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Abstract 

This project investigated the ability for an Android mobile device to run an application 

that could automate a tractor.  The development of such an application would lead to 

a cost effective, portable, and user friendly device that could easily be transported and 

installed on a tractor to allow vehicle automation.  At the start of this project the 

method for automation had not been determined however the specific intent for the 

design of a machine vision application on an Android device was later defined. 

The development of this application began with investigations into machine vision 

techniques and the Android SDK which identified the machine vision algorithm as 

well as the software libraries the application was be built upon. Access to the main 

video data was then achieved which enabled the manipulation of image data through 

accessing the pixel array information.  Annotations were then added to the screen to 

allow for the output of data, and the line fitting algorithm selected for identifying crop 

rows was programmed.  These achievements allowed the output of row identification 

and steering correction data to be added to the device screen. 

These accomplishments concluded in an Android based machine vision application 

that is able to identify crop rows while processing the 30 fps 320x240 resolution image 

in an average of 34 ms per frame during typical running circumstances. This was done 

while keeping system RAM usage to an average of about 17 MB on a system that is 

also very tolerant to light fluctuations and noisy data. 
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Limitations of use 

While every attempt has been made to ensure the accuracy of the information within 

this document, The University of Southern Queensland excludes any and all liability 

for any errors in or omissions from the information within this document.  Any person 

using the information within this document must do so at their own risk as the 

document’s author is not a professionally qualified engineer, therefore the document 

has no certification of accuracy or correctness that can be relied on.   

Additionally the Android automated vehicle guidance system designed within this 

report is a proof of concept design only and should not be used for an automated 

vehicle guidance system without further design and testing.  
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Chapter 1: Introduction 

With the continually decreasing numbers of skilled farmers and the ever increasing 

necessity for agricultural production there is always a great need to increase 

productivity and efficiency on farms.  Vehicle automation has been one of the key 

ways to do this in the recent past.  This project investigates the concept of developing 

an automated vehicle guidance system using the Android mobile platform.   

The Android platform has specifications for an array of sensors that can be used in 

vehicle guidance applications.  This project researches the capability of these sensors 

being used in vehicle guidance applications with a particular focus made on machine 

vision techniques that use the camera as the main sensor for vehicle automation. 

1.1  Outline of the study 

This project aims to lower the cost and complexity of installing an automation system 

on a farming vehicle by creating a machine vision application on an easily installable 

and inexpensive mobile device.  This is achieved by extending the work conducted by 

Billingsley (Billingsley & Schoenfisch 1997) and the National Centre for Engineering 

in Agriculture (NCEA) regarding tractor automation.  A demonstrator program using 

the NCEA algorithm to deduce rows from an image was written and tested on an 

Android device and produced excellent results in the controlled laboratory 

environment.  This research opens up the future possibility for field trials of an 

automated vehicle using an Android device.  Further to this, other sensor data, such as 

GPS, accelerator, and geomagnetic, could be added to the program to try to improve 

the vehicle accuracy and response time. 

1.2  Global food production 

The United Nations Food and Agriculture Organisation expects worldwide food 

production will need to increase 70% by 2050 to sustain the predicted 9.1 billion 

people on the planet(FAO 2009). These figures indicate that there is a great need for 

increased agricultural production in the future.  Despite the need for this increase in 

food production Australia recorded a drop of 5% of Australian farming businesses 

from 2011-12 with only 115,000 farming businesses recorded in 2012 (Australian 

Bureau of Statistics 2013).  With decreasing farming businesses and the need for 

increased food production automation of farming vehicles is a logical solution. 

1.3  Farm vehicle automation 

Following rows of crops for long hours leads to operator fatigue and loss of 

concentration resulting in a decrease of precision (Rovira-Más et al. 2003). The 

automation of this task is shown to increase productivity and application accuracy 
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resulting in greater crop yields while also enhancing operational safety (Ming et al. 

2009).  Global Positioning Systems (GPS) and machine vision are currently the two 

standard approaches for the automated control of agricultural vehicles used to follow 

rows of crops however other sensor based guidance methods are around (Emmi et al. 

2014).  .  

1.4   Machine vision 

Machine vision has been used for the automation of farming vehicles for a number of 

years now, however setting up vehicles for this type of automation requires specific 

technical skills and multiple pieces of expensive bulky equipment.  This project 

extends the machine vision row following technique described by Billingsley 

(Billingsley & Schoenfisch 1997) by developing an Android application that shows 

the capability of replicating this machine vision technique on a small portable mobile 

device.   

1.5   Android mobile operating system 

Recent development in mobile technology has meant that inexpensive mobile devices 

have come on the market with inbuilt sensors similar to those used for automated 

vehicle guidance.  This makes them a reasonable solution for implementing a tractor 

guidance system.  Use of a mobile device would eliminate the installation of external 

cameras or internal processing units in tractor thereby reducing the cost and 

complexity of putting in automated guidance systems.  Despite extensive research and 

development into tractor guidance systems, no research and development into 

implementing a tractor guidance system on a mobile device was found in the literary 

search for this dissertation. 

1.6   Research objectives 

This project aims to lower the cost and complexity of installing an automated guidance 

system on a farming vehicle by testing the capabilities of an Android device 

performing such a task using machine vision.  The official project specifications can 

be found in 1.1.1.1.Appendix A along with changes that were made to the original 

specification.  The updated project specification found in Appendix 1.1.1.1.A.2 

identifies the research objectives as: 

 Review automated agricultural vehicle guidance systems 

A review of agricultural vehicle guidance systems was conducted to identify 

the differing techniques and algorithms used in automated row following 

guidance. 

 Review the Android Software Development Kits (SDK) and Android 

sensors and devices 
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A review of android sensors, devices, and software was conducted to identify 

available hardware and related software for items such as a camera that can be 

used for vehicle automation. 

 Write and test an Android demonstrator application  

This objective involved accessing the video stream in Android memory, 

manipulating the pixel data, annotating the image, apply the NCEA line fitting 

algorithm, and outputting information to show steering correction data. 

1.7   Conclusions 

This project resulted in the development of a demonstrator application written on an 

Android device that is capable of identifying crop rows through the use of machine 

vision.  This application has kept RAM usage to an average of about 17 MB while 

processing the 30 fps 320x240 resolution image in an average of 34 ms per frame 

during typical circumstances. 

The application obtained image data through the device camera and processed the 

image using the NCEA machine vision algorithm.  The processed data was able to 

accurately identify rows of crops and issue subsequent row following commands.   

This demonstrator application displayed a regression line to the screen to visually 

identify the crop row as well as outputting numerical values representing steering 

corrections to be sent to the actuator.  The application also included an adjustable 

threshold level to deal with fluctuations in changing lighting conditions. 
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Chapter 2: Farm vehicle automation 

This chapter covers the history of automation for farming vehicles.  An analyses of 

current navigation, computational, and control methods used in agricultural automated 

guidance systems is also conducted.  

2.1  History 

For over 60 years there has been research into the automated guidance of agricultural 

vehicles with automation to relieve the operator of continual steering adjustments the 

most frequently cited reason (Wilson 2000).  Over these 60 years the operator of the 

vehicle has kept the same job of vehicle guidance and equipment operation however 

the vehicles have increase dramatically in size and power and this increase in vehicle 

power has led to an increase in vehicle speed and equipment size.   This increase in 

speed and size has made the operators job of staying on course all the more valuable 

and difficult as any deviation will result in a greater area missed or double worked. 

Having a vehicle that stays on course is not only economically viable but the decrease 

use of chemicals, fuel consumption, and improper soil tillage make it environmentally 

viable too.  With these things in mind the need to automate vehicle guidance is ever 

more desirable.  Autonomous guidance of a vehicle not only enhances operator safety, 

but it also increases accuracy and productivity resulting in better economic return and 

better environmental impacts (Han et al. 2004).  

Automated vehicle guidance has been implemented in many fashions over the last 60 

years. Morgan (Morgan 1958) and later Brooke (Brooke 1972) wrote about a tractor 

automated by buried leader cables.  Palmer and Matherson (Palmer & Matheson 1988) 

and also Searcy (Searcy et al. 1990) wrote about the use of radio beacons positioned 

in a field as a method of automatically navigating a vehicle.  These two early 

autonomous methods were not implemented in many agriculture situations due to the 

initial expense of the equipment and the limited capability of the radio beacons.  It 

wasn’t until the 1980’s with the exploration of machine vision that farm vehicle 

automation began to become reasonably priced with respectable accuracy as described 

by both Reid (Reid, Searcy & Babowicz 1985)and Gerrish (Gerrish et al. 1985).  

Reports by Larsen (Larsen, Nielsen & Tyler 1994) and Bell (Bell 2000) then note the 

use of GPS based guidance systems emerging in the 1990’s.   

Other techniques such as optical guidance, mechanical guidance, and ultrasonic 

guidance have also been printed by Reid (Reid et al. 2000) and Tillet (Tillett 1991), 

however the two leading technologies in autonomous navigation are GPS followed by 

machine vision.  Today fused GPS and machine vision systems are becoming more 

popular as each of these systems have their advantages and disadvantages and they 

complement each other quite well (Ming et al. 2009). Whatever the technique is that 

is used, Emmi (2014) separates all modern automation of farming vehicles into to three 

main modules: 
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1. Sensing – This is the collection of information from the surrounding 

environment.   

2. Decision making – The sensors lead to a piece of hardware that uses a 

software algorithm to determine the best course of action for the vehicle to 

take. 

3. Acting – After decision making the hardware/software device sends a 

message to the vehicle to carry out the task it deemed most appropriate. 

2.2   Machine vision 

Machine vision is one of the main techniques used for the automated guidance of 

agriculture vehicles.  Machine vision is a relative control mechanism as it relies on a 

camera image to tell the vehicle its current position relative to the image captured by 

the camera.  While there are varying techniques used in vehicle guidance machine 

vision applications, all machine vision for agricultural vehicle automation can be 

broken down into three main areas. 

1. Image acquisition -  An image is taken of the vehicle surroundings, it is 

then digitised and placed in memory. This is generally done through a 

camera mounted on the farming vehicle. 

2. Image processing – The image is then placed through an algorithm that 

identifies the vehicle’s location and then outputs control signals to the 

vehicle’s actuator. 

3. Output control – The signal controls are received by an actuator that is 

used to steer the vehicle in the desired direction.    

An advantage of using machine vision is that no pre-programmed set of co-ordinates 

to guide a vehicle are needed making it useful for terrain that has not been mapped out 

in the past.  Another advantage of machine vision the that it is relatively insensitive to 

surrounding landscape conditions which allows machine vision to work in covered 

areas where other machine guidance techniques such as GPS will not work well. 

Machine vision does however have the disadvantage of needing more sophisticated 

computational techniques and it is also possible for these techniques to loose accuracy 

if there is some form of image distortion such as shadows, weeds, or missing crops.  

In his 1997 paper Billingsley (Billingsley & Schoenfisch 1997) explains a technique 

used by the NCEA which acquires a colour image in YUV format from a camera 

mounted on the tractor.  The tractor operator then selects a viewport window that 

straddles a crop rows.  The pixels within this viewport are then analysed using a 

threshold level to identify the greenness of each pixel.  A linear regression algorithm 

is then applied which returns a fit and a slope of the regression line.  As the plant will 

appear mainly in the centre of the window, the regression line will give a path for the 

tractor to follow.  This technique displayed an accuracy of 2cm at approximately 6.9 

m/s. 
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Shen (Shen & Liu 2007) used a similar technique where an RGB image from the 

camera doubles the green to make a R2GB image.  Each pixel is then checked against 

a threshold.  This image is then segmented into greyscale where it is again compared 

against a threshold.  If the threshold is met the pixel is then changed to white otherwise 

it is changed to black.  The image is then processed using dilation processing, an 

acnode filtering technique, a midpoint encoder operation, and is finally improved with 

a Hough transform.   This machine vision technique allowed row following at 3.5 m/s. 

Jiang (Jiang, Wang & Liu 2015) recently reported on a technique that uses a five stage 

analysis technique consisting of methods similar to Shen.  The camera image is 

transferred into grey scale and it is then checked against a threshold and transferred 

again into a black and white image.  An estimation of the row centre points is 

calculated and multiple regions of interest are found.  A clustering method is then used 

to confirm the centre points of the rows.  This is finally followed by a linear regression 

technique to determine the centre for the crop rows.  This technique reports accuracy 

and processing time greater than a standard Hough transform method. 

A study carried out by Zhang (Zhang, Cheng & Zhang 2008) also used a R2GB image 

converted to grey scale and finally to back and white using a threshold.  A horizontal 

scan of the image pixels then identifies the target regions and points.  These target 

points are then clustered according to the abscissa of two adjacent scanned lines. Three 

clusters are passed through a known point Hough transform to identify a regression 

line and the crop rows. 

2.3  GPS 

GPS.Gov ('GPS.Gov'  2015) describes GPS as a United States Department of Defence 

owned collection of 24 geo-synchronous space satellites that broadcast location and 

time information to any position on earth where there is line of sight between the 

satellite and the receiver.  GPS.Gov describes GPS as being essential for the 

development and implementation of precision agriculture.  While GPS was the first 

satellite system to broadcast location and time information other countries around the 

world now have their own satellite systems in place such as the Russian GLONASS 

and the European GALILEO satellites. 

The GPS Standard Positioning Service Performance Standard (Defense" 2008) 

Specifies that the worst case for accuracy of the GPS service is a pseudorange accuracy 

of 7.8 meters at a 95% confidence level, which equates to a worse case of about 3.5 

meters horizontal accuracy.  The horizontal accuracy is effected by environmental 

conditions between the GPS receiver and the GPS satellites.  Clearer environmental 

conditions and access to a greater number of satellites will improve the horizontal 

accuracy of the GPS receiver.   

 In the 1990’s GPS started to emerge as a way to automate the control of an agricultural 

vehicles (Ming et al. 2009).  Unlike machine vision, GPS gives the absolute position 

of the automated vehicle and therefore must map out the GPS co-ordinates for the 
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vehicle to follow.  These co-ordinates are generally saved when the crops are planted.  

Alternatively, the co-ordinates can be programmed into the GPS so that the automated 

vehicle will know which path to follow.  Both Abidine (Abidine et al. 2002) and Gan-

Mor (Gan-Mor & Clark 2001) mention the versatility and accuracy of GPS when used 

for agriculture tasks such as sowing, tilling, planting, cultivating, weed control, and 

harvesting.  Because of its accuracy, ease of use, and its ability to not be affected by 

any inconsistency in visual camera data it has become the most popular technique in 

automated guidance of agricultural vehicles. 

While an accuracy of 3.5 meters isn’t precise enough for use in vehicle automation, 

various signal correction techniques can be implemented to correct the inaccuracies of 

GPS making it accurate enough for vehicle automation.  Keskin (Keskın, Say & 

Görücü Keskin 2009) evaluated low cost GPS receivers for precision in agriculture 

and found an RMS error of 1.48m on straight crop row tests.    Gan-Mor (Gan-Mor, 

Clark & Upchurch 2007) notes that differential correction systems are often put in 

place to reach accuracies below 1 meter.  Gan-Mor reports that a differential correction 

system called Real Time Kinematic (RTK) GPS is used to gain an accuracy down to 

about 1cm which has made this technique very popular for automatic guidance 

systems in row-crop operations.  There are a great number of examples of the accuracy 

obtained with RTK GPS two of which are Sun (Sun et al. 2010) who recorded a 2cm 

RMS error on row crops and Perez-Ruiz (Pérez-Ruiz et al. 2012) who reported an 

RMS error of only 0.8cm when using RTK GPS on crop rows.  Kise (Kise et al. 2002) 

even obtained RMS errors of only 6cm when using RTK GPS on a sinusoidal path. 

As with any differential correction system RTK requires the use of a base station and 

complicated algorithms to reduce or remove any errors between the base station and 

the GPS receiver.  This added complexity dramatically increases the price of the 

equipment and is one of the downsides to RTK GPS (Gan-Mor, Clark & Upchurch 

2007).  Another disadvantage of GPS is that the signal will not work in shielded areas 

and will loose accuracy if the right environmental conditions aren’t met. 

2.4  Other sensing techniques 

There are various other sensing techniques that have been mentioned in several studies 

however none of these techniques currently have the popularity that GPS and machine 

vision currently hold.  Odometry was used in experiments by Borenstein (Borenstein 

1998) and later by Perez-Ruiz (Pérez-Ruíz et al. 2014) however odometry tends to 

accumulate errors rather quickly eventually leading to large lateral errors in the 

vehicles location.    

Subramanian (Subramanian, Burks & Arroyo 2006) and Noguchi (Noguchi et al. 

2002) both noted the use of laser-based sensors in conjunction with GPS and achieved 

errors of less than 2.5 cm and 1 cm respectively.  Laser-based sensors setup reflectors 

around the field and triangulate the vehicles position by bouncing lasers off of these 

reflectors.  This technique has the advantage of working in different types of 
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environmental conditions however it has shown some faults due to laser measurement 

distortion when the vehicle is traveling on uneven ground. 

