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ABSTRACT 

The cost effective design of Mining Haul Roads is critical to the successful operation 

of all open cut mines within Australian and around the world.  These mines rely 

heavily on the haul road network to transport run of mine (ROM) material.  

However, haul roads are often under-designed and seldom constructed and 

maintained to a standard that minimises total cost. 

Theoretical methods of Queensland haul road design including pavement design, 

geometric design and functional design were researched and documented.  Using 

design and as-constructed information obtained from mine sites an analysis was 

undertaken to determine how different methods of pavement designs presented 

different configurations.  These configurations were run through CIRCLY to 

calculate the pavement deflection under the vehicle.  The calculated deflection was 

then utilised in an attempt to calculate rolling resistance and the effect on fuel 

consumption. 

However the static deflection data produced by CIRCLY was not suitable to use in 

determining the component of rolling resistance that can be attributed to pavement 

configuration.  Therefore different methods of pavement design were analysed to 

determine their maximum deflection / deformation under similar load conditions. 

Designing for minimal surface deflection would suggest that the optimal method to 

determine cover to subgrade is either Ahlvins Formula with Austroads Sublayering, 

Ahlvin’s Method with Austroad Sublayering and improved subgrade, or cement 

modifying the base materials.  All of these methods will produce an adequate design 

while being comparatively costs effective.   

However it should be noted that none of the methods used achieved deflections near 

that suggested by Thompson of 3mm (Thompson 2011b) or Tannant and 

Regensburgs 6-8mm (Tannant & Regensburg 2001).  So that irrespective of the 

method used the rolling resistance will be more than desired.  Therefore further 

onsite testing is required to justify which method produces the least deflection and 

hence rolling resistance in a practical sense.  
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GLOSSARY (Sharp & Milne 2008) 

Aggregate - A material composed of discrete mineral particles of specified size or 

size distribution, produced from sand, gravel, rock or metallurgical slag, using one or 

more of the following processes: selective extraction, screening, blasting or crushing. 

Anisotropic - A material which has properties that vary in different directions. 

Austroads - The association of Australian and New Zealand road transport and 

traffic authorities whose purpose is to contribute to the achievement of improved 

road transport outcomes. 

Axle - One or more shafts, positioned in a line across a vehicle, on which one or 

more wheels intended to support the vehicle turn. 

Axle Loads - That portion of the total vehicle load transmitted to the road through a 

single axle. 

Base - The base is generally a layer of crushed aggregate placed on top of the 

subgrade or subbase. (BMA Projects Group 2012) 

Bearing Capacity - The maximum average contact pressure between the foundation 

and the soil which will not produce shear failure in the soil. 

California Bearing Ratio (CBR) - The ratio, expressed as a percentage, between a 

test load and an arbitrarily defined standard load. This test load is required to cause a 

plunger of standard dimensions to penetrate at a specified rate into a specifically 

prepared soil specimen. 

CDF – Cumulative Damage Factor 

Chainage – Longitudinal distance along a control line, typically the centre line of a 

road. 

CIRCLY – CIRCular Loads LaYer Systems Software - A linear elastic layer 

computer program used to calculate the stresses, strains and deflections generated in 

a pavement in all directions under the application of a simulated load. 

Crossfall – The slope, measured at right angles to the alignment, of the surface of 

any part of a carriageway. 
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Deflection – The vertical movement of a member or pavement due to the application 

of a load. It is an indication of the rate at which permanent deformation will occur 

under traffic, or due to other environmental or physical factors, over time. 

Deflection Bowl - A representation of the shape of the elastic deformation of the 

pavement surface when a load is applied. 

Design Life - The period during which the performance of a bridge or pavement is 

expected to remain acceptable with only routine maintenance. 

Design Vehicle - The hypothetical road vehicle whose mass, dimensions and 

operating characteristics are used to establish aspects of the road geometry layout. 

Elastic Modulus (Youngs Modulus, Modulus of Elasticity) - A measure of the 

stiffness of a given material. The ratio, for small strains, of the rate of change of 

stress with strain. 

Empirical – A source of knowledge acquired by means of observation or 

experimentation. 

ESWL – Equivalent Single Wheel Load 

Isotropic - A material having properties that are equal in all directions. 

Pavement Deflection - The vertical elastic (recoverable) deformation of a pavement 

surface due to the application of a load. 

Pavement Stiffness - The resistance to deflection of the pavement structure. 

Resilient Modulus – The ratio of stress to recoverable strain under repeated loading 

conditions. 

ROM – Run of Mine 

Subbase - The material laid on the subgrade below the base either for the purpose of 

making up additional pavement thickness required, to prevent intrusion of the 

subgrade into the base, or to provide a working platform. 

Subgrade - The trimmed or prepared portion of the formation on which the 

pavement is constructed. Generally taken to relate to the upper line of the formation. 

Wearing Course - That part of pavement upon which the traffic travels. 
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CHAPTER 1 

1. INTRODUCTION 

1.1. Project Background 

Prior to 1977 there was no specific guideline outlining the best way to design haul 

roads (Kaufman & Ault 1977).  With little direction, haul roads were designed using 

past knowledge or experimental measures.   Over time the demand on resources 

around the world has pushed for more efficient mining techniques.  A direct result of 

this has been an increase in machinery size.  

Kaufman & Ault’s (1977a) study indicates that truck payload capacities have 

increased from moving as little as 20 tonne to as much 360 tonne (Gross weight of 

machine being 624 tonne) (Caterpillar 2014) at any one time.  However, the 

technology used to design the haul roads that these trucks traverse has not developed 

at the same rate as the advancement of the machinery.  

The purpose of Kaufman & Ault’s study was to develop a design criteria, with 

recommended practices that if implemented will promote continuity and safety 

throughout all haulage roads. 

With the above problems in mind Kaufman & Ault strived to produce a design 

manual coving the topics as listed below (Kaufman & Ault 1977):  

• Haul road alignment 

o Horizontal alignment 

o Vertical alignment 

• Haul road cross section 

o Pavement design 

o Drainage 

• Road maintenance 

In the following years multiple people reviewed and drew their own conclusions on 

Kaufman and Ault’s recommendations.  Two momentous manuals that have since 

been published and will be referred to throughout this document, is the study done 

by Tannant & Regensburg (2001) (Guidelines for Mine Haul Road Design) and 
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Thompson (2011a) (Mining Roads, Mine Haul Road Design, Construction and 

Maintenance Management).  

Prior to Thompson producing his own manual he undertook several studies with 

Professor Alex T Visser at the University of Pretoria.  Their first aim was to update 

the previous empirical method used to design pavements to a mechanistic structural 

design approach.  From this, over the following years Thompson conducted more 

research and has presented a full guide on mine haul road design, construction and 

maintenance management.  This document can be seen as an updated more recent 

version of Kaufman and Ault’s design manual.  However, Thompsons’ Mine Haul 

Road Design manual focuses primarily on pavement design, with additional 

information on geometric design, maintenance and performance evaluation.   

Thompson and Visser outline that there are three integral components of the total 

haul road design strategy, these being structural design, functional design and 

maintenance design (Thompson & Visser 1999) as outlined in Figure 1-1: Three 

Components of a Total Haul Road Design Strategy (Thompson & Visser 1999) 

Figure 1-1 below. 

 

Figure 1-1: Three Components of a Total Haul Road Design Strategy (Thompson & Visser 1999) 

More recent studies completed by Roger Thompson (2011) suggest a well built and 

cost effective haul road lies somewhere between the extremes of: 
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• Design and build a road that needs no repair or routine maintenance over its 

life time; or 

• Build a road with little design input, which needs a lot of repair, a high 

intensity of maintenance and rehabilitation over its life. 

The first option is extremely expensive to build, but requires little ongoing 

maintenance, whereas the second option is cheaper to build, but requires ongoing 

maintenance, making it very expensive to operate. 

Therefore, it is important to incorporate all aspects into the design to determine the 

most appropriate solution for each individual mine.  If any of the components are 

compromised, it’s usually the road performance that suffers.  Increasing maintenance 

is simply not the answer. No amount of maintenance will fix a poorly designed road.  

It is essential that each stage is addressed thoroughly when undertaking detailed 

design (Thompson 2011b). 

Over time there have been other Haul Road Design manuals written, however they 

are generally specific to a company or mine. For example BMA have two different 

manuals, one written in 1998 (BHP 1998) and an updated version written in 2012 

(BMA Projects Group 2012). Their design manuals cover all aspects of road design 

including: 

• Pavement 

• Alignment design 

• Intersections 

• Road side furniture and signage 

• Drainage 

• Lighting 

Rio Tinto’s manual (RioTinto 2004) is similar; however, it also contains 

construction, maintenance and cost benefit models. 

1.2. Project Aim 

This project seeks to deliver a comparison between current practice and theoretical 

procedures to determine which pavement design method is most suitable to mining 

operations within Queensland.  Overall it is anticipated that the most cost effective 

pavement design will consider deflection and total operating costs.  The least total 
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cost is getting the balance between capital and maintenance cost right.  The less 

deformation that is produced by passing vehicles will result in a structural design 

that will require less maintenance and hence will be more cost effective to the 

mining operation. 

1.3. Expected Outcomes and Benefits 

This project is designed to investigate and present practice vs theory, and the 

performance prediction against actual performance on mine hauls roads in 

Queensland.  Haul Road designs are generally undertaken on site by the mining 

engineering department, engineering consultants or not at all (ad hoc). It is expected 

that there will be very little as constructed data outlining how haul roads have been 

designed and constructed.  It is anticipated that information will have to be gathered 

from photographs, survey and discussions with relevant engineering staff on site.  

Due to the nature of the mining industry and confidentially agreements, the mines 

that provide information will not be named, for the purpose of this exercise all mines 

will be titled Case Study A, Case Study B etc.  For example the case studies aim to 

demonstrate firsthand the techniques used to design a haul road and the constraints 

that have to be met to satisfy the stakeholders.  Therefore the outcome may not be 

the most cost effective solution however, processes have to be followed to ensure 

that the solution being put forward is safe as reasonably practical irrespective of the 

cost. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1. Pavement Design  

Kaufman and Ault’s definition of Pavement is ‘A road surface that can adequately 

support the weight of traversing traffic without excessive deterioration of the surface 

caused by the traffic.’ (Kaufman & Ault 1977) A typical pavement consists of a 

wearing course, a base, subbase and subgrade layer. All layers work together to 

provide a suitable road. 

Various methods of haul road pavement design will be discussed and demonstrated 

so a comparison can be made about their performance. 

2.1.1. Structural Design 

Structural analysis is used as a method to determine the critical strains and or stresses 

which are induced in a pavement from traffic loading.  It is normal to represent 

pavements as a series of layers, of different strengths / moduli.  Care must be taken 

to ensure the method used to undertake the structural analysis is compatible with the 

input data.  If not too many assumptions have to be made, the results may be 

misleading or worthless (Jameson 2012). 

The strains induced within flexible pavements are mostly elastic (i.e. recoverable) 

however, every vertical strain is not fully recoverable. Therefore after many load 

repetitions permanent deformations accumulate at the subgrade level and throughout 

all pavement layers.  These deformations may be seen in the form of rutting along 

the wheel path and surface roughness (Jameson 2012). 
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A typical stress distribution within a granular pavement is presented in Figure 2-1 

below: 

 

Figure 2-1: Stress distribution within a granular pavement  (Vuong et al. 2008) 

2.1.2. Kaufman and Ault’s Method – Empirical Method 

Kaufman and Ault’s method of determining pavement thickness is completely 

empirical.   Their method the ‘California Bearing Ratio (CBR) Cover Curve Design’ 

is based on the CBR penetration test.  This test determines a subgrade CBR which is 

used to calculate the amount of material that should be placed over the subgrade to 

support the weight of the traversing traffic.    

To conduct this test a sample of material is compacted and then subjected to an 

applied load.  The CBR is the ratio of penetration resistance of the material 

compared with the standard California limestone.  The only requirement of this 

method is the CBR of subsequent layers above the subbase be of a higher CBR than 

the previous layers.  

To be entirely accurate the subgrade and subbase material bearing capacity should be 

determined by qualified geotechnical engineers.  Final pavement thickness may be 

determined by using Kaufman and Ault’s CBR Curve in Figure 2-2 (Kaufman & 

Ault 1977). An input of material type and vehicle wheel loads will give an output of 

pavement thickness.  Vehicle wheel loads are determined by dividing the gross 

weight of the vehicle over each axle (generally not a 50-50 ratio) by the number of 

tyres on that axle.  Kaufman and Ault recommend that if a wheel is on a tandem 
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axle, the value calculated above should be increased by 20%. Once all wheel loads 

are calculated the highest wheel load of the vehicle is used to determine the 

pavement thickness, as illustrated in Figure 2-2 below. 

 

Figure 2-2: CBR Curves (Kaufman & Ault 1977) 

For an example of how Kaufman and Ault’s CBR cover design method works the 

following design inputs available are: 

The road is to be constructed over a CBR 5 subgrade, with a maximum wheel load of 

40,000 pounds (18.1 Tonne), CBR 15 material is available for the subbase and CBR 

80 material available for the base. 

Using Figure 2-2: CBR Curves (Kaufman & Ault 1977), the 40,000 pound wheel 

load curve intersects the vertical line of CBR 5 at 28 inches (710mm). Therefore the 

minimum depth (to finished surface level) above the subgrade must be 28 inches.  
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The CBR 15 material intersects the 40,000 pound curve at 14 inches (355mm), 

therefore the top of this material must be kept 14 inches below the road surface.  And 

finally the CBR 80 Material intersects the 40,000 pound curve at 6 inches (150mm). 

Figure 2-3 shows graphically the calculated pavement design. 

 

Figure 2-3: Final Illustration of Pavement Construction (Kaufman & Ault 1977) 

Following the detailed pavement design the pavement can then be constructed.  

Irrespective of the materials used, Kaufman & Ault recommend that subbase 

construction layers should not exceed 8 inches (200mm), be compacted while moist 

and compacted by suitable compaction equipment (for example heavy rollers).   

Therefore, if the thickness of a layer exceeds 200mm, it should be staged and 

constructed in multiple layers.  The layers shall be compacted continuously until the 

weight of the unit fails to compress the material (Kaufman & Ault 1977). 

Alternatively Equation 2-1 (Thompson 2011a) can be used to estimate the layer 
thickness that would otherwise be computed from Figure 2-2. 

���� � 9.81�� �0.104 � 0.331����.�������� �2  10�!"���# $% &'()* +�,�.-.!/# .�0123 
Equation 2-1 

Tompson’s CBR Cover Curve Formula 

Where: 

Tw = Truck wheel load (metric tons) 
P = Tyre pressure (kPa) 
CBR = California Bearing Ratio of the material (%) 
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This equation can be used as an estimate however it does not match Figure 2-2 

exactly.  Because of these slight discrepancies, for the purpose of this project 

Equation 2-1 will be used as a separate method. 

2.1.2.1. Equivalent Single Wheel Load 

As seen below in Figure 2-4 at a certain point below the surface the stresses induced 

by the wheel loads overlap considerably.  At this point the stresses are so great that 

the stress induced on the subgrade from the dual wheel assembly for all practical 

purposes, would be the same as that induced by a single wheel load.  The shading of 

the picture is intended to suggest the distribution of critical stresses induced to the 

subgrade. This method was first determined for aeroplanes but it is also applicable 

for haul roads due to the high loadings induced. (Boyd 1949) Ultimately the 

Equivalent single wheel load (ESWL) allows the overall pavement depth to be 

decreased. 

 

Figure 2-4: Schematic Diagram of a B-29 Plane Wheel Assembly (Boyd 1949) 

                                                                                                                                                                                                                                                          

The ESWL method was first developed by Boyd and Foster (1949) and is based on 

the following assumptions (Drakos 2002): 

• Equalancy concept is based on equal stress 

• Contact area is circular 

• Influence angle is 45˚ and 

• Soil medium is elastic, homogeneous and isotropic. 
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Tannant and Regensburg (2001) suggest that Kaufman and Aults (1977a) CBR 

Cover Curve Method only be used for estimating purposes not detailed design.  

Along with Thompson their recommended improvement is to use the ESWL instead 

of the single wheel load.  This method assumes that the road experiences a 

combination of wheel loads, which increase the stress levels in lower layers resulting 

in a more accurate pavement design.   

The ESWL should be calculated with the following conditions: 

• Where the ESWL has the same circular contact area as that of the other wheel 

loads. 

• Where the maximum deflection generated by ESWL is equal to that 

generated by the group of wheels it represents. 

Tannent and Regensburg have adopted Foster and Ahvin’s literature to present the 

following method for calculating the ESWL at various depths of a road cross section 

(Tannant & Regensburg 2001).  

The deflection under a single wheel Ds is calculated using Equation 2-2. 

45 � 677879  

Equation 2-2 

Single Wheel Deflection 

Where: 

67 = Contact radius for single tyre (m) 

E = Youngs modulus of the pavement (MPa) 

7 = Tyre pressure for a single wheel (MPa) 

87 = Deflection factor for a single wheel 

The deflection under a group of wheels is calculated using the following: 

The layer thickness Dd is calculated using Equation 2-3 (Tannant & Regensburg 

2001). 

