Ruiz et al. 2012) who reported an

RMS error of only 0.8cm when using RTK GPS on crop rows. Kise (Kise et al. 2002)

even obtained RMS errors of only 6cm when using RTK GPS on a sinusoidal path.

As with any differential correction system RTK requires the use of a base station and

complicated algorithms to reduce or remove any errors between the base station and

the GPS receiver. This added complexity dramatically increases the price of the

equipment and is one of the downsides to RTK GPS (Gan-Mor, Clark & Upchurch

2007). Another disadvantage of GPS is that the signal will not work in shielded areas

and will loose accuracy if the right environmental conditions aren’t met.

2.4 Other sensing techniques

There are various other sensing techniques that have been mentioned in several studies

however none of these techniques currently have the popularity that GPS and machine

vision currently hold. Odometry was used in experiments by Borenstein (Borenstein

1998) and later by Perez-Ruiz (Pérez-Ruíz et al. 2014) however odometry tends to

accumulate errors rather quickly eventually leading to large lateral errors in the

vehicles location.

Subramanian (Subramanian, Burks & Arroyo 2006) and Noguchi (Noguchi et al.

2002) both noted the use of laser-based sensors in conjunction with GPS and achieved

errors of less than 2.5 cm and 1 cm respectively. Laser-based sensors setup reflectors

around the field and triangulate the vehicles position by bouncing lasers off of these

reflectors. This technique has the advantage of working in different types of

MACHINE VISION AND SENSING WITH AN ANDROID

8

environmental conditions however it has shown some faults due to laser measurement

distortion when the vehicle is traveling on uneven ground.

Ming (Ming et al. 2009) mentions both accelerometers and geomagnetic sensors that

have also been used as sensing techniques. Accelerometer use alone was prone to

positional drifts however its use has shown good results when combined with other

sensing techniques such as in Noguchi’s (Noguchi & Terao 1997) experiment which

resulted in less than 5cm error when combined with RTK GPS. Geomagnetic sensors

also worked better when combined with other sensors as noted by Benson (Benson et

al. 1998) when he combined a geomagnetic sensor with a medium accuracy GPS to

achieve an error of less than 1cm.

MACHINE VISION AND SENSING WITH AN ANDROID

9

Chapter 3: Android Software Development Kit

To date sensors and decision making hardware used for automated guidance have

involved bulky equipment that must be fixed to agricultural vehicles, however modern

mobile devices have GPS and camera systems built in as well as other sensors that can

be used for automated guidance. Of the many mobile devices available the Android

operating system has a significant share of the market and supports software and

hardware for GPS, video camera, accelerometer, gyroscope, light sensor, Bluetooth

and other sensors useful to build an automated guidance system (Moore et al. 2014)

This section of the dissertation covers the specifics about the Android Software

Development Kit (SDK) that was used for development of this project. This section

omits the hardware specifications for Android devices as each device has differing

hardware options dependant on manufacturer and model. The underlying software for

control of this hardware however is covered as all android device software is run using

the Android SDK. All specifications in this section of the dissertation are taken from

Android’s official website ('Android Developers' 2015).

While this chapter gives a general overview of the Android SDK, Chapter 5: has the

specific details of how Android software was used during the creation of this project

3.1 Background

The Android platform involves Android applications that are installed and run on

devices that use the Android operating system. The Android operating system (OS)

is the world’s most popular mobile operating system and is deployed on hundreds of

millions of devices in over 190 different countries around the world. The OS is built

using open-source Linux and controls all of the software and hardware within the

mobile device. Android version 5.1 is the most recent operating system which

introduced support for 64-bit architectures.

Android applications are written in the Java programming language and makes use of

Extensible Markup Language (XML) resource files. The Java files tell the Android

OS what the program is to do while the XML files tell the operating system what

resources are needed to run the application. When compiled the Android SDK will

package all of the Java code and XML resource files into an Android package (APK).

This APK file is then installed on Android devices within its own virtual machine and

it is within this virtual machine that the application is run. This allows the OS to

control what hardware and software each application has rights to access.

The android SDK is broken into software packages that control different portions of

the android device. This project dealt mainly with accessing the Android sensors and

Android memory. All hardware devices are accessed using the android.hardware

software package of the Android SDK and all Android devices use Android Random

Access Memory (RAM) for computation and decision making. The Android OS

MACHINE VISION AND SENSING WITH AN ANDROID

10

virtual machine performs routine garbage collection to free memory that is no longer

in use.

3.2 Camera

The camera is the main sensor used for this project. It is a hardware based sensor that

has different specifications for every Android device and is controlled using the

android.hardware.camera class for all Android software prior to Android 5.0, and the

android.hardware.camera2 class for all devices running Android 5.0 or higher.

Android 5.0 was released in November 2014. The android.view.SurfaceView class is

another useful camera class that is used within this project to present a live camera

previews frames both to other sections of code and to the device screen. Additional

details of how the camera was used during this project can be found in section 5.4

3.3 GPS

Android GPS accesses satellite data to specify the device’s current longitude and

latitude in degrees, minutes, and seconds. The software used to access this sensor is

held in the android.locations class. GPS differential correction techniques cannot

currently be used on Android devices without additional expensive hardware which

restricts the accuracy of Android GPS to 3m. This inaccuracy without additional

hardware made Android GPS not acceptable use in this project.

3.4 Other sensors

3.4.1 Accelerometer

An accelerometer is a hardware based sensor that has different specifications for every

Android device and is used to measures the acceleration force, in 𝑚/𝑠2 , that is applied

to all three physical axis (x,y,z). Almost every Android device has an accelerometer

and they use about 10 times less power than other motion sensors. Common uses for

an accelerometer are to detect the motion of an object in a given direction. The x, y,

and z motion values will be 0 𝑚/𝑠2 when the device is stationary, will increase when

moved toward the arrow, and will decrease when moved away from the arrow. All

axis are also subject to the force of gravity (9.81𝑚/𝑠). A high pass filter can be

applied to the accelerometer to remove the force of gravity and give linear acceleration

only, alternatively a low pass filter can be applied to the accelerometer which isolates

the force of gravity.

The accelerometer data is held in the android.hardware class. An instance of

Sensor.TYPE_LINEAR_ACCELERATION must be created to access the linear

acceleration accelerometer data. While accelerometer information has not been used

in this dissertation, details of the Android accelerometer have been included as it does

MACHINE VISION AND SENSING WITH AN ANDROID

11

have the potential to be used in the future development of the Android vehicle

guidance method that has been used in this dissertation.

3.4.2 Geomagnetic

The Android geomagnetic sensor is a hardware based sensor. The geomagnetic sensor

software data is held in the android.hardware class and is used to measures

geomagnetic force in 𝜇𝑇 on the x, y, and z axis. As with the accelerometer

information, geomagnetic information has not been used in this dissertation yet details

of the Android geomagnetic sensor have been included as it does have the potential to

be used in the future development of this Android vehicle guidance method.

3.5 Data handling

Applications run on an Android device have access to system RAM, data storage, and

data processing capabilities. Each specific device will differ in hardware

specifications but each will use the same Android SDK classes.

Android uses an automated garbage collector to free up RAM resources that are no

longer needed and also uses both paging and memory mapping to manage memory.

Any created object will remain within RAM until the app releases the object for

collection by the garbage collector, which will run more often when there are more

resources in RAM. Android recommends that background services are used sparingly

and terminated when no longer in use to help free system RAM.

Android devices are increasingly being released with multiple processors and the

Android SDK version 3.0 and above makes it possible to run threads in parallel. This

is achieved through the use of the Java Runnable and Thread classes in conjunction

with the ThreadPoolExecutor class. Running different threads on different processors

will allow for parallel processing of data as is the case with the application built during

this project.

While the developed application does not store any data permanently, the main

Android data storage options are still shown here for reference.

 Key-value sets – This is used to save a small collection of key-values. It uses

the SharedPreferences API where creation of a SharedPreferences object

creates a file containing key-value pairs and provides a method to read and

write them. The created file can be either private or shared and is managed by

the framework.

 A File – This is used to store large amounts of data that are intended to be read

start to finish. A file can be stored on the device’s internal or external memory.

Internal memory is used to ensure that the user nor other apps can access the

file. External memory is used for any file that doesn’t require access

restrictions and for files that can be accessed with a computer.

MACHINE VISION AND SENSING WITH AN ANDROID

12

 SQL Database – This is used to store structured data that can be read in any

order. The android.database.sqlite is the Android package that is used. This

technique requires a database schema and can be stored on internal or external

memory. Access restrictions can also be applied.

3.6 Bluetooth and Wi-Fi

Wi-Fi and Bluetooth are two of the sensors that Android include in their SDK that

theoretically can be used to output information from an Android device to the

automated vehicle actuator controller. The use of these sensors to output control

information is beyond the scope of this dissertation and will be left for the future

development of this Android vehicle guidance method

MACHINE VISION AND SENSING WITH AN ANDROID

13

Chapter 4: NCEA vision guidance system

The machine vision technique used for row following that Billingsley (Billingsley &

Schoenfisch 1997) noted in the NCEA study in 1997 has been adopted as the machine

vision algorithm for this project. This algorithm was selected for its simplicity and

ease of portability to an Android platform. This chapter covers the specifics of this

NCEA machine vision guidance system.

4.1 History

The NCEA began research into machine vision use in agriculture in the early nineties.

Since that time the NCEA has developed a machine vision animal identification

system, a macadamia nut counting system, and a vehicle automated guidance system.

The development of a machine vision guidance system lasted three years and resulted

in a machine vision prototype that was relatively insensitive to weeds and could

withstand the fading in and out of crop rows while still keeping the vehicle on the

correct bearing. This three year study involved cameras being externally mounted

onto the tractor, as well as internal processing units being integrated into the tractors.

Six prototypes of this machine vision technique were tested in the field and results

showed that an accuracy of 2 cm was able to be maintained at 35 km/h.

This system originally used a black and white camera taped to the roof of a David

Brown tractor. The captured image was 768x96 pixels and was transferred over

cabling to a PC installed inside the tractor by direct memory access where a program

written in C processed the image data. This program then output steering commands

over a cable to a stepper motor connected via belt drive to the steering wheel of the

tractor. If there was some type of system error an audible warning sound was

outputted through the PC speakers and the system would revert to manual control.

Although there have been several refinements to this system as technology and

resources became available, the basic flow of information and the connection of

hardware elements has not changed much between versions.

During field tests the overall response from users was positive with all users impressed

with the speed, accuracy and efficiency of the system. Complaints that were received

from the users were regarding the complexity of setting up and calibrating the system.

These complexity issues may be fixed with further development of the Android

application developed in this paper.

4.2 Image acquisition

The original camera was mounted externally on the tractor’s roof and obtained a black

and white 768x96 pixel image but the latest version used a miniature camera connected

to the bonnet of the tractor to obtain the 643x480 YUV image used for processing.

The change to a YUV image allowed the chrominance and the intensity of each pixel

MACHINE VISION AND SENSING WITH AN ANDROID

14

to be held in separate data bits which makes it less sensitive to changes in lighting

conditions.

The image is then moved into memory using direct memory access where each pixel

is compared to a threshold level that is set at the start of the program. The original

system would degrade system performance by switching the video output between the

processor and a connected monitor. Later models allowed dual image streams so that

the video feed could be viewed and annotated with real time data without reducing

overall system performance.

The tractor operator assigns adjustable viewports to the incoming image which

identify the pixel locations of one row of crops. Then each pixel within each of these

viewports is compared against the threshold level set at the start of operation. Pixels

that are greater than this threshold level are marked as plant and are used for further

processing.

The tractor operator also sets the proportion parameter at the start of the program

which indicates the expected proportion of pixels identified as plant within each

window. This proportion value depends on the growth stage of the plant with typical

values being 0.1 for a new plant to 0.5 to a mature plant. The total number of plant

pixels for each window in each frame are then compared and this data is used to

increment or decrement the next frames threshold level. This makes the system very

insensitive to fluctuations in lighting conditions.

4.3 Image processing (Identification of rows)

The acquired image data is processed using a technique similar to linear regression to

identify the centre of each crop row. As each positioned viewport contains only one

crop row, drawing a line which minimises the viewport moment of inertia when spun

around this line identifies the line of best fit and the centre of a crop row. Billingsley

(Billingsley & Schoenfisch 1997) showed the cost function to calculate the moment

of inertia for each viewport as:

C = ∑ ∑ m(x, y) ∗ (x − offset − slope ∗ y)2
x.yewindow (4.1)

 where: 𝑥 is the x coordinate

 𝑦 is the y coordinate

 𝑤𝑖𝑛𝑑𝑜𝑤 is perimeter of the viewport window

 𝑚(𝑥, 𝑦) is a matrix of x and y coordinates identified as plant

 𝑜𝑓𝑓𝑠𝑒𝑡 is the x coordinate for the line of best fit

 𝑠𝑙𝑜𝑝𝑒 is the slope of the line of best fit

Minimising this cost function minimises the total error of all of the data points within

the viewport. This is achieved by identifying the offset and slope values for the line

MACHINE VISION AND SENSING WITH AN ANDROID

15

of best fit. The line of best fit slope and offset parameters were calculated within the

C program by providing solutions to the following simultaneous equations:

∂C

∂offset
= 0 and

∂C

∂slope
= 0 (4.2)

Which Billingsley identified can be solved using the following formulas for

identifying the lateral offset corrections and the slope corrections respectively:

𝑓𝑖𝑡𝑂𝑓𝑓𝑠𝑒𝑡 =
𝑚𝑥∗𝑚𝑦𝑦−𝑚𝑥𝑦∗𝑚𝑦

𝑚∗𝑚𝑦𝑦−𝑚𝑦2
 (4.3)

𝑓𝑖𝑡𝑆𝑙𝑜𝑝𝑒 =
𝑚∗𝑚𝑥𝑦−𝑚𝑥∗𝑚𝑦

𝑚∗𝑚𝑦𝑦−𝑚𝑦2
 (4.4)

 where: 𝑚 is the total number of pixels identified as plant

 𝑚𝑥 is the total x axis moment about the viewport horizontal line

 𝑚𝑦 is the total y axis moment about the viewport vertical line

𝑚𝑥𝑥 is the second moment of area

 𝑚𝑦𝑦 is the second moment of area

 𝑚𝑥𝑦 is the total second moment

 After the offset and slope values for the line of best fit are identified, the correction

values needed to obtain these offset and slope values are calculated. These correction

values are then converted into steering commands outputted to the actuator that steers

the tractor.

A ratio to check the quality of the results is run by comparing the moment of inertia

about the line of best fit against the moment of inertia about the horizontal axis. This

ratio gives a “quality” value and the correction data is only acted upon if the quality is

greater than 4. This increases the accuracy of the program by only acting upon good

quality data containing adequate plant values and not acting upon data with scattered

plant values due to weed growth, pests eating the crop.

While only one viewport is needed for vehicle automation the use of a a greater

number of viewports is recommended so that vehicle automation can continue in the

event of a viewport not being able to output correction data to the actuator. If all

viewports contain poor quality data 3 times in a row, then an alarm sounds and the

vehicle control reverts back to manual.

A simplified diagram of this crop row detection algorithm is shown below in Figure

4-1.

MACHINE VISION AND SENSING WITH AN ANDROID

16

Figure 4-1: NCEA linear regression image analysis algorithm (Billingsley & Schoenfisch 1997)

4.4 Actuator control

The correction values produced after the algorithm has been run are converted into

steering commands outputted to the actuator that steers the tractor. The lateral

movement steering commands are calculated using either the fitOffset correction

value, or by identifying the “vanishing point” of where the best fit lines from multiple

viewport meet at a point. The fitSlope correction value is used to identify the angular

displacement of the vehicle and issues steering commands accordingly. These are just

the basics for the actuator control and further detail has been omitted as it is beyond

the scope of this project.