Ming (Ming et al. 2009) mentions both accelerometers and geomagnetic sensors that 

have also been used as sensing techniques.  Accelerometer use alone was prone to 

positional drifts however its use has shown good results when combined with other 

sensing techniques such as in Noguchi’s (Noguchi & Terao 1997) experiment which 

resulted in less than 5cm error when combined with RTK GPS.  Geomagnetic sensors 

also worked better when combined with other sensors as noted by Benson (Benson et 

al. 1998) when he combined a geomagnetic sensor with a medium accuracy GPS to 

achieve an error of less than 1cm. 
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Chapter 3: Android Software Development Kit 

To date sensors and decision making hardware used for automated guidance have 

involved bulky equipment that must be fixed to agricultural vehicles, however modern 

mobile devices have GPS and camera systems built in as well as other sensors that can 

be used for automated guidance.  Of the many mobile devices available the Android 

operating system has a significant share of the market and supports software and 

hardware for GPS, video camera, accelerometer, gyroscope, light sensor, Bluetooth 

and other sensors useful to build an automated guidance system (Moore et al. 2014) 

This section of the dissertation covers the specifics about the Android Software 

Development Kit (SDK) that was used for development of this project.  This section 

omits the hardware specifications for Android devices as each device has differing 

hardware options dependant on manufacturer and model. The underlying software for 

control of this hardware however is covered as all android device software is run using 

the Android SDK.  All specifications in this section of the dissertation are taken from 

Android’s official website ('Android Developers'  2015). 

While this chapter gives a general overview of the Android SDK, Chapter 5: has the 

specific details of how Android software was used during the creation of this project 

3.1  Background 

The Android platform involves Android applications that are installed and run on 

devices that use the Android operating system.  The Android operating system (OS) 

is the world’s most popular mobile operating system and is deployed on hundreds of 

millions of devices in over 190 different countries around the world.  The OS is built 

using open-source Linux and controls all of the software and hardware within the 

mobile device.  Android version 5.1 is the most recent operating system which 

introduced support for 64-bit architectures. 

Android applications are written in the Java programming language and makes use of 

Extensible Markup Language (XML) resource files.  The Java files tell the Android 

OS what the program is to do while the XML files tell the operating system what 

resources are needed to run the application.  When compiled the Android SDK will 

package all of the Java code and XML resource files into an Android package (APK).  

This APK file is then installed on Android devices within its own virtual machine and 

it is within this virtual machine that the application is run.  This allows the OS to 

control what hardware and software each application has rights to access. 

The android SDK is broken into software packages that control different portions of 

the android device.  This project dealt mainly with accessing the Android sensors and 

Android memory.  All hardware devices are accessed using the android.hardware 

software package of the Android SDK and all Android devices use Android Random 

Access Memory (RAM) for computation and decision making.   The Android OS 
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virtual machine performs routine garbage collection to free memory that is no longer 

in use. 

3.2  Camera 

The camera is the main sensor used for this project.  It is a hardware based sensor that 

has different specifications for every Android device and is controlled using the 

android.hardware.camera class for all Android software prior to Android 5.0, and the 

android.hardware.camera2 class for all devices running Android 5.0 or higher.  

Android 5.0 was released in November 2014.  The android.view.SurfaceView class is 

another useful camera class that is used within this project to present a live camera 

previews frames both to other sections of code and to the device screen. Additional 

details of how the camera was used during this project can be found in section 5.4  

3.3  GPS 

Android GPS accesses satellite data to specify the device’s current longitude and 

latitude in degrees, minutes, and seconds.  The software used to access this sensor is 

held in the android.locations class.  GPS differential correction techniques cannot 

currently be used on Android devices without additional expensive hardware which 

restricts the accuracy of Android GPS to 3m.  This inaccuracy without additional 

hardware made Android GPS not acceptable use in this project. 

3.4  Other sensors  

3.4.1  Accelerometer 

An accelerometer is a hardware based sensor that has different specifications for every 

Android device and is used to measures the acceleration force, in 𝑚/𝑠2 , that is applied 

to all three physical axis (x,y,z).   Almost every Android device has an accelerometer 

and they use about 10 times less power than other motion sensors.  Common uses for 

an accelerometer are to detect the motion of an object in a given direction.  The x, y, 

and z motion values will be 0 𝑚/𝑠2 when the device is stationary, will increase when 

moved toward the arrow, and will decrease when moved away from the arrow.  All 

axis are also subject to the force of gravity (9.81𝑚/𝑠).  A high pass filter can be 

applied to the accelerometer to remove the force of gravity and give linear acceleration 

only, alternatively a low pass filter can be applied to the accelerometer which isolates 

the force of gravity.   

The accelerometer data is held in the android.hardware class.  An instance of 

Sensor.TYPE_LINEAR_ACCELERATION must be created to access the linear 

acceleration accelerometer data.  While accelerometer information has not been used 

in this dissertation, details of the Android accelerometer have been included as it does 
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have the potential to be used in the future development of the Android vehicle 

guidance method that has been used in this dissertation. 

3.4.2  Geomagnetic 

The Android geomagnetic sensor is a hardware based sensor.  The geomagnetic sensor 

software data is held in the android.hardware class and is used to measures 

geomagnetic force in 𝜇𝑇 on the x, y, and z axis.  As with the accelerometer 

information, geomagnetic information has not been used in this dissertation yet details 

of the Android geomagnetic sensor have been included as it does have the potential to 

be used in the future development of this Android vehicle guidance method. 

3.5  Data handling 

Applications run on an Android device have access to system RAM, data storage, and 

data processing capabilities.  Each specific device will differ in hardware 

specifications but each will use the same Android SDK classes. 

Android uses an automated garbage collector to free up RAM resources that are no 

longer needed and also uses both paging and memory mapping to manage memory.  

Any created object will remain within RAM until the app releases the object for 

collection by the garbage collector, which will run more often when there are more 

resources in RAM.  Android recommends that background services are used sparingly 

and terminated when no longer in use to help free system RAM.  

Android devices are increasingly being released with multiple processors and the 

Android SDK version 3.0 and above makes it possible to run threads in parallel.   This 

is achieved through the use of the Java Runnable and Thread classes in conjunction 

with the ThreadPoolExecutor class.  Running different threads on different processors 

will allow for parallel processing of data as is the case with the application built during 

this project.  

While the developed application does not store any data permanently, the main 

Android data storage options are still shown here for reference. 

 Key-value sets – This is used to save a small collection of key-values.  It uses 

the SharedPreferences API where creation of a SharedPreferences object 

creates a file containing key-value pairs and provides a method to read and 

write them.  The created file can be either private or shared and is managed by 

the framework. 

 A File – This is used to store large amounts of data that are intended to be read 

start to finish.  A file can be stored on the device’s internal or external memory.  

Internal memory is used to ensure that the user nor other apps can access the 

file.  External memory is used for any file that doesn’t require access 

restrictions and for files that can be accessed with a computer. 
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 SQL Database – This is used to store structured data that can be read in any 

order.  The android.database.sqlite is the Android package that is used.  This 

technique requires a database schema and can be stored on internal or external 

memory.  Access restrictions can also be applied. 

3.6  Bluetooth and Wi-Fi 

Wi-Fi and Bluetooth are two of the sensors that Android include in their SDK that 

theoretically can be used to output information from an Android device to the 

automated vehicle actuator controller.  The use of these sensors to output control 

information is beyond the scope of this dissertation and will be left for the future 

development of this Android vehicle guidance method 
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Chapter 4: NCEA vision guidance system 

The machine vision technique used for row following that Billingsley (Billingsley & 

Schoenfisch 1997) noted in the NCEA study in 1997 has been adopted as the machine 

vision algorithm for this project.  This algorithm was selected for its simplicity and 

ease of portability to an Android platform.   This chapter covers the specifics of this 

NCEA machine vision guidance system. 

4.1  History 

The NCEA began research into machine vision use in agriculture in the early nineties.  

Since that time the NCEA has developed a machine vision animal identification 

system, a macadamia nut counting system, and a vehicle automated guidance system.   

The development of a machine vision guidance system lasted three years and resulted 

in a machine vision prototype that was relatively insensitive to weeds and could 

withstand the fading in and out of crop rows while still keeping the vehicle on the 

correct bearing.  This three year study involved cameras being externally mounted 

onto the tractor, as well as internal processing units being integrated into the tractors.  

Six prototypes of this machine vision technique were tested in the field and results 

showed that an accuracy of 2 cm was able to be maintained at 35 km/h.   

This system originally used a black and white camera taped to the roof of a David 

Brown tractor. The captured image was 768x96 pixels and was transferred over 

cabling to a PC installed inside the tractor by direct memory access where a program 

written in C processed the image data.  This program then output steering commands 

over a cable to a stepper motor connected via belt drive to the steering wheel of the 

tractor.  If there was some type of system error an audible warning sound was 

outputted through the PC speakers and the system would revert to manual control.  

Although there have been several refinements to this system as technology and 

resources became available, the basic flow of information and the connection of 

hardware elements has not changed much between versions.   

During field tests the overall response from users was positive with all users impressed 

with the speed, accuracy and efficiency of the system.  Complaints that were received 

from the users were regarding the complexity of setting up and calibrating the system.  

These complexity issues may be fixed with further development of the Android 

application developed in this paper.   

4.2  Image acquisition 

The original camera was mounted externally on the tractor’s roof and obtained a black 

and white 768x96 pixel image but the latest version used a miniature camera connected 

to the bonnet of the tractor to obtain the 643x480 YUV image used for processing.  

The change to a YUV image allowed the chrominance and the intensity of each pixel 
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to be held in separate data bits which makes it less sensitive to changes in lighting 

conditions. 

The image is then moved into memory using direct memory access where each pixel 

is compared to a threshold level that is set at the start of the program.  The original 

system would degrade system performance by switching the video output between the 

processor and a connected monitor.  Later models allowed dual image streams so that 

the video feed could be viewed and annotated with real time data without reducing 

overall system performance.  

The tractor operator assigns adjustable viewports to the incoming image which 

identify the pixel locations of one row of crops.  Then each pixel within each of these 

viewports is compared against the threshold level set at the start of operation.  Pixels 

that are greater than this threshold level are marked as plant and are used for further 

processing.   

The tractor operator also sets the proportion parameter at the start of the program 

which indicates the expected proportion of pixels identified as plant within each 

window.  This proportion value depends on the growth stage of the plant with typical 

values being 0.1 for a new plant to 0.5 to a mature plant.  The total number of plant 

pixels for each window in each frame are then compared and this data is used to 

increment or decrement the next frames threshold level.  This makes the system very 

insensitive to fluctuations in lighting conditions.  

4.3  Image processing (Identification of rows) 

The acquired image data is processed using a technique similar to linear regression to 

identify the centre of each crop row.  As each positioned viewport contains only one 

crop row, drawing a line which minimises the viewport moment of inertia when spun 

around this line identifies the line of best fit and the centre of a crop row.  Billingsley 

(Billingsley & Schoenfisch 1997) showed the cost function to calculate the moment 

of inertia for each viewport as:   

C =  ∑ ∑ m(x, y) ∗ (x − offset − slope ∗ y)2
x.yewindow    ( 4.1) 

 where: 𝑥 is the x coordinate 

    𝑦 is the y coordinate 

    𝑤𝑖𝑛𝑑𝑜𝑤 is perimeter of the viewport window 

 𝑚(𝑥, 𝑦) is a matrix of x and y coordinates identified as plant 

    𝑜𝑓𝑓𝑠𝑒𝑡 is the x coordinate for the line of best fit 

    𝑠𝑙𝑜𝑝𝑒 is the slope of the line of best fit 

Minimising this cost function minimises the total error of all of the data points within 

the viewport.  This is achieved by identifying the offset and slope values for the line 
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of best fit.   The line of best fit slope and offset parameters were calculated within the 

C program by providing solutions to the following simultaneous equations:   

∂C

∂offset
= 0 and 

∂C

∂slope
= 0     ( 4.2) 

Which Billingsley identified can be solved using the following formulas for 

identifying the lateral offset corrections and the slope corrections respectively: 

𝑓𝑖𝑡𝑂𝑓𝑓𝑠𝑒𝑡 =
𝑚𝑥∗𝑚𝑦𝑦−𝑚𝑥𝑦∗𝑚𝑦

𝑚∗𝑚𝑦𝑦−𝑚𝑦2
    ( 4.3) 

 

𝑓𝑖𝑡𝑆𝑙𝑜𝑝𝑒 =
𝑚∗𝑚𝑥𝑦−𝑚𝑥∗𝑚𝑦

𝑚∗𝑚𝑦𝑦−𝑚𝑦2
     ( 4.4) 

 where: 𝑚 is the total number of pixels identified as plant 

    𝑚𝑥 is the total x axis moment about the viewport horizontal line 

    𝑚𝑦 is the total y axis moment about the viewport vertical line 

𝑚𝑥𝑥 is the second moment of area  

    𝑚𝑦𝑦 is the second moment of area 

    𝑚𝑥𝑦 is the total second moment 

 After the offset and slope values for the line of best fit are identified, the correction 

values needed to obtain these offset and slope values are calculated.  These correction 

values are then converted into steering commands outputted to the actuator that steers 

the tractor. 

A ratio to check the quality of the results is run by comparing the moment of inertia 

about the line of best fit against the moment of inertia about the horizontal axis.  This 

ratio gives a “quality” value and the correction data is only acted upon if the quality is 

greater than 4. This increases the accuracy of the program by only acting upon good 

quality data containing adequate plant values and not acting upon data with scattered 

plant values due to weed growth, pests eating the crop.   

While only one viewport is needed for vehicle automation the use of a a greater 

number of viewports is recommended so that vehicle automation can continue in the 

event of a viewport not being able to output correction data to the actuator.    If all 

viewports contain poor quality data 3 times in a row, then an alarm sounds and the 

vehicle control reverts back to manual. 

A simplified diagram of this crop row detection algorithm is shown below in Figure 

4-1.   
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Figure 4-1: NCEA linear regression image analysis algorithm (Billingsley & Schoenfisch 1997) 

4.4  Actuator control 

The correction values produced after the algorithm has been run are converted into 

steering commands outputted to the actuator that steers the tractor.  The lateral 

movement steering commands are calculated using either the fitOffset correction 

value, or by identifying the “vanishing point” of where the best fit lines from multiple 

viewport meet at a point.  The fitSlope correction value is used to identify the angular 

displacement of the vehicle and issues steering commands accordingly.  These are just 

the basics for the actuator control and further detail has been omitted as it is beyond 

the scope of this project. 

4.5  System testing and evaluation 

Two main tests were conducted under controlled conditions to identify the systems 

capabilities.  The first test was carried out to evaluate the performance of the machine 

vision algorithm.  In a laboratory the camera was pointed toward a piece of white paper 

connected to a stepper motor and the ability of the machine vision algorithm to track 
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the movement of the paper from left to right was determined.  The actual location of 

the paper and the detected position of the paper were recorded independent of each 

other and locations of the paper were then compared.  Figure 4-2 below shows that the 

algorithm achieves good quality results.  This figure shows the actual position of the 

paper as the top line of dots and the detected position of the paper as the bottom line 

of dots. 

 
Figure 4-2: Actual vs captured data testing the performance of the machine vision algorithm 

(Billingsley & Schoenfisch 1997) 

A full system test was then carried out where white lines were marked on the ground 

and the capabilities of the whole system were evaluated.  During this test a secondary 

camera was attached to the axil and recorded the system performance.  The data for 

this test was taken back to a laboratory and results were recorded. These results are 

shown below in Figure 4-3 and they show that the system has achieved an accuracy of 

2cm.  

 
Figure 4-3: Results from the NCEA full system test at 1 m/s.  
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Chapter 5: Methodology 

This chapter identifies the method used to develop an Android based autonomous farm 

vehicle.  This involved writing several short programs in Android code to identify 

some key aspects of the Android SDK followed by writing more specific code used in 

this projects’ Machine Vision demonstration application.  The machine vision 

algorithm discussed in Chapter 4: was then applied on an Android device before code 

optimisation was carried out 

5.1  Development tools and techniques 

This section covers the programming methodology used during this project and lists 

the Integrated Development Environments (IDEs) used for development and testing 

of this code. 

5.1.1  Agile programming technique 

The agile programming techniques described by Martin (Martin 2003) was used for 

the development of software during this project.  The agile programming technique 

generates small portions of computer code before testing its accuracy and usefulness.  

This allows for a lot of usable code to be written and tested in a short time as not a lot 

of preparation goes into the planning process for the long term goals of the program.  

As Dingsoyr identifies (Dingsoyr 2010) that with agile programming there is a vague 

idea of what the end goal will be however more focus is made on individual 

components that need to be developed now in order to get useable software as quickly 

as possible.  This leads to a very fast cycle of planning, requirements analysis, design, 

coding, unit testing, and acceptance testing.   

An agile programming methodology was selected over the more traditional waterfall 

method for the following reasons the following reasons as stated by Martin (Martin 

2003): 

 Risk management – This project involved a lot of risk as a lot of aspects of its 

development were unknown at the start of the project and as states, Agile 

programming has the ability to minimise this risk because of its ability to adapt 

to change so quickly.  Small unit testing of code quickly defines the usefulness 

of this code thereby eliminating the possibility of writing a lot of code only to 

find in a few weeks’ time that it isn’t useful for this application. 