4: � 6::8:9  

 Equation 2-3 

Multiple Wheel Deflection 
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Where: 

6: = Contact radius for a group of wheels (m) 

E = Youngs modulus of the pavement (MPa) 

: = Tyre pressure for a group of wheels (MPa) 

8: = Deflection factor for a group of wheels 

To use either Equation 2-2 or Equation 2-3 the following assumptions are applied: 

45 � 4: 		<=>		67 � 	6: 

Tyre loads �?7	<=>	?:�	are related to the tyre pressure and contact radius.  Refer 

Equation 2-4 (Tannant & Regensburg 2001). 

?7 � @67�7		<=>		?: � @6:�: 

 Equation 2-4 

ESWL Tyre Loads 

Therefore: 

?7?: � 8:87  

Equation 2-5 

Tyre Load and Deflection Factor Relationship 

Equation 2-5 (Tannant & Regensburg 2001) gives a relationship between tyre load 

and the deflection factor.  From Figure 2-5 the deflection factor can be determined 

for various depths and horizontal locations. These can then be substituted back into 

Equation 2-2, Equation 2-3 and Equation 2-5 to calculate the ESWL at various 

depths for the given wheel geometry. 
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Figure 2-5: Deflection Factor for EWSL determination with the distance normalised by radius of the 

tyre contact area  (Tannant & Regensburg 2001). 

2.1.3. Ahlvin’s Method – Thickness over Subgrade CBR 

In 1971 on behalf of the United States Army Engineer Waterways Experiment 

Section, Richard G. Ahlvin a pavement engineer undertook an investigation to 

validate the pavement design criteria. At the time, a new jet had been developed that 

was significantly larger and heavier than other jets (in excess of 340 tonne), and 

there were concerns about whether the existing pavement could support the new jet. 

The purpose of Ahlvin’s investigation was to establish if modifications to existing 

pavements were required to cater for the new jet, and to develop a new criteria for 

the evaluation and design of flexible and rigid aircraft pavements (Ahlvin 1971).   

A special pavement was designed and constructed as an experiment to enable testing.  

The testing included of instrumentation measurements to determine deflection, stress 

and strain resulting from the static and dynamic loads, non-destructive vibratory 

testing to determine wave velocity and stiffness and traffic testing with multiple and 

single wheel assemblies.  

Based on the results, the basic CBR method was modified to obtain a method for 

heavy loads experienced by the pavement. Due to the nature of the aircraft loads this 

can be related to haul roads.  Overall, Ahlvins formula reflects a reduction of 

thickness requirements from the existing multiple wheel criteria.  The cubic equation 



 
13  

yielded the best statistical curve fit for the separation of failures and non-failures of 

the testing.  It is suggested that Equation 2-6 be used for the computation of 

thickness of overlying layers required to prevent shear deformation in the supporting 

layers (Ahlvin 1971).  Like Kaufman and Ault’s method (Kaufman & Ault 1977), 

design inputs are subgrade CBR, tyre loads and pressure. 

� � √B '−0.048 − 1.1562 "FGH ���#I $ − 0.6414 "FGH ���#I $� − 0.4730 "FGH ���#I $K+  
Equation 2-6 

Ahlvin’s CBR Cover Curve Formula 

Where: 

t = Thickness of overlying layer (m) 

CBR = Subgrade CBR 

A = load / tyre pressure 

Pe = ESWL / A 

2.1.4. Tannant & Regensburg’s Method – Critical Strain / Resilient 

Modulus Method 

In 1989, Monenco conducted a survey with the intention of discovering how 

Canadian mines operated with respect to Kaufman and Aults initial report.  In 2001, 

Tannant and Regensburg set about updating the Canadian Mine Haul Road Manual 

(Tannant & Regensburg 2001).  Tannant and Regensburg began their research by 

conducting a similar survey.  There were six mining operations that replied to both 

surveys.  These surveys provided Tannant and Regensburg an insight into the way 

Canadian mines operated and how decisions were made. Their manual covered a 

broad range of topics including pavement design. 

Tannant and Regensburg’s (2001) method of designing a pavement uses predicted 

stresses and strains and each layers resilient modulus.  From these inputs a critical 

strain limit is calculated and used to establish the required moduli of each layer.   

Tannant and Regensburg warn that many haul trucks are loaded above their 

recommended weight capacity and that this should be taken into consideration when 

designing a pavement.  

When choosing the design CBR, choose the minimum CBR value available for an 

entire area and use this when calculating road pavement thicknesses.  Increased fill 
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quantities caused by overdesigning the pavement in places offers an insurance 

against poor road performance should the fill or subgrade become saturated.  

Developments in pavement design have allowed different material properties to be 

taken into consideration when predicting their behaviour before construction.  These 

properties are determined by laboratory and in-situ testing.  The resilient modulus 

can be determined using the falling weight deflectometer (FWD) test whereas the 

Young’s modulus of elasticity can be determined by a compression test.  Repetitive 

loading will increase the stiffness of a material, therefore the initial Young’s 

modulus will be less than the resilient modulus. 

The strain induced in a pavement layer is a function of the applied stresses (tyre 

pressure, tyre size and tyre spacing) and resilient modulus of the layer.  Stresses in 

pavement layers below the wearing course can be calculated using stress models or 

by using the elastic theory, assuming that a whee load creates a uniform circular load 

over an isotropic, homogeneous elastic half space.  The assumption of homogeneity 

will portray some error however it is suitable for preliminary examination.  Figure 

2-6 illustrates a method of determining the approximate stress beneath a typical tyre, 

where p is the pressure and w is the equivalent diameter (Tannant & Regensburg 

2001). 

 

Figure 2-6: Stress Bulbs Below a Circular Pressure Distribution. (Tannant & Regensburg 2001)  

Tannant and Regensburg recommend Knapton’s method for calculating the critical 

strain limit for each layer.  Knapton’s method was developed for heavy loading 
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conditions on docks at container ports and has been modified to suit mine haul roads.  

Equation 2-7 calculates the critical strain limits while taking consideration the 

estimated traffic over the design life (Tannant & Regensburg 2001). 

9 � 80000/M�.�� 

Equation 2-7 

Critical Strain 

Where: 

E = Allowable strain limit (Micro-Strain) 

N = Number of load repetitions 

Equation 2-7 is only suitable for load repetitions between 50,000 and 5,000,000.  

Advice from Tannant and Regensburg is that this equation requires further 

calibration and should be used with caution until such time as it is updated. 

Applying the theory above, a pavement can be designed in a suitable computer 

program using the resilient moduli. This method is based on the criteria that the 

vertical strain is less that the critical strain at any point.  Generally, the critical 

vertical strain is between 1500 and 2000 micro-strain. It should be noted that the 

resilient modulus test is highly sensitive to the compaction and water content during 

compaction.  Alternatively the Young’s modulus gives a very conservative estimate 

of the resilient modulus (Tannant & Regensburg 2001). 

The next step is to calculate the vertical stress distribution below the tyre. Initially 

the stress can be estimated based on past experience or designs with similar 

conditions with the stiffest material on top the next stiffest below and so on. 

Poisson’s ratio is also required to model strain.  If the strain is greater than the 

critical strain limit, the thickness or stiffness of the layer above that material should 

be increased. Alternatively if the strain is much less than the critical strain, the 

thickness of the layer above may be decreased.  Repeat the modelling process to 

ensure strain is less than the critical strain at all points.  Refer Figure 2-7 for a 

process flowchart outlining the above design process. 
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Figure 2-7: Major Steps of the Resilient Modulus Haul Road Design Method (Tannant & Regensburg 

2001)  

2.1.5. Thompson’s Method – Mechanistic Method 

Thompson suggests that a mechanistic method is more appropriate than the empirical 

method (Thompson 2011b). The Thompson mechanistic pavement method typically 

has three layers; a wearing course, a selected blast rock layer and a subgrade / in-situ 

or fill material layer. The intention is to limit the load-induced strains to below the 

critical value in the softer in-situ or fill layer.  

The critical value depends on the category or road being designed, the truck size, 

performance requirements and road operating life. Essentially the higher the truck 

wheel loads, load repetitions and the operating life, the lower the critical strain will 

be.  This value then enables the thickness of the blast rock layer to be determined so 

the road will perform to a satisfactory standard over the design life span. 

The pavement as a whole must limit the strains in the subgrade (in-situ) to an 

acceptable level and the upper layers must protect the layers below (Thompson 

2011b). As the vertical compressive force is transferred from the wheel point load to 

the pavement, the strains magnitude decreases with increasing depth. Therefore the 

stronger pavement materials should be used towards the top of the pavement. 
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Thompson recommends vertical elastic strains shall be limited to 2000 microstrains 

with strains greater than 2500 only being acceptable for lightly trafficked and short 

term roads.  Another controlling design factor is the deflection deformation, this is 

caused by multiple passes of the heavy loads.  On the wearing course this deflection 

should be limited to a maximum of 3mm. 

To complete a design using Thompson’s method, the haul road category to design 

must be established.  This can be done using Figure 2-8.   Note that the critical value 

of the vertical compressive strength depends on the traffic volume, and if the vertical 

strain exceeds 2500 microstrains there is reason to suggest that his may result in 

inadequate structural performance.  Other input values are the effective modulus of 

elasticity (refer Equation 2-8), poissons ratio (v, typically 0.35) and equivalent single 

wheel load contact stress. 

9INN � 17.63()*�.O- 

Equation 2-8 

Eff Modulus  

Using this information, a layered elastic model can be created in modelling software 

in CIRCLY1 (or equivalent).  This model will represent the various layers as 

discussed above.  

The wearing course is modelled as a 200mm thick layer with a modulus of 350MPa.  

From here the blasted waste rock layer should be varied so that the maximum strain 

limit in any pavement layer is below the limiting strain criteria for that class of road.  

For calculation purposes in CIRCLY the layers should be assumed to extend 

infinitely in the horizontal direction, and the lowest pavement layer to an infinite 

depth vertically  (Thompson 2011b). 

Typically a modulus of 1500-3000MPa would be used for the blast rock base layer.  

If the compaction is poor this value may be reduced to 1500-2000MPa. This value 

has been derived from consideration of a cement-stabilized layer in its pre-cracked 

state, which corresponds closely to a well compacted waste rock layer. 

                                                
1 Alternative programs are: ELSYM5, MePADS and FLEA.  Rio Tintos design manual recommends 
FLEA. 
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Figure 2-8 Haul Road Category Descriptions (Thompson 2011b) 

Below is an example for a full laden haul truck with standard recommended tyres, 

inflated to 800kPa traversing all categories of road.  The road design is assumed to 

incorporate a 200mm wearing course layer of CBR 80, a good quality, well 

compacted selected blast rock base layer, built on an in-situ material with an insitu 

modulus as shown in Figure 2-9.  The assumption is the in-situ material is limited to 

a 3000mm layer, where after this depth a stiffer layer is assumed to exist, either soft 

rock or saturated material (Thompson 2011b). Any other combinations required 

should be individually modelled in CIRCLY.  It should be noted that the wearing 

course is significantly weaker than the blast rock layer. The purpose of the wearing 

course it to provide a safe, trafficable and low cost surface for the haul road.  

Therefore if the pavement requires strengthening, the base and or subbase layer 

should be increased, simply adding to the wearing course alone will not strengthen 

the pavement.  
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Figure 2-9: Cat 797B Base Layer Thickness Design Example (Thompson 2011b) 

2.1.6. Austroads Sublayering 

Austroads has produced a guide to pavement technology for Australia that assists 

engineers in designing pavements. While not all of this guide is applicable to haul 

roads, one section that can be applied is the procedure for elastic characterisation of 

granular materials (Jameson 2012).  The modulus of the granular material is 

dependent on the stress level at which the material operates and the stiffness of the 

underlying layer.  Because of this the modulus of pavement materials will decrease 

with depth to an extent where it is influenced by the modulus of the subgrade.  As 

the iterative process with a finite element model that would be required to undertake 

this analysis is not practical, and a linear elastic layer model can be utilised.  The 

total pavement configuration is broken up into five sublayers and each assigned a 

layer modulus in accordance to the following (Jameson 2012): 

• For granular material placed directly onto the insitu subgrade or selected 

subgrade material, sublayering is required: 

o Divide the total thickness of the unbound granular material into 5 

equi-thick sublayers 

o The vertical modulus of the top sublayer is the minimum of the value 

indicated in Table 2-1 or derived using Equation 2-9. 
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Table 2-1: Suggested Vertical Modulus of Top Sublayer of Normal Standard Base Material (Jameson 

2012) 

 

9P	��GQ	H6<=RF<6	SRTF<U�6� � 9P	R=>�6FUV=H	W<��6V<F  2��G�<F	H6<=RF<6	�XVYZ=�SS/125� 
Equation 2-9 

Vertical Modulus of the Top Sublayer 

o The ratio of moduli of adjacent sublayers is derived using 

* � [9\	�]^	_`abcda`	7cedafI`9	cb:I`dfgb_	ha�I`gad i
.!
 

Equation 2-10 

Ratio of Moduli of Adjacent Sublayers 

o The modulus of each sublayer may then be calculated from the 

modulus of the adjacent underlying sublayer, beginning with the 

subgrade or upper sublayer of selected subgrade material as 

appropriate, the modulus of which is known. 

o Granular materials need to be selected such that the vertical modulus 

calculated for each sublayer does not exceed the maximum modulus 

the granular material in the sublayer can develop due to its intrinsic 

characteristics. 

o If this criterion is not met, a material with a higher modulus needs to 

be used in this sublayer or an alternative pavement configuration 

selected. 
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o Other elastic parameters that may be required for granular materials 

for each sublayer may be calculated using Equation 2-17 and 

Equation 2-18. 

2.1.7. CIRCLY  

CIRCLY (CIRCular Loads LaYer Systems Software) is a computer software 

program created by Leigh Wardle.  It was originally released as a FORTRAN 

program over 30 years ago and was used for analysing layered elastic media subject 

to surface loads. Over time the program has continuously been improved.  ‘CIRCLY 

calculates the load induced stresses, strains and displacements at any nominated 

point within the layered pavement system’. CIRCLY incorporate the parameters 

within the Austroads guidelines, and adapts and changes with each new version.  

There are also two additional versions of CIRCLY, APSDS (Airport Pavement 

Structural Design System) and HIPAVE (Heavy Industrial PAVEment) for 

industrial facilities such as bulk shipping container terminals (Wardle 2010).  

The advantage of using a mechanistic approach compared to an empirical procedure 

is the ability to take into account more variables and test for failure. CIRCLY also 

has the ability to rationally assess the likely performance of novel materials and 

loading conditions.  

CIRCLY calculates the cumulative damage factor induced by a traffic spectrum 

consisting of any combination of vehicle types and load configurations (Wardle 

2012).  Each layer is assumed to be a horizontal plane that extends in all horizontal 

directions infinitely.  The bottom layer may extend to a finite depth or to a semi-

infinite depth.  If the bottom layer is of finite depth it is assumed to rest on a rigid 

base with the contact either fully continuous (rough) or fully frictionless (smooth). 

The same properties can be applied to the interface between other layers. 

2.1.7.1. CIRCLY Special Features 

• Material Performance (Strain Based Failure Criteria) 

It has been shown that the value assigned to the subgrade modulus is possibly less 

critical to the outcome that the accuracy of the damage model used within the design 

model.  If a different relationship were used, a different damage model would be 

derived. (Wardle 2007) Generally most performance models are represented 
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graphically by a plot of the tolerable strain verse load repetitions. CIRCLY models 

are in the form of (Wardle 2012): 

M � �Zj%
e
 

Equation 2-11  

Material Performance 

Where: 

N = Predicted life (Repetitions) 

k = Material constant (Refer Equation 2-12) 

b = Damage exponent of the material (Refer Equation 2-13) 

ε = Induced strain (Dimensionless Strain) 

Due to the larger load cases of airports, ports and haul roads the subgrade may not 

behave linearly. For vehicles between 40-400 tonne, with vehicle movements 

between 10,000 to 100,000 the following formulas for subgrade material constant 

and material damage exponent (Equation 2-12 and Equation 2-13) should be used 

(Wardle 2007).  

Z � �1.64  10�k  9K� − �4.31  10��  9�� � �2.18  10�!  9� � 0.00289 

Equation 2-12 

Subgrade Material Constant 

T � �−2.12  10��  9K� � �8.38  10�-  9�� − �0.0274  9� � 9.57 

Equation 2-13 

Material Damage Exponent 

9 � SRTH6<>�	WG>RFRS	�l<;nSR<FFU	�oQ6�SS�>	<S	10  ()*� 
Equation 2-14 

Subgrade Modulus 

• Cumulative Damage Factor 

CIRCLY uses the Cumulative Damage Factor (CDF) concept to present results. 

When the CDF reaches 1.0 the system is presumed to have reached its design life. 