4.5 System testing and evaluation

Two main tests were conducted under controlled conditions to identify the systems

capabilities. The first test was carried out to evaluate the performance of the machine

vision algorithm. In a laboratory the camera was pointed toward a piece of white paper

connected to a stepper motor and the ability of the machine vision algorithm to track

MACHINE VISION AND SENSING WITH AN ANDROID

17

the movement of the paper from left to right was determined. The actual location of

the paper and the detected position of the paper were recorded independent of each

other and locations of the paper were then compared. Figure 4-2 below shows that the

algorithm achieves good quality results. This figure shows the actual position of the

paper as the top line of dots and the detected position of the paper as the bottom line

of dots.

Figure 4-2: Actual vs captured data testing the performance of the machine vision algorithm

(Billingsley & Schoenfisch 1997)

A full system test was then carried out where white lines were marked on the ground

and the capabilities of the whole system were evaluated. During this test a secondary

camera was attached to the axil and recorded the system performance. The data for

this test was taken back to a laboratory and results were recorded. These results are

shown below in Figure 4-3 and they show that the system has achieved an accuracy of

2cm.

Figure 4-3: Results from the NCEA full system test at 1 m/s.

MACHINE VISION AND SENSING WITH AN ANDROID

18

Chapter 5: Methodology

This chapter identifies the method used to develop an Android based autonomous farm

vehicle. This involved writing several short programs in Android code to identify

some key aspects of the Android SDK followed by writing more specific code used in

this projects’ Machine Vision demonstration application. The machine vision

algorithm discussed in Chapter 4: was then applied on an Android device before code

optimisation was carried out

5.1 Development tools and techniques

This section covers the programming methodology used during this project and lists

the Integrated Development Environments (IDEs) used for development and testing

of this code.

5.1.1 Agile programming technique

The agile programming techniques described by Martin (Martin 2003) was used for

the development of software during this project. The agile programming technique

generates small portions of computer code before testing its accuracy and usefulness.

This allows for a lot of usable code to be written and tested in a short time as not a lot

of preparation goes into the planning process for the long term goals of the program.

As Dingsoyr identifies (Dingsoyr 2010) that with agile programming there is a vague

idea of what the end goal will be however more focus is made on individual

components that need to be developed now in order to get useable software as quickly

as possible. This leads to a very fast cycle of planning, requirements analysis, design,

coding, unit testing, and acceptance testing.

An agile programming methodology was selected over the more traditional waterfall

method for the following reasons the following reasons as stated by Martin (Martin

2003):

 Risk management – This project involved a lot of risk as a lot of aspects of its

development were unknown at the start of the project and as states, Agile

programming has the ability to minimise this risk because of its ability to adapt

to change so quickly. Small unit testing of code quickly defines the usefulness

of this code thereby eliminating the possibility of writing a lot of code only to

find in a few weeks’ time that it isn’t useful for this application.

 Development speed – Martin (Martin 2003) also states that agile programming

allows a lot of working code to be written in a very short amount of time which

was needed in the development of this project due to project deadlines.

Dingsoyr (Dingsoyr 2010) also specifies the following three reasons for using the agile

coding method:

MACHINE VISION AND SENSING WITH AN ANDROID

19

 Quality – Code is tested as individual components are created so the quality of

each individual segment is guaranteed prior to full system integration.

 Design – A test driven approach is used to define the final requirements of the

system allowing the system to be designed and refined as system modules are

built.

 Segmentation – Agile programming segments code so only one aspect is

studied at a time making it suitable for this project.

While agile programming has many benefits suitable for this project many published

authors such as Rierson (Rierson 2013) do not recommend agile programming for

safety-critical software projects such as those used in the automotive industry. The

Institute of Electrical and Electronic Engineers’ ('IEEE Standard Glossary of Software

Engineering Terminology' 1990) definition of a safety-critical software is any

software where the failure can lead to a hazardous state, so by definition the

automation of any vehicle falls under this category. The International Organization for

Standardization’s (ISO) international standard ISO26262 for road vehicle functional

safety defines a coding requirement for road vehicle functional safety that is more

structure based like that of the waterfall model.

Although this project will eventually lead to a safety-critical software project, at this

stage of development there are no safety-critical aspects involved. All testing for this

project has been run as simulations in a controlled laboratory therefore allowing the

use of the agile programming method. Future development of this application would

have to review the programming methodology used and then take that into

consideration when designing the enhanced system.

While the benefits of using Agile programming for this project far outweigh

limitations a few things that were considered during the development of this project

were:

 System Testing - During agile programming components are assumed

to interact nicely if they work as individuals but this is not always the

case. Agile programming doesn’t test with a system as a whole until

the final stages of development.

 Abstract code – Agile programming can lead to a lot of abstract code

which Android Developers ('Android Developers' 2015) list is not a

desireable thing when coding for a mobile because of the memory

usage.

5.1.2 Integrated Development Environment (IDE)

Android Developers ('Android Developers' 2015) recommended Android Studio IDE

Version 1.3.1 was used to develop and test all of the elementary code found in

1.1.1.1.Appendix B, however after some external computer vision libraries started to

MACHINE VISION AND SENSING WITH AN ANDROID

20

be investigated some compatibility issues became prevalent between the computer

vision libraries, Android Studio, and the Java Development Kit (JDK) version 1.7 that

was being used. After these issues could not be resolved the Intellij IDE was used for

the remainder of the coding and testing.

5.2 Elementary code

This section covers elementary code developed to become familiar with the Android

SDK and the recommended best coding practices to follow during development. Some

available computer vision libraries are also investigated in this section.

5.2.1 Android developers

Initial coding design and development for all basic Android modules followed the

online training modules defined by Android developers ('Android Developers' 2015).

Android developers best coding practices. Android Developers also has a section for

the best coding practices to follow during program development. As this project was

completed using the agile programming method which primarily focuses on writing

working code before optimising code, the first stages of this project didn’t follow all

of these coding practices however after the correct working code was found it was

then cleaned up and altered to incorporate some of these Android coding practices

regarding memory management, and Multithreading. One limitation of this

application is that some of the coding practices used are not optimal such as leaving

application fatal operations outside of a try, catch block. This was due to deadlines

for project completion. Details about the Android development environment learnt

from doing this developer training can be found in 1.1.1.1.Appendix B.

5.2.2 Computer Vision libraries

Two open source computer vision libraries were investigated to see computer vision

techniques that are available. The two libraries investigated were OpenCV and

BoofCV.

 OpenCV – a C++ based computer vision library

OpenCV.org (OpenCV 2015) states that this bundle of computer vision classes and

libraries is available under a BSD license making it free for both academic and

commercial use. Development began in 1999 and while OpenCV is primarily a C++

programming language it also has Java interfaces and it supports the Android

operating system.

 BoofCV - a Java based computer vision library

Abeles (Abeles 2012) records that this computer vision package of classes and

libraries has been released under the Apache 2.0 license making it freely available for

MACHINE VISION AND SENSING WITH AN ANDROID

21

both academic and commercial use. Development of BoofCV began in 2011 and it is

written in Java making the wide range of prewritten libraries and example code

compatible with the Android operating system.

Example code segments using both OpenCV and BoofCV were reviewed with both

libraries being suitable for this project. While OpenCV (OpenCV 2015) claims that

their open source library is the fastest because it is written in the native C language

Abeles (Abeles 2012) claims that BoofCV is faster when processing higher level

algorithms. Neither of this data could be tested and confirmed.

In the end BoofCV was selected over OpenCV as the primary computer vision library

for use in this project primarily because the classes are written in Java which is

compatible with Android systems with only a slight bit of modification. Due to time

constraints and a slight pre-existing developer knowledge in Java BoofCV was the

best option available.

5.3 Android machine vision program development

The following section covers the entire development process used to create an Android

based application that is successful in identifying crop rows. The Android package

files generated during this process can all be found in 1.1.1.1.Appendix C.

5.3.1 Program description

The main aim of this application is to test if a machine vision program capable of

identifying crop rows can be successfully developed and run on an android mobile

device. The algorithm detailed in Chapter 4: that identifies straight crop rows was

selected for application development and all testing of this application was conducted

in a controlled environment under controlled conditions.

The program begins by obtaining an image of the upcoming crop rows from the

Android devices’ rear facing camera. The image is then converted into a workable

format before a viewport is set around one row of crops. Each pixel within the

viewport is then compared against a threshold level used to identify plant and non-

plant pixels. The threshold level is then adjusted by finding the proportion of plant

pixels within the viewport and checking it against a predefined proportion setting.

Then the plant pixels are placed through an algorithm similar to the NCEA algorithm

defined in section 4.3 of this document. If the quality of pixels within the view

window is good, then a regression line and correction data to be passed to the steering

actuator are annotated onto the video frame image before it is output to the device

screen for display. If a bad quality fit is found for three successive frames then the

annotated regression line is not displayed on the screen simulating the system reverting

back to manual control. Implementation of the steering actuator itself is outside the

scope of this project and as such the application process finishes when steering

correction information is annotated to the screen. A flow diagram showing the flow

MACHINE VISION AND SENSING WITH AN ANDROID

22

of information for this process is found in Figure 5-1. This flow of information repeats

for every frame that the camera produces.

Figure 5-1: Application flow diagram

MACHINE VISION AND SENSING WITH AN ANDROID

23

5.3.2 Application limitations

This application has the following limitations

 The algorithm is designed to identify straight crop rows and as such doesn’t

have the ability to identify crop rows that are curved.

 This is an elementary test version of an Android based machine vision

application and not a production version. One result of this elementary code

is that there is no user interface for this application and any changes in system

constants has to be hard codded and recompiled in order to work.

 Testing in a controlled laboratory ensured perfect conditions for the machine

vision application to function. Testing with noisy data was beyond the scope

of this project therefore the applications ability to work in an uncontrolled

environment is unknown.

 During testing an error of half a pixel length was identified and the source of

the error could not be located before this document was published. Details of

this error can be found in section 6.5 .

 This application does show the vanishing point information with what is

assumed to be the correct calculations for identifying this point, however

testing for the accuracy of this value had not been performed in time for this

document to be written.

 This application does not follow all of the recommended Android development

coding practices and as such some of the code developed is not optimised for

performance or usability. Such things as leaving application fatal operations

outside of a try, catch block have not been followed which can lead to the

application terminating when certain system parameters aren’t met. Due to

deadlines for project completion the code could not include all recommended

practices.

5.3.3 Initial development setup

After the initial investigation into Android coding and available computer vision

libraries the development parameters in Table 5-1 were put into place.

Table 5-1: Initial Android development parameters

Parameter Value Reason

IDE Intellij Intellij was selected over Android Studio due to some

compatibility issues between Android Studio, the latest

JDK and the BoofCV libraries. This issue would

cause the system to crash on start up when the program

was run or debugged on an Android device.

JDK 7 JDK 7 was selected to keep in line with the latest

BoofCV library compilation versions.

MACHINE VISION AND SENSING WITH AN ANDROID

24

Computer

Vision

Library

BoofCV BoofCV was selected because the libraries are written

in Java which makes them compatible with the Android

Operating System.

Android

SDK

Min – 10

Target – 17

Android version 10 (2011) is the minimum version that

BoofCV has been fully tested and Android version 17

(2013) was the version loaded on the equipment used

for testing.

The AndroidManifest.xml file specifying the Android SDK and the application start-

up values can be found in 1.1.1.1.Appendix C.

The application starts by accessing the Row_Follow_Main.java class as specified by

the Android manifest. This class begins by importing all of the Android, Java, and

BoofCV libraries needed for operation. This main class extends the Android

Activity.java class allowing the application to display data to the screen and to

securely deal with interruptions to the application, and it also implements the

PreviewCallback.java class which delivers copies of the video frames as they are

captured by the camera. The global constants and variables used by the application

are then specified.

The onCreate method is the first method that is called which requests access to the

main screen from the Android operating system and then creates the CameraPreview

and Visualisation objects before adding them to a FrameLayout object that allows

these two items to be output to the device screen. The created Visualisation object

uses its onDraw() method to scale the Bitmap image stored in the ‘output’ variable to

the required size and then attaches it to the canvas for output to the device screen. The

‘output’ variable is a copy of the camera image converted into Bitmap format. This

variable is updated frame by frame as new images arrive from the device camera. This

variable is accessed by two separate threads so write access to it needs to be

synchronised to avoid information mismatch. The CameraPreview.java class and the

use of threads is explained in detail in section 5.4 1.1.1.1.Appendix B also contains

information regarding threads.

Additional methods such as onPause() and onResume() which handle interruptions to

the application are available in the event device applications are switched.

The last method of interest in the initial setup of the application is the setUpApp()

method. This method is responsible for assigning initial values to global variables. It

sets up the camera and data output options and connections, the annotation and

viewport styles and sizes are also defined here, and the second processing thread is

created and started within this method. Each of these setup parameters are covered in

the subsequent sections within this chapter.

MACHINE VISION AND SENSING WITH AN ANDROID

25

5.4 Video stream access

This application gets a 320x240 image at 30 fps in NV21 format from the device

camera which is then converted into RGB format. Calculations for plant identification

and for further use in the row following algorithm use a viewPort which is a sub-

section of pixels within this RGB camera image. The annotated image is then

converted into Bitmap format before being output to the device screen. This section

of the paper explains the procedures performed to achieve this. The Java code

explained in this section can be found in 1.1.1.1.Appendix C.

5.4.1 Permissions and features

The first step in accessing the video steam is specifying the camera permissions and

application features within the Android manifest as is shown in Figure 5-2. This

manifest extract shows that the application must gain permission to use the device

camera from the Android operating system. It also specifies that the Android device

used to run this application must have a rear facing camera which has autofocus

capabilities. The rear facing camera is needed for this application as the user must be

able to access the device screen while the camera views the upcoming crop rows.

Figure 5-2: Android Manifest camera permissions

5.4.2 CameraPreview.java

This application accesses the camera hardware through the CameraPreview.java class

shown in Appendix 1.1.1.1.C.3.

This class extends the ViewGroup.java class, which allows it to create interface

layouts. The CameraPreview class also implements the SurfaceHolder.Callback

interface, which is used to connect the camera hardware to the application. This class

is responsible for passing image data to the main Row_Follow_Main.java class each

time the camera captures a new frame. Because the Row_Follow_Main.java class

implements Camera.PreviewCallback and has an onPreviewFrame() method, each

time the camera gets a new frame the CameraPreview object will send the image data

to this method. The onPreviewFrame() method then copies the incoming byte array,

representing the new camera frame, to the processByte array used for processing the

image.

5.4.3 Resolution, Framerate, and Camera class

The Row_Follow_Main.java class, found in Appendix 1.1.1.1.C.2, is where all other

video stream related code is defined. The setUpApp() method within this class

accesses the Android devices’ rear facing camera by using the Camera.open() method.

MACHINE VISION AND SENSING WITH AN ANDROID

26

This method returns the rear facing camera by default. The camera resolution for the

image returned is set to 320x240 at 30fps. This is achieved by accessing the

Camera.Parameters.java class and is set using the global variables

CAMERA_WIDTH and CAMERA_HEIGHT. 320x240 was selected as the

resolution size as this offered a good balance between displaying a clear image and

keeping resource usage to a minimum. 30fps was the frame rate selected because it

was fast enough for data acquisition while not unnecessarily using the device’s

resources. This frame rate also shows a smooth transition between frames for the

displayed image output. The Camera.java class was one of the classes that got

deprecated at the end of 2014 with the release of Android SDK 21 and the new

Camera2.java class. This application continues to use the deprecated Camera.java

class over the newer Camera2.java class because of the larger amount of available

resources regarding the Camera.java class and the fact that the device used for testing

was running an older software version that only supported the Camera.java class.