 Development speed – Martin (Martin 2003) also states that agile programming 

allows a lot of working code to be written in a very short amount of time which 

was needed in the development of this project due to project deadlines. 

Dingsoyr (Dingsoyr 2010) also specifies the following three reasons for using the agile 

coding method: 
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 Quality – Code is tested as individual components are created so the quality of 

each individual segment is guaranteed prior to full system integration. 

 Design – A test driven approach is used to define the final requirements of the 

system allowing the system to be designed and refined as system modules are 

built. 

 Segmentation – Agile programming segments code so only one aspect is 

studied at a time making it suitable for this project. 

 

While agile programming has many benefits suitable for this project many published 

authors such as Rierson (Rierson 2013) do not recommend agile programming for 

safety-critical software projects such as those used in the automotive industry.  The 

Institute of Electrical and Electronic Engineers’ ('IEEE Standard Glossary of Software 

Engineering Terminology'  1990) definition of a safety-critical software is any 

software where the failure can lead to a hazardous state, so by definition the 

automation of any vehicle falls under this category. The International Organization for 

Standardization’s (ISO) international standard ISO26262 for road vehicle functional 

safety defines a coding requirement for road vehicle functional safety that is more 

structure based like that of the waterfall model.   

Although this project will eventually lead to a safety-critical software project, at this 

stage of development there are no safety-critical aspects involved.  All testing for this 

project has been run as simulations in a controlled laboratory therefore allowing the 

use of the agile programming method.  Future development of this application would 

have to review the programming methodology used and then take that into 

consideration when designing the enhanced system. 

While the benefits of using Agile programming for this project far outweigh 

limitations a few things that were considered during the development of this project 

were:  

 System Testing -  During agile programming components are assumed 

to interact nicely if they work as individuals but this is not always the 

case.  Agile programming doesn’t test with a system as a whole until 

the final stages of development. 

 Abstract code – Agile programming can lead to a lot of abstract code 

which Android Developers ('Android Developers'  2015) list is not a 

desireable thing when coding for a mobile because of the memory 

usage. 

5.1.2  Integrated Development Environment (IDE) 

Android Developers ('Android Developers'  2015) recommended Android Studio IDE 

Version 1.3.1 was used to develop and test all of the elementary code found in 

1.1.1.1.Appendix B, however after some external computer vision libraries started to 
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be investigated some compatibility issues became prevalent between the computer 

vision libraries, Android Studio, and the Java Development Kit (JDK) version 1.7 that 

was being used.  After these issues could not be resolved the Intellij IDE was used for 

the remainder of the coding and testing.   

5.2  Elementary code 

This section covers elementary code developed to become familiar with the Android 

SDK and the recommended best coding practices to follow during development.  Some 

available computer vision libraries are also investigated in this section.  

5.2.1  Android developers 

Initial coding design and development for all basic Android modules followed the 

online training modules defined by Android developers ('Android Developers'  2015).  

Android developers best coding practices.  Android Developers also has a section for 

the best coding practices to follow during program development.  As this project was 

completed using the agile programming method which primarily focuses on writing 

working code before optimising code, the first stages of this project didn’t follow all 

of these coding practices however after the correct working code was found it was 

then cleaned up and altered to incorporate some of these Android coding practices 

regarding memory management, and Multithreading.  One limitation of this 

application is that some of the coding practices used are not optimal such as leaving 

application fatal operations outside of a try, catch block.  This was due to deadlines 

for project completion.  Details about the Android development environment learnt 

from doing this developer training can be found in 1.1.1.1.Appendix B. 

5.2.2  Computer Vision libraries 

Two open source computer vision libraries were investigated to see computer vision 

techniques that are available. The two libraries investigated were OpenCV and 

BoofCV. 

 OpenCV – a C++ based computer vision library 

OpenCV.org (OpenCV 2015) states that this bundle of computer vision classes and 

libraries is available under a BSD license making it free for both academic and 

commercial use.  Development began in 1999 and while OpenCV is primarily a C++ 

programming language it also has Java interfaces and it supports the Android 

operating system. 

 BoofCV - a Java based computer vision library 

Abeles (Abeles 2012) records that this computer vision package of classes and 

libraries has been released under the Apache 2.0 license making it freely available for 
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both academic and commercial use.  Development of BoofCV began in 2011 and it is 

written in Java making the wide range of prewritten libraries and example code 

compatible with the Android operating system. 

Example code segments using both OpenCV and BoofCV were reviewed with both 

libraries being suitable for this project.  While OpenCV (OpenCV 2015) claims that 

their open source library is the fastest because it is written in the native C language 

Abeles (Abeles 2012) claims that BoofCV is faster when processing higher level 

algorithms.  Neither of this data could be tested and confirmed.   

In the end BoofCV was selected over OpenCV as the primary computer vision library 

for use in this project primarily because the classes are written in Java which is 

compatible with Android systems with only a slight bit of modification.  Due to time 

constraints and a slight pre-existing developer knowledge in Java BoofCV was the 

best option available. 

5.3  Android machine vision program development 

The following section covers the entire development process used to create an Android 

based application that is successful in identifying crop rows.  The Android package 

files generated during this process can all be found in 1.1.1.1.Appendix C. 

5.3.1  Program description 

The main aim of this application is to test if a machine vision program capable of 

identifying crop rows can be successfully developed and run on an android mobile 

device.   The algorithm detailed in Chapter 4: that identifies straight crop rows was 

selected for application development and all testing of this application was conducted 

in a controlled environment under controlled conditions.    

The program begins by obtaining an image of the upcoming crop rows from the 

Android devices’ rear facing camera.  The image is then converted into a workable 

format before a viewport is set around one row of crops.  Each pixel within the 

viewport is then compared against a threshold level used to identify plant and non-

plant pixels.  The threshold level is then adjusted by finding the proportion of plant 

pixels within the viewport and checking it against a predefined proportion setting.  

Then the plant pixels are placed through an algorithm similar to the NCEA algorithm 

defined in section 4.3 of this document.  If the quality of pixels within the view 

window is good, then a regression line and correction data to be passed to the steering 

actuator are annotated onto the video frame image before it is output to the device 

screen for display.  If a bad quality fit is found for three successive frames then the 

annotated regression line is not displayed on the screen simulating the system reverting 

back to manual control.  Implementation of the steering actuator itself is outside the 

scope of this project and as such the application process finishes when steering 

correction information is annotated to the screen.  A flow diagram showing the flow 
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of information for this process is found in Figure 5-1. This flow of information repeats 

for every frame that the camera produces. 

 
Figure 5-1: Application flow diagram 
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5.3.2  Application limitations 

This application has the following limitations 

 The algorithm is designed to identify straight crop rows and as such doesn’t 

have the ability to identify crop rows that are curved. 

 This is an elementary test version of an Android based machine vision 

application and not a production version.  One result of this elementary code 

is that there is no user interface for this application and any changes in system 

constants has to be hard codded and recompiled in order to work. 

 Testing in a controlled laboratory ensured perfect conditions for the machine 

vision application to function.  Testing with noisy data was beyond the scope 

of this project therefore the applications ability to work in an uncontrolled 

environment is unknown.  

 During testing an error of half a pixel length was identified and the source of 

the error could not be located before this document was published.  Details of 

this error can be found in section 6.5 . 

 This application does show the vanishing point information with what is 

assumed to be the correct calculations for identifying this point, however 

testing for the accuracy of this value had not been performed in time for this 

document to be written. 

 This application does not follow all of the recommended Android development  

coding practices and as such some of the code developed is not optimised for 

performance or usability.  Such things as leaving application fatal operations 

outside of a try, catch block have not been followed which can lead to the 

application terminating when certain system parameters aren’t met.  Due to 

deadlines for project completion the code could not include all recommended 

practices. 

5.3.3  Initial development setup 

After the initial investigation into Android coding and available computer vision 

libraries the development parameters in Table 5-1 were put into place.    

Table 5-1: Initial Android development parameters 

Parameter Value Reason 

IDE Intellij Intellij was selected over Android Studio due to some 

compatibility issues between Android Studio, the latest 

JDK and the BoofCV libraries.  This issue would 

cause the system to crash on start up when the program 

was run or debugged on an Android device. 

JDK 7 JDK 7 was selected to keep in line with the latest 

BoofCV library compilation versions. 
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Computer 

Vision 

Library 

BoofCV BoofCV was selected because the libraries are written 

in Java which makes them compatible with the Android 

Operating System. 

Android 

SDK 

Min – 10 

Target – 17 

Android version 10 (2011) is the minimum version that 

BoofCV has been fully tested and Android version 17 

(2013) was the version loaded on the equipment used 

for testing. 

 

 

The AndroidManifest.xml file specifying the Android SDK and the application start-

up values can be found in 1.1.1.1.Appendix C. 

The application starts by accessing the Row_Follow_Main.java class as specified by 

the Android manifest.  This class begins by importing all of the Android, Java, and 

BoofCV libraries needed for operation.  This main class extends the Android 

Activity.java class allowing the application to display data to the screen and to 

securely deal with interruptions to the application, and it also implements the 

PreviewCallback.java class which delivers copies of the video frames as they are 

captured by the camera.  The global constants and variables used by the application 

are then specified. 

The onCreate method is the first method that is called which requests access to the 

main screen from the Android operating system and then creates the CameraPreview 

and Visualisation objects before adding them to a FrameLayout object that allows 

these two items to be output to the device screen.  The created Visualisation object 

uses its onDraw() method to scale the Bitmap image stored in the ‘output’ variable to 

the required size and then attaches it to the canvas for output to the device screen.  The 

‘output’ variable is a copy of the camera image converted into Bitmap format.  This 

variable is updated frame by frame as new images arrive from the device camera.  This 

variable is accessed by two separate threads so write access to it needs to be 

synchronised to avoid information mismatch. The CameraPreview.java class and the 

use of threads is explained in detail in section 5.4   1.1.1.1.Appendix B also contains 

information regarding threads. 

Additional methods such as onPause() and onResume() which handle interruptions to 

the application are available in the event device applications are switched. 

The last method of interest in the initial setup of the application is the setUpApp() 

method.  This method is responsible for assigning initial values to global variables.  It 

sets up the camera and data output options and connections, the annotation and 

viewport styles and sizes are also defined here, and the second processing thread is 

created and started within this method.  Each of these setup parameters are covered in 

the subsequent sections within this chapter.  
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5.4  Video stream access 

This application gets a 320x240 image at 30 fps in NV21 format from the device 

camera which is then converted into RGB format. Calculations for plant identification 

and for further use in the row following algorithm use a viewPort which is a sub-

section of pixels within this RGB camera image.  The annotated image is then 

converted into Bitmap format before being output to the device screen.  This section 

of the paper explains the procedures performed to achieve this. The Java code 

explained in this section can be found in 1.1.1.1.Appendix C. 

5.4.1  Permissions and features 

The first step in accessing the video steam is specifying the camera permissions and 

application features within the Android manifest as is shown in Figure 5-2.  This 

manifest extract shows that the application must gain permission to use the device 

camera from the Android operating system.  It also specifies that the Android device 

used to run this application must have a rear facing camera which has autofocus 

capabilities.  The rear facing camera is needed for this application as the user must be 

able to access the device screen while the camera views the upcoming crop rows. 

 
Figure 5-2: Android Manifest camera permissions 

5.4.2  CameraPreview.java 

This application accesses the camera hardware through the CameraPreview.java class 

shown in Appendix 1.1.1.1.C.3. 

This class extends the ViewGroup.java class, which allows it to create interface 

layouts.  The CameraPreview class also implements the SurfaceHolder.Callback 

interface, which is used to connect the camera hardware to the application. This class 

is responsible for passing image data to the main Row_Follow_Main.java class each 

time the camera captures a new frame.  Because the Row_Follow_Main.java class 

implements Camera.PreviewCallback and has an onPreviewFrame() method, each 

time the camera gets a new frame the CameraPreview object will send the image data 

to this method.  The onPreviewFrame() method then copies the incoming byte array, 

representing the new camera frame, to the processByte array used for processing the 

image. 

5.4.3  Resolution, Framerate, and Camera class 

The Row_Follow_Main.java class, found in Appendix 1.1.1.1.C.2, is where all other 

video stream related code is defined.  The setUpApp() method within this class 

accesses the Android devices’ rear facing camera by using the Camera.open() method. 
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This method returns the rear facing camera by default.  The camera resolution for the 

image returned is set to 320x240 at 30fps.  This is achieved by accessing the 

Camera.Parameters.java class and is set using the global variables 

CAMERA_WIDTH and CAMERA_HEIGHT.  320x240 was selected as the 

resolution size as this offered a good balance between displaying a clear image and 

keeping resource usage to a minimum.  30fps was the frame rate selected because it 

was fast enough for data acquisition while not unnecessarily using the device’s 

resources.  This frame rate also shows a smooth transition between frames for the 

displayed image output.  The Camera.java class was one of the classes that got 

deprecated at the end of 2014 with the release of Android SDK 21 and the new 

Camera2.java class.  This application continues to use the deprecated Camera.java 

class over the newer Camera2.java class because of the larger amount of available 

resources regarding the Camera.java class and the fact that the device used for testing 

was running an older software version that only supported the Camera.java class.  

5.4.4  Image format 

The image is transferred into this application for processing by the device Camera 

through the CameraPreview.java class as described in section 5.4.2 .  This image is in 

Android’s NV21 YCrCb format.  For ease of applying a threshold level to identify 

plant pixels the image is converted from the NV21 format into 8-bit unsigned RGB 

format using the nv21ToMsRgb_U8() method of the BoofCV ConvertNV21.java 

class.  This RGB format displays each pixel in the image using three 8bit values 

representing the colours Red, Green, and Blue, with each having a colour depth range 

from 0 to 255.  Each colour band is stored separately in a BoofCV ImageUInt8 object 

that is held within a MutliSpectral<ImageUInt8> object.  Access to individual pixels 

is granted through the getBand() method of the MultiSpectral class. 

After the image has been assessed using the row following algorithm it is converted 

into a Bitmap using the BoofCV ConvertBitmap.multiToBitmap() method and set to 

the background of the Canvas object that is used to output the image to the screen.  

This is done inside a synchronised code block because two separate threads have 

access to the output object.   

Figure 5-3 below shows some code samples used within the application to access and 

convert between image formats.  Further details can be seen in Appendix 1.1.1.1.C.2. 

Figure 5-3:Sample Android image format code 
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5.4.5  Viewport 

A viewport was created using the sub-Image function from the BoofCV Image class.  

Creation of a sub-Image defines a portion of an image that can be independently used 

for calculations.  This makes the sub-Image ideal for representing a viewport designed 

to straddle the edges of the crop rows as described in section 4.2 . The boundaries and 

position of this view port are defined in the setUpApp() method, and The viewport 

length and width are set by the global variables VIEWPORT_HEIGHT and 

VIEWPORT_WIDTH.  In this application the viewport is 80x30 pixels, and is centred 

along the x-axis with its centre located at x coordinate 160 pixels which is half the 

width of the 320 pixel screen.  The bottom of the viewport is located at y coordinate 

192 which is 1/5 or 48 pixels from the bottom of the screen.  Figure 5-4 below shows 

the program code used to create and access the viewport data and immediately 

following this code Figure 5-5 shows the resulting viewport displayed on the device 

screen. 

 

Figure 5-4: Creation and access of the viewport 

 
Figure 5-5: Viewport surrounding one crop row. 

5.4.6  Plant Identification 

Each pixel within the viewport window is compared against a settable threshold to 

check the greenness of each pixel.  If the Green segment of the pixel is greater than or 
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equal to the threshold, then the pixel is considered a plant and the pixel x and y 

coordinate values are then added to an ArrayList for further processing.  In this 

application the original threshold level is set to 128.  To help visualize which pixels 

are plant and which are not within the viewport window, all pixels identified as plant 

are changed red by setting the Green and Blue values to 0 and the Red value to 255, 

any pixel that is not a plant is turned blue by setting the Red and Green values to 0 and 

the Blue value to 255.  A coded example of this can be seen in Figure 5-4 above, and in 

Figure 5-6 below a crop image with a viewport can be seen where the plant pixels are 

shown in red and the non-plant pixels in blue. 

 
Figure 5-6: Viewport with plants identified in red 

5.4.7  Threads 

The application begins on one thread and another is created within the setUpApp() 

method to handle the time taken to process the video using the row finding algorithm.  

This is done because the calculations used to identify the crop rows within the image 

may take longer than the time taken for the cameraPreview to update with a new frame.  

Without a thread this causes a backlog of frames on this thread until the system runs 

out of memory and terminates.  By creating seperate threads for processing and image 

acquisition each new frame that comes from the camera through the CameraPreview 

object is passed to the onPreviewFrame() method which updates the byteArray with 

the new frame data and sends a thread.interupt() message to let the processingThread 

class know that there is another frame available for processing.  The separate thread 

then handles the new frame once it has finished with the previous frame.  If a third 

frame arrives before the processorThread accesses the second waiting frame, the 

second frame is discarded and replaced with the third frame.  The processorThread 

will miss processing frame two but this way no backlog of frames waiting to be 

processed will occur so the system will not terminate prematurely. 