Therefore, if the modelling produces a greater than 1.0 CDF, the pavement is 

predicted to ‘fail’.  CDF takes into account the design repetitions of each vehicle / 

load combination and the material performance properties used in the pavement 

model (Wardle 2012). 
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(RWRF<�VP�	4<W<H�	8<Y�G6 � 	p=gMg 
Equation 2-15 

Cumulative Damage Factor 

Where: 

=g = Number of repetitions 

Mg = Allowable repetitions 

• Design Traffic and Loading 

Define a ‘load case’ which is the anticipated vehicle movements over the design 

period for each vehicle or axle group (Wardle 2012). 

• Wheel Loadings 

The load on each wheel is defined by tyre contact radius and contact pressure 

(Wardle 2012). 

< � q  9.81Q@  

Equation 2-16 

Wheel Circular Contact Area 

Where: 

< = Circular Contact Area 

 = ESWL 

Q = Tyre Pressure (Pa) 

• Global Coordinate System 

The global coordinate system is used to define load locations (wheel locations), the 

layered system geometry and points below the surfaces where results are requires. 

Take the Y-axis as the direction of travel, X-axis as perpendicular to the direction of 

travel and the Z-axis vertically downwards where Z=0 at the design surface.  Also 

select if you want the results tabulated at equally spaced points along a line parallel 

to the x axis, or a grid of points of uniform spacing in both the X and Y Direction  

(Wardle 2012).   
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The combination of all parameters above will determine the outputs given from 

CIRCLY. 

2.2. Typical Australian Regional Mines Current Pavement Design 

Methods 

2.2.1. BHP Billiton Mitsubishi Alliance 

Over the past two decades BHP Billiton Mitsubishi Alliance (BMA) have developed 

two Surface Mine Haul Road Design Manuals, one in 1998 and more recently one in 

2012. 

BMA defines elements of a road as described in Figure 2-10. 

 

Figure 2-10: Typical Mine Haul Road Cross Section Standard Terminology (BMA Projects Group 

2012) 

2.2.1.1. Pavement Design Methods 

BMA allows two different design methods for their pavement designs. 

2.2.1.1.1. Empirical CBR Structural Design Method 

This method uses Kaufman and Aults (Kaufman & Ault 1977) method as described 

in section 2.1.2.  The cover curve method is, used to determine the required thickness 

of material over the subgrade  (BMA Projects Group 2012), refer Figure 2-11. 
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Figure 2-11: BMA CBR Design Cover Curve (BMA Projects Group 2012)  

2.2.1.1.2. Mechanistic Structural Design Method 

If the mechanistic design is undertaken by an experienced pavement designer BMA 

accepts the method as outlined in Section 2.1.5.  It allows the designer to analyse a 

broad range of pavement types, loading conditions and pavement materials using 

first principles.  This form of analysis removes the need for extrapolation of historic 

design charts.  Because haul roads have non-standard loads and loading conditions 

and generally non-standard pavement materials (locally sourced material) this 
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method is more appropriate (BMA Projects Group 2012).  BMA do not specify 

which method of pavement design is preferred. 

2.2.2. Rio Tinto  

Rio Tinto also allows two different design methods for their pavement designs. 

2.2.2.1. Empirical CBR Structural Design Method 

This method uses Kaufman and Aults (1977a) method as described in section 2.1.2. 

It is a conservative approach which requires no understanding of the stresses, strains 

and deflections that occur within a pavement. 

2.2.2.2. Mechanistic Structural Design Method 

Rio Tinto suggests the mechanistic approach is more efficient and subsequently 

cheaper than the CBR method.  However it requires a thorough understanding of the 

design inputs.  Rio Tinto permits the use of CIRCLY and FLEA (Finite Layer Elastic 

Analysis) programs to undertake the pavement structural design.  The importance of 

accurate absolute values of Young’s modulus and Poisson’s Ratio are stressed and 

that without these an accurate pavement design cannot be undertaken  (RioTinto 

2004). 

Benefits of the Mechanistic approach for Rio Tinto regardless of whether stress or 

strain criteria are used are (RioTinto 2004): 

• Rational cost/benefit decisions can be made in regard to alternative 

construction materials, compactive efforts and layer thicknesses.  With 

modern software it is a simple matter to evaluate alternative pavements 

which are theoretically equivalent, 

• Designs can be extended to new and heavier trucks on a rational basis, and 

• Back analyses can be made of actual pavements, which have performed well 

or badly, to provide mine-specific design criteria. 

Two different approaches within the mechanistic design can be undertaken.  One is 

to limit the subgrade and subbase strains to a certain value (either vertical strains or 

lateral (tensile) strains), the other is to limit subgrade vertical stresses to a set criteria.  

The main disadvantage of strain based designs is that they are dependent on having 

accurate values for the absolute values of resilient moduli.  If a stress based design is 
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used, the designer only has to have a reasonably good idea of the relative stiffness of 

the different pavement layers, and the absolute values do not matter. 

Refer Equation 2-11 for a strain based failure criteria.  It can be rearranged to give 

strain at which failure occurs with N repetitions (RioTinto 2004). 

2.3. Pavement Design Materials 

2.3.1. Granular Materials 

Unbound granular pavement (typically crushed rock, gravel, soil aggregate and 

granular stabilised materials) have no significant tensile strength and develop shear 

strength through particle interlock.  They tend to deform through shear, densification 

and disintegration (Jameson 2012). 

A granular subbase must provide (Vuong et al. 2008): 

• Sufficient stiffness to distribute traffic loads transmitted through the 

pavement base, reducing their intensity to a level which will not cause 

excessive permanent deformation of the subgrade.  

• Provide a working platform on which base materials can be transported, 

placed and compacted to the required standards. 

• Depending on the pavement design requirements, drain the base and / or 

protect the subgrade from moisture infiltration. 

The requirements of a good granular pavement material is presented in Table 2-1: 

Table 2-2: Pavement Material Requirements (Vuong et al. 2008) 
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The behaviour of the materials in service is governed by many factors which are 

related to the following (Vuong et al. 2008): 

• The intrinsic properties of coarse particles, including hardness, surface 

friction and contamination, and the geological origin and history of the 

source rock from which the material is derived  

• Manufactured aggregate properties such as particle shape, size and surface 

texture, particle size distribution, fractured faces, nature and quantity of fine 

particles, and fillers – these factors are related to processes used during 

manufacture to produce the final product  

• Compacted layer properties such as density, moisture content and particle 

orientation, which are in turn related to the construction and compaction 

processes  

• Boundary conditions such as in-situ moisture and temperature regimes, and 

the stresses applied at the boundaries of the constructed pavement – these are 

external influences that will influence both short and long term behaviour. 

2.3.2. Wearing Course 

The road surface is slightly different to the other pavement layers. Not only should it 

provide a comfortable (smooth) wearing course it should also take into consideration 

dust control, traction and rolling resistance. 

Typically surface selection is based on local knowledge and past experience.  A good 

running surface will prevent increased vehicle and maintenance costs and assist the 

vehicle to safely traverse the designed route.  The following material types are 

considered suitable for haul road surface construction (Tannant & Regensburg 

2001): 

• Compacted gravel 

• Crushed stone 

• Ashphaltic concrete 

• Roller compacted concrete 

• Stabilised earth 
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A summary of the material advantages and disadvantages is presented in Table 2-3. 

Table 2-3: Advantages and Disadvantages of Various Road Surface Materials (Tannant & 

Regensburg 2001) 

 

Rutted surfaces and soft pavements force the tyre, hence the vehicle to always travel 

uphill (Tannant & Regensburg 2001).  

No matter which material is chosen as the wearing surface it should have the ability 

to (Thompson & Visser 2000): 

• Provide a safe and vehicle friendly ride without the need for excessive 

maintenance 

• Be adequately trafficable under wet and dry conditions 

• Shed water without excessive erosion 

• Resist  the abrasive action of traffic 

• Sufficiently sealed to reduce excessive dust in dry weather 

• Sufficiently rough to reduce tyre slippage in wet weather 

• Low cost and easy to maintain  
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2.3.3. Anisotropic Pavement Materials 

Austroads suggests that an unbound granular material should be classed as 

anisotropic, ie the modulus in the vertical direction is different from that in the 

horizontal direction.   Vertical modulus	�9\�	can be calculated using the sub-layering 

procedure as described in part 2.1.6. The vertical modulus is taken to be twice the 

horizontal modulus.  This assumption has been used because pavement materials are 

generally compacted in horizontal layers and exhibit a preferred particle orientation.  

Historically using an anisotropic material has provided a better fit between 

calculated and measured deflections (Jameson 2012).  Equation 2-17, Equation 2-18 

and Equation 2-19 suggest the relationships required to model anisotropic materials. 

9r � 0.59\ 

Equation 2-17 

Horizontal Modulus 

8 � 9\�1 � s\� 
Equation 2-18 

Shear Modulus  

t � tu	�(GWWG=FU	0.35� 
Equation 2-19 

Poisson’s Ratio 

However other literature suggests that there has been very little testing undertaken to 

suggest that anisotropy should be used for granular materials.  Results from different 

investigations have indicated that it is difficult to establish a relationship for the 

change in anisotropic properties in different materials (Karasahin & Dawson 2000). 

In naturally occurring soil deposits, grains are sedimented under a gravitational force 

which results in non-spherical grains situated with their long sides perpendicular to 

the direction of the gravitational force.  This naturally occurring phenomenon, results 

in greater stiffness in the vertical direction than the horizontal direction.  If an 

isotropic material is subject to stress that is not isotropic i.e. not the same in all 

directions, the material will not strain isotopically.  Once a granular material has 

been compacted to achieve maximum density to provide adequate support and 

reduced deflection the layer will almost become anisotropic due to the vertical load 

applied (Karasahin & Dawson 2000). 
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2.3.1. Isotropic Pavement Materials 

Isotropic materials have the same modulus in both horizontal and vertical directions.  

Thompson method of mechanistic design assumes that pavement material behaviour 

is perfectly linearly elastic, homogenous and isotropic (Thompson 1996).  CIRCLY 

6.0 haul road section is based on Thompsons design method and also utilises 

isotropic material (Wardle 2015). 

Therefore for the purposes of this project, pavement materials will be modelled with 

isotropic properties whereas the subgrade will be considered to exhibit anisotropic 

behaviour. 

2.3.2. Determination of Modulus 

Without laboratory testing it can be difficult to relate resilient modulus to different 

soil parameters for unbound materials (Mokwa 2009).  As the moduli of unbound 

granular materials are stress dependent and also dependent on moisture and 

compaction levels there is very little published data available (Jameson 2012).  

Wherever possible it is important to undertake testing of the soil conditions to 

determine the resilient modulus.  If this is not possible an approximation has to be 

made. Many different correlations have been made between CBR and resilient 

modulus (Mokwa 2009).  After testing undertaken by Department Transport and 

Main Roads (DTMR) Queensland, they decided that 10 x CBR was not the most 

appropriate determination of modulus for a range of CBR.  Instead they adopted two 

different formulas, one for granular materials with a CBR less than 15 and another 

for CBR greater than 15.  Refer Equation 2-20 and Equation 2-21 (Carteret & 

Jameson 2009): 

9 � 21.2  ()*�.O- 

Equation 2-20 

Resilient Modulus for Granular Materials (CBR < 15) 

9 � 19  ()*�.O� 

Equation 2-21 

Resilient Modulus for Granular Materials (CBR > 15) 
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Note: the vertical modulus for the subgrade material is minimum: 

9 � 10  ()* 

Equation 2-22 

Subgrade Resilient Modulus 

This method produces pavement material modulus of 350MPa which is considered 

the maximum for a CBR 80 material compacted to 95% standard maximum dry 

density, which matches Austroads approximation. 

Table 2-4 discusses the differences between resilient module for granular materials 

adopted by DTMR and Austroads.  It also lists the adopted resilient modulus that 

will be used for this project. 

Table 2-4: Resilient Modulus for Granular Materials 

CBR (Soaked) 

Minimum 

(DTMR 2015) 

Subtype 

(DTMR 2015) 

Maximum 

Vertical Design 

Modulus (MPa) 

(DTMR 2009) 

Vertical 

Design 

Modulus 

(MPa) 

(Jameson 

2012) 

Adopted 

Resilient 

Modulus for 

this Project 

80 2.1 350 350 350 

60 2.2 300 300 290 

45 2.3 250 250 240 

35 2.4 200  205 

15 2.5 150  120 

 

2.3.3. Microtexture / Macrotexture 

Microtexure is the texture of aggregate particles on the pavement surface and is a 

primary characteristic that affects skid resistance. Mictotexture wavelengths are 

typically less than 0.5mm. Should the wavelengths be within the range of 0.5-50mm 

they are considered macrotexture. Macrotexture is primarily controlled by the 

aggregate gradation of the surface and directly affects noise and skid resistance in 

wet weather.  Refer Figure 2-12 for schematic. (Jackson et al. 2011)  
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 The wavelengths induce deformation onto tyres and suspension as well as 

vibrations.  Shock absorbers and tyres are designed to improve passenger comfort 

while reducing the energy lost due to the vibrations.  Surface texture influences 

rolling resistance and fuel consumption by inducing these vibrations. (Jackson et al. 

2011) 

 

Figure 2-12: Schematic of the Effect of Aggregate on Different Scales of Texture. (Jackson et al. 

2011) 

It has been suggested that a smoother road will decrease the vibrations on the tyre 

and suspension hence decrease fuel consumption.  However, this will vary 

depending on the scale of roughness, vehicle speed and vehicle type. (Jackson et al. 

2011) 

2.3.4. Rolling Resistance 

Rolling resistance is one of the only accurate methods of linking pavement condition 

to vehicle operating costs.  Rolling resistance is a function of the type of wearing 

course material used, the traffic speed and volume of the road (Thompson 2005).  

Listed below are different definitions of rolling resistance in relation to haul roads: 

• Rolling resistance is the amount of drawbar pull or tractive effort required to 

overcome the retarding effect between the haul truck tyres and the ground 

(Tannant & Regensburg 2001).  

• Rolling resistance is a measure of extra resistance to motion that a haul truck 

experiences and is influenced by tyre flexing, internal friction, wheel load 

and road conditions (Thompson 2011b).  

• Rolling resistance is the power required to pull a tyre up and out of a rut, 

which is constantly being recreated by the tyre. Rolling resistance is 

generally expressed in terms of percent road grade or in terms of resistance 

force as a percentage of the GVW (Tannant & Regensburg 2001).  
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• Rolling Resistance is defined as the mechanical energy converted into heat 

by a tyre moving for a unit distance of roadway (Willis et al. 2015). 

• Vehicle rolling resistance is the force required to keep a tyre moving.  If the 

tyres are moving at a constant speed, the rolling resistance force will balance 

with the traction force between the road and tyre (Jackson et al. 2011). 

• Rolling resistance is the force resisting the motion when a body (such as a 

ball, tyre, or wheel) rolls on a surface. It is mainly caused by non-elastic 

effects; that is, not all the energy needed for deformation (or movement) of 

the wheel, roadbed, etc. is recovered when the pressure is removed 

(Mukherjee 2014). 

Rolling resistance is neither equivalent nor proportional to the friction between the 

tyre and road it is primarily due to the losses from the deformation induced on the 

tyre by the pavement.  The losses are due to the fluctuating stresses and strains 

induced in the tyre as the tread comes in and out of contact with the pavement 

(Jackson et al. 2011). 

Figure 2-13 shows that increased rolling resistance will decrease the truck speed and 

increase the fuel consumption.  

Overall if rolling resistance of the tyres can be reduced, and fuel consumption 

improved, it is a cost effective option without negatively affecting the overall 

performance of the vehicle. 

 

Figure 2-13: Rolling Resistance (Performance Vs Rolling Resistance) (Holman 2006) 
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2.3.5. Calculating Rolling Resistance 

Rolling resistance consists of multiple components: 

• Internal power train friction / frictional forces 

• Tyre flexing under load / tyre inflation pressures 

• Tyre penetration / road deflection 

• Aerodynamic forces (air resistance) 

• Gravity when driving on slopes (grade resistance) 

• Transmission losses 

• Air temperature 

• Vehicle speed 

(Willis et al. 2015) (Tannant & Regensburg 2001) 

In order to calculate the rolling resistance data must be obtained for a moving 

vehicle. Firstly the power dissipation should be calculated using the mechanical 

response of the pavement and then converted into a rolling resistance force. For the 

purpose of this project the link used to associate rolling resistance to the structure 

induced pavement was deflection / deformation under the vehicle. 

Within the last five years different method have been documented to calculate rolling 

resistance from deflection.  However none of the literature is applicable to heavy 

mining vehicles. 

Chumpin’s method was developed for bituminous pavement, his assumptions were 

that the pavement was considered a multilayered structure whose layers have either 

linear elastic or viscoelastic behaviour. The vehicle’s tyres are non-dissipative and a 

quasi-static regime assumed.  The vehicle is moving at a constant speed and the 

pavement viewed as a semi-infinite medium, homogenous in the driving direction 

(Chupin et al. 2010).   
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Figure 2-14: Diagram of resulting forces applied to the wheel (Chupin et al. 2010) 

Chumpin’s paper is designed to undertake a theoretical calculation, however the data 

obtained from CIRCLY is for a static truck i.e. has no velocity component.  

Therefore Chumpin’s method was not suitable for use.  In order to use this method 

of analysis the stress / strain data available cannot be symmetrical on both sides of 

the wheel.   