5.4.4 Image format

The image is transferred into this application for processing by the device Camera

through the CameraPreview.java class as described in section 5.4.2 . This image is in

Android’s NV21 YCrCb format. For ease of applying a threshold level to identify

plant pixels the image is converted from the NV21 format into 8-bit unsigned RGB

format using the nv21ToMsRgb_U8() method of the BoofCV ConvertNV21.java

class. This RGB format displays each pixel in the image using three 8bit values

representing the colours Red, Green, and Blue, with each having a colour depth range

from 0 to 255. Each colour band is stored separately in a BoofCV ImageUInt8 object

that is held within a MutliSpectral<ImageUInt8> object. Access to individual pixels

is granted through the getBand() method of the MultiSpectral class.

After the image has been assessed using the row following algorithm it is converted

into a Bitmap using the BoofCV ConvertBitmap.multiToBitmap() method and set to

the background of the Canvas object that is used to output the image to the screen.

This is done inside a synchronised code block because two separate threads have

access to the output object.

Figure 5-3 below shows some code samples used within the application to access and

convert between image formats. Further details can be seen in Appendix 1.1.1.1.C.2.

Figure 5-3:Sample Android image format code

MACHINE VISION AND SENSING WITH AN ANDROID

27

5.4.5 Viewport

A viewport was created using the sub-Image function from the BoofCV Image class.

Creation of a sub-Image defines a portion of an image that can be independently used

for calculations. This makes the sub-Image ideal for representing a viewport designed

to straddle the edges of the crop rows as described in section 4.2 . The boundaries and

position of this view port are defined in the setUpApp() method, and The viewport

length and width are set by the global variables VIEWPORT_HEIGHT and

VIEWPORT_WIDTH. In this application the viewport is 80x30 pixels, and is centred

along the x-axis with its centre located at x coordinate 160 pixels which is half the

width of the 320 pixel screen. The bottom of the viewport is located at y coordinate

192 which is 1/5 or 48 pixels from the bottom of the screen. Figure 5-4 below shows

the program code used to create and access the viewport data and immediately

following this code Figure 5-5 shows the resulting viewport displayed on the device

screen.

Figure 5-4: Creation and access of the viewport

Figure 5-5: Viewport surrounding one crop row.

5.4.6 Plant Identification

Each pixel within the viewport window is compared against a settable threshold to

check the greenness of each pixel. If the Green segment of the pixel is greater than or

MACHINE VISION AND SENSING WITH AN ANDROID

28

equal to the threshold, then the pixel is considered a plant and the pixel x and y

coordinate values are then added to an ArrayList for further processing. In this

application the original threshold level is set to 128. To help visualize which pixels

are plant and which are not within the viewport window, all pixels identified as plant

are changed red by setting the Green and Blue values to 0 and the Red value to 255,

any pixel that is not a plant is turned blue by setting the Red and Green values to 0 and

the Blue value to 255. A coded example of this can be seen in Figure 5-4 above, and in

Figure 5-6 below a crop image with a viewport can be seen where the plant pixels are

shown in red and the non-plant pixels in blue.

Figure 5-6: Viewport with plants identified in red

5.4.7 Threads

The application begins on one thread and another is created within the setUpApp()

method to handle the time taken to process the video using the row finding algorithm.

This is done because the calculations used to identify the crop rows within the image

may take longer than the time taken for the cameraPreview to update with a new frame.

Without a thread this causes a backlog of frames on this thread until the system runs

out of memory and terminates. By creating seperate threads for processing and image

acquisition each new frame that comes from the camera through the CameraPreview

object is passed to the onPreviewFrame() method which updates the byteArray with

the new frame data and sends a thread.interupt() message to let the processingThread

class know that there is another frame available for processing. The separate thread

then handles the new frame once it has finished with the previous frame. If a third

frame arrives before the processorThread accesses the second waiting frame, the

second frame is discarded and replaced with the third frame. The processorThread

will miss processing frame two but this way no backlog of frames waiting to be

processed will occur so the system will not terminate prematurely.

Because there are multiple threads running that have access to the same data, shared

resources have to be accessed within a synchronised code block. This allows only one

thread access to shared resources at any one time. If a synchronised code block is not

used, then it could produce errors in the data.

MACHINE VISION AND SENSING WITH AN ANDROID

29

5.5 Image annotation

The Android Canvas.java class was used to annotate the video image after processing

had been done. The “output” Bitmap is set as the background of the Canvas which

allows annotations to be drawn in the foreground. The image in this application has

been annotated with a rectangle outlining the viewport, a line representing the

regression line calculated, and some text. This was done using the drawRect(),

drawLine(), and the drawText() methods of the Canvas class. The text displays the x_

alignment and slope_alignment correction data to be sent out to the Actuator control,

the quality of fit value, and the vanishingPoint information. When the quality variable

drops below 4, the regression line is no longer annotated to the screen. This simulates

a live system reverting to manual control when the quality of fit is small. Once all

annotated data is drawn onto the Bitmap image the mDraw.postInvalidate() method

call tells the GUI to update the display to include the newly annotated Bitmap image.

5.6 Row identification algorithm

The following section covers how the NCEA row following algorithm was written

using Android code. All of these algorithm calculations are performed on the

processThread as described in section 5.4.7 Threads28.

5.6.1 Threshold

The threshold is used to identify the plant pixels according to the level of Green in the

8-bit RGB pixel as defined in section 5.4.6 . The program begins with this threshold

level at 128 and it is raised or lowered to adjust for lighting fluctuations. To achieve

this the operator sets the VIEWPORT_PLANT_PROPORTION global constant to

identify the plants’ stage of development. As there is no user interface in this

application this proportion value must be hard set in code before compilation. The

plant pixels have already been identified and placed into an Arraylist called myxList.

The ArrayList.size() method is then called to find number of plant pixels and the

proportion of plant pixels within the viewport is then calculated and compared to the

expected proportion listed in the global constant. The threshold is then lowered or

raised accordingly. Figure 5-7 below shows that the threshold level has been adjusted

from 128 of 70 for an expected plant density of 40% which is the default setting of the

developed application.

MACHINE VISION AND SENSING WITH AN ANDROID

30

Figure 5-7:Threshold adjustment for an expected 40% plant density

5.6.2 Regression assessment

After the ArrayList holding all of the plant pixel coordinates is found, a call is made

to the assess() method which in turn calls the fit() method used to calculate the

regression line, correction data, and the new threshold value. If the fit() method deems

the new data is of good quality then the assess() method will overwrite the old

correction data held in global variables, with the new frames correction data as well

as set up the data needed to draw the regression line.

5.6.3 Regression fit

The applications fit() method uses equations (4.3) and (4.4) to calculate the fitOffset

and fitSlope values that will minimise the error in the cost function shown in equation

(4.1). The fitOffset and fitSlope values then identify the regression line of best fit, as

well as the correction values needed to achieve this minimum cost. If there are too few

plant identified pixel values then these calculations will not be performed and

subsequently the regression line and correction values will not be known or displayed.

In addition to these calculations, this method also compares the plant pixels and there

locations with the data from the last frame to calculate a quality of fit. The regression

line is only drawn to the screen when the quality of fit is adequate. This value is set

at 4 for this application. This application simulates the return to manual control for a

poor quality fit by not annotating the regression line to the screen as shown in Figure

5-8.

MACHINE VISION AND SENSING WITH AN ANDROID

31

Figure 5-8: A poor quality fit showing no regression line

5.6.4 Limits

The application has a limit() method that is used to apply limitation on the slope and

vanishing point. These limits identify the boundaries of the regression line to ensure

that the regression line and correction data is projected in the correct direction. This

limit is set using a percentage value representing a percentage of pixel values for the

boundary. This application has the limit set at 0.2.

5.7 Actuator control commands

Although physical actuator control was beyond the scope of this research the steering

correction data that is to be sent to the actuator was calculated and displayed to the

screen. This steering correction data was calculated using the methods found above

in section 5.6 . As covered in section 4.4 the fitOffset and “vanishing point” are used

to calculate the lateral movement steering corrections, while the corrections to the

angular displacement are identified with the fitSlope variable. This information is

annotated to the screen as X_ alignment, Vanishing_point, and Slope_alignment.

MACHINE VISION AND SENSING WITH AN ANDROID

32

Chapter 6: Evaluation and optimisation

This section covers the testing methodology and optimisation techniques used for this

research. As the agile programming method was used, each section of code produced

in the research was written in small segments of code which were individually tested

and optimised or discarded until the required result was found.

6.1 Test Equipment

The aim of this research was to see if an Android device was capable of implementing

a computer vision algorithm such as the NCEA’s row following algorithm so the

written code was only tested using one specific test device. Further testing would need

to be done using multiple devices to identify how well the application performed on

differing hardware however that was beyond the scope of this research.

A Samsung Galaxy S4 was used for all module testing of this application. Samsung

('Samsung' 2015) listed the specifications for this android device as:

 Android OS 4.2.2

 Quad Core 1.9GHz processor

 Full HD Super AMOLED display

 2GB RAM

 16GB internal memory with up to 64GB external memory

 CMOS 13MP rear camera and CMOS 2MP front camera

 Sensors include Accelerometer, Geomagnetic, Gyroscope, Broadcom

BCM47521 GLONASS GPS, AGPS, Bluetooth 4.0

Android code was uploaded to the device using the Android Studio and Intellij IDEs

as explained in section 5.1 . The application utilised the test device’s rear facing13MP

camera to acquire the image before it was processed. The relevant test results were

then displayed on the device’s screen

6.2 Procedure

As stated in section 5.1 the agile programming method was used for writing and

testing the software for this application. This allowed for testing of individual units

which was essential during this project as the Android development kit and other Java

libraries have a such vast number of libraries available and the development timeframe

for this application didn’t allow for an investigation into every aspect of code

available. Useful and not useful code was identified quickly through this method. To

identify the usefulness of a piece of code a small program was written or a sample

program was investigated to identify what functions were available through the code

use. During this initial discovery stage very little testing was done and more emphasis

was set on finding code that may be useful in the future.

MACHINE VISION AND SENSING WITH AN ANDROID

33

After some basic code was identified as being of possible use, further testing and

investigation went into identifying uses for the code. Android developers list various

automated testing tools to aid software development, however this project uses a

manual testing method where unit tests for each piece of new code are manually

performed and result are checked against predictable calculated values. Code was then

edited and optimised or discarded were applicable.

6.3 Video stream access

After many hours researching how to access and process individual pixels from images

captured by the Android device’s camera, BoofCV was selected to access the video

stream. This was due to its ease of use. BoofCV offered image conversion to a number

of formats such as binary, greyscale, RGB, HSV, and BoofCV also offered a range of

coded examples to be explored for different computer vision techniques. While

OpenCV also contains a wide range of libraries for computer vision, BoofCV was

selected as it was written entirely in Java which can be easily ported to an Android

system.

For accessing the device camera the application used the Camera.open() method and

not the BoofCV recommended cameraPreviewSetup() method. This was done for two

reasons. The first being that only devices with rear facing cameras are supported as

defined in the Android Manifest so Camera.open will always open the correct rear

facing camera, and secondly to limit the memory used to run the application by

limiting the amount of code used.

A 320x240 resolution image was had set for use and not BoofCV recommended

closest() method to select resolution. This BoofCV method is more flexible as it offers

a variety of different resolution option however 320x240 is a fairly standard resolution,

and was one which was offered on the test device, so the hard coded option was

selected to cut down on code used to write the application. Further application

development for use on additional devices may need to include the BoofCV

recommended closest() method.

Although different image formats were tested, RGB was selected for this application

for its ease of implementation. The starting threshold for RGB was easily defined as

G=128, and while other formats such as HSV are often more effective in varying

lighting conditions, the use of the varying threshold and the density level within the

viewport make this application very effective when dealing with light changes making

RGB just as effective.

During plant pixel identification, only one loop is made through the entire viewport

and useful plant pixels are stored in an ArrayList for further processing. This was

changed from earlier unit tested models which included a loop to change pixel colour

and a separate loop to calculate the regression line. Inclusion of the ArrayList allows

processing of the plant identified pixels without the need for a second loop through

the entire viewport. The ArrayList was selected to store the plant pixel coordinates

MACHINE VISION AND SENSING WITH AN ANDROID

34

over other List and Array options that are available in Java because the ArrayList size

doesn’t need to be defined prior to using the list which allows the one list to be used

for any number of pixels. This is useful for this application as the actual number of

plant pixels varies from frame to frame thus making a set size array impractical.

6.4 Image annotation

The built in Android Canvas class detailed in section 5.5 was used for this application

as it is part of the Android SDK package and it offers a wide range of annotation

options. The availability of multiple methods used for drawing rectangles for the view

window, lines for the regression line, and written characters for information output

was the main reason no other options for annotation were investigated.

6.5 Row identification algorithm

6.5.1 Accuracy

Testing for the accuracy of the row identification algorithm was performed by entering

known predictable data into the algorithm and verifying the results shown on the

screen. This testing involved inserting pixel co-ordinates that were deemed plant into

the ArrayList() and verifying the output of these known pixel coordinates with the

output of the regression line drawn and its associated correction data. Sample

Accuracy test code can be found in 0 and results for this testing can be found below

in Table 6-1.

During this testing an error was found that identified an inaccuracy of half a pixel

length when the plant pixels were situated over the positive x or right portion of the

view window. The source of the code causing this error could not be located before

this report was written so this slight error is listed as one of the limitation of this code.

A possible cause of this error may be a miss calculate in the alignment of the viewport

however this is just speculation and further investigation into the cause of this error is

needed before the actual error can be eliminated.

Table 6-1: Accuracy tests for the row identification algorithm

Note: For this accuracy test the quality value was disabled in the code for all

scenarios except scenario 5 which was testing the quality value.

Scenario 1: A straight crop row indicating the tractor is on the correct path

Notes: This shows zero for all fields as expected.

Predicted Output Actual Output Test Image

MACHINE VISION AND SENSING WITH AN ANDROID

35

X_alignment: 0.0

Slope_alignment: 0.0

Vanishing_point: 0.0

X_alignment: 0.0

Slope_alignment: 0.0

Vanishing_point: 0.0

Scenario 2: The row is positioned to the right side of the viewport making the tractor

too far to the left of the row

Notes: The alignment of the tractor is straight but offset negatively making the

lateral alignment negative with the slope zero.

There was an error noted in this test that showed the x_alignment at 9.5 when the

calculated value was 10. The cause of this error is yet to be determined.

Predicted Output Actual Output Test Image

X_alignment: 10.0

Slope_alignment: 0.0

Vanishing_point: 0.0

X_alignment: 9.5

Slope_alignment: 0.0

Vanishing_point: 0.0

Scenario 3: The row is positioned to the left side of the viewport making the tractor

too far to the right of the row

Notes: This scenario is similar to scenario 2 however the tractor is now displaced

in the positive range of the x-axis. This would make the predicted correction data

the same as scenario 2 but negated. The predicted output is the same as the actual

output.

Predicted Output Actual Output Test Image

X_alignment: -10.0

Slope_alignment: 0.0

Vanishing_point: -0.0

X_alignment: -10.0

Slope_alignment: 0.0

Vanishing_point: -0.0

Scenario 4: The row is in the bottom left and top right of the viewport simulating

the tractor turned in the anti-clockwise direction.

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor.

The tractor tilted in the clockwise direction would generate a negative value. With

a tilt as shown in the image, a slope correction of a -0.09 can be expected.