Because there are multiple threads running that have access to the same data, shared 

resources have to be accessed within a synchronised code block.  This allows only one 

thread access to shared resources at any one time.  If a synchronised code block is not 

used, then it could produce errors in the data. 
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5.5  Image annotation 

The Android Canvas.java class was used to annotate the video image after processing 

had been done.  The “output” Bitmap is set as the background of the Canvas which 

allows annotations to be drawn in the foreground.   The image in this application has 

been annotated with a rectangle outlining the viewport, a line representing the 

regression line calculated, and some text.  This was done using the drawRect(), 

drawLine(), and the drawText() methods of the Canvas class.  The text displays the x_ 

alignment and slope_alignment correction data to be sent out to the Actuator control, 

the quality of fit value, and the vanishingPoint information.  When the quality variable 

drops below 4, the regression line is no longer annotated to the screen.  This simulates 

a live system reverting to manual control when the quality of fit is small. Once all 

annotated data is drawn onto the Bitmap image the mDraw.postInvalidate() method 

call tells the GUI to update the display to include the newly annotated Bitmap image. 

5.6  Row identification algorithm 

The following section covers how the NCEA row following algorithm was written 

using Android code.  All of these algorithm calculations are performed on the 

processThread as described in section 5.4.7 Threads28. 

5.6.1  Threshold 

The threshold is used to identify the plant pixels according to the level of Green in the 

8-bit RGB pixel as defined in section 5.4.6 .  The program begins with this threshold 

level at 128 and it is raised or lowered to adjust for lighting fluctuations.  To achieve 

this the operator sets the VIEWPORT_PLANT_PROPORTION global constant to 

identify the plants’ stage of development.  As there is no user interface in this 

application this proportion value must be hard set in code before compilation.  The 

plant pixels have already been identified and placed into an Arraylist called myxList.  

The ArrayList.size() method is then called to find number of plant pixels and the 

proportion of plant pixels within the viewport is then calculated and compared to the 

expected proportion listed in the global constant.  The threshold is then lowered or 

raised accordingly.  Figure 5-7 below shows that the threshold level has been adjusted 

from 128 of 70 for an expected plant density of 40% which is the default setting of the 

developed application. 
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Figure 5-7:Threshold adjustment for an expected 40% plant density 

5.6.2  Regression assessment 

After the ArrayList holding all of the plant pixel coordinates is found, a call is made 

to the assess() method which in turn calls the fit() method used to calculate the 

regression line, correction data, and the new threshold value.  If the fit() method deems 

the new data is of good quality then the assess() method will overwrite the old 

correction data held in global variables, with the new frames correction data as well 

as set up the data needed to draw the regression line.  

5.6.3  Regression fit 

The applications fit() method uses equations (4.3) and (4.4) to calculate the fitOffset 

and fitSlope values that will minimise the error in the cost function shown in equation 

(4.1).  The fitOffset and fitSlope values then identify the regression line of best fit, as 

well as the correction values needed to achieve this minimum cost. If there are too few 

plant identified pixel values then these calculations will not be performed and 

subsequently the regression line and correction values will not be known or displayed.  

In addition to these calculations, this method also compares the plant pixels and there 

locations with the data from the last frame to calculate a quality of fit.  The regression 

line is only drawn to the screen when the quality of fit is adequate.  This value is set 

at 4 for this application.  This application simulates the return to manual control for a 

poor quality fit by not annotating the regression line to the screen as shown in Figure 

5-8. 
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Figure 5-8: A poor quality fit showing no regression line 

5.6.4  Limits 

The application has a limit() method that is used to apply limitation on the slope and 

vanishing point.  These limits identify the boundaries of the regression line to ensure 

that the regression line and correction data is projected in the correct direction.  This 

limit is set using a percentage value representing a percentage of pixel values for the 

boundary.  This application has the limit set at 0.2. 

5.7  Actuator control commands 

Although physical actuator control was beyond the scope of this research the steering 

correction data that is to be sent to the actuator was calculated and displayed to the 

screen.   This steering correction data was calculated using the methods found above 

in section 5.6 .  As covered in section 4.4  the fitOffset and “vanishing point” are used 

to calculate the lateral movement steering corrections, while the corrections to the 

angular displacement are identified with the fitSlope variable.  This information is 

annotated to the screen as X_ alignment, Vanishing_point, and Slope_alignment.   
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Chapter 6: Evaluation and optimisation 

This section covers the testing methodology and optimisation techniques used for this 

research.  As the agile programming method was used, each section of code produced 

in the research was written in small segments of code which were individually tested 

and optimised or discarded until the required result was found.  

6.1  Test Equipment 

The aim of this research was to see if an Android device was capable of implementing 

a computer vision algorithm such as the NCEA’s row following algorithm so the 

written code was only tested using one specific test device.  Further testing would need 

to be done using multiple devices to identify how well the application performed on 

differing hardware however that was beyond the scope of this research. 

A Samsung Galaxy S4 was used for all module testing of this application.  Samsung 

('Samsung'  2015) listed the specifications for this android device as: 

 Android OS 4.2.2 

 Quad Core 1.9GHz processor 

 Full HD Super AMOLED display 

 2GB RAM 

 16GB internal memory with up to 64GB external memory 

 CMOS 13MP rear camera and CMOS 2MP front camera 

 Sensors include Accelerometer, Geomagnetic, Gyroscope, Broadcom 

BCM47521  GLONASS GPS, AGPS, Bluetooth 4.0 

Android code was uploaded to the device using the Android Studio and Intellij IDEs 

as explained in section 5.1 .  The application utilised the test device’s rear facing13MP 

camera to acquire the image before it was processed.  The relevant test results were 

then displayed on the device’s screen 

6.2  Procedure 

As stated in section 5.1  the agile programming method was used for writing and 

testing the software for this application.  This allowed for testing of individual units 

which was essential during this project as the Android development kit and other Java 

libraries have a such vast number of libraries available and the development timeframe 

for this application didn’t allow for an investigation into every aspect of code 

available.  Useful and not useful code was identified quickly through this method.   To 

identify the usefulness of a piece of code a small program was written or a sample 

program was investigated to identify what functions were available through the code 

use.  During this initial discovery stage very little testing was done and more emphasis 

was set on finding code that may be useful in the future.   



 

MACHINE VISION AND SENSING WITH AN ANDROID   

33 

 

After some basic code was identified as being of possible use, further testing and 

investigation went into identifying uses for the code.  Android developers list various 

automated testing tools to aid software development, however this project uses a 

manual testing method where unit tests for each piece of new code are manually 

performed and result are checked against predictable calculated values.  Code was then 

edited and optimised or discarded were applicable. 

6.3  Video stream access 

After many hours researching how to access and process individual pixels from images 

captured by the Android device’s camera, BoofCV was selected to access the video 

stream.  This was due to its ease of use.  BoofCV offered image conversion to a number 

of formats such as binary, greyscale, RGB, HSV, and BoofCV also offered a range of 

coded examples to be explored for different computer vision techniques.  While 

OpenCV also contains a wide range of libraries for computer vision, BoofCV was 

selected as it was written entirely in Java which can be easily ported to an Android 

system. 

For accessing the device camera the application used the  Camera.open() method and 

not the BoofCV recommended cameraPreviewSetup() method.  This was done for two 

reasons.  The first being that only devices with rear facing cameras are supported as 

defined in the Android Manifest so Camera.open will always open the correct rear 

facing camera, and secondly to limit the memory used to run the application by 

limiting the amount of code used. 

A 320x240 resolution image was had set for use and not BoofCV recommended 

closest() method to select resolution.  This BoofCV method is more flexible as it offers 

a variety of different resolution option however 320x240 is a fairly standard resolution, 

and was one which was offered on the test device, so the hard coded option was 

selected to cut down on code used to write the application.  Further application 

development for use on additional devices may need to include the BoofCV 

recommended closest() method. 

Although different image formats were tested, RGB was selected for this application 

for its ease of implementation.  The starting threshold for RGB was easily defined as 

G=128, and while other formats such as HSV are often more effective in varying 

lighting conditions, the use of the varying threshold and the density level within the 

viewport make this application very effective when dealing with light changes making 

RGB just as effective. 

During plant pixel identification, only one loop is made through the entire viewport 

and useful plant pixels are stored in an ArrayList for further processing.  This was 

changed from earlier unit tested models which included a loop to change pixel colour 

and a separate loop to calculate the regression line.  Inclusion of the ArrayList allows 

processing of the plant identified pixels without the need for a second loop through 

the entire viewport. The ArrayList was selected to store the plant pixel coordinates 
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over other List and Array options that are available in Java because the ArrayList size 

doesn’t need to be defined prior to using the list which allows the one list to be used 

for any number of pixels.  This is useful for this application as the actual number of 

plant pixels varies from frame to frame thus making a set size array impractical.   

6.4  Image annotation 

The built in Android Canvas class detailed in section 5.5 was used for this application 

as it is part of the Android SDK package and it offers a wide range of annotation 

options.  The availability of multiple methods used for drawing rectangles for the view 

window, lines for the regression line, and written characters for information output 

was the main reason no other options for annotation were investigated. 

6.5  Row identification algorithm 

6.5.1  Accuracy 

Testing for the accuracy of the row identification algorithm was performed by entering 

known predictable data into the algorithm and verifying the results shown on the 

screen.  This testing involved inserting pixel co-ordinates that were deemed plant into 

the ArrayList() and verifying the output of these known pixel coordinates with the 

output of the regression line drawn and its associated correction data.  Sample 

Accuracy test code can be found in 0 and results for this testing can be found below 

in Table 6-1.   

During this testing an error was found that identified an inaccuracy of half a pixel 

length when the plant pixels were situated over the positive x or right portion of the 

view window.  The source of the code causing this error could not be located before 

this report was written so this slight error is listed as one of the limitation of this code.  

A possible cause of this error may be a miss calculate in the alignment of the viewport 

however this is just speculation and further investigation into the cause of this error is 

needed before the actual error can be eliminated. 

Table 6-1: Accuracy tests for the row identification algorithm 

Note: For this accuracy test the quality value was disabled in the code for all 

scenarios except scenario 5 which was testing the quality value.   

Scenario 1: A straight crop row indicating the tractor is on the correct path 

Notes: This shows zero for all fields as expected. 

Predicted Output Actual Output Test Image 
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X_alignment: 0.0 

Slope_alignment: 0.0 

Vanishing_point: 0.0 
 

X_alignment: 0.0 

Slope_alignment: 0.0 

Vanishing_point: 0.0 

 

 

Scenario 2: The row is positioned to the right side of the viewport making the tractor 

too far to the left of the row 

Notes: The alignment of the tractor is straight but offset negatively making the 

lateral alignment negative with the slope zero. 

There was an error noted in this test that showed the x_alignment at 9.5 when the 

calculated value was 10.  The cause of this error is yet to be determined. 

Predicted Output Actual Output Test Image 

 

 

X_alignment: 10.0 

Slope_alignment: 0.0 

Vanishing_point: 0.0 
 

X_alignment: 9.5 

Slope_alignment: 0.0 

Vanishing_point: 0.0 

 
 

Scenario 3: The row is positioned to the left side of the viewport making the tractor 

too far to the right of the row 

Notes: This scenario is similar to scenario 2 however the tractor is now displaced 

in the positive range of the x-axis.  This would make the predicted correction data 

the same as scenario 2 but negated.  The predicted output is the same as the actual 

output. 

Predicted Output Actual Output Test Image 

 

 

X_alignment: -10.0 

Slope_alignment: 0.0 

Vanishing_point: -0.0 
 

X_alignment: -10.0 

Slope_alignment: 0.0 

Vanishing_point: -0.0 

 
 

Scenario 4: The row is in the bottom left and top right of the viewport simulating 

the tractor turned in the anti-clockwise direction. 

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor. 

The tractor tilted in the clockwise direction would generate a negative value.  With 

a tilt as shown in the image, a slope correction of a -0.09 can be expected. 

Predicted Output Actual Output Test Image 
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Slope_alignment: -0.09 
 

Slope_alignment: -0.094 

 
 

Scenario 5: The row is in the bottom right and top left of the viewport simulating 

the tractor turned in the clockwise direction 

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor. 

The tractor tilted in the clockwise direction would generate a positive value.  With 

a tilt as shown in the image, a slope correction of a 0.09 can be expected. 

Predicted Output Actual Output Test Image 

 

 

Slope_alignment: 0.09 
 

Slope_alignment: 0.094 

 
 

Scenario 6: The front of the tractor is off course with a poor quality fit. 

Notes: This scenario is aimed to test the quality value.  With the quality value below 

4 the image will disable the regression line simulating the system reverting to 

manual control. 

Predicted Output Actual Output Test Image 

No regression line 

output 

 

Quality: <4 

No regression line 

output 

 

Quality:  

 
 

6.5.2  Processing 

The processor speed was calculated using the Java System method 

System.currentTimeMilis().  The system time was checked at the start and end of the 

process thread and the difference was calculated to get the system time.  This data was 

stored to obtain the average, maximum, and minimum process times.   

Firstly the view window was populated with all pixels within the viewport identified 

as plant as this would take the longest time for the system to process data. The system 
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was then left to run for a two minutes while data was collected.  A second test was 

then run to test system processing speed using actual data that would be obtained 

during a typical free system run.  Table 6-2 below shows results from these two tests.  

As expected the worst case scenario performed slower calculations with an average of 

39 ms per frame, while the free running test got a better result at 34 ms per frame. 

Both tests resulted in larger than expected Maximum processing time and lower than 

expected minimum processing times.  A hypothesis for the maximum values was the 

slow speed of the system during start up, however when this test was re-performed 

with a 5 and 10 second lag before calculating data it made no difference in the 

minimum and maximum results. 

Table 6-2: Processor speed tests 

Processor Test Results (ms) Test Image 

Worst case scenario 

 

Average: 39 

Maximum: 201 

Minimum: 10 

 
Free running system 

 

Average: 34 

Maximum: 217 

Minimum: 10 

 
 

Another hypothesis for the range in processing times is the application at times using 

larger than normal amounts of system RAM which would slow down the processing 

speed leading to the high maximum processing time.  When verifying the systems 

RAM usage fluctuations in the amount of RAM used as can be seen as shown in Figure 

6-1.  This is one possible cause in the high maximum processing time however the 

actual cause of this high value was not determined at the time of writing this paper. 

 
Figure 6-1: RAM usage 
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Further minimisation for the processor time could be achieved by processing less data, 

which could be done by either creating a smaller viewport window or by keeping the 

viewport window the same size but only processing every second or third row of 

pixels.  This second option would be the optimum method as it would give access to 

a wider range of data than concentrating the data in a smaller viewport.  Testing for 

these two methods of operation had not been performed at the time of writing this 

paper. 

6.6  Actuator control commands 

After testing the data for accuracy and speed using know pixel inputs the application 

was tested using live data obtained from the test devices camera.  Each of the scenarios 

in Table 6-3 below show values calculated for the actuator control outputs using random 

live data from the Android camera.  In each case the outputs were predicted and 

compared with the actual output given by the application. and the resulting figures that 

were displayed to the screen were visually checked to see if they matched the predicted 

output.  As the data used in this test was random outputs had to be visually predicted 

rather than calculated.  While the vanishing point figure appears on the screen testing 

for its accuracy could not be performed in time for inclusion in this document as 

identified in section 5.3.2 . 

Table 6-3:Actuator control simulations 

Scenario 1: The tractor is heading in a nearly straight line on the correct path 

aligned with a crop row. 

Notes: In this scenario no corrections need to be made so all fields should be close 

to zero except the quality field which should be good at around 10. 

Predicted Output Actual Output Test Image 

 

 

Quality: 10.0 

X_alignment: 0.0 

Slope_alignment: 0.0 

Vanishing_point: 0.0 
 

Quality: 11.10 

X_alignment: 1.19 

Slope_alignment: 0.007 

Vanishing_point: -0.24 

 

 

Scenario 2: The tractor is heading in a straight line but displaced to the left of the 

crop row. 

Notes: In this scenario the tractor is heading in a straight line so the angular 

displacement should be close to zero which would make the Slope_allignment 

correction data close to zero.  The tractor is aligned too far to the left of the row 

putting it in the negative range of the x-axis with half of the viewport on the row 

and half off of the row.  As the viewport is 30 pixels wide a lateral correction of 

about 15 pixels in the positive direction needs to be made. The Quality value is only 

about half of what it should be which would make the predicted value close to 5. 
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Predicted Output Actual Output Test Image 

 

 

Quality: 5.0 

X_alignment: 15.0 

Slope_alignment: 0.0 

Vanishing_point: 3.0 
 

Quality: 5.14 

X_alignment: 11.69 

Slope_alignment: -0.031 

Vanishing_point: 3.36 

 

 

Scenario 3: The tractor is heading in a straight line but displaced to the right of the 

crop row. 