Jamieson and Cenek undertook some practical testing on the rolling resistance 

induced by pavement deflection.  However the largest vehicle used in their study was 

an Isuzu FTR (road registerable 15 tonne truck).  A linear regression was developed 

to demonstrate the rolling resistance force calculated from deflection on-road 

measurements.  It was found that the pavement deflection was the most significant 

predictor in relation to rolling resistance. Their conclusion was that there was a 4:1 

ratio between rolling resistance and fuel consumption when driving at a steady speed 

(Jamieson & Cenek 2004).  Due to the size difference between an Isuzu FTR and Cat 

793 rolling resistance data cannot be extrapolated and therefore this method is not 

applicable. 

Thompson and Visser developed a roughness defect score as a way of gauging the 

performance of a haul road.  This score is developed by undertaking an onsite 

evaluation of the wearing course functionality.  A rating is given to the defect (e.g. 

pothole, corrugation, rutting etc.) on how much of the road is affected (the ‘extent’) 

and how bad the particular defect (the ‘degree’) is on a scale of 1-5.  The ‘extent’ is 

then multiplied by the ‘degree’ to give a defect score.  If the roughness defect score 

exceeds the maximum allowed on the acceptability chart, maintenance is generally 

required.  Refer Appendix B for an example of a Functional and Rolling Resistance 

Evaluation sheet (Thompson & Visser 2006). 
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Thompson has also produced a graph showing how rolling resistance affects the 

roughness defect score.  Actual road tests were undertaken at 20, 30 and 40km/h to 

demonstrate how rolling resistance increase with increased road defect score 

(Thompson 2005).  The results are presented in Figure 2-15. 

 

Figure 2-15: Correlation Between Actual Test Data and Rolling Resistance RDS Model (Thompson 

2005) 

This can be directly related to fuel consumption.  Figure 2-16 represents the increase 

in fuel consumption from a base case RDS of 5 on a 0% grade (Thompson 2005).   

 

Figure 2-16: Mine Haul Truck Generic Fuel Consumption Model Showing Effect of RDS on Fuel 

Consumption Index (Thompson 2005) 
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Finally one other approac that could be applied to provide an indication  of 

deflection and rolling resistance is a table produced by Cat Global Mining 

(Caterpillar 2015) presented in Figure 2-17. 

 

Figure 2-17: Caterpillar Rolling Resistance Estimation (Holman 2006) 

2.3.1. Deflection 

Ultimately it is the pavement structure design that will carry the weight of the 

passing vehicles over the design life of the road without excessive maintenance.  

Poor quality roads are often caused by deformation of one or more of the road layers 

being too weak or saturated. Thompson suggests that deformation at the top layer of 

pavement must be reduced to no more than 3mm (Thompson 2011b).  Whereas 

Tannant and Regensburg (2001) recommend a 6-8mm deflection is adequate.  Due to 

rolling resistance being difficult to calculate, deflection will be used as a measure of 

pavement competence. 
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2.4. Vehicle Operating Costs 

There are many costs that are added together that result in vehicle operating costs.  

These can be seen in Figure 2-18.  Some of these costs will be discussed within 

section 2.4  

 

Figure 2-18:Components of Road User Costs (Chatti & Zaabar 2012) 

The running costs of heavy duty mining equipment are strongly influenced by fuel 

consumption as displayed in Figure 2-19.  Even the smallest improvement in fuel 

economy has a large impact on overall running cost.  This also has a follow on effect 

that the total pollution omitted can be reduced (Roche & Mammetti 2015). 

2.4.1. Fuel Consumption 

 

Figure 2-19: Fuel Energy Split (Roche & Mammetti 2015) 
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The Caterpillar performance handbook volume 40 produced an hourly fuel 

consumption table (Caterpillar 2010a).  After volume 40 this table was no longer 

included. This data is still considered current and the most accurate available.  

Caterpillar’s typical descriptions for low, medium and high applications are as 

follows: 

Low:  Continuous operation at an average gross weight less than                        

recommended.  Excellent haul roads. No overloading, low load factor. 

Medium: Continuous operation at an average gross weight approaching 

recommended.  Minimal overloading, good haul roads, moderate load 

factor. 

High: Continuous operation at or above maximum recommended gross 

weight.  Overloaded, poor haul roads, high load factor. 

Average engine load based on application description above: 

Low:  20% - 30% 

Medium: 30% - 40% 

High:  40% - 50% 

By designing a haul road to minimise the rolling resistance the fuel consumption 

application may change from high to medium.  For example this may result in an 

approximately a 20% decrease in the hourly fuel consumption.  

Table 2-5 presents the hourly fuel consumptions for different off highway trucks. 

 

 

 

 

 

 

 



 
41  

 

Table 2-5: Off Highway Trucks Hourly Fuel Consumption (Caterpillar 2010a) 

Off Highway Trucks Hourly Fuel Consumption 

Model Low (litre) Medium (litre) High (litre) 

770 20.4-30.6 30.6-40.8 40.8-51.0 

772 23.6-35.3 35.3-47.1 47.1-58.9 

773F 28.3-42.5 42.5-56.6 56.6-70.8 

775F 28.7-43.1 43.1-57.4 57.4-71.8 

777D 37.5-56.3 56.3-75.0 75.0-93.8 

777F 37.1-55.7 55.7-74.2 74.2-92.8 

785C 53.7-80.6 80.6-107.5 107.5-134.4 

785D 54.5-81.4 81.4-108.6 108.6-135.9 

789C 70.6-105.9 105.9-141.2 141.2-176.5 

793D 90.8-136.2 136.2-181.6 181.6-227.0 

793F 96.5-144.8 144.8-193.1 193.1-241.3 

797F 147.9-221.8 147.9-295.7 295.7-369.6 

 

2.4.2. Tyre Wear 

For applications suitable to haul roads there are two different types of tyres.  These 

lead to two vastly different performances.  Bias-ply tyres (Figure 2-20) have a bulky 

casing composed of many criss-crossed nylon layers.  These tyres tend to flex 

causing deformation of the casing and hour glassing of the section of tread in contact 

with the ground.  This results in uneven contact pressure and ‘scissoring’ of 

adjoining ply layers, increasing the case stress and heat build-up (Woodman & 

Cutler 1997).  
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Figure 2-20: Bias-Ply Tyre Construction and Tread Pattern (Woodman & Cutler 1997) 

Radial tyres (Figure 2-21) have a thin casing constructed of a single radially 

orientated steel ply layer which is contained by several circumferentially aligned 

steel tread belts.  The advantage of a radial tyre over a bias-ply tyre is there is 

minimal deformation as the flexing is absorbed by the radial casing.  The steel belts 

act like a tank track providing uniform ground pressure.  Due to the minimal 

deformation the radial tyres produce less heat and stress therefore is more suited to 

high speed applications (Woodman & Cutler 1997). 

 

Figure 2-21:Radial Tyre Construction and Tread Pattern (Woodman & Cutler 1997) 

The advantage of radial tyres over bias-ply tyres is they have lower fuel 

consumptions as their deformation / penetration is less due to minimal side wall 

flexing and they have lower rolling resistance and friction (Woodman & Cutler 

1997).  Tyre penetration depends on the weight carried, number of tyres in contact 

with the ground and condition of the road surface.  Depending on the wheel load, 
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when the soil is weaker the more tyre penetration or rutting will occur.  Tyres 

penetrating the surface are not the only way for rolling resistance to increase, if the 

pavement flexes under the load the effects are nearly the same.  In both cases the tyre 

is effectively running ‘uphill’  (Tannant & Regensburg 2001).   

2.4.3. Tyre Pressure 

Tyre manufactures do not recommend tyres being inflated beyond 700kPa.  For the 

purposes of this project 700kPa will be used with the exemption of Thompsons Blast 

Rock method (Thompson 2011b) whose charts assume an inflation pressure of 

800kPa.  Over inflation will decrease the contact area on the surface.  Over inflation 

will also increase the likelihood of uneven wear, cuts and impact damage (Woodman 

& Cutler 1997).  If a tyre is inflated to its correct pressure the benefits will include, 

maximum traction and braking, optimum cornering ability, optimum enveloping 

flexibility to minimise the effects of road irregularities and reduced downtime 

(Holman 2006). 

2.5. Geometric Design 

Geometric design includes horizontal and vertical alignment design, stopping 

distance, sight distances, road width and superelevation.  Overall the purpose of 

geometric road design is to design a carriageway that is safe to traverse for all road 

users.  Approximately 50% of all transport accidents analysed during Thompsons 

investigations in 2009 could be directly contributed to road design and operation.  Of 

these, 60% were related to non-standard acts (human error) and the remaining 40% 

relating to sub-standard geometric design, with maintenance and pavement design 

having very little influence (Thompson 2009). 

Human factors are the most difficult to eliminate when designing a haul road. It is 

recommended that to prevent an accident the road should be more accommodating to 

human error.  Therefore the more that is known about human error the more 

designers can try to accommodate for their actions (Thompson 2009). 

Recommendations from Kaufman & Ault, Thompson, Tannant & Regensburg have 

been summarised below. 



 
44  

2.5.1. Vertical Alignment 

2.5.1.1. Stopping and Sight Distance 

Definition of Sight Distance: The extent of peripheral area visible to the vehicle 

operator.  This must be sufficient to enable a vehicle travelling at a given speed to 

stop before reaching the hazard. (Kaufman & Ault 1977) Manufacturer 

specifications should be consulted to determine the distance required to bring a truck 

to a stop.  Vehicle stopping distances must be calculated for all vehicles that will 

traverse the road being designed.   Ultimately the distance from the driver’s eye to 

the obstruction must always be equal to or greater than the distance required to safely 

stop the vehicle (Tannant & Regensburg 2001). 

It should be noted that that most formulas used to calculate the stopping distance do 

not take into consideration excessive heat build-up that may consequently cause 

break fade or brake failure. (Kaufman & Ault 1977)  Consult manufacture 

specifications to determine the distance required to bring the design vehicle to a stop. 

Care should always be taken so that adequate sight distance is available on both 

vertical and horizontal curves.  On a vertical curve the road surface limits the sight 

distance whereas berms, cuttings, trees and structures limit the horizontal distance 

(Kaufman & Ault 1977). When 150m cannot be achieved for a horizontal sight 

distance on a curve or bend, a layback (LB) is used to keep any obstructions away 

from the line of sight (Thompson 2011b). 

2.5.1.2. Truck Operator Blind Spots 

An example of a mining haul truck operator’s vision of the ground is shown below in 

Figure 2-22.  Operators do not have full 360 degrees vision.  Trucks are often left 

hand drive and the operator’s visibility envelope will vary from machine to machine.  

However, when evaluating sight distance, and critically, intersection sight distances, 

it is important to consider whether or not the combination of the truck positioning on 

the road and the road geometry itself, will facilitate the required sight distance. 

(Thompson 2013) 
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Figure 2-22: Blind Spots at Ground Level – Typical Large Rear-Dump Mine Truck (Thompson 2013)  

2.5.1.3. Incline, decline and ramp gradients 

Ideally grades should be continuous not a combination of grades or grade breaks. 

Both of these combinations create long travel times, so ideally the optimal grade is 

somewhere in between a long flat ramp (where resistance is low) and a short steep 

ramp (where resistance is high) (Thompson 2011b). 

Grades are complicated and should take into consideration production economics.  

Road grade is directly related to rolling resistance.  Performance charts provided by 

machine manufacturers show the impact of grade on performance.  If an uphill grade 

is reduced, haulage cycle times can be increased and fuel consumption and stress on 

the machine can be minimised.  

Kaufman and Ault describe multiple advantages and disadvantages to grade. 

• Production benefits neglect construction economics 

• Typically flatter grades cost more to construct  

• Individual mines and companies have their own rules and regulations that 

prohibit flexibility 
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• Mine geographic locations limit vertical and horizontal design 

• Individual mines may be willing to sacrifice haulage cycle times and fuel 

consumption for the reduction of capital cost.  

(Kaufman & Ault 1977) 

Therefore it is the responsibility of the designer to take into consideration as 

many factors as possible when designing a road to develop the optimum solution 

for each location.  Past experience indicates that the optimum maximum grades 

lie somewhere between 8-11% (Thompson 2013). 

2.5.1.4. Vertical Curves 

A vertical curve provides a smooth transition from one grade to another, their length 

should be adequate to drive comfortably and provide enough sight distance at the 

design speed (Kaufman & Ault 1977).  Where possible vertical curves should always 

be greater than the minimum value calculated.  Should the sight distance be reduced 

below the stopping distance, speed limits should be applied or sight distances 

increased.  

2.5.2. Horizontal Alignment 

Horizontal alignment or longitudinal alignment has many factors, including: - width 

of road, horizontal curves, superelevation and, cross-fall sight distances.  All of these 

attributes similarly affects the haulage cycle time and production cost.  

2.5.2.1. Width of road 

It is imperative that the road width is wide enough to ensure safe vehicle 

manoeuvrability on both straight and curved sections of road.  Each mine has 

different sized vehicles therefore road widths will vary depending on the vehicle not 

a generic standard.  Should a road be too narrow, tyre life may be drastically reduced 

as the operator may run into safety berms when passing another vehicle or traversing 

a corner.  Continual contact between a tyre and the safety berm may cause sidewall 

damage, uneven wear and cuts (Tannant & Regensburg 2001). 

Use the widest vehicle on a site to determine the proposed road width.  Table 2-6 

displays the factor which should be multiplied by the width of the largest truck to 

determine a road width.  Safety shoulders are incorporated in the carriage way width, 

whereas drainage features should be included in the formation width (Thompson 

2011b). 
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Table 2-6: Width of Road (Thompson 2011b) 

Number of Lanes 
Factor multiplied by width of largest truck on 

road 

1 2 

2 3.5 

3 5 

4 6 

For switchbacks and other sharp curves and/ or a road with high traffic volumes or limited 

visibility, a safe road width should be designed with an additional 0.5 x vehicle width 

 

Alternative factors should be considered prior to finalising a road width.  Local 

widening may be required to accommodate equipment larger than the primary road 

users, such as shovels and draglines. If on a single lane road, the sight distance is less 

than the stopping distance,  additional clearance should be provided for moving 

vehicles to avoid a collision with the stalled or slow moving vehicle (Tannant & 

Regensburg 2001). 

If mining operations elect to increase the largest vehicle size in a mining fleet, 

assessments should be made in relation to road width.  The roads may not be wide 

enough to accommodate for an increased truck width and may require widening.  

2.5.2.2. Horizontal curves 

Ideally horizontal curves should be designed to have the maximum radius possible 

(ideally >200m).  This will keep the haul road smooth and consistent (Thompson 

2011b).  Minimum design radius and sweep paths should then be checked using a 

vehicle auto turn program.  The sweep paths will show the overall extents of a 

vehicle when undertaking a turning manoeuvre and if additional road width or curve 

widening is required.   

If the radius has to be smaller than the minimum recommended radius, speed limits 

must be applied.  Constant grades will allow for constant operator speeds, which in 

turn will provide consistent haulage times and increase truck performance. 
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Increasing a grade through a horizontal curve will slow a truck on both haul and 

return trips.  If possible place horizontal curves where the grade is flatter.   Using a 

larger radius where possible will assist with haul cycle times and help reduce the 

wear and tear on both the road and machine (Tannant & Regensburg 2001).  

2.5.2.3. Super-elevation 

Ideally super-elevation should allow the outward centrifugal force experienced by 

the truck to be balanced by the lateral (side) friction between tyres and the road 

(Thompson 2011b).   When traversing a curve high lateral tyre forces are generated.  

Over time these forces contribute to high tyre wear and ply separation.  

Superelevation helps to eliminate the above forces (Tannant & Regensburg 2001). 

If a road was superelevated to the full extent (equal to the vehicle weight component) 

steering would be effortless however there is a practical limit (Max 10%) since high 

cross slopes around a corner can cause slow moving vehicles to slide down the cross 

slope.  Another impact is that the higher loads will be induced on the inside wheels 

again increasing tyre and machine wear and tear (Tannant & Regensburg 2001). 

Table 2-7 below shows the typical super-elevation rates based on the speed a vehicle 

is traveling and the radius of the curve (Thompson 2011b). 

Table 2-7: Super-elevation Rates (Thompson 2011b) 
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Typically super-elevation development lengths are a percentage of the curve radius 

and allow the driver to gradually manoeuvre the vehicle through the curve. 

• Run out lengths are 25-34% of the curve radius and  

• Run in lengths 66-75% if the curve radius.  

These are shown graphically below in Figure 2-23. 

 

Figure 2-23: Typical Super-elevation Development Lengths (Thompson 2011b) 

Figure 2-24 illustrates the importance of geometric design and positioning of the 

vehicle in relation to tyre wear.  This directly relates back to rolling resistance and 

fuel efficiency.  This also shows the importance of routine road maintenance and a 

smooth wearing course.  Tyres can be significantly overloaded when a vehicle falls 

into a table drain or mounts a bund.  Situations like these increase the likelihood of 

cuts, rock penetration, and internal damage to the tyre.  Even when the vehicle is 

correctly loaded, overloading can occur due to road geometry.  It is important that 

pavement geometric and structural design decrease the likelihood as much as 

practically possible (Woodman & Cutler 1997). 
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Figure 2-24: Importance of a Smooth Wearing Course – Reduction in Tyre Life with road Grade and 

Speed (Woodman & Cutler 1997) 

Roads cannot always be designed matching the ultimate criteria’s listed above.  