Predicted Output Actual Output Test Image

MACHINE VISION AND SENSING WITH AN ANDROID

36

Slope_alignment: -0.09

Slope_alignment: -0.094

Scenario 5: The row is in the bottom right and top left of the viewport simulating

the tractor turned in the clockwise direction

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor.

The tractor tilted in the clockwise direction would generate a positive value. With

a tilt as shown in the image, a slope correction of a 0.09 can be expected.

Predicted Output Actual Output Test Image

Slope_alignment: 0.09

Slope_alignment: 0.094

Scenario 6: The front of the tractor is off course with a poor quality fit.

Notes: This scenario is aimed to test the quality value. With the quality value below

4 the image will disable the regression line simulating the system reverting to

manual control.

Predicted Output Actual Output Test Image

No regression line

output

Quality: <4

No regression line

output

Quality:

6.5.2 Processing

The processor speed was calculated using the Java System method

System.currentTimeMilis(). The system time was checked at the start and end of the

process thread and the difference was calculated to get the system time. This data was

stored to obtain the average, maximum, and minimum process times.

Firstly the view window was populated with all pixels within the viewport identified

as plant as this would take the longest time for the system to process data. The system

MACHINE VISION AND SENSING WITH AN ANDROID

37

was then left to run for a two minutes while data was collected. A second test was

then run to test system processing speed using actual data that would be obtained

during a typical free system run. Table 6-2 below shows results from these two tests.

As expected the worst case scenario performed slower calculations with an average of

39 ms per frame, while the free running test got a better result at 34 ms per frame.

Both tests resulted in larger than expected Maximum processing time and lower than

expected minimum processing times. A hypothesis for the maximum values was the

slow speed of the system during start up, however when this test was re-performed

with a 5 and 10 second lag before calculating data it made no difference in the

minimum and maximum results.

Table 6-2: Processor speed tests

Processor Test Results (ms) Test Image

Worst case scenario

Average: 39

Maximum: 201

Minimum: 10

Free running system

Average: 34

Maximum: 217

Minimum: 10

Another hypothesis for the range in processing times is the application at times using

larger than normal amounts of system RAM which would slow down the processing

speed leading to the high maximum processing time. When verifying the systems

RAM usage fluctuations in the amount of RAM used as can be seen as shown in Figure

6-1. This is one possible cause in the high maximum processing time however the

actual cause of this high value was not determined at the time of writing this paper.

Figure 6-1: RAM usage

MACHINE VISION AND SENSING WITH AN ANDROID

38

Further minimisation for the processor time could be achieved by processing less data,

which could be done by either creating a smaller viewport window or by keeping the

viewport window the same size but only processing every second or third row of

pixels. This second option would be the optimum method as it would give access to

a wider range of data than concentrating the data in a smaller viewport. Testing for

these two methods of operation had not been performed at the time of writing this

paper.

6.6 Actuator control commands

After testing the data for accuracy and speed using know pixel inputs the application

was tested using live data obtained from the test devices camera. Each of the scenarios

in Table 6-3 below show values calculated for the actuator control outputs using random

live data from the Android camera. In each case the outputs were predicted and

compared with the actual output given by the application. and the resulting figures that

were displayed to the screen were visually checked to see if they matched the predicted

output. As the data used in this test was random outputs had to be visually predicted

rather than calculated. While the vanishing point figure appears on the screen testing

for its accuracy could not be performed in time for inclusion in this document as

identified in section 5.3.2 .

Table 6-3:Actuator control simulations

Scenario 1: The tractor is heading in a nearly straight line on the correct path

aligned with a crop row.

Notes: In this scenario no corrections need to be made so all fields should be close

to zero except the quality field which should be good at around 10.

Predicted Output Actual Output Test Image

Quality: 10.0

X_alignment: 0.0

Slope_alignment: 0.0

Vanishing_point: 0.0

Quality: 11.10

X_alignment: 1.19

Slope_alignment: 0.007

Vanishing_point: -0.24

Scenario 2: The tractor is heading in a straight line but displaced to the left of the

crop row.

Notes: In this scenario the tractor is heading in a straight line so the angular

displacement should be close to zero which would make the Slope_allignment

correction data close to zero. The tractor is aligned too far to the left of the row

putting it in the negative range of the x-axis with half of the viewport on the row

and half off of the row. As the viewport is 30 pixels wide a lateral correction of

about 15 pixels in the positive direction needs to be made. The Quality value is only

about half of what it should be which would make the predicted value close to 5.

MACHINE VISION AND SENSING WITH AN ANDROID

39

Predicted Output Actual Output Test Image

Quality: 5.0

X_alignment: 15.0

Slope_alignment: 0.0

Vanishing_point: 3.0

Quality: 5.14

X_alignment: 11.69

Slope_alignment: -0.031

Vanishing_point: 3.36

Scenario 3: The tractor is heading in a straight line but displaced to the right of the

crop row.

Notes: This scenario is similar to scenario 2 however the tractor is now displaced

in the positive range of the x-axis. This would make the predicted correction data

the same as scenario 2 but negated, with a quality rating of about 5.

Predicted Output Actual Output Test Image

Quality: 5.0

X_alignment: -15.0

Slope_alignment: 0.0

Vanishing_point: -3.0

Quality: 5.25

X_alignment: -8.98

Slope_alignment: 0.008

Vanishing_point: -3.78

Scenario 4: The front of the tractor is tilted in a clockwise direction.

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor.

The tractor tilted in the clockwise direction would generate a positive value. With

a tilt as shown in the image, a slope correction of a 0.1 can be expected.

Predicted Output Actual Output Test Image

Quality: 5.0

Slope_alignment: 0.1

Quality: 5.78

Slope_alignment: 0.149

Scenario 5: The front of the tractor is tilted in an anti-clockwise direction.

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor

in the opposite direction as scenario 4. This should result in similar corrections in

the slope in the negative direction.

Predicted Output Actual Output Test Image

MACHINE VISION AND SENSING WITH AN ANDROID

40

Quality: 5.0

Slope_alignment: -0.1

Quality: 5.83

Slope_alignment: -0.134

Scenario 6: The front of the tractor is off course with a poor quality fit.

Notes: This scenario is aimed to test the quality value. With the quality value

dropping below 4 the image will disable the regression line simulating the system

reverting to manual control.

Predicted Output Actual Output Test Image

No regression line

output

Quality: <4

No regression line

output

Quality: 0.653

6.7 Code optimisation

To minimise memory usage in an attempt to speed up processing speed during the full

system test the Android code was optimised using Intellij’s built in code cleanup tool.

This helped identify any unused code and support libraries that could be deleted and

gave suggestions on how to optimise the performance of the code. After the code was

cleaned up the system RAM usage was identified by looking at the system logcat files.

Outputs for the RAM memory monitor and the Dalvik garbage collection data both

show a system RAM usage of around 17MB. These outputs are shown in Figure 6-2

and Figure 6.3.

Figure 6-2: RAM usage after code optimisation

MACHINE VISION AND SENSING WITH AN ANDROID

41

Figure 6-3: Dalvik garbage collector output after code optimisation

MACHINE VISION AND SENSING WITH AN ANDROID

42

Chapter 7: Results

This section of the dissertation records the key outcomes of this paper and how they

match up with the desired project objectives.

7.1 Objectives and outcomes

This project has resulted in the development of a demonstration application that has

capable of keeping RAM usage to an average of about 17 MB while processing the 30

fps, 320x240 resolution video, in an average of 34 ms per frame during typical running

circumstances. Data showing the identifying a row of crows and steering correction

data is also printed to the device screen.

This project has identified the capabilities of an Android device being used for farm

vehicle automation by testing its ability to process a row finding application with speed

and accuracy. The project has shown that an Android device can identify crop rows

based on the greenness of the image pixel. Further development of Android based

machine vision could dramatically reduce the cost and complexity of setting up

alternative automated vehicle guidance systems.

7.1.1 SDK investigation

The initial objective of this project was the investigation into the Android SDK and

various computer vision libraries which resulted in the use of BoofCV with the Intellij

IDE for this project. BoofCV was used primarily for image conversion between

different formats while the Android SDK was used elsewhere throughout the code.

7.1.2 Video stream access

Video stream access and manipulation were the second and third objectives for this

project and they were made possible through the use of the BoofCV libraries. The

android camera returned each frame to the main application in the NV21 format using

a callback function within the CameraPreview class. This NV21 frame was then

converted into a Multispectrum format containing 3 unsigned 8 bit integer image

objects for each of the RGB colours. A portion of the RGB frame was then assigned

a viewport and each pixel was within that viewport was compared against a threshold

to identify it as plant or not and the colour of the pixel was changed accordingly. Plant

pixels were stored into an ArrayList and sent for further processing. After processing

the RGB image was converted to Bitmap format where it was annotated and sent to

the device screen for display. This was achieved at 30fps with a resolution of 320x240.

The threshold level was also automatically changed during this process to allow for

fluctuations in image lighting.

MACHINE VISION AND SENSING WITH AN ANDROID

43

7.1.3 Image annotation

Image annotation was the fourth objective of this project and it was achieved using the

Android Canvas class. Posting the main camera Bitmap image on a Canvas allowed

for the vast array of methods within the Canvas class to be used to annotate the main

image. Annotation used the drawText() method to write characters to the screen, the

drawLine() method to draw the regression line on the screen, and the drawRect()

method to identify the location of the viewport.

7.1.4 Row identification algorithm

The fifth objective of row identification used the ArrayList of plant pixels and the

assess() and fit() methods to calculate the regression line and correction data, check

for a quality of fit, and assign correction data and application output using these

parameters. The fit() method used the NCEA row identification algorithm to obtain

the regression and correction data. The quality of fit calculation compared the results

of the previous frame to the current one and updated results accordingly.

Testing of for speed and accuracy of this data resulted in finding an inaccuracy of half

a pixel length and with an average process time of 34 ms per frame during typical

circumstances. Further work in this area needs to be done to find the cause of the data

inaccuracy and the addition of extra viewports to check the accuracy of the viewpoint

calculations.

7.1.5 Actuator control commands

The display for the actuator control simulation for the correction data was the final

objective of this project. This was partially achieved and tested using number data

output to the device screen. Initial testing with output numbers identified that these

steering correction calculations were correct however further work in this area still

needs to be done. A simulated steering device, such as the suggested sliding bar on

the bottom of the display, would be a good way to test the steering correction data.

MACHINE VISION AND SENSING WITH AN ANDROID

44

Chapter 8: Conclusion

This dissertation covered the development of an Android based vision guidance

system for a tractor. The original specification for a system to include vision guidance

data as well as other Android sensors, such as GPS, was revised after the project

preliminary report. The new revision specified a vision based guidance system

without any additional sensors. While this paper only involved the early stages of

development of such an application, further development could lead to accessible

tractor automation for everyone due to the ease of use and installation, as well as the

low cost price of such an Android operated system. Listed below are the key findings

of this project and further work that is needed to make a workable Android based

tractor automation system.

8.1 Key project findings

This project developed an Android system that is capable of identifying rows of crops.

While all of the project testing and simulation carried out during this project was based

in a laboratory the work done has shown the potential use of Android devices in

vehicle automation in the future.

The demonstration application that has been developed has kept RAM usage to an

average of about 17 MB while processing the 30 fps, 320x240 resolution image, in an

average of 34 ms per frame during typical circumstances.

This demonstrator application displayed a regression line to the screen to visually

identify the crop row as well as outputting numerical values representing steering

corrections to be sent to the actuator. The application also included a threshold level

to deal with fluctuations in changing lighting conditions.

Due to time constraints the demonstrator application only uses one viewport window

for calculations and does not include any additional viewports as described in section

4.3 . The use of only one viewport has meant that testing of the vanishing point for

steering corrections could not be achieved. As defined during testing, there is also a

problem with the code which outputs steering corrections that are incorrect by half a

pixel. At the time of publication this error had not been resolved.

8.2 Further Work

Future work for this project would involve the inclusion of additional viewport

windows in the Android software, which would be followed up with the system

outputting a signal to an actuator that controls the vehicle. All of these devices would

then need to be field tested.

MACHINE VISION AND SENSING WITH AN ANDROID

45

List of References

Abeles, P 2012, 'BoofCV', viewed 6 July 2015, <http://boofcv.org/>.

Abidine, A, Heidman, B, Upadhyaya, S & Hills, D 2002, 'Application of RTK GPS based auto-
guidance system in agricultural production', ASAE Paper Nº 021152–ASAE. St Joseph MI.

'Android Developers', 2015, viewed 4 April 2015,
<http://developer.android.com/index.html>.

Australian Bureau of Statistics 2013, 'Land Management and Farming in Australia 2012-
2013', ABS Catalogue No. 4627.0, Commonwealth of Australia.

Bell, T 2000, 'Automatic tractor guidance using carrier-phase differential GPS', Computers
and Electronics in Agriculture, vol. 25, no. 1, pp. 53-66.

Benson, E, Stombaugh, T, Noguchi, N, Will, J & Reid, J 1998, 'An evaluation of a geomagnetic
direction sensor for vehicle guidance in precision agriculture applications', ASAE paper, vol.
983203.

Billingsley, J & Schoenfisch, M 1997, 'The successful development of a vision guidance system
for agriculture', Computers and Electronics in Agriculture, vol. 16, no. 2, pp. 147-63.

Borenstein, J 1998, 'Experimental results from internal odometry error correction with the
OmniMate mobile robot', IEEE Transactions on Robotics & Automation, vol. 14, no. 6, pp.
963-9,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=93052690&site=ehost-live>.

Brooke, D 1972, 'Operating Experience with Wide-wire Leader Cable Tractors, ASAE Paper
72-119', American Society of Agricultural Engineers, St. Joseph, MI.

Defense", UDO 2008, 'Global Positioning System Standard Positioning Service Performance
Standard'.

Dingsoyr, T 2010, 'Agile Software Development', viewed 19/7/2015.

http://boofcv.org/%3e
http://developer.android.com/index.html%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=93052690&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=93052690&site=ehost-live%3e

MACHINE VISION AND SENSING WITH AN ANDROID

46

Emmi, L, Gonzalez-de-Soto, M, Pajares, G & Gonzalez-de-Santos, P 2014, 'Integrating
Sensory/Actuation Systems in Agricultural Vehicles', Sensors (14248220), vol. 14, no. 3, pp.
4014-49,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=95106702&site=ehost-live>.

FAO 2009, 'FAO's Director-General on How to Feed the World in 2050', Population and
Development Review, vol. 35, no. 4, pp. 837-9, <http://www.jstor.org/stable/25593700>.

Gan-Mor, S & Clark, R 2001, 'DGPS-based automatic guidance-implementation and
economical analysis', in ASAE Meeting Paper: proceedings of theASAE Meeting Paper.

Gan-Mor, S, Clark, RL & Upchurch, BL 2007, 'Implement lateral position accuracy under RTK-
GPS tractor guidance', Computers and Electronics in Agriculture, vol. 59, no. 1, pp. 31-8.

Gerrish, JB, Stockman, G, Mann, L & Hu, G 1985, 'Image processing for path-finding in
agricultural field operations', Paper-American Society of Agricultural Engineers (USA).
Microfiche collection. no. fiche no. 85-3037.

'GPS.Gov', 2015, viewed 11 April 2015, <http://www.gps.gov/>.

Han, S, Zhang, Q, Ni, B & Reid, JF 2004, 'A guidance directrix approach to vision-based vehicle
guidance systems', Computers and Electronics in Agriculture, vol. 43, no. 3, pp. 179-95,
<http://www.sciencedirect.com/science/article/pii/S0168169904000286>.

'IEEE Standard Glossary of Software Engineering Terminology', 1990, IEEE Std 610.12-1990,
pp. 1-84.