Notes: This scenario is similar to scenario 2 however the tractor is now displaced 

in the positive range of the x-axis.  This would make the predicted correction data 

the same as scenario 2 but negated, with a quality rating of about 5. 

Predicted Output Actual Output Test Image 

 

 

Quality: 5.0 

X_alignment: -15.0 

Slope_alignment: 0.0 

Vanishing_point: -3.0 
 

Quality: 5.25 

X_alignment: -8.98 

Slope_alignment: 0.008 

Vanishing_point: -3.78 

 

   

Scenario 4: The front of the tractor is tilted in a clockwise direction. 

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor. 

The tractor tilted in the clockwise direction would generate a positive value.  With 

a tilt as shown in the image, a slope correction of a 0.1 can be expected. 

Predicted Output Actual Output Test Image 

 

 

Quality: 5.0 

Slope_alignment: 0.1 
 

Quality: 5.78 

Slope_alignment: 0.149 

 
 

Scenario 5: The front of the tractor is tilted in an anti-clockwise direction. 

Notes: This scenario is aimed to test corrections to the aggregate slope of the tractor 

in the opposite direction as scenario 4. This should result in similar corrections in 

the slope in the negative direction. 

Predicted Output Actual Output Test Image 
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Quality: 5.0 

Slope_alignment: -0.1 
 

Quality: 5.83 

Slope_alignment: -0.134 

 
 

Scenario 6: The front of the tractor is off course with a poor quality fit. 

Notes: This scenario is aimed to test the quality value.  With the quality value 

dropping below 4 the image will disable the regression line simulating the system 

reverting to manual control. 

Predicted Output Actual Output Test Image 

No regression line 

output 

 

Quality: <4 

No regression line 

output 

 

Quality: 0.653 

 
 

6.7  Code optimisation  

To minimise memory usage in an attempt to speed up processing speed during the full 

system test the Android code was optimised using Intellij’s built in code cleanup tool.  

This helped identify any unused code and support libraries that could be deleted and 

gave suggestions on how to optimise the performance of the code.   After the code was 

cleaned up the system RAM usage was identified by looking at the system logcat files.  

Outputs for the RAM memory monitor and the Dalvik garbage collection data both 

show a system RAM usage of around 17MB.  These outputs are shown in Figure 6-2 

and Figure 6.3. 

 
Figure 6-2: RAM usage after code optimisation 
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Figure 6-3: Dalvik garbage collector  output after code optimisation 
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Chapter 7: Results 

This section of the dissertation records the key outcomes of this paper and how they 

match up with the desired project objectives. 

7.1  Objectives and outcomes 

This project has resulted in the development of a demonstration application that has 

capable of keeping RAM usage to an average of about 17 MB while processing the 30 

fps, 320x240 resolution video, in an average of 34 ms per frame during typical running 

circumstances.  Data showing the identifying a row of crows and steering correction 

data is also printed to the device screen. 

This project has identified the capabilities of an Android device being used for farm 

vehicle automation by testing its ability to process a row finding application with speed 

and accuracy. The project has shown that an Android device can identify crop rows 

based on the greenness of the image pixel.  Further development of Android based 

machine vision could dramatically reduce the cost and complexity of setting up 

alternative automated vehicle guidance systems. 

7.1.1  SDK investigation 

The initial objective of this project was the investigation into the Android SDK and 

various computer vision libraries which resulted in the use of BoofCV with the Intellij 

IDE for this project.  BoofCV was used primarily for image conversion between 

different formats while the Android SDK was used elsewhere throughout the code. 

7.1.2  Video stream access 

Video stream access and manipulation were the second and third objectives for this 

project and they were made possible through the use of the BoofCV libraries.  The 

android camera returned each frame to the main application in the NV21 format using 

a callback function within the CameraPreview class.  This NV21 frame was then 

converted into a Multispectrum format containing 3 unsigned 8 bit integer image 

objects for each of the RGB colours.  A portion of the RGB frame was then assigned 

a viewport and each pixel was within that viewport was compared against a threshold 

to identify it as plant or not and the colour of the pixel was changed accordingly.  Plant 

pixels were stored into an ArrayList and sent for further processing.  After processing 

the RGB image was converted to Bitmap format where it was annotated and sent to 

the device screen for display.  This was achieved at 30fps with a resolution of 320x240. 

The threshold level was also automatically changed during this process to allow for 

fluctuations in image lighting. 
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7.1.3  Image annotation 

Image annotation was the fourth objective of this project and it was achieved using the 

Android Canvas class.  Posting the main camera Bitmap image on a Canvas allowed 

for the vast array of methods within the Canvas class to be used to annotate the main 

image.  Annotation used the drawText() method to write characters to the screen, the 

drawLine() method to draw the regression line on the screen, and the drawRect() 

method to identify the location of the viewport. 

7.1.4  Row identification algorithm 

The fifth objective of row identification used the ArrayList of plant pixels and the 

assess() and fit() methods to calculate the regression line and correction data, check 

for a quality of fit, and assign correction data and application output using these 

parameters.  The fit() method used the NCEA row identification algorithm to obtain 

the regression and correction data.  The quality of fit calculation compared the results 

of the previous frame to the current one and updated results accordingly.   

Testing of for speed and accuracy of this data resulted in finding an inaccuracy of half 

a pixel length and with an average process time of 34 ms per frame during typical 

circumstances.  Further work in this area needs to be done to find the cause of the data 

inaccuracy and the addition of extra viewports to check the accuracy of the viewpoint 

calculations. 

7.1.5  Actuator control commands 

The display for the actuator control simulation for the correction data was the final 

objective of this project.  This was partially achieved and tested using number data 

output to the device screen.  Initial testing with output numbers identified that these 

steering correction calculations were correct however further work in this area still 

needs to be done.  A simulated steering device, such as the suggested sliding bar on 

the bottom of the display, would be a good way to test the steering correction data.   
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Chapter 8: Conclusion 

This dissertation covered the development of an Android based vision guidance 

system for a tractor.  The original specification for a system to include vision guidance 

data as well as other Android sensors, such as GPS, was revised after the project 

preliminary report.  The new revision specified a vision based guidance system 

without any additional sensors.  While this paper only involved the early stages of 

development of such an application, further development could lead to accessible 

tractor automation for everyone due to the ease of use and installation, as well as the 

low cost price of such an Android operated system.  Listed below are the key findings 

of this project and further work that is needed to make a workable Android based 

tractor automation system. 

8.1  Key project findings 

This project developed an Android system that is capable of identifying rows of crops.  

While all of the project testing and simulation carried out during this project was based 

in a laboratory the work done has shown the potential use of Android devices in 

vehicle automation in the future.   

The demonstration application that has been developed has kept RAM usage to an 

average of about 17 MB while processing the 30 fps, 320x240 resolution image, in an 

average of 34 ms per frame during typical circumstances.   

This demonstrator application displayed a regression line to the screen to visually 

identify the crop row as well as outputting numerical values representing steering 

corrections to be sent to the actuator.  The application also included a threshold level 

to deal with fluctuations in changing lighting conditions. 

Due to time constraints the demonstrator application only uses one viewport window 

for calculations and does not include any additional viewports as described in section 

4.3 .  The use of only one viewport has meant that testing of the vanishing point for 

steering corrections could not be achieved.  As defined during testing, there is also a 

problem with the code which outputs steering corrections that are incorrect by half a 

pixel.  At the time of publication this error had not been resolved. 

8.2  Further Work 

Future work for this project would involve the inclusion of additional viewport 

windows in the Android software, which would be followed up with the system 

outputting a signal to an actuator that controls the vehicle.  All of these devices would 

then need to be field tested. 
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Appendix A Project Specification 

A.1. Original project specification 

The original project specification is defined below.  It identifies the original project 

specifications which were altered after the project preliminary report was marked. 
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A.2. Preliminary report recommended project stages 

The project specification was altered after the preliminary report was marked.  The 

new project specification of recommended stages for project completion was then 

followed to complete the project. 
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Appendix B Elementary Android code 

Android developers ('Android Developers'  2015) has a list of training modules for 

application development.  These developer training modules were used as a valuable 

resource to identify what certain aspects of Android code is used for and they 

provided worked examples of how Android developers should use code segments.   

B.1. Android terms 

From the elementary code that was developed an understanding of the following terms 

and classes was vital for further Android development.  The first four terms are 

Android components. 

 Activities – An activity is used for each new screen with a user interface.  

Activities can be shared between different Android applications if permission 

is granted. 

 Services – A service is a background process that has no user interface and can 

only be accessed through another Android component such as an activity. 

 Content provider – A content provider manages access and use of a data set 

that is shared between different applications. 

 Broadcast receiver – A broadcast receiver responds to system wide 

announcements and takes the required actions such as a warning display when 

the battery is flat. 

 Permissions – Every Android application must request and be granted 

permission from the android device prior to accessing android resources.  This 

includes access and use of the camera, storage space, Bluetooth, GPS, and all 

other sensors. 

 Intents -  An intent sends asynchronous messages between components 

defining specific actions that need to be performed. 

 Manifest – The manifest is an EXtensible Markup Language file under the 

name of AndroidManifest.xml, that holds a list of all the application 

components.  Here components are defined as an activity, a service, a receiver, 

or a provider.  The manifest also defines application permissions and 

requirements, a minimum API level, and it holds links to external libraries. 

 Thread – A thread is a concurrent unit of execution used to run two segments 

of system code in parallel. 

 Callback – A callback is an android method that will wait idle until it receives 

a callback notification from some other piece of code. 

 .apk – An entire Android package that can be installed on an Android device. 

 Canvas – a surface class that enables drawing. 

 Dalvik – The name of the Android Virtual Machine 
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B.2. Camera control 

The code below is one of the introductory camera classes that was built 
/** 

 * Created by shaun on 18/05/2015. 

 */ 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.text.SimpleDateFormat; 

import java.util.Date; 

import android.app.Activity; 

import android.content.Context; 

import android.content.pm.PackageManager; 

import android.hardware.Camera; 

import android.hardware.Camera.CameraInfo; 

import android.hardware.Camera.PictureCallback; 

import android.os.Bundle; 

import android.view.View; 

import android.view.View.OnClickListener; 

import android.view.WindowManager; 

import android.widget.Button; 

import android.widget.LinearLayout; 

import android.widget.Toast; 

 

public class AndroidCameraExample extends Activity { 

    private Camera mCamera; 

    private CameraPreview mPreview; 

    private PictureCallback mPicture; 

    private Button capture, switchCamera; 

    private Context myContext; 

    private LinearLayout cameraPreview; 

    private boolean cameraFront = false; 

 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

        getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON); 

        myContext = this; 

        initialize(); 

    } 

 

    private int findFrontFacingCamera() { 

        int cameraId = -1; 

        // Search for the front facing camera 

        int numberOfCameras = Camera.getNumberOfCameras(); 

        for (int i = 0; i < numberOfCameras; i++) { 

            CameraInfo info = new CameraInfo(); 

            Camera.getCameraInfo(i, info); 

            if (info.facing == CameraInfo.CAMERA_FACING_FRONT) { 

                cameraId = i; 

                cameraFront = true; 

                break; 

            } 

        } 

        return cameraId; 

    } 

 

    private int findBackFacingCamera() { 

        int cameraId = -1; 

        //Search for the back facing camera 

        //get the number of cameras 

        int numberOfCameras = Camera.getNumberOfCameras(); 

        //for every camera check 

        for (int i = 0; i < numberOfCameras; i++) { 

            CameraInfo info = new CameraInfo(); 

            Camera.getCameraInfo(i, info); 

            if (info.facing == CameraInfo.CAMERA_FACING_BACK) { 

                cameraId = i; 

                cameraFront = false; 

                break; 

            } 

        } 

        return cameraId; 

    } 

 

    public void onResume() { 

        super.onResume(); 

        if (!hasCamera(myContext)) { 

            Toast toast = Toast.makeText(myContext, "Sorry, your phone does not have a camera!", 

Toast.LENGTH_LONG); 

            toast.show(); 

            finish(); 

        } 

        if (mCamera == null) { 

            //if the front facing camera does not exist 

            if (findFrontFacingCamera()  1) { 

                //release the old camera instance 

                //switch camera, from the front and the back and vice versa 

 

                releaseCamera(); 

                chooseCamera(); 

            } else { 

                Toast toast = Toast.makeText(myContext, "Sorry, your phone has only one camera!", 

Toast.LENGTH_LONG); 
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                toast.show(); 

            } 

        } 

    }; 

 

    public void chooseCamera() { 

        //if the camera preview is the front 

        if (cameraFront) { 

            int cameraId = findBackFacingCamera(); 

            if (cameraId >= 0) { 

                //open the backFacingCamera 

                //set a picture callback 

                //refresh the preview 

 

                mCamera = Camera.open(cameraId); 

                mPicture = getPictureCallback(); 

                mPreview.refreshCamera(mCamera); 

            } 

        } else { 

            int cameraId = findFrontFacingCamera(); 

            if (cameraId >= 0) { 

                //open the backFacingCamera 

                //set a picture callback 

                //refresh the preview 

 

                mCamera = Camera.open(cameraId); 

                mPicture = getPictureCallback(); 

                mPreview.refreshCamera(mCamera); 

            } 

        } 

    } 

 

    @Override 

    protected void onPause() { 

        super.onPause(); 

        //when on Pause, release camera in order to be used from other applications 

        releaseCamera(); 

    } 

 

    private boolean hasCamera(Context context) { 

        //check if the device has camera 

        if (context.getPackageManager().hasSystemFeature(PackageManager.FEATURE_CAMERA)) { 

            return true; 

        } else { 

            return false; 

        } 

    } 

 

    private PictureCallback getPictureCallback() { 

        PictureCallback picture = new PictureCallback() { 

 

            @Override 

            public void onPictureTaken(byte[] data, Camera camera) { 

                //make a new picture file 

                File pictureFile = getOutputMediaFile(); 

 

                if (pictureFile == null) { 

                    return; 

                } 

                try { 

                    //write the file 

                    FileOutputStream fos = new FileOutputStream(pictureFile); 

                    fos.write(data); 

                    fos.close(); 

                    Toast toast = Toast.makeText(myContext, "Picture saved: " + pictureFile.getName(), 

Toast.LENGTH_LONG); 

                    toast.show(); 

 

                } catch (FileNotFoundException e) { 

                } catch (IOException e) { 

                } 

 

                //refresh camera to continue preview 

                mPreview.refreshCamera(mCamera); 

            } 

        }; 

        return picture; 

    } 

 

    OnClickListener captrureListener = new OnClickListener() { 

        @Override 

        public void onClick(View v) { 

            mCamera.takePicture(null, null, mPicture); 

        } 

    }; 

 

    //make picture and save to a folder 

    private static File getOutputMediaFile() { 

        //make a new file directory inside the "sdcard" folder 

        File mediaStorageDir = new File("/sdcard/", "JCG Camera"); 

 

        //if this "JCGCamera folder does not exist 

        if (!mediaStorageDir.exists()) { 

            //if you cannot make this folder return 

            if (!mediaStorageDir.mkdirs()) { 

                return null; 

            } 

        } 

 

        //take the current timeStamp 
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        String timeStamp = new SimpleDateFormat("yyyyMMdd_HHmmss").format(new Date()); 

        File mediaFile; 

        //and make a media file: 

        mediaFile = new File(mediaStorageDir.getPath() + File.separator + "IMG_" + timeStamp + ".jpg"); 

 

        return mediaFile; 

    } 

 

    private void releaseCamera() { 

        // stop and release camera 

        if (mCamera != null) { 

            mCamera.release(); 

            mCamera = null; 

        } 

    } 

} 

 
        import java.io.IOException; 

 

        import android.content.Context; 

        import android.hardware.Camera; 

        import android.util.Log; 

        import android.view.SurfaceHolder; 

        import android.view.SurfaceView; 

 

public class CameraPreview extends SurfaceView implements SurfaceHolder.Callback { 

    private SurfaceHolder mHolder; 

    private Camera mCamera; 

 

    public CameraPreview(Context context, Camera camera) { 

        super(context); 

        mCamera = camera; 

        mHolder = getHolder(); 

        mHolder.addCallback(this); 

        // deprecated setting, but required on Android versions prior to 3.0 

        mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS); 

    } 

 

    public void surfaceCreated(SurfaceHolder holder) { 

        try { 

            // create the surface and start camera preview 

            if (mCamera == null) { 

                mCamera.setPreviewDisplay(holder); 

                mCamera.startPreview(); 

            } 

        } catch (IOException e) { 

            Log.d(VIEW_LOG_TAG, "Error setting camera preview: " + e.getMessage()); 

        } 

    } 

 

    public void refreshCamera(Camera camera) { 

        if (mHolder.getSurface() == null) { 

            // preview surface does not exist 

            return; 

        } 

        // stop preview before making changes 

        try { 

            mCamera.stopPreview(); 

        } catch (Exception e) { 

            // ignore: tried to stop a non-existent preview 

        } 

        // set preview size and make any resize, rotate or 

        // reformatting changes here 

        // start preview with new settings 

        setCamera(camera); 

        try { 

            mCamera.setPreviewDisplay(mHolder); 

            mCamera.startPreview(); 

        } catch (Exception e) { 

            Log.d(VIEW_LOG_TAG, "Error starting camera preview: " + e.getMessage()); 

        } 

    } 

 

    public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) { 

        // If your preview can change or rotate, take care of those events here. 