Physical constraints need to be taken into consideration, a proposed alignment may 

require significant rock excavation, and this is when a cost benefit decision should be 

made.  Is it worth shifting a significant amount of rock to ensure a perfectly designed 

road, or could the speed in a certain area be lowered.  What will be the increasing 

vehicle cycle time over the life of the mine if the speed is decreased?  Is this cost 

greater or less than moving the rock.  Many factors are considered when undertaking 

a road design and generally educated and informed decisions have to be made. 

2.6. Drainage and Pavement Moisture 

A structural pavement design is only as good as the drainage around it.  Poor 

drainage from the road surface leads to saturation of the pavement, potholes, reduced 

traction and increased fuel consumption (Tannant & Regensburg 2001). 

Water that is trapped on the road surface will quickly lead to poor pavement 

conditions (Thompson 2011b). When the degree of saturation of the unbound 
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pavement exceeds 70% the material may experience significant loss of strength and 

modulus (Jameson 2012). The aim is to direct water away from the road as quickly 

as possible without causing erosion.  Table drains should be constructed with the 

invert level deeper than the lowest pavement layer, which prevents seepage into 

under lying layers (Thompson 2011b). 

Precipitation is not the only cause of moisture in a pavement; high groundwater 

levels in the subgrade may decrease the bearing capacity, cause excessive rutting, 

high rolling resistance and in high embankments, may cause instability of the road 

side slope. Should excess water remain in the pavement it may be forced upward by 

the pumping action of traversing vehicles. This will eventually degrade the bearing 

capacity of the pavement.  This seasonal occurrence can also result in uneven 

pavement settlement (Tannant & Regensburg 2001). 

Another consequence of poor drainage is the wear and tear on the vehicles. A wet 

running surface increases the likelihood of cuts in tyre treads and sidewalls.  The 

water acts as a lubricant for the rubber and rubber cuts more easily when wet. 

(Tannant & Regensburg 2001). This can also be caused by overwatering of the haul 

road. 

Therefore when constructing a table drain, Thompson (Thompson 2011b) and 

Kaufman and Ault (Kaufman & Ault 1977) recommend the typical V Drain 

characteristics: 

• Slope adjacent to the road shoulder should be 4H:1V or flatter and should not 

exceed 2H:1V. 

• The outside slope can vary depending on the ground conditions. In rock it 

may be vertical, otherwise a 2H:1V or flatter slope is acceptable. 

• In a cut / fill section a road cross fall should slope towards the cut side and 

run drainage in a single table drain. 

• In a total cut or total fill situation, slope road crossfall from centreline and 

run drainage in two table drains. 

• With a longitudinal grade between 0% to 4% the drain does not require 

lining, except in extremely erodible soils. 
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• With a longitudinal grade over 5%, the table drain should be lined with a 

course crushed waste rock to a height no less than 0.3m above the maximum 

depth. 

• Where appropriate drains should be constructed with compacted material to 

prevent as little water as possible from seeping into the underlying layers. 

The hydraulic capacity that a table drain is required to hold is determined by the 

amount of runoff.  Hydraulic calculations should be undertaken to assist sizing the 

drains and cross road culverts.  For different catchment analysis methods refer  

individual mine haul road design manuals or Queensland Urban Drainage Manual 

(QUDM) (IPWEA 2013). 

2.6.1.1. Cross fall 

A cross fall ensures water drains freely from the road.  Water on a road surface not 

only damages the pavement it may also cause aquaplaning in very flat terrain.  

Ideally a cross fall of 2-3% should be adopted (Thompson 2011b).  This also assists 

in not overloading individual tyres as indicated in Figure 2-24. 

2.7. Maintenance 

No matter how well a mine haul road is designed and constructed there will always 

be a maintenance aspect. The constant traffic that travels the road with heavy loads 

will deform the surface. This can be controlled through design and appropriate 

pavement materials; however there will always be the need to schedule maintenance 

(Kaufman & Ault 1977).  The longer road imperfections are left uncorrected, the 

more likely they are to impede vehicle control and damage machinery.  

It is essential that mine haul roads are maintained regularly. However it is really 

important that preventative procedures are also maximised.  A statistic that 

Thompson mentions in his Haul Road Manual is it takes 500% more time to fix a 

road that has deteriorated than what it took to originally built it (Thompson 2011b).  

The major factors that contribute to deterioration of a road surface are weather and 

vehicles repetitively driving the same path on the haulage lane. These imperfections 

include but are not limited to dust, potholes, depressions, corrugations, rutting and 

loose material.  
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Road deterioration is expensive, not only for fixing the road but also from a machine 

maintenance point of view.  For example, when a tyre encounters a surface 

imperfection, it will deflect the tyre from its normal direction of travel, the driver 

must then compensate for this movement by increasing his steering.  If this 

deformation is too great it could result in a complete loss of control.  Another 

example is in dry dusty areas, dust infiltrates brakes, air filters and other critical 

components of the machine.  The result of this is more frequent maintenance 

(Kaufman & Ault 1977). 

Drains should not be forgotten and regularly inspected and cleaned out to remove 

blockages. Care should also be taken to ensure when grading, a lip is not left on the 

edge of the road that prevents water from draining away from the surface. Operators 

are also encouraged to use different parts of the through lane (ie don’t always drive 

in the same spot). Constant concentration of the same path will eventually create ruts 

or furrows.  Spillage from the haul vehicles can also create unnecessary bumps, 

every effort should be made not to over fill a vehicle  (Kaufman & Ault 1977). 

Road maintenance is something that is directly related to the location of the mine, its 

primary goal is to restore the road surface to its original specification. Thompson’s 

manual suggests some routine road maintenance activities to fix imperfections.  

These include but are not limited to, grading, resurfacing and rehabilitation.  

Typically there are three ways to go about the maintenance, ad-hoc, scheduled or 

managed maintenance. However it is unlikely that records are kept showing where 

and what was done during maintenance.  This information would assist with 

outlining where a road is constantly not performing and if the problem is consistently 

the same thing (Thompson 2011b). 

Thompson suggests that the way to minimise the total overall cost is to minimise the 

road user costs while maximising the road performance as seen below in Figure 2-25 

(Thompson 2011b).  



 
54  

 

Figure 2-25: Minimisation of Road Maintenance and Vehicle Operating Costs (Thompson 2011b) 
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CHAPTER 3 

3. METHODOLGY & CASE STUDIES  

This project seeks to demonstrate which pavement design method will result in a 

pavement configuration that will have the least deflection and hence leading 

performance.  This project will use real life scenarios from information obtained 

from Queensland mine sites. 

3.1. Background Research and Literature Review 

In order to understand all the aspects that combine to produce a pavement design, it 

was necessary to undertake a literature review.  There are many factors that need to 

be considered when undertaking a pavement design, such as pavement design 

method, materials used, wearing surface rolling resistance and geometric design.  

There are multiple sources of information from around the world available for mine 

haul road design.   

3.2. Data Sources 

Over time there has been three notable public documents produced for mine haul 

road design, Kaufman and Ault published the first complete document in 1977, their 

manual included both pavement and geometric design guidelines.  In 1996 Roger 

Thomson undertook his PhD on the design and management of surface mine haul 

roads.  Following on from his PhD, Roger has published numerous documents 

relating to haul road design.  These have covered everything from the design, 

construction, maintenance and associated costs and how to minimise costs while 

delivering a well-designed road.  In between Thompson’s thesis and his mine haul 

road manual in 2011, Tannant and Regensburg published a guideline to mine haul 

road design in 2001.  Their guideline information was developed from the surface 

mines in Western Canada.  While every effort was made to use these sources, other 

sources were perused to support or further investigate their claims.   

Two major mining companies that have multiple mining operations within Australia 

have also developed their own haul road design manuals.  BMA have two manuals, 

the latest one published in 2012 which supersedes their first manual from 1998 and 

RioTinto have their own manual that was produced in 2004.  The majority of the 
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information supplied in these manuals refers back to either Kaufman and Ault, 

Thompson or Tannant and Regensburg’s manuals. 

3.3. Case Studies 

The various aspects discussed within the literature review will be utilised to 

undertake two case studies.  The desired outcome would be the identification of one 

pavement design method that is cost effective and produces the least deflection of 

the wearing course.  This method can then be recommended for pavement designs 

within the mining industry. 

Due to confidentiality mine site specific information cannot be disclosed. For the 

purposes of this study all information obtained will be referred to as Mine Site A and 

Mine Site B.  Both mine sites are located within the Bowen Basin. The Bowen Basin 

is a coal and gas rich area with the largest coal reserve in Australia.  Figure 3-1 

illustrates the area and mines within the Bowen Basin.  The deposit contains one of 

the largest deposits of bituminous coal within the world.  The area covers over 

60,000 square kilometres within Central Queensland with the northern most mine 

near Collinsville and southern most mine near Moura.  (Rolfe 2011a) 
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 Figure 3-1: Bowen Basin Mines (Bowen Basin Coal Mines  2000) 
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3.4. Pavement Material Cost 

All rates listed in Table 3-1 have been obtained from industry representatives in 

August 2015 and are indicative only for the purposes of this project.  All rates 

include supply, spread, trim and compaction.  These rates will be utilised for both 

Case Study A and Case Study B.  It is acknowledged when these mines were 

constructed the rates would have been considerably different; however for the 

purpose of a comparison these rates are considered suitable. 

Table 3-1: Pavement Material Rates per Cubic Metre 

Pavement Material Cost 

Material Type CBR Modulus (MPa) Rate ($/m3) 

2.1 80 350 160 

2.2 60 290 135 

2.3 45 240 125 

2.4 35 206 120 

2.5 15 120 110 

2% Cement 
Modified 2.1 

 500 195 

2% Cement 
Modified 2.1 

 400 170 

Blast Rock  3000 
140 plus $10/m2 

for geo-fabric 

 

3.5.  Case Study A – Mine Site A 

3.5.1. Background Information 

Mine Site A is located within the Central District of the Bowen Basin and produces 

both coking coal and thermal coal that is exported to Japan, Asia, South America, 

Europe and the Middle East.  Mine Site A is a large scale mine that produces over 10 

million tonnes per annum.  Their current fleet of Haul Vehicles include Kress 200C 

Coal Haulers and Cat 793.  (Rolfe 2011b) 

Mine Site A had a unique problem their truck park up area requires relocation and 

expanding.  The chosen location is close to the Coal Handling Preparation Plant 

(CHPP) and is on a loop road that is currently utilised for refuelling purposes.   
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3.5.2. Geotechnical Investigation 

Geotechnical investigations identified that the area was relatively flat with a slight 

fall towards the east and south.  Numerous depressions around the site alluded to 

poor drainage and maintenance. 

It was proposed that the geotechnical engineer would excavate and examine four pits 

however due to access restrictions imposed by mine management, only two pits were 

examined.  Visual classification and laboratory tests including sieve analysis, 

Atterberg limits, linear shrinkage and CBR were undertaken.   

Results included that a subgrade CBR of 5% would be appropriate assuming the 

existing sandy clayey gravel fill will perform.  Subgrade preparation should include: 

• Removal of surficial cohesive soil pockets to expose the gravel fill 

• Reworking the exposed gravel fill to remove over size fractions (>100mm 

size) and foreign matter 

• Moisture conditioning the reworked material and then compacting the 

subgrade to a minimum of 100% standard dry density ratio. 

3.5.3. Case Study A - Issued for Construction Information 

The following information is the design that has been specified on the engineering 

design drawings and pavement option 3 presented in Figure 3-2 has been constructed 

onsite. 
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Figure 3-2: Case Study A – Issued For Construction Pavement Design Configurations 
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3.5.4. Design Vehicle Information 

The information presented within Table 3-2 outlines the design criteria used when 

developing the issued for construction pavement design. 

Table 3-2: Mine Site A Relevant Design Vehicle Information 

 
Kress 200C 

(Corporation 2004) 

Cat 793 

(Caterpillar 2010b) 

Engine 
Cat 3512B HD Electronic 

Unit Injection Engine 
Cat C175-16 

Machine Weight 148 Tonne 170 Tonne 

Nominal Payload 
Weight 

220 Tonne 220 Tonne 

Gross Machine 
Weight 

368 Tonne 390 Tonne 

Weight Distribution 

Front Axle – Empty 43.5% 
Rear Axle – Empty 56.5% 
Front Axle – Loaded 51% 
Rear Axle – Loaded 49% 

Front Axle – Empty 48% 
Rear Axle – Empty 52% 

Front Axle – Loaded 33% 
Rear Axle – Loaded 67% 

Tyres 36.00 R 51 40.00 R 57 

Tyre Diameter 3233mm 3569mm 

Tyre Width 988mm 1130mm 

Tyre Pressure (KPa) 700 700 

Wheel Load (tonne) 46 65 

ESWL (20% of 
Wheel Load) 

55.2 78 

 

As the Cat 793 is heavier than the Kress 200C all pavement designs will be 

calculated using the Cat 793, refer Figure 3-3 for typical Cat 793 vehicle dimensions.  

The gross vehicle weight is 390 tonne, therefore the wheel load is 65 tonne and 

ESWL 78 tonne (20% increase). 
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Figure 3-3: CAT 793F Mining Truck General Overall Dimensions and CIRCLY Coordinates 

(Caterpillar 2010b) 
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Using the same parameters the pavement will be designed using the different 

methods as described in Section 2.1 Pavement Design to determine how the total 

thickness and configurations will vary and how they will affect the overall 

deflection. 

3.5.5. Traffic Calculation 

If the mine produces 10 million tonne of coal per annum they are processing 

approximately 14.3 million tonne of raw material.   For the purpose of this project, it 

is assumed that the coal processing plant is located centrally within the mine.  

Therefore approximately 7.2 million tonne is being transported from each end of the 

mine.  A Cat 793 / Kress 200C is capable of carrying 220 tonne of material each load 

therefore annually there will be 32850 loads (90 / Day).  Over the design life of the 

mine (assume 20 years) it is expected that the haul road design traffic will be 

657,000 movements. 

3.5.6. Subgrade Performance 

Due to the large vehicle loads and a high number of vehicle movements it has been 

assumed that the subgrade may not behave linearly.  Therefore Equation 2-12 and 

Equation 2-13 from Section 2.1.7 should be used to calculate the subgrade material 

constant and material damage exponent. 

Z � �1.64  10�k  9K� − �4.31  10��  9�� � �2.18  10�!  9� � 0.00289 

Equation 2-12 

 

Where 9 � SRTH6<>�	WG>RFRS	�l<; nSR<FFU	�oQ6�SS�>	<S	10  ()*� 
Equation 2-14 

Z � �1.64  10�k  50K� − �4.31  10��  50�� � �2.18  10�!  50�
� 0.00289 

Z � 0.0031 

T � �−2.12  10��  9K� � �8.38  10�-  9�� − �0.0274  9� � 9.57 

Equation 2-13 

T � �−2.12  10��  50K� � �8.38  10�-  50�� − �0.0274  50� � 9.57 

T � 10.2685 
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3.5.7. Case Study A Pavement Designs A.1 – Fully Loaded Vehicle 

3.5.7.1. Pavement Design A.1.1 – Ahlvins Method 

Applying Ahlvins method: using Equation 2-6: 

� � √B '−0.048 − 1.1562 "FGH ���#I $ − 0.6414 "FGH ���#I $� − 0.4730 "FGH ���#I $K+  
Equation 2-6 

t = Thickness of overlying layer (m) 

Load = 65 Tonne 

ESWL  = 78 Tonne 

Tyre Pressure  = 700 kPa 

B � FG<>�U6�	Q6�SSR6�	
B � 65700	B � 0.093 

I � 9vw?B6�< 	
I � 780.093	� � 840 

CBR = Subgrade CBR 5% 

� � √0.093x−0.048 − 1.1562'FGH 5840+ − 0.6414'FGH 5840+
� − 0.4730'FGH 5840+

Ky 

� � 1.38	 ∴ 1.40W 

Therefore use total pavement thickness of 1.4m. 

CBR = Lower Subbase CBR 15% 

� � √0.093x−0.048 − 1.1562'FGH 15840+ − 0.6414'FGH 15840+
� − 0.4730'FGH 15840+

Ky 

� � 0.77	 ∴ 0.8W 

Therefore use a 600mm CBR 15 layer. 

CBR = Upper Subbase CBR 35% 
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� � √0.093x−0.048 − 1.1562'FGH 35840+ − 0.6414'FGH 35840+
� − 0.4730'FGH 35840+

Ky 

� � 0.47	 ∴ 0.5W 

Therefore use a 300mm CBR 35 layer. 

CBR = Base CBR 80% 

� � √0.093x−0.048 − 1.1562'FGH 80840+ − 0.6414'FGH 80840+
� − 0.4730'FGH 80840+

Ky 

� � 0.29	 ∴ 0.3W 

Therefore use a 300mm CBR 80 layer. 