Jiang, G, Wang, Z & Liu, H 2015, 'Automatic detection of crop rows based on multi-ROIs',
Expert Systems with Applications, vol. 42, no. 5, pp. 2429-41,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=100062818&site=ehost-live>.

Keskın, M, Say, SM & Görücü Keskin, S 2009, 'Evaluation of a Low-Cost GPS Receiver for
Precision Agriculture Use in Adana Province of Turkey', Düşük Maliyetli Bir GPS Alıcısının
Adana İlinde Hassas Uygulamal&0131; Tarımda Kullanılabilirliğinin Değerlendirilmesi., vol.
33, no. 1, pp. 79-88,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=37196273&site=ehost-live>.

http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=95106702&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=95106702&site=ehost-live%3e
http://www.jstor.org/stable/25593700%3e
http://www.gps.gov/%3e
http://www.sciencedirect.com/science/article/pii/S0168169904000286%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=100062818&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=100062818&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=37196273&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=37196273&site=ehost-live%3e

MACHINE VISION AND SENSING WITH AN ANDROID

47

Kise, M, Noguchi, N, Ishii, K & Terao, H 2002, 'The development of the autonomous tractor
with steering controller applied by optimal control', Proceeding of the Automation
Technology for Off-Road Equipment. Chicago-IL.

Larsen, W, Nielsen, G & Tyler, D 1994, 'Precision navigation with GPS', Computers and
Electronics in Agriculture, vol. 11, no. 1, pp. 85-95.

Martin, RC 2003, Agile Software Development: Principles, Patterns, and Practices, Prentice
Hall PTR.

Ming, L, Imou, K, Wakabayashi, K & Yokoyama, S 2009, 'Review of research on agricultural
vehicle autonomous guidance', International Journal of Agricultural & Biological Engineering,
vol. 2, no. 3, pp. 1-16,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=47114795&site=ehost-live>.

Moore, T, Tilak, S, Papadouplous, P & Clementi, L 2014, 'Programmatically defining the
software footprint of sensor networks using the Android platform', Software: Practice and
Experience, vol. 44, no. 10, pp. 1277-86, <http://dx.doi.org/10.1002/spe.2209>.

Morgan, K 1958, 'A step towards an automatic tractor', Farm mech, vol. 10, no. 13, pp. 440-
1.

Noguchi, N & Terao, H 1997, 'Path planning of an agricultural mobile robot by neural network
and genetic algorithm', Computers and Electronics in Agriculture, vol. 18, no. 2, pp. 187-204.

Noguchi, N, Kise, M, Ishii, K & Terao, H 2002, 'Field automation using robot tractor', in
Proceedings of Automation Technology for off-road equipment: proceedings of
theProceedings of Automation Technology for off-road equipment pp. 239-45.

OpenCV 2015, OpenCV, viewed 6 May 2015, <http://opencv.org/>.

Palmer, R & Matheson, S 1988, 'Impact of navigation on farming', American Society of
Agricultural Engineers (Microfiche collection)(USA).

Pérez-Ruiz, M, Slaughter, DC, Gliever, CJ & Upadhyaya, SK 2012, 'Automatic GPS-based intra-
row weed knife control system for transplanted row crops', Computers & Electronics in
Agriculture, vol. 80, pp. 41-9,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=70364317&site=ehost-live>.

http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=47114795&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=47114795&site=ehost-live%3e
http://dx.doi.org/10.1002/spe.2209%3e
http://opencv.org/%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=70364317&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=70364317&site=ehost-live%3e

MACHINE VISION AND SENSING WITH AN ANDROID

48

Pérez-Ruíz, M, Slaughter, DC, Fathallah, FA, Gliever, CJ & Miller, BJ 2014, 'Co-robotic intra-
row weed control system', Biosystems Engineering, vol. 126, pp. 45-55,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=97846736&site=ehost-live>.

Reid, J, Searcy, S & Babowicz, R 1985, 'Determining a guidance directix in row crop images',
American Society of Agricultural Engineers (Microfiche collection)(USA).

Reid, JF, Zhang, Q, Noguchi, N & Dickson, M 2000, 'Agricultural automatic guidance research
in North America', Computers and Electronics in Agriculture, vol. 25, no. 1, pp. 155-67.

Rierson, L 2013, Developing Safety-Critical Software: A Practical Guide for Aviation Software,
CRC Press, America.

Rovira-Más, F, Zhang, Q, Reid, JF & Will, JD 2003, 'Machine Vision Based Automated Tractor
Guidance', International Journal of Smart Engineering System Design, vol. 5, no. 4, pp. 467-
80, viewed 2015/05/06, <http://dx.doi.org/10.1080/10255810390445300>.

'Samsung', 2015, viewed 4 April 2015, <http://www.samsung.com/>.

Searcy, SW, Schueller, JK, Bae, YH & Stout, BA 1990, 'Measurement of agricultural field
location using microwave frequency triangulation', Computers and Electronics in Agriculture,
vol. 4, no. 3, pp. 209-23.

Shen, WEI & Liu, G 2007, 'A robust approach to obtain a guidance directrix for a vision-based
agricultural vehicle guidance system', New Zealand Journal of Agricultural Research, vol. 50,
no. 5, pp. 1067-72,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=35522088&site=ehost-live>.

Subramanian, V, Burks, TF & Arroyo, AA 2006, 'Development of machine vision and laser
radar based autonomous vehicle guidance systems for citrus grove navigation', Computers &
Electronics in Agriculture, vol. 53, no. 2, pp. 130-43,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=22082121&site=ehost-live>.

Sun, H, Slaughter, D, Ruiz, MP, Gliever, C, Upadhyaya, S & Smith, R 2010, 'RTK GPS mapping
of transplanted row crops', Computers and Electronics in Agriculture, vol. 71, no. 1, pp. 32-7.

http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=97846736&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=97846736&site=ehost-live%3e
http://dx.doi.org/10.1080/10255810390445300%3e
http://www.samsung.com/%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=35522088&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=35522088&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=22082121&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=22082121&site=ehost-live%3e

MACHINE VISION AND SENSING WITH AN ANDROID

49

Tillett, N 1991, 'Automatic guidance sensors for agricultural field machines: a review', Journal
of agricultural engineering research, vol. 50, pp. 167-87.

Wilson, JN 2000, 'Guidance of agricultural vehicles — a historical perspective', Computers
and Electronics in Agriculture, vol. 25, no. 1–2, pp. 3-9,
<http://www.sciencedirect.com/science/article/pii/S0168169999000526>.

Zhang, H, Cheng, B & Zhang, L 2008, 'DETECTION ALGORITHM FOR CROP MULTI-
CENTERLINES BASED ON MACHINE VISION', Transactions of the ASABE, vol. 51, no. 3, pp.
1089-97,
<http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true
&db=a9h&AN=34095197&site=ehost-live>.

http://www.sciencedirect.com/science/article/pii/S0168169999000526%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=34095197&site=ehost-live%3e
http://ezproxy.usq.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=34095197&site=ehost-live%3e

MACHINE VISION AND SENSING WITH AN ANDROID

50

Appendix A Project Specification

A.1. Original project specification

The original project specification is defined below. It identifies the original project

specifications which were altered after the project preliminary report was marked.

MACHINE VISION AND SENSING WITH AN ANDROID

51

A.2. Preliminary report recommended project stages

The project specification was altered after the preliminary report was marked. The

new project specification of recommended stages for project completion was then

followed to complete the project.

MACHINE VISION AND SENSING WITH AN ANDROID

52

Appendix B Elementary Android code

Android developers ('Android Developers' 2015) has a list of training modules for

application development. These developer training modules were used as a valuable

resource to identify what certain aspects of Android code is used for and they

provided worked examples of how Android developers should use code segments.

B.1. Android terms

From the elementary code that was developed an understanding of the following terms

and classes was vital for further Android development. The first four terms are

Android components.

 Activities – An activity is used for each new screen with a user interface.

Activities can be shared between different Android applications if permission

is granted.

 Services – A service is a background process that has no user interface and can

only be accessed through another Android component such as an activity.

 Content provider – A content provider manages access and use of a data set

that is shared between different applications.

 Broadcast receiver – A broadcast receiver responds to system wide

announcements and takes the required actions such as a warning display when

the battery is flat.

 Permissions – Every Android application must request and be granted

permission from the android device prior to accessing android resources. This

includes access and use of the camera, storage space, Bluetooth, GPS, and all

other sensors.

 Intents - An intent sends asynchronous messages between components

defining specific actions that need to be performed.

 Manifest – The manifest is an EXtensible Markup Language file under the

name of AndroidManifest.xml, that holds a list of all the application

components. Here components are defined as an activity, a service, a receiver,

or a provider. The manifest also defines application permissions and

requirements, a minimum API level, and it holds links to external libraries.

 Thread – A thread is a concurrent unit of execution used to run two segments

of system code in parallel.

 Callback – A callback is an android method that will wait idle until it receives

a callback notification from some other piece of code.

 .apk – An entire Android package that can be installed on an Android device.

 Canvas – a surface class that enables drawing.

 Dalvik – The name of the Android Virtual Machine

MACHINE VISION AND SENSING WITH AN ANDROID

53

B.2. Camera control

The code below is one of the introductory camera classes that was built
/**

 * Created by shaun on 18/05/2015.

 */

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.text.SimpleDateFormat;

import java.util.Date;

import android.app.Activity;

import android.content.Context;

import android.content.pm.PackageManager;

import android.hardware.Camera;

import android.hardware.Camera.CameraInfo;

import android.hardware.Camera.PictureCallback;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.view.WindowManager;

import android.widget.Button;

import android.widget.LinearLayout;

import android.widget.Toast;

public class AndroidCameraExample extends Activity {

 private Camera mCamera;

 private CameraPreview mPreview;

 private PictureCallback mPicture;

 private Button capture, switchCamera;

 private Context myContext;

 private LinearLayout cameraPreview;

 private boolean cameraFront = false;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

 myContext = this;

 initialize();

 }

 private int findFrontFacingCamera() {

 int cameraId = -1;

 // Search for the front facing camera

 int numberOfCameras = Camera.getNumberOfCameras();

 for (int i = 0; i < numberOfCameras; i++) {

 CameraInfo info = new CameraInfo();

 Camera.getCameraInfo(i, info);

 if (info.facing == CameraInfo.CAMERA_FACING_FRONT) {

 cameraId = i;

 cameraFront = true;

 break;

 }

 }

 return cameraId;

 }

 private int findBackFacingCamera() {

 int cameraId = -1;

 //Search for the back facing camera

 //get the number of cameras

 int numberOfCameras = Camera.getNumberOfCameras();

 //for every camera check

 for (int i = 0; i < numberOfCameras; i++) {

 CameraInfo info = new CameraInfo();

 Camera.getCameraInfo(i, info);

 if (info.facing == CameraInfo.CAMERA_FACING_BACK) {

 cameraId = i;

 cameraFront = false;

 break;

 }

 }

 return cameraId;

 }

 public void onResume() {

 super.onResume();

 if (!hasCamera(myContext)) {

 Toast toast = Toast.makeText(myContext, "Sorry, your phone does not have a camera!",

Toast.LENGTH_LONG);

 toast.show();

 finish();

 }

 if (mCamera == null) {

 //if the front facing camera does not exist

 if (findFrontFacingCamera() 1) {

 //release the old camera instance

 //switch camera, from the front and the back and vice versa

 releaseCamera();

 chooseCamera();

 } else {

 Toast toast = Toast.makeText(myContext, "Sorry, your phone has only one camera!",

Toast.LENGTH_LONG);

MACHINE VISION AND SENSING WITH AN ANDROID

54

 toast.show();

 }

 }

 };

 public void chooseCamera() {

 //if the camera preview is the front

 if (cameraFront) {

 int cameraId = findBackFacingCamera();

 if (cameraId >= 0) {

 //open the backFacingCamera

 //set a picture callback

 //refresh the preview

 mCamera = Camera.open(cameraId);

 mPicture = getPictureCallback();

 mPreview.refreshCamera(mCamera);

 }

 } else {

 int cameraId = findFrontFacingCamera();

 if (cameraId >= 0) {

 //open the backFacingCamera

 //set a picture callback

 //refresh the preview

 mCamera = Camera.open(cameraId);

 mPicture = getPictureCallback();

 mPreview.refreshCamera(mCamera);

 }

 }

 }

 @Override

 protected void onPause() {

 super.onPause();

 //when on Pause, release camera in order to be used from other applications

 releaseCamera();

 }

 private boolean hasCamera(Context context) {

 //check if the device has camera

 if (context.getPackageManager().hasSystemFeature(PackageManager.FEATURE_CAMERA)) {

 return true;

 } else {

 return false;

 }

 }

 private PictureCallback getPictureCallback() {

 PictureCallback picture = new PictureCallback() {

 @Override

 public void onPictureTaken(byte[] data, Camera camera) {

 //make a new picture file

 File pictureFile = getOutputMediaFile();

 if (pictureFile == null) {

 return;

 }

 try {

 //write the file

 FileOutputStream fos = new FileOutputStream(pictureFile);

 fos.write(data);

 fos.close();

 Toast toast = Toast.makeText(myContext, "Picture saved: " + pictureFile.getName(),

Toast.LENGTH_LONG);

 toast.show();

 } catch (FileNotFoundException e) {

 } catch (IOException e) {

 }

 //refresh camera to continue preview

 mPreview.refreshCamera(mCamera);

 }

 };

 return picture;

 }

 OnClickListener captrureListener = new OnClickListener() {

 @Override

 public void onClick(View v) {

 mCamera.takePicture(null, null, mPicture);

 }

 };

 //make picture and save to a folder

 private static File getOutputMediaFile() {

 //make a new file directory inside the "sdcard" folder

 File mediaStorageDir = new File("/sdcard/", "JCG Camera");

 //if this "JCGCamera folder does not exist

 if (!mediaStorageDir.exists()) {

 //if you cannot make this folder return

 if (!mediaStorageDir.mkdirs()) {

 return null;

 }

 }

 //take the current timeStamp

MACHINE VISION AND SENSING WITH AN ANDROID

55

 String timeStamp = new SimpleDateFormat("yyyyMMdd_HHmmss").format(new Date());

 File mediaFile;

 //and make a media file:

 mediaFile = new File(mediaStorageDir.getPath() + File.separator + "IMG_" + timeStamp + ".jpg");

 return mediaFile;

 }

 private void releaseCamera() {

 // stop and release camera

 if (mCamera != null) {

 mCamera.release();

 mCamera = null;

 }

 }

}

 import java.io.IOException;

 import android.content.Context;

 import android.hardware.Camera;

 import android.util.Log;

 import android.view.SurfaceHolder;

 import android.view.SurfaceView;

public class CameraPreview extends SurfaceView implements SurfaceHolder.Callback {

 private SurfaceHolder mHolder;

 private Camera mCamera;

 public CameraPreview(Context context, Camera camera) {

 super(context);

 mCamera = camera;

 mHolder = getHolder();

 mHolder.addCallback(this);

 // deprecated setting, but required on Android versions prior to 3.0

 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 }

 public void surfaceCreated(SurfaceHolder holder) {

 try {

 // create the surface and start camera preview

 if (mCamera == null) {

 mCamera.setPreviewDisplay(holder);

 mCamera.startPreview();

 }

 } catch (IOException e) {

 Log.d(VIEW_LOG_TAG, "Error setting camera preview: " + e.getMessage());

 }

 }

 public void refreshCamera(Camera camera) {

 if (mHolder.getSurface() == null) {

 // preview surface does not exist

 return;

 }

 // stop preview before making changes

 try {

 mCamera.stopPreview();

 } catch (Exception e) {

 // ignore: tried to stop a non-existent preview

 }

 // set preview size and make any resize, rotate or

 // reformatting changes here

 // start preview with new settings

 setCamera(camera);

 try {

 mCamera.setPreviewDisplay(mHolder);

 mCamera.startPreview();

 } catch (Exception e) {

 Log.d(VIEW_LOG_TAG, "Error starting camera preview: " + e.getMessage());

 }

 }

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {

 // If your preview can change or rotate, take care of those events here.