        // Make sure to stop the preview before resizing or reformatting it. 

        refreshCamera(mCamera); 

    } 

 

    public void setCamera(Camera camera) { 

        //method to set a camera instance 

        mCamera = camera; 

    } 

 

    @Override 

    public void surfaceDestroyed(SurfaceHolder holder) { 

        // TODO Auto-generated method stub 

        // mCamera.release(); 

 

    } 
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B.3. GPS access example code 

This code was an introductory look into accessing the GPS sensor. 
package com.shaun.getgpslocation; 

 

import android.app.AlertDialog; 

import android.app.Service; 

import android.content.Context; 

import android.content.DialogInterface; 

import android.content.Intent; 

import android.location.Location; 

import android.location.LocationListener; 

import android.location.LocationManager; 

import android.os.Bundle; 

import android.os.IBinder; 

import android.provider.Settings; 

 

/** 

 * Created by shaun on 10/05/2015. 

 */ 

public class GPSTracker extends Service implements LocationListener { 

 

    private final Context context; 

 

    boolean isGPSEnabled = false; 

    boolean isNetworkEnabled = false; 

    boolean canGetLocation = false; 

 

    Location location; 

 

    double latitude; 

    double longitude; 

 

    private static final long MIN_DISTANCE_CHANGE_FOR_UPDATES = 1; // 1 METER 

    private static final long MIN_TIME_BW_UPDATES = 1000 * 30 * 1; // 30 SECOND 

 

    protected LocationManager locationManager; 

 

    public GPSTracker(Context context) { 

        this.context = context; 

        getLocation(); 

    } 

 

    public Location getLocation() { 

        try { 

            locationManager = (LocationManager) context.getSystemService(LOCATION_SERVICE); 

 

            isGPSEnabled = locationManager.isProviderEnabled(LocationManager.GPS_PROVIDER); 

 

            isNetworkEnabled = locationManager.isProviderEnabled(LocationManager.NETWORK_PROVIDER); 

 

            if (!isGPSEnabled && !isNetworkEnabled){ 

 

            } else { 

                this.canGetLocation = true; 

 

                if (isNetworkEnabled) { 

                    locationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, MIN_TIME_BW_UPDATES, 

MIN_DISTANCE_CHANGE_FOR_UPDATES, this); 

 

 

                    if (locationManager != null) { 

                        location = locationManager.getLastKnownLocation(LocationManager.NETWORK_PROVIDER); 

 

                        if (location != null) { 

                            latitude = location.getLatitude(); 

                            longitude = location.getLongitude(); 

                        } 

                    } 

 

                } 

 

                if (isGPSEnabled) { 

                    if (location == null) { 

                        locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, MIN_TIME_BW_UPDATES, 

MIN_DISTANCE_CHANGE_FOR_UPDATES, this); 

 

                        if (locationManager != null) { 

                            location = locationManager.getLastKnownLocation(LocationManager.GPS_PROVIDER); 

 

                            if (location != null) { 

                                latitude = location.getLatitude(); 

                                longitude = location.getLongitude(); 

                            } 

                        } 

                    } 

                } 

            } 

        } catch (Exception e) { 

            e.printStackTrace(); 

        } 

 

        return location; 

    } 

 

    public void stopUsingGPS() { 

        if (locationManager != null) { 
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            locationManager.removeUpdates(GPSTracker.this); 

        } 

    } 

 

    public double getLatitude() { 

        if (location != null) { 

            latitude = location.getLatitude(); 

        } 

        return latitude; 

    } 

 

    public double getLongitude() { 

        if (location != null) { 

            longitude = location.getLongitude(); 

        } 

        return longitude; 

    } 

 

    public boolean isCanGetLocation() { 

        return this.canGetLocation; 

    } 

 

    public void showSettingsAlert() { 

        AlertDialog.Builder alertDialog = new AlertDialog.Builder(context); 

 

        alertDialog.setTitle("GPS is setting"); 

 

        alertDialog.setMessage("GPS is not enabled. Do you want to go to the settings menu?"); 

 

        alertDialog.setPositiveButton("Settings", new DialogInterface.OnClickListener() { 

            @Override 

            public void onClick(DialogInterface dialog, int which) { 

                Intent intent = new Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS); 

                context.startActivity(intent); 

            } 

        }); 

 

        alertDialog.setNegativeButton("Cancel", new DialogInterface.OnClickListener() { 

            @Override 

            public void onClick(DialogInterface dialog, int which) { 

                dialog.cancel(); 

            } 

        }); 

        alertDialog.show(); 

    } 

 

    @Override 

    public void onLocationChanged(Location location) { 

 

    } 

 

    @Override 

    public void onStatusChanged(String provider, int status, Bundle extras) { 

 

    } 

 

    @Override 

    public void onProviderEnabled(String provider) { 

 

    } 

 

    @Override 

    public void onProviderDisabled(String provider) { 

 

    } 

 

    @Override 

    public IBinder onBind(Intent intent) { 

        return null; 

    } 

} 

 
package com.shaun.getgpslocation; 

 

import android.support.v7.app.ActionBarActivity; 

import android.os.Bundle; 

import android.view.Menu; 

import android.view.MenuItem; 

import android.view.View; 

import android.widget.Button; 

import android.widget.Toast; 

 

 

public class MainActivity extends ActionBarActivity { 

 

    Button btnShowLocation; 

 

    GPSTracker gps; 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

 

        btnShowLocation = (Button) findViewById(R.id.show_location); 

 

        btnShowLocation.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 
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                gps = new GPSTracker(MainActivity.this); 

 

                if (gps.canGetLocation) { 

                    double latitude = gps.getLatitude(); 

                    double longitude = gps.getLongitude(); 

 

                    Toast.makeText(getApplicationContext(), "Your Location is -\nLat: " + latitude + "\nLong: " + 

longitude, Toast.LENGTH_LONG).show(); 

                } else { 

                    gps.showSettingsAlert(); 

                } 

            } 

        }); 

    } 

} 

  

 

B.4. BoofCV LineDetection and colorSegment example code 

Out of the many BoofCV example code segments looked at these Java classes 

provided great  examples for me to investigate. 

import java.awt.image.BufferedImage; 

 

public class ExampleLineDetection { 

 

    // adjusts edge threshold for identifying pixels belonging to a line 

    private static final float edgeThreshold = 25; 

    // adjust the maximum number of found lines in the image 

    private static final int maxLines = 10; 

 

    /** 

     * Detects lines inside the image using different types of Hough detectors 

     * 

     * @param image Input image. 

     * @param imageType Type of image processed by line detector. 

     * @param derivType Type of image derivative. 

     */ 

    public static<T extends ImageSingleBand, D extends ImageSingleBand> 

    void detectLines( BufferedImage image , 

                      Class<T> imageType , 

                      Class<D> derivType ) 

    { 

        // convert the line into a single band image 

        T input = ConvertBufferedImage.convertFromSingle(image, null, imageType ); 

 

        // Comment/uncomment to try a different type of line detector 

        DetectLineHoughPolar<T,D> detector = FactoryDetectLineAlgs.houghPolar( 

                new ConfigHoughPolar(3, 30, 2, Math.PI / 180,edgeThreshold, maxLines), imageType, derivType); 

//    DetectLineHoughFoot<T,D> detector = FactoryDetectLineAlgs.houghFoot( 

//          new ConfigHoughFoot(3, 8, 5, edgeThreshold,maxLines), imageType, derivType); 

//    DetectLineHoughFootSubimage<T,D> detector = FactoryDetectLineAlgs.houghFootSub( 

//          new ConfigHoughFootSubimage(3, 8, 5, edgeThreshold,maxLines, 2, 2), imageType, derivType); 

 

        List<LineParametric2D_F32> found = detector.detect(input); 

 

        // display the results 

        ImageLinePanel gui = new ImageLinePanel(); 

        gui.setBackground(image); 

        gui.setLines(found); 

        gui.setPreferredSize(new Dimension(image.getWidth(),image.getHeight())); 

 

        ShowImages.showWindow(gui,"Found Lines"); 

    } 

 

    /** 

     * Detects segments inside the image 

     * 

     * @param image Input image. 

     * @param imageType Type of image processed by line detector. 

     * @param derivType Type of image derivative. 

     */ 

    public static<T extends ImageSingleBand, D extends ImageSingleBand> 

    void detectLineSegments( BufferedImage image , 

                             Class<T> imageType , 

                             Class<D> derivType ) 

    { 

        // convert the line into a single band image 

        T input = ConvertBufferedImage.convertFromSingle(image, null, imageType ); 

 

        // Comment/uncomment to try a different type of line detector 

        DetectLineSegmentsGridRansac<T,D> detector = FactoryDetectLineAlgs.lineRansac(40, 30, 2.36, true, 

imageType, derivType); 

 

        List<LineSegment2D_F32> found = detector.detect(input); 

 

        // display the results 

        ImageLinePanel gui = new ImageLinePanel(); 

        gui.setBackground(image); 
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        gui.setLineSegments(found); 

        gui.setPreferredSize(new Dimension(image.getWidth(),image.getHeight())); 

 

        ShowImages.showWindow(gui,"Found Line Segments"); 

    } 

 

    public static void main( String args[] ) { 

        BufferedImage input = UtilImageIO.loadImage("../data/evaluation/simple_objects.jpg"); 

 

        detectLines(input,ImageUInt8.class,ImageSInt16.class); 

 

        // line segment detection is still under development and only works for F32 images right now 

        detectLineSegments(input, ImageFloat32.class, ImageFloat32.class); 

    } 

} 

import java.awt.event.MouseAdapter; 

import java.awt.image.BufferedImage; 

 

/** 

 * Example which demonstrates how color can be used to segment an image.  The color space is converted from RGB 

into 

 * HSV.  HSV separates intensity from color and allows you to search for a specific color based on two values 

 * independent of lighting conditions.  Other color spaces are supported, such as YUV, XYZ, and LAB. 

 * 

 * @author Peter Abeles 

 */ 

public class ExampleSegmentColor { 

 

    /** 

     * Shows a color image and allows the user to select a pixel, convert it to HSV, print 

     * the HSV values, and calls the function below to display similar pixels. 

     */ 

    public static void printClickedColor( final BufferedImage image ) { 

        ImagePanel gui = new ImagePanel(image); 

        gui.addMouseListener(new MouseAdapter() { 

            @Override 

            public void mouseClicked(MouseEvent e) { 

                float[] color = new float[3]; 

                int rgb = image.getRGB(e.getX(),e.getY()); 

                ColorHsv.rgbToHsv((rgb >> 16) & 0xFF, (rgb >> 8) & 0xFF, rgb & 0xFF, color); 

                System.out.println("H = " + color[0]+" S = "+color[1]+" V = "+color[2]); 

 

                showSelectedColor("Selected",image,color[0],color[1]); 

            } 

        }); 

 

        ShowImages.showWindow(gui,"Color Selector"); 

    } 

 

    /** 

     * Selectively displays only pixels which have a similar hue and saturation values to what is provided. 

     * This is intended to be a simple example of color based segmentation.  Color based segmentation can be done 

     * in RGB color, but is more problematic due to it not being intensity invariant.  More robust techniques 

     * can use Gaussian models instead of a uniform distribution, as is done below. 

     */ 

    public static void showSelectedColor( String name , BufferedImage image , float hue , float saturation ) { 

        MultiSpectral<ImageFloat32> input = 

ConvertBufferedImage.convertFromMulti(image,null,true,ImageFloat32.class); 

        MultiSpectral<ImageFloat32> hsv = input.createSameShape(); 

 

        // Convert into HSV 

        ColorHsv.rgbToHsv_F32(input,hsv); 

 

        // Euclidean distance squared threshold for deciding which pixels are members of the selected set 

        float maxDist2 = 0.4f*0.4f; 

 

        // Extract hue and saturation bands which are independent of intensity 

        ImageFloat32 H = hsv.getBand(0); 

        ImageFloat32 S = hsv.getBand(1); 

 

        // Adjust the relative importance of Hue and Saturation. 

        // Hue has a range of 0 to 2*PI and Saturation from 0 to 1. 

        float adjustUnits = (float)(Math.PI/2.0); 

 

        // step through each pixel and mark how close it is to the selected color 

        BufferedImage output = new BufferedImage(input.width,input.height,BufferedImage.TYPE_INT_RGB); 

        for( int y = 0; y < hsv.height; y++ ) { 

            for( int x = 0; x < hsv.width; x++ ) { 

                // Hue is an angle in radians, so simple subtraction doesn't work 

                float dh = UtilAngle.dist(H.unsafe_get(x,y),hue); 

                float ds = (S.unsafe_get(x,y)-saturation)*adjustUnits; 

 

                // this distance measure is a bit naive, but good enough for to demonstrate the concept 

                float dist2 = dh*dh + ds*ds; 

                if( dist2 <= maxDist2 ) { 

                    output.setRGB(x,y,image.getRGB(x,y)); 

                } 

            } 

        } 

 

        ShowImages.showWindow(output,"Showing "+name); 

    } 

 

    public static void main( String args[] ) { 

        BufferedImage image = UtilImageIO.loadImage("../data/applet/sunflowers.jpg"); 

 

        // Let the user select a color 

        printClickedColor(image); 

        // Display pre-selected colors 

        showSelectedColor("Yellow",image,1f,1f); 
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        showSelectedColor("Green",image,1.5f,0.65f); 

    } 

} 

import com.sun.javafx.iio.ImageStorage; 

 

import java.awt.image.BufferedImage; 

 

/** 

 * Example demonstrating high level image segmentation interface.  An image segmented using this 

 * interface will have each pixel assigned a unique label from 0 to N-1, where N is the number of regions. 

 * All pixels which belong to the same region are connected.  These regions are also known as superpixels. 

 * 

 * @author Peter Abeles 

 */ 

public class ExampleSegmentSuperpixels { 

 

    /** 

     * Segments and visualizes the image 

     */ 

    public static <T extends ImageBase> 

    void performSegmentation( ImageSuperpixels<T> alg , T color ) 

    { 

        // Segmentation often works better after blurring the image.  Reduces high frequency image components 

which 

        // can cause over segmentation 

        GBlurImageOps.gaussian(color, color, 0.5, -1, null); 

 

        // Storage for segmented image.  Each pixel will be assigned a label from 0 to N-1, where N is the number 

        // of segments in the image 

        ImageSInt32 pixelToSegment = new ImageSInt32(color.width,color.height); 

 

        // Segmentation magic happens here 

        alg.segment(color,pixelToSegment); 

 

        // Displays the results 

        visualize(pixelToSegment,color,alg.getTotalSuperpixels()); 

    } 

 

    /** 

     * Visualizes results three ways.  1) Colorized segmented image where each region is given a random color. 

     * 2) Each pixel is assigned the mean color through out the region. 3) Black pixels represent the border 

     * between regions. 