CBR = Wearing Course CBR 80% 

Overall remaining layer will be a 200mm CBR 80. 

Refer Figure 3-4 for configuration. 

 

Figure 3-4: Mine Site A – Pavement Design Configuration Option A.1.1 (IFC Specified Design) 

3.5.7.1. Pavement Design A.1.2 – Thompsons Formula 

Kaufman and Ault’s (Kaufman & Ault 1977) design charts do not cater for vehicles 

wheel loads larger than 55 tonne therefore Equation 2-1 from Thompsons Haul Road 

Design Manual will be used as a substitute.  

���� � 9.81�� �0.104 � 0.331����.�������� �2  10�!"���# $% &'()* +�,�.-.!/# .�0123 
Equation 2-1 

ZCBR = Thickness of overlying layer (m) 
Tw = Truck wheel load  
P = Tyre pressure (kPa) 
CBR = California Bearing Ratio of the material (%) 
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CBR = Subgrade CBR 5% 

���� � 9.81  78700 �0.104 � 0.331����.���� ���� �2  10�!" !���$% &' 5700+
�,�.-.!/��� .�0123 

���� � 1.54	 ∴ 1.55W 

Therefore use total pavement thickness of 1.55m. 

CBR = Lower Subbase CBR 15% 

���� � 9.81  78700 �0.104 � 0.331����.���� ���� �2  10�!" .!���$% &' 15700+
�,�.-.!/��� .�0123 

���� � 0.9W 

Therefore use a 650mm CBR 15 layer. 

CBR = Upper Subbase CBR 35% 

���� � 9.81  78700 �0.104 � 0.331����.���� ���� �2  10�!" K!���$% &' 35700+
�,�.-.!/��� .�0123 

���� � 0.48	 ∴ 0.5W 

Therefore use a 400mm CBR 35 layer. 

CBR = Base CBR 80% 

���� � 9.81  78700 �0.104 � 0.331����.���� ���� �2  10�!" �����$% &' 80700+
�,�.-.!/��� .�0123 

���� � 0.17	 ∴ 0.2W 

Therefore use a 300mm CBR 80 layer. 

CBR = Wearing Course CBR 80% 

Overall remaining layer will be a 200mm CBR 80. 

 Figure 3-5 below also replicates Equation 2-1.  Using this method the total thickness 

is equivalent 1.55m, refer Figure 3-6 for configuration details.  
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Figure 3-5: Thompson’s CBR Cover-Curve Design Chart – Pavement Design A.1.2 

Refer Figure 3-6 for pavement configuration. 

 

Figure 3-6: Mine Site A – Pavement Design Configuration Option A.1.2 

3.5.7.1. Pavement Design A.1.3 – Ahlvin Method (Austroads 

Sublayering) 

Using Equation 2-9 calculate the modulus at the top of the first equi-thick layer. 

9P	��GQ	H6<=RF<6	SRTF<U�6� � 9P	R=>�6FUV=H	W<��6V<F  2��G�<F	H6<=RF<6	�XVYZ=�SS/125� 
Equation 2-9 

	
9P	��GQ	H6<=RF<6	SRTF<U�6� � 50 2'280125+	
9P	��GQ	H6<=RF<6	SRTF<U�6� � 236.3	 ∴ Use	150	as	defined	in	Table	2	1	 
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* � [9\	�]^	_`abcda`	7cedafI`9	cb:I`dfgb_	ha�I`gad i
.!
 

Equation 2-10 

* � �15050 %
.!	

* � 1.245	 
Modulus of sublayer 2 = 150  1.245 � 186l< 

Modulus of sublayer 3 = 186  1.245 � 230l< 

Modulus of sublayer 4 = 230  1.245 � 285l< 

Modulus of sublayer 5 = 285  1.245 � 354l< 

 

Figure 3-7: Austroads Equi-thick Sub-layering Option A.1.3  

Therefore to ensure the vertical modulus for each sublayer does not exceed the 

maximum modulus the granular material in the sublayer can develop, the base course 

will be CBR 80, subbase CBR 60, upper subbase CBR 45 and lower subbase CBR 

35.  Refer Figure 3-8 for pavement configuration. 
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Figure 3-8: Mine Site A – Pavement Design Configuration Option A.1.3 

3.5.7.2. Pavement Design A.1.4 - Thompsons Blast Rock Method 

To use Thompsons Blast Rock Method firstly it must be decided what category of 

road is being designed.  Using Figure 2-8 this pavement will be designed for a 

Category I – permanent life of mine with high traffic volume and an operating life 

greater than 20 years.  Therefore the vertical elastic strains will be limited to 900 

microstrains.   

Using Equation 2-8 the resilient modulus input is: 

9INN � 17.63()*�.O- 
Equation 2-8 

9INN � 17.63  5�.O- 

9INN � 49.38	l< 

Reading the chart in Figure 3-9: Cat 793D Base Layer Thickness Design 

ChartFigure 3-9 the total thickness of the base layer will be 830mm, resulting in a 

total pavement configuration thickness of 1030mm.  Refer Figure 3-10 for pavement 

configuration.. 
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Figure 3-9: Cat 793D Base Layer Thickness Design Chart 

 

Figure 3-10: Mine Site A – Pavement Design Configuration Option A.1.4 

3.5.7.1. Pavement Design A.1.5 - Ahlvin Method (Austroads 

Sublayering) with Improved Subbase 

In an effort to try and improve the overall deflection the subgrade could be lime 

stabilised to achieve a design CBR of 15.  It has been assumed that the maximum 

depth that can be stabilised at once is 500mm therefore other layers have been 

adjusted to reflect this. Testing would be required to determine the required lime 

stabilisation percentage.  Refer Figure 3-11 for pavement configuration. 
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Figure 3-11: Mine Site A – Pavement Design Configuration Option A.1.5 

3.5.7.2. Pavement Design A.1.6 - Cement Modified Base Materials 

In another effort to try and improve the overall deflection the base and subbase 

gravels could be 2% cement stabilised to achieve a design CBR of 500 and CBR 400 

respectively.  High strength materials (400 and 500 MPa) are not available within 

Queensland without cement stabilisation.  Refer Figure 3-12 for pavement 

configuration. 

 

Figure 3-12: Mine Site A – Pavement Design Configuration Option A.1.6 

3.5.7.3. Pavement Design A.1.7 - Ahlvin Method (Austroads 

Sublayering) with CDF 1 

A test was undertaken to determine if having a cumulative damage factor of 1 

resulted in significantly less deflection.  Using CIRCLY the base layer was increased 

until the CDF factor equalled 1.  This resulted in an overall pavement thickness of 

2.38m.  Refer Figure 3-13 for pavement configuration. 
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Figure 3-13: Mine Site A – Pavement Design Configuration Option A.1.7 

3.5.7.1. Pavement Design A.1.8 - Ahlvin Method (Austroads 

Sublayering) with Anisotropic Materials 

One final pavement configuration was run to determine how much the deflection 

varied dependent on whether the pavement was modelled with isotropic or 

anisotropic materials.  Ahlvin’s method with Austroads sublayering (Refer Figure 

3-8) has performed the best to date  and appears to be the cost effective so this 

configuration was chosen for a comparison.   

 

Figure 3-14: Mine Site A – Pavement Design Configuration Option A.1.8 

3.5.8. Case Study A Pavement Designs A.2 – Unloaded Vehicle 

Mine site A decided that they could not afford the capital cost to construct the 

desired pavement configuration specified (Option A.1.1).  Instead Mine Site A 

wanted an analysis undertaken to determine the difference in pavement configuration 

if only an unloaded truck was driven over the pavement.  Due to the fuel bay being 



 
73  

on this loop it was also imperative that only unloaded trucks were driven on the 

pavement to obtain fuel. 

The weight of an unloaded Cat 793 is 170 tonne, therefore the wheel load is 28.3 

tonne and ESWL 33.96 tonne (20% increase). 

Using the same calculations as described in section 3.5.7. The following 

configurations were derived. 

3.5.8.1. Pavement Design A.2.1 – Ahlvins Method 

 

Figure 3-15: Mine Site A – Pavement Design Configuration Option A.2.1 (IFC Specified Design) 

3.5.8.2. Pavement Design A.2.2 – Thompsons Formula 

 

Figure 3-16: Mine Site A – Pavement Design Configuration Option A.2.2 

3.5.8.3. Pavement Design A.2.3 – Ahlvins Method (Austroads 

Sublayering) 

 

Figure 3-17: Mine Site A – Pavement Design Configuration Option A.2.3 
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3.5.8.4. Pavement Design A.2.4 – Ahlvins Method (Austroads 

Sublayering) with Improved Subbase 

 

Figure 3-18: Mine Site A – Pavement Design Configuration Option A.2.4 

3.5.8.5. Pavement Design A.2.5 - Cement Modified Base Materials 

 

Figure 3-19: Mine Site A – Pavement Design Configuration Option A.2.5 

3.5.9. Case Study A Pavement Design A.3 – Client Requested 

Configuration 

Mine Site A was still adamant that due to budget constraints the 1.1m thick 

pavement configuration could not be constructed.  Therefore they requested that only 

500mm of pavement be installed.  To achieve this a 200mm CBR 80 wearing course 

was used with a 300mm CBR 15 base.  Refer Figure 3-20 for configuration details. 

3.5.9.1. Pavement Design A.3.1 

 

Figure 3-20: Mine Site A – Pavement Design Configuration Option A.3.1 (IFC Specified Design) 

Not only is deflection a concern here overall performance will be compromised as 

soon as the pavement becomes saturated. 
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3.5.1. Case Study A Maximum Deflections 

All pavement designs for Case Study A.1 were run through CIRCLY to determine 

how the different configurations affected the maximum deflection.  The results are 

displayed in Figure 3-21 and Figure 3-22.   
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Figure 3-21: Case Study A.1 & A.3 Cat 793 Fully Loaded Maximum Deflections 
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Figure 3-22: Case Study A.2 Cat 793 Unloaded Maximum Deflections 
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Table 3-3: Case Study A Maximum Deflection Values 

Pavement Design 
Option 

Total Configuration 
Thickness 

Capital Cost 
($/m2) 

Maximum 
Deflection (mm) 

 Case Study A Option A.1 

A.1.1 1400 $184.50 12.22 

A.1.2 1550 $201.50 11.84 

A.1.3 1400 $182.00 11.76 

A.1.4 1030 $158.20 9.05 

A.1.5 1400 $142.50 12.69 

A.1.6 1400 $213.00 10.97 

 A.1.7 3000 $404.59 8.98 

A.1.8 1400 $182.00 13.13  

 Case Study A Option A.2 

A.2.1 1100 $144.00 6.33 

A.2.2 1100 $144.75 6.27 

A.2.3 1100 $144.00 6.08 

A.2.4 1100 $167.00 5.60 

A.2.5 1100 $139.00 6.42 

 Case Study A Option A.2 

Option A.3.1 500 $65.00 17.17 
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3.6. Case Study B - Mine Site B 

3.6.1. Background Information 

Mine Site B is located within the Central District of the Bowen Basin and produces 

thermal coal that is exported to Asia, Europe and sold domestically.  Mine Site B is a 

large scale mine that produces over 10 million tonnes per annum. 

3.6.2. Geotechnical Information 

A geotechnical report for this site was not available. Instead one as constructed 

drawing provided the following information, another plan indicated that the design 

subgrade CBR is 5%: 

 

Figure 3-23: Case Study B - As-Constructed Information 

This configuration was used to determine if under different load conditions the 

pavement methods resulted in similar results as Case Study A.  This will allow a 

conclusion to be drawn as to which method provides the least deflection while being 

cost effective. 
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3.6.3. Design Vehicle Information 

The information presented within Table 3-4 outlines the design criteria used when 

developing the issued for construction pavement design. 

Table 3-4: Mine Site B Relevant Design Vehicle Information 

 
Cat 789 D 

(Caterpillar 2012) 

Engine Cat 3515C-HD 

Machine Weight 144.3 Tonne 

Nominal Payload 
Weight 

181 Tonne 

Gross Machine Weight 324.3 Tonne 

Weight Distribution 

Front Axle – Empty 46% 
Rear Axle – Empty 54% 

Front Axle – Loaded 33% 
Rear Axle – Loaded 67% 

Tyres 37.00 R 57 

Tyre Diameter 3442mm 

Tyre Width 1072mm 

  

Figure 3-24 illustrates the typical Cat 789 vehicle dimensions. 
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Figure 3-24: CAT 789D Mining Truck General Overall Dimensions and Coordinates (Caterpillar 

2012) 
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3.6.4. Traffic Calculation 

If the mine produces 10 million tonne of coal per annum they are processing 

approximately 14.3 million tonne of raw material.   For the purpose of this project, it 

is assumed that the coal processing plant is located at one end of the mine.  A Cat 

789 is capable of carrying 181 tonne of material each load therefore annually there 

will be 79005 loads (216 / Day).  Over the design life of the mine (assume 20 years) 

it is expected that the haul road design traffic will be 1,580,100 movements. 

3.6.5. Subgrade Performance 

Calculated the same as described in Section 3.5.6 the subgrade material constant and 

material damage exponent are: 

• Z � 0.0031 from Equation 2-12 and T � 10.2685 from Equation 2-13. 

3.6.6. Case Study B Pavement Designs 

Using the same calculations as described in section 3.5.7 unless noted otherwise. The 

following configurations were derived. 

3.6.6.1. Pavement Design B.1.1 – Kaufman and Ault Cover to 

Subgrade Method 

The as-constructed design was designed and constructed some 20 years ago, it is 

assumed that Kaufman and Aults Cover to Subgrade method was used.  Due to the 

wheel loads of the Cat 789, Thompsons Chart that replicates Kaufman and Aults 

Cover to Subgrade was used to replicate the design pavement configuration. 
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Figure 3-25: Thompson’s CBR Cover-Curve Design Chart – Pavement Design A.1.2 

 

Figure 3-26: Mine Site B – Pavement Design Configuration Option B.1.1 

3.6.6.2. Pavement Design B.1.2 – Ahlvins Method 

 

Figure 3-27: Mine Site B – Pavement Design Configuration Option B.1.2 
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3.6.6.3. Pavement Design B.1.3 – Ahlvins Method (Austroads 

Sublayering) 

 

Figure 3-28: Mine Site B – Pavement Design Configuration Option B.1.3 

3.6.6.4. Pavement Design B.1.4 – Thompsons Formula 

 

Figure 3-29: Mine Site B – Pavement Design Configuration Option B.1.4 

3.6.6.5. Pavement Design B.1.5 – Thompsons Blast Rock Method 

 

Figure 3-30: Mine Site B – Pavement Design Configuration Option B.1.5 
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3.6.6.6. Pavement Design B.1.6 – Cement Modified Base Materials 

 

Figure 3-31: Mine Site B – Pavement Design Configuration Option B.1.6 

3.6.6.7. Pavement Design B.1.7 – Ahlvins Method (Austroads 

Sublayering) with Improved Subbase 

 

Figure 3-32: Mine Site B – Pavement Design Configuration Option B.1.7 
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3.6.7. Case Study B Maximum Deflection 

Figure 3-33: Case Study B.1 Deflection Graph 
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Table 3-5: Case Study B Maximum Deflection Values 

Pavement Design 
Option 

Total Configuration 
Thickness 

Capital Cost 
($/m2) 

Maximum 
Deflection 

 Case Study B Option B.1 

B.1.1 1400 $184.50 10.00 

B.1.2 1100 $143.00 11.34 

B.1.3 1100 $146.50 11.08 

B.1.4 1450 $188.00 10.30 

B.1.5 980 $151.20 8.05 

B.1.6 1100 $185.00 10.15 

B.1.7 1100 $140.50 11.75 
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CHAPTER 4 

4. DISSCUSSION OF RESULTS 

Overall twenty different pavement configurations were designed using different 

empirical methods and run through CIRCLY to determine their overall predicted 

deflection.  Due to the nature of the loads being applied (in excess of 300 tonne) the 

deflections are expected to be quite large.   

4.1. Case Study A.1 

In order to eliminate some of the scenarios analysed within Chapter 3 the cost and 

deflection data was plotted to determine if there were any obvious outlies that could 

be disregarded. See Figure 4-1 below. 

 

Figure 4-1: Case Study A.1 Cost Vs Deflection  

Option A.1.7 produced the least deflection at 8.98mm, however this option had a 

total thickness of 3.0m.  Such a thickness results in a capital cost of $404.59/m2.  

This is not cost effective for any mining operation and will be disregarded. 

Option A.1.4 was also considered an outlier; it had an overall deflection of 9.05mm.  

This was Thompsons Blast Rock Method.  Even though the capital cost to construct 
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this method is one of the cheapest ($158.20/m2), using 3000MPa rock has its 

limitations. 

Thompson’s blast rock method utilises a blasted waste rock base layer with a typical 

modulus of 1500-3000MPa.  This value is derived from consideration of a cement 

stabilized layer in its pre-cracked state.  When compaction is poor, or layer thickness 

excessive he suggest that this value should be reduced to 1500-2000MPa (Thompson 

2011b). 