 // Make sure to stop the preview before resizing or reformatting it.

 refreshCamera(mCamera);

 }

 public void setCamera(Camera camera) {

 //method to set a camera instance

 mCamera = camera;

 }

 @Override

 public void surfaceDestroyed(SurfaceHolder holder) {

 // TODO Auto-generated method stub

 // mCamera.release();

 }

MACHINE VISION AND SENSING WITH AN ANDROID

56

B.3. GPS access example code

This code was an introductory look into accessing the GPS sensor.
package com.shaun.getgpslocation;

import android.app.AlertDialog;

import android.app.Service;

import android.content.Context;

import android.content.DialogInterface;

import android.content.Intent;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;

import android.os.IBinder;

import android.provider.Settings;

/**

 * Created by shaun on 10/05/2015.

 */

public class GPSTracker extends Service implements LocationListener {

 private final Context context;

 boolean isGPSEnabled = false;

 boolean isNetworkEnabled = false;

 boolean canGetLocation = false;

 Location location;

 double latitude;

 double longitude;

 private static final long MIN_DISTANCE_CHANGE_FOR_UPDATES = 1; // 1 METER

 private static final long MIN_TIME_BW_UPDATES = 1000 * 30 * 1; // 30 SECOND

 protected LocationManager locationManager;

 public GPSTracker(Context context) {

 this.context = context;

 getLocation();

 }

 public Location getLocation() {

 try {

 locationManager = (LocationManager) context.getSystemService(LOCATION_SERVICE);

 isGPSEnabled = locationManager.isProviderEnabled(LocationManager.GPS_PROVIDER);

 isNetworkEnabled = locationManager.isProviderEnabled(LocationManager.NETWORK_PROVIDER);

 if (!isGPSEnabled && !isNetworkEnabled){

 } else {

 this.canGetLocation = true;

 if (isNetworkEnabled) {

 locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, MIN_TIME_BW_UPDATES,

MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

 if (locationManager != null) {

 location = locationManager.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);

 if (location != null) {

 latitude = location.getLatitude();

 longitude = location.getLongitude();

 }

 }

 }

 if (isGPSEnabled) {

 if (location == null) {

 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, MIN_TIME_BW_UPDATES,

MIN_DISTANCE_CHANGE_FOR_UPDATES, this);

 if (locationManager != null) {

 location = locationManager.getLastKnownLocation(LocationManager.GPS_PROVIDER);

 if (location != null) {

 latitude = location.getLatitude();

 longitude = location.getLongitude();

 }

 }

 }

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 return location;

 }

 public void stopUsingGPS() {

 if (locationManager != null) {

MACHINE VISION AND SENSING WITH AN ANDROID

57

 locationManager.removeUpdates(GPSTracker.this);

 }

 }

 public double getLatitude() {

 if (location != null) {

 latitude = location.getLatitude();

 }

 return latitude;

 }

 public double getLongitude() {

 if (location != null) {

 longitude = location.getLongitude();

 }

 return longitude;

 }

 public boolean isCanGetLocation() {

 return this.canGetLocation;

 }

 public void showSettingsAlert() {

 AlertDialog.Builder alertDialog = new AlertDialog.Builder(context);

 alertDialog.setTitle("GPS is setting");

 alertDialog.setMessage("GPS is not enabled. Do you want to go to the settings menu?");

 alertDialog.setPositiveButton("Settings", new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 Intent intent = new Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);

 context.startActivity(intent);

 }

 });

 alertDialog.setNegativeButton("Cancel", new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 dialog.cancel();

 }

 });

 alertDialog.show();

 }

 @Override

 public void onLocationChanged(Location location) {

 }

 @Override

 public void onStatusChanged(String provider, int status, Bundle extras) {

 }

 @Override

 public void onProviderEnabled(String provider) {

 }

 @Override

 public void onProviderDisabled(String provider) {

 }

 @Override

 public IBinder onBind(Intent intent) {

 return null;

 }

}

package com.shaun.getgpslocation;

import android.support.v7.app.ActionBarActivity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends ActionBarActivity {

 Button btnShowLocation;

 GPSTracker gps;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 btnShowLocation = (Button) findViewById(R.id.show_location);

 btnShowLocation.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

MACHINE VISION AND SENSING WITH AN ANDROID

58

 gps = new GPSTracker(MainActivity.this);

 if (gps.canGetLocation) {

 double latitude = gps.getLatitude();

 double longitude = gps.getLongitude();

 Toast.makeText(getApplicationContext(), "Your Location is -\nLat: " + latitude + "\nLong: " +

longitude, Toast.LENGTH_LONG).show();

 } else {

 gps.showSettingsAlert();

 }

 }

 });

 }

}

B.4. BoofCV LineDetection and colorSegment example code

Out of the many BoofCV example code segments looked at these Java classes

provided great examples for me to investigate.

import java.awt.image.BufferedImage;

public class ExampleLineDetection {

 // adjusts edge threshold for identifying pixels belonging to a line

 private static final float edgeThreshold = 25;

 // adjust the maximum number of found lines in the image

 private static final int maxLines = 10;

 /**

 * Detects lines inside the image using different types of Hough detectors

 *

 * @param image Input image.

 * @param imageType Type of image processed by line detector.

 * @param derivType Type of image derivative.

 */

 public static<T extends ImageSingleBand, D extends ImageSingleBand>

 void detectLines(BufferedImage image ,

 Class<T> imageType ,

 Class<D> derivType)

 {

 // convert the line into a single band image

 T input = ConvertBufferedImage.convertFromSingle(image, null, imageType);

 // Comment/uncomment to try a different type of line detector

 DetectLineHoughPolar<T,D> detector = FactoryDetectLineAlgs.houghPolar(

 new ConfigHoughPolar(3, 30, 2, Math.PI / 180,edgeThreshold, maxLines), imageType, derivType);

// DetectLineHoughFoot<T,D> detector = FactoryDetectLineAlgs.houghFoot(

// new ConfigHoughFoot(3, 8, 5, edgeThreshold,maxLines), imageType, derivType);

// DetectLineHoughFootSubimage<T,D> detector = FactoryDetectLineAlgs.houghFootSub(

// new ConfigHoughFootSubimage(3, 8, 5, edgeThreshold,maxLines, 2, 2), imageType, derivType);

 List<LineParametric2D_F32> found = detector.detect(input);

 // display the results

 ImageLinePanel gui = new ImageLinePanel();

 gui.setBackground(image);

 gui.setLines(found);

 gui.setPreferredSize(new Dimension(image.getWidth(),image.getHeight()));

 ShowImages.showWindow(gui,"Found Lines");

 }

 /**

 * Detects segments inside the image

 *

 * @param image Input image.

 * @param imageType Type of image processed by line detector.

 * @param derivType Type of image derivative.

 */

 public static<T extends ImageSingleBand, D extends ImageSingleBand>

 void detectLineSegments(BufferedImage image ,

 Class<T> imageType ,

 Class<D> derivType)

 {

 // convert the line into a single band image

 T input = ConvertBufferedImage.convertFromSingle(image, null, imageType);

 // Comment/uncomment to try a different type of line detector

 DetectLineSegmentsGridRansac<T,D> detector = FactoryDetectLineAlgs.lineRansac(40, 30, 2.36, true,

imageType, derivType);

 List<LineSegment2D_F32> found = detector.detect(input);

 // display the results

 ImageLinePanel gui = new ImageLinePanel();

 gui.setBackground(image);

MACHINE VISION AND SENSING WITH AN ANDROID

59

 gui.setLineSegments(found);

 gui.setPreferredSize(new Dimension(image.getWidth(),image.getHeight()));

 ShowImages.showWindow(gui,"Found Line Segments");

 }

 public static void main(String args[]) {

 BufferedImage input = UtilImageIO.loadImage("../data/evaluation/simple_objects.jpg");

 detectLines(input,ImageUInt8.class,ImageSInt16.class);

 // line segment detection is still under development and only works for F32 images right now

 detectLineSegments(input, ImageFloat32.class, ImageFloat32.class);

 }

}

import java.awt.event.MouseAdapter;

import java.awt.image.BufferedImage;

/**

 * Example which demonstrates how color can be used to segment an image. The color space is converted from RGB

into

 * HSV. HSV separates intensity from color and allows you to search for a specific color based on two values

 * independent of lighting conditions. Other color spaces are supported, such as YUV, XYZ, and LAB.

 *

 * @author Peter Abeles

 */

public class ExampleSegmentColor {

 /**

 * Shows a color image and allows the user to select a pixel, convert it to HSV, print

 * the HSV values, and calls the function below to display similar pixels.

 */

 public static void printClickedColor(final BufferedImage image) {

 ImagePanel gui = new ImagePanel(image);

 gui.addMouseListener(new MouseAdapter() {

 @Override

 public void mouseClicked(MouseEvent e) {

 float[] color = new float[3];

 int rgb = image.getRGB(e.getX(),e.getY());

 ColorHsv.rgbToHsv((rgb >> 16) & 0xFF, (rgb >> 8) & 0xFF, rgb & 0xFF, color);

 System.out.println("H = " + color[0]+" S = "+color[1]+" V = "+color[2]);

 showSelectedColor("Selected",image,color[0],color[1]);

 }

 });

 ShowImages.showWindow(gui,"Color Selector");

 }

 /**

 * Selectively displays only pixels which have a similar hue and saturation values to what is provided.

 * This is intended to be a simple example of color based segmentation. Color based segmentation can be done

 * in RGB color, but is more problematic due to it not being intensity invariant. More robust techniques

 * can use Gaussian models instead of a uniform distribution, as is done below.

 */

 public static void showSelectedColor(String name , BufferedImage image , float hue , float saturation) {

 MultiSpectral<ImageFloat32> input =

ConvertBufferedImage.convertFromMulti(image,null,true,ImageFloat32.class);

 MultiSpectral<ImageFloat32> hsv = input.createSameShape();

 // Convert into HSV

 ColorHsv.rgbToHsv_F32(input,hsv);

 // Euclidean distance squared threshold for deciding which pixels are members of the selected set

 float maxDist2 = 0.4f*0.4f;

 // Extract hue and saturation bands which are independent of intensity

 ImageFloat32 H = hsv.getBand(0);

 ImageFloat32 S = hsv.getBand(1);

 // Adjust the relative importance of Hue and Saturation.

 // Hue has a range of 0 to 2*PI and Saturation from 0 to 1.

 float adjustUnits = (float)(Math.PI/2.0);

 // step through each pixel and mark how close it is to the selected color

 BufferedImage output = new BufferedImage(input.width,input.height,BufferedImage.TYPE_INT_RGB);

 for(int y = 0; y < hsv.height; y++) {

 for(int x = 0; x < hsv.width; x++) {

 // Hue is an angle in radians, so simple subtraction doesn't work

 float dh = UtilAngle.dist(H.unsafe_get(x,y),hue);

 float ds = (S.unsafe_get(x,y)-saturation)*adjustUnits;

 // this distance measure is a bit naive, but good enough for to demonstrate the concept

 float dist2 = dh*dh + ds*ds;

 if(dist2 <= maxDist2) {

 output.setRGB(x,y,image.getRGB(x,y));

 }

 }

 }

 ShowImages.showWindow(output,"Showing "+name);

 }

 public static void main(String args[]) {

 BufferedImage image = UtilImageIO.loadImage("../data/applet/sunflowers.jpg");

 // Let the user select a color

 printClickedColor(image);

 // Display pre-selected colors

 showSelectedColor("Yellow",image,1f,1f);

MACHINE VISION AND SENSING WITH AN ANDROID

60

 showSelectedColor("Green",image,1.5f,0.65f);

 }

}

import com.sun.javafx.iio.ImageStorage;

import java.awt.image.BufferedImage;

/**

 * Example demonstrating high level image segmentation interface. An image segmented using this

 * interface will have each pixel assigned a unique label from 0 to N-1, where N is the number of regions.

 * All pixels which belong to the same region are connected. These regions are also known as superpixels.

 *

 * @author Peter Abeles

 */

public class ExampleSegmentSuperpixels {

 /**

 * Segments and visualizes the image

 */

 public static <T extends ImageBase>

 void performSegmentation(ImageSuperpixels<T> alg , T color)

 {

 // Segmentation often works better after blurring the image. Reduces high frequency image components

which

 // can cause over segmentation

 GBlurImageOps.gaussian(color, color, 0.5, -1, null);

 // Storage for segmented image. Each pixel will be assigned a label from 0 to N-1, where N is the number

 // of segments in the image

 ImageSInt32 pixelToSegment = new ImageSInt32(color.width,color.height);

 // Segmentation magic happens here

 alg.segment(color,pixelToSegment);

 // Displays the results

 visualize(pixelToSegment,color,alg.getTotalSuperpixels());

 }

 /**

 * Visualizes results three ways. 1) Colorized segmented image where each region is given a random color.

 * 2) Each pixel is assigned the mean color through out the region. 3) Black pixels represent the border

 * between regions.

 */

 public static <T extends ImageBase>

 void visualize(ImageSInt32 pixelToRegion , T color , int numSegments)

 {

 // Computes the mean color inside each region

 ImageType<T> type = color.getImageType();

 ComputeRegionMeanColor<T> colorize = FactorySegmentationAlg.regionMeanColor(type);

 FastQueue<float[]> segmentColor = new ColorQueue_F32(type.getNumBands());

 segmentColor.resize(numSegments);

 GrowQueue_I32 regionMemberCount = new GrowQueue_I32();

 regionMemberCount.resize(numSegments);

 ImageSegmentationOps.countRegionPixels(pixelToRegion, numSegments, regionMemberCount.data);

 colorize.process(color,pixelToRegion,regionMemberCount,segmentColor);

 // Draw each region using their average color

 BufferedImage outColor = VisualizeRegions.regionsColor(pixelToRegion,segmentColor,null);

 // Draw each region by assigning it a random color

 BufferedImage outSegments = VisualizeRegions.regions(pixelToRegion, numSegments, null);

 // Make region edges appear red

 BufferedImage outBorder = new BufferedImage(color.width,color.height,BufferedImage.TYPE_INT_RGB);

 ConvertBufferedImage.convertTo(color, outBorder, true);

 VisualizeRegions.regionBorders(pixelToRegion,0xFF0000,outBorder);

 // Show the visualization results

 ListDisplayPanel gui = new ListDisplayPanel();

 gui.addImage(outColor,"Color of Segments");

 gui.addImage(outBorder, "Region Borders");

 gui.addImage(outSegments, "Regions");

 ShowImages.showWindow(gui,"Superpixels", true);

 }

 public static void main(String[] args) {

 BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/berkeley_horses.jpg");

// BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/berkeley_kangaroo.jpg");

// BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/berkeley_man.jpg");

// BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/mountain_pines_people.jpg");

// BufferedImage image = UtilImageIO.loadImage("../data/applet/particles01.jpg");

 // Select input image type. Some algorithms behave different depending on image type

 ImageType<MultiSpectral<ImageFloat32>> imageType = ImageStorage.ImageType.ms(3, ImageFloat32.class);

// ImageType<MultiSpectral<ImageUInt8>> imageType = ImageType.ms(3,ImageUInt8.class);

// ImageType<ImageFloat32> imageType = ImageType.single(ImageFloat32.class);

// ImageType<ImageUInt8> imageType = ImageType.single(ImageUInt8.class);

// ImageSuperpixels alg = FactoryImageSegmentation.meanShift(null, imageType);

// ImageSuperpixels alg = FactoryImageSegmentation.slic(new ConfigSlic(400), imageType);

 ImageSuperpixels alg = FactoryImageSegmentation.fh04(new ConfigFh04(100,30), imageType);

// ImageSuperpixels alg = FactoryImageSegmentation.watershed(null,imageType);

 // Convert image into BoofCV format

 ImageBase color = imageType.createImage(image.getWidth(),image.getHeight());

 ConvertBufferedImage.convertFrom(image, color, true);

 // Segment and display results

MACHINE VISION AND SENSING WITH AN ANDROID

61

 performSegmentation(alg,color);

 }

}

MACHINE VISION AND SENSING WITH AN ANDROID

62

Appendix C Row identification machine vision

Android code

This appendix contains source code used to develop the machine vision application

C.1. Android manifest - AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.shaun.machinevision.android"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="10" android:targetSdkVersion="17" /> // Android version targets

 <uses-permission android:name="android.permission.CAMERA" /> // Request permission for Camera access

 <uses-feature android:name="android.hardware.camera" android:required="true" /> // a device with a camera is

required

 <uses-feature android:name="android.hardware.camera.autofocus" android:required="true" /> // camera autofocus

is required

 <application android:label="@string/app_name" android:icon="@drawable/ic_launcher"> // resources app_name in

string.xml and app icon in drawables

 <activity android:name="org.shaun.machinevision.android.Row_Follow_Main"

 android:screenOrientation="landscape"

 android:label="@string/app_name"> //Set main activity activities properties

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>

 </intent-filter> //set the intent-filter properties for the main activity

 </activity>

 </application>

</manifest>

C.2. Main activity - Row_Follow_Main.java

/*

 * This file creates a cameraPreview object containing video information from the android device. The format of

the

 * video is changed before being put through an algorithm that identifies crop rows using a small segment of

pixels

 * located in a ViewWindow segment of the cameraPreview image. Image is then annotated with system data before

being

 * converted back to a Bitmap image that is displayed on the device screen.