     */ 

    public static <T extends ImageBase> 

    void visualize( ImageSInt32 pixelToRegion , T color , int numSegments  ) 

    { 

        // Computes the mean color inside each region 

        ImageType<T> type = color.getImageType(); 

        ComputeRegionMeanColor<T> colorize = FactorySegmentationAlg.regionMeanColor(type); 

 

        FastQueue<float[]> segmentColor = new ColorQueue_F32(type.getNumBands()); 

        segmentColor.resize(numSegments); 

 

        GrowQueue_I32 regionMemberCount = new GrowQueue_I32(); 

        regionMemberCount.resize(numSegments); 

 

        ImageSegmentationOps.countRegionPixels(pixelToRegion, numSegments, regionMemberCount.data); 

        colorize.process(color,pixelToRegion,regionMemberCount,segmentColor); 

 

        // Draw each region using their average color 

        BufferedImage outColor = VisualizeRegions.regionsColor(pixelToRegion,segmentColor,null); 

        // Draw each region by assigning it a random color 

        BufferedImage outSegments = VisualizeRegions.regions(pixelToRegion, numSegments, null); 

 

        // Make region edges appear red 

        BufferedImage outBorder = new BufferedImage(color.width,color.height,BufferedImage.TYPE_INT_RGB); 

        ConvertBufferedImage.convertTo(color, outBorder, true); 

        VisualizeRegions.regionBorders(pixelToRegion,0xFF0000,outBorder); 

 

        // Show the visualization results 

        ListDisplayPanel gui = new ListDisplayPanel(); 

        gui.addImage(outColor,"Color of Segments"); 

        gui.addImage(outBorder, "Region Borders"); 

        gui.addImage(outSegments, "Regions"); 

        ShowImages.showWindow(gui,"Superpixels", true); 

    } 

 

    public static void main(String[] args) { 

        BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/berkeley_horses.jpg"); 

//    BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/berkeley_kangaroo.jpg"); 

//    BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/berkeley_man.jpg"); 

//    BufferedImage image = UtilImageIO.loadImage("../data/applet/segment/mountain_pines_people.jpg"); 

//    BufferedImage image = UtilImageIO.loadImage("../data/applet/particles01.jpg"); 

 

        // Select input image type.  Some algorithms behave different depending on image type 

        ImageType<MultiSpectral<ImageFloat32>> imageType = ImageStorage.ImageType.ms(3, ImageFloat32.class); 

//    ImageType<MultiSpectral<ImageUInt8>> imageType = ImageType.ms(3,ImageUInt8.class); 

//    ImageType<ImageFloat32> imageType = ImageType.single(ImageFloat32.class); 

//    ImageType<ImageUInt8> imageType = ImageType.single(ImageUInt8.class); 

 

//    ImageSuperpixels alg = FactoryImageSegmentation.meanShift(null, imageType); 

//    ImageSuperpixels alg = FactoryImageSegmentation.slic(new ConfigSlic(400), imageType); 

        ImageSuperpixels alg = FactoryImageSegmentation.fh04(new ConfigFh04(100,30), imageType); 

//    ImageSuperpixels alg = FactoryImageSegmentation.watershed(null,imageType); 

 

        // Convert image into BoofCV format 

        ImageBase color = imageType.createImage(image.getWidth(),image.getHeight()); 

        ConvertBufferedImage.convertFrom(image, color, true); 

 

        // Segment and display results 
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        performSegmentation(alg,color); 

    } 

}  
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Appendix C Row identification machine vision 

Android code 

This appendix contains source code used to develop the machine vision application 

C.1. Android manifest - AndroidManifest.xml 

<?xml version="1.0" encoding="utf-8"?> 

<manifest xmlns:android="http://schemas.android.com/apk/res/android" 

        package="org.shaun.machinevision.android" 

        android:versionCode="1" 

        android:versionName="1.0"> 

 

   <uses-sdk android:minSdkVersion="10" android:targetSdkVersion="17" /> // Android version targets 

 

   <uses-permission android:name="android.permission.CAMERA" /> // Request permission for Camera access 

   <uses-feature android:name="android.hardware.camera" android:required="true" /> // a device with a camera is 

required 

   <uses-feature android:name="android.hardware.camera.autofocus" android:required="true" /> // camera autofocus 

is required 

 

   <application android:label="@string/app_name" android:icon="@drawable/ic_launcher"> // resources app_name in 

string.xml and app icon in drawables 

      <activity android:name="org.shaun.machinevision.android.Row_Follow_Main" 

              android:screenOrientation="landscape" 

              android:label="@string/app_name"> //Set main activity activities properties 

         <intent-filter> 

            <action android:name="android.intent.action.MAIN"/> 

            <category android:name="android.intent.category.LAUNCHER"/> 

         </intent-filter> //set the intent-filter properties for the main activity 

      </activity> 

   </application> 

</manifest> 

C.2. Main activity - Row_Follow_Main.java 

/* 

 * This file creates a cameraPreview object containing video information from the android device.  The format of 

the 

 * video is changed before being put through an algorithm that identifies crop rows using a small segment of 

pixels 

 * located in a ViewWindow segment of the cameraPreview image.  Image is then annotated with system data before 

being 

 * converted back to a Bitmap image that is displayed on the device screen. 

 * . 

 * 

 * Author: Shaun Field 

 * Date: 09/2015 

 */ 

 

 

package org.shaun.machinevision.android; // Specify package name 

 

import android.app.Activity; 

import android.app.AlertDialog; 

import android.app.AlertDialog.Builder; 

import android.content.DialogInterface; 

import android.content.DialogInterface.OnClickListener; 

import android.graphics.Bitmap; 

import android.graphics.Canvas; 

import android.graphics.Paint; 

import android.graphics.Bitmap.Config; 

import android.graphics.Paint.Style; 

import android.graphics.Color; 

import android.hardware.Camera; 

import android.hardware.Camera.CameraInfo; 

import android.hardware.Camera.Size; 

import android.os.Bundle; 

import android.view.SurfaceView; 

import android.view.Window; 

import android.widget.FrameLayout; 

import java.util.ArrayList; 

import java.util.List; 

 

//External Libraries 

import boofcv.android.ConvertBitmap; //Used for storage area and converts image to bitmap 

import boofcv.android.ConvertNV21; // Converts cameraPreview NV21 to alternative formats 

import boofcv.struct.image.ImageUInt8;//Used to create unsigned 8bit Images 

import boofcv.struct.image.MultiSpectral;//Used to create multispectral images 

/** 

 * The Row_Follow_Main class takes a camera preview from an android device, performs some image processing, and 

outputs 

 * results onto the display.  The requested cameraPreview resolution of 320x240 at the default 30 fps 

 */ 
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public class Row_Follow_Main extends Activity implements Camera.PreviewCallback { 

 

    //CONSTANTS 

    static int CAMERA_WIDTH=320; // Sets 320 pixels as the Camera width 

    static int CAMERA_HEIGHT=240; // Sets 240 pixels as the Camera height 

    int VIEWPORT_HEIGHT=80; // Constant viewport height for algorithm calculations 

    int VIEWPORT_WIDTH=30; // Constant viewport width for algorithm calculations 

    double VIEWPORT_PLANT_PROPORTION = 0.4; // Constant percentage of plant in the viewport for adgustment of the 

threshold level 

    double X_TOLERANCE = 0.2; // Sets constant tolerance level based on percentage of screen width. used for 

vanishingPoint and slope 

 

    //Variables 

    private Visualization mDraw; // Initialised in Constructor.  Visualisation is an inner class to allow 

annotations on the video output 

    private CameraPreview mPreview; // Initialised in Constructor. Creates the CameraPreview object to store the 

camera video data 

    private final Object lockOutput = new Object(); //For synchronization because two threads have access to the 

same output canvas 

    private Bitmap output; // bitmap used to output the image 

    private Camera mCamera; // create the Camera Object assigned value during setupApp method 

 

    private Canvas mCanvas; // Canvas for drawing on bitmap created in setupApp method 

    private Paint windowPaint, fitLinePaint; // paint for windows and fitline created in setupApp method 

    private MultiSpectral<ImageUInt8> specImg; // MultiSpectral image used to process videofeed image created in 

setupApp method 

 

    private ProcessingThread thread; //Image processing Thread created in setupApp method 

 

    //Math variables used for processing calculations 

    private int viewPortLeft, viewPortTop, viewPortRight, viewPortBottom; // viewPort boundaries 

    private int windowCentreX; // window and view port centre x-coordinate value 

    private int thresholdLevel; // holds value for the threshold level. 

    private double quality; // holds quality value 

 

    double fitmean, fitslope; 

    private int good, bad; 

    int horizon; 

    private String  writeScreen, writeScreen2, writeScreen3; 

    private boolean drawline; 

    private byte[] processByte; 

    private byte[] storage; //Storage area when converting between CameraPreview and formatting data type 

    private final Object lockPic = new Object();// Synchronisation objects 

    boolean flipHorizontal; //Sets orientation for camera 

 

    // Constructor to request the window view and set layout. 

    // Initialise Visualisation mDrae, CameraPreview mPreview 

    // Create FrameLayout preview and add mDraw and mPreview objects 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        requestWindowFeature(Window.FEATURE_NO_TITLE); 

        setContentView(R.layout.video); 

        mDraw = new Visualization(this); 

        mPreview = new CameraPreview(this,this,true); 

        FrameLayout preview = (FrameLayout) findViewById(R.id.camera_preview); 

        preview.addView(this.mPreview); 

        preview.addView(this.mDraw); 

    } 

 

    //run SetUpApp method when onResume is called 

    @Override 

    protected void onResume() { 

        super.onResume(); 

        this.setUpApp(); 

    } 

 

    //all the actions needed when the camera is paused 

    @Override 

    protected void onPause() { 

        super.onPause(); 

        if (mCamera != null){ 

            mPreview.setCamera(null); 

            mCamera.setPreviewCallback(null); 

            mCamera.stopPreview(); 

            mCamera.release(); 

            mCamera = null; 

            thread.stopThread(); 

            thread = null; 

        } 

    } 

 

    // Sets up the Camera and Init all other variables 

    private void setUpApp() { 

 

        //Setup camera and resolution 

        mCamera = Camera.open(); //Selects and opens the back facing camera by default. 

        Camera.Parameters param = mCamera.getParameters(); //Get camera parameters 

        param.setPreviewSize(CAMERA_WIDTH, CAMERA_HEIGHT);// Set the resolution size to 320x240 

        mCamera.setParameters(param); //apply the resolution settings 

 

        //Setup the canvas and paints and drawline for annotation 

        mCanvas = new Canvas(); 

        windowPaint = new Paint(); 

        windowPaint.setColor(Color.BLUE); 

        windowPaint.setStyle(Style.STROKE); 

        fitLinePaint = new Paint(); 

        fitLinePaint.setColor(Color.RED); 

        fitLinePaint.setStyle(Style.STROKE); 

        drawline =false; 
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        // Setup image variables 

        // MultiSpectral holds a ImageUInt8 object for each R,G,B spectrum for each pixel in the image 

        // Bitmap.createBitmap makes a Bitmap with 4 bytes per pixel capable of holding 4 8 bit channels. used 

for RGB 

        // ConvertBitmap.declareStorage creates a byte[] used to store the input Bitmap image 

        specImg = new MultiSpectral<ImageUInt8>(ImageUInt8.class, CAMERA_WIDTH, CAMERA_HEIGHT,3); // a BoofCV 

class To hold RGB image 

        output = Bitmap.createBitmap(CAMERA_WIDTH, CAMERA_HEIGHT, Config.ARGB_8888); //Config.ARGB_8888=4 byte 

Bitmap image 

        storage = ConvertBitmap.declareStorage(output, storage); // a BoofCV class to create a byte array 

 

        // Setup fixed viewPort VIEWPORT_HEIGHT x VIEWPORT_WIDTH pixels at the centre of the screen 

        // Horizon is a horizontal line position 1/5 from the top of the screen 

        // viewPortBottom is a horizontal line position 4/5 from the top of the screen 

        // viewPortTop is a horizontal line position VIEWPORT_HEIGHT pixels above viewPortBottom 

        horizon =(int) (CAMERA_HEIGHT*0.2); //Int used to calculate the vanishingPoint and viewport.  line on 

bottom 20% of screen 

        thresholdLevel = 128; // Sets the threshold level.  This currently doesn't change 

        quality = 0; // Sets the starting quality to 0 

        viewPortBottom = horizon *4; // the y-coordinate pixel value for the bottom of the ViewPort 

        viewPortTop = viewPortBottom -VIEWPORT_HEIGHT; //the y-coordinate pixel value for the top of the ViewPort 

        viewPortLeft = CAMERA_WIDTH/2-VIEWPORT_WIDTH/2; //the x-coordinate pixel value for the left of the 

ViewPort 

        viewPortRight = CAMERA_WIDTH/2+VIEWPORT_WIDTH/2;  //the x-coordinate pixel value for the right of the 

ViewPort 

        windowCentreX =CAMERA_WIDTH/2; //the x-coordinate pixel value for the viewPort and the entire screen 

 

        //create and start the processing thread and start video feed 

        thread = new ProcessingThread(); 

        thread.start(); // start image processing thread 

        mPreview.setCamera(mCamera); //Start the video feed 

    } 

 

    //Method to process every new frame from the camera 

    @Override 

    public void onPreviewFrame(byte[] bytes, Camera camera) { 

        synchronized (lockPic) { 

            this.processByte = bytes; 

        } 

        thread.interrupt(); 

    } 

 

    // Creates inner Visualization class containing an Activity variable. 

    // This class creates the darwable window on the CameraPreview to allow annotations 

    // The constructor sets the Activity variable. 

    // setWillNotDraw method must also be set to false or the Draw method will not be called 

    private class Visualization extends SurfaceView { 

        Activity activity; 

        public Visualization(Activity context ) { 

            super(context); 

            activity = context; 

            setWillNotDraw(false); 

        } 

 

        //This method takes a canvas as an input alters the size and shape and positions it. 

        //drawBitmap takes the output.bmp and places it's top left corner at co-ordinates 0,0 on the canvas.  The 

null 

        // refers to the Paint value which in this case is null 

        //It must be synchronized because two threads have access to the output canvas 

        @Override 

        protected void onDraw(Canvas canvas){ 

            synchronized (lockOutput) { 

                int w = canvas.getWidth(); 

                int h = canvas.getHeight(); 

                double scaleX = w/(double) output.getWidth(); 

                double scaleY = h/(double) output.getHeight(); 

                double scale = Math.min(scaleX,scaleY); 

                double tranX = (w-scale* output.getWidth())/2; 

                double tranY = (h-scale* output.getHeight())/2; 

                canvas.translate((float)tranX,(float)tranY); 

                canvas.scale((float)scale,(float)scale); 

                canvas.drawBitmap(output,0,0,null); 

            } 

        } 

    } 

 

    //Image processing thresd 

    public class ProcessingThread extends Thread { 

 

        //Variables for this class 

        volatile boolean stopRequested; //Holds the stop request flag 

        volatile boolean running; //Holds the running thread flag 

        private float lineStartX,lineStartY,lineEndX,lineEndY; // start and end x and y coordinates for drawing 

regression line 

        double VanishingPointx; //Vanishing Point variable 

        double snew, slopeLimit, vanishPointLimit; // variables for slope and vanishing point boundaries 

        double qualityMin; //Variables for minimum quality value 

        double averagePlantPix;// holds plant density for viewport 

        ArrayList<Integer> mxyList = new ArrayList<Integer>(); //List for holding plant coordinates 

        MultiSpectral<ImageUInt8> viewport; 

        // Stops thread method 

        public void stopThread() { 

            this.stopRequested = true; 

            while(this.running) { 

                thread.interrupt(); 

                Thread.yield(); 

            } 

        } 
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        //limit method to return greatest value 

        private double limit (double v, double bound) { 

            if (v>bound) { 

                return bound; 

            } else { 

                if (v<-bound) { 

                    return -bound; 

                } else { 

                    return v; 

                } 

            } 

        } // End limit class 

 

        //sgn method for returning 1,-1 or 0 

        private int sgn(double num) { 

            if (num>0) { 

                return 1; 

            } else { 

                if (num<0) { 

                    return -1; 

                } else { 

                    return 0; 

                } 

            } 

        } // End sgn class 

 

        //fit function to calculate xfit and sfit corrections 

        public void fit() { 

            double pixelX,pixelY; 

            double m; //total pixel count 

            double mx,mxx; //mx=total horizontal moment about the view window centre line; mxx=the second moment 

            double my, myy, mxy, mxxfit; //my=mx but verticle, myy=mxx but verticle 

            double denom;//denominator variable 

            double mxx0=0; //second moment for  viewport 

 

            // initialise variables 

            mx=0; my=0; myy=0; mxy=0; mxx=0; mxxfit=0; 

            //calculate the second moment for the viewport 

            for(int i=1;i<viewport.width/2;i++) { 

                mxx0+=i^2*viewport.height; 

            } 

            mxx0=mxx0*2; 

 

            m=mxyList.size()/2;//Total plant pixels 

            //loop through pixels to collect data list is (x,y,x,y...etc) 

            for(int i=0;i<mxyList.size();i+=2) { 

                //extract first 2 x and y coords where pixelX, pixelY are pixel coordinates from the main image 

green 

                // pixels and not the viewport image coordinates 

                // pixelX range is now -35 to +35 

                pixelX=mxyList.get(i)-windowCentreX; 

                pixelY=mxyList.get(i+1); 

                // This calculates the linear regression correction data 

                mx += pixelX; // add pixelX to mx 

                mxx += pixelX * pixelX; // add pixelX^2 to mxx 

                mxy += pixelX * pixelY; // add pixelX*pixelY to mxy 

                my += pixelY; // add pixelY to my 

                myy += pixelY * pixelY; // add pixelY^2 to myy 

            } //end list of pixels for loop 

 

            //Below are calculations for fitmean and fitslope 

            denom = m*myy-my*my; // denominator to calculate fitmean and fitslope 

            //make sure there are sufficient values to make the calculations 

            if(denom>10 && m>20){ 

                fitmean =(mx*myy-mxy*my)/denom; //calculate fitmean 

                fitslope =(m*mxy-mx*my)/denom; //calculate fitslope 

                mxxfit=mxx+m* fitmean * fitmean +myy* fitslope * fitslope -2* fitmean *mx; 

                mxxfit+= -2* fitslope *mxy+2* fitslope * fitmean *my; //calculate new second moment 

                quality =mxxfit/mxx0; // compare old second moment to new second moment to get quality value 

            } else { 

                quality =0.1; // set quality to low 

            } 

        } // end of fit method 

 

        //Assess viewwindow 

        public void assess() { 

 

            //Declare variables 

            double fitmeanNew, fitslopeNew; // stores the new corection data 

            double viewportCentrex,viewportSlope; //stores the Viewport centre x value and slope value 

            double TempFitx, TempFitslope; 

            good =0; //Counter to check for a good fit 

            fitmeanNew=0; 

            fitslopeNew=0; 

            averagePlantPix =((mxyList.size())/(VIEWPORT_HEIGHT*VIEWPORT_WIDTH));//Calculates the plant density 

for the viewport 

 