As a crushed rock it can only be considered as a cracked cement treated material 

because it would be difficult for it to develop a horizontal tensile capacity at the 

bottom of the layer. Austroads suggests that in a post cracking stage a cemented 

material should be modelled as a cross-anisotripic material with vertical modulus of 

500MPa and a Poisson’s ratio of 0.35 (Jameson 2012). 

Therefore a considerable amount of testing would need to be undertaken to verify the 

modulus of any blast rock material.  Typically any rock excavated within a quarry in 

Queensland is processed to produce a CBR 80 (Modulus 350MPa) suitable for 

pavement construction to Queensland TMR standards.  This is a significantly 

different moduli to Thompsons suggested 1500-3000MPa.   

Also the mines that have been considered are located within Central Queensland and 

produce Coal.  Generally there is no blast rock available that is suitable for a road 

pavement and rock would need to be imported.  

After disregarding these options the remaining 6 scenarios were plotted. 
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Figure 4-2: Case Study A.1 Cost Vs Deflection with Linear Regression 

Determining the linear regression for Case Study A.1 allowed another three other 

scenarios to be disregarded.  A.1.1, A.1.2 and A.1.8 are considered to have either too 

much deflection or are too expensive to construct. 

This left three possible scenarios that will be discussed further: 

Ahlvin’s method of design coupled with Austroads Sublayering (Option A.1.3) 

which resulted in 11.76mm of deflection and a capital cost of $182.00/m2. 

Cement modifying the base and subbase (Option A.1.6) resulted in a deflection of 

10.97mm and capital cost of $213.00/m2.   

Improving the subgrade by lime stabilisation is also an option, this would result in a 

deflection of 10.97mm and capital cost of $142.50/m2. 
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4.2. Case Study A.2 

Undertaking a similar analysis as described above allowed A.2.1 and A.2.2 to be 

disregarded as shown in Figure 4-3.   

 

Figure 4-3: Case Study A.2 Cost Vs Deflection With Linear Regression 

This left two distinct methods under the line, A.2.3 Ahlvin Method with Austroads 

Sublayering and A.2.4, Ahlvin Method (Austroads Sublayering) with Improved 

Subbase.  Option A.2.5, cement treated base materials in this scenario is marginal 

however will be considered due to it being the cheapest pavement configuration to 

construct. 

Case Study A.2.3 produced a deflection of 6.08mm and costs $144.00m2, pavement 

design option A.2.4 had a deflection of 5.60mm and costs $167.00m2 to construct 

and similarity A.2.4 produced a deflection of 6.42mm and will cost $139.00m2 to 

construct.   
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4.3. Case Study B.1 

Plotting Case Study B scenarios cost verse deflection allowed Option B.1.5 to be 

disregarded due to it being a significant outlier as illustrated in Figure 4-4. 

 

Figure 4-4: Case Study B.1 Cost Vs Deflection 

This left 6 options, two which are above the line (Option B.1.4 and B.1.7) that will 

be disregarded.  
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Figure 4-5:  Case Study B.1 Cost Vs Deflection with Linear Regression 

Option B.1.1, Kaufman and Aults method produced a deflection of 10mm and cost 

$184.50/m2 to construct, Option B.1.2, Ahlvin Method costing $143.00/m2 produced 

a 11.34mm deflection, Option B.1.3, Ahlvin Method with Austroads Sublayering 

produced 11.08mm deflection and cost $146.50/m2 to construct and finally Option 

B.1.6, cement modified subbase material produced a deflection of 10.15mm and cost 

$185.00/m2 to construct. 

Overall Case Study B produced slightly different results to Case Study A however 

even with different loads a similar outcome has been observed.    

4.4. Cumulative Damage Factor 

CDF as described in Section 2.1.7 is a method of determining when a pavement is 

predicted to ‘fail’ for semi-empirical methods of pavement design.  CDF takes into 

consideration the design repetitions of each vehicle, load combinations and the 

material performance properties.  If CDF is greater than one the pavement has 

‘failed’.   The pavement design methods that have been used throughout this project 

are primarily empirical methods.  The overall pavement thickness and configurations 

have been determined using charts or formulas as described within Chapter 3.  These 

configurations have been run through CIRCLY to calculate the overall deflection.  
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The CDF has been tabulated for discussion purposes only and is not a true 

representation of haul road pavements failure rate.    

Table 4-1 below shows what the CDF is for each pavement option, and how many 

movements are actually possible if the CDF was 1. 

Table 4-1: Tabulated Number of Movements that Equals a CDF of 1 

Tabulated Number of Movements That Equals CDF 1 

Pavement 
Design 
Option 

Traffic 
Calculation: 

Predicted 
Movements  

CDF for 
Predicted 

Movements 

Actual 
Movements to 
get as close to 

CDF 1 as 
possible 

Actual CDF 

OP A.1.1 657000 64300 10 0.97 

OP A.1.2 657000 19100 35 1.02 

OP A.1.3 657000 27400 25 1.04 

OP A.1.4 657000 37 18000 1.01 

OP A.1.5 657000 200000 3.5 1.07 

OP A.1.6 657000 9010 75 1.03 

OP A.1.7 657000 1   

OP A.1.8 657000 522000 1.5 1.19 

OP A.2.1 657000 621 1100 1.04 

OP A.2.2 657000 558 1200 1.02 

OP A.2.3 657000 269 2500 1.02 

OP A.2.4 657000 83 8000 1.01 

OP A.2.5 657000 713 900 0.98 

Op A.3.1 657000 6050000000 0.0001 1.00 

OP B.1.1 1580100 40900 40 1.03 

OP B.1.2 1580100 889000 2 1.12 

OP B.1.3 1580100 558000 3 1.06 

OP B.1.4 1580100 27600 60 1.05 

OP B.1.5 1580100 70 22500 0.99 

OP B.1.6 1580100 101000 17 1.09 

OP B.1.7 1580100 1870000 0.9 1.07 
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For all of the pavements except option A.1.7 the CDF is greater than one. Section 

2.1.7.1 above describes the development of CDF for use within CIRCLY.  The 

failure criteria used was developed for the design methods that are used in HiPAVE 

(Wardle 2007).  It was the only available criteria that related to heave duty 

pavements to use in CIRCLY, but clearly it is an inappropriate failure criteria to use 

in association with these other design methods.   

4.5.  Discussion  

It is difficult to say which pavement design method will perform the best over time.  

The only real way to determine which design method is ‘best’ is to calculate and 

combine the capital and operating cost. 

Typically there is a sum of money allocated by a stakeholder to construct a haul 

road.  This sum of money is independent of maintenance and operations.  A desired 

outcome would be to demonstrate the increase in maintenance and machinery costs 

due to constructing a poorly designed haul road. 

In order to calculate the operating costs that are directly related to pavement design 

there needs to be a link.  Rolling resistance is an obvious choice as rolling resistance 

is directly proportional to deflection. 

In order to calculate the rolling resistance of each pavement design stresses and 

strains are required to produce a stress bulb.  In reality this stress bulb cannot be 

symmetrical.  When the pavement is in a deflected shape as the tyre is rotating it is 

‘pushing’ a certain amount of the pavement effectively rolling up hill.  There is also 

another force from the elastic part of the pavement that is rebounding and effectively 

helping the tyre along. For an example refer Figure 2-14. Due to the calculated stress 

bowl from CIRCLY not being symmetrical the only way to calculate the actual 

stresses and strains is by undertaking practical testing.   

Future work is required to draw such a conclusion, without an analytical way of 

relating rolling resistance to deflection the increase in fuel consumption or wear and 

tear on the tyres cannot be calculated. 

An observation that will also affect deflection and performance is how far the 

deflection curves extend past the edge of the trucks.  For example the Cat 793 
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deflection bowl extends further than 10m past the edge of the truck.  This would 

indicate that when two trucks are passing on a haul road their deflection bowls would 

combine and increase both maximum deflections.   

4.6. Further Work 

Ultimately a link between deflection and rolling resistance is required to determine 

the change in operating costs.  In order to achieve this below are some of the 

recommended steps: 

• Undertake Benkelman beam testing on multiple pavement configurations to 

determine if the deflections reported by CIRCLY are accurate. 

• Determine a suitable method to calculate dynamic deflection for heavy 

mining equipment. 

• Undertake test pavement sections on a haul road recording costs and 

maintenance regularity. 

• Aim to establish a relationship between rolling resistance and deflection.



 
97  

CHAPTER 5 

5. CONCLUSION 

Overall without considering Thompsons Blast Rock method, it would be suggested 

that either Ahlvins Formula with Austroads Sublayering, Ahlvin’s Method with 

Austroad Sublayering and improved subgrade, or cement modifying the base 

materials will produce the best performance when designing mine haul road 

pavements.  These methods produce an adequate design while being comparatively 

costs effective.  The costs are directly related to the overall deflection achieved. 

However it should be noted that none of the methods used achieve a deflection of 

Thompsons suggested 3mm (Thompson 2011b) or Tannant and Regensburgs 6-8mm 

(Tannant & Regensburg 2001).  Therefore irrespective of the method used the rolling 

resistance will always be more than desired.   

The other foreseeable issue with specifying either of these methods as the preferred 

is neither the BMA nor the Rio Tinto’s (two of Australia’s largest mining operators) 

design manuals recognise them.  Should further testing be undertaken to justify 

which method produces the least deflection and hence rolling resistance, an effort 

should be made to distribute it to the relevant engineers to inform them about the 

different publications available and how they could potentially save costs.       

Such results will not be considered if costing is not undertaken to determine why 

spending a little more initially will help their maintenance plan in the long run.  

While current studies that give a link between rolling resistance and fuel 

consumption do not incorporate haul roads and their heavy vehicles and cannot be 

extrapolated literally. It is suggested that there is a 4:1 ratio between rolling 

resistance and  fuel consumption when driving at a steady speed (Jamieson & Cenek 

2004).  Therefore there is a potential for substantial savings in mining operations to 

reduce their capital and operational costs. 
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Appendix A Project Specification 

University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYORING 

ENG4111 & ENG4112 Research Project 

PROJECT SPECIFICATION 

FOR:   Anita STRACK 

TOPIC: A Review of Australian Mine Haul Road Design & Maintenance 
Procedures 

SUPERVISORS: USQ:   Andreas Nataatmadja 
   Industry: Peter Foley 

ENROLMENT: ENG4111 – Semester 1, 2015 & ENG4112 – Semester 2, 2015 

PROJECT AIM: This project seeks to deliver a comparison between current practice 
and theoretical procedures to determine how this affects the cost and 
operations at certain mines within Queensland. 

CONFIDENTIALITY: Due to confidentially agreements with mines it is possible 
location specific information may not be disclosed.  

PROGRAMME:  Revision B, August 12, 2015 

1. Research theoretical practices for Australian Haul Road Design, including:   
a. Geometric Design 
b. Structural Design (Pavement) 
c. Functional Design and 
d. Maintenance 

2. Establish relationships with site personal and obtain Site Specific information (Aim 
for 3 sites across Queensland) on their current Haul Road design and construction 
practices. 

3. Collect and assemble data on selected case studies.  
4. If geotechnical data is available undertake some theoretical pavement designs using 

CIRCLY (CIRCular Loads LaYer Systems) software for the chosen sites. 
5. Critically compare theoretical design and actual practice of structural design.  

6. Aim to demonstrate the additional deflection generated by the design vehicles 

using different pavement design methods.  

7. Write a dissertation on the project in the required format. 
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Appendix B  Example Onsite Evaluation of 

Wearing Course Functionality and Rolling 

Resistance 



Appendix 1 On-Site Evaluation Of Wearing Course Functionality And Rolling Resistance 

 

This is based on rating the wearing course on a section of haul road according to; 

How much is affected (the ‘extent’) by the particular defect, on a scale of 1-5 

How bad is the particular defect (the ‘degree’), on a scale of 1-5 
 
If you multiply ‘extent’ x ‘degree’ then you have the ‘defect score’ and if this exceeds the maximum 

allowed on the acceptability chart or the recording form, maintenance is usually required. 
The same process can be repeated for rolling resistance too – but in this case we only assess a 

few defects – not all the defects – that relate to rolling resistance.  Use the same form, but sum the 
product of degree and extent for roughness defects only and read off from the rolling resistance graph. 
 

University of Pretoria Depts Mining and Civil & Bio-systems Engineering

    MINE HAUL ROAD FUNCTIONAL AND ROLLING RESISTANCE EVALUATION

DATE EVALUATOR

ROAD VEHICLE SPEED km/hr (V) 

CHAINAGE TRAFFIC kt/day 

FUNCTIONALITY ROUGHNESS (Rolling resistance)

DEFECT DEGREE

(1-5)

EXTENT

(1-5)

DEFECT

SCORE

DEGREE

(1-5)

EXTENT

(1-5)

DEFECT

SCORE

Potholes

Corrugations
4*

Rutting

Loose material
5*

Stoniness - fixed
7*

Dustiness
3*

Stoniness - loose

Cracks - longit 

Cracks - slip

Cracks - croc 

Skid resistance - wet
9*

Skid resistance - dry
9*

TOTAL FUNCTIONALITY SCORE 
extentdefectxdegreeDefect

TOTAL ROUGHNESS 

SCORE (RDS)

Road maintenance

recommended if any

critical functional

defect exceeds limit

of acceptability (*)

Road maintenance

imminent, but road

trafficable

Road in good

condition, no 

immediate

maintenance needs

Refer to graph for rolling resistance

percentages

ESTIMATED

ROLLING RESISTANCE 

(%)

Comment

On road 
Drainage

Side of road 

Longitudinal
Erosion

Cross

Thompson, RJ & Visser, AT 13



 

Functional performance acceptability criteria (example only – you may wish to use other defect 

score limits)

0 5 10 15 20 25

Potholes

Corrugations

Rutting

Loose material

Dustiness

Stones -f ixed

Stones -loose

Cracks -longitudinal

Cracks -slip

Cracks -crocodile

Skid resistance w et
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D
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Haul road defect score

Desirable
Undesirable
Unacceptable

 
 
 
 

Rolling resistance evaluation
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General Description of Haul Road Extent Classification

EXTENT DESCRIPTION

(Percentage of haul road section length effected)

1 Isolated occurrence, less than 5% of road affected

2 Intermittent occurrence, between 5-15% of road affected. 

3 Regular occurrence, between 16-30% of road affected.

4 Frequent occurrence, between 31-60% of road affected. 

5 Extensive occurrence, more than 60% of the road affected.

General Description of Haul Road Degree Classification

CHARACT

ERISTIC

VISUAL DESCRIPTION

Degree 1 Degree 3 Degree 5 

Potholes

Corrugations

Rutting

Loose material

Dustiness

Stoniness -

fixed in 

wearing course
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General Description of Haul Road Degree Classification

CHARACT

ERISTIC

VISUAL DESCRIPTION

Degree 1 Degree 3 Degree 5 

Cracks - 

longitudinal

None

Cracks - slip 

Cracks - 

crocodile

Skid resistance

- wet

Skid resistance

- dry

Drainage on

road

Drainage at

roadside

 

 

Thompson, RJ & Visser, AT 16
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Appendix C Sample Questionnaire 

1. Who does the haul road design? 

a. Onsite 

b. In house designers offsite 

c. External consultant 

2. What standards are used for geometric design? 

3. What testing is done to determine pavement design parameters? 

4. What method is used for pavement design? 

a. None 

b. Standardised site design 

c. Empirical design charts 

d. Mechanistic computer based design 

5. What as-built data is collected? 

6. Who manages the haul road network? 

7. How is maintenance performed? 

8. Are maintenance costs recorded? 
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Appendix D Case Study A Questionnaire  

1.       Who does the haul road design? 

a.       Onsite 

2.       What standards are used for geometric design?  

We generally refer to the Site Specific Surface Haul Road Design Manual 

3.       What testing is done to determine pavement design parameters?  

We don’t do any testing 

4.       What method is used for pavement design? 

a.       None I’ll explain – on site we are constantly digging overburden, hauling and 
dumping in a spoil pile somewhere. The trucks are constantly running over a surface 
that has either just been blasted or just been dumped over. If we need to widen a haul 
road or make a modification we just strip the topsoil and sheet the road with a gravel 
wearing course. Wherever the trucks run they are heavy enough to compact material 
underneath. There are some other issues that we do pay attention to like water 
(culverts), or other geotechnical constraints (faults, mud at the bottom of spoil piles 
that causes failure etc). 

5.       What as-built data is collected?  

In terms of pavement design – none. Otherwise we take weekly and monthly aerial 
surveys of road and pits. 

6.       Who manages the haul road network?  

We have a dedicated road crew (24M grader, D10 dozer, 2 x scrapers, reject haul 
truck, water cart and a contractor on site with (2 x 35t excavators, 16M grader, water 
cart) 

7.       How is maintenance performed?  

Combination of ad-hoc and planned. If parts of the road network need to graded or 
watered, an operator will call the supervisor and equipment sent down. We also 
schedule all our stripping and coal mining 3 months in advance. So we know when 
we are going to mine a certain seam, or strip overburden in an area the road crew 
need to go in and prepare the road before hand. They will go in with a dozer and 
push material, then grade, and then finally sheet with coal reject as a wearing course. 