 * .

 *

 * Author: Shaun Field

 * Date: 09/2015

 */

package org.shaun.machinevision.android; // Specify package name

import android.app.Activity;

import android.app.AlertDialog;

import android.app.AlertDialog.Builder;

import android.content.DialogInterface;

import android.content.DialogInterface.OnClickListener;

import android.graphics.Bitmap;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.graphics.Bitmap.Config;

import android.graphics.Paint.Style;

import android.graphics.Color;

import android.hardware.Camera;

import android.hardware.Camera.CameraInfo;

import android.hardware.Camera.Size;

import android.os.Bundle;

import android.view.SurfaceView;

import android.view.Window;

import android.widget.FrameLayout;

import java.util.ArrayList;

import java.util.List;

//External Libraries

import boofcv.android.ConvertBitmap; //Used for storage area and converts image to bitmap

import boofcv.android.ConvertNV21; // Converts cameraPreview NV21 to alternative formats

import boofcv.struct.image.ImageUInt8;//Used to create unsigned 8bit Images

import boofcv.struct.image.MultiSpectral;//Used to create multispectral images

/**

 * The Row_Follow_Main class takes a camera preview from an android device, performs some image processing, and

outputs

 * results onto the display. The requested cameraPreview resolution of 320x240 at the default 30 fps

 */

MACHINE VISION AND SENSING WITH AN ANDROID

63

public class Row_Follow_Main extends Activity implements Camera.PreviewCallback {

 //CONSTANTS

 static int CAMERA_WIDTH=320; // Sets 320 pixels as the Camera width

 static int CAMERA_HEIGHT=240; // Sets 240 pixels as the Camera height

 int VIEWPORT_HEIGHT=80; // Constant viewport height for algorithm calculations

 int VIEWPORT_WIDTH=30; // Constant viewport width for algorithm calculations

 double VIEWPORT_PLANT_PROPORTION = 0.4; // Constant percentage of plant in the viewport for adgustment of the

threshold level

 double X_TOLERANCE = 0.2; // Sets constant tolerance level based on percentage of screen width. used for

vanishingPoint and slope

 //Variables

 private Visualization mDraw; // Initialised in Constructor. Visualisation is an inner class to allow

annotations on the video output

 private CameraPreview mPreview; // Initialised in Constructor. Creates the CameraPreview object to store the

camera video data

 private final Object lockOutput = new Object(); //For synchronization because two threads have access to the

same output canvas

 private Bitmap output; // bitmap used to output the image

 private Camera mCamera; // create the Camera Object assigned value during setupApp method

 private Canvas mCanvas; // Canvas for drawing on bitmap created in setupApp method

 private Paint windowPaint, fitLinePaint; // paint for windows and fitline created in setupApp method

 private MultiSpectral<ImageUInt8> specImg; // MultiSpectral image used to process videofeed image created in

setupApp method

 private ProcessingThread thread; //Image processing Thread created in setupApp method

 //Math variables used for processing calculations

 private int viewPortLeft, viewPortTop, viewPortRight, viewPortBottom; // viewPort boundaries

 private int windowCentreX; // window and view port centre x-coordinate value

 private int thresholdLevel; // holds value for the threshold level.

 private double quality; // holds quality value

 double fitmean, fitslope;

 private int good, bad;

 int horizon;

 private String writeScreen, writeScreen2, writeScreen3;

 private boolean drawline;

 private byte[] processByte;

 private byte[] storage; //Storage area when converting between CameraPreview and formatting data type

 private final Object lockPic = new Object();// Synchronisation objects

 boolean flipHorizontal; //Sets orientation for camera

 // Constructor to request the window view and set layout.

 // Initialise Visualisation mDrae, CameraPreview mPreview

 // Create FrameLayout preview and add mDraw and mPreview objects

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);

 setContentView(R.layout.video);

 mDraw = new Visualization(this);

 mPreview = new CameraPreview(this,this,true);

 FrameLayout preview = (FrameLayout) findViewById(R.id.camera_preview);

 preview.addView(this.mPreview);

 preview.addView(this.mDraw);

 }

 //run SetUpApp method when onResume is called

 @Override

 protected void onResume() {

 super.onResume();

 this.setUpApp();

 }

 //all the actions needed when the camera is paused

 @Override

 protected void onPause() {

 super.onPause();

 if (mCamera != null){

 mPreview.setCamera(null);

 mCamera.setPreviewCallback(null);

 mCamera.stopPreview();

 mCamera.release();

 mCamera = null;

 thread.stopThread();

 thread = null;

 }

 }

 // Sets up the Camera and Init all other variables

 private void setUpApp() {

 //Setup camera and resolution

 mCamera = Camera.open(); //Selects and opens the back facing camera by default.

 Camera.Parameters param = mCamera.getParameters(); //Get camera parameters

 param.setPreviewSize(CAMERA_WIDTH, CAMERA_HEIGHT);// Set the resolution size to 320x240

 mCamera.setParameters(param); //apply the resolution settings

 //Setup the canvas and paints and drawline for annotation

 mCanvas = new Canvas();

 windowPaint = new Paint();

 windowPaint.setColor(Color.BLUE);

 windowPaint.setStyle(Style.STROKE);

 fitLinePaint = new Paint();

 fitLinePaint.setColor(Color.RED);

 fitLinePaint.setStyle(Style.STROKE);

 drawline =false;

MACHINE VISION AND SENSING WITH AN ANDROID

64

 // Setup image variables

 // MultiSpectral holds a ImageUInt8 object for each R,G,B spectrum for each pixel in the image

 // Bitmap.createBitmap makes a Bitmap with 4 bytes per pixel capable of holding 4 8 bit channels. used

for RGB

 // ConvertBitmap.declareStorage creates a byte[] used to store the input Bitmap image

 specImg = new MultiSpectral<ImageUInt8>(ImageUInt8.class, CAMERA_WIDTH, CAMERA_HEIGHT,3); // a BoofCV

class To hold RGB image

 output = Bitmap.createBitmap(CAMERA_WIDTH, CAMERA_HEIGHT, Config.ARGB_8888); //Config.ARGB_8888=4 byte

Bitmap image

 storage = ConvertBitmap.declareStorage(output, storage); // a BoofCV class to create a byte array

 // Setup fixed viewPort VIEWPORT_HEIGHT x VIEWPORT_WIDTH pixels at the centre of the screen

 // Horizon is a horizontal line position 1/5 from the top of the screen

 // viewPortBottom is a horizontal line position 4/5 from the top of the screen

 // viewPortTop is a horizontal line position VIEWPORT_HEIGHT pixels above viewPortBottom

 horizon =(int) (CAMERA_HEIGHT*0.2); //Int used to calculate the vanishingPoint and viewport. line on

bottom 20% of screen

 thresholdLevel = 128; // Sets the threshold level. This currently doesn't change

 quality = 0; // Sets the starting quality to 0

 viewPortBottom = horizon *4; // the y-coordinate pixel value for the bottom of the ViewPort

 viewPortTop = viewPortBottom -VIEWPORT_HEIGHT; //the y-coordinate pixel value for the top of the ViewPort

 viewPortLeft = CAMERA_WIDTH/2-VIEWPORT_WIDTH/2; //the x-coordinate pixel value for the left of the

ViewPort

 viewPortRight = CAMERA_WIDTH/2+VIEWPORT_WIDTH/2; //the x-coordinate pixel value for the right of the

ViewPort

 windowCentreX =CAMERA_WIDTH/2; //the x-coordinate pixel value for the viewPort and the entire screen

 //create and start the processing thread and start video feed

 thread = new ProcessingThread();

 thread.start(); // start image processing thread

 mPreview.setCamera(mCamera); //Start the video feed

 }

 //Method to process every new frame from the camera

 @Override

 public void onPreviewFrame(byte[] bytes, Camera camera) {

 synchronized (lockPic) {

 this.processByte = bytes;

 }

 thread.interrupt();

 }

 // Creates inner Visualization class containing an Activity variable.

 // This class creates the darwable window on the CameraPreview to allow annotations

 // The constructor sets the Activity variable.

 // setWillNotDraw method must also be set to false or the Draw method will not be called

 private class Visualization extends SurfaceView {

 Activity activity;

 public Visualization(Activity context) {

 super(context);

 activity = context;

 setWillNotDraw(false);

 }

 //This method takes a canvas as an input alters the size and shape and positions it.

 //drawBitmap takes the output.bmp and places it's top left corner at co-ordinates 0,0 on the canvas. The

null

 // refers to the Paint value which in this case is null

 //It must be synchronized because two threads have access to the output canvas

 @Override

 protected void onDraw(Canvas canvas){

 synchronized (lockOutput) {

 int w = canvas.getWidth();

 int h = canvas.getHeight();

 double scaleX = w/(double) output.getWidth();

 double scaleY = h/(double) output.getHeight();

 double scale = Math.min(scaleX,scaleY);

 double tranX = (w-scale* output.getWidth())/2;

 double tranY = (h-scale* output.getHeight())/2;

 canvas.translate((float)tranX,(float)tranY);

 canvas.scale((float)scale,(float)scale);

 canvas.drawBitmap(output,0,0,null);

 }

 }

 }

 //Image processing thresd

 public class ProcessingThread extends Thread {

 //Variables for this class

 volatile boolean stopRequested; //Holds the stop request flag

 volatile boolean running; //Holds the running thread flag

 private float lineStartX,lineStartY,lineEndX,lineEndY; // start and end x and y coordinates for drawing

regression line

 double VanishingPointx; //Vanishing Point variable

 double snew, slopeLimit, vanishPointLimit; // variables for slope and vanishing point boundaries

 double qualityMin; //Variables for minimum quality value

 double averagePlantPix;// holds plant density for viewport

 ArrayList<Integer> mxyList = new ArrayList<Integer>(); //List for holding plant coordinates

 MultiSpectral<ImageUInt8> viewport;

 // Stops thread method

 public void stopThread() {

 this.stopRequested = true;

 while(this.running) {

 thread.interrupt();

 Thread.yield();

 }

 }

MACHINE VISION AND SENSING WITH AN ANDROID

65

 //limit method to return greatest value

 private double limit (double v, double bound) {

 if (v>bound) {

 return bound;

 } else {

 if (v<-bound) {

 return -bound;

 } else {

 return v;

 }

 }

 } // End limit class

 //sgn method for returning 1,-1 or 0

 private int sgn(double num) {

 if (num>0) {

 return 1;

 } else {

 if (num<0) {

 return -1;

 } else {

 return 0;

 }

 }

 } // End sgn class

 //fit function to calculate xfit and sfit corrections

 public void fit() {

 double pixelX,pixelY;

 double m; //total pixel count

 double mx,mxx; //mx=total horizontal moment about the view window centre line; mxx=the second moment

 double my, myy, mxy, mxxfit; //my=mx but verticle, myy=mxx but verticle

 double denom;//denominator variable

 double mxx0=0; //second moment for viewport

 // initialise variables

 mx=0; my=0; myy=0; mxy=0; mxx=0; mxxfit=0;

 //calculate the second moment for the viewport

 for(int i=1;i<viewport.width/2;i++) {

 mxx0+=i^2*viewport.height;

 }

 mxx0=mxx0*2;

 m=mxyList.size()/2;//Total plant pixels

 //loop through pixels to collect data list is (x,y,x,y...etc)

 for(int i=0;i<mxyList.size();i+=2) {

 //extract first 2 x and y coords where pixelX, pixelY are pixel coordinates from the main image

green

 // pixels and not the viewport image coordinates

 // pixelX range is now -35 to +35

 pixelX=mxyList.get(i)-windowCentreX;

 pixelY=mxyList.get(i+1);

 // This calculates the linear regression correction data

 mx += pixelX; // add pixelX to mx

 mxx += pixelX * pixelX; // add pixelX^2 to mxx

 mxy += pixelX * pixelY; // add pixelX*pixelY to mxy

 my += pixelY; // add pixelY to my

 myy += pixelY * pixelY; // add pixelY^2 to myy

 } //end list of pixels for loop

 //Below are calculations for fitmean and fitslope

 denom = m*myy-my*my; // denominator to calculate fitmean and fitslope

 //make sure there are sufficient values to make the calculations

 if(denom>10 && m>20){

 fitmean =(mx*myy-mxy*my)/denom; //calculate fitmean

 fitslope =(m*mxy-mx*my)/denom; //calculate fitslope

 mxxfit=mxx+m* fitmean * fitmean +myy* fitslope * fitslope -2* fitmean *mx;

 mxxfit+= -2* fitslope *mxy+2* fitslope * fitmean *my; //calculate new second moment

 quality =mxxfit/mxx0; // compare old second moment to new second moment to get quality value

 } else {

 quality =0.1; // set quality to low

 }

 } // end of fit method

 //Assess viewwindow

 public void assess() {

 //Declare variables

 double fitmeanNew, fitslopeNew; // stores the new corection data

 double viewportCentrex,viewportSlope; //stores the Viewport centre x value and slope value

 double TempFitx, TempFitslope;

 good =0; //Counter to check for a good fit

 fitmeanNew=0;

 fitslopeNew=0;

 averagePlantPix =((mxyList.size())/(VIEWPORT_HEIGHT*VIEWPORT_WIDTH));//Calculates the plant density

for the viewport

 //Set up for one viewport in the centre.