            //Set up for one viewport in the centre. 

            viewportSlope = 0; //because viewport is in the centre of the window the slope should be 0 

            viewportCentrex = VanishingPointx + windowCentreX - horizon * viewportSlope;  //This is the x-

coordinate for viewport centre 

            fit(); // run the fit method to check for the line of fit answers held in global variables fitmean, 

fitslope, quality 

 

            TempFitx = fitmean + viewportCentrex; //store TempFitx 

            TempFitslope = fitslope + viewportSlope; //store TempFitslope 

            //if quality value is > 4 

            if (quality > qualityMin) { 

                //X and Y calues used for drawing the regression line 

                lineStartY =0; 
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                lineEndY = 240; 

                lineStartX = (float) (TempFitx+ lineStartY *TempFitslope); //startx value = my+xfit 

                lineEndX = (float) (TempFitx+ lineEndY *TempFitslope); //endx value = my+xfit 

                good += 1; 

                fitmeanNew += fitmean; 

                fitslopeNew += fitslope; 

                drawline =true; 

            } 

            //Threshold Adjustement 

            if(averagePlantPix<VIEWPORT_PLANT_PROPORTION){ 

                thresholdLevel++; 

            } else { 

                thresholdLevel--; 

            } 

            //Add new correction data if fix is good 

            if (good >0) { 

                fitslopeNew= limit(fitslopeNew / 2, X_TOLERANCE); 

                // the following are the corrections to be made 

                fitmeanNew= limit(fitmeanNew / 2, 4); 

                double newVanishPointx =fitmeanNew+ horizon *fitslopeNew+ VanishingPointx; //this is the new 

vanishing point 

                newVanishPointx = limit(newVanishPointx/2,4); //set newVanishPointx limit 

                snew = fitslopeNew; 

                if(Math.abs(newVanishPointx - (horizon - VIEWPORT_HEIGHT/2) * snew)< vanishPointLimit && 

Math.abs(fitslopeNew)< slopeLimit) { 

                    bad =0; 

                    VanishingPointx = newVanishPointx; 

                } 

            } else { 

                bad++; 

                if(bad >10) { 

                    VanishingPointx = VanishingPointx *0.9; 

                } 

            } 

        } //assess finished 

 

        // run method to start 

        @Override 

        public void run() { 

            //initialise variables 

            running=true; // Flag to say this thread is running 

            VanishingPointx =0; // Set the vanishing point to 0 

            vanishPointLimit =X_TOLERANCE*CAMERA_WIDTH;//Sets the limit of the vanishing point to 0.2x320= 

            slopeLimit =X_TOLERANCE;//sets the slope limit to 0.2 

            qualityMin =4.0;// sets minimum quality value to 4 

            while( !this.stopRequested) { 

 

                // Sleeps thread until it is told to do some work 

                synchronized ( Thread.currentThread() ) { 

                    try { 

                        this.wait(); 

                    } catch (InterruptedException ignored) {} 

                } 

                mxyList.clear();//Clear all previous pixel results for every new frame 

                lineEndY = 0; // so values don't continually add to old values 

                lineStartY = 0; // so values don't continually add to old values 

                //sync locks and process image data 

                synchronized (lockPic) { 

                    // subwindow size 30x80 

                    ConvertNV21.nv21ToMsRgb_U8(processByte, specImg.width, specImg.height, specImg);//Convert 

processByte NV21 to RGB 

                    viewport = specImg.subimage((int) viewPortLeft, (int) viewPortTop, (int) viewPortRight, (int) 

viewPortBottom, null); // create viewPort subimage 

                    //Below code loops through pixels in viewPort and checks for greenness to identify it as a 

plant plant pixels are stored. 

                    for (int y = 0; y < viewport.getHeight(); y++) { 

                        for (int x = 0; x < viewport.getWidth(); x++) { 

                            // A pixel is a plant if its Green band is > the threshold level. threshold=128; 

                            // Plant pixels are stored in mxyList for further processing. 

                            //Plant pixels are turned red and non-plant are turned blue 

                            if (255-viewport.getBand(1).get(x, y) > thresholdLevel) { 

                                viewport.getBand(0).set(x,y,0); //Set red to 0 

                                viewport.getBand(1).set(x,y,0); //Set Green to 0 

                                viewport.getBand(2).set(x,y,255); //Set Blue 255 

                            } else { 

                                mxyList.add(x+(int) viewPortLeft); //add x coordinate to list 

                                mxyList.add(y+(int) viewPortTop); //add y coordinate to list 

                                viewport.getBand(0).set(x,y,255); //Set Red to 255 

                                viewport.getBand(1).set(x,y,0);//Set Green to 0 

                                viewport.getBand(2).set(x,y,0);//Set Blue to 0 

                            } // end if  green pixel 

                        } // end x pixel loop for subwindow 

                    } // end y pixel loop for subwindow 

 

                    //put the viewport window through the row follow algorithm by calling the assess method 

                    assess(); 

 

                    //3 decimal places conversion for displaying value for messages output to screen 

                    fitmean = fitmean *1000; 

                    fitmean = Math.round(fitmean); 

                    fitmean = fitmean /1000; 

                    fitslope = fitslope *1000; 

                    fitslope = Math.round(fitslope); 

                    fitslope = fitslope /1000; 

                    quality = quality *1000; 

                    quality = Math.round(quality); 

                    quality = quality /1000; 

                    VanishingPointx = VanishingPointx *1000; 

                    VanishingPointx =Math.round(VanishingPointx); 

                    VanishingPointx = VanishingPointx /1000; 
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                    //Messages to output to screen 

                    //Standard output correction data 

                    writeScreen = "X_alignment= "+ fitmean +"  Slope_alignment "+ fitslope; 

                    writeScreen2 = "Quality= "+ quality; 

                    writeScreen3 = "Vanishing_Point = "+ VanishingPointx; 

 

                    /* Uncomment to //Print Threshold data to screen 

                    writeScreen = "Plant Pixels = "+(mxyList.size())+"  Viewport pixels "+ 

VIEWPORT_HEIGHT*VIEWPORT_WIDTH; 

                    writeScreen2 = "Plant Density = "+ averagePlantPix*100+"%"; 

                    writeScreen3 = "Threshold = "+ thresholdLevel; 

                    */ 

                } 

 

                // lock the output and write to output screen 

                synchronized (lockOutput) { 

                    ConvertBitmap.multiToBitmap(specImg, output, storage);// Converts specImg to output using 

storage array 

                    mCanvas.setBitmap(output);//Set frame Bitmap as Canvas background 

                    //write text to screen 

                    mCanvas.drawText(writeScreen, 5, 10, windowPaint); 

                    mCanvas.drawText(writeScreen2, 5, 20, windowPaint); 

                    mCanvas.drawText(writeScreen3, 5, 30, windowPaint); 

                    //draw regression line if Quality is > 4 

                    if(drawline) { 

                        mCanvas.drawLine(lineStartX, lineStartY, lineEndX,lineEndY, fitLinePaint); //Draw 

regression line on Canvas 

                        drawline =false; //Set drawline flag to false 

                    } 

                    //draw viewPort outline onto canvas 

                    mCanvas.drawRect(viewPortLeft, viewPortTop, viewPortRight, viewPortBottom, windowPaint); 

                } 

                //output Canvas to screen 

                mDraw.postInvalidate(); // Called to update the GUI with the news display 

            } 

            this.running = false; 

        } 

    } 

} 

C.3. CameraPreview.java class 

/* 

 * This file creates accesses the android camera and makes the camera preview have the same resolution as the 

camera  

 * input resolution.  This class is built on reccomendations and program testing carried out by BoofCV. 

 * 

 * BoofCV (http://boofcv.org) is an open source Java machine vision library that is Licensed under the Apache 

License 

 * Version 2.0 avaliable from http://www.apache.org/licenses/LICENSE-2.0f 

 * 

 * Author: Shaun Field 

 * Date: 09/2015 

 */ 

 

package org.shaun.machinevision.android; 

 

import android.content.Context; 

import android.hardware.Camera; 

import android.hardware.Camera.PreviewCallback; 

import android.hardware.Camera.Size; 

import android.util.Log; 

import android.view.SurfaceHolder; 

import android.view.SurfaceView; 

import android.view.View; 

import android.view.ViewGroup; 

import static android.view.SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS; 

 

public class CameraPreview extends ViewGroup implements SurfaceHolder.Callback { 

   //Declare variable 

   private final String logMessageString; 

   SurfaceView mSurfaceView; 

   SurfaceHolder mHolder; 

   Camera mCamera; 

   PreviewCallback previewCallback; 

   boolean hidden; 

 

   // The constructor for the CameraPreview object 

   public CameraPreview(Context context, PreviewCallback previewCallback, boolean hidden ) { 

      // make the CameraPreview variables equal the passed in variables 

      super(context); 

      logMessageString = "CameraPreview Initialised"; 

      this.previewCallback = previewCallback; 

      this.hidden = hidden; 

      mSurfaceView = new SurfaceView(context); 

      addView(mSurfaceView); 

      //Callback for create and destroy notifications 

      mHolder = mSurfaceView.getHolder(); 

      mHolder.addCallback(this); 

      mHolder.setType(SURFACE_TYPE_PUSH_BUFFERS); 

   } 

 

   //Create and set the camera instance 

   public void setCamera(Camera camera) { 

      mCamera = camera; 
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      // if there is no camera object then create one 

      if (mCamera != null) { 

         startPreview(); 

         requestLayout(); 

      } 

   } 

 

   //This method hides/unhides the video Preview and sets the size 

   @Override 

   protected void onMeasure(int widthIn, int heightIn) { 

      int width,height; 

      if(hidden) { 

         width=height=2; 

      } else { 

         width = View.resolveSize(getSuggestedMinimumWidth(), widthIn); 

         height = View.resolveSize(getSuggestedMinimumHeight(), heightIn); 

      } 

      setMeasuredDimension(width, height); 

   } 

 

   // Sets the cameraPreview layout 

   @Override 

   protected void onLayout(boolean changed, int left, int top, int right, int bottom) { 

      if(this.mCamera == null ) 

         return; 

      if (changed && this.getChildCount() > 0) { 

         View child = this.getChildAt(0); 

         int width = right - left; 

         int height = bottom - top; 

         Size size = this.mCamera.getParameters().getPreviewSize(); 

         int previewWidth = size.width; 

         int previewHeight = size.height; 

         // Center the layout 

         if (width * previewHeight > height * previewWidth) { 

            int scaledChildWidth = previewWidth * height / previewHeight; 

            left = (width - scaledChildWidth) / 2; 

            top = 0; 

            right = (width + scaledChildWidth) / 2; 

            bottom = height; 

         } else { 

            int scaledChildHeight = previewHeight * width / previewWidth; 

            left = 0; 

            top = (height - scaledChildHeight) / 2; 

            right = width; 

            bottom = (height + scaledChildHeight) / 2; 

         } 

         child.layout(left,top,right,bottom); 

      } 

   } 

 

   //called to begin the CameraPreview 

   protected void startPreview() { 

      try { 

         mCamera.setPreviewDisplay(this.mHolder); 

         mCamera.setPreviewCallback(this.previewCallback); 

         mCamera.startPreview(); 

      } catch (Exception e){ 

         Log.d(logMessageString, "Error starting camera preview: " + e.getMessage()); 

      } 

   } 

 

   //called to restart preview if there is a change in the Camera object 

   @Override 

   public void surfaceCreated(SurfaceHolder holder) { 

      if (mCamera == null) { 

         Log.d(logMessageString, "Camera is null.  Bug else where in code. "); 

         return; 

      } 

      this.startPreview(); 

   } 

 

 

   @Override 

   public void surfaceDestroyed(SurfaceHolder holder) {} 

   @Override 

   public void surfaceChanged(SurfaceHolder holder, int format, int w, int h) {} 

} 
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Appendix D Testing code 

This section contains code segments used during application testing 

D.1. Testing code segments. 

The code in this Appendix shows some of the changes to the main program for testing 

purposes. 

Test Code 

Video 

stream 

access 

This code covers some of the Video Stream formats tested during 

development 
private ImageUInt8 gray1,gray2;// 8 bit unsigned int 

private ImageSInt16 derivX,derivY; //16 bit signed int 

ImageFloat32 image = new ImageFloat32(100,150);// 32 bit float 

ConvertNV21.nv21ToMsYuv_U8(processByte,mspc1.width,mspc1.height,specImg);//YUV image 

ConvertNV21.nv21ToGray(bytes,gray1.width,gray1.height,gray1); //grey scale image 

 

Row 

Accuracy 

This code covers the 5 test scenarios for Row Accuracy in section 

6.5.1 .  In order to get the pixels in the correct places the following 

code was input where the plant pixels are identified during the x,y, 

for loop of the viewport 

Scenario 1 Straight 
if (x>10 || x<20) { 

    viewport.getBand(0).set(x,y,0); //Set red to 0 

    viewport.getBand(1).set(x,y,0); //Set Green to 0 

    viewport.getBand(2).set(x,y,255); //Set Blue 255 

} else { 

    mxyList.add(x+(int) viewPortLeft); //add x coordinate to list 

    mxyList.add(y+(int) viewPortTop); //add y coordinate to list 

    viewport.getBand(0).set(x,y,255); //Set Red to 255 

    viewport.getBand(1).set(x,y,0);//Set Green to 0 

    viewport.getBand(2).set(x,y,0);//Set Blue to 0 

} // end if  green pixel 

Scenario 2 Right 
if (x>0 || x<10) { 

    viewport.getBand(0).set(x,y,0); //Set red to 0 

    viewport.getBand(1).set(x,y,0); //Set Green to 0 

    viewport.getBand(2).set(x,y,255); //Set Blue 255 

} else { 

    mxyList.add(x+(int) viewPortLeft); //add x coordinate to list 

    mxyList.add(y+(int) viewPortTop); //add y coordinate to list 

    viewport.getBand(0).set(x,y,255); //Set Red to 255 

    viewport.getBand(1).set(x,y,0);//Set Green to 0 

    viewport.getBand(2).set(x,y,0);//Set Blue to 0 

} // end if  green pixel 

 

Scenario 3 left 
if (x>20 || x<10) { 

    viewport.getBand(0).set(x,y,0); //Set red to 0 

    viewport.getBand(1).set(x,y,0); //Set Green to 0 

    viewport.getBand(2).set(x,y,255); //Set Blue 255 

} else { 

    mxyList.add(x+(int) viewPortLeft); //add x coordinate to list 

    mxyList.add(y+(int) viewPortTop); //add y coordinate to list 

    viewport.getBand(0).set(x,y,255); //Set Red to 255 

    viewport.getBand(1).set(x,y,0);//Set Green to 0 

    viewport.getBand(2).set(x,y,0);//Set Blue to 0 

} // end if  green pixel 

 

Scenario 4 clockwise 
if (x=14 && y<40 || x=16 && y>40) { 

    mxyList.add(x+(int) viewPortLeft); //add x coordinate to list 

    mxyList.add(y+(int) viewPortTop); //add y coordinate to list 

    viewport.getBand(0).set(x,y,255); //Set Red to 255 

    viewport.getBand(1).set(x,y,0);//Set Green to 0 

    viewport.getBand(2).set(x,y,0);//Set Blue to 0 

} // end if  green pixel 
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Scenario 1 anti-clockwise 
if (x=14 && y>40 || x=16 && y<40) { 

    mxyList.add(x+(int) viewPortLeft); //add x coordinate to list 

    mxyList.add(y+(int) viewPortTop); //add y coordinate to list 

    viewport.getBand(0).set(x,y,255); //Set Red to 255 

    viewport.getBand(1).set(x,y,0);//Set Green to 0 

    viewport.getBand(2).set(x,y,0);//Set Blue to 0 

} // end if  green pixel 

 

 

Processor 

Speed 

This code covers the test code for the processor tests undertaken in 

section 6.5.2 for the Processor max, min, and average speeds 

This is the test Code for the test with a start-up delay 

This code is at the top of the threadProcess class 
while( !this.stopRequested) { 

    long startTimer = System.currentTimeMillis(); 

And this code is at the bottom of the class 
timerCount++; 

long stopTimer = System.currentTimeMillis(); 

 

if(timerCount>150) { 

    timerCount2++; 

    totalProcessTime += stopTimer - startTimer;//Thread average timer 

    if ((stopTimer - startTimer) < minProcessTime) 

        minProcessTime = stopTimer - startTimer; 

    if ((stopTimer - startTimer) > maxProcessTime) 

        maxProcessTime = stopTimer - startTimer; 

    //Messages to output to screen 

    //Standard output correction data 

    writeScreen = "Process Time total = "+ totalProcessTime +",  Average = "+ 

totalProcessTime/timerCount2; 

    writeScreen2 = "Max = "+ maxProcessTime; 

    writeScreen3 = "Min = "+ minProcessTime; 

} else { 

    //Messages to output to screen 

    //Standard output correction data 

    writeScreen = "Process Time total wait 5 second"; 

    writeScreen2 = "Max = "; 

    writeScreen3 = "Min = "; 

} 

 

 