8.       How is maintenance performed?  

Yes – road crew only look after road maintenance and all operating costs are 
recorded. 
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Appendix E  Case Study B Questionnaire 

1.       Who does the haul road design? 

An external consultant designed and built the haul road.  From there the roads were 
generally maintained using material won onsite, therefore designed / made up onsite 
or the original design drawings referenced. 

2.       What standards are used for geometric design?  

I never actually saw a standard for this mine.  

3.       What testing is done to determine pavement design parameters?  

I’d say initially (to complete the haul road design for a new mine), but not ongoing.  

4.       What method is used for pavement design? 

Unsure 

5.       What as-built data is collected?  

Originally I’d say yes (ie: when the mine was built), but unlikely that it was collected 
ongoing (when maintenance was completed). 

6.       Who manages the haul road network?  

The OCE. Open Cut Examiner  

7.       How is maintenance performed? 

As directed by the OCE(s). Some mines have graders & water carts doing 
maintenance almost full time. 

8.       Are maintenance costs recorded?  

Unsure. Mines may record them using a separate booking / work break down code 
for maintenance. 

9.       What Haul Trucks do they use? 

What is available onsite – 789’s.
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Appendix F Case Study A CIRCLY Model Output 

Information



A.1.1.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: A.1.1

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.1 Title: Case Study A.1.1

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E350     Iso.       3.50E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E120     Iso.       1.20E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      300.00    Iso E350                    n/a           n/a    
    3      300.00    Iso E240                    n/a           n/a    
    4      600.00    Iso E120                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793        2.31E-03      6.43E+04
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A.1.2.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: A.1.2

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -1000   Xmax:  1000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.2 Title: Case Study A.1.2

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E350     Iso.       3.50E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E120     Iso.       1.20E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      300.00    Iso E350                    n/a           n/a    
    3      400.00    Iso E240                    n/a           n/a    
    4      650.00    Iso E120                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793        2.05E-03      1.91E+04
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A.1.3.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: A.1.3

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -1000   Xmax:  1000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.6 Title: Case Study A.1.3

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E206     Iso.       2.06E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      300.00    Iso E290                    n/a           n/a    
    3      300.00    Iso E240                    n/a           n/a    
    4      600.00    Iso E206                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793        2.13E-03      2.74E+04
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A.1.4.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: A.1.4

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.3 Title: Case Study A.1.4

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E3000    Iso.       3.00E+03   0.35
    3     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    3     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
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    2      830.00    Iso E3000                   n/a           n/a    
    3        0.00    Sub_CBR5 H   Cat 793        1.12E-03      3.70E+01
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A.1.5.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: A.1.5

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.5 Title: Case Study A.1.5

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    subsltE190   Aniso.     1.20E+02   0.45      8.30E+01   
6.00E+01   0.45
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

   Details of Layers to be sublayered: 
   Layer no.  4:  Austroads (2004) sublayering 
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Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      300.00    Iso E290                    n/a           n/a    
    3      400.00    Iso E240                    n/a           n/a    
    4      500.00    subsltE190                  n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793        2.58E-03      2.00E+05
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A.1.6.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: A.1.6

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.6 Title: Case Study A.1.6

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E500     Iso.       5.00E+02   0.35
    2     rough    Iso E400     Iso.       4.00E+02   0.35
    3     rough    Iso E350     Iso.       3.50E+02   0.35
    4     rough    Iso E240     Iso.       2.40E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E500                    n/a           n/a    
    2      300.00    Iso E400                    n/a           n/a    
    3      300.00    Iso E350                    n/a           n/a    
    4      600.00    Iso E240                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793        1.91E-03      9.01E+03
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A.1.7.TXT
CIRCLY Version 5.0u (8 April 2013)

   Layer no.  5 is INCLUDED in max. CDF calculation
Job Title: A.1.7

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.7 Title: Case Study A.1.7

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E206     Iso.       2.06E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Automatic layer thickness design: 
   Layer number to be designed:  2
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   Minimum thickness:  0
   Maximum thickness:  5000

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
    1      300.00    Iso E350                    n/a           n/a    
    2     1793.98    Iso E290                    n/a           n/a    
    3      300.00    Iso E240                    n/a           n/a    
    4      600.00    Iso E206                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793        7.86E-04      9.98E-01
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A.1.8.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: A.1.8

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 Title: Cat 793

   Load   Load         Movements
    No.   ID
    1     Cat 793      6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793     Cat 793     Vertical Force    590.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793      2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793      2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793      1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793      2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793      2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.1.8 Anis Title: Case Study A.1.8 Aniso

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Aniso 350    Aniso.     3.50E+02   0.35      2.59E+02   
1.75E+02   0.35
    2     rough    Aniso 350    Aniso.     3.50E+02   0.35      2.59E+02   
1.75E+02   0.35
    3     rough    Aniso 240    Aniso.     2.40E+02   0.35      1.78E+02   
1.20E+02   0.35
    4     rough    Aniso 120    Aniso.     1.20E+02   0.35      8.90E+01   
6.00E+01   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.
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Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
    1      200.00    Aniso 350                   n/a           n/a    
    2      300.00    Aniso 350                   n/a           n/a    
    3      300.00    Aniso 240                   n/a           n/a    
    4      600.00    Aniso 120                   n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793        2.83E-03      5.22E+05
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CIRCLY Version 5.0u (8 April 2013)

Job Title: A.2.1

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 U Title: Cat 793 Unloaded

   Load   Load         Movements
    No.   ID
    1     Cat 793 U    6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793 U   Cat 793 Un  Vertical Force    389.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793 U    1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793 U    2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793 U    2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793 U    1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793 U    2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793 U    2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.2.1 Title: Case Study A.2.1

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E350     Iso.       3.50E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E120     Iso.       1.20E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      200.00    Iso E350                    n/a           n/a    
    3      200.00    Iso E240                    n/a           n/a    
    4      500.00    Iso E120                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793 U      1.47E-03      6.21E+02
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CIRCLY Version 5.0u (8 April 2013)

Job Title: A.2.2

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 U Title: Cat 793 Unloaded

   Load   Load         Movements
    No.   ID
    1     Cat 793 U    6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793 U   Cat 793 Un  Vertical Force    389.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793 U    1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793 U    2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793 U    2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793 U    1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793 U    2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793 U    2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.2.2 Title: Case Study A.2.2

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E350     Iso.       3.50E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E120     Iso.       1.20E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      200.00    Iso E350                    n/a           n/a    
    3      250.00    Iso E240                    n/a           n/a    
    4      450.00    Iso E120                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793 U      1.46E-03      5.58E+02
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CIRCLY Version 5.0u (8 April 2013)

Job Title: A.2.3

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 U Title: Cat 793 Unloaded

   Load   Load         Movements
    No.   ID
    1     Cat 793 U    6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793 U   Cat 793 Un  Vertical Force    389.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793 U    1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793 U    2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793 U    2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793 U    1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793 U    2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793 U    2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.2.3 Title: Case Study A.2.3

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E206     Iso.       2.06E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      200.00    Iso E290                    n/a           n/a    
    3      200.00    Iso E240                    n/a           n/a    
    4      500.00    Iso E206                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 793 U      1.36E-03      2.69E+02
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CIRCLY Version 5.0u (8 April 2013)

   Z-value no.  1:  0
Job Title: A.2.3

Calculation of Selected Component at Selected z-values

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 U Title: Cat 793 Unloaded

   Load   Load         Movements
    No.   ID
    1     Cat 793 U    6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793 U   Cat 793 Un  Vertical Force    389.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793 U    1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793 U    2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793 U    2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793 U    1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793 U    2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793 U    2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.2.4 Title: Case Study A.2.4

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E500     Iso.       5.00E+02   0.35
    2     rough    Iso E400     Iso.       4.00E+02   0.35
    3     rough    Iso E350     Iso.       3.50E+02   0.35
    4     rough    Iso E240     Iso.       2.40E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.
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CIRCLY Version 5.0u (8 April 2013)

   Z-value no.  1:  0
Job Title: A.2.3

Calculation of Selected Component at Selected z-values

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 793 U Title: Cat 793 Unloaded

   Load   Load         Movements
    No.   ID
    1     Cat 793 U    6.57E+05

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 793 U   Cat 793 Un  Vertical Force    389.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 793 U    1             0.0        0.0   1.00E+00      
0.00
    2         Cat 793 U    2          -423.0    -5905.0   1.00E+00      
0.00
    3         Cat 793 U    2          1091.0    -5905.0   1.00E+00      
0.00
    4         Cat 793 U    1          5630.0        0.0   1.00E+00      
0.00
    5         Cat 793 U    2          4539.0    -5905.0   1.00E+00      
0.00
    6         Cat 793 U    2          6053.0    -5905.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: A.2.5 Title: Case Study A.2.5

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E120     Iso.       1.20E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.
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B.1.1.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: B.1.1

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 789 Title: Cat 789

   Load   Load         Movements
    No.   ID
    1     Cat 789      1.58E+06

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 789     Cat 789     Vertical Force    538.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 789      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 789      2          -240.0    -5700.0   1.00E+00      
0.00
    3         Cat 789      2           992.0    -5700.0   1.00E+00      
0.00
    4         Cat 789      1          5374.0        0.0   1.00E+00      
0.00
    5         Cat 789      2          4382.0    -5700.0   1.00E+00      
0.00
    6         Cat 789      2          5614.0    -5700.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: B.1.1 Title: Case Study B.1.1

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E206     Iso.       2.06E+02   0.35
    4     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    4     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
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    1      300.00    Iso E350                    n/a           n/a    
    2      300.00    Iso E290                    n/a           n/a    
    3      800.00    Iso E206                    n/a           n/a    
    4        0.00    Sub_CBR5 H   Cat 789        2.03E-03      4.09E+04
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CIRCLY Version 5.0u (8 April 2013)

Job Title: B.1.2

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 789 Title: Cat 789

   Load   Load         Movements
    No.   ID
    1     Cat 789      1.58E+06

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 789     Cat 789     Vertical Force    538.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 789      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 789      2          -240.0    -5700.0   1.00E+00      
0.00
    3         Cat 789      2           992.0    -5700.0   1.00E+00      
0.00
    4         Cat 789      1          5374.0        0.0   1.00E+00      
0.00
    5         Cat 789      2          4382.0    -5700.0   1.00E+00      
0.00
    6         Cat 789      2          5614.0    -5700.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: B.1.2 Title: B.1.2

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E206     Iso.       2.06E+02   0.35
    4     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    4     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
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    1      200.00    Iso E350                    n/a           n/a    
    2      200.00    Iso E290                    n/a           n/a    
    3      700.00    Iso E206                    n/a           n/a    
    4        0.00    Sub_CBR5 H   Cat 789        2.74E-03      8.86E+05
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B.1.3.TXT
CIRCLY Version 5.0u (8 April 2013)

Job Title: B.1.3

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 789 Title: Cat 789

   Load   Load         Movements
    No.   ID
    1     Cat 789      1.58E+06

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 789     Cat 789     Vertical Force    538.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 789      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 789      2          -240.0    -5700.0   1.00E+00      
0.00
    3         Cat 789      2           992.0    -5700.0   1.00E+00      
0.00
    4         Cat 789      1          5374.0        0.0   1.00E+00      
0.00
    5         Cat 789      2          4382.0    -5700.0   1.00E+00      
0.00
    6         Cat 789      2          5614.0    -5700.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: B.1.3 Title: Case Study B.1.3

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    4     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
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    1      200.00    Iso E350                    n/a           n/a    
    2      200.00    Iso E290                    n/a           n/a    
    3      700.00    Iso E240                    n/a           n/a    
    4        0.00    Sub_CBR5 H   Cat 789        2.62E-03      5.58E+05
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Job Title: B.1.4

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 789 Title: Cat 789

   Load   Load         Movements
    No.   ID
    1     Cat 789      1.58E+06

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 789     Cat 789     Vertical Force    538.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 789      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 789      2          -240.0    -5700.0   1.00E+00      
0.00
    3         Cat 789      2           992.0    -5700.0   1.00E+00      
0.00
    4         Cat 789      1          5374.0        0.0   1.00E+00      
0.00
    5         Cat 789      2          4382.0    -5700.0   1.00E+00      
0.00
    6         Cat 789      2          5614.0    -5700.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: B.1.4 Title: Case Study B.1.4

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E206     Iso.       2.06E+02   0.35
    4     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    4     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
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    1      200.00    Iso E350                    n/a           n/a    
    2      400.00    Iso E290                    n/a           n/a    
    3      850.00    Iso E206                    n/a           n/a    
    4        0.00    Sub_CBR5 H   Cat 789        1.95E-03      2.76E+04
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Job Title: B.1.5

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 789 Title: Cat 789

   Load   Load         Movements
    No.   ID
    1     Cat 789      1.58E+06

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 789     Cat 789     Vertical Force    538.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 789      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 789      2          -240.0    -5700.0   1.00E+00      
0.00
    3         Cat 789      2           992.0    -5700.0   1.00E+00      
0.00
    4         Cat 789      1          5374.0        0.0   1.00E+00      
0.00
    5         Cat 789      2          4382.0    -5700.0   1.00E+00      
0.00
    6         Cat 789      2          5614.0    -5700.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: B.1.5 Title: Case Study B.1.5

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E3000    Iso.       3.00E+03   0.35
    3     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    3     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
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    2      780.00    Iso E3000                   n/a           n/a    
    3        0.00    Sub_CBR5 H   Cat 789        1.09E-03      6.95E+01
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Job Title: B.1.5

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 789 Title: Cat 789

   Load   Load         Movements
    No.   ID
    1     Cat 789      1.58E+06

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 789     Cat 789     Vertical Force    538.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 789      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 789      2          -240.0    -5700.0   1.00E+00      
0.00
    3         Cat 789      2           992.0    -5700.0   1.00E+00      
0.00
    4         Cat 789      1          5374.0        0.0   1.00E+00      
0.00
    5         Cat 789      2          4382.0    -5700.0   1.00E+00      
0.00
    6         Cat 789      2          5614.0    -5700.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: B.1.6 Title: Case Study B.1.6

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E500     Iso.       5.00E+02   0.35
    2     rough    Iso E400     Iso.       4.00E+02   0.35
    3     rough    Iso E350     Iso.       3.50E+02   0.35
    4     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    4     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
    No.              ID           ID            Strain

Page 1



B.1.6.TXT
    1      200.00    Iso E500                    n/a           n/a    
    2      200.00    Iso E400                    n/a           n/a    
    3      700.00    Iso E350                    n/a           n/a    
    4        0.00    Sub_CBR5 H   Cat 789        2.22E-03      1.01E+05
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Job Title: B.1.5

Damage Factor Calculation 

Assumed number of damage pulses per movement:
   One pulse per axle (i.e. use NROWS)

Traffic Spectrum Details:

   ID: Cat 789 Title: Cat 789

   Load   Load         Movements
    No.   ID
    1     Cat 789      1.58E+06

Details of Load Groups:

   Load   Load        Load        Load            Radius    Pressure/    
Exponent
    No.   ID          Category    Type                      Ref. stress
    1     Cat 789     Cat 789     Vertical Force    538.0    0.70         
0.00

   Load Locations:
   Location   Load        Gear          X          Y      Scaling     Theta
    No.       ID          No.                             Factor
    1         Cat 789      1             0.0        0.0   1.00E+00      
0.00
    2         Cat 789      2          -240.0    -5700.0   1.00E+00      
0.00
    3         Cat 789      2           992.0    -5700.0   1.00E+00      
0.00
    4         Cat 789      1          5374.0        0.0   1.00E+00      
0.00
    5         Cat 789      2          4382.0    -5700.0   1.00E+00      
0.00
    6         Cat 789      2          5614.0    -5700.0   1.00E+00      
0.00

Layout of result points on horizontal plane:
   Xmin: -12500   Xmax:  20000   Xdel:  100
   Y:     0

Details of Layered System:

   ID: B.1.7 Title: Case Study B.1.7

   Layer  Lower    Material     Isotropy   Modulus    P.Ratio              
       
    No.   i/face   ID                      (or Ev)    (or vvh)  F          
Eh         vh     
    1     rough    Iso E350     Iso.       3.50E+02   0.35
    2     rough    Iso E290     Iso.       2.90E+02   0.35
    3     rough    Iso E240     Iso.       2.40E+02   0.35
    4     rough    Iso E120     Iso.       1.20E+02   0.35
    5     rough    Sub_CBR5 H   Aniso.     5.00E+01   0.45      3.45E+01   
2.50E+01   0.45

   Performance Relationships:
   Layer  Location Performance  Component  Perform.   Perform.  Traffic
    No.            ID                      Constant   Exponent  Multiplier
    5     top      Sub 5 Per    EZZ         0.003100   10.269     1.000

   Reliability Factors: Not Used.

Results:

   Layer  Thickness  Material     Load          Critical       CDF
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    No.              ID           ID            Strain
    1      200.00    Iso E350                    n/a           n/a    
    2      200.00    Iso E290                    n/a           n/a    
    3      300.00    Iso E240                    n/a           n/a    
    4      400.00    Iso E120                    n/a           n/a    
    5        0.00    Sub_CBR5 H   Cat 789        2.95E-03      1.87E+06
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