 viewportSlope = 0; //because viewport is in the centre of the window the slope should be 0

 viewportCentrex = VanishingPointx + windowCentreX - horizon * viewportSlope; //This is the x-

coordinate for viewport centre

 fit(); // run the fit method to check for the line of fit answers held in global variables fitmean,

fitslope, quality

 TempFitx = fitmean + viewportCentrex; //store TempFitx

 TempFitslope = fitslope + viewportSlope; //store TempFitslope

 //if quality value is > 4

 if (quality > qualityMin) {

 //X and Y calues used for drawing the regression line

 lineStartY =0;

MACHINE VISION AND SENSING WITH AN ANDROID

66

 lineEndY = 240;

 lineStartX = (float) (TempFitx+ lineStartY *TempFitslope); //startx value = my+xfit

 lineEndX = (float) (TempFitx+ lineEndY *TempFitslope); //endx value = my+xfit

 good += 1;

 fitmeanNew += fitmean;

 fitslopeNew += fitslope;

 drawline =true;

 }

 //Threshold Adjustement

 if(averagePlantPix<VIEWPORT_PLANT_PROPORTION){

 thresholdLevel++;

 } else {

 thresholdLevel--;

 }

 //Add new correction data if fix is good

 if (good >0) {

 fitslopeNew= limit(fitslopeNew / 2, X_TOLERANCE);

 // the following are the corrections to be made

 fitmeanNew= limit(fitmeanNew / 2, 4);

 double newVanishPointx =fitmeanNew+ horizon *fitslopeNew+ VanishingPointx; //this is the new

vanishing point

 newVanishPointx = limit(newVanishPointx/2,4); //set newVanishPointx limit

 snew = fitslopeNew;

 if(Math.abs(newVanishPointx - (horizon - VIEWPORT_HEIGHT/2) * snew)< vanishPointLimit &&

Math.abs(fitslopeNew)< slopeLimit) {

 bad =0;

 VanishingPointx = newVanishPointx;

 }

 } else {

 bad++;

 if(bad >10) {

 VanishingPointx = VanishingPointx *0.9;

 }

 }

 } //assess finished

 // run method to start

 @Override

 public void run() {

 //initialise variables

 running=true; // Flag to say this thread is running

 VanishingPointx =0; // Set the vanishing point to 0

 vanishPointLimit =X_TOLERANCE*CAMERA_WIDTH;//Sets the limit of the vanishing point to 0.2x320=

 slopeLimit =X_TOLERANCE;//sets the slope limit to 0.2

 qualityMin =4.0;// sets minimum quality value to 4

 while(!this.stopRequested) {

 // Sleeps thread until it is told to do some work

 synchronized (Thread.currentThread()) {

 try {

 this.wait();

 } catch (InterruptedException ignored) {}

 }

 mxyList.clear();//Clear all previous pixel results for every new frame

 lineEndY = 0; // so values don't continually add to old values

 lineStartY = 0; // so values don't continually add to old values

 //sync locks and process image data

 synchronized (lockPic) {

 // subwindow size 30x80

 ConvertNV21.nv21ToMsRgb_U8(processByte, specImg.width, specImg.height, specImg);//Convert

processByte NV21 to RGB

 viewport = specImg.subimage((int) viewPortLeft, (int) viewPortTop, (int) viewPortRight, (int)

viewPortBottom, null); // create viewPort subimage

 //Below code loops through pixels in viewPort and checks for greenness to identify it as a

plant plant pixels are stored.

 for (int y = 0; y < viewport.getHeight(); y++) {

 for (int x = 0; x < viewport.getWidth(); x++) {

 // A pixel is a plant if its Green band is > the threshold level. threshold=128;

 // Plant pixels are stored in mxyList for further processing.

 //Plant pixels are turned red and non-plant are turned blue

 if (255-viewport.getBand(1).get(x, y) > thresholdLevel) {

 viewport.getBand(0).set(x,y,0); //Set red to 0

 viewport.getBand(1).set(x,y,0); //Set Green to 0

 viewport.getBand(2).set(x,y,255); //Set Blue 255

 } else {

 mxyList.add(x+(int) viewPortLeft); //add x coordinate to list

 mxyList.add(y+(int) viewPortTop); //add y coordinate to list

 viewport.getBand(0).set(x,y,255); //Set Red to 255

 viewport.getBand(1).set(x,y,0);//Set Green to 0

 viewport.getBand(2).set(x,y,0);//Set Blue to 0

 } // end if green pixel

 } // end x pixel loop for subwindow

 } // end y pixel loop for subwindow

 //put the viewport window through the row follow algorithm by calling the assess method

 assess();

 //3 decimal places conversion for displaying value for messages output to screen

 fitmean = fitmean *1000;

 fitmean = Math.round(fitmean);

 fitmean = fitmean /1000;

 fitslope = fitslope *1000;

 fitslope = Math.round(fitslope);

 fitslope = fitslope /1000;

 quality = quality *1000;

 quality = Math.round(quality);

 quality = quality /1000;

 VanishingPointx = VanishingPointx *1000;

 VanishingPointx =Math.round(VanishingPointx);

 VanishingPointx = VanishingPointx /1000;

MACHINE VISION AND SENSING WITH AN ANDROID

67

 //Messages to output to screen

 //Standard output correction data

 writeScreen = "X_alignment= "+ fitmean +" Slope_alignment "+ fitslope;

 writeScreen2 = "Quality= "+ quality;

 writeScreen3 = "Vanishing_Point = "+ VanishingPointx;

 /* Uncomment to //Print Threshold data to screen

 writeScreen = "Plant Pixels = "+(mxyList.size())+" Viewport pixels "+

VIEWPORT_HEIGHT*VIEWPORT_WIDTH;

 writeScreen2 = "Plant Density = "+ averagePlantPix*100+"%";

 writeScreen3 = "Threshold = "+ thresholdLevel;

 */

 }

 // lock the output and write to output screen

 synchronized (lockOutput) {

 ConvertBitmap.multiToBitmap(specImg, output, storage);// Converts specImg to output using

storage array

 mCanvas.setBitmap(output);//Set frame Bitmap as Canvas background

 //write text to screen

 mCanvas.drawText(writeScreen, 5, 10, windowPaint);

 mCanvas.drawText(writeScreen2, 5, 20, windowPaint);

 mCanvas.drawText(writeScreen3, 5, 30, windowPaint);

 //draw regression line if Quality is > 4

 if(drawline) {

 mCanvas.drawLine(lineStartX, lineStartY, lineEndX,lineEndY, fitLinePaint); //Draw

regression line on Canvas

 drawline =false; //Set drawline flag to false

 }

 //draw viewPort outline onto canvas

 mCanvas.drawRect(viewPortLeft, viewPortTop, viewPortRight, viewPortBottom, windowPaint);

 }

 //output Canvas to screen

 mDraw.postInvalidate(); // Called to update the GUI with the news display

 }

 this.running = false;

 }

 }

}

C.3. CameraPreview.java class

/*

 * This file creates accesses the android camera and makes the camera preview have the same resolution as the

camera

 * input resolution. This class is built on reccomendations and program testing carried out by BoofCV.

 *

 * BoofCV (http://boofcv.org) is an open source Java machine vision library that is Licensed under the Apache

License

 * Version 2.0 avaliable from http://www.apache.org/licenses/LICENSE-2.0f

 *

 * Author: Shaun Field

 * Date: 09/2015

 */

package org.shaun.machinevision.android;

import android.content.Context;

import android.hardware.Camera;

import android.hardware.Camera.PreviewCallback;

import android.hardware.Camera.Size;

import android.util.Log;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

import android.view.View;

import android.view.ViewGroup;

import static android.view.SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS;

public class CameraPreview extends ViewGroup implements SurfaceHolder.Callback {

 //Declare variable

 private final String logMessageString;

 SurfaceView mSurfaceView;

 SurfaceHolder mHolder;

 Camera mCamera;

 PreviewCallback previewCallback;

 boolean hidden;

 // The constructor for the CameraPreview object

 public CameraPreview(Context context, PreviewCallback previewCallback, boolean hidden) {

 // make the CameraPreview variables equal the passed in variables

 super(context);

 logMessageString = "CameraPreview Initialised";

 this.previewCallback = previewCallback;

 this.hidden = hidden;

 mSurfaceView = new SurfaceView(context);

 addView(mSurfaceView);

 //Callback for create and destroy notifications

 mHolder = mSurfaceView.getHolder();

 mHolder.addCallback(this);

 mHolder.setType(SURFACE_TYPE_PUSH_BUFFERS);

 }

 //Create and set the camera instance

 public void setCamera(Camera camera) {

 mCamera = camera;

MACHINE VISION AND SENSING WITH AN ANDROID

68

 // if there is no camera object then create one

 if (mCamera != null) {

 startPreview();

 requestLayout();

 }

 }

 //This method hides/unhides the video Preview and sets the size

 @Override

 protected void onMeasure(int widthIn, int heightIn) {

 int width,height;

 if(hidden) {

 width=height=2;

 } else {

 width = View.resolveSize(getSuggestedMinimumWidth(), widthIn);

 height = View.resolveSize(getSuggestedMinimumHeight(), heightIn);

 }

 setMeasuredDimension(width, height);

 }

 // Sets the cameraPreview layout

 @Override

 protected void onLayout(boolean changed, int left, int top, int right, int bottom) {

 if(this.mCamera == null)

 return;

 if (changed && this.getChildCount() > 0) {

 View child = this.getChildAt(0);

 int width = right - left;

 int height = bottom - top;

 Size size = this.mCamera.getParameters().getPreviewSize();

 int previewWidth = size.width;

 int previewHeight = size.height;

 // Center the layout

 if (width * previewHeight > height * previewWidth) {

 int scaledChildWidth = previewWidth * height / previewHeight;

 left = (width - scaledChildWidth) / 2;

 top = 0;

 right = (width + scaledChildWidth) / 2;

 bottom = height;

 } else {

 int scaledChildHeight = previewHeight * width / previewWidth;

 left = 0;

 top = (height - scaledChildHeight) / 2;

 right = width;

 bottom = (height + scaledChildHeight) / 2;

 }

 child.layout(left,top,right,bottom);

 }

 }

 //called to begin the CameraPreview

 protected void startPreview() {

 try {

 mCamera.setPreviewDisplay(this.mHolder);

 mCamera.setPreviewCallback(this.previewCallback);

 mCamera.startPreview();

 } catch (Exception e){

 Log.d(logMessageString, "Error starting camera preview: " + e.getMessage());

 }

 }

 //called to restart preview if there is a change in the Camera object

 @Override

 public void surfaceCreated(SurfaceHolder holder) {

 if (mCamera == null) {

 Log.d(logMessageString, "Camera is null. Bug else where in code. ");

 return;

 }

 this.startPreview();

 }

 @Override

 public void surfaceDestroyed(SurfaceHolder holder) {}

 @Override

 public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {}

}

MACHINE VISION AND SENSING WITH AN ANDROID

69

Appendix D Testing code

This section contains code segments used during application testing

D.1. Testing code segments.

The code in this Appendix shows some of the changes to the main program for testing

purposes.

Test Code

Video

stream

access

This code covers some of the Video Stream formats tested during

development
private ImageUInt8 gray1,gray2;// 8 bit unsigned int

private ImageSInt16 derivX,derivY; //16 bit signed int

ImageFloat32 image = new ImageFloat32(100,150);// 32 bit float

ConvertNV21.nv21ToMsYuv_U8(processByte,mspc1.width,mspc1.height,specImg);//YUV image

ConvertNV21.nv21ToGray(bytes,gray1.width,gray1.height,gray1); //grey scale image

Row

Accuracy

This code covers the 5 test scenarios for Row Accuracy in section

6.5.1 . In order to get the pixels in the correct places the following

code was input where the plant pixels are identified during the x,y,

for loop of the viewport

Scenario 1 Straight
if (x>10 || x<20) {

 viewport.getBand(0).set(x,y,0); //Set red to 0

 viewport.getBand(1).set(x,y,0); //Set Green to 0

 viewport.getBand(2).set(x,y,255); //Set Blue 255

} else {

 mxyList.add(x+(int) viewPortLeft); //add x coordinate to list

 mxyList.add(y+(int) viewPortTop); //add y coordinate to list

 viewport.getBand(0).set(x,y,255); //Set Red to 255

 viewport.getBand(1).set(x,y,0);//Set Green to 0

 viewport.getBand(2).set(x,y,0);//Set Blue to 0

} // end if green pixel

Scenario 2 Right
if (x>0 || x<10) {

 viewport.getBand(0).set(x,y,0); //Set red to 0

 viewport.getBand(1).set(x,y,0); //Set Green to 0

 viewport.getBand(2).set(x,y,255); //Set Blue 255

} else {

 mxyList.add(x+(int) viewPortLeft); //add x coordinate to list

 mxyList.add(y+(int) viewPortTop); //add y coordinate to list

 viewport.getBand(0).set(x,y,255); //Set Red to 255

 viewport.getBand(1).set(x,y,0);//Set Green to 0

 viewport.getBand(2).set(x,y,0);//Set Blue to 0

} // end if green pixel

Scenario 3 left
if (x>20 || x<10) {

 viewport.getBand(0).set(x,y,0); //Set red to 0

 viewport.getBand(1).set(x,y,0); //Set Green to 0

 viewport.getBand(2).set(x,y,255); //Set Blue 255

} else {

 mxyList.add(x+(int) viewPortLeft); //add x coordinate to list

 mxyList.add(y+(int) viewPortTop); //add y coordinate to list

 viewport.getBand(0).set(x,y,255); //Set Red to 255

 viewport.getBand(1).set(x,y,0);//Set Green to 0

 viewport.getBand(2).set(x,y,0);//Set Blue to 0

} // end if green pixel

Scenario 4 clockwise
if (x=14 && y<40 || x=16 && y>40) {

 mxyList.add(x+(int) viewPortLeft); //add x coordinate to list

 mxyList.add(y+(int) viewPortTop); //add y coordinate to list

 viewport.getBand(0).set(x,y,255); //Set Red to 255

 viewport.getBand(1).set(x,y,0);//Set Green to 0

 viewport.getBand(2).set(x,y,0);//Set Blue to 0

} // end if green pixel

MACHINE VISION AND SENSING WITH AN ANDROID

70

Scenario 1 anti-clockwise
if (x=14 && y>40 || x=16 && y<40) {

 mxyList.add(x+(int) viewPortLeft); //add x coordinate to list

 mxyList.add(y+(int) viewPortTop); //add y coordinate to list

 viewport.getBand(0).set(x,y,255); //Set Red to 255

 viewport.getBand(1).set(x,y,0);//Set Green to 0

 viewport.getBand(2).set(x,y,0);//Set Blue to 0

} // end if green pixel

Processor

Speed

This code covers the test code for the processor tests undertaken in

section 6.5.2 for the Processor max, min, and average speeds

This is the test Code for the test with a start-up delay

This code is at the top of the threadProcess class
while(!this.stopRequested) {

 long startTimer = System.currentTimeMillis();

And this code is at the bottom of the class
timerCount++;

long stopTimer = System.currentTimeMillis();

if(timerCount>150) {

 timerCount2++;

 totalProcessTime += stopTimer - startTimer;//Thread average timer

 if ((stopTimer - startTimer) < minProcessTime)

 minProcessTime = stopTimer - startTimer;

 if ((stopTimer - startTimer) > maxProcessTime)

 maxProcessTime = stopTimer - startTimer;

 //Messages to output to screen

 //Standard output correction data

 writeScreen = "Process Time total = "+ totalProcessTime +", Average = "+

totalProcessTime/timerCount2;

 writeScreen2 = "Max = "+ maxProcessTime;

 writeScreen3 = "Min = "+ minProcessTime;

} else {

 //Messages to output to screen

 //Standard output correction data

 writeScreen = "Process Time total wait 5 second";

 writeScreen2 = "Max = ";

 writeScreen3 = "Min = ";

}